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To whom it may concern, 

It has been a real pleasure to read and evaluate the PhD thesis of  Julia Amoros-Binefa, entitled “Real-
time optimal quantum control for atomic magnetometers with decoherence.” 

This work addresses a broad and timely set of  topics at the interface of  quantum metrology, open 
quantum systems, optimal (classical) control theory, and experiments with atomic ensembles. The 
results, which have already led to three manuscripts (one published in New Journal of  Physics and two 
recently submitted to the arXiv), represent contributions at the research frontier of  these fields. They 
are of  clear relevance both from a fundamental and a practical perspective: on the one hand, by 
establishing ultimate precision bounds for atomic magnetometers in the presence of  decoherence; on 
the other, by proposing concrete control strategies that enable one to approach these limits in realistic 
atomic magnetometers. 

Beyond the significance of  the results themselves, the thesis also demonstrates an excellent effort in 
carefully presenting the necessary background to fully appreciate the derivations and implications of  
the main findings. The candidate provides thorough explanations and a clear personal perspective 
throughout, which greatly enhances both the readability and the pedagogical value of  the manuscript. I 
can confidently say that I learned a great deal while reading this work, and I am certain that I will 
return to it as a valuable reference for myself, my students, and my collaborators whenever I need to 
revisit the concepts it so clearly and comprehensively covers. 

The thesis is structured as follows. The first three chapters provide background material: Chapter 1 
covers preliminary notions of  probability theory and quantum mechanics; Chapter 2 presents an 
extended introduction to classical estimation theory, with particular emphasis on Bayesian filtering; and 
Chapter 3 focuses on continuously monitored quantum systems. The subsequent chapters are devoted 
to the candidate’s original contributions, including the derivation of  ultimate bounds for frequency 
estimation in the presence of  decoherence, as well as the development and assessment of  control and 
estimation strategies designed to attain these bounds in realistic atomic magnetometers. 

In the following, I will discuss each chapter separately, presenting their content in more detail and 
adding, where appropriate, remarks and questions that I hope the candidate will be able to elaborate on 
during the defense. I will also provide a number of  minor comments, including corrections of  
typographical errors and small suggestions for improvement. As I mentioned above, I sincerely hope 
that this thesis will be made publicly available in some form, as it could serve as a valuable reference for 
researchers approaching these topics or already working in the field. For this reason, I believe that even 
these minor comments and suggestions may prove useful. 



Chapter 1. 
In the first chapter, the candidate presents the essential background material. The exposition begins 
with probability theory, introducing the main definitions, theorems, and proofs concerning: i) random 
variables; ii) stochastic processes; and iii) stochastic (Itô) calculus. The final part of  the chapter is 
devoted to quantum mechanics, with a particular focus on open quantum systems and finite-
dimensional (spin) systems. I especially appreciated the excellent balance between restricting the 
discussion to the necessary concepts and providing precise definitions and complete proofs where 
appropriate. With regard to this chapter, I have only a few minor remarks and suggestions: 
• pag. 4, line 9: “Wiener function” should read “Wigner function” 
• pag. 8, def. 1.4: To avoid any confusion, I would suggest to use a different symbol for the domain, 

instead of  ; in the definition 1.3 just above, the same symbol has been used to denote the whole set 
of  possible values of  the random variable. 

• pag. 9, def. 1.8: in this definition, I think that one should not introduce and fix the intervals  and 
 before Eq. (1.13). What I mean is that Eq. (1.13) should hold for any  and  in the whole sets 

of  values, such that, once we fix ANY intervals  and , then (1.14) holds too. 
• pag. 15-18, Sec. 1.2.2: I do appreciate the way Poisson increments and Poisson processes are 

introduced. However in the whole discussion, one always considers a time-independent rate . 
However, when dealing with continuously monitored quantum systems via photodetection, the rate 
will be typically time-dependent, as it depends on the expectation value  on the conditional 
state (see e.g. Eq. (3.45)). In this case, the probability distribution of  the corresponding Poisson 
process cannot be written as a simple Poisson distribution, as in Eq. (1.53). I am not suggesting to 
provide the full description with a time-dependent rate, but I believe that a final comment about the 
fact that the rate can be time-dependent and on its consequences, would be helpful here. 

