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Streszczenie

J¡dra atomowe to znakomite laboratoria do badania fundamentalnych praw przyrody.
Rz¡dz¡ nimi bowiem dªugozasi¦gowe oddziaªywania coulombowskie, krótkozasi¦gowe od-
dziaªywania silne wi¡»¡ce nukleony w j¡dra atomowe (oddziaªywania nukleon-nukleon)
oraz oddziaªywania sªabe determinuj¡ce rozpady beta. Dogª¦bna analiza wszystkich trzech
jest niezb¦dna do prawidªowego opisu nuklidów. Oddziaªywania sªabe rozpatruje si¦ rów-
nie» z perspektywy Modelu Standardowego �zyki cz¡stek elementarnych, stawiaj¡cemu
sobie za cel wyja±nienie pryncypiów funkcjonowania otaczaj¡cego nas ±wiata.

Binarna struktura j¡drowa � tj. budowa ukªadu kwantowego skªadaj¡cego si¦ z dwu
typów cz¡stek: protonów i neutronów � powoduje asymetri¦ oddziaªywa« w j¡drach. Po-
wodem s¡ mi¦dzy innymi oddziaªywania elektromagnetyczne wyró»niaj¡ce protony przed
neutronami. Takie zjawisko nazywamy w �zyce naruszeniem symetrii izospinowej. Analiza
zªamania tej symetrii w tzw. superdozwolonych rozpadach beta otwiera mo»liwo±ci we-
ry�kacji podstawowych hipotez Modelu Standardowego � przede wszystkim zaªo»enia, w
którym struktury hadronowe wyrastaj¡ z trzech rodzin kwarków. W tym celu badam uni-
tarno±¢ macierzy mieszania kwarków Cabibbo-Kobayashiego-Maskawy (Nagorda Nobla
2008 "for the discovery of the origin of the broken symmetry which predicts the existence
of at least three families of quarks in nature"). Dotychczasowe wyniki bada« z u»yciem
efektywnego potencjaªu nukleon-nukleon wskazuj¡ na wysycenie liczby rodzin kwarków
przez trzy generacje. Jednak rachunki z uwzgl¦dnieniem bardziej subtelnych (ni» coulom-
bowskie) oddziaªywa« ªami¡cych symetri¦ izospinow¡ na poziomie mezon-nukleon, czy te»
mezon-kwark, wskazuj¡ na odej±cie od unitarno±ci macierzy CKM, sugeruj¡c jednocze±nie
istnienie nowych nieznanych cz¡stek elementarnych.

Przej±cia Fermiego nie s¡ jedynym mo»liwym kanaªem rozpadu beta. Niemal równie
prawdopodobne s¡ tak zwane przej±cia Gamowa-Tellera. Okazuje si¦, »e prawdopodobie«-
stwo takiego rozpadu jest od lat systematycznie przeszacowywane przez obliczenia teore-
tyczne wzgl¦dem danych do±wiadczalnych. Efekt tej redukcji nazwano problemem quen-
chingu staªej sprz¦»enia elektrosªabych pr¡dów typu Gamowa-Tellera gA. T¡ staª¡ mo»na
bada¢ zarówno na gruncie �zyki cz¡stek elementarnych jak i �zyki j¡drowej. Wnioski z
rachunków wykonanych w ramach doktoratu pozwoliªy na odrzucenie gªównej hipotezy
rozwi¡zania tej zagadki, mianowicie wad konstrukcji modelu teoretycznego. Analiza po-
równawcza wskazaªa na konieczno±¢ uwzgl¦dnienia elektrosªabych pr¡dów wy»szego rz¦du,
co potwierdziªy pó¹niejsze rachunki ab initio.

Zrozumienie mechanizmu quenchingu jest niezwykle istotne z punktu widzenia bada«
bardzo interesuj¡cego �zyków j¡drowych oraz naukowców zajmuj¡cych si¦ �zyk¡ cz¡stek
elementarnych zjawiska jakim jest proces podwójnego rozpadu beta w kanale bezneutri-
nowym (0νββ). Jest to obecnie jedno z najbardziej poszukiwanych zjawisk �zycznych.
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vi Streszczenie

Zaobserwowany proces ±wiadczyªby o istnieniu �zyki poza ugruntowanym Modelem Stan-
dardowym. Odkrycie oscylacji neutrin (Nagroda Nobla 2015) zwi¦kszyªo w±ród �zyków
zainteresowanie poszukiwaniem procesu 0νββ, którego istnienie wymaga niezerowej masy
tych cz¡stek.

Sygnaªy pochodz¡ce z wielu niezale»nych eksperymentów wskazuj¡ na konieczno±¢
rozszerzenia Modelu Standardowego o nieznane dot¡d prawa �zyki. Niezwykle istotne
s¡ zatem badania potencjalnie wskazuj¡ce na elementy Modelu Standardowego, w któ-
rych nasze zrozumienie otaczaj¡cego ±wiata jest niewystarczaj¡ce. Narz¦dzi badawczych
dostarczaj¡ w tym przypadku wielociaªowe metody �zyki j¡drowej takie jak rozwijany
w niniejszej rozprawie uogólniony funkcjonaª g¦sto±ci z przywróconymi symetriami: ob-
rotow¡ i izospinow¡. Wykorzystuj¡c ten formalizm w rozprawie zbadano: rozpady beta
pod k¡tem wery�kacji podstawowych hipotez Modelu Standardowego (takich jak istnie-
nie trzech generacji kwarków), zagadk¦ dotycz¡c¡ efektu quenchingu staªej gA oraz przed-
stawiono badania nad funkcj¡ odpowiedzi Gamowa-Tellera dla kilku reprezentatywnych
przypadków. Zbadano równie» reguª¦ sum Ikedy celem wery�kacji zupeªno±ci przestrzeni
kon�guracyjnej w modelu.



Abstract

Title in English: Beta decay in nuclear energy density functional and beyond

Atomic nuclei form an excellent playground to investigate the primary building blocks
of nature in the context of fundamental interactions between particles. Long-range electro-
magnetic Coulomb interaction, short-range strong interaction which binds nucleons into
atomic nuclei (nucleon-nucleon interaction), and weak interaction responsible for beta de-
cay pose a serious challenge in theoretical description of the nuclear chart where a deep
understanding of all of them is a must. The �eld of study is highly interdisciplinary as
the understanding of fundamental interactions have been the main goal of the Standard
Model of particle physics - the theory which pretends to account for the fundamental laws
of nature.

Binary structure of atomic nucleus - the quantum system composed of two types of
particles protons and neutrons � causes the asymmetry of the nucleon-nucleon interaction
due to, for instance, electromagnetic interaction which acts only between protons. The
analysis of breaking of the isospin symmetry in the so-called superallowed Fermi beta de-
cay provides a unique opportunity to verify the basic assumption of the Standard Model,
where hadronic structure is built upon three generations of quarks. For that reason one
of the key point of the thesis was to focus on the research of unitarity of the Cabbibo-
Kobayashi-Maskawa (CKM) quark mixing matrix (Nobel prize 2008 "for the discovery of
the origin of the broken symmetry which predicts the existence of at least three families of
quarks in nature"). So far, the calculation of nuclear beta decay with an e�ective nucleon-
nucleon interaction does not contradict with this assumption. Therefore either, we live
indeed in the three-generation-quark world or quarks of next generation are so massive
that we need much more precise calculation to reach the required level of accuracy of the
unitarity of CKM matrix.

The Fermi beta decay is by no means the only channel of beta transition. With nearly
the same probability the nucleus may decay in the Gamow-Teller channel where the spin
change is involved. Many years ago it turned out that the transition probability is sys-
tematically overestimated by the theory with respect to experimental data. The observed
reduction is responsible for coining the term quenching for the reduction e�ect related to
the coupling constant of Gamow-Teller type of electroweak currents. The coupling con-
stant has been studied within both nuclear and particle physics. The conclusion that has
been made within this work allowed to reject the main hypothesis behind the quenching.
Instead of suspecting the drawbacks of the theoretical approach itself it turned out that
the solution of the puzzle of the quenching was most probably related to many-body cur-
rents, which had been not included at any point in the calculation. Only very recently
this statement has been con�rmed by the ab initio calculations in several examples of the
Gamow-Teller beta decay.
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viii Abstract

Furthermore, the Gamow-Teller transitions are crucial to settle up the research on
neutrinoless double beta decay. It is one of the most sought-after process in physics as if
measured, would indicate the existence of new physics beyond the Standard Model with
neutrino being its own antiparticle with the non-zero mass. The discovery of the neutrino
oscillation (Nobel prize 2015) made the subject even more vivid among scientists. It
meant that neutrinos are massive. It is therefore obligatory for nuclear theory to perform
extremely precise calculation indicating possible isotopes that may decay in that exciting
neutrinoless double decay channel. The model that has been widely tested and explored
within the thesis, especially in the context of Gamow-Teller transitions, is now almost
ready for the calculation of the 0νββ channel.
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Sªowo wst¦pne i zarys pracy

J¡dro atomowe to samowi¡»acy si¦ ukªad nukleonów, które, w przeciwie«stwie do
elektronów w atomie, nie poruszaj¡ si¦ w studni zewn¦trznego potencjaªu. W teorii funk-
cjonaªu g¦sto±ci (DFT) opis j¡dra musi by¢ zatem dokonany w j¦zyku g¦sto±ci wewn¦trz-
nych, co z kolei prowadzi do spontanicznego naruszenia symetrii reprezentuj¡cego stan
j¡dra wyznacznika Slatera zbudowanego z orbitali Kohna-Shama. To zaw¦»a stosowalno±¢
j¡drowej metody funkcjonaªu g¦sto±ci (EDF) do obliczania tzw. obj¦to±ciowych obserwa-
bli jak masy, promienie czy momenty kwadrupolowe.

Przywrócenie naruszonych symetrii, czyli konstrukcja stanów o dobrych liczbach kwan-
towych, jest kluczowa do opisu struktury j¡drowej, a w szczególno±ci do wyznaczenia
elementów macierzowych przej±¢ rozpadów beta i gamma. Mo»na to osi¡gn¡¢ poprzez
zastosowanie technik rzutowych. Z formalnego punktu widzenia prowadzi to do przefor-
muªowania j¡drowej metody funkcjonaªu g¦sto±ci w j¦zyku tzw. g¦sto±ci przej±ciowych
liczonych pomi¦dzy ró»nymi wyznacznikami Slatera. Takie rozszerzenie metody DFT nosi
nazw¦ wieloreferencyjnej metody DFT (MR DFT). Metoda MR DFT jest narz¦dziem
uniwersalnym, której podstawow¡ zalet¡ jest mo»liwo±¢ wykonywania rachunków struk-
turalnych � zarezerwowanych dotychczas dla modelu powªokowego � dla dowolnego j¡dra
z tablicy nuklidów.

Olbrzymi potencjaª metody przyci¡gn¡ª wiele grup badawczych do pracy nad zasto-
sowaniami oraz dalszymi rozszerzeniami modelu MR DFT. Warszawska grupa �zyków
zajmuj¡cych si¦ teori¡ struktury j¡dra atomowego jako jedna z pierwszych na ±wiecie po-
ª¡czyªa koncepcj¦ mieszania kon�guracji (CI) z podej±ciem funkcjonalnym w ramach MR
DFT, konstruuj¡c model DFT-NCCI (DFT-rooted No-Core Con�guration-Interaction).
Pierwsze testy modelu DFT-NCCI zaprezentowane w postaci kilku artykuªów naukowych
okazaªy si¦ by¢ nadzwyczaj zach¦caj¡ce i zainspirowaªy do jej dalszego doskonalenia i
rozszerzenia palety zastosowa« do ró»norodnych problemów �zycznych, w szczególno±ci
tych zwi¡zanych z rozpadem beta czego dotyczy niniejsza rozprawa doktorska.

Kluczowym poj¦ciem metody MR DFT i jej rozszerze« stosowanych w niniejszej roz-
prawie jest poj¦cie symetrii ukªadu oraz mechanizmów jej naruszenia i sposobów przy-
wracania. Te zagadnienia porusza rozdziaª pierwszy, w którym wprowadzimy stosowny
aparat matematyczny w ramach teorii algebr Liego daj¡cy podstawy matematyczne do
konstrukcji operatorów rzutowych sªu»¡cych do przywracania spontanicznie naruszanych
symetrii ci¡gªych takich jak symetria obrotowa i izospinowa. W tym rozdziale przedysku-
tujemy tak»e podstawowe symetrie hamiltonianu j¡drowego.

Rozdziaª drugi w caªo±ci po±wi¦cony jest teorii rozpadu beta. Zaczniemy od przy-
pomnienia teorii Fermiego, któr¡ nast¦pnie rozszerzymy do opisu w j¦zyku naªadowa-
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nych pr¡dów elektrosªabych w ramach teorii uni�kacji Glashowa-Salama-Weinberga. W
kolejnych paragrafach omówimy hipotez¦ zachowania pr¡du wektorowego (CVC) oraz
cz¦±ciowego zachowania pr¡du osiowo-wektorowego (PCAC), wi¡»¡c je, odpowiednio, ze
sposobami wyznaczania elementu macierzowego Vud macierzy mieszania kwarków oraz z
efektem redukcji elementu macierzowego Gamowa-Tellera w o±rodku j¡drowym. W para-
gra�e czwartym omówimy macierz mieszania kwarków Cabbibo-Kobayashiego-Maskawy
(CKM). W paragra�e pi¡tym skoncentrujemy sie na metodach j¡drowych wyznaczania
wiod¡cego elementu macierzowego Vud macierzy CKM. Przedyskutujemy szczegóªowo za-
równo metod¦ wykorzystuj¡c¡ rozpady superdozwolone 0+ → 0+ jak i metod¦ wyko-
rzystuj¡c¡ rozpady Fermiego pomi¦dzy j¡drami zwierciadlanymi T = 1/2. W paragra�e
szóstym omówimy w skrócie parametry korelacji w rozpadzie beta niezb¦dne do wyzna-
czenia elementu macierzowego Vud w metodzie przej±¢ mi¦dzy j¡drami zwierciadlanymi
T = 1/2.

W rozdziale trzecim skoncentrujemy si¦ na opisie formalizmów teoretycznych, których
b¦dziemy u»ywa¢ do opisu wielociaªowego stanu kwantowego. Zaczniemy od modelu pola
±redniego w uj¦ciu Hartree'ego�Focka. W kolejnych paragrafach przedstawimy opis od-
dziaªywania nukleon-nukleon oraz wprowadzimy efektywne oddziaªywanie Skyrme'a, a na-
stepnie przedyskutujemy niezale»n¡ od g¦sto±ci parametryzacj¦ oddziaªywania Skyrme'a
SV u»ywan¡ w obliczeniach. W paragra�e pi¡tym rozszerzymy oddziaªywanie Skyrme'a o
czªony izowektorowe, które oka»¡ si¦ niezwykle istotne przy opisie poprawek izospinowych
do rozpadów beta typu Fermiego. W kolejnych paragrafach omówimy metody przywraca-
nia symetrii rotacyjnej i izospinowej w ramach teorii MR DFT. Za± w ostatnim paragra�e
skoncentrujemy si¦ na metodzie DFT-NCCI, omawiaj¡c jej ide¦ jak równie» jej zalety i
wady.

Zastosowania formalizmu DFT-NCCI do badania rozpadów Fermiego i Gamowa-Tellera
przedstawiono w rozdziaªach czwartym i pi¡tym. Model DFT-NCCI z powodzeniem zasto-
sowano do opisu podstawowych procesów elektrosªabych w kontek±cie struktury materii
j¡drowej. Pierwsze rachunki dotyczyªy wpªywu ªamania symetrii izospinowej na wspóª-
czynnik zmieszania izospinowego oraz na element macierzowy superdozwolonych rozpa-
dów beta typu Fermiego w tryplecie izospinowym T = 1 oraz rozpadów beta w j¡drach
zwierciadlanych T = 1/2. Rozpady superdozwolone stanowi¡ najdokªadniejszy test we-
ry�kuj¡cy hipotez¦ Modelu Standardowego dotycz¡c¡ zachowania wektorowych pr¡dów
elektrosªabych, a w konsekwencji hipotez¦ istnienia trzech generacji kwarków. Dotych-
czasowe wyniki uzyskane zarówno w modelu powªokowym jak i w podej±ciu wypraco-
wanym przez nasz¡ grup¦ wskazuj¡ na unitarno±¢ macierzy mieszania kwarków CKM.
Rachunki w metodzie RPA, gdzie wykorzystywany lagran»jan uwzgl¦dnia oddziaªywa-
nia nukleon-mezon, wskazuj¡ jednak na delikatne odst¦pstwo od unitarno±ci macierzy
CKM, poddaj¡c w w¡tpliwo±¢ wysycenie zupeªno±ci stanów kwarkowych tylko przez trzy
generacje. St¡d tak istotne jest przeprowadzanie mo»liwie jak najwi¦kszej ilo±ci testów
wery�kuj¡cych unitarno±¢ macierzy CKM. Alternatywnym podej±ciem umo»liwiaj¡cym
wyznaczenie elementu macierzowego Vud jest analiza przej±¢ Fermiego w j¡drach zwiercia-
dlanych. Rozdziaª czwarty przedstawia wyniki oblicze« poprawek izospinowych zarówno
do przej±¢ superdozwolonych (paragraf pierwszy) jak i przej±¢ w j¡drach zwierciadlanych
T = 1/2 (paragraf drugi). Przedstawiono w nim szerok¡ dyskusj¦ pojawiaj¡cych si¦ pro-
blemów zwi¡zanych ze struktur¡ poziomów jednocz¡stkowych wyznaczonych przy u»yciu
parametryzacji SV wraz z oszacowaniem niepewno±ci teoretycznych dla obliczonych po-
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prawek izospinowych. Bardzo ciekawym wynikiem przedstawionym w tym rozdziale jest
pionierska analiza wpªywu kontaktowych efektywnych oddziaªywa« silnych klasy III (izo-
wektorowych) na poprawki izospinowe do przej±¢ Fermiego i ich znaczenie w kontek±cie
testów sektora elektrosªabego Modelu Standardowego.

Rozdziaª pi¡ty koncentruje si¦ na wynikach bada« dla przej±¢ beta typu Gamowa-
Tellera (GT). Badania przej±¢ GT byªy jak dot¡d domen¡ modelu powªokowego. Uzy-
skiwane wyniki byªy jednak systematycznie przeszacowywane w porównaniu do danych
do±wiadczalnych, co wi¡zano ze sko«czonym rozmiarem przestrzeni walencyjnej oraz przy-
bli»eniem rdzenia stosowanym w modelu powªokowym. W niniejszej rozprawie przedsta-
wiamy pierwsz¡ systematyczn¡ analiz¦ elementów macierzowych GT wykonan¡ przy u»y-
ciu modeli MR DFT i DFT-NCCI. Poka»emy, »e nasze obliczenia s¡ w peªni konsystentne
z obliczeniami klasycznego modelu powªokowego co, ze wzgl¦du na fundamentalne ró»nice
mi¦dzy modelami, wskazuje na inne ¹ródªa redukcji (quenchingu) elementu macierzowego
GT ni» wspomniane wy»ej. Wyja±nienie zjawiska quenchingu staªej gA (elementu macie-
rzowego GT) ma charakter fundamentalny, dotyczy bowiem sprz¦»enia pr¡dów odpowie-
dzialnych za najcz¦±ciej wyst¦puj¡ce rozpady beta w j¡drach atomowych.

W pierwszym paragra�e rozdziaªu pi¡tego, podamy wyra»enie na element macierzowy
GT w modelu MR DFT i opiszemy wyniki testów numerycznych jego implementacji.
W kolejnym paragra�e przedstawimy obliczenia elementu macierzowego GT pomi¦dzy
stanami podstawowymi w j¡drach zwierciadlanych T = 1/2 wzdªu» linii N = Z, które
przedyskutujemy w kontek±cie quenchingu staªej sprz¦»enia pr¡dów osiowo-wektorowych.
W kolejnych paragrafach przedstawimy analiz¦ elementów macierzowych GT ze stanu
podstawowego w j¡drze matki do stanów wzbudzonych w j¡drze córki, zwracaj¡c szcze-
góln¡ uwag¦ na saturacj¦ reguªy sum Ikedy. Rachunki dotycz¡ce funkcji odpowiedzi GT
przeprowadzimy dla bardzo lekkiego j¡dra 8Li oraz j¡dra ze ±rodka powªoki sd � 24Mg i
przeanalizujemy, po raz pierwszy, w j¦zyku stanów (kon�guracji) Nilssona. W ostatnim
paragra�e tego rozdziaªu przedstawimy rachunki dotycz¡ce superdozwolonego rozpadu
Gamowa-Tellera 100Sn →100In.

Wszystkie obliczenia zaprezentowane w niniejszej pracy wykonano przy u»yciu lo-
kalnych funkcjonaªów g¦sto±ci generowanych niezale»n¡ od g¦sto±ci siª¡ Skyrme'a SV.
Rachunki dotycz¡ce przej±¢ superdozwolonych przeprowadzono przy u»yciu standardowej
siªy SV z wª¡czonym czªonem tensorowym w funkcjonale g¦sto±ci, SVT. Pozostaªe oblicze-
nia bazuj¡ na sile SVT;SO, która ma o 20% silniejsze oddziaªywanie spin-orbita w stosunku
do SVT. T¡ siª¦ wzbogacono nast¦pnie o kontaktowe czªony ªami¡ce symetri¦ izospinow¡
w kanale izowektorowym w wiod¡cym rz¦dzie SVISB,LO

T;SO oraz w rz¦dzie uwzgl¦dniaj¡cym
czªony powierzchniowe SVISB,NLO

T;SO . Wªa±ciwe uchwycenie ¹ródeª �zycznego (jawnego) na-
ruszania symetrii izospinowej ma kolosalne znaczenie dla testów Modelu Standardowego
wykorzystuj¡cych analiz¦ rozpadów beta j¡der atomowych. Wszystkie prezentowane obli-
czenia wykonano przy pomocy kodu numerycznego HFODD systematycznie rozwijanego
przez nasz¡ grup¦ badawcz¡.
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Rozdziaª 1

Podstawowe symetrie w �zyce j¡drowej

�1. Grupy symetrii i jej reprezentacje

Niech grupa G b¦dzie grup¡ ci¡gª¡ tj. tak¡, dla której dowolny element g ∈ G mo»na
sparametryzowa¢ przy u»yciu lokalnego ukªadu n wspóªrz¦dnych, a jego element odwrotny
jest pewn¡ ci¡gª¡ funkcj¡ f tych parametrów wzgl¦dem dziaªania w obr¦bie grupyG. Je»eli
grupa G jest sko«czenie wymiarow¡ gªadk¡ rozmaito±ci¡ (f s¡ funkcjami analitycznymi),
dla której de�niuje si¦ operacje ró»niczkowania i caªkowania to wówczas grup¦ G nazy-
wamy grup¡ Liego. Je»eli dodatkowo dziaªanie jest przemienne to wówczas grup¦ Liego
nazywamy abelow¡.

Rozwa»my in�nitezymalnie maªe otoczenie, dla uproszczenia punktu ϑ = 0. Wówczas
element grupy g ∈ G mo»emy przedstawi¢ w postaci rozwini¦cia:

g(ϑ) ≡ g(ϑ1, ..., ϑn) = 1 + i
n∑
j=1

ϑjXj + ... , (1.1)

gdzie element Xj−generator grupy wyra»a si¦ jako:

Xj = −i ∂g
∂ϑj |ϑ=0

. (1.2)

Element odwrotny w grupie G mo»emy przedstawi¢ w postaci:

g−1(ϑ) = 1− i
n∑
i=1

ϑiXi +O(ϑ2) (1.3)

Struktur¦ dziaªania w obr¦bie grupy Liego mo»emy zde�niowa¢ za pomoc¡ jej algebry. Aby
wprowadzi¢ algebr¦ Liego nale»y okre±li¢ posta¢ komutatora grupy G (inaczej pochodn¡
grupy � G′). Rozwa»aj¡c obiekt:

g(ξ) = g(ϕ) ? g(ϑ) ? g(ϕ)−1 ? g(ϑ)−1 (1.4)

mo»emy ustali¢ posta¢ dowolnego komutatora (dowolny element G′). Element g(ξ) nale»y
do grupy G, wobec czego jest analityczn¡ funkcj¡ parametrów ϕ oraz ϑ. Rozwijaj¡c t¦
funkcj¦ w szereg Taylora wokóª ϕ = 0,ϑ = 0 oraz narzucaj¡c warunki brzegowe:

ϕ = 0 ∨ ϑ = 0 ⇒ ξ = 0 (1.5)
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otrzymujemy, »e parametr ξ zale»y jedynie od wyrazów mieszanych i w pierwszym rz¦dzie
jest równy ξl = Cljkθjφk, gdzie wspóªczynnik proporcjonalno±ci Cljk nazywamy staª¡
struktury grupy. Wówczas:

g(ξ) = 1 + i
n∑
l=1

ξlXl + ... . (1.6)

Z drugiej strony wstawiaj¡c (1.1) i (1.3) do (1.4) i porównuj¡c z (1.6) otrzymujemy posta¢
dowolnego elementu komutatora G′:

[Xj, Xk] = i
n∑
l=1

CljkXl, (1.7)

który de�niuje algebr¦ Liego w grupie G z baz¡ zªo»on¡ z generatorów (1.2) tej»e grupy.
Komutator jest antysymetryczny a ponadto speªnia to»samo±¢ Jacobiego. Ta z kolei wy-
znacza relacj¦, któr¡ speªniaj¡ staªe struktury grupy Cljk:

CmjkCnlm + CmljCnkm + CmklCnjm = 0 (1.8)

Ka»d¡ algebr¦ Liego mo»na przedstawi¢ za pomoc¡ reprezentacji zbioru macierzy kwa-
dratowych. To znaczy, »e istnieje homomor�zm grupy Liego G do pewnej przestrzeni li-
niowej odwracalnych operatorów liniowych V : gi ∈ G −→ D(gi) czyli, »e

gi ? gj = gk =⇒ D(gi)D(gj) = D(gk). (1.9)

Je»eli macierz reprezentacji D(g) grupy G mo»na przedstawi¢ w postaci blokowo diago-
nalnej, to wówczas D(g) nazywamy reprezentacj¡ przywiedln¡ lub produktow¡:

D(g) =
k⊕
i=1

Di(g). (1.10)

W przeciwnym przypadku reprezentacj¦ nazywamy nieprzywiedln¡.

Macierz reprezentacji D(g) mo»na uto»samia¢ z liniow¡ transformacj¡ pewnego zbioru
wektorów. Wówczas wymiar przestrzeni wektorowej, na któr¡ dziaªa transformacja, jest
wymiarem tej reprezentacji. W przypadku reprezentacji produktowej dowolny podzbiór
wektorów jest rozª¡czny z reszt¡ wektorów. Gdy przestrze« jest wyposa»ona w iloczyn
skalarny, ten warunek oznacza ortogonalno±¢ wektorów w danym zbiorze. Natomiast w
przypadku reprezentacji nieprzywiedlnej wektory danego zbioru s¡ powi¡zane ze sob¡
pewn¡ transformacj¡ dziaªaj¡c¡ w obr¦bie grupy.

Fundamentem teorii reprezentacji jest lemat Schura, który mówi, »e jedyn¡ macie-
rz¡ przemienn¡ z dowoln¡ macierz¡ reprezentacji nieprzywiedlnej grupy G jest macierz
b¦d¡ca krotno±ci¡ identyczno±ci. Bezpo±rednim wnioskiem pªyn¡cym z tego lematu jest
nast¦puj¡ce twierdzenie o ortogonalno±ci dwu reprezentacji nieprzywiedlnych [13, 14]:
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Dla reprezentant dwu nieprzywiedlnych reprezentacji (µ, ν) grupy G oznaczonych ma-
cierzami Dµ(g) oraz Dν(g) zachodzi to»samo±¢:

∑
g∈G

Dµ∗
ij (g)Dν

kl(g) =
|G|

dimV
δµνδilδjk, (1.11)

gdzie suma przebiega po wszystkich elementach grupy G, |G| jest rz¦dem tej grupy a
dimV jest wymiarem przeksztaªcenia liniowego mi¦dzy przestrzeniami liniowymi repre-
zentacji (µ, ν).

Obrotem wektora |Ψµ〉 w reprezentacji µ w grupie G nazwiemy operacj¦:

R̂(g) |Ψµ
j 〉 =

∑
i

Dµ
ij(g) |Ψµ

i 〉 , (1.12)

dla której R̂(g) jest operatorem obrotu sparametryzowanym elementem g ∈ G, a Dµ

jest ci¡gª¡ reprezentacj¡ nieprzywiedln¡ grupy G. Mno»¡c t¦ to»samo±¢ obustronnie przez
sprz¦»enie zespolone reprezentantyDν∗

kl (g), sumuj¡c obustronnie po wszystkich elementach
grupy oraz korzystaj¡c z twierdzenia o ortogonalno±ci (1.11) otrzymujemy, »e:

P̂ µ
ij |Ψν

k〉 = δµνδjk |Ψµ
i 〉 , (1.13)

gdzie operator P̂ µ jest operatorem rzutowym nieprzywiedlnej reprezentacji µ i wyra»a si¦
wzorem:

P̂ µ
ij =

dimV

|G|
∑
g∈G

Dµ∗
ij (g)R̂(g). (1.14)

Ponadto, dla operatora P̂ µ zachodz¡ to»samo±ci:

P̂ µ
ijP̂

ν
kl = δµνδjkP̂

µ
il (1.15)

oraz:

(P̂ µ
ij)
† = P̂ µ

ji (1.16)

co oznacza, »e operator P̂ µ nie jest indempotentny, a zatem nie jest operatorem rzutowym
w sensie matematycznym.

Przedstawione powy»ej wªasno±ci matematyczne grup Liego, ich reprezentacje oraz
operatory rzutowe (1.14) b¦d¡ niezb¦dne do opisu ukªadu kwantowego przy wykorzy-
staniu podstawowych symetrii oraz pó¹niej w procedurze rzutowania na okre±lone liczby
kwantowe.

�2. Symetrie oddziaªywania silnego

W poprzednim podrozdziale omówili±my pokrótce struktur¦ matematyczn¡ sko«czo-
nych grup Liego - niezwykle istotnych ze wzgl¦du na interpretacj¦ badanych zjawisk �-
zycznych. Grupy Liego nale»¡ do grup ci¡gªych. Równie istotna okazuje si¦ by¢ analiza
symetrii dyskretnych takich jak: symetria parzysto±ci, odwrócenia w czasie, czy syme-
trie punktowe jak sygnatura i sympleks. Te ostatnie wydaj¡ si¦ by¢ niezwykle istotne ze
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wzgl¦dów czysto pragmatycznych. Pozwalaj¡ bowiem na znaczne uproszczenie wykorzy-
stywanych narz¦dzi obliczeniowych. Nierzadko narzucenie symetrii na ukªad kwantowy
skraca czas obliczeniowy, a czasem nawet wr¦cz umo»liwia rozwi¡zanie problemu, który
przy zrelaksowanych symetriach punktowych nie jest mo»liwy do rozwi¡zania [15]. Grupy
opisuj¡ce symetrie punktowe to grupy diedralne Dn.

Do symetrii punktowych nale»y tzw. symetria sygnatury, któr¡ opisuje grupa D2 roz-
pi¦ta przez operator identyczno±ci oraz trzy unitarne operatory sygnatury postaci:

R̂k = exp(−iπ
~
Îk), (1.17)

gdzie Îk jest operatorem rzutu caªkowitego momentu p¦du na o± k. Przy czym dla j¡der
parzystych R̂k jest operatorem hermitowskim, za± dla nieparzystych antyhermitowskim.
Wobec powy»szego, dla j¡der nieparzystych, grup¦ D2 rozszerza si¦ do podwójnej 8 ele-
mentowej grupy DD

2 . Interpretacja �zyczna sprowadza si¦ do geometrii ukªadu kwanto-
wego. Dla j¡der parzystych obrót o k¡t π 1 nie zmienia ukªadu kwantowego. Natomiast ten
sam obrót w przypadku j¡dra nieparzystego zmienia kierunek pr¡du nieparzystej cz¡stki
walencyjnej.

Je»eli ukªad kwantowy zachowuje zarówno symetri¦ sygnatury oraz symetri¦ parzysto-
±ci, to wówczas grupy punktowe D2 i DD

2 rozszerza si¦ odpowiednio do 8 i 16 elementowych
przez dodanie operatora parzysto±ci, tworz¡c operatory sympleksu [15]:

Ŝk = P̂ R̂k (1.18)

b¦d¡ce operatorami zwierciadlanego odbicia wzgl¦dem pªaszczyzn y − z,z − x oraz x− y
odpowiednio dla k = x, y, z. Wreszcie, uwzgl¦dniaj¡c antyliniowy operator odwrócenia w
czasie:

Tk = exp
(
− iπ

~
Ŝk

)
K̂, (1.19)

gdzie Ŝk jest operatorem skªadowej y caªkowitego spinu, a K̂ jest operatorem sprz¦»enia
zespolonego, tworzymy 16 i 32 elementowe grupy.

Operator Tk jest antyunitarny, a zatem jego warto±ci wªasne nie s¡ mierzalne. Ten
fakt powoduje, »e symetria odwrócenia w czasie jest najmniej intuicyjna spo±ród reszty
dyskutowanych symetrii. Dyskusja wªasno±ci operatora Tk jest szczególnie istotna w przy-
padku teorii pola ±redniego uwzgl¦dniaj¡cej korelacje par. W przypadku za± modelu
Hartree'ego-Focka wykorzystywanego w tej pracy istotn¡ konsekwencj¡ jest tzw. degene-
racja Kramersa. W stanie podstawowym j¡der parzysto-parzystych liczba nukleonów jest
jednoznacznie okre±lona. Natomiast w przypadku j¡der nieparzystych lub nieparzysto-
nieparzystych stan podstawowy mo»na opisa¢ przy u»yciu dwu ortogonalnych wielocz¡st-
kowych stanów |Ψ〉 oraz T̂ |Ψ〉 o tej samej energii.

Operator odwrócenia w czasie T̂k komutuje z operatorem sympleksu Ŝk. Wobec czego,
je»eli ukªad kwantowy zachowuje symetri¦ sympleksu to istnieje baza stanów jednocz¡st-
kowych speªniaj¡cych obie te symetrie jednocze±nie. Dodatkowo, w przypadku zachowania

1Przy zaªo»eniu osiowej deformacji j¡dra.
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symetrii parzysto±ci operator T̂k komutuje równie» z operatorem sygnatury R̂k. Wówczas
sygnatura ukªadu kwantowego opisuje de facto kierunek pr¡du cz¡stki walencyjnej � znak
rzutu momentu p¦du na o± kwantyzacji. W niniejszej pracy symetrie sygnatury, parzy-
sto±ci oraz odwrócenia w czasie s¡ zachowane, wobec czego, ze wzgl¦du na intuicyjn¡
interpretacj¦ �zyczn¡, stany kwantowe opisujemy przy u»yciu sygnaturowej liczby kwan-
towej i zapisujemy je odpowiednio |+〉 , |−〉 dla warto±ci wªasnych {i,−i} operatora R̂y.
Szczegóªowe rozwa»ania czytelnik znajdzie w ksi¡»ce [16].

Symetrie zachowane przez oddziaªywanie silne mo»emy sklasy�kowa¢ ze wzgl¦du na
przemienno±¢ grup sko«czonych opisuj¡cych te symetrie. I tak: do grup abelowych nale»¡
symetria translacyjna, symetria cechowania zwi¡zana z liczb¡ cz¡stek U(1) oraz punktowa
symetria parzysto±ci a tak»e jednowymiarowe podgrupy grup obrotów SU(2), natomiast
do grup nieabelowych zaliczamy peªne grupy obrotów SU(2). Taki podziaª jest istotny ze
wzgl¦du na konstrukcj¦ i charakterystyk¦ operatora rzutowego danej grupy.

Dokªadna analiza symetrii jakim podlega hamiltonian ukªadu j¡drowego jest niezwy-
kle istotna w zrozumieniu przybli»e« czynionych przez przyj¦cie modelu pola ±redniego
w uj¦ciu Hartree'ego−Focka, na którym opiera si¦ przedstawiony w niniejszej pracy mo-
del teoretyczny. Ponadto, konstrukcja oddziaªywania j¡drowego opiera si¦ na zaªo»eniu
speªnienia przeze« odpowiednich symetrii. I tak hamiltonian j¡dra atomowego jest nie-
zmienniczy ze wzgl¦du na:

• translacj¦ tego ukªadu w przestrzeni opisywan¡ przez ci¡gª¡ symetri¦ przesuni¦¢,

• rotacj¦ tego ukªadu w przestrzeni opisywan¡ przez ci¡gª¡ symetri¦ obrotow¡,

• rotacj¦ tego ukªadu w izoprzestrzeni opisywan¡ przez ci¡gª¡ symetri¦ izospinow¡
(lub izobaryczn¡) 2,

• caªkowit¡ liczb¦ cz¡stek opisywan¡ przez ci¡gª¡ symetri¦ liczby cz¡stek,

• inwersj¦ przestrzenn¡ opisywan¡ przez dyskretn¡ symetri¦ parzysto±ci przestrzennej,

• inwersj¦ czasow¡ opisywan¡ przez dyskretn¡ symetri¦ odwrócenia w czasie,

• transformacj¦ Galileusza 3.

Symetrie dyskretne zostaªy ju» pokrótce sklasy�kowane. Teraz bardziej szczegóªowo
zostan¡ opisane symetrie ci¡gªe, których opisu dostarczaj¡ grupy Liego. Zatem zgodnie
z (1.1), skaluj¡c parametr ϑ przez −1

~ , ci¡gªe symetrie mo»emy przedstawi¢ przy pomocy
ich unitarnej reprezentacji postaci:

Û = exp
(
−i
~
ϑŜ

)
, (1.20)

gdzie operator symetrii Ŝ jest generatorem grupy, natomiast ϑ ci¡gªym, w ogólno±ci wek-
torowym, parametrem parametryzuj¡cym elementy tej»e grupy.

2Symetria izospinowa jest symetri¡ przybli»on¡.
3W niniejszej pracy stosujemy opis nierelatywistyczny.
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Symetria translacyjna

Zaªo»enie jednorodno±ci przestrzeni, w której znajduje si¦ ukªad kwantowy, prowadzi
do narzucenia symetrii translacyjnej tj. takiej, w której opis ukªadu kwantowego jest
niezale»ny od poªo»enia w przestrzeni. Wówczas wektorowy operator caªkowitego p¦du

P̂ =
A∑
i=1

p̂i (1.21)

peªni rol¦ generatora grupy przesuni¦¢, natomiast ϑr jest wektorem przesuni¦cia r0. Proce-
dura przywracania zªamanej symetrii translacyjnej nie wymaga skomplikowanych narz¦dzi
odwoªuj¡cych si¦ do teorii grup [17, 18]

Symetria rotacyjna

Pod nieobecno±¢ pola zewn¦trznego »aden kierunek w przestrzeni nie jest wyró»niony,
wobec czego mo»na zaªo»y¢, »e przestrze« jest izotropowa. A zatem oddziaªywanie j¡drowe
oraz podlegªy mu ukªad kwantowy powinny by¢ niezmiennicze ze wzgl¦du na obrót w
przestrzeni. Naturalnie, symetria obrotowa jest ci¡gªa, a generatorem odpowiadaj¡cej jej
grupy jest caªkowity moment p¦du ukªadu

Ĵ =
A∑
i=1

ĵi. (1.22)

Ci¡gªym parametrem ϑn s¡ k¡ty obrotu |α0| wokóª osi obrotu α0
|α0| . Przywrócenie zªamanej

symetrii rotacyjnej nie jest trywialne. Wymaga zastosowania metod rzutowych teorii grup
tudzie» skorzystania z metod przybli»onych. W niniejszej rozprawie wszystkie przedsta-
wione rachunki wykorzystuj¡ dokªadny opis przywracania zªamanych symetrii.

Symetri¦ obrotow¡ w przestrzeni opisujemy w ramach konstrukcji grupy SO(3). Zgod-
nie z twierdzeniem Eulera ka»dy element grupy SO(3) jest obrotem dookoªa pewnej
osi [13]. W reprezentacji macierzowej dowolny obrót mo»na wyrazi¢ jako [19]:

A = BαCβBγ, (1.23)

gdzie macierze B i C s¡ obrotami, odpowiednio, dookoªa osi z i y, a k¡ty α ∈ [0; 2π), β ∈
[0; π] oraz γ ∈ [0; 2π) s¡ k¡tami Eulera. Natomiast du»o wygodniejsz¡ grup¡ jest specjalna
unitarna grupa SU(2), dla której ªatwiej o wyznaczenie nieprzywiedlnych reprezentacji
oraz wprowadzenie operatorów rzutowych. Dowolno±¢ wyboru mi¦dzy grupami SO(3) i
SU(2) jest zapewniona przez izomor�zm Ψ :SO(3)−→SU(2)/Z2, który mówi tyle, »e do-
wolna reprezentacja grupy SO(3) jest reprezentacj¡ grupy SU(2), a ka»dy obrót z SO(3)
odpowiada dokªadnie dwu przeksztaªceniom unitarnym g oraz −g nale»¡cym do SU(2).

Generatorami grupy SU(2), z dokªadno±ci¡ do czynnika ~
2 , s¡ hermitowskie macierze

Pauliego, które w bazie poªo»eniowej przyjmuj¡ posta¢:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1.24)

dla których ±lad trσi = 0. Na mocy (1.8) oraz wªasno±ci macierzy Pauliego staªa struktury
grupy (1.7) jest antysymetrycznym tensorem Levi'ego-Civity.
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Kwadrat caªkowitego momentu p¦du w obr¦bie grupy SU(2) jest operatorem Casimira.
Wobec czego na mocy lematu Schura w reprezentacji nieprzywiedlnej J2 jest operatorem
diagonalnym. Ponadto w±ród N2−1 generatorów grupy SU(N) 4 N−1 jest diagonalnych.
Wobec powy»szego istnieje baza reprezentacji nieprzywiedlnej, dla której stan kwantowy
zachowuj¡cy symetri¦ rotacyjn¡ � a zatem b¦d¡cy elementem grupy SU(2) � jest okre±lony
przez dwie liczby kwantowe � caªkowity moment p¦du J oraz jego rzut na z-ow¡ o± M :
|JM〉. Wówczas:

Ĵ2 |JM〉 = J(J + 1) |JM〉 Ĵz |JM〉 = M |JM〉 (1.25)

W reprezentacji produktowej natomiast stan kwantowy opisujemy przy u»yciu momentów
p¦du oraz ich rzutów na z-ow¡ o± wszystkich cz¡stek: |j1m1j2m2...jAmA〉.

Obie reprezentacje rozpinaj¡ t¦ sam¡ przestrze« wektorow¡, wobec czego istnieje li-
niowa transformacja przeksztaªcaj¡ca wektory jednej bazy w drug¡. W przypadku ukªadu
dwufermionowego wspóªczynnikami rozwini¦cia wektora bazy nieprzywiedlnej w bazie
produktowej s¡ wspóªczynniki Clebscha-Gordana:

|JM〉 =
∑

m1,m2

CJM
j1m1j2m2

|j1m1j2m2〉 (1.26)

Powy»sza analiza dotyczyªa operatora caªkowitego momentu p¦du rozªo»onego w bazie
kartezja«skiej. Opis zarówno obrotu stanów kwantowych jak i obrotu samych operatorów
w obr¦bie grupy SU(2) jest znacznie bardziej przejrzysty w bazie sferycznej. Wzór (1.12)
opisuje obrót ukªadu kwantowego w obr¦bie pewnej grupy Liego. Aplikuj¡c go do grupy
SU(2) obrócony stan kwantowy:

R̂(Ω) |JM〉 =
J∑

M ′=−J
DJ
M ′M(Ω) |JM ′〉 (1.27)

rozkªada si¦ w bazie nieprzywiedlnej reprezentacji J ze wspóªczynnikami, b¦d¡cymi funk-
cjami D-Wignera. Natomiast obrót samych operatorów O = RO′R† da si¦ wyrazi¢ w
równie prosty sposób:

R̂(Ω)TLMR̂†(Ω) =
L∑

M ′=−L
TLM ′D

L
M ′M(Ω) (1.28)

pod warunkiem, »e TLM jest tensorem sferycznym rz¦du L. Powy»sza reguªa transforma-
cyjna stanowi jedn¡ z de�nicji tensora sferycznego tzn. je»eli operator obraca si¦ zgodnie
z (1.28), to nazywamy go tensorem sferycznym.

Tensorem sferycznym jest wektor poªo»enia r, który w bazie kartezja«skiej przyjmuje
posta¢:

r± =
∓1√

2
(x± iy) r0 = z. (1.29)

Podobnie, z dokªadno±ci¡ do czynnika ∓1√
2
, wygl¡da sferyczna reprezentacja operatora

momentu p¦du. Mianowicie skªada si¦ ona z tzw. operatorów drabinkowych:

J± = Jx ± iJy J0 = Jz, (1.30)

4N2 − 1 jest wymiarem grupy SU(N), a N − 1 jej rz¦dem
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które w dziaªaniu na stan kwantowy |JM〉 zwi¦kszaj¡ lub odpowiednio zmniejszaj¡ ma-
gnetyczn¡ liczb¦ kwantow¡ M :

J± |JM〉 = ~
√

(J ∓M)(J ±M + 1) |JM ± 1〉 . (1.31)

Operatory J±, Jz s¡ generatorami grupy obrotów. Wobec tego wszystkie operatory speª-
niaj¡ce relacj¦ (1.28) tzn. wszystkie tensory sferyczne speªniaj¡ bardzo istotne zwi¡zki
komutacyjne:

[Jz, TJM ] = ~MTJM [J±, TJM ] = ~
√

(J ∓M)(J ±M + 1)TJM±1. (1.32)

Ponadto dla tensorów sferycznych zachodzi niezwykle u»yteczne twierdzenie Wignera-
Eckarta pozwalaj¡ce na geometryczne wyznaczanie elementów macierzowych tensorów
sferycznych.

Symetria izobaryczna

Oddziaªywanie silne pomi¦dzy nukleonami w bardzo dobrym przybli»eniu zachowuje
symetri¦ izobaryczn¡. To znaczy, »e nie wyró»nia neutronów i protonów i traktuje je
jak identyczne nukleony. Wówczas o nukleonie mo»emy my±le¢ jako o dubletowym sta-
nie kwantowym o izospinie t = 1/2. W �zyce j¡drowej stan |t = 1/2 tz = 1/2〉 przypisu-
jemy neutronowi, a |t = 1/2 tz = −1/2〉 protonowi 5. Naturalnie w ±rodowisku j¡drowym
niebagatelne znaczenie ma oddziaªywanie Coulomba dziaªaj¡ce pomi¦dzy naªadowanymi
protonami. Jednak skala oddziaªywania coulombowskiego wzgl¦dem silnego pozwala na
potraktowanie oddziaªywania elektromagnetycznego w sposób perturbacyjny z niezabu-
rzonymi funkcjami falowymi o dobrym izospinie. W taki sposób oddziaªywanie Coulomba
uwzgl¦dniane jest cho¢by w modelu powªokowym [20, 21].

Symetri¦ izobaryczn¡ mo»emy potraktowa¢ jako symetri¦ rotacyjn¡ w tzw. izoprze-
strzeni, w której caªkowity izospin T jest odpowiednikiem caªkowitego momentu p¦du.
Zatem T̂ jest generatorem tej symetrii:

T̂ =
A∑
i=1

ti (1.33)

sparametryzowanej przez ϑm b¦d¡ce k¡tami obrotu α0 wokóª osi obrotu α0
|α0| w izoprze-

strzeni.

Wobec powy»szego caªa dyskusja dotycz¡ca symetrii rotacyjnej w przestrzeni przenosi
si¦ na symetri¦ izospinow¡. Generator symetrii izobarycznej jest bowiem generatorem
grupy SU(2). Izospin posiada zatem wszystkie dyskutowane wcze±niej wªasno±ci tej grupy
w szczególno±ci:

• grupa generowana jest przez macierze Pauliego (1.24), które oznaczamy symbolem τ .
Z t¡ ró»nic¡, »e w przypadku przestrzeni izospinowej macierzy τ nie mno»y si¦ przez
~.

5Ze wzgl¦dów praktycznych, konwencja j¡drowa jest odwrotna wzgl¦dem tej u»ywanej w �zyce cz¡stek
elementarnych.
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• stan kwantowy niezmienniczy ze wzgl¦du na obrót w izoprzestrzeni ma dwie do-
brze zde�niowane liczby kwantowe: caªkowity izospin T oraz jego rzut na z-ow¡ o±
Tz = N−Z

2 .

• reprezentacj¦ nieprzywiedln¡ nazywamy reprezentacj¡ izospinow¡ a reprezentacj¦
produktow¡ protonowo-neutronow¡. Podobnie wspóªczynniki rozwini¦cia wektora
jednej reprezentacji w bazie drugiej nazywamy wspóªczynnikami Clebscha-Gordana.

Obrót w izoprzestrzeni rozumiemy jako mieszanie protonów z neutronami. Wyj¡tek
stanowi obrót dookoªa z-owej osi, gdy» ten generowany jest przez diagonalny operator T̂z.
Pod nieobecno±¢ oddziaªywania coulombowskiego niezmienniczo±¢ oddziaªywania wzgl¦-
dem obrotu w izoprzestrzeni oznacza:

• zachowanie niezale»no±ci ªadunkowej. Wówczas

Vnn = Vpp [Ĥ, T̂] = 0 (1.34)

• zachowanie niezmienniczo±ci ªadunkowej. Wówczas

Vnp =
1
2

(Vnn + Vpp) [Ĥ, T̂2] = 0. (1.35)

Grupy SU(2) dla symetrii rotacyjnej i izospinowej s¡ rozª¡czne. Wobec czego, ge-
neratory tych»e symetrii komutuj¡ ze sob¡. Je»eli dwa operatory ze sob¡ komutuj¡, to
istnieje wspólna dla tych operatorów baza stanów wªasnych. Wobec tego, stan kwantowy
niezmienniczy ze wzgl¦du na obrót w przestrzeni i izoprzestrzeni mo»emy zapisa¢ jako
iloczyn tensorowy:

|IM ;TTz〉 (1.36)

Ponadto, hamiltonian jest symetryczny wzgl¦dem pewnego operatora wtedy i tylko wtedy,
gdy jest przemienny z generatorem symetrii. Wobec tego, w przypadku zachowania syme-
trii rotacyjnej i izospinowej przez oddziaªywanie j¡drowe, stan (1.36) jest równie» stanem
wªasnym hamiltonianu.

Przybli»one rozwi¡zanie kwantowego ukªadu wielu ciaª w postaci wyznacznika Slatera
najcz¦±ciej jest pewn¡ kombinacj¡ liniow¡ stanów (1.36). Wówczas liczby kwantowe: mo-
ment p¦du I, jego rzut na z−ow¡ o± w tzw. ukªadzie laboratoryjnym 6 M izospin T nie
s¡ zachowane i nale»y je przywróci¢ np. stosuj¡c techniki rzutowe. Przywracanie symetrii
metodami rzutowymi stanowi trzon tej pracy.

Symetria liczby cz¡stek

O symetrii liczby cz¡stek nikt nawet by nie wspomniaª, gdyby nie fakt, i» realizacja
przybli»enia pola ±redniego w obecno±ci korelacji nadprzewodnikowych w hamiltonianie,

6Ukªad, w którym moment p¦du oraz jego rzut s¡ mierzalnymi liczbami kwantowymi. Inaczej: ukªad
z przywróconymi symetriami.
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prowadzi do funkcji falowej, w której liczba cz¡stek nie jest dobrze okre±lona. Symetria
jest generowana przez operator liczby cz¡stek:

N̂ =
A∑
i=1

N̂i, (1.37)

gdzie operator N̂i jest operatorem liczby cz¡stek dziaªaj¡cym na i−ty stan jednocz¡st-
kowy, a parametr ϑφ jest k¡tem cechowania φ0. Symetria liczby cz¡stek opisywana jest rów-
nie» przy u»yciu grupy Liego izomor�cznej do grupy obrotów SO(2): U(1) = {exp(iφ);φ ∈
[0; 2π)}, a zatem parametryzowana za pomoc¡ jednego k¡ta obrotu φ0. 7.

Transformacja Galileusza

W nierelatywistycznym przybli»eniu, jakiego najcz¦±ciej dokonujemy do opisu ukªadów
j¡drowych, oddziaªywanie powinno by¢ niezmiennicze ze wzgl¦du na transformacj¦ Ga-
lileusza, a w przypadku relatywistycznym ze wzgl¦du na transformacj¦ Lorentza. Grupy
Galileusza i Lorentza równie» s¡ rozmaito±ciami Liego. Generatorem transformacji Gali-
leusza jest operator caªkowitego poªo»enia:

R̂ =
A∑
i=1

ri (1.38)

a parametrem ϑv = mv0
~ , gdzie v0 jest zmian¡ pr¦dko±ci ukªadu. Jednociaªowa funkcja

falowa φ poddana transformacji Galileusza zmienia faz¦ w sposób nast¦puj¡cy:

φ(r, σ) −→ exp(ikr)φ(r, σ). (1.39)

Zmiana tej fazy wprowadza do funkcjonaªu g¦sto±ci dodatkowe czªony, tak aby zachowy-
waª on transformacj¦ Galileusza.

Przedstawione w niniejszym rozdziale symetrie stanowi¡ znacz¡ce uproszczenie teore-
tycznego opisu materii j¡drowej. Caªa niniejsza praca oparta jest na zjawisku spontanicz-
nego ªamania symetrii, b¦d¡cego konsekwencj¡ przybli»enia pola ±redniego, a ±ci±lej opisu
ukªadu kwantowego w tym»e przybli»eniu. Nast¦pnie, przy u»yciu metod rzutowych, w
teorii wieloreferencyjnej, przywraca si¦ te symetrie tak, aby ukªad kwantowy przedsta-
wi¢ w ukªadzie laboratoryjnym. W ten sposób caªo±ciowa konstrukcja modelu od metody
pola ±redniego do metod rzutowych zbudowana jest w oparciu o fundamentalne syme-
trie. Wreszcie, badania nad �zycznym ªamaniem jednej z nich, tj. symetrii izospinowej
w rozpadach beta typu Fermiego dostarczaj¡ informacji na temat podstawowych zaªo»e«
Modelu Standardowego, w tym przypadku hipotezy zachowania pr¡dów wektorowych oraz
istnienia trzech generacji kwarków.

7Warto przy okazji wspomnie¢, »e jest to ta sama grupa, która opisuje lokaln¡ symetri¦ elektrodynamiki
kwantowej.



Rozdziaª 2

Fizyka rozpadu beta

Analiza rozpadu beta w modelu uogólnionego funkcjonaªu g¦sto±ci stanowi trzon tej
pracy. Narz¦dzie teoretyczne jakim jest teoria funkcjonaªu g¦sto±ci, czy te» jej rozszerze-
nia zostanie omówiona w nast¦pnym rozdziale. Rozdziaª drugi przedstawia zarys teorii
rozpadu beta pocz¡wszy od sformuªowania jej przez Enrico Fermiego w latach 30 a»
po uni�kacj¦ oddziaªywa« elektromagnetycznych ze sªabymi w teorii Glashowa-Salama-
Weinberga.

