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Streszczenie

Jadra atomowe to znakomite laboratoria do badania fundamentalnych praw przyrody.
Rzadza nimi bowiem dlugozasiegowe oddzialywania coulombowskie, krotkozasiegowe od-
dzialywania silne wiazace nukleony w jadra atomowe (oddzialywania nukleon-nukleon)
oraz oddzialywania stabe determinujace rozpady beta. Dogtebna analiza wszystkich trzech
jest niezbedna do prawidlowego opisu nuklidow. Oddziatywania stabe rozpatruje si¢ row-
niez z perspektywy Modelu Standardowego fizyki czastek elementarnych, stawiajacemu
sobie za cel wyjasnienie pryncypiéw funkcjonowania otaczajacego nas $wiata.

Binarna struktura jadrowa — tj. budowa uktadu kwantowego sktadajacego si¢ z dwu
typow czastek: protondéw i neutrondéw — powoduje asymetrie oddziatywan w jadrach. Po-
wodem sg miedzy innymi oddzialywania elektromagnetyczne wyr6zniajace protony przed
neutronami. Takie zjawisko nazywamy w fizyce naruszeniem symetrii izospinowej. Analiza
ztamania tej symetrii w tzw. superdozwolonych rozpadach beta otwiera mozliwosci we-
ryfikacji podstawowych hipotez Modelu Standardowego — przede wszystkim zatozenia, w
ktorym struktury hadronowe wyrastaja z trzech rodzin kwarkéw. W tym celu badam uni-
tarno$¢ macierzy mieszania kwarkéow Cabibbo-Kobayashiego-Maskawy (Nagorda Nobla
2008 "for the discovery of the origin of the broken symmetry which predicts the existence
of at least three families of quarks in nature”). Dotychczasowe wyniki badan z uzyciem
efektywnego potencjatlu nukleon-nukleon wskazuja na wysycenie liczby rodzin kwarkow
przez trzy generacje. Jednak rachunki z uwzglednieniem bardziej subtelnych (niz coulom-
bowskie) oddzialywan tamiacych symetrie izospinowa na poziomie mezon-nukleon, czy tez
mezon-kwark, wskazuja na odejécie od unitarnosci macierzy CKM, sugerujac jednoczesnie
istnienie nowych nieznanych czastek elementarnych.

Przejscia Fermiego nie s jedynym mozliwym kanalem rozpadu beta. Niemal rownie
prawdopodobne sg tak zwane przej$cia Gamowa-Tellera. Okazuje sie, ze prawdopodobien-
stwo takiego rozpadu jest od lat systematycznie przeszacowywane przez obliczenia teore-
tyczne wzgledem danych do$wiadczalnych. Efekt tej redukcji nazwano problemem quen-
chingu statej sprzezenia elektrostabych pradow typu Gamowa-Tellera g4. Ta stata mozna
bada¢ zaréwno na gruncie fizyki czastek elementarnych jak i fizyki jadrowej. Wnioski z
rachunkow wykonanych w ramach doktoratu pozwolity na odrzucenie gtéwnej hipotezy
rozwigzania tej zagadki, mianowicie wad konstrukcji modelu teoretycznego. Analiza po-
rownawcza wskazata na konieczno$é uwzglednienia elektrostabych pradow wyzszego rzedu,
co potwierdzily pézniejsze rachunki ab initio.

Zrozumienie mechanizmu quenchingu jest niezwykle istotne z punktu widzenia badan
bardzo interesujacego fizykéw jadrowych oraz naukowcow zajmujacych sie fizyka czastek
elementarnych zjawiska jakim jest proces podwdjnego rozpadu beta w kanale bezneutri-
nowym (Ov(3[3). Jest to obecnie jedno z najbardziej poszukiwanych zjawisk fizycznych.
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Zaobserwowany proces $wiadczytby o istnieniu fizyki poza ugruntowanym Modelem Stan-
dardowym. Odkrycie oscylacji neutrin (Nagroda Nobla 2015) zwiekszylto wsrod fizykow
zainteresowanie poszukiwaniem procesu Ov[3(, ktorego istnienie wymaga niezerowej masy
tych czastek.

Sygnaty pochodzace z wielu niezaleznych eksperymentéw wskazuja na koniecznosé
rozszerzenia Modelu Standardowego o nieznane dotad prawa fizyki. Niezwykle istotne
sa zatem badania potencjalnie wskazujace na elementy Modelu Standardowego, w kto-
rych nasze zrozumienie otaczajacego swiata jest niewystarczajace. Narzedzi badawczych
dostarczaja w tym przypadku wielociatowe metody fizyki jadrowej takie jak rozwijany
W niniejszej rozprawie uogodlniony funkcjonatl gestosci z przywréconymi symetriami: ob-
rotowa i izospinowa. Wykorzystujac ten formalizm w rozprawie zbadano: rozpady beta
pod katem weryfikacji podstawowych hipotez Modelu Standardowego (takich jak istnie-
nie trzech generacji kwarkow), zagadke dotyczaca efektu quenchingu stalej g4 oraz przed-
stawiono badania nad funkcja odpowiedzi Gamowa-Tellera dla kilku reprezentatywnych
przypadkow. Zbadano rowniez regute sum Ikedy celem weryfikacji zupelnoéci przestrzeni
konfiguracyjnej w modelu.



Abstract

Title in English: Beta decay in nuclear energy density functional and beyond

Atomic nuclei form an excellent playground to investigate the primary building blocks
of nature in the context of fundamental interactions between particles. Long-range electro-
magnetic Coulomb interaction, short-range strong interaction which binds nucleons into
atomic nuclei (nucleon-nucleon interaction), and weak interaction responsible for beta de-
cay pose a serious challenge in theoretical description of the nuclear chart where a deep
understanding of all of them is a must. The field of study is highly interdisciplinary as
the understanding of fundamental interactions have been the main goal of the Standard
Model of particle physics - the theory which pretends to account for the fundamental laws
of nature.

Binary structure of atomic nucleus - the quantum system composed of two types of
particles protons and neutrons — causes the asymmetry of the nucleon-nucleon interaction
due to, for instance, electromagnetic interaction which acts only between protons. The
analysis of breaking of the isospin symmetry in the so-called superallowed Fermi beta de-
cay provides a unique opportunity to verify the basic assumption of the Standard Model,
where hadronic structure is built upon three generations of quarks. For that reason one
of the key point of the thesis was to focus on the research of unitarity of the Cabbibo-
Kobayashi-Maskawa (CKM) quark mixing matrix (Nobel prize 2008 "for the discovery of
the origin of the broken symmetry which predicts the existence of at least three families of
quarks in nature"). So far, the calculation of nuclear beta decay with an effective nucleon-
nucleon interaction does not contradict with this assumption. Therefore either, we live
indeed in the three-generation-quark world or quarks of next generation are so massive
that we need much more precise calculation to reach the required level of accuracy of the
unitarity of CKM matrix.

The Fermi beta decay is by no means the only channel of beta transition. With nearly
the same probability the nucleus may decay in the Gamow-Teller channel where the spin
change is involved. Many years ago it turned out that the transition probability is sys-
tematically overestimated by the theory with respect to experimental data. The observed
reduction is responsible for coining the term quenching for the reduction effect related to
the coupling constant of Gamow-Teller type of electroweak currents. The coupling con-
stant has been studied within both nuclear and particle physics. The conclusion that has
been made within this work allowed to reject the main hypothesis behind the quenching.
Instead of suspecting the drawbacks of the theoretical approach itself it turned out that
the solution of the puzzle of the quenching was most probably related to many-body cur-
rents, which had been not included at any point in the calculation. Only very recently
this statement has been confirmed by the ab initio calculations in several examples of the
Gamow-Teller beta decay.
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Furthermore, the Gamow-Teller transitions are crucial to settle up the research on
neutrinoless double beta decay. It is one of the most sought-after process in physics as if
measured, would indicate the existence of new physics beyond the Standard Model with
neutrino being its own antiparticle with the non-zero mass. The discovery of the neutrino
oscillation (Nobel prize 2015) made the subject even more vivid among scientists. It
meant that neutrinos are massive. It is therefore obligatory for nuclear theory to perform
extremely precise calculation indicating possible isotopes that may decay in that exciting
neutrinoless double decay channel. The model that has been widely tested and explored
within the thesis, especially in the context of Gamow-Teller transitions, is now almost
ready for the calculation of the Ov(3( channel.
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Slowo wstepne 1 zarys pracy

Jadro atomowe to samowiazacy sie uktad nukleonow, ktore, w przeciwienstwie do
elektron6w w atomie, nie poruszaja sie w studni zewnetrznego potencjatu. W teorii funk-
cjonatu gestosci (DFT) opis jadra musi by¢ zatem dokonany w jezyku gestosci wewnetrz-
nych, co z kolei prowadzi do spontanicznego naruszenia symetrii reprezentujacego stan
jadra wyznacznika Slatera zbudowanego z orbitali Kohna-Shama. To zaweza stosowalno$¢
jadrowej metody funkcjonatu gestosci (EDF) do obliczania tzw. objetosciowych obserwa-
bli jak masy, promienie czy momenty kwadrupolowe.

Przywrocenie naruszonych symetrii, czyli konstrukcja stanéw o dobrych liczbach kwan-
towych, jest kluczowa do opisu struktury jadrowej, a w szczegbdlnosci do wyznaczenia
elementow macierzowych przej$é¢ rozpadéw beta i gamma. Mozna to osiagnaé¢ poprzez
zastosowanie technik rzutowych. Z formalnego punktu widzenia prowadzi to do przefor-
mutowania jadrowej metody funkcjonatlu gestosci w jezyku tzw. gestosci przejsciowych
liczonych pomiedzy roznymi wyznacznikami Slatera. Takie rozszerzenie metody DFT nosi
nazwe wieloreferencyjnej metody DFT (MR DFT). Metoda MR DFT jest narzedziem
uniwersalnym, ktorej podstawowa zaleta jest mozliwo$¢ wykonywania rachunkéw struk-
turalnych — zarezerwowanych dotychczas dla modelu powtokowego — dla dowolnego jadra
z tablicy nuklidow.

Olbrzymi potencjal metody przyciagnat wiele grup badawczych do pracy nad zasto-
sowaniami oraz dalszymi rozszerzeniami modelu MR DFT. Warszawska grupa fizykow
zajmujacych sie teorig struktury jadra atomowego jako jedna z pierwszych na $§wiecie po-
taczyta koncepcje mieszania konfiguracji (CI) z podej$ciem funkcjonalnym w ramach MR
DFT, konstruujac model DFT-NCCI (DFT-rooted No-Core Configuration-Interaction).
Pierwsze testy modelu DFT-NCCI zaprezentowane w postaci kilku artykuléw naukowych
okazaly sie by¢ nadzwyczaj zachecajace i zainspirowaly do jej dalszego doskonalenia i
rozszerzenia palety zastosowan do réznorodnych probleméw fizycznych, w szczegolnoscei
tych zwiazanych z rozpadem beta czego dotyczy niniejsza rozprawa doktorska.

Kluczowym pojeciem metody MR DF'T i jej rozszerzen stosowanych w niniejszej roz-
prawie jest pojecie symetrii uktadu oraz mechanizméw jej naruszenia i sposobéw przy-
wracania. Te zagadnienia porusza rozdzial pierwszy, w ktérym wprowadzimy stosowny
aparat matematyczny w ramach teorii algebr Liego dajacy podstawy matematyczne do
konstrukeji operatorow rzutowych stuzacych do przywracania spontanicznie naruszanych
symetrii ciaglych takich jak symetria obrotowa i izospinowa. W tym rozdziale przedysku-
tujemy takze podstawowe symetrie hamiltonianu jadrowego.

Rozdzial drugi w calosci poswiecony jest teorii rozpadu beta. Zaczniemy od przy-
pomnienia teorii Fermiego, ktora nastepnie rozszerzymy do opisu w jezyku natadowa-
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nych pradéw elektrostabych w ramach teorii unifikacji Glashowa-Salama-Weinberga. W
kolejnych paragrafach omoéwimy hipoteze zachowania pradu wektorowego (CVC) oraz
czesciowego zachowania pradu osiowo-wektorowego (PCAC), wiazac je, odpowiednio, ze
sposobami wyznaczania elementu macierzowego V.4 macierzy mieszania kwarkéow oraz z
efektem redukeji elementu macierzowego Gamowa-Tellera w osrodku jadrowym. W para-
grafie czwartym omowimy macierz mieszania kwarkéw Cabbibo-Kobayashiego-Maskawy
(CKM). W paragrafie piatym skoncentrujemy sie na metodach jadrowych wyznaczania
wiodacego elementu macierzowego V,q macierzy CKM. Przedyskutujemy szczegdtowo za-
réowno metode wykorzystujacg rozpady superdozwolone 07 — 07 jak i metode wyko-
rzystujaca rozpady Fermiego pomiedzy jadrami zwierciadlanymi 7' = 1/2. W paragrafie
szostym oméwimy w skrocie parametry korelacji w rozpadzie beta niezbedne do wyzna-

czenia elementu macierzowego V,q w metodzie przej$¢ miedzy jadrami zwierciadlanymi
T=1/2.

W rozdziale trzecim skoncentrujemy sie na opisie formalizmoéw teoretycznych, ktorych
bedziemy uzywac¢ do opisu wielociatlowego stanu kwantowego. Zaczniemy od modelu pola
sredniego w ujeciu Hartree’ego—Focka. W kolejnych paragrafach przedstawimy opis od-
dzialywania nukleon-nukleon oraz wprowadzimy efektywne oddziatywanie Skyrme’a, a na-
stepnie przedyskutujemy niezalezna od gestosci parametryzacje oddzialywania Skyrme’a
SV uzywana w obliczeniach. W paragrafie pigtym rozszerzymy oddziatywanie Skyrme’a o
cztony izowektorowe, ktore okaza sie niezwykle istotne przy opisie poprawek izospinowych
do rozpadéw beta typu Fermiego. W kolejnych paragrafach oméwimy metody przywraca-
nia symetrii rotacyjnej i izospinowej w ramach teorii MR DFT. Zas w ostatnim paragrafie
skoncentrujemy sie na metodzie DF'T-NCCI, omawiajac jej idee jak rowniez jej zalety i
wady.

Zastosowania formalizmu DF'T-NCCI do badania rozpadéw Fermiego i Gamowa-Tellera
przedstawiono w rozdzialach czwartym i piatym. Model DF'T-NCCI z powodzeniem zasto-
sowano do opisu podstawowych proceséow elektrostabych w kontekscie struktury materii
jadrowej. Pierwsze rachunki dotyczyly wpltywu lamania symetrii izospinowej na wspot-
czynnik zmieszania izospinowego oraz na element macierzowy superdozwolonych rozpa-
dow beta typu Fermiego w tryplecie izospinowym 7' = 1 oraz rozpadow beta w jadrach
zwierciadlanych 7" = 1/2. Rozpady superdozwolone stanowia najdoktadniejszy test we-
ryfikujacy hipoteze Modelu Standardowego dotyczacg zachowania wektorowych pradow
elektrostabych, a w konsekwencji hipoteze istnienia trzech generacji kwarkéw. Dotych-
czasowe wyniki uzyskane zaré6wno w modelu powtokowym jak i w podejéciu wypraco-
wanym przez nhasza grupe wskazuja na unitarno$¢ macierzy mieszania kwarkow CKM.
Rachunki w metodzie RPA, gdzie wykorzystywany lagranzjan uwzglednia oddziatlywa-
nia nukleon-mezon, wskazuja jednak na delikatne odstepstwo od unitarnos$ci macierzy
CKM, poddajac w watpliwos¢ wysycenie zupelnosci stanéow kwarkowych tylko przez trzy
generacje. Stad tak istotne jest przeprowadzanie mozliwie jak najwiekszej ilosci testow
weryfikujacych unitarno$é¢ macierzy CKM. Alternatywnym podejsciem umozliwiajagcym
wyznaczenie elementu macierzowego Vyq jest analiza przejs¢ Fermiego w jadrach zwiercia-
dlanych. Rozdzial czwarty przedstawia wyniki obliczenn poprawek izospinowych zaréwno
do przejsé superdozwolonych (paragraf pierwszy) jak i przej$¢ w jadrach zwierciadlanych
T = 1/2 (paragraf drugi). Przedstawiono w nim szeroka dyskusje pojawiajacych sie pro-
blemoéw zwigzanych ze struktura pozioméw jednoczastkowych wyznaczonych przy uzyciu
parametryzacji SV wraz z oszacowaniem niepewnosci teoretycznych dla obliczonych po-



Stowo wstepne i zarys pracy XV

prawek izospinowych. Bardzo ciekawym wynikiem przedstawionym w tym rozdziale jest
pionierska analiza wpltywu kontaktowych efektywnych oddziatywan silnych klasy IIT (izo-
wektorowych) na poprawki izospinowe do przej$¢ Fermiego i ich znaczenie w kontekscie
testow sektora elektrostabego Modelu Standardowego.

Rozdzial pigty koncentruje sie na wynikach badan dla przejs¢ beta typu Gamowa-
Tellera (GT). Badania przejs¢ GT byly jak dotad domena modelu powlokowego. Uzy-
skiwane wyniki byly jednak systematycznie przeszacowywane w poréwnaniu do danych
do$wiadczalnych, co wigzano ze skoniczonym rozmiarem przestrzeni walencyjnej oraz przy-
blizeniem rdzenia stosowanym w modelu powlokowym. W niniejszej rozprawie przedsta-
wiamy pierwszg systematyczna analize elementéw macierzowych GT wykonang przy uzy-
ciu modeli MR DFT i DFT-NCCI. Pokazemy, ze nasze obliczenia sa w pelni konsystentne
z obliczeniami klasycznego modelu powtokowego co, ze wzgledu na fundamentalne roéznice
miedzy modelami, wskazuje na inne zrodla redukeji (quenchingu) elementu macierzowego
GT niz wspomniane wyzej. Wyjasnienie zjawiska quenchingu statej g4 (elementu macie-
rzowego GT) ma charakter fundamentalny, dotyczy bowiem sprzezenia pradoéw odpowie-
dzialnych za najczesciej wystepujace rozpady beta w jadrach atomowych.