• First line in Sec. 1.3.9: it looks to me that there is no enough introduction on what one means with 
LG system. It was mentioned in the introductory part, but here it comes a little bit “out of  the blue”. 
Maybe just a couple of  lines of  introduction on it could be useful and enough for a potential reader 
to understand the line of  reasoning. 

• pag. 52, Eq. (1.230): the equation can be more easily written in terms of  the Wigner function of  the 
 operator, as it is clear from Eq. (1.231). 

Chapter 2. 
In the second chapter, the candidate addresses the topic of  Bayesian estimation and control. I found 
this chapter particularly enjoyable and instructive, as I learned a great deal while reading it. The 
candidate has done an excellent job of  distilling the material from standard references in the field (such 
as Ref. [29]), while still providing sufficient detail and proofs to enable the reader to follow the 
reasoning thoroughly. Moreover, the discussion offers a clear introduction to key methods such as the 
Kalman filter (KF), the extended Kalman filter (EKF), and linear-quadratic-Gaussian (LQG) control. 
My remarks and suggestions regarding this chapter are only minor.: 
• pag. 56, Eq. (2.1): the equation should read  , i.e. the likelihood has been 

wrongly written as  . This is clearly a typo, as the whole chapter is based on the correct 
formula for the Bayes formula. Unfortunately it has been placed at the beginning of  the chapter, and 
I strongly recommend the candidate to correct it. 

• pag. 64, Fig. 2.1: what about plotting also the prior distribution, along with posterior and likelihood? 
• pag. 67, below Eq. (2.34): I would avoid here to refer to a specific physical parameter (Larmor 

frequency) in this chapter, as the whole discussion is in fact general. 
• pag. 68, second paragraph: I am possibly missing something, but am not sure if  I agree with the 

sentence: “The measurement model given by Eq. (2.36) relates the state vector to the observation vector and outlines 
how the measurement updates the state of  the system” . It looks to me that Eq. (2.36) is actually telling the 
opposite: how the measurement result depends on the system  (and on the measurement noise ). 

• pag. 77, about Eqs. (2.92) and (2.93): I would suggest to add another version of  these equations 
substituting the Kalman gain, so that it is made explicit that the equation is quadratic in  (very 
minor suggestion).  

• pag. 83, Eq. (2.124): keeping the same symbol  for the “old” and “new” Kalman gain is somehow 
confusing. Probably I would avoid to use  for the old Kalman gain in thie equation, and thus just 
write it as . 

• pag. 85, Eq. (2.130) and following proof: I have to admit that I was a little bit confused about over 
which probability distribution one is averaging in Eq. (2.130), as denoted by  . 