�1. Teoria Fermiego dozwolonego rozpadu beta

Teoretyczny opis oddziaªywa« sªabych nie byªby mo»liwy, gdyby nie obserwacja fun-
damentalnego dla tych oddziaªywa« zjawiska rozpadu beta. Zaledwie kilka lat od od-
krycia promieniotwórczo±ci Rutherford w 1899r. wyodr¦bnia rozpad alfa i beta, kieruj¡c
si¦ kryterium przenikalno±ci. Rok pó¹niej w do±wiadczeniu mierz¡cym stosunek masy do
ªadunku Becquerel udowadnia, »e emitowana podczas rozpadu beta cz¡stka to elektron.
Za± w 1901r. Rutherford pokazuje, »e za promieniotwórczo±ci¡ typu beta stoi przemiana
pierwiastka chemicznego1:

A
ZXN →A

Z+1 YN−1 + e− + ν̄e (2.1)

Naturalnie, nikt nie przypuszczaª wówczas, »e w rozpadzie produkowane jest neutrino.
Z czasem o rozpadzie beta zacz¦to my±le¢ jako o przemianie nie caªego pierwiastka, lecz
pojedynczego nukleonu:

n→ p+ e− + ν̄e (2.2)

a od momentu odkrycia jego wewn¦trznej struktury, wiemy, »e rozpad beta zachodzi w
obecno±ci bozonu W± po±rednicz¡cego mi¦dzy przemieniaj¡cymi si¦ kwarkami:

d→ u+ e− + ν̄e (2.3)

W 1934r. Enrico Fermi, korzystaj¡c z dobrze ju» usytuowanego opisu mechaniki kwan-
towej, zaproponowaª pierwszy teoretyczny opis rozpadu beta [22, 23]. 2

1Dopiero w 1913r. udaje si¦ zidenty�kowa¢ pierwiastek, b¦d¡cy produktem przemiany.
2W zasadzie praca zostaªa wysªana do brytyjskiego dziennika Nature w 1932r. Pomimo odpowiedzi

teorii na podejrzenie ªamania zasady zachowania energii w rozpadzie beta oraz bardzo dobrej zgodno±ci z
danymi do±wiadczalnymi, edytor odrzuciª artykuª, krytykuj¡c zaªo»enia teorii rozpadu beta jakoby byªy
too remote from physical reality to be of interest to readers.
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Ci¡gªy rozkªad elektronów emitowanych przez j¡dra atomowe wydawaª si¦ ªama¢ fun-
damentalne zasady �zyki jak zachowanie energii, czy p¦du. Ówczesny brak wiedzy na
temat oddziaªywania odpowiedzialnego za proces rozpadu czyniª go tym bardziej interesu-
j¡cym. Podstawowym zaªo»eniem Fermiego, byªo dodanie do obserwowanych w rozpadzie
neutronu, protonu i elektronu nieoddziaªuj¡cej elektromagnetycznie cz¡stki o poªówko-
wym spinie. Cz¡stka ta, nazwana przez Fermiego neutrinem, wprowadzaªa do ukªadu
energi¦ i p¦d, opisuj¡c rozpad w zgodzie z zasadami zachowania jednocze±nie zachowuj¡c
ksztaªt widma energetycznego β emiterów 3. Nieznaczn¡ zmian¦ obserwuje si¦ tu» przy
maksymalnej dost¦pnej energii. Ta zmiana stanowiªa przez wiele lat najbardziej dokªadny
pomiar eksperymentalny masy neutrina. Ju» w teorii Fermiego mo»na byªo oszacowa¢, »e
neutrino albo masy nie ma wcale, albo »e jest znacznie l»ejsze od elektronu. Ze wzgl¦du na
brak ªadunku i zerow¡ lub bardzo niewielk¡ mas¦ eksperymentalne potwierdzenie istnienia
neutrina byªo bardzo trudne. Dopiero ponad 20 lat pó¹niej neutrino zostaje odkryte w
do±wiadczeniu Cowana-Reinesa z 1956r. [24].

Teoria Fermiego rozpadu beta wyznacza prawdopodobie«stwo przej±cia na jednostk¦
czasu. Wykorzystuj¡c nierelatywistyczny rachunek zaburze« zale»ny od czasu, Fermi wpro-
wadziª do mechaniki kwantowej tzw. Zªot¡ Reguª¦ Fermiego [25]:

Ti→f =
2π
~
|H ′i→f |2%f (E), (2.4)

wedle której prawdopodobie«stwo przej±cia na jednostk¦ czasu Ti→f jest proporcjonalne
do elementu macierzowego przej±cia H ′i→f :

H ′i→f = 〈Ψf | Ĥ ′ |Ψi〉 (2.5)

oraz do g¦sto±ci energii stanów ko«cowych %f (E) = dN
dE0

.

Na podstawie analizy zasad zachowania energii i p¦du, przy zaªo»eniu istnienia neu-
trina o zerowej masie oraz zaniedbywalnej energii kinetycznej powstaªego w rozpadzie
nukleonu mo»na pokaza¢, »e:

%f (E) =
1

4π4~6c3
p2
e(E0 − Ee)2, (2.6)

gdzie pe jest p¦dem a Ee energi¡ powstaªego w wyniku rozpadu elektronu, a E0 dost¦pn¡
energi¡ ukªadu kwantowego w stanie ko«cowym. Wówczas widmo energii elektronu przed-
stawia si¦ wzorem:

P (Ee)dEe =
1

2π3~7c5
|H ′i→f |2peEe(E0 − Ee)2dEe. (2.7)

Tak zapisane widmo nie uwzgl¦dnia jednak efektów elektromagnetycznych ró»ni¡cych si¦
dodatkowo w trzech dost¦pnych kanaªach rozpadu. Mianowicie przemiana mi¦dzy nukle-
onami mo»e zachodzi¢:

3Jej istnienie zostaªo po raz pierwszy przewidziane teoretycznie przez Wolfganga Pauliego w 1930 r.
na podstawie analizy rozkªadu energii elektronów powstaj¡cych w rozpadzie beta.
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• w kanale negatonowym, w którym przemianie ulega kwark górny u, produktem s¡
kwark dolny d, elektron i antyneutrino elektronowe, a bozonem po±rednicz¡cym jest
W−. Taki rozpad nie wymaga dodatkowej energii pocz¡tkowej, dzi¦ki czemu mo»liwy
jest rozpad swobodnego neutronu;

• w taki sposób, »e przemianie ulega kwark dolny d, produktem s¡ kwark górny u,
pozyton i neutrino elektronowe. Taki rozpad nie zachodzi dla swobodnego protonu ze
wzgl¦du na zasad¦ zachowania energii. Zatem rozpad β+ jest mo»liwy dzi¦ki energii
wi¡zania ulegaj¡cego przemianie j¡dra atomowego;

• podobnie jak powy»ej, tyle »e w procesie wychwytu elektronu (electron capture -
EC) przez j¡dro atomowe

Nieopisane wcze±niej efekty elektromagnetyczne wprowadza si¦ za pomoc¡ funkcji Fer-
miego F0(±Zf ,W ), które opisuj¡ znieksztaªcenie funkcji falowej elektronu w obecno±ci
punktowego ªadunku j¡dra atomowego po przemianie [22]. Znak przy Zf jest zale»ny
od kanaªu przemiany + dla β+ i EC, natomiast − dla rozpadu β−. Uwzgl¦dniaj¡c, »e
W = E/mec

2 prawdopodobie«stwo zaj±cia reakcji na jednostk¦ czasu wynosi:

Ti→f =
m5
ec

4

2π3~7
|H ′i→f |2

∫ W0

1
pW (W0 −W )2F0(±Zf ,W )S(±Zf ,W )dW, (2.8)

gdzie p2 = W 2 − 1, a W0 = E0/mec
2. Funkcja S(±Zf ,W ) jest funkcj¡ uwzgl¦dniaj¡c¡

poprawk¦ ksztaªtu. W przybli»eniu rozpadów dozwolonych ma warto±¢ 1 [26]. Jednak ró»ni
si¦ nieznacznie od jedno±ci, gdy dopu±ci¢ mo»liwo±¢ rozpadów wzbronionych. Wówczas
czas poªowicznego rozpadu wynosi:

t1/2 =
ln 2
Ti→f

=
κ

f0|H ′i→f |2
, (2.9)

gdzie κ = 2π3~7 ln 2
m5ec

4G2F
= 6147s. Staªa Fermiego [27]

GF

(~c)3
= 1.1663787(6)× 10−5GeV−2 (2.10)

wydzielona z elementu macierzowego to staªa sprz¦»enia oddziaªywa« sªabych. f0 na-
tomiast jest tzw. czynnikiem przestrzenno-fazowym phase-space factor obliczanym przy
u»yciu caªki:

f∓0 =
∫ W0

1
pW (W0 −W )2F0(±Zf ,W )S(±Zf ,W )dW. (2.11)

Nale»y pami¦ta¢, »e przemiana, w której produktem ko«cowym jest j¡dro o zwi¦kszonej
liczbie protonów mo»e zachodzi¢ w dwóch niezale»nych kanaªach - w rozpadzie β+ oraz w
wychwycie elektronu. Wówczas:

Ti→f = T+
i→f + TECi→f =⇒ f0 = f+

0 + fEC0 (2.12)
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Czas »ycia t jest wielko±ci¡ zale»n¡ nie tylko od elementu macierzowego przej±cia, ale
równie» od energii przej±cia, jak i pola kulombowskiego wygenerowanego mi¦dzy wypro-
dukowanym leptonem a j¡drem. Z tego wzgl¦du w celu dokonania analizy systematycznej
rozpadów rozwa»a si¦ raczej liczb¦ f0t1/2, któr¡ nazywamy zredukowanym czasem »ycia i
oznaczamy dalej przez ft. Warto±¢ ta jest caªkowicie zale»na od struktury j¡drowej i do-
skonale nadaje si¦ do klasy�kacji rozpadów beta. Ze wzgl¦du na jej wysok¡ warto±¢ przy
opisach rozpadów wprowadza si¦ warto±¢ log ft. Im wi¦ksza warto±¢ log ft tym ni»sze
prawdopodobie«stwo przej±cia � ni»sza �dozwolono±¢� rozpadu. Rozpad beta nazywamy
dozwolonym, je»eli wyprodukowane leptony znajduj¡ si¦ w stanie kwantowym o zerowym
orbitalnym momencie p¦du. W przeciwnym przypadku rozpady nazywamy wzbronionymi,
cho¢ wzbronione s¡ jedynie z nazwy. Dozwolone przej±cia beta charakteryzuj¡ si¦ najni»-
szymi warto±ciami log ft.

Rozpady dozwolone dalej klasy�kuje si¦ ze wzgl¦du na generowany pr¡d elektrosªaby
powoduj¡cy, »e spiny wyemitowanych leptonów s¡ antyuszeregowane i tworz¡ stan sin-
gletowy (S=0) lub s¡ uszeregowane w stanie trypletowym (S=1). Pierwszy przypadek
generuj¡ pr¡dy wektorowe (ewentualnie pr¡dy skalarne) a stowarzyszone z nimi przej±cia
nazywamy rozpadami typu Fermiego, natomiast w drugim za rozpad beta odpowiadaj¡
pr¡dy osiowo-wektorowe (ewentualnie tensorowe) a sam rozpad nazywamy przej±ciem typu
Gamowa-Tellera. Zgodnie z zasad¡ zachowania momentu p¦du w przypadku przej±¢ Fer-
miego j¡dro atomowe zachowuje caªkowity moment p¦du ∆J = 0. Natomiast w rozpadach
Gamowa-Tellera dozwolona jest zmiana caªkowitego momentu p¦du j¡dra ∆J = 0,±1
poza przypadkiem, kiedy równocze±nie Ji = 0 oraz Jf = 0. Przypadek rozpadu 0+ → 0+

jest czystym rozpadem typu Fermiego przyjmuj¡cym najni»sze warto±ci log ft. Z tego
wzgl¦du takie przej±cia nazywamy rozpadami superdozwolonymi. Przej±cia superdozwo-
lone zachodz¡ w szczególno±ci pomi¦dzy izospinowymi stanami analogowymi T = 1 w
j¡drach o N ≈ Z. W ogólno±ci, dla j¡der le»¡cych wzdªu» linii N = Z ró»nica w po-
ziomach Fermiego jest najmniejsza, a zatem caªka przekrycia � czyli de facto element
macierzowy przej±cia � jest najwi¦ksza.

�2. Zarys teorii elektrosªabej Glashowa, Salama i Wein-

berga

Nowa cz¡stka elementarna zaproponowana przez Pauliego wyja±niaj¡ca zagadk¦ ci¡-
gªego widma elektronów pochodz¡cych z rozpadu beta okazaªa si¦ by¢ kluczem do gª¦b-
szego zrozumienia oddziaªywa« sªabych. Obserwacje neutrin z ko«ca lat 50 tych � w
szczególno±ci eksperyment wychwytu elektronu przez j¡dro 152Eu wskazaªy na istnienie
tej cz¡stki w bardzo konkretnym stanie kwantowym okre±lonym przez skr¦tno±¢ � rzut
spinu cz¡stki na kierunek jej p¦du. Operator skr¦tno±ci:

λ̂ = epŜ =
pσ̂
2|p|

(2.13)

komutuje z hamiltonianem Diraca dla cz¡stki bezmasowej, przez co skr¦tno±¢ jest dobr¡
liczb¡ kwantow¡. Eksperyment potwierdziª wówczas, »e neutrina s¡ cz¡stkami lewoskr¦t-
nymi a antyneutrina s¡ prawoskr¦tne [28]. Taka charakterystyka oznacza ªamanie funda-
mentalnych dla oddziaªywa« silnych i elektromagnetycznych symetrii ªadunkowej (C) oraz
symetrii parzysto±ci (P ). Zªamanie tej drugiej przez oddziaªywanie sªabe zauwa»ono na
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podstawie systematyk zwi¡zanych z rozpadem beta ju» na pocz¡tku lat 50. a potwierdzono
nast¦pnie w eksperymencie Wu et al. [29]. Do±wiadczenie polegaªo na obserwacji rozkªadu
k¡towego nat¦»enia strumienia elektronów powstaj¡cych w wyniku rozpadu 60Co → 60Ni
+ e− + ν̄e. Przy zachowanej parzysto±ci wyemitowane elektrony poruszaªyby si¦ z równym
prawdopodobie«stwem pod k¡tem nachylenia θ i π − θ do kierunku spinu j¡dra 60Co, co
do±wiadczenie caªkowicie wykluczyªo. Przeciwnie, wykazano wówczas maksymalne naru-
szenie parzysto±ci. Amplitudy z ujemn¡ i dodatni¡ parzysto±ci¡ byªy niemal identyczne a
rozkªad k¡towy elektronów speªniaª wzór:

W (θ) = 1 + a
pcσ̂
E

(2.14)

z eksperymentalnie wyznaczonym parametrem a = −1.

Fermiony obdarzone mas¡ nie maj¡ okre±lonej skr¦tno±ci. Pozostaj¡c zatem w repre-
zentacji, dla której skr¦tno±¢ jest dobr¡ liczba kwantow¡ de�niuje si¦ operator rzutuj¡cy
na okre±lon¡ skr¦tno±¢:

PL/R =
1
2

(I∓ γ5), (2.15)

gdzie w notacji Pauliego-Diraca operator γ5 = iγ0γ1γ2γ3 nazywamy operatorem chiral-
no±ci.

W poprzednim podrozdziale dokonali±my podziaªu dozwolonego rozpadu beta ze wzgl¦du
na generuj¡ce go pr¡dy wektorowe oraz osiowo-wektorowe. Niezmienniczo±¢ oddziaªywania
ze wzgl¦du na transformacj¦ Lorentza dopuszcza jednak 5 mo»liwych typów operatorów i
s¡ to:

• operatory skalarne (S) postaci ÔS = γ0,

• operatory wektorowe (V ) postaci ÔV
µ = γ0γµ,

• operatory osiowo-wektorowe (A) postaci ÔA
µ = γ0γ5γµ. S¡ to obiekty powstaªe z

iloczynu wektorowego wektorów typu V . Wektory A odró»nia si¦ od V ze wzgl¦du
na inne zachowanie si¦ wzgl¦dem symetrii parzysto±ci.

• operatory pseudoskalarne (P ) postaci ÔP = γ0γ5. S¡ to obiekty powstaªe z iloczynu
skalarnego wektora typu V i A. Skalary P odró»nia si¦ od S ze wzgl¦du na inne
zachowanie si¦ wzgl¦dem symetrii parzysto±ci.

• operatory tensorowe (T ) postaci ÔT
µν = γ0(γµγν − γνγµ).

Eksperymentalnie potwierdzona lewoskr¦tno±¢ neutrina i prawoskr¦tno±¢ antyneutrina,
a w konsekwencji zachowanie symetrii CP 4 przez oddziaªywanie sªabe tj. symetrii ªadun-
kowej i parzysto±ci wyst¦puj¡cych jednocze±nie, wykluczaj¡ skalarny, pseudoskalarny oraz
tensorowy charakter pr¡du leptonowego. Wobec czego oddziaªywanie sªabe opisywane jest

4W rzeczywisto±ci równie» symetria CP jest w niewielkim stopniu zªamana. Na ªamanie symetrii CP
wskazuj¡ rozpady oboj¦tnych kaonów na naªadowane piony.
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przez tzw. teori¦ V − A, dla której pr¡d w analogii do elektrodynamiki kwantowej zapi-
sujemy:

jµ = ψ̄L/Rγ
µψL/R =

1
2
ψ̄γµ(1− γ5)ψ. (2.16)

Pierwszy skªadnik odpowiada za pr¡dy wektorowe, za± drugi za osiowo-wektorowe. Dla
uproszczenia przyj¦to ψ̄ = ψ∗γ0, gdzie ψ jest funkcj¡ falow¡ oddziaªuj¡cego kwarku.
Ze wzgl¦du na potwierdzon¡ zasad¦ maksymalnego zªamania parzysto±ci cz¦±¢ osiowo-
wektorowa pr¡du elektorsªabego w powy»szym równaniu ma znak minus.

Sªuszno±¢ wzoru (2.16) mo»na udowodni¢, wyprowadzaj¡c pr¡d Noether z cz¦±ci la-
gran»janu (LCC) teorii uni�kacji SU(2)L×U(1)Y Glashowa-Salama-Weinberga [30, 31, 32]
odpowiadaj¡cej naªadowanym pr¡dom elektrosªabym (charge currents, CC): 5:

LCC =
∑

p=1,2,3

q̄pupW
†
µ

[
g

2
√

2
γµ(1− γ5)

]
q′
p
low + ν̄pW

†
µ

[
g

2
√

2
γµ(1− γ5)

]
lp, (2.17)

gdzie sumowanie odbywa si¦ po wszystkich zapachach p, Wµ to pole wektorowe genero-
wane przez po±rednicz¡cy bozon, g jest ªadunkiem sªabym a qup, q′low, ν i l reprezentuj¡
odpowiednio wektory zªo»one z kwarków górnych i dolnych w obr¦bie dubletu danej ge-
neracji oraz neutrin i leptonów o okre±lonym zapachu p. Wektor q′low reprezentuje stan,
w którym kwarki zostaªy zmieszane w wyniku oddziaªywania z polem Wµ:

q′
p
low =

∑
r

V pr
CKMq

r
low. (2.18)

Macierz VCKM jest macierz¡ mieszania kwarków Cabibbo-Kobayashiego-Maskawy (ma-
cierz CKM), o której szerzej opowiada paragraf 4. tego rozdziaªu. Grupa SU(2)L jest
trójwymiarow¡ grup¡ obrotów w lewoskr¦tnej reprezentacji, a U(1)Y jest unitarn¡ grup¡
z uni�kowanym hyperªadunkiem Y = Q− I3 ª¡cz¡cym elektromagnetyczny ªadunek Q z
rzutem na trzeci¡ o± sªabego izospinu I3.

G¦sto±¢ hamiltonianu przej±cia wyra»a si¦ przez sªaby pr¡d mi¦dzy kwarkami oraz
pr¡d leptonowy:

H′ = 1√
2
τ̂±j†µq j

lep
µ + h.c. (2.19)

gdzie operator τ± jest operatorem drabinkowym w przestrzeni izospinowej. Powy»szy wzór
nie zawiera staªej sprz¦»enia Fermiego GF (2.10), poniewa» w stosowanej tu notacji, zo-
staªa ona wyci¡gni¦ta z elementu macierzowego przej±cia i znajduje si¦ w de�nicji staªej
κ danej wzorem (2.9).

Z perspektywy rachunków przeprowadzanych w niniejszej rozprawie, ale i w wi¦kszo±ci
modeli j¡drowych, g¦sto±¢ hamiltonianu nale»aªoby przeformuªowa¢ z j¦zyka kwarków na

5Uni�kacja oddziaªywa« sªabych i elektromagnetycznych z 1973r. bardzo szybko zostaªa nagrodzona
Nagrod¡ Nobla � 1979r. Teoria stanowi fundament Modelu Standardowego tj. modelu lokalnej symetrii
cechowania w obr¦bie grupy SU(2)L×U(1)Y×SU(3)C .
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j¦zyk nukleonów. Ze wzgl¦du na efekty renormalizacji oddziaªywa« silnych nie jest to try-
wialne zadanie. Jednak przy zaªo»eniu, »e proces rozpadu jest niskoenergetyczny, a zatem
przekaz p¦du jest niewielki, mo»emy zaªo»y¢, »e jµq = jµhad, gdzie j

µ
had jest sªabym pr¡dem

hadronowym [33].

W teorii Fermiego zaªo»ono, »e oddziaªywanie odpowiedzialne za rozpad beta jest kon-
taktowe. W przypadku niewielkiej wymiany p¦du jest to bardzo dobre przybli»enie, cz¦sto
stosowane w rachunkach dotycz¡cych rozpadów beta. W niniejszej pracy we wszystkich
obliczeniach przyjmuje si¦ to wªa±nie przybli»enie. Natomiast natura oddziaªywa« sªabych
ujawnia si¦ dla wy»szych energii ok. 80GeV, gdzie wymiana p¦du jest rz¦du wielko±ci mas
naªadowanych bozonów po±rednicz¡cych W±. Wówczas, naturalnie, zaªo»enia, »e oddzia-
ªywanie jest kontaktowe oraz »e jµq = jµhad nie s¡ sªuszne [34].

Maj¡c na uwadze wzory (2.16) i (2.19) oraz mo»liwo±¢ ró»nych staªych sprz¦»enia
oddziaªywa« wektorowych i osiowo-wektorowych g¦sto±¢ hamiltonianu w rozpadzie β dla
ukªadu czterech fermionów mo»emy zapisa¢ nast¦puj¡co:

H′V−A =
Vud√

2

[
gV p̄τ

±γµnēγµν − gAp̄τ±γµγ5nēγµγ5ν
]

+ h.c. (2.20)

gdzie Vud jest wiod¡cym elementem macierzowym macierzy CKM. Pojawienie si¦ dwu a
priori ró»nych staªych sprz¦»enia pr¡dów wektorowych gV i osiowowektorowych gA spo-
wodowane jest renormalizacj¡ pr¡du do poziomu nukleonowych stopni swobody [35]. Aby
teraz obliczy¢ element macierzowy przej±cia

H ′i→f =
∫
〈ψf |H′V−A |ψi〉 dV (2.21)

pojawiaj¡cy si¦ we wzorze na czas poªowicznego rozpadu (2.9) mo»na skorzysta¢ z dwóch
przybli»e« de�niuj¡cych przej±cia dozwolone. Mianowicie, leptonowe funkcje falowe w ob-
r¦bie j¡dra mo»na uzna¢ za staªe a funkcje j¡drowe potraktowa¢ w przybli»eniu niere-
latywistycznym. 6 Ponadto, uwzgl¦dniaj¡c niemierzalne skªadowe takie jak magnetyczna
liczba kwantowa stanu ko«cowego mf , otrzymujemy:

|H ′i→f |2 =
G2
V

2Ii + 1
M2

F +
G2
A

2Ii + 1
M2

GT , (2.22)

gdzie

GV = VudgV GA = VudgA, (2.23)

za± Ii jest caªkowitym momentem p¦du j¡dra przed rozpadem. MF i MGT oznaczaj¡
odpowiednio elementy macierzowe Fermiego i Gamowa-Tellera:

6W przypadku przej±¢ wzbronionych, dla których wyemitowane leptony nios¡ moment p¦du l > 0
takie zaªo»enia nie s¡ speªnione. Przej±cia wzbronione nie s¡ rozpatrywane w niniejszej rozprawie.
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|MF |2 =
∑
mf

| 〈ψf |T± |ψi〉 |2 (2.24)

|MGT |2 =
∑
mf

∑
n

| 〈ψf |
∑
k

t±k σ
k
n |ψi〉 |2 (2.25)

gdzie sumowania wyst¦puj¡ po k, który jest indeksem numeruj¡cym wszystkie nukleony
w j¡drze ulegaj¡cym rozpadowi, po n skªadowych operatora spinu σ oraz po wszystkich
dost¦pnych magnetycznych liczbach kwantowych mf stanu ko«cowego. Operator T± jest
operatorem drabinkowym caªego ukªadu j¡drowego: T± =

∑
k τ
±
k . Na podstawie powy»-

szych wzorów opisane we wcze±niejszym paragra�e reguªy wyboru dla przej±¢ dozwolonych
mo»na uzupeªni¢ o brak zmiany parzysto±ci ukªadu kwantowego ∆π = 0. Ponadto, w przy-
padku przemiany Fermiego stan kwantowy pozostaje w obr¦bie tego samego multipletu
izospinowego tj. ∆T = 0.

Wzór (2.22) mo»na przepisa¢ w j¦zyku zredukowanych prawdopodobie«stw przej±¢ i
wówczas:

|H ′i→f |2 = BF +BGT . (2.26)

Zatem �nalnie, zgodnie ze wzorem (2.9), zredukowany czas »ycia ft zapisujemy jako:

ft =
κ

BF +BGT

. (2.27)

�3. Staªe sprz¦»enia oddziaªywa« elektrosªabych

W przypadku oddziaªywa« sªabych zachodz¡cych jedynie pomi¦dzy leptonami zacho-
dzi równo±¢ staªych sprz¦»enia pr¡dów wektorowych i osiowo-wektorowych gA = gV [34].
W przeciwie«stwie do leptonów hadrony posiadaj¡ wewn¦trzn¡ struktur¦. I tak w przy-
padku póªleptonowego rozpadu beta pr¡d sªaby okazuje si¦ by¢ zachowany jedynie w
kanale wektorowym, o czym mówi tzw. hipoteza zachowania pr¡du wektorowego (CVC -
Conserved Vector Current) [36]. Wówczas:

gV = 1. (2.28)

Zachowanie pr¡dów wektorowych w obecno±ci oddziaªywania sªabego jest niezwykle istotne
przy wyznaczaniu wiod¡cego elementu macierzowego Vud macierzy mieszania kwarków (2.18),
a wi¦c równie» unitarno±ci tej»e macierzy. Na podstawie (2.20) mo»na powi¡za¢ element
Vud z obliczanym zredukowanym czasem »ycia.

W przypadku pr¡dów osiowo-wektorowych staªa sprz¦»enia ró»ni si¦ w zale»no±ci od
hadronów bior¡cych udziaª w rozpadzie [34]. Pr¡d osiowo-wektorowy nie jest zachowany.
Mówi si¦ o cz¦±ciowym zachowaniu tego pr¡du - hipoteza PCAC (Partially Conserved
Axial Current) [37]. Dywergencja pr¡du osiowo-wektorowego ma wªasno±ci pseudoska-
larne. Takie pole za± generowane jest przez piony, które oddziaªuj¡ silnie z nukleonami
w j¡drze. Wobec czego staª¡ sprz¦»enia gA mo»na powi¡za¢ ze staª¡ rozpadu pionu Fπ
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oraz ze staª¡ sprz¦»enia pion-nukleon gπN . Tak¡ zale»no±¢ opisuje relacja Goldbergera-
Triemana [38, 39]. W uproszczonej wersji:

gA =
FπgπN√

2MN

(2.29)

wskazuje, »e gA ró»ni si¦ w zale»no±ci od rozpadaj¡cych si¦ w przemianie beta hadronów.
W przypadku rozpadu beta mi¦dzy nukleonami [40]:

gA = −1.2723(23) (2.30)

Badanie warto±ci staªej sprz¦»enia osiowo-wektorowego pr¡du w oddziaªywaniach sªa-
bych jest do dzisiaj jednym z kluczowych zagadnie« w obr¦bie analizy rozpadów beta
[41, 42, 43, 44, 45]. Okazuje si¦ bowiem, »e w ±rodowisku j¡drowym obliczenia dotycz¡ce
rozpadów w kanale Gamowa-Tellera (2.25) systematycznie niedoszacowuj¡ warto±ci ele-
mentów macierzowych otrzymanych w eksperymencie. Problem zyskaª miano tzw. efektu
quenchingu, dla którego:

geff
A = qgA, (2.31)

gdzie q jest parametrem renormalizacyjnym zwanym parametrem quenchingu. Na warto±¢
efektywnej staªej sprz¦»enia geff

A mo»e wpªywa¢ wiele czynników:

• Za najwi¦kszy wkªad uwa»a si¦ wprowadzenie pr¡dów uwzgl¦dniaj¡cych wymian¦
mezonów tzw. pr¡dów wielociaªowych [46, 47] . Takie rachunki wychodz¡ poza po-
wszechnie stosowane przybli»enie impulsu impulse approximation, w którym ak-
tywny nukleon przemienia si¦ w wyniku rozpadu beta z biernym udziaªem reszty
j¡dra atomowego.

• Uwzgl¦dnienie nienukleonowych stopni swobody w funkcji falowej [48, 49]. Przykªa-
dem takiego procesu mo»e by¢ rozpad Gamowa-Tellera przez rezonans ∆, b¦d¡cy
wzbudzeniem neutronu. Jednak dane eksperymentalne z reakcji (p,n) i (n,p) wska-
zuj¡, »e takie skorelowanie funkcji falowej odpowiada jedynie za nieznaczn¡ cz¦±¢
parametru renormalizacji q [50].

• Istotny wkªad do parametru quenchingu mog¡ przynosi¢ ograniczenia modeli j¡dro-
wych wykorzystywanych do oblicze« rozpadu beta [51, 52, 53]. W przypadku modelu
powªokowego jest to przede wszystkim ograniczona przestrze« walencyjna. Modele z
oddziaªywaniami dopasowywanymi do pewnej powªoki uniemo»liwiaj¡ bowiem prze-
prowadzenie rachunków koreluj¡cych niskoenergetyczne stany z wy»ej poªo»onymi
stanami wzbudzonymi.

�4. Macierz Cabibbo−Kobayashiego−Maskawy

Pomiary rozpadów cz¡stek dziwnych do nukleonu w porównaniu z rozpadami mi¦dzy
nukleonami pokazaªy, »e te pierwsze s¡ znacznie rzadsze. Ró»nic¡ mi¦dzy tymi przej±ciami
jest zmiana dziwno±ci ∆S = 1. Rozwi¡zanie tego zagadnienia zaproponowaª Cabibbo [54],
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wprowadzaj¡c poj¦cie mieszania kwarków bior¡cych udziaª w oddziaªywaniu sªabym. Za-
ªo»yª on, »e w obecno±ci pola po±rednicz¡cego w oddziaªywaniu sªabym kwarki nie s¡
dªu»ej stanami wªasnymi opisywanymi przez zapach, a stanowi¡ jego superpozycj¦. W
czasach postawienia tej hipotezy do±wiadczalnie potwierdzono istnienie trzech kwarków:
u, d i s, z których dwa z ªadunkiem −1

3 mogªy ulega¢ zmieszaniu. Wprowadzono zatem
tzw. k¡t zmieszania Cabibbo ϑC taki, »e:(

d′

s′

)
=
(

cosϑC sinϑC
− sinϑC cosϑC

)(
d
s

)
, (2.32)

gdzie stany d, s s¡ czystymi stanami kwarkowymi o ªadunku elektrycznym Q = −1
3 , a

kwarki d′, s′ s¡ obróconymi stanami wªasnymi ze wzgl¦du na oddziaªywanie sªabe. Eks-
peryment wykazaª, »e k¡t Cabibbo ϑC ≈ 12◦ [54].

Wraz z odkryciem trzeciej generacji kwarków okazaªo si¦, »e mieszanie nale»y uzupeªni¢
o kwark b. Wówczas unitarn¡ macierz obrotu mieszania kwarków nale»y rozszerzy¢ o
kolejny wymiar. Tak¡ macierz nazywa si¦ macierz¡ Cabibbo-Kobayashiego-Maskawy [55]:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.33)

i wprowadza si¦ do teorii Glashowa-Weinberga-Salama jak pokazano we wzorze (2.17).
Zmieszany stan d′ wprowadza zatem element Vud do amplitudy pr¡du hadronowego (2.18).
Za± warto±¢ |Vij|2 stanowi amplitud¦ prawdopodobie«stwa przej±cia kwarku i w j.

Ze wzgl¦du na zaªo»enie, »e sprz¦»enia pomi¦dzy kwarkami w stanach czystych a kwar-
kami w stanach obróconych s¡ dane przez t¦ sam¡ staª¡ sprz¦»enia GF (2.10), macierz
CKM musi by¢ macierz¡ unitarn¡. Jak dot¡d najdokªadniej wyznaczanymi elementami
macierzowymi s¡ elementy Vud oraz Vus. Wobec tego najdokªadniejszym testem unitarno±ci
macierzy CKM jest sprawdzenie, czy jej pierwszy wiersz speªnia to»samo±¢:

|Vud|2 + |Vus|2 + |Vub|2 = 1 (2.34)

Element wiod¡cy Vud zale»y jedynie od kwarków pierwszej generacji, wobec czego jest
wyznaczany najprecyzyjniej spo±ród pozostaªych elementów. Do najdokªadniejszych me-
tod wyznaczania tego elementu zaliczaj¡ si¦ rozpady beta j¡der atomowych. Na podstawie
rozpadów superdozwolonych tj. czystych przej±¢ wektorowych 0+ → 0+ wiod¡cy element
pierwszego wiersza macierzy CKM w modelu powªokowym przyjmuje warto±¢ [56]:

|Vud| ≡ |Vud|0
+→0+ = 0.97420± 0.00021 (2.35)

Jest to najdokªadniejsza obecnie metoda wyznaczania tego elementu. Rozpady beta j¡der
zwierciadlanych o izospinie T = 1

2 stanowi¡ alternatywn¡, acz mniej dokªadn¡ metod¦
wyznaczania elementu Vud. Najnowsze obliczenia z u»yciem modelu powªokowego [57]
wskazuj¡, »e:

|Vud|mirror = 0.9730± 0.0014 (2.36)
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Szczegóªowa analiza wi¡»¡ca struktur¦ j¡dra atomowego z badaniem warto±ci elementu
macierzowego Vud b¦dzie przeprowadzona w rozdziale 4.

Element Vud mo»na równie» otrzyma¢ na podstawie wyznaczania czasu »ycia swobod-
nego neutronu. Rozpad neutronu zachodzi pod wpªywem oddziaªywa« zarówno wektoro-
wych jak i osiowo-wektorowych. Metoda ta jest wprawdzie wolna od poprawek zwi¡zanych
z struktur¡ j¡drow¡, ale obarczona jest du»¡ niepewno±ci¡ generowan¡ przez sªab¡ znajo-
mo±¢ staªej sprz¦»enia pr¡dów osiowowektorowych gA (2.30). Wyznaczenie elementu Vud

wymaga w takim przypadku pomiaru dwu obserwabli: czasu »ycia τn = 885.7(8) [58]
oraz tzw. parametru asymetrii elektronu Aβ = −0.1173(13) [58]. Parametr korelacji Aβ
jest bezpo±rednio zwi¡zany ze staª¡ gA. Szczegóªowa analiza parametrów korelacji b¦dzie
przeprowadzona w nast¦pnym paragra�e tego rozdziaªu. Dokªadno±¢ pomiaru czasu »ycia
przekªada si¦ na mniejsz¡ precyzj¦ elementu Vud [58]:

|Vud|n = 0.9746± 0.0049 (2.37)

Kolejn¡ metod¡ wyznaczania elementu Vud jest pomiar rozpadu beta naªadowanego
pionu π± → π0e+νe. Jest to czysto wektorowy rozpad wolny od konieczno±ci wprowadzania
poprawek j¡drowych. Jednak wyzwaniem tej metody jest bardzo niewielki wspóªczynnik
rozgaª¦zienia 10−8 kanaªu rozpadu beta. Przez co i w tym przypadku dokªadno±¢ jest
mniejsza ni» w metodach j¡drowych. Element Vud wynosi bowiem [59]:

|Vud|π = 0.9728± 0.0030 (2.38)

Element Vus wyznacza si¦ przede wszystkim z rozpadu nienaªadowanych kaonów w
5 ró»nych kanaªach [60], czy te» rozpadów beta hiperj¡der [61, 62] tj. j¡der, posiadaj¡-
cych zwi¡zany hiperon � cz¡stk¦, której budulcem jest kwark dziwny. Najdokªadniejszy
pomiar stanowi¡ pierwsze z przedstawionych rozpadów. Wykluczy¢ mo»na wówczas po-
prawk¦ izospinow¡ zwi¡zan¡ z mieszaniem mezonów π0 oraz η. U±rednienie wyznaczonego
ze wszystkich eksperymentów wspóªczynnika rozgaª¦zienia wraz z rachunkami QCD pro-
wadzonymi na sieci daj¡ [63]

|Vus| = 0.2243± 0.0005 (2.39)

Najmniej dokªadny pomiar w±ród elementów pierwszego wiersza macierzy CKM sta-
nowi element Vub. Jego wyznaczenie jest skomplikowane ze wzgl¦du na du»e tªo w analizo-
wanym rozpadzie: B → πlν̄. Eksperymentalny wspóªczynnik rozgaª¦zienia oraz rachunki
QCD na sieci [64] prowadz¡ do wyniku [63]:

|Vub| = (3.94± 0.36)× 10−3 (2.40)
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Maj¡c na uwadze warto±ci (2.35), (2.39) oraz (2.40) to»samo±¢ unitarno±ci macierzy
CKM przedstawia si¦ nast¦puj¡co:

|Vud|2 + |Vus|2 + |Vub|2 = 0.99939± 0.00045 (2.41)

Zatem z dokªadno±ci¡ do 2σ macierz CKM jest unitarna. Nale»y w tym miejscu podkre-
±li¢, »e wkªad |Vub|2 jest marginalny i mie±ci si¦ w bª¦dzie, wkªad |Vus|2 stanowi 5% testu
unitarno±ci a 95% pochodzi od wiod¡cego elementu Vud. St¡d dokªadno±¢ wyznaczenia
tego elementu jest kluczowa w badaniu unitarno±ci macierzy CKM. Odst¦pstwo od uni-
tarno±ci macierzy CKM oznaczaªoby istnienie kolejnych generacji kwarków lub nieznanej
�zyki poza Modelem Standardowym jak istnienie prawoskr¦tnych pr¡dów, równoznacznie
wkªadów wychodz¡cych poza pr¡dy V −A w teorii elektrosªabej. Naturalnie hipotetyczna
4 generacja wprowadzaªaby do modelu tak ci¦»kie kwarki, »e ich zmieszanie z pozostaªymi
byªoby nie do wykrycia na poziomie obecnej precyzji.

Macierz CKM jest macierz¡ obrotu, zatem zgodnie z (1.23) mo»na j¡ rozªo»y¢ na ob-
roty sparametryzowane trzema k¡tami Eulera ϑ12, ϑ23 i ϑ13 oraz jedn¡ faz¦ δ, b¦d¡c¡
miar¡ ªamania symetrii odwrócenia w czasie, a wi¦c i ªamania symetrii CP w Modelu
Standardowym. Wyniki eksperymentów wskazuj¡, »e k¡ty Eulera s¡ shierarchizowane
ϑ13 � ϑ23 � ϑ12 � 1. T¦ hierarchi¦ mo»na przedstawi¢ w wygodnej parametryzacji
Wolfensteina macierzy CKM. Wówczas:

λ = sinϑ12 =
|Vus|√

|Vud|2 + |Vus|2
Aλ2 = sinϑ23 = λ|Vcb

Vus
| (2.42)

Aλ3(ρ+ iη) = sinϑ13e
iδ = V ∗ub (2.43)

a sama macierz przyjmuje posta¢:

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (2.44)

Analiza macierzy CKM w tej parametryzacji prowadzi do wniosku, »e trzecia generacja
ci¦»kich kwarków t, b nie miesza si¦ z pierwsz¡ i drug¡, a» do wyrazów rz¦du λ3, a k¡t ϑ12

jest k¡tem Cabibbo zde�niowanym w (2.32).

Wynikiem dopasowania parametrów Wolfensteina do wyznaczonych teoretycznie i eks-
perymentalnie elementów macierzowych jest unitarna macierz zªo»ona ze wszystkich am-
plitud przej±¢ mi¦dzy kwarkami [63]:

VCKM =

 0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012
0.22438± 0.00044 0.97359+0.00010

−0.00011 0.04214± 0.00076
0.00896+0.00024

−0.00023 0.04133± 0.00074 0.999105± 0.000032

 (2.45)
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�5. Metody j¡drowe wyznaczania elementu macierzowego

Vud

Wyznaczenie elementu macierzowego Vud metodami j¡drowymi nie jest ªatwym zada-
niem. Skªadaj¡ si¦ na to dwa aspekty: konieczno±¢ uwzgl¦dnienia szeregu poprawek zwi¡-
zanych ze struktur¡ j¡dra oraz fakt, »e dozwolony rozpad beta zachodzi w dwu kanaªach:
Fermiego i Gamowa-Tellera, a staªa sprz¦»enia pr¡dów osiowowektorowych w o±rodku jest
obarczona ogromn¡ niepewno±ci¡ ze wzgl¦du na efekt quenchingu opisany w paragra�e 3
tego rozdziaªu.

Wspomniane poprawki mo»emy podzieli¢ na dwie grupy. Mianowicie, poprawki zwi¡-
zane z procesami radiacyjnymi (RC) nieuchwytnymi w eksperymencie oraz poprawki izo-
spinowe zwi¡zane z ªamaniem tej»e symetrii w ±rodowisku j¡drowym [59, 65, 66]. Te
pierwsze mo»na dalej podzieli¢ na zale»ne δR [67, 68] oraz niezale»ne od danego j¡dra
∆R [69, 70]:

1 +RC = (1 + δR)(1 + ∆R) (2.46)

Cz¦±¢ zale»n¡ od j¡dra dalej dzieli si¦ na poprawk¦ δ′R [71, 72, 73, 74] zale»n¡ jedynie od
liczby protonów w j¡drze po przemianie Zf i dost¦pnej energii ukªadu w stanie ko«co-
wym W0 oraz na poprawk¦ δNS [75, 76] wymagaj¡c¡ szczegóªowych oblicze« zwi¡zanych
bezpo±rednio ze struktur¡ j¡dra. Wówczas:

1 +RC = (1 + δ′R)(1 + δNS)(1 + ∆R) (2.47)

Warto±¢ poprawki δ′R szacuje si¦ metodami elektrodynamiki kwantowej do rz¦du Z2α3.
Jest ona niezale»na od rodzaju pr¡du odpowiedzialnego za rozpad beta w przeciwie«stwie
do poprawek δNS i ∆R, które s¡ ró»ne w zale»no±ci, od tego czy rozpad zachodzi w kanale
Fermiego, czy w kanale Gamowa-Tellera.

Element macierzowy Fermiego w granicy zachowania symetrii izospinowej |M0
F | mo»na

wyrazi¢ przy u»yciu izospinowych wspóªczynników Clebscha-Gordana. Zgodnie ze wzo-
rami (1.31) i (2.24) w przypadku przej±¢ superdozwolonych pomi¦dzy stanami analogo-
wymi T = 1 |M0

F |2 = 2, natomiast dla rozpadów mi¦dzy j¡drami zwierciadlanymi T = 1
2

|M0
F |2 = 1. Zªamana symetria oddziaªywania mi¦dzy protonami i neutronami powoduje

konieczno±¢ wprowadzenia do tego elementu poprawki izospinowej δC [65, 70, 77]. A bio-
r¡c po uwag¦ fakt, »e poprawka δNS jest ±ci±le zwi¡zana ze struktur¡ j¡drow¡, a wi¦c z
elementem macierzowym, mo»emy zapisa¢, »e:

|MF |2 = |M0
F |2(1 + δVNS − δVC ) (2.48)

Natomiast w przypadku elementu Gamowa-Tellera (2.25) jego warto±¢ w granicy sy-
metrii izospinowej nie mo»e by¢ wyznaczona jedynie na gruncie wªasno±ci geometrycznych.
Niemniej dla zachowania konsystencji:

|MGT |2 = |M0
GT |2(1 + δANS − δAC) (2.49)
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Uwzgl¦dniaj¡c teraz wszystkie poprawki oraz fakt, i» ze wzgl¦du na funkcj¦ ksztaªtu
S(±Zf ,W ) zde�niowan¡ w (2.8) czynnik fazowy f0 jest ró»ny w zale»no±ci od kanaªu
rozpadu, czas poªowicznego zaniku wynosi:

t =
κ

V 2
ud(1 + δ′R)

[
fV g2

V (1 + ∆V
R)|MF |2 + fAg2

A(1 + ∆A
R)|MGT |2

] . (2.50)

Przej±cia superdozwolone 0+ → 0+ typu Fermiego s¡ czystymi przej±ciami wektoro-
wymi, dla których |M0

F |2 = 2 a |M0
GT |2 = 0. Wobec tego:

fV t
0+→0+ =

κ

2V 2
ud(1 + δ′R)g2

V (1 + ∆V
R)(1 + δVNS − δVC )

(2.51)

W celu wyznaczenia elementu macierzowego Vud warto przegrupowa¢ skªadowe powy»-
szego wyra»enia, tak aby po prawej stronie pozostaªy elementy niezale»ne od j¡dra. I
tak:

Ft0+→0+ ≡ fV t
0+→0+(1 + δ′R)(1 + δVNS − δVC ) =

κ

2V 2
udg

2
V (1 + ∆V

R)
(2.52)

W ten sposób warto±¢ Ft0+→0+ jest niezale»na od danego przej±cia superdozwolonego i
a priori mo»na wyznaczy¢ uniwersaln¡ warto±¢ elementu macierzowego Vud. Wy»sz¡ pre-
cyzj¦ otrzymanego wyniku uzyskuje si¦, ±redniuj¡c Ft0+→0+ po wszystkich dost¦pnych
przypadkach rozpadów. Obliczenia teoretyczne poprawek wraz z danymi do±wiadczal-
nymi dotycz¡cymi poszczególnych przej±¢ silnie wskazuj¡ bowiem, »e Ft0+→0+ ≈ const,
co potwierdza hipotez¦ CVC. Wobec tego otrzymujemy, »e:

V 2
ud =

κ

2Ft0
+→0+(1 + ∆V

R)
. (2.53)

Rozpady superdozwolone stanowi¡ jak dot¡d najdokªadniejsz¡ metod¦ wyznaczania
elementu macierzowego Vud. Podej±ciem alternatywnym w obr¦bie metod j¡drowych jest
analiza rozpadów beta mi¦dzy j¡drami zwierciadlanymi T = 1/2 [78]. W przypadku tych
przej±¢ oba kanaªy rozpadu � typu Fermiego i typu Gamowa-Tellera s¡ dozwolone. Sªabym
punktem tej metody jest konieczno±¢ uwzgl¦dnienia efektu quenchingu staªej sprz¦»enia
pr¡dów osiowowektorowych, co w zasadzie wykluczaªoby t¦ metod¦ ze wzgl¦du na bardzo
du»¡ niepewno±¢, któr¡ obarczony zostaªby element macierzowy Vud. W pracy [78] zapro-
ponowano obej±cie tego problemu przez wykorzystanie dodatkowej obserwabli mierzonej
w eksperymencie.

I tak dla przej±¢ w j¡drach zwierciadlanych T = 1/2, w którym oba kanaªy rozpadu
s¡ dozwolone a |M0

F |2 = 1, wzór (2.50) mo»na przedstawi¢ w nast¦puj¡cy sposób:

Ftmirror ≡ fV t(1 + δ′R)(1 + δVNS − δVC ) =
κ

V 2
udg

2
V (1 + ∆V

R)
(
1 + fA

fV
%2
) , (2.54)
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gdzie wspóªczynnik mieszania % de�niuje si¦ jako:

% =
gA|M0

GT |
gV |M0

F |

√√√√ (1 + δANS − δAC)
(1 + δVNS − δVC )

(2.55)

Wówczas w analogii do wzoru (2.52) i korzystaj¡c ze wzoru (2.54) warto±¢ niezale»n¡ od
j¡dra de�niuje si¦ jako:

Ft0 ≡ Ftmirror

(
1 +

fA
fV
%2

)
= 2Ft0+→0+ (2.56)

Przy u»yciu lewej strony powy»szej równo±ci, znaj¡c wspóªczynnik mieszania % dla danego
przej±cia, mo»na wyznaczy¢ element macierzowy Vud. Naturalnie im wi¦cej przypadków
j¡der, dla których s¡ dost¦pne dane do±wiadczalne dotycz¡ce czasu »ycia t, wspóªczyn-
nika rozgaª¦zienia oraz wspóªczynnika mieszania %, tym bardziej dokªadne oszacowanie
elementu Vud. Wobec tego w analogii do wzoru (2.53):

V 2
ud =

κ

Ft0(1 + ∆V
R)

(2.57)

Przy u»yciu prawej strony równo±ci (2.56) i na podstawie znajomo±ci Ft0+→0+ mo»na
wyznaczy¢ teoretyczne przewidywanie wspóªczynnika mieszania % a w konsekwencji para-
metr renormalizacji q staªej sprz¦»enia pr¡dów osiowowektorowych, jak równie», co szerzej
opisuje nast¦pny paragraf, parametry korelacji w rozpadzie beta.

�6. Parametry korelacji w rozpadzie beta

Wspóªczynnik mieszania % nie jest bezpo±rednio obserwowany w do±wiadczeniu. Jego
wyznaczenie wymaga zmierzenia wspóªczynników korelacji, z których najcz¦±ciej mierzo-
nymi s¡ parametr korelacji k¡towej mi¦dzy elektronem i neutrinem aβν , parametr asymetrii
elektronu Aβ oraz parametr asymetrii neutrina Bν . Rozkªad (2.7) w kierunku p¦du elek-
tronu i neutrina oraz w energii elektronu od spolaryzowanego j¡dra przyjmuje posta¢ [57]:

ω(〈J〉 |EedΩedΩν) =
F (±Zf , Ee)

(2π)5
peEe(E0 − Ee)2dEedΩedΩν (2.58)

× 1
2
ξ

{
1 + aβν

pepν
EeEν

+ b
me

Ee
+
〈J〉
J

[
Aβ

pe
Ee

+Bν
pν
Eν

+D
pe × pν
EeEν

]}
,

gdzie

ξ = 2
(
g2
V |MF |2 + g2

A|MGT |2
)
, (2.59)

natomiast b jest wspóªczynnikiem Fierza, 〈J〉 opisuje polaryzacj¦ j¡dra w stanie podsta-
wowym o momencie p¦du J , a D jest wspóªczynnikiem korelacji czuªym ze wzgl¦du na
faz¦ pomi¦dzy pr¡dami wektorowymi i osiowo-wektorowymi. Wspóªczynnik D opisuje ªa-
manie symetrii CP .
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W Modelu Standardowym, w którym teoria elektrosªaba sformuªowana jest w j¦zyku
pr¡dów V − A wyra»enia obserwabli tj. wspóªczynników aβν , Aβ oraz Bν przyjmuj¡ po-
sta¢ [78]:

aβν =
1− 1

3%
2

1 + %2
(2.60)

Aβ =
∓λJ ′J%2 − 2δJJ ′

√
J
J+1%

1 + %2
(2.61)

Bν =
±λJ ′J%2 − 2δJJ ′

√
J
J+1%

1 + %2
(2.62)

Powy»sze wzory s¡ sªuszne w przybli»eniu zaniedbuj¡cym efekty zwi¡zane z odrzutem
daj¡ce wkªad okoªo 1% [78]. Analiza porównawcza powy»szych parametrów obliczonych
metodami teoretycznymi z danymi eksperymentalnymi wykorzystywana jest do poszuki-
wa« �zyki poza Modelem Standardowym. W szczególno±ci brak zgodno±ci oblicze« teore-
tycznych z do±wiadczeniem mógªby wskazywa¢ na niewielk¡ domieszk¦ pr¡dów skalarnych
i tensorowych oddziaªywa« sªabych [57].



Rozdziaª 3

Metoda j¡drowego funkcjonaªu g¦sto±ci

z przywróconymi symetriami

�1. Model pola ±redniego w uj¦ciu Hartree'ego−Focka
Teoretyczny opis kwantowego ukªadu wielociaªowego, tj. obliczenie mierzalnych w eks-

perymencie obserwabli oraz wyznaczenie funkcji falowej wymaga rozwi¡zywania równania
Schrödingera. Jest to fundamentalne równanie mechaniki kwantowej opisuj¡ce stan kwan-
towy cz¡stek nierelatywistycznych. Zªo»ono±¢ obliczeniowa problemu wielociaªowego nie
pozwala jednak na dokªadne rozwi¡zywanie tego równania w przypadku ukªadów o wi¦k-
szej liczbie cz¡stek. Jedn¡ z najbardziej powszechnych przybli»onych metod opisu takiego
ukªadu kwantowego jest jego redukcja do problemu jednociaªowego, w którym cz¡stki s¡
niezale»ne i poruszaj¡ si¦ w polu wygenerowanym w sposób samouzgodniony przez pozo-
staªe cz¡stki ukªadu. Takie jednociaªowe przybli»enie zarówno w �zyce elektronowej jak i
w �zyce j¡drowej nazywane jest modelem pola ±redniego.

Sukces metody pola ±redniego wynika nie tylko ze zgodno±ci jej przewidywa« z danymi
do±wiadczalnymi, ale równie», a mo»e przede wszystkim st¡d, »e dostarcza ona bardzo in-
tuicyjnych poj¦¢ � orbitali (stanów) jednocz¡stowych, które uªatwiaj¡ zrozumienie �zyki.
W szczególno±ci, koncepcja orbitali jednocz¡stkowych stanowi fundament przeªomowego
dla rozwoju �zyki j¡drowej modelu powªokowego [79]. Przy jego pomocy wyja±niono bo-
wiem liczby magiczne - energetyczne szczeliny pomi¦dzy orbitalami stabilizuj¡ce energe-
tycznie pewne j¡dra zwane wªa±nie j¡drami magicznymi. To odkrycie rozpocz¦ªo szerokie
teoretyczne badania nad struktur¡ j¡der atomowych.

Hamiltonian wielociaªowego ukªadu kwantowego mo»emy rozªo»y¢ na cz¦±ci jedno- i
dwuciaªow¡ 1:

H =
[
T +

A∑
i=1

v(ri)
]

+
[
V −

A∑
i=1

v(ri)
]
≡ HMF + VRES, (3.1)

gdzie HMF jest hamiltonianem pola ±redniego, a VRES tzw. oddziaªywaniem resztkowym.
Taki rozkªad okazuje si¦ by¢ niesªychanie pomocnym w zrozumieniu zjawisk �zyki wielu
ciaª. Ograniczenie hamiltonianu jedynie do jego cz¦±ci jednociaªowej (±redniopolowej)

1W niniejszej rozprawie ograniczymy si¦ do hamiltanionów dwuciaªowych.
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sprowadza równanie Schrödingera do równa« pola ±redniego:

hiϕi = eiϕi. (3.2)

Ich rozwi¡zania {ei, ϕi}A
i=1 stanowi¡ fundament w zrozumieniu wielociaªowego stanu kwan-

towego. Fizyczna interpretacja odnosi si¦ wówczas do struktury obsadzonych orbitali jed-
nociaªowych wyznaczonych w pewnej zadanej bazie. W programie numerycznym HFODD [5,
80] t¡ baz¡ jest baza oscylatora harmonicznego. Hamiltonian pola ±redniego nie jest
peªnym hamiltonianem. Wobec czego wyznaczenie ±redniopolowych obserwabli odbywa
si¦ przy u»yciu zasady wariacyjnej b¡d¹ wielociaªowego rachunku zaburze«. U»ycie tego
ostatniego wymaga dobrego punktu startowego w postaci ukªadu niezaburzonego oraz
wystarczaj¡co szybkiej zbie»no±ci szeregu perturbacyjnego. W przypadku oddziaªywania
j¡drowego speªnienie tego zaªo»enia nie jest trywialne. Metoda wariacyjna za± wymaga
ustalenia klasy funkcji próbnych, w obr¦bie której dokonuje si¦ minimalizacji energii. Przy-
bli»enie pola ±redniego stanowiªoby dokªadny opis wielociaªowego zagadnienia jedynie w
przypadku, gdy jego rozwi¡zania jednocze±nie minimalizowaªyby elementy macierzowe
oddziaªywania resztkowego do zera. W przeciwnym przypadku udoskonalenie rozwi¡zania
wymaga skorelowania ukªadu kwantowego poza przybli»eniem pola ±redniego.

W przypadku liniowego równania Schrödingera znajomo±¢ hamiltonianu ukªadu jedno-
znacznie i precyzyjnie de�niuje funkcj¦ falow¡ stanu kwantowego. Natomiast cena, któr¡
nale»y zapªaci¢ za dokonanie jednociaªowego przybli»enia w obr¦bie metody wariacyjnej
to nieliniowo±¢ otrzymanych równa« (3.2). Jednociaªowy potencjaª pochodzi bowiem od
u±rednienia oddziaªywania dwuciaªowego:

v(ri) =
1

∆t

∫ t+∆t

t

A∑
j 6=i

vij(ri(t′), rj(t′))dt′, (3.3)

wobec czego zale»y od funkcji falowej ukªadu kwantowego. 2 Zatem, aby zacz¡¢ rozwi¡-
zywa¢ równania pola ±redniego nale»y zna¢ a priori jego rozwi¡zanie. Nale»y zatem od-
powiednio skonstruowa¢ funkcj¦ falow¡, narzucaj¡c pewne fundamentalne warunki. I tak:
(1) zgodnie z zasad¡ Pauliego funkcja falowa opisuj¡ca stan kwantowy ukªadu fermionów
musi by¢ antysymetryczna, ponadto (2) przybli»enie pola ±redniego nakªada warunek nie-
zale»no±ci cz¡stek, a zatem funkcja falowa powinna by¢ skonstruowana jako iloczyn funkcji
jednocz¡stkowych, a dodatkowo (3) w niniejszej pracy wykorzystuje si¦ model teoretyczny,
w którym ±redniopolowy stan kwantowy zachowuje liczb¦ cz¡stek. Niemniej ostatni wa-
runek nie jest konieczny do podj¦cia próby rozwi¡zania równa« pola ±redniego.

