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Abstract

Strong light-matter coupling offers the possibility of altering material properties at the fun-
damental level. In recent years, the strong coupling phenomena have gained wide attention
across many fields. Traditionally, strong coupling has been achieved using external optical
cavities, which offer flexibility in selecting interacting components. However, this approach
has limitations, such as requiring sophisticated fabrication techniques and complex experi-
mental setups, which restrict scalability and practical applications. A compelling approach
is self-hybridization, which allows optical modes and excitonic transitions to exist together in
the same material, thereby avoiding the need for external cavity structures. Self-hybridization
simplifies fabrication while maintaining the advantages of strong coupling, leading to efficient
and compact device architectures.

This dissertation examines strong coupling between optical modes and excitons in self-
hybridized uniaxial hyperbolic multilayer nanospheroids, systematically analyzing the effects
of geometry and shape on these coupling phenomena. The nanospheroids have a wide range
of aspect ratios that include prolate, sphere, and oblate geometries. Numerical and compu-
tational methods used for this study include the T-matrix and finite difference time domain
(FDTD) techniques.

The first part of the research is the study of the optical modes of uniaxial hyperbolic
nanospheriods that are composed of silver/silica multilayers. Their optical response and
mode coupling characteristics are investigated in relation to their shape as the aspect ratio
is varied from 1/3 (prolate) to 1 (sphere) to 3 (oblate). The optical responses are dependent
on the material anisotropy, shape, and type of illumination. The results show that two
dominant modes are present in the system: an electric dipole mode (ED) coupled to a magnetic
quadrupole (MQ) and a magnetic dipole mode (MD) coupled to an electric quadrupole (EQ).
The oblate shape exhibits less favorable optical mode characteristics compared to the prolate
and spherical shapes.

Building upon these results, the second part of the research encompasses self-hybridized
strong coupling of the optical modes to excitons in prolate and spherical geometries. Here,
excitons are embedded within the material matrix as a function of their optical properties.
The prolate and spherical nanoparticles exhibit large Rabi splitting as the oscillator strength
is varied from 0 to 1 enabling strong coupling of the optical modes (ED and MD) to the
excitons. The results show under which conditions the MD or ED modes offer greater coupling
to excitonic or molecular transitions in the prolate and spherical geometries.

Building upon the MD dominance, the third part of the research focuses on evaluat-
ing practical realization of self-hybridized strong coupling of MD modes to excitons in the
prolate and spherical geometries using TMDC (transition metal dichalcogenide) materials
like MoS2 (molybdenum disulfide), MoSe2 (molybdenum diselenide), WS2 (tungsten disul-
fide), and WSe2 (tungsten diselenide). First, general considerations of coupling TMDCs to
modes of hyperbolic nanoparticles are evaluated for simple two-component structures, which,
however, yield an absence of strong coupling due to spectral detuning of the modes. To
solve this limitation, a dielectric spacer is introduced to make the system a three-layered
nanospheroid (silver/silica/TMDCs). The results show that the strong coupling in the MD
regime is achieved in the three-layered prolate geometry composed of silver/silica/WS2 and
silver/silica/MoS2.



In summary, this dissertation provides insight into how geometry and shape influence or
suppress strong coupling in uniaxial hyperbolic multilayer nanospheroids. These can enhance
the design of the next generation of opto-electronics devices.
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Streszczenie

Silne sprzężenie światło-materia, które w ostatnich latach cieszy się szerokim zainteresowaniem
badaczy na całym świecie, pozwala na modyfikację właściwości materiałów na poziomie fun-
damentalnym. Tradycyjnie silne sprzężenie uzyskuje się za pomocą zewnętrznych wnęk op-
tycznych, które zapewniają elastyczność w doborze oddziałujących komponentów. Jednak to
podejście ma ograniczenia, takie jak konieczność stosowania zaawansowanych technik wyt-
warzania i złożonych układów eksperymentalnych, co ogranicza skalowalność i praktyczne
zastosowania. Alternatywnym podejściem jest auto-hybrydyzacja, która pozwala na współist-
nienie modów optycznych i przejść ekscytonowych w tym samym materiale, eliminując w ten
sposób potrzebę stosowania zewnętrznych wnęk. Auto-hybrydyzacja upraszcza wytwarzanie,
zachowując jednocześnie zalety silnego sprzężenia, co prowadzi do wydajnych i kompaktowych
rowiązań.

Niniejsza rozprawa doktorska bada silne sprzężenie między modami optycznymi a ekscy-
tonami w auto-hybrydyzowanych, jednoosiowych hiperbolicznych nanosferoidach zbudowanych
z materiałów wielowarstwowych. W pracy tej zawarto systematyczną analizę wpływu ge-
ometrii, rozmiaru i składu materiałowego na zjawiska sprzężenia. Nanosferoidy charakteryzują
się szerokim zakresem doboru kształtu od wydłużonych nanocząstek poprzez sferyczne do
spłaszczonych. Metody numeryczne i obliczeniowe wykorzystane w tym badaniu obejmują
techniki macierzy T i skończonej dziedziny czasu.

Pierwszą częścią oryginalnych badań jest analiza modów optycznych jednoosiowych hiper-
bolicznych nanosferiod zbudowanych z wielowarstw srebra i krzemionki. Ich odpowiedź op-
tyczna i sprzężenie modów są badane w odniesieniu do ich kształtu i wewnętrznej struktury,
przy czym współczynnik kształtu zmienia się od 1/3 (wydłużony) przez 1 (sferyczny) do 3
(spłaszczony). Odpowiedź optyczna zależy od anizotropii materiału, kształtu i rodzaju oświ-
etlenia. Wyniki pokazują, że w układzie występują dwa dominujące mody: dipol elektryczny
(ED) sprzężony z kwadrupolem magnetycznym (MQ) oraz dipol magnetyczny (MD) sprzężony
z kwadrupolem elektrycznym (EQ). Nanocząstki o spłaszczonym kształcie wykazują mniej
korzystne własności modów optycznych w porównaniu z tym o wydłużonych i sferycznych
geometriach.

Bazując na powyższych wynikach, druga część badań obejmuje auto-hybrydyzujące silne
sprzężenie modów optycznych z ekscytonami w nanocząstkach o wydłużonych i sferycznych ge-
ometriach. Zakłada się, że ekscytony są umieszczone w matrycy dielektrycznej, która wchodzi
w skład warstwowego materiału hiperbolicznego. Nanocząstki wydłużone i sferyczne wykazują
duże rozszczepienie Rabiego, umożliwiając silne sprzężenie modów optycznych (ED i MD) z
ekscytonami. Wyniki pokazują, w jakich warunkach mody MD lub ED oferują silniejsze
sprzężenie z przejściami ekscytonowymi lub molekularnymi w badanych nanocząstkach.

Bazując na wydajnym dipolu magnetycznym, trzecia część badań koncentruje się na ocenie
praktycznej realizacji auto-hybrydyzacji w reżimie silnego sprzężenia modów MD z ekscyton-
ami. W tej części badań wykorzystuje się dichalkogenki metali przejściowych jako składnik
materiału hiperbolicznego: MoS2 (disiarczek molibdenu), MoSe2 (diselenek molibdenu), WS2

(disiarczek wolframu) i WSe2 (diselenek wolframu). Najpierw dokonano oceny ogólnych włas-
ności ekscytonów dichalkogenków metali przejściowych z modami nanocząstek hiperbolicznych
dla prostych materiałów dwuskładnikowych (srebro plus dichalkogenek), które jednak charak-
teryzują się brakiem silnego sprzężenia z powodu rozstrojenia widmowego modów z ekscyton-
ami. Aby rozwiązać to ograniczenie, wprowadzono dodatkową dielektryczną warstwę tworząc
trójwarstwowy materiał hiperboliczny (srebro/krzemionka/dichalkogenek). Wyniki pokazują,



że w nanocząstkach zbudowanych z takich materiałów silne sprzężenie z ekscytonami może
być osiągnięte zarówno dla modu dipola magnetycznego jak i elektrycznego, co pokazano na
przykładzie nanocząstki zbudowanej ze srebra/krzemionki/WS2 i srebra/krzemionki/MoS2.

Podsumowując, niniejsza rozprawa przedstawia wgląd w to, jak geometria, rozmiar i
struktura wewnętrzna wpływają lub tłumią silne sprzężenie w jednoosiowych hiperbolicznych
wielowarstwowych nanosferoidach. Mogą one usprawnić projektowanie urządzeń optoelek-
tronicznych nowej generacji.
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Chapter 1

Introduction to Strongly Coupled
Light in Optical Nanostructures

1.1. Light-Matter Interaction

When light interacts with molecules or quantum emitters, it can be absorbed, scattered, re-
flected, or re-emitted as new light, transforming the light’s energy in the process. These
interactions enable us to explore, improve, or utilize the materials’ properties [1]. The be-
havior of light-matter interactions is governed not merely by the fundamental properties of
quantum emitters, but equally by the photonic environment around them, which modifies the
local density of states in the optical field that the emitter experiences [2, 3]. Two distinct
coupling regimes can be identified: weak and strong coupling. When it is weak coupling,
energy exchange occurs more slowly than the rate at which the system loses energy to its sur-
roundings. Under these conditions, the natural emission rate of quantum emitters is modified
by the photonic structure around them (Figure 1.1(a) and (b)) [4]. By carefully designing the
photonic environment, radiation can be either enhanced or suppressed depending on how the
cavity interacts with the emitter at its characteristic frequency. This enhancement effect was
first identified by Purcell [2, 5], who demonstrated that when an optical cavity resonates at
the same frequency as a quantum emitter, it creates favorable conditions that accelerate the
emitter’s radiative decay.

In contrast, strong coupling emerges when energy exchange between the interacting ele-
ments happens much faster than energy loss from the system. This leads to the formation of
two new hybrid states that exhibit coherent, reversible energy oscillations between light and
matter components (Figure 1.1 (c) and (d)) [4]. These hybrid modes display unique char-
acteristics, combining properties of both light (such as easy transport but low nonlinearity)
and matter (high nonlinearity but limited transport). The energy separation between these
hybrid states is known as vacuum Rabi splitting.

Strongly coupled optical cavity modes and electronic transitions have demonstrated effec-
tiveness in tailoring and controlling various material properties. These modifications encom-
pass areas such as electronic transport properties [6], polariton condensation [7], and chemical
reactivity [8, 9]. Conventional strong coupling methods rely on external optical cavities that
are physically separated from the material transitions. While this configuration provides flex-
ibility in choosing which components interact, it comes with significant drawbacks, including
the need for advanced fabrication tools and demanding experimental conditions that limit
both scalability and real-world applications.

An alternative approach known as self-hybridization has emerged as a compelling solu-
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Figure 1.1: Comparison of weak and strong coupling regimes between quantum emitters and
optical cavities: (a) Illustration of a dielectric optical cavity interacting with a quantum emit-
ter in the weak coupling regime, where energy dissipates to the surrounding environment
before completing the oscillation cycle between the two modes; (b) Quantum emitter popu-
lation dynamics during spontaneous emission; (c) Schematic of an optical cavity interacting
with a quantum emitter in the strong coupling regime, where electromagnetic oscillations be-
tween the quantum emitter and cavity take place prior to energy loss; (d) Quantum emitter
population dynamics exhibiting Rabi oscillations (Figure adapted from [4] ).

tion to these challenges. In self-hybridization, both optical modes and excitonic transitions
exist within the same material system, removing the requirement for separate external cav-
ities [10]. This configuration integrates material transitions and light confinement within a
single platform, generating hybrid states with properties that differ markedly from their in-
dividual, non-interacting components. Self-hybridization streamlines the fabrication process
while preserving the benefits of strong coupling, enabling the development of more efficient
and compact device designs. This process relies on the material’s inherent characteristics,
including how it confines optical modes, its resonance behavior, and its geometric structure.
Various materials have successfully exhibited self-hybridized polaritonic states, such as tran-
sition metal dichalcogenide (TMDC) multilayers [11], perovskite-based photonic crystals [12],
organic-inorganic lead-halide perovskite cavities [13], layered perovskite structures [14], tung-
sten disulphide flakes [15], 2D halide perovskites [16], 2D Ruddlesden-Popper Perovskites [17],
tungsten disulphide nanodisks [18], bulk TMDC nanoresonators [19], perovskite metasur-
faces [20], or tungsten disulphide metasurfaces [21]. Building upon these advances in self-
hybridization, new opportunities arise for exploring novel nanostructures that can further
enhance and control light-matter interactions.

1.2. Research Motivation

This dissertation advances the field further by exploring self-hybridized strong coupling in a
new type of nanostructure. This structure uniquely combines the properties of hyperbolic
metamaterials with precise geometric control. The proposed novel nanostructure for this
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Figure 1.2: Multilayer nanospheroid structures with varying aspect ratios (prolate, sphere,
oblate)

work are uniaxial hyperbolic multilayer nanospheroids. This nanostructure takes the form of
a spheroid with aspect ratios that include prolate, spherical, and oblate shapes, as shown in
Figure 1.2. It is composed of alternating metal and dielectric layers, with the capability to
incorporate excitonic materials, especially within the latter material.

These nanospheroids simultaneously support optical modes, such as electric dipole (ED)
and magnetic dipole (MD) resonances, and excitons within the same nanostructure. The
advantage of this nanostructure over others, such as purely plasmonic or dielectric ones, is that
it combines the benefits of a metallic optical response, which is dominated by strong electric
dipole resonance [22], and of a dielectric optical response, which has a strong magnetic dipole
resonance [23], all determined fundamentally by the material platform. Furthermore, these
optical resonances are tunable and can be tailored across different spatial directions. This
dissertation examines strong coupling between optical modes and excitons in self-hybridized
uniaxial hyperbolic multilayer nanospheroids, systematically analyzing the effects of geometry
and shape on these coupling phenomena.

1.3. Dissertation Outline

The dissertation is structured as follows: CHAPTER 1 to CHAPTER 3 form the literature
review, discussing the phenomenon of strong coupling and relevant fundamental concepts of
this dissertation.

CHAPTER 4 provides a description of the methodologies used in this research. Nu-
merical studies are conducted using classical electrodynamics methods and coupled harmonic
oscillator models to analyze shape-dependent effects on self-hybridized strong coupling.

CHAPTER 5 focuses on the study of optical modes in uniaxial hyperbolic multilayer
nanospheroids. This chapter examines the optical response of these nanospheroids in the
presence of an electromagnetic field, serving as a foundation for subsequent analyses.

CHAPTER 6 investigates self-hybridized strong coupling between optical modes and
excitons in uniaxial hyperbolic multilayer nanospheroids. Leveraging the optical mode anal-
ysis from Chapter 5, this chapter examines how optical modes interact with excitonic tran-
sitions within these nanostructures. CHAPTER 7 builds on these findings by focusing
specifically on self-hybridized strong coupling phenomena in three-layered uniaxial hyperbolic
nanospheroids. While Chapters 5 and 6 focused on nanospheroids made of two-material mul-
tilayers (silver-silica), this chapter investigates nanospheroids incorporating three materials:
silver, silica, and TMDCs. The TMDCs considered include WS2, WSe2, MoS2, and MoSe2.

CHAPTER 8 concludes the dissertation by summarizing the key findings and offering
perspectives on potential future research directions.
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Chapter 2

Fundamentals

Having established the context and motivation for investigating strongly coupled light in
optical nanostructures in Chapter 1, it is essential to recall the fundamental physical principles
that govern these interactions. Chapter 2 provides the theoretical foundation necessary to
analyse and design the hyperbolic nanospheroids that form the core of this dissertation.

2.1. Classical Electrodynamics

The behavior of electromagnetic fields within classical physics is governed by Maxwell’s fun-
damental equations, which form the cornerstone of electromagnetic theory and provide the
foundation for understanding light-matter interactions in nanophotonic systems. These equa-
tions relate the electric and magnetic fields to their sources and describe how they propagate
through space and matter.

In their most general form, Maxwell’s equations are [24]:

∇ · D⃗ = ρ, (2.1)

∇ · B⃗ = 0, (2.2)

∇× E⃗ = −∂B⃗

∂t
, (2.3)

∇× H⃗ =
∂D⃗

∂t
+ j⃗, (2.4)

where E⃗ is the electric field vector, H⃗ is the magnetic field, D⃗ is the electric displacement
field, B⃗ is the magnetic induction, ρ is the charge density, and j⃗ is the current density. These
fields are related to the material properties through constitutive relations that describe how
matter responds to electromagnetic excitation.

In macroscopic electromagnetic theory, the response of materials to electromagnetic fields
is characterized through the polarization vector P⃗ , magnetization M⃗ , and conductivity κ. The
constitutive relations connect the fundamental fields to the material-dependent displacement
and magnetic fields:

D⃗(r⃗, t) = ε0E⃗(r⃗, t) + P⃗ (r⃗, t), (2.5)

H⃗(r⃗, t) = µ−1
0 B⃗(r⃗, t)− M⃗(r⃗, t), (2.6)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively. The current
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density includes contributions from both conduction and material polarization:

j⃗ = j⃗c + j⃗s +
∂P⃗

∂t
+∇× M⃗, (2.7)

where j⃗c = κ(r⃗, t)E⃗(r⃗, t) is the conduction current and j⃗s represents external source currents.
For linear, isotropic materials, the polarization and magnetization respond linearly to the

applied fields:

P⃗ = ε0χeE⃗, (2.8)

M⃗ = χmH⃗, (2.9)

where χe and χm are the electric and magnetic susceptibilities. This leads to the familiar
material parameters:

ε = ε0(1 + χe), µ = µ0(1 + χm), (2.10)

which define the permittivity and permeability of the medium.
For time-harmonic fields oscillating at angular frequency ω = 2πν, we can express the fields

with temporal dependence E⃗(r⃗, t) = Re(E⃗(r⃗)e−iωt). This frequency domain representation
simplifies the analysis of electromagnetic phenomena and is particularly useful for studying
resonant systems. Maxwell’s equations in the frequency domain become:

∇× E⃗ = iωB⃗, (2.11)

∇ · D⃗ = ρ, (2.12)

∇× H⃗ = −iωD⃗ + j⃗, (2.13)

∇ · B⃗ = 0. (2.14)

The frequency domain formulation is essential for analyzing the optical properties of materials
and the resonant behavior of nanostructures.

To understand how electromagnetic fields propagate through materials, we derive the wave
equations from Maxwell’s equations. In a source-free, homogeneous, linear, isotropic medium,
Maxwell’s curl equations reduce to:

∇× E⃗ = −µ
∂H⃗

∂t
, (2.15)

∇× H⃗ = ε
∂E⃗

∂t
. (2.16)

Taking the curl of the first equation and substituting the second gives:

∇× (∇× E⃗) = −µε
∂2E⃗

∂t2
. (2.17)

Using the vector identity ∇ × (∇ × E⃗) = ∇(∇ · E⃗) − ∇2E⃗ and noting that ∇ · E⃗ = 0 in a
source-free medium, we obtain the wave equation for the electric field:

∇2E⃗ − µε
∂2E⃗

∂t2
= 0. (2.18)

Similarly, the magnetic field satisfies:

∇2H⃗ − µε
∂2H⃗

∂t2
= 0. (2.19)
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The fundamental solutions to these wave equations are plane waves, which form the ba-
sis for understanding electromagnetic propagation. The general plane wave solution can be
written as:

E⃗ = E⃗0 · f(ωt− k⃗ · r⃗) (2.20)

where E⃗0 denotes a constant amplitude vector perpendicular to the wave vector k⃗, while f(x)
represents an arbitrary waveform function. This expression describes electromagnetic radia-
tion with polarization perpendicular to its propagation direction, as specified by k⃗. The field
maintains constant amplitude across planes normal to k⃗, with its profile along the propagation
axis determined by the function f(x).

Substituting this general solution into the wave equation yields the fundamental dispersion
relation for plane waves in a homogeneous medium:

k2 = k2x + k2y + k2z = ω2µε. (2.21)

The wave number and frequency are related through the dispersion relation:

k =
ω

v
=

2π

λ
, where λ =

v

ν
, v =

c

n
, n =

√
εrµr, (2.22)

with εr = ε/ε0 and µr = µ/µ0 being the relative permittivity and permeability. The phase
velocity, which describes the propagation speed of constant phase surfaces, is given by:

vp =
ω

k
=

c

n
, (2.23)

where n is the refractive index and c represents the speed of light in vacuum.
At interfaces between different materials, the electromagnetic fields must satisfy specific

boundary conditions that ensure continuity of the tangential electric field and normal mag-
netic field components. These boundary conditions are essential for understanding reflection,
transmission, and field confinement at material interfaces in nanostructures. At the interface
between media i and j, with n⃗ as the unit normal vector, the conditions are:

n⃗× (E⃗j − E⃗i) = 0, (2.24)

n⃗× (H⃗j − H⃗i) = j⃗surf , (2.25)

n⃗ · (D⃗j − D⃗i) = σ, (2.26)

n⃗ · (B⃗j − B⃗i) = 0, (2.27)

where j⃗surf is the surface current density and σ is the surface charge density. These boundary
conditions are fundamental to understanding the behavior of electromagnetic fields in lay-
ered structures and at the interfaces of nanoparticles, which are central to the operation of
hyperbolic nanospheroids.

2.2. Plane Waves at Multilayer Interfaces

The analysis of plane wave propagation through multilayer structures extends the fundamental
Fresnel equations [25] to complex dielectric systems with multiple interfaces and arbitrary
layer thicknesses. This formalism provides the theoretical foundation for analyzing optical
behavior in layered structures where each interface contributes to the overall reflection and
transmission characteristics.
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Figure 2.1: Schematic of the incident, reflected, transmitted, and back-reflected components
of a Transversal-Electric field (TE) plane wave incident on a dielectric film (Figure adapted
from [25]).

For a multilayer system, we consider the boundary conditions at each interface between
adjacent media. Figure 2.1 illustrates the wave components in a multilayer dielectric structure,
showing the incident wave Ei0 with wave vector ki0, reflected wave Er0 with wave vector kr0,
forward transmitted wave Et1 with wave vector kt1, and backward reflected wave Eb1 with
wave vector kb1 at the interfaces. The angles θ0, θ1, and θ2 represent the propagation angles
in media with refractive indices n0, n1, and n2 respectively. The magnetic field components
Hi0, Hr0, Ht1, and Hb1 correspond to their respective electric field components.

Tangential electric and magnetic field components must remain continuous at interface I
between media 0 and 1. At interface I, these conditions are expressed as:

EI = Ei0 cos θ0 + Er0 cos θ0 = Et1 cos θ1 + Eb1 cos θ1, (2.28)
HI = Hi0 −Hr0 = Ht1 −Hb1, (2.29)

where Ei0 and Er0 are the incident and reflected field amplitudes in medium 0, while Et1 and
Eb1 are the forward and backward propagating field amplitudes in medium 1. The negative
sign in the magnetic field boundary condition accounts for the phase reversal of the reflected
wave traveling away from the interface.

For non-magnetic materials, the relationship between magnetic and electric fields is given
by H⃗ =

√
ε0/µ0 · n · (k⃗/|⃗k|) × E⃗, which allows us to express the magnetic field boundary

conditions in terms of the electric field amplitudes. An important consideration in multilayer
analysis is the phase shift accumulated by a beam crossing a dielectric film of thickness d at
angle θ. This phase shift is given by:

ϕ = k0nd cos θ =
2π

λ0
nd cos θ. (2.30)

This expression accounts for the actual optical path and lateral shift of the beam, which
is counterintuitive compared to the simple geometric path length but crucial for accurate
multilayer calculations.
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The mathematical treatment of multilayer systems employs the transfer matrix method,
which relates the electromagnetic fields on opposite sides of each layer through matrix mul-
tiplication. For a single layer with thickness d1 and refractive index n1, the transfer matrix
M1 connects the fields at the input and output interfaces:[

EI

HI

]
= M1

[
EII

HII

]
. (2.31)

The transfer matrix for a single layer is expressed as:

M1 =

[
cos(k0n1d1 cos θ1) j sin(k0n1d1 cos θ1)/Γ1

jΓ1 sin(k0n1d1 cos θ1) cos(k0n1d1 cos θ1)

]
, (2.32)

where the parameter Γ1 depends on the polarization state of the incident wave. For TM
(p-polarized) waves, Γ1,TM =

√
ε0/µ0n1 cos θ1, while for TE (s-polarized) waves, Γ1,TE =√

ε0/µ0n1/ cos θ1. The difference in these expressions reflects the distinct boundary conditions
for electric and magnetic field components parallel to the interface for different polarizations.

For a complete multilayer stack consisting of p layers, the total transfer matrix is obtained
by multiplying the individual layer matrices in sequence. The fields at the front surface of
the stack are related to the fields at the bottom of the final layer through:[

EI

HI

]
= M1M2M3 · · ·Mp

[
Ep+1

Hp+1

]
= M

[
Ep+1

Hp+1

]
, (2.33)

where the total transfer matrix

M =

[
m11 m12

m21 m22

]
, (2.34)

encodes the cumulative optical properties of the entire multilayer system.
Using the boundary conditions at the first and last interfaces of the multilayer stack, we

can derive expressions for the reflection and transmission coefficients. For TM polarization,
these coefficients are:

rTM =
Er0

Ei0
=

Γ0,TMm11 + Γ0,TMΓp+1,TMm12 −m21 − Γp+1,TMm22

Γ0,TMm11 + Γ0,TMΓp+1,TMm12 +m21 + Γp+1,TMm22
, (2.35)

tTM =
Etp

Ei0
=

2Γ0,TM

Γ0,TMm11 + Γ0,TMΓp+1,TMm12 +m21 + Γp+1,TMm22
. (2.36)

Similar expressions apply for TE polarization, where the reflection and transmission coeffi-
cients are given by:

rTE =
Er0

Ei0
=

Γ0,TEm11 + Γ0,TEΓp+1,TEm12 −m21 − Γp+1,TEm22

Γ0,TEm11 + Γ0,TEΓp+1,TEm12 +m21 + Γp+1,TEm22
, (2.37)

tTE =
Etp

Ei0
=

2Γ0,TE

Γ0,TEm11 + Γ0,TEΓp+1,TEm12 +m21 + Γp+1,TEm22
. (2.38)

These formulas provide a systematic approach to calculating reflection and transmission
through any layered optical structure with parallel interfaces for both polarization states,
making them invaluable for the design and analysis of complex optical systems.

The matrix formulation scales efficiently with the number of layers and maintains numer-
ical stability for most practical applications. However, care must be taken with sign conven-
tions and phase relationships to ensure physical consistency of the results. The method is
particularly powerful because it can handle both real and complex dielectric constants, en-
abling analysis of lossy materials and metal-dielectric structures where absorption and complex
optical properties play important roles.
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2.3. Lorentz-Drude Permittivity Model

The Lorentz-Drude permittivity model describes the optical properties of materials by combin-
ing the contributions of dielectrics (bound electrons) and metals (free electrons). In dielectric
materials, the optical response is dominated by the displacement of bound electrons under an
applied electric field, while in metals, the conduction electrons exhibit a free-electron behavior
due to the absence of a restoring force from atomic cores [26, 27].

For an electron in an oscillating electric field E = E0e
−iωt, the equation of motion is:

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = −eE0e
−iωt, (2.39)

where m is the effective mass of the electron, γ is the damping coefficient representing energy
loss, ω0 is the natural frequency of oscillation, and −e is the electron charge.

Assuming a solution of the form x = x0e
−iωt, we substitute into the equation of motion:

−mω2x0 − imγωx0 +mω2
0x0 = −eE0 (2.40)

to solve for x0:

x0 =
eE0

m(ω2
0 − ω2 − iγω)

. (2.41)

Then, the polarization P is related to the dipole moment:

P = −Nex0 = − Ne2E0

m(ω2
0 − ω2 − iγω)

, (2.42)

where N is the number density of oscillators. The electric susceptibility χ is defined by
P = ε0χE, so:

χ = − Ne2

ε0m(ω2
0 − ω2 − iγω)

, (2.43)

finally giving the dielectric function as ε = ε0(1 + χ):

ε(ω) = ε0

[
1− Ne2

ε0m(ω2
0 − ω2 − iγω)

]
. (2.44)

One can introduce the plasma frequency as:

ω2
p =

Ne2

ε0m
, (2.45)

allowing us to write:

ε(ω) = ε0

[
1−

ω2
p

ω2
0 − ω2 − iγω

]
. (2.46)

In real materials, there are additional contributions to the permittivity from core electrons
and other sources. This is accounted for by a background permittivity ε∞ (ε0 → ε∞):

ε(ω) = ε∞

[
1−

ω2
p

ω2
0 − ω2 − iγω

]
. (2.47)

In the absence of a restoring force, such as for a material with free conduction electrons,
we set ω0 = 0 and obtain the Drude model:

ε(ω) = ε∞

[
1−

ω2
p

ω2 + iγω

]
. (2.48)
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Figure 2.2: Energy-dependent permittivity of a metal-dielectric composite system described
by the Lorentz-Drude model. (a) Real part of the permittivity showing the metallic component
(red solid line) with characteristic negative values at low energies and the dielectric component
(blue solid line) exhibiting positive values with resonant features. (b) Imaginary part of the
permittivity displaying the metallic component (red dashed line) with high losses at low
energies and the dielectric component (blue dashed line) with resonant absorption peaks.
The complementary behavior of these components forms the basis for hyperbolic metamaterial
properties.

In contrast, when ω0 ̸= 0, we have bound electrons with a specific resonance frequency and
the permittivity assumes the characteristic shape of a Lorentzian function.