W pierwszym paragrafie rozdzialu piatego, podamy wyrazenie na element macierzowy
GT w modelu MR DFT i opiszemy wyniki testéw numerycznych jego implementacji.
W kolejnym paragrafie przedstawimy obliczenia elementu macierzowego GT pomiedzy
stanami podstawowymi w jadrach zwierciadlanych 7" = 1/2 wzdluz linii N = Z, ktore
przedyskutujemy w kontekscie quenchingu statej sprzezenia pradéw osiowo-wektorowych.
W kolejnych paragrafach przedstawimy analize elementéw macierzowych GT ze stanu
podstawowego w jadrze matki do stanéw wzbudzonych w jadrze corki, zwracajac szcze-
gblna uwage na saturacje reguty sum lkedy. Rachunki dotyczace funkcji odpowiedzi GT
przeprowadzimy dla bardzo lekkiego jadra ®Li oraz jadra ze $rodka powloki sd — *Mg i
przeanalizujemy, po raz pierwszy, w jezyku stanoéw (konfiguracji) Nilssona. W ostatnim
paragrafie tego rozdzialu przedstawimy rachunki dotyczace superdozwolonego rozpadu
Gamowa-Tellera 1°°Sn —1%]n.

Wszystkie obliczenia zaprezentowane w niniejszej pracy wykonano przy uzyciu lo-
kalnych funkcjonatow gestosci generowanych niezalezna od gestosci sita Skyrme’a SV.
Rachunki dotyczace przejs¢ superdozwolonych przeprowadzono przy uzyciu standardowej
sity SV z wlaczonym cztonem tensorowym w funkcjonale gestosci, SV1. Pozostate oblicze-
nia bazuja na sile SVr.50, ktora ma o 20% silniejsze oddziatywanie spin-orbita w stosunku
do SVr. Ta site wzbogacono nastepnie o kontaktowe cztony tamigce symetrie izospinowa

w kanale izowektorowym w wiodacym rzedzie SVITS;]Sg“ © oraz w rzedzie uwzgledniajacym

. . ISB,NL - S }
cztony powierzchniowe SVTS.S(’) ©. Wlasciwe uchwycenie zrodet fizycznego (jawnego) na-

ruszania symetrii izospinowej ma kolosalne znaczenie dla testow Modelu Standardowego
wykorzystujacych analize rozpadéw beta jader atomowych. Wszystkie prezentowane obli-
czenia wykonano przy pomocy kodu numerycznego HFODD systematycznie rozwijanego
przez nasza grupe badawcza.
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Rozdziat 1

Podstawowe symetrie w fizyce jadrowe]

§1. Grupy symetrii i jej reprezentacje

Niech grupa G bedzie grupa ciagta tj. taka, dla ktérej dowolny element g € G mozna
sparametryzowac przy uzyciu lokalnego uktadu n wspotrzednych, a jego element odwrotny
jest pewna ciagly funkcja f tych parametrow wzgledem dziatania w obrebie grupy G. Jezeli
grupa G jest skonczenie wymiarowa gtadka rozmaitoscia (f sa funkcjami analitycznymi),
dla ktorej definiuje sie operacje rézniczkowania i catkowania to wowczas grupe G nazy-
wamy grupg Liego. Jezeli dodatkowo dzialanie jest przemienne to wowczas grupe Liego
nazywamy abelowa.

Rozwazmy infinitezymalnie male otoczenie, dla uproszczenia punktu 9@ = 0. Wowczas
element grupy g € G mozemy przedstawi¢ w postaci rozwiniecia:

j=1
gdzie element X;—generator grupy wyraza si¢ jako:

. 0g
X, =—i— . (1.2)
’ 90; [9=0

Element odwrotny w grupie G mozemy przedstawi¢ w postaci:
g M) =1—i>_9:X;,+ 09 (1.3)
i=1

Strukture dziatania w obrebie grupy Liego mozemy zdefiniowaé za pomoca jej algebry. Aby
wprowadzi¢ algebre Liego nalezy okresli¢ posta¢ komutatora grupy G (inaczej pochodna
grupy — G'). Rozwazajac obiekt:

9(&) = g(@) % g(D) x g(e) ' * g(9)~" (1.4)

mozemy ustali¢ posta¢ dowolnego komutatora (dowolny element G’). Element ¢(£€) nalezy
do grupy G, wobec czego jest analityczna funkcjg parametréow ¢ oraz 1. Rozwijajac te
funkcje w szereg Taylora wokél ¢ = 0,19 = 0 oraz narzucajac warunki brzegowe:

e=0V9=0 = £=0 (1.5)
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otrzymujemy, ze parametr § zalezy jedynie od wyrazéw mieszanych i w pierwszym rzedzie
jest rowny & = (00, gdzie wspélezynnik proporcjonalnodci Cpj, nazywamy staly
struktury grupy. Wowczas:

9(§) =1 +iZn:§zXl + ... (1.6)
=1

7 drugiej strony wstawiajac (1.1 i (1.3) do (1.4) i poréwnujac z (1.6)) otrzymujemy postac

dowolnego elementu komutatora G':

(X5, Xi] = 1) CiynXa, (1.7)

=1

ktory definiuje algebre Liego w grupie G z baza zlozona z generatorow (1.2)) tejze grupy.
Komutator jest antysymetryczny a ponadto spelnia tozsamosé Jacobiego. Ta z kolei wy-
znacza relacje, ktorg spelniaja state struktury grupy Cjjp:

ijkonlm + lejonkm + kalanm =0 (18)

Kazda algebre Liego mozna przedstawi¢ za pomoca reprezentacji zbioru macierzy kwa-
dratowych. To znaczy, ze istnieje homomorfizm grupy Liego G do pewnej przestrzeni li-
niowej odwracalnych operatorow liniowych V: g; € G — D(g;) czyli, ze

gixg9i =9« == D(g:)D(g;) = D(g)- (1.9)

Jezeli macierz reprezentacji D(g) grupy G mozna przedstawi¢ w postaci blokowo diago-
nalnej, to wowczas D(g) nazywamy reprezentacja przywiedlna lub produktowa:

D(g) = P Di(g). (1.10)

W przeciwnym przypadku reprezentacje nazywamy nieprzywiedlng.

Macierz reprezentacji D(g) mozna utozsamiac z liniowa transformacja pewnego zbioru
wektorow. Wowcezas wymiar przestrzeni wektorowej, na ktora dziala transformacja, jest
wymiarem tej reprezentacji. W przypadku reprezentacji produktowej dowolny podzbiér
wektorow jest roztaczny z reszta wektorow. Gdy przestrzen jest wyposazona w iloczyn
skalarny, ten warunek oznacza ortogonalnos¢ wektorow w danym zbiorze. Natomiast w
przypadku reprezentacji nieprzywiedlnej wektory danego zbioru sa powigzane ze soba
pewna transformacja dziatajaca w obrebie grupy.

Fundamentem teorii reprezentacji jest lemat Schura, ktory mowi, ze jedyna macie-
rzg przemienna z dowolna macierza reprezentacji nieprzywiedlnej grupy G jest macierz
bedaca krotnoscia identycznosci. Bezposrednim wnioskiem ptynacym z tego lematu jest
nastepujace twierdzenie o ortogonalnosci dwu reprezentacji nieprzywiedlnych |13} [14]:



Dla reprezentant dwu nieprzywiedlnych reprezentacji (u, v) grupy G oznaczonych ma-
cierzami D*(g) oraz D¥(g) zachodzi tozsamosé:

G
Z D Dk:l ) ‘ ’ 5},LV5215]]€7 (111)
dim V
geG
gdzie suma przebiega po wszystkich elementach grupy G, |G| jest rzedem tej grupy a
dim V' jest wymiarem przeksztalcenia liniowego miedzy przestrzeniami liniowymi repre-
zentacji (u, v).

Obrotem wektora |U#) w reprezentacji 4 w grupie G nazwiemy operacje:

g9) |4 ZD ) WY (1.12)

dla ktorej 72(9) jest operatorem obrotu sparametryzowanym elementem g € G, a D*
jest ciagly reprezentacja nieprzywiedlng grupy G. Mnozac te tozsamos$é obustronnie przez
sprzezenie zespolone reprezentanty Dy (g), sumujac obustronnie po wszystkich elementach
grupy oraz korzystajac z twierdzenia o ortogonalnosci otrzymujemy, ze:

P E) = 88 [9F), (1.13)

gdzie operator pr jest operatorem rzutowym nieprzywiedlnej reprezentacji p i wyraza sie
wzorem:

A dim V . -

Pi=—ar 2. Pi9R(9). (1.14)

geG

Ponadto, dla operatora pr zachodzg tozsamogci:

PPy = 6,0 (1.15)
oraz:
(P! = Pj; (1.16)

co oznacza, ze operator P* nie jest indempotentny, a zatem nie jest operatorem rzutowym
w sensie matematycznym.

Przedstawione powyzej wlasnosci matematyczne grup Liego, ich reprezentacje oraz
operatory rzutowe beda niezbedne do opisu uktadu kwantowego przy wykorzy-
staniu podstawowych symetrii oraz p6zniej w procedurze rzutowania na okreslone liczby
kwantowe.

§2. Symetrie oddzialywania silnego

W poprzednim podrozdziale omoéwilismy pokrotce strukture matematyczna skonczo-
nych grup Liego - niezwykle istotnych ze wzgledu na interpretacje badanych zjawisk fi-
zycznych. Grupy Liego naleza do grup ciaglych. Réwnie istotna okazuje sie by¢ analiza
symetrii dyskretnych takich jak: symetria parzystosci, odwroécenia w czasie, czy syme-
trie punktowe jak sygnatura i sympleks. Te ostatnie wydaja sie by¢ niezwykle istotne ze
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wzgleddéw czysto pragmatycznych. Pozwalaja bowiem na znaczne uproszczenie wykorzy-
stywanych narzedzi obliczeniowych. Nierzadko narzucenie symetrii na uktad kwantowy
skraca czas obliczeniowy, a czasem nawet wrecz umozliwia rozwiazanie problemu, ktory
przy zrelaksowanych symetriach punktowych nie jest mozliwy do rozwigzania [15]. Grupy
opisujace symetrie punktowe to grupy diedralne D,,.

Do symetrii punktowych nalezy tzw. symetria sygnatury, ktorg opisuje grupa Dy roz-
pieta przez operator identycznosci oraz trzy unitarne operatory sygnatury postaci:

Ry = exp(—i%fk), (1.17)

gdzie I, jest operatorem rzutu catkowitego momentu pedu na o$ k. Przy czym dla jader
parzystych Ry jest operatorem hermitowskim, za$ dla nieparzystych antyhermitowskim.
Wobec powyzszego, dla jader nieparzystych, grupe Dy rozszerza si¢ do podwdjnej 8 ele-
mentowej grupy DY. Interpretacja fizyczna sprowadza si¢ do geometrii uktadu kwanto-
wego. Dla jader parzystych obrot o kat Wﬂnie zmienia uktadu kwantowego. Natomiast ten
sam obrot w przypadku jadra nieparzystego zmienia kierunek pradu nieparzystej czastki
walencyjne;j.

Jezeli uktad kwantowy zachowuje zaréwno symetrie sygnatury oraz symetrie parzysto-
$ci, to wowezas grupy punktowe D i DY rozszerza sie odpowiednio do 8 i 16 elementowych
przez dodanie operatora parzystosci, tworzac operatory sympleksu [15]:

. = PRy, (1.18)

bedace operatorami zwierciadlanego odbicia wzgledem ptaszczyzn y — 2,2 — x oraz x — y
odpowiednio dla k = x,y, 2. Wreszcie, uwzgledniajac antyliniowy operator odwrdcenia w
czasie:

Ty :exp<—2;_;§;€>f(, (1.19)
gdzie S jest operatorem sktadowej y catkowitego spinu, a K jest operatorem sprzezenia
zespolonego, tworzymy 16 i 32 elementowe grupy.

Operator T} jest antyunitarny, a zatem jego wartosci wlasne nie sa mierzalne. Ten
fakt powoduje, ze symetria odwrocenia w czasie jest najmniej intuicyjna sposrod reszty
dyskutowanych symetrii. Dyskusja wtasnosci operatora T}, jest szczeg6lnie istotna w przy-
padku teorii pola sredniego uwzgledniajacej korelacje par. W przypadku zas modelu
Hartree’ego-Focka wykorzystywanego w tej pracy istotna konsekwencja jest tzw. degene-
racja Kramersa. W stanie podstawowym jader parzysto-parzystych liczba nukleonow jest
jednoznacznie okreslona. Natomiast w przypadku jader nieparzystych lub nieparzysto-
nieparzystych stan podstawowy mozna opisa¢ przy uzyciu dwu ortogonalnych wieloczast-
kowych stanow | ) oraz T'|¥) o tej samej energii.

Operator odwrocenia w czasie Ty komutuje z operatorem sympleksu 5’% Wobec czego,
jezeli uktad kwantowy zachowuje symetrie sympleksu to istnieje baza stanow jednoczast-
kowych spetniajacych obie te symetrie jednoczesnie. Dodatkowo, w przypadku zachowania

!Przy zalozeniu osiowej deformacji jadra.



symetrii parzystosci operator Ty komutuje réwniez z operatorem sygnatury Ri. Wowczas
sygnatura uktadu kwantowego opisuje de facto kierunek pradu czastki walencyjnej — znak
rzutu momentu pedu na o$ kwantyzacji. W niniejszej pracy symetrie sygnatury, parzy-
stosci oraz odwrocenia w czasie sg zachowane, wobec czego, ze wzgledu na intuicyjna
interpretacje fizyczna, stany kwantowe opisujemy przy uzyciu sygnaturowej liczby kwan-
towej i zapisujemy je odpowiednio |+),|—) dla wartosci whasnych {i, —i} operatora Ry.
Szczegdlowe rozwazania czytelnik znajdzie w ksiazce [16].

Symetrie zachowane przez oddzialtywanie silne mozemy sklasyfikowa¢ ze wzgledu na
przemienno$¢ grup skoriczonych opisujacych te symetrie. I tak: do grup abelowych naleza
symetria translacyjna, symetria cechowania zwiazana z liczba czastek U(1) oraz punktowa
symetria parzystosci a takze jednowymiarowe podgrupy grup obrotow SU(2), natomiast
do grup nieabelowych zaliczamy petne grupy obrotow SU(2). Taki podzial jest istotny ze
wzgledu na konstrukcje i charakterystyke operatora rzutowego danej grupy.

Dokladna analiza symetrii jakim podlega hamiltonian ukladu jadrowego jest niezwy-
kle istotna w zrozumieniu przyblizent czynionych przez przyjecie modelu pola Sredniego
w ujeciu Hartree’ego—Focka, na ktérym opiera si¢ przedstawiony w niniejszej pracy mo-
del teoretyczny. Ponadto, konstrukcja oddzialywania jadrowego opiera si¢ na zatozeniu
spelnienia przezen odpowiednich symetrii. I tak hamiltonian jadra atomowego jest nie-
zmienniczy ze wzgledu na:

e translacje tego ukltadu w przestrzeni opisywana przez ciagla symetrie przesunieé,
e rotacje tego uktadu w przestrzeni opisywana przez ciagla symetrie obrotowa,

e rotacje tego ukladu w izoprzestrzeni opisywang przez ciagly symetrie izospinowa
(lub izobaryczna) [

e catkowitg liczbe czastek opisywang przez ciggla symetrie liczby czastek,

e inwersje przestrzenng opisywana przez dyskretna symetrie parzystosci przestrzennej,
e inwersje czasowa opisywang przez dyskretng symetrie odwrdcenia w czasie,

e transformacje Galileusza [I]

Symetrie dyskretne zostaly juz pokrotce sklasyfikowane. Teraz bardziej szczegoltowo
zostang opisane symetrie ciggle, ktorych opisu dostarczaja grupy Liego. Zatem zgodnie
7 , skalujac parametr ¥ przez _Tzlv ciggle symetrie mozemy przedstawi¢ przy pomocy
ich unitarnej reprezentacji postaci:

U = exp (;jm), (1.20)

gdzie operator symetrii S jest generatorem grupy, natomiast ¢ ciaggltym, w ogoélnosci wek-
torowym, parametrem parametryzujacym elementy tejze grupy.

2Symetria izospinowa jest symetrig przyblizona.
3W niniejszej pracy stosujemy opis nierelatywistyczny.
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Symetria translacyjna

Zalozenie jednorodnosci przestrzeni, w ktorej znajduje sie uktad kwantowy, prowadzi
do narzucenia symetrii translacyjnej tj. takiej, w ktorej opis ukladu kwantowego jest
niezalezny od potozenia w przestrzeni. Wowcezas wektorowy operator catkowitego pedu

A
P=>p (1.21)

i=1
pelni role generatora grupy przesuniec¢, natomiast ¢, jest wektorem przesuniecia rg. Proce-
dura przywracania zlamanej symetrii translacyjnej nie wymaga skomplikowanych narzedzi

odwolujacych sie do teorii grup |17, 18]

Symetria rotacyjna

Pod nieobecno$¢ pola zewnetrznego zaden kierunek w przestrzeni nie jest wyrézniony,
wobec czego mozna zatozyé, ze przestrzen jest izotropowa. A zatem oddziatywanie jadrowe
oraz podlegty mu uktad kwantowy powinny by¢ niezmiennicze ze wzgledu na obrot w
przestrzeni. Naturalnie, symetria obrotowa jest ciagla, a generatorem odpowiadajacej jej
grupy jest catkowity moment pedu uktadu

A
J=%"j. (1.22)
=1

Ciagtym parametrem 1J,, sa katy obrotu |ag| wokot osi obrotu @—3' Przywrocenie ztamanej
symetrii rotacyjnej nie jest trywialne. Wymaga zastosowania metod rzutowych teorii grup
tudziez skorzystania z metod przyblizonych. W niniejszej rozprawie wszystkie przedsta-

wione rachunki wykorzystuja dokladny opis przywracania ztamanych symetrii.