Najbardziej ogóln¡ reprezentacj¡ funkcji falowych opisuj¡cych wielofermionowy stan
kwantowy w modelu pola ±redniego okazuj¡ si¦ by¢ stany iloczynowe [16]. Stanem ilo-
czynowym nazywamy taki wielociaªowy stan kwantowy, dla którego zw¦»enia operatorów
kreacji i anihilacji s¡ liczbami. Zgodnie z twierdzeniem Thoulessa [81] takie nieunormo-
wane stany zachowuj¡ce liczb¦ cz¡stek mo»na zapisa¢ w postaci uogólnionego stanu ko-
herentnego:

|Φ〉 = exp
(∑
ph

Z∗pha
†
pah

) A∏
i=1

a†i |0〉 . (3.4)

2U±rednienie po czasie, przy zaªo»eniu bardzo krótkiego interwaªu ∆t stanowi jedynie pewn¡ intuicj¦.
Nie jest natomiast u»ywane w praktycznych zastosowaniach.
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Indeksy p i h opisuj¡ stany cz¡stkowe i dziurowe wzgl¦dem pró»ni
∏A
i=1 a

†
i |0〉 zbudowa-

nej przez obsadzenie A orbitali jednocz¡stkowych. Stanowi¡ one ukªad zupeªny (baz¦) w
jednocz¡stkowej przestrzeni Hilberta 3. Wspomnian¡ pró»ni¦ natomiast nazywamy wy-
znacznikiem Slatera. Parametry Z∗ph s¡ zespolonymi elementami macierzowymi pewnej
antysymetrycznej macierzy o wymiarach p ∈ {A + 1, ...,M} na h ∈ {1, ..., A} minimali-
zuj¡cej energi¦ w procedurze wariacyjnej.

Przybli»enie Hartree'ego-Focka jest przybli»eniem pola ±redniego, dla którego rozwi¡-
zanie ukªadu równa« (3.2) wyznacza si¦ przy u»yciu metody wariacyjnej w obr¦bie klasy
stanów iloczynowych o zachowanej liczbie cz¡stek (3.4).

W praktyce nale»y zapewni¢ jeszcze mo»liwo±¢ wyznaczania warto±ci ±rednich opera-
torów dla danej klasy funkcji próbnych. Dla stanów iloczynowych zachodzi jednak twier-
dzenie Wicka [82]: warto±¢ ±rednia iloczynu operatorów kreacji i anihilacji aν , a†ν jest li-
niow¡ kombinacj¡ wszystkich mo»liwych zw¦»e« tych operatorów. A zatem przy u»yciu
tego twierdzenia mo»na wyznaczy¢ warto±ci ±rednie wszystkich operatorów w przestrzeni
Focka, w szczególno±ci hamiltonianu.

Ogólny hamiltonian j¡drowy, zawieraj¡cy jednociaªow¡ energi¦ kinetyczn¡ oraz od-
dziaªywanie dwuciaªowe, mo»na wyrazi¢ jako:

Ĥ =
∑
µν

Tµνa
†
µaν +

1
4

∑
µλνπ

V̄µλνπa
†
µa
†
λaπaν . (3.5)

Korzystaj¡c z twierdzenia Wicka oraz faktu, »e kontrakcja operatora kreacji i anihilacji w
w stanie iloczynowym |Φ〉 jest g¦sto±ci¡ cz¡stek w tym stanie:

ρµν = a†νaµ = 〈Φ| a†νaµ |Φ〉 , (3.6)

warto±¢ oczekiwan¡ hamiltonianu mo»emy wyrazi¢ jako funkcjonaª g¦sto±ci:

EHF [ρ] =
∑
µν

Tµνρνµ +
1
4

∑
µλνπ

V̄µλνπρνµρπλ. (3.7)

Maj¡c na uwadze (3.1), hamiltonian pola ±redniego mo»emy wyrazi¢ jako sum¦ macierzy
energii kinetycznej oraz macierzy potencjaªu jednocz¡stkowego:

hµν = Tµν + Γµν , (3.8)

gdzie Γµν zgodnie z (3.3) pochodzi z u±rednienia oddziaªywania dwuciaªowego:

Γµν =
∑
λπ

Vµλνπρπλ. (3.9)

Wówczas energi¦ hamiltonianu pola ±redniego w przybli»eniu Hartree'ego-Focka zapisu-
jemy w postaci:

EHF = Tr(Tρ) +
1
2

Tr(Γρ)

=
1
2

Tr(Tρ) +
1
2

Tr(hρ) =
1
2

A∑
i=1

(
Tii + ei

)
. (3.10)

3Przyjmiemy dla uproszczenia, »e baza jednocz¡stkowa jest sko«czona, M -wymiarowa.
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Ostatnia równo±¢ ma miejsce w przypadku opisu g¦sto±ci w bazie kanonicznej.

Wariacja warto±ci oczekiwanej hamiltonianu pola ±redniego w stanie iloczynowym (3.4)
wzgl¦dem elementów macierzowych antysymetrycznej macierzy Z∗ph lub równoznacznie
funkcjonaªu g¦sto±ci (3.7) wzgl¦dem g¦sto±ci stanu iloczynowego |Φ〉 prowadzi do równa«
Hartree'ego−Focka:

[h0, ρ0] = 0, (3.11)

gdzie g¦sto±¢ ρ0 nazywamy samozgodn¡ macierz¡ g¦sto±ci, a indukowan¡ przez ni¡ ma-
cierz h0 samozgodnym hamiltonianem jednocz¡stkowym (polem ±rednim).

Równania Hartree'ego−Focka zaliczaj¡ si¦ obecnie do kanonu metod teoretycznych
chemii kwantowej, �zyki elektronowej, czy �zyki j¡drowej. Poj¦cie samozgodno±ci wywo-
dzi si¦ z metody rozwi¡zywania tych równa«. Polega ona w pierwszym kroku na skon-
struowaniu ±redniopolowego hamiltonianu z potencjaªem przypominaj¡cym potencjaª roz-
wi¡zywanego zagadnienia �zycznego. Nast¦pnie z takim hamiltonianem rozwi¡zuje si¦
zagadnienie wªasne. Z otrzymanych A wektorów wªasnych o najmniejszych warto±ciach
wªasnych buduje si¦ macierz g¦sto±ci, a z niej (3.9) indukowany hamiltonian 4. Procedur¦
powtarza si¦ a» do momentu uzyskania »¡danej zgodno±ci macierzy g¦sto±ci indukuj¡cej
hamiltonian w danej iteracji z g¦sto±ci¡ powstaª¡ po diagonalizacji tego» hamiltonianu.

Funkcja falowa opisuj¡ca ukªad wielu nukleonów musi by¢ antysymetryczna. Stany
iloczynowe zachowuj¡ce liczb¦ cz¡stek nale»¡ do zbioru tych funkcji. Jednak stanowi¡ jej
istotnie ograniczony podzbiór. Rozwi¡zanie problemu wielociaªowego w ogólno±ci nie musi
przyjmowa¢ formy wyznacznika Slatera. Okazuje si¦, »e jednociaªowy hamiltonian mo»na
wzbogaci¢ o dodatkowe korelacje nieuwzgl¦dniane w formalizmie Hartree'ego−Focka. Mia-
nowicie, id¡c za przykªadem �zyki elektronowej, modelowany ukªad kwantowy rozszerza
si¦ przez uwzgl¦dnienie korelacji par. Wówczas rozszerzamy równie» klas¦ funkcji prób-
nych do stanów iloczynowych ªami¡cych symetri¦ liczby cz¡stek. Zatem w procedurze
wariacyjnej nale»aªoby wówczas zadba¢ o to, aby warto±¢ ±rednia operatora liczby cz¡stek
byªa odpowiednio zadan¡ liczb¡ neutronów i protonów. Oddziaªywanie odpowiedzialne za
energetycznie korzystny proces parowania si¦ nukleonów jest oddziaªywaniem dwuciaªo-
wym w bazie operatorów kreacji i anihilacji cz¡stek. Natomiast istnieje unitarna trans-
formacja − zwana transformacj¡ Bogoliubova, tej»e bazy, która diagonalizuj¡c hamilto-
nian sprowadza wielociaªowy problem do zagadnienia pola ±redniego generowanego przez
kwazicz¡stki − liniow¡ kombinacj¦ operatorów kreacji i anihilacji. Formalizmem uwzgl¦d-
niaj¡cym ª¡czenie si¦ cz¡stek w pary Coopera w przybli»eniu pola ±redniego nazywamy
teori¦ Hartree'ego−Focka−Bogoliubova, dla której klas¡ funkcji próbnych s¡ najogólniej-
sze stany iloczynowe.

Wybór klasy funkcji próbnych w postaci stanów iloczynowych mo»e w ogólno±ci pro-
wadzi¢ do ªamania przeze« symetrii oddziaªywania. Przykªadem jest mi¦dzy innymi wspo-
mniane ju» niezachowanie liczby cz¡stek w przypadku teorii Hartree'ego-Focka-Bogoliubova
niezale»nie od faktu, i» caªkowity hamiltonian tej»e symetrii nie ªamie. W teoriach ±red-
niopolowych spotykamy si¦ jednak z samozgodnymi symetriami, których procedura waria-
cyjna nie zaburza. Je»eli caªkowity hamiltonian jest niezmienniczy ze wzgl¦du na dziaªanie

4Przepis dotyczy konstrukcji stanu podstawowego.
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pewnego operatora symetrii Ŝ, tj. operatory ze sob¡ komutuj¡, to wówczas na podstawie
de�nicji indukowanego potencjaªu (3.9):

Sh[ρ]S† = h[SρS†]. (3.12)

Powy»sze oznacza, »e pod warunkiem zachowania pewnej symetrii zarówno przez caªko-
wity hamiltonian, jak i przez g¦sto±¢ ukªadu tj. SρS† = ρ, nieliniowo±¢ równa« Hartree'ego
−Focka nie zaburzy tej symetrii. Ten wniosek znacznie upraszcza rozwi¡zywanie zagad-
nienia pola ±redniego. Naturalnie, je»eli spodziewamy si¦, »e stan kwantowy mo»e zawie-
ra¢ korelacje zwi¡zane z ªamaniem symetrii np. symetrii parzysto±ci, to wówczas funkcja
falowa zachowuj¡ca parzysto±¢ w procedurze wariacyjnej nigdy nie odtworzy ªami¡cej pa-
rzysto±¢ struktury j¡drowej.

W u»ywanym do oblicze« programie HFODD przyjmujemy zachowanie symetrii parzy-
sto±ci, sympleksu oraz sygnatury. Procedura wariacyjna jest przyjmowana za zbie»n¡, je-
»eli energia wyznaczona przez odcaªkowanie funkcjonaªu g¦sto±ci energii jest równa, co do
zadanej warto±ci (ε), sumie (3.10). W przypadku uwzgl¦dniania oddziaªywania zale»nego
od g¦sto±ci do sumy (3.10) nale»y doliczy¢ tzw. czªon przeszeregowania (rearrangement
term).

�2. Oddziaªywanie nukleon−nukleon w j¡drze atomo-

wym

W przypadku j¡dra atomowego problem rozwi¡zania nawet przybli»onego zaªo»eniem
pola ±redniego równania Schrödingera jest dalece nietrywialny. W przeciwie«stwie do od-
dziaªywania elektromagnetycznego, oddziaªywanie silne nie zostaªo dotychczas przedsta-
wione w jawnej postaci. Prób¦ opisu oddziaªywania pomi¦dzy nukleonami w latach 30
ubiegªego stulecia podj¡ª Yukawa [83]. Rozwi¡zuj¡c równanie Kleina-Gordona dla maso-
wej cz¡stki oraz zakªadaj¡c jej wirtualny charakter, zapostulowaª istnienie po±rednicz¡cej
w oddziaªywaniu dwóch nukleonów cz¡stki. Teoria, przypadkiem, zostaªa potwierdzona
przez istnienie pionu o spinie 0 i masie 140MeV [84]. Wówczas jednak zgodnie ze stanem
wiedzy nukleony byªy postrzegane jako cz¡stki elementarne bez wewn¦trznej struktury.
Odkrycie zwi¡zanych kwarków i po±rednicz¡cych mi¦dzy nimi gluonów zmieniªo postrze-
ganie oddziaªywania silnego. Za fundamentalny opis oddziaªywa« silnych obecnie odpo-
wiada teoria chromodynamiki kwantowej zbudowana na grupie SU(3). Natomiast teoria
Yukawy dotycz¡ca oddziaªywania nukleonów przez wymian¦ pionu (mezonu) stanowi ju»
efektywny opis siªy j¡drowej. Obliczenia w ramach chromodynamiki kwantowej (tzw. ra-
chunki na sieci) s¡ bardzo skomplikowane nawet dla najl»ejszych j¡der. Ju» dla ukªadów
zbudowanych z 3 nukleonów redukcja szumu staje si¦ niesªychanie problematyczna [85].
Brak mo»liwo±ci podj¦cia bardziej skomplikowanych rachunków na sieci narzuca koniecz-
no±¢ podj¦cia prób stworzenia efektywnego oddziaªywania w przybli»eniu punktowych
nukleonów i mezonów. Przykªadem mog¡ by¢ teorie bazuj¡ce czy to na efektywnym la-
gran»janie [86] dla oddziaªuj¡cych nukleonów i mezonów, czy te» na efektywnym hamil-
tonianie oddziaªuj¡cych nukleonów przez wymian¦ mezonów ρ, ω, σ, π [87](QMC).

W teoretycznym opisie j¡drowego oddziaªywania efektywnego jego dªugozasi¦gowa
cz¦±¢ dziaªaj¡ca na odlegªo±ciach wi¦kszych ni» 0.8 fm jest wolna od parametrów bowiem
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pochodzi od oddziaªywania Coulomba oraz od wymiany nukleonu z pionem ze staª¡ sprz¦-
»enia pion-nukleon fπN . Za± cz¦±¢ krótkozasi¦gow¡ opisuje oddziaªywanie efektywne. Ba-
dania nad rozpraszaniem nukleonów ujawniªy, »e te na odlegªo±ciach mniejszych ni» 0.4 fm
silnie si¦ odpychaj¡. Takie odpychanie nazywamy twardym rdzeniem. �rednia energia po-
tencjalna obliczona w stanie, w którym funkcje falowe dwóch nukleonów przekrywaj¡ si¦
w obszarze twardego rdzenia, jest bardzo du»a lub wr¦cz niesko«czona. Wówczas dokona-
nie przybli»enia pola ±redniego caªkowicie traci sens, a próby rozwi¡zania wielociaªowego
rachunku zaburze« s¡ niebywale trudne ze wzgl¦du na bardzo woln¡ zbie»no±¢ szeregu.

Konstrukcj¦ oddziaªywania nukleon-nukleon zaw¦»a si¦ przez naªo»enie na« warunków
symetrii wzgl¦dem przesuni¦¢, parzysto±ci, odwrócenia w czasie, obrotów w przestrzeni i
izoprzestrzeni. Ponadto w teorii nierelatywistycznej oddziaªywanie musi by¢ niezmiennicze
ze wzgl¦du na transformacj¦ Galileusza. Niezmienniczo±¢ oddziaªywania wzgl¦dem trans-
formacji Lorentza nale»y narzuci¢ w przypadku rozwi¡zywania relatywistycznych równa«
Diraca. Wszystkie te symetrie zostaªy pokrótce opisane w rozdziale pierwszym. I tak, aby
oddziaªywanie nukleon-nukleon speªniaªo zasady zachowania, mo»e skªada¢ si¦ jedynie z
pewnych okre±lonych skalarów w przestrzeni kartezja«skiej: r2,p2, (rp+ pr)2, spinowej
σ1σ2, przestrzenno-spinowej: (rσ1)(rσ2), (pσ1)(pσ2) oraz (Lσ1)(Lσ2) + (Lσ2)(Lσ1).

Lokalne oddziaªywanie nukleon-nukleon w pró»ni tj. uwzgl¦dniaj¡ce istnienie twardego
rdzenia mo»na zapisa¢ w postaci Landaua tj. w rozwini¦ciu cz¦±ci spinowo-izospinowej.
Dowolny operator w przestrzeni (izo)spinowej b¦d¡cy symetrycznym wzgl¦dem przesuni¦¢
mo»na rozªo»y¢ w bazie macierzy Pauliego {σ0,σ = (σx, σy, σz)} [88]:

V(12) = V0(r) + Vσ(r)σ1σ2 + Vτ (r)τ1τ2 + Vστ (r)σ1σ2τ1τ2 (3.13)

Do oddziaªywa« lokalnych1 tj. niezale»nych od pr¦dko±ci nale»y dopisa¢ jeszcze oddziaªy-
wanie tensorowe:

V T
(12) =

(
VT0(r) + VTτ (r)τ1τ2

)( 3
r2

(σ1r)(σ2r)− σ1σ2

)
(3.14)

Opis j¡der atomowych, szczególnie zjawiska wyst¦powania szczelin energetycznych w tzw.
j¡drach magicznych wymaga wprowadzenia nielokalnego oddziaªywania niezmienniczego
wzgl¦dem symetrii obrotów i jednocze±nie zachowuj¡cego parzysto±¢. W najni»szym rz¦-
dzie jedynym takim skalarem jest dwuciaªowe oddziaªywanie spin-orbita:

V LS
(12) = VLS(r)LS. (3.15)

Wewn¦trzna struktura nukleonu doprowadza do komplikacji w sformuªowaniu oddzia-
ªywania mi¦dzy dwoma nukleonami w szczególno±ci w sytuacji, kiedy obiekt kwantowy
skªada si¦ z wi¦kszej liczby cz¡stek. Wówczas krótkozasi¦gowe oddziaªywanie nukleon-
nukleon mo»emy zasymulowa¢ przy u»yciu dopasowywanych do danych do±wiadczalnych
parametrów zapostulowanego oddziaªywania efektywnego. Okazuje si¦, »e efektywny opis
oddziaªywania nukleon-nukleon przyniósª ogromny sukces w odtwarzaniu energii wi¡za-
nia, promieni, energii wzbudze«, czy w rozpadach j¡der [89, 90]. Efektywny potencjaª
wolny jest od problemu twardego rdzenia, wobec czego mo»e by¢ wykorzystywany w ±red-
niopolowych rachunkach Hartree'ego−Focka. Wówczas o zachowanie zasady Pauliego dba

1Lokalny charakter oddziaªywania tensorowego wprowadza si¦ przez dodanie iloczynu σ1σ2.
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wyznacznik Slatera.

Idea zast¡pienia realistycznego oddziaªywania nukleon-nukleon przez j¡drowy poten-
cjaª fenomenologiczny przysªu»yªa si¦ do rozwoju dwu wiod¡cych teorii j¡dra atomowego:
modelu powªokowego oraz j¡drowego funkcjonaªu g¦sto±ci. W obu przypadkach parametry
oddziaªywania dopasowywane do do±wiadczenia s¡ silnie zale»ne od modelu. W przypadku
modelu powªokowego rachunki wykonywane s¡ przy u»yciu oddziaªywania resztkowego,
które dziaªa mi¦dzy nukleonami walencyjnymi. Efektywne parametry otrzymywane s¡ z
dopasowywania elementów macierzowych w obr¦bie jednej powªoki o okre±lonej parzy-
sto±ci. Oznacza, to »e efektywne oddziaªywanie nukleon-nukleon nie jest uniwersalne i
silnie zale»y od obszaru w tablicy nuklidów. Zalet¡ takiego oddziaªywania niew¡tpliwie
jest precyzja teoretycznych przewidywa« [91]. W przypadku modeli pola ±redniego, w tym
j¡drowego funkcjonaªu g¦sto±ci efektywne parametry dopasowywane s¡ standardowo do
j¡der podwójnie magicznych lub w najnowszych parametryzacjach do j¡der magicznych
z otwartymi powªokami neutronowymi lub protonowymi [92]. Tak dopasowane oddziaªy-
wanie b¦dzie z pewno±ci¡ uniwersalne jednak obliczenia prowadzone w ró»nych obszarach
tablicy nuklidów mniej precyzyjne. Ponadto ze wzgl¦du na wybór przestrzeni modelo-
wej oraz stosowalno±ci oddziaªywania efektywnego zastosowania obu modeli ró»ni¡ si¦
znacz¡co. W modelu powªokowym konstruuje si¦ kon�guracje, nakªadaj¡c na« warunek
speªnienia symetrii obrotowej. Taki opis pozwala na teoretyczne przewidywania stanów
wzbudzonych oraz na obliczenia elementów macierzowych rozpadów j¡der. Model nie jest
jednak najefektywniejszym w opisie wªasno±ci stanów podstawowych. Model funkcjonaªu
g¦sto±ci ma niejako odwrotne zastosowania. �wietnie radzi sobie z opisem wªasno±ci sta-
nów podstawowych, niemniej rachunki zwi¡zane ze stanami wzbudzonymi, ze wzgl¦du
na naruszone symetrie s¡ znacznie bardziej skomplikowane. W niniejszej pracy przedsta-
wiamy model, który w zaªo»eniu stara si¦ ª¡czy¢ oba podej±cia.

W 1958 r. Tony Skyrme [93] zaproponowaª efektywne oddziaªywanie nukleon-nukleon
po raz pierwszy bazuj¡ce na cz¦±ci radialnej typu zerowego zasi¦gu. Otó» o oddziaªywa-
niu dwuciaªowym mo»na my±le¢ jako o oddziaªywaniu kontaktowym a wówczas funkcja
δ-Diraca nie tylko speªnia to zaªo»enie, ale przy okazji jest niezwykle u»yteczna w zaawan-
sowanych rachunkach teoretycznych. Fundamentalnym zaªo»eniem Skyrme'a w rozwa»a-
niach o potencjale efektywnym byªo przyj¦cie przybli»enia Borna, dla którego wkªady do
funkcji falowej od du»ego przekazu p¦du s¡ pomijalne. Ponadto przyj¡ª on zaªo»enie, »e dla
zamkni¦tych powªok nukleony zachowuj¡ si¦ jak w modelu gazu Fermiego. I tak oddziaªy-
wanie NN otrzymuje czªon centralny zwany obj¦to±ciowym reprezentuj¡cy rozproszenie je-
dynie do stanów kwantowych w stanie s - tzw. fala S. Jednak aby podj¡¢ prób¦ wªa±ciwego
opisu sko«czonej materii j¡drowej oddziaªywanie j¡drowe potrzebuje czªonów sko«czonego
zasi¦gu tzw. czªonów powierzchniowych. Sko«czony zasi¦g oddziaªywania nukleon-nukleon
mo»na zasymulowa¢ przez zale»no±¢ od przekazu p¦du. I tak, maj¡c na uwadze przybli»e-
nie Borna, pierwszy rz¡d rozwini¦cia b¦dzie zawieraª czªon zwi¡zany z przekazem energii
oraz czªon daj¡cy wkªad od k¡ta rozproszenia. Czªony sko«czonego zasi¦gu wzbogacaj¡
funkcj¦ falow¡ o mo»liwo±¢ rozproszenia do stanów kwantowych w stanie p - tzw. fala P.
Na podstawie danych z rozpraszania NN Skyrme uznaª równie», »e warto uwzgl¦dni¢ w
oddziaªywaniu rozpraszanie do fali D - tj. kolejnego rz¦du rozwini¦cia w przestrzeni p¦-
dów. Dane rozproszeniowe wykazaªy równie» istnienie silnego nielokalnego oddziaªywania
- oddziaªywania spin-orbita oraz konieczno±ci uzupeªnienia cz¦±ci centralnej o oddziaªy-
wanie tensorowe. W ten sposób powstaje efektywne oddziaªywanie dwuciaªowe.
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Pocz¡tkowo oddziaªywanie Skyrme'a miaªo sªu»y¢ do oblicze« w modelu powªokowym.
Okazaªo si¦ jednak, »e jest ono bardziej u»yteczne w modelu pola ±redniego. Pokazali to
w 1972 r. Vautherin i Brink publikuj¡c obszerny artykuª dotycz¡cy zastosowania oddzia-
ªywania Skyrme'a uzupeªnionego o potrzebny do saturacji siªy j¡drowej czªon zale»ny od
g¦sto±ci [94] w metodzie Hartree'ego-Focka. Pocz¡tek lat 70 zaowocowaª w istocie w trzy
modele efektywnej siªy j¡drowej do dzisiaj powszechnie u»ywane w obliczeniach pola ±red-
niego. Rok po wspomnianej wy»ej pracy Vautherina i Brinka powstaªa siªa sko«czonego
zasi¦gu, której cz¦±¢ radialna opisywana jest funkcjami Gaussa z wyj¡tkiem cz¦±ci od-
dziaªywania zale»nej od g¦sto±ci, który to czªon ma charakter kontaktowy analogicznie
do siªy Skyrme'a. Siª¦ t¡, od nazwiska jej autora, nazywa si¦ siª¡ Gogny'ego [95]. W 1974
r. natomiast powstaª relatywistyczny odpowiednik siªy Skyrme'a zaproponowany przez
Walecka et al. [96].

Wymienione wy»ej efektywne oddziaªywania j¡drowe s¡ emanacj¡ zasady le»¡cej u
podstaw teorii efektywnych mówi¡cej, »e niskoenergetyczna �zyka nie zale»y od wysoko-
energetycznej dynamiki, inaczej mówi¡c nie zale»y od procesów z du»ym przekazem p¦du
q. Pozwala to rozwin¡¢ oddziaªywanie j¡drowe w przestrzeni p¦dów w przekazie p¦du:

v(q) = v(q) = v0 + v2q
2 + v4q

4... (3.16)

Takie rozwini¦cie ucina si¦ przy dostatecznie du»ej pot¦dze transferu p¦du, a efektywne
wspóªczynniki vi dopasowuje si¦ do niskoenergetycznych danych do±wiadczalnych. Warto
podkre±li¢, »e rozwini¦cie (3.16) nie jest rozwini¦ciem taylorowskim. Ka»dorazowa zmiana
rz¦du teorii (rz¦du obci¦cia) wymaga bowiem nowego dopasowania wszystkich wspóªczyn-
ników rozwini¦cia zwanych niskoenergetycznymi staªymi sprz¦»enia (low-energy coupling
constants � LECs). Model kontaktowego oddziaªywania typu Skyrme'a otrzymuje si¦ przez
transformat¦ Fouriera rozwini¦cia typu (3.16) do przestrzeni poªo»eniowej. Za Vautheri-
nem i Brinkiem [94, 97] zapisujemy je w postaci:

VSk12 (x1,x2) = t0(1 + x0P̂σ)δ(~r1 − ~r2) +
1
2
t1(1 + x1P̂σ)

[
↼k

2
δ(~r1 − ~r2) + δ(~r1 − ~r2)⇀k

2
]

+ t2(1 + x2P̂σ)↼kδ(~r1 − ~r2)⇀k +
1
6
t3(1 + x3P̂σ)ρα

(
~r1 + ~r2

2

)
δ(~r1 − ~r2)

+ iW0( ~σ1 + ~σ2)(↼k × δ(~r1 − ~r2)⇀k). (3.17)

gdzie w celu zapobie»enia bezpo±redniemu dziaªaniu gradientu na delt¦ Diraca wprowadza
si¦ operatory nabla dziaªaj¡ce na prawo i na lewo w postaci:

⇀k =
1
2i

(~∇1 − ~∇2) ↼k = − 1
2i

(~∇1 − ~∇2). (3.18)

Pierwsze trzy czªony odpowiadaj¡ rozwini¦ciu (3.16), a cz¦±¢ wielociaªow¡ modeluje si¦
przez oddziaªywanie zale»ne od g¦sto±ci w pot¦dze α. Pot¦ga α ma charakter czysto fe-
nomenologiczny i sªu»y jedynie do zapewnienia odpowiedniej nie±ci±liwo±ci materii j¡dro-
wej. Dopasowania parametrów do najnowszych funkcjonaªów energii [92, 98, 99] wskazuj¡
warto±¢ tego parametru α ∈ (0.15; 0.3). Ostatni czªon w oddziaªywaniu Skyrme'a (3.17)
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opisuje dwuciaªowe oddziaªywanie typu spin-orbita (3.15), patrz [100]. Natomiast w stan-
dardowym sformuªowaniu pomija si¦ zwykle czªon zwi¡zany z tzw. fal¡ D oraz czªon
tensorowy zerowego zasi¦gu.

Oddziaªywanie Skyrme'a zawiera kanaª wymiany spinu opisany przy u»yciu operatora
Bartletta:

P̂σ =
1
2

(1 + ~σ1~σ2), (3.19)

który dziaªa nast¦puj¡co:

P̂σΦ(r1, σ1, τ1; r2, σ2, τ2) = Φ(r1, σ2, τ1; r2, σ1, τ2). (3.20)

Ze wzgl¦du na antysymetryczny charakter funkcji falowej peªni on równie» rol¦ operatora
wymiany izospinu:

P̂τ = −P̂rP̂σ. (3.21)

Model pola ±redniego Hartree'ego-Focka z oddziaªywaniem Skyrme'a zaproponowany
przez Vautherina i Bricka nosi nazw¦ modelu Skyrme'a−Hartree'ego−Focka (SHF).

�3. Teoria j¡drowego funkcjonaªu g¦sto±ci

Wraz z eksplorowaniem tablicy nuklidów w kierunku ci¦»szych pierwiastków ukªad
kwantowy wzbogaca si¦ o kolejne cz¡stki. Stawia to ogromne wyzwania przed modelami
j¡drowymi. Modele diagonalizuj¡ce hamiltonian, jak model powªokowy, czy obecnie inten-
sywnie rozwijane podej±cia modeli ab initio napotykaj¡ na gigantyczn¡ barier¦ zwi¡zan¡
z ilo±ci¡ wzbudze« jednocz¡stkowych rozpinaj¡cych przestrze« walencyjn¡. Ogromnym
powodzeniem cieszy si¦ obecnie metoda SRG [101] lub IM SRG (In-Medium Similarity
Renormalization Group) [102] modeli ab initio znacznie upraszczaj¡ca diagonalizacj¦ ol-
brzymich macierzy. Koszt tej procedury jest jednak wysoki. Zastosowanie techniki SRG
prowadzi do pojawienia si¦ wielociaªowych rozwini¦¢ hamiltonianu, przez co natychmiast
sprowadza modele ab initio do teorii efektywnych zale»nych od pewnego parametru ob-
ci¦cia.5 Niezale»nie od tego, czy mo»liwo±ci obliczeniowe pozwalaj¡ lub w przyszªo±ci
pozwol¡ na diagonalizacj¦ gigantycznych macierzy, czy nie, to zrozumienie zjawisk �zycz-
nych zachodz¡cych w ci¦»szych pierwiastkach mo»e i tak okaza¢ si¦ niezwykle trudne lub
wr¦cz niemo»liwe przy zastosowaniu metod typu mieszania kon�guracji (con�guration-
integration � CI ) operuj¡cych w ogromnych przestrzeniach kon�guracyjnych ze wzgl¦du
na skomplikowan¡ posta¢ funkcji falowej.

Alternatywnym podej±ciem jest metoda Hartree'ego-Focka. Jak si¦ okazuje jednak i
ona napotyka na powa»ne problemy. Uwzgl¦dnianie coraz to liczniejszych korelacji jak
cho¢by odej±cie od zagadnienia lokalnego (w czªonach wymiennych) np. w przypadku

5Naturalnie, poj¦cie teorii ab initio jest wzgl¦dne. W chemii kwantowej teori¡ ab initio jest teoria funk-
cjonaªu g¦sto±ci. W �zyce j¡drowej za metody ab initio uwa»a si¦ podej±cia wykorzystuj¡ce oddziaªywania
dopasowane bezpo±rednio do danych rozproszeniowych. Z punktu widzenia chromodynamiki kwantowej
takie podej±cie z pewno±ci¡ nie uzyskaªoby nazwy ab initio.
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oddziaªywania Coulomba, czy przy uwzgl¦dnieniu wymiany pionu rodzi problem nume-
rycznego policzenia coraz to trudniejszych caªek. W przypadku oddziaªywania Coulomba:

VC =
e2

2

∫
drdr′

ρp(r)ρp(r′)
|r− r′|

− e2

2

∫
drdr′

ρp(r, r′)ρp(r′, r)
|r− r′|

. (3.22)

druga z caªek ze wzgl¦du na nielokalny charakter g¦sto±ci protonowej zwi¦ksza czas obli-
cze« kilkadziesi¡t razy [15]. Caªy wysiªek, czy to metod CI, czy Hartree'ego-Focka prowa-
dzi do znalezienia funkcji falowej najlepiej opisuj¡cej ukªad kwantowy. Caªe zagadnienie
mo»na jednak odwróci¢, omijaj¡c problem uwzgl¦dniania wielu kon�guracji, czy wyzna-
czania skomplikowanych caªek, przechodz¡c do teorii funkcjonaªu g¦sto±ci. Trud wówczas
skupia si¦ nie na znalezieniu postaci funkcji falowej, lecz na konstrukcji funkcjonaªu ener-
gii lub generatora tego» funkcjonaªu.

Podwalin teorii funkcjonaªu g¦sto±ci mo»na doszukiwa¢ si¦ ju» w pracach Kelvina i
Drude'a [103] postuluj¡cych model gazu elektronowego, maj¡cy tªumaczy¢ przewodnictwo
elektryczne w metalach. Prac¦ t¦ rewelacyjnie wykorzystaª Enrico Fermi, wi¡»¡c g¦sto±¢
energii kinetycznej z lokaln¡ g¦sto±ci¡ gazu elektronowego [104]. Milowym krokiem w
kierunku powstania teorii funkcjonaªu g¦sto±ci okazaªa si¦ by¢ praca Johna Slatera [105],
który wyznaczyª przybli»enie lokalnej g¦sto±ci (Local Density Approximation � LDA) caªki
wymiennej oddziaªywania coulombowskiego (3.22):

V LDA
CEXC

= −3e2

4

(
3
π

) 1
3 ∫

drρ
4
3
p (r). (3.23)

stosowane do dzi± zarówno w �zyce elektronowej jak i w �zyce j¡drowej. Uªamkowa za-
le»no±¢ od g¦sto±ci protonowej jest efektem poczynionego przybli»enia i wprowadza do
oblicze« element fenomenologiczny, czyli taki, który ma za zadanie zamodelowa¢ oddzia-
ªywanie elektromagnetyczne mi¦dzy protonami, rezygnuj¡c z odtworzenia jego wiernej po-
staci. W rachunkach przeprowadzanych w tej pracy w zasadzie nie stosuje si¦ przybli»enia
Slatera, a caª¡ energi¦ Coulomba caªkuje si¦ dokªadnie. Takie rachunki przeprowadzamy
z dwu wzgl¦dów. W pierwszej kolejno±ci, przy przywracaniu zªamanych symetrii meto-
dami rzutowymi stabilno±¢ numeryczna rachunków wymaga, aby u»ywany funkcjonaª byª
generowany hamiltonianem. Ponadto, wysoka precyzja rachunków potrzebna do analizy
ªamania symetrii izospinowej, wyklucza rachunki przybli»one wiod¡cego oddziaªywania
ªami¡cego t¦ symetri¦. 6.

Przeªomowe dla rozwoju metod funkcjonaªu g¦sto±ci okazuj¡ si¦ by¢ prace Pierre'a Ho-
henberga oraz Waltera Kohna z 1964 pt. Inhomogeneous Electron Gas [106] oraz Waltera
Kohna i Lu Shama z 1965 roku pt. Self-Consistent Equations including Exchange and Co-
rellation E�ects [107] wieszcz¡ce rozwi¡zanie problemu obliczania skomplikowanych caªek.
Hohenberg i Kohn w pracy z 1964r. dowodz¡ istnienie pewnego uniwersalnego funkcjo-
naªu E[ρ], daj¡cego dokªadn¡ energi¦ stanu podstawowego w punkcie g¦sto±ci idealnej.
Twierdzenie to mo»na udowodni¢ mi¦dzy innymi przy u»yciu dwustopniowej wariacji za-
proponowanej przez Levy'ego [108]. Polega ona na 1) minimalizacji funkcjonaªu energii E
z wi¦zem na warto±¢ ±redni¡ operatora Q̂, 2) minimalizacji funkcji E(Q) wzgl¦dem Q. I
tak, w przypadku, gdy Q̂ = N̂ , gdzie N̂ to operator liczby cz¡stek, dwukrotna procedura

6Jednak w procedurze iteracyjnej, o której mowa w paragra�e 1, dostarczenie funkcji falowej skorelo-
wanej czªonem wymiennym w przybli»eniu LDA znacznie przyspiesza pó¹niejsze dokªadne wyznaczenie
czªonu Focka oddziaªywania Coulomba.
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wariacyjna prowadzi do otrzymania dokªadnej warto±ci energii stanu podstawowego oraz
dokªadnej g¦sto±ci wyznaczaj¡cej ten stan podstawowy.

Chemia kwantowa i �zyka j¡drowa borykaj¡ si¦ jednak z zupeªnie innymi problemami.
W przypadku tej pierwszej zewn¦trzny potencjaª wi¡»¡cy elektrony jest znany. Wydawa-
ªoby si¦ zatem, »e nie ma potrzeby fenomenologicznej konstrukcji nieznanego oddziaªywa-
nia. Jednak komplikacja budowy molekuªy, sieci krystalicznych itp. narzuca konieczno±¢
szeregu przybli»e« lub tworzenia tzw. funkcjonaªów hybrydowych [17]. Wówczas metoda
DFT okazuje si¦ by¢ jedyn¡ mo»liwo±ci¡ podj¦cia próby wyznaczenia podstawowych ob-
serwabli takiego ukªadu.

W �zyce j¡drowej oprócz skomplikowanej struktury ukªadu kwantowego pojawia si¦
problem braku zewn¦trznego potencjaªu wi¡»¡cego � j¡dro jest bowiem ukªadem samo-
zwi¡zanym. Konstrukcja efektywnego oddziaªywania nukleon-nukleon wprowadza cz¦sto
element fenomenologiczny. Analizuj¡c wªasno±ci niesko«czonej materii j¡drowej dla od-
dziaªywania w postaci Skyrme'a (3.17) mo»emy przedstawi¢ �zyczn¡ interpretacj¦ ka»dego
z czªonów, poza jednym � tzw. czªonem zale»nym jawnie od g¦sto±ci. Jak ju» wspomniano,
zale»no±¢ od g¦sto±ci w oddziaªywaniu Skyrme'a wprowadzono w pracy [94], której autorzy
zauwa»yli, »e w j¡drach parzysto-parzystych, na poziomie przybli»enia Hrtree'ego-Focka,
zachodzi równowa»no±¢ mi¦dzy trójciaªowym czªonem zerowego zasi¦gu:

v123 = t3δ(r1 − r2)δ(r2 − r3) (3.24)

a dwuciaªowym oddziaªywaniem zale»nym od g¦sto±ci:

v12 =
1
6
t3(1 + P̂σ)δ(r1 − r2)ρ

(
r1 + r2

2

)
. (3.25)

Otrzymywane wyniki z takim oddziaªywaniem - w szczególno±ci parametryzacja SIII [109]
byªy bardzo obiecuj¡ce � zgodno±¢ energii wi¡zania oraz promieni z danymi do±wiad-
czalnymi byªa nieporównywalna z wcze±niejszymi modelami. Jednak problem stanowiªa
bardzo istotna wªasno±¢ nie±ci±liwo±ci materii j¡drowej. Dla parametryzacji SIII para-
metr nie±ci±liwo±ci wynosi K∞ = 356MeV, a na podstawie danych eksperymentalnych
dotycz¡cych energii gigantycznych rezonansów monopolowych (GMR) oszacowano go na
K∞ = 230 ± 30MeV [110]. Mimo prób uwzgl¦dnienia oddziaªywa« trójciaªowych oraz
czterociaªowych zerowego zasi¦gu jak dot¡d nie udaªo si¦ odtworzy¢ tego parametru [111].
Dopiero czysto fenomenologiczne zast¡pienie czªonu ρ we wzorze (3.25) na ρα spowodo-
waªo obni»enie warto±ci nie±ci±liwo±ci materii, odtwarzaj¡c jednocze±nie EGMR [98, 112].

Unikaln¡ cech¡ teorii funkcjonaªu g¦sto±ci jest mo»liwo±¢ przeprowadzenia wariacji
po wielu obserwablach. I tak, w przypadku j¡dra atomowego funkcjonaª energii mo»emy
skonstruowa¢ na bazie dwu niezale»nych lokalnych g¦sto±ci skalarnych, mianowicie: g¦sto-
±ci cz¡stkowej ρ oraz g¦sto±ci energii kinetycznej τ 7.

Lokaln¡ g¦sto±¢ cz¡stkow¡ de�niujemy nast¦puj¡co [113]:

7W przypadku sformuªowania teorii w j¦zyku g¦sto±ci nielokalnych g¦sto±¢ energii kinetycznej nie jest
niezale»na od g¦sto±ci cz¡stkowej.
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ρ(r, στ, σ′τ ′) =
1
4
ρ(r)δσσ′δττ ′ +

1
4
s(r)σ̂σσ′δττ ′

+
1
4
ρ(r)δσσ′ ◦ τ̂ττ ′ +

1
4
s(r)σ̂σσ′ ◦ τ̂ττ ′ , (3.26)

gdzie poszczególne czªony odpowiadaj¡ odpowiednio g¦sto±ciom skalarno-izoskalarnym,
wektorowo-izoskalarnym, skalarno-izowektorowym oraz wektorowo-izowektorowym.W uprosz-
czeniu:

ρ(r) = ρ(r, r) =
KS

∑
kσ

|φk(r, σ)|2 (3.27)

Natomiast dla operatora energii kinetycznej:

τ̂(r) ≡ −
A∑
i=1

∇iδ(r− ri)∇i (3.28)

jego g¦sto±¢ (warto±¢ ±rednia na wyznaczniku Slatera) wynosi:

τ(r) = [(∇∇′)ρ(r, r′)]|r′=r =
KS

∑
kσ

|∇φk(r, σ)|2 (3.29)

Przy opisie funkcjonalnym j¡dra wygodnie jest równie» wprowadzi¢ wektorow¡ g¦sto±¢
spinow¡:

s(r) = s(r, r′)|r′=r =
KS

∑
kσσ′

φ∗k(r, σ)φk(r, σ′) 〈σ|~σ |σ′〉 (3.30)

oraz tensorow¡ g¦sto±¢ pr¡du spinowego:

Jµν(r) =
1
2i

[(~∇µ − ~∇′µ)sν(r, r′)]|r=r′

=
KS

1
2i

∑
kσσ′

[~∇µφk(r, σ)φ∗k(r, σ
′)− ~∇µφ

∗
k(r, σ)φk(r, σ′)] 〈σ|~σ |σ′〉 . (3.31)

Dywergencja g¦sto±ci tensorowej pomno»ona przez g¦sto±¢ cz¡stek wnosi wkªad do g¦sto-
±ci energii z �zyczn¡ interpretacj¡ wkªadu od oddziaªywania spin-orbita.

Zde�niowanie g¦sto±ci spinowej sªu»y nie tylko wprowadzeniu g¦sto±ci tensorowej, ale
równie» jest istotne w opisie stanów podstawowych j¡der nieparzystych oraz nieparzysto-
nieparzystych, a tak»e dowolnych stanów wzbudzonych. W analogii do g¦sto±ci kinetycznej
τ , traktuj¡c spin jako dodatkowy stopie« swobody, de�niuje si¦ niezale»n¡ od g¦sto±ci
spinowej s wektorow¡ g¦sto±¢ kinetyczn¡ T:

T(r) = [(~∇ ~∇′)s(r, r′)]|r′=r =
KS

∑
kσσ′

~∇φ∗k(r, σ)~∇φk(r, σ′) 〈σ|~σ |σ′〉 . (3.32)

Funkcjonaª energii wyra»ony przy u»yciu powy»szych g¦sto±ci ma jeszcze jeden manka-
ment. Nie speªnia transformacji Galileusza. Podczas wyznaczania warto±ci ±rednich ope-
ratorów powy»szych g¦sto±ci w g¦sto±ci hamiltonianu pojawia si¦ bowiem czªon propor-
cjonalny do ρτ . Wprowadzenie do teorii wektorowej g¦sto±ci p¦du (pr¡d):
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j(r) =
1
2i

[(~∇− ~∇′)ρ(r, r′)]|r′=r

=
KS

1
2i

∑
kσ

[φ∗k(r, σ)~∇φk(r, σ)− φk(r, σ)~∇φ∗k(r, σ)]. (3.33)

powoduje, i» funkcjonaª zachowuje transformacj¦ Galileusza pod warunkiem narzucenia
odpowiednich warunków na staªe sprz¦»enia wyst¦puj¡ce przy czªonach ρτ i j2 oraz sT i
J2.

Ponadto iloczyn skalarny g¦sto±ci spinowej z rotacj¡ g¦sto±ci pr¡du daje dodatkowy
wkªad do caªkowitej energii z �zyczn¡ interpretacj¡ oddziaªywania spin-orbita.

Czªon sT analogiczny do ρτ pojawiaj¡cy si¦ w funkcjonale g¦sto±ci równie» nie speª-
nia transformacji Galileusza. Jednak t¦ mo»na zapewni¢ przy pomocy wprowadzonej ju»
g¦sto±ci tensorowej (3.31).

W powy»szych wzorach druga równo±¢ oznacza pewn¡ parametryzacj¦ warto±ci ±red-
nich operatorów g¦sto±ci. Mianowicie s¡ to stany iloczynowe o ustalonej liczbie cz¡stek
zbudowane z A orbitali jednocz¡stkowych.

Funkcjonaª energii Skyrme'a jest trójwymiarow¡ caªk¡

E [ρ, τ ] =
∫
H(r)dr (3.34)

gdzie g¦sto±¢ energii

H =
~2

2m
τ +Ht=0 +Ht=1 (3.35)

wyra»a si¦ przez g¦sto±¢ energii kinetycznej oraz izoskalarn¡ i izowektorow¡ g¦sto±¢ od-
dziaªywania. G¦sto±ci cz¡stkowa i kinetyczna wyra»one w notacji izospinowej speªniaj¡
transformacj¦:

ρ0 = ρn + ρp τ0 = τn + τp

ρ1 = ρn − ρp τ1 = τn − τp (3.36)

gdzie ρn, τn i ρp, τp to odpowiednio g¦sto±ci (cz¡stkowe i kinetyczne) neutronowe i proto-
nowe. G¦sto±¢ cz¡stkowa zde�niowana w (3.26) zawiera czªony, dla których stany pro-
tonowe i neutronowe s¡ zmieszane. Jednak w tej pracy nie uwzgl¦dnia si¦ mieszania
protonowo-neutronowego, wobec czego funkcjonaª g¦sto±ci mo»na przedstawi¢ w nota-
cji izospinowej, gdzie g¦sto±ci izoskalarne (izowektorowe) s¡ sumami (ró»nicami) g¦sto±ci
neutronowych i protonowych.

G¦sto±ci wchodz¡ce w skªad funkcjonaªu energii wygodnie dalej przegrupowa¢ ze wzgl¦du
na symetri¦ odwrócenia w czasie. I tak g¦sto±ci skalarne i tensorowe ρ, τ, Jµν s¡ przemienne
z operatorem odwrócenia w czasie T̂ . Wkªady do energii pochodz¡ce od tych g¦sto±ci two-
rz¡ tzw. kanaª T −parzysty hamiltonianu. Do kanaªu T −nieparzystego nale»¡ natomiast
pozostaªe g¦sto±ci wektorowe s,T, j, które pod wpªywem dziaªania operatora odwrócenia
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w czasie zmieniaj¡ znak8. W takiej klasy�kacji lokalna g¦sto±¢ hamiltonianu H przyjmuje
posta¢:

Heven
t = Cρ

t ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt + CJ

t Jt2 + C∇Jt ρt~∇Jt (3.37)

Hodd
t = Cs

t st
2 + C∆s

t st∆st + CT
t stTt + Cj

t jt
2 + C∇jt st(~∇× jt), (3.38)

gdzie wspóªczynniki Ct wyra»aj¡ si¦ przez parametry oddziaªywania Skyrme'a (3.17). Ich
jawn¡ posta¢ mo»na znale¹¢ np. w pracy [89]. Nale»y mie¢ na uwadze, »e kwadrat tensora
J2
t ≡

∑
µν J

2
µν,t a jego wektorowa cz¦±¢ Jλ,t ≡

∑
muν ελµνJµν,t.

W tym miejscu nale»y podkre±li¢, »e lokalny funkcjonaª j¡drowy (3.37)�(3.38) jest
najogólniejszym mo»liwym funkcjonaªem biliniowym w g¦sto±ciach lokalnych ρ, τ, Jµν i
st, jt,Tt zgodnym z symetriami oddziaªywania j¡drowego o ile Cj

t = −Cτ
t , C

J
t = −CT

t i
C∇Jt = C∇jt co wynika z niezmienniczo±ci galileuszowskiej. To co ró»ni lokalne funkcjo-
naªy j¡drowe generowane w ramach równych modeli teoretycznych to zale»no±¢ od g¦sto-
±ci cz¡stkowej staªych sprz¦»enia Ci. Wida¢ to wyra¹nie poprzez porównanie funkcjonaªu
Skyrme'a na przykªad z funkcjonaªem wywiedzionym z modelu QMC (Quark-Meson Co-
upling) w pracy [114], który to model konstruuje si¦ wychodz¡c z zupeªnie innych zaªo»e«
�zycznych nawi¡zuj¡cych do fenomenologii QCD.

Parametryzacja Kohna-Shama jest prosta w interpretacji, jednak jej koszt jest spory.
Dokªadny opis g¦sto±ci cz¡stek sparametryzowanych przez wyznacznik Slatera prowa-
dzi do niedokªadnego opisu g¦sto±ci kinetycznej ªami¡cej symetri¦ translacyjn¡. Symetri¦
przesuni¦¢ mo»na przywróci¢ przy u»yciu metody zb¦dnych zmiennych wewn¦trznych (re-
dundant internal methods) [18]. Wówczas energi¦ kinetyczn¡ nale»y poprawi¢ ze wzgl¦du
na ruch ±rodka masy:

T =
~2

2m

(
1− 1

A

)∫
drτ0(r), (3.39)

przy czym wspóªczynnik
(
1− 1

A

)
pochodzi od jednociaªowego przybli»enia P2 ≈ ∑A

i=1 p2
i

na ruch ±rodka masy. We wszystkich obliczeniach w niniejszej pracy symetri¦ translacyjn¡
traktujemy w sposób przybli»ony, stosuj¡c przybli»enie jednociaªowe, zgodnie z protoko-
ªem �towania u»ywanych oddziaªywa«.

Caªkowity funkcjonaª energii Skyrme'a-Hartree'ego-Focka uwzgl¦dniaj¡cy energi¦ po-
chodz¡c¡ od oddziaªywania coulombowskiego jest sum¡ wkªadów (3.37),(3.38),(3.39) oraz
(3.22):

ESHF(ρ) =
~2

2m

(
1− 1

A

) ∫
drτ0(r) +

∑
t=0,1

∫
dr[Heven

t (r) +Hodd
t (r)]

+
e2

2

∫
drdr′

ρp(r)ρp(r′)
|r− r′|

− e2

2

∫
drdr′

ρp(r, r′)ρp(r′, r)
|r− r′|

(3.40)

8Caªkowity hamiltonian jest parzysty wzgl¦dem dziaªania operatora odwrócenia w czasie. Terminologia
pochodzi jedynie od g¦sto±ci, które mog¡ by¢ parzyste lub nieparzyste wzgl¦dem symetrii odwrócenia w
czasie. G¦sto±¢ energii jest biliniowa w g¦sto±ciach i zawsze T −parzysta
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Równania Kohna-Shama uzyskuje si¦, wariuj¡c g¦sto±ci (orbitale jednocz¡stkowe). Ha-
miltonian pola ±redniego przedstawia si¦ wówczas:

ht =
~2

2m
∆ + Γevent + Γoddt + UCou

t , (3.41)

gdzie, UCou
t jest potencjaªem pochodz¡cym od oddziaªywania Coulomba � obecnym jedy-

nie w polu protonowym, a Γevent to potencjaªy odpowiednio T -parzyste i T -nieparzyste:

Γevent = −∇
[
Mt(r)∇

]
+ Ut(r) +

1
2i

(
(∇σ)Bt(r) +Bt(r)(∇σ)

)
Γoddt = −∇

[(
σCt(r)

)
∇
]

+ σΣt(r) +
1
2i

(
∇It(r) + It(r)∇

)
. (3.42)

Funkcje de�niuj¡ce potencjaªy pola ±redniego to odpowiednio:

Ut = 2C%
t %t + 2C∇%t ∇%t + Cτ

t τt + C∇Jt ∇Jt + U rear
t

Σt = 2Cs
t st + 2C∇st ∇st + CT

t Tt + C∇jt ∇× jt
Mt = Cτ

t %t

Ct = CT
t st

Bt = 2CJ
t Jt − C∇Jt ∇%t

It = 2Cj
t jt + C∇jt ∇× st. (3.43)

Poj¦cie samozgodno±ci rozwi¡za« metody iteracyjnej ma co najmniej kilka aspektów. Mia-
nowicie:

• g¦sto±¢ cz¡stkowa i�tej iteracji jest równa co do pewnego ustalonego obci¦cia g¦sto±ci
cz¡stkowej i+ 1�ej iteracji.

• energia caªkowita i�tej iteracji z dokªadno±ci¡ do pewnego ustalonego obci¦cia jest
równa energii caªkowitej w i+ 1�ej iteracji.

• Najsilniejszym warunkiem samozgodno±ci jest warunek, w którym energia E pocho-
dz¡ca od wycaªkowanej g¦sto±ci hamiltonianu jest równa z pewn¡ zadan¡ dokªad-
no±ci¡ energii:

Ē =
1
2
E s.p. +

1
2
Ekin − E rear +

1
3
ECou

exch (3.44)

W kodzie numerycznym HFODD stabilno±¢ rozwi¡zania równa« pola ±redniego uzyskuje
si¦ przez naªo»enie warunku: δE ≡ E − Ē = 0. Wówczas zarówno pola ±rednie jak i g¦sto-
±ci nie zmieniaj¡ si¦ z upªywem kolejnych iteracji a o rozwi¡zaniu mo»emy mówi¢, »e jest
stabilne.

Teoria SHF b¦dzie w tej pracy wykorzystywana jako ¹ródªo rozwi¡za« samozgodnych,
czy to stanów podstawowych, czy stanów wzbudzonych. Te natomiast, po zastosowaniu
technik rzutowych, b¦d¡ nast¦pnie mieszane. Poniewa» kombinacja liniowa stanów ilo-
czynowych nie jest w ogólno±ci stanem iloczynowym rozwijany dalej formalizm b¦dzie
rozszerzeniem metody HF. Zanim jednak przejdziemy do formalizmu wychodz¡cego poza
pole ±rednie, skupimy uwag¦ na charakterze u»ywanego oddziaªywania najpierw w kanale
izoskalarnym nast¦pnie w kanale izowektorowym.
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�4. Oddziaªywania Skyrme'a niezale»ne od g¦sto±ci.