To demonstrate the applicability of the Lorentz-Drude model to composite materials, we
consider a metal-dielectric system that combines both free and bound electron responses. Fig-
ure 2.2 illustrates the energy-dependent permittivity of such a composite material, showing
both the real part (panel a) and imaginary part (panel b) of the dielectric function. The
metallic component (red curves) exhibits the characteristic negative real permittivity at low
energies and significant losses, while the dielectric component (blue curves) shows resonant
behavior with minimal losses. This complementary behavior forms the foundation for under-
standing the optical response of hyperbolic nanospheroids, where the combination of metallic
and dielectric elements enables unique electromagnetic properties.

2.4. Introduction to Hyperbolic Metamaterials

Hyperbolic metamaterials (HMMs) are a class of materials that are typically artificially en-
gineered or structured, however, examples of naturally occurring can be found.Their initial
development began in the microwave frequency range and gradually it has evolved into the
optical frequency range with them exhibiting hyperbolic behavior. The key feature of HMMs
is their ability to support a high density of electromagnetic states across a broad bandwidth.
This arises from their hyperbolic dispersion relation, a result of anisotropic permittivity with
opposing signs. By providing an increased photonic density of states, HMMs enhance light-
matter interactions, making them better than traditional optical devices for applications like
single-molecule sensing, super-resolution imaging, and controlling quantum emitter dynamics.
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Figure 2.3: Isofrequency surfaces for different electromagnetic media. (a) A spherical isofre-
quency surface characteristic of an isotropic dielectric. The inset illustrates the energy-
momentum dispersion relationship, where the red dot marks the operating frequency cor-
responding to the depicted isofrequency surface. (b) Type I HMM behavior (two-sheeted
hyperboloid). (c) Type II HMM behavior (single-sheeted hyperboloid) (Figures (a-c) adapted
from [28]).

HMMs get their name from the unique way waves travel through them. In a vacuum,
waves spread equally in all directions, creating a spherical isofrequency contour (as shown
in Figure 2.3(a)). However, in HMMs, the isofrequency surface forms an open hyperboloid
shape as shown in Figure 2.3(b,c), depending on the signs of the diagonal elements of the
permittivity tensor. This unusual behavior happens because these materials act like a metal
along one axis while behaving like an insulator (dielectric) along another axis.

2.4.1. Hyperbolic Dispersion

For electromagnetic waves in uniaxial media, the dispersion relation can be derived from
Maxwell’s equations given in Section 2.1. The isofrequency contour (IFC), whose examples
are plotted in Fig. 2.3, represents the relationship between the wavevector components kx,
ky, and kz at a fixed frequency ω. It describes all possible wavevector combinations that can
propagate at that specific frequency, essentially mapping the allowed momentum states for
electromagnetic waves in the material. The shape of the IFC determines fundamental wave
propagation characteristics including the direction of energy flow, allowed propagation modes,
and the density of optical states.

For electric uniaxial media with µ∥ = µ⊥ = 1, the wave equation leads to a dispersion
relation that describes two distinct types of modes. The complete dispersion relation is given
by [29]: (

k2x + k2y + k2z − ε∥k
2
0

)(k2x + k2y
ε⊥

+
k2z
ε∥

− k20

)
= 0, (2.49)

where k0 is the wave-vector in free space. The first bracketed term describes TE-polarized
(transverse electric) waves with electric fields perpendicular to the optical axis in the xy plane.
This TE mode corresponds to an ordinary wave with isofrequency contour taking the form of
a sphere: k2x + k2y + k2z = ε∥k

2
0. The spherical IFC indicates that waves can propagate equally

well in all directions, similar to isotropic materials.
The second term describes TM-polarized (transverse magnetic) waves with magnetic fields

12



in the xy plane. This TM mode corresponds to an extraordinary wave with isofrequency
contour given by:

k2x + k2y
ε⊥

+
k2z
ε∥

= k20. (2.50)

When ε∥ > 0 and ε⊥ < 0, both TE and TM modes can coexist. In this case, the IFC of the
TE mode takes the form of a sphere, while the IFC of the TM mode corresponds to a two-fold
hyperboloid, creating what is called a dielectric-type or Type I HMM. The hyperbolic IFC is
fundamentally different from the closed spherical or elliptical contours found in conventional
materials because it forms an open surface that extends to infinity in k-space.

TM modes are fundamentally more important in hyperbolic metamaterials because they
are the modes that exhibit hyperbolic dispersion when ε∥ε⊥ < 0. The hyperbolic disper-
sion of TM modes enables the unique properties that make HMMs valuable for applications.
The open hyperboloid isofrequency contour allows propagation of waves with arbitrarily large
wave-vectors, which are normally evanescent in conventional materials. This leads to an en-
hanced optical density of states, enabling phenomena such as enhanced spontaneous emission,
super-resolution imaging, and unusual refraction properties. In contrast, TE modes maintain
elliptical dispersion characteristics with closed IFCs similar to ordinary materials, limiting
their contribution to the novel properties of HMMs.

HMMs can be classified into two types based on their dielectric tensor components and
the resulting IFC shapes. Type I HMMs, also called dielectric-type, have one negative com-
ponent (ε⊥ < 0, ε∥ > 0) and feature a two-fold hyperboloid isofrequency surface as shown
in Figure 2.3(b). Type II HMMs, also called metal-type, have the opposite sign configura-
tion (ε⊥ > 0, ε∥ < 0) and exhibit a single-fold hyperboloid isofrequency surface as shown in
Figure 2.3(c). Both types can sustain waves with infinitely large wavevectors within the ef-
fective medium approximation, whereas such waves would ordinarily be evanescent and decay
exponentially in conventional materials.

The key characteristic that sets hyperbolic media apart is how they handle waves with
large wavevectors. In conventional materials, high-magnitude wavevector components quickly
fade away as evanescent waves because they fall outside the closed IFC. However, in hyper-
bolic media, the open isofrequency contours allow waves to theoretically propagate through
the material regardless of their wavevector magnitude. This unique ability to support high-k
propagating modes enables the conversion of evanescent waves into propagating waves, open-
ing up possibilities for sub-diffraction applications and novel optical devices.

HMMs have found broad applications spanning negative refraction, sub-diffraction imag-
ing, enhanced sensing, and engineering of spontaneous and thermal emissions [28, 30–38].
Their ability to manipulate the flow of electromagnetic energy at subwavelength scales has
made them valuable for next-generation optical technologies including hyperlenses, high-
sensitivity biosensors, and quantum optical devices.

2.4.2. Material Platforms for Hyperbolic Dispersion

To achieve hyperbolic dispersion, one needs material platforms that have the required anisotropic
electromagnetic properties to enable unique light-matter interactions. Such material platforms
are natural and artificially engineered materials as shown in Figure 2.4. Natural HMMs have
hyperbolic dispersion due to their intrinsic properties. Such materials are graphite, magne-
sium diboride (MgB2), magnesium difloride (MgF2), hexagonal boron nitride (h-BN), and
α-phase molybdenum trioxide (α-MoO3). Graphite possesses HMM behavior in the ultra-
violet (UV) and MgB2 in the visible. h-BN has dual mode of operation, acting as a Type
I hyperbolic material between 11.76 and 13.15 µm and Type II material between 6.17 and
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Figure 2.4: Overview of hyperbolic metamaterial types and material platforms, showing ar-
tificial multilayer structures, natural materials, and their characteristic dispersion properties
(Figure adapted from [39]).

7.35 µm. α-MoO3 supports hyperbolic dispersion in specific mid-infrared wavelengths. While
these natural materials offer unique properties, their hyperbolic dispersion bandwidth is fixed,
which limits their tunability and flexibility for broader applications [39, 40].

Artificial HMMs overcome the limitations of natural materials by allowing precise control
over hyperbolic dispersion characteristics. Such materials include multilayer configurations
with alternating metallic and dielectric layers having thicknesses significantly smaller than the
operational wavelength, yielding a Type II HMM. Common metals used include gold, silver,
and aluminum while common dielectrics used include silica, and titanium dioxide [41, 42].
Nanowire-based platforms are another approach to achieve hyperbolic dispersion with one
permittivity tensor element being negative (Type I HMM). Such platforms include metallic
nanowires, and transparent conductive oxides [43–46].

In summary, these artificial material platforms enable the development of HMMs with
custom hyperbolic dispersion properties.

2.5. Hyperbolic Nanoresonators

In this dissertation, hyperbolic nanospheroids composed of both plasmonic and dielectric ma-
terials are employed in geometries with different aspect ratios, including spherical, prolate,
and oblate configurations. These structures enable precise control over electromagnetic fields
through their resonant properties while offering complementary advantages from both dielec-
tric and metallic material platforms.

The development of hyperbolic nanoresonators requires understanding the unique prop-
erties that both plasmonic and dielectric components contribute to the composite system.
Plasmonic elements provide high field enhancement and subwavelength light confinement ca-
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pabilities, while dielectric components offer low-loss operation and magnetic response func-
tionality. The combination of these contrasting material properties enables the realization of
hyperbolic dispersion characteristics, as detailed in Section 2.4.1, which are fundamental to
achieving the extraordinary electromagnetic behaviors of these hybrid nanoresonators.

Metal nanoparticles exhibit the capability to confine electromagnetic radiation and oper-
ate as open cavity systems, forming the plasmonic foundation of hyperbolic nanoresonators.
These open resonators demonstrate quality factors (Q ∼ 10− 100), which quantify how long
light can be stored in the cavity relative to the energy lost per oscillation cycle, that are con-
siderably reduced compared to their dielectric counterparts (Q ∼ 106) due to losses through
both radiative and non-radiative pathways. Although metallic systems sacrifice temporal con-
finement (lower Q), they excel in spatial confinement, concentrating fields into subwavelength
volumes that produce intense electromagnetic hotspots. This field enhancement compensates
for the reduced quality factor by generating considerably amplified electromagnetic intensi-
ties [47].

The behavior of conduction electrons in metallic systems has been discussed in Section 2.3
through the Lorentz-Drude model (the Drude part). While this model accurately describes
bulk metallic properties, the optical response transforms substantially when particle dimen-
sions become subwavelength. In the quasi-static limit, where nanostructures are much smaller
than the optical wavelength and external fields can be assumed as spatially uniform, the op-
tical response of small metallic particles is determined by their polarizability -— a function
of geometry, material properties, and environment. For simple cases, analytical expressions
like the Clausius-Mossotti relation [48–50] provide insight into the underlying physics. This
approach reveals that the optical characteristics are governed by particle morphology, metallic
dielectric properties, and environmental dielectric conditions. However, as particle dimensions
approach or exceed the optical wavelength, these quasi-static approximations become invalid,
necessitating full electromagnetic solutions.

Plasmons [51, 52] are collective oscillations of free electrons in a metal. Although they
are quantum mechanical entities, their interaction with light in nanostructures is often ac-
curately modeled with classical physics. This model describes the electrons moving together
against the fixed background of positive metal ions when excited by an external electric field.
These collective excitations form the basis for the strong electromagnetic coupling required
in hyperbolic nanoresonator systems.

Surface plasmon polaritons (SPPs) [51–53] are propagating excitations that manifest at
metal-dielectric interfaces as shown in Figure 2.5, providing one mechanism for electromag-
netic confinement in hyperbolic nanoresonators. When electromagnetic waves couple to charge
density oscillations at the interface, they generate electric fields localized near the surface.
These surface-confined modes possess wave vectors exceeding those of free-space photons,
creating a momentum mismatch that prevents direct optical excitation of SPPs without ad-
ditional coupling mechanisms such as prisms, gratings, or surface roughness. The strong
electromagnetic coupling produces SPPs with the dispersion relation:

kSPP = k0

√
εmetalεdielectric

εdielectric + εmetal
, (2.51)

where k0 = ω
c is the free-space wave vector, εmetal is the permittivity of the metal, and

εdielectric is the permittivity of dielectric.
Various ways enable SPP excitation despite this momentum gap. Optically thin metal-

lic films allow excitation through high-index substrates, providing the additional momentum
required for SPP launch at the metal-air interface. Surface roughness and defects can also
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Figure 2.5: Surface plasmon polariton generation at the boundary between a dielectric and
metallic material. Illustration of the electromagnetic field pattern within both the dielectric
medium and the metal. (Figure adapted from [52]).

facilitate momentum transfer. Alternatively, periodic surface structures can supply the neces-
sary momentum through diffraction. These coupling mechanisms become particularly relevant
in the complex geometries of hyperbolic nanoresonators where multiple interfaces and surface
features can facilitate SPP excitation.

Surface plasmon resonance (SPR) [51–53] is a label-free biosensing technique that detects
analytes by measuring changes in the refractive index at a metal-dielectric interface. In a
common configuration, a laser beam is reflected through a prism off a thin gold film, exciting
surface plasmons. The extreme sensitivity of SPR allows it to detect sub-monolayer quanti-
ties and measure binding kinetics in real time. However, its sensing volume is not inherently
localized, which often requires the use of a functionalized polymer layer to capture target
molecules and generate a sufficient signal. While SPR demonstrates the sensitivity of plas-
monic systems to environmental changes, its macroscopic nature hinders its use in nanoscale
resonator designs.

Localized Surface Plasmon Resonance (LSPR) [51–53] represents a more directly relevant
phenomenon for hyperbolic nanoresonator applications. LSPR occurs when electromagnetic
radiation interacts with metal nanoparticles, specifically noble metals like gold and silver,
causing collective coherent oscillations of the surface conduction electrons as shown in Fig-
ure 2.6. Unlike propagating SPPs, LSPR creates non-propagating surface plasmons confined
to the nanoparticle surface. Resonance occurs when the frequency of incident electromagnetic
radiation corresponds to the intrinsic oscillation frequency of the metallic surface electrons.
This frequency resonance is susceptible to the shape, material composition, and size of the
nanoparticle, as well as the dielectric constant of the surrounding medium. This tunability
through geometric and material parameters makes LSPR particularly valuable for designing
hyperbolic nanoresonators with specific optical responses.

The LSPR phenomenon manifests as sharp spectral absorption and scattering peaks in
the visible to near-infrared range for noble metal nanoparticles. The displacement of the
electron cloud relative to the positive ionic background generates intense localized electric
fields at the nanoparticle surface. LSPR’s highly localized sensing volume makes it extremely
sensitive to changes in the local refractive index, forming the basis for LSPR-based sensing
applications. The key advantages of LSPR over SPR include direct optical excitation without
momentum matching requirements, highly localized sensing volumes that reduce bulk effects
and eliminate the need for polymer matrices, simpler instrumentation with basic optical ex-
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Figure 2.6: Depiction of an LSPR, where the electron cloud undergoes back-and-forth oscil-
lations, causing the negatively charged electrons to shift relative to the positively charged ion
lattice. (Figure adapted from [53]).

tinction measurements that are not temperature-sensitive, and the ability to tune resonance
wavelengths through particle geometry.

Despite their high field enhancement capabilities, plasmonic components in hyperbolic
nanoresonators face fundamental limitations that necessitate the integration of dielectric ele-
ments. The most significant constraint is material losses, which are noticeable even for noble
metals in the visible range. Although these losses may be exploited for specific applications
such as plasmonic heating or hot electron generation for catalysis, they are generally detri-
mental for resonator applications, causing Ohmic losses and reducing overall device efficiency.
Another notable disadvantage is the lack of magnetic response for particles with simple ge-
ometries such as spheres or disks, limiting the ability to independently control magnetic field
components. These limitations highlight the need for complementary dielectric components
to achieve the full functionality required for hyperbolic nanoresonators.

High-index dielectric nanoparticles present a complementary solution to overcome the lim-
itations of purely plasmonic systems in hyperbolic nanoresonators. Materials such as silicon,
germanium, or gallium arsenide exhibit minimal absorption losses in the near-infrared range
while maintaining high refractive indices [23, 54, 55]. The magnetic response of dielectric
nanoparticles arises from displacement currents within the high-index material [23]. When
electromagnetic radiation interacts with a dielectric nanoparticle, the oscillating electric field
induces polarization currents that can circulate within the particle volume. For sufficiently
high refractive indices, these displacement currents can generate both significant electric and
magnetic dipole moments, effectively creating artificial magnetic resonances. This magnetic
response, combined with the inherent electric response, allows dielectric nanoparticles to func-
tion as dual-resonant systems capable of independently controlling both electric and magnetic
field components.

In summary, the combination of plasmonic and dielectric components in hyperbolic nanores-
onator configurations leverages the advantages of both platforms while mitigating their indi-
vidual limitations. The resulting hyperbolic dispersion enables unique electromagnetic proper-
ties not achievable with conventional materials, including hyperlensing, enhanced spontaneous
emission, and directional light propagation. The nanospheroid geometry with tunable aspect
ratios provides additional degrees of freedom for tailoring the optical response, allowing sys-
tematic exploration of the transition between spherical, prolate, and oblate configurations and
their corresponding electromagnetic behaviors. These hyperbolic nanoresonators thus repre-
sent a new paradigm in nanophotonics, where the careful integration of contrasting material
properties creates emergent functionalities that exceed the capabilities of either component
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individually.

2.6. Introduction to Excitonic Materials

Excitonic materials are a class of materials that form bound electron-hole pairs referred to
as excitons upon photon absorption. The excitons play an important role in their optical
and electronic properties. These materials exhibit strong light-matter interactions and are
particularly interesting for optoelectronic applications. Types of excitonic materials include
zero-dimensional (0D) quantum dots, organic molecules, one-dimensional (1D) materials, lay-
ered materials, 2D materials, and three-dimensional (3D) materials as shown in Figure 2.7.
Each of these materials has its advantages and challenges [56].

Excitons can be observed and studied under various temperature conditions, ranging from
cryogenic temperatures [57, 58] (typically below 77 K) to room temperature [59, 60] (around
300 K). While cryogenic conditions often enhance excitonic effects by reducing thermal fluc-
tuations and increasing exciton lifetimes, many excitonic materials exhibit robust excitonic
behavior at room temperature, making them practical for real-world applications. For this
dissertation, the focus is on room temperature excitonic phenomena and their applications in
optoelectronic devices.

0D quantum dots [56] are semiconductors nanocrystals where electrons are confined in
all three spatial dimensions. Example of such materials are II-IV compounds (cadmium sul-
fide (CdS)), and perovskite QDs. They exhibit high exciton binding energies and tunable
bandgaps that can be adjusted by varying their sizes. Their high quantum yields and strong
light absorption across a wide spectra range make them useful in applications like display
technologies, and biomedical imaging. Their high exciton binding energies and strong oscil-
lator strengths enable robust light-matter coupling even at room temperature, making them
excellent candidates for strong coupling regimes in cavity systems. Their challenges include
surface defects affecting quantum yield and complex synthesis control for size uniformity.

Organic molecules [56] including π-conjugated chains and J-aggregates exhibit Frenkel
excitons with high binding energies and localized excitonic states. These materials are par-
ticularly suited for room-temperature excitonic devices due to their strong dipole moments
and narrow absorption/emission linewidths. The high binding energies ensure that excitons
remain stable at room temperature, preventing thermal dissociation that often occurs in in-
organic semiconductors. The large transition dipole moments and high oscillator strengths in
organic molecules facilitate strong light-matter coupling, enabling the formation of polaritons
with large Rabi splitting in optical cavities. Their challenges include controlling molecular ori-
entation, reducing non-radiative losses, and maintaining long-term stability under operational
conditions.

Next, we move from 0D to 1D materials which exhibit confinement in two dimensions, with
electrons free to move along one direction. Example of such materials include single-walled
carbon nanotubes (SWCNTs), semiconductor nanowires, and polymer chains [56]. They ex-
hibit unique anisotropic properties, high charge carrier mobilities, and large transition dipole
moment. The large transition dipole moments and high density of states enhance the light-
matter interaction strength, promoting strong coupling effects when integrated with optical
cavities or plasmonic structures. Their challenges include bundle formation especially in
carbon nanotubes, complex integration into devices, and surface defect sensitivity. Their
applications include molecular-level imaging.

Layered materials [56] like III-VI semiconductors (gallium sulfide (GaS) and gallium se-
lenide (GaSe)) exhibit large bandgaps and high excitonic binding energies. The III-VI semi-
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Figure 2.7: Dimensional classification of excitonic materials showing 0D quantum dots and
organics, 1D carbon nanotubes, 2D TMDC monolayers and perovskites, and 3D TMDC mul-
tilayers [56].

conductors have unique structural properties where strong covalent bond exists within layers
while weak van der Waals forces hold the layers together. Their advantages include layer
dependent optical properties, high carrier mobility, and distinct in-plane and out-plane be-
haviors. The high excitonic binding energies and reduced dielectric screening in these layered
structures enhance the coupling strength between excitons and photons, facilitating strong
light-matter interactions for polariton formation. Their challenges include environmental sta-
bility, poor interface and contact issues in devices, and complex integration into devices.

Another type of layered material is black phosphorus [56] which is a 2D layered material.
This material features a bandgap that can be adjusted from 0.3 eV in its bulk form to 1.5
eV when reduced to a monolayer. This tunability makes black phosphorus particularly in-
teresting for optoelectronic applications spanning from the visible to infrared regions. The
advantages of black phosphorus include enhanced exciton binding energies in few-layer forms,
layer dependent optical properties, high carrier mobility, and distinct in-plane and out-plane
behaviors. The enhanced exciton binding energies and anisotropic optical properties enable
tunable strong coupling effects, allowing for wavelength-specific optimization of light-matter
interactions. Their challenges include environmental stability.

2D materials like TMDCs [56] (MoS2, MoSe2, WS2, and WSe2) and HOIPs (Hybrid
Organic-Inorganic Perovskites) are atomically thin materials where carriers are confined in
one spatial direction (the out-of-plane direction), while they can move freely in the other
two (the in-plane directions). These materials exhibit strong excitonic effects, a consequence
of reduced dielectric screening and quantum confinement. Consequently, they possess large
exciton binding energies ranging from 100 to 500 meV, which ensures remarkable stability
even at room temperature. One of their strongest advantages is their tunable optoelectronic
properties. The combination of high exciton binding energies, reduced dielectric screening, and
large oscillator strengths makes 2D materials ideal for achieving strong coupling regimes with
relatively low photon densities, enabling efficient polariton formation and propagation. Their
challenges include substrate effect on properties, and sensitivity to environmental factors.

3D materials are bulk semiconductors [56] with excitonic effects, including traditional
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semiconductors (e.g., Si, GaAs, InP) and bulk perovskites (e.g., CsPbBr3, CH3NH3PbI3).
Their advantages include good stability, and high carrier mobility. While 3D materials typ-
ically exhibit weaker excitonic effects, bulk perovskites can still achieve strong coupling due
to their large oscillator strengths and high exciton densities, particularly when incorporated
into high-quality factor optical cavities. Their challenges include weaker excitonic effects at
room temperature and less tunability compared to lower-dimensional materials.

2.6.1. Excitons in TMDCs

This section briefly examines the unique excitonic properties that make TMDCs particularly
suitable for strong coupling applications. The bound electron-hole pairs binding energies in
TMDCs are greater than those in bulk semiconductors. They support various excitonic states
that have unique properties such as [56, 61]:

i. Bright excitons result from spin-allowed transitions and dominate the optical spectra of
TMDCs. These excitons couple strongly with light and are responsible for the intense
photoluminescence observed in monolayer TMDCs.

ii. Dark excitons are spin-forbidden transitions that cannot directly emit light due to spin
and momentum mismatches. Although optically inactive under typical conditions, dark
excitons can be activated using external stimuli such as magnetic fields or by coupling
with plasmonic structures. Their long lifetimes and stability make them good candidates
for quantum information storage.

iii. Trions, or charged excitons, form when an exciton interacts with an additional charge
carrier (electron or hole). Trions exhibit distinct spectral signatures and are influenced
by the carrier density in the material, which can be modulated through electrostatic
gating.

iv. Biexcitons are two-bound excitons that exhibit nonlinear optical properties, such as
enhanced two-photon absorption. These states have implications for high-efficiency
light emission and lasing applications.

TMDCs have two inequivalent valleys (K and K’) [61] in their Brillouin zone and enable valley
excitons that have spin valley coupling. This is a fundamental property of TMDCs, such as
MoS2, MoSe2, WS2, and WSe2. This property is unique to TMDCs and has significant im-
plications for their optical and electronic properties. TMDCs also have prominent absorption
peaks known as A and B excitons that correspond to the transitions at the K and K’ val-
leys. These excitons exhibit high tunability and respond to various manipulation techniques,
including electric and magnetic fields or mechanical strain.

To summarize, excitonic materials ranging from 0D to 3D materials support stable exci-
tonic states and have the ability to achieve strong coupling phenomena when combined with
other nanostructures like plasmonic and photonic nanostructures. While excitonic materials
span various dimensions and compositions, TMDCs have a wide range of applications ranging
from nonlinear optics to quantum information processing in the broader field of excitonic
materials.

2.7. Integration of Excitons into Hyperbolic Nanoparticles

The integration of excitonic materials into photonic structures for strong light-matter coupling
applications can be achieved through various approaches. These methods range from direct
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incorporation of excitonic materials into device architectures to theoretical modeling using
oscillator models that capture the essential physics of excitonic transitions. Understanding
both approaches is crucial for designing and optimizing excitonic devices for strong coupling
applications.

An important consideration in excitonic device design is that the specific physical origin
of the excitonic transition becomes secondary to its optical response characteristics. If the
excitonic effects in a material can be accurately described by a Lorentz oscillator model-
—capturing the resonance frequency, oscillator strength, and linewidth—-then the theoretical
predictions and design principles remain valid regardless of whether the implementation uses
actual excitonic materials or alternative systems that produce equivalent optical responses.
This universality allows for flexible design approaches where the focus shifts from material
constraints to optimizing the fundamental coupling parameters that govern strong light-matter
interactions.

2.7.1. Material-Based Integration

Material-based integration involves the direct incorporation of excitonic materials into pho-
tonic structures such as optical cavities, metamaterials, and plasmonic systems.

For quantum dot integration [62], silicon nanocrystals are typically incorporated into silica
or silicon nitride hosts by depositing alternating silicon-rich and stoichiometric dielectric layers
with thicknesses of 2–7 nm, followed by high-temperature annealing to induce quantum dot
formation. This technique provides precise control over the quantum dot density and size
distribution, which is crucial for optimizing the coupling strength between the quantum dots
and the optical modes.

For organic dyes or molecules [63], doping into silica matrices can be achieved using
sol–gel techniques combined with dip-coating. In this process, silica sols are synthesized from
tetraethyl orthosilicate (TEOS), ethanol, hydrochloric acid, water, and a surfactant (Triton
X-100), with the organic dye introduced into the sol before gelation to ensure uniform distri-
bution. Subsequent hydrolysis and condensation reactions at moderate temperatures (around
50 ◦C) form the silica network, while the coated substrates are withdrawn at controlled speeds
to define the final film thickness. Annealing at a reduced temperature of 200 ◦C promotes
condensation while preserving the dye, resulting in smooth, optically homogeneous silica films
in which the dye molecules remain photoluminescent within the matrix.

Integration of 2D materials [64, 65] such as TMDCs can be achieved through mechanical
transfer techniques, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE).
These methods allow atomically thin excitonic layers to be positioned at precise locations
within photonic structures, enabling strong coupling with cavity modes or plasmonic res-
onances. The van der Waals bonding in these materials enables integration with diverse
substrates without requiring lattice matching.

2.7.2. Lorentz-Oscillator Integration

The Lorentz oscillator model provides a theoretical framework for describing excitonic transi-
tions and their integration into photonic structures. This framework shows that the physical
origin of the excitonic response is secondary to its optical properties. Any system—whether
based on actual excitons in quantum dots, organic molecules, 2D materials, or alternative
physical mechanisms—that can be accurately described by the same Lorentz oscillator pa-
rameters will exhibit equivalent strong coupling behavior.
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The excitonic contribution to the material permittivity is described by incorporating a
Lorentz oscillator into the dielectric function [66, 67]:

εex(ω) =
fω2

ex

ω2
ex − ω2 − iγexω

, (2.52)

where ω is the angular frequency, f denotes here the oscillator strength, ωex is the exciton
transition frequency, and γex represents the exciton linewidth that accounts for dephasing and
radiative damping. At resonance (ω = ωex), this expression simplifies to:

εex(ωex) = i
fωex

γex
. (2.53)

This simplified form clearly illustrates how the oscillator strength f directly determines both
the real and imaginary parts of the permittivity at the resonance frequency, making it the key
parameter for controlling the optical response regardless of the underlying physical mechanism.

The oscillator strength f is an important parameter that governs the coupling strength
between excitons and photons. For integration into complex photonic structures, the excitonic
contribution is added to the background permittivity of the host material:

εd → εd + εex(ω). (2.54)

This modification affects both the real and imaginary parts of the permittivity, influencing the
dispersion and absorption characteristics of the composite material. The real part determines
the phase velocity and refractive index, while the imaginary part governs absorption and
radiative losses.

Moreover, multiple Lorentz oscillators can be used to model complex excitonic materials
with multiple transition lines, such as TMDCs with A and B exciton transitions, or organic
materials with vibronic progressions. This multi-oscillator approach provides a comprehensive
description of the material response across broad spectral ranges, enabling accurate modeling
of realistic device configurations.
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Chapter 3

Strong Coupling of Light and Matter

Strong coupling between light and matter represents a regime where coherent energy exchange
between the two domains dominates over dissipative processes, leading to the formation of
hybrid light-matter states called polaritons. This chapter discusses the quantum mechanical
framework for understanding strong coupling phenomena and examples of strong coupling in
plasmonic nanostructures operating at room temperature.