Symetrie obrotowa w przestrzeni opisujemy w ramach konstrukeji grupy SO(3). Zgod-
nie z twierdzeniem Eulera kazdy element grupy SO(3) jest obrotem dookola pewnej
osi [13]. W reprezentacji macierzowej dowolny obrét mozna wyrazi¢ jako [19]:

A = B,CsB,, (1.23)

gdzie macierze B i C' sa obrotami, odpowiednio, dookota osi z i y, a katy a € [0;27),5 €
[0; 7] oraz y € [0; 27) sa katami Eulera. Natomiast duzo wygodniejsza grupa jest specjalna
unitarna grupa SU(2), dla ktorej latwiej o wyznaczenie nieprzywiedlnych reprezentacji
oraz wprowadzenie operatorow rzutowych. Dowolnos¢ wyboru miedzy grupami SO(3) i
SU(2) jest zapewniona przez izomorfizm ¥ :SO(3)—SU(2)/Z,, ktory mowi tyle, ze do-
wolna reprezentacja grupy SO(3) jest reprezentacja grupy SU(2), a kazdy obrot z SO(3)
odpowiada dokladnie dwu przeksztatceniom unitarnym g oraz —g nalezacym do SU(2).

Generatorami grupy SU(2), z dokladnoscia do czynnika %, s hermitowskie macierze
Pauliego, ktore w bazie polozeniowej przyjmuja postac:

o (00) ae(T) ee(3Y) na

dla ktorych slad tro; = 0. Na mocy (1.8) oraz wlasnosci macierzy Pauliego stata struktury
grupy (|1.7)) jest antysymetrycznym tensorem Levi’ego-Civity.



Kwadrat catkowitego momentu pedu w obrebie grupy SU(2) jest operatorem Casimira.
Wobec czego na mocy lematu Schura w reprezentacji nieprzywiedlnej J? jest operatorem
diagonalnym. Ponadto wsrod N2 —1 generatorow grupy SU(N)[] N —1 jest diagonalnych.
Wobec powyzszego istnieje baza reprezentacji nieprzywiedlnej, dla ktoérej stan kwantowy
zachowujacy symetrie rotacyjna — a zatem bedacy elementem grupy SU(2) — jest okreslony
przez dwie liczby kwantowe — catkowity moment pedu J oraz jego rzut na z-owa o$ M:
|JM). Wowcezas:

JHIMY = J(J+1)[JM)  J,|JM)=M|JM) (1.25)
W reprezentacji produktowej natomiast stan kwantowy opisujemy przy uzyciu momentow
pedu oraz ich rzutow na z-owa o$ wszystkich czastek: |jimijoma...jama).

Obie reprezentacje rozpinaja te sama przestrzen wektorowa, wobec czego istnieje li-
niowa transformacja przeksztalcajaca wektory jednej bazy w druga. W przypadku uktadu
dwufermionowego wspoétczynnikami rozwiniecia wektora bazy nieprzywiedlnej w bazie
produktowej sa wspotczynniki Clebscha-Gordana:

|JM) = ) c/M | j1ma jams) (1.26)

Jimaijama
mi,m2

Powyzsza analiza dotyczyta operatora catkowitego momentu pedu roztozonego w bazie
kartezjanskiej. Opis zarowno obrotu stanéw kwantowych jak i obrotu samych operatoréow
w obrebie grupy SU(2) jest znacznie bardziej przejrzysty w bazie sferycznej. Wzor
opisuje obrot ukltadu kwantowego w obrebie pewnej grupy Liego. Aplikujac go do grupy
SU(2) obrocony stan kwantowy:

ROIMY = 3 Dy (@) 70 (1.27)
M'=—J
rozktada sie w bazie nieprzywiedlnej reprezentacji J ze wspotczynnikami, bedacymi funk-
cjami D-Wignera. Natomiast obrot samych operatorow O = RO'R' da sie wyrazi¢ w
roOwnie prosty sposob:

L
ROTRYQ) = Y Traw Dy (Q) (1.28)

M'=-L
pod warunkiem, ze 77, jest tensorem sferycznym rzedu L. Powyzsza reguta transforma-
cyjna stanowi jedna z definicji tensora sferycznego tzn. jezeli operator obraca sie zgodnie
z ([1.28), to nazywamy go tensorem sferycznym.

Tensorem sferycznym jest wektor potozenia r, ktory w bazie kartezjanskiej przyjmuje
postac:

1
ry = jﬁ(x + iy) ro = 2. (1.29)

Podobnie, z dokladnosciag do czynnika = \/i’ wyglada sferyczna reprezentacja operatora

momentu pedu. Mianowicie sktada si¢ ona z tzw. operatoréw drabinkowych:

Ji=Jykid, Jo=.., (1.30)

4N? — 1 jest wymiarem grupy SU(N), a N — 1 jej rzedem
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ktore w dziataniu na stan kwantowy |JM) zwiekszaja lub odpowiednio zmniejszaja ma-
gnetyczng liczbe kwantowa M:

Je|JM) = hy/(J F M)(J £ M +1)|JM £ 1) (1.31)

Operatory Ji, J, sa generatorami grupy obrotéw. Wobec tego wszystkie operatory spet-
niajace relacje (1.28)) tzn. wszystkie tensory sferyczne spelniaja bardzo istotne zwiazki
komutacyjne:

[JZ,TJ]V[] = hMTJ]W [Ji,TJM] = h\/(J + M)(J + M + 1)TJA1:|:1. (132)
Ponadto dla tensoréw sferycznych zachodzi niezwykle uzyteczne twierdzenie Wignera-
Eckarta pozwalajace na geometryczne wyznaczanie elementéw macierzowych tensorow

sferycznych.

Symetria izobaryczna

Oddziatywanie silne pomiedzy nukleonami w bardzo dobrym przyblizeniu zachowuje
symetrie izobaryczna. To znaczy, ze nie wyrdznia neutronéw i protonoéow i traktuje je
jak identyczne nukleony. Wowczas o nukleonie mozemy mysle¢ jako o dubletowym sta-
nie kwantowym o izospinie ¢t = 1/2. W fizyce jadrowej stan |t = 1/2t, = 1/2) przypisu-
jemy neutronowi, a |t = 1/2t, = —1/2) protonowi | Naturalnie w $rodowisku jadrowym
niebagatelne znaczenie ma oddziatywanie Coulomba dziatajace pomiedzy natadowanymi
protonami. Jednak skala oddzialywania coulombowskiego wzgledem silnego pozwala na
potraktowanie oddzialywania elektromagnetycznego w sposob perturbacyjny z niezabu-
rzonymi funkcjami falowymi o dobrym izospinie. W taki sposob oddzialywanie Coulomba
uwzgledniane jest cho¢by w modelu powtokowym [20], 21].

Symetrie izobaryczng mozemy potraktowaé¢ jako symetrie rotacyjna w tzw. izoprze-
strzeni, w ktorej catkowity izospin T jest odpowiednikiem catkowitego momentu pedu.
Zatem T jest generatorem tej symetrii:

T=>t (1.33)
sparametryzowanej przez v, bedace katami obrotu ag wokoét osi obrotu ﬁ W izoprze-
strzeni.

Wobec powyzszego cata dyskusja dotyczaca symetrii rotacyjnej w przestrzeni przenosi
sie na symetrie izospinowa. Generator symetrii izobarycznej jest bowiem generatorem
grupy SU(2). Izospin posiada zatem wszystkie dyskutowane wczesniej whasnosci tej grupy
w szczegolnosci:

e grupa generowana jest przez macierze Pauliego ((1.24)), ktore oznaczamy symbolem 7.
Z ta réznicy, ze w przypadku przestrzeni izospinowej macierzy 7 nie mnozy sie przez

h.

5Ze wzgledéw praktycznych, konwencja jadrowa jest odwrotna wzgledem tej uzywanej w fizyce czastek
elementarnych.



e stan kwantowy niezmienniczy ze wzgledu na obrét w izoprzestrzeni ma dwie do-

brze zdefiniowane liczby kwantowe: catkowity izospin T oraz jego rzut na z-owa o$
T, =2,

e reprezentacje nieprzywiedlng nazywamy reprezentacja izospinowa a reprezentacje
produktowa protonowo-neutronowa. Podobnie wspoétczynniki rozwiniecia wektora
jednej reprezentacji w bazie drugiej nazywamy wspotczynnikami Clebscha-Gordana.

Obr6t w izoprzestrzeni rozumiemy jako mieszanie protonéw z neutronami. Wyjatek
stanowi obrot dookota z-owej osi, gdyz ten generowany jest przez diagonalny operator T..
Pod nieobecno$¢ oddziatywania coulombowskiego niezmienniczo$¢ oddziatywania wzgle-
dem obrotu w izoprzestrzeni oznacza:

e zachowanie niezaleznosci tadunkowej. Wowczas

Vin=Vop  [H,T] =0 (1.34)

e zachowanie niezmienniczodci tadunkowej. Wowczas

1 N
Vo = 5(Vin+ Vp)  [H,T =0, (1.35)

Grupy SU(2) dla symetrii rotacyjnej i izospinowej sa rozlaczne. Wobec czego, ge-
neratory tychze symetrii komutuja ze soba. Jezeli dwa operatory ze sobg komutuja, to
istnieje wspolna dla tych operatorow baza stanéw wtasnych. Wobec tego, stan kwantowy
niezmienniczy ze wzgledu na obrot w przestrzeni i izoprzestrzeni mozemy zapisaé¢ jako
iloczyn tensorowy:

\IM;TT.) (1.36)

Ponadto, hamiltonian jest symetryczny wzgledem pewnego operatora wtedy i tylko wtedy,
gdy jest przemienny z generatorem symetrii. Wobec tego, w przypadku zachowania syme-
trii rotacyjnej i izospinowe] przez oddziatywanie jadrowe, stan jest réwniez stanem
wtasnym hamiltonianu.

Przyblizone rozwiazanie kwantowego uktadu wielu cial w postaci wyznacznika Slatera
najczedciej jest pewna kombinacja liniowa stanow (1.36). Wowcezas liczby kwantowe: mo-
ment pedu I, jego 1zut na z—owa o§ w tzw. ukltadzie laboratoryjnym [f| M izospin T nie
sa zachowane i nalezy je przywroéci¢ np. stosujac techniki rzutowe. Przywracanie symetrii
metodami rzutowymi stanowi trzon tej pracy.

Symetria liczby czgstek

O symetrii liczby czastek nikt nawet by nie wspomniat, gdyby nie fakt, iz realizacja
przyblizenia pola $redniego w obecnosci korelacji nadprzewodnikowych w hamiltonianie,

6Uktad, w ktorym moment pedu oraz jego rzut s mierzalnymi liczbami kwantowymi. Inaczej: uktad
z przywréconymi symetriami.



10 Rozdziat 1. Podstawowe symetrie w fizyce jgdrowej

prowadzi do funkcji falowej, w ktorej liczba czastek nie jest dobrze okreslona. Symetria
jest generowana przez operator liczby czastek:

N = Z N;, (1.37)
gdzie operator N; jest operatorem liczby czastek dzialajacym na i—ty stan jednoczast-
kowy, a parametr ¥, jest katem cechowania ¢y. Symetria liczby czastek opisywana jest row-
niez przy uzyciu grupy Liego izomorficznej do grupy obrotow SO(2): U(1) = {exp(i¢); ¢ €

[0;27)}, a zatem parametryzowana za pomoca jednego kata obrotu ¢y. [

Transformacja Galileusza

W nierelatywistycznym przyblizeniu, jakiego najczesciej dokonujemy do opisu uktadow
jadrowych, oddzialywanie powinno by¢ niezmiennicze ze wzgledu na transformacje Ga-
lileusza, a w przypadku relatywistycznym ze wzgledu na transformacje Lorentza. Grupy
Galileusza i Lorentza rowniez sa rozmaito$ciami Liego. Generatorem transformacji Gali-
leusza jest operator catkowitego potozenia:

A
i=1
a parametrem v, = "¢, gdzie vo jest zmiang predkosci uktadu. Jednocialowa funkcja

falowa ¢ poddana transformacji Galileusza zmienia faze w sposob nastepujacy:

o(r,0) — exp(ikr)¢p(r, o). (1.39)

Zmiana tej fazy wprowadza do funkcjonalu gestosci dodatkowe cztony, tak aby zachowy-
wal on transformacje Galileusza.

Przedstawione w niniejszym rozdziale symetrie stanowia znaczgce uproszczenie teore-
tycznego opisu materii jadrowej. Cata niniejsza praca oparta jest na zjawisku spontanicz-
nego tamania symetrii, bedacego konsekwencja przyblizenia pola $redniego, a $cislej opisu
uktadu kwantowego w tymze przyblizeniu. Nastepnie, przy uzyciu metod rzutowych, w
teorii wieloreferencyjnej, przywraca sie te symetrie tak, aby uktad kwantowy przedsta-
wi¢ w uktadzie laboratoryjnym. W ten sposob cato$ciowa konstrukcja modelu od metody
pola §redniego do metod rzutowych zbudowana jest w oparciu o fundamentalne syme-
trie. Wreszcie, badania nad fizycznym tamaniem jednej z nich, tj. symetrii izospinowe;j
w rozpadach beta typu Fermiego dostarczaja informacji na temat podstawowych zatozen
Modelu Standardowego, w tym przypadku hipotezy zachowania pradéw wektorowych oraz
istnienia trzech generacji kwarkow.

"Warto przy okazji wspomnie¢, ze jest to ta sama grupa, ktéra opisuje lokalng symetrie elektrodynamiki
kwantowej.



Rozdziat 2

Fizyka rozpadu beta

Analiza rozpadu beta w modelu uogé6lnionego funkcjonalu gestosci stanowi trzon tej
pracy. Narzedzie teoretyczne jakim jest teoria funkcjonalu gestosci, czy tez jej rozszerze-
nia zostanie omdéwiona w nastepnym rozdziale. Rozdzial drugi przedstawia zarys teorii
rozpadu beta poczawszy od sformutowania jej przez Enrico Fermiego w latach 30 az
po unifikacje oddzialywan elektromagnetycznych ze stabymi w teorii Glashowa-Salama-
Weinberga.

§1. Teoria Fermiego dozwolonego rozpadu beta

Teoretyczny opis oddziatywan stabych nie bytby mozliwy, gdyby nie obserwacja fun-
damentalnego dla tych oddzialywan zjawiska rozpadu beta. Zaledwie kilka lat od od-
krycia promieniotworczosci Rutherford w 1899r. wyodrebnia rozpad alfa i beta, kierujac
sie kryterium przenikalnosci. Rok po6zniej w do§wiadczeniu mierzacym stosunek masy do
tadunku Becquerel udowadnia, ze emitowana podczas rozpadu beta czastka to elektron.
Zas w 1901r. Rutherford pokazuje, ze za promieniotworczoscia typu beta stoi przemiana
pierwiastka chemicznegd'}

XN DG Yo te +7 (2.1)

Naturalnie, nikt nie przypuszczal wowczas, ze w rozpadzie produkowane jest neutrino.
7 czasem o rozpadzie beta zaczeto myS$leé¢ jako o przemianie nie catego pierwiastka, lecz
pojedynczego nukleonu:

n—p+e +0 (2.2)
a od momentu odkrycia jego wewnetrznej struktury, wiemy, ze rozpad beta zachodzi w
obecnosci bozonu W+ posredniczacego miedzy przemieniajacymi sie kwarkami:

d—u+e +7, (2.3)

W 1934r. Enrico Fermi, korzystajac z dobrze juz usytuowanego opisu mechaniki kwan-
towej, zaproponowal pierwszy teoretyczny opis rozpadu beta [22] 23]. E]

'Dopiero w 1913r. udaje sie zidentyfikowaé pierwiastek, bedacy produktem przemiany.

’W zasadzie praca zostala wystana do brytyjskiego dziennika Nature w 1932r. Pomimo odpowiedzi
teorii na podejrzenie tamania zasady zachowania energii w rozpadzie beta oraz bardzo dobrej zgodnosci z
danymi doswiadczalnymi, edytor odrzucil artykul, krytykujac zatozenia teorii rozpadu beta jakoby byly
too remote from physical reality to be of interest to readers.
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Ciagly rozklad elektron6w emitowanych przez jadra atomowe wydawal sie tamaé¢ fun-
damentalne zasady fizyki jak zachowanie energii, czy pedu. Owczesny brak wiedzy na
temat oddzialywania odpowiedzialnego za proces rozpadu czynit go tym bardziej interesu-
jacym. Podstawowym zatozeniem Fermiego, byto dodanie do obserwowanych w rozpadzie
neutronu, protonu i elektronu nieoddziatujacej elektromagnetycznie czastki o potéwko-
wym spinie. Czastka ta, nazwana przez Fermiego neutrinem, wprowadzata do ukladu
energie i ped, opisujac rozpad w zgodzie z zasadami zachowania jednoczes$nie zachowujac
ksztalt widma energetycznego (3 emiteréw [| Nieznaczng zmiane obserwuje sie tuz przy
maksymalnej dostepnej energii. Ta zmiana stanowita przez wiele lat najbardziej doktadny
pomiar eksperymentalny masy neutrina. Juz w teorii Fermiego mozna byto oszacowac, ze
neutrino albo masy nie ma wecale, albo ze jest znacznie lzejsze od elektronu. Ze wzgledu na
brak tadunku i zerowg lub bardzo niewielkg mase eksperymentalne potwierdzenie istnienia
neutrina bylo bardzo trudne. Dopiero ponad 20 lat p6zZniej neutrino zostaje odkryte w
doswiadczeniu Cowana-Reinesa z 1956r. [24].

Teoria Fermiego rozpadu beta wyznacza prawdopodobienstwo przej$cia na jednostke
czasu. Wykorzystujac nierelatywistyczny rachunek zaburzen zalezny od czasu, Fermi wpro-
wadzil do mechaniki kwantowej tzw. Zlota Regule Fermiego [25]:
27r|
h

Ty = —|H]_ ;[ 0r(E), (2.4)

wedle ktorej prawdopodobiefistwo przejScia na jednostke czasu T;_; jest proporcjonalne
do elementu macierzowego przejscia H]_,:

inp = (W H'[W5) (2.5)
oraz do gestosci energii stanow koicowych of(E) = %.