Saturacj¦ siªy j¡drowej w efektywnym oddziaªywaniu j¡drowym otrzymuje si¦ stan-
dardowo poprzez zast¡pienie czªonów wielociaªowych oddziaªywaniem zale»nym od g¦sto-
±ci. Jak si¦ jednak okazuje taki czªon generuje niestabilno±ci w rozwi¡zaniach rzutowych
wychodz¡cych poza przybli»enie pola ±redniego [115, 116, 117, 118, 119]. Przywrócenie
spontanicznie zªamanych symetrii przez pole ±rednie jest jednak kluczowe w opisie obser-
wabli zwi¡zanych z rozpadami j¡drowymi. Stabilno±¢ numeryczna w technikach rzutowych
zobowi¡zuje zatem do u»ywania oddziaªywania niezale»nego od g¦sto±ci. Najstarszym od-
dziaªywaniem dwuciaªowym niezale»nym od g¦sto±ci jest parametryzacja SV [109]. Co
ciekawe wraz z parametryzacj¡ SVI powstaªa ona jako produkt uboczny bada« nad wªa-
sno±ciami oddziaªywania w zale»no±ci od parametru t3 siªy oddziaªywania zale»nego od
g¦sto±ci. Parametryzacje SIII i SIV powstaªy przy dopasowaniu parametrów t0, x0, t1, t2
przy ustalonym parametrze t3. W kanale wymiany spinu uwzgl¦dniono jedynie czªon cen-
tralny, zatem parametrów x1, x2 nie wzi¦to do rozwa»a«. Ponadto α = 1, bowiem idea
pot¦gowej zale»no±ci od g¦sto±ci zostaªa wprowadzona do oddziaªywania pó¹niej. Wª¡cza-
j¡c do analizy parametryzacj¦ SII otrzyman¡ z peªnego dopasowania (wraz z parametrem
t3) w pracy [94] sprawdzono, »e odpowied¹ wszystkich parametrów na zmian¦ nat¦»enia
wkªadu zale»nego od g¦sto±ci jest z bardzo du»¡ dokªadno±ci¡ liniowa. Wobec tej obser-
wacji dokonano ekstrapolacji liniowej parametrów przy t3 → 0 � parametryzacja SV oraz
t3 → 17000MeV fm3 w przypadku parametryzacji SVI. Przyj¦to wówczas zaªo»enie, »e siªa
oddziaªywania spin-orbita nie jest bezpo±rednio skorelowana z pozostaªymi parametrami
oddziaªywania i »e zamiast ekstrapolacji nale»y j¡ dopasowa¢ do poziomów jednocz¡st-
kowych w j¡drze 208Pb. Koncepcja spinu wynika bezpo±rednio z teorii relatywistycznej
Diraca, wobec czego oddziaªywanie spin-orbita nie jest ad hoc dodanym do hamiltonianu
czªonem. Ponadto jak si¦ okazuje [120] siª¦ krótkozasi¦gowego oddziaªywania spin-orbita
mo»na powi¡za¢ ze skyrmowskimi parametrami t1, t2 oraz z masami mezonów po±redni-
cz¡cych w krótkozasi¦gowej cz¦±ci oddziaªywania: mω,mσ oraz mρ. Okazuje si¦ wówczas,
»e zale»no±¢ W od parametrów t1, t2 równie» jest liniowa. Zmiana tych parametrów pod-
czas ekstrapolacji wpªywa zatem na zmian¦ nat¦»enia oddziaªywania spin-orbita. Przyj¦ty
parametr W0 dla oddziaªywania SV wynosi W0 = 150MeVfm5. Ekstrapolowany z siª SIII
oraz SIV wynosiW0 = 167MeVfm5 natomiast z siª SII oraz SIV wynosiW0 = 202MeVfm5.
Rozbie»no±¢ wynika z faktu, »e parametr W0 dla siª SIII oraz SIV zostaª ustalony i nie
byª dopasowywany w peªnym �cie. W naszych rachunkach wykorzystujemy siª¦ SV w dwu
wariantach: z oryginaln¡ warto±ci¡ W0 oraz z powi¦kszon¡ o 20% tj. W0 = 180MeVfm5

dalej zwan¡ SVSO.
Dla niesko«czonej materii ±rodowisko j¡drowe mo»emy traktowa¢ w przybli»eniu gazu

Fermiego. Takie przybli»enie daje intuicyjne poj¦cie o oddziaªywaniu. Zaªo»enie niesko«-
czono±ci natychmiast implikuje jednorodno±¢ ukªadu, a ta niezmienniczo±¢ wzgl¦dem
translacji. Zatem cz¦±¢ oddziaªywania zale»na od p¦du cz¡stek znika a funkcje falowe
mo»emy opisywa¢ falami pªaskimi. Wówczas energia wi¡zania na cz¡stk¦ zgodnie ze wzo-
rem (3.40) wynosi:

ESHF

A
=
Heven

SHF

ρ
N=Z=

3
5
T +

3
8
t0ρ+

1
16
t3ρ

2 +
3
80

(3t1 + 5t2)ρk2
F (3.45)

Warunek saturacji siªy j¡drowej wyznacza g¦sto±¢ j¡drow¡ ρ w stanie równowagi. Ma-
tematycznie ci±nienie tj. zmiana g¦sto±ci energii w otoczeniu g¦sto±ci saturacji jest równe
zero. Zgodnie ze wzorem (3.45) za równowag¦ siªy j¡drowej odpowiada balans pomi¦dzy
energetycznym wkªadem od czªonu centralnego wraz z czªonem zale»nym od g¦sto±ci oraz
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Tabela 3.1: Warto±ci parametrów Skyrme'a oraz niektóre wªasno±ci niesko«czonej
materii j¡drowej dla oddziaªywa« SII-SVI uporz¡dkowanych z rosn¡cym parame-
trem t3 [94, 109].

Kolumna1 t3 t0 x0 t1 t2 W0

Kolumna1 (MeV fm6) (MeV fm3) (MeV fm5) (MeV fm5) (MeV fm5)
SV 0 -1248.29 -0.17 970.6 107.2 150
SIV 5000 -1205.6 0.05 765 35 150
SII 9331 -1169.9 0.34 586.6 -27.1 105
SIII 14000 -1128.75 0.45 395 -95 120
SVI 17000 -1101.29 0.58 271.7 -138 115

ρ E0 K m∗
m

J V0 w 40Ca
(fm−3) (MeV) (MeV) (MeV) (MeV)

SV 0.155 -16 306 0.38 32.72 -79.7
SIV 0.152 -16 325 0.47 31.22 -66
SII 0.148 -16 342 0.58 34.2 -55.3
SIII 0.145 -16 356 0.76 28.16 -44.6
SVI 0.145 -16 364 0.95 26.89 -38.1

czªonu ρτ . W przypadku braku czªonu w funkcjonale reprezentuj¡cego oddziaªywania wie-
lociaªowe � tak jak w oddziaªywaniu SV, balans ustala si¦ poprzez zwi¦kszenie wkªadu
od czªonu centralnego (wzrost parametru t0) z jednoczesnym zmniejszeniem tzw. masy
efektywnej m∗ tj:

m∗ =
(

2
~2

∂Heven
SHF

∂τ

)−1

= m

(
1 +

2m
16~

(3t1 + 5t2)ρ
)−1

(3.46)

wzgl¦dem oddziaªywania zale»nego od g¦sto±ci p.(3.45) oraz Tab. 3.1.

Mechanizm wysycenia siª j¡drowych poprzez znaczne obni»enie masy efektywnej ma
negatywne skutki. W szczególno±ci, prowadzi on do zmniejszenia g¦sto±ci stanów j¡dro-
wych przy powierzchni Fermiego, co w konsekwencji prowadzi do niestabilno±ci lub wr¦cz
zaniku korelacji nadprzewodnikowych i wymusza stosowanie formalizmu Hartree'go-Focka
w praktycznych zastosowaniach. Wªa±nie z tego powodu, w niniejszej rozprawie, zmuszeni
jeste±my do rozwijania technik rzutowych z wyznaczników Slatera, a nie z rozwi¡za« typu
nadprzewodnikowego.

Niska masa efektywna to gªówny mankament siªy SV. Jedyn¡ mo»liwo±ci¡ jej zwi¦k-
szenia, przy jednoczesnym utrzymaniu stabilno±ci numerycznej w rachunkach rzutowych
jest dodanie do oddziaªywania czªonów wielociaªowych zerowego zasi¦gu. Takie oddziaªy-
wanie, w którym efekty wielociaªowe uwzgl¦dniono w postaci kontaktowej siªy trójciaªowej
oraz czterociaªowej jest obecnie rozwijane [111, 121]. Na chwil¦ obecn¡ nie speªnia jed-
nak wielu wymogów oczekiwanych od oddziaªywania j¡drowego. Przewidywania energii
stanów podstawowych siª SLyMR0 oraz SLyMR1β nadal s¡ poni»ej oczekiwa«, a ener-
gia symetrii J ≈ 22MeV [111] tych oddziaªywa« daleko odbiega od przedziaªu ufno±ci
J ∈ (30; 35)MeV [122]. Nale»y jednak podkre±li¢, »e prace nad nowymi funkcjonaªami,
które mo»na byªoby zaaplikowa¢ do metod rzutowych s¡ niezwykle istotne szczególnie z
perspektywy zwi¦kszenia masy efektywnej.



44 Rozdziaª 3. Metoda j¡drowego funkcjonaªu g¦sto±ci z przywróconymi symetriami

Warto natomiast zauwa»y¢, »e warto±¢ energii symetrii J = 32.7MeV p. Tab. 3.1
dla oddziaªywania SV jest bardzo bliska warto±ci do±wiadczalnej otrzymanej z analizy
pigmejskich rezonansów dipolowych (PDR, Pigmy Dipole Resonance) [123, 124], czy te»
warto±ci otrzymanej z wielkoskalowych dopasowa« do mas j¡drowych przy u»yciu modelu
FRDM (Finite-Range Droplet Model) [125], gdzie J = 32.5± 2.5MeV [122].

�5. Symetria obrotowa w izoprzestrzeni

Szczegóªow¡ analiz¦ zagadnienia ªamania symetrii izospinowej przez efektywne od-
dziaªywanie silne czytelnik znajdzie w doktoracie Pawªa B¡czyka [8]. W tym paragra�e
ograniczymy si¦ jedynie do skróconego opisu ªamania symetrii ªadunkowej, caªkowicie po-
mijaj¡c zagadnienie ªamania niezale»no±ci ªadunkowej. W ten sposób rozszerzymy stan-
dardowe oddziaªywanie Skyrme'a opisane w poprzednim paragra�e o cz¦±¢ izowektorow¡.
Przeprowadzenie bada« uwzgl¦dniaj¡cych ªamanie niezale»no±ci ªadunkowej jest zwi¡zane
z konieczno±ci¡ zªamania osiowej symetrii izospinowej. W rachunkach wychodz¡cych poza
przybli»enie pola ±redniego oznacza to konieczno±¢ wykorzystania technik rzutowych w
trójwymiarowej izoprzestrzeni. Na chwil¦ obecn¡ takie rachunki w kodzie HFODD s¡ nie-
mo»liwe. Przedstawimy równie» uzyskane w ramach wspóªpracy gªówne wyniki bada« i
pªyn¡ce z nich wnioski niezb¦dne do szerszego zrozumienia bada« nad rozpadami Fer-
miego.

Przedstawione w (3.17) oddziaªywanie Skyrme'a jest niezmiennicze ze wzgl¦du na ob-
rót w izoprzestrzeni, co oznacza, »e w »aden sposób protony nie s¡ wyró»nione nad neu-
tronami i cz¡stki wchodz¡ce w skªad j¡dra mo»emy nazywa¢ nukleonami. W konsekwencji
zachodz¡ relacje komutacyjne [126]:

[ĤSkyrme, T̂2] = 0 [ĤSkyrme, T̂] = 0 (3.47)

i tak jak dyskutowali±my w paragra�e 2 rozdziaªu 1 mówimy wówczas o zachowaniu nie-
zmienniczo±ci oraz niezale»no±ci ªadunkowej. Dane eksperymentalne wskazuj¡, »e powy»-
sze reguªy komutacyjne speªnione s¡ z bardzo dobr¡ dokªadno±ci¡. W zwi¡zku z tym
wi¦kszo±¢ modeli wielociaªowych wykorzystuje oddziaªywania izoskalarne. Dzi¦ki temu,
konstrukcja kon�guracji np. w przypadku modelu powªokowego mo»e opiera¢ si¦ na sta-
nach z dobrymi liczbami kwantowymi |IM, TTz〉, co znacznie upraszcza rachunki.

Symetria izospinowa oddziaªywania j¡drowego jest jednak zªamana w sposób oczy-
wisty przez wkªad pochodz¡cy od siªy coulombowskiej . Nadal dominuj¡cy wkªad tej siªy
pochodzi od kanaªu monopolowego niezaburzaj¡cego symetrii izospinowej, a jej ªamanie
odbywa si¦ dopiero w o wiele sªabszych kanaªach izowektorowym oraz izotensorowym.

Wyró»nienie cz¡stki ze wzgl¦du na jej ªadunek nie jest jednak jedynym ¹ródªem ªa-
mania symetrii izospinowej. Okazuje si¦ równie», »e ró»nica mas mi¦dzy kwarkami u i d,
a w konsekwencji pomi¦dzy neutronem i protonem równie» przyczynia si¦ do zaburzenia
tej symetrii jednak tym razem w oddziaªywaniu silnym. Ró»nica mas implikuje ró»nic¦ w
energiach kinetycznych. Ma te» wpªyw na wymian¦ bozonów po±rednicz¡cych.

�amanie symetrii izospinowej przez oddziaªywanie silne jest widoczne w danych do-
±wiadczalnych. W pierwszej kolejno±ci rozró»nienie cz¡stek uwidacznia si¦ w eksperymen-
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tach rozproszeniowych, które pokazuj¡ ró»nice w dªugo±ciach rozpraszania w zale»no±ci
od pary nukleonów. I tak, po usuni¦ciu wkªadu od oddziaªywania Coulomba, w kanale 1S0

dªugo±ci rozpraszania neutron-neutron (nn), neutron-proton (np) oraz proton-proton (pp)
s¡ równe ann ≈ −18.9 fm, anp ≈ −23.7 fm oraz app ≈ −17.3 fm [127]. Te dane wskazuj¡,
»e oddziaªywanie j¡drowe nie dziaªa jednakowo mi¦dzy dwoma neutronami oraz mi¦dzy
dwoma protonami Vnn 6= Vpp. Na podstawie danych mo»na wywnioskowa¢, »e Vnn jest
silniejsze od Vpp o okoªo 1%, a w konsekwencji, »e zªamana jest symetria ªadunkowa.
Ponadto ró»nice w oddziaªywaniu mi¦dzy tymi parami uwidaczniaj¡ si¦ w strukturze j¡-
drowej. Badaj¡c ró»nice energii wi¡zania w parach j¡der zwierciadlanych dla szerokiego
zakresu mas (mirror displacement energy, MDE):

MDE = BE(T, Tz = −T )−BE(T, Tz = T ) (3.48)

Nolen i Shi�er [128] zauwa»yli, »e nawet przy bardzo dokªadnym uwzgl¦dnieniu wpªywu
oddziaªywania Coulomba rachunki z izospinowo-niezmieniczym oddziaªywaniem silnym
nie odtwarzaj¡ ró»nic eksperymentalnych. W literaturze to zagadnienie nazywa si¦ ano-
mali¡ Nolena-Shi�era i ±wiadczy o ªamaniu symetrii ªadunkowej przez efektywne oddzia-
ªywanie silne.

Efekty ªamania symetrii izospinowej przez oddziaªywanie silne byªy obiektem bada«
przeprowadzanych przez wiele grup badawczych wykorzystuj¡cych ró»ne metody wielo-
ciaªowe w opisie j¡dra atomowego. Pocz¡wszy od oblicze« w modelach ab initio [129],
pola ±redniego Hartree'ego−Focka [130] a» do modelu powªokowego [131, 132]. Roz-
wój kodu numerycznego HFODD [5] pozwoliª na globalne badania nad anomali¡ Nolena-
Shi�era po raz pierwszy przy u»yciu metody j¡drowego funkcjonaªu g¦sto±ci z funkcjona-
ªem Skyrme'a [9, 133] i funkcjonaªem wyprowadzonym z modelu QMC [114, 134].

Oddziaªywania ªami¡ce symetri¦ izospinow¡ standardowo klasy�kuje si¦ zgodnie z po-
dziaªem zaproponowanym przez Henley'a i Millera [126]:

V I(i, j) = a+ bτ̂ (i)τ̂ (j) (3.49)

V II(i, j) = c
[
τ̂z(i)τ̂z(j)−

1
3
τ̂ (i)τ̂ (j)

]
(3.50)

V III(i, j) = d[τ̂z(i) + τ̂z(j)] (3.51)

V IV(i, j) = e[σ̂(i)− σ̂(j)]L[τ̂z(i) + τ̂z(j)]
+ f [σ̂(i)× σ̂(j)]L̂[τ̂ (i)× τ̂ (j)]z (3.52)

I tak siªa klasy I (3.49) komutuje z operatorem caªkowitego izospinu j¡dra przez co jest
izospinowo-niezmiennicza. Jej posta¢ jest to»sama z lokalnym oddziaªywaniem nukleon-
nukleon zapisanym w postaci Landaua (3.13). Klasa II (3.50) reprezentuje siªy ªami¡ce
symetri¦ izospinow¡ w kanale izotensorowym i odpowiada za zªamanie niezale»no±ci ªadun-
kowej, jednocze±nie zachowuj¡c symetri¦ ªadunkow¡. Okazuje si¦, »e jest ona kluczowa w
opisie krzywizny energii wi¡zania w trypletach izospinowych � triplet displacement energy
TDE:

TDE = BE(T = 1, Tz = −1) +BE(T = 1, Tz = 1)− 2BE(T = 1, Tz = 0) (3.53)
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jednak marginalna przy opisie MDE w j¡drach zwierciadlanych T = 1/2 oraz T = 1 [8, 11].
Z tego powodu nie b¦dziemy dalej jej omawia¢.

Izowektorowe oddziaªywanie klasy III (3.51) opisuje ªamanie symetrii ªadunkowej. Ró»-
nicuje oddziaªywanie mi¦dzy dwoma neutronami oraz dwoma protonami. W przypadku
oddziaªywania Skyrme'a dla czªonów obj¦to±ciowego oraz powierzchniowego oddziaªywa-
nie klasy III przyjmuje posta¢ [133]:

V III
Sk (i, j) =

{
tIII0 δ(ri−rj)+ tIII1

[↼k2
δ(ri−rj)+δ(ri−rj)

⇀k
2
]

+ tIII2
↼kδ(ri−rj)

⇀k
}[
τ̂z(i)+ τ̂z(j)

]
.

(3.54)
Dla tak sformuªowanego oddziaªywania podobnie do (3.37),(3.38) wyprowadzono funkcjo-
naª g¦sto±ci energii. Parametry dodatkowej siªy zostaªy dopasowane do ró»nic ekspery-
mentalnych MDE w j¡drach zwierciadlanych w zakresie mas A = 6− 75. Dopasowano w
ten sposób kilka funkcjonaªów w tym: SV, SkM* oraz SLy4.

Z perspektywy dalszej cz¦±ci tej pracy i rachunków rzutowych szczególnie istotna jest
parametryzacja i dopasowanie klasy III z siª¡ SVSO [8]. Poni»ej przedstawiono odpowiednie
parametry dopasowane do danych do±wiadczalnych w j¡drach zwierciadlanych T = 1/2
oraz T = 1 w zakresie mas A = 7− 75 oraz A = 6− 58:

tIII,LO
0 = −6.7± 0.3 MeVfm3 (3.55)

tIII,NLO
0 = 5± 2 MeVfm3 tIII,NLO

1 = −3± 3 MeVfm5 tIII,NLO
2 = −7.4± 0.8 MeVfm5

(3.56)

Na wykresie 3.1 przedstawiono warto±ci MDE otrzymane z funkcjonaªami ró»ni¡cymi
si¦ ¹ródªem ªamania symetrii izospinowej. Oddziaªywanie SVSO ªamie symetri¦ izospi-
now¡ jedynie przez oddziaªywanie Coulomba, w SVISB

SO;LO wª¡czono oddziaªywanie klasy
III (3.51) w wiod¡cym rz¦dzie z parametrem (3.55), natomiast w SVISB

SO;NLO oddziaªywa-
nie klasy III wraz z czªonami powierzchniowymi z parametrami (3.56). Wykorzystanie
czªonów klasy III w obliczeniach ju» w wiod¡cym rz¦dzie zdaje si¦ wyja±nia¢ anomali¦
Nolena-Shi�era, a uwzgl¦dnienie kolejnego rz¦du rozwini¦cia dodatkowo poprawia zgod-
no±¢ z danymi do±wiadczalnymi szczególnie w rejonach lekkich i ci¦»kich j¡der.

Wprawdzie dwuciaªowa siªa klasy IV (3.52) ªamie zarówno symetri¦ jak i niezale»-
no±¢ ªadunkow¡, to jej wkªad do obserwabli jest zaniedbywalny [129]. Z tego powodu we
wszystkich przeprowadzanych rachunkach nie uwzgl¦dniamy tej klasy.

Izowektorowe oddziaªywanie Skyrme'a zostaªo zaimplementowane w kodzie HFODD w
wersji opublikowanej w pracy [5].

�6. Przywracanie symetrii rotacyjnej metod¡ rzutowania

Niemal ka»dy dotychczasowy paragraf tego rozdziaªu dotyka problemu ªamania sy-
metrii. Parametryzacja g¦sto±ci w uj¦ciu Kohna-Shama prowadzi do ªamania symetrii
translacyjnej a w konsekwencji do niedokªadnego opisu energii kinetycznej. Uwzgl¦dnie-
nie efektów ªamania tej symetrii wymaga wprowadzenia dodatkowej poprawki ze wzgl¦du
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Rys. 3.1: Warto±ci MDE z odj¦tym trendem liniowym podane w MeV w j¡drach
zwierciadlanych T = 1/2 (panel górny) oraz T = 1 (panel dolny) w zakresach mas
A = 7 − 75 oraz A = 6 − 58. Czarna linia kropkowana reprezentuje ±redniopolowe
obliczenia wykonane z funkcjonaªem SVSO bez izowektorowych czªonów ªami¡cych
izospin w oddziaªywaniu silnym, czerwona linia kropkowana przedstawia rachunki z
uwzgl¦dnieniem klasy III (3.51) w wiod¡cym rz¦dzie SVISB

SO;LO, natomiast czerwona
linia ci¡gªa ze znacznikiem odnosi si¦ do oblicze« z klas¡ III w kolejnym po wiod¡cym
rz¦dzie rozwini¦cia SVISB

SO;NLO. Czarnymi kwadratami oznaczono dane eksperymen-
talne [135]

.

na ruch ±rodka masy. W celu zachowania niezmienniczo±ci wzgl¦dem transformacji Galile-
usza, wprowadza si¦ do struktury funkcjonaªu np. g¦sto±¢ tensorow¡. Wreszcie w ostatniej
sekcji przedstawili±my oddziaªywanie nukleon-nukleon wychodz¡ce poza standardow¡ siª¦
Skyrme'a (3.17). Wraz z oddziaªywaniem Coulomba ªamie ono � w sposób jawny, a wi¦c
�zyczny � symetri¦ izospinow¡.

Metoda Hartree'ego−Focka jest narz¦dziem teoretycznym pozwalaj¡cym obliczy¢ stany
wielofermionowe nukleonów poruszaj¡cych si¦ w sposób niezale»ny w pewnym jednociaªo-
wym potencjale wyznaczonym przez u±rednienie efektywnego oddziaªywania mi¦dzy nimi.
Przybli»enie pola ±redniego generuje ªamanie symetrii peªnego hamiltonianu ze wzgl¦du
na konieczno±¢ wyboru okre±lonej klasy funkcji próbnych potrzebnej do zastosowania
metody wariacyjnej i przybli»ony charakter rozwi¡za«. Przykªadem mo»e by¢ ªamanie
symetrii liczby cz¡stek w teorii HFB, czy te» symetrii izospinowej, która naruszana jest
przez przybli»enie pola ±redniego tak»e spontanicznie, w sposób nie�zyczny. Gªównym po-
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wodem wprowadzenia wieloreferencyjnej teorii funkcjonaªu g¦sto±ci jest jednak ªamanie
przez pole ±rednie symetrii obrotowej. Przywrócenie tej symetrii umo»liwia zastosowanie
metody DFT do oblicze« struktury stanów wzbudzonych jak równie» wyznaczania ele-
mentów macierzowych przej±¢ elektromagnetycznych oraz przej±¢ beta.

Metoda pola ±redniego w uj¦ciu Hartree'ego-Focka zachowuje symetri¦ rotacyjn¡ ha-
miltonianu w przypadku j¡der, w których cz¡stki caªkowicie zapeªniaj¡ okre±lone powªoki.
Z tego powodu parametry oddziaªywania w metodzie HF dopasowuje si¦ jedynie do da-
nych eksperymentalnych j¡der podwójnie magicznych. W przypadku dodania do ukªadu
niewielkiej liczby cz¡stek, tworz¡c w ten sposób ukªad z otwart¡ powªok¡, ukªad po przej-
±ciu procedury wariacyjnej staje si¦ ukªadem zdeformowanym. Dzieje si¦ tak, bowiem ze
wzgl¦du na narzucenie na funkcj¦ falow¡ postaci wyznacznika Slatera, obsadzenie kilku
cz¡stek ponad zamkni¦t¡ powªok¡ ª¡czy si¦ z konieczno±ci¡ wyboru zdegenerowanych or-
bitali o okre±lonym rzucie momentu p¦du. Takie rozwi¡zanie, wyró»niaj¡ce pewne orbitale
ze wzgl¦du na magnetyczn¡ liczb¦ kwantow¡ spo±ród 2j+1 o tej samej energii natychmiast
ªamie symetri¦ obrotow¡. Nowa funkcja falowa generuje w kolejnej iteracji - ze wzgl¦du
na nieliniowo±¢ równa« Hartree'ego-Focka, zdeformowane pole ±rednie. A wówczas wa-
lencyjne cz¡stki w zdeformowanym polu ±rednim zaczynaj¡ oddziaªywa¢ z tzw. rdzeniem
i caªy ukªad ulega deformacji. W ten sposób spontaniczne ªamanie symetrii obrotowej
wzbogaca funkcj¦ falow¡ o bardzo istotne korelacje zwi¡zane z tzw. polaryzacj¡ rdzenia.
Opisany tu efekt znoszenia degeneracji nosi w chemii kwantowej i �zyce molekularnej na-
zw¦ efektu Jahna-Tellera. W my±l twierdzenia udowodnionego przez Jahna i Tellera ukªad
cz¡steczkowy, w którym wyst¦puje degeneracja orbitali b¦dzie nietrwaªy i b¦dzie ulegaª
zaburzeniu tworz¡c ukªad o ni»szej energii i ni»szej symetrii dzi¦ki zmniejszeniu krotno±ci
degeneracji poziomów energetycznych [136]. Zdeformowany model ±redniego pola bazu-
j¡cy na fenomenologicznym potencjale osiowego oscylatora harmonicznego wprowadziª do
�zyki j¡drowej po raz pierwszy Nilsson [137]. St¡d poziomy (orbitale) jednocz¡stkowe w
�zyce j¡drowej okre±la si¦ mianem poziomów Nilssona, niezale»nie od tego czy s¡ one
rozwi¡zaniami modeli samozgodnych Hartree'ego-Focka, czy te» modeli bazuj¡cych na
zdeformowanych potencjaªach fenomenologicznych. W tym kontek±cie warto podkre±li¢
rol¦ nadprzewodnictwa j¡drowego, które preferuje symetri¦ sferyczn¡. W j¡drach atomo-
wych pole pairing b¦dzie zatem d¡»yªo do pewnej redukcji deformacji j¡drowej w stosunku
do rozwi¡za« Hartree'ego-Focka.

�amanie symetrii obrotowej wzbogaca funkcj¦ falow¡ ukªadu kwantowego o wiele
dodatkowych korelacji tworz¡c, jak mówi przytoczone wy»ej twierdzenie Jahna-Tellera,
ukªad o ni»szej energii i ni»szej symetrii dzi¦ki zmniejszeniu krotno±ci degeneracji pozio-
mów energetycznych. Rozwi¡zania ze zªaman¡ symetri¡ pozwalaj¡ na odtworzenie szeregu
obserwabli zwanych popularnie obj¦to±ciowymi, do których zaliczamy masy, promienie
czy te» momenty kwadrupolowe j¡der. Funkcja falowa modelu zdeformowanego jest jed-
nak zupeªnie bezu»yteczna przy obliczeniach wielu innych obserwabli takich jak przej±cia
elektromagnetyczne czy te» rozpady beta. Wynika to z faktu, »e hamiltonian j¡drowy, w
przeciwie«stwie do cz¡steczkowego, jest sferycznie symetryczny co oznacza konieczno±¢
przywrócenia naruszonej symetrii rotacyjnej.

Symetrii obrotowej nie da si¦ przywróci¢ metod¡ redukcji zmiennych jak w przypadku
symetrii translacyjnej. Ci¦»ko bowiem znale¹¢ wspóªrz¦dne rozdzielaj¡ce zmienne ukªadu
wewn¦trznego i zmienne kolektywne, jak równie» nie ma dobrze zde�niowanego odpowied-
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nika ±rodka masy dla k¡tów. Jest wiele dost¦pnych metod w obr¦bie teorii pola ±redniego,
które sªu»¡ do przywracania zªamanych symetrii. Zaliczaj¡ si¦ do nich m.in. cranking [18],
isocranking [138, 139, 140] - metody przywracaj¡ce moment p¦du lub izospin, metoda Lip-
kina [141, 142], czy Lipkina-Nogami [143, 144] dbaj¡ce o zachowanie przez funkcj¦ falow¡
liczby cz¡stek. Powy»sze metody s¡ jednak przybli»eniami. W peªni ±cisªy kwantowo-
mechaniczny opis przywracania zªamanych symetrii mo»na uzyska¢ przy u»yciu metod
rzutowych [145]. W szczególno±ci w przypadku symetrii obrotowej w przestrzeni i w izo-
przestrzeni wykorzystuje si¦ wªasno±ci grupy SU(2) opisane w rozdziale 1.

Grup¦ obrotów SU(2) mo»na sparametryzowa¢ przy u»yciu trzech k¡tów Eulera Ω =
(α, β, γ). Funkcja falowa pod wpªywem obrotu ukªadu wspóªrz¦dnych przyjmuje posta¢:

|Φ̃(Ω)〉 = R̂(Ω) |Φ〉 , (3.57)

gdzie operator R̂ jest operatorem obrotu wprowadzonym w (1.12). W przypadku grupy
SU(2) sparametryzowanej k¡tami Eulera na podstawie (1.23) przyjmuje on posta¢:

R̂(Ω) = eiαĴzeiβĴyeiγĴz . (3.58)

Dla sferycznie symetrycznego hamiltonianu warto±ci ±rednie wyznaczone dla stanów po-
staci |Φ̃(Ω)〉 b¦d¡ identyczne. Uwzgl¦dnienie niesko«czenie wielu zdegenerowanych roz-
wi¡za« prowadzi do funkcji falowej postaci:

|Ψ〉 =
∫
dΩf(Ω) |Φ̃(Ω)〉 , (3.59)

gdzie f(Ω) s¡ funkcjami wagowymi, a element obj¦to±ci dΩ = sin βdαdβdγ. Posta¢ funkcji
f(Ω) wyznacza si¦, rozwijaj¡c j¡ w bazie reprezentacji grupy tak, aby funkcja falowa |Ψ〉
speªniaªa warunek (1.12). W przypadku symetrii rotacyjnej grupy SU(2) (1.27) rozwini¦cie
odbywa si¦ w tzw. funkcjach D−Wignera, które w przestrzeni przyjmuj¡ posta¢:

DI∗
KM(Ω) = 〈IK| R̂(Ω) |IM〉 = eiαKdIKM(β)eiγM , (3.60)

gdzie funkcj¦

dIKM(β) = 〈IK| R̂(β) |IM〉 (3.61)

nazywa si¦ funkcj¡ d−Wignera, a operator R̂(β) jest operatorem jednowymiarowego ob-
rotu wokóª osi y. Funkcja wagowa dla okre±lonego momentu p¦du I oraz rzutu M na o±
Oz przyjmuje posta¢:

f(Ω) =
2I + 1

8π2

∑
K

aIKD
I∗
MK(Ω), (3.62)

wówczas funkcja falowa, zgodnie ze wzorami (3.59) i (3.62) wyra»a si¦ jako:

|Ψ, IM〉 =
2I + 1

8π2

∑
K

∫
dΩaIKD

I∗
MK(Ω)R̂(Ω) |Φ〉 ≡

∑
K

aIKP̂
I
MK |Φ〉 . (3.63)
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Druga równo±¢ wynika bezpo±rednio ze wzoru na operator rzutowy (1.14), który w obr¦bie
grupy SU(2) przyjmuje posta¢:

P̂ I
MK =

2I + 1
8π2

∫
D∗IMK(Ω)R̂(Ω)dΩ, (3.64)

gdzie 2I + 1 jest wymiarem reprezentacji, a |G| =
∫
dΩ = 8π2 obj¦to±ci¡ w przestrzeni

sparametryzowanej k¡tami Eulera. Operator rzutowy P̂ I
MK mo»na tak»e zapisa¢ w postaci

spektralnej:

P̂ I
MK =

∑
α

|IM ;α〉 〈IK;α| , (3.65)

gdzie sumowanie rozci¡ga si¦ na pozostaªe liczby kwantowe. Korzystaj¡c z tej postaci
mo»na ªatwo pokaza¢, »e operator P̂ I

MK speªnia relacje (1.15) oraz (1.16):

P̂ I
MKP̂

I′

M ′K′ = δII′δM ′KP̂
I
MK′ (P̂ I

MK)† = P̂ I
KM . (3.66)

W ogólno±ci wspóªczynniki rozwini¦cia aIK (3.62) otrzymuje si¦, korzystaj¡c z zasady
wariacyjnej δEI = 0 [18]. Energia ukªadu kwantowego w bazie wyrzutowanych liczb kwan-
towych przyjmuje posta¢:

EI =
〈Ψ, IM | Ĥ |Ψ, IM〉
〈Ψ, IM |Ψ, IM〉

=
∑
KK′ a

I∗
K a

I
K′HI

KK′∑
KK′ a

∗I
K a

I
K′N I

KK′
, (3.67)

gdzie, korzystaj¡c z relacji (3.63) oraz z faktu, »e hamiltonian komutuje z operatorem
rzutowym P I

KM , zde�niowano caªkowe kernele hamiltonianu:

HI
KK′ = 〈Φ|ĤP̂ I

KK′ |Φ〉 (3.68)

oraz normy:

N I
KK′ = 〈Φ|P̂ I

KK′ |Φ〉 . (3.69)

Kernel dowolnego operatora O:

O(Ω) = 〈Φ|Ô|Φ̃(Ω)〉 , (3.70)

jest warto±ci¡ ±redni¡ obliczan¡ na stanach wyrzutowanych. A zatem zgodnie z twierdze-
niem Wicka dla dowolnych operatorów jedno F̂ i dwuciaªowych V̂ kernele [146]:

1
N (Ω)

F(Ω) =
〈Φ| F̂ |Φ̃〉
〈Φ|Φ̃〉

≡
∑
µν

Fµν ρ̃νµ (3.71)

1
N (Ω)

V(Ω) =
〈Φ| V̂ |Φ̃〉
〈Φ|Φ̃〉

≡ 1
2

∑
µνλπ

V̄µνλπρ̃λµρ̃πν (3.72)

oblicza si¦, przy u»yciu g¦sto±ci przej±ciowych:

ρ̃νµ ≡ a†µaν ≡
1
N (Ω)

〈Φ| a†µaν |Φ̃(Ω)〉 (3.73)
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Ze wzgl¦du na fakt, i» liczba kwantowaK nie musi by¢ zachowana wspóªczynniki aIK s¡
rozwi¡zaniem wariacyjnego równania zwanego w literaturze równaniem Hilla−Wheelera [147,
148]:

∑
K′
aIK′

(
HI
KK′ − EIN I

KK′

)
= 0 (3.74)

Powy»sze równanie nie jest typowym równaniem wªasnym. Rozwi¡zanie otrzymuje si¦ po-
przez diagonalizacj¦ Hamiltonianu w bazie nieortogonalnej rozpi¦tej przez wyrzutowane
stany (3.57). W ogólno±ci stany te s¡ liniowo zale»ne. W takim przypadku generowana
przez nie baza jest nadzupeªna. Wówczas diagonalizacj¦ przeprowadza si¦ w podprze-
strzeni rozpi¦tej przez wybrane liniowo niezale»ne stany, b¦d¡ce kombinacjami liniowymi
stanów wyrzutowanych. Tak¡ podprzestrze« nazywa si¦ przestrzeni¡ kolektywn¡. Wyboru
dokonuje si¦ przez ortogonalizacj¦ wyrzutowanych stanów. Procedur¦ mo»na przeprowa-
dzi¢ przy u»yciu metody Grama-Shmidta lub dokonuj¡c diagonalizacji macierzy norm [18].
W u»ywanym programie numerycznym HFODD [5] stosuje si¦ t¦ drug¡ metod¦. Przy zaªo-
»eniu, »e warto±ci wªasne macierzy norm s¡ dodatnie ni > 0, a ξi s¡ odpowiadaj¡cymi im
wektorami wªasnymi, ortogonalne stany rozpinaj¡ce przestrze« kolektywn¡ zwane stanami
naturalnymi przyjmuj¡ posta¢:

|Φ; IM〉(m) =
1
√
nm

∑
K

ξ
(m)
K |Φ; IMK〉 (3.75)

Indeks m numeruje stany do pewnego zadanego nmax wyznaczaj¡cego wymiar przestrzeni
kolektywnej. W teorii wystarcza, aby nm > 0. Jednak w praktyce niedokªadno±¢ nume-
ryczna w caªkowaniu kerneli wymusza wprowadzenie parametru obci¦cia norm nm ¬ ζ
bliskich zera, zmniejszaj¡c jednocze±nie wymiar przestrzeni kolektywnej. Równanie Hilla-
Wheelera w przestrzeni kolektywnej przyjmuje posta¢ hermitowskiego równania wªasnego.
Wobec czego diagonalizacja hamiltonianu w tej»e przestrzeni prowadzi do wyznaczenia
wspóªczynników zmieszania aIK .

Przywracanie spontanicznie zªamanych symetrii opisan¡ wy»ej metod¡ rzutowania na-
zywa si¦ wieloreferencyjn¡ metod¡ DFT (multireference DFT) i oznacza MR DFT. Nazwa
oddaje istot¦ caªej procedury zawart¡ w równaniu (3.59). Stan z dobrze okre±lonymi sy-
metriami jest bowiem kombinacj¡ liniow¡ wielu obróconych stanów ze zªamanymi syme-
triami. Wprowadzaj¡c do u»ytku nomenklatur¦ stanów referencyjnych, stan wyznaczony
w ramach metody DFT ze spontanicznie naruszonymi symetriami nazywamy pojedyn-
czym stanem referencyjnym single-reference DFT i oznaczamy SR DFT.

Znajomo±¢ wspóªczynników zmieszania oraz kerneli hamiltonianu i normy umo»liwia
wyznaczenie energii wi¡zania w stanach wyrzutowanych (3.67).

Funkcjonaªów ze staªymi dopasowanymi do j¡der podwójnie magicznych u»ywamy w
niniejszej rozprawie zarówno w rachunkach SR DFT jak i MR DFT. W przypadku me-
tody wieloreferencyjnej ograniczamy si¦ do funkcjonaªów generowanych siªami Skyrme'a
niezale»nymi od g¦sto±ci. St¡d w przypadku oddziaªywa« typu SV zasadne jest porów-
nanie obu metod. Residua energii stanów podstawowych j¡der zwierciadlanych T = 1/2
z walencyjnym neutronem z zakresu A = 11 − 55, Rys. 3.2 wskazuj¡, »e metoda MR



52 Rozdziaª 3. Metoda j¡drowego funkcjonaªu g¦sto±ci z przywróconymi symetriami

Liczba masowa

Rys. 3.2: Residua energii wi¡zania dla stanów podstawowych neutronowo-
nadmiarowych j¡der zwierciadlanych T = 1/2 z zakresu A = 11 − 55. Obliczenia
wykonano przy u»yciu oddziaªywania SVSO w modelu pola ±redniego ze spontanicz-
nie zªamanymi symetriami (SR DFT) oraz w wersji z przywrócon¡ symetri¡ rota-
cyjn¡ (MR DFT) oznaczonymi odpowiednio przez otwarte pomara«czowe i peªne
niebieskie trójk¡ty.

DFT z funkcjonaªem SVSO znacznie poprawia zgodno±¢ z do±wiadczeniem dla tych j¡-
der. Zastosowanie metody MR DFT redukuje niemal dwukrotnie odchylenie standardowe
z σSRDFT = 3.06MeV do σMRDFT = 1.54MeV, co ±rednio stanowi 0.9% energii wi¡za-
nia. Ró»nica w energiach dla obu metod jest szczególnie widoczna dla j¡der trójosiowych
A = 11 oraz A = 25−37. Nagªy wzrost residuum dla j¡der A = 53−55 jest najprawdopo-
dobniej spowodowany oddziaªywaniem tensorowym. W przypadku starszych oddziaªywa«
Skyrme'a, jak SV, dopasowanie staªych sprz¦»enia wykonywano z nieaktywnym czªonem
tensorowym CJ

t = 0 [94, 109]. W tej pracy, w rachunkach MR DFT u»ywany funkcjonaª
jest generowany peªnym oddziaªywaniem Skyrme'a. Zawiera on zatem czªon tensorowy,
którego staªa sprz¦»enia CJ

t jest prawdopodobnie do±¢ przypadkowa. Zostaªa ona bo-
wiem obliczona z parametrów oddziaªywania Skyrme'a dopasowanego bez udziaªu tego
czªonu. Procedur¦ dopasowania nale»aªoby wykona¢ przy aktywnych wszystkich skªado-
wych funkcjonaªu. Oddziaªywanie tensorowe jest szczególnie aktywne dla j¡der maksymal-
nie spinowo-niewysyconych, w szczególno±ci dla j¡der w okolicy 56Ni, które ma w peªni
obsadzon¡ podpowªok¦ 0f7/2 i pust¡ podpowªok¦ 0f5/2.

Obni»enie energii wi¡zania w wyniku przywrócenia symetrii obrotowej jest ±ci±le zwi¡-
zane z geometri¡ j¡dra. Na wykresie 3.3 przedstawiono t¦ energi¦ w zale»no±ci od parame-
tru deformacji j¡dra β2 dla j¡der zwierciadlanych T = 1/2. W przypadku j¡der osiowych
zale»no±¢ mi¦dzy energi¡ uzyskan¡ w wyniku rzutowania na okre±lony moment p¦du a
parametrem β2 z bardzo dobr¡ dokªadno±ci¡ jest liniowa. Wspóªczynnik determinacji R2,
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parametr deformacji

Rys. 3.3: Energia uzyskana w wyniku przywrócenia symetrii rotacyjnej w zale»no±ci
od parametru deformacji β2 dla neutronowo-nadmiarowych j¡der zwierciadlanych
T = 1/2 z zakresu A = 11− 55. Osiowo zdeformowane j¡dra oznaczono niebieskimi
punktami, natomiast j¡dra trójosiowe przedstawiono przy pomocy pomara«czowych
trójk¡tów. Etykiety obok punktów oznaczaj¡ liczb¦ masow¡ j¡dra. Liniowa krzywa
regresji zostaªa dopasowana do j¡der osiowych.

b¦d¡cy miar¡ dopasowania krzywej regresji jest równy 0.89 i wzrasta do 0.95 przy usuni¦-
ciu przypadku j¡dra 37Ar. Jak si¦ oka»e w pó¹niejszej dyskusji j¡dra A = 37 oraz A = 38
wykazuj¡ anomalne zachowania ze wzgl¦du na nie�zyczne mieszanie orbitali s oraz d.
Wzrost deformacji o 0.1 powoduje przyrost energii o 900 keV. Najmniejszy przyrost ener-
gii obserwuje si¦ dla j¡der sferycznych lub w bardzo niewielkim stopniu zdeformowanych.
Najwi¦kszy natomiast dla j¡der trójosiowych, dla których przyrost energii zwi¡zany jest
z mieszaniem magnetycznej wewn¦trznej liczby kwantowej K.

Warto skomentowa¢ konieczno±¢ wprowadzenia dodatkowej liczby kwantowej K do
rzutowania. Otó» funkcja falowa P̂ I

MM |Φ〉 nie speªnia relacji (1.12), wobec czego nie trans-
formuje si¦ jak tensor w obr¦bie grupy SU(2) pod wpªywem obrotu generowanego przez R̂
(3.49). Jest to bezpo±rednia konsekwencja faktu, i» trójwymiarowa grupa obrotów nie jest
przemienna. St¡d niezb¦dne jest rozszerzenie rzutowania o dodatkow¡ liczb¦ kwantow¡
K. Taki zabieg powoduje jednak, »e operator P̂ I

MK nie jest ju» operatorem rzutowym w
sensie matematycznym. Przypadek jednowymiarowego obrotu opisywany jest ju» w ob-
r¦bie grupy abelowej. Wówczas nie ma potrzeby rozszerzania operatora rzutowego o rzut
na z−ow¡ o± ukªadu wewn¦trznego. Jednowymiarowe rzutowanie jest wystarczaj¡ce w
przypadku: osiowo zdeformowanych j¡der, dla których rzut momentu p¦du na z−ow¡ o± w
ukªadzie wewn¦trznym jest dobr¡ liczba kwantow¡.9 W przypadku przestrzeni izospinowej

9W praktyce jednak, szczególnie w przypadku pó¹niejszego korelowania ukªadu wzbudzeniami typu
cz¡stka-dziura, które nierzadko deformuj¡ si¦ w kierunku trójosiowym, lepiej stosowa¢ procedur¦ rzuto-
wania trójwymiarowego.
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rzutowanie w jednym wymiarze aplikowane jest do metod zachowuj¡cych liczb¦ cz¡stek
oraz przy oddziaªywaniach nieuwzgl¦dniaj¡cych kanaªu mieszania protonów z neutronami.

�7. Przywracanie symetrii izospinowej metod¡ rzutowa-

nia

Przedstawione powy»ej post¦powanie mo»na zaaplikowa¢ do przywracania symetrii
izospinowej. W niniejszej pracy do oblicze« strukturalnych wykorzystuje si¦ teori¦ ba-
zuj¡c¡ na polu ±rednim Hartree'ego−Focka. Wówczas, ze wzgl¦du na dobrze okre±lon¡
liczb¦ cz¡stek przez wyznacznik Slatera procedura rzutowania na okre±lony izospin mo»e
zosta¢ ograniczona do rzutowania w jednym wymiarze. W programie HFODD rzutowanie
na moment p¦du i na izospin wykonywane jest jednocze±nie. Uwzgl¦dnienie rzutowania
na izospin uzupeªnia stany (3.63) o dobrze okre±lony izospin oraz jego rzut na o± Oz w
izoprzestrzeni :

|Φ; IM ;TTz〉 =
∑
K

aITK P̂ T
TzTz P̂

I
MK |Φ〉 , (3.76)

gdzie, na podstawie relacji (3.66), operator rzutowy:

P̂ T
TzTz =

2T + 1
2

∫ π

0
dβT sin βTdTTzTz(βT )R̂(βT ) (3.77)

jest operatorem idempotentnym oraz hermitowskim. Speªnia on zatem wymogi operatora
rzutowego w sensie matematycznym. Powy»szy operator w dziaªaniu na stan ze zªaman¡
symetri¡ izospinow¡ usuwa z niego wszelkie (równie» te generowane przez efekty jawnego
naruszenia symetrii izospinowej) domieszki:

P̂ T
TzTz |Φ〉 ≡ P̂ T

TzTz

∑
T ′
bT ′Tz |Φ;T ′Tz〉 = bTTz |Φ;TTz〉 . (3.78)

Operator obrotu w izoprzestrzeni wyst¦puj¡cy we wzorze (3.77) jest, w analogii do (3.58),
postaci:

R̂(βT ) = eiβT T̂y . (3.79)

Wspóªczynniki aITK wyznaczaªoby si¦ w zasadzie identycznie jak w przypadku przy-
wracania jedynie symetrii rotacyjnej. Rzutowanie jednowymiarowe nie wymaga bowiem
wprowadzenia dodatkowej liczby kwantowej. Nale»y jednak pami¦ta¢, »e symetria izospi-
nowa ªamana jest zarówno spontanicznie jak i jawnie. Wobec czego stany wyrzutowane
(3.76) nie reprezentuj¡ ukªadu kwantowego z prawidªowo opisan¡ symetri¡ izospinow¡.
Aby uchwyci¢ �zyczne ªamanie symetrii nale»y wyznaczy¢ wspóªczynniki bIiT rozkªadu

|Φ; IM ;Tz〉(n) =
∑

i;T­|Tz |
bIiT |Φ; IM ;TTz〉(i) , (3.80)

rediagonalizuj¡c peªen hamiltonian w przestrzeni kolektywnej [77, 149]. Indeks i w powy»-
szej równo±ci numeruje stany naturalne, a indeks n kolejne stany z prawidªowo opisan¡
symetri¡ izospinow¡ uporz¡dkowane wraz z rosn¡c¡ energi¡. Wspóªczynnik

αISB = 1−
∑
i

|bIiT=|Tz ||
2 =

∑
i;T>|Tz |

|bIiT |2 (3.81)
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nazywany jest wspóªczynnikiem zmieszania izospinowego i stanowi miar¦ ªamania syme-
trii izospinowej w j¡drze.

Rediagonalizacja hamiltonianu wymaga znajomo±ci elementów macierzowych w sta-
nach (3.76). Do wyznaczenia tych kerneli przydatne jest rozdzielenie hamiltonianu na
cz¦±¢ izoskalarn¡, izowektorow¡ oraz izotensorow¡:

Ĥ = T + V̂S + V̂C ≡ T + V̂ T=0
S + V̂ T=1

S + V̂ T=2
S + V̂ T=0

C + V̂ T=1
C + V̂ T=2

C (3.82)

Caªy hamiltonian jest niezmienniczy ze wzgl¦du na obrót w przestrzeni. W izoprzestrzeni
natomiast niezmienniczy jest jedynie kanaª izoskalarny oddziaªywania, do którego nale»¡:
energia kinetyczna10, standardowa cz¦±¢ oddziaªywania Skyrme'a (3.17) oraz cz¦±¢ izo-
skalarna oddziaªywania Coulomba. Na podstawie twierdzenia Wicka (3.69) otrzymujemy
natychmiast kernele energii kinetycznej:

T = N (Ω, βT )
~2

2m

(
1− 1

A

)∫
drτ0(r,Ω, βT ) (3.83)

i oddziaªywania Skyrme'a:

VT=0
S = N (Ω, βT )

∑
t=0,1

∫
dr[Heven

t (r,Ω, βT ) +Hodd
t (r,Ω, βT )] (3.84)

przy czym g¦sto±ci hamiltonianu wyra»aj¡ si¦ identycznie jak w (3.37),(3.38), z t¡ ró»nic¡,
»e g¦sto±ci skªadowe s¡ g¦sto±ciami przej±ciowymi.

Wi¦ksz¡ trudno±¢ stanowi wyznaczenie elementów niediagonalnych, bowiem hamilto-
nian w kanale izowektorowym, czy te» izotensorowym nie komutuje z operatorem rzuto-
wym P̂ T

TzTz . Dla uproszczenia notacji dalsze rachunki przeprowadzamy, rzutuj¡c jedynie
na okre±lony izospin, co mo»emy bezpiecznie przeprowadzi¢ ze wzgl¦du na symetri¦ ha-
miltonianu w przestrzeni.

W celu wyznaczenia niediagonalnych elementów macierzowych hamiltonianu

HTT ′ =
〈Φ|P̂ T

TzTzĤP̂
T ′
TzTz |Φ〉

b∗TTzbT ′Tz
(3.85)

przekomutujemy operator rzutowy stoj¡cy z lewej strony z hamiltonianem, wykorzystuj¡c
fakt, »e jest on sum¡ tensorów sferycznych w izoprzestrzeni. Wykorzystamy przy tym
relacj¦ [19]:

P̂
Tf
KfMf

T̂λµP̂
Ti
MiKi

= C
TfMf

TiMiλµ

∑
Mµ′

C
TfKf
TiMλµ′T̂λµ′P̂

Ti
MKi

. (3.86)

Elementy macierzowe oddziaªywania Coulomba zostaªy wyznaczone w pracy [150] i zaim-
plementowane w kodzie HFODD. W niniejszej pracy skupimy si¦ zatem na izowektorowej
cz¦±ci oddziaªywania Skyrme'a. Izotensorowe oddziaªywanie mieszaj¡ce protony z neutro-
nami ªamie symetri¦ liczby cz¡stek. Jak wspomnieli±my wcze±niej przywrócenie symetrii
izospinowej w takiej sytuacji wymagaªoby rzutowania trójwymiarowego, co wychodzi poza
ramy tej rozprawy i stanowi wyzwanie w dalszej perspektywie badania efektów ªamania

10W hamiltonianie Skyrme'a przyjmuje si¦ równe masy protonu i neutronu.
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symetrii izospinowej.

Na podstawie relacji (3.85) oraz (3.86) element macierzowy oddziaªywania V T=1
S wy-

nosi:

〈Φ;TTz| V̂ T=1
S |Φ;T ′Tz〉 =

CTTz
T ′Tz10

b∗TTzbT ′Tz

∑
Mµ

CTTz
T ′M1µ 〈Φ| V̂

1µ
S P̂ T ′

MTz |Φ〉 . (3.87)

Korzystaj¡c ze wzoru na trójwymiarowy operator rzutowy (3.62) zaaplikowany do izo-
przestrzeni, otrzymujemy dalej, »e:

〈Φ| V̂ T=1
S P̂ T ′

MTz |Φ〉 =

=
2T ′ + 1

4π

∫
dαTdβT sin βT eiαTMdT

′

MTz(βT ) 〈Φ|V̂ 1µ
S e−αT T̂zR̂(βT )|Φ〉 . (3.88)

Przekomutowanie operatora oddziaªywania z eksponensem pozwoli na uproszczenie po-
wy»szej caªki do jednowymiarowej caªki po βT . Na podstawie wzoru (1.28) oraz wªasno±ci
funkcji d− oraz D−Wignera:

V̂ 1µ
S e−iαT̂z = e−iα(T̂z−µ)V̂ 1µ

S , (3.89)

co pozwala zapisa¢ wyra»enie (3.87) w postaci:

〈Φ;TTz|V 10
S |Φ;T ′Tz〉 =

=
CTTz
T ′Tz10

b∗TTzbT ′Tz

2T ′ + 1
2

1∑
µ=−1

CTTz
T ′Tz−µ1µ

∫ π

0
dβT sin βTdT

′

Tz−µTz(βT ) 〈Φ| V̂ 1µ
S R̂(βT ) |Φ〉 , (3.90)

gdzie kernel oddziaªywania klasy III w wiod¡cym rz¦dzie 11

〈Φ| V̂ 1µ
S R̂(βT ) |Φ〉 = tIII0 N (βT )

∫
d~r1

∫
d~r2δ(~r1 − ~r2)V1µ

S (~r1, ~r2), (3.91)

oblicza si¦ na podstawie uogólnionego twierdzenia Wicka (3.70):

V10
S (~r1, ~r2) = −ρ̃00(~r1)ρ̃10(~r2)

+
1
2

{
ρ̃00(~r2, ~r1)ρ̃10(~r1, ~r2) + ~̃s00(~r2, ~r1)~̃s10(~r1, ~r2)

}
(3.92)

V1±1
S (~r1, ~r2) = ρ̃00(~r1)ρ̃1∓1(~r2)

− 1
2

{
ρ̃00(~r2, ~r1)ρ̃1∓1(~r1, ~r2) + ~̃s00(~r2, ~r1)~̃s1∓1(~r1, ~r2)

}
(3.93)

Element macierzowy upraszcza si¦ po odcaªkowaniu delty Diraca z powy»szymi kernelami
otrzymuj¡c:

〈Φ| V̂ 10
S R̂(βT ) |Φ〉 = −1

2
tIII0 N (β)

∫
d~r
(
− ρ̃00(~r)ρ̃10(~r) + ~̃s00(~r)~̃s10(~r)

)
(3.94)

〈Φ| V̂ 1±1
S R̂(β) |Φ〉 = −1

2
tIII0 N (β)

∫
d~r
(
ρ̃00(~r)ρ̃1∓1(~r)− ~̃s00(~r)~̃s1∓1(~r)

)
(3.95)

11Analogiczne wyprowadzenie mo»na przedstawi¢ dla kolejnego rz¦du rozwini¦cia � NLO



57

Powy»sze elementy macierzowe nale»y wstawi¢ do sumy (3.90) i dalej przeprowadzi¢ caª-
kowanie numeryczne po k¡cie βT przy u»yciu kwadratur Gaussa-Legendre'a.

Liczba masowa

Rys. 3.4: Wspóªczynnik zmieszania izospinowego αISB obliczony w j¡drach
parzysto-parzystych o N = Z przed rediagonalizacj¡ (BR) i po rediagonalizacji
(AR). W obliczeniach u»yto funkcjonaªu SLy4. Niebieska i zielona krzywa to ra-
chunki, w których za �zyczne ªamanie symetrii izospinowej odpowiada oddziaªy-
wanie Coulomba. Pomara«czowe punkty przedstawiaj¡ rachunki z uwzgl¦dnieniem
oddziaªywania klasy III w wiod¡cym rz¦dzie LO. Rombami oznaczono wyniki eks-
perymentalne w przypadku j¡der 64Ge [151] oraz 80Zr [152].

Na Rys. 3.4 przedstawiono wyniki oblicze« wspóªczynnika zmieszania izospinowego
αISB (3.81) dla j¡der parzysto-parzystych o N = Z. Obliczenia przeprowadzono, u»ywa-
j¡c jednowymiarowego rzutowania na izospin bez rzutowania na moment p¦du, co umo»-
liwiªo wykorzystanie w rachunkach funkcjonaªu zale»nego od g¦sto±ci SLy4. Jak pokazano
w [149] przywrócenie jedynie symetrii izospinowej wolne jest od biegunów w kernelu hamil-
tonianu. Porównanie niebieskiej i zielonej krzywej reprezentuj¡cych kolejno wspóªczynnik
zmieszania izospinowego przed i po rediagonalizacji pokazuje, »e efekt nie�zycznego ªama-
nia symetrii izospinowej przez pole ±rednie nie jest zaniedbywalny. Dla wariantu oblicze«
uwzgl¦dniaj¡cego wyª¡cznie oddziaªywanie coulombowskie jako ¹ródªo naruszenia syme-
trii izospinowej redukuje on wspóªczynnik αISB o okoªo 30%. w stosunku do wkªadu od
oddziaªywania Coulomba.

