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Atmospheric turbulence
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E. Bodenschatz et al. [Science, 327:970-971, 2010]

Complexity of turbulence is caused by its non-linear scale interaction
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Atmospheric turbulence
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E. Bodenschatz et al. [Science, 327:970-971, 2010]

Complexity of turbulence is caused by its non-linear scale interaction
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Atmospheric turbulence

1000 km ————————— 100 km 1 km

Small scales influence cloud lifecycle and droplet collision rates in
clouds, precipitation
E. Bodenschatz et al. [Science, 327:970-971, 2010]
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Richardson-Kolmogorov’s similarity
hypothesis

1-10m 1mm — lcm
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€ - energy dissipation rate
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Self-similarity and fractals

Self-similarity is connected to a geometrical construct called fractals.
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Simulation

Direct Numerical Simulation (DNS)
lmm-lm ¥

ENTRAINMENT

= : VS ( .‘ '
Large-eddy simulation (LES) Sub-grid scales (modeled)

E. Bodenschatz et al. [Science, 327:970-971, 2010]
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Objectives

Part 1 - Retrieving information of small-scale turbulence

1km 1-10m 1mm — lcm

100 km

;_,_.L

m the comparison of different methods for retrieving e from
atmospheric measurements

m investigates how the presence of anisotropy (due to buoyancy

and external intermittency) affects the various retrieval
techniques of € in the atmospheric configurations.
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Part 2 - Numerical reconstruction of small-scale turbulence

POST dataset
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FIT signal
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Analysis and modeling of small-scale turbulence

develop an
improved fractal
interpolation (FIT)
model for the
reconstruction of
small-scales in
large-eddy
simulations (LES)
use the improved
FIT model in
Lagrangian
particle tracking
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Case study - stratocumulus cloud
boundary layer

Vertical cross section of the liquid
water specific humidity in the cloud-
top mixing layer [Schulz and Mellado
2018]. Courtesy: Prof. J.-P. Mellado
[MPIM, Hamburg]
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y- direction (m) u-component of the physics of stratocumulus cloud
Vertical cross-section of u-component of LES velocity of the (POST) airborne dataset [Gerber et al. 2013, Malinowski
stratocumulus cloud boundary layer [Pedersen et al. 2018] etal. 2013

Emmanuel O. Akinlabi Analysis and modeling of small-scale turbulence 26th June 2020




UNIVERSITY | INSTITUTE
f OF WARSAW | OF GEOPHYSICS
7%

Case study - convective boundary layer

Vertical cross section of the logarithm of the enstrophy in the convective
boundary layer (CBL) [Mellado et al., Bound.-layer Meter., 159:69-95,
2016]. The horizontal bars at the side of the figures indicate a height
equal to the CBL depth h and equal to half of it.
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Retrieving information of
small-scale turbulence
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Energy dissipation rate ¢
The quantity, which plays a crucial role in the study of small-scale

turbulence is the turbulence kinetic energy (TKE) dissipation rate e.

1 [(ou, ou;
€:2V<S,'jS,'j>, S,‘jzé 5_)(jl+a_Xj ,

sj- fluctuating strain rate tensor,

u; = u; — (u;) - i-th component of fluctuating velocity,

(-)- ensemble average operator

Tennekes and Lumley [Cambridge, Mass.: MIT Press, 1972]
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Indirect method for estimating ¢

m Airborne datasets are usually one-dimensional (measured along
research aircraft track) and not fully resolved (approx. 10 m).

E(k) -~ €2/3k—5/3
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Methods for < retrieval

Inertial-range scaling of power spectral density and 2"-order structure
function C; ~ 0.49, C, =~ 2.
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Methods for < retrieval

lterative method

Procedure: -
m Assume an analytic form of E(k) .
m initial guess of g o)
m calculate Cr and € o

By

0.4

m repeat procedure with the previous
€)r to get the new one until the

0.3

0.2

procedure converges ol - . ;