3.1. Quantum Description of Strong Coupling

The fundamental quantum description of strong coupling is governed by the Jaynes-Cummings
model [68], which models the interaction of a single two-level system with a single quantized
cavity mode. In this framework, a quantum emitter is treated as a two-level system with a
ground state |g⟩ and excited state |e⟩, separated by the transition energy ℏω0. The atomic
Hamiltonian in the energy representation is expressed as:

Ĥatom = Eg|g⟩⟨g|+ Ee|e⟩⟨e|, (3.1)

which can be rewritten by shifting the zero energy to (Eg + Ee)/2 as:

Ĥatom =
ℏω0

2
σz, (3.2)

where ω0 = (Ee − Eg)/ℏ is the atomic transition frequency and:

σz = |e⟩⟨e| − |g⟩⟨g| (3.3)

is the Pauli operator.
The quantization of the electromagnetic field is achieved by treating each independent

radiation mode as a quantum harmonic oscillator. Each mode is uniquely identified by its
wavevector k and polarization index α. In this quantum field description, the photon annihi-
lation and creation operators âk and â†k satisfy the canonical commutation relation:

[âk, â
†
k] = 1. (3.4)

The operators act on the number states |nk⟩ according to:

âk|nk⟩ =
√
nk|nk − 1⟩, (3.5)

â†k|nk⟩ =
√
nk + 1|nk + 1⟩. (3.6)
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For a single cavity mode with frequency ωc, the field Hamiltonian becomes:

Ĥfield =
∑
k

ℏωk(â
†
kâk + 1/2) = ℏωc(â

†â+ 1/2). (3.7)

The interaction between the atom and the electromagnetic field is mediated through the
electric dipole coupling:

Ĥint = −d̂ · Ê(r), (3.8)

where d̂ denotes the atomic dipole moment operator and Ê(r) represents the electric field
operator evaluated at the emitter’s position. The dipole moment operator can be expressed
in terms of the atomic raising and lowering operators as:

d̂ = d10(σ̂+ + σ̂−), (3.9)

where

σ̂+ = |e⟩⟨g|, (3.10)
σ̂− = |g⟩⟨e|, (3.11)

are the atomic raising and lowering operators, and d10 = ⟨e|d̂|g⟩ is the transition dipole
moment. The transition dipole moment quantifies the strength of the electric dipole coupling
between the ground and excited states and determines the rate of spontaneous emission and
absorption processes. For an electric dipole transition to be allowed, the transition dipole
moment must be non-zero, which requires that the initial and final states have opposite
parity. When the dipole coupling is combined with the quantized electromagnetic field, the
interaction Hamiltonian becomes:

Ĥint =
∑
k

gkℏ(â†k + âk)(σ̂+ + σ̂−), (3.12)

where gk is the coupling strength parameter for mode k.
Under the rotating wave approximation, which neglects rapidly oscillating terms âkσ̂+ and

â†kσ̂− that oscillate at frequencies ωk + ω0, the interaction Hamiltonian simplifies to:

Ĥint =
∑
k

gkℏ(âkσ̂+ + â†kσ̂−). (3.13)

The first term describes photon absorption creating an atomic excitation, while the second
term describes photon emission destroying an atomic excitation. The transition matrix ele-
ments for these processes are:

⟨nk − 1, 0|Ĥint|nk, 1⟩ = gkℏ
√
nk (absorption) (3.14)

⟨nk + 1, 1|Ĥint|nk, 0⟩ = gkℏ
√
nk + 1 (emission) (3.15)

where the joint states are denoted as |nk, i⟩ = |nk⟩ ⊗ |i⟩ with i = 0, 1 representing the atomic
ground and excited states.

The complete Jaynes-Cummings Hamiltonian for a single mode is:

ĤJC =
ℏω0

2
σ̂z + ℏωcâ

†â+ ℏg(â†σ̂− + âσ̂+), (3.16)

where g is the coupling strength parameter that characterizes the interaction strength in
mode-exciton systems.
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This Hamiltonian can be solved exactly in the single excitation subspace, which consists
of the states |e, 0⟩ (atom excited, no photons) and |g, 1⟩ (atom in ground state, one photon).
The Hamiltonian matrix in this subspace is:

H =

(
ℏω0 ℏg
ℏg ℏωc

)
. (3.17)

Diagonalizing this matrix yields the eigenvalues:

E± =
ℏ(ω0 + ωc)

2
± ℏ

2

√
4g2 + (ω0 − ωc)2, (3.18)

which at zero detuning of the two resonant frequencies (ω0 = ωc) simplify to:

E± = ℏωc ± ℏg. (3.19)

The corresponding eigenstates are the dressed states or polaritons:

|P±⟩ = α|e, 0⟩ ± β|g, 1⟩, (3.20)

where the Hopfield coefficients are given by:

|α|2 = 1

2

(
1 +

∆√
∆2 + 4g2

)
, (3.21)

|β|2 = 1

2

(
1− ∆√

∆2 + 4g2

)
, (3.22)

with ∆ = ω0 − ωc being the detuning. The Hopfield coefficients quantify the relative weights
of the atomic and photonic components in the polariton states. The energy difference between
the upper and lower polariton branches defines the vacuum Rabi splitting energy:

ℏΩR = E+ − E− = 2ℏg. (3.23)

This splitting persists even in the absence of any photons initially in the cavity, demonstrat-
ing the fundamental role of vacuum field fluctuations in quantum electrodynamics. This
anticrossing behavior and polariton formation is illustrated in Figure 3.1.

The extension to multiple identical emitters leads to the Tavis-Cummings model [70],
where N emitters collectively interact with a single cavity mode. The collective spin operators
are defined as:

Ŝ+ =
1√
N

N∑
n=1

σ̂+
n , (3.24)

Ŝ− =
1√
N

N∑
n=1

σ̂−
n , (3.25)

allowing the Hamiltonian to be written as:

ĤTC = ℏω0Ŝ
+Ŝ− + ℏωcâ

†â+ ℏgN (â†Ŝ− + âŜ+). (3.26)

Here, the interaction rate is a collective one, i.e. a collective coupling strength that is defined
as:

gN =
√
Ng1 (3.27)
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Figure 3.1: Strong coupling and vacuum Rabi splitting. (a) Energy level diagram showing
the interaction between ground state |g⟩, upper polariton |s1⟩ = |P+⟩ and lower polariton
|s2⟩ = |P−⟩, and a resonant cavity mode |r⟩ at frequency ωr. The coupling strength g
facilitates energy exchange between the emitter (|e⟩) and cavity mode (|r⟩), resulting in the
vacuum Rabi splitting ℏΩR = 2ℏg. (b) Spectroscopic signature of strong coupling showing the
characteristic anticrossing behavior as a function of detuning, demonstrating the formation
of upper and lower polariton branches separated by the Rabi splitting ΩR. (Figure adapted
from [69]).

with g1 being the single-emitter coupling. This
√
N enhancement arises from the constructive

interference of the individual emitter-field interactions and enables strong coupling even when
individual emitters are weakly coupled.

The physical origin of this scaling can be understood through the fundamental coupling ex-
pression g = Nµ|E|, where N is the number of molecules, µ is the molecular transition dipole
moment, and |E| is the local electric field enhancement. Since the oscillator strength f scales
linearly with the number of molecules (f ∝ N), the coupling strength follows g ∝

√
N ∝

√
f .

This relationship has been shown for core-shell plasmonic systems, where the vacuum Rabi
splitting exhibits a linear dependence on

√
f , confirming that classical electromagnetic treat-

ments can accurately capture the essential physics of quantum light-matter interactions [66].
This scaling demonstrates that coherent coupling can be achieved through either increas-
ing the number of emitters or enhancing the local electromagnetic field through optimized
plasmonic geometries.

In plasmon-exciton systems, this collective enhancement enables strong coupling even
when individual emitters experience only moderate field enhancement, providing a practical
route to strong coupling through ensemble effects in core-shell geometries [66] and other
plasmonic nanostructures [71]. The corresponding vacuum Rabi splitting becomes:

ℏΩR = 2ℏgN = 2ℏ
√
Ng1 (3.28)

providing a practical route to strong coupling through ensemble effects.
A fundamental limitation of the Tavis-Cummings model is its breakdown for large emitter

numbers or high optical densities, as it requires all system rates and frequencies to be small
compared to the cavity’s free spectral range νFSR (defined as the reciprocal of the photon
round-trip time). Specifically, the model breaks down when either:

νFSR ≪ gN (ultrastrong coupling regime) (3.29)

νFSR ≪
g2N
γQE

. (3.30)
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3.2. Conditions for Strong Coupling

The transition from weak to strong coupling is governed by the relative magnitudes of the
coupling strength and the dissipation rates in the system. When losses are included phe-
nomenologically by introducing complex frequencies ω0 − iγQE (where γQE is the atomic
decay rate into non-cavity modes) for the emitter and ωc − iγcav (where γcav is the cavity
photon decay rate) for the cavity, the eigenvalues in the single excitation subspace become:

E± =
(ω0 + ωc)

2
− i

(γQE + γcav)

2
± 1

4

√
4g2 − (∆− i(γQE − γcav))2, (3.31)

where ∆ = ω0−ωc is the detuning. The relative coupling strength of a system is characterized
by three parameters: the coupling strength g, the photon decay rate of the confined field γcav,
and the non-resonance decay rate of the molecules γQE . In experimental practice, these decay
rates can be determined from the linewidths of the uncoupled cavity resonance and molecular
absorption features.

Several criteria have been established to determine whether a system exhibits strong cou-
pling, each with different levels of stringency and practical applicability. Firstly, for the
splitting to be experimentally observable and according to Sparrow’s criterion [72] for two re-
solvable peaks, two distinct peaks are visible in the spectrum, with the midpoint between them
showing a minimum in intensity. However, care must be taken when applying this criterion,
as spectral splitting can also arise from other phenomena [73, 74] such as Fano interference
between quantum emitters and plasmonic resonances, which can occur entirely in the weak
coupling regime. Therefore, the observation of two peaks alone is not sufficient evidence
for strong coupling without additional analysis of the dispersion behavior and anticrossing
characteristics.

Secondly, the most fundamental criterion for strong coupling requires that the Rabi split-
ting remains real-valued. For the system to exhibit coherent energy exchange, the coupling
strength must exceed the difference between the individual decay rates [75]:

2g >
|γQE − γcav|

2
. (3.32)

This condition preserves the real nature of the square root term in equation 3.31, avoid-
ing overdamped dynamics that eliminate oscillatory behavior. The key distinction of this
criterion lies in its comparison of coupling strength with the loss rate difference between un-
coupled modes, not with experimentally observed splitting versus uncoupled linewidths. This
approach reveals that strong coupling can occur even with high system dissipation, provided
the uncoupled resonances have similar loss characteristics. As a result, strong coupling may
persist despite polariton linewidths being too broad for experimental detection of the splitting.

Thirdly, the most stringent and commonly adopted criterion combines both previous re-
quirements and ensures clear spectroscopic visibility. This condition requires that the splitting
be greater than the average linewidth of the uncoupled resonators [76, 77]:

ΩR >
|γQE + γcav|

2
(3.33)

or equivalently:

2g >
|γQE + γcav|

2
. (3.34)

This criterion ensures that the energy difference between the polariton modes is larger than
their combined linewidths, guaranteeing both the reality of the splitting and its experimental
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observability. The condition can be derived by requiring that the real part of the energy split-
ting exceeds the imaginary part, which after algebraic manipulation yields the requirement
that the coupling strength must be greater than the average of the decay rates. This criterion
is the preferred standard in most experimental studies as it provides a clear, unambiguous
threshold for strong coupling that directly relates to observable spectroscopic features. For
this dissertation, the criterion used is equation 3.33.

The avoided crossing behavior, clearly visible in anticrossing dispersion measurements such
as shown in Figure 3.1(b), serves as the definitive signature of strong coupling and appears
whenever the coupling rate ΩR exceeds the relevant damping rates according to the chosen
criterion.

3.3. Strong Coupling in Plasmonic Nanostructures

This section discusses strong coupling in plasmonic nanostructures as the current state-of-
the-art baseline for subsequent relation to the topic of this dissertation, in which hyperbolic
nanospheroids composed of a plasmonic metal and dielectric are investigated for coupling to
excitons.

Plasmonic nanostructures provide one of the most effective platforms for achieving strong
light–matter interactions at room temperature. In these systems, localized surface plasmon
resonances (LSPRs) confine electromagnetic fields at subwavelength scales, producing intense
local field enhancements. When coupled to excitonic materials such as quantum dots, molec-
ular dyes, J-aggregates, and two-dimensional (2D) semiconductors, strong plasmon–exciton
hybridization occurs. The resulting coupling strength depends primarily on spectral overlap,
spatial proximity, and electromagnetic mode confinement. This section reviews experimental
demonstrations of strong coupling in plasmonic nanostructures, organized by geometry.

The simplest approach to achieving strong coupling in plasmonic systems begins with
individual nanoparticles that support localized surface plasmon resonances (LSPRs). These
single-particle resonators serve as the fundamental building blocks for understanding light-
matter interactions, where the particle geometry, size, and material composition directly de-
termine the coupling efficiency with nearby quantum emitters. By examining single nanopar-
ticle systems first, we establish the baseline coupling mechanisms that will be enhanced and
modified in more complex architectures.

3.3.1. Single Nanoparticle Resonators

Figure 3.2: Schematic diagram of plasmonic nanostructures consisting of Gold bipyramids
and MoS2 monolayers (Figure adapted from [78]).

Single nanoparticles demonstrate strong coupling across a broad range of Rabi splitting values
from 55 meV to 450 meV at room temperature. Gold bipyramids coupled to MoS2 monolayers
as shown in Figure 3.2 give Rabi splitting values of approximately 55 meV for 70-nm long
bipyramids, increasing to 80 meV for 100-nm structures, with coupling strength depending
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Figure 3.3: Schematic diagram of plasmonic nanostructures consisting of silver nanoprisms
coupled to WS2 monolayers (Figure adapted from [81]).

on both tip radius and length, requiring sharp tips with radii less than 7 nm for optimal field
enhancement [78]. Gold nanocubes with PIC J-aggregates exhibit splitting of approximately
100 meV through electrostatic interactions, while similar systems with thiacarbocyanine dye
achieve 120 meV [79, 80].

Building upon the success of gold nanostructures, researchers have explored silver nanopar-
ticles, which typically exhibit sharper plasmon resonances and can achieve even larger coupling
strengths due to their superior optical properties, albeit with reduced chemical stability. One
example of the use of silver in this application are Ag nanoprisms coupled to WS2 monolayers
as shown in Figure 3.3, which demonstrate 120 meV splitting with the capability to couple
with both neutral excitons and charged excitons (trions) [81].

Moving beyond simple two-level systems, more complex excitonic configurations can be
employed to create multi-component polariton states. Biexcitonic systems, which involve
multiple excitonic transitions, demonstrate how strong coupling can be extended to create even
richer hybrid light-matter states. Biexcitonic systems operating at room temperature reach
splitting values around 163-175 meV, with Au@Ag nanocuboids coupled to DBI and JC-1 J-
aggregates exhibiting double Rabi splitting with values of 163 meV and 175 meV respectively,
creating multicomponent polariton nanostructures with magneto-optical activity [82]. Au@Ag
nanocuboids with PIC J-aggregates demonstrate 196 meV splitting, illustrating the advantages
of hybrid metal composition for matching plasmonic resonances to J-aggregate frequencies [83].

Hollow gold nanoprisms coupled to PIC J-aggregates demonstrate enhanced performance
with 198 meV splitting due to strong electric field generation at tips and within the central
cavity, providing increased surface area and more effective field localization compared to solid
counterparts [84]. Additional single nanoparticle systems demonstrate coupling with quantum
dots, where gold nanorods achieve substantial Rabi splitting of approximately 234 meV with
individual quantum dots when positioned in wedge nanogap cavity configurations [12].

Silver nanoparticles show even larger coupling strengths, with silver nanodisks coupled

Figure 3.4: Schematic diagram of plasmonic nanostructures consisting of silver nanoprisms
coupled with tetrachlorobenzimidazolocarbocyanine (JC-1) J-aggregates (Figure adapted
from [85]).
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to TDBC J-aggregates achieving 350 meV splitting, and silver nanoprisms with lead halide
perovskites achieving similar values of approximately 350 meV at room temperature, lever-
aging strong absorption and oscillator strengths that remain stable under ambient condi-
tions [86, 87]. The coupling strength can be tuned in situ, as was demonstrated in a system
composed of silver nanoprisms coupled with tetrachlorobenzimidazolocarbocyanine (JC-1) J-
aggregates as shown in Figure 3.4. These achieve very large coupling strengths, yielding Rabi
splitting on the order of 450 meV under ambient conditions with pH-dependent tunability,
where splitting decreases from 450 meV at pH 8-11 to approximately 200 meV at pH 2.5 [85].

3.3.2. Nanoparticle Dimers

Figure 3.5: Schematic diagram of plasmonic bowtie antenna with quantum dot in the gap
where the field enhancement is maximum (Figure adapted from [88]).

While single nanoparticles demonstrate substantial coupling strengths up to 450 meV,
even greater field enhancement and coupling efficiency can be achieved by creating closely
spaced nanoparticle pairs. The key advantage lies in the formation of gap plasmon modes
in the narrow spaces between metallic particles, where electromagnetic fields become highly
concentrated and can interact more strongly with quantum emitters positioned within these
“hot spots.” This geometric configuration represents the next logical step in complexity, build-
ing upon single-particle physics while introducing the powerful concept of field localization
through particle proximity.

Santhosh et al. [88] achieved vacuum Rabi splitting by coupling semiconductor quantum
dots to silver bowtie plasmonic cavities as shown in Figure 3.5, achieving coupling rates as
high as 120 meV even with a single QD. The study employed electron beam lithography to
fabricate bowties with gaps of approximately 17-30 nm and used interfacial capillary forces to
position CdSe/ZnS quantum dots within the gaps, with polarization-dependent experiments
confirming that the observed splitting originates from coupling between the longitudinal plas-
mon resonance and the quantum dot excitons.

DNA double-strand assembly allows creation of 40 nm gold nanoparticle dimers as shown
in Figure 3.6 with controlled incorporation of five dye molecules in the gap, achieving cou-
pling strengths ranging from 50 to 150 meV when interparticle distances decrease below 2 nm
[89]. However, only 3% of studied dimers displayed hybrid coupled modes, potentially due to
transition dipoles not being appropriately oriented or positioned [89]. Despite this drawback,
DNA origami templates are, nonetheless, a promising approach as they enable precise assem-
bly of nanoparticle dimers with approximately 5 nm separation. This precision combined with
few-nanometer gaps can lead to strong coupling with few J-aggregates and Rabi splitting of
approximately 150 meV [90]. The coupling strength follows a correlation with particle radius

Figure 3.6: Schematic diagram of plasmonic nanostructures consisting of DNA double-strand
assembly with gold nanoparticle dimers (Figure adapted from [89]).
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(g ∼ 1/Rn with n = 0.63), showing enhanced coupling in particles with reduced dimensions
due to improved field confinement [90].

3.3.3. Nanoparticle-on-Mirror (NPoM) Configurations

The success of nanoparticle dimers in achieving enhanced coupling through gap plasmons
naturally leads to an even more controlled and reproducible geometry: nanoparticle-on-mirror
(NPoM) configurations. Unlike dimers where precise gap control between two curved surfaces
presents fabrication challenges, NPoM systems offer the advantage of a perfectly flat mirror
surface that ensures consistent and predictable gap dimensions. This configuration not only
maintains the benefits of gap plasmon enhancement but also provides superior reproducibility
and the potential for single-molecule studies, representing a significant advancement in both
fundamental understanding and practical implementation.

Figure 3.7: Schematic diagram of plasmonic nanostructures consisting of Silver nanocube-on-
mirror systems with methylene blue J-aggregates (Figure adapted from [91]).

NPoM configurations prove effective for achieving large coupling strengths through gap
plasmons formed between nanoparticles and flat mirror surfaces. The ultimate goal of such
structures is single-molecule strong coupling represents a remarkable achievement in NPoM
systems, where individual Cy5 molecules positioned in sub-5 nm gaps using DNA origami
demonstrate mean Rabi splitting of 80 meV across more than 200 structures, with the presence
of single molecules enhancing optical emission due to high local density of optical states while
disrupting cavity scattering [92].

Dynamic imaging approaches using chlorophyll-a in NPoM systems demonstrate averaged
coupling strength of approximately 125 meV and provide methods for monitoring coupling
dynamics in real-time [93]. NPoM systems with transition metal dichalcogenides show similar
coupling strengths, with WSe2 multilayers achieving 140 meV splitting while monolayers show
insufficient coupling due to limited interaction with strongly confined gap plasmon modes [94].
Silver nanocubes with WS2 monolayers reach 145 meV splitting [95], while gold nanoprisms
with WS2 demonstrate 163 meV splitting with precise control over exciton strength through
electromagnetic environment manipulation by adjusting spacer thickness [96].

Silver nanocube-on-mirror systems as shown in Figure 3.7 with methylene blue J-aggregates
achieve 170 meV splitting, with coupling strength dependent on both dye concentration and
nanoparticle size, where the relationship between nanoparticle size and coupling strength is
consistent across different cube sizes [91]. Hu et al. [97] studied the strong coupling phenom-
ena in a plasmonic-QD system consisting of QDs integrated into plasmonic NPoM as shown
in Figure 3.8, fabricated with a yield of approximately 70% for strong coupling of excitons to
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Figure 3.8: Schematic diagram of plasmonic nanostructures consisting of QDs integrated into
plasmonic NPoM (Figure adapted from [97]).

plasmon modes by varying QD sizes, achieving an average Rabi splitting of 200 meV.
Gold nanocubes on gold films with PIC J-aggregates show splitting of 345-377 meV, ap-

proximately 2.5 times higher than similar hybrids on ITO substrates due to significant electric
field amplification at the upper corners of the cube-on-film geometry under ambient condi-
tions [79]. Further investigations show that single Atto647 molecules in similar NPoM config-
urations can achieve Purcell enhancements exceeding 1000 with emission lifetime decreased
from approximately 2.5 ns to below 0.3 ns [98].

3.3.4. Metasurfaces and Hybrid Nanostructures

The individual nanostructure approaches discussed thus far—single particles, dimers, and
NPoM configurations—excel at achieving strong coupling in localized regions but are inher-
ently limited by their discrete nature. To scale up these phenomena for practical applications
and to introduce additional degrees of control over electromagnetic fields, researchers have
turned to metasurfaces and hybrid nanostructures. These extended platforms combine the
proven coupling mechanisms of individual nanostructures with the collective behavior of peri-
odic arrays, enabling both enhanced coupling strengths through cooperative effects and new
functionalities that emerge from the interplay between multiple resonant elements.

Beyond single particles and dimers, metasurfaces and hybrid nanostructures provide ad-
ditional versatile platforms for plasmon-exciton strong coupling. Metasurfaces, defined as
two-dimensional metamaterials with subwavelength thickness, enable precise control over
electromagnetic wave manipulation. For example, metasurfaces composed of nanoholes in
optically thin silver films and coated with J-aggregates exhibit a coupling strength with a
linear dependence on the square root of the number of J-aggregates, achieving Rabi splitting
of 300 meV [99].

More broadly, hybrid nanostructures combine plasmonic, photonic, and dielectric compo-
nents to leverage their individual strengths and achieve enhanced coupling phenomena. For
instance, Tsargorodska et al. [100] studied strong coupling in a system of gold arrays and
polypeptide maquettes. Using a coupled harmonic oscillator model, they achieved plasmon-

Figure 3.9: Schematic diagram of a hybrid nanostructure consisting of a methylammonium
lead bromide thin film on top of an array of aluminium nanoparticles [71].
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exciton coupling energies from 80 to 210 meV, with a coupling strength that showed a lin-
ear dependence on the square root of the dipole density. Another example is provided by
the system shown in Figure 3.9, where perovskite organic-inorganic films are combined with
aluminum nanoparticles. This structure demonstrates plasmonic-excitonic coupling with a
strength that scales with the square root of the oscillator strength, yielding Rabi splitting
values of 230 meV [71].

3.3.5. Specialized Configurations

Beyond the conventional geometries explored in the previous sections, the field has developed
several specialized configurations that address specific challenges or exploit unique physical
phenomena. These advanced approaches either push the boundaries of spatial control to
achieve ultimate precision in coupling interactions, or introduce additional degrees of freedom
such as chirality and material heterogeneity that open new pathways for both fundamental
studies and applications. While these configurations may not always achieve the highest
absolute coupling strengths, they offer unique capabilities that complement the established
platforms and provide insights into unexplored aspects of strong coupling physics.

Additional plasmonic nanostructure configurations extend the versatility of strong cou-
pling systems beyond conventional geometries. Tip-enhanced strong coupling (TESC) uti-
lizes sharp scanning metal tips positioned close to metal surfaces, creating nanocavities that
couple with single quantum emitters to produce mode splitting from 70 to 163 meV, with tip
positioning providing precise control over coupling strength at sub-nanometer precision [101].

Chiral materials introduce additional degrees of freedom through circular dichroism effects,
where chiral J-aggregates attached to bimetallic nanocuboids produce bisignate signals in
CD spectra with mode splitting up to 214 meV, demonstrating that hybrid modes can be
more easily distinguished in CD response due to smaller line width and bisignate line shape
compared to extinction measurements [102]. Left-handed and right-handed plasmonic dimers
created with DNA origami show chiroptical hybridization with opposite CD signal signs,
demonstrating Rabi splitting of 205 meV and 199 meV respectively, where CD spectroscopy
proves more helpful in characterizing chiral hybrids with multiple adjacent plasmon resonance
modes [103].

Bimetallic nanostructures offer advantages by combining properties of different metals,
with Ag-Au-alloyed nanorings achieving splitting values exceeding 300 meV with TDBC J-
aggregates through enhanced electromagnetic fields within central holes that facilitate the
transition from weak to strong coupling via galvanic displacement processes [104].

In summary, this systematic exploration from single nanoparticles to complex hybrid struc-
tures reveals how plasmonic strong coupling has evolved from a fundamental quantum optical
phenomenon to a versatile platform technology. Each configuration builds upon the principles
established by simpler geometries while introducing new capabilities: single particles establish
the basic coupling mechanisms, dimers and NPoM configurations enhance field confinement
through gap plasmons, metasurfaces enable scaling and new functionalities, and specialized
configurations push the boundaries of control and introduce novel physics. This hierarchical
understanding provides the foundation for designing next-generation strong coupling systems,
including the hyperbolic nanospheroid geometries that represent the focus of this dissertation,
where the combination of plasmonic enhancement and hyperbolic dispersion creates new op-
portunities for room-temperature quantum optical applications.
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Chapter 4

Methods

With the fundamental material concepts introduced in Chapter 2 and Chapter 3, this chap-
ter presents the computational and numerical methods used to investigate strong coupling
in hyperbolic multilayer nanospheroids containing excitonic materials. The methodological
approach combines several complementary techniques: effective medium theory to character-
ize the bulk optical properties of multilayer systems, finite-difference time-domain (FDTD)
simulations for detailed electromagnetic field analysis, T-matrix calculations for rigorous scat-
tering analysis of anisotropic particles, and coupled harmonic oscillator models to describe
the strong coupling dynamics. Each method addresses specific aspects of the complex physics
involved in the multilayer/hyperbolic nanospheroid systems.

4.1. Effective Medium Theory

Calculation of the complex optical behavior of nanoparticle ensembles can be simplified
through effective medium theory. This theory replaces the heterogeneous distribution of per-
mittivity—arising from distinct contributions of particles and their surrounding medium—with
a single, homogeneous effective permittivity. While several approaches exist for calculating
this effective permittivity, the Maxwell-Garnett approximation is often used due to its rela-
tive simplicity and decent reliability. An anisotropic multilayer composite exhibiting uniaxial
symmetry is examined. The structure’s alternating metallic and dielectric layers create in-
trinsic anisotropy, necessitating separate treatment of the permittivity along two primary
directions: parallel (ε∥) and perpendicular (ε⊥) to the layer interfaces. The analysis employs
a generalized Maxwell-Garnett framework to derive analytical expressions for the effective per-
mittivities [28, 105, 106]. This approach allows one to recast the internal multilayer structure
of spheroidal nanoparticles into a homogeneous permittivity. Such an effective permittivity
can then be used for particles with various aspect ratios, including an example with an aspect
ratio of 1, such as the sphere shown in Figure 4.1.

The fill fraction (fm) defines the relative proportions of metallic and dielectric layers in
the system:

fm =
dm

dm + dd
, (4.1)

where dm is the total thickness of the metallic layers, and dd is the total thickness of the
dielectric layers. This parameter describes the ratio of the metal’s contribution to the total
material composition and plays an important role in determining the effective permittivities.
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Figure 4.1: Schematic of a spherical multilayer system (aspect ratio = 1), with alternating
dielectric and metallic layers. The perpendicular direction is along the radial direction, and
the parallel direction is tangential to the spherical surface at any point.

4.1.1. Effective Perpendicular Permittivity

As discussed previously, the electric displacement D⃗ is proportional to the electric field E⃗,
D⃗ = εeffE⃗, where εeff denotes the overall effective medium. The effective perpendicular
permittivity is determined by averaging the electric displacement (D⊥) across the layers,
assuming the continuity of the electric field (E⊥).

i. From the continuity conditions for the tangential component of E⃗ across the interfaces
one obtains:

Em
⊥ = Ed

⊥ = E⊥. (4.2)

ii. The total displacement field in the perpendicular direction is thus:

D⊥ = fmDm
⊥ + (1− fm)Dd

⊥, (4.3)

where Dm
⊥ = εmE⊥ is the displacement in metallic layers and Dd

⊥ = εdE⊥ is the dis-
placement in dielectric layers.

iii. Substituting and solving for the effective perpendicular permittivity D = εeffE:

Em
⊥ = Ed

⊥ = E⊥,

D⊥ = fmDm
⊥ + (1− fm)Dd

⊥,

εeff
⊥ E⊥ = fmεmE⊥ + (1− fm)εdE⊥,

εeff
⊥ = fεm + (1− fm)εd.