Pomara«czowa krzywa przedstawia wspóªczynnik αISB obliczony z uwzgl¦dnieniem
oddziaªywania kontaktowego klasy III w wiod¡cym rz¦dzie (LO) dopasowanej do warto-
±ci MDE obliczanych w modelu pola ±redniego. W przypadku oddziaªywania SLy4 staªa
sprz¦»enia wynosi tIII0 = −5.5MeVfm3 [9]. Uwzgl¦dnienie tak zde�niowanego oddziaªywa-
nia kontaktowego w kanale izowektorowym powoduje zaskakuj¡co du»y wzrost parametru
zmieszania αISB w porównaniu z obliczeniami bior¡cymi pod uwag¦ wyª¡cznie oddziaªy-
wanie coulombowskie. Rachunki s¡ jednak nadal zgodne ze znanymi dwoma przypadkami



58 Rozdziaª 3. Metoda j¡drowego funkcjonaªu g¦sto±ci z przywróconymi symetriami

eksperymentalnymi w zakresie 1σ.

Dopasowane w modelu pola ±redniego parametry izowektorowej cz¦±ci hamiltonianu
Skyrme'a zawieraj¡ nie�zyczne efekty zwi¡zane ze spontanicznym zªamaniem symetrii
izospinowej. W zwi¡zku z faktem, i» wzrost wspóªczynnika zmieszania ze wzgl¦du na
uwzgl¦dnienie klasy III wynosi od 70% dla bardzo lekkich j¡der do 20% dla 100Sn, nie�-
zyczne efekty mieszania izospinowego mog¡ by¢ istotne. W peªni wªa±ciwe przywrócenie
symetrii izospinowej, wymaga dopasowania parametrów do warto±ci MDE otrzymanych
po rediagonalizacji hamiltonianu w przestrzeni kolektywnej i zostanie przeprowadzone w
rozdziale 4 paragraf 1.

Dane do±wiadczalne dotycz¡ce αISB uzyskane w przypadku j¡dra 64Ge αISB = 2.5+1
−0.7%

z izospinowo wzbronionych przej±¢ E1 [151] oraz z gigantycznego rezonansu dipolowego w
j¡drze 80Zr [152] αISB = 5± 1% oznaczone na wykresie 3.4 »óªtymi rombami s¡ w dobrej
zgodno±ci z przedstawionymi rachunkami po rediagonalizacji.

W j¡drach N = Z efekty ªamania symetrii izospinowej przez oddziaªywanie silne maj¡
podªo»e zarówno w kanale izowektorowym jak i izotensorowym. Z tego wzgl¦du a priori
nie wiadomo jaki �nalny wpªyw na wspóªczynnik zmieszania αISB maj¡ czªony ªami¡ce
izospin w efektywnym oddziaªywaniu silnym.

Liczba masowa

Rys. 3.5: U±redniony wspóªczynnik zmieszania izospinowego ᾱISB (3.96) obliczony
w j¡drach zwierciadlanych T = 1/2. Obliczenia wykonano w modelu z przywróco-
nymi symetriami rotacyjn¡ i izospinow¡ wykorzystuj¡c funkcjonaª SVSO. Niebieska
krzywa (C) uwzgl¦dnia tylko oddziaªywanie Coulomba. Krzywe zielona i pomara«-
czowa uwzgl¦dniaj¡ dodatkowo oddziaªywanie kontaktowe klasy III w rz¦dzie wio-
d¡cym (LO) i kolejnym po wiod¡cym (NLO).

W przypadku j¡der zwierciadlanych T = 1/2 wpªyw siªy izotensorowej jest zaniedby-
walny, co pokazano w pracy [9]. Wówczas siªa kontaktowa klasy III oraz oddziaªywanie
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Coulomba wydaj¡ si¦ wyczerpywa¢ ¹ródªa ªamania symetrii izospinowej. Na Rys. 3.5
przedstawiono u±redniony wspóªczynnik zmieszania izospinowego:

ᾱISB =
αTz=1

ISB + αTz=−1
ISB

2
(3.96)

obliczony dla j¡der zwierciadlanych T = 1/2 z zakresu A = 11 − 47 w wariancie, w
którym symetria izospinowa ªamana jest przez oddziaªywanie coulombowskie (C), oraz
oddziaªywanie coulombowskie wraz z kontaktow¡ siª¡ klasy III w rz¦dzie wiod¡cym (LO)
oraz w kolejnym rz¦dzie rozwini¦cia (NLO). Wszystkie obliczenia dotycz¡ wspóªczynnika
zmieszania izospinowego po rediagonalizacji (3.81). W rachunkach u»yto parametryzacji
SVSO z parametrami ISB dopasowanymi na poziomie modelu pola ±redniego do ekspery-
mentalnych warto±ci MDE dla j¡der T = 1 A = 6 − 58 oraz T = 1/2 A = 7 − 75, patrz
wzory (3.55) oraz (3.56) .

Na wykresie obserwujemy wzrost wspóªczynnika αISB wraz z dodaniem czªonów klasy
III podobnie jak to miaªo miejsce w przypadku j¡der N = Z przedstawionych na Rys. 3.4.
Znaczny wpªyw izowektorowej cz¦±ci oddziaªywania silnego na αISB jest niezale»ny od od-
dziaªywania Skyrme'a u»ywanego w obliczeniach. Dla lekkich j¡der wzgl¦dna ró»nica po-
mi¦dzy rachunkami uwzgl¦dniaj¡cymi oddziaªywanie klasy III αLO, a obliczeniami uwzgl¦d-
niaj¡cymi wyª¡cznie oddziaªywanie coulombowskie αCOU:

δᾱISB =
ᾱLO − ᾱCOU

ᾱLO
(3.97)

wynosi nawet 90% i spada z liczb¡ masow¡ do 40% dla ci¦»szych j¡der z powªoki pf .
Rachunki w rz¦dzie NLO daj¡ dodatkowy wkªad do αISB ale znacznie mniejszy od rz¦du
wiod¡cego, co jest charakterystyczne dla zbie»nej teorii efektywnej.

�8. Model mieszania kon�guracji DFT-NCCI

Brak zewn¦trznego potencjaªu wi¡»¡cego j¡dra atomowe powoduje konieczno±¢ opisu
j¡dra w j¦zyku wewn¦trznych, a nie laboratoryjnych, g¦sto±ci. Takie podej±cie prowa-
dzi z kolei do spontanicznego ªamania symetrii hamiltonianu j¡drowego, w szczególno-
±ci symetrii obrotowej oraz izospinowej. Wynikowa funkcja falowa nie ma zatem dobrze
okre±lonych liczb kwantowych, co stanowi powa»ny problem w peªni kwantowomechanicz-
nych obliczeniach dotycz¡cych poziomów wzbudzonych, elementów macierzowych przej±¢
elektromagnetycznych mi¦dzy nimi oraz przej±¢ beta. Takie rachunki s¡ mo»liwe po przy-
wróceniu zªamanych symetrii. W teorii j¡drowego funkcjonaªu g¦sto±ci, aby nie korzysta¢
z metod przybli»onych i unikn¡¢ bardzo czasochªonnych oblicze« numerycznych, przy-
wrócenie zªamanych symetrii dokonuje si¦ przy u»yciu uogólnionego twierdzenia Wicka
(3.69) oraz (3.70). Zastosowanie tego twierdzenia wymaga przeformuªowania opisu ukªadu
kwantowego. W tym celu u»ywa si¦ g¦sto±ci przej±ciowych (3.73). Od tego momentu teori¦
funkcjonaªu g¦sto±ci nazywamy wieloreferencyjn¡ (MR DFT), podobnie sam funkcjonaª
g¦sto±ci (MR EDF). Niestety okazuje si¦, »e tak zde�niowany funkcjonaª, na ogóª, wyka-
zuje osobliwo±ci zwi¡zane z czªonem jawnie zale»nym od g¦sto±ci w generuj¡cych go od-
dziaªywaniach [115, 116, 117, 118, 119]. Wówczas uzyskanie stabilno±ci wymaga przepro-
wadzenia procedury regularyzacyjnej. Jak dot¡d jednak próby regularyzacji nie przyniosªy
satysfakcjonuj¡cego rozwi¡zania problemu wyst¦puj¡cych biegunów [153]. Wykorzystanie
funkcjonaªów niegeneruj¡cych osobliwo±ci stanowi obej±cie tego problemu. W tej pracy,
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zgodnie z dyskusj¡ przedstawion¡ w paragra�e 4 tego rozdziaªu, wykorzystamy niezale»n¡
od g¦sto±ci siª¦ Skyrme'a SVT,SO z powi¦kszon¡ wzgl¦dem pierwotnej parametryzacji SV
siª¡ oddziaªywania spin-orbita oraz z wª¡czonym oddziaªywaniem tensorowym. Cena jak¡
za to pªacimy jest wysoka. Siªa SV ma znacznie gorsze wªasno±ci spektroskopowe ni» no-
woczesne, zale»ne od g¦sto±ci, parametryzacje siª Skyrma'a. Nie pozwala ona tak»e na
uwzgl¦dnienie korelacji par na poziomie pola ±redniego.

U»ywany w niniejszej pracy model oparty jest o teori¦ MR DFT, w ramach któ-
rej przywraca si¦ zªamane symetrie zarówno rotacyjn¡ jak i izospinow¡. Takie unikalne
podej±cie pozwala na bardzo precyzyjne wyznaczanie elementów macierzowych przej±¢
beta [2, 3, 6, 77, 149, 154]. W konsekwencji umo»liwia skonfrontowanie po raz pierwszy
wyników modelu bazuj¡cego na j¡drowym funkcjonale g¦sto±ci z wieloma bardzo cieka-
wymi problemami w �zyce j¡drowej. W szczególno±ci do takich nale»¡ badania nad uni-
tarno±ci¡ macierzy CKM [1, 6, 154], ale równie» efekt redukcji staªej sprz¦»enia pr¡dów
osiowo-wektorowych w ±rodowisku j¡drowym [3].

Wieloreferencyjny model funkcjonaªu g¦sto±ci aplikowany do stanów podstawowych
j¡der mo»na dalej rozszerzy¢ do modelu uwzgl¦dniaj¡cego korelacje pochodz¡ce od in-
nych samozgodnie wyznaczonych wyznaczników Slatera w szczególno±ci reprezentuj¡cych
stany wzbudzone. Technicznie, mieszanie kon�guracji dokonuje si¦ w analogii do modelu
wspóªrz¦dnej generuj¡cej (GCM) mieszaj¡cej stany z przywróconymi symetriami, z t¡
ró»nic¡, »e w przypadku rozszerzenia metody MR DFT w obecnej wersji przestrze« kon-
�guracyjna jest dyskretna.

W chemii kwantowej opartej o modele bazuj¡ce na teorii DFT taka metoda popu-
larnie zwana jest metod¡ oddziaªywania kon�guracji CI. W �zyce j¡drowej natomiast,
w ±lad za odkryciem struktury powªokowej j¡dra przez Mari¦ Goeppert-Mayer metoda
CI otrzymaªa ogóln¡ nazw¦ j¡drowego modelu powªokowego [79]. Zasadnicz¡ ró»nic¡ po-
mi¦dzy naszym rozszerzeniem metody MR DFT a modelem powªokowym jest przestrze«
modelowa. W tym drugim podej±ciu stosuje si¦ tzw. przybli»enie rdzenia nieobecne w
rachunkach DFT. Maj¡c na uwadze powy»sze model mieszania kon�guracji oparty o teo-
ri¦ funkcjonaªu g¦sto±ci nazwali±my bezrdzeniowym modelem oddziaªywania kon�guracji
DFT-NCCI (DFT-rooted No-Core Con�guration-Interaction) [6].

8.1 Formalizm oraz przestrze« kon�guracyjna w modelu DFT-

NCCI

Obliczenia w modelu DFT-NCCI przebiegaj¡ zgodnie z poni»sz¡ procedur¡:

1. W pierwszej kolejno±ci w modelu pola ±redniego wyznacza si¦ tzw. przestrze« kon-
�guracyjn¡, któr¡ stanowi zbiór samozgodnych rozwi¡za« Hartree'ego-Focka (kon-
�guracji) {ϕi} reprezentuj¡cych stan podstawowy oraz istotne z punktu widzenia
�zyki rozpatrywanego problemu, niskole»¡ce wzbudzenia typu 1p1h, 2p2h itd. Kon-
�guracje obliczamy wykorzystuj¡c oddziaªywanie Skyrme'a z parametryzacj¡ SVT

lub te» jednym z jej wariantów omawianych wcze±niej jak SVT,SO, SVISB
T,SO.

2. Nast¦pnie, z ka»dej z kon�guracji {ϕi} wyrzutowujemy stany o okre±lonym izospinie
T, Tz, momencie p¦du I,M oraz jego rzucie na trzeci¡ o± w ukªadzie wewn¦trznym
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K � {Ψ(i)
TIK}. Dla uproszczenia notacji pomijamy zachowane liczby kwantowe Tz i

M .

3. Prawidªowe przywrócenie obu symetrii wymaga zmieszania stanów {Ψ(i)
TIK}, tak

aby uwzgl¦dni¢ mieszanie K oraz �zyczne ªamanie symetrii izospinowej. Dokonu-
jemy tego w obr¦bie ka»dej kon�guracji z osobna uzyskuj¡c stany {Ψ(i)

jT̃ I
} (3.82)

o okre±lonym momencie p¦du I i przybli»onym izospinie T̃ . Wska¹nik j numeruje
kolejne rozwi¡zania o tych samych I i T̃ w obr¦bie ustalonej kon�guracji i � jego
zakres zale»y zatem od i. W metodzie DFT-NCCI przestrze« rozpi¦t¡ przez te stany
b¦dziemy nazywa¢ przestrzeni¡ modelu.12

4. Stany i energie wªasne w metodzie DFT-NCCI otrzymuje si¦ przez zmieszanie
wszystkich stanów z przestrzeni modelu tj. stanów otrzymanych w kroku 3 {Ψ(i)

jT̃ I
}.

O ile kroki 1-3 zostaªy szczegóªowo omówione w poprzednich paragrafach, tak ostatni
� 4 etap, polegaj¡cy na wyznaczeniu stanów DFT-NCCI , wymaga dodatkowego komen-
tarza.

Mieszanie kon�guracji w metodzie DFT-NCCI przebiega podobnie jak mieszanie liczby
kwantowej K omówione w paragra�e 6 tego rozdziaªu. Stany wªasne w metodzie DFT-
NCCI wyznaczone s¡ przez rozwi¡zanie równania Hilla-Wheelera:

HΨ(n)
IM ;Tz = EiNΨ(n)

IM ;Tz . (3.98)

w przestrzeni kolektywnej rozpi¦tej przez stany naturalne skonstruowane z wektorów wªa-
snych macierzy normN o niezerowych warto±ciach wªasnych nm > 0, w praktyce o nm > ε
tj. o warto±ciach wªasnych wi¦kszych ni» zadany z zewn¡trz parametr ε. W wyniku dia-
gonalizacji otrzymuje si¦ stany DFT-NCCI postaci:

|IM ;Tz〉(n) =
1√

N
(n)
IM ;Tz

∑
i j

η
(n)
i j |ϕi; IM ; T̃ Tz〉

(j)
(3.99)

gdzie stany |ϕi; IM ; T̃ Tz〉
(j)

s¡ stanami przestrzeni modelowej, a N (n)
IM ;Tz jest norm¡ stanu

DFT-NCCI . Sumowanie w powy»szej równo±ci przebiega po wszystkich i dost¦pnych kon-
�guracjach oraz po indeksie j. Indeks n numeruje stany ko«cowe do pewnego zadanego
n′max wyznaczaj¡cego wymiar przestrzeni kolektywnej. Procedura DFT-NCCI dost¦pna
jest w najnowszych, jeszcze nieopublikowanych wersjach kodu HFODD � w wersjach 284 i
nowszych. Nale»y podkre±li¢, »e w obecnej wersji kodu do rozwi¡zania rów. (3.98) u»y-
wamy tego samego hamiltonianu, którego u»yli±my do wyznaczania kon�guracji w kroku
1. Wymaganie to mo»na jednak zrelaksowa¢ i u»y¢ innego hamiltonianu do mieszania
kon�guracji.

W przeciwie«stwie do modelu powªokowego, przestrze« kon�guracyjna w modelu DFT-
NCCI nie jest ustalona z góry. Buduje si¦ j¡ przez dodawanie, krok po kroku, istotnych z
punktu widzenia �zyki rozwa»anego zagadnienia, niskole»¡cych kon�guracji ±redniopolo-
wych.

12W modelu MR DFT bez rozszerzenia teorii o mieszanie kon�guracji tak¡ przestrze« nazywamy prze-
strzeni¡ kolektywn¡ (3.75). Wprowadzamy tak¡ nazw¦, aby unikn¡¢ konfuzji poj¦¢. Przestrze« kolektywn¡
w modelu DFT-NCCI otrzymuje si¦ bowiem po przej±ciu kroku 4.
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Rys. 3.6: Pierwsza kolumna z lewej strony pokazuje energie Hartree'ego-Focka wy-
znaczone w ramach przybli»enia pola ±redniego dla stanu podstawowego oraz najni-
»ej le»¡cego wzbudzenia typu cz¡stka-dziura neutronu (czerwona, linia kreskowana)
oraz protonu (niebieska, linia ci¡gªa) w j¡drze 24Mg. W nast¦pnej kolumnie za-
prezentowano wyrzutowane z tych kon�guracji energie stanów 4+ w modelu MR
DFT bez ich mieszania. Dwie ostatnie kolumny przedstawiaj¡ stany uzyskane w
modelu DFT-NCCI z ró»nymi przestrzeniami kon�guracyjnymi � stan podstawowy
oraz wzbudzenie neutronowe (kolumna 3) oraz dodane do nich wzbudzenie proto-
nowe (kolumna 4). Liczby nad stanami oznaczaj¡ warto±ci elementu macierzowego
Gamowa-Tellera dla przej±cia | 24Al; 4+

1 〉 → |24Mg; 4+
i 〉.

W j¡drach parzysto-parzystych przestrze« kon�guracyjna modelu DFT-NCCI zawiera
stan podstawowy oraz niskole»¡ce uszeregowane (|h〉 ⊗ |p̃〉 lub |h̃〉 ⊗ |p〉) oraz antyusze-
regowane (|h〉 ⊗ |p〉 lub |h̃〉 ⊗ |p̃〉) kon�guracje typu cz¡stka-dziura, gdzie |p〉 i |p̃〉 (|h〉 i
|h̃〉) oznaczaj¡ stany ze wzbudzon¡ cz¡stk¡ (dziur¡) o przeciwnej sygnaturze p.(1.17). W
przypadku j¡der nieparzystych przestrze« kon�guracyjn¡ buduje si¦ przez wzbudzanie w
pierwszej kolejno±ci niesparowanego nukleonu do kolejnych nieobsadzonych orbitali nilsso-
nowskich, a nast¦pnie niskole»¡cych kon�guracji z rozerwan¡ par¡. Podobnie, przestrze«
budujemy w przypadku j¡der nieparzysto-nieparzystych z t¡ ró»nic¡, »e wówczas nale»y
uwzgl¦dni¢ zarówno kon�guracje uszeregowane, jak i antyuszeregowane.

Ze wzgl¦du na podobie«stwo mi¦dzy neutronowymi oraz protonowymi wzbudzeniami
cz¡stka-dziura w j¡drach N = Z przestrze« kon�guracyjn¡ mo»na zredukowa¢ o poªow¦
pod warunkiem zastosowania rzutowania w izoprzestrzeni [2]. Ilustruje to schematyczny
rachunek dotycz¡cy j¡dra 24Mg przedstawiony na Rys. 3.6. Obliczenia uwzgl¦dniaj¡ stan
podstawowy oraz energetycznie najni»ej le»¡ce wzbudzenie protonowe (πp-πh) oraz neu-
tronowe (νp-νh) typu cz¡stka-dziura. Energie tych stanów wzbudzonych w modelu pola
±redniego ró»ni¡ si¦ zaledwie o 80 keV, patrz Rys. 3.6. Przy u»yciu technik rzutowych na
dobrze okre±lony izospin oraz moment p¦du (I = 4+) w obr¦bie wyspecy�kowanych kon-
�guracji uzyskujemy stan I = 4+

1 pochodz¡cy od stanu podstawowego oraz cztery stany
wzbudzone I = 4+ przedstawione w drugiej kolumnie wykresu 3.6. Trzecia oraz czwarta
kolumna przedstawia energie stanów I = 4+ wyznaczone przy u»yciu modelu DFT-NCCI .
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W trzeciej kolumnie rachunek uwzgl¦dnia stan podstawowy oraz wzbudzenie neutronowe.
Natomiast w czwartej przestrze« kon�guracyjn¡ rozszerzono o wzbudzenie protonowe.
Dodanie wzbudzenia protonowego niemal wcale nie wpªywa ani na energie stanów wzbu-
dzonych, ani na element macierzowy Gamowa-Tellera rozpadu | 24Al; 4+

1 〉 → |24Mg; 4+
i 〉.

Wszystkie poziomy jednocz¡stkowe s¡ wyznaczane w ramach teorii DFT i nazywamy
je poziomami Kohna-Shama. Natomiast dla uproszczenia zarówno notacji jak i intuicji
�zycznej do ich opisu wykorzystujemy sferyczne orbitale, lub, znacznie cz¦±ciej, liczby
kwantowe Nilssona. Z tego wzgl¦du dalej w tek±cie poziomy Kohna-Shama nazywamy
poziomami Nilssona. Nale»y jednak mie¢ ±wiadomo±¢, »e jest to przybli»enie, szczególnie
w przypadku sªabo zdeformowanego ukªadu.

8.2 Wªasno±ci modelu DFT-NCCI

Model DFT-NCCI jest unikalnym narz¦dziem teoretycznym, ª¡cz¡cym cechy teorii j¡-
drowego funkcjonaªu g¦sto±ci, z cechami modelu powªokowego bazuj¡cego na mieszaniu
kon�guracji o dobrze okre±lonych liczbach kwantowych. Taka metoda ª¡czy zalety obu
wspomnianych modeli, a w konsekwencji ma szanse na udzielanie odpowiedzi na pyta-
nia dotycz¡ce energii stanów podstawowych, momentów kwadrupolowych czy promieni
j¡drowych jak równie» struktury stanów wzbudzonych, intensywno±ci przej±¢ elektroma-
gnetycznych oraz przej±¢ beta. Metoda DFT-NCCI ma równie» swoje wady. Podstawowym
problemem s¡ osobliwo±ci wyst¦puj¡ce przy zastosowaniu uogólnionego twierdzenia Wicka
do funkcjonaªów generowanych przez oddziaªywania zale»ne jawnie od g¦sto±ci. Kolejnym
mankamentem jest nieuwzgl¦dnienie oddziaªywania pairingowego na poziomie budowania
przestrzeni kon�guracyjnej. Parametryzacja SV, czy te» jej warianty maj¡ ujemny wspóª-
czynnik Landaua (g0 ≈ −0.5) opisuj¡cy nat¦»enie oddziaªywania zwi¡zanego z kreacj¡
par [122]. Wówczas zastosowanie metody HFB bez dodatkowego funkcjonaªu opisuj¡cego
oddziaªywanie pairingowe okazuje si¦ by¢ nieskuteczne [121]. W efekcie nie dostarcza
do ukªadu kwantowego korelacji zwi¡zanych z tworzeniem si¦ par. Rachunki przeprowa-
dzone w tym krótkim podrozdziale sªu»¡ przybli»eniu wªasno±ci modelu DFT-NCCI oraz
obna»eniu jego braków. Gªówne wnioski b¦d¡ si¦ przewijaªy w wi¦kszo±ci rachunków pre-
zentowanych w niniejszej rozprawie. Dyskusj¦ rozpoczniemy od bardzo lekkiego ukªadu
kwantowego 6Li.

Przestrze« kon�guracyjn¡ dla nieparzysto-nieparzystego ukªadu jakim jest 6Li two-
rzymy zgodnie z przepisem opisanym w poprzedniej podsekcji, tworz¡c uszeregowane oraz
antyuszeregowane wzbudzenia w obr¦bie stanów jednocz¡stkowych pochodz¡cych ze sfe-
rycznej podpowªoki p3/2. Przestrze« mo»na byªoby dalej wzbogaci¢ równie» o wzbudzenia
do stanów podpowªoki p1/2, jednak s¡ one poªo»one znacznie wy»ej w energii przez co nie
powinny wpªywa¢ znacz¡co na widmo niskoenergetyczne. Wszystkie uwzgl¦dnione kon-
�guracje przedstawiono w tabeli 3.2. Poza czterema podstawowymi kon�guracjami zna-
leziono jeszcze kon�guracj¦ o ksztaªcie prolate. Kon�guracja ta zostaªa uwzgl¦dniona w
mieszaniu ze wzgl¦du na jej niewielk¡ energi¦ wzbudzenia jedynie 0.5MeV ponad stanem
podstawowym oraz ze wzgl¦du na uszeregowanie spinów cz¡stek walencyjnych K = 1.
Wyrzutowane stany maj¡ bowiem caªkowity moment p¦du I ­ |K|. Mog¡ zatem w spo-
sób istotny wpªywa¢ na struktur¦ w tym j¡drze.

Na wykresie 3.7 przedstawiono obliczenia w j¡drze 6Li oraz celem porównania w j¡-
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Rys. 3.7: Porównanie do±wiadczalnego i teoretycznego widma energetycznego w
j¡drach 6Li po lewej oraz 8Li po prawej stronie rysunku. Na wykresie podano nie-
normalizowane, bezwzgl¦dne warto±ci energii.

drze 8Li, gdzie uwzgl¦dniono podobnie jak w 6Li jedynie najbardziej istotne kon�guracje.
Szersza dyskusja przypadku 8Li zostanie przeprowadzona przy okazji omawiania rozpadu
Gamowa-Tellera j¡dra 8He, dlatego w tym miejscu ograniczymy si¦ do podania jedynie
szkicu struktury tego j¡dra. W przypadku j¡dra 6Li teoria nie zgadza si¦ z danymi do-
±wiadczalnymi zarówno ze wzgl¦du na energi¦ jak i uporz¡dkowanie stanów wzbudzonych.
Zacznijmy od przypadku multipletu T = 0 zbudowanego ze stanów 1+ oraz 3+. Stan 1+

jest stanem podstawowym z energi¡ −31.995MeV. W rachunkach natomiast jest poªo»ony
znacznie wy»ej niemal 5MeV ponad eksperymentalnym stanem podstawowym, co stanowi
bª¡d okoªo 15%, a wi¦c znacznie wi¦kszy ni» dla innych j¡der le»¡cych na linii N = Z.

Tabela 3.2: Przestrze« kon�guracyjna w j¡drze 6Li. Wyszczególniono w kolejno±ci:
energi¦ Hartree'ego-Focka EHF [MeV], parametr wydªu»enia β2, parametr trójosio-
wo±ci γ, neutronowe i protonowe warto±ci momentu p¦du cz¡stek walencyjnych jν ,
jπ oraz ich orientacj¦ k w ukªadzie wewn¦trznym.

i EHF β2 γ jν jπ k

1 −27.244 0.207 60◦ 1.50 1.50 Y

2 −26.846 0.090 60◦ 1.50 0.50 Y

3 −26.787 0.330 0◦ 0.50 0.50 Z

4 −26.510 0.216 60◦ −1.50 1.50 Y

5 −25.972 0.008 0◦ −0.50 1.50 Z

Co wi¦cej stan 1+ le»y powy»ej stanu I = 3+, T = 0. Stan 3+ jest odtwarzany przez mo-
del DFT-NCCI lepiej � ró»ni si¦ od warto±ci do±wiadczalnej o niecaªe 2MeV. Z tej dyskusji
mo»na wnioskowa¢, »e w modelu brakuje korelacji zwi¡zanych z pairingiem izoskalarnym
I = 1, T = 0 oraz, »e model pola ±redniego faworyzuje maksymalnie uszeregowane stany
T = 0.
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W przypadku multipletu T = 1 skªadaj¡cego si¦ ze stanów 0+ oraz 2+, model DFT-
NCCI przeszacowuje energi¦ stanu 0+ o 0.8MeV i niedoszacowuje energi¦ stanu 2+ o
0.4MeV. Poziom zgodno±ci jest lepszy ni» w przypadku multipletu izoskalarnego.
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Rys. 3.8: Energie stanów wzbudzonych multipletów izowektrowego (kóªka) oraz
izoskalarnego (kwadraty) w j¡drze 42Sc wzgl¦dem energii stanu 0+. Warto±ci teore-
tyczne i do±wiadczalne oznaczono odpowiednio otwartymi i zamkni¦tymi symbolami.

Dodanie do ukªadu dwóch neutronów, czyli przej±cie do 8Li znacznie poprawia po-
ziom zgodno±ci oblicze« z danymi eksperymentalnymi. Kon�guracje u»yte do obliczenia
widma 8Li zaprezentowanego na wykresie 3.7 s¡ wyszczególnione w Tab. 5.2 w rozdziale
5. Zarówno energie wi¡zania jak i kolejno±¢ poziomów dobrze zgadzaj¡ si¦ z danymi. Od-
st¦pstwem s¡ stan 1+

2 niedoszacowany o niemal 3MeV oraz kolejno±¢ stanów 1+
1 oraz 3+

1 .

Podobne rachunki do tych przeprowadzonych w j¡drze 6Li wykonano dla 18F oraz
42Sc. Ze wzgl¦du na wi¦ksz¡ ilo±¢ stanów w multiplecie T = 0 w pó¹niejszej dyskusji
skoncentrujemy si¦ jedynie na przypadku j¡dra 42Sc. W nomenklaturze modelu powªoko-
wego ze wzgl¦du na stosowanie przybli»enia rdzenia j¡dra 6Li, 18F oraz 42Sc s¡ ukªadami
dwuciaªowymi. Z tego powodu sªu»¡ do dopasowania izoskalarnych T=0 oraz izowekto-
rowych T=1 elementów macierzowych. Naturalnie w przypadku modelu DFT-NCCI ba-
zuj¡cego na teorii funkcjonaªu g¦sto±ci j¡dro 42Sc jest ukªadem 42 cz¡stek. Na podstawie
wykresu 3.8 mo»na wywnioskowa¢, »e:

• Tak jak w przypadku j¡dra 6Li, tak w rachunkach w 42Sc brakuje korelacji zwi¡za-
nych z pairingiem izoskalarnym T = 0, I = 1. Energia wzbudzenia wzgl¦dem stanu
T = 1, I = 0 jest okoªo trzy razy wi¦ksza w teorii ni» w eksperymencie.

• Model faworyzuje stany izoskalarne z caªkowitym uszeregowaniem spinów cz¡stek
walencyjnych T = 0, Imax = 7, podobnie jak stan T = 0, Imax = 3 w j¡drze 6Li. W
przypadku j¡dra 42Sc maksymalnie uszeregowany stan z multipletu izoskalarnego
jest w rachunkach teoretycznych stanem podstawowym.



66 Rozdziaª 3. Metoda j¡drowego funkcjonaªu g¦sto±ci z przywróconymi symetriami

Tabela 3.3: Podobnie jak w Tab. 3.2, ale dla j¡dra 42Sc. Wyszczególnione kon�gura-
cje s¡ zbudowane z obsadzeniem walencyjnych cz¡stek na poziomie f7/2: νf7/2⊗πf7/2

i s¡ oznaczone przez liczb¦ kwantow¡K walencyjnych neutronu i protonu w ukªadzie
wewn¦trznym: |ν;Kν〉 ⊗ |π;Kπ〉. Stany i=1�4 reprezentuj¡ kon�guracje antyuszere-
gowane, Kν = −Kπ. Nast¦pnie wypisano kon�guracje uszeregowane i=5�8 Kν = Kπ

oraz dwie pozostaªe i=9�10 energetycznie niskole»¡ce antyuszeregowane z caªkowi-
tym |K|=1. W tabeli wyszczególniono energie Hartree'ego-Focka tych kon�guracji
∆EI=|K| wzgl¦dem rozwi¡zania |ν; 1

2〉 ⊗ |π; 1
2〉. Podano parametry deformacji β2 oraz

γ. W ostatniej kolumnie natomiast przedstawiono energi¦ wzbudzenia najni»szych
stanów I = |K| wyrzutowanych z danej kon�guracji.

i |42Sc; i〉 ∆EHF β2 γ ∆EI=|K|

1 |ν; 1
2〉 ⊗ |π; 1

2〉 0.000 0.063 0 0.000

2 |ν; 3
2〉 ⊗ |π; 3

2〉 0.802 0.031 0 0.561

3 |ν; 5
2〉 ⊗ |π; 5

2〉 0.986 0.008 60 0.551

4 |ν; 7
2〉 ⊗ |π; 7

2〉 0.759 0.062 60 0.085

5 |ν; 7
2〉 ⊗ |π; 7

2〉 −0.929 0.061 60 −0.647
6 |ν; 5

2〉 ⊗ |π; 5
2〉 0.082 0.007 60 1.160

7 |ν; 3
2〉 ⊗ |π; 3

2〉 0.345 0.032 0 1.594

8 |ν; 1
2〉 ⊗ |π; 1

2〉 0.340 0.060 0 1.719

9 |ν; 3
2〉 ⊗ |π;−1

2〉 0.716 0.043 0 2.164

10 |ν; 5
2〉 ⊗ |π;−3

2〉 0.986 0.011 0 2.338

• Energia stanów izowektorowych ∆ET=1 = ET=1,I=6−ET=1,I=0 jest dwa razy mniej-
sza w rachunkach z modelem DFT-NCCI ni» w eksperymencie. Jednocze±nie za-
chowuje eksperymentalny trend multipletu. Przyczyn¡ obserwowanej ró»nicy mo»e
by¢ zarówno brak korelacji pairingu typu izowektorowego, jak i zbyt silne wi¡zanie
stanów uszeregowanych w polu ±rednim.

W Tab. 3.3 wyszczególniono kon�guracje u»yte w analizie struktury j¡drowej w 42Sc
w ramach modelu DFT-NCCI .

Niedoskonaªo±ci modelu DFT-NCCI wynikaj¡ po cz¦±ci z u»ywanej teorii ±redniopo-
lowej � w naszym przypadku teorii Hartree'ego�Focka, a po cz¦±ci z oddziaªywania ge-
neruj¡cego to pole ±rednie. Naturalnie, nie ma powodu, aby pasmo otrzymane w wyniku
rzutowania ze stanu podstawowego, nawet w obecno±ci funkcjonaªu energii o bardzo do-
brych wªasno±ciach spektroskopowych, byªo dobrze odtwarzane. Stany o wy»szym spinie
pochodz¡ bowiem od nieznanych a priori wzbudze« w obr¦bie jednocz¡stkowych orbitali
nilssonowskich (Kohna-Shama). Warto zatem przeanalizowa¢ wpªyw przestrzeni kon�gu-
racyjnej u»ytej w modelu DFT-NCCI na pasmo rotacyjne. Bardzo dobrym przykªadem
relatywnie lekkiego j¡dra, w którym wyst¦puje potwierdzone do±wiadczalnie pasmo ro-
tacyjne jest j¡dro ze ±rodka powªoki 0f7/2 � 48Cr. Budowa przestrzeni kon�guracyjnej
przebiega jak opisano w przepisie w poprzednim podrozdziale. Zbudowana jest ona ze
stanu podstawowego, 8 wzbudze« neutronowych typu cz¡stka-dziura oraz czterech wzbu-
dze« typu 2p2h gdzie ograniczyli±my si¦ jedynie do wzbudze« typu pairingowego, a zatem
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Rys. 3.9: Porównanie eksperymentalnego i teoretycznego pasma rotacyjnego w
j¡drze 48Cr dla parzystych spinów od I = 0 do I = 16. Niebieskimi trójk¡tami
oznaczono rachunek MR DFT, pomara«czowymi rombami obliczenia DFT-NCCI
w przestrzeni kon�guracyjnej zbudowanej ze wzbudze« cz¡stka-dziura, a szarymi
kwadratami obliczenia DFT-NCCI w przestrzeni kon�guracyjnej uwzgl¦dniaj¡cej
niskole»¡ce wzbudzenia 2p2h typu pairing . Wyniki oblicze« zestawiono z danymi
do±wiadczalnymi oznaczonymi »óªtymi koªami.

do rozproszenia dwóch neutronów do kolejnych orbitali jednocz¡stkowych bez rozrywania
pary. Szczegóªy zawiera tabela 3.4.

Na wykresie 3.9 przedstawiono pasmo rotacyjne w j¡drze 48Cr. Dla niskich spinów
rachunki MR DFT oraz DFT-NCCI ró»ni¡ si¦ od 40 keV dla stanu I = 2 do 400 keV dla
I = 6. Im wi¦kszy spin stanu tym bardziej istotne okazuj¡ si¦ by¢ korelacje pochodz¡ce od
zmieszanych stanów wzbudzonych. Energie wzbudzenia tych stanów s¡ dwukrotnie mniej-
sze w porównaniu z danymi eksperymentalnymi. Ten efekt obserwowali±my ju» wcze±niej
w przypadku multipletu izowektorowego w j¡drze 42Sc. Wynik w 48Cr zdaje si¦ zatem po-
twierdza¢ poprzednie wnioski. Dla wy»szych spinów I ­ 8 rozszerzanie rachunków od MR
DFT po DFT-NCCI ze wzbudzeniami 2p2h okazuje si¦ by¢ znacznie bardziej efektywne.
Najwi¦ksz¡ ró»nic¦ mi¦dzy rachunkami obserwuje si¦ w stanie o maksymalnym spinie.
W rachunkach MR DFT energia tego stanu wynosi 27MeV. Zmieszanie kon�guracji w
obr¦bie przestrzeni 1p1h obni»a t¦ energi¦ do 21MeV, a przy uwzgl¦dnieniu wzbudze«
2p2h do 18MeV, zbli»aj¡c si¦ jednocze±nie do warto±ci eksperymentalnej 13.3MeV. Natu-
ralnie, aby odtworzy¢ górn¡ cz¦±¢ pasma rotacyjnego nale»aªoby uwzgl¦dni¢ wzbudzenia
wy»szych rz¦dów z rozerwanymi parami, maj¡ce du»y uszeregowany moment p¦du. W
szczególnym przypadku stanu kra«cowego Imax = 16 kluczow¡ rol¦ b¦dzie odgrywa¢ kon-
�guracja, w której rozerwane s¡ wszystkie pary z caªkowitym uszeregowaniem K = 16.

Podej±cie DFT-NCCI daje unikaln¡ mo»liwo±¢ interpretacji poszczególnych stanów
w j¦zyku intuicyjnych kon�guracji ±redniopolowych. Zawarto±¢ n-tej hartree�fockowskiej
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Tabela 3.4: Samozgodne kon�guracje ±redniopolowe u»yte do oblicze« w j¡drze
48Cr. Kon�guracje oznaczono liczbami kwantowymi Nilssona wraz z sygnatur¡ nie-
sparowanej cz¡stki i dziury walencyjnej. Nast¦pne 3 kolumny zawieraj¡ informacje
na temat wªasno±ci poszczególnych kon�guracji: energia HF wMeV, deformacj¦ kwa-
drupolow¡ przedstawion¡ przy u»yciu parametru β2 oraz caªkowite uszeregowanie
〈j〉 wraz z orientacj¡ w ukªadzie wewn¦trznym. Parametru γ nie wyszczególniono ze
wzgl¦du na osiow¡ deformacj¦ wszystkich kon�guracji.

i |48Cr; ϕi〉 EHF β2 〈j〉
1 st. podst. −409.18 0.28 0Z
2 |ν321 3/2−〉−1 ⊗ |ν312 5/2 +〉1 −405.10 0.24 4Z
3 |ν321 3/2 +〉−1 ⊗ |ν312 5/2 +〉1 −405.38 0.25 1Z
4 |ν321 3/2 +〉−1 ⊗ |ν303 7/2+〉1 −403.49 0.21 2Z
5 |ν321 3/2 +〉−1 ⊗ |ν303 7/2−〉1 −403.20 0.21 5Z
6 |ν330 1/2−〉−1 ⊗ |ν312 5/2−〉1 −402.47 0.20 2Z
7 |ν330 1/2−〉−1 ⊗ |ν312 5/2 +〉1 −402.44 0.20 3Z
8 |ν330 1/2−〉−1 ⊗ |ν303 7/2 +〉1 −400.37 0.17 4Z
9 |ν330 1/2−〉−1 ⊗ |ν303 7/2−〉1 −400.45 0.17 3Z
10 |ν321 3/2 +〉−1 ⊗ |ν312 5/2−〉1 −402.18 0.21 0Z
⊗ |ν321 3/2−〉−1 ⊗ |ν312 5/2 +〉1

11 |ν321 3/2 +〉−1 ⊗ |ν303 7/2−〉1 −399.44 0.14 0Z
⊗ |ν321 3/2−〉−1 ⊗ |ν303 7/2 +〉1

12 |ν321 1/2 +〉−1 ⊗ |ν312 5/2−〉1 −399.32 0.14 0Z
⊗ |ν321 1/2−〉−1 ⊗ |ν312 5/2 +〉1

13 |ν321 1/2 +〉−1 ⊗ |ν303 7/2−〉1 −396.23 0.06 0Z
⊗ |ν321 1/2−〉−1 ⊗ |ν303 7/2 +〉1

kon�guracji w k-tym stanie modelu DFT-NCCI o danym I oraz Tz dana jest wyra»eniem:

P (ϕn) ≡
∑
i

|(i)〈ϕn; IM ;Tz|ψk;IM ;Tz
NCCI 〉|2

=
1

N (k)
IM ;Tz

∑
i

|
∑
jl

c
(k)
jl

(i)〈ϕn; IM ;Tz|ϕj; IM ;Tz〉(l)|2 . (3.100)
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Rys. 3.10: Procentowy wkªad poszczególnych kon�guracji wymienionych enume-
ratywnie w tabeli 3.4 do stanów DFT-NCCI o I = 0, 4, 8, 12 oraz 16 w pasmie
rotacyjnym j¡dra 48Cr.

Na wykresie kolumnowym 3.10 przedstawiono wkªady procentowe poszczególnych ±red-
niopolowych kon�guracji do funkcji falowych opisuj¡cych co drugi stan pasma rotacyjnego.
Widzimy od razu, »e wkªad kon�guracji stanu podstawowego do stanów o coraz wy»szym
spinie równomiernie spada od 81% dla stanu I = 0 do 2.5% dla stanu I = 16. Niemal
20% wkªadu do stanu I = 0 pochodzi od kon�guracji nr 10 typu 2p2h, co nie wpªywa
jednak na zmian¦ energii tego stanu. Po uwzgl¦dnieniu tej kon�guracji jego energia ob-
ni»a si¦ zaledwie o 1keV. Z wykresu mo»na odczyta¢, »e stany o spinach I = 0, I = 4
maj¡ dominuj¡c¡ skªadow¡ reprezentowan¡ przez stan podstawowy. Dopiero od stanu o
spinie I = 8 wpªyw kon�guracji wzbudzonych staje si¦ znacznie bardziej istotny. Stany
z górnej cz¦±ci pasma � I = 8, I = 12 oraz I = 16 s¡ rozmyte po wi¦kszo±ci dost¦pnych
kon�guracji w przestrzeni kon�guracyjnej. Oznacza to, jak wcze±niej wspomnieli±my, »e w
u»ytej przestrzeni kon�guracyjnej nie ma kon�guracji, które by je reprezentowaªy. Stany
o niskim spinie s¡ zatem dobrze reprezentowane w obliczeniach DFT-NCCI z przestrzeni¡
1p1h. Kon�guracje wzbudzone typu 2p2h s¡ niezb¦dne w szczególno±ci do opisu stanów
o wysokim spinie.





Rozdziaª 4

Rozpad beta typu Fermiego

Po omówieniu konstrukcji oraz wªa±ciwo±ci modelu DFT-NCCI opartego na j¡dro-
wym funkcjonale g¦sto±ci mo»emy przej±¢ do analizy rozpadów beta. W niniejszej pracy
skupimy si¦ na rozpadach dozwolonych, które, zgodnie z klasy�kacj¡ opisan¡ w rozdziale
2, dziel¡ si¦ na rozpady Fermiego oraz rozpady Gamowa-Tellera. Szczegóªowa analiza
zarówno jednych, jak i drugich odsªania �zyk¦ wychodz¡c¡ poza ramy �zyki j¡drowej.
Badania ªamania symetrii izospinowej w j¡drach atomowych w kontek±cie rozpadów Fer-
miego stanowi¡ najbardziej precyzyjne ¹ródªo informacji na temat wiod¡cego elementu
macierzy mieszania kwarków. W konsekwencji przyczyniaj¡ si¦ do testów unitarno±ci tej»e
macierzy i w efekcie do poszukiwania �zyki poza Modelem Standardowym w aspekcie ko-
lejnych generacji kwarków. Takie rachunki wykonuje si¦ zarówno w przypadku przej±¢
superdozwolonych mi¦dzy stanami analogowymi T = 1 jak i mi¦dzy j¡drami zwierciadla-
nymi T = 1/2.

Nie mniej interesuj¡ce okazuj¡ si¦ by¢ rozpady Gamowa-Tellera omawiane szerzej w
nast¦pnym rozdziale. Analiza wspomnianego w rozdziale 2 efektu redukcji staªej sprz¦»enia
pr¡dów osiowowektorowych przyczynia si¦ do gª¦bszego zrozumienia natury naªadowanych
pr¡dów sªabych. Ponadto, badania zarówno nad procesami Fermiego jak i Gamowa-Tellera
doskonale przyczyniaj¡ si¦ do zrozumienia struktury j¡drowej ukªadów uczestnicz¡cych w
rozpadzie, a w konsekwencji natury oddziaªywania silnego.

�1. Superdozwolone rozpady beta Fermiego

W poni»szym paragra�e uwag¦ skupimy na superdozwolonych rozpadach Fermiego
mi¦dzy stanami analogowymi T = 1. Temat poruszamy w niniejszej pracy bardziej w
formie podsumowania ni» w formie wnikliwej analizy ze wzgl¦du na fakt, »e stanowiª
on temat przewodni pracy doktorskiej [150], mojej pracy magisterskiej [155] oraz kilku
publikacji [77, 149]. W »adnych z tych prac jednak poprawki izospinowe δC do wszyst-
kich dost¦pnych przej±¢ superdozwolonych nie zostaªy wyznaczone w modelu DFT-NCCI
. Mieszanie kon�guracji okazuje si¦ by¢ niezb¦dn¡ procedur¡ w przypadku j¡der, dla któ-
rych stan podstawowy w procedurze Hartree'ego-Focka nie jest wyznaczany w sposób
jednoznaczny. Otó» okazuje si¦, »e w przypadku j¡der nieparzystych lub nieparzysto-
nieparzystych pr¡d generowany przez walencyjny nukleon, czy te» odpowiednio przez
walencyjne nukleony mo»e by¢ zorientowany wzdªu» ró»nych osi rozkªadu masy j¡dra.
Niejednoznaczno±¢ rozwi¡zania wynika bezpo±rednio z metody opisu j¡dra. W przypadku
j¡dra o sferycznym rozkªadzie g¦sto±ci rozwi¡zania, w których pr¡d cz¡stek walencyj-
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nych jest zorientowany wzdªu» osi X, Y oraz Z, s¡ zdegenerowane. Rozkªady g¦sto±ci o
ksztaªcie osiowo symetrycznym oraz trójosiowym ze wzgl¦du na swoj¡ geometri¦ znosz¡ t¦
degeneracj¦. W ten sposób stan podstawowy mo»e by¢ reprezentowany nawet przez trzy
±redniopolowe rozwi¡zania ró»ni¡ce si¦ jedynie orientacj¡ pr¡du cz¡stek walencyjnych.
Przez cz¡stki walencyjne rozumiemy tu niesparowane jeden lub dwa nukleony kr¡»¡ce
wokóª parzysto-parzystego podukªadu zwanego dla uproszczenia rdzenia. Okazuje si¦, »e
poprawka izospinowa zale»y w sposób znacz¡cy od reprezentacji stanu podstawowego.
Dotychczas, tj. w pracy [154] oraz w pracy doktorskiej [150], wyznaczano poprawki dla
ka»dej reprezentacji niezale»nie, a warto±¢ ko«cow¡ sªu»¡c¡ do oblicze« zredukowanego
czasu »ycia, wyznaczano jako ich ±redni¡ arytmetyczn¡. W poni»szym paragra�e zapre-
zentujemy wyniki, w których poprawka jest otrzymywana poprzez zmieszanie wszystkich
dost¦pnych reprezentacji stanu podstawowego przy pomocy metody DFT-NCCI .

W przedstawionych w tym paragra�e rachunkach zªamana symetria izospinowa w na-
szym modelu jest wynikiem jedynie oddziaªywania Coulomba. Naturalnie korelacje zwi¡-
zane z ªamaniem tej»e symetrii zwi¡zane s¡ równie» z oddziaªywaniem silnym zarówno w
kanale ªamania symetrii ªadunkowej jak i mieszania protonów z neutronami manifestu-
j¡cego si¦ szczególnie w nieparzysto-nieparzystym j¡drze N = Z. Te ostatnie powoduje
jednak ªamanie osiowej symetrii izospinowej. W konsekwencji u»ywane przez nas jedno-
wymiarowe rzutowanie na izospin jest niewystarczaj¡ce. Mo»na byªoby pokusi¢ si¦ o prze-
prowadzenie rachunków poprawek izospinowych do superdozwolonych przej±¢ Fermiego,
wyª¡czaj¡c klas¦ II zwi¡zan¡ z mieszaniem protonów z neutronami. Taki rachunek prezen-
tujemy w kolejnym podrozdziale jednak dla j¡der zwierciadlanych T = 1/2, dla których
wiadomo [9], »e efekt klasy II jest zaniedbywalny.

Stan podstawowy j¡dra parzysto-parzystego o N − Z = ±2, |I = 0, T ≈ 1, Tz = ±1〉,
jest wyznaczony w sposób jednoznaczny ze wzgl¦du na brak niesparowanych nukleonów.
�amanie symetrii izospinowej w tym stanie opisane jest przez mieszanie coulombowskie :

|I = 0, T ≈ 1, Tz = ±1〉 =
∑
T ′­1

cT |I = 0;T ′, Tz = ±1〉 , (4.1)

stanów o przywróconej symetrii obrotowej z momentem p¦du I = 0. W j¡drze nieparzysto-
nieparzystym o N = Z odpowiedni izospinowy stan analogowy |I = 0, T ≈ 1, Tz = 0〉
wyznaczamy przez zmieszanie ró»nych, zale»nych od orientacji pr¡du niesparowanych nu-
kleonów, reprezentacji ±redniopolowych tego stanu. A zatem:

|I = 0, T ≈ 1, Tz = 0〉 =
∑

k=X,Y,Z

∑
T ′=0,1,2

c
(k)
T ′ |I = 0, T ′, Tz = 0〉(k)

. (4.2)

Stany |I = 0, T, Tz = 0〉(k) powstaªy przez wyrzutowanie momentu p¦du oraz izospinu ze
±redniopolowych rozwi¡za« ϕk b¦d¡cych antyuszeregowanymi wyznacznikami Slatera z
okre±lonym kierunkiem pr¡du, a ±ci±lej kierunku jednocz¡stkowego momentu p¦du, neu-
tronu i protonu wzdªu» osi k = X, Y, Z. Antyuszeregowany stan ±redniopolowy w j¡drze
nieparzysto-nieparzystym N = Z zbudowany jest w taki sposób, »e walencyjne neutron i
proton obsadzaj¡ najni»szy dost¦pny stan jednocz¡stkowy tak, »e jedna z cz¡stek zajmuje
stan odwrócony w czasie (w sygnaturze) wzgl¦dem drugiej |ν̄ ⊗ π; k〉 (lub |ν ⊗ π̄; k〉). Taki
stan przez konstrukcj¦ jawnie ªamie symetri¦ izospinow¡.
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Antyuszeregowane stany, o których mowa, ró»ni¡ce si¦ jedynie kierunkiem pr¡du cz¡-
stek walencyjnych okazuj¡ si¦ by¢ od siebie liniowo zale»ne. W przestrzeni kolektywnej
zbudowanej ze stanów wyrzutowanych z tych kon�guracji mamy 6 (9) stanów dla j¡der
osiowych (trójosiowych) ró»ni¡cych si¦ orientacj¡ pr¡du oraz izospinem T = 0, 1, 2. Prze-
prowadzaj¡c mieszanie kon�guracji (3.98), dostrzegamy, »e wszystkie warto±ci wªasne ma-
cierzy norm s¡ niezerowe. Niemniej liniowa zale»no±¢ stanów uwidacznia si¦ w zachowaniu
tych warto±ci wªasnych. Okazuje si¦, »e trend jest identyczny we wszystkich rozwa»anych
przypadkach j¡der. Na wykresie 4.1 przedstawiono dwa przykªady: j¡dro osiowe 46V oraz
trójosiowe 50Mn. Warto±ci wªasne macierzy norm tworz¡, w zale»no±ci od przypadku, dwie
lub trzy grupy podobnych warto±ci. Co istotne ró»nica pomi¦dzy tymi grupami jest zna-
cz¡ca si¦gaj¡ca nawet kilku rz¦dów wielko±ci. Obliczane poprawki izospinowe δC okazuj¡
si¦ by¢ niestabilne w peªnym rachunku uwzgl¦dniaj¡cym stany o niskich normach. Do-
piero obci¦cie bazy do trzech stanów odpowiadaj¡cych najwi¦kszym warto±ciom wªasnym
stabilizuje wynik. W zwi¡zku z czym w tych i w przyszªych rachunkach uwzgl¦dniaj¡cych
mieszanie kon�guracji ró»ni¡cych si¦ orientacj¡ pr¡du dokonujemy redukcji przestrzeni
kolektywnej jedynie do stanów, których warto±ci wªasne macierzy norm grupuj¡ si¦ przy
najwi¦kszych warto±ciach.
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Rys. 4.1: Warto±ci wªasne macierzy norm w rachunkach DFT-NCCI dla stanów
I = 0, T ≈ 1 w j¡drach nieparzysto-nieparzystych dla dwu przypadków: zdefor-
mowanego osiowo j¡dra 46V oraz zdeformowanego trójosiowo j¡dra 50Mn. Podane
energie zostaªy uzyskane przy obci¦ciu do trzech, sze±ciu oraz dziewi¦ciu warto±ci
wªasnych macierzy norm.

W tabelach 4.1 oraz 4.2 podano obliczenia zwi¡zane z superdozwolonymi przej±ciami
Fermiego. W pierwszej zaprezentowano 12 przypadków j¡der, dla których bardzo wysoka
precyzja wyznaczenia czasu »ycia pozwala na uwzgl¦dnienie ich w statystyce zwi¡zanej
z analiz¡ elementu macierzowego Vud. W drugiej przedstawiono przej±cia, dla których
ta precyzja nie jest wystarczaj¡ca. W Tab. 4.1 przedstawiono poprawki izospinowe wy-
znaczone pomi¦dzy rozwi¡zaniami o okre±lonym kierunku pr¡du cz¡stek walencyjnych w
nieparzysto-nieparzystym j¡drze N = Z zaczerpni¦te z pracy [154] oraz jej warto±¢ ko«-
cow¡ δSV;mix

C obliczon¡ w wyniku zmieszania tych kon�guracji. Nast¦pnie na podstawie
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Tabela 4.1: Wyniki oblicze« dla przej±¢ superdozwolonych, których do±wiadczalna
precyzja pozwala na uwzgl¦dnienie w analizie elementu macierzowego Vud. W tabeli
podano poprawki obliczone w modelu MR DFT dla trzech orientacji pr¡du gene-
rowanego przez cz¡stki walencyjne X,Y oraz Z, nast¦pnie warto±¢ poprawki uzy-
skanej w wyniku zmieszania tych»e kon�guracji w modelu DFT-NCCI , obliczony
na podstawie wzoru (2.52) zredukowany czas »ycia Ft, empiryczn¡ poprawk¦ δ(exp)

C
wprowadzon¡ dalej w tek±cie (4.5) oraz wkªad poszczególnych przej±¢ do testu χ2.

J¡dro δ
(X)
C δ

(Y)
C δ

(Z)
C δ

(SV;mix)
C Ft δ

(exp)
C χ2

i

matki (%) (%) (%) (%) (s) (%)

Tz = −1
10C 0.559 0.559 0.823 0.579(87) 3064.5(52) 0.37(15) 3.5
14O 0.303 0.303 0.303 0.303(30) 3072.3(33) 0.36(6) 0.0
22Mg 0.243 0.243 0.417 0.270(41) 3081.4(72) 0.62(23) 1.4
34Ar 0.865 0.997 1.475 0.87(13) 3063.6(91) 0.63(27) 1.3

Tz = 0
26Al 0.308 0.308 0.494 0.329(49) 3071.8(20) 0.37(4) 0.8
34Cl 0.809 0.679 1.504 0.75(11) 3067.6(38) 0.65(5) 10.9
42Sc 0.770 0.770 0.770 0.77(27) 3069.2(85) 0.72(6) 3.1
46V 0.486 0.486 0.759 0.563(84) 3075.1(32) 0.71(6) 1.3
50Mn 0.460 0.460 0.740 0.476(71) 3076.5(32) 0.67(7) 2.4
54Co 0.622 0.622 0.671 0.586(88) 3075.6(36) 0.75(8) 1.3
62Ga 0.925 0.840 0.881 0.78(12) 3093.1(48) 1.51(9) 43.2
74Rb 2.054 1.995 1.273 1.63(24) 3078(12) 1.86(27) 0.3

Ft0
+→0+ = 3073.7(11) χ2 = 69.5

|Vud| = 0.97396(25) χ2
d = 6.3

0.99892(65)

obliczonych poprawek izospinowych oraz poprawek radiacyjnych δ′R [67, 68], ∆R [69] oraz
δNS [67, 68, 76] podano zredukowany czas »ycia Ft wyliczony ze wzoru (2.52). Nale»y
podkre±li¢, »e rachunki dla przej±¢ superdozwolonych zostaªy przeprowadzone z u»yciem
standardowego nat¦»enia siªy spin-orbita tj. W0 = 150MeV fm5 w parametryzacji SV.