• pag. 99, Eq. (2.210): in the second line I think that all the  should be   
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Chapter 3. 
In the third chapter, the candidate introduces the topic of  continuously monitored quantum systems, 
presenting a clear and detailed derivation of  the stochastic master equations for continuous 
photodetection and homodyne detection. Particular care is devoted to explaining the approximations 
underlying these derivations, which I greatly appreciated. I may be somewhat biased in saying so, as 
this is a subject I am already quite familiar with, but I nonetheless found the chapter especially valuable: 
the candidate has succeeded in putting together material from different sources into a coherent, 
comprehensive, and very well-structured discussion. I have also appreciated the section where it is 
explained why polarization spectroscopy can be described by the SME corresponding to homodyne 
detection. 
There is however only one aspect that, from my perspective—and although not essential for the 
purposes of  the thesis—I was expecting to see discussed in this chapter. I will briefly outline it here. 
While there may not be much for the candidate to elaborate on, more than what I am going to write 
here below, it could still be a fruitful point for discussion during the defense. 
Specifically, when considering a bosonic (continuous-variable) system governed by a Hamiltonian at 
most quadratic in the quadrature operators, subject to Lindblad operators linear in the quadratures, 
and continuously monitored via general-dyne detection (such as homodyne or heterodyne), the state 
remains Gaussian throughout the entire evolution. In this case, the dynamics can be described 
completely in terms of  the first and second moments of  the quadrature operators. Rather than working 
directly with the SME, one can instead derive closed evolution equations for these moments. This 
approach has been presented in several works (see, e.g., “Wiseman and Doherty, Phys. Rev. Lett. 94, 
070405 (2005)”; for more pedagogical treatments, “Genoni, Lami, and Serafini, Contemp. Phys. 57, 
331 (2016)”; or, without derivation, Sec. V of  Ref. [119]). Remarkably, these equations take exactly the 
same form as the Kalman filter (KF) equations. The interpretation, however, is slightly different: in the 
KF, they describe the evolution of  the estimated state, while for Gaussian systems they capture the 
actual dynamics of  the quantum state. This correspondence can be understood by noting that, for 
Gaussian states, the evolution indeed represents the optimal Bayesian update of  the state conditioned 
on the measurement outcomes. This is precisely why, as shown in Chapter 5, for the atomic 
magnetometer SME (involving only collective operators and in regimes where the Holstein–Primakoff  
approximation holds), the KF equations fully describe the system’s dynamics. 
Given the thorough treatment of  both the KF and the SME in the thesis, I believe that including such a 
discussion here would have been a natural and valuable addition. 
Here below I will add my other minor remarks/corrections and suggestions: 
• pag. 104, second line: the word “system” is repeated twice. 
• pag. 113, 4th line below Eq. (3.21): the sentence does not sound correct to me (I believe something is 

missing). 
• pag. 118, after Eq. (3.45): As I already noted in the comments on Chapter 1, I believe it is important 

to emphasize that, in general, the rate of  the Poisson increment associated with continuous 
photodetection is time-dependent. 

• pag. 118, after Eq. (3.48) or at the end of  the section: as it has been highlighted in the following 
section regarding homodyne detection, I would make explictly clear that adding the measurement-
based feedback map would work assuming that one does not apply the so-called Markovian feedback 
(which does indeed correspond to ask that the corresponding Lindblad map is of  ). 

• pag. 131, after Eq. (3.104): it is mainly just a matter of  notation and convention, but since you call 
this quantity the “feedback Hamiltonian", then I would suggest to write it as   , where 

, such that the corresponding unitary evolution for a time  is obtained as usual from 
the formula: 

, 
   which is indeed the desired result. 

O (1)
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Chapter 4. 
In the fourth chapter, the candidate presents the first set of  original results of  the thesis: the derivation 
of  the ultimate precision limit for frequency estimation protocols in atomic magnetometers subject to 
decoherence (both collective and local, i.e. acting independently on each atom). Rather than beginning 
with a broad survey of  existing results/methods in the literature—such as the CS approach to bounding 
precision in the presence of  decoherence—the candidate chose a more constructive path, gradually 
building up the derivation and leading the reader step by step to the final result. I find this to be an 
excellent choice, as it makes the chapter highly accessible and very pleasant to read. 
Here below I list my minor remarks and suggestions. 
• pag. 139, beginning of  Sec. 4.2.1: I would remove the reference to “our earlier work [69]”, as 

collective decoherence is going to be actually considered in this chapter as well. 
• pag. 147, two lines below Eq. (4.51): in order to be consistent with the rest of  the thesis, I would add 

 in Eq. (4.51), and leave the Wiener increment  with the usual property . 
• pag. 151, Eq. (4.71): I admit that I did not really go through the derivation and I was a little bit 

confused about the notation of   ant the other similar matrices. I may have missed something 
trivial, but what does the -dependence stand for? it is because the matrices depend on  or 
because they are matrix power with exponent ? In the first case, one should probably modify the 
definitions in the equation below; in the second case I would put some parenthesis, to avoid confusion 
between exponents and superscripts. 