Thus, the effective permittivity in the perpendicular direction is:

ε⊥ = fmεm + (1− fm)εd. (4.4)

4.1.2. Effective Parallel Permittivity

The effective parallel permittivity is derived by assuming continuity of the displacement field
(D∥) across the layers and averaging the electric fields.

i. The displacement fields are continuous across interfaces:

Dm
∥ = Dd

∥ = D∥ (4.5)
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Figure 4.2: Plot of the (a) real part of the permittivity components, (b) imaginary part of
the permittivity components. The subsequent lines represent a variable metal fill factor fm.

ii. The total electric field in the parallel direction is:

E∥ = fmEm
∥ + (1− fm)Ed

∥ (4.6)

iii. Using the constitutive relations and solving for the effective parallel permittivity:

Dm
∥ = Dd

∥ = D∥,

E∥ = fmEm
∥ + (1− fm)Ed

∥ ,

εmEm
∥ = εdE

d
∥ = ε

∥
effE∥,

E∥ = fm
D∥

εm
+ (1− fm)

D∥

εd
,

1

ε∥
=

fm
εm

+
1− fm

εd
,

ε∥ =
εmεd

fmεd + (1− fm)εm
.

Thus, the effective permittivity in the parallel direction is:

ε∥ =
εmεd

fmεd + (1− fm)εm
. (4.7)

As an example, using silver optical constants from Palik and silica (n = 1.5), we calculate
the effective permittivities for various fill fractions (fm = 0.2, 0.4, 0.6). The results exhibit
hyperbolic dispersion, where Re(εx) and Re(εz) have opposite signs across certain energy
ranges, with the hyperbolic boundary occurring where Re(εx) = 0, as demonstrated in Fig-
ure 4.2. Such an averaged, effective and uniaxial permittivity can then be used in subsequent
calculations, in which the internal complexity of a hyperbolic nanoparticle is neglected and
described only by a simple diagonal permittivity tensor.
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4.2. FDTD Method

The finite-difference time-domain (FDTD) method is a 3D full-wave electromagnetic approach
commonly used for modeling nanophotonic devices, processes, and materials [107]. This
numerical approach solves Maxwell’s equations given in Section 2.1 in their time-domain
representation by discretizing both time and space using a grid and applying central finite-
difference approximations for temporal and spatial derivatives [108, 109].

An essential feature of FDTD is use of the Yee lattice [108], which offsets the electric
and magnetic fields in both time and space. This offset improves numerical stability and
accuracy by ensuring updates to the electric and magnetic field components are synchronized
in a leapfrog manner [110]. Electric fields are calculated at half-time steps, while magnetic
fields are calculated at full-time steps, ensuring interdependency between the updates. In
FDTD, each field component is solved at a slightly different location within the grid cell, with
the simulation domain being the space truncated by the simulation region and discretized by
the mesh [111].

FDTD simulations require proper handling of boundaries within the computational do-
main [107]. For scattering problems, a total-field/scattered-field (TF/SF) source is employed,
splitting the domain into two subregions: the total field region includes both the scattered and
incident fields and contains the scatterer, while the scattered field region contains only the
scattered field [109]. This separation is important for determining quantities such as absorbed
and scattered power. Absorbed power can be calculated using volume integrals over the total
field region, while scattered power can be computed using surface integrals in the scattered
field region [112].

The FDTD method is generally suitable for design cases in which some or all dimensions
of the object are comparable to the size of the wavelength of light [107]. Its accuracy and
versatility make FDTD the go-to solver for a wide range of photonic designs, including CMOS
image sensors, LEDs, OLEDs, microLEDs and liquid crystals, scattering and diffractive optics,
metamaterials, metasurfaces, metalenses and plasmonics, integrated photonics, and photonic
crystals [112, 113].

FDTD provides several key advantages. Time and frequency domain analysis capabilities
offer a dynamic view of electromagnetic fields’ evolution over time, with built-in automated
Fourier transform of the time-domain solution easily making frequency analysis possible [114].
The broadband capabilities allow calculation of broadband results much faster from a single
simulation because it is a time-domain method [107]. The method excels in modeling com-
plex geometries and can handle any arbitrarily shaped structures [111]. FDTD delivers high
accuracy and versatility as it is inherently free of any physical approximations [109]. Ma-
terial versatility allows permittivity values to be assigned individually to each grid point,
enabling simulations of linear, nonlinear, and anisotropic materials. Computational efficiency
is achieved as FDTD does not involve solving large linear systems, enabling efficient compu-
tation, especially with parallelization techniques like MPI and CUDA [115].

However, FDTD also has limitations. Grid constraints mean fields are only computed
at discrete grid points, making interpolation at intermediate points computationally inten-
sive [110]. Available computing power limits the maximum device size for accurate simulation.
Simulation time depends on several factors from the simulation setup and volume to the hard-
ware specifications of the computing system, with 3D simulation time expected to scale with
the relation Ṽ (l/dx)4, where Ṽ is the simulation volume and dx is the grid size [111]. The
sheer number of spatial and temporal unknowns in an FDTD simulation grows exponentially
with finer meshes and larger simulation volumes, resulting in extremely large amounts of mem-
ory and computing power requirements [107]. Memory bandwidth poses challenges through
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Figure 4.3: FDTD simulation setup showing a multilayer sphere with nested absorption and
scattering monitors. The black rectangular region indicates the TFSF (Total Field/Scattered
Field) source boundary, surrounded by PML absorbing boundary conditions to eliminate edge
reflections.

memory access and heavy data exchange between processors, particularly when dealing with
sizable simulations [116]. Special algorithms are required to handle materials with frequency-
dependent permittivity for dispersive materials [109]. Absorbing boundary conditions such
as Perfectly Matched Layers are required to prevent artificial reflections at the edges of the
simulation domain [117].

Modern FDTD implementations leverage multiple advanced approaches to accelerate sim-
ulations. The FDTD algorithm has been fine-tuned at a fundamental level over decades to
minimize computational overhead while delivering high accuracy [118]. Advanced features and
functionalities help streamline the simulation setup, including the mesh, monitors, sources,
structures, materials, and analysis groups [114].

High-performance computing solutions utilize highly optimized computational engines able
to exploit multicore CPU computing systems and harness the parallel architecture of graphics
processing units in high-performance computing clusters [115, 116]. FDTD simulations rely
on the parallel processing capabilities of modern CPU and GPU architectures. HPC systems
exploit this parallelism to distribute workloads, enabling large-scale simulations of 50-100 bil-
lion grid cells to be completed in hours rather than weeks [119]. The necessary computational
resources are increasingly accessible through cloud computing platforms, which offer scalable,
on-demand access to both CPU and GPU-accelerated simulation software.

In this work, the commercial software ANSYS Lumerical FDTD Solutions is used to
perform simulations [120]. The software implements the described methodologies with built-
in support for boundary conditions, material definitions, and advanced analysis capabilities,
making it suitable for investigating light scattering by nanostructures and complex optical
systems [121]. Figure 4.3 illustrates a typical FDTD simulation setup, showing the placement
of absorption and scattering monitors around a hyperbolic multilayer sphere. The simulation
employs a TF/SF source configuration that divides the computational domain into two distinct
regions: the total field region (which includes both scattered and incident fields and contains
the scatterer) and the scattered field region (which contains only the scattered field). The
TF/SF source is an artificial interface which ensures continuity of the electromagnetic fields
across its surface by adding or substracting the analytically- or numerically-calculated source
field in such a way, that inside it the total field is present, while outside it only the scattered one
remains. The absorption monitor is placed closer to the multilayer sphere within the total field
region to record the internal electromagnetic fields and calculate absorbed power using volume
integrals. The scattering monitor is positioned further from the object in the scattered field
region to capture only the scattered electromagnetic fields, enabling computation of scattered
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power through surface integrals. This configuration enables the calculation of both absorbed
and scattered power spectra, with PML absorbing boundary conditions ensuring accurate
results by eliminating artificial reflections from the simulation edges [117].

4.2.1. Multipole Decomposition in FDTD

Despite the usefulness of FDTD methods, one inherent drawback is that the electromagnetic
fields are calculated as is without giving clear and simple physical insight into the various
interactions between matter and fields. Hence, a postprocessing step is necessary to gain
qualitative and quantitative understanding of how a particular structure works. One such
approach, especially relevant here, is the multipole decomposition which offers insight into
the characteristic modes supported by the studied nanoparticles.

The multipole decompositions enables the representation of scattered fields as a sum of
multipoles, including electric dipole (ED), magnetic dipole (MD), electric quadrupole (EQ),
magnetic quadrupole (MQ), and higher-order multipoles. To perform a multipolar analysis of
the scattered fields calculated in FDTD, a multipole decomposition in Cartesian coordinates is
implemented using the MENP program (Multipole Expansion for NanoPhotonics) [122]. The
MENP program first converts the electric field distributions into current density distributions
that result from the light excitation of a nanoresonator. The induced electric current density
is obtained using:

Jω(r) = iωε0(εr − 1)Eω(r), (4.8)

where Eω(r) is the electric field distribution, ε0 is the permittivity of free space, and εr is the
relative permittivity of the material. The multipole derivations, which follow those of Alaee
et al. [123] are given in Appendix A, and the final expressions for the multipole moments are
presented below.

Exact Multipole Moments

Electric Dipole Moment: The electric dipole moment in Cartesian coordinates is given
by:

pωα = − 1

iω

∫
d3rJω

α j0(kr) +
k2

2

∫
d3r

[
3(r · Jω)rα − r2Jω

α

] j2(kr)
(kr)2

, (4.9)

where α = x, y, z, k = ω/c is the wavenumber, and jℓ(kr) are spherical Bessel functions.

Magnetic Dipole Moment: The magnetic dipole moment is expressed as:

mω
α =

3

2

∫
d3r(r× Jω)α

j1(kr)

kr
, (4.10)

where the cross product components in Cartesian coordinates are:

(r× Jω)x = yJω
z − zJω

y (4.11)

(r× Jω)y = zJω
x − xJω

z (4.12)
(r× Jω)z = xJω

y − yJω
x (4.13)

Electric Quadrupole Moment: The electric quadrupole moment has contributions from
two different multipolar orders (ℓ = 1 and ℓ = 3):

Qe
αβ = Qe,ℓ=1

αβ +Qe,ℓ=3
αβ . (4.14)
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The combined expression is:

Qe
αβ = − 3

iω

∫
d3r

[
3(rβJ

ω
α + rαJ

ω
β )− 2(r · Jω)δαβ

] j1(kr)
kr

+ 2k2
∫

d3r
[
5rαrβ(r · Jω)− (rαJ

ω
β + rβJ

ω
α )r

2 − r2(r · Jω)δαβ
] j3(kr)
(kr)3

, (4.15)

where δαβ is the Kronecker delta.

Magnetic Quadrupole Moment: The magnetic quadrupole moment is given by:

Qm
αβ = 15

∫
d3r [rα(r× Jω)β + rβ(r× Jω)α]

j2(kr)

(kr)2
. (4.16)

Long-Wavelength Approximations

For nanostructures small compared to the wavelength (kr ≪ 1), the spherical Bessel functions
can be approximated using their small argument expansions, yielding simplified expressions
that reveal additional physical insights. These approximations not only reduce computational
complexity but also help isolate the contributions of so-called toroidal moments, which are
higher-order corrections to the electric multipole moments. In particular, the second term
in the electric dipole expression corresponds to the toroidal dipole moment, while similar
corrections appear in the electric quadrupole moment. These terms are often misinterpreted
as a separate family of multipoles but are in fact inherent parts of the exact electric multipole
expansion. The long-wavelength approximation thus provides a clearer physical interpretation
of how subwavelength structures interact with light, especially in the context of anapole states
and non-radiating configurations.

Electric Dipole:

pα ≈ − 1

iω

∫
d3rJω

α +
k2

10

∫
d3r

[
(r · Jω)rα − 2r2Jω

α

]
. (4.17)

Magnetic Dipole:

mω
α ≈ 1

2

∫
d3r(r× Jω)α (4.18)

This is the conventional magnetic dipole moment.

Electric Quadrupole:

Qe
αβ ≈ − 1

iω

∫
d3r

[
3(rβJ

ω
α + rαJ

ω
β )− 2(r · Jω)δαβ

]
+

k2

14

∫
d3r

[
4rαrβ(r · Jω)− 5r2(rαJ

ω
β + rβJ

ω
α ) + 2r2(r · Jω)δαβ

]
. (4.19)

Magnetic Quadrupole:

Qm
αβ ≈

∫
d3r [rα(r× Jω)β + rβ(r× Jω)α] . (4.20)

This is the conventional magnetic quadrupole moment.
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It is important to note that the expressions for magnetic multipole moments (dipole and
quadrupole) under the long-wavelength approximation are considered conventional, as they
match the forms found in standard electrodynamics textbooks. In contrast, the electric mul-
tipole expressions are not conventional in the same sense. This is because the conventional
electric dipole and quadrupole moments omit higher-order corrections that become significant
beyond the long-wavelength limit. The exact expressions derived by Alaee et al. [123] include
these corrections through spherical Bessel functions, making them valid for structures of any
size relative to the wavelength. Thus, while the magnetic multipole expressions remain un-
changed in form under the exact formulation, the electric multipoles require additional terms
to account for spatial dispersion effects.

Usage of the MENP Program

The MENP program is a MATLAB-based analytical tool designed to investigate electro-
magnetic scattering in nanophotonic structures by breaking down total scattering into con-
tributions from multipolar components, such as electric and magnetic dipoles, quadrupoles,
and higher-order terms. Its integration with FDTD simulations makes it easy to investigate
multipolar interactions. The decomposition process starts with the FDTD simulation of the
hyperbolic nanospheroids where the electric field E(x, y, z, f) and refractive index n(x, y, z, f)
distributions are recorded using the simulation monitors. These data sets are exported to a
MATLAB-compatible .mat file (ENxyzf.mat) using the EField2MAT.lsf (which is an An-
sys Lumerical FDTD script) script to facilitate this process, ensuring compatibility with the
program’s input format. The data file contains four-dimensional matrices representing the
electric field components and refractive indices at each spatial and frequency point in the
simulation domain.

In MATLAB, the MENP program first converts the electric field distributions into current
density distributions as already given in equation 4.8. This conversion is handled by the
E2J.m function, one of the core utilities in MENP. Once the current density distributions are
obtained, MENP calculates the contributions from various multipole components using one of
three provided methods: exact multipole expansion (exactME.m), an approximated method
(approxME.m) suitable for long-wavelength approximations, or a formulation including toroidal
dipole moments (toroidalME.m) for specialized applications such as analyzing anapole states.
For this dissertation, the exactME.m is used. The computed multipole contributions are
expressed as partial scattering cross sections, corresponding to individual multipolar terms
like electric dipoles, magnetic dipoles, and electric and magnetic quadrupoles. MENP then
sums these partial contributions to determine the total scattering cross-section.

Motivation for Multipole Decomposition in FDTD

The multipole decomposition in FDTD is necessary due to the increased computational com-
plexity of the hyperbolic nanospheroids and the need for detailed field distribution analysis.
While FDTD provides full-field solutions, it does not inherently offer physical insight into
the multipolar nature of light-matter interactions. Decomposing the scattered fields into
multipole moments allows for identifying dominant resonant modes, engineering interference
effects, and optimizing structures for specific functionalities such as directional scattering or
non-radiating states. The exact expressions implemented in MENP ensure accuracy even for
larger or more complex structures where the long-wavelength approximation fails, making it
an essential tool for modern nanophotonics research.
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Total Scattering Cross Section

The total scattering cross section is calculated as the sum of contributions from all multipole
orders:

Ctotal
sca =

k4

6πε20|Einc|2

∑
α

(
|pα|2 +

|mα|2

c2

)
+

1

120

∑
αβ

(
k2|Qe

αβ|2 +
k2|Qm

αβ|2

c2

)
+ · · ·

 ,

(4.21)
where k = ω/c is the wavenumber, ε0 is the permittivity of free space, |Einc| is the amplitude
of the incident electric field, c is the speed of light, and α, β = x, y, z denote the Cartesian
components. The ellipsis indicates contributions from higher-order multipoles that become
important for larger structures or higher frequencies.

4.3. T-Matrix Method

The T-matrix method provides a powerful computational framework for solving electromag-
netic scattering problems [124, 125]. Its core principle is to characterize how an object scatters
an incident wave by establishing a linear relationship between the expansion coefficients of
the incident and scattered fields in a basis of vector spherical wave functions (VSWFs). The
method is particularly powerful because the resulting matrix, called the T-matrix or transition
matrix, depends solely on the physical properties (size, shape, refractive index, orientation)
of the scatterer. Once computed for a given particle, it can be used to efficiently calculate
scattering for any incident field direction or polarization [125].

4.3.1. General T-Matrix Formulation

The incident (Einc) and scattered (Esca) fields are expanded in terms of regular (M1
mn,N

1
mn)

and outgoing (M3
mn,N

3
mn) vector spherical wave functions, respectively:

Einc(r) =

∞∑
n=1

n∑
m=−n

[
amnM

1
mn(kr) + bmnN

1
mn(kr)

]
, (4.22)

Esca(r) =

∞∑
n=1

n∑
m=−n

[
fmnM

3
mn(kr) + gmnN

3
mn(kr)

]
. (4.23)

Here, k is the wavenumber in the surrounding medium. The coefficients amn and bmn char-
acterize the known incident wave, while the unknown scattered field coefficients fmn and gmn

are the quantities to be determined.
The linear relationship between these sets of coefficients is given by the T-matrix:

s = Te, (4.24)

where e = [amn, bmn]
T and s = [fmn, gmn]

T are vectors containing the incident and scattered
field coefficients, respectively, for all multipole orders n and degrees m. The T-matrix T is
thus the fundamental object that fully describes the scattering properties of the particle.

The T-matrix is computed using the Null-Field Method [124]. This method enforces the
boundary conditions on the particle’s surface by expanding the internal and scattered fields
and projecting the equations onto a complete basis of functions, often the same VSWFs.
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For isotropic particles, the resulting matrix elements are given by integrals over the particle
surface involving VSWFs (see Eqs. (2.11)–(2.14) in [126]). The T-matrix is then obtained as:

T = −Q11(ks, ki)
[
Q31(ks, ki)

]−1
. (4.25)

The matrices Qpq are defined by surface integrals of cross products between VSWFs of different
kinds (p, q = 1 for regular, 3 for outgoing) evaluated with the interior (ki) and exterior (ks)
wavenumbers.

4.3.2. Anisotropic Nanoparticles

For the anisotropic hyperbolic nanospheroids studied in this dissertation, the standard formu-
lation must be modified. The internal field can no longer be described by the regular VSWFs
M1

mn,N
1
mn, which are solutions to the Helmholtz equation in an isotropic medium. Instead,

one must use vector quasi-spherical wave functions (VQSWFs) Xe,h
mn and Ye,h

mn that are solu-
tions to Maxwell’s equations in the anisotropic medium [126]. These functions account for
the two characteristic waves that propagate in a uniaxial medium: the ordinary wave and the
extraordinary wave, which have different dispersion relations.

Let us consider a uniaxial anisotropic particle with its optical axis along z and a permit-
tivity tensor:

εi =

εi 0 0
0 εi 0
0 0 εiz

 . (4.26)

The electromagnetic fields inside the particle are expanded as:

Eint(r) =
∞∑
n=1

n∑
m=−n

[cmnX
e
mn(r) + dmnY

e
mn(r)] , (4.27)

Hint(r) = −j

√
εi
µi

∞∑
n=1

n∑
m=−n

[
cmnX

h
mn(r) + dmnY

h
mn(r)

]
, (4.28)

where the VQSWFs Xe,h
mn and Ye,h

mn are defined through integral representations over plane
waves (see Appendix B) and reduce to standard VSWFs in the isotropic limit εiz → εi.

The dispersion relations for the two waves inside the medium are:

k21 = k20εiµi, (ordinary wave) (4.29)

k22 = k20
εiµi

cos2 β + εi
εiz

sin2 β
. (extraordinary wave) (4.30)

Here, k0 is the free-space wavenumber, and β is the polar angle of the wave vector inside
the medium, illustrating the directional dependence (anisotropy) of the extraordinary wave’s
propagation constant.

The surface fields are approximated by expanding the tangential fields using VQSWFs:(
eNi (r′)
hN
i (r′)

)
=

N∑
µ=1

[
cNµ

(
n(r′)×Xe

µ(r
′)

−j
√

εi
µi
n(r′)×Xh

µ(r
′)

)
+ dNµ

(
n(r′)×Ye

µ(r
′)

−j
√

εi
µi
n(r′)×Yh

µ(r
′)

)]
(4.31)

The index µ is a combined index representing the multipole order and degree, hence we have
µ = (m,n).
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Applying the null-field method with discrete sources [127] with this VQSWF basis leads
to a modified system matrix. The NFM-DS involves projecting the boundary conditions onto
a set of functions (the discrete sources) to enforce the null-field condition inside the particle.
This is often more stable than the conventional method using localized VSWFs, especially
for particles with extreme geometries or high refractive indices. The elements of the resulting
matrix Q31

anis, which is central to the formulation, are given by:

(Q31
anis)

11
νµ =

jk2s
π

∫
S

[
(n×Xe

µ) ·N3
ν +

√
εi
εs
(n×Xh

µ) ·M3
ν

]
dS, (4.32)

(Q31
anis)

12
νµ =

jk2s
π

∫
S

[
(n×Ye

µ) ·N3
ν +

√
εi
εs
(n×Yh

µ) ·M3
ν

]
dS, (4.33)

(Q31
anis)

21
νµ =

jk2s
π

∫
S

[
(n×Xe

µ) ·M3
ν +

√
εi
εs
(n×Xh

µ) ·N3
ν

]
dS, (4.34)

(Q31
anis)

22
νµ =

jk2s
π

∫
S

[
(n×Ye

µ) ·M3
ν +

√
εi
εs
(n×Yh

µ) ·N3
ν

]
dS. (4.35)

Explanation of indices and notation:

• ν and µ are composite indices representing the pair (m,n) and (m′, n′) respectively.
They index the matrix elements corresponding to different multipole orders and degrees.

• The superscripts pq in Qpq denote the type of VSWFs used: p = 1, 3 for the basis
functions (regular/outgoing) used to represent the field, and q = 1, 3 for the functions
used to test the boundary condition (via the surface integral). The superscript 31
indicates that the internal field is expanded in regular functions (kind 1) while the
null-field condition is tested using outgoing functions (kind 3).

• The subscripts 11, 12, 21, 22 on the matrix blocks indicate the coupling between different
types of modes: 11 for M → M or Xe → N, 12 for N → M or Ye → N, 21 for M → N
or Xe → M, and 22 for N → N or Ye → M.

• ν denotes the index (−m,n), arising from the orthogonality relations of spherical har-
monics.

• n is the outward unit normal vector to the particle surface S.

• ks and ki are the wavenumbers in the surrounding medium and the particle, respectively.

• The factor
√
εi/εs couples the electric and magnetic field contributions and reduces to

1 for non-magnetic media (µi = µs = 1) with εi/εs = m2, where m is the refractive
index.

The anisotropic T-matrix is then calculated analogously to the isotropic case:

Tanis = −Q11
anis(ks, ki,mrz)

[
Q31

anis(ks, ki,mrz)
]−1

, (4.36)

where mrz =
√
εiz/εs is a relative anisotropy parameter. The matrices Q11

anis are defined
similarly to Q31

anis but using regular VSWFs (M1,N1) instead of outgoing ones (M3,N3), as
they are used to project the scattered field representation.
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4.3.3. Multipole Decomposition in T-matrix

The SMUTHI package [128] implements the T-matrix method described above along with
multipole decomposition in a spherical basis, in contrast to the MENP program which im-
plements multipole decomposition in a Cartesian basis. The scattered electric field can be
expanded using spherical multipole terms as:

E(r) =
∞∑
l=1

l∑
m=−l

(
bEl,mMm

l (r) + bMl,mNm
l (r)

)
, (4.37)

where bEl,m and bMl,m represent the electric and magnetic multipole moments, respectively.
The functions Mm

l (r) and Nm
l (r) are VSWFs defined in detail in Appendix C. The expansion

coefficients bEl,m and bMl,m encapsulate the physical properties of the scatterer and its interaction
with the electromagnetic field.

The induced current density j, which arises due to the interaction of the incident field
with the scatterer, is related to the total electric field E as:

j = ϵ0(ϵ− ϵs)E. (4.38)

To perform a detailed multipole decomposition, the Fourier transform of the induced current
density is considered, defined as [123]:

F [j](p) =

∫
j(r)eip·rdr. (4.39)

Using this Fourier representation, the induced current can be decomposed into multipole
terms as:

F [j](p) =
∑
l,m

(
bEl,mmm

l (p̂) + ibMl,mnm
l (p̂)

)
, (4.40)

where mm
l and nm

l are vector spherical harmonics defined in the angular Fourier domain. The
coefficients of the decomposition are determined by:

4π3qjlm =

∫
dp
∑
l′,m′

Q†
l,mYl′,m′(p)

∫
drj(r)Y ∗

l′,m′jl(kr), (4.41)

where jl(kr) is the spherical Bessel function. The induced current density is expressed as a
spherical tensor:

j(r) =

j−1

j0
j1

 =

 jx + ijy√
2jz

−jx + ijy

 . (4.42)

The multipole moments of the fields are related to those of the currents via the rela-
tions [129]:

al,m = −il
√

(2π)3

Zk2
qjl,m, bl,m = −il

√
(2π)3

Zk2
bjl,m, (4.43)

where Z =
√

µ/ϵ is the impedance of the medium embedding the scatterer. The scattered
electric field resulting from the multipole moments is expressed as:

Escat(n̂) =
k20
4πϵ0

(
[n̂× [p× n̂]] +

1

c
[m× n̂] + · · ·

)
. (4.44)
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The extinction cross-section Cext can be expanded in terms of contributions from individual
multipoles as:

Cext =
kd

ϵ0ϵd|E0x|2
Im
{
E∗

0x

(
px − ikd

1

6
Qxz + · · ·

)}
. (4.45)

Similarly, the scattering cross-section Cscat accounts for all multipole contributions:

Cscat =
k40
6πϵ20

|p|2 + · · · . (4.46)

4.4. Coupled Harmonic Oscillator Models

The quantum mechanical framework presented in Section 3.1 provides fundamental insight
into strong coupling through the Jaynes-Cummings formalism, revealing polariton formation
and vacuum Rabi splitting. However, practical analysis of experimental spectra requires com-
putational models that can directly relate these quantum parameters to observable extinction
and scattering cross-sections. Coupled harmonic oscillator models [130] bridge this gap, pro-
viding a classical interpretation that captures the essential physics while enabling quantitative
fitting to measured spectra.

The classical coupled oscillator approach is mathematically equivalent to the quantum
treatment when appropriate loss mechanisms are included. The complex eigenfrequencies
obtained from the non-Hermitian quantum Hamiltonian correspond exactly to the poles of the
classical response functions, demonstrating that both frameworks describe identical underlying
physics from complementary perspectives.

4.4.1. Two Peaks Spectra

The extinction and scattering cross-sections for a coupled system consisting of an excitonic
system interacting with an optical resonance are derived using a phenomenological coupled
oscillator framework. This framework models the interaction between the optical and excitonic
systems as coupled damped harmonic oscillators, providing a direct classical analog to the
quantum polariton states described in Section 3.1.

The dynamics of the coupled system are governed by the following equations of mo-
tion [131]:

ẍopt(t) + γoptẋopt(t) + ω2
optxopt(t) + gẋex(t) =Fopt(t), (4.47)

ẍex(t) + γexẋex(t) + ω2
exxex(t)− gẋopt(t) =Fex(t), (4.48)

where:

• xopt and xex represent the oscillation coordinates for the optical and excitonic systems,
respectively

• γopt and γex are the damping constants (linewidths) corresponding to the loss rates γcav
and γQE in the quantum treatment

• ωopt and ωex are the resonance frequencies of the optical and excitonic systems

• g is the coupling strength between the systems, identical to the quantum coupling
parameter

• Fopt(t) and Fex(t) are the external driving forces acting on the optical and excitonic
oscillators
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Assuming the excitonic system is negligibly excited by the external force (Fex(t) ≈ 0), the
interaction between the two systems is dominated by the optical system. In the steady-state
regime, the solutions for the oscillations take the form:

xopt(t) =Re

[
(ω2

ex − ω2 − iγexω)Fopt

(ω2
opt − ω2 + iγoptω)(ω2

ex − ω2 + iγexω)− ω2g2
e−iωt

]
, (4.49)

xex(t) =Re

[
−igωFopt

(ω2
opt − ω2 + iγoptω)(ω2

ex − ω2 + iγexω)− ω2g2
e−iωt

]
. (4.50)

The extinction cross-section, proportional to the power dissipated by the external force
on the optical system (note this is Fopt(t), which differs from the negligible excitonic force
Fex(t) ≈ 0), is given by:

Cext(ω) ∝ ⟨Fopt(t)ẋopt(t)⟩. (4.51)

Substituting the expression for xopt(t) and simplifying, the extinction cross-section becomes:

Cext(ω) ∝ ω Im

[
ω2

ex − ω2 − iγexω

(ω2
opt − ω2 + iγoptω)(ω2

ex − ω2 + iγexω)− ω2g2

]
. (4.52)

The scattering cross-section, proportional to the square of the induced dipole moment in the
optical system, is expressed as:

Csca(ω) ∝ ω4

∣∣∣∣∣ ω2
ex − ω2 − iγexω

(ω2
opt − ω2 + iγoptω)(ω2

ex − ω2 + iγexω)− ω2g2

∣∣∣∣∣
2

. (4.53)

These equations describe how the coupling between the excitonic and optical systems leads
to hybridized resonances, producing transparency dips and modified spectral features in both
extinction and scattering. The parameters provide insight into the physical characteristics
of the system: the coupling strength g determines the interaction strength, while the damp-
ing constants (γopt, γex) dictate the resonance widths. The resonance frequencies (ωopt, ωex)
determine the spectral positions of the optical and excitonic systems.