Poza przej±ciami 14O→14N oraz 42Sc→42Ca wszystkie poprawki zostaªy wyznaczone
przy obci¦ciu bazy przestrzeni kolektywnej do trzech stanów zgodnie z wcze±niejsz¡ dysku-
sj¡. W ±redniopolowych rachunkach j¡dro 14O jest sferyczne, a 42Sc niemal sferyczne, wo-
bec czego reprezentuj¡ce je antyuszeregowane kon�guracje s¡ jednoznacznie wyznaczone
i nie zachodzi konieczno±¢ mieszania ró»nych orientacji. Dla pozostaªych przypadków, ze
wzgl¦du na obci¦cie stanów w przestrzeni kolektywnej oraz ze wzgl¦du na ograniczenie
bazy, bª¡d szacowany jest na 15%.

Ponadto, podobnie jak w poprzednich pracach, wykluczyli±my przej±cia 38K→38Ar
oraz 38Ca→38K z analizy statystycznej. Ze wzgl¦du na silne mieszanie poziomów jed-
nocz¡stkowych pochodz¡cych od powªok d3/2 oraz s1/2 poprawka izospinowa dla tych
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Tabela 4.2: Podobnie jak w Tabeli 4.1 jednak dla przej±¢ dotychczas niezmie-
rzonych lub zmierzonych z niewystarczaj¡c¡ precyzj¡, aby móc je zastosowa¢ do
wyznaczenia elementu macierzowego Vud.

j¡dro δ
(SV)
C j¡dro δ

(SV)
C

matki (%) matki (%)
Tz = −1 Tz = 0

18Ne 1.37(21) 18F 1.22(18)
26Si 0.427(64) 22Na 0.335(50)
30S 1.24(19) 30P 0.98(15)

przej±¢ jest nie�zycznie du»a i wynosi nawet 10%. Istnieje du»a szansa, »e rozseparowanie
poziomów jednocz¡stkowych przy zwi¦kszeniu nat¦»enia oddziaªywania spin-orbita wraz
z uwzgl¦dnieniem w metodzie DFT-NCCI kon�guracji wzbudzonych typu 1p-1h oraz 2p-
2h ustabilizuje t¦ poprawk¦. Taki rachunek przeprowadzono w przypadku rozpadu 37K→
37Ar, gdzie udaªo si¦ obni»y¢ nie�zyczn¡ warto±¢ poprawki izospinowej p. par. 2 niniej-
szego rozdziaªu.

�rednia warto±¢ Ft0
+→0+ = 3073.7(11) wyznaczona na podstawie ±redniej wa»onej

bª¦dem prowadzi do warto±ci Vud równej:

Vud = 0.97396(25). (4.3)

Warto±¢ ta jest w peªni zgodna z warto±ci¡ otrzyman¡ w rachunkach modelu powªoko-
wego (2.35). A na podstawie warto±ci elementów macierzowych Vus oraz Vub (2.40) warto±¢
testu unitarno±ci macierzy CKM wynosi:

|Vud|2 + |Vus|2 + |Vub|2 = 0.99892(65) (4.4)

Ta warto±¢ sugeruje unitarno±¢ macierzy CKM z dokªadno±ci¡ do 3σ.

Dwie ostatnie kolumny w Tab. 4.1 przedstawiaj¡ test zgodno±ci zaproponowany w
pracy [156]. Zakªadaj¡c speªnienie hipotezy o zachowaniu pr¡du wektorowego tj. nieza-

le»n¡ od przej±cia warto±¢ Ft0
+→0+

oraz prawidªowo wyznaczone poprawki radiacyjne
δNS i δ′R na podstawie wzoru (2.52) mo»na wyprowadzi¢ tzw. eksperymentalne warto±ci
poprawek izospinowych:

δ
(exp)
C = 1 + δNS −

Ft0
+→0+

ft(1 + δ′R)
, (4.5)

które przedstawiono w przedostatniej kolumnie. W ostatniej natomiast podano warto±ci
testu χ2 tj. zgodno±ci poprawki obliczonej w ramach modelu DFT-NCCI z poprawk¡ wy-
znaczon¡ na podstawie powy»szego wzoru dla poszczególnych przej±¢ z osobna. Caªkowita
warto±¢ testu na ilo±¢ stopni swobody (χ2

d = χ2/nd dla nd = 11) wynosi χ2
d = 6.3. Otrzy-

mana warto±¢ jest znacznie mniejsza ni» ta uzyskana we wcze±niejszej pracy [154], gdzie
poprawk¦ izospinow¡ uzyskiwano jako ±redni¡ arytmetyczn¡ poprawek pochodz¡cych od
±redniopolowych rozwi¡za« z ró»nymi orientacjami pr¡du cz¡stek walencyjnych. Warto
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zauwa»y¢, »e tak jak w poprzedniej pracy [154], tak i w rachunkach DFT-NCCI nasza
warto±¢ χ2/nd jest zdominowana przez przez dwa przej±cia 62Ga→62As oraz 34Cl→34S.
Wykluczaj¡c je z analizy otrzymaliby±my χ2

d = χ2/9 = 1.7, a zatem liczb¦ podobn¡ do
uzyskanych w ramach innych modeli:

• modelu perturbacyjnego (χ2
d = 1.5) [156]

• modelu powªokowego z funkcjami radialnymi Woodsa-Saxona (χ2
d = 0.4) [70]

• modelu powªokowego z funkcjami radialnymi Hartree'ego-Focka (χ2
d = 2.0) [157, 158]

• przybli»enia faz przypadkowych (RPA) z potencjaªem Skyrme'a-Hartree'ego-Focka
(χ2

d = 2.1) [159]

• RPA z relatywistyczn¡ teori¡ Hartree'ego-Focka (χ2
d = 1.7) [160]

�2. Rozpady beta Fermiego w j¡drach zwierciadlanych

T = 1/2

Tak jak opisano w rozdziale 2 przej±cia Fermiego mi¦dzy j¡drami zwierciadlanymi
T = 1/2 stanowi¡ alternatywn¡ do przej±¢ superdozwolonych metod¦ j¡drow¡ wyznacza-
nia elementu macierzowego Vud. W niniejszym paragra�e poprawki izospinowe oznaczamy
przez δISB, aby podkre±li¢, »e w rachunkach uwzgl¦dniono ró»ne ¹ródªa ªamania syme-
trii izospinowej, poza przypadkiem rachunków z uwzgl¦dnieniem jedynie oddziaªywania
coulombowskiego, gdzie poprawk¦ oznaczamy przez δC.

2.1 Dopasowanie parametrów izowektorowej cz¦±ci siªy Skyrme'a

do oblicze« z rzutowaniem

Przybli»enie pola ±redniego prowadzi do spontanicznego ªamania symetrii oddziaªywa-
nia. W szczególno±ci zªamana jest symetria izospinowa. Aby przywróci¢ izospin w sposób
wªa±ciwy nale»y wykluczy¢ nie�zyczne ªamanie tej»e symetrii a zachowa¢ to, które faktycz-
nie wyst¦puje w przyrodzie, mianowicie ªamanie izospinu przez oddziaªywanie Coulomba
oraz przez oddziaªywanie silne. Zatem aby funkcja falowa byªa wolna od nie�zycznego
mieszania izospinu, nale»y z rozwi¡zania ±redniopolowego wyrzutowa¢ dobry izospin, a
nast¦pnie otrzymane w ten sposób stany zrediagonalizowa¢ w bazie kolektywnej z tym
samym oddziaªywaniem. W ten sposób otrzymane energie wªasne wyznaczaj¡ce stany
podstawowe j¡der zwierciadlanych N ≈ Z mog¡ posªu»y¢ do dopasowania MDE (3.48) do
danych do±wiadczalnych. W przypadku oddziaªywania Coulomba (3.22) nie ma parametru
wymagaj¡cego dopasowania. W u»ywanym przez nas modelu ªadunek e nie jest parame-
trem efektywnym. W przypadku silnego oddziaªywania klasy III dopasowanie parametrów
tIII do tak otrzymanych warto±ci MDE b¦dzie wolne od sztucznego efektu mieszania izo-
spinu generowanego przez pole ±rednie. Mo»na spodziewa¢ si¦, a priori, »e ten efekt nie
b¦dzie znacz¡cy. Jednak istot¡ rachunków zwi¡zanych z poprawkami izospinowymi δISB,
a w konsekwencji z elementem macierzowym Vud jest ich precyzja. Dlatego warto pokusi¢
si¦ o dopasowanie staªych sprz¦»enia na poziomie teorii z rzutowaniem.
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Taka precyzja nie byªa wymagana w rachunkach dotycz¡cych wspóªczynnika zmiesza-
nia izospinowego przedstawionych w poprzednim rozdziale. Wobec tego wówczas u»yto pa-
rametrów dopasowywanych do energii wyznaczonych w ramach formalizmu Hartree'ego−Focka
do j¡der zwierciadlanych T = 1/2 z zakresu A = 7 − 75 oraz j¡der T = 1 A = 6 − 58
p. [8].

Tabela 4.3: Zestawy parametrów kontaktowego oddziaªywania klasy III dopaso-
wane w dwu wariantach oblicze« teoretycznych � SR DFT oraz MR DFT z u»yciem
funkcjonaªu SVSO. W przypadku oblicze« SR DFT zestawy parametrów ró»ni¡ si¦
danymi do±wiadczalnymi u»ytymi do dopasowania. Szczegóªy znajdzie czytelnik w
tek±cie.

tLO
0 RMSD tNLO

0 tNLO
1 tNLO

2 RMSD

metoda (MeV fm3) (keV) (MeV fm3) (MeV fm5) (MeV fm5) (keV)

1 SR DFT −6.7± 0.3 138 5± 2 −3± 3 −7.4± 0.8 97

2 SR DFT −6.2± 0.3 102 2± 2 −1± 3 −5.6± 1.1 75

3 SR DFT −6.2± 0.5 96 0± 3 −1± 5 −4.8± 1.3 74

4 MR DFT −6.3± 0.5 116 0± 2 −2± 2 −4± 1 106

Zaªo»enie liniowo±ci �tu [9] pozwala na dopasowanie parametrów w rz¦dzie wiod¡-
cym przy dwu punktach, a w kolejnym rz¦dzie rozwini¦cia przy czterech. Ze wzgl¦du na
zªo»ono±¢ obliczeniow¡ problemu dopasowanie parametrów w formalizmie MR DFT zaw¦-
zili±my do badanych j¡der o izospinie T = 1/2 z zakresu A = 11−47. Analiza porównawcza
parametrów obu modeli wymaga takiej samej procedury dopasowania. Skupmy uwag¦ na
zmianie parametru tLO

0 . Zestaw 1 w Tab. 4.3 przedstawia parametry siªy SVSO dopasowane
do wszystkich znanych warto±ci do±wiadczalnych MDE. Zestaw 2 przedstawia parametry
dopasowane do j¡der zwierciadlanych T = 1/2 z zakresu A = 11− 47 oraz s¡siaduj¡cych
j¡der T = 1 o A = 10 − 48. Ograniczenie zakresu danych do±wiadczalnych spowodowaªo
nieznaczny wzrost parametru. Wreszcie zestaw 3 przedstawia parametry wyznaczone tylko
dla j¡der zwierciadlanych T = 1/2 A = 11− 47. Pomini¦cie poªowy danych nie wpªyn¦ªo
na warto±¢ parametru, podnosz¡c w sposób oczywisty warto±¢ bª¦du dopasowania. Trzy
powy»sze dopasowania zostaªy wykonane przy u»yciu rachunków SR-DFT. Z powy»szej
analizy wynika, »e wykluczenie warto±ci MDE j¡der T = 1 w dopasowaniu parametru w
modelu MR DFT nie powinno wpªyn¡¢ znacz¡co na jego warto±¢. Porównanie parametrów
z zestawu 3 i 4 oddaje zatem wpªyw mieszania izospinu generowanego przez pole ±rednie.
Ró»nica parametrów mie±ci si¦ w bª¦dzie, zatem dyskutowany wpªyw jest pomijalny. Ob-
serwujemy równie», »e �t z rzutowaniem nieznacznie pogarsza zgodno±¢ z do±wiadczeniem.

Nale»y jeszcze zwróci¢ uwag¦ na parametry w kolejnym rz¦dzie rozwini¦cia. Parametry
w rz¦dzie NLO s¡ ±ci±le skorelowane � tNLO

0 i tNLO
1 s¡ koliniowe. Tªumaczy to z pozoru

istotniejsze ni» w wiod¡cym rz¦dzie zmiany parametrów w kolejnych zestawach z Tab. 4.3.
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Rys. 4.2: Wpªyw rzutowania na izospin (IP) na poprawk¦ izospinow¡ w j¡drach
zwierciadlanych T = 1/2 z zakresu A = 17− 47. Obliczenia z oddziaªywaniem Cou-
lomba jako jedynym ¹ródªem ªamania symetrii izospinowej zostaªy przedstawione
przez szare i niebieskie krzywe. �óªte i pomara«czowe krzywe pokazuj¡ rachunki
uwzgl¦dniaj¡ce tak»e oddziaªywanie klasy III (3.54) w wiod¡cym rz¦dzie. Oblicze-
nia zostaªy wykonane przy u»yciu 10 powªok oscylatora harmonicznego.

2.2 Wpªyw rzutowania na izospin na warto±¢ poprawki izospinowej

Rzutowanie na izospin ma kluczowe znaczenie w wyznaczaniu wspóªczynnika zmiesza-
nia izospinowego αISB, jak równie» przy obliczeniach dotycz¡cych poprawek izospinowych
δISB. Wpªyw rzutowania na izospin na t¦ poprawk¦ widoczny jest na wykresie 4.2. Ra-
chunki poprawki izospinowej przeprowadzono dla j¡der zwierciadlanych T = 1/2 z zakresu
A = 17−47 w 2 wariantach z uwzgl¦dnieniem oddziaªywania Coulomba jako jedynego ¹ró-
dªa ªamania symetrii izospinowej (C) oraz po dodaniu oddziaªywania kontaktowego klasy
III w rz¦dzie LO. Porównanie krzywych z rzutowaniem jedynie na moment p¦du (angular-
momentum projection, AMP) oraz z uwzgl¦dnieniem jednowymiarowego rzutowania na
izospin (angular-momentum and isospin projection, AMPIP) wskazuje, »e przywrócenie
symetrii izospinowej obni»a warto±¢ poprawki wzgl¦dem rachunków AMP dwukrotnie dla
l»ejszych j¡der, a nawet kilkukrotnie dla ci¦»szych.

2.3 Wpªyw orientacji pr¡du cz¡stek walencyjnych w rozwi¡zaniach

±redniopolowych na warto±¢ poprawki izospinowej.

W paragra�e dotycz¡cym superdozwolonych rozpadów Fermiego opisali±my problem
niejednoznaczno±ci rozwi¡za« ±redniopolowych. Mianowicie, w zale»no±ci od typu defor-
macji istniej¡ 2 lub 3 minima, ró»ni¡ce si¦ kierunkiem pr¡du generowanego przez cz¡stki
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Rys. 4.3: Residua poprawek izospinowych obliczanych pomi¦dzy kon�guracjami
stanu podstawowego o ró»nych orientacjach pr¡du cz¡stek walencyjnych δX

ISB, δ
Y
ISB

oraz δZ
ISB wzgl¦dem poprawki δNCCI

ISB uzyskanej ze zmieszania tych»e kon�guracji w
j¡drach zwierciadlanych T = 1/2 z zakresu A = 11 − 47. Na wykresie przerywana
niebieska linia odnosi si¦ do rozwi¡za« z uszeregowaniem momentu p¦du wzdªu» osi
OX, ci¡gªa pomara«czowa krzywa wzdªu» osi OY , a punktowana krzywa zielona
wzdªu» osi OZ.

walencyjne wzgl¦dem rozkªadu masy j¡dra w ukªadzie wewn¦trznym. Podobna niejedno-
znaczno±¢ ±redniopolowych rozwi¡za« HF wyst¦puje równie» w przypadku j¡der niepa-
rzystych.

Okazuje si¦, »e warto±¢ poprawki izospinowej δISB zale»y w sposób znacz¡cy od orienta-
cji momentu p¦du nieparzystej cz¡stki wzgl¦dem rozkªadu masy j¡dra. Wobec tego, w celu
wyznaczenia poprawki, konieczne jest przeprowadzenie mieszania wszystkich kon�guracji
reprezentuj¡cych stan podstawowy. Ze wzgl¦du na liniow¡ zale»no±¢ tych rozwi¡za«, tak
jak opisano w paragra�e o przej±ciach superdozwolonych, przestrze« kolektywn¡ nale»y
zredukowa¢, obcinaj¡c warto±ci wªasne macierzy norm bliskie zeru.

Na wykresie 4.3 przedstawiono residua poprawek izospinowych obliczonych pomi¦dzy
kon�guracjami stanu podstawowego o ró»nych orientacjach pr¡du cz¡stek walencyjnych
δX

ISB, δ
Y
ISB oraz δZ

ISB wzgl¦dem poprawki δNCCI
ISB uzyskanej z mieszania wszystkich orientacji.

W przypadku j¡der z dubletu o A=11, pomimo deformacji trójosiowej znaleziono jedynie
rozwi¡zanie z orientacj¡ pr¡du wzdªu» osi OZ. Przypadki A = 13− 17 oraz A = 39− 43
s¡ rozwi¡zaniami niemal sferycznymi, dla których, z przyczyn geometrycznych, istnieje
tylko jedno rozwi¡zanie. W przypadku j¡der osiowych, ze wzgl¦du na degeneracj¦ rozwi¡-
za«, krzywe δX

ISB(A) oraz δY
ISB(A) si¦ pokrywaj¡. Najwi¦ksze odchylenie od warto±ci δNCCI

ISB
obserwowane jest w przypadku przej±cia 33Cl→33S, dla którego poprawka δZ

ISB wykazuje
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najbardziej anomalne zachowanie.

Traktuj¡c warto±¢ poprawki DFT-NCCI jako warto±¢ referencyjn¡, obliczamy nast¦p-
nie test χ2 zgodno±ci poprawek wyznaczonych dla poszczególnych orientacji. Okazuje si¦,
»e χ2 jest najmniejsze dla δY

ISB, a ±redni bª¡d odst¦pstwa warto±ci δY
ISB od δNCCI

ISB wy-
nosi 0.008% dla j¡der zdeformowanych osiowo i 0.07% dla j¡der trójosiowych. Na ±rednio
stanowi to bª¡d odpowiednio 1.5% oraz 8% od warto±ci poprawki ze wzgl¦du na nie-
uwzgl¦dnienie mieszania wszystkich orientacji. W celu zmniejszenia przestrzeni kon�gu-
racyjnej, w rachunkach DFT-NCCI prezentowanych w dalszej cz¦±ci pracy ograniczymy
si¦ do uwzgl¦dnienia jedynie rozwi¡za«, dla których pr¡d cz¡stek walencyjnych jest zo-
rientowany wzdªu» osi OY . To ograniczenie powoduje jednocze±nie konieczno±¢ narzucenia
bª¦du na wyznaczon¡ poprawk¦ w warto±ci 1.5% dla j¡der zdeformowanych osiowo oraz
8% dla j¡der trójosiowych od warto±ci poprawki. Naturalnie, bª¦du nie nakªada si¦ w
przypadku kon�guracji sferycznej.

Metoda MR DFT nie mo»e by¢ zastosowana do wyznaczania elementu macierzowego
Vud z przej±¢ Fermiego mi¦dzy j¡drami zwierciadlanymi T = 1/2. W dwóch z czterech eks-
perymentalnych przypadków wyznaczenie poprawki izospinowej δISB wi¡»e si¦ bowiem z
konieczno±ci¡ skorelowania funkcji falowej stanu podstawowego ze wzbudzeniami cz¡stka-
dziura. Powodem jest zbyt silne mieszanie orbitali 1s1/2 oraz 0d3/2 zwi¡zane z niewªa±ciwie
opisan¡ struktur¡ jednocz¡stkow¡ w oddziaªywaniu SVT,SO. Aby unikn¡¢ problemów z
niejednoznaczno±ci¡ stanów wzbudzonych spowodowan¡ ró»nymi orientacjami pr¡du ge-
nerowanego przez cz¡stki walencyjne przestrze« kon�guracyjn¡ w rachunkach DFT-NCCI
ograniczymy do stanów ±redniopolowych z uszeregowaniem wzdªu» osi OY , zwi¦ksza-
j¡c jednocze±nie niepewno±¢ teoretyczn¡ obliczanej poprawki zgodnie z wynikami analizy
przeprowadzonej powy»ej.

2.4 Wpªyw izowektorowego oddziaªywania kontaktowego na war-

to±¢ poprawki izospinowej

Izowektorowe oddziaªywanie silne okazaªo si¦ by¢ kluczowe w zrozumieniu anomalii
Nolena-Shi�era obserwowanej w j¡drach zwierciadlanych T = 1/2 oraz T = 1. Ponadto,
jak pokazuje wykres 3.5, wspóªczynnik zmieszania izospinowego αISB jest niezwykle czuªy
ze wzgl¦du na skorelowanie stanu kwantowego przez czªony ªami¡ce symetri¦ ªadunkow¡.
Podobnie reaguje poprawka izospinowa. Na wykresie 4.4 przedstawiono zale»no±¢ po-
prawki δISB wyznaczonej dla przej±¢ Fermiego mi¦dzy j¡drami zwierciadlanymi T = 1/2
od liczby masowej w zakresie A = 11 − 47. Obliczenia wykonano w trzech wariantach: z
oddziaªywaniem Coulomba jako jedynym ¹ródªem ªamania symetrii izospinowej (C) oraz z
uwzgl¦dnieniem wiod¡cego (LO) oraz kolejnego rz¦du (NLO) rozwini¦cia izowektorowego
oddziaªywania Skyrme'a. Wraz z dodaniem oddziaªywania w wiod¡cym rz¦dzie rozwini¦-
cia poprawka wzrasta od 70% dla lekkich j¡der do 20% dla j¡der z powªoki pf . Wzrost
jest zatem podobny jak w przypadku αISB, patrz Rys. 3.5. Uwzgl¦dnienie oddziaªywania
izowektorowego w rz¦dzie NLO wnosi wynosi kolejne 10% w porównaniu do oblicze« w
rz¦dzie LO. Poprawka jest zatem zbie»na ze wzgl¦du na dodawanie czªonów klasy III rz¡d
po rz¦dzie.
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Rys. 4.4: Warto±¢ poprawki izospinowej δISB dla j¡der zwierciadlanych T = 1/2 z
zakresu mas A = 11−47. Rachunki uwzgl¦dniaj¡ce jedynie oddziaªywanie Coulomba
ilustruje krzywa niebieska. Krzywa zielona odpowiada rachunkom z uwzgl¦dnieniem
klasy III w wiod¡cym rz¦dzie, a krzywa pomara«czowa w nast¦pnym rz¦dzie rozwi-
ni¦cia.

2.5 Wpªyw struktury j¡drowej na poprawk¦ izospinow¡

W zdeformowanym osiowo polu ±rednim stany (orbitale) jednocz¡stkowe znakowane
s¡ zwykle tzw. liczbami kwantowymi Nilssona |NnzΛ,Ω〉. S¡ to liczby przybli»one, a
jedyn¡ zachowan¡ jest rzut momentu p¦du Ω na o± kwantyzacji. Pozostaªe liczby kwan-
towe [NnzΛ] mówi¡ jedynie, który ze stanów bazy ma najwi¦ksz¡ domieszk¦ w rozkªadzie
jednocz¡stkowego stanu wªasnego w bazie. Liczby nilssonowskie s¡ liczbami asymptotycz-
nymi tj. bardzo dobrze odzwierciedlaj¡ struktur¦ stanu jednocz¡stkowego dla ukªadów
silnie zdeformowanych. Dla ukªadów sªabo zdeformowanych struktur¦ stanów znacznie
lepiej, aczkolwiek nadal w sposób przybli»ony, oddaje notacja sferyczna. W przypadku
deformacji trójosiowej »adna z liczb kwantowych Nilssona nie jest zachowana, a poziomy
jednocz¡stkowe s¡ jeszcze silniej zmieszane, w sensie rozkªadu w bazie, ni» w przypadku
osiowym.

Brak zachowanych liczb kwantowych powoduje, »e nie ma transparentnych reguª wy-
boru dla elementów macierzowych Fermiego pomi¦dzy stanami jednocz¡stkowymi w j¡-
drze matki i córki. Co wi¦cej, na skutek przypadkowych degeneracji w widmie jedno-
cz¡stkowym jednocz¡stkowe stany wªasne mog¡ si¦ ró»ni¢ w j¡drze matki i córki na tyle
istotnie, by w efekcie prowadzi¢ do anomalii w przebiegu zwªaszcza tak subtelnej wielko-
±ci jak¡ jest poprawka δISB w funkcji A. Na Rys. 4.4 takie anomalne zachowanie wida¢
wyra¹nie dla dubletów izospinowych o A = 19 i A = 37 oraz w w obszarze od A=27 do
A=33, gdzie nasze obliczenia przewiduj¡ ksztaªty trójosiowe.

Anomalne zachowanie poprawki δISB dla przej±¢ mi¦dzy j¡drami zwierciadlanymi o
A = 19 oraz A = 37 jest skutkiem ¹le odtwarzanych przerw energetycznych przez od-
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Rys. 4.5: Poprawki izospinowe wyznaczone w modelu MR DFT (pomara«czowe
trójk¡ty) z oddziaªywaniem SVNLO

T,SO dla j¡der zwierciadlanych T = 1/2 z zakresu
A = 11 − 55. Szare kwadraty prezentuj¡ wyniki uzyskane w modelu powªokowym
NSM dla j¡der z zakresu A = 11 − 45. Krzy»ykami oznaczono obliczenia poprawki
izospinowej w modelu DFT-NCCI . Rachunki DFT-NCCI wykonano dla 4 rozpadów
branych do analizy elementu macierzowego Vud.

dziaªywanie SVT,SO mi¦dzy sferycznymi podpowªokami, odpowiednio, 1s1/2 a 0d5/2 oraz
1s1/2 a 0d3/2. Oba przypadki wchodz¡ do puli czterech dobrze zmierzonych przej±¢, któ-
rych u»ywa si¦ do wyznaczenia elementu macierzowego Vud. Z omawianego wykresu wida¢
wyra¹nie, »e poprawki δISB dla przej±¢ w A = 19 oraz A = 37 wyliczone w modelu MR
DFT s¡ niewiarygodne i nie mog¡ by¢ wykorzystane do testowania Modelu Standardo-
wego. Podobna sytuacja miaªa miejsce dla przej±¢ superdozwolonych 0+ → 0+ w tryplecie
izospinowym o A = 38, gdzie wyliczona metod¡ MR DFT poprawka izospinowa byªa ano-
malnie du»a.

Aby lepiej zrozumie¢ przyczyny �zyczne anomalii pojawiaj¡cych si¦ dla przej±¢ w du-
bletach o A = 19 oraz A = 37 i zaproponowa¢ stosowne remedium przejd¹my do opisu
nilssonowskiego zdeformowanych orbitali jednocz¡stkowych. W powªoce sd mamy sze±¢
orbitali Nilssona, które mo»na powi¡za¢ z podpowªokami sferycznymi. Stany |220 1/2〉,
|211 3/2〉 oraz |202 5/2〉 pochodz¡ ze sferycznej podpowªoki 0d5/2, orbital |200 1/2〉 po-
chodzi ze sferycznej podpowªoki 1s1/2 oraz dwa orbitale |211 1/2〉 i |202 3/2〉 pocho-
dz¡ce z podpowªoki 0d3/2. Kon�guracje stanów podstawowych j¡der 19F oraz 37Ar wraz
z energiami nilssonowskich poziomów jednocz¡stkowych przedstawia Rys. 4.6. Oba j¡-
dra s¡ osiowe, a niesparowany nukleon obsadza stan o dominuj¡cej kon�guracji bazowej
|220 1/2〉. Zauwa»my, »e w przypadku A = 37 stan ten jest szczególnie silnie zmieszany,
do tego stopnia, »e dominuj¡ca kon�guracja bazowa wskazuje, i» pochodzi on ze sferycznej
podpowªoki 0d5/2, a nie 0d3/2. Jest to skutkiem silnego mieszania tego stanu ze stanem
|200 1/2〉 spowodowanego degeneracj¡ tych stanów widoczn¡ na Rys. 4.6 co w efekcie
prowadzi do jego silnej fragmentacji w bazie.



83

Silne mieszanie stanów jednocz¡stkowych w rozpatrywanych przypadkach wymaga
rediagonalizacji hamiltonianu z wykorzystaniem metody DFT-NCCI . Wyniki takich ob-
licze« dla przej±¢ w dubletach o A=19, A=21, A=35 oraz A=37 ilustruje Rys. 4.5. Ob-
liczenia z mieszaniem kon�guracji wykonano wyª¡cznie dla j¡der, których czasy »ycia
oraz parametry korelacji zostaªy zmierzone najdokªadniej spo±ród dost¦pnych zmierzonych
przypadków w dubletach o A = 11 − 45. J¡dra te s¡ wykorzystywane do obliczenia ele-
mentu Vud. W rachunkach wykorzystano izowektorowe oddziaªywanie Skyrma'a w rz¦dzie
NLO, SVNLO

SO . Obliczenia DFT-NCCI wykonano w przestrzeni kon�guracyjnej uwzgl¦d-
niaj¡cej kon�guracj¦ stanu podstawowego oraz wszystkie wzbudzenia typu cz¡stka-dziura
w podukªadzie nieparzystym (wzbudzenia o liczbie kwantowej seniority ν=1), w którym
niesparowany nukleon obsadza nilssonowski stan jednocz¡stkowy o tej samej liczbie kwan-
towej Ω co w stanie podstawowym � wszystkie kon�guracje uwzgl¦dnione w obliczeniach
s¡ osiowo zdeformowane. Z wykresu obserwujemy wyra¹nie, »e mieszanie kon�guracji nie
wpªywa na poprawk¦ δISB w przypadku przej±¢ mi¦dzy j¡drami o A = 21 oraz A = 35. Na-
tomiast zdecydowanie poprawia zachowanie poprawki dla przej±¢ w A = 19 oraz A = 37.

Neutronowe i protonowe
orbitale jednocząstkowe dla 19F
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Rys. 4.6: Obsadzenie stanów jednocz¡stkowych w stanach podstawowych j¡der 19F
oraz 37Ar.

Dla przej±cia 19Ne →19F obserwujemy spadek δISB z 0.738% do 0.580% po zmiesza-
niu stanu podstawowego z kon�guracj¡ odpowiadaj¡c¡ wzbudzeniu cz¡stki walencyjnej
na orbital |200 1/2〉 i do 0.430% po dodaniu do przestrzeni kon�guracyjnej wzbudzenia
na orbital |211 1/2〉. Stan podstawowy oraz dwa wymienione wzbudzenia wyczerpuj¡ ak-
tywn¡ (∆Ω = 0) przestrze« kon�guracyjn¡ stanów 1p-1h o seniority ν = 1 dla tych j¡der.
Warto przedyskutowa¢ jeszcze spadek poprawki przy uwzgl¦dnieniu trzeciej kon�guracji.
Orbital |211 1/2〉 le»y wy»ej o ok. 12MeV ni» |220 1/2〉, patrz Rys. 4.6. Wydawaªoby si¦,
»e taka przerwa energetyczna spowoduje jedynie nieznaczne mieszanie tej kon�guracji ze
stanem podstawowym. W istocie, je»eli w mieszaniu uwzgl¦dni¢ jedynie stan podstawowy
oraz wzbudzenie cz¡stki na orbital |211 1/2〉 to poprawka δISB z 0.738% spada jedynie do
0.699%. Nale»y jednak zwróci¢ uwag¦ na fakt, i» ró»nica energetyczna mi¦dzy orbitalami
|200 1/2〉 i |211 1/2〉 jest niewielka, w zwi¡zku z czym zbudowane na nich kon�guracje
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mog¡ istotnie si¦ miesza¢. To mieszanie jest odpowiedzialne za znaczny spadek δISB z
0.580% do 0.430% przy uwzgl¦dnieniu energetycznie najwy»ej le»¡cego wzbudzenia. Po-
dobn¡ analiz¦ mo»na przeprowadzi¢ dla przej±cia 37K →37Ar, buduj¡c kon�guracje 1p-1h
ν = 1 przez wykreowanie dziury w stanach |200 1/2〉 oraz |211 1/2〉. Uwzgl¦dnienie tych
wzbudze« w mieszaniu kon�guracji powoduje, »e poprawka δISB z warto±ci 1.833% spada
do 1.099% i do 1.042%. Stany te wyczerpuj¡ aktywn¡ przestrze« kon�guracyjn¡ 1p-1h
ν = 1 o ∆Ω = 0.

Znacz¡cy spadek poprawki δISB w modelu DFT-NCCI umo»liwia dalsze obliczenia
zwi¡zane z wyznaczeniem elementu macierzowego Vud. Niemniej nadal poprawka δISB, dla
przej±cia 37K →37Ar jest znacznie wi¦ksza od poprawek w s¡siaduj¡cych przej±ciach w
A = 35 oraz A = 39, co mo»e sugerowa¢, »e mieszanie kon�guracji w obr¦bie przestrzeni
kon�guracyjnej zbudowanej ze wzbudze« 1p-1h ν = 1 nie rekompensuje w peªni ±rednio-
polowego efektu nie�zycznego mieszania orbitali.

2.6 Analiza bª¦du poprawki izospinowej

Zanim przejdziemy do analizy unitarno±ci macierzy CKM, przeprowadzimy analiz¦
bª¦du obliczonej poprawki izospinowej. �ródªa bª¦du mo»na podzieli¢ na kilka niezale»-
nych skªadowych. Mianowicie:

1) bª¡d spowodowany obci¦ciem bazy do 12 powªok oscylatora harmonicznego

Zbie»no±¢ poprawki δC dla przej±cia 51Fe→51Mn w funkcji rozmiaru bazy ilustruje
Rys. 4.7. Analiza zbie»no±ci pozwala przyj¡¢ 3% (powªoka sd) oraz 5% (powªoka pf)
bª¡d dla poprawek ze wzgl¦du na obci¦cie bazy do 12 powªok oscylatora harmonicz-
nego.

Liczba powłok oscylatora harmonicznego

Rys. 4.7: Zbie»no±¢ poprawki izospinowej δC w funkcji rozmiaru bazy mierzonej
ilo±ci¡ powªok sferycznego oscylatora harmonicznego dla rozpadu Fermiego mi¦dzy
stanami podstawowymi 51Fe →51Mn.
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2) bª¡d ze wzgl¦du na ró»ne orientacje pr¡du generowanego przez cz¡stk¦ walencyjn¡

Kolejnym ¹ródªem bª¦du jest ograniczenie si¦ w obliczeniach DFT-NCCI do kon�-
guracji, dla których pr¡d cz¡stki walencyjnej zorientowany jest w kierunku osi OY .
Zgodnie z dyskusj¡ w podrozdziale 3 tego paragrafu dla j¡der osiowych takie zaªo»enie
generuje bª¡d rz¦du 1.5%, a dla j¡der trójosiowych bª¡d rz¦du 8% warto±ci poprawki
izospinowej.

3) bª¡d ze wzgl¦du na dopasowanie staªych sprz¦»enia tIII

Propagacja bª¦du dopasowania nat¦»enia izowektorowego oddziaªywania silnego tIII

wymaga znajomo±ci zale»no±ci poprawki izospinowej od tego parametru δISB(tIII). Li-
nearyzacja tej zale»no±ci dla czªonu centralnego (LO) prowadzi do zaªo»enia:

δLIN
ISB = atIII0 + b, (4.6)

gdzie wyrazem wolnym jest poprawka, dla której jedynym ¹ródªem ªamania symetrii
izospinowej jest oddziaªywanie Coulomba. Wspóªczynnik kierunkowy dopasowano do
oblicze« poprawki δISB(tIII0 = −6.3MeVfm3). Liniow¡ zale»no±¢ przetestowano, prze-
prowadzaj¡c rachunki poprawki izospinowej z uwzgl¦dnieniem izowektorowego czªonu
centralnego o nat¦»eniu −7.4MeVfm3 oraz, wyznaczaj¡c poprawk¦ δLIN

ISB na podstawie
wzoru (4.6). �redni bª¡d (Residual Standard Error)

RSE =

√√√√ 1
n− 2

n∑
i=1

(
δMR DFT

ISB,i − δLIN
ISB,i

)2
< 0.002% (4.7)

jest caªkowicie pomijalny, co pozwala przyj¡¢ zaªo»enie liniowo±ci pomi¦dzy parame-
trem tIII a poprawk¡ izospinow¡. Wówczas bª¡d parametru dopasowania propaguje si¦
zgodnie z:

δ(δISB) = aδ(tIII0 ). (4.8)

U±redniony bª¡d po wszystkich przypadkach wynosi 0.01%, co ±rednio stanowi 3%
warto±ci poprawki izospinowej dla rachunków w rz¦dzie LO. Analogiczne rozumowanie
przeprowadzono dla izowektorowego oddziaªywania do rz¦du NLO. Wówczas ±redni
bª¡d wynosi 4% warto±ci poprawki.

4) bª¡d zwi¡zany z ograniczeniem przestrzeni kon�guracyjnej

Przy wyznaczaniu poprawki izospinowej w modelu DFT-NCCI ograniczyli±my prze-
strze« kon�guracyjn¡ do stanu podstawowego i wzbudze« 1p-1h ν = 1 o tej samej licz-
bie kwantowej Ω zwanych kon�guracjami aktywnymi. Wykluczenie z przestrzeni kon�-
guracyjnej wzbudze« typu 2p-2h jest ¹ródªem niepewno±ci. Rys. 4.8 ilustruje test sta-
bilno±ci poprawki ze wzgl¦du na rozmiar przestrzeni kon�guracyjnej. Rachunek wyko-
nano dla przypadku A=37, dla którego poprawka jest anomalnie du»a, patrz Rys. 4.5.
Kon�guracje 1-5 rozpinaj¡ przestrze« wzbudze« jednocz¡stkowych, z czego pierwsze
trzy nale»¡ do aktywnej przestrzeni kon�guracyjnej, dyskutowanej w poprzednim pod-
rozdziale. Kon�guracje 4 i 5 s¡ kon�guracjami 1p-1h ν = 1 o Ω = 3/2. Skorelowanie
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ukªadu kwantowego tymi dwoma wzbudzeniami 1p-1h nienale»¡cymi do przestrzeni
aktywnej nie zmienia warto±ci poprawki δISB.

Rys. 4.8: Wykres stabilno±ci poprawki izospinowej δISB dla przej±cia mi¦dzy j¡-
drami o A = 37. Zacieniowany obszar przedstawia bª¡d poprawki wyznaczonej w
obr¦bie przestrzeni kon�guracyjnej 1p-1h (punkt 5) ze wzgl¦du na nieuwzgl¦dnienie
w mieszaniu wzbudze« typu 2p-2h.

Na podstawie anomalnego zachowania poprawki δISB w punkcie A = 37 p. Rys. 4.5
mo»na przypuszcza¢, »e przestrze« kon�guracyjna zbudowana ze wzbudze« 1p-1h mo»e
by¢ niewystarczaj¡ca i »e nale»aªoby j¡ rozszerzy¢ do wzbudze« 2p-2h. Wmodelu DFT-
NCCI do takich wzbudze« nale»¡ tzw. kon�guracje pairingowe w kanaªach neutronowo-
protonowym (np), neutronowo-neutronowym (nn) oraz protonowo-protonowym (pp).
Naturalnie ilo±¢ takich wzbudze« jest du»a, ale mo»na je zaw¦zi¢ do kon�guracji o
∆Ω = 0 tj. takich, dla których rzut momentu p¦du na o± kwantyzacji jest taki sam
jak dla kon�guracji stanu podstawowego. W przypadku j¡dra 37K, patrz Rys. 4.6, ta-
kie kon�guracje otrzymamy, wzbudzaj¡c neutron z poziomu |200 1/2〉 lub z poziomu
|211 1/2〉 na poziom |220 1/2〉 w obr¦bie tej samej sygnatury. Kolejne kon�guracje
pairingowe np otrzymamy przez jednoczesne wzbudzenie protonu oraz odpowiednie
rozerwanie pary neutronowej. Na wykresie Rys. 4.8 kon�guracje 6 i 7 stanowi¡ energe-
tycznie najni»ej le»¡ce wzbudzenia np o ∆Ω = 0 w stosunku do stanu podstawowego.
Obserwujemy znaczny spadek δISB− o 12% warto±ci poprawki. Na chwil¦ obecn¡ w
kodzie HFODD nie mo»na uzbie»ni¢ kon�guracji 2p-2h typu nn-pairing oraz pp-pairing
w j¡drach A = 37, u»ywaj¡c oddziaªywania SVT,SO. Powodem jest bardzo niewielka
przerwa energetyczna mi¦dzy orbitalami |202 3/2〉 oraz |200 1/2〉.
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Podobn¡ analiz¦ wykonali±my dla A = 21, mieszaj¡c 10 kon�guracji, w tym kon�gura-
cje 2p-2h typu pairing w kanaªach nn, pp i np u»ywaj¡c mniejszej bazy, skªadaj¡cej si¦ z
10 powªok oscylatora harmonicznego, i nieco zmody�kowanego oddziaªywania SVT,SO.
Te obliczenia pokazuj¡, »e w tym przypadku uwzgl¦dnienie najni»ej le»¡cych wzbudze«
2p-2h typu pairing generuje niepewno±¢ teoretyczna rz¦du 5% warto±ci poprawki. Na
obecnym etapie bada« przyjmujemy jednak bª¡d 12% warto±ci poprawki ze wzgl¦du
na ograniczenie przestrzeni kon�guracyjnej do wzbudze« 1p-1h ν = 1. Z pewno±ci¡
dla A = 21 i A = 35 jest to warto±¢ zawy»ona. Jednak szczegóªowe wyznaczenie bª¦du
wymagaªoby znajomo±ci zachowania poprawki izospinowej przy wysyceniu przestrzeni
kon�guracyjnej. Takie rachunki s¡ niezwykle czasochªonne ale mo»liwe do wykonania,
a zatem niepewno±¢ z tytuªu obci¦cia przestrzeni kon�guracyjnej mo»na zmniejszy¢.

Podsumowuj¡c, cztery niezale»ne ¹ródªa bª¦du predykcji poprawki izospinowej daj¡
ª¡czny bª¡d poprawki dla przej±¢ Fermiego mi¦dzy j¡drami:

• osiowymi dla caªego zakresu j¡der - 13% warto±ci poprawki

• trójosiowymi - 15% warto±ci poprawki

Warto nadmieni¢ równie», »e do analizy bª¦du nale»aªoby doda¢ niepewno±¢ ze wzgl¦du
na przyj¦t¡ parametryzacj¦ Skyrme'a. Jednak ze wzgl¦du na brak mo»liwo±ci przeprowa-
dzenia analogicznych rachunków poprawki izospinowej z inn¡ ni» SV parametryzacj¡,
oszacowanie takiego bª¦du jest niemo»liwe.

2.7 Analiza unitarno±ci macierzy Cabbibo-Kobayashiego-Maskawy

Wprowadzony w rozdziale 2. wzór (2.57) wi¡»e zredukowany czas »ycia j¡dra nieza-
le»ny od przej±cia z elementem macierzowym Vud. Zestawienie wielko±ci niezb¦dnych do
przeprowadzenia analizy warto±ci elementu macierzowego Vud umieszczono w Tab. 4.4.
Wszystkie podane liczby zostaªy uzyskane wykorzystuj¡c warto±ci δV

ISB obliczone meto-
dami MR DFT lub DFT-NCCI z uwzgl¦dnieniem ªamania symetrii izospinowej przez
oddziaªywanie silne w rz¦dzie NLO.

Przy obecnej dokªadno±ci teorii wyliczenie wspóªczynnika mieszania ρ bezpo±rednio ze
wzoru (2.55) jest obarczone zbyt du»¡ niepewno±ci¡ z powodu nieznajomo±ci staªej sprz¦-
»enia gA w o±rodku. Wzór (2.55) pomaga jednak ustali¢ znak ρ. Warto±¢ wspóªczynnik
mieszania mo»na natomiast wyznaczy¢, wykorzystuj¡c wzór (2.56):

%2 =
fV
fA

(
2
Ft0+→0+

Ftmirror
− 1

)
. (4.9)

Znajomo±¢ ρ pozwala z kolei wyznaczy¢ parametry korelacji Aβ, aβν oraz Bν na podsta-
wie wzorów (2.60)�(2.62). Warto±ci parametru mieszania podane w Tab. 4.4 obliczono
z powy»szego wzoru dla Ft0+→0+ = 3073.7 ± 1.1 uzyskanego w modelu DFT-NCCI w
rachunkach przedstawionych w poprzednim paragra�e.

W celu wyznaczenia elementu macierzowego Vud niezb¦dna jest eksperymentalnie wy-
znaczona warto±¢ czasu »ycia oraz jednego ze wspóªczynników korelacji. Znajomo±¢ ta-
kiego wspóªczynnika, na podstawie wzorów (2.60)-(2.62), pozwala na wyznaczenie empi-
rycznej warto±ci wspóªczynnika mieszania % i w konsekwencji zredukowanego czasu »ycia
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Tabela 4.4: Zestawienie wielko±ci niezb¦dnych do przeprowadzenia analizy warto±ci
elementu macierzowego Vud na podstawie przej±¢ Fermiego w j¡drach zwierciadla-
nych T = 1/2. Warto±ci podano dla wszystkich przej±¢ z zakresu A = 11 − 45. W
kolejnych kolumnach tabeli podano: zredukowany czas »ycia fV t, stosunek czynni-
ków fazowych fA

fV
oraz poprawki radiacyjne δ′R oraz δVNS. Te warto±ci zaczerpni¦to z

pracy [71]. Kolejna kolumna, δV
ISB zawiera poprawki izospinowe wyznaczone w mo-

delu MR DFT, z wyj¡tkiem przej±¢ mi¦dzy j¡drami o A=19, 21, 35 oraz 35, gdzie
podano warto±¢ poprawki wyznaczonej w ramach modelu DFT-NCCI . Ostatnie
dwie kolumny przedstawiaj¡ wyznaczon¡ w ramach modeli MR DFT i DFT-NCCI
warto±¢ zredukowanego czasu »ycia Ftmirror dan¡ wzorem (2.54) oraz warto±¢ wspóª-
czynnika mieszania ρ wyliczon¡ wedªug wzoru (4.9).

A fV t[s] fA
fV

δ′R[%] δVNS[%] δVISB[%] Ftmirror[s] %

11 3910(16) 1.0105(21) 1.660(4) -0.12(2) 0.269(35) 3959(15) 0.7396(40)

13 4622.3(47) 1.0045(9) 1.635(6) -0.06(2) 0.271(35) 4682.3(48) 0.5576(13)

15 4344(11) 1.0026(5) 1.555(8) -0.04(2) 0.266(35) 4398(11) -0.6294(28)

17 2278.5(61) 1.0170(34) 1.587(10) -0.04(2) 0.339(44) 2305.9(63) -1.2794(35)

19 1701.5(30) 1.0143(29) 1.533(12) -0.11(2) 0.430(56) 1718.3(31) 1.5936(30)

21 4041(11) 1.0180(36) 1.514(15) -0.06(2) 0.415(54) 4083(11) -0.7043(31)

23 4675(17) 1.0194(39) 1.476(17) -0.11(2) 0.448(58) 4718(17) 0.5446(44)

25 3686.1(67) 1.0237(47) 1.475(20) -0.06(2) 0.540(81) 3718.2(68) -0.7984(26)

27 4119(19) 1.0270(54) 1.443(23) -0.11(2) 0.86(13) 4138(20) 0.6872(54)

29 4791(18) 1.0223(45) 1.453(26) -0.09(2) 1.03(15) 4806(18) -0.5219(46)

31 4799(33) 1.0195(39) 1.430(29) -0.08(2) 1.06(16) 4812(32) 0.5212(81)

33 5590(12) 0.9878(24) 1.435(32) -0.06(2) 1.17(18) 5600(13) 0.3137(41)

35 5638.8(63) 0.9894(21) 1.421(35) -0.04(2) 0.69(10) 5677.3(70) -0.2884(24)

37 4576.8(91) 1.0046(9) 1.431(39) -0.06(2) 1.04(14) 4591.2(97) 0.5803(24)

39 4296(16) 1.0010(2) 1.421(42) -0.09(2) 0.584(76) 4328(16) -0.6475(41)

41 2833(11) 1.0367(73) 1.453(47) -0.04(2) 0.728(95) 2855(10) -1.0540(52)

43 3672(56) 1.0318(64) 1.444(50) -0.13(2) 0.89(12) 3691(56) 0.802(16)

45 4363(98) 1.0411(82) 1.439(54) -0.06(2) 0.84(11) 4385(96) -0.620(24)

j¡dra niezale»nego od przej±cia Ft0.

Dane eksperymentalne odno±nie wspóªczynników korelacji dla 5 przypadków przej±¢
beta w j¡drach zwierciadlanych o A =19, 21, 29, 35 i 37 podano w Tab. 4.5. Najdokªad-
niejszy pomiar wykonano dla przej±¢ 19Ne →19F [161] oraz 37K →37Ar [162]. W ostatnim
przypadku zmierzono dwa parametry Bν = −0.755(24) [163] oraz Aβ = −0.5707(19) [162],
przy czym znacznie dokªadniejszy pomiar wykonano dla wspóªczynnika Aβ. Pomiar ten
zostaª poprzedzony bardzo dokªadnym wyznaczeniem poªowicznego czasu »ycia j¡dra 37K
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Liczba masowa

(s
)

Rys. 4.9: Zredukowany czas »ycia niezale»ny od j¡dra dla 5 przypadków przej±¢
mi¦dzy j¡drami zwierciadlanymi T = 1/2, dla których zmierzono wspóªczynniki
korelacji z wyznaczon¡ ±redni¡ wa»on¡ oraz jej bª¦dem - zacieniowany obszar.

t1/2 = 1.23651(94) [164] w porównaniu z wcze±niejszymi, mniej dokªadnymi eksperymen-
tami, których u±redniona warto±¢ dawaªa przewidywanie t1/2 = 1.2248(73). Dokªadno±¢
pomiaru czasu »ycia oraz wspóªczynnika korelacji stanowi¡ najwi¦ksze ¹ródªo bª¦du pre-
dykcji elementu macierzowego Vud. Z kolei dla przej±cia 35Ar→35Cl pomiar wspóªczynnika
Aβ wykonano dwukrotnie, otrzymuj¡c Aβ = 0.49(10) [165] oraz Aβ = 0.427(23) [166]. W
dalszej analizie wspóªczynnik mieszania % wyznacza si¦ na podstawie najdokªadniejszego
pomiaru, lub ±redniej wa»onej bª¦dem w przypadku pomiarów o zbli»onej dokªadno±ci.

Na wykresie 4.9 przedstawiono warto±ci Ft0 (2.56) uzyskane dla pi¦ciu przypadków,
dla których warto±¢ wspóªczynnika mieszania % zostaªa wyznaczona na podstawie danych
eksperymentalnych oraz ich ±redni¡ wa»on¡ bª¦dem wraz z bª¦dem dopasowania obliczo-

Tabela 4.5: Warto±ci wyznaczonych eksperymentalnie wspóªczynników korelacji
Aβ,aβν oraz Bν i wyznaczony na ich podstawie wspóªczynnik mieszania % dla przy-
padku 5 przej±¢ mi¦dzy j¡drami zwierciadlanymi o A = 19, 21, 29, 35 oraz 37.

A Aβ aβν Bν %

19 -0.0391(14) [161] - - 1.5995(45)

21 - 0.5502(60) [167] - -0.7136(72)

29 0.681(86) [168] - - -0.59(10)

35 0.430(22) [78] - - -0.279(16)

37 -0.5707(19) [162] - 0.755(24) [163] 0.5760(60)
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nym zgodnie ze wzorem:

x̄± δx̄ =
∑
iwixi∑
iwi

±
(∑

i

wi

)−1/2

, (4.10)

gdzie wagi

wi =
1

(δxi)2
. (4.11)

Niewystarczaj¡ca precyzja pomiaru parametru Aβ = 0.681(86) [168] dla przej±cia mi¦-
dzy j¡drami o liczbie masowej A = 29 wyklucza ten przypadek z dalszej analizy.

Tabela 4.6: W górnym panelu warto±ci poprawek izospinowych wraz z bª¦dami w
modelu powªokowym oraz w modelu DFT-NCCI dla trzech wariantów ¹ródeª ªa-
mania symetrii izospinowej: z uwzgl¦dnieniem tylko oddziaªywania Coulomba (C),
z doª¡czeniem izowektorowej klasy III oddziaªywania silnego w rz¦dzie wiod¡cym
(LO) oraz w kolejnym rz¦dzie rozwini¦cia (NLO). W dolnej cz¦±ci wyznaczone zre-
dukowany czas »ycia niezale»ny od przej±cia Ft0, warto±¢ elementu macierzowego
Vud oraz unitarno±¢ macierzy CKM w zale»no±ci od u»ywanego modelu tj. NSM,
DFT-NCCI (C), DFT-NCCI (LO) oraz DFT-NCCI (NLO).

A NSM C LO NLO

δV
ISB

19 0.415(39) 0.231(30) 0.412(54) 0.430(56)

21 0.348(27) 0.251(33) 0.387(50) 0.415(54)

35 0.493(46) 0.474(62) 0.647(84) 0.688(89)

37 0.734(61) 0.714(93) 0.97(13) 1.04(14)

F̄t0 6162(15) 6166(18) 6156(18) 6152(21)

Vud 0.9727(14) 0.9725(14) 0.9732(14) 0.9736(16)

unitarno±¢ 0.9967(31) 0.9961(31) 0.9976(31) 0.9983(35)

W ten sposób uzyskano:

Ft0 = 6152± 21s, (4.12)

a w konsekwencji, przy warto±ci poprawki radiacyjnej ∆V
R = 2.361(38)% [69] warto±¢

elementu macierzowego wynosi:

Vud = 0.9736± 0.0016. (4.13)

Wynik jest caªkowicie konsystentny z warto±ci¡ uzyskan¡ w modelu powªokowym, dla
którego Vud = 0.9727(14) [78]. Ponadto uzyskana warto±¢ jest zgodna z warto±ci¡ Vud

wyznaczon¡ z przej±¢ superdozwolonych co do σ
3 . Jednak jest nadal rz¡d wielko±ci mniej

dokªadna. Powodem jest przede wszystkim bardzo niewielka ilo±¢ przej±¢ mi¦dzy j¡drami
zwierciadlanymi T = 1/2, dla których dokªadnie zmierzono poªowiczne czasy rozpadu t1/2
oraz parametry korelacji. Dla przej±¢ superdozwolonych przypadków kontrybuuj¡cych w
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analizie unitarno±ci macierzy CKM jest a» 14.

�rednia wa»ona bª¦dem powoduje, »e w powy»szej analizie najistotniejsze wkªady po-
chodz¡ od rozpadów 19Ne oraz 37K. Zgodnie z dyskusj¡ caªego powy»szego paragrafu obok
j¡der trójosiowych s¡ to jedyne przypadki wymagaj¡ce rozszerzenia metody MR DFT o
mieszanie wzbudzonych kon�guracji. I o ile ostateczny wynik δISB dla przej±cia 19Ne→19F
wygªadza trend poprawki, co wi¦cej jest w peªnej zgodno±ci z obliczeniami modelu po-
wªokowego, tak dla przypadku rozpadu 37K δISB odstaje zarówno od warto±ci w j¡drach
s¡siaduj¡cych, jak i od warto±ci uzyskanej w modelu powªokowym. Wiemy, »e poprawka
izospinowa w tym rozpadzie spada wraz z rozszerzeniem przestrzeni kon�guracyjnej o naj-
ni»ej le»¡ce pairingowe wzbudzenia 2p-2h typu np i znacznie wygªadza trend. Naturalnie
stabilno±¢ poprawki nale»aªoby przetestowa¢ ze wzgl¦du na dodanie wi¦kszej liczby kon-
�guracji typu 2p-2h u»ytych w mieszaniu DFT-NCCI .

Celem wery�kacji wpªywu ªamania symetrii ªadunkowej powy»sz¡ analiz¦ przeprowa-
dzono dla trzech wariantów oblicze«: uwzgl¦dniaj¡c jedynie oddziaªywanie Coulomba (C),
z czªonem obj¦to±ciowym (LO) oraz czªonem powierzchniowym (NLO) oddziaªywania sil-
nego ªami¡cym symetri¦ izospinow¡.