E.O. Akinlabi et al. [J. Atmos. Sci., 2019] iteration
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Analysis - stratocumulus cloud-top
simulation
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Vertical cross section of the liquid wa-
Normalized TKE dissipation rate estimates’ errors from both direct and indirect  ter specific humidity in the cloud-top mix-
methods with kg placed in the inertial range. Fitting ranges for epg were ing layer showing horizontal plane z =
based on ¢p, . —5.2Lp, —3.5Ly, —1.7Ly, 0.1Ly.
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Analysis - convective boundary layer
simulation
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Numerical reconstruction of
small-scale turbulence
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Objectives

Part 2 - Numerical reconstruction of small-scale turbulence

POST dataset
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Method

Fractal Interpolation technique (FIT)

The FIT is an iterative mapping procedure to construct synthetic small-
scale eddies of any field (e.g u(x, t)) from the knowledge of its filtered

field.

initial
1 reconstruction step.
1 step

1 1.2 1.4 16
X

a) Different stages during the construction of a fractal function after 0,1 and 10 iterations with stretching parameter d = £2~

18 2

b) Energy spectrum of the constructed signal.

Emmanuel O. Akinlabi

Analysis and modeling of small-scale turbulence

Scotti and Meneveau [Physica D, 1999]
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Method

Stretching parameter

Stretching parameter d is the vertical stretching of the left and right seg-
ments of three interpolation points at each iteration. It also determines
characteristics of the reconstructed signal.

The stretching parameter can be computed
from the scaling exponent spectrum D as:

N
D=1+logy» |di =~ 5/3

n=1

where N = the number of anchor points — 1.

Orey (1970). Praskovsky et al. (1993). Scotti et al. (1995
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Computing stretching parameter

— signal
— straight line (U

WU
— — straight line (U

. —straight line (U

stretching parameter (d)
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(a) Mazel and Hayes’ algorithm for computing the local stretching parameter d; of any given
arbitrary dataset.

(b) Variability of local stretching parameters d in 1D DNS velocity signals.

Emmanuel O. Akinlabi Analysis and modeling of small-scale turbulence 26th June 2020 21



3 UNIVERSITY | INSTITUTE
%g,\y;&f OF WARSAW | OF GEOPHYSICS
W

Probability distribution of stretching
parameter
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(a) Probability distribution (PDF) of local stretching parameter d within the interval [0, 1]

(b) PDF of the absolute value of the stretching parameter |d| from filtered DNS, LES velocity signals of stratocumulus cloud-top
and physics of stratocumulus top (POST) airborne data. DNS and LES velocity fields were filtered with wavenumber within the
inertial range.
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Reconstruction of sub-grid velocity
signal

Previous method applied constant stretching parameter. For example

m Scotti and Meneveau [Physica D, 1999] - d = +2~1/3
m Basu et al. [Phys. Review, 2004] - d = —0.887, —-0.676
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Reconstruction of sub-grid velocity
signal

Velocity field
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Reconstructing inertial range scales for
Lagrangian simulation of droplets -

preliminary test

The motion of each droplet is gov-
erned by

ax; - ' dA; .

@ Ut g =0
where U(x;, t) is the fluid velocity
field (LES, filtered LES or FIT) at
the droplet position x; and A; is the
attribute.
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Tracking of Lagrangian particles in the
FIT reconstructed field

The motion of each droplet is gov-

v
erned by T
dx; A S
o YD g =0 g
where U(x;,f) is the fluid velocity .
field (LES, filtered LES or FIT) at § o
the droplet position x; and A; isthe  ©
attnbute % 500 1000 1500 2000 2500 3000

x- direction [m]
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Tracking of Lagrangian particles in the
FIT reconstructed field

(LES of stratocumulus cloud)
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The attribute probability A; = 1 in the x- direction, averaged over y- and z- directions in the in-cloud region only at (a) 60
minutes (b) 120 minutes of simulation time.
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Conclusion

m This thesis focuses on the analysis and numerical reconstruction
of small-scale turbulence.

m The scaling of energy spectra of turbulent flows in atmospheric
configurations and different methods for TKE dissipation rate
retrieval from 1D intersections of the flow domain is investigated.

m The reconstruction of sub-grid scales in large eddy simulation of
turbulent flows is addressed.

m A new fractal sub-grid model is developed using random value of
the stretching parameter |d|.

m Based on the preliminary test, the LES velocity field used in the
Lagrangian tracking of droplet could be improved with FIT.
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Thank you for listening
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Reply to reviewers