The quantum mechanical foundation for this phenomenological treatment is provided by
the Jaynes-Cummings model detailed in Section 3.1. The Hamiltonian for the coupled QE-
cavity system with phenomenological losses yields a non-Hermitian matrix:

Ĥloss =

(
ωcav − iγcav/2 g

g ω0 − iγQE/2

)
, (4.54)

where γcav and γQE represent the amplitude decay rates of the cavity and QE, respectively,
corresponding directly to γopt and γex in the classical treatment.

At resonance ωcav = ω0 = ωo, the eigenvalues of this quantum system become:

E± = ωo −
1

2
i
(γcav

2
+

γQE

2

)
± 1

2

√
4g2 −

(γcav

2
−

γQE

2

)2
(4.55)

From this equation, the splitting is given by:

ΩR = E+ − E− =

√
4g2 −

(γcav

2
−

γQE

2

)2
(4.56)
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For the splitting to be real, 4g2 −
(γcav

2 − γQE
2

)2
> 0, which gives [75]:

2g >
|γcav − γQE|

2
(4.57)

This condition ensures the coupling rate is larger than the difference of the linewidths .
The splitting becomes experimentally detectable when the real part of the energy splitting
exceeds the sum of the individual mode linewidths. This condition combines both previous
requirements and can be expressed as:√

4g2 −
(γcav

2
−

γQE

2

)2
>

γcav

2
+

γQE

2
(4.58)

which gives:

4g2 >
γ2cav + γ2QE

2
(4.59)

This condition is typically stated as: [76, 77]:

2g >
γcav + γQE

2
(4.60)

This strong coupling condition confirms that the splitting is larger than the average
linewidth of the individual, uncoupled resonators. This condition is more stringent than
the previous one since it requires the observation of two resolvable peaks in the spectrum,
corresponding to Equation 3.34 from Section 3.1. This demonstrates that the classical coupled
oscillator model captures the essential physics of quantum strong coupling while providing a
direct connection to experimentally observable spectroscopic features.

4.4.2. Three Peaks Spectra

Building upon the two-peak model, some material systems contain multiple excitonic transi-
tions that can simultaneously interact with optical modes, leading to more complex spectral
behavior. Alternatively, a single excitonic transition may interact with multiple optical modes.
The former situation is particularly relevant for transition metal dichalcogenides (TMDCs),
which exhibit both A and B exciton resonances. The increased complexity arises from the
additional interactions between the optical mode and the multiple excitonic systems, requiring
an extension of the Tavis-Cummings formalism presented in Section 3.1 to multiple exciton
species.

The interaction is modeled using coupled equations of motion [132]. The system’s dynamic
response is described by the amplitude vector (xopt, xA, xB), where each component represents
the amplitude of the respective oscillator. The time evolution of these amplitudes is governed
by the following set of coupled differential equations:

ẍopt + 2γoptẋopt + ω2
optxopt =Fopt(t) + 2gAẋA + 2gBẋB (4.61)

ẍA + 2γAẋA + ω2
AxA =− 2gAẋopt (4.62)

ẍB + 2γBẋB + ω2
BxB =− 2gBẋopt (4.63)

Here, ων and γν (ν = opt, A,B) represent the resonance frequencies and damping rates
(linewidths) of the respective modes. The coupling constants gA and gB denote the near-
field interactions between the optical mode and the A and B excitons, respectively. The
external driving force Fopt(t) acts solely on the optical mode, assuming it is the only mode
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directly interacting with the incident light. Under harmonic excitation, Fopt(t) = F 0
opte

−iωt,
the steady-state solution for the optical amplitude xopt can be obtained:

xopt = Fopt

[
(ω2

A − ω2 − iγAω)(ω
2
B − ω2 − iγBω)

]
×
[
(ω2

opt − ω2 − iγoptω)(ω
2
A − ω2 − iγAω)

× (ω2
B − ω2 − iγBω)− 4ω2g2A(ω

2
B − ω2 − iγBω)− 4ω2g2B(ω

2
A − ω2 − iγAω)

]−1 (4.64)

The intensity of the scattered light is proportional to the square of the optical amplitude using
the Larmor formula:

Isca ∝ ω4|xopt|2 (4.65)

The eigenenergies of the coupled system are extracted as the eigenvalues of the corre-
sponding 3× 3 Jaynes-Cummings-like Hamiltonian:

Ĥ = ℏ

ωopt − i
γopt
2 gA gB

gA ωA − iγA2 0
gB 0 ωB − iγB2

 . (4.66)

This three-level system represents a natural extension of the two-level Jaynes-Cummings
treatment, where the cavity mode now couples simultaneously to two distinct excitonic tran-
sitions. The resulting eigenstates are hybrid polariton modes with contributions from all
three oscillators, analogous to the dressed states described in Section 3.1 but with increased
complexity due to the additional coupling pathways. This formalism effectively captures the
interaction between optical and excitonic resonances, allowing for quantitative characteri-
zation of coupling strengths and mode hybridization in the complex multi-exciton systems
studied in this work. The approach maintains the essential physics revealed by the quan-
tum treatment while providing computational tractability for fitting experimental spectra
and extracting material parameters.
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Chapter 5

Optical Modes of Uniaxial Hyperbolic
Multilayer Nanospheroids

Having introduced the framework for excitonic materials and hyperbolic metamaterials in
Chapter 2, and detailed the computational methods in Chapter 4, we now turn to investigating
the optical properties of our target nanostructures. This chapter serves as the foundation for
all subsequent analyzes by systematically characterizing how shape and material anisotropy
influence the optical response of uniaxial hyperbolic multilayer nanospheroids.

Building upon previous detailed study of a uniaxial hyperbolic multilayer nanosphere
[133], this investigation extends the analysis to non-spherical geometries, examining how the
relationship between particle shape and material anisotropy influences optical mode coupling
characteristics. Before exploring strong coupling phenomena with excitonic materials in the
later chapters, it is essential to understand the fundamental optical modes that can serve as
the optical resonators in these hybrid systems. The goal of this chapter is to demonstrate
how various multipoles in uniaxial hyperbolic multilayer nanospheroids combine to produce
the observed optical spectra as particle shape transitions from prolate to oblate geometries.
This systematic characterization will provide the foundation for understanding which optical
modes are most suitable for achieving strong coupling with excitons in subsequent chapters.

The investigation employs multiple numerical techniques, including T-matrix calculations
and FDTD simulations, to understand the shape-dependent optical resonances in uniaxial
hyperbolic multilayer nanospheroids. All figures and results presented in this chapter are
published in Paper 1 [134].

All structures are designed to have volumes equivalent to that of a 50 nm radius sphere,
which is a constant reference dimension throughout the dissertation’s projects. The choice of
a 50 nm radius sphere with equivalent volumes for prolate and oblate geometries represents a
carefully considered balance of multiple scientific and practical constraints rather than an ar-
bitrary decision. This dimension places the nanoparticles in the optimal regime for the physics
under investigation: they are sufficiently subwavelength (compared to visible/near-IR light
wavelengths of 400–2000 nm) to enable rigorous multipole analysis while being large enough to
support well-defined electric and magnetic dipole resonances central to this study, in addition
to supporting quadrupole resonances. The constant volume constraint across all geometries
is essential for isolating shape-dependent effects from size-dependent effects, ensuring that
observed differences in coupling strength and mode characteristics arise purely from geomet-
ric factors rather than variations in total material content. This size range also represents a
practical compromise for the computational methods employed (T-matrix and FDTD simula-
tions), providing sufficient accuracy without prohibitive computational costs while remaining
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within current nanofabrication capabilities for potential experimental validation. The 50 nm
scale is directly relevant to applications in nanophotonics, plasmonic sensing, and quantum
optical devices, making the theoretical insights practically meaningful for device design.

5.1. Methods

This study employs the effective medium theory framework established in Section 4.1 to model
a type-II hyperbolic material. The effective permittivities are calculated using the Maxwell-
Garnett approach detailed in Section 4.1, with the perpendicular and parallel components
given by equations (5.1) and (5.2) respectively:

ε⊥ =fmεm + (1− fm)εd, (5.1)

ε∥ =
εmεd

fmεd + (1− fm)εm
, (5.2)

where fm is the metal fill fraction as defined in Section 4.1, εm, and εd are the permittivities
of the metal and dielectric εd = 1.52 (to mimic glass), respectively.

Although the outcomes and inferences remain consistent regardless of how permittivity is
derived—whether through artificial metal-dielectric structures [135, 136] or natural hyperbolic
materials [137, 138]—to demonstrate the spectral characteristics of hyperbolic nanospheroids,
the permittivity tensor ϵ is modeled using a silver/silica multilayer, as illustrated schemati-
cally in Figure 5.1(a). The optical axis of the hyperbolic material, aligned with the dielectric
component εzz ≡ ε∥, is oriented parallel to the unique axis of the prolate/oblate nanopar-
ticles. The metallic components εxx = εyy, referred to as ε⊥, are orthogonal to the optical
axis.The tensor elements are expressed using the effective medium equations (5.2) and (5.1),
respectively.

Figure 5.1 illustrates the constituent permittivities that form the hyperbolic tensor, along
with ε for fm = 0.5. This configuration achieves a low-loss type-II hyperbolic tensor across
the near-IR–VIS spectrum, ranging approximately from 0.5–1 to 3 eV. Adjusting the fill factor
allows this spectral range to shift continuously [133] toward the red spectrum by deviating
from equal proportions of metal and dielectric, as shown in Figures 5.1(c and d).

In this study, the assumption is made that the permittivity of the thin layers remains
consistent with their bulk values. This assumption may not hold for nanoscale metal par-
ticles, where quantum size effects and surface scattering become important [139]. Conse-
quently, mesoscopic electrodynamics at metal surfaces should be considered as appropriate
for a particular case, incorporating quantum-corrected hydrodynamics or detailed surface-
response analyses [140]. However, for the initial scope of this study, material-related effects
such as thickness-dependent permittivity modifications [141], nonlocality [142], quantum Lan-
dau damping[143], and surface roughness [144] are excluded. This decision aligns with the
primary objective of examining mode coupling in particles influenced by shape and hyper-
bolic material anisotropy, rather than going into specific dispersion mechanisms. In essence,
the purpose here is to study how a hyperbolic permittivity determines the optical modes of
nanoparticles, not whether a particular approximation of the hyperbolic permittivity is always
accurate under any conditions.

The assumption of a local, bulk permittivity relies on the fact that supporting FDTD
calculations with an explicitly layered medium yield results comparable to those obtained
with an effective medium. A nonuniform spatial mesh with a discretization step of 4 Å is
employed to capture the fields within 4 nm dielectric and metal layers fm = 0.5, with a
4 nm resolution elsewhere and a graded transition between the meshes. The chosen 4 nm
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Figure 5.1: Schematic of the studied system and material models. (a) The optical axis of the
hyperbolic uniaxial material is aligned with the shorter or longer axis of an oblate or prolate
nanospheroid, respectively. (b) Real ε′ and imaginary ε′′ components of the permittivity of
silver (Ag), which is the basis for the effective permittivity of the hyperbolic material, with
the dielectric having a refractive index of n = 1.5. (c) Effective permittivity as a function of
the metal fill factor in an Ag/dielectric multilayer structure.

thickness ensures consistency with T-matrix calculations but does not necessairly account
for fabrication considerations. A linearly polarized plane wave is introduced using a total-
field/scattered-field approach, spanning frequencies from 0.5 to 4 eV. The simulation volume
is truncated using symmetric/asymmetric boundary conditions and perfectly matched layer
(PML) absorbing boundaries.

5.1.1. Hyperbolic Nanoparticles T-matrix Calculations

The T-matrix calculations for hyperbolic nanoparticles follow the methodology detailed in
Section 4.3 for anisotropic particles. The T-matrix method is an approach to solving scattering
problems by expanding the incident (a) and scattered (b) fields into a chosen basis. Using
the VSWF basis set, the relationship between the expansion coefficients is given as:

b = Ta, (5.3)

where T is the T-matrix describing a particular scatterer. This matrix is calculated using
the null-field method with discrete sources [127, 145], offering computational efficiency for
single-particle scattering analysis.

For anisotropic hyperbolic nanoparticles, the standard vector spherical wave functions
(VSWFs) are replaced by vector quasi-spherical wave functions (VQSWFs) as described in
Section 4.3. The anisotropic T-matrix formulation accounts for the uniaxial permittivity
tensor:

εi =

ε⊥ 0 0
0 ε⊥ 0
0 0 ε∥

 , (5.4)

where ε⊥ and ε∥ are calculated using equations (5.1) and (5.2).
To solve the boundary problem, ensuring the continuity of incident and surface fields on

a particle, the T-matrix for each multipole pair is determined by solving a 2× 2 block system
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following the anisotropic T-matrix approach from Section 4.3:

Tm1l1,m2l2 = −Q
(1)
m1l1,m2l2

[
Q

(3)
m1l1,m2l2

]−1
. (5.5)

Here, Q(1) and Q(3) are integrals involving the regular and radiating vector spherical wave
functions (VSWFs), respectively, with modifications for anisotropic media as detailed in the
T-matrix formulation. The (1, 1) element of the Q(3) matrix is expressed as:

Q
3,(1,1)
m1l1,m2l2

=
ik2

π

∫ [
mr

(
n̂×Xh

m1,l1

)
·M3

−m2,l2 +
(
n̂×Xe

m1,l1

)
·N3

−m2,l2

]
dS. (5.6)

In this expression we have that M and N are the VSWFs, mr is the relative refractive index,
k is the wavenumber, n̂ is the unit vector normal to the particle surface, Xe and Xh (and
then by symmetry Y e and Y h) are quasi-spherical wave functions (QSWFs) corresponding to
the internal modes of the hyperbolic nanoparticle. The remaining Q(3) matrix elements are
obtained by swapping functions or modes. For example: exchanging M for N (or vice versa)
modifies the first index, while swapping the second index involves interchanging the X and
Y internal modes. Expressions for Q(1) are similar but replace M3 and N3 with M1 and N1.
The QSWFs are parameterized by angles (α, β), determined by the wave vector in spherical
coordinates. In essence, (α, β) represent the directional parameters of wave propagation in
the anisotropic medium, with β being the polar angle and α being the azimuthal angle in
spherical coordinates.

Among the main advantages of the T-matrix is the fact that it takes an especially simple
form for nanoparticles with a symmetry axis. In such a case, the surface equation does not
depend on the azimuthal angle ϕ, which promotes analytical integration of the Q-integrals over
the azimuthal coordinate. Thus, the numerical calculation of Q-integrals reduces to a one-
dimensional integral over θ. This simplification has been widely used for isotropic particles.
This approach can also be exploited for uniaxial nanoparticles if the particle symmetry axis
and the optical axis are parallel. The simplified version of the Q-integrals is used to evaluate
the optical properties of hyperbolic nanoparticles at a computational cost similar to that
for isotropic nanoparticles. These computations are performed using the T-matrix code as
implemented in the SMUTHI package [128], with a custom extension that enables calculating
the optical properties of uniaxial nanoparticles with an axis of symmetry.

In this particular case the optical cross-sections are calculated using the standard T-matrix
expressions detailed in Section 4.3, with the extinction cross-section given by:

Cext = − π

k2s

∞∑
ν=1

Re{fN
ν a∗ν + gNν b∗ν} (5.7)

and the scattering cross-section:

Cscat =
π

k2s

∞∑
ν=1

(
|fN

ν |2 + |gNν |2
)
, (5.8)

where the scattered field coefficients fN
ν and gNν are obtained from the anisotropic T-matrix

multiplication with the incident field coefficients.

5.2. Results and Discussion

The spectral characteristics of two extreme cases, a prolate and an oblate nanospheroids, are
evaluated within the chosen parameter range. These nanospheroids have aspect ratios (AR)
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Figure 5.2: Extinction spectra of (a-c) prolate and (d-f) oblate hyperbolic nanospheroids
under three unique illumination conditions. The individual multipoles are obtained using the
T-matrix approach with an effective permittivity. The total T-matrix extinction is a sum of
the individual multipoles and quantitatively agrees with the total extinction calculated using
FDTD for an explicit Ag/dielectric multilayer. The right column illustrates the corresponding
electric fields calculated using FDTD at selected resonances. The nanoparticle volumes are
equivalent to that of a sphere with a 50 nm radius. The semiaxes for the prolate nanoparticle
are 34.7 nm and 104 nm, while those for the oblate nanoparticle are 72 nm and 24 nm.
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of A = 1/3 and A = 3, respectively, and maintain identical volumes equivalent to that of
a sphere with a radius of 50 nm. The aspect ratio is defined as A = rx/rz, where rx = ry
are the lengths of the identical semiaxes, and rz is the length of the third semiaxis parallel
to the optical axis of the hyperbolic material. Both hyperbolic nanospheroids (HNSs) are
illuminated by a plane wave with three unique (independent) polarization states to probe
all possible optical modes due to symmetry, as illustrated in the insets of Figure 5.2. The
permittivity values used, shown in Figure 5.1(b), correspond to a metal fill factor fm = 0.5,
with a hyperbolic dispersion region below approximately 3.5 eV.

Figure 5.2 presents the optical extinction cross-section spectra calculated using the T-
matrix method, including contributions from the first four multipoles: magnetic dipole (MD),
electric dipole (ED), magnetic quadrupole (MQ), and electric quadrupole (EQ). These results
are compared to a reference FDTD calculation, where the metal-dielectric multilayer is explic-
itly defined. The extinction spectra of hyperbolic nanostructures reveal a rich set of electric
and magnetic resonances [133, 138, 146].

For prolate HNSs under TEM illumination Figure 5.2(a), the spectrum in the hyperbolic
range (≲ 3.5 eV) exhibits three prominent peaks. At 2.8 eV, a peak dominated by an out-
of-phase ED-MQ contribution is observed. At 2.5 eV, a strongly mixed and constructively
coupled MD-EQ resonance appears, followed by an in-phase ED-MQ resonance at lower en-
ergies. These spectral features are qualitatively similar to those of a hyperbolic nanosphere
of the same volume [133], with notable differences due to the distinct shape, including a
low-energy ED peak.

When the prolate HNS is illuminated normally to the optical axis, the three peaks are
selectively excited. Under TE illumination Figure 5.2(b), only two ED-weak MQ resonances
are observed, with the MQ phase contribution reversed. The MD-EQ mode, however, is not
excited. In contrast, under TM illumination Figure 5.2(c), the MD-EQ mode dominates the
spectrum. In addition, a stronger mode, which is almost purely ED, emerges, corresponding
to the large permittivity of the ϵzz component and exhibiting lossy dielectric-like behavior.
The extinction spectra for oblate HNSs are shown in Figures 5.2 (d-f). Due to the obvious
altered shape, resonances shift towards lower energies (red-shifted). The dominant resonance
for TEM and TE illumination (Figures 5.2 (d and e) is an ED mode weakly coupled with the
MQ.

This mode is absent under TM illumination (Figure 5.2(f)), where a weak mode appears
beyond the hyperbolic range at approximately 3.8 eV. Under TE illumination, a higher-energy
EQ resonance is observed. In addition, the coupled MD-EQ mode appears at around 0.9 eV,
although it exhibits low amplitude due to the oblate geometry. The multipolar contributions
to extinction reveal both positive and negative contributions, depending on the order and
illumination conditions. For instance, the MD-EQ resonance at 2.5 eV and the ED-MQ peak
at 2.8 eV exhibit such behavior. Negative contributions, as previously reported in silicon
nanodisks [147] and hyperbolic nanospheroids [133], arise from the symmetry of the particle
and the illumination conditions [133, 148].

These aspects are further discussed in Section 5.2.2. In addition to extinction cross-
sections, Figure 5.2 illustrates the induced field enhancements at resonances. These fields
are highly localized, with amplitudes reaching 10–20-fold enhancement, characteristic of plas-
monic resonances in metallic nanoparticles. Remarkably, such field amplification is also ob-
served for magnetic modes. Prolate particles exhibit the strongest enhancement, exceeding
a 10-fold increase, demonstrating very efficient light interaction with the magnetic mode—a
phenomenon not typically observed in dielectric particles.
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5.2.1. Dependence of Small Nanoparticles

The quasistatic analysis reveals a distinct shape-dependence of both the ED and the coupled
MD–EQ modes in small hyperbolic nanospheroids, as illustrated in Figure 5.3.

For the ED resonance, which behaves as a typical localized surface plasmon resonance
(LSPR), the T -matrix component in the quasistatic approximation takes the form:

T 1,1(A) = −f1,1(A)ix3
ϵii − 1

ϵii + g1,1(A)
, (5.9)

where x ≡ kreq is the size parameter, ϵii is the appropriate diagonal component of the per-
mittivity tensor, and the functions f1,1(A) and g1,1(A) determine the resonance’s amplitude
and spectral shift respectively.

This expression is consistent with the Rayleigh polarizability for spheroidal particles, where
the principal dipolar polarizabilities αi are given by:

αi ∝
ϵ− 1

3Li(ϵ− 1) + 3
with Lz =

1− e2

e2

[
atanh(e)

e
− 1

]
, Lx = Ly =

1− Lz

2
, (5.10)

where i = x, y, z and the eccentricity is e2 = (r2z−r2x)/r
2
z . The shape factor g1,1(A) corresponds

to the term (1−Lx)/Lx from the denominator of the Rayleigh polarizability αi, and exhibits an
approximately linear dependence on the aspect ratio within the studied range (A ∈ [0.33, 3]).

In contrast, the MD–EQ mode exhibits a significantly stronger sensitivity to shape changes.
Its resonant condition in the quasistatic approximation is given by:

T 0,0(A) = f0,0(A)ix5
Ψ1(ϵ⊥, ϵ∥)

(ϵ⊥ + g0,0(A)ϵ∥)Ψ3(ϵ⊥, ϵ∥)
, (5.11)

where Ψ1 and Ψ3 are third-order polynomial functions with no roots in the relevant energy
range. The magnetic resonance occurs when the denominator condition is satisfied:

ϵ⊥ + g0,0(A)ϵ∥ = 0. (5.12)

The proportionality factor g0,0(A) depends quadratically on the aspect ratio, resulting in
a much larger redshift of the MD–EQ resonance (approximately 1.8 eV) compared to that of
the ED mode (approximately 0.7 eV) when the particle shape evolves from prolate to oblate.
For specific aspect ratios, this condition becomes:

for A = 1/3 : ϵ⊥ + 0.35ϵ∥ = 0, (5.13)

for A = 3 : ϵ⊥ + 10.65ϵ∥ = 0. (5.14)

The distinct scaling behaviors highlight the unique material- and shape-dependent nature
of the magnetic mode in hyperbolic nanoparticles, which is absent in both purely dielectric
and metallic nanospheroids.

Figure 5.3(a) compares the resonant energies of the ED and MD modes obtained from
full T -matrix calculations and the quasistatic approximation, showing excellent agreement for
sub-20 nm nanoparticles. The black line indicates the absorption maximum for an isotropic
spheroid with permittivity ϵ⊥, further emphasizing the unique dispersion of hyperbolic parti-
cles. Figure 5.3(b) illustrates the different scaling trends: the ED follows a nearly linear shape
factor (comparing g1,1(A) with (1− Lx)/Lx from the Rayleigh polarizability), while the MD
follows a quadratic trend, underscoring the enhanced tunability of the magnetic resonance via
particle geometry.
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Figure 5.3: (a) Shape-dependence of resonant energy of the magnetic and electric dipole of
hyperbolic nanoellipsoids. The ED resonance is the typical LSPR, the magnetic one is the
coupled MD-EQ resonance. The exact T -matrix results calculated for a sub-20 nm nanoel-
lipsoid match the quasistatic results. The black line marks the absorption maximum of the
Rayleigh polarizability for a spheroidal particle with an isotropic permittivity equal to ϵ⊥.
(b) ED and MD resonance scaling vs. particle aspect ratio. Left y-axis: comparison of the
QS-estimated scaling parameter (circles) of the ED resonance and the Rayleigh polarizability
free term in the denominator (solid line) assuming vacuum as the surrounding material. Right
y-axis: calculated ratio of the QS-derived −ϵxx/ϵzz (diamonds) MD resonance condition and
fitted quadratic (dotted line) trend line.

5.2.2. Aspect Ratio Influence on Mode Coupling and Evolution

Figure 5.4 illustrates the total absorption and scattering cross-sections of the studied hy-
perbolic nanospheroids, calculated using the T-matrix methodology from Section 4.3, along
with a decomposition into electric and magnetic dipole (ED and MD) and quadrupole (EQ
and MQ) contributions under TEM, TE, and TM illumination. The numerical values below
the descriptions in each plot indicate the maximum value of the respective quantity, show-
ing the relative strength of the spectra. From these plots, two primarily distinct groups of
modes—MD–EQ and ED–MQ—are evident, both of which redshift as the aspect ratio (AR)
increases. The presence of these two coupling groups arises from particle symmetry, which
can be analyzed using group theory approaches [149]. These hyperbolic nanospheroids belong
to the D∞h point group [148], where electric and magnetic multipole coupling occurs only
between odd and even orders, while coupling of the same type skips every other order [133].

Under TEM and TM illumination, the MD–EQ modes are efficiently coupled, as evidenced
by their identical dependence on the aspect ratio, and form a single coupled peak in the optical
spectra. The sign of the coupling for these modes differs between TEM and TM illumination
due to excitation and coupling symmetries [133]. However, it is the same for each individual
illumination direction in the whole considered aspect ratio range from 0.33 to 3. In contrast,
under TE illumination, the particle behaves as a plasmonic system dominated by strong EQ
and ED contributions, driven by the unique illumination conditions.

The ED–MQ modes exhibit qualitatively similar behavior under TEM and TM illumina-
tion. A prominent ED resonance redshifts from approximately 3 eV to 2 eV with increasing
aspect ratio, accompanied by a coupled MQ resonance. Notably, the sign of the MQ contribu-
tion switches as the AR transitions through 1 (a spherical geometry) for a given polarization.
This behavior is typical of nonspherical particles with isotropic permittivity, as symmetry
breaking restricts the system to the D∞h point group. However, this coupling mechanism is
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Figure 5.4: Absorption and scattering cross-sections of hyperbolic nanospheroids with a vol-
ume equivalent to that of a 50 nm sphere under different plane wave illumination conditions.
The left two columns correspond to TEM illumination, where the wave vector k is parallel
to the optical axis. The middle two columns depict TE illumination, where both k and the
electric field are perpendicular to the optical axis. The right two columns represent TM illu-
mination, where k and the magnetic field are perpendicular to the optical axis.
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distinct from that of the material-dependent MD–EQ mode, where the coupling sign remains
constant regardless of AR.

In addition to the primary ED–MQ mode, a narrower coupled ED–MQ mode appears at
lower energies. For TEM illumination, the MQ contribution to absorption is positive, while
under TE illumination it is negative. In both cases, the sign of the MQ contribution remains
consistent across the AR range. This behavior suggests that this additional mode is also
material-dependent and unique to hyperbolic nanoparticles.

The negative contributions to absorption observed for certain multipoles (e.g., TM for
EQ; TEM and TE for MQ) align with the extinction results in Figure 5.2. Mathematically,
this phenomenon arises from the solutions of the T-matrix and the projection of the incident
plane wave onto the multipoles [126, 133]. Physically, these negative contributions result from
internal coupling between the particle’s multipoles and the phase of the incident light. While
the total extinction or absorption of an isolated system is always positive (assuming no gain),
individual modes can exhibit negative contributions due to energy transfer between coupled
multipoles.

For instance, in systems with strong out-of-phase coupling, certain modes can effectively
return more energy to the electromagnetic field than they receive directly from the source [150].
Although such modes may exhibit negative extinction, the total absorption for an individual
particle remains positive. Importantly, scattering contributions for all multipolar components
are positive [126]. However, extinction does not follow this rule, as it is determined by both the
incident and scattered fields, allowing for the possibility of negative contributions. Fundamen-
tally, this phenomenon shows the role of out-of-phase coupling between interacting multipoles
in enabling negative contributions, a characteristic feature of hyperbolic nanoparticles.

5.2.3. Influence of Metal Fill Factor on the Optical Multipoles of Hyperbolic
Nanospheroids

The anisotropic optical behavior of hyperbolic nanospheroids (HNSs) can be influenced by
several parameters, including the type of metal (characterized by its plasma frequency), the
dielectric layer permittivity, and the volume ratio of the constituent materials. Among these,
varying the metal fill factor offers a practical method to adjust the plasma frequency of
the metallic component in the hyperbolic dispersion, concurrently altering ε⊥. This adjust-
ment can be achieved during fabrication by selecting appropriate layer thicknesses or post-
fabrication via electrostatic gating [151] or mechanical strain [152] applied to anisotropic or
hyperbolic van der Waals (vdW) materials.

Figure 5.5 illustrates the spectral changes in the first four multipoles (absolute extinction
values) calculated using the T-matrix approach detailed in Section 4.3, as the metal fill factor
is varied across nanospheroids with aspect ratios ranging from 0.33 (prolate, gray) to 3 (oblate,
red). The AR values with values between 0.33 and 3 are marked by the intermediate colors
outlined in the inset. A notable red shift of all modes is observed with increasing aspect
ratio, consistent with trends seen in Figure 5.4. Within the hyperbolic dispersion region,
two distinct behaviors emerge concerning the metal fill factor. Plasmonic modes, similar to
those in isotropic metal nanoparticles, display a continuous blue shift with increasing metal
fill factor (fm). This shift is evident in the TEM polarization for the ED and the coupled MQ,
and the TE polarization for the ED and EQ. These shifts are attributed to an increase of the
effective plasma frequency with higher amount of metal in the multilayer/effective medium
(fm values).