Chapter 5. 
In the fifth chapter, the candidate finally presents the control and estimation protocols based on 
continuously monitored atomic magnetometers in the presence of  decoherence. In particular they first 
present the co-moving Gaussian (CoG)-approximation, validating it against the results obtained via the 
actual simulation of  the SME in the Hilbert space (for reasonably low values of  N). Then they show 
how to treat the estimation problem via an EKF and present a control protocol, optimized according to 
LQG-control by exploiting the CoG approximation.  
These estimation and control strategies are then assessed by comparing them to a naive (frequency 
compensation) control strategy, and ultimately to the bounds derived in the previous chapter. This has 
been done both for the estimation of  i) a static magnetic field, ii) a fluctuating magnetic field, and iii) for 
a noisy waveform estimation, resembling the one obtainable from a magnetocardiogram. The results 
are very interesting and relevant and they clearly pave the way to the application and assessment of  
atomic magnetometers for real-world applications in the next future. I have few observations and 
remarks that I hope the candidate could address during the defense: 
•  what is the difference between the CoG-approximation and a cumulant expansion approximation up 

to the 2nd-order?  
• The optimal control strategy obtained via LQR design is given in Eq. (5.66), with its derivation 

detailed in Appendix E.6. Interestingly, this strategy does not depend on the “cost parameter” ,  
which is introduced to penalize deviations of   from zero. I would be curious to hear the 
candidate’s interpretation of  this result: why this parameter does not appear in the final control law? 
While I understand that this is an analytical outcome—and that providing an intuitive explanation 
may not be straightforward—I believe it would be valuable to reflect on its meaning. 

• I just want to be sure that I have fully understood the line of  reasoning behind the design of  the 
estimation and control strategy described in Sec. 5.3.3: the idea is that I use the EKF to estimate the 
parameter, on the other hand, assuming that my control strategy will work well, I suppose that I can 
consider a "linear-model" where to apply LQG control, and then derive the "supposed to-be optimal" 
strategy. We then include this strategy in the (nonlinear) EKF, and assess the performance of  the 
corresponding estimation strategy. Is my interpretation correct? 

• As shown in Fig. 5.8(d), the EKF appears to overestimate the spin squeezing of  the conditional states. 
Could the candidate provide an interpretation of  this effect? Do you have evidence that the 
overestimation decreases as N increases? If  I understood correctly, in the results obtained through 
simulations based on the CoG approximation for larger values of  N, this behaviour no longer 
appears. 

• In Fig. 5.11(d) one observes that the EKF covariance is below the quantum limit. What is the 
interpretation of  this result? Is that because the estimator is biased due to the mismatched parameters 
given to describe the OU-process? 
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I have then the following minor remarks and suggestions 
• pag. 158, Fig. 5.1: I believe that (blue arrow) and (red arrow) are inverted in the caption of  the figure; 

furthermore in the caption one refers to a panel (b), but there is no panel (b). 
• pag. 189, Fig. 5.10: in the caption one reads “after gathering only  of  photocurrent data”. 

However in the plot the x-axis goes up to . In the same caption, the EKF covariance is 
denoted as (grey) while in the plot is (dashed yellow), and the quantum limit is denoted as (dashed 
black), while it is (solid black). 

• pag. 194, Fig. 5.13: in the caption there is a wrong reference to a SME (??). 
• In the same figure above, what was the choice for the magnetic field. Was it static or fluctuating? 

To conclude, my overall assessment of  the PhD thesis is highly positive, and I therefore recommend 
that Ms. Julia Amoros-Binefa be granted the opportunity to defend her work in an oral examination. 
Although I have raised a few questions, these in no way undermine the quality of  the thesis; rather, they 
provide a valuable starting point for further scientific discussion. As noted earlier, I have also suggested 
a number of  minor comments and improvements, with the conviction that this thesis has the potential 
to become a significant reference for future researchers in the field, thanks to both the relevance of  the 
results obtained and the candidate’s substantial personal contribution in developing and re-elaborating 
the underlying topics. In fact, I consider this thesis to be among the top 5% of  those I have had the 
pleasure to read and review, and for this reason I also recommend it for distinction. 

Sincerely yours, 

Marco G. Genoni

≈ 0.01m s
t = 10 m s