Rys. 4.10: Warto±¢ elementu macierzowego Vud wraz z bª¦dem uzyskana z analizy
przej±¢ beta mi¦dzy j¡drami zwierciadlanymi T = 1/2 wmodelach NSM, DFT-NCCI
(C),DFT-NCCI (LO) oraz DFT-NCCI (NLO) porównana z warto±ci¡ otrzyman¡ z
przej±¢ superdozwolonych w modelu NSM.

W Tab. 4.6 przedstawiono warto±ci poprawek izospinowych, u±rednionego zreduko-
wanego czasu »ycia Ft0 oraz elementu macierzowego Vud i testu unitarno±ci macierzy
CKM dla wszystkich trzech wariantów oblicze« wraz z rachunkami modelu powªokowego.
Wszystkie obliczenia zostaªy wykonane z uwzgl¦dnieniem mieszania wzbudze« z aktywnej
przestrzeni kon�guracyjnej 1p-1h. Warto±ci Vud przedstawiono na wykresie 4.10.
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Wzrost elementu Vud przy uwzgl¦dnieniu ªamania symetrii ªadunkowej jest znacz¡cy,
szczególnie dostrzegalny pomi¦dzy rachunkami w wariancie C i LO. Kolejny, mniejszy,
wzrost obserwuje si¦ przy uwzgl¦dnieniu kolejnego rz¦du rozwini¦cia NLO. Uwzgl¦dnienie
izowektorowej cz¦±ci oddziaªywania silnego znacznie przybli»a warto±¢ elementu Vud do
tej pochodz¡cej od przej±¢ superdozwolonych.



Rozdziaª 5

Rozpad beta typu Gamowa-Tellera

�1. Element macierzowy Gamowa-Tellera

Procedury rzutowania (MR DFT) oraz mieszania kon�guracji (DFT-NCCI) dostar-
czaj¡ funkcji falowych z dobrze okre±lonymi liczbami kwantowymi I,M oraz Tz = (N −
Z)/2. Tak skonstruowana teoria pozwala na wyznaczenie elementów macierzowych przej±¢
beta. W modelu DFT-NCCI stany kwantowe j¡dra rozpadaj¡cego si¦ (j¡dra matki) oraz
j¡dra po rozpadzie (j¡dra córki) przyjmuj¡, zgodnie z wzorami (3.80) oraz (3.99), nast¦-
puj¡c¡ posta¢:

|n; IM ;Tz〉 =
∑
i,j

a
(n;IM ;Tz)
i,j |ϕj; IM ;Tz〉(i)

=
∑
i,j

∑
K,T­|Tz |

f
(n;IM ;Tz)
ij;KT P̂ T

TzTz P̂
I
MK |ϕj〉 (5.1)

|m; I ′M ′;T ′z〉 =
∑
p,r

a(m;I′M ′;T ′z)
p,r |ψr; I ′M ′;T ′z〉

(p)

=
∑
p,r

∑
K′,T ′­|T ′z |

f
(m;I′M ′;T ′z)
pr;K′T ′ P̂ T ′

T ′zT
′
z
P̂ I′

M ′K′ |ψr〉 (5.2)

gdzie n,m numeruj¡ stany wªasne modelu DFT-NCCI o tym samym momencie p¦du,
jego rzucie na trzeci¡ o± oraz rzucie na trzeci¡ o± w izoprzestrzeni rosn¡co zgodnie z ich
energi¡, za± i, p przebiegaj¡ po stanach o tych samych liczbach kwantowych I,M, Tz wy-
rzutowanych z okre±lonego wyznacznika Slatera ϕj w przypadku j¡dra matki oraz ψr w
przypadku j¡dra córki.

Wyznaczenie elementów macierzowych jednociaªowego wektorowego operatora Gamowa-
Tellera w powy»szych stanach (5.1) i (5.2) upraszcza si¦, je»eli przedstawimy go w postaci
operatora sferycznego:

ÔGT
µν =

1√
2

A∑
k=1

τ̂
(k)
1µ σ̂

(k)
1ν (5.3)

przy czym zale»no±¢ izospinowa µ = ±1 zale»y od tego, czy przej±cie nast¦puje w kanale
β+, czy β−. Posta¢ sferyczna operatora pozwala skorzysta¢ z reguªy komutacyjnej dla ten-
sorów sferycznych (1.28) i zredukowa¢ procedur¦ rzutowania w obu stanach kwantowych
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� matki i córki do rzutowania z jednego stanu np. ze stanu kwantowego opisuj¡cego j¡dro
matki zgodnie z (3.80). Element macierzowy Gamowa-Tellera przyjmuje wtedy posta¢:

MGT
µν =

∑
ij;KT

∑
pr;K′T ′

f
(n;IM ;Tz)
ij;KT f

(m;I′M ′;T ′z)
pr;K′T ′ 〈ψr|P̂ T ′

T ′zT
′
z
P̂ I′

K′M ′OGT
µν P̂

T
TzTz P̂

I
MK |ϕj〉︸ ︷︷ ︸

MGTµν

(5.4)

przy czym

MGT
µν = C

T ′T ′z
TTz ,1µC

I′M ′

IM,1ν

∑
ηξ

C
T ′T ′z
TT ′z−η,1ηC

I′K′

IK′−ξ,1ξ 〈ψr|τ̂1ησ̂1ξP̂
T
T ′z−ηTz P̂

I
K′−ξK |ϕj〉 . (5.5)

Skorzystanie z de�nicji operatora obrotu (1.27), funkcji D-Wignera oraz relacji (3.86)
pozwala zapisa¢ element macierzowy wyst¦puj¡cy w powy»szym wzorze w nast¦puj¡cej
postaci:

〈ψr|τ̂1ησ̂1ξP̂
T
T ′z−ηTz P̂

I
K′−ξK |ϕj〉 =

=
2T + 1

8π2

2I + 1
8π2

∫
dΩT

∫
dΩDT∗

T ′z−η,Tz(ΩT )DI∗
K′−η,K(Ω) 〈ψr|τ̂1ησ̂1ξR̂(ΩT )R̂(Ω)|ϕj〉

=
2T + 1

8π2

2I + 1
8π2

∫
dΩT e

iαT (T ′z−η)dTT ′z−η,Tz(βT )eiγTTze−iαT (T ′z−η)e−iγTTz∫
dΩDI∗

K′−η,K(Ω) 〈ψr|τ̂1ησ̂1ξe
−iβT T̂yR̂(Ω)|ϕj〉

=
2T + 1

2
2I + 1

8π2

∫ π

0
dβT sin βTdTT ′z−η,Tz(βT )

∫
dΩDI∗

K′−η,K(Ω) 〈ψr|τ̂1ησ̂1ξ| ˜̃ϕj〉 .
(5.6)

Korzystaj¡c z uogólnionego twierdzenia Wicka (3.71) i (3.72) element macierzowy pomi¦-
dzy wyznacznikami Slatera wyst¦pujacy w powy»szej caªce mo»na zapisa¢ nast¦puj¡co:

〈ψr|τ̂1ησ̂1ξ| ˜̃ϕj〉 = 〈ψr| ˜̃ϕj〉
∫
dr

∑
qq′;σσ′

〈q|τ̂1η|q′〉 〈σ|σ̂1ξ|σ′〉 ρ̃(rσ′q′; rσq). (5.7)

Aby go wyliczy¢ nale»y obliczy¢ zatem kontrakcje g¦sto±ci przej±ciowej z elementami ma-
cierzowymi operatora σ̂k i τ̂k.

G¦sto±¢ przej±ciowa (3.73) wyra»a si¦ nast¦puj¡co:

ρ̃(σ′q′;σq) =
1
2

{
ρ̃(q′, q) +

∑
k=(x,y,z)

〈σ′|σ̂k|σ〉 s̃k(q, q′)
}

(5.8)

i jest równoznaczna de�nicji sformuªowanej w j¦zyku tensorów sferycznych:

ρ̃(σ′q′;σq) =
1
2

{
ρ̃(q′, q) +

∑
α=(1,0,−1)

〈σ′|σ̂1α|σ〉 ρ̃1α(q, q′)
}

(5.9)

Wówczas kontrakcja jest równa:
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∑
σσ′
〈σ|σ̂1ξ|σ′〉 ρ̃(σ′q′;σq) =

=
1
2

∑
σσ′

{
〈σ|σ̂1ξ|σ′〉 ρ̃(q′, q)δσσ′ +

∑
α=(1,0,−1)

〈σ|σ̂1ξ|σ′〉 〈σ′|σ̂1α|σ〉 ρ̃1α(q′, q)
}

=
1
2

∑
σ

∑
α

〈σ|σ̂1ξσ̂1α|σ〉 ρ̃1α(q′, q) = (−1)ξρ̃1−ξ(q′, q)

(5.10)

Wobec powy»szego element macierzowy przyjmuje posta¢:

〈ψr|τ̂1ησ̂1ξ| ˜̃ϕj〉 = 〈ψr| ˜̃ϕj〉
∫
dr(−1)η+ξρ̃1−ξ,1−η(r). (5.11)

W programie HFODD g¦sto±ci s¡ wyra»one w ukªadzie kartezja«skim, wobec czego powy»sze
wymaga jeszcze przeksztaªcenia:

〈ψr|τ̂1ησ̂1ξ| ˜̃ϕj〉 =

= 〈ψr| ˜̃ϕj〉
∫
dr(−1)η

{
s̃z,1−η(r)δξ,0 −

1√
2

(
s̃x,1−η(r) + is̃y,1−η(r)

)
δξ,1+

+
1√
2

(
s̃x,1−η(r)− is̃y,1−η(r)

)
δξ,−1

}
. (5.12)

Nale»y podkre±li¢, »e operator Gamowa-Tellera w postaci (5.3) nie posiada »adnych
wolnych parametrów i nie jest wobec tego dopasowywany do warto±ci eksperymentalnych.
Wmodelu MR DFT operator ten dziaªa na stany kwantowe uwzgl¦dniaj¡ce korelacje zwi¡-
zane z ªamaniem a nast¦pnie przywracaniem symetrii np. obrotowej czy izospinowej. W
modelu powªokowym natomiast takie korelacje wprowadza si¦ przez mieszanie kon�gu-
racji w przestrzeni walencyjnej. W modelu powªokowym cz¦sto de�niuje si¦ efektywny
operator Gamowa-Tellera. W szczególno±ci, w powªoce sd (szczegóªy czytelnik znajdzie
w [169]) ma on posta¢:

OGT
eff =

A∑
k=1

σkτk + δOGT, (5.13)

gdzie

δOGT = δs(d− d)
A∑
k=1

σkτk + δs(s− s)
A∑
k=1

σkτk + δl(d− d)
A∑
k=1

lkτk

+δp(s− d)
A∑
k=1

pkτk + δp(d− d)
A∑
k=1

pkτk. (5.14)

Warto±ci δ s¡ czynnikami renormalizuj¡cymi w obr¦bie powªoki sd, które dopasowuje si¦
do danych do±wiadczalnych, a operator

pk =
√

8π
[
Y (2)(rk)× σk

](1)
. (5.15)
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Dopasowane parametry efektywne tak skonstruowanego operatora maj¡ za zadanie od-
tworzenie korelacji, których pozbawiona jest j¡drowa funkcja falowa. W tym kontek±cie
ró»ni autorzy wymieniaj¡ wysokoenergetyczne wzbudzenia nieuwzgl¦dniane w mieszaniu
kon�guracji oraz efekty zwi¡zane ze wzbudzeniem nukleonu do rezonansu ∆, który przed
deekscytacj¡ mo»e rozpa±¢ si¦ w procesie rozpadu beta w kanale Gamowa-Tellera [50].
Dodatkowo parametry mog¡ zawiera¢ korelacje zwi¡zane z wielociaªowymi pr¡dami zmie-
niaj¡cymi ªadunek, jak si¦ okazuje [3, 47, 170, 171] kluczowymi w rozumieniu efektu
quenchingu.

Zaimplementowany w kodzie HFODD element macierzowy Gamowa-Tellera zostaª prze-
testowany w obliczeniach 5 jednociaªowych elementów macierzowych w przestrzeni sd
w przej±ciach: 17F→17O oraz 39Ca→39K, na które skªadaj¡ si¦ przej±cia: 0d5/2 → 0d5/2,
0d3/2 → 0d3/2, 0d5/2 → 0d3/2, 1s1/2 → 1s1/2 oraz 1s1/2 → 0d3/2. W modelu powªoko-
wym j¡dra 17F, 17O s¡ 39Ca i 39K s¡ ukªadami jednociaªowymi z jedn¡ cz¡stk¡ b¡d¹ jedn¡
dziur¡ w przestrzeni walencyjnej. W modelu pola ±redniego nast¦puje zniesienie degenera-
cji sferycznej. Podpowªoki sferyczne rozszczepiaj¡ si¦ na 6 poziomów Nilssona ze wzgl¦du
na magnetyczn¡ liczb¦ kwantow¡, co schematycznie zilustrowano na Rys. 5.1 dla przy-
padku A = 17. Obok schematu rozszczepienia na rysunku podano tak»e wyniki oblicze«
diagonalnych elementów macierzowych MGT metod¡ MR DFT.

Rys. 5.1: Schemat przedstawiaj¡cy struktur¦ jednocz¡stkow¡ w modelu Nilssona w
j¡drach uczestnicz¡cych w rozpadzie 17F→17O. Pomi¦dzy stanami podano warto±ci
jednocz¡stkowych elementów macierzowych Gamowa-Tellera obliczone metod¡ MR
DFT.

Okazuje si¦, »e warto±ci przej±¢ Gamowa-Tellera pomi¦dzy wzbudzeniami w obr¦bie
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tego samego orbitalu sferycznego s¡ niemal identyczne zarówno w przypadkach diagonal-
nych, takich jak np. 1 → 1, co jest widoczne na schemacie 5.1, jak i niediagonalncyh
np. 1 → 2. Wynika to z faktu, »e analizowane j¡dra s¡ niemal sferyczne. W takim przy-
padku rozszczepienie orbitali sferycznych jest bardzo niewielkie, a mieszanie si¦ orbitali
zaniedbywalne. W konsekwencji, porównanie jednocz¡stkowych elementów macierzowych
pomi¦dzy modelami MR DFT i NSM oraz sferycznymi jednocz¡stkowymi elementami
macierzowymi jest zasadne i stanowi znakomity test dla teorii MR DFT.

W celu wyznaczenia jednocz¡stkowych elementów macierzowych Gamowa-Tellera w
sferycznej bazie |nljs〉 nale»y skorzysta¢ z twierdzenia Wignera-Eckarta oraz z twierdze-
nia o zredukowanym elemencie macierzowym iloczynu skalarnego dwóch komutuj¡cych
tensorów sferycznych [44]:

(j1j2j||TLSL||j′1j′2j′) =

δjj′(−1)j2+j+j
′
1

√
2j + 1

{
j1 j2 j
j′2 j′1 L

}
(j1||TL||j′1)(j2||SL||j′2). (5.16)

Dokonuj¡c w powy»szym wzorze podstawienia σ = [1σ]1, a nast¦pnie korzystaj¡c z rów-
no±ci:

(j′||1||j) = δjj′
√

2j + 1; (j′||σ||j) =
√

6, (5.17)

otrzymujemy ostateczny wzór:

MGT
fi ≡ (nf lfjf ||σ||niliji) =

√
6δninf δlilf

√
2ji + 1

√
2jf + 1(−1)lf+jf+ 32

{
1
2

1
2 1

ji jf li

}
. (5.18)

Warto±ci interesuj¡cych nas 5 elementów macierzowychMGT w bazie sferycznej (sph)
obliczonych na podstawie wzoru (5.18) przedstawiono w Tab. 5.1 wraz z wynikami oblicze«
w modelach MR DFT oraz NSM.

Tabela 5.1: Jednocz¡stkowe elementy macierzowe Gamowa-Tellera w powªoce sd
wyznaczone w bazie sferycznej wedªug wzoru (5.18), obliczone w modelu MR DFT
oraz w modelu powªokowym (NSM) z efektywnym operatorem Gamowa-Tellera dla
j¡der zwierciadlanych o A = 17 oraz A = 39.

MR DFT NSM e�

j → j′ sph A = 17 A = 39 A = 17 A = 39

0d5/2 → 0d5/2 2.898 2.894 2.890 2.880 2.655

0d5/2 → 0d3/2 -3.098 -2.942 -3.080 -2.966 -2.687

0d3/2 → 0d3/2 -1.549 -1.548 -1.547 -1.521 -1.395

1s1/2 → 1s1/2 2.449 2.444 2.444 2.430 2.238

1s1/2 → 0d3/2 0 0 0 0.038 0.050
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Wszystkie elementy macierzowe obliczone w modelu MR DFT dotycz¡ce przej±¢ w
j¡drach A = 17 z jedn¡ cz¡stk¡ walencyjn¡ oraz A = 39 z jedn¡ dziur¡ s¡ zgodne
z warto±ciami obliczonymi w bazie sferycznej. Drobne ró»nice, najwi¦ksze dla przej±cia
0d5/2 → 0d3/2 w A17, mo»na wytªumaczy¢ poprawkami izowektorowymi uwzgl¦dnionymi
w modelu MR DFT. Zarówno warto±ci NSM jak i jednociaªowe elementy macierzowe zo-
staªy wyznaczone przy zaªo»eniu peªnej symetrii izospinowej. Warto±ci obliczone w przej-
±ciu A = 17 s¡ zgodne w modelu MR DFT jak i w podej±ciu NSM z efektywnym opera-
torem Gamowa-Tellera. Ró»nice wida¢ jednak w przej±ciu A = 39, gdzie rachunki modelu
NSM nie s¡ zgodne z rachunkami w bazie sferycznej. Autorzy tªumacz¡ t¦ ró»nic¦ brakiem
korelacji wysokoenergetycznych wzbudze« rdzenia, podaj¡c ten argument jako wiod¡cy w
wyja±nieniu zjawiska redukcji elementu macierzowego Gamowa-Tellera lub równowa»nie
konieczno±ci renormalizacji staªej sprz¦»enia pr¡dów osiowowektorowych w o±rodku.

�2. Efekt quenchingu w modelu MR DFT

Badanie przej±¢ beta typu Gamowa-Tellera jest o tyle ekscytuj¡ce, i» po dzie« dzi-
siejszy nie wyja±niono w peªni fenomenu redukcji elementu macierzowego w o±rodku
j¡drowym popularnie zwanego efektem quenchingu. Na podstawie oblicze« modelu po-
wªokowego [169, 172, 173, 174, 175] od lat stawia si¦ tez¦, wedªug której ograniczenie
oblicze« do mieszania kon�guracji w obr¦bie poszczególnych powªok stanowi gªówne ¹ró-
dªo systematycznego przeszacowania elementu macierzowego wzgl¦dem warto±ci do±wiad-
czalnych. Wprowadzenie efektywnego operatora Gamowa-Tellera (5.13) i (5.14), którego
wolne parametry dopasowane byªy do eksperymentalnych elementów macierzowych miaªo
za zadanie uchwycenie brakuj¡cych korelacji zwi¡zanych, jak przypuszczano, z wysoko-
energetycznymi wzbudzeniami rdzenia. Obliczenia elementu przej±cia Gamowa-Tellera w
bezrdzeniowym modelu j¡drowym, jakim jest prezentowany w niniejszej rozprawie model
bazuj¡cy na teorii j¡drowego, wieloreferencyjnego funkcjonaªu g¦sto±ci stanowi¡ zatem
doskonaª¡ okazj¦ do wery�kacji tej hipotezy. Funkcja falowa skonstruowana w naszym
modelu zawiera bowiem domieszki pochodz¡ce od wy»ej poªo»onych powªok a» do zada-
nego obci¦cia bazy. W przypadku prezentowanych poni»ej rachunków jako bazy u»yto 12
powªok sferycznego oscylatora harmonicznego.

Warto podkre±li¢, »e wªa±ciwe zrozumienie efektu redukcji jest istotne nie tylko z per-
spektywy bada« strukturalnych j¡der atomowych, ale równie» w modelowaniu procesów
astro�zycznych zachodz¡cych w gwiazdach, czy we wªa±ciwym oszacowaniu czasu »ycia
ze wzgl¦du na przewidywany podwójny rozpad beta w kanale bezneutrinowym.

Na Rys. 5.2 przedstawiono systematyczne obliczenia elementu macierzowego Gamowa-
Tellera w j¡drach zwierciadlanych T = 1/2 z powªok p, sd i dolnej cz¦±ci powªoki pf .
Wyniki modelu DFT-NCCI porównano z danymi do±wiadczalnymi i rachunkami w mo-
delu powªokowym. Wyniki modelu powªokowego s¡ kompilacj¡ wyników z kilku prac. Dla
powªoki p wzi¦to je z prac [174, 175], wyniki w powªoce sd pochodz¡ z oblicze« [169] z
oddziaªywaniem USDb, a wyniki w dolnej cz¦±ci powªoki pf z prac [172, 173]. Rachunki
DFT-NCCI obejmuj¡ mieszanie 4-5 energetycznie najni»ej le»¡cych wzbudze« 1p-1h. Oka-
zuje si¦, »e poza przej±ciem 45V→45Ti obliczenia DFT-NCCI nie ró»ni¡ si¦ zasadniczo od
znacznie prostszego rachunku metod¡ MR DFT, który uwzgl¦dnia wyª¡cznie kon�guracje
stanu podstawowego.

Obliczenia obu modeli systematycznie przeszacowuj¡ eksperymentalnie wyznaczony
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Rys. 5.2: Element macierzowy Gamowa-Tellera dla przej±¢ pomi¦dzy j¡drami zwier-
ciadlanymi T = 1/2 z zakresu mas A = 11 − 55 wyznaczony na podstawie danych
eksperymentalnych (czarne trójk¡ty), w modelu powªokowym NSM (pomara«czowe
kwadraty) oraz w modelu DFT-NCCI (niebieskie kóªka).

element macierzowy poza obszarem j¡der trójosiowych A = 29 − 35 w modelu DFT-
NCCI , natomiast w peªni odwzorowuj¡ trend eksperymentalny. Obserwujemy równie»
zaskakuj¡c¡ zgodno±¢ oblicze« mi¦dzy obydwoma modelami. Warto±ci dla przej±¢ z za-
kresu A = 13−27 oraz A = 37−43 s¡ niemal identyczne. Stªumiony element macierzowy w
rejonie A = 29−35 jest efektem silnego mieszania orbitali s1/2 oraz d3/2 generuj¡cego trójo-
siowo±¢ w tych j¡drach. W przypadku elementu macierzowego Gamowa-Tellera procedura
DFT-NCCI wydaje si¦ nie rekompensowa¢ niedoskonaªo±ci struktury j¡drowej wyznaczo-
nej przez funkcjonaª SVSO. Najwi¦ksz¡ ró»nic¦ mi¦dzy modelami obserwujemy w j¡drach
z powªoki pf , a szczególnie du»y element macierzowy dla przej±¢ mi¦dzy j¡drami A = 53
oraz A = 55. Anomalne zachowanie w ostatnich dwóch przypadkach widoczne równie»
w energiach wi¡zania oraz w poprawce izospinowej mo»na prawdopodobnie wytªumaczy¢
niedopasowanym do danych do±wiadczalnych oddziaªywaniem tensorowym szczególnie ak-
tywnym dla tych j¡der.

Eksperymentalne warto±ci elementu macierzowego Gamowa-Tellera przedstawione na
wykresie 5.2 mo»na wyznaczy¢ na podstawie wzorów (2.55) i (2.56) oraz teoretycznej
warto±ci elementu macierzowego Fermiego. Mianowicie:

MEXP
GT =

gV
gA
MF

√√√√fV
fA

(
2
Ft0+→0+

Ftmirror
− 1

)
(5.19)

Wprawdzie powy»sza warto±¢ zale»y od wielu teoretycznych poprawek (patrz rozdziaª
IV�2), to kluczowe s¡ niepewno±ci eksperymentu dotycz¡ce czasu »ycia rozpadaj¡cego si¦
j¡dra oraz wspóªczynnik rozgaª¦zienia.

Systematyczne przeszacowanie elementu macierzowego Gamowa-Tellera jest znane w
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literaturze pod nazw¡ efektu redukcji (quenching) staªej sprz¦»enia pr¡dów osiowowekto-
rowych. W rzeczywisto±ci, jak pokazuj¡ najnowsze wyniki bada«, redukcji ulega nie staªa
sprz¦»enia gA, lecz element macierzowy przej±cia. Zatem:

MEXP
GT = qMTH

GT (5.20)

Warto±¢ czynnika skaluj¡cego q w obliczeniach wykonanych przy pomocy modelu powªoko-
wego zale»y od A i wynosi q ≈ 0.82 [174, 175], q ≈ 0.77 [169] oraz q ≈ 0.74 [172] w powªo-
kach, odpowiednio, p−, sd− oraz pf−. W ci¦»szych j¡drach A = 100−134 [176, 177, 178]
warto±¢ elementu macierzowego jest nawet dwukrotnie wi¦ksza ni» przewidywania ekspe-
rymentalne, a ±redni czynnik q ≈ 0.48.

Rys. 5.3: Warto±ci elementów macierzowych Gamowa-Tellera wyznaczonych w ra-
mach modelu powªokowego NSM (niebieskie romby) oraz modelu DFT-NCCI (po-
mara«czowe kóªka). Pomara«czowymi trójk¡tami oznaczono elementy macierzowe
Gamowa-Tellera nieuwzgl¦dnione w analizie warto±ci parametru skaluj¡cego q w
przej±ciach mi¦dzy j¡drami trójosiowymi A = 29 − 35 oraz j¡drami A = 53 − 55.
Szczegóªy analizy opisane s¡ w tek±cie. Przerywane linie przedstawiaj¡ krzyw¡ re-
gresji liniowej w modelu NSM (prosta niebieska) oraz w modelu DFT-NCCI (prosta
pomara«czowa). Odst¦pstwo prostych regresji od linii czarnej odzwierciedla wiel-
ko±¢ efektu redukcji elementu macierzowego wyznaczonego teoretycznie wzgl¦dem
warto±ci do±wiadczalnej.

Dla przej±¢ w j¡drach zwierciadlanych T = 1/2 z zakresu A = 11−55 przedstawionych
na wykresie 5.3 warto±¢ czynnika skaluj¡cego q w regresji liniowej wynosi q = 0.74(11) w
przypadku warto±ci uzyskanych w ramach modelu powªokowego oraz q = 0.74(21) w mo-
delu DFT-NCCI . Nale»y podkre±li¢, »e warto±¢ qNCCI uzyskano, wykluczaj¡c kªopotliwe
przypadki A = 29− 35 oraz A = 53− 55 zaznaczone na wykresie pomara«czowymi trój-
k¡tami. Zarówno w modelu powªokowym jak i w modelu j¡drowego funkcjonaªu g¦sto±ci
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rozkªad warto±ci reszt wokóª zera:

resi = MEXP
GT,i − q̄THMTH

GT,i (5.21)

jest w bardzo dobrym przybli»eniu normalny. Wobec tego regresja liniowa jest uzasad-
niona. Niemal dwukrotnie wi¦kszy ni» w modelu powªokowym rozrzut pochodzi przede
wszystkim od warto±ci przej±¢ w j¡drach z powªoki pf .

Jest niezwykle interesuj¡ce, i» warto±ci parametru q wyznaczone w dwóch ró»nych
modelach s¡ identyczne. Taka informacja sugeruje, »e za efektem quenchingu nie stoj¡
korelacje zwi¡zane ze wzbudzeniami rdzenia sugerowane przez autorów rachunków mo-
delu powªokowego. Tak¡ hipotez¦ mo»na wykluczy¢ ze wzgl¦du na oczywiste ró»nice po-
mi¦dzy prezentowanymi modelami. W podej±ciu j¡drowego funkcjonaªu g¦sto±ci funkcja
falowa posiada korelacje zwi¡zane z tzw. polaryzacj¡ rdzenia, jak równie» domieszki z
wy»ej le»¡cych powªok. To spostrze»enie oraz fakt, i» pokazano, »e wpªyw kanaªu rozpadu
Gamowa-Tellera przez rezonans ∆ na efekt quenchingu jest zaniedbywalny [50] pozwoliªy
odrzuci¢ stawiane hipotezy. Takie wykluczenie sugeruje zatem wpªyw wielociaªowych pr¡-
dów. W istocie, w 2019r. w Nature ukazaªa si¦ praca [47], w której przedstawiono rachunki
ab initio na podstawie których pokazano, »e dodanie dwuciaªowych pr¡dów naªadowanych
konsystentnie z oddziaªywaniem trójciaªowym, którego brakowaªo w obliczeniach modelu
powªokowego jak i w rachunkach j¡drowego funkcjonaªu g¦sto±ci, powoduje zwi¦kszenie
parametru q z q = 0.80 do q = 0.96 w powªoce sd oraz z q = 0.75 do q = 0.92 w dolnej
powªoce pf .

Rys. 5.4: Residua elementów macierzowych Gamowa-Tellera wyznaczonych dla roz-
wi¡za« z orientacj¡ pr¡du cz¡stki walencyjnej wzdªu» osi OX (niebieska przerywana
linia), wzdªu» osi OY (pomara«czowa linia ci¡gªa) oraz wzdªu» osi OZ (zielona linia
punktowa) wzgl¦dem warto±ci elementu macierzowego Gamowa-Tellera wyznaczo-
nego w ramach zmieszania kon�guracji o ró»nych orientacjach metod¡ DFT-NCCI
.

Prezentowane wy»ej wyniki oblicze« teoretycznych obarczone s¡ oczywi±cie niepewno-
±ci¡ teoretyczn¡. Podobnie jak w przypadku oblicze« zwi¡zanych z poprawk¡ izospinow¡,
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δISB, teoretyczny bª¡d elementu macierzowego Gamowa-Tellera ma co najmniej trzy ¹ró-
dªa:

1. wybór rozwi¡zania HF, w którym orientacja pr¡du generowanego przez cz¡stk¦ wa-
lencyjn¡ jest ustawiona wzdªu» osi OY

2. ograniczenie bazy do 12 powªok oscylatora harmonicznego

3. ograniczenie przestrzeni kon�guracyjnej w modelu DFT-NCCI do 3-5 najni»ej le»¡-
cych wzbudze«

Na wykresie 5.4 przedstawiono residua elementów macierzowych Gamowa-Tellera ob-
liczane mi¦dzy kon�guracjami o okre±lonym kierunku pr¡du (momentu p¦du) generowa-
nego przez cz¡stk¦ walencyjn¡ Mk=X,Y,Z

GT a rezultatem zmieszania wszystkich dost¦pnych
kon�guracji stanu podstawowego MNCCI

GT . Poza szczególnymi przypadkami przej±¢ w j¡-
drach A = 33 oraz A = 35 najmniejsze odchylenia od warto±ci MNCCI

GT obserwujemy dla
MY

GT. Ograniczaj¡c si¦ do tak zorientowanych kon�guracji, popeªniamy bª¡d wynosz¡cy
±rednio ok. 0.5% warto±ci elementu macierzowego.

Bª¡d ze wzgl¦du na ograniczenie bazy do 12 powªok oscylatora harmonicznego jest
niemal pomijalny i nie przekracza 1%.

Uwzgl¦dnienie niskole»¡cych wzbudze« 1p-1h w procedurze DFT-NCCI w niewielkim
stopniu, w zakresie nie przekraczaj¡cym 5% warto±ci elementu macierzowego, zmienia
wyniki MR DFT. Wyj¡tkiem s¡ dwa przej±cia: 35Ar→35Cl gdzie uwzgl¦dnienie mieszania
kon�guracji powoduje wzrost elementu macierzowego o ok. 13% oraz przej±cie 45V→45Ti.
W tym drugim przypadku zmieszanie stanu podstawowego z najni»ej le»¡cym wzbudze-
niem cz¡stka-dziura powoduje wzrost elementu macierzowego z warto±ci 0.895 do 1.256.
Reasumuj¡c, przeprowadzone obliczenia sugeruj¡, »e ±redni bª¡d z tytuªu ograniczenia
przestrzeni kon�guracyjnej do 3-5 kon�guracji nie powinien przekroczy¢ kilku procent.

W chwili obecnej nie da si¦ oszacowa¢ w sposób wiarygodny systematycznej niepew-
no±ci wynikaj¡cej z przyj¦cia konkretnej parametryzacji SV oddziaªywania Skyrme'a ze
wzgl¦du na brak mo»liwo±ci u»ycia alternatywnego oddziaªywania.

�3. Funkcja odpowiedzi na wymuszenie spinowo-izospi-

nowe

Model DFT-NCCI, pod wzgl¦dem funkcjonalnym, jest zbli»ony do modelu powªoko-
wego. Jego niew¡tpliw¡ zalet¡ w stosunku do modelu powªokowego jest mo»liwo±¢ za-
stosowania do badania struktury dowolnego j¡dra z tablicy nuklidów. Ta uniwersalno±¢
wynika z u»ycia do jego konstrukcji funkcjonaªu g¦sto±ci ze spontanicznie naruszonymi
symetriami, generowanego stosunkowo prostym oddziaªywaniem, którego parametry dopa-
sowane s¡ globalnie. To samo oddziaªywanie jest u»ywane zarówno na poziome budowania
przestrzeni kon�guracyjnej modelu jak i diagonalizacji w procedurze mieszania kon�gura-
cji. W tym sensie zaprezentowane podej±cie jest wolne od parametrów. Cena jak¡ pªacimy
za uniwersalno±¢ to mniejsza dokªadno±¢ przewidywa« w porównaniu z przewidywalno-
±ci¡ modelu powªokowego, który jest z du»a precyzj¡ dopasowany lokalnie do okre±lonej
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przestrzeni walencyjnej.

Modele DFT-NCCI i powªokowy s¡ modelami o zbli»onej funkcjonalno±ci, ale zbudo-
wane s¡ na zupeªnie innych zasadach. W tym sensie mo»na je uzna¢ za komplementarne.
W tym kontek±cie analiza porównawcza obu modeli jest niezwykle cenna. Przykªadem
takiej analizy s¡ prezentowane wcze±niej obliczenia dla superdozowlonych przej±¢ beta.
Zgodno±¢ przewidywa« modelu DFT-NCCI i modelu powªokowego w kontek±cie analizy
elementu macierzowego Vud uwiarygadnia teoretyczne rachunki poprawek izospinowych i
w konsekwencji testy Modelu Standardowego metodami j¡drowymi. Innym przykªadem s¡
badania nad efektem redukcji elementu macierzowego Gamowa-Tellera zaprezentowane w
poprzednim paragra�e. Analiza porównawcza obu modeli pozwoliªa wykluczy¢ stawiane
wcze±niej hipotezy, wedle których za quenching odpowiedzialne jest zaw¦»enie przestrzeni
modelowej i jednocze±nie przychyliªa si¦ do wytªumaczenia tego efektu brakiem pr¡dów
wielociaªowych.

W niniejszym paragra�e przedstawione zostan¡ pierwsze wyniki oblicze« w modelu
DFT-NCCI funkcji odpowiedzi j¡dra na wymuszenie spinowo-izospinowe. Funkcja odpo-
wiedzi spinowo-izospinowej, inaczej odpowiedzi Gamowa-Tellera, dostarcza warto±ciowych
informacji zarówno dotycz¡cych oddziaªywa« elektrosªabych jak i bezpo±rednio struktury
j¡drowej. U podstaw modelu DFT-NCCI le»y efekt spontanicznego naruszenia symetrii,
co otwiera mo»liwo±¢ dyskusji zªo»onych schematów wynikaj¡cych ze struktury funkcji
odpowiedzi w j¦zyku prostych zdeformowanych stanów jednocz¡stkowych Nilssona, b¦d¡-
cych fundamentem modelu DFT-NCCI. W tym sensie rachunki modelu DFT-NCCI mog¡
by¢ potraktowane jako komplementarne do modelu powªokowego [179, 180, 181], modelu
coupled cluster [171], czy te» kwazicz¡stkowego przybli»enia faz przypadkowych (QRPA)
[182, 183, 184, 185, 186, 187]. W kontek±cie oblicze« funkcji odpowiedzi Gamowa-Tellera
nale»y przywoªa¢ jeszcze rachunki dotycz¡ce rozpadu beta w powªoce pf w modelu VAM-
PIR [188, 189, 190], w którym wykorzystuje si¦ funkcje falowe pola ±redniego z przywróco-
nymi symetriami. Pomimo pewnego podobie«stwa pomi¦dzy modelami DFT-NCCI oraz
VAMPIR wynikaj¡cego z zastosowania technik rzutowych do zdeformowanych stanów
pola ±redniego ich caªo±ciowa konstrukcja tj. przestrze« modelowa oraz sposób korelowa-
nia ukªadu kwantowego ró»ni si¦ w sposób znacz¡cy.

W niniejszym paragra�e przedstawimy dyskusj¦ funkcji odpowiedzi Gamowa-Tellera:

1. w bardzo lekkich j¡drach o liczbie masowej A = 8. Ze wzgl¦du na niewielk¡ liczb¦
kon�guracji wzbudzonych w powªoce p jest to ±wietna okazja do przedyskutowania
reguªy sum Ikedy.

2. w j¡drze 24Mg ze ±rodka powªoki sd

3. oraz w superdozwolonym przej±ciu 100Sn→ 100In, dla którego zmierzono najwi¦kszy
element Gamowa-Tellera w caªej tablicy nuklidów.

We wszystkich przypadkach przeprowadzono równie» dyskusj¦, w której funkcje falowe
reprezentuj¡ce poszczególne elementy widma rozªo»ono w bazie rozpinaj¡cej przestrze«
kon�guracji dost¦pnych w mieszaniu DFT-NCCI . Taki rozkªad pozwala na interpretacj¦
poszczególnych elementów widma w j¦zyku wzbudze« w obr¦bie nilssonowskich stanów
jednocz¡stkowych.
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3.1 Niskoenergetyczna struktura j¡drowa oraz rozkªad nasilenia

rozpadu Gamowa-Tellera w j¡drach o liczbie masowej A = 8

W poni»szej dyskusji uwag¦ skupimy na strukturze oraz wªasno±ciach rozpadu beta w
bardzo lekkich j¡drach 8Be, 8Li oraz 8He. J¡dra z powªoki p stanowi¡ doskonaªy materiaª
do przetestowania zale»no±ci modelu od przestrzeni kon�guracyjnej u»ywanej w podej±ciu
DFT-NCCI. Z drugiej strony nale»y zwróci¢ uwag¦, »e bezpo±rednie porównanie do danych
do±wiadczalnych mo»e by¢ myl¡ce. Otó» wyznaczona w przybli»eniu pola ±redniego funk-
cja falowa jest rozªo»ona w bazie oscylatora harmonicznego. W konsekwencji nie opisuje
korelacji wªa±ciwych dla tzw. ukªadów otwartych, dla których sprz¦»enie do continuum
mo»e mie¢ kluczowe znaczenie w opisie struktury j¡drowej [191, 192]. Do takich efektów
nale»¡: klasteryzacja cz¡stek w j¡drze, niskole»¡ce stany rezonansowe, czy te» rozpady
j¡der w kanale emisji cz¡stek konkuruj¡cym z elektrosªabym rozpadem beta. Naturalnie
ma to wpªyw na eksperymentalne widmo stanów i na rozkªad nasilenia Gamowa-Tellera.
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Rys. 5.5: Lewy (prawy) panel przedstawia neutronowe (protonowe) poziomy jed-
nocz¡stkowe Nilssona w stanach podstawowych j¡der 8Be, 8Li oraz 8He. Orbitale
s¡ oznaczone przybli»onymi liczbami kwantowymi Nilssona. Peªne kóªka oznaczaj¡
stany obsadzone a kolory ró»nicuj¡ orbitale pochodz¡ce z ró»nych podpowªok sfe-
rycznych.

Zacznijmy dyskusj¦ od budowy przestrzeni kon�guracyjnej. Tak jak w poprzednich
przypadkach obliczamy w procedurze samozgodnej stan podstawowy. Uzyskane w ten
sposób jednocz¡stkowe poziomy Nilssona numerowane dodatkowo za pomoc¡ liczby kwan-
towej symetrii sygnatury sªu»¡ do konstrukcji stanów wzbudzonych. W pierwszej kolej-
no±ci, zgodnie z przepisem podanym w rozdz. III�8, budujemy przestrze« kon�guracyjn¡
ze wzbudze« 1p-1h nast¦pnie, je»eli trzeba, uzupeªniamy j¡ niskole»¡cymi wzbudzeniami
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2p-2h.

Na Rys. 5.5 pokazano neutronowe (po lewej) oraz protonowe (po prawej) jednocz¡st-
kowe stany Nilssona wyznaczone dla stanów podstawowych w 8Be, 8Li oraz 8He. Nale»y
zwróci¢ uwag¦, »e kon�guracje stanów podstawowych w 8Be i w 8Li s¡ zdeformowane,
podczas gdy ksztaªt j¡dra 8He jest sferyczny. Zniesienie degeneracji Kramersa w 8Li jest
spowodowane zªamaniem symetrii odwrócenia w czasie w polu ±rednim.

W przypadku j¡dra 8Be o równej liczbie protonów i neutronów przestrze« kon�gu-
racyjn¡ budujemy ze stanu podstawowego oraz z 4 dost¦pnych |N=1nzΛ Ω±〉 uszerego-
wanych oraz antyuszeregowanych wzbudze« 1p-1h, gdzie ± oznacza sygnatur¦ r = ±i.
Okazuje si¦ jednak, »e jedna z tych kon�guracji � antyuszeregowane wzbudzenie do pierw-
szego nilssonowskiego stanu jednocz¡stkowego |101 3/2〉 � nie zbiega si¦ w procedurze
iteracyjnej Hartree'ego-Focka. Ten brak, jak si¦ oka»e mo»na jednak zast¡pi¢ przez skore-
lowanie ukªadu dodatkowymi wzbudzeniami typu 2p-2h. Zatem przestrze« kon�guracyjna
j¡dra 8Be skªada si¦ ze stanu podstawowego, 2 uszeregowanych wzbudze« 1p-1h, 1 anty-
uszeregowanego wzbudzenia 1p-1h oraz 3 energetycznie najni»ej le»¡cych wzbudze« 2p-2h.

W magicznym j¡drze 8He przestrze« kon�guracyjna skªada si¦ ze stanu podstawowego
oraz z 4 neutronowych wzbudze« 1p-1h.

W nieparzysto-nieparzystym j¡drze 8Li stan podstawowy reprezentowany jest przez
dwa stany uszeregowany oraz antyuszeregowany zbudowane przez obsadzenie najni»szych
stanów w studni potencjaªu do poziomu Fermiego. Nast¦pnie, trzymaj¡c dwa neutrony
z odwrotn¡ sygnatur¡ (sparowane) na najni»szym dost¦pnym orbitalu Nilssona, wyzna-
czamy kon�guracje |ν〉 ⊗ |π〉, wzbudzaj¡c niesparowany neutron lub proton na wszystkie
orbitale Nilssona z powªoki p. W kolejnym kroku rozrywamy par¦ neutronow¡ i budujemy
caªkowicie niesparowane kon�guracje wzbudzone. Takie kon�guracje okazuj¡ si¦ by¢ wy-
soko wzbudzone przez co trudniejsze do uzbie»nienia w procedurze iteracyjnej. W dyskusji
zwi¡zanej z reguª¡ sum Ikedy, czy te» rozkªadem nasilenia Gamowa-Tellera kluczow¡ rol¦
peªni¡ kon�guracje o niewielkiej liczbie kwantowej K. Uzbie»nili±my dwa rozwi¡zania z
rozerwan¡ par¡ speªniaj¡ce ten warunek. Jak si¦ oka»e w dalszej dyskusji wpªyw tych
kon�guracji na niskoenergetyczn¡ struktur¦ j¡drow¡ jest zaniedbywalny, jednak przy dys-
kusji rezonansu Gamowa-Tellera bardzo istotny.

Wszystkie kon�guracje zawarte w przestrzeniach kon�guracyjnych j¡der 8Be, 8Li, and
8He zostaªy wyszczególnione w Tab. 5.2 i oznaczone przy u»yciu sygnatury oraz liczb
kwantowych Nilssona |NnzΛ Ω±〉 odnosz¡cych si¦ do niesparowanych nukleonów wa-
lencyjnych. W tabeli przedstawiono równie» deformacj¦ kwadrupolow¡ poszczególnych
kon�guracji sparametryzowan¡ przez β2 oraz γ. Warto±ci γ 6= 0◦ i γ 6= 60◦ oznaczaj¡
rozwi¡zanie trójosiowe. Liczb kwantowych Nilssona u»ywamy nie tylko do zdeformowa-
nych kon�guracji, ale równie» do tych bliskich ksztaªtowi sferycznemu. W lekkich j¡drach,
w szczególno±ci w 8Li, jest to uzasadnione ze wzgl¦du na wykazywanie przeze« bardzo
osobliwego izowektorowego ksztaªtu. Mianowicie, we¹my za przykªad niemal»e sferyczn¡
kon�guracj¦ nr 6. Jest ona superpozycj¡ rozkªadu g¦sto±ci neutronowej w ksztaªcie oblate
oraz g¦sto±ci protonowej w ksztaªcie prolate. W przypadku kon�guracji nr 5 oraz 8 roz-
kªad g¦sto±ci ma ksztaªt prolate dla neutronów oraz oblate dla protonów. Kon�guracje nr
7, 9 oraz 10 s¡ z kolei zbudowane na prawie sferycznym rozkªadzie g¦sto±ci protonowej
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Tabela 5.2: Samozgodne kon�guracje ±redniopolowe w j¡drach 8He, 8Be oraz 8Li.
Kon�guracje wyszczególniono zgodnie z ich energi¡ (indeks i) i oznaczono przy-
bli»onymi liczbami kwantowymi Nilssona wraz z sygnatur¡ niesparowanej cz¡stki i
dziury walencyjnej. Nast¦pne 4 kolumny zawieraj¡ informacje na temat wªasno±ci
poszczególnych kon�guracji: energi¦ HF w MeV, deformacj¦ kwadrupolow¡ przed-
stawion¡ przy u»yciu parametrów β2 oraz γ oraz caªkowite uszeregowanie 〈j〉 wraz
z orientacj¡ w ukªadzie wewn¦trznym.

i |8He; ϕi〉 EHF β2 γ 〈j〉
1 νp3/2 ⊗ πs1/2 −37.26 0 0◦ 0

2 |ν101 3/2−〉−1 ⊗ |ν101 1/2 +〉1 −32.47 0.14 0◦ 2Z
3 |ν101 3/2 +〉−1 ⊗ |ν101 1/2−〉1 −30.81 0.03 60◦ 1Y
4 |ν110 1/2 +〉−1 ⊗ |ν101 1/2 +〉1 −30.04 0.03 60◦ 0Y
5 |ν110 1/2 +〉−1 ⊗ |ν101 1/2−〉1 −29.13 0.02 0◦ 1Z
i |8Be; ϕi〉 EHF β2 γ 〈j〉
1 |ν110 1/2〉2 ⊗ |π110 1/2〉2 −48.66 0.68 0◦ 0Z
2 |ν110 1/2−〉−1 ⊗ |ν101 3/2 +〉1 −38.87 0.40 0◦ 1Z
3 |ν110 1/2−〉−1 ⊗ |ν101 1/2 +〉1 −34.08 0.39 0◦ 1Y
4 |ν110 1/2 +〉−1 ⊗ |ν101 1/2 +〉1 −31.63 0.27 3◦ 0.7Z
5 |ν110 1/2 +〉−1 ⊗ |ν101 3/2 +〉1 −36.81 0.20 60◦ 0Z
|π110 1/2+〉−1 ⊗ |π101 3/2 +〉1

6 |ν110 1/2〉−2 ⊗ |ν101 3/2〉2 −35.74 0.11 5◦ 0Z
7 |ν110 1/2 +〉−1 ⊗ |ν101 3/2 +〉1 −34.28 0.12 0◦ 2Z
|π110 1/2 +〉−1 ⊗ |π101 3/2 +〉1

i |8Li; ϕi〉 EHF β2 γ 〈j〉
1 |ν101 3/2 +〉 ⊗ |π110 1/2 +〉 −39.08 0.38 0◦ 1Z
2 |ν101 3/2 +〉 ⊗ |π110 1/2−〉 −39.03 0.36 0◦ 2Z
3 |ν101 1/2 +〉 ⊗ |π110 1/2 +〉 −34.04 0.36 0◦ 1Z
4 |ν101 1/2−〉 ⊗ |π110 1/2+〉 −33.44 0.35 0◦ 0Z
5 |ν110 1/2 +〉 ⊗ |π110 1/2−〉 −36.51 0.07 60◦ 0Z
6 |ν101 3/2 +〉 ⊗ |π101 3/2+〉 −35.68 0.03 0◦ 0Y
7 |ν101 3/2 +〉 ⊗ |π101 1/2−〉 −32.34 0.12 0◦ 2Z
8 |ν101 1/2 +〉 ⊗ |π110 1/2 +〉 −31.19 0.06 60◦ 1Z
9 |ν101 3/2 +〉 ⊗ |ν110 1/2 +〉 −29.25 0.04 60◦ 0Y
⊗ |ν101 1/2−〉 ⊗ |π101 3/2−〉

10 |ν101 3/2 +〉 ⊗ |ν110 1/2 +〉 −29.06 0.07 60◦ 1Y
⊗ |ν101 1/2 +〉 ⊗ |π101 3/2−〉



107

(nr 7), neutronowej (nr 9 i 10) oraz zdeformowanej g¦sto±ci odpowiednio neutronowej lub
protonowej. Nale»y zwróci¢ uwag¦, »e dyskutowany izowektorowy efekt ksztaªtu prowadzi
do ró»nego uporz¡dkowania wzgl¦dem liczby kwantowej Ω neutronowych i protonowych
poziomów jednocz¡stkowych.
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Rys. 5.6: Rozkªad nasilenia Gamowa-Tellera stanów 1+ w j¡drze 8Li w skali lo-
garytmicznej przedstawiony przy u»yciu funkcji Lorentza z szeroko±ci¡ poªówkow¡
Γ = 0.5MeV. Przerywana linia przedstawia dane do±wiadczalne uzyskane przy u»y-
ciu teorii macierzy R [193, 194]. Lini¡ kropkowan¡ oznaczono wyniki uzyskane w
modelu powªokowym [193], natomiast lini¡ ci¡gª¡ obliczenia w modelu DFT-NCCI.

Rozpad beta ze stanu podstawowego 0+ j¡dra 8He populuje 4 stany 1+ w 8Li w oknie
energetycznym zdeterminowanym przez eksperymentaln¡ warto±¢ Qβ. Poza energetycznie
najni»ej le»¡cym stanem 1+, pozostaªe 3 rozpadaj¡ si¦ w ró»nych procesach emisji cz¡stek.
Fakt ten sprawia, »e eksperymentalne wyznaczenie zarówno energii jak i warto±ci BGT roz-
padaj¡cego si¦ j¡dra b¦d¡cego w jednym z tych stanów jest niezwykle skomplikowane. W
istocie, do±wiadczalne wyznaczenie charakterystyki rozpadu beta j¡dra 8He oparte jest
o wieloparametrowy formalizm macierzy R, którego pocz¡tkowe warto±ci parametrów
wyznaczane s¡ przy u»yciu rachunków modelu powªokowego. Parametry s¡ wariowane
tak, aby najlepiej dopasowa¢ si¦ do danych czasu »ycia, wspóªczynnika rozgaª¦zienia oraz
widma energetycznego cz¡stek opó¹nionych [193, 195, 196]. Uwzgl¦dnienie kanaªu emisji
cz¡stek redukuje eksperymentaln¡ warto±¢ BGT stanów rezonansowych 1+ w 8Li i prze-
suwa ich energie (centroidy) w porównaniu z pocz¡tkowymi warto±ciami wyznaczonymi
w modelu powªokowym. Najwi¦kszy efekt widoczny jest dla rezonansu Gamowa-Tellera
p. Rys. 5.6 � 4 stanu 1+, który rozpada si¦ zarówno w kanale emisji neutronu jak i, z
mniejszym prawdopodobie«stwem, trytu.

Na wykresie 5.6 przedstawiono funkcj¦ odpowiedzi Gamowa-Tellera dla rozpadu stanu
podstawowego 0+ 8He standardowo uci¡glon¡ rozkªadem Lorentza o szeroko±ci poªówkowej
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Γ = 0.5MeV. Maksima lokalne rozkªadu odzwierciedlaj¡ energie stanów wzbudzonych 1+

populowanych przez rozpad Gamowa-Tellera stanów w j¡drze 8Li. Rozkªad zostaª znorma-
lizowany do pierwszego, zwi¡zanego stanu 1+. Tak¡ normalizacj¦ przyjmuje si¦ ze wzgl¦du
na brak dodatkowych kanaªów rozpadu tego stanu.

Model DFT-NCCI przewiduje, »e energia stanu podstawowego 2+ w j¡drze 8Li wy-
nosi −41.9MeV, co ró»ni si¦ od warto±ci do±wiadczalnej jedynie o ∼0.6MeV. Rezonan-
sowe maksimum w widmie DFT-NCCI jest przesuni¦te o ∼1MeV w kierunku wy»szych
energii w porównaniu z widmem eksperymentalnym. Podobnie z drugim i trzecim mak-
simum przesuni¦tym mniej wi¦cej o 2MeV wzgl¦dem energii do±wiadczalnych. Wysoko±¢
maksimów jest przeszacowana w szczególno±ci w przypadku rezonansu Gamowa-Tellera.
Naturalnie tak du»ej ró»nicy nie da si¦ wyja±ni¢ na gruncie opisanej w poprzednim para-
gra�e teorii redukcji elementu macierzowego przez uwzgl¦dnienie pr¡dów wielociaªowych,
tym bardziej, »e w lekkich j¡drach ich wkªad jest niewielki a parametr quenchingu jedynie
nieznacznie ró»ni si¦ od q = 1. Obserwowan¡ rozbie»no±¢ w wi¦kszo±ci mo»na wytªuma-
czy¢ brakiem sprz¦»enia w modelu DFT-NCCI do kanaªów emisji cz¡stek. W tym sensie
prezentowane wyniki mog¡ sªu»y¢ jako dane wej±ciowe do macierzy R i bezpo±rednio po-
równane z rachunkami modelu powªokowego u»ywanymi w analizie danych do±wiadczal-
nych. Takie porównanie, patrz Rys. 5.6, pokazuje, »e rozkªad nasilenia Gamowa-Tellera
uzyskany w obu modelach jest bardzo zbli»ony. Jest to bardzo optymistyczny wniosek w
szczególno±ci ze wzgl¦du na fakt, i» w modelu DFT-NCCI nie ma wolnych parametrów
dopasowywanych do danych do±wiadczalnych w przeciwie«stwie do rachunków modelu
powªokowego [197]. Ponadto, najl»ejszym j¡drem podwójnie magicznym sªu»¡cym do do-
pasowania parametrów Skyrme'a jest j¡dro 16O a same rachunki DFT s¡ uwa»ane za
niedokªadne dla l»ejszych j¡der. Naturalnie, dyskutowana rozbie»no±¢ mo»e mie¢ równie»
swoje ¹ródªo w nieuwzgl¦dnieniu oddziaªywa« trójciaªowych w modelu NCCI 1. Jak po-
kazano w rachunkach ab initio siªy trójciaªowe odgrywaj¡ kluczow¡ rol¦ w wyja±nieniu
zjawiska redukcji elementu macierzowego Gamowa-Tellera w j¡drze 14C [198].

Podej±cie NCCI bazuj¡ce na formalizmie DFT daje unikaln¡ mo»liwo±¢ interpreta-
cji rozkªadu nasilenia Gamowa-Tellera w j¦zyku intuicyjnych ±redniopolowych kon�gu-
racji. Taka analiza mo»e by¢ szczególnie u»yteczna w przypadku j¡der zdeformowanych,
które mo»na opisa¢ przy u»yciu nilssonowskich liczb kwantowych. Zawarto±¢ n-tej hartree-
fockowskiej kon�guracji w k-tym stanie wªasnym modelu DFT-NCCI o danym I oraz Tz,
a zatem w k-tym lokalnym maksimum funkcji odpowiedzi dana jest wyra»eniem (3.100).

Wykres 5.7 przedstawia rozkªad funkcji falowej pierwszego oraz czwartego stanu 1+

w 8Li w j¦zyku wszystkich ±redniopolowych kon�guracji, które zostaªy wyszczególnione
w tabeli 5.2. Jak pokazano na wykresie, pierwszy stan 1+ jest mieszanin¡ silnie zdefor-
mowanego uszeregowanego stanu podstawowego |8Li;ϕ1〉 z dwoma sªabo zdeformowanymi
wzbudzeniami protonowymi i = 5, 6. Pierwsze z tych wzbudze« ma ksztaªt oblate, dru-
gie za± ksztaªt prolate. Stan rezonansowy jest skoncentrowany wokóª sªabo zdeformowa-
nej kon�guracji o ksztaªcie oblate |8Li;ϕ8〉. Kon�guracja ta odpowiada uszeregowanemu
wzbudzeniu ze stanu podstawowego, w którym neutron obsadza |ν101 3/2 +〉 do spinorbi-
talnego partnera |ν101 1/2 +〉. Wzbudzenie powoduje drastyczn¡ zmian¡ ksztaªtu g¦sto±ci
neutronowej ze zdeformowanej osiowo na niemal sferyczn¡. W tym miejscu warto przypo-

1W funkcjonale brakuje jawnych czªonów opisuj¡cych oddziaªywania trójciaªowe. Naturalnie korelacje
zwi¡zane z tymi siªami s¡ uwzgl¦dniane w parametrach Skyrme'a.