Conversely, the coupled MD and EQ modes exhibit a crescent-like dependence. These
modes undergo pronounced red shifts as the nanospheroids transition from prolate to oblate
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Figure 5.5: The extinction cross section and its multipole components versus metal fill factor
for various aspect ratios (ARs, shown in different colors). For TEM and TE modes, the
absolute values of total extinction, ED, and MQ are shown at three specific ARs (0.33, 1,
and 3). For TM mode, the MD, EQ, and MQ are plotted across all ARs. All calculations
use a particle with volume equivalent to a 50 nm radius sphere. Black lines mark where the
perpendicular (ε⊥) and parallel (ε∥) components of the dielectric permittivity reach zero, as
shown in the inset.

shapes. Adjusting fm allows for tuning of these modes, with the most pronounced blue shift
occurring around fm ≈ 0.5. For nanospheroids with larger aspect ratios, this maximum blue
shift converges near fm = 0.5, though the mode amplitudes are more pronounced for fm > 0.5.
A similar crescent-shaped pattern is observed for hyperbolic MQ modes under both TEM and
TM polarizations, showing the distinct behaviors of plasmonic and hyperbolic modes in HNSs.

The qualitative explanation for these crescent-shaped behaviors lies in the differential
influence of the metal fill factor on ε∥ and ε⊥. For low fm values, the in-plane metallic
permittivity changes more rapidly than the out-of-plane dielectric permittivity, leading to
a blue shift in the MD resonance. When fm exceeds 0.5, ε⊥ grows more rapidly than ε∥,
inducing a red shift. This relationship suggests that enhancing the plasma frequency of ε∥
independently of ε⊥ could enable further blue shifts in the MD resonance for fixed out-of-plane
permittivity. Consequently, HNSs provide a versatile platform for fine-tuning the absolute
and relative positions of ED and MD modes, allowing independent red or blue shifts through
material and shape modifications.
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Chapter 6

Self-Hybridized Strong Coupling of
Optical Modes to Exciton in Uniaxial
Hyperbolic Multilayer Nanospheroids

Results from Chapter 5 demonstrate that the oblate shape exhibits less favorable optical
mode characteristics compared to the prolate and spherical shapes. The oblate geometry
shows weaker magnetic dipole modes and reduced field localization—properties important for
achieving strong coupling in the MD regime. In contrast, the prolate and spherical geome-
tries support stronger MD resonances with higher field enhancements, as demonstrated in
Section 5.2.2, enabling more effective interaction with excitons in the MD regime. Thus, the
prolate and spherical shapes are more suitable choices for strong coupling studies involving
excitons in hyperbolic nanoparticles. Consequently, this chapter focuses on spherical (aspect
ratio of 1) and prolate spheroidal (aspect ratio of 1/3) geometries to achieve self-hybridized
strong coupling, with excitons integrated into their material matrix as a function of their
optical properties. The sphere has a radius of 50 nm, and the prolate spheroid has a vol-
ume equivalent to that of the sphere. The results presented in this chapter are based on the
published Paper 2.

Following the approach described in Chapter 5, we explicitly assume bulk permittivity for
the few-nanometer layers, even though mesoscopic electrodynamics at metal surfaces may need
to be considered [140]. However, this work focuses on exploring mode-exciton coupling, not on
how a specific dispersion is obtained. Therefore, while modifications to the permittivity of thin
layers based on their thickness [141], nonlocality [142], quantum Landau damping [143], or
surface roughnes [144] are relevant under certain conditions, we omit their effects throughout
this work, including the study in this chapter, without losing generality.

6.1. Methods

Building upon the hyperbolic multilayer framework established in Chapter 4, we now incorpo-
rate excitonic materials to enable self-hybridized strong coupling. Our study employs artificial
nanospheroids – namely nanospheres and prolate nanoellipsoids – composed of a silver-silica
multilayer with integrated excitons, as depicted in Figures 6.1a and 6.2a, respectively. This
approach allows us to explore how excitons embedded directly within the hyperbolic material
matrix can achieve strong coupling with the optical modes identified in the previous chapter.

The effective permittivity tensor components are given by the Maxwell-Garnett equations
established in Section 4.1 and applied in Chapter 5, where the metallic components ϵ⊥ are

61



Figure 6.1: System scheme and material models. (a) Hyperbolic Ag/silica nanosphere without
(left) and with (right) excitonic inclusions in the dielectric layers. (b) The real and (c)
imaginary parts of excitonic inclusions into the dielectric silica layer in hyperbolic nanospheres.
The excitons at 1.7 eV match the MD and at 2.5 eV the ED of the hyperbolic nanosphere.

perpendicular to the optical axis (z) and the dielectric component ϵ∥ is parallel to the optical
axis given by equations (5.1) and (5.2), respectively.

For consistency with Chapter 5, we assume an equal mix (fm = 0.5) of silver and silica
(ϵd = 2.25), yielding a relatively low-loss hyperbolic nanospheroids with resonances in the
near-infrared to visible range, while the filling factor can be adjusted for continuous tuning
within a broad energy range as demonstrated in the fill factor analysis from Section 5.2.3.

6.1.1. Excitonic Material Integration

Self-hybridization is enabled through the incorporation of excitonic resonances directly into
the dielectric component of the multilayer. The excitonic contribution can originate from vari-
ous sources, including excitonic [15], interband [153] or molecular transitions [154], vibrational
lines [155] or an effective response of nanoscale resonant inclusions in a host medium [156].
The effect of any of these on the permittivity is described by incorporating a Lorentz oscillator
into the host material, following the approach established for describing excitonic materials
in Section 2.7.2:

ϵex(ω) =
fω2

p

ω2
ex − ω2 − iγexω

, (6.1)

where ω is the angular frequency, f denotes the oscillator strength, ωex is the exciton position,
ωp ≡ ωex is the plasma frequency (assumed equal to the exciton position), and γex = 0.1 eV
is the exciton linewidth. A value of f = 0 means there is no excitonic behaviour.

To ensure optimum coupling conditions and best visibility of the two polaritons, we match
the exciton positions to the spectral positions of the optical ED and MD modes identified in
Chapter 5. These are located at 2.5 eV and 1.7 eV for nanosphere and at 2.8 eV and 2.5
eV for nanoprolate, respectively. Exemplary Lorentzian permittivities for various oscillator
strengths, which are used herein, are shown in Figures 6.1b,c and 6.2b,c. It is assumed that the
excitons are incorporated in the dielectric layers, hence, the Lorentzian excitonic contribution
is added to the background dielectric permittivity as:

ϵd → ϵd + ϵex(ω) ≡ ϵ̃d. (6.2)
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Figure 6.2: System scheme and material models. (a) Hyperbolic Ag/silica nanoprolate without
(left) and with (right) excitonic inclusions in the dielectric layers. (b) The real and (c) imag-
inary parts of excitonic inclusions into the dielectric silica layer in hyperbolic nanoprolates.
The excitons at 2.5 eV match the MD and at 2.8 eV the ED of the hyperbolic nanoprolate.

Consequently, in the effective medium approximation that both in- and out-of-plane tensor
components of ϵ acquire an excitonic component.

6.1.2. T-matrix Calculations for Excitonic Systems

The exciton-containing permittivity tensor ϵ serves as input for the T-matrix method to solve
the scattering problem. Following the approach outlined in Section 4.3 for anisotropic parti-
cles, we utilize the exact multipole decomposition where the T-matrix relates the expansion
coefficients as b⃗ = Ta⃗, with the T-matrix evaluated using the null-field method with discrete
sources [127, 145].

The anisotropic T-matrix formulation accounts for the uniaxial permittivity tensor with
excitonic contributions, which can be expressed as:

εi =

ε⊥ + (1− fm)ϵex(ω) 0 0
0 ε⊥ + (1− fm)ϵex(ω) 0
0 0 ε̃εex∥

 , (6.3)

with
ε̃εex∥ =

εm(εd + εex)

(1− fm)(εd + εex) + fmεm
. (6.4)

We utilize the D∞h point group symmetry of the hyperbolic nanospheres, as established
in Chapter 5, to simplify the T-matrix calculation, reducing the surface integrals to one-
dimensional integrals over the polar angle θ. The calculations are performed using the
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Figure 6.3: Absorption and scattering cross sections of hyperbolic nanospheroids with exci-
tonic inclusions with a variable oscillator strength f . The spectra are decomposed into ED,
and MD multipoles for the nanosphere and nanoprolate. (a,b) The exciton energy is 1.7 eV
and 2.5 eV that match the MD and ED mode of the nanosphere respectively. (c,d) The exciton
energy is 2.5 eV and 2.8 eV that match the MD and ED mode of the nanoprolate respectively.

SMUTHI package [128] with custom extensions for uniaxial nanoparticles, following the com-
putational approach detailed in Section 4.3.

6.2. Results and Discussion

6.2.1. Strong Coupling Characterization

Due to the anisotropic nature of our hyperbolic nanospheroids, as characterized in Chapter 5,
we focus on the TEM illumination case where the wave vector is parallel to the anisotropy axis,
exciting both ED and MD modes with the linear polarization orientation being unimportant.
Under this configuration, both modes can potentially couple to the integrated excitons.

To demonstrate the evolution of coupling between optical modes and excitons, we first ex-
amine how the absorption and scattering spectra change with increasing oscillator strength.
In Figure 6.3, we present optical cross-sections decomposed into individual multipole orders
for varying oscillator strengths, utilizing the multipole decomposition methodology from Sec-
tion 4.3.3. These spectra clearly reveal the fundamental differences between the MD and ED
modes that will prove crucial for understanding their coupling behavior. The MD mode is
much narrower than the ED mode, with linewidths of ca. 68 meV and 350 meV for the MD
and ED modes, respectively, in the nanosphere, and 105 meV and 319 meV for the MD and ED
modes, respectively, in the nanoprolate. The MD is predominantly absorptive with scattering
an order of magnitude smaller for the nanosphere [133, 146]. For the prolate nanospheroid
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the MD scattering is still smaller than absorption, but the difference is only by a factor of
2–4 despite their relatively large sizes.

For the nanosphere (Figure 6.3a,b), the MD-exciton system at 1.7 eV demonstrates highly
efficient coupling, with well-separated polaritons appearing in the absorption spectrum at the
smallest plotted oscillator strength (f = 0.1). In contrast, the ED case requires f > 0.2
before spectral splitting occurs, though the scattering spectrum consistently shows a dip at
the exciton linewidth, indicating electromagnetically induced transparency [66]. The MD
mode coupled to an exciton exhibits rapid Rabi splitting increase with f , forming two narrow
polaritons. For large f > 0.5, a third peak emerges at 1.7 eV, reminiscent of findings in prior
studies for metal core-exciton shell systems [66], though here it is identified as an ED mode
appearing due to increased refractive index.

For the nanoprolate, the uncoupled MD mode (f = 0) exhibits a double-peak structure
in absorption (a very small peak at ∼2.1 eV which becomes smaller as the oscillator strength
increases, and a resonance peak at 2.5 eV) and a single peak in scattering. The MD-exciton
system at 2.5 eV shows well-separated polaritons appearing in the absorption and scattering
spectra with a characteristic dip at 2.5 eV (Figure 6.3c,d) at the smallest plotted oscillator
strength (f = 0.1). In the ED case, the uncoupled mode (f = 0) has two peaks in both the
absorption and scattering spectra (a smaller peak at ∼2.3 eV, which decreases as the oscillator
strength increases, and a resonance peak at 2.8 eV). The ED-exciton system at 2.8 eV exhibits
well-separated polaritons in both the absorption and scattering spectra with a dip at 2.8 eV
(Figure 6.3c,d) at the smallest plotted oscillator strength (f = 0.1).

6.2.2. Coupling Strength Analysis

To quantify the interaction regime and determine the onset of strong coupling, we employ the
coupled harmonic oscillator model for the extinction spectrum from equation 4.52 recast as:

Cext(ω) ∝ ω Im

[
ω2

ex − ω2 − iγexω

(ω2
MD/ED − ω2 + iγMD/EDω)(ω2

ex − ω2 + iγexω)− ω2g2

]
(6.5)

to fit the extinction cross-section spectra separately for ED and MD interactions. The fits
assume fixed optical mode energies and linewidths at their uncoupled values, following the
two-peak spectra model from Section 4.4.1. For the nanoprolate, a Lorentz-Drude term as
given in Section 2.3 is added to the coupled harmonic oscillator model to account for the
smaller peak at 2.3 eV observed for the ED. The fixed linewidths for the nanosphere are
those of the exciton (100 meV), MD mode (≲ 90 meV), and ED mode (350 meV). For the
nanoprolate the linewidths are equal as follows: exciton 100 meV, MD mode 112 meV, and
ED mode 325 meV.

Figure 6.4 demonstrates the excellent quality of fits for selected oscillator strengths and
plots the fitted coupling strengths as functions of

√
f . This relationship is linear as expected

from the theoretical framework established in Chapter 3, where the collective coupling strength
for N emitters follows gN =

√
Ng1 (equation 3.27), and since the oscillator strength f scales

linearly with the number of molecules, the coupling strength follows g ∝
√
f . Notably, the MD

coupling strength is approximately 50% larger than the ED coupling strength, highlighting the
better coupling efficiency of magnetic dipole modes. Despite the larger linewidth of the MD
in the nanoprolate compared to the nanosphere, the coupling efficiency of the nanoprolate is
higher, demonstrating that geometry plays a crucial role beyond simply optimizing linewidths.

Before a quantitative discussion of the coupling strengths, we briefly recall the strong
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Figure 6.4: Calculated extinction cross sections and coupled harmonic oscillator model fits
(black dashed) for (a, b) nanosphere and (d, e) nanoprolate geometries (red lines). Panels
(a, d) show ED-exciton coupling while (b, e) show MD-exciton coupling (spectra offset for
clarity). (c, f) Fitted coupling strengths for ED (gED, diamonds) and MD (gMD, squares)
modes exhibit linear dependence on

√
f . Gray lines indicate ED (γED) and MD (γMD) mode

linewidths.

coupling condition established in Section 4.4, which require that:

g >
γMD/ED + γex

2
(6.6)

or, equivalently, that the Rabi splitting satisfies:

ΩR > |γex + γED/MD|/2, (6.7)

where g is the coupling strength, γMD/ED are the optical mode linewidths, and γex is the
exciton linewidth.

For the nanosphere, due to the narrow linewidths of both the exciton (100 meV) and, more
importantly, the MD mode (≲ 90 meV), the strong coupling regime is reached at remarkably
small oscillator strengths, f sc

MD ≈ 0.04. The MD-exciton interaction is so efficient that the
system enters the ultra-strong coupling regime for fusc

MD ≈ 0.15, where g ≥ 0.17 begins to
exceed 10% of the resonance energy. Conversely, for the ED-exciton system, the coupling is
less efficient, and the greater width of the ED mode (350 meV) means that strong coupling
can only be achieved at significantly larger oscillator strengths, i.e., f sc

ED ≥ 0.36. Similarly,
ultra-strong coupling is only reached for fusc

ED ≥ 0.64.
For the nanoprolate, the narrow linewidths of both the exciton (100 meV) and the MD

mode (112 meV) allow the strong coupling regime to be reached at even smaller oscillator
strengths, f sc

MD ≈ 0.03. The MD-exciton interaction is highly efficient, enabling the system to
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enter the ultra-strong coupling regime for fusc
MD ≈ 0.22, where g ≥ 0.25 begins to exceed 10%

of the resonance energy. For the ED-exciton system, the coupling remains less efficient, and
the greater width of the ED mode (325 meV) means strong coupling requires larger oscillator
strengths, f sc

ED ≥ 0.28. Similarly, ultra-strong coupling is only achieved for fusc
ED ≥ 0.50.
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Figure 6.5: The anticrossing dependence on the mode type (ED—red; MD—blue) is shown
as a function of the oscillator strength f , with values of (a) 0.05, (b) 0.2, (c) 0.5, and (d) 0.8
for the nanosphere, and (e, f) 0.05, (g, h) 0.2, (i, j) 0.5, and (k, l) 0.8 for the nanoprolate.
The colormaps of the spectra are normalized to their respective maximum values in each
plot, independently for the ED and MD modes. The black dotted lines indicate the exciton
position, and the positions of the ED and MD modes. The curved lines represent the UP
(upper polariton) and LP (lower polariton) branches.
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6.2.3. Anticrossing Behavior

To further characterize the strong coupling regime and validate our coupling strength analy-
sis, we examine the anticrossing behavior as the exciton energy is systematically tuned across
the optical resonances. Figure 6.5 illustrates this anticrossing behavior for ED and MD inter-
actions as functions of exciton energy ωex, providing direct evidence of the avoided crossing
characteristic of strong coupling.

The absorption spectra (blue for MD, red for ED) are fitted using a non-Hermitian Hamil-
tonian approach given in Section 4.4.1:

ωED − iγED gED 0 0
gED ωex − iγex 0 0
0 0 ωMD − iγMD gMD
0 0 gMD ωex − iγex

 , (6.8)

where ωx, γx, and gx represent the resonance frequency, linewidth, and coupling strength
of mode x = MD,ED. This formulation is analogous to the nonhermitian Hamiltonian from
equation (4.54) but extended to include both ED and MD modes simultaneously.

The fitting results shown in Figure 6.5 use black dotted lines to mark the exciton and
optical modes, while the polaritons are denoted by colored lines. The lower polariton (LP)
and upper polariton (UP) fits agree excellently with the calculated values, demonstrating
progressively increasing Rabi splitting with f . A pronounced polaritonic gap appears at large
f , particularly for the MD-exciton coupling, starting around f = 0.5. This observation aligns
with the onset of the ultra-strong coupling regime.

For the nanoprolate, the ED exhibits two distinct anticrossing behaviors (lower and upper
anticrossing behaviors), which result from the exciton coupling to both the smaller peak at
2.3 eV and the main resonance peak at 2.8 eV, as the exciton position is varied from 1 to
3.5 eV. The coupling with the smaller peak represents weak coupling, while our focus is on
the upper anticrossing behavior, dominated by the ED resonance at 2.8 eV, which strongly
couples to the exciton.

6.3. Practical Implementation: Multilayer Nanodisks

While hyperbolic nanospheres demonstrate strong coupling capabilities, practical fabrication
considerations motivate the study of multilayer nanodisks [157]. Current fabrication tools
enable facile creation of multilayered nanodisks, making them a robust alternative for achiev-
ing self-hybridized strong coupling. We now examine how the coupling phenomena observed
in idealized spheroidal geometries translate to more readily fabricated multilayer nanodisk
structures, which represent a crucial step toward real-world device applications.

We investigate hyperbolic nanodisks with radius r = 40 nm and aspect ratio h/2r = 1,
where h is the height, initially focusing on spectral differences between spherical and disk
geometries by varying edge rounding from 0 (perfect disk) to 40 nm (sphere). This systematic
variation allows us to understand how geometric modifications affect the coupling strength
and mode characteristics. To that end, in this particular case, the nanoparticles are modeled
with explicit metal/dielectric layers, what requires use of numerical calculations using the
FDTD approach. The hyperbolic material consists of alternating layers of approximately 5
nm of silver and silica, with both ends covered by silver. The permittivities are taken from the
input values ϵm and ϵd used to construct the hyperbolic dispersion in the T-matrix approach.

Simulation parameters include a non-uniform spatial mesh ranging from 4 nm to 1 nm
over the nanoparticle, a TFSF plane wave source incident along the z-axis, symmetric and
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Figure 6.6: Spectra of strongly coupled (a-d) ED and (e-h) MD modes of hyperbolic nanodisks
(r = 40 nm, h = 80 nm) as function of edge rounding for oscillator strengths from 0 to 0.7.
(i)-(v) Electric field xz cross sections (intensity and field lines) of the LP/UP of the ED with
f = 0.7 show that (ii, iii) the UP splits into two modes for sharp nanodisk edges, while (v)
for a nanosphere (r = 40 nm) it reverts to one high energy mode. The plane wave is incident
from the top along z with the electric field polarized along x.

anti-symmetric boundary conditions through the center to reduce computational effort by a
factor of 4, and perfectly matched layer (PML) absorbing boundaries elsewhere.

For multipole analysis, we employ the Multipole Expansion for NanoPhotonics (MENP)
toolbox, implementing the multipole decomposition approach detailed in Section 4.2.1. The
electric field E(r) is used to calculate equivalent current density distributions:

J(r) = −iωϵ0(ϵ− 1)E(r), (6.9)

where ϵ0 is the vacuum permittivity. Subsequently, multipole contributions are calculated
from current densities using the exact multipole expansion formulas from Section 4.2.1, fo-
cusing on ED and MD partial scattering cross-sections.

Figure 6.6 displays the multipolar scattering cross-sections for the two primary modes: ED
and MD multipoles. The cross-sections are analyzed across varying oscillator strengths from
0.1 to 0.7 for ED modes (Fig. 6.6a-d) and MD modes (Fig. 6.6e-h), with comparisons made
against structures without excitons. Beyond oscillator strength variations, the particle geom-
etry is systematically modified from a sharp hyperbolic nanodisk to a rounded nanosphere by
progressively rounding the top and bottom edges (shown in insets).

For both mode types, the metal-exciton multilayer structure clearly exhibits lower LP
and UP branches, with Rabi splitting that strengthens as oscillator strength f increases.
A notable feature appears in the ED mode of the sharp nanodisk: when f > 0.3, the UP
branch bifurcates into two separate branches (Fig. 6.6a, 0 nm edge rounding). This splitting
gradually disappears as edge rounding increases, though some UP broadening persists even
in the fully rounded nanosphere configuration (Fig. 6.6d, 40 nm maximum edge rounding).
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To understand this splitting behavior, Figure 6.6i-v shows xz cross-sections of electric
field intensities and field line distributions at selected resonance peaks for both the hyperbolic
nanodisk (i-iii) and nanosphere (iv, v) geometries. The field patterns reveal predominantly
uniform internal fields and external field profiles characteristic of electric dipole sources across
all cases. This uniformity in ED-like field distributions indicates minimal contribution from
higher-order multipolar effects to the observed splitting.

Symmetry analysis confirms that these particles possess Dh∞ point group symmetry, mak-
ing the MQ the lowest-order multipole that can couple to the ED mode. However, quantitative
evaluation shows the MQ contribution is five orders of magnitude weaker than the ED values
in Fig. 6.6a. Therefore, the mode splitting stems purely from the geometric effect of sharp
particle edges. As edge rounding increases, the distinction between edge-localized and volume-
distributed modes diminishes, causing the split peaks to merge into a single UP branch while
maintaining pure ED character. The LP branch consistently exhibits single-mode behavior
across all ED configurations.

In contrast, MD scattering spectra demonstrate straightforward LP/UP profiles regard-
less of edge rounding or oscillator strength, indicating that magnetic dipole modes represent
collective excitations spanning the entire hyperbolic nanodisk volume. The MD mode couples
inherently with the EQ mode, as depicted in Figure 6.3.

6.3.1. Metal Fill Factor Dependence

Having established the existence of strong coupling in nanodisks with explicit metal-exciton
multilayers, we investigate the impact of metal fill factor on coupling strength, building upon
the fill factor analysis from Section 5.2.3. Understanding this dependence is crucial for opti-
mizing device performance and provides insights into the fundamental mechanisms underlying
the coupling process. We retain the r = 40 nm and h = 2r geometry with 5 nm edge round-
ing radius. The metal fill factor varies from 0.1 to 0.9, with oscillator strength restricted
to f ≤ 0.3 to maintain well-defined polaritons and enable accurate fitting with the coupled
oscillator model.

Exemplary scattering spectra for metal fill factors fm of 0.1, 0.3, and 0.5 are presented
in Figure 6.7a-f. These results demonstrate unambiguous blue shifts of both ED and MD
resonances as metal fill factor increases, consistent with previous observations from Chapter 5.
The ED mode initially increases in amplitude but begins to broaden for larger fill factors. In
contrast, the uncoupled MD only increases in amplitude while maintaining constant, small
width.

Coupled spectra for the considered f -values are fitted using the coupled oscillator model
for scattering from equation 4.53, with resulting coupling strengths plotted in Figure 6.7g.
The analysis confirms the previous results which show, that for self-hybridized hyperbolic
nanospheres with metal fill factor 0.5 the MD consistently shows larger coupling strength than
the ED. Indeed, for the nanodisks studied here, the MD interaction strength with embedded
excitons exceeds ED when fm ≥ 0.35, with maximum MD coupling at fm ≈ 0.7.

Conversely, ED interaction strength peaks at fm ≈ 0.3 then rapidly decreases, falling below
MD for fm > 0.4. The self-hybridized MD coupling strength varies less across the entire metal
fill factor range than ED, highlighting greater robustness under geometric variations. This
monotonous MD coupling strength increase to fm = 0.7 occurs while excitonic material volume
decreases, indicating very strong internal electric field localization in hyperbolic nanoparticles.
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Figure 6.7: Dependence of the coupling strength on the metal fill factor 0.1, 0.3, 0.5 for
nanodisks with r = 40 nm, h = 2r, and rounding radius of 5 nm. (a–c) Electric dipole
and (d–f) magnetic dipole scattering spectra. In both cases a blue shift of the modes is
observed with increasing fill factor. (g) Coupling strength dependence on the metal fill factor
for the (red diamonds) ED and (blue squares) MD shows stronger interaction of the ED
with excitons for fill factors smaller than ca. 0.35. Conversely, the MD consistently exhibits
stronger coupling than the ED at larger fill factors.

6.3.2. Size and Aspect Ratio Dependence

Finally, we examine the influence of size and aspect ratio on self-hybridized coupling strength
in hyperbolic nanodisks to understand scalability and design optimization. Given that MD
modes in oblate structures are relatively weak, as established in Chapter 5, and thus detri-
mental to efficient light-matter coupling, we focus on nanodisks with aspect ratio 1 (termed
quasi-spherical nanodisks) and aspect ratio 3 (prolate nanodisks), where aspect ratio is de-
fined as A = h/2r. We consider structures with fm = 0.5, where for a given quasi-spherical
nanodisk size, the corresponding prolate nanodisk has equal volume. Quasi-spherical disks
have radii from 40 to 70 nm with equal height, while prolate nanodisks have equivalent vol-
umes. Rounding radii equal 1/8th of respective radii, with f varied from 0.1 to 0.3 to ensure
well-defined polariton formation.

All studied systems show self-hybridized ED and MD scattering spectra characterized by
two well-developed polaritons whose spectral separation increases with oscillator strength.
These spectra are fitted with coupled harmonic oscillator models following the approach from
Section 4.4, obtaining coupling strengths g plotted in Figure 6.8.

The coupling strength values are consistently larger for prolate nanodisks in both ED and
MD modes. This agrees with the better optical mode traits of prolate shapes discussed in
Chapter 5. However, coupling strengths are more similar for magnetic dipoles than electric
ones. For MD, the maximum coupling strength difference between quasi-spherical and prolate
nanodisks is less than 20 meV, while for ED it exceeds 40 meV.

Moreover, MD coupling strength is less sensitive to increases in resonator volume. It usu-
ally decreases by less than 5% when the volume increases more than five-fold. In contrast, for
ED, this decrease is usually about 30%. This behavior highlights the strong self-hybridization
abilities of magnetic dipoles and emphasizes the advantages of prolate geometry in achieving
strong coupling in hyperbolic nanoparticles.
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Figure 6.8: Dependence of the self-hybridized coupling strength of (a) the ED and (b) the
MD of nanodisks with aspect ratio of A = 1 and equal-volume A = 3 nanodisk to excitons
embedded in the dielectric matrix. The coupling strengths are obtained from fitting the
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0.1, 0.2, and 0.3. The coupling strength for both ED and MD modes as a function of nanodisk
size and oscillator strength shows consistently larger values for prolate nanodisks.

6.3.3. Comparing Coupling Efficiency of MD and ED Modes in Spherical
and Prolate Geometries

The comprehensive analysis presented in this chapter reveals that MD modes achieve strong
coupling at significantly lower oscillator strengths than ED modes due to several key factors,
building upon the mode characteristics established in Chapter 5:

Linewidth Differences: The MD mode exhibits a significantly narrower linewidth com-
pared to the ED mode in both geometries. For nanospheres, the MD linewidth is ca. 68 meV
versus 350 meV for the ED mode, while nanoprolates show 105 meV for MD versus 319 meV
for ED. These narrow MD linewidths enable the MD-exciton system to reach strong coupling
at remarkably small oscillator strengths of f sc

MD ≈ 0.04 for nanospheres and f sc
MD ≈ 0.03 for

nanoprolates, while the ED-exciton systems require much larger values of f sc
ED ≥ 0.36 and

f sc
ED ≥ 0.28 for nanospheres and nanoprolates, respectively.

Geometric Optimization: Despite having larger MD linewidth than nanospheres, nanopro-
lates demonstrate stronger coupling efficiency for both MD and ED modes. This counterintu-
itive result highlights that geometric optimization can overcome linewidth limitations through
enhanced field localization and improved mode-exciton overlap. The prolate geometry con-
sistently requires lower oscillator strengths to achieve both strong and ultra-strong coupling
regimes compared to spherical geometry.

Ultra-Strong Coupling Accessibility: The efficient MD-exciton interaction enables
ultra-strong coupling at remarkably low oscillator strengths. For nanospheres, ultra-strong
coupling (g ≥ 0.17, exceeding 10% of resonance energy) is achieved at fusc

MD ≈ 0.15, while
nanoprolates reach this regime at fusc

MD ≈ 0.22. In contrast, the ED-exciton systems require
significantly higher values: fusc

ED ≥ 0.64 for nanospheres and fusc
ED ≥ 0.50 for nanoprolates.

This shows that magnetic dipole modes are better for achieving extreme coupling in both
geometries. Prolate structures perform better overall.