Na podstawie analizy zasad zachowania energii i pedu, przy zalozeniu istnienia neu-
trina o zerowej masie oraz zaniedbywalnej energii kinetycznej powstatego w rozpadzie
nukleonu mozna pokazac, ze:

1
E = 2 E - Ee 2 26
Qf( ) 47T4h6C3p6( 0 ) ? ( )
gdzie p. jest pedem a E. energig powstalego w wyniku rozpadu elektronu, a Ey dostepna
energia uktadu kwantowego w stanie konicowym. Wowcezas widmo energii elektronu przed-
stawia sie wzorem:

1

P(E.)dE, = ———
(Ee)dE. 27T3h7c5|

Hz{_>f|2peEe(E0 - Ee)2dEe‘ (27)

Tak zapisane widmo nie uwzglednia jednak efektow elektromagnetycznych réznigcych sie
dodatkowo w trzech dostepnych kanalach rozpadu. Mianowicie przemiana miedzy nukle-
onami moze zachodzié:

3Jej istnienie zostato po raz pierwszy przewidziane teoretycznie przez Wolfganga Pauliego w 1930 r.
na podstawie analizy rozkladu energii elektronéw powstajacych w rozpadzie beta.
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e w kanale negatonowym, w ktérym przemianie ulega kwark gérny u, produktem sa
kwark dolny d, elektron i antyneutrino elektronowe, a bozonem posredniczacym jest
W . Taki rozpad nie wymaga dodatkowej energii poczatkowej, dzieki czemu mozliwy
jest rozpad swobodnego neutronu;

e w taki sposob, ze przemianie ulega kwark dolny d, produktem sa kwark gérny wu,
pozyton i neutrino elektronowe. Taki rozpad nie zachodzi dla swobodnego protonu ze
wzgledu na zasade zachowania energii. Zatem rozpad 57 jest mozliwy dzieki energii
wigzania ulegajacego przemianie jadra atomowego;

e podobnie jak powyzej, tyle ze w procesie wychwytu elektronu (electron capture -
EC) przez jadro atomowe

Nieopisane wczesniej efekty elektromagnetyczne wprowadza sie za pomoca funkcji Fer-
miego Fo(£Zs, W), ktoére opisuja znieksztalcenie funkeji falowej elektronu w obecnosci
punktowego tadunku jadra atomowego po przemianie [22]. Znak przy Z; jest zalezny
od kanalu przemiany + dla 87 i EC, natomiast — dla rozpadu ~. Uwzgledniajac, ze
W = E/m.c* prawdopodobietistwo zajscia reakcji na jednostke czasu wynosi:

5.4
mJc

ot = s

Wi
\Hl;fy?/l CpW (Wo — W2 Ey(£Z, W)S(£Z;, W)dW, — (2.8)

gdzie p* = W? — 1, a Wy = Ey/mec*. Funkcja S(£Z;, W) jest funkcja uwzgledniajaca
poprawke ksztattu. W przyblizeniu rozpadow dozwolonych ma wartosé 1 [26]. Jednak rozni
sie nieznacznie od jednosci, gdy dopusci¢ mozliwosé rozpadéw wzbronionych. Wowczas
czas potowicznego rozpadu wynosi:

In2 K

t o = = 2.9
i Tiy fO‘HfﬂfP’ 29)
gdzie k = 2777;25532 = 6147s. Stata Fermiego [27]
e F
G
F = 1.1663787(6) x 107°GeV 2 (2.10)

(he)®

wydzielona z elementu macierzowego to stata sprzezenia oddzialywan stabych. f; na-
tomiast jest tzw. czynnikiem przestrzenno-fazowym phase-space factor obliczanym przy
uzyciu catki:

Wo
¥ = /1 pW (W — W)2Fy(£2,, W)S(£Z;, W)dW. (2.11)

Nalezy pamietaé, ze przemiana, w ktorej produktem koncowym jest jadro o zwickszonej
liczbie protonéw moze zachodzi¢ w dwoch niezaleznych kanatach - w rozpadzie 51 oraz w
wychwycie elektronu. Woéwczas:

Tip=TH, + TS = fo=f§ + f0€ (2.12)

7 K3
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Czas zycia t jest wielkoScig zalezng nie tylko od elementu macierzowego przejscia, ale
rowniez od energii przejécia, jak i pola kulombowskiego wygenerowanego miedzy wypro-
dukowanym leptonem a jadrem. Z tego wzgledu w celu dokonania analizy systematycznej
rozpadow rozwaza si¢ raczej liczbe foty /2, ktérg nazywamy zredukowanym czasem zycia i
oznaczamy dalej przez ft. Wartosé ta jest catkowicie zalezna od struktury jadrowej i do-
skonale nadaje sie do klasyfikacji rozpadow beta. Ze wzgledu na jej wysoka warto$¢ przy
opisach rozpadéw wprowadza sie wartos¢ log ft. Im wieksza wartoéé¢ log ft tym nizsze
prawdopodobienistwo przej$cia — nizsza ,,dozwolonos$¢” rozpadu. Rozpad beta nazywamy
dozwolonym, jezeli wyprodukowane leptony znajduja sie w stanie kwantowym o zerowym
orbitalnym momencie pedu. W przeciwnym przypadku rozpady nazywamy wzbronionymi,
cho¢ wzbronione sa jedynie z nazwy. Dozwolone przejscia beta charakteryzuja sie najniz-
szymi warto$ciami log ft.

Rozpady dozwolone dalej klasyfikuje sie ze wzgledu na generowany prad elektrostaby
powodujacy, ze spiny wyemitowanych leptonéw sg antyuszeregowane i tworza stan sin-
gletowy (S=0) lub sa uszeregowane w stanie trypletowym (S=1). Pierwszy przypadek
generuja prady wektorowe (ewentualnie prady skalarne) a stowarzyszone z nimi przejscia
nazywamy rozpadami typu Fermiego, natomiast w drugim za rozpad beta odpowiadaja
prady osiowo-wektorowe (ewentualnie tensorowe) a sam rozpad nazywamy przejsciem typu
Gamowa-Tellera. Zgodnie z zasada zachowania momentu pedu w przypadku przejs¢ Fer-
miego jadro atomowe zachowuje catkowity moment pedu AJ = 0. Natomiast w rozpadach
Gamowa-Tellera dozwolona jest zmiana calkowitego momentu pedu jadra AJ = 0,+1
poza przypadkiem, kiedy rownoczesnie J; = 0 oraz J; = 0. Przypadek rozpadu 07 — 0%
jest czystym rozpadem typu Fermiego przyjmujacym najnizsze wartosci log ft. 7Z tego
wzgledu takie przejécia nazywamy rozpadami superdozwolonymi. Przejscia superdozwo-
lone zachodzg w szczegolnosci pomiedzy izospinowymi stanami analogowymi 7' = 1 w
jadrach o N = Z. W ogolnosci, dla jader lezacych wzdtuz linii N = Z réznica w po-
ziomach Fermiego jest najmniejsza, a zatem calka przekrycia — czyli de facto element
macierzowy przejscia — jest najwieksza.

§2. Zarys teorii elektrostabej Glashowa, Salama i Wein-
berga

Nowa czgstka elementarna zaproponowana przez Pauliego wyjasniajaca zagadke cig-
glego widma elektronéw pochodzacych z rozpadu beta okazata si¢ by¢ kluczem do gleb-
szego zrozumienia oddzialywan stabych. Obserwacje neutrin z konca lat 50 tych — w
szczegblnosei eksperyment wychwytu elektronu przez jadro °2Eu wskazaly na istnienie
tej czastki w bardzo konkretnym stanie kwantowym okreslonym przez skretno$é¢ — rzut
spinu czastki na kierunek jej pedu. Operator skretnodci:

~ ~ po
A=e,S 2p| (2.13)

komutuje z hamiltonianem Diraca dla czgstki bezmasowej, przez co skretnosc jest dobra
liczba kwantowa. Eksperyment potwierdzil wowczas, ze neutrina sg czastkami lewoskret-
nymi a antyneutrina sa prawoskretne [28]. Taka charakterystyka oznacza tamanie funda-
mentalnych dla oddziatywan silnych i elektromagnetycznych symetrii tadunkowej (C') oraz
symetrii parzystosci (P). Ztamanie tej drugiej przez oddzialywanie stabe zauwazono na
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podstawie systematyk zwiagzanych z rozpadem beta juz na poczatku lat 50. a potwierdzono
nastepnie w eksperymencie Wu et al. [29]. Doswiadczenie polegalto na obserwacji rozktadu
katowego natezenia strumienia elektronéw powstajacych w wyniku rozpadu °Co — Ni
+ e~ + .. Przy zachowanej parzystosci wyemitowane elektrony poruszatyby sie z rownym
prawdopodobiefistwem pod katem nachylenia 6 i 7 — 0 do kierunku spinu jadra °°Co, co
do$wiadczenie catkowicie wykluczyto. Przeciwnie, wykazano wowczas maksymalne naru-
szenie parzystosci. Amplitudy z ujemna i dodatnia parzystoécia byty niemal identyczne a
rozktad katowy elektronow spetnial wzor:

W) =1+ a% (2.14)

z eksperymentalnie wyznaczonym parametrem a = —1.

Fermiony obdarzone masa nie maja okreslonej skretnosci. Pozostajac zatem w repre-
zentacji, dla ktorej skretnosc jest dobra liczba kwantowa definiuje sie operator rzutujacy
na okreslong skretnos¢:

1
Prp= 5(]1 + 75)7 (2.15)

1.2.3

gdzie w notacji Pauliego-Diraca operator v° = i7°y1v2~3 nazywamy operatorem chiral-

nosci.

W poprzednim podrozdziale dokonalismy podziatu dozwolonego rozpadu beta ze wzgledu
na generujace go prady wektorowe oraz osiowo-wektorowe. Niezmienniczo$¢ oddziatywania
ze wzgledu na transformacje Lorentza dopuszcza jednak 5 mozliwych typow operatorow i
sa to:

e operatory skalarne (S) postaci 0S = Y0,

e operatory wektorowe (V') postaci OAL/ = Y0V,

e operatory osiowo-wektorowe (A) postaci Oﬁ = Y0757 Sa to obiekty powstale z
iloczynu wektorowego wektoréw typu V. Wektory A odréznia sie od V' ze wzgledu
na inne zachowanie si¢ wzgledem symetrii parzystosci.

e operatory pseudoskalarne (P) postaci OF = Y07Y5- Sa to obiekty powstate z iloczynu
skalarnego wektora typu V i A. Skalary P odro6znia sie od S ze wzgledu na inne
zachowanie sie wzgledem symetrii parzystosci.

e operatory tensorowe (T') postaci OAEV = Y (VY — V)

Eksperymentalnie potwierdzona lewoskretnosé neutrina i prawoskretnosé antyneutrina,
a w konsekwencji zachowanie symetrii C' P [ przez oddzialywanie stabe tj. symetrii tadun-
kowej i parzystosci wystepujacych jednoczesnie, wykluczaja skalarny, pseudoskalarny oraz
tensorowy charakter pradu leptonowego. Wobec czego oddzialywanie stabe opisywane jest

4W rzeczywistoéci réwniez symetria C'P jest w niewielkim stopniu zlamana. Na amanie symetrii C P
wskazuja rozpady obojetnych kaonéw na natadowane piony.
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przez tzw. teorie V — A, dla ktorej prad w analogii do elektrodynamiki kwantowej zapi-
sujemy:

J* = rY"br R = ;@7“(1 — 4%)ep. (2.16)

Pierwszy sktadnik odpowiada za prady wektorowe, zas drugi za osiowo-wektorowe. Dla
uproszczenia przyjeto 1 = %y, gdzie 1 jest funkcja falows oddziatujacego kwarku.
Ze wzgledu na potwierdzong zasade maksymalnego ztamania parzystosci cze$¢ osiowo-
wektorowa pradu elektorstabego w powyzszym réwnaniu ma znak minus.

Stusznosé wzoru ([2.16)) mozna udowodni¢, wyprowadzajac prad Noether z czesci la-
granzjanu (Lcc) teorii unifikacji SU(2),xU(1)y Glashowa-Salama-Weinberga [30, 31}, 32]
odpowiadajacej natadowanym pradom elektrostabym (charge currents, CC): E]:

= > @ W*[\/—“(l 7)1q10w+vp [\/— (1—75)1%, (2.17)

p=1,2,3

gdzie sumowanie odbywa si¢ po wszystkich zapachach p, W, to pole wektorowe genero-
wane przez posredniczacy bozon, g jest tadunkiem stabym a qup, ¢jow, v 1 [ reprezentuja
odpowiednio wektory ztozone z kwarkéw gornych i dolnych w obrebie dubletu danej ge-
neracji oraz neutrin i leptonéw o okreslonym zapachu p. Wektor ¢/,,, reprezentuje stan,
w ktorym kwarki zostaly zmieszane w wyniku oddzialywania z polem W,,:

q/fow = Z Vg{(MQTOW’ (218)

Macierz Voxw jest macierza mieszania kwarkow Cabibbo-Kobayashiego-Maskawy (ma-
cierz CKM), o ktorej szerzej opowiada paragraf 4. tego rozdzialu. Grupa SU(2), jest
trojwymiarowa grupa obrotow w lewoskretnej reprezentacji, a U(1)y jest unitarng grupa
z unifikowanym hypertadunkiem Y = @) — I5 taczacym elektromagnetyczny tadunek @) z
rzutem na trzecia o§ stabego izospinu /3.

Gestos¢é hamiltonianu przejécia wyraza sie przez staby prad miedzy kwarkami oraz
prad leptonowy:

1
H = —7515P + hee. (2.19)

.
V2

gdzie operator 7% jest operatorem drabinkowym w przestrzeni izospinowej. Powyzszy wzor
nie zawiera statej sprzezenia Fermiego G g , poniewaz w stosowanej tu notacji, zo-
stata ona wyciggnieta z elementu macierzowego przejécia i znajduje sie w definicji stalej
r danej wzorem (2.9).

Z perspektywy rachunkow przeprowadzanych w niniejszej rozprawie, ale i w wiekszosci
modeli jadrowych, gesto$¢ hamiltonianu nalezatoby przeformutowaé z jezyka kwarkoéw na

5Unifikacja oddzialywan stabych i elektromagnetycznych z 1973r. bardzo szybko zostala nagrodzona
Nagroda Nobla — 1979r. Teoria stanowi fundament Modelu Standardowego tj. modelu lokalnej symetrii
cechowania w obrebie grupy SU(2),xU(1)y xSU(3)¢.
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jezyk nukleonow. Ze wzgledu na efekty renormalizacji oddziatywan silnych nie jest to try-
wialne zadanie. Jednak przy zalozeniu, ze proces rozpadu jest niskoenergetyczny, a zatem
przekaz pedu jest niewielki, mozemy zatozy¢, 7e ji = ji. 4, gdzie ji,, jest stabym pradem
hadronowym [33].

W teorii Fermiego zatozono, ze oddzialywanie odpowiedzialne za rozpad beta jest kon-
taktowe. W przypadku niewielkiej wymiany pedu jest to bardzo dobre przyblizenie, czesto
stosowane w rachunkach dotyczacych rozpadéw beta. W niniejszej pracy we wszystkich
obliczeniach przyjmuje si¢ to wlasnie przyblizenie. Natomiast natura oddziatywan stabych
ujawnia sie dla wyzszych energii ok. 80GeV, gdzie wymiana pedu jest rzedu wielkoSci mas
naladowanych bozonéw posredniczacych W=*. Wéwcezas, naturalnie, zalozenia, ze oddzia-
tywanie jest kontaktowe oraz ze ji = ji,q nie sa stuszne [34].

Majac na uwadze wzory (2.16)) i (2.19) oraz mozliwosé roznych staltych sprzezenia
oddziatywan wektorowych i osiowo-wektorowych gestos¢ hamiltonianu w rozpadzie  dla
uktadu czterech fermionéow mozemy zapisa¢ nastepujaco:

Vaar _ _ _
Hyv_ s = 7 {gvpri%ne%y — gapTEY ey, s | + hee. (2.20)

gdzie V4 jest wiodacym elementem macierzowym macierzy CKM. Pojawienie sie dwu a
priori roznych stalych sprzezenia pradéw wektorowych gy i osiowowektorowych g spo-
wodowane jest renormalizacja pradu do poziomu nukleonowych stopni swobody [35]. Aby
teraz obliczy¢ element macierzowy przejécia

éaf:i/@wawéAwwdv (2.21)

pojawiajacy sie we wzorze na czas potowicznego rozpadu (2.9) mozna skorzystac¢ z dwoch
przyblizen definiujacych przejscia dozwolone. Mianowicie, leptonowe funkcje falowe w ob-
rebie jadra mozna uznaé za stale a funkcje jadrowe potraktowaé¢ w przyblizeniu niere-
latywistycznym. ﬁ Ponadto, uwzgledniajac niemierzalne sktadowe takie jak magnetyczna
liczba kwantowa stanu koncowego my, otrzymujemy:

! 2 G%/ 2
|Hi_¢|" = 2I.+1MF+

_Ga
20 + 1

M, (2.22)

gdzie

Gy = Viagy Ga = Vaaga, (2.23)

za$ I; jest catkowitym momentem pedu jadra przed rozpadem. Mp i Mgr oznaczaja
odpowiednio elementy macierzowe Fermiego i Gamowa-Tellera:

W przypadku przejé¢ wzbronionych, dla ktérych wyemitowane leptony nioss moment pedu [ > 0
takie zalozenia nie sa spelnione. PrzejScia wzbronione nie sg rozpatrywane w niniejszej rozprawie.
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|Mp|* = ZWMTi i) |2 (2.24)
|Mar? = ZZI ¢f|2t i) P (2.25)

gdzie sumowania wystepuja po k, ktory jest indeksem numerujacym wszystkie nukleony
w jadrze ulegajacym rozpadowi, po n sktadowych operatora spinu ¢ oraz po wszystkich
dostepnych magnetycznych liczbach kwantowych m; stanu koﬁcowego Operator T+ jest
operatorem drabinkowym catego uktadu jadrowego: T% = ¥, 7. Na podstawie powyz-
szych wzoréw opisane we wcze$niejszym paragrafie reguty wyboru dla przejsé dozwolonych
mozna uzupehié o brak zmiany parzystosci uktadu kwantowego Am = 0. Ponadto, w przy-
padku przemiany Fermiego stan kwantowy pozostaje w obrebie tego samego multipletu
izospinowego tj. AT = 0.