109

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10
8Li

GTR
W

kł
ad

 d
o
 f
u
n
kc

ji
 f
al

o
w

ej
 N

C
C
I 

(%
) 

Numer konfiguracji w

1. pik

Rys. 5.7: Rozkªad funkcji falowej pierwszego i czwartego stanu (rezonansu GT) 1+

w 8Li w j¦zyku kon�guracji ±redniopolowych HF, ϕn, uwzgl¦dnionych w przestrzeni
kon�guracyjnej. Na osi odci¦tych podano numery kon�guracji wyszczególnionych w
tabeli 5.2.

mnie¢, »e ksztaªt g¦sto±ci neutronowej rozpadaj¡cego si¦ j¡dra 8He jest sferyczny wobec
czego caªka przekrycia w rozpadzie Gamowa-Tellera pomi¦dzy tymi dwoma stanami b¦-
dzie du»a. Wyró»nienie kon�guracji |8Li;ϕ8〉 jest zatem zrozumiaªe w kontek±cie du»ego
elementu macierzowego w rozpadzie beta. Domieszka stanu z rozerwan¡ par¡ |8Li;ϕ9〉 daje
wkªad do rezonansu na poziomie 25%, a 20% pochodzi od energetycznie najni»ej le»¡cego
wzbudzenia protonowego |8Li;ϕ6〉.

Przejd¹my do j¡dra 8Be, którego stan podstawowy jest stanem rezonansowym zbudo-
wanym z dwóch cz¡stek α. Jego molekularna struktura charakteryzuje si¦ bardzo wydªu-
»onym rozkªadem g¦sto±ci, który, jak si¦ okazuje, jest ±wietnie odtworzony przez rachunki
pola ±redniego przewiduj¡ce nagªy wzrost deformacji z β2 = 0.38 w 8Li do β2 = 0.68 w 8Be.
Jednak»e, ani model pola ±redniego, ani jego rozszerzenie w postaci modelu DFT-NCCI nie
odtwarzaj¡ w peªni korelacji zwi¡zanych z klasteryzacj¡ tego stanu. Otó» wyznaczony w
rachunkach DFT-NCCI stan podstawowy ma energi¦ równ¡ −52.8MeV, wy»sz¡ o 3.7MeV
w porównaniu z warto±ci¡ eksperymentaln¡. Dla porównania, ró»nica mi¦dzy teoretyczn¡
i do±wiadczaln¡ energi¡ stanu podstawowego w s¡siednim 8Li to jedynie 0.6MeV.

Na wykresie 5.8 przedstawiono niskoenergetyczn¡ struktur¦ j¡drow¡ 8Be. Poza danymi
eksperymentalnymi oraz rachunkami DFT-NCCI, naniesiono równie» rachunki modelu
NCCI bazuj¡cego na rachunkach ab initio [199] z oddziaªywaniem JISP16. Obliczenia ab
initio przewiduj¡ energi¦ stanu podstawowego −57.5MeV, a zatem 1MeV poni»ej warto-
±ci eksperymentalnej.

Jak pokazano na wykresie, rachunki DFT-NCCI caªkiem dobrze odtwarzaj¡ energie
stanów z nieparzystymi spinami. Poziom zgodno±ci jest porównywalny, o ile nie lepszy,
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Rys. 5.8: Struktura j¡drowa w j¡drze 8Be poni»ej 30MeV. Poszczególne ry-
sunki, licz¡c kolejno od lewej strony, przedstawiaj¡ poziomy energetyczne o spinie
Iπ = 0+, 1+, 2+, 3+ oraz 4+. Na ka»dym panelu podano widma eksperymentalne (po
lewej), wyznaczone w modelu DFT-NCCI (w ±rodku) oraz w modelu ab-initio NCCI
(po prawej) znormalizowane do stanu podstawowego.

z obliczeniami ab initio NCCI. Wyznaczony dublet izospinowy stanów 1+ o energii bli-
skiej 24MeV mo»e reprezentowa¢ eksperymentalnie obserwowane dwa le»¡ce blisko siebie
stany o energii ok. 23MeV. Nie przypisano jednak jeszcze spinów do tych stanów. Z dru-
giej strony stany z parzystymi spinami w naszym modelu s¡ systematycznie zwi¡zane zbyt
silnie. Najni»ej le»¡ce stany 2+

1 i 4+
1 interpretuje si¦ jako stany wchodz¡ce w skªad pasma

rotacyjnego zbudowanego na stanie podstawowym. Wszystkie trzy maj¡ wysokie praw-
dopodobie«stwo rozpadu w kanale emisji cz¡stki α. Empiryczna warto±¢ wspóªczynnika
R4/2 ≡ E4+1

/E2+1
wynosi 3.75 i zalicza si¦ tym samym do najwi¦kszych w caªej tablicy

nuklidów. W rachunkach DFT-NCCI ten stosunek wynosi R4/2 = 3.77, a zatem model
odtwarza t¡ warto±¢ bardzo dobrze. Oznacza to, »e teoria odtwarza zmian¦ momentu bez-
wªadno±ci w pa±mie z dobr¡ dokªadno±ci¡ a jednocze±nie, co wida¢ po poªo»eniu stanów
2+ i 4+, silnie przeszacowuje jego warto±¢.

Problemy ze zbyt du»ym momentem bezwªadno±ci (stany 2+
1 i 4+

1 s¡ zbyt nisko w ener-
gii) oraz z brakuj¡cymi korelacjami w wyznaczonym stanie podstawowym s¡ widoczne w
rozkªadzie nasilenia Gamowa-Tellera rozpadu 8Li, 2+

g.s. →8Be, 2+
i . Porównanie rachunków

DFT-NCCI w przestrzeni 1p-1h oraz danych do±wiadczalnych zestawiono w Tab. 5.3.
Wkªad kon�guracji wzbudzonych 2p-2h jest zaniedbywalny. Nasilenie przej±cia do stanów
2+ jest wyra¹nie przeszacowane. Nale»y jednak mie¢ na uwadze, »e stan 2+

2 o izospinie
T = 0 jest stanem rezonansowym w zwi¡zku z czym mo»e silnie oddziaªywa¢ z energe-
tycznie blisko le»¡cym stanem T = 1 2+

3 i w konsekwencji wpªywa¢ na nasilenie przej±cia
.

Reguªa sum Ikedy lub reguªa sum Gamowa-Tellera jest powszechnie u»ywana jako
wska¹nik poziomu zupeªno±ci u»ywanej przestrzeni kon�guracyjnej. Przy zaªo»eniu zu-
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Rys. 5.9: Reguªa sum Gamowa-Tellera dla najni»szych stanów Iπ = 0+, 1+, 2+, 3+

w 8Li wzgl¦dem ilo±ci kon�guracji uwzgl¦dnionych w 8Be. Kon�guracje zostaªy wy-
szczególnione w tabeli 5.2.

Tabela 5.3: Do±wiadczalne oraz teoretyczne energie stanów wzbudzonych trzech
energetycznie najni»ej poªo»onych stanów 2+ w 8Be oraz odpowiadaj¡ce im warto±ci
log ft. Dane do±wiadczalne zaczerpni¦to z [200].

Eksperyment DFT-NCCI
stan E (MeV) log ft E (MeV) log ft

2+
1 T = 0 3.030 5.36 2.698 4.74
2+

2 T = 0 16.626 2.93 11.869 3.54
2+

3 T = 1 16.922 − 12.812 4.13

peªno±ci przestrzeni reguªa sum Ikedy jest równa:

1
g2

A

∑
f

[
B−GT(Iπi → Iπf )−B+

GT(Iπi → Iπf )
]

= 3(N − Z) , (5.22)

gdzie suma przebiega przez wszystkie dost¦pne stany If = Ii+k z k = 0,±1. Zredukowane
prawdopodobie«stwo przej±cia BGT, zgodnie ze wzorem (2.27), jest zde�niowane jako:

B±GT(Iπi → Iπf ) = g2
A

|M±
GT|2

2Ii + 1
(5.23)

gdzie M±
GT oznacza zredukowany element macierzowy Gamowa-Tellera. W kolejnych pa-

ragrafach przedyskutujemy reguª¦ sum Ikedy w j¡drze 8Li w kontek±cie zale»no±ci od
przestrzeni kon�guracyjnej w modelu DFT-NCCI . Wszystkie ±redniopolowe kon�guracje
zostaªy przedstawione w Tab. 5.2. Przypomnijmy w tym miejscu, »e przestrze« kolektywna
modelu jest rozpi¦ta przez liniowo niezale»ne stany naturalne o warto±ciach wªasnych ma-
cierzy norm ni, wi¦kszych ni» zadany parametr obci¦cia ε, p. dyskusja w rozdz. III �8, co
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Rys. 5.10: Reguªa sum Ikedy dla stanów 1+
1 , 2+

1 oraz 3+
1 w 8Li w funkcji ilo±ci

kon�guracji uwzgl¦dnionych w przestrzeni kon�guracyjnej 8Li. Dolny (górny) panel
przedstawia reguª¦ sum wyznaczon¡ przy parametrze obci¦cia ε = 0 (0.01). Szcze-
góªy opisano w tek±cie.

determinuje jej wymiar.

Na wykresie 5.9 przedstawiono poziom wysycenia reguªy sum Ikedy dla stanów pocz¡t-
kowych 1+

1 , 2+
1 oraz 3+

1 w j¡drze 8Li wzgl¦dem ilo±ci kon�guracji w przestrzeni kon�gu-
racyjnej stanu ko«cowego w 8Be. Warto±¢ B+

GT ustalono przy przestrzeni kon�guracyjnej
zbudowanej ze wszystkich dost¦pnych wzbudze« 1p-1h w j¡drach 8He oraz 8Li p. Tab. 5.2.
Z wykresu mo»emy wyci¡gn¡¢ wniosek, »e ju» przy 5 kon�guracjach w j¡drze 8Be reguªa
sum Ikedy osi¡ga 90% poziom wysycenia. Pozostaªe kon�guracje, zbudowane na energe-
tycznie niskole»¡cych wzbudzeniach 2p-2h, dostarczaj¡ kolejnych 5%. Dodatkowo przed-
stawione wyniki wydaj¡ si¦ by¢ interesuj¡ce z perspektywy nieuzbie»nionej kon�guracji
1p-1h na poziomie rozwi¡zania równania Hartree'ego-Focka. Okazuje si¦, »e dyskutowane
wzbudzenie do nilssonowskiego orbitalu |101 3/2〉 mo»na z powodzeniem zast¡pi¢ wzbu-
dzeniem 2p-2h do tego orbitalu.

Wykres 5.10 przedstawia reguª¦ sum Ikedy w j¡drze 8Li i jej zachowanie ze wzgl¦du
na u»ywany w procedurze DFT-NCCI parametr obci¦cia ε niskich warto±ci wªasnych ma-
cierzy norm. Rachunek zostaª przeprowadzony dla stanów 2+

1 , 1+
1 oraz 3+

1 w j¡drze 8Li.
Przestrze« kon�guracyjna w j¡drach 8Be oraz 8He zawiera wszystkie wzbudzenia 1p-1h
oraz, w przypadku 8Be, jedno dodatkowe wzbudzenie typu 2p-2h zast¦puj¡ce nieuzbie»-
nione wzbudzenie jednocz¡stkowe. Wysycenie reguªy sum Ikedy badano, dodaj¡c kolejne
kon�guracje w j¡drze 8Li. Na dolnym rysunku przedstawiono wyniki, w których nie za-
stosowano »adnego obci¦cia warto±ci wªasnych macierzy norm. Jak wida¢, do odtworzenia
90% reguªy sum, niezale»nie od spinu, wystarcza jedna kon�guracja reprezentuj¡ca stan
podstawowy w j¡drze 8Li. Reguªa sum wydaje si¦ by¢ nieczuªa na uwzgl¦dnianie kolejnych
wzbudze« przedstawionych w Tab. 5.2. Na tej podstawie mo»na wnioskowa¢, »e najni»ej
le»¡ce stany 2+

1 , 1+
1 oraz 3+

1 bardzo dobrze opisuje jedna kon�guracja reprezentuj¡ca stan
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Rys. 5.11: Warto±ci wªasne macierzy norm dla stanów 0+, 1+, 2+, 3+, oraz 4+ w
j¡drze 8Be (po lewej) oraz w 8Li (po prawej).

podstawowy.

W wielu przypadkach stany naturalne o bardzo niewielkich warto±ciach wªasnych ma-
cierzy norm prowadz¡ do niestabilno±ci rachunków DFT-NCCI . Te mo»na kontrolowa¢
przy u»yciu parametru obci¦cia ε. Warto±¢ tego parametru nie jest jednak jednoznaczna.
Wyboru dokonujemy na podstawie zachowania warto±ci wªasnych macierzy norm, obcina-
j¡c je zgodnie z obserwowanymi nieci¡gªo±ciami (skokami). W 8Li, p. Rys. 5.11, najbardziej
naturalnym wyborem jest obci¦cie ε ≈ 0.01. Taki wybór nie wpªywa znacz¡co na reguª¦
sum Ikedy. Mo»na zauwa»y¢ jednak, »e rachunki z parametrem obci¦cia s¡ bardziej sta-
bilne z dodawaniem kolejnych kon�guracji w porównaniu z rachunkami bez parametru
ε.

3.2 Funkcja odpowiedzi Gamowa-Tellera w j¡drze 24Mg

W tym podrozdziale prezentujemy wyniki dotycz¡ce rozkªadu nasilenia Gamowa-
Tellera (Gamow-Teller strength distribution, GTSD) w j¡drze 24Mg populowanym w roz-
padzie beta stanu podstawowego 24Al o Iπg.s. = 4+.

W terminologii u»ywanej standardowo w modelu powªokowym, 24Mg jest j¡drem z
powªoki sd z o±mioma cz¡stkami walencyjnymi powy»ej rdzenia 16O. Rachunki w mo-
delu pola ±redniego przewiduj¡ z drugiej strony, »e jest to j¡dro silnie zdeformowane o
parametrze β2 = 0.42. Do opisu takiego ukªadu idealnie nadaj¡ si¦ zdeformowane stany
jednocz¡stkowe Nilssona. Widmo jednocz¡stkowe w stanie podstawowym 24Mg pokazuje
Rys. 5.12. Przestrze« kon�guracyjn¡ skonstruujemy w oparciu o wzbudzenia pomi¦dzy
aktywnymi poziomami Nilssona z powªoki sd uwzgl¦dniaj¡c stany |220 1/2〉, |211 3/2〉
oraz |202 5/2〉 pochodz¡ce z podpowªoki sferycznej d5/2, poziom |200 1/2〉 pochodz¡cy ze
sferycznego stanu s1/2 oraz stany |211 1/2〉 i |202 3/2〉 pochodz¡ce ze sferycznej podpow-
ªoki d3/2.
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Rys. 5.12: Neutronowe poziomy jednocz¡stkowe w stanie podstawowym 24Mg. Po-
ziomom zostaªy przypisane przybli»one liczby kwantowe Nilssona. Kóªkami ozna-
czono stany obsadzone.

Przestrze« kon�guracyjna parzysto-parzystego j¡dra 24Mg zbudowana wedªug standar-
dowych reguª. W jej skªad wchodz¡: stan podstawowy oraz wszystkie wzbudzenia cz¡stka-
dziura w obr¦bie aktywnych poziomów Nilssona. Rzutowanie na izospin pozwala na dalsze
zaw¦»enie przestrzeni w j¡drze N = Z do wzbudze« 1p-1h nukleonu jednego typu, co zwe-
ry�kowano, uwzgl¦dniaj¡c w obliczeniach kon�guracj¦ najni»ej le»¡cego wzbudzenia pro-
tonu (kon�guracja nr 18) . W rozwa»anym j¡drze istnieje zatem 16 ró»nych wzbudze« typu
1p-1h, z uszeregowanymi oraz antyuszeregowanymi spinami niesparowanych nukleonów.
Dodatkowo, celem sprawdzenia stabilno±ci rachunków, w przestrzeni uwzgl¦dniono dwa
energetycznie najni»ej le»¡ce wzbudzenia 2p-2h. Wszystkie kon�guracje zostaªy wyszcze-
gólnione w Tab. 5.4. Wszystkie s¡ osiowo zdeformowane, a moment p¦du niesparowanych
cz¡stek walencyjnych jest zorientowany wzdªu» osi OZ.

Systematyczne rachunki elementów macierzowych Gamowa-Tellera w j¡drach zwier-
ciadlanych T = 1/2 pokazaªy, »e jego warto±¢ obliczona ze stanu podstawowego do stanu
podstawowego Iπ → Iπ jest praktycznie nieczuªa ze wzgl¦du na mieszanie kon�guracji.
Podobne zachowanie ujawnia si¦ w przypadku badania rozkªadu nasilenia Gamowa-Tellera
zaprezentowanym na wykresie 5.13. Rysunek przedstawia obliczenia elementu macierzo-
wego Gamowa-Tellera w rozpadzie j¡dra 24Al,4+

g.s. →24 Mg 4+
i w modelu DFT-NCCI z 17.

kon�guracjami przestrzeni modelowej w 24Mg, obejmuj¡cej stan podstawowy oraz wszyst-
kie dost¦pne wzbudzenia 1p-1h. Ka»dy panel ró»ni si¦ przestrzeni¡ kon�guracyjn¡ u»yt¡
do wyznaczenia stanu podstawowego 24Al. Na rysunku (a), funkcj¦ falow¡ 24Al wyznacza
si¦ z jednej kon�guracji uszeregowanego stanu podstawowego, nast¦pnie przestrze« kon�-
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Tabela 5.4: Kon�guracje wchodz¡ce w skªad przestrzeni kon�guracyjnej j¡dra
24Mg. Kon�guracje oznaczono liczbami kwantowymi Nilssona. W tabeli podano rów-
nie» wªasno±ci poszczególnych kon�guracji: ich energi¦ HF podan¡ w MeV, energi¦
wzgl¦dem stanu podstawowego podan¡ w MeV, parametr deformacji β2 oraz magne-
tyczn¡ liczb¦ kwantow¡ w ukªadzie wewn¦trznym K wraz z jej orientacj¡.

i |24Mg; i〉 EHF ∆E β2 K

1 g.s. −194.33 0 0.42 0

2 |ν211 3/2−〉−1 ⊗ |ν202 5/2−〉1 −187.92 6.41 0.34 1Z
3 |ν211 3/2+〉−1 ⊗ |ν202 5/2−〉1 −187.25 7.08 0.34 4Z
4 |ν211 3/2+〉−1 ⊗ |ν211 1/2−〉1 −187.46 6.87 0.43 2Z
5 |ν211 3/2−〉−1 ⊗ |ν211 1/2−〉1 −184.89 9.44 0.40 1Z
6 |ν220 1/2−〉−1 ⊗ |ν202 5/2−〉1 −183.34 10.99 0.24 2Z
7 |ν220 1/2+〉−1 ⊗ |ν202 5/2−〉1 −183.27 11.06 0.23 3Z
8 |ν211 3/2+〉−1 ⊗ |ν200 1/2+〉1 −181.79 12.54 0.36 1Z
9 |ν211 3/2+〉−1 ⊗ |ν200 1/2−〉1 −181.50 12.83 0.34 2Z
10 |ν220 1/2+〉−1 ⊗ |ν211 1/2−〉1 −181.99 12.34 0.35 1Z
11 |ν220 1/2−〉−1 ⊗ |ν211 1/2−〉1 −180.78 13.55 0.33 0Z
12 |ν211 3/2−〉−1 ⊗ |ν202 3/2+〉1 −178.83 15.50 0.34 3Z
13 |ν211 3/2+〉−1 ⊗ |ν202 3/2+〉1 −177.16 17.17 0.33 0Z
14 |ν220 1/2−〉−1 ⊗ |ν200 1/2−〉1 −177.04 17.29 0.27 0Z
15 |ν220 1/2+〉−1 ⊗ |ν200 1/2−〉1 −176.94 17.39 0.25 1Z
16 |ν220 1/2−〉−1 ⊗ |ν202 3/2+〉1 −174.00 20.33 0.25 2Z
17 |ν211 3/2+〉−1 ⊗ |ν202 3/2+〉1 −173.47 20.86 0.24 1Z
18 |π211 3/2−〉−1 ⊗ |π202 5/2−〉1 −188.00 6.33 0.34 1Z
19 |ν211 3/2−〉−1 ⊗ |ν202 5/2−〉1 −184.29 10.04 0.10 1Z
|π211 3/2−〉−1 ⊗ |π202 5/2−〉1

20 |ν211 3/2〉−2 ⊗ |ν202 5/2〉2 −183.13 11.20 0.26 0Z

guracyjn¡ rozbudowuje si¦ o antyuszeregowany stan podstawowy (b) oraz o energetycznie
najni»ej le»¡ce wzbudzenie 1p-1h (c). Porównanie wszystkich trzech rysunków ewidentnie
wskazuje, »e wyznaczone elementy macierzowe s¡ niemal nieczuªe na korelowanie funkcji
falowej j¡dra 24Al.

Podobn¡ analiz¦ mo»na przeprowadzi¢, ustalaj¡c przestrze« kon�guracyjn¡ j¡dra 24Al
oraz sukcesywnie dodaj¡c kolejne wzbudzenia w j¡drze 24Mg. Taka dyskusja jest szcze-
gólnie istotna ze wzgl¦du na �zyczn¡ interpretacj¦ pojawiaj¡cych si¦ maksimów lokalnych
w j¦zyku wzbudze« mi¦dzy nilssonowskimi orbitalami. Wyniki przedstawiono na wykre-
sie 5.14. W cz¦±ci (a) przedstawiono obliczenia rozkªadu nasilenia Gamowa-Tellera, wyko-
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Rys. 5.13: Stabilno±¢ elementu macierzowego Gamowa-Tellera wzgl¦dem wy-
miaru przestrzeni kon�guracyjnej modelu DFT-NCCI rozpadaj¡cego si¦ j¡dra.
Wykres przedstawia elementy macierzowe Gamowa-Tellera rozpadu |24Al; 4+

g.s.〉 →
|24Mg; 4+〉. Wyniki uzyskano przy u»yciu 17 kon�guracji skªadaj¡cych si¦ na prze-
strze« kon�guracyjn¡ j¡dra 24Mg. Ilo±¢ wyznaczników Slatera (SD) u»ytych do skore-
lowania ukªadu j¡dra 24Al zmienia si¦ od jednego reprezentuj¡cego stan podstawowy
(dolny panel) do trzech energetycznie najni»ej le»¡cych (górny panel).

rzystuj¡c przestrze« kon�guracyjn¡ zbudowan¡ ze stanu podstawowego oraz pierwszych
4 wzbudze« w obr¦bie stanów jednocz¡stkowych pochodz¡cych z orbitalu d5/2. Nast¦p-
nie, w cz¦±ci (b) do przestrzeni kon�guracyjnej dodano wzbudzenia neutronu do poziomu
|211 1/2〉 pochodz¡cego ze sferycznego orbitalu d3/2. Okazuje si¦, »e ten stan odgrywa
kluczow¡ rol¦ przy odtworzeniu rozkªadu nasilenia Gamowa-Tellera, a w szczególno±ci
w opisie pierwszego rezonansu Gamowa-Tellera (GTR) le»¡cego ∼8MeV ponad stanem
podstawowym. Warto zwróci¢ uwag¦, »e energia centroidu jest identyczna z energi¡ stanu
|211 1/2〉 liczon¡ wzgl¦dem poziomu Fermiego. Ten przykªad wskazuje na wysok¡ czuªo±¢
rozkªadu nasilenia Gamowa-Tellera na poªo»enie orbitali jednocz¡stkowych. Na Rys. 5.14c
przedstawiono rachunki z przestrzeni¡ kon�guracyjn¡, w której rozwi¡zania HF o energii
wzgl¦dem stanu podstawowego ∆EHF s¡ ograniczone przez eksperymentaln¡ warto±¢ Qβ

tj. ∆EHF ¬ 14.5MeV. Na Rys. 5.14d przedstawiono rachunki z przestrzeni¡ kon�guracyjn¡
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Rys. 5.14: Elementy macierzowe Gamowa-Tellera rozpadu stanu podstawowego 4+

j¡dra 24Al do stanów 4+ w j¡drze 24Mg wzgl¦dem wymiaru przestrzeni kon�gura-
cyjnej j¡dra 24Mg. Szczegóªy w tek±cie.

uwzgl¦dniaj¡c¡ wszystkie dost¦pne wzbudzenia 1p-1h. Uwzgl¦dnienie tych wzbudze« ma
znacznie przede wszystkim dla wysokoenergetycznej cz¦±ci rozkªadu nasilenia Gamowa-
Tellera, powy»ej okna energetycznego wyznaczonego przez warto±¢ Qβ. St¡d brak w tej
cz¦±ci widma poziomów eksperymentalnych.

Na Rys. 5.15 przedstawiono ostateczny wynik oblicze« w modelu DFT-NCCI uwzgl¦d-
niaj¡cy przej±cia ze stanu podstawowego 4+ w 24Al do wszystkich dost¦pnych stanów
3+, 4+ oraz 5+ w j¡drze 24Mg.Wyznaczone widmo porównano z rachunkami modelu powªo-
kowego z oddziaªywaniem USDb oraz z warto±ciami eksperymentalnymi [169]. Zarówno
rachunki modelu powªokowego jak i modelu DFT-NCCI idealnie oddaj¡ do±wiadczalne
poªo»enie centroidu wyznaczonego przez przej±cie 4+ → 4+ jednocze±nie dwukrotnie prze-
szacowuj¡ jego wysoko±¢. Ponadto w rachunkach DFT-NCCI pierwszy rezonans rozszcze-
pia si¦ na dwa blisko le»¡ce maksima. Jest to efekt niewªa±ciwego mieszania si¦ orbitali
sd. Drugi rezonans widoczny w rachunkach DFT-NCCI poªo»ony jest poza do±wiadczal-
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Rys. 5.15: Rozkªad nasilenia Gamowa-Tellera w j¡drze 24Mg z rozpadu stanu pod-
stawowego 4+ w j¡drze 24Al. Rozkªad nasilenia uwzgl¦dnia elementy macierzowe
sprz¦gaj¡ce stany 3+, 4+ oraz 5+ w j¡drze 24Mg. Wynik DFT-NCCI porównano z
warto±ciami eksperymentalnymi oraz rachunkami w modelu powªokowym [169]. Roz-
kªad zostaª uci¡glony przy u»yciu funkcji Lorentza z szeroko±ci¡ poªówkow¡ równ¡
Γ = 0.5MeV.

nym oknem energetycznym wyznaczonym przez warto±¢ Qβ. Co ciekawe, jego poªo»enie,
podobnie jak w przypadku pierwszego rezonansu, jest zdeterminowane energi¡ jednocz¡st-
kow¡ poziomu |202 3/2〉 wzgl¦dem powierzchni Fermiego p.Rys. 5.12.

Podobnie jak w przypadku rozpadu 8He→8Li warto przyjrze¢ si¦ strukturze rezonan-
sów w j¦zyku pierwotnych kon�guracji ±redniopolowych interpretowanych z u»yciem jed-
nocz¡stkowych orbitali Nilssona. Taki rozkªad w przypadku j¡dra 24Mg zaprezentowano
na wykresie 5.16. Stan podstawowy rozpadaj¡cego si¦ j¡dra 24Al o spinie 4+ jest zdomino-
wany przez uszeregowan¡ ±redniopolow¡ kon�guracj¦, w której niesparowany proton obsa-
dza poziom |202 5/2〉. Jak przedstawiono w Tab. 5.1 ten poziom ma bardzo du»y element
Gamowa-Tellera z poziomami |202 5/2〉 oraz jego partnerem spinorbitalnym |202 3/2〉 w
j¡drze córki 24Mg. St¡d pierwszy rezonans widoczny na Rys. 5.15 powinien gªównie pocho-
dzi¢ od uszeregowanego wzbudzenia neutronu do poziomu |202 5/2〉. W istocie wkªad tej
kon�guracji w pierwszy stan rezonansowy jest wiod¡cy. Bardzo bliskie poªo»enie orbitali
|202 5/2〉 oraz |211 1/2〉 powoduje ich efektywne mieszanie w polu ±rednim. Rzeczywi-
±cie, uszeregowana kon�guracja ze wzbudzeniem neutronu do poziomu |211 1/2〉, patrz
Tab. 5.4, daje porównywalny wkªad do rezonansu. Zgodnie z dyskusj¡ Rys. 5.14 w po-
przednim paragra�e, wzbudzenie do orbitalu |202 5/2〉 powoduje pojawienie si¦ rezonan-
sowego maksimum w widmie. Jednak dopiero uwzgl¦dnienie wzbudze« do stanu |211 1/2〉
stabilizuje jego poªo»enie energetyczne. Niezaniedbywalny wkªad do pierwszego rezonansu
pochodzi równie» od wy»ej wzbudzonych uszeregowanych kon�guracji nr 7 oraz 10, patrz
Tab. 5.4, w których wzbudzony neutron obsadza stany |202 5/2〉 (7) oraz |211 1/2〉 (10).
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Rys. 5.16: Rozkªad funkcji falowej pierwszego (czerwony) oraz drugiego stanu rezo-
nansowego Gamowa-Tellera w bazie kon�guracji ±redniopolowych wyszczególnionych
w tabeli 5.4

W przeciwie«stwie do pierwszego rezonansu, drugi, le»¡cy powy»ej warto±ci Qβ, zde-
terminowany jest przez uszeregowan¡ kon�guracj¦ nr 12 (p. Tab. 5.4) wzbudzenia neu-
tronu do poziomu |202 3/2〉. Jej wkªad wynosi niemal ∼ 80%. Pozostaªe 20% pochodzi
od energetycznie wy»ej wzbudzonej uszeregowanej kon�guracji nr 16 powstaªej równie»
przez obsadzenie orbitalu |202 3/2〉. Brak energetycznie blisko le»¡cych stanów Nilssona
powoduje, »e interpretacja drugiego rezonansu jest znacznie bardziej jednoznaczna.

3.3 Superdozwolony rozpad Gamowa-Tellera w j¡drze 100Sn

W tym krótkim podrozdziale przedstawiamy wyniki modelu DFT-NCCI dotycz¡ce
superdozwolonego rozpadu beta j¡dra 100Sn 0+ →100In 1+ oraz niskoenergetycznej struk-
tury I ¬ 8 w j¡drze 100In. Przypadek tych j¡der jest interesuj¡cy z kilku wzgl¦dów.
Zachodz¡cy mi¦dzy nimi rozpad beta stanowi najszybszy rejestrowany rozpad Gamowa-
Tellera, a zatem najwi¦kszy element macierzowy spo±ród caªej tablicy nuklidów. Warto±¢
log ft jest znacznie mniejsza od tej wyznaczonej dla superdozwolonego rozpadu Fermiego
w tym j¡drze. St¡d nazywa si¦ go superdozwolonym rozpadem Gamowa-Tellera. Zgodnie
ze wzorem (5.18) w bazie sferycznej przej±cie mi¦dzy 0g9/2 a 0g7/2 wynosi bowiem:

MGT(0g9/2 → 0g7/2) = −4
3

√
10 ≈ −4.216 (5.24)

co przekªada si¦ na warto±¢ BGT = 28.67 przy zaªo»eniu, »e gA = −1.2701. Ponadto
dyskusja struktury j¡dra po rozpadzie � 100In stanowi doskonaªy test u»ywanego oddzia-
ªywania oraz modelu DFT-NCCI w ci¦»szych j¡drach. Jest to region najci¦»szych j¡der
le»¡cych na linii N = Z. Co wi¦cej j¡dro 100In jest niemal sferyczne, a w konsekwencji
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mieszanie si¦ niskole»¡cych orbitali jednocz¡stkowych nie jest bardzo efektywne. Natural-
nie, punktem odniesienia nie mo»e by¢ spektrum wyznaczone na gruncie eksperymentu.
Rozwa»any region tablicy nuklidów nale»y bowiem do egzotycznych j¡der, dla których
przypisanie nawet spinu stanu podstawowego nie jest pewne. Nasze rachunki struktury
wobec tego zestawimy z rachunkami otrzymanymi w modelu powªokowym [201].
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Rys. 5.17: Widmo niskole»¡cych stanów w j¡drze 100In wyznaczone przy u»yciu
modelu DFT-NCCI (na ±rodku) oraz modelu powªokowego LSSM (po prawej). Z
lewej strony wykresu przedstawiono warto±¢ do±wiadczaln¡ (linia kropkowana) oraz
uzyskan¡ w modelu DFT-NCCI (linia ci¡gªa) energii wi¡zania j¡dra 100Sn. Szczegóªy
zawarto w tek±cie.

W przypadku podwójnie magicznego j¡dra 100Sn ukªad kwantowy opisujemy przez
±redniopolow¡ kon�guracj¦ stanu podstawowego. Energia wi¡zania tego j¡dra wynosi w
naszych rachunkach 827.7MeV, przeszacowuj¡c warto±¢ eksperymentaln¡ 825.3±0.3MeV
jedynie o 0.3%.

Struktura j¡dra 100In zostaªa wyznaczona przy u»yciu dziewi¦ciu osiowo zdeformo-
wanych kon�guracji ±redniopolowych. Osiem z nich odpowiada kon�guracjom z dziur¡
protonow¡ na orbitalu g9/2 oraz ze wzbudzeniem neutronu do stanów pochodz¡cych od
sferycznych orbitali d5/2 � νd5/2⊗πg−1

9/2 i g7/2 �νg7/2⊗πg−1
9/2. Dziewi¡ta kon�guracja odpo-

wiada energetycznie najni»ej le»¡cemu wzbudzeniu πp-πh przez powªok¦ Z=50. Zostaªa
uwzgl¦dniona w rachunkach DFT-NCCI celem przetestowania stabilno±ci zarówno struk-
tury j¡drowej w 100In, jak i warto±ci elementu macierzowego superdozwolonego przej±cia
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Gamowa-Tellera. Rachunek pokazaª, »e skorelowanie ukªadu przez uwzgl¦dnienie tej kon-
�guracji nie wpªywa na »adne z tych warto±ci.

Wyznaczone w modelu DFT-NCCI widmo najni»szych stanów o spinach 1+ ¬ Iπ ¬ 8+

w j¡drze 100In zostaªo przedstawione na wykresie 5.17, gdzie zaprezentowano równie»
widmo najni»szych stanów o spinach 1+ ¬ Iπ ¬ 6+ wyznaczone w modelu powªoko-
wym [202, 203]. Rachunki zostaªy unormowane do stanu podstawowego, który zarówno w
modelu DFT-NCCI jak i modelu powªokowym ma spin I = 6+. Energia tak wyliczonego
stanu podstawowego wyznaczona w modelu DFT-NCCI ró»ni si¦ jedynie o 9 keV w sto-
sunku do warto±ci eksperymentalnej. Pomijaj¡c brak poziomów 7+

1 oraz 8+
1 w modelu po-

wªokowym, kolejno±¢ wyst¦powania poszczególnych stanów wzbudzonych jest identyczna
w obu modelach. W modelu DFT-NCCI energie wzbudzenia tych stanów s¡ jednak sys-
tematycznie wi¦ksze od tych otrzymanych w modelu powªokowym.

Warto±¢ elementu macierzowego Gamowa-Tellera otrzymana w wyniku zmieszania opi-
sanych wy»ej kon�guracji w modelu DFT-NCCI niemal nie ró»ni si¦ od warto±ci uzyskanej
w bazie sferycznej (5.24) i wynosi:

MNCCI
GT = −4.191. (5.25)

Uwzgl¦dniaj¡c fakt, »e dla standardowo zde�niowanego operatora Gamowa-Tellera (5.3),
w j¡drach o liczbie masowej A = 100− 132 warto±¢ parametru q (2.31) wynosi 0.6 [176],
otrzymujemy B(NCCI)

GT ≈ 10.2. Tak otrzymana wielko±¢ bardzo dobrze zgadza si¦ z warto-
±ci¡ wyznaczon¡ eksperymentalnie B(EXP)

GT = 9.1+2.6
−3.0.





Rozdziaª 6

Podsumowanie

Jednoreferencyjna metoda DFT w zastosowaniu do �zyki j¡drowej ma bardzo ograni-
czon¡ funkcjonalno±¢ ze wzgl¦du na efekt spontanicznego naruszenia symetrii. Mo»e by¢
ona z powodzeniem u»ywana do opisu obj¦to±ciowych wªasno±ci j¡der jak masy, energie
separacji, promienie czy momenty kwadrupolowe. Naruszenie symetrii nie pozwala jednak
na w peªni kwantowy opis struktury stanów wzbudzonych, przej±¢ elektromagnetycznych
czy te» kluczowych w kontek±cie niniejszej rozprawy przej±¢ beta. Takie badania wyma-
gaj¡ skonstruowania teorii DFT z przywróconymi symetriami. Mo»na to osi¡gn¡¢, stosuj¡c
techniki rzutowania na podprzestrzenie o okre±lonych liczbach kwantowych. Wykorzysta-
nie, w kontek±cie rzutowania, uogólnionego twierdzenia Wicka prowadzi do uogólnionej
teorii DFT, w której funkcjonaª g¦sto±ci zachowuje swoj¡ posta¢ ale wyra»a si¦ za pomoc¡
g¦sto±ci przej±ciowych, liczonych pomi¦dzy ró»nymi wyznacznikami Slatera � ró»nymi sta-
nami referencyjnymi. Takie uogólnienie nosi nazw¦ wieloreferencyjnej metody DFT. W
tej pracy zaproponowano dalsze uogólnienie metody MR DFT, polegaj¡ce na uwzgl¦d-
nieniu w ramach tego formalizmu mieszania kon�guracji typu cz¡stka-dziura. Ta metoda,
zwana DFT-NCCI (DFT-rooted No-Core Con�guration-Interaction) stanowi podstawowe
narz¦dzie teoretyczne, które rozwini¦to, zaimplementowano kodzie numerycznym HFODD
rozwijanym od dekad przez warszawsk¡ grup¦ teorii struktury j¡dra. Nast¦pnie metod¦
przetestowano w ramach prac skªadaj¡cych si¦ na niniejsz¡ rozpraw¦. Formalizm DFT-
NCCI pozwala prowadzi¢ badania spektroskopowe w sposób w peªni poprawny z punktu
widzenia mechaniki kwantowej, nadaj¡c tak uogólnionej teorii DFT funkcjonalno±¢ mo-
delu powªokowego. Zachowana jest przy tym uniwersalno±¢ metody SR DFT, tj. model
mo»e by¢ stosowany do dowolnego j¡dra z tablicy nuklidów. Przywrócenie symetrii ro-
tacyjnej i poprawny sposób opisu jawnego naruszenia symetrii izospinowej umo»liwia, w
szczególno±ci, przeprowadzenie analizy rozpadów beta z punktu widzenia �zyki j¡dro-
wej, jak równie» �zyki cz¡stek elementarnych, wery�kuj¡c podstawowe hipotezy Modelu
Standardowego. Tego typu rachunki wymagaj¡ poprawnego opisu jawnego ªamania sy-
metrii izospinowej, której podstawowym ¹ródªem jest oddziaªywania Coulomba, które, ze
wzgl¦du na swój dªugozasi¦gowy charakter, polaryzuje caªe j¡dro. Opis teoretyczny efektu
polaryzacji coulombowskiej wymaga zatem teorii, która nie operuje poj¦ciami rdzenia i
przestrzeni walencyjnej. Ten warunek speªniaj¡ modele wywodz¡ce si¦ z DFT rozwijane
w tej pracy.

Przedstawiona praca dotyczy bada« podstawowych w dziedzinie �zyki j¡drowej z za-
stosowaniami do badania wybranych aspektów �zyki cz¡stek elementarnych. Gªówne za-
dania badawcze jakie w niej postawiono i zrealizowano obejmowaªy:
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1. implementacj¦ numeryczn¡ metody DFT-NCCI z przywrócon¡ symetri¡ rotacyjn¡
i poprawnie opisan¡ symetri¡ izospinow¡, i jej zastosowanie do oblicze« struktural-
nych w j¡drach atomowych w celu przetestowania wyników w zale»no±ci m. in. od
przyj¦tej przestrzeni kon�guracyjnej [2, 6]

2. przeprowadzenie systematycznych rachunków dla poprawek izospinowych do przej±¢
superdozwolonych 0+ → 0+ mi¦dzy izospinowymi stanami analogowymi o T ≈ 1, a
w konsekwencji do analizy warto±ci wiod¡cego elementu macierzowego Vud macierzy
mieszania kwarków CKM [6];

3. implementacj¦ oraz przetestowanie elementu macierzowego Gamowa-Tellera (GTME)
i przeprowadzenie oblicze« GTME w j¡drach zwierciadlanych T = 1/2 z zakresu mas
A = 11 − 55 w modelu NCCI [3] w celu przeanalizowania efektu quenchingu staªej
sprz¦»enia pr¡dów osiowo-wektorowych gA. [3]

4. wyznaczenie funkcji odpowiedzi Gamowa-Tellera (GTR) dla peªnego spektrum sta-
nów wzbudzonych j¡dra, dla wybranych ukªadów o N ∼ Z i o masach z zakresu
A = 8− 100 z jednoczesn¡ analiz¡ struktury orbitali jednocz¡stkowych [2, 4];

5. implementacj¦ kontaktowego oddziaªywania klasy III w rz¦dach LO i NLO w module
zwi¡zanym z przywracaniem symetrii izospinowej w kodzie HFODD [1];

6. analiz¦ wpªywu poszczególnych ¹ródeª ªamania symetrii izospinowej tj. oddziaªywa-
nia Coulomba oraz efektywnego, kontaktowego oddziaªywania klasy III na warto±¢
parametru zmieszania izospinowego αISB oraz na warto±¢ poprawki izospinowej δISB

do przej±¢ Fermiego w j¡drach zwierciadlanych o T = 1/2, a w konsekwencji na
warto±¢ elementu macierzowego Vud oraz na test unitarno±ci macierzy mieszania
kwarków CKM [1];

W pracy uzyskano szereg ciekawych wyników teoretycznych. Obliczenia przeprowa-
dzone w modelu DFT-NCCI dla 12. przypadków bardzo precyzyjnie zmierzonych rozpa-
dów superdozwolonych wraz z analiz¡ niepewno±ci teoretycznych prowadz¡ do warto±ci:

V 0+→0+
ud = 0.97396(25). (6.1)

Powy»sza warto±¢ jest w peªni konsystentna z rachunkami modelu powªokowego z poten-
cjaªem Woodsa-Saxona, dla którego Vud = 0.97420(21). Warto±ci obu modeli wskazuj¡ na
zachowanie unitarno±ci macierzy CKM, cho¢ w przypadku modelu DFT-NCCI test jest
speªniony dopiero w przedziale 3σ.

Nale»y jednak podkre±li¢, »e rachunki poprawek izospinowych do przej±¢ superdozwo-
lonych w modelu DFT-NCCI nie uwzgl¦dniaj¡ czªonów ªami¡cych izospin przez efektywne
oddziaªywanie silne. Wynika to z faktu, »e w j¡drach z trypletu izospinowego aktywne s¡
zarówno skªadowe izowektorowe jak i izotensorowe siªy kontaktowej. Mieszanie protonów
z neutronami wprowadzane przez oddziaªywania klasy II wymaga zastosowania technik
rzutowych w trzech wymiarach w izoprzestrzeni. W chwili obecnej trwaj¡ prace zwi¡zane
z zaimplementowaniem trójwymiarowego rzutowania na izospin w kodzie HFODD.

Alternatywn¡ metod¡ j¡drow¡ sprawdzania unitarno±ci macierzy CKM jest bada-
nie rozpadu beta Fermiego w j¡drach zwierciadlanych T = 1/2, I, Tz = ±1/2 → T =
1/2, I, Tz = ∓1/2. Metoda pozwala obecnie na wyznaczenie warto±ci elementu Vud z
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podobn¡ dokªadno±ci¡ jak¡ daje rozpad swobodnego neutronu. Powodem ni»szej dokªad-
no±ci w wyznaczaniu wiod¡cego elementu macierzowego Vud jest stosunkowo niewielka
liczba przej±¢, dla których zarówno czas »ycia, jak i niezb¦dny do analizy statystycznej
parametr korelacji, s¡ wyznaczane w do±wiadczeniu z wysok¡ precyzj¡. Jak dot¡d do
analizy wª¡cza si¦ 4 takie przej±cia: mianowicie rozpady mi¦dzy j¡drami o liczbie maso-
wej A =19, 21, 35 oraz 37. Z drugiej strony badanie przej±¢ Fermiego mi¦dzy j¡drami
zwierciadlanymi T = 1/2 stanowi doskonaªy test badania zale»no±ci czªonów ªami¡cych
izospin przez oddziaªywanie silne. Uwzgl¦dnienie oddziaªywania klasy III (3.51) nie ªa-
mie osiowej symetrii izospinowej, wobec czego jednowymiarowe rzutowanie na izospin
jest w peªni wystarczaj¡ce. W wyniku przeprowadzonych rachunków DFT-NCCI, w ni-
niejszej pracy otrzymali±my warto±¢ elementu macierzowego V mirror

ud = 0.9725(14) przy
uwzgl¦dnieniu oddziaªywania Coulomba jako jedynego ¹ródªa ªamania symetrii izospino-
wej. Pokazali±my nast¦pnie, »e wª¡czenie klasy III znacz¡co wpªywa na warto±¢ elementu
macierzowego, daj¡c:

V mirror
ud = 0.9736(14). (6.2)

Powy»szy wynik jest ciekawy z dwu wzgl¦dów. W pierwszej kolejno±ci pokazuje, »e uwzgl¦d-
nienie oddziaªywa« ªami¡cych izospin przez efektywne oddziaªywanie silne jest niezwykle
istotne, nie tylko do odtworzenia anomalii Nolena-Shi�era w masach j¡der zwierciadla-
nych, ale równie» ma du»y, a nawet zaskakuj¡co du»y wpªyw na takie wielko±ci jak po-
prawki izospinowe, a w konsekwencji na element Vud. Ponadto wynik jest w peªni kon-
systentny z obliczeniami modelu powªokowego oraz z warto±ci¡ otrzyman¡ z rachunków
dotycz¡cych przej±¢ superdozwolonych (6.1). Nale»y przypuszcza¢, »e wraz ze zwi¦ksza-
j¡c¡ si¦ liczb¡ bardzo dokªadnie zmierzonych przej±¢ pomi¦dzy j¡drami zwierciadlanymi
T = 1/2, bª¡d statystyczny b¦dzie spada¢ i w przyszªo±ci metoda b¦dzie konkurencyjna
do tej, w której wykorzystuje si¦ przej±cia superdozwolone 0+ → 0+.

W teorii V − A wyró»niamy dwa rodzaje rozpadów beta: rozpady typu Fermiego
przy udziale wektorowych pr¡dów elektorsªabych oraz typu Gamowa-Tellera (GT) przy
udziale pr¡dów osiowo-wektorowych. Te ostatnie charakteryzuje hipoteza cz¦±ciowego
zachowania pr¡du aksjalnego. Zakªada ona, »e dywergencja aksjalnego pola wektoro-
wego ma wªasno±ci pseudoskalarne opisywane w Modelu Standardowym przez piony ule-
gaj¡ce rozpadowi w obecno±ci oddziaªywa« silnych. Osiowo-wektorow¡ staª¡ sprz¦»enia
gA = −1.2723(23) (2.30) mo»na wówczas wyznaczy¢ przy u»yciu relacji Goldbergera�
Trimana. Z drugiej strony dokªadnego opisu staªej dostarczaj¡ globalne rachunki rozpadów
beta w kanale Gamowa-Tellera. Dotychczasowe badania w modelu powªokowym wskazuj¡
jednak, »e gA zmienia si¦ w zale»no±ci od masy j¡dra atomowego, a element macierzowy
Gamowa-Tellera jest systematycznie przeszacowywany przez teori¦ o pewien u±redniony
czynnik (2.31):

geff
A = qgA (6.3)

Model DFT-NCCI daje mo»liwo±¢ opisu rozpadu GT bez u»ycia podziaªu na rdze« i
przestrze« walencyjn¡, a wi¦c z zupeªnie innej perspektywy ni» w dotychczas funkcjonu-
j¡cym modelu powªokowym. Analiza porównawcza obu metod wielociaªowych dostarcza
odpowiedzi na wiele pyta«, które pojawiªy si¦ w �zyce j¡drowej przez dekady korzysta-
nia z modelu powªokowego. Flagowym przykªadem staªy si¦ rachunki dotycz¡ce efektu
quenchingu staªej sprz¦»enia pr¡dów osiowo-wektorowych. Przedstawione w tej rozprawie
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systematyczne rachunki elementu macierzowego Gamowa-Tellera mi¦dzy j¡drami zwier-
ciadlanymi T = 1/2, poza nielicznymi, kªopotliwymi przypadkami zwi¡zanymi prawdo-
podobnie z nie�zycznym mieszaniem si¦ orbitali, okazuj¡ si¦ by¢ w doskonaªej zgodno±ci
z elementami macierzowym GT wyznaczonymi w ramach modelu powªokowego (a ±ci-
±lej wielu ró»nych modeli powªokowych). Wyznaczony parametr skaluj¡cy tzw. parametr
quenchingu jest identyczny w obu modelach i przyjmuje warto±¢:

q = 0.74(21) (6.4)

Poniewa» konstrukcja obu modeli ró»ni si¦ fundamentalnie to przeprowadzone rachunki
dotycz¡ce rozpadów beta typu Gamowa-Tellera w modelu bazuj¡cym na teorii funkcjo-
naªu g¦sto±ci pozwoliªy na zaw¦»enie stawianych hipotez dotycz¡cych efektu quenchingu
staªej sprz¦»enia pr¡dów osiowo-wektorowych do wpªywu pr¡dów dwuciaªowych. Wyklu-
czono przede wszystkim przypuszczenia jakoby, przybli»enie rdzenia oraz ograniczenie
przestrzeni walencyjnej, czyli gªówne mankamenty modelu powªokowego, odpowiadaªy
za problem systematycznego przeszacowywania elementu macierzowego na rozpad beta
w kanale osiowo-wektorowym. Rzeczywi±cie, najnowsze wyniki bada« uwzgl¦dniaj¡cych
pr¡dy dwuciaªowe dopasowane do superdozwolonego rozpadu Gamowa-Tellera j¡dra 100Sn
znacznie redukuj¡ efekt quenchingu z q = 0.74 do q = 0.92.

W niniejszej rozprawie, dzi¦ki skonstruowaniu modelu DFT-NCCI, wykonano pierw-
sze w historii obliczenia funkcji odpowiedzi Gamowa-Tellera metodami wywodz¡cymi si¦ z
metod funkcjonalnych bez stosowania przybli»e«. Obliczenia funkcji odpowiedzi Gamowa-
Tellera zostaªy przeprowadzone w bardzo lekkich j¡drach A = 8 oraz w j¡drze ze ±rodka
powªoki sd � 24Mg. Przeprowadzone rachunki okazaªy si¦ by¢ konkurencyjne z rachun-
kami modelu powªokowego ze wzgl¦du na zgodno±¢ z danymi do±wiadczalnymi. Struktura
modelu pozwoliªa na interpretacj¦ rozkªadu funkcji nasilenia GT w j¦zyku niezwykle intu-
icyjnych ±redniopolowych wyznaczników Slatera i zdeformowanych orbitali nilssonowskich.

Model DFT-NCCI jest modelem uniwersalnym, pozbawionym wolnych parametrów,
z mo»liwo±ci¡ zastosowania do dowolnego j¡dra z tablicy nuklidów. W rozprawie wyko-
nali±my obliczenia struktury i elementów macierzowych rozpadów beta w j¡drach bardzo
lekkich, o A ≈ 8 jak i ci¦»kich o A ≈ 100. W szczególno±ci wykonali±my obliczenia
dla superdozwolonego przej±cia Gamowa-Tellera 100Sn→100In. Jest to najszybszy rozpad
Gamowa-Tellera spo±ród j¡der z caªej tablicy nuklidów. Jego eksperymentalnie zmierzona
warto±¢ BGT przysªu»yªa si¦ do dopasowania pr¡dów dwuciaªowych oddziaªywania sªa-
bego. W tej pracy przedstawiam rachunki NCCI i porównuje je z rachunkami modelu
powªokowego oraz z jednociaªowym elementem macierzowym wyznaczonym w bazie sfe-
rycznej. Ponownie, rachunki okazuj¡ si¦ przeszacowywa¢ warto±¢ BGT w porównaniu z
warto±ci¡ do±wiadczaln¡, pozostaj¡c w peªnej zgodno±ci z innymi modelami. Równie» ko-
lejno±¢ poziomów w 100In zgadza si¦ z obliczeniami modelu powªokowego.

Niniejsza rozprawa otwiera szeroko wrota do dalszych bada«. Przetestowanie modelu
DFT-NCCI i jego przestrzeni kon�guracyjnej przy okazji bada« nad funkcj¡ odpowiedzi
Gamowa-Tellera jest niesªychanie istotne ze wzgl¦du na przyszªe badania m.in. nad bez-
neutrinowym podwójnym rozpadem beta. Jedn¡ z metod oszacowania takiego elementu
macierzowego jest bowiem wyznaczanie elementów macierzowych pojedynczego rozpadu
z po±rednicz¡cymi stanami wzbudzonymi z jednoczesnym zachowaniem zupeªno±ci prze-
strzeni kon�guracyjnej. Bezneutrinowy podwójny rozpad beta (0νββ) jest obecnie jednym
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z najbardziej poszukiwanych przez naukowców w przyrodzie zjawiskiem �zycznym. Zaob-
serwowanie takiego przej±cia ±wiadczyªoby bowiem o istnieniu �zyki, w której niezachowa-
nie liczby leptonowej byªoby dozwolone. Eksplorowany obecnie (zarówno przez naukow-
ców �zyki teoretycznej i do±wiadczalnej cz¡stek elementarnych) model supersymetryczny
(SUSY) rozszerzaj¡cy symetrie Modelu Standardowego, zakªada istnienie neutralina - su-
persymetrycznego partnera neutrina - cz¡stki Majorany, wymaganej przez rozpad 0νββ.
Wobec czego badania na tym procesem doprowadziªyby do ogromnego post¦pu zarówno
w dziedzinie �zyki j¡drowej jak i �zyki cz¡stek elementarnych. Odkrycie oscylacji neutrin,
a w konsekwencji potwierdzenie posiadania niezerowej masy przez te cz¡stki, zainspiro-
waªo do jeszcze bardziej wzmo»onych bada« nad rozpadem 0νββ zarówno w modelach
teoretycznych jak i w coraz kosztowniejszych eksperymentach.

Dalsze prace nad modelem DFT-NCCI mog¡ przyczyni¢ si¦ do gª¦bszego zrozumienia
procesów elektrosªabych w astro�zyce. Mo»liwe b¦dzie bowiem wyznaczenie w prezen-
towanym modelu przekroju czynnego na rozpraszanie neutrina na j¡drze. Zrozumienie
oddziaªywania neutrino�j¡dro jest wa»ne ze wzgl¦du na badania procesu nukleosyntezy
ci¦»kich pierwiastków � procesu, który mo»e zachodzi¢ w neutronowo nadmiarowym ±rodo-
wisku eksploduj¡cej gwiazdy. Taka wiedza jest niesªychanie istotna w zrozumieniu zjawisk
zachodz¡cych w warunkach wybuchu gwiazd supernowych, i ze wzgl¦du na ograniczone
mo»liwo±ci w przeprowadzaniu bada« do±wiadczalnych, do realizacji symulacji kompute-
rowych ich wybuchu.

Formalizm rzutowania DFT-NCCI nie jest pozbawiony mankamentów. Najistotniej-
szym z nich s¡ numeryczne problemy zwi¡zane z otrzymywanymi przy rzutowaniu osobli-
wo±ciami. Pochodz¡ one z rzutowania z wyznacznika Slatera otrzymywanego w modelach
DFT z oddziaªywaniami zale»nymi od g¦sto±ci. Obecnie wiadomo, »e takie funkcjonaªy
dobrze oddaj¡ charakterystyk¦ oddziaªywa« trójciaªowych wysycaj¡cych siªy j¡drowe.
Trwaj¡ obecnie intensywne badania nad regularyzacj¡ funkcjonaªów oraz nad tworze-
niem funkcjonaªów nowej generacji � funkcjonaªów sko«czonego zasi¦gu, które w proce-
durze rzutowania byªyby wolne od problemów z biegunami. Istniej¡ realne przesªanki, »e
wykorzystanie funkcjonaªów nowej generacji stworzyªoby szans¦ na odtworzenie danych
do±wiadczalnych dotycz¡cych struktury j¡der atomowych z jeszcze wi¦ksz¡ precyzj¡ ni»
dotychczas. Drugim z celów takich prac jest realistyczne oszacowanie niepewno±ci teore-
tycznych do obliczonych poprawek izospinowych, czy elementów macierzowych Gamowa-
Tellera spowodowanych zale»no±ci¡ od struktury funkcjonaªu.
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