Geometric Sensitivity and Robustness: Analysis of nanodisk geometries reveals that
MD coupling strength varies less across different metal fill factors compared to ED coupling,
indicating greater robustness under geometric variations. The self-hybridized MD coupling
strength shows monotonous increase to fm = 0.7 while maintaining consistent performance,
whereas ED interaction strength peaks at fm ≈ 0.3 then rapidly decreases. This robustness is
particularly important for practical device implementations where fabrication tolerances must
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be considered.
Size and Volume Scaling: MD coupling strength shows less sensitivity to increases in

resonator volume than ED modes. For both spherical and prolate nanodisks, MD coupling
usually goes down by less than 5% when volume increases by over five times. In contrast,
ED modes typically decrease by around 30%. This better scalability of magnetic dipole
interactions is important for practical device applications where size optimization is necessary.

These fundamental differences establish MD modes as the preferred choice for achieving
efficient self-hybridized strong coupling in hyperbolic multilayer nanospheroids, with prolate
geometries offering the best overall performance. The results demonstrate that hyperbolic
metamaterials provide a unique platform for exploring strong light-matter interactions, with
magnetic dipole modes offering very good coupling efficiency compared to conventional elec-
tric dipole-based approaches. The geometric flexibility of these systems allows for further
optimization, making them highly promising for polaritonic device applications.
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Chapter 7

Self-Hybridized Strong Coupling of
MD Mode to Excitons in Transition
Metal Dichalcogenides in Uniaxial
Hyperbolic Multilayer Nanospheroids

Results from Chapter 6 demonstrate that the MD mode consistently exhibits greater coupling
characteristics compared to the ED mode in both spherical and prolate spheroidal geometries.
Building upon these findings of MD mode dominance, this chapter explores the self-hybridized
strong coupling of optical modes and excitons using transition metal dichalcogenides (TMDCs)
– considering specifically MoS2, WS2, MoSe2, and WSe2 – which exhibit excitons with consid-
erable oscillator strengths. This study focuses on proposing realistic nanostructures, based on
spherical or prolate geometries, that will efficiently enable strong coupling to the MD regime.
The study maintains consistent dimensions, using a sphere radius of 50 nm and a prolate
spheroid with a volume equivalent to that of the sphere.

7.1. Optical Modes in Ag/TMDC Hyperbolic Nanospheroids

Following previous investigations, we consider initially two-layer systems composed of a silver
layer and a TMDC layer as shown in Figure 7.1 for spherical and prolate geometries, where
the TMDC materials include MoS2, WS2, MoSe2, and WSe2. These TMDCs are character-

x
y

z

Two-layered  sphere

TMDC
Ag

Two-layered  prolate

Figure 7.1: Illustrations of the two-layered nanospheroids. Two-layered systems consist of
a silver layer and a transition metal dichalcogenide (TMDC) layer. These geometries are
represented in both spherical and prolate configurations.
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Figure 7.2: Normalized absorption cross-sections, MD (blue color) and ED (red color) mode
decompositions for spherical two-layered nanospheroids for dispersionless case under TEM
illumination. Results are shown for silver (Ag) and quasi-TMDC: (a-d) for index 3.75, 4.28,
4.77, and 5.30 respectively. The straight vertical mode visible in the plots corresponds to the
ED mode. The crescent-like dependence of the MD mode reflects the influence of the metal
fill factor on anisotropic optical properties.

ized by an anisotropic dielectric permittivity tensor with large birefringence values and low
absorption in the near-infrared range, categorizing them as uniaxial hyperbolic TMDCs [158].
The T-matrix method is used as established in Section 4.3 with a homogenised anisotropic
effective diagonal permittivity tensor components given by equations (5.1) and (5.2). The
only qualitative difference is that in the above equations the dielectric permittivity of the
TMDCs is already anisotropic, hence the εd is in tensor form.

Use of TMDCs instead of silica as the dielectric medium in a hyperbolic stack introduces
an important difference. The dielectric permittivity is in this case significantly different and
will affect the spectral positions of the ED and MD modes. To establish the magnitude
of this fundamental change, we begin with a simple case of a dispersionless material (i.e.
quasi-TMDC with large refractive indices) that isolates geometric and structural effects from
the influence of material resonances. This approach creates clear reference points for mode
positions and strengths across varying metal fill factors, providing essential baseline data for
subsequent comparison with dispersive systems.

Figure 7.2(a-d) shows the normalized absorption cross-sections and mode decompositions
for spherical Ag/quasi-TMDC nanospheroids in the dispersionless case under TEM illumina-
tion. The constant refractive indices are 3.75, 4.28, 4.77, and 5.30 and are in the range of
typical TMDCs. The characteristic behavior of each mode is preserved with the MD mode
(blue) exhibiting the distinctive crescent-like shape (see Chapter 5) for uniaxial hyperbolic
nanospheroids. The ED mode is shifted to the blue of the MD mode and exhibits a constant
blue shift with increasing metal fill factor. The clear separation between the two mode types
in a spherical geometry is as before for a Ag/silica hyperbolic material, however, the modes
are considerably shifted to the red.

Having established the baseline mode characteristics, specifically the spectral position of
both modes, we now examine how excitons in the selected TMDCs interact with the ED and
MD optical modes. Figure 7.3(a-d) presents absorption spectra of these modes in the presence
of TMDCs (MoS2, MoSe2, WS2, WSe2) modeled using their full dispersive permittivity for

75



MD
ED

0 0.5 1

Sphere Absorption

1.25 1.75 2.25

0.2

0.4

0.6

0.8

1

energy(eV)

m
e
ta
l
fi
ll

fa
ct
o
r

Ag/MoS2

(a)

1.25 1.75 2.25

0.2

0.4

0.6

0.8

1

energy(eV)

m
e
ta
l
fi
ll

fa
ct
o
r

Ag/MoSe2

(b)

1.25 1.75 2.25

0.2

0.4

0.6

0.8

1

energy(eV)

m
e
ta
l
fi
ll

fa
ct
o
r

Ag/WS2

(c)

1.25 1.75 2.25

0.2

0.4

0.6

0.8

1

energy(eV)

m
e
ta
l
fi
ll

fa
ct
o
r

Ag/WSe2

(d)

Figure 7.3: Normalized absorption cross-sections, MD (blue color) and ED (red color) mode
decompositions for spherical two-layered nanospheroids for dispersive case under TEM illu-
mination. Results are shown for silver and TMDC materials: (a-d) for MoS2, MoSe2 WS2,
and WSe2 respectively. The anticrossing behavior visible in the plots is the coupling of ED
mode to the exciton. The crescent-like dependence of the MD mode reflects the influence of
the metal fill factor on anisotropic optical properties.

spherical nanoparticles under TEM illumination. Unlike in the dispersionless case, the pres-
ence of excitons (in the range of ca. 1.5 to 2.1 eV) modifies the spectra in the relevant energy
range. Due to the spectral characteristics of the modes, only coupling of excitons to the ED
mode is observed. The MD mode maintains its characteristic crescent-like shape, though its
spectral position and strength are now additionally influenced by the real dispersion. However,
it does not interact with excitons of any of the TMDCs.

Clearly the high refractive index of TMDCs shifts the modes, especially the MD one, too
far to the red. Based on previous results, this effect can be reversed by employing geometrical
effects established in Chapter 5. Hence, we now examine prolate nanospheroids using identical
material compositions and analytical approaches. Figures 7.4 and 7.5 present the results for
Ag/TMDC prolate nanospheroids in both dispersionless (quasi-TMDC) and dispersive cases,
respectively. For the dispersionless case (Figure 7.4), we retain the refractive indices as in the
spherical analysis (3.75, 4.28, 4.77, and 5.30), while the dispersive case (Figure 7.5) uses the
same fully dispersive TMDCs as in the spherical case.

A key distinction emerges when comparing the two geometries: in the prolate nanospheroids,
the MD mode is significantly shifted to the blue and partially overlaps with the ED mode,
as evidenced in Figure 7.4 This contrasts sharply with the spherical geometry, which demon-
strates a clearer separation between the MD and ED modes with no significant overlap. How-
ever, despite the blue shift, full coupling between both ED and MD modes with excitons is not
observed. As with the spherical geometry in the dispersive case, the prolate nanospheroids
exhibit anticrossing behavior only with the ED mode, Figure 7.5(a-d). Only very weak mixing
of the MD mode with the excitons is visible for MoSe2 and WSe2, however, it is not clear
if this is a strong couplign effect or the generation of a mode due to an increased refractive
index (pure dielectric-like response).

The absence of MD-exciton coupling in two-layered systems presents a significant limita-
tion for achieving the desired self-hybridized strong coupling in the MD regime. From these
initial calculations it is clear, that simple geometric manipulation by the metal filling factor
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Figure 7.4: Normalized absorption cross-sections, MD (blue color) and ED (red color) mode
decompositions for prolate two-layered nanospheroids for dispersionless case under TEM illu-
mination. Results are shown for silver (Ag) and a dispersionless quasi-TMDC material: (a-d)
for index 3.75, 4.28, 4.77, and 5.30 respectively. The straight vertical mode visible in the plots
corresponds to the ED mode. The prolate geometry exhibits an overlap between the MD and
ED modes, contrasting the clearer separation observed in the spherical geometry.

and geometry is insufficient to enable MD-exciton coupling. While the shift to a prolate ge-
ometry partially overcomes the red shift of the modes caused by the large refractive index
of TMDCs, its effect clearly too weak. Hence, it is necessary to address the former effect
and a simple solution is by decreasing the refractive index of the dielectric layers that form
part of the hyperbolic metamaterial stack. However, at the same time it is necessary to keep
the TMDCs for their excitonsic properties. To address this challenge and enable MD-exciton
interactions, it is proposed to utilize a modified three-layered design, that will incorporate an
additional dielectric spacer layer with a lower refractive index than that of TMDCs. Such an
approach is expected to yield a corrective blue shift of the modes while retaining the strong
excitonic response of TMDCs.

7.2. Optical Modes in Three-Layer Ag/TMDC/Silica Hyperbolic
Nanospheroids

The results from the preceding section demonstrate that MD coupling to excitons is not feasi-
ble in two-layer Ag/TMDC nanospheroids. To address this limitation, an additional material
(silica, n = 1.5) is introduced as a dielectric spacer between the silver and TMDC layers, as
depicted in Figure 7.6. This structural modification is designed to effectively decrease the
dielectric component of the hyperbolic metameterial to modify the electromagnetic field dis-
tribution and enable MD-exciton interactions that were absent in the two-layer configuration.

For the three-layer Ag/TMDC/silica nanospheroids, the FDTD method is employed in-
stead of the T-matrix approach due to the failure of the Maxwell-Garnett mixing for three-
component multilayers, increased computational complexity of the three-layer system and the
need for detailed field distribution analysis. In the FDTD approach we utilize a non-uniform
spatial mesh with discretization of 4 nm outside the nanoparticle and 1 nm resolution over the
nanoparticle, incorporating a graded transition between mesh regions. A plane wave prop-
agating along the z-axis is implemented via TFSF in the energy range of 1 to 2.5 eV. The
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Figure 7.5: Normalized absorption cross-sections, MD (blue color) and ED (red color) mode
decompositions for prolate two-layered nanospheroids for dispersive case under TEM illumi-
nation. Results are shown for silver and TMDC materials: (a-d) for MoS2, MoSe2 WS2, and
WSe2 respectively. The anticrossing behavior visible in the plots is the coupling of ED mode
to the exciton. The prolate geometry exhibits an overlap between the MD and ED modes,
contrasting the clearer separation observed in the spherical geometry.
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Figure 7.6: Illustrations of the three-layered nanospheroids. Three-layered systems include
an intermediate silica layer (refractive index n = 1.5) between the silver and TMDC layers.
These geometries are represented in both spherical and prolate configurations.

simulation volume is reduced using anti-symmetric and symmetric boundary conditions along
the x- and y-axis, respectively, and perfect matching layer (PML) absorbing boundaries in
other directions. The simulation monitors include near-field probes to record electric field
distributions E(x, y, z, f) and far-field monitors to measure scattering and absorption cross-
sections. Convergence is ensured through divergence checking and an auto shutoff criterion
with a threshold of energy remaining in the simulation to 10−5 of the maximum.

When considering a metal fill factor analysis, it is now necessary to consider the total
thickness as a sum of three values with the fractional sum being equal to 1. Following the
methodology established for two-layer systems, we first investigate the dispersionless case
to establish the spectral shifts with a quasi-TMDC (n = 4.28) and silica (Ag/silica/quasi-
TMDC). We consider two material cases with the quasi-TMDC fraction fixed at 0.1 and 0.3,
while the silver/silica fractions vary from 0 to the respective maxima ensuring total volume
fraction of 1.

The resulting normalized total absorption plot for the spherical geometry is shown in
Figure 7.7(a-b), while the prolate geometry results are shown in Figure 7.7(c-d). The modes
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Figure 7.7: Normalized total absorption cross-section calculated using the FDTD method for
dispersionless case under TEM illumination for (a-b) three-layered spherical nanospheroids
and (c-d) three-layered prolate nanospheroids. Results are shown for Ag/silica/quasi-TMDC
structure, where the quasi-TMDC fraction is fixed at 10% and 30%. The metal fill factor and
silica are varied.

are qualitatively similar to those plotted for the two-layer Ag/quasi-TMDC systems. The
MD mode maintains a crescent-like shape and the ED mode curves vertically to the blue. For
both spherical and prolate geometries and both quasi-TMDC factions the results are similar,
but a significant blue shift is observed for the lower amount of the quasi-TMDC. This proves
conclusively that mixing of TMDCs and silica as the dielectric with silver is a solid approach
to enabling MD-exciton coupling. Thus, we can now examine how the three-layer hyperbolic
material operates in practice when accounting both for dispersion and the excitonic features.

For the dispersive material case, two distinct configurations are investigated to system-
atically explore the parameter space: First, the TMDC volume fraction is fixed at 0.1 while
the silver and silica volume fractions are varied from 0.1 to 0.8, with their combined sum
maintaining the total volume fraction of 1. Second, the silica volume fraction is fixed at 0.1
while the silver and TMDC volume fractions are varied from 0.1 to 0.8, with their combined
sum maintaining the total volume fraction of 1. The results for both configurations are shown
in Figures 7.8 and 7.9, respectively, for spherical and prolate geometries using four TMDCs:
MoS2, MoSe2, WS2, and WSe2.

These results demonstrate that anticrossing behavior in the MD regime emerges when
systematically varying the volume fractions while maintaining a fixed volume of either silica
or TMDC. For spherical geometries, no strong MD coupling with the excitons is observed,
despite the introduced modifications. The MD mode maintains its characteristic crescent-
shaped dependence, while the anticrossing behaviors shown in Figure 7.8 arise from the ED
mode strongly coupling to the excitons. The anticrossing behavior occurs at different metal
fill factor ranges depending on the fixed material: for fixed TMDC fraction, it appears at
lower metal fill factors (0.1 to 0.4), while for fixed silica, it occurs at higher metal fill factors
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Figure 7.8: Normalized total absorption cross-section for three-layered spherical nanospheroids
calculated using the FDTD method. Results are shown for TMDCs: MoS2 (a), MoSe2 (b),
WS2 (c), and WSe2 (d). Left panels represent cases with fixed TMDC volume fraction of 0.1,
and right panels represent cases with fixed silica volume fraction of 0.1. Anticrossing behavior
of the ED mode is observed as the metal fill factor is varied.

(0.42 to 0.8).
In contrast, prolate geometries demonstrate that efficient MD-exciton coupling is possible.

While the MD mode overlaps with the ED one, what is consistent with the mode properties of
two-layer prolate nanospheroids and the geometric effects established in Chapter 5, full minima
and anticrossing behavior is seen in Figure 7.9. Most significantly, strong MD coupling to
excitons is observed for specific configurations: when TMDC is fixed at 0.1, MoS2 and WS2

show strong MD coupling to excitons, as demonstrated in Figure 7.9(a,c). Conversely, when
silica is fixed, MoSe2 and WSe2 exhibit MD anticrossing with weak exciton coupling, as shown
in Figure 7.9(b,d). The anticrossing behavior exhibits a distinct pattern with respect to the
metal fill factor: in the range of 0.1 to 0.5, the modes shift toward the red region, while from
0.52 to 0.88 metal fill factor, the modes reverse direction and begin shifting toward the blue
region.

These findings show the first successful instance of MD-exciton self-hybridized strong
coupling through careful geometric and compositional design. To confirm the practical use
of these results and offer a way for experimental realization, we will now look at multilayer
nanodisk structures that can be made using standard lithographic techniques [157].

7.3. Self-Hybridization in Ag/Silica/TMDC Nanodisks

The subsequently investigated nanostructures are based on a realistic possiblity of fabricating
a three layer Ag/silica/TMDC hyperbolic nanodisk via lithography and reactive ion etching
of a preassembled stack with a hard metal mask to protect and form the nanopatricles. A
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Figure 7.9: Normalized total absorption cross-section for three-layered prolate nanospheroids
calculated using the FDTD method. Results are shown for TMDCs: MoS2 (a), MoSe2 (b),
WS2 (c), and WSe2 (d). Left panels represent cases with fixed silica volume fraction of 0.1,
and right panels represent cases with fixed TMDC volume fraction of 0.1. Strong MD coupling
to excitons is observed in MoS2 and WS2, with anticrossing behaviors marked by distinct red
and blue shifts depending on the metal fill factor.

nanodisk geometry provides a more experimentally accessible platform while maintaining
the essential physics of the spheroidal systems. The geometrical parameters are based on
those investigated in the previous section for both quasi-spherical (aspect ratio of 1) and
prolate nanodisks. The sphere has a radius of 50 nm, and the prolate spheroid has a volume
equivalent to that of the sphere, although the edges are not rounded. With the larger losses
due to absorption in the TMDCs, the nanodisk has narrow spectral features even with sharp
edges, as in the case of idealized spheroidal geometries. The FDTD simulations are carried
out with the same parameters as for the spheroidal nanostructures.

Figures 7.10 and 7.11 show the normalized total absorption for, respectively, spherical and
prolate nanodisks using four TMDCs: MoS2, MoSe2, WS2, and WSe2 for the case of fixed
TMDC. The results are consistent with Figures 7.8 and 7.9, showing similar optical responses
and confirming that the nanodisk geometry successfully preserves the essential physics ob-
served in the spheroidal systems. This consistency validates the use of nanodisks as a practical
platform for experimental implementation of MD-exciton strong coupling. Most importantly,
clear anticrossing spectra are visible in both Figures. In the subsequent quantification of
strong coupling we will focus only on the hyperbolic nanoparticles with WS2 and MoS2, since
their spectra demonstrate the clearest/largest anticrossing.

To quantify the interaction rates in the self-hybridized nanoparticles a detailed analysis of
the spectra decomposed into the constituent modes is essential. The analysis of MD strong
coupling involves the decomposition of the FDTD total scattering cross-section into its MD
components using the MENP program, following the multipole decomposition methodology
detailed in Section 4.2.1.
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Figure 7.10: Normalized total absorption cross-section for three-layered spherical nanodisk
calculated using the FDTD method. Results are shown for TMDCs: MoS2 (a), MoSe2 (b),
WS2 (c), and WSe2 (d). These represent cases with fixed TMDC volume fraction of 0.1.
Anticrossing behavior of the ED mode is observed as the metal fill factor is varied.

The scattering cross section decomposed into MD and ED modes for WS2 and MoS2 is
shown in Figure 7.12. This decomposition provides the foundation for quantitative analysis
of the coupling strength and Rabi splitting characteristics, enabling precise characterization
of the strong coupling regime. The clear separation of MD and ED contributions allows for
individual analysis of each mode’s interaction with the exciton resonances.

7.4. Strong Coupling in Ag/Silica/WS2 and Ag/Silica/MoS2 Pro-
late Nanodisk

Building upon the mode decomposition results, we now provide comprehensive characteriza-
tion of the strong coupling phenomena in the most promising material systems: Ag/silica/WS2

and Ag/silica/MoS2 prolate nanodisks. The characterization of the strong coupling in the sys-
tem focuses on the metal fill factor range of 0.2 to 0.4, as this range properly captures the
anticrossing behavior and enables accurate extraction of coupling parameters. The charac-
terization proceeds through two consecutive steps: first, we establish the uncoupled mode
behavior by removing exciton contributions from the material response, then we analyze the
full coupled system to extract coupling strengths and anticrossing characteristics.

82



Figure 7.11: Normalized total absorption cross-section for three-layered prolate nanodisk
calculated using the FDTD method. Results are shown for TMDCs: MoS2 (a), MoSe2 (b),
WS2 (c), and WSe2 (d). These represent cases with fixed TMDC volume fraction of 0.1. The
ED and MD modes overlap which is consistent with prolate geometry. Strong MD coupling
to excitons is observed in MoS2 and WS2.

7.4.1. Uncoupled and Coupled Mode Characterisation

To characterize the strong coupling regime, we first establish the dispersion relations of the
uncoupled modes (MD and ED) and the exciton as a function of metal fill factor (fm). The
uncoupled modes are determined by calculating the scattering cross-section of equivalent
structures whose TMDC material dispersion has had its excitonic response removed. This is
achieved by fitting the permittivity data of WS2 and MoS2 using the Tauc-Lorentz oscillator
model [159, 160]

Im [εt,n(E)] =


AnE0nBnm(E−Egn)2

((E2−E2
0n)

2+B2
nmE2)E

, E > Egn

0, E ≤ Egn

(7.1)

where n is the number of oscillators, E0n is the center energy of the nth element, Egn the
band gap energy of the oscillator of the nth element, Bnm the broadening of the oscillator of
the nth element, and An the amplitude of the oscillator of the nth element. The real part is
calculated via the Kramers-Kronig transformation.

Here the fit is done over an energy range of 0.7 to 2.5 eV and then we omit the A, and if
needed the B, excitons (that couple to the ED and MD modes) from the permittivity. This
fitted permittivity, representing the background dielectric response, is used as the third layer
in the Ag/silica/TMDC stack. The total scattering cross-section of this uncoupled system is
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Figure 7.12: Disperstion of the scattering cross-sections decomposed into MD and ED contri-
butions for (a-b) Ag/silica/WS2 and (c-d) Ag/silica/MoS2 prolate nanodisks.

then decomposed into MD and ED contributions using the MENP program (as detailed in
Section 4.2.1). A Lorentzian model is fitted to these decomposed spectra for each fill factor to
extract the uncoupled MD and ED resonance energies, with linewidths fixed at γMD = 0.11
eV and γED = 0.10 eV.

For the WS2 system, which features a single exciton, the coupled scattering spectra for
each fill factor are fitted using a coupled harmonic oscillator model (from equation 4.53) for
the MD and ED modes individually:

Csca(ω) ∝ ω4

∣∣∣∣∣ ω2
ex − ω2 − iγexω

(ω2
MD/ED − ω2 − iγMD/EDω)(ω2

ex − ω2 − iγexω)− ω2g2

∣∣∣∣∣
2

. (7.2)

Here, γex = 0.05 eV is fixed. From these fits, we extract the coupled mode energies and
the coupling strength g. The dispersion of the coupled MD (blue color) and ED (red color)
modes is well-described by the quadratic functions as depicted in Figure 7.13(a):

ωMD = −2.02f2
m + 3.17fm + 1.10,

ωED = −5.48f2
m + 5.13fm + 0.90.

A comparison between the uncoupled (black dashed lines) and coupled (black solid lines) MD
and ED modes is shown in Figure 7.13(c,e). The agreement is relatively good, with only small
systematic shifts that likely arise from neglecting part of the dispersion when evaluating the
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Figure 7.13: (a-b) Coupled MD (blue color) and ED (red color) modes fitted plot for
Ag/silica/WS2 and Ag/silica/MoS2 compositions respectively. (c-d) Decomposed uncoupled
MD modes and (e-f) decomposed uncoupled ED modes for the same compositions, with un-
coupled modes as black dashed lines and coupled MD and ED modes as black solid lines.
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Figure 7.14: (a) The fitted coupling strength plot for MD (blue color) and ED (red color)
modes for Ag/silica/WS2. (b-c) The fitted anticrossings using the linear fitted functions of g
for MD and ED modes.

uncoupled modes. The coupling strengths for the MD (blue color) and ED (red color) modes
show a linear dependence on fm as depicted in Figure 7.14(a):

MD mode: g = 0.061fm + 0.075,

ED mode: g = −0.037fm + 0.087.

Note, that the signs of the linear terms of the ED- and MD-exciton coupling terms are
different. However, they are consistent with the observations made in the preceding Chapter
in Figure 6.7g.

In the case of the MoS2 TMDC inclusion, the behavior is similar to that reported in
previous studies [132], but with a key difference: two excitons (A and B) interact with the MD
and ED modes rather than with a plasmon mode. We follow a similar methodology, fitting the
permittivity data while excluding both A and B exciton transitions. The coupled scattering
spectrum for the MD mode is modeled with an extended harmonic oscillator equation from
Section 4.4.2:

Csca ∝ ω4

∣∣∣∣[(ω2
A−ω2− iγAω)(ω

2
B−ω2− iγBω)

]
×
[
(ω2

MD−ω2− iγMD/EDω)(ω
2
A−ω2− iγAω)

× (ω2
B − ω2 − iγBω)− 4ω2g2A(ω

2
B − ω2 − iγBω)− 4ω2g2B(ω

2
A − ω2 − iγAω)

]−1
∣∣∣∣2 (7.3)
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Figure 7.15: (a-b) Fitted coupling strengths gA and gB for MD (blue color) and ED (red
color) modes in Ag/silica/MoS2. (c-d) Fitted anticrossings using quadratic functions of gA
and gB for MD and ED modes.

The linewidths are fixed to γMD = 0.1 eV, γA = γB = 0.05 eV for the MD mode (blue
color), and γED = 0.125 eV, γA = 0.04 eV, γB = 0.08 eV for the ED mode (red color). The
resulting coupled mode dispersions, as depicted in Figure 7.13(b), are:

ωMD = −1.50f2
m + 2.87fm + 1.10,

ωED = −0.65f2
m + 2.463fm + 1.20.

Figure 7.13(d,f) compares the uncoupled and coupled MD and ED modes for MoS2, demon-
strating rather good agreement. The coupling strengths gA and gB for both MD (blue color)
and ED (red color) modes exhibit a quadratic dependence as depicted in Figure 7.15(a-b):

MD mode: gA = 3.35f2
m − 2.29fm + 0.44, (7.4)

gB = 2.85f2
m − 1.55fm + 0.28, (7.5)

ED mode: gA = 2.06f2
m − 1.38fm + 0.28, (7.6)

gB = 2.91f2
m − 1.63fm + 0.30. (7.7)

7.4.2. Anticrossing Characterisation

The strong coupling regime is confirmed by the characteristic anticrossing behavior observed
in the polariton dispersion. We model this using a non-Hermitian Hamiltonian approach. For
WS2, the non-Hermitian Hamiltonian model from Section 4.4.1 is used:

Ĥ =

(
ωopt − iγopt/2 g

g ωex − iγex/2

)
, (7.8)
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where opt stands for the optical ED or MD mode. The optical mode frequencies ωopt(fm)
and coupling strengths g(fm) are given by the quadratic and linear functions defined in the
preceding section. To fit the anticrossing data, the linewidths γex and γopt are fixed, and
the exciton resonance ωex is treated as a free parameter. The functional forms for the mode
frequency and coupling strength are scaled by independent fitting parameters a1 and a2 (where
0 ≤ a1, a2 ≤ 1) such that ωopt = a1 ·ωopt(fm) and g = a2 ·g(fm). This two-parameter approach
allows for independent adjustment of the energy scaling and interaction strength to achieve
the optimal fit to the anticrossing data.

In our model, the scaling parameters a1 and a2 are introduced not as arbitrary fitting
factors, but to account for systematic deviations between the simplified coupled-oscillator
Hamiltonian and the full-field FDTD simulations with experimental material data. With-
out scaling, the fitted dispersion fails to reproduce the expected condition at zero detuning,
where the Rabi splitting must satisfy ΩR = 2g. The scaling ensures consistency between
the theoretical coupling strength and the simulated response, which is particularly important
since the TMDC permittivity is directly taken from experiment, and the multilayer geometry
(Ag/silica/TMDC) supports both MD and ED optical modes that couple differently to the
exciton. Importantly, the scaling factors remain within the physical range (0–1) and are ap-
plied globally across all fill factors rather than tuned locally, which avoids overfitting. They
act as correction factors that bridge the gap between the simplified analytical model and
the rigorous numerical results. Thus, their use is justified as a minimal adjustment ensuring
quantitative consistency with physical constraints, rather than an artificial fitting tool.

The eigenvalues of this parameterized Hamiltonian are calculated to generate the fitted
anticrossing plots in Figure 7.14(b-c) for the hyperoblic nanostructure with WS2.

To validate the self-consistency of the anticrossing fit, we confirmed that the Rabi splitting
at zero detuning (ΩR) matched the value expected from the scaled coupling strength used in
the Hamiltonian as given below, i.e., ΩR = 2(a2 · g(fm)). This ensures the observed splitting
in the anticrossing plot is directly proportional to the coupling parameter that generated it.

Figure 7.14(a) shows the distinct linear dependence of g on fill factor for both modes. The
MD mode’s (blue color) coupling strength increases with f (positive slope), while the ED
mode’s (red color) decreases (negative slope), revealing their different interaction mechanisms
with the TMDC exciton. The anticrossing behavior shown in Figure 7.14(b-c) exhibits clear
Rabi splitting at zero detuning (δ = 0), occurring at f = 0.30. The MD mode demonstrates
stronger coupling with a larger Rabi splitting (ΩR = 186 meV and g = 93 meV) compared
to the ED mode (ΩR = 152 meV and g = 76 meV). These anticrossing patterns reveal
distinct upper and lower polariton branches with characteristic avoided crossing behavior.
In the figures, the uncoupled exciton is represented by a red dashed line, the uncoupled
MD/ED mode by a black solid line, the anticrossing data by black dashed lines, and the
fitted anticrossings by blue solid lines.