Question 1

One would welcome that Sec. 4.2.1 (stratocumulus cloud-top
simulation), important for the thesis, be more self-contained. In
particular, | have not grasped where the reduction in Re (factor of 300)
comes from? Is it due to rescaled Ly ? Or viscosity? Is the size of
dissipative eddies correctly reproduced in the DNS? What are the
boundary conditions (BC) of the simulation? | guess, these are periodic
BC inxandy (?). But what about z? Are the BC the same as in the LES
case of Sec. 7.3.27 Probably not, as the velocity statistics at the
extremes of z differ between Fig.4.3 and 7.7. Please explain.
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Reply to reviewers

Neumann boundary conditions at the top
and bottom

COMPUTATIONAL DOMAIN

Periodic Periodic
boundary boundary
condition in x-| K condition in x-
and y- ‘ and y-
direction direction

B
0.0 0.5 1.0
e/ qe.clond

[J. P. Mellado priv. comm.]
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Reply to reviewers

Question 1

a) 800
700

600

m

500

IS
o
=)

z direction
w
3

0 200 400 600
x direction (m)

Figure 4.2a - Vertical cross section of the logarithm of enstrophy (2 = 1/2\00\2 where w is the vorticity field) at y = 405m.
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Reply to reviewers

Question 2

Concerning Sec. 4.2.2: one would wish some quantitative results to be
recalled here, as in Fig. 4.3. As amply discussed in the following, the
flow anisotropy is an important factor that deteriorates the estimation of
€, right? And the profiles of rms(u; ) would provide some idea about at
least the large-scale anisotropy. As the Reynolds number is rather low,
the anisotropy may persist down to the smallest resolved scales.

Continue on next page
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Reply to reviewers

Question 2

From this point of view, given the non-homogeneity of turbulence in the
CTL case, the results reported for example in Tab. 5.2 are expected. On
the other hand, the Author states (concluding on the estimates of ¢
based on different velocity components) that “this makes the isotropy
assumption questionable” (p.44). Actually, already given the r.m.s.
velocity profiles in Fig. 4.3b, one should not expect the turbulence to be
isotropic. Please explain. Perhaps even, a better estimation of ¢ may be
imagined, as supported by the data on anisotropy expressed by the
respective levels of u’, v’ and w’? Not sure, but this might be a path
worth some reflection and further exploration.
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Reply to reviewers

Question 2

(a) Variance (b) TKE budget (¢)  Skewness
Nf =0 }/ __ Moeng &
— N >0 ( Rotunno (1990)
15 )
112 \
‘40 \3((/7\\-‘)/1;“
ool
<
w
05 -€/B,,
) -3.TIB,

0 02 04 06 08 -1 05 0 05 1 0O 05 1 15 2

(uiz) / wi loss gain (w3> / w:ms

Fig.2 Large-scale properties at z4/zx ~ 680. up = (u% + u%) 172 is the magnitude of the horizontal velocity.
T = (w'wju}/2 + p'w’ — ut/3) is the vertical turbulent flux of TKE and & = (ri/]. ii,»u}) is the viscous

dissipation rate, 7;; = v(d;u; + d;u;) being the components of the viscous stress tensor
Extracted from Mellado et al. [Bound.-layer Meteorol., 159:69-95, 2016]
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Reply to reviewers

Question 2

Nnow b

z/LO

0 02 04 06 08 1 12 14 16 18

Normalized velocity rms

Figure 4.3b - Normalized root-mean-square of velocity in the cloud-top mixing layer. The upper horizontal line indicates the
height of minimum buoyancy flux (horizontal plane z = 0.1Ly) while the lower horizontal black line indicates the height of
maximum buoyancy flux (horizontal plane z = —3.5L)
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Reply to reviewers

Question 3

Fig. 5.15 seems to be quite rich in information (and perhaps usable in
future work?). Any general comment on it?

Emmanuel O. Akinlabi Analysis and modeling of small-scale turbulence 26th June 2020 39
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Reply to reviewers

Question 3

0.8

NG/B 0

Y06

0.4

0.2

Figure 5.15 - Results of € vs. epg normalised with By for signals with a) kgt = 5[m~"]b) keyr = 0.62[m~"].