Wzor (2.22)) mozna przepisa¢ w jezyku zredukowanych prawdopodobienistw przejsé i
wowczas:

|H;_|* = Br + Bar. (2.26)

Zatem finalnie, zgodnie ze wzorem ({2.9), zredukowany czas zycia ft zapisujemy jako:

K
t= ——7—. 2.2

§3. Stale sprzezenia oddzialywan elektrostabych

W przypadku oddziatywan stabych zachodzacych jedynie pomiedzy leptonami zacho-
dzi rownos¢ statych sprzezenia pradow wektorowych i osiowo-wektorowych g4 = gy [34].
W przeciwienistwie do leptonéw hadrony posiadaja wewnetrzna strukture. I tak w przy-
padku potleptonowego rozpadu beta prad staby okazuje sie by¢ zachowany jedynie w
kanale wektorowym, o czym moéwi tzw. hipoteza zachowania pradu wektorowego (CVC -
Conserved Vector Current) [36]. Wowczas:

gv = L. (2.28)

Zachowanie pradow wektorowych w obecnosci oddziatywania stabego jest niezwykle istotne
przy wyznaczaniu wiodacego elementu macierzowego V4 macierzy mieszania kwarkow ,
a wiec roOwniez unitarnosci tejze macierzy. Na podstawie mozna powigza¢ element
Viua 2z obliczanym zredukowanym czasem zycia.

W przypadku pradéw osiowo-wektorowych stala sprzezenia rézni sie w zaleznosci od
hadronéw bioracych udzial w rozpadzie [34]. Prad osiowo-wektorowy nie jest zachowany.
Moéwi sie o czesciowym zachowaniu tego pradu - hipoteza PCAC (Partially Conserved
Azial Current) [37]. Dywergencja pradu osiowo-wektorowego ma wtasnosci pseudoska-
larne. Takie pole zas generowane jest przez piony, ktore oddziatuja silnie z nukleonami
w jadrze. Wobec czego stala sprzezenia g4 mozna powiazaé ze stala rozpadu pionu Fj
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oraz ze staly sprzezenia pion-nukleon g¢,n. Taka zalezno$é¢ opisuje relacja Goldbergera-
Triemana [38, B39]. W uproszczonej wersji:

g _ ngﬂN
4T V2My

wskazuje, ze g4 r6zni sie w zaleznosci od rozpadajacych si¢ w przemianie beta hadronéw.
W przypadku rozpadu beta miedzy nukleonami [40]:

(2.29)

ga = —1.2723(23) (2.30)

Badanie wartosci statej sprzezenia osiowo-wektorowego pradu w oddziatywaniach sta-
bych jest do dzisiaj jednym z kluczowych zagadnien w obrebie analizy rozpadéw beta
[41], [42] [43], 44], [45]. Okazuje sie bowiem, ze w $rodowisku jadrowym obliczenia dotyczace
rozpadéw w kanale Gamowa-Tellera systematycznie niedoszacowuja wartosci ele-
mentow macierzowych otrzymanych w eksperymencie. Problem zyskat miano tzw. efektu
quenchingu, dla ktorego:

94 = qga, (2.31)

gdzie ¢ jest parametrem renormalizacyjnym zwanym parametrem quenchingu. Na wartosc¢
efektywnej stalej sprzezenia g% moze wplywaé wiele czynnikow:

e Za najwiekszy wktad uwaza sie wprowadzenie pradéow uwzgledniajacych wymiane
mezonéw tzw. pradow wielocialowych [46, [47] . Takie rachunki wychodza poza po-
wszechnie stosowane przyblizenie impulsu impulse approrimation, w ktéorym ak-
tywny nukleon przemienia sie w wyniku rozpadu beta z biernym udzialem reszty
jadra atomowego.

e Uwzglednienie nienukleonowych stopni swobody w funkcji falowej [48] [49]. Przykta-
dem takiego procesu moze by¢ rozpad Gamowa-Tellera przez rezonans A, bedacy
wzbudzeniem neutronu. Jednak dane eksperymentalne z reakeji (p,n) i (n,p) wska-
zuja, ze takie skorelowanie funkcji falowej odpowiada jedynie za nieznaczna czesé
parametru renormalizacji ¢ [50].

e [stotny wklad do parametru quenchingu moga przynosi¢ ograniczenia modeli jadro-
wych wykorzystywanych do obliczen rozpadu beta [51], 52, [53]. W przypadku modelu
powlokowego jest to przede wszystkim ograniczona przestrzen walencyjna. Modele z
oddziatywaniami dopasowywanymi do pewnej powtoki uniemozliwiaja bowiem prze-
prowadzenie rachunkéw korelujacych niskoenergetyczne stany z wyzej potozonymi
stanami wzbudzonymi.

§4. Macierz Cabibbo—Kobayashiego—Maskawy

Pomiary rozpadow czastek dziwnych do nukleonu w poréwnaniu z rozpadami miedzy
nukleonami pokazaly, ze te pierwsze sa znacznie rzadsze. R6znica miedzy tymi przejsciami
jest zmiana dziwnosci AS = 1. Rozwiazanie tego zagadnienia zaproponowal Cabibbo [54],
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wprowadzajac pojecie mieszania kwarkow bioragcych udziat w oddziatywaniu stabym. Za-
tozyt on, ze w obecnosci pola posredniczacego w oddziatywaniu stabym kwarki nie sa
dhuzej stanami wlasnymi opisywanymi przez zapach, a stanowiag jego superpozycje. W
czasach postawienia tej hipotezy do$wiadczalnie potwierdzono istnienie trzech kwarkow:
u,d i s, z ktorych dwa z tadunkiem —% mogly ulegaé¢ zmieszaniu. Wprowadzono zatem
tzw. kat zmieszania Cabibbo V¢ taki, ze:

d\ costVc  sindg d
( s’ ) - ( —sinde  cosVe ) ( s )’ (2.32)
gdzie stany d, s s3 czystymi stanami kwarkowymi o tadunku elektrycznym @) = —%, a

kwarki d’, s’ sa obroconymi stanami wlasnymi ze wzgledu na oddzialywanie stabe. Eks-
peryment wykazal, ze kat Cabibbo ¥¢ &~ 12° [54].

Wraz z odkryciem trzeciej generacji kwarkow okazalo sie, ze mieszanie nalezy uzupetnic¢
o kwark 0. Woéwczas unitarng macierz obrotu mieszania kwarkéw nalezy rozszerzyé o
kolejny wymiar. Taka macierz nazywa sie macierza Cabibbo-Kobayashiego-Maskawy [55]:

Vud ‘/115 ‘/Ilb
Vokm = | Vea Ves Ve (2.33)
Vie Vis Vi

i wprowadza sie do teorii Glashowa-Weinberga-Salama jak pokazano we wzorze (2.17]).
Zmieszany stan d’ wprowadza zatem element V4 do amplitudy pradu hadronowego (2.18)).
Za$ wartos¢ |Vi)? stanowi amplitude prawdopodobieristwa przejécia kwarku i w j.

Ze wzgledu na zalozenie, ze sprzezenia pomiedzy kwarkami w stanach czystych a kwar-
kami w stanach obroconych sg dane przez te sama stala sprzezenia G (2.10), macierz
CKM musi by¢ macierza unitarng. Jak dotad najdoktadniej wyznaczanymi elementami
macierzowymi sg elementy V,q oraz V5. Wobec tego najdokladniejszym testem unitarnosci
macierzy CKM jest sprawdzenie, czy jej pierwszy wiersz spelnia tozsamosé:

Vaal® + [Vas* + Vi = 1 (2.34)

Element wiodacy V4 zalezy jedynie od kwarkow pierwszej generacji, wobec czego jest
wyznaczany najprecyzyjniej sposrod pozostatych elementéw. Do najdoktadniejszych me-
tod wyznaczania tego elementu zaliczaja sie rozpady beta jader atomowych. Na podstawie
rozpadow superdozwolonych tj. czystych przejs¢ wektorowych 07 — 0% wiodacy element
pierwszego wiersza macierzy CKM w modelu powlokowym przyjmuje wartosé [56]:

Via| = [Vaa|” 0" = 0.97420 + 0.00021 (2.35)

Jest to najdoktadniejsza obecnie metoda wyznaczania tego elementu. Rozpady beta jader

zwierciadlanych o izospinie T = % stanowia alternatywna, acz mniej dokladng metode

wyznaczania elementu V,q. Najnowsze obliczenia z uzyciem modelu powlokowego [57]
wskazuja, ze:

Vi |™™" = 0.9730 £ 0.0014 (2.36)



21

Szczegolowa analiza wiazaca strukture jadra atomowego z badaniem wartosci elementu
macierzowego Vi,q bedzie przeprowadzona w rozdziale 4.

Element V4 mozna réwniez otrzymac na podstawie wyznaczania czasu zycia swobod-
nego neutronu. Rozpad neutronu zachodzi pod wplywem oddziatywan zaréwno wektoro-
wych jak i osiowo-wektorowych. Metoda ta jest wprawdzie wolna od poprawek zwiazanych
z struktura jadrowa, ale obarczona jest duza niepewnoscia generowana przez staba znajo-
mos¢ stalej sprzezenia pradow osiowowektorowych ga . Wyznaczenie elementu Viq
wymaga w takim przypadku pomiaru dwu obserwabli: czasu zycia 7, = 885.7(8) [58]
oraz tzw. parametru asymetrii elektronu Ag = —0.1173(13) [58]. Parametr korelacji Ag
jest bezposrednio zwigzany ze stalg ga. Szczegdélowa analiza parametrow korelacji bedzie
przeprowadzona w nastepnym paragrafie tego rozdziatu. Dokladno$é pomiaru czasu zycia
przeklada sie na mniejsza precyzje elementu Viq [58]:

|Va|™ = 0.9746 = 0.0049 (2.37)

Kolejna metodg wyznaczania elementu V4 jest pomiar rozpadu beta natadowanego
pionu 7+ — 7% *v,. Jest to czysto wektorowy rozpad wolny od koniecznogci wprowadzania,
poprawek jadrowych. Jednak wyzwaniem tej metody jest bardzo niewielki wspétczynnik
rozgaltezienia 10~° kanalu rozpadu beta. Przez co i w tym przypadku dokladnosé jest

mniejsza niz w metodach jadrowych. Element V,q wynosi bowiem [59):

[Vaa|™ = 0.9728 4= 0.0030 (2.38)

Element V.5 wyznacza sie¢ przede wszystkim z rozpadu nienatadowanych kaonow w
5 roznych kanatach [60], czy tez rozpadoéw beta hiperjader [61) [62] tj. jader, posiadaja-
cych zwigzany hiperon — czastke, ktorej budulcem jest kwark dziwny. Najdokladniejszy
pomiar stanowig pierwsze z przedstawionych rozpadow. Wykluczy¢ mozna wowcezas po-
prawke izospinowg zwigzang z mieszaniem mezonoéw 7 oraz 1. Usrednienie wyznaczonego
ze wszystkich eksperymentoéw wspotczynnika rozgatezienia wraz z rachunkami QCD pro-
wadzonymi na sieci daja [63]

|Vis| = 0.2243 = 0.0005 (2.39)

Najmniej doktadny pomiar wsréd elementéw pierwszego wiersza macierzy CKM sta-
nowi element V. Jego wyznaczenie jest skomplikowane ze wzgledu na duze tto w analizo-
wanym rozpadzie: B — wlv. Eksperymentalny wspotczynnik rozgatezienia oraz rachunki
QCD na sieci [64] prowadza do wyniku [63]:

V| = (3.94 4 0.36) x 1073 (2.40)
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Majac na uwadze wartosci (2.35)), (2.39) oraz (2.40) tozsamo$¢ unitarnoSci macierzy
CKM przedstawia sie nastepujaco:

|Vial® + [Vis|? 4 |V * = 0.99939 + 0.00045 (2.41)

Zatem z dokladnoscia do 20 macierz CKM jest unitarna. Nalezy w tym miejscu podkre-
§li¢, ze wklad |Vp|? jest marginalny i miesci si¢ w bledzie, wklad |V |? stanowi 5% testu
unitarno$ci a 95% pochodzi od wiodacego elementu V4. Stad doktadnos$¢ wyznaczenia
tego elementu jest kluczowa w badaniu unitarno$ci macierzy CKM. Odstepstwo od uni-
tarno$ci macierzy CKM oznaczatoby istnienie kolejnych generacji kwarkéw lub nieznanej
fizyki poza Modelem Standardowym jak istnienie prawoskretnych pradow, réwnoznacznie
wktadow wychodzacych poza prady V — A w teorii elektrostabej. Naturalnie hipotetyczna
4 generacja wprowadzataby do modelu tak ciezkie kwarki, ze ich zmieszanie z pozostatymi
bytoby nie do wykrycia na poziomie obecnej precyzji.

Macierz CKM jest macierza obrotu, zatem zgodnie z (|1.23|) mozna jg rozlozyé¢ na ob-
roty sparametryzowane trzema katami Eulera 15, ¥93 1 913 oraz jedna faze 0, bedaca
miara tamania symetrii odwrocenia w czasie, a wiec 1 tamania symetrii CP w Modelu
Standardowym. Wyniki eksperymentow wskazuja, ze katy Eulera sa shierarchizowane
Y13 K oy <K Y19 < 1. Te hierarchie mozna przedstawi¢ w wygodnej parametryzacji
Wolfensteina macierzy CKM. Woéwczas:

Vis :

A\ =sinvy = Vi AN = sintyy = |1 (2.42)
’Vud‘2+ |VUS|2 -
AN (p +in) = sintyze” = Vi, (2.43)
a sama macierz przyjmuje postac:
1-% A AN(p—in) )

Vekm = -A — ’\7 AN? + O(\%) (2.44)

AN(1 —p—in) —AN? 1

Analiza macierzy CKM w tej parametryzacji prowadzi do wniosku, ze trzecia generacja
ciezkich kwarkow ¢, b nie miesza sie z pierwsza i druga, az do wyrazow rzedu A3, a kat 91
jest katem Cabibbo zdefiniowanym w ([2.32)).

Wynikiem dopasowania parametrow Wolfensteina do wyznaczonych teoretycznie i eks-
perymentalnie elementéw macierzowych jest unitarna macierz ztozona ze wszystkich am-
plitud przej$¢ miedzy kwarkami [63]:

0.97446 + 0.00010 0.22452 + 0.00044  0.00365 4 0.00012
Verm = | 0.22438 +0.00044  0.9735975:00019  0.04214 + 0.00076 (2.45)
0.0089670:09022  0.04133 4 0.00074 0.999105 + 0.000032
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§5. Metody jadrowe wyznaczania elementu macierzowego
Vud

Wyznaczenie elementu macierzowego V,q metodami jadrowymi nie jest tatwym zada-
niem. Sktadajg sie na to dwa aspekty: konieczno$¢ uwzglednienia szeregu poprawek zwia-
zanych ze struktura jadra oraz fakt, ze dozwolony rozpad beta zachodzi w dwu kanatach:
Fermiego i Gamowa-Tellera, a stata sprzezenia pradéw osiowowektorowych w osrodku jest
obarczona ogromna niepewnoscig ze wzgledu na efekt quenchingu opisany w paragrafie 3
tego rozdziatu.

Wspomniane poprawki mozemy podzieli¢ na dwie grupy. Mianowicie, poprawki zwia-
zane 7z procesami radiacyjnymi (RC) nieuchwytnymi w eksperymencie oraz poprawki izo-
spinowe zwigzane z lamaniem tejze symetrii w $rodowisku jadrowym [59, 65] [66]. Te
pierwsze mozna dalej podzieli¢ na zalezne dr [67, 68| oraz niezalezne od danego jadra
Ag 69, [70)]:

1+ RC = (1+6p)(1+ Ap) (2.46)

Czesé zalezna od jadra dalej dzieli si¢ na poprawke 0%, |71} 72, [73] [74] zalezna jedynie od
liczby protonéw w jadrze po przemianie Z; i dostepnej energii ukladu w stanie konco-
wym Wy oraz na poprawke ongs [75) [76] wymagajaca szczegolowych obliczen zwiazanych
bezposrednio ze struktura jadra. Wowczas:

1+ RC = (14 0%)(1 + dxs)(1 + Ag) (2.47)

Wartos¢ poprawki &% szacuje si¢ metodami elektrodynamiki kwantowej do rzedu Z2a3.
Jest ona niezalezna od rodzaju pradu odpowiedzialnego za rozpad beta w przeciwienstwie
do poprawek dns i Ag, ktore sg rézne w zaleznosci, od tego czy rozpad zachodzi w kanale
Fermiego, czy w kanale Gamowa-Tellera.

Element macierzowy Fermiego w granicy zachowania symetrii izospinowej | M%| mozna
wyrazi¢ przy uzyciu izospinowych wspoétczynnikow Clebscha-Gordana. Zgodnie ze wzo-

rami i w przypadku przej$é¢ superdozwolonych pomiedzy stanami analogo-
wymi 7' =1 |M3[* = 2, natomiast dla rozpadéw miedzy jadrami zwierciadlanymi 7" = £
|M2|? = 1. Ztamana symetria oddzialywania miedzy protonami i neutronami powoduje
koniecznos$é wprowadzenia do tego elementu poprawki izospinowej d¢ [65] [0, [77]. A bio-
rac po uwage fakt, ze poprawka dng jest Scisle zwiazana ze struktura jadrowa, a wiec z

elementem macierzowym, mozemy zapisac, ze:

| Mp|* = [Mp[*(1 + 0% — 0¢) (2.48)

Natomiast w przypadku elementu Gamowa-Tellera (2.25)) jego wartos¢ w granicy sy-
metrii izospinowej nie moze by¢ wyznaczona jedynie na gruncie wtasnosci geometrycznych.
Niemniej dla zachowania konsystencji:

[Mor|* = [ Mg |*(1 + 6%s — 62) (2.49)
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Uwzgledniajac teraz wszystkie poprawki oraz fakt, iz ze wzgledu na funkcje ksztattu
S(£Zs, W) zdefiniowana w (2.8) czynnik fazowy fy jest rozny w zaleznosci od kanaltu
rozpadu, czas potowicznego zaniku wynosi:

t= " . (2.50)

Va(L+0R) | fvgy (14 AR)IMp|? 4+ fagi(1+ AR) | Mar|?

Przejscia superdozwolone 07 — 07 typu Fermiego sa czystymi przej$ciami wektoro-
wymi, dla ktorych |[M2> = 2 a |M2,|? = 0. Wobec tego:

K
fut? 0 = (2.51)

2Via(1+ 0)gv (1 + AR)(1 + 0%s — 0¢)
W celu wyznaczenia elementu macierzowego V,q4 warto przegrupowaé sktadowe powyz-
szego wyrazenia, tak aby po prawej stronie pozostaly elementy niezalezne od jadra. I
tak:

K
C2V298 (14 AY)

u

ft0+—>0+ = fvt0+—>0+(1 -+ 5;%)(1 + 61‘\1/8 — 6g) (252)

W ten sposob wartosé Ft0 0" jest niezalezna od danego przejscia superdozwolonego i

a priori mozna wyznaczy¢ uniwersalng wartos¢ elementu macierzowego V,q. Wyzsza pre-
. . . . , .. 0+*>0+ .

cyzje otrzymanego wyniku uzyskuje sie, $redniujac Ft po wszystkich dostepnych

przypadkach rozpadéw. Obliczenia teoretyczne poprawek wraz z danymi doswiadczal-

nymi dotyczacymi poszczegolnych przejsé silnie wskazuja bowiem, ze FtO" =" ~ const,

co potwierdza hipoteze CVC. Wobec tego otrzymujemy, ze:

K
vu2d = —0+—0+ : (253)

2Ft (14 A})

Rozpady superdozwolone stanowia jak dotad najdoktadniejsza metode wyznaczania
elementu macierzowego V,q. Podejsciem alternatywnym w obrebie metod jadrowych jest
analiza rozpadéow beta miedzy jadrami zwierciadlanymi 7" = 1/2 [78]. W przypadku tych
przejs$¢ oba kanaty rozpadu — typu Fermiego i typu Gamowa-Tellera sa dozwolone. Stabym
punktem tej metody jest koniecznos¢ uwzglednienia efektu quenchingu statej sprzezenia
pradow osiowowektorowych, co w zasadzie wykluczatoby te metode ze wzgledu na bardzo
duza niepewnos¢, ktora obarczony zostalby element macierzowy Viq. W pracy [78| zapro-
ponowano obejscie tego problemu przez wykorzystanie dodatkowej obserwabli mierzonej
w eksperymencie.

I tak dla przejs¢ w jadrach zwierciadlanych 7' = 1/2, w ktorym oba kanaly rozpadu
sa dozwolone a |[M2|*> = 1, wzér (2.50) mozna przedstawi¢ w nastepujacy sposob:

K

ftmirror = fvt<1 =+ (5}%)(1 + 5¥S — 55) = )
Vaagi (1+ AR) (1 + }%92)

(2.54)
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gdzie wspotczynnik mieszania o definiuje sie jako:

(2.55)

:gA|M8T| (14 0ks — 08)
gv|MP| \ (14 oxg — 0¢)

Wowezas w analogii do wzoru ([2.52) i korzystajac ze wzoru (2.54)) wartosé niezalezna od
jadra definiuje sie jako:

Fto = Ft™re (1 + ff‘f) = 2" 0" (2.56)
14

Przy uzyciu lewej strony powyzszej rownosci, znajac wspolczynnik mieszania o dla danego
przejécia, mozna wyznaczy¢ element macierzowy Viq. Naturalnie im wiecej przypadkow
jader, dla ktorych sa dostepne dane doswiadczalne dotyczace czasu zycia t, wspotezyn-
nika rozgalezienia oraz wspoélczynnika mieszania o, tym bardziej doktadne oszacowanie
elementu V4. Wobec tego w analogii do wzoru ([2.53):

Ve A S 2.57
v Fto(1 4+ AY) (2:57)

Przy uzyciu prawej strony réwnosci i na podstawie znajomosci Ft° %" mozna
wyznaczy¢ teoretyczne przewidywanie wspotczynnika mieszania o a w konsekwencji para-
metr renormalizacji q stalej sprzezenia pradow osiowowektorowych, jak réwniez, co szerzej
opisuje nastepny paragraf, parametry korelacji w rozpadzie beta.

§6. Parametry korelacji w rozpadzie beta

Wspolczynnik mieszania ¢ nie jest bezposrednio obserwowany w doswiadczeniu. Jego
wyznaczenie wymaga zmierzenia wspotczynnikéow korelacji, z ktérych najczesciej mierzo-
nymi sa parametr korelacji katowej miedzy elektronem i neutrinem ag,, parametr asymetrii
elektronu Ag oraz parametr asymetrii neutrina B,. Rozklad w kierunku pedu elek-
tronu i neutrina oraz w energii elektronu od spolaryzowanego jadra przyjmuje postac [57]:

F(+Z;,E
w((J) | EedQ.dS,) = WpeEe(Eo — B,)?dE,dQ.dS, (2.58)
m
1 PPy |, me | ()|, Pe Py Pe X Pu
~ed 1+ ag b—C 4 "L Ag=e 4 B,—~ + D=2 L
8 25{ e, B T B e, TV EE,
gdzie
¢ =2(g8 I Msl* + g3 Mer?), (2.59)

natomiast b jest wspotczynnikiem Fierza, (J) opisuje polaryzacje jadra w stanie podsta-
wowym o momencie pedu J, a D jest wspotczynnikiem korelacji czutym ze wzgledu na
faze pomiedzy pradami wektorowymi i osiowo-wektorowymi. Wspotezynnik D opisuje ta-
manie symetrii C'P.
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W Modelu Standardowym, w ktorym teoria elektrostaba sformutowana jest w jezyku
pradéow V — A wyrazenia obserwabli tj. wspotczynnikéw ag,, Ag oraz B, przyjmuja po-
sta¢ [78]:

1— %92
ag, = 1+ o (2.60)
A FAyg0* =205 %HQ 5 61
B = 14+ QQ ( ' )
A0 = 2000/ 7570
B, = (2.62)
14 02

Powyzsze wzory sa stuszne w przyblizeniu zaniedbujacym efekty zwigzane z odrzutem
dajace wklad okolo 1% [78]. Analiza por6wnawcza powyzszych parametréow obliczonych
metodami teoretycznymi z danymi eksperymentalnymi wykorzystywana jest do poszuki-
wan fizyki poza Modelem Standardowym. W szczeg6lnosci brak zgodno$ci obliczen teore-
tycznych z doswiadczeniem mogltby wskazywac na niewielka domieszke pradéw skalarnych
i tensorowych oddziatywan stabych [57].



Rozdzial 3

Metoda jadrowego funkcjonalu gestosci
7z przywroconymi symetriami

§1. Model pola $redniego w ujeciu Hartree’ego—Focka

Teoretyczny opis kwantowego uktadu wielocialowego, tj. obliczenie mierzalnych w eks-
perymencie obserwabli oraz wyznaczenie funkcji falowej wymaga rozwiazywania réwnania
Schrédingera. Jest to fundamentalne rownanie mechaniki kwantowej opisujace stan kwan-
towy czastek nierelatywistycznych. Ztozonos¢ obliczeniowa problemu wielocialowego nie
pozwala jednak na doktadne rozwigzywanie tego réwnania w przypadku uktadéw o wiek-
szej liczbie czastek. Jedna z najbardziej powszechnych przyblizonych metod opisu takiego
uktadu kwantowego jest jego redukcja do problemu jednociatowego, w ktérym czastki sa
niezalezne i poruszaja sie w polu wygenerowanym w sposob samouzgodniony przez pozo-
stale czastki uktadu. Takie jednocialowe przyblizenie zaréwno w fizyce elektronowej jak i
w fizyce jadrowej nazywane jest modelem pola $redniego.

Sukces metody pola $redniego wynika nie tylko ze zgodnosci jej przewidywan z danymi
do$wiadczalnymi, ale rowniez, a moze przede wszystkim stad, ze dostarcza ona bardzo in-
tuicyjnych poje¢ — orbitali (standéw) jednoczastowych, ktore utatwiaja zrozumienie fizyki.
W szezegolnoscei, koncepcja orbitali jednoczastkowych stanowi fundament przetomowego
dla rozwoju fizyki jadrowej modelu powtokowego [79]. Przy jego pomocy wyjasniono bo-
wiem liczby magiczne - energetyczne szczeliny pomiedzy orbitalami stabilizujace energe-
tycznie pewne jadra zwane wlasnie jadrami magicznymi. To odkrycie rozpoczeto szerokie
teoretyczne badania nad struktura jader atomowych.

Hamiltonian wielocialowego uktadu kwantowego mozemy roztozy¢ na czesci jedno- i
dwuciatows [T}

A
H = [T + Zv(rl)] + [V — Zv(rl)] = Hur + Vres, (3.1)
i=1 i=1
gdzie Hyp jest hamiltonianem pola §redniego, a Vrgs tzw. oddziatywaniem resztkowym.
Taki rozktad okazuje si¢ by¢ niestychanie pomocnym w zrozumieniu zjawisk fizyki wielu
cial. Ograniczenie hamiltonianu jedynie do jego czesci jednocialowej ($redniopolowej)

'W niniejszej rozprawie ograniczymy sie do hamiltanionéw dwucialowych.
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sprowadza roéwnanie Schrodingera do réwnan pola $redniego:

hip; = eipi. (3:2)

Ich rozwigzania {e;, ; }2* | stanowia fundament w zrozumieniu wielocialowego stanu kwan-
towego. Fizyczna interpretacja odnosi sie wowczas do struktury obsadzonych orbitali jed-
nocialowych wyznaczonych w pewnej zadanej bazie. W programie numerycznym HFODD |5,
80] ta baza jest baza oscylatora harmonicznego. Hamiltonian pola $redniego nie jest
pelnym hamiltonianem. Wobec czego wyznaczenie Sredniopolowych obserwabli odbywa
sie przy uzyciu zasady wariacyjnej badz wielocialowego rachunku zaburzen. Uzycie tego
ostatniego wymaga dobrego punktu startowego w postaci uktadu niezaburzonego oraz
wystarczajaco szybkiej zbieznosci szeregu perturbacyjnego. W przypadku oddziatywania
jadrowego spetnienie tego zatozenia nie jest trywialne. Metoda wariacyjna za$ wymaga
ustalenia klasy funkcji probnych, w obrebie ktorej dokonuje sie minimalizacji energii. Przy-
blizenie pola $redniego stanowitoby dokladny opis wielocialowego zagadnienia jedynie w
przypadku, gdy jego rozwigzania jednocze$nie minimalizowalyby elementy macierzowe
oddziatywania resztkowego do zera. W przeciwnym przypadku udoskonalenie rozwigzania
wymaga skorelowania uktadu kwantowego poza przyblizeniem pola $redniego.

W przypadku liniowego réwnania Schrodingera znajomo$¢ hamiltonianu uktadu jedno-
znacznie i precyzyjnie definiuje funkcje falowa stanu kwantowego. Natomiast cena, ktora
nalezy zaptaci¢ za dokonanie jednocialowego przyblizenia w obrebie metody wariacyjnej
to nieliniowo$¢ otrzymanych réwnan . Jednociatowy potencjal pochodzi bowiem od
usrednienia oddzialywania dwuciatowego:

1 t+ar A
o) =55 [ v () m (), (33)

At Ji —

J#
wobec czego zalezy od funkeji falowej uktadu kwantowego. | Zatem, aby zacza¢ rozwig-
zywaé¢ roOwnania pola $redniego nalezy zna¢ a priori jego rozwigzanie. Nalezy zatem od-
powiednio skonstruowa¢ funkcje falowa, narzucajac pewne fundamentalne warunki. I tak:
(1) zgodnie z zasada Pauliego funkcja falowa opisujaca stan kwantowy uktadu fermionow
musi by¢ antysymetryczna, ponadto (2) przyblizenie pola sredniego naktada warunek nie-
zaleznosci czastek, a zatem funkcja falowa powinna by¢ skonstruowana jako iloczyn funkcji
jednoczastkowych, a dodatkowo (3) w niniejszej pracy wykorzystuje sie model teoretyczny,
w ktorym $redniopolowy stan kwantowy zachowuje liczbe czastek. Niemniej ostatni wa-

runek nie jest konieczny do podjecia proby rozwigzania rownan pola Sredniego.

Najbardziej ogolna reprezentacja funkcji falowych opisujacych wielofermionowy stan
kwantowy w modelu pola $redniego okazuja sie by¢ stany iloczynowe [16]. Stanem ilo-
czynowym nazywamy taki wielocialowy stan kwantowy, dla ktoérego zwezenia operatorow
kreacji i anihilacji sa liczbami. Zgodnie z twierdzeniem Thoulessa |81] takie nieunormo-
wane stany zachowujace liczbe czastek mozna zapisa¢ w postaci uogdlnionego stanu ko-
herentnego:

A
|®) = exp (Z Z;ha;ah> 11 al |0). (3.4)
ph i=1

2Usrednienie po czasie, przy zatozeniu bardzo krétkiego interwalu At stanowi jedynie pewng intuicje.
Nie jest natomiast uzywane w praktycznych zastosowaniach.



29

Indeksy p i h opisuja stany czastkowe i dziurowe wzgledem prozni [Ji, aT |0) zbudowa-
nej przez obsadzenie A orbitali jednoczastkowych. Stanowia one uktad zupely (baze) w
jednoczastkowej przestrzeni Hilberta ﬂ Wspomniang préznie natomiast nazywamy wy-
znacznikiem Slatera. Parametry Z, sg zespolonymi elementami macierzowymi pewnej
antysymetrycznej macierzy o wymiarach p € {A+1,.... M} na h € {1, ..., A} minimali-
zujacej energie w procedurze wariacyjnej.

Przyblizenie Hartree’ego-Focka jest przyblizeniem pola Sredniego, dla ktorego rozwig-
zanie uktadu rownan (3.2) wyznacza si¢ przy uzyciu metody wariacyjnej w obrebie klasy
stanow iloczynowych o zachowanej liczbie czastek (3.4)).

W praktyce nalezy zapewnié jeszcze mozliwo$é wyznaczania wartosci $rednich opera-
torow dla danej klasy funkcji probnych. Dla stanéw iloczynowych zachodzi jednak twier-
dzenie Wicka [82]: wartosé¢ érednia iloczynu operatoréw kreacji i anihilacji a,,al, jest li-
niowa kombinacja wszystkich mozliwych zwezen tych operatorow. A zatem przy uzyciu
tego twierdzenia mozna wyznaczy¢ wartosci §rednie wszystkich operatoréw w przestrzeni
Focka, w szczegdlnosci hamiltonianu.

Ogoélny hamiltonian jadrowy, zawierajacy jednocialowa energie kinetyczna oraz od-
dzialywanie dwucialowe, mozna wyrazi¢ jako:

H= ZTWauaV + - Z VM,\Wa/La;aWaV (3.5)

BT

4

Korzystajac z twierdzenia chka oraz faktu, ze kontrakcja operatora kreacji i anihilacji w
w stanie iloczynowym |®) jest gestodcia czastek w tym stanie:

I_I
Puv = =af yay = (P | a,au |P), (3.6)
warto$¢ oczekiwang hamiltonianu mozemy wyrazi¢ jako funkcjonal gestosci:

EHF Z Lypyu+ 4 Z ;Mmrpl/upTrA (37)

pAVT

Majac na uwadze (3.1)), hamlltoman pola $redniego mozemy wyrazi¢ jako sume macierzy
energii kinetycznej oraz macierzy potencjatu jednoczastkowego:

h;w - T;w + F/AV? (38)

gdzie T, zgodnie z (3.3) pochodzi z usrednienia oddziatywania dwuciatowego:

F,uu - Z V,u)\mrpw)\- (39)
AT

Woéwcezas energie hamiltonianu pola sredniego w przyblizeniu Hartree’ego-Focka zapisu-
jemy w postaci:

1
Eyr = Tr(Tp)+§Tr(Fp)
1A

1 1
= §Tr(T,0) + 2Tr hp) = 2 Z ( i+ ez> (3.10)

3Przyjmiemy dla uproszczenia, ze baza jednoczastkowa jest skoriczona, M-wymiarowa.
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Ostatnia rownos¢ ma miejsce w przypadku opisu gestosci w bazie kanonicznej.

Wariacja wartosci oczekiwanej hamiltonianu pola $éredniego w stanie iloczynowym (3.4
wzgledem elementow macierzowych antysymetrycznej macierzy Z7, lub réwnoznacznie
funkcjonaltu gestosci (3.7)) wzgledem gestosci stanu iloczynowego |®) prowadzi do rownan
Hartree’ego—Focka:

[hmpo} =0, (3-11)

gdzie gesto$¢ pp nazywamy samozgodna macierza gestosci, a indukowana przez nig ma-
cierz hg samozgodnym hamiltonianem jednoczastkowym (polem $rednim).

Rownania Hartree’ego—Focka zaliczaja sie obecnie do kanonu metod teoretycznych
chemii kwantowej, fizyki elektronowej, czy fizyki jadrowej. Pojecie samozgodnosci wywo-
dzi sie z metody rozwigzywania tych réwnan. Polega ona w pierwszym kroku na skon-
struowaniu $redniopolowego hamiltonianu z potencjatem przypominajacym potencjat roz-
wigzywanego zagadnienia fizycznego. Nastepnie z takim hamiltonianem rozwiazuje sie
zagadnienie wlasne. Z otrzymanych A wektorow wtasnych o najmniejszych wartosciach
wlasnych buduje si¢ macierz gestosci, a z niej indukowany hamiltonian E] Procedure
powtarza sie az do momentu uzyskania zgdanej zgodnosci macierzy gestosci indukujacej
hamiltonian w danej iteracji z gestoscig powstaly po diagonalizacji tegoz hamiltonianu.

Funkcja falowa opisujaca uktad wielu nukleoné6w musi by¢ antysymetryczna. Stany
iloczynowe zachowujace liczbe czastek naleza do zbioru tych funkcji. Jednak stanowia jej
istotnie ograniczony podzbior. Rozwiazanie problemu wielocialowego w ogélnosci nie musi
przyjmowaé formy wyznacznika Slatera. Okazuje sie, ze jednocialowy hamiltonian mozna
wzbogaci¢ o dodatkowe korelacje nieuwzgledniane w formalizmie Hartree’ego—Focka. Mia-
nowicie, idac za przyktadem fizyki elektronowej, modelowany uktad kwantowy rozszerza
sie przez uwzglednienie korelacji par. Wowczas rozszerzamy rowniez klase funkeji prob-
nych do stanéw iloczynowych tamiacych symetrie liczby czastek. Zatem w procedurze
wariacyjnej nalezatoby wowczas zadbac o to, aby warto$¢ Srednia operatora liczby czastek
byta odpowiednio zadana liczba neutronéw i protonéw. Oddzialywanie odpowiedzialne za
energetycznie korzystny proces parowania sie nukleonéw jest oddzialywaniem dwuciato-
wym w bazie operatoréw kreacji i anihilacji czastek. Natomiast istnieje unitarna trans-
formacja — zwana transformacja Bogoliubova, tejze bazy, ktora diagonalizujac hamilto-
nian sprowadza wielocialowy problem do zagadnienia pola $redniego generowanego przez
kwaziczastki — liniowa kombinacje operatoréw kreacji i anihilacji. Formalizmem uwzgled-
niajacym laczenie sie czastek w pary Coopera w przyblizeniu pola $redniego nazywamy
teorie Hartree’ego—Focka—Bogoliubova, dla ktorej klasa funkeji probnych sg najogolniej-
sze stany iloczynowe.

Wybor klasy funkcji prébnych w postaci standéw iloczynowych moze w ogolnosci pro-
wadzi¢ do tamania przezen symetrii oddziatywania. Przykladem jest miedzy innymi wspo-
mniane juz niezachowanie liczby czastek w przypadku teorii Hartree’ego-Focka-Bogoliubova
niezaleznie od faktu, iz catkowity hamiltonian tejze symetrii nie tamie. W teoriach $red-
niopolowych spotykamy sie jednak z samozgodnymi symetriami, ktoérych procedura waria-
cyjna nie zaburza. Jezeli catkowity hamiltonian jest niezmienniczy ze wzgledu na dziatanie

4Przepis dotyczy konstrukeji stanu podstawowego.
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pewnego operatora symetrii S, tj. operatory ze sobg komutuja, to wowczas na podstawie
definicji indukowanego potencjatu (3.9):

Sh[p]ST = h[SpsST]. (3.12)

Powyzsze oznacza, ze pod warunkiem zachowania pewnej symetrii zaré6wno przez catko-
wity hamiltonian, jak i przez gestoéé ukladu tj. SpST = p, nieliniowoéé¢ réwnan Hartree’ego
—Focka nie zaburzy tej symetrii. Ten wniosek znacznie upraszcza rozwigzywanie zagad-
nienia pola Sredniego. Naturalnie, jezeli spodziewamy sie, ze stan kwantowy moze zawie-
ra¢ korelacje zwigzane z tamaniem symetrii np. symetrii parzystosci, to woéwczas funkcja
falowa zachowujaca parzysto$¢ w procedurze wariacyjnej nigdy nie odtworzy tamiacej pa-
rzystos¢ struktury jadrowe;j.

W uzywanym do obliczen programie HFODD przyjmujemy zachowanie symetrii parzy-
stoSci, sympleksu oraz sygnatury. Procedura wariacyjna jest przyjmowana za zbiezna, je-
zeli energia wyznaczona przez odcatkowanie funkcjonatu gestosci energii jest réwna, co do
zadanej wartosci (€), sumie . W przypadku uwzgledniania oddzialywania zaleznego
od gestosci do sumy nalezy doliczy¢ tzw. czlon przeszeregowania (rearrangement
term).

§2. Oddzialywanie nukleon—nukleon w jadrze atomo-
wym

W przypadku jadra atomowego problem rozwigzania nawet przyblizonego zalozeniem
pola $redniego rownania Schrodingera jest dalece nietrywialny. W przeciwienstwie do od-
dzialywania elektromagnetycznego, oddzialywanie silne nie zostato dotychczas przedsta-
wione w jawnej postaci. Probe opisu oddzialywania pomiedzy nukleonami w latach 30
ubieglego stulecia podjat Yukawa [83]. Rozwiazujac rownanie Kleina-Gordona dla maso-
wej czastki oraz zaktadajac jej wirtualny charakter, zapostulowal istnienie po$redniczacej
w oddziatywaniu dwoch nukleonéow czastki. Teoria, przypadkiem, zostata potwierdzona
przez istnienie pionu o spinie 0 i masie 140 MeV [84]. Wowezas jednak zgodnie ze stanem
wiedzy nukleony byly postrzegane jako czastki elementarne bez wewnetrznej struktury.
Odkrycie zwiazanych kwarkow i posredniczacych miedzy nimi gluonéw zmienito postrze-
ganie oddzialywania silnego. Za fundamentalny opis oddzialywan silnych obecnie odpo-
wiada teoria chromodynamiki kwantowej zbudowana na grupie SU(3). Natomiast teoria
Yukawy dotyczaca oddzialywania nukleonéw przez wymiane pionu (mezonu) stanowi juz
efektywny opis sily jadrowej. Obliczenia w ramach chromodynamiki kwantowej (tzw. ra-
chunki na sieci) sa bardzo skomplikowane nawet dla najlzejszych jader. Juz dla uktadow
zbudowanych z 3 nukleonéw redukcja szumu staje sie niestychanie problematyczna [85].
Brak mozliwosci podjecia bardziej skomplikowanych rachunkow na sieci narzuca koniecz-
no$¢ podjecia prob stworzenia efektywnego oddzialywania w przyblizeniu punktowych
nukleonéw i mezonéw. Przyktadem moga by¢ teorie bazujace czy to na efektywnym la-
granzjanie [86] dla oddziatujacych nukleonéow i mezonéw, czy tez na efektywnym hamil-
tonianie oddzialujacych nukleonéw przez wymiane mezonow p,w, o, m [87](QMC).

W teoretycznym opisie jadrowego oddziatywania efektywnego jego dlugozasiegowa
czes¢ dzialajaca na odleglosciach wiekszych niz 0.8 fm jest wolna od parametréw bowiem
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pochodzi od oddzialywania Coulomba oraz od wymiany nukleonu z pionem ze stala sprze-
zenia pion-nukleon f,y. Zas cze$¢ krotkozasiegowa opisuje oddzialywanie efektywne. Ba-
dania nad rozpraszaniem nukleon6éw ujawnity, ze te na odlegtosciach mniejszych niz 0.4 fm
silnie sie odpychaja. Takie odpychanie nazywamy twardym rdzeniem. Srednia energia po-
tencjalna obliczona w stanie, w ktorym funkcje falowe dwoch nukleonow przekrywaja sie
w obszarze twardego rdzenia, jest bardzo duza lub wrecz nieskoniczona. Woéwcezas dokona-
nie przyblizenia pola $redniego catkowicie traci sens, a proby rozwiazania wielocialowego
rachunku zaburzen sa niebywale trudne ze wzgledu na bardzo wolng zbieznosé¢ szeregu.

Konstrukcje oddziatywania nukleon-nukleon zaweza si¢ przez natozenie nan warunkow
symetrii wzgledem przesunie¢, parzystos$ci, odwrdcenia w czasie, obrotow w przestrzeni i
izoprzestrzeni. Ponadto w teorii nierelatywistycznej oddzialywanie musi by¢ niezmiennicze
ze wzgledu na transformacje Galileusza. Niezmienniczo$¢ oddzialtywania wzgledem trans-
formacji Lorentza nalezy narzuci¢ w przypadku rozwigzywania relatywistycznych réwnan
Diraca. Wszystkie te symetrie zostaly pokrotce opisane w rozdziale pierwszym. I tak, aby
oddzialywanie nukleon-nukleon spetniato zasady zachowania, moze sktadaé sie jedynie z
pewnych okreslonych skalar6w w przestrzeni kartezjariskiej: v2, p?, (rp + pr)?, spinowej
0109, przestrzenno-spinowej: (ro)(ros), (po)(pos) oraz (Loy)(Losy) + (Los)(Loy).

Lokalne oddziatywanie nukleon-nukleon w prézni tj. uwzgledniajace istnienie twardego
rdzenia mozna zapisa¢ w postaci Landaua tj. w rozwinieciu czesci spinowo-izospinowej.
Dowolny operator w przestrzeni (izo)spinowej bedacy symetrycznym wzgledem przesunieé
mozna roztozy¢ w bazie macierzy Pauliego {0y, 0 = (0,,0,0.)} [38]:

‘/(12) = VE)(T) + VJ(T>0'10'2 + ‘/7—(7’>T1’7'2 + VUT(T’>0'10'27'1T2 (313)

Do oddzialywari lokalnychfl] tj. niezaleznych od predkosci nalezy dopisaé¢ jeszeze oddziaty-
wanie tensorowe:

V({z) = (VTO(T) + VTT(r)Tl"'z) (:)2(0'1"")(0'27') — 0'102> (3.14)

Opis jader atomowych, szczegdlnie zjawiska wystepowania szczelin energetycznych w tzw.
jadrach magicznych wymaga wprowadzenia nielokalnego oddziatywania niezmienniczego
wzgledem symetrii obrotow i jednocze$nie zachowujacego parzystosé. W najnizszym rze-
dzie jedynym takim skalarem jest dwucialowe oddziatywanie spin-orbita:

V(i) = Vis(r)LS. (3.15)

Wewnetrzna struktura nukleonu doprowadza do komplikacji w sformutowaniu oddzia-
lywania miedzy dwoma nukleonami w szczegolnosci w sytuacji, kiedy obiekt kwantowy
sktada sie z wiekszej liczby czastek. Wowezas krotkozasiegowe oddzialywanie nukleon-
nukleon mozemy zasymulowaé¢ przy uzyciu dopasowywanych do danych doswiadczalnych
parametréow zapostulowanego oddzialywania efektywnego. Okazuje sie, ze efektywny opis
oddziatywania nukleon-nukleon przyniost ogromny sukces w odtwarzaniu energii wiaza-
nia, promieni, energii wzbudzen, czy w rozpadach jader [89, [90]. Efektywny potencjal
wolny jest od problemu twardego rdzenia, wobec czego moze by¢ wykorzystywany w éred-
niopolowych rachunkach Hartree’ego—Focka. Wéwczas o zachowanie zasady Pauliego dba

!Lokalny charakter oddzialywania tensorowego wprowadza sie przez dodanie iloczynu o 0.
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wyznacznik Slatera.

Idea zastapienia realistycznego oddzialywania nukleon-nukleon przez jadrowy poten-
cjat fenomenologiczny przystuzyta sie do rozwoju dwu wiodacych teorii jadra atomowego:
modelu powlokowego oraz jadrowego funkcjonatu gestosci. W obu przypadkach parametry
oddziatywania dopasowywane do doswiadczenia s silnie zalezne od modelu. W przypadku
modelu powlokowego rachunki wykonywane sg przy uzyciu oddzialywania resztkowego,
ktore dziala miedzy nukleonami walencyjnymi. Efektywne parametry otrzymywane sa z
dopasowywania elementéw macierzowych w obrebie jednej powloki o okreslonej parzy-
stos$ci. Oznacza, to ze efektywne oddzialywanie nukleon-nukleon nie jest uniwersalne i
silnie zalezy od obszaru w tablicy nuklidow. Zaleta takiego oddzialywania niewatpliwie
jest precyzja teoretycznych przewidywan [91]. W przypadku modeli pola $redniego, w tym
jadrowego funkcjonatu gestosci efektywne parametry dopasowywane s standardowo do
jader podwojnie magicznych lub w najnowszych parametryzacjach do jader magicznych
z otwartymi powtokami neutronowymi lub protonowymi [92]. Tak dopasowane oddzialy-
wanie bedzie z pewno$cig uniwersalne jednak obliczenia prowadzone w r6znych obszarach
tablicy nuklidow mniej precyzyjne. Ponadto ze wzgledu na wyboér przestrzeni modelo-
wej oraz stosowalnosci oddzialywania efektywnego zastosowania obu modeli réznig sie
znaczaco. W modelu powlokowym konstruuje sie konfiguracje, naktadajac nan warunek
spelnienia symetrii obrotowej. Taki opis pozwala na teoretyczne przewidywania stanow
wzbudzonych oraz na obliczenia elementéw macierzowych rozpadow jader. Model nie jest
jednak najefektywniejszym w opisie wlasnosci standéw podstawowych. Model funkcjonatu
gestosci ma niejako odwrotne zastosowania. Swietnie radzi sobie z opisem wlasnosci sta-
now podstawowych, niemniej rachunki zwigzane ze stanami wzbudzonymi, ze wzgledu
na naruszone symetrie sa znacznie bardziej skomplikowane. W niniejszej pracy przedsta-
wiamy model, ktory w zalozeniu stara si¢ taczy¢ oba podejscia.

W 1958 r. Tony Skyrme [93] zaproponowal efektywne oddzialywanie nukleon-nukleon
po raz pierwszy bazujace na czesci radialnej typu zerowego zasiegu. Ot6z o oddziatywa-
niu dwucialowym mozna myS$leé jako o oddzialtywaniu kontaktowym a wowczas funkcja
0-Diraca nie tylko spetnia to zalozenie, ale przy okazji jest niezwykle uzyteczna w zaawan-
sowanych rachunkach teoretycznych. Fundamentalnym zalozeniem Skyrme’a w rozwaza-
niach o potencjale efektywnym bylo przyjecie przyblizenia Borna, dla ktorego wktady do
funkcji falowej od duzego przekazu pedu sa pomijalne. Ponadto przyjat on zatozenie, ze dla
zamknietych powtok nukleony zachowuja sie jak w modelu gazu Fermiego. I tak oddzialy-
wanie NN otrzymuje czton centralny zwany objetosciowym reprezentujacy rozproszenie je-
dynie do stan6w kwantowych w stanie s - tzw. fala S. Jednak aby podjac¢ probe wlasciwego
opisu skoniczonej materii jadrowej oddzialywanie jadrowe potrzebuje cztondéw skonczonego
zasiegu tzw. cztonow powierzchniowych. Skonczony zasieg oddzialywania nukleon-nukleon
mozna zasymulowac¢ przez zaleznos¢ od przekazu pedu. I tak, majac na uwadze przyblize-
nie Borna, pierwszy rzad rozwiniecia bedzie zawieral czton zwiazany z przekazem energii
oraz czton dajacy wktad od kata rozproszenia. Czlony skoniczonego zasiegu wzbogacaja
funkcje falowa o mozliwos$¢ rozproszenia do stanow kwantowych w stanie p - tzw. fala P.
Na podstawie danych z rozpraszania NN Skyrme uznal rowniez, ze warto uwzgledni¢ w
oddziatywaniu rozpraszanie do fali D - tj. kolejnego rzedu rozwiniecia w przestrzeni pe-
dow. Dane rozproszeniowe wykazaly réwniez istnienie silnego nielokalnego oddziatywania
- oddzialywania spin-orbita oraz koniecznosci uzupetnienia czesci centralnej o oddzialy-
wanie tensorowe. W ten sposob powstaje efektywne oddzialywanie dwuciatowe.
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Poczatkowo oddziatywanie Skyrme’a miato stuzy¢ do obliczenn w modelu powlokowym.
Okazato sie jednak, ze jest ono bardziej uzyteczne w modelu pola $redniego. Pokazali to
w 1972 r. Vautherin i Brink publikujac obszerny artykul dotyczacy zastosowania oddzia-
lywania Skyrme’a uzupelnionego o potrzebny do saturacji sity jadrowej czton zalezny od
gestosci [94] w metodzie Hartree’ego-Focka. Poczatek lat 70 zaowocowal w istocie w trzy
modele efektywnej sity jadrowej do dzisiaj powszechnie uzywane w obliczeniach pola sred-
niego. Rok po wspomnianej wyzej pracy Vautherina i Brinka powstata sita skoficzonego
zasiegu, ktorej cze$¢ radialna opisywana jest funkcjami Gaussa z wyjatkiem czesci od-
dzialywania zaleznej od gestosci, ktory to czlon ma charakter kontaktowy analogicznie
do sity Skyrme’a. Sile ta, od nazwiska jej autora, nazywa sie sitag Gogny’ego [95]. W 1974
r. natomiast powstal relatywistyczny odpowiednik sity Skyrme’a zaproponowany przez
Walecka et al. [96].