For the MoS2 system, we employ the extended non-Hermitian Hamiltonian model from
Section 4.4.2:

Ĥ = ℏ

ωopt − i
γopt
2 gA gB

gA ωA − iγA2 0
gB 0 ωB − iγB2

 (7.9)

A similar fitting procedure is used. The functional forms for ωopt(fm), gA(fm), and gB(fm)
from the preceding section are scaled by independent parameters a1, a2, and a3 (where 0 ≤
a1, a2, a3 ≤ 1), such that ωopt = a1 · ωopt(fm), gA = a2 · gA(fm), and gB = a3 · gB(fm).
The exciton resonances ωA and ωB are free parameters, while the linewidths γA/B and γopt
are fixed. This multi-parameter scaling provides greater flexibility to accurately capture the
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complex interactions in the three-level system.
Similarly, for the MoS2 system, the scaling parameters a1, a2, and a3 serve the same

purpose of reconciling the simplified Hamiltonian with the full numerical simulations. The
complex multilayer structure and the presence of two distinct excitonic resonances necessitate
these corrections to maintain physical consistency across the entire parameter space.

The eigenvalues of this parameterized Hamiltonian are calculated to generate the fitted
anticrossing plots in Figure 7.15(c-d).

The self-consistency of the fit was validated by confirming that the observed Rabi splittings
at zero detuning for the A and B excitons matched the relations ΩR1 = ΩR,A = 2(a2 ·
gA(fm)) and ΩR2 = ΩR,B = 2(a3 · gB(fm)), ensuring the splittings were consistent with the
scaled coupling strengths used in the Hamiltonian. The coupling strengths gA and gB follow
the quadratic fits from the preceding subsection. As shown in Figure 7.15(a-b), these strengths
exhibit a pronounced U-shaped dependence on fm.

The resulting anticrossing plots, Figure 7.15(c-d), reveal three polariton branches: lower,
middle, and upper, with the uncoupled A-exciton (red dashed line), uncoupled B-exciton (red
solid line), and uncoupled MD/ED mode (black solid line) clearly separated from the fitted
anticrossings (blue solid lines). Zero detuning for the A-exciton occurs at fm = 0.26 (MD)
and fm = 0.24 (ED), and for the B-exciton at fm = 0.32 (MD) and fm = 0.30 (ED). The
MD mode again shows stronger coupling particularly for B exciton interactions, with Rabi
splittings of ΩR,A = 124 meV and ΩR,B = 151 meV, compared to ΩR,A = 132 meV and
ΩR,B = 136 meV for the ED mode.

These results for the MD mode-exciton coupling in the prolate geometry are consistent
with the findings in Chapter 6, confirming that it is stronger than ED mode-exciton coupling.
Furthermore, they demonstrate that the prolate geometry outperforms the spherical geometry
in self-hybridized systems. Finally, we conclude that it is possible to realize strongly coupled
hyperbolic systems with self-hybridization based on combining TMDC materials with metallic
layers while using a passive dielectric third layer to tune the exact properties.
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Chapter 8

Conclusions

This dissertation has systematically investigated the optical properties and self-hybridized
strong coupling phenomena in uniaxial hyperbolic multilayer nanospheroids. Through com-
prehensive numerical modeling using the T-matrix method and FDTD simulations, this work
establishes a framework for understanding and designing these nanostructures for advanced
polaritonic applications. The following conclusions synthesize key findings from each chapter,
demonstrating the progression from fundamental mode characterization to successful demon-
stration of strong coupling with realistic materials.

Summary of Findings

Optical Modes of Hyperbolic Nanospheroids (Chapter 5)

The research foundation was established through detailed characterization of the rich optical
modes in hyperbolic nanospheroids. These nanostructures support both plasmonic-like ED
resonances and unique magnetic responses originating from the coupling of MD and EQ
modes—a distinctive feature of hyperbolic dispersion where the perpendicular and parallel
components of the permittivity tensor exhibit opposite signs.

• The MD-EQ mode exhibits a constant phase relationship under shape transforma-
tions, unlike the phase-reversing behavior observed in isotropic particles. This material-
dependent mode shows high sensitivity to shape variations, demonstrating a pronounced
redshift (approximately 2.6 times greater than the ED mode) when transitioning from
prolate to oblate geometries.

• Optical response tuning is effectively achieved through the metal fill factor (fm), which
controls the hyperbolic dispersion range. Plasmonic ED modes blueshift with increasing
fm, while the MD-EQ mode displays a distinct crescent-shaped dependence, enabling
independent control over mode positions through both material and geometric param-
eters.

• This chapter established the optical characteristics of prolate and spherical geometries
compared to oblate configurations, such as enhanced field localization and stronger mag-
netic resonances, providing the foundation for subsequent strong coupling investigations.
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Self-Hybridized Strong Coupling with Idealized Excitons (Chapter 6)

Building upon the fundamental understanding of optical modes, Chapter 6 demonstrated suc-
cessful achievement of self-hybridized strong coupling through direct integration of excitonic
resonances into the dielectric layers of hyperbolic nanospheroids.

• The MD mode consistently outperformed the ED mode, achieving strong coupling at sig-
nificantly lower oscillator strengths (f sc

MD ≈ 0.04 for spheres, 0.03 for prolate) compared
to the ED mode (f sc

ED ≥ 0.36 for spheres, ≥ 0.28 for prolate). This advantage origi-
nates from the MD mode’s inherently narrower linewidth and predominantly absorptive
character.

• Coupling strength for both modes followed the expected
√
f dependence, with the MD

mode exhibiting approximately 50% larger coupling strength. The system reached the
ultra-strong coupling regime (g > 10% of the resonance energy) at remarkably low
oscillator strengths for the MD mode (fusc

MD ≈ 0.15 for spheres, 0.22 for prolate).

• Practical implementation using multilayer nanodisks confirmed the robustness of these
findings. The MD mode’s coupling strength showed reduced sensitivity to size increases
and varied monotonically with metal fill factor, peaking around fm ≈ 0.7. In contrast,
ED coupling demonstrated greater volatility, peaking at fm ≈ 0.3 before decreasing.
Prolate geometries consistently yielded stronger coupling than their spherical counter-
parts.

• The self-hybridized approach successfully validated the elimination of external cavity
requirements through co-location of optical resonator and excitonic material, showcasing
a versatile platform for compact polaritonic devices.

Strong Coupling with Realistic TMDC Excitons (Chapter 7)

The study was extended to realistic excitonic materials—transition metal dichalcogenides
(TMDCs: MoS2, WS2, MoSe2, WSe2)—bridging the gap between idealized models and prac-
tical implementation.

• Initial two-layer structures (metal-TMDC) successfully demonstrated ED-exciton cou-
pling but revealed an important limitation: no MD-exciton coupling was observed,
regardless of geometry. This was the result of a very large red shift of both the ED and
MD modes, well beyond the typical energies of excitons. This red shift could not be
fully reversed by using prolate nanoparticles.

• Introduction of a three-layer design, incorporating a silica spacer between metal and
TMDC layers, proved to be an effective approach. This modification enabled the first
observation of strong MD-exciton coupling in specific prolate geometries and material
compositions. The approach works due to a lowering of the dielectric permittivity that
mixes with the metallic one and inhibits such a large red shift as above, while keeping
the strong ecitonic transition of the TMDCs. Even this reduced amount of TMDC
materials allows for observation of strong coupling.

• For prolate nanospheroids with fixed TMDC volume fraction (10%), strong MD-exciton
coupling with clear anticrossing behavior was achieved for MoS2 and WS2. Coupling
strength tuning via metal fill factor exhibited redshift for fm = 0.1–0.5 and blueshift
for fm = 0.52–0.88.
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• Quantitative analysis of prolate nanodisks confirmed MD mode dominance. For WS2

(single exciton), the MD mode exhibited Rabi splitting of ΩR = 186 meV (g = 93 meV),
outperforming the ED mode (ΩR = 152 meV). For MoS2 (dual excitons), the MD mode
also showed stronger coupling to the B exciton (ΩR,B = 151 meV) compared to the
ED mode.

• This chapter conclusively demonstrated that while spherical geometries are limited to
ED-exciton coupling, the prolate geometry is essential for achieving desired MD-exciton
strong coupling in practical, multi-layered systems.

Summary

This research successfully demonstrates that uniaxial hyperbolic multilayer nanospheroids rep-
resent a highly versatile and powerful platform for achieving self-hybridized strong coupling.
The work systematically reveals that optimal approach for efficient light-matter interaction
in these systems requires synergy of three key design principles:

Material Composition: A metal fill factor (fm) near 0.5–0.7 optimizes hyperbolic dis-
persion and maximizes MD coupling strength. Employing high-quality TMDCs as excitonic
material is crucial for achieving strong coupling.

Particle Geometry: Prolate geometry demonstrates significant advantages over spheri-
cal and oblate shapes, providing stronger field localization, more robust MD resonances, and
necessary conditions for MD-exciton interaction in practical multi-layered designs.

Structural Design: A three-layered architecture (metal/dielectric spacer/excitonic ma-
terial) is essential for facilitating MD-exciton coupling, unattainable in simple two-layered
structures.

Outlook and Future Perspectives

The findings of this work open several promising avenues for future research:

• Experimental Realization: The proposed multilayer nanodisks, particularly prolate
Ag/Silica/WS2 and Ag/Silica/MoS2 systems, represent prime candidates for experi-
mental validation using advanced nanofabrication techniques such as lithography and
thin-film deposition.

• Active Tunability: Integration of actively tunable materials (e.g., using electrostatic
gating on TMDCs or phase-change materials) could enable dynamic control of coupling
strength in situ post-fabrication.

• Quantum and Nonlinear Optics: These efficient MD-based polaritonic systems
could serve as platforms for exploring quantum correlations, polariton lasing, or en-
hanced nonlinear optical effects within deeply subwavelength volumes.

• Extended Material Platforms: The established design principles could be applied to
other emerging excitonic and anisotropic materials, including perovskites, black phos-
phorus, or other van der Waals heterostructures.

• Device Integration: Future work should explore integration of these optimized nanos-
tructures into functional devices for applications in quantum information processing,
sensing, and low-energy optoelectronics.
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Chapter 9

Appendix A

This appendix is adapted from [123]

9.1. Multipole Decompostion in Cartesian Coordinates

This appendix provides the key mathematical expressions for multipole decomposition used
in this dissertation. The detailed derivations follow the theoretical framework developed by
Alaee et al. [123].

Notation and Symbols

The following symbols are used throughout this appendix:

• ω - angular frequency of the electromagnetic field

• k = ω/c - wavenumber, where c is the speed of light in vacuum

• ε0 - permittivity of free space

• εr - relative permittivity of the material

• jℓ(kr) - spherical Bessel functions of order ℓ

• r−1, r0, r1 - spherical tensor components of position vector r

• Jω
−1, J

ω
0 , J

ω
1 - spherical tensor components of current density Jω

• α, β = x, y, z - Cartesian coordinate indices

• δαβ - Kronecker delta function

9.1.1. Current Density Conversion

The induced electric current density is obtained from the electric field distribution as:

Jω(r) = iωε0(εr − 1)Eω(r) (9.1)

9.1.2. Coordinate System Relations

The transformation between spherical and Cartesian coordinates for position and current
density components are given by:

93



Position Coordinates

x =
1√
2
(r−1 − r1) (9.2)

y =
1√
2i
(r−1 + r1) (9.3)

z = r0 (9.4)

Current Density Components

Jω
x =

1√
2
(Jω

−1 − Jω
1 ) (9.5)

Jω
y =

1√
2i
(Jω

−1 + Jω
1 ) (9.6)

Jω
z = Jω

0 (9.7)

Cross Product Relations

The cross product components in Cartesian coordinates are:

(r× Jω)x = yJω
z − zJω

y (9.8)

(r× Jω)y = zJω
x − xJω

z (9.9)
(r× Jω)z = xJω

y − yJω
x (9.10)

9.1.3. Exact Multipole Expressions

The exact expressions for multipole moments in Cartesian coordinates, derived from spherical
multipole theory [123], are:

Electric Dipole Moment

pωα = − 1

iω

∫
d3rJω

α j0(kr) +
k2

2

∫
d3r

[
3(r · Jω)rα − r2Jω

α

] j2(kr)
(kr)2

(9.11)

where α = x, y, z, k = ω/c is the wavenumber, and jℓ(kr) are spherical Bessel functions.

Magnetic Dipole Moment

mω
α =

3

2

∫
d3r(r× Jω)α

j1(kr)

kr
(9.12)

Electric Quadrupole Moment

The electric quadrupole moment has contributions from two different multipolar orders (ℓ = 1
and ℓ = 3):

Qe
αβ = − 3

iω

∫
d3r

[
3(rβJ

ω
α + rαJ

ω
β )− 2(r · Jω)δαβ

] j1(kr)
kr

+ 2k2
∫

d3r
[
5rαrβ(r · Jω)− (rαJ

ω
β + rβJ

ω
α )r

2 − r2(r · Jω)δαβ
] j3(kr)
(kr)3

(9.13)

where δαβ is the Kronecker delta.
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Magnetic Quadrupole Moment

Qm
αβ = 15

∫
d3r [rα(r× Jω)β + rβ(r× Jω)α]

j2(kr)

(kr)2
(9.14)

9.1.4. Long-Wavelength Approximations

For nanostructures small compared to the wavelength (kr ≪ 1), the spherical Bessel functions
can be approximated, yielding:

Spherical Bessel Function Expansions

j0(kr) ≈ 1− (kr)2

6
+O((kr)4) (9.15)

j1(kr) ≈
kr

3
− (kr)3

30
+O((kr)5) (9.16)

j2(kr) ≈
(kr)2

15
− (kr)4

210
+O((kr)6) (9.17)

j3(kr) ≈
(kr)3

105
+O((kr)5) (9.18)

Long-Wavelength Multipole Expressions

Electric Dipole:

pα ≈ − 1

iω

∫
d3rJω

α +
k2

10

∫
d3r

[
(r · Jω)rα − 2r2Jω

α

]
(9.19)

The first term represents the conventional electric dipole moment, while the second term
corresponds to the toroidal dipole contribution.

Magnetic Dipole:

mω
α ≈ 1

2

∫
d3r(r× Jω)α (9.20)

This is the conventional magnetic dipole moment.

Electric Quadrupole:

Qe
αβ ≈ − 1

iω

∫
d3r

[
3(rβJ

ω
α + rαJ

ω
β )− 2(r · Jω)δαβ

]
+

k2

14

∫
d3r

[
4rαrβ(r · Jω)− 5r2(rαJ

ω
β + rβJ

ω
α ) + 2r2(r · Jω)δαβ

]
(9.21)

The first term is the conventional electric quadrupole moment, while the second term
represents the toroidal quadrupole contribution.

Magnetic Quadrupole:

Qm
αβ ≈

∫
d3r [rα(r× Jω)β + rβ(r× Jω)α] (9.22)

This is the conventional magnetic quadrupole moment.

95



9.1.5. Physical Interpretation

The long-wavelength approximations reveal that electric multipole moments contain both
conventional and toroidal contributions. The toroidal terms, which are often misidentified as
a separate family of multipoles, are actually higher-order corrections that become significant
beyond the long-wavelength limit. In contrast, magnetic multipole moments retain their
conventional forms under the exact formulation.

For detailed step-by-step derivations of these expressions, including the spherical-to-Cartesian
transformations and algebraic manipulations, see the supplemental material of Alaee et al. [123].
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Chapter 10

Appendix B

This appendix is adapted from [126, 127]

10.1. Vector Quasi-Spherical Wave Functions for Anisotropic Me-
dia

For electromagnetic wave propagation in uniaxial anisotropic media, the conventional vec-
tor spherical wave functions must be generalized to vector quasi-spherical wave functions
(VQSWFs). The electromagnetic fields can be expressed as integrals over plane waves, and
for each plane wave, the Maxwell equations yield specific dispersion relations [126].

Symbol Definitions and Notation

The following symbols are used throughout this appendix:

• ω - angular frequency; c - speed of light in vacuum

• k0 = ω/c - free space wavenumber

• ks = k0
√
εsµs - wavenumber in exterior medium

• ki = k0
√
εiµi - wavenumber for ordinary wave in interior

• εs, µs - relative permittivity and permeability of surrounding medium

• εi, µi, εiz - permittivity components and permeability of interior medium

• Di, Ds - interior and exterior domains; S - boundary surface

• n - outward unit normal vector on surface S

• (r, θ, ϕ) - spherical coordinates with unit vectors (er, eθ, eϕ)

• (k, β, α) - wave vector spherical coordinates with unit vectors (ek, eβ, eα)

• ν, µ - composite indices representing pairs (m,n) and (m′, n′) respectively

• mrz =
√

εiz/εs - relative anisotropy parameter

• g(ks, r, r
′) = ejks|r−r′|

4π|r−r′| - Green’s function
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• π
|m|
n (β) = mP

|m|
n (cosβ)
sinβ , τ |m|

n (β) = dP
|m|
n (cosβ)

dβ - angular functions

• P
|m|
n (cosβ) - associated Legendre polynomials

• λkβ(β) =
(

1
εi
− 1

εiz

)
sinβ cosβ

• λββ(β) =
1
εi
cos2 β + 1

εiz
sin2 β

• M3
ν ,N

3
ν - outgoing vector spherical wave functions where ν ≡ (m,n)

10.1.1. Maxwell Equations in Anisotropic Media

For a uniaxial anisotropic medium with permittivity tensor:

εi =

εi 0 0
0 εi 0
0 0 εiz

 (10.1)

The Maxwell equations are:

∇×Ei = jk0Bi, ∇×Hi = −jk0Di (10.2)
∇ ·Bi = 0, ∇ ·Di = 0 (10.3)

with constitutive relations:

Di = εiEi, Bi = µiHi (10.4)

10.1.2. Plane Wave Analysis and Dispersion Relations

Using Fourier transform techniques, the electromagnetic fields can be expressed as integrals
over plane waves:

A(r) =

∫
Ã(k)ejk·rd3k (10.5)

For each plane wave with wave vector k, the Maxwell equations in Fourier space become:

k× Ẽ = k0B̃ (10.6)

k× H̃ = −k0D̃ (10.7)

k · D̃ = 0, k · B̃ = 0 (10.8)

In spherical coordinates (k, β, α) for the wave vector, the analysis yields two characteristic
waves:

Ordinary wave:
k21 = k20εiµi (10.9)

Extraordinary wave:

k22 = k20
εiµi

cos2 β + εi
εiz

sin2 β
(10.10)
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10.1.3. Vector Quasi-Spherical Wave Functions

The VQSWFs are defined through integral representations over the unit sphere as given in
[126]:

Xe
mn(r) = − 1

4πjn+1

1√
2n(n+ 1)

∫ 2π

0

∫ π

0

[
jτ |m|

n (β)ejk1(β,α)·reα

+ε[λkβ(β)ek + λββ(β)eβ]mπ|m|
n (β)ejk2(β,α)·r

]
ejmα sinβ dβ dα (10.11)

Ye
mn(r) = − 1

4πjn+1

1√
2n(n+ 1)

∫ 2π

0

∫ π

0

[
jmπ|m|

n (β)ejk1(β,α)·reα

+ε[λkβ(β)ek + λββ(β)eβ]τ
|m|
n (β)ejk2(β,α)·r

]
ejmα sinβ dβ dα (10.12)

Xh
mn(r) = − 1

4πjn+1

1√
2n(n+ 1)

∫ 2π

0

∫ π

0

[
τ |m|
n (β)ejk1(β,α)·reβ

+j
√
ελββ(β)mπ|m|

n (β)ejk2(β,α)·reα

]
ejmα sinβ dβ dα (10.13)

Yh
mn(r) = − 1

4πjn+1

1√
2n(n+ 1)

∫ 2π

0

∫ π

0

[
mπ|m|

n (β)ejk1(β,α)·reβ

+j
√

ελββ(β)τ
|m|
n (β)ejk2(β,α)·reα

]
ejmα sinβ dβ dα (10.14)

where π
|m|
n (β) and τ

|m|
n (β) are angular functions related to associated Legendre polynomi-

als, and λkβ(β), λββ(β) are functions derived from the anisotropic material properties.

10.2. Null-Field Method for Anisotropic Particles

10.2.1. General Null-Field Equation

The null-field method for anisotropic particles [126, 127] starts with the general null-field
equation for the exterior domain:

Ee(r) +∇×
∫
S
ei(r

′)g(ks, r, r
′)dS(r′)

+
j

k0εs
∇×∇×

∫
S
hi(r

′)g(ks, r, r
′)dS(r′) = 0 (10.15)

for r ∈ Di, where ei = n×Ei and hi = n×Hi are the surface fields.
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10.2.2. Expansion in Vector Spherical Wave Functions

Following the standard procedure:

1. Restrict r to lie on a spherical surface enclosed in Di

2. Expand the incident field and the dyad g(r, r′)I in terms of regular vector spherical wave
functions

3. Use orthogonality of vector spherical wave functions on spherical surfaces

This yields the matrix form:

jk2s
π

∫
S

[
ei(r

′) ·
(
N3

ν(ksr
′)

M3
ν(ksr

′)

)
+ j

√
µs

εs
hi(r

′) ·
(
M3

ν(ksr
′)

N3
ν(ksr

′)

)]
dS(r′) = −

(
aν
bν

)
(10.16)

10.2.3. Surface Field Expansion for Anisotropic Media

For anisotropic particles, the surface fields are expanded using VQSWFs:

(
eNi (r′)
hN
i (r′)

)
=

N∑
µ=1

cNµ

(
n(r′)×Xe

µ(r
′)

−j
√

εi
µi
n(r′)×Xh

µ(r
′)

)

+ dNµ

(
n(r′)×Ye

µ(r
′)

−j
√

εi
µi
n(r′)×Yh

µ(r
′)

)
(10.17)

10.3. Derivation of Matrix Elements

10.3.1. Substitution and Coefficient Separation

Substituting the anisotropic surface field expansion into the null-field equation, contributions
from cNµ and dNµ coefficients are separated.

For cNµ coefficients (X-type functions):

jk2s
π

∫
S

[
(n×Xe

µ) ·
(
N3

ν

M3
ν

)
+j

√
µs

εs

(
−j

√
εi
µi

n×Xh
µ

)
·
(
M3

ν

N3
ν

)]
dS (10.18)

The magnetic field coupling term simplifies as:

j

√
µs

εs

(
−j

√
εi
µi

)
= j · (−j)

√
µsεi
εsµi

=

√
µsεi
εsµi

(10.19)

For nonmagnetic media (µs = µi = 1):√
µsεi
εsµi

=

√
εi
εs

(10.20)
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10.3.2. Final Matrix Elements

The matrix Q31
anis has the block structure:

Q31
anis =

(
(Q31

anis)
11 (Q31

anis)
12

(Q31
anis)

21 (Q31
anis)

22

)
(10.21)

From the first component (N3
ν term) with cNµ coefficients:

(Q31
anis)

11
νµ =

jk2s
π

∫
S

[
(n×Xe

µ) ·N3
ν +

√
εi
εs
(n×Xh

µ) ·M3
ν

]
dS (10.22)

From the first component (N3
ν term) with dNµ coefficients:

(Q31
anis)

12
νµ =

jk2s
π

∫
S

[
(n×Ye

µ) ·N3
ν +

√
εi
εs
(n×Yh

µ) ·M3
ν

]
dS (10.23)

From the second component (M3
ν term) with cNµ coefficients:

(Q31
anis)

21
νµ =

jk2s
π

∫
S

[
(n×Xe

µ) ·M3
ν +

√
εi
εs
(n×Xh

µ) ·N3
ν

]
dS (10.24)

From the second component (M3
ν term) with dNµ coefficients:

(Q31
anis)

22
νµ =

jk2s
π

∫
S

[
(n×Ye

µ) ·M3
ν +

√
εi
εs
(n×Yh

µ) ·N3
ν

]
dS (10.25)

10.4. Physical Interpretation

The derived matrix elements represent the coupling between the vector quasi-spherical wave
functions inside the anisotropic particle and the regular vector spherical wave functions in the
exterior isotropic medium. The factor

√
εi
εs

reflects the anisotropic nature of the particle and
accounts for the modified electromagnetic boundary conditions.

In the isotropic limit (εiz = εi), the VQSWFs reduce to conventional VSWFs, and the
factor

√
εi
εs

becomes the standard relative permittivity ratio, recovering the isotropic T-matrix
formulation.

The complete T-matrix for the anisotropic particle is obtained as:

Tanis = −Q11
anis(ks, ki,mrz)

[
Q31

anis(ks, ki,mrz)
]−1 (10.26)

where mrz =
√

εiz/εs characterizes the degree of anisotropy.
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Chapter 11

Appendix C

11.1. Vector Spherical Wave Functions

Symbol Definitions and Notation

The following symbols are used throughout this appendix:

• r = (x, y, z) - position vector in Cartesian coordinates

• r = (r, θ, ϕ) - position vector in spherical coordinates

• r = |r| - radial distance from the origin

• θ - polar angle (measured from the positive z-axis), 0 ≤ θ ≤ π

• ϕ - azimuthal angle (measured from the positive x-axis), 0 ≤ ϕ < 2π

• k - wavenumber in the surrounding medium

• êr - radial unit vector pointing outward from the origin

• θ̂ - polar unit vector pointing in the direction of increasing θ

• ϕ̂ - azimuthal unit vector pointing in the direction of increasing ϕ

• l - multipole order (positive integer), l = 1, 2, 3, . . .

• m - degree (integer), −l ≤ m ≤ l

• Pm
l (cos θ) - associated Legendre polynomial of degree l and order m

• z1l (kr) = jl(kr) - spherical Bessel function of the first kind

• z3l (kr) = h
(1)
l (kr) - spherical Hankel function of the first kind

• Y m
l (θ, ϕ) - scalar spherical harmonic

• mm
l (θ, ϕ), nm

l (θ, ϕ) - vector spherical harmonics

• cml - normalization constant for spherical harmonics

• ∇× - curl operator in vector calculus

• [f(kr)]′ = d
d(kr) [f(kr)] - derivative with respect to the argument kr
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• δll′ - Kronecker delta function: δll′ = 1 if l = l′, and δll′ = 0 if l ̸= l′

• a · b - dot product of vectors a and b

• a∗ - complex conjugate of vector a

Here, the formulation used by Amos [161], Wriedt, and Doicu [126]. The electric and
magnetic fields are expanded into VSWFs, which are classified as either regular (denoted with
the superscript 1) or radiating (denoted with the superscript 3) and defined as:

Mm
l

1(kr) = z1l (kr)m
m
l (θ, ϕ), (11.1)

Nm
l

1(kr) =

√
l(l + 1)

2

[
z1l (kr)

kr
Y m
l (θ, ϕ)êr +

[krz1l (kr)]
′

kr
nm
l (θ, ϕ)

]
, (11.2)

Mm
l

3(kr) = z3l (kr)m
m
l (θ, ϕ), (11.3)

Nm
l

3(kr) =

√
l(l + 1)

2

[
z3l (kr)

kr
Y m
l (θ, ϕ)êr +

[krz3l (kr)]
′

kr
nm
l (θ, ϕ)

]
. (11.4)

Here, z1l (kr) represents the spherical Bessel function, and z3l (kr) represents the spherical
Hankel function. The scalar spherical harmonic Y m

l (θ, ϕ) is a function of the angular coordi-
nates θ and ϕ, while mm

l and nm
l are the vector spherical harmonics (VSHs) that define the

angular dependence of the fields.
The vector spherical harmonics mm

l (θ, ϕ) and nm
l (θ, ϕ) are expressed as:

mm
l (θ, ϕ) = cml

√
2l(l + 1)

2

[
i
m

sin θ
Pm
l (cos θ)θ̂ −

dPm
l (cos θ)

dθ
ϕ̂

]
eimϕ, (11.5)

nm
l (θ, ϕ) = cml

√
2l(l + 1)

2

[
dPm

l (cos θ)

dθ
θ̂ + i

m

sin θ
Pm
l (cos θ)ϕ̂

]
eimϕ. (11.6)

In these expressions, Pm
l (cos θ) is the associated Legendre polynomial, which describes the

angular dependency. The normalization constant cml ensures orthonormality and is defined
as:

cml =

√
(2l + 1)

4π

(l −m)!

(l +m)!
. (11.7)

The scalar spherical harmonic Y m
l (θ, ϕ), used in the radial component of Nm

l , is defined
as:

Y m
l (θ, ϕ) = cml Pm

l (cos θ)eimϕ. (11.8)

The vector spherical wave functions Nm
l and Mm

l are mathematically related through the
curl operation:

Nm
l

1(kr) =
1

k
∇×Mm

l
1(kr), (11.9)

Nm
l

3(kr) =
1

k
∇×Mm

l
3(kr). (11.10)
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These relationships illustrate that the magnetic-type wave functions are derived directly
from the electric-type wave functions via a curl operation.

The orthogonality of the vector spherical harmonics is a crucial property that simplifies
mathematical operations in the T-matrix method. The orthogonality relations are given by:

∫ 2π

0

∫ π

0
mm

l (θ, ϕ) ·mm′
l′

∗(θ, ϕ) sin θ dθ dϕ = πδll′δmm′ , (11.11)∫ 2π

0

∫ π

0
nm
l (θ, ϕ) · nm′

l′
∗(θ, ϕ) sin θ dθ dϕ = πδll′δmm′ , (11.12)∫ 2π

0

∫ π

0
mm

l (θ, ϕ) · nm′
l′

∗(θ, ϕ) sin θ dθ dϕ = 0. (11.13)

These orthogonality properties ensure that vector spherical harmonics of different orders
(l) or degrees (m) are mutually independent, making them an efficient basis for expanding
electromagnetic fields.
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