More analysis at Wactawczyk et al. [Atmosphere, 11:199, 2020]
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Reply to reviewers

Question 4

The role of external intermittency in estimating the dissipation rate is
well explained (the correction factor y in Sec. 5.2.3, etc.). But then, the
concept of internal intermittency, due to Kolmogorov (1963), is also
invoked in the text. However, | have not found it in Chapter 3. What is in
practice the role of internal intermittency when working with the
estimates of €?

Rice [Bell. Syst. Tech. J., 24:24-156, 1945], Sreenivasan et al. [J. Fluid Mech., 137:251-272, 1983], Katul et al. [Phys. Fluids,
6:2480-2492, 1994]
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Reply to reviewers

Question 5

Concerning the studies reported in Chapter 7, in particular the
determination of statistical properties of d, using not-so-isotropic
(neither homogeneous) data: perhaps, these properties, and the

PDF(|d|) in particular (and not just the autocorrelation computed in Sec.
7.5) could have been determined from the data on forced isotropic
turbulence as well (unless this have been done in the literature
already?).
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Reply to reviewers

Question 5

Forced HIT DNS
0.02 Stratocumulus DNS
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0.002
-1

-0.5 0 0.5 1
d

Probability distribution of the absolute value of the stretching parameter |d| from filtered DNS of stratocumulus cloud-top
and filtered DNS of forced homogeneous isotropic turbulence data. DNS velocity fields are filtered with wavenumber within
the inertial range.

Yeung et al. [J. Fluid Mech., 700:5-15, 2012], Salvetti et al. [Proc. Conference on Turbulence and Interactions, 2006], Ding
et al. [Phys. Review E, 82:036311, 2010]
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Reply to reviewers

Question 6

Sec. 7.2: it is unclear how the 5-point algorithm (yielding dy and d- , Fig.
7.4) is applied to the whole velocity signal to infer d values from it (Fig.
7.5a)? Then, | have some concerns about the procedure: it seems from
Fig.5 that < d >(the mean value) is larger than 0, is it? If so, then the
PDF is certainly not symmetric, so why then one should introduce
PDF(|d|)? Also, it is not clear why “the ensemble average < |d| >should
be comparable to the channel flow data of Ref.[118]" (p.91) which is a
strongly non-homogeneous case? What are these mean values?
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Figure 7.4 - Mazel and Hayes’ algorithm for computing the local stretching parameter d; of any given arbitrary dataset.
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Figure 7.5a - Variability of local stretching parameters d in 1D DNS velocity signals.
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Probability distribution of the absolute value of the stretching parameter |d| from filtered DNS of stratocumulus cloud-top
and filtered DNS of forced homogeneous isotropic turbulence data. DNS velocity fields are filtered with wavenumber within
the inertial range.

Burattini et al. [Exp Fluids, 45, 523-535, 2008]
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Figure 7.9b - The vertical profile of the average stretching parameter for DNS velocity. The black line indicates
approximately the cloud-top region.

Salvetti et al. [Proc. Conference on Turbulence and Interactions, 2006]
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Question 7

Continuing on the proposed improvement of the fractal interpolation
technique (p.86, p.91): judging from the plot of local stretching
parameters (Fig.7.5a) and from the PDF (Fig.7.8a), when the values d
such that |d| <0.5 are discarded, then not much seems to be left (7).
Actually, this is my most serious concern about the proposed
improvement of the method. The argument (p.86) that “only then a
fractal signal will dissipate energy” does not seem to be relevant as the
reconstructed field does not evolve dynamically (as in the N-S eq.).
Rather, as in the applications shown in Chapter 9, it is used to advect a
passive scalar (“the attribute”) or to provide an “enriched” local fluid
velocity for particle motion. Please explain.
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Question 8

In the a priori LES test, the residual kinetic energy k; is introduced
through Eq. 9.4. When the DNS solution is filtered, the fluid kinetic
energy decreases, so k, >0. Here, the residual energy may be negative
(which is, NB, a priori unusual), as the filtering (or tilde) operator is not
idempotent (unlike the ensemble average in RANS). As a consequence,
the PDF of k; is endowed with a quite large negative part. Please
comment on these unusual features.