Wymienione wyzej efektywne oddzialywania jadrowe sa emanacja zasady lezacej u
podstaw teorii efektywnych mowiacej, ze niskoenergetyczna fizyka nie zalezy od wysoko-
energetycznej dynamiki, inaczej moéwiac nie zalezy od procesow z duzym przekazem pedu
q. Pozwala to rozwinaé¢ oddzialywanie jadrowe w przestrzeni pedéw w przekazie pedu:

v(q) = v(g) = vo + v2q” + vag"... (3.16)

Takie rozwiniecie ucina sie przy dostatecznie duzej potedze transferu pedu, a efektywne
wspotezynniki v; dopasowuje sie do niskoenergetycznych danych do$wiadczalnych. Warto
podkresli¢, ze rozwiniecie nie jest rozwinieciem taylorowskim. Kazdorazowa zmiana
rzedu teorii (rzedu obciecia) wymaga bowiem nowego dopasowania wszystkich wspotezyn-
nikow rozwiniecia zwanych niskoenergetycznymi statymi sprzezenia (low-energy coupling
constants — LECs). Model kontaktowego oddzialywania typu Skyrme’a otrzymuje sie przez
transformate Fouriera rozwiniecia typu do przestrzeni polozeniowej. Za Vautheri-
nem i Brinkiem [94] 97| zapisujemy je w postaci:

Sk ~ . . 1 ~ L2 . . . . A2
V12 (Xl,Xg) :to(l -+ $0PU)5(T1 — TQ) -+ 5251(1 + l’lpg) k (5(7’1 — 7”2) + 5(7’1 — 7“2)/{3

. L 21 . SR
o1+ 22 P)RS( — )k + Cta(l 4 23Fy)p° (“;”) 5(Fi — 73)
L A
FiWo(di + a3)(k x 8(7 — 13)R). (3.17)

gdzie w celu zapobiezenia bezposredniemu dziataniu gradientu na delte Diraca wprowadza
sie operatory nabla dziatajace na prawo i na lewo w postaci:

A 1 = . L 1 = -
k= (Vi=Va)  k=-(Vi= V). (3.18)

Pierwsze trzy czlony odpowiadaja rozwinieciu (3.16)), a cze$é¢ wielocialowa modeluje sie
przez oddzialywanie zalezne od gesto$ci w potedze . Potega a ma charakter czysto fe-
nomenologiczny i stuzy jedynie do zapewnienia odpowiedniej niescisliwosci materii jadro-
wej. Dopasowania parametrow do najnowszych funkcjonatow energii [92, 08, 99] wskazuja
warto$¢ tego parametru o € (0.15;0.3). Ostatni czton w oddzialywaniu Skyrme’a
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opisuje dwucialowe oddzialywanie typu spin-orbita (3.15]), patrz [I00]. Natomiast w stan-
dardowym sformulowaniu pomija sie zwykle czton zwiazany z tzw. falg D oraz czton
tensorowy zerowego zasiegu.

Oddzialywanie Skyrme’a zawiera kanal wymiany spinu opisany przy uzyciu operatora
Bartletta:

o 1
Py =51+ 01), (3.19)
ktory dziala nastepujaco:
paq’(l“1,(71,7'1;1“2,0277'2) = ®(ry, 09, 71; T2, 01, T2). (3.20)

Ze wzgledu na antysymetryczny charakter funkcji falowej pelni on réwniez role operatora
wymiany izospinu:

A

P.=-PP,. (3.21)

Model pola sredniego Hartree’ego-Focka z oddziatywaniem Skyrme’a zaproponowany
przez Vautherina i Bricka nosi nazwe¢ modelu Skyrme’a—Hartree’ego—Focka (SHF).

§3. Teoria jadrowego funkcjonalu gestosci

Wraz z eksplorowaniem tablicy nuklidow w kierunku ciezszych pierwiastkow uktad
kwantowy wzbogaca sie o kolejne czastki. Stawia to ogromne wyzwania przed modelami
jadrowymi. Modele diagonalizujace hamiltonian, jak model powlokowy, czy obecnie inten-
sywnie rozwijane podejscia modeli ab initio napotykaja na gigantyczna bariere zwigzana
z iloscia wzbudzenn jednoczastkowych rozpinajacych przestrzen walencyjna. Ogromnym
powodzeniem cieszy si¢ obecnie metoda SRG [101] lub IM SRG (In-Medium Similarity
Renormalization Group) [102] modeli ab initio znacznie upraszczajaca diagonalizacje ol-
brzymich macierzy. Koszt tej procedury jest jednak wysoki. Zastosowanie techniki SRG
prowadzi do pojawienia sie wielocialowych rozwinie¢ hamiltonianu, przez co natychmiast
sprowadza modele ab initio do teorii efektywnych zaleznych od pewnego parametru ob-
cieciaf| Niezaleznie od tego, czy mozliwosci obliczeniowe pozwalaja lub w przysztosci
pozwola na diagonalizacje gigantycznych macierzy, czy nie, to zrozumienie zjawisk fizycz-
nych zachodzacych w ciezszych pierwiastkach moze i tak okazac sie niezwykle trudne lub
wrecz niemozliwe przy zastosowaniu metod typu mieszania konfiguracji (configuration-
integration — CI') operujacych w ogromnych przestrzeniach konfiguracyjnych ze wzgledu
na skomplikowana posta¢ funkcji falowej.

Alternatywnym podejsciem jest metoda Hartree’ego-Focka. Jak sie okazuje jednak i
ona napotyka na powazne problemy. Uwzglednianie coraz to liczniejszych korelacji jak
cho¢by odejscie od zagadnienia lokalnego (w czlonach wymiennych) np. w przypadku

5Naturalnie, pojecie teorii ab initio jest wzgledne. W chemii kwantowej teorig ab initio jest teoria funk-
cjonatu gestosci. W fizyce jadrowej za metody ab initio uwaza sie podejscia wykorzystujace oddziatywania
dopasowane bezposrednio do danych rozproszeniowych. Z punktu widzenia chromodynamiki kwantowej
takie podejscie z pewno$cia nie uzyskaloby nazwy ab initio.
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oddziatywania Coulomba, czy przy uwzglednieniu wymiany pionu rodzi problem nume-
rycznego policzenia coraz to trudniejszych calek. W przypadku oddzialywania Coulomba:

Ve = /d dr ’ppl( /d e P2 )00 T) (3.22)

r—r’| lr — 1/

druga z calek ze wzgledu na nielokalny charakter gestosci protonowej zwicksza czas obli-
czen kilkadziesiat razy [15]. Caly wysilek, czy to metod CI, czy Hartree’ego-Focka prowa-
dzi do znalezienia funkcji falowej najlepiej opisujacej uktad kwantowy. Cale zagadnienie
mozna jednak odwrdcié, omijajac problem uwzgledniania wielu konfiguracji, czy wyzna-
czania skomplikowanych calek, przechodzac do teorii funkcjonalu gestosci. Trud wowczas
skupia sie nie na znalezieniu postaci funkcji falowej, lecz na konstrukcji funkcjonatu ener-
gii lub generatora tegoz funkcjonatu.

Podwalin teorii funkcjonatu gesto$ci mozna doszukiwac sie juz w pracach Kelvina i
Drude’a [I03] postulujacych model gazu elektronowego, majacy ttumaczy¢ przewodnictwo
elektryczne w metalach. Prace te rewelacyjnie wykorzystal Enrico Fermi, wigzac gestosc
energii kinetycznej z lokalna gestoscia gazu elektronowego [104]. Milowym krokiem w
kierunku powstania teorii funkcjonatu gestosci okazala sie byé praca Johna Slatera [105],
ktory wyznaczyt przyblizenie lokalnej gestosci ( Local Density Approzimation — LDA) calki
wymiennej oddziatywania coulombowskiego (3.22)):

1
3e? (33 4

stosowane do dzi§ zarowno w fizyce elektronowej jak i w fizyce jadrowej. Utamkowa za-
leznoé¢ od gestosci protonowej jest efektem poczynionego przyblizenia i wprowadza do
obliczert element fenomenologiczny, czyli taki, ktory ma za zadanie zamodelowa¢ oddzia-
tywanie elektromagnetyczne miedzy protonami, rezygnujac z odtworzenia jego wiernej po-
staci. W rachunkach przeprowadzanych w tej pracy w zasadzie nie stosuje sie przyblizenia
Slatera, a cala energie Coulomba catkuje sie doktadnie. Takie rachunki przeprowadzamy
z dwu wzgledow. W pierwszej kolejnosci, przy przywracaniu ztamanych symetrii meto-
dami rzutowymi stabilno$¢ numeryczna rachunkéw wymaga, aby uzywany funkcjonat byt
generowany hamiltonianem. Ponadto, wysoka precyzja rachunkéw potrzebna do analizy
tamania symetrii izospinowej, wyklucza rachunki przyblizone wiodacego oddzialywania
tamiacego te symetrie. [

Przelomowe dla rozwoju metod funkcjonatlu gestosci okazuja sie by¢ prace Pierre’a Ho-
henberga oraz Waltera Kohna z 1964 pt. Inhomogeneous FElectron Gas [106] oraz Waltera,
Kohna i Lu Shama z 1965 roku pt. Self-Consistent Equations including Exchange and Co-
rellation Effects [107] wieszczace rozwiazanie problemu obliczania skomplikowanych calek.
Hohenberg i Kohn w pracy z 1964r. dowodza istnienie pewnego uniwersalnego funkcjo-
natu E[p], dajacego doktadna energie stanu podstawowego w punkcie gestosci idealnej.
Twierdzenie to mozna udowodni¢ miedzy innymi przy uzyciu dwustopniowej wariacji za-
proponowanej przez Levy’ego [108]. Polega ona na 1) minimalizacji funkcjonaltu energii £
7 wiezem na wartosé srednig operatora (), 2) minimalizacji funkcji E(Q) wzgledem Q. I
tak, w przypadku, gdy Q = N, gdzie N to operator liczby czastek, dwukrotna procedura

6Jednak w procedurze iteracyjnej, o ktoérej mowa w paragrafie 1, dostarczenie funkcji falowej skorelo-
wanej czlonem wymiennym w przyblizeniu LDA znacznie przyspiesza pézniejsze dokladne wyznaczenie
cztonu Focka oddziatlywania Coulomba.
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wariacyjna prowadzi do otrzymania dokladnej wartosci energii stanu podstawowego oraz
doktadnej gestosci wyznaczajacej ten stan podstawowy.

Chemia kwantowa i fizyka jadrowa borykaja sie jednak z zupelnie innymi problemami.
W przypadku tej pierwszej zewnetrzny potencjat wiazacy elektrony jest znany. Wydawa-
toby sie zatem, ze nie ma potrzeby fenomenologicznej konstrukceji nieznanego oddziatywa-
nia. Jednak komplikacja budowy molekuly, sieci krystalicznych itp. narzuca koniecznosé
szeregu przyblizen lub tworzenia tzw. funkcjonatéow hybrydowych [17]. Wowczas metoda
DFT okazuje sie by¢ jedyna mozliwoscia podjecia proby wyznaczenia podstawowych ob-
serwabli takiego uktadu.

W fizyce jadrowej oprocz skomplikowanej struktury uktadu kwantowego pojawia sie
problem braku zewnetrznego potencjalu wigzacego — jadro jest bowiem ukladem samo-
zwigzanym. Konstrukcja efektywnego oddziatywania nukleon-nukleon wprowadza czesto
element fenomenologiczny. Analizujac wlasnosci nieskoniczonej materii jadrowej dla od-
dzialywania w postaci Skyrme’a mozemy przedstawié fizycznag interpretacje kazdego
z cztonow, poza jednym — tzw. cztonem zaleznym jawnie od gestosci. Jak juz wspomniano,
zaleznos¢ od gestosci w oddzialywaniu Skyrme’a wprowadzono w pracy [94], ktorej autorzy
zauwazyli, ze w jadrach parzysto-parzystych, na poziomie przyblizenia Hrtree’ego-Focka,
zachodzi rownowazno$¢ miedzy trojciatlowym czlonem zerowego zasiegu:

V123 = t35(r1 — I'2>(5(I'2 — 1‘3) (324)

a dwucialowym oddzialywaniem zaleznym od gestosci:

1 .
V12 = 6753(1 + F,)o(ry — rz)P<r1 _;m)‘ (3.25)

Otrzymywane wyniki z takim oddziatywaniem - w szczegolnosci parametryzacja SIIT [109)]
byly bardzo obiecujace — zgodnos$¢ energii wigzania oraz promieni z danymi doswiad-
czalnymi byla nieporéwnywalna z wczesniejszymi modelami. Jednak problem stanowita
bardzo istotna wtasnos$¢ niescisliwosci materii jadrowej. Dla parametryzacji SIII para-
metr niedcisliwosci wynosi K., = 356MeV, a na podstawie danych eksperymentalnych
dotyczacych energii gigantycznych rezonanséw monopolowych (GMR) oszacowano go na
K. = 230 + 30MeV [I10]. Mimo prob uwzglednienia oddziatywan trojcialowych oraz
czterociatowych zerowego zasiegu jak dotad nie udalo sie odtworzy¢ tego parametru [111].
Dopiero czysto fenomenologiczne zastapienie cztonu p we wzorze (3.25) na p® spowodo-
walo obnizenie wartosci niescisliwosci materii, odtwarzajac jednoczesnie Equvr [98, 112].

Unikalng cecha teorii funkcjonatu gestosci jest mozliwo$¢ przeprowadzenia wariacji
po wielu obserwablach. T tak, w przypadku jadra atomowego funkcjonat energii mozemy
skonstruowa¢ na bazie dwu niezaleznych lokalnych gestosci skalarnych, mianowicie: gesto-
ici czastkowej p oraz gestoéci energii kinetycznej T[]

Lokalng gestosé¢ czastkowa definiujemy nastepujaco [113]:

"W przypadku sformulowania teorii w jezyku gestoéci nielokalnych gesto$¢ energii kinetycznej nie jest
niezalezna od gestosci czastkowej.
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1 1
p(r,or,o't") = Zp(r)é[m/é”/+Zs(r)&wlc§”/

1

1
+ 4p(r)5wl o T + Zs(r)oﬂm/ O Trrry (3.26)

gdzie poszczegolne cztony odpowiadaja odpowiednio gestoSciom skalarno-izoskalarnym,
wektorowo-izoskalarnym, skalarno-izowektorowym oraz wektorowo-izowektorowym. W uprosz-
czeniu:

p(x) = p(r.x) = 3 [e(e,0)P (3.27)
ko
Natomiast dla operatora energii kinetycznej:
A
F(r)=-) Vii(r—n)V; (3.28)
i=1
jego gestos¢ (wartosé srednia na wyznaczniku Slatera) wynosi:
7(r) = [(VV)p(r, 1) = D [Vr(r, o)’ (3.29)
ko

Przy opisie funkcjonalnym jadra wygodnie jest rowniez wprowadzi¢ wektorowa gestoscé
spinowa:

s(r) = s(r, 1) jr—r = kZ O (r,0)¢r(r,0") (] &|0’) (3.30)

oraz tensorowa gestos¢ pradu spinowego:

1 -

Ju(r) = (Vi = Vs, ) jer
K 212~Z/[ﬁu(ﬁk(na)@t(r,d)—ﬁuqﬁﬂr,a)m(r,al)} (0| @0y, (3.31)

Dywergencja gestosci tensorowej pomnozona przez gestosé czastek wnosi wklad do gesto-
Sci energii z fizyczng interpretacjg wkladu od oddziatywania spin-orbita.

Zdefiniowanie gestosci spinowej stuzy nie tylko wprowadzeniu gestosci tensorowej, ale
rowniez jest istotne w opisie stanéw podstawowych jader nieparzystych oraz nieparzysto-
nieparzystych, a takze dowolnych stan6w wzbudzonych. W analogii do gestosci kinetyczne;j
7, traktujac spin jako dodatkowy stopieri swobody, definiuje sie niezalezng od gestosci
spinowej s wektorowa gestos$¢ kinetyczng T

T(r) = [(VV)s(r,r")]jr=r = > Voi(r,o)Vey(r,o') (o] &|d’) . (3.32)
koo’
Funkcjonal energii wyrazony przy uzyciu powyzszych gestoSci ma jeszcze jeden manka-
ment. Nie spelnia transformacji Galileusza. Podczas wyznaczania wartosci srednich ope-
ratoré6w powyzszych gestosci w gestosci hamiltonianu pojawia sie bowiem czton propor-
cjonalny do pr. Wprowadzenie do teorii wektorowej gestosci pedu (prad):
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7~ ol )
1
5 Sl6il

r,0)Voi(r,0) — du(r,0)Vei(r, o). (3.33)

ko

powoduje, iz funkcjonal zachowuje transformacje Galileusza pod warunkiem narzucenia
odpowiednich warunkow na stale sprzezenia wystepujace przy cztonach pr i j2 oraz sT i
J?.

Ponadto iloczyn skalarny gestosci spinowej z rotacja gestosci pradu daje dodatkowy
wktad do catkowitej energii z fizyczng interpretacja oddzialywania spin-orbita.

Czton sT analogiczny do pr pojawiajacy sie w funkcjonale gestosci réwniez nie spet-
nia transformacji Galileusza. Jednak te mozna zapewnié¢ przy pomocy wprowadzonej juz
gestosci tensorowej (3.31).

W powyzszych wzorach druga réwnos¢ oznacza pewng parametryzacje wartosci Sred-
nich operatoréow gestosci. Mianowicie sg to stany iloczynowe o ustalonej liczbie czastek
zbudowane z A orbitali jednoczastkowych.

Funkcjonal energii Skyrme’a jest trojwymiarows catka

ﬂ:/Hmm (3.34)
gdzie gestosé energii

2

H=—7 + Ht:() + Ht:l (335)
2m

wyraza sie przez gestos¢ energii kinetycznej oraz izoskalarna i izowektorowa gestosé od-
dzialywania. Gestosci czastkowa i kinetyczna wyrazone w notacji izospinowej spetniaja
transformacje:

Pozﬂn‘i‘/)p 7-0:7—n"|’7—p
P1 = Pn — Pp TL=Tnh —Tp (3.36)

gdzie py, T, 1 pp, 7, to odpowiednio gestosci (czastkowe 1 kinetyczne) neutronowe i proto-
nowe. Gestos¢ czastkowa zdefiniowana w (3.26) zawiera cztony, dla ktérych stany pro-
tonowe i neutronowe sa zmieszane. Jednak w tej pracy nie uwzglednia si¢ mieszania
protonowo-neutronowego, wobec czego funkcjonal gestosci mozna przedstawi¢ w nota-
cji izospinowej, gdzie gestosci izoskalarne (izowektorowe) sa sumami (roznicami) gestosci
neutronowych i protonowych.