Emmanuel O. Akinlabi Analysis and modeling of small-scale turbulence 26th June 2020 52



* UNIVERSITY | INSTITUTE
= OF WARSAW | OF GEOPHYSICS

Reply to reviewers

Question 8

107! . . .
o
X
E
kel 21 4
% 10
Q
T
e
[a)
o
1073 . . . .
-4 2 0 2 4
Residual K.E
Figure 9.1 - PDF of the residual kinetic energy for reference LES and filtered LES with FIT in the in-cloud region at 20 m
< z<650m.
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Question 9

Concerning the autocorrelation R(7) of the stretching parameter (Sec.
7.5): it is not clear why are we interested in this quantity? Is it meant for
future applications of FIT? Which ones? Then, it would be perhaps
worthwhile to also compute the decorrelation time out of the Lagrangian
function R. Or even from the Eulerian one with the application of frozen
turbulence hypothesis to see whether the decorrelation times
substantially differ among these three cases. Also, this might be of
future use for FIT applied to particle/droplet motion.
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Figure 7.11 - Autocorrelation function R (t/7y) for the stretching parameter and autocorrelation function R‘S”(T/T,,) for the
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In the abstract, the Doctorate states that the analysis of fine-scale
structures can contribute to better parameterization of climate models.
In general this is true, but the parameterization of dynamics in small
scales is much greater for modelling weather forecasts.
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Question 2

In Page 13, the statement "In general, the turbulence flows can be
described as a random field" is a big simplification. In a typical
turbulence flow there are structures that have a certain spatial
organisation. This has a direct impact on the dynamics of cloud

processes, €.g. the average speed of falling droplets in turbulent flow is
higher than in air without turbulence. And in a random field, the speed of
the drops does not change.

Fung and Vassilicos [Phys. Rev. E, 57:1677-1690, 1998], Pinsky et al. [J. Atmos. Sci., 65, 2064-2086, 2008], Pope [Cambridge,
2000]
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Question 3

The doctoral student examines the differences in energy dissipation
values calculated using different methods in quite a detailed way, while
the analysis of statistical uncertainties of the obtained results is treated

more cursory.
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Figure 5.14 - Normalized TKE dissipation rate estimates from signals with effective cut-off’s k,; as a function of vertical
coordinate z/L (dimensionless) a) epg, b) enc-

More analysis at Wactawczyk et al. [Atmosphere, 11, 199, 2020]
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Figure 5.15 - Results of € vs. epg normalised with By for signals with a) kgt = 5[m~"]b) keyr = 0.62[m~"].
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Figure 5.16 - Standard deviations of ey and e pg estimates normalized with By as a function cut-off kg
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Question 4

It is difficult to deduce from the text of the dissertation whether DNS
data from one time step were used to determine energy dissipation or
whether the data were averaged over a certain period of time. This may

be important for the accuracy and generality of the results obtained.
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Minor remark 1
p.11: the statement “sound waves are completely neglected... since

(they) propagate via density variation” seems inaccurate in the
presented context (or even wrong — why?).

Emmanuel O. Akinlabi Analysis and modeling of small-scale turbulence 26th June 2020 63



* UNIVERSITY | INSTITUTE
= OF WARSAW | OF GEOPHYSICS

Reply to reviewers

Minor remark 2

rigorously, the integration limits in Egs. 2.18 and 2.19

1 t+T
U(x, 1) ~ (UK 1) 7 = = /t U(x, 7)dr.

I L Ly pls
L /0 /o /0 U(x, t)dxdydz

are incorrect;
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Minor remark 2

The integration limit is changed to:

1 lo+AT/2

U(xo, th)) ~ (U(Xo, t, =
(U(xo, f)) =~ (U(Xo, b)) a1 AT )y a1so

U(xp, 7)dT.

and

(U0, ) ~ (U(xo, )y = 5 /A U )
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Minor remark 3
Fig. 7.5b: to better appreciate the final effect of FIT reconstruction, it

would be instructive to add a 2A-filtered velocity signal to the picture,
even just in the zoom-in chunk (the inset plot);
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Figure 7.5b - 1D DNS velocity signals showing the original, filtered and the FIT reconstructed signal using local values of d
in figure 7.5a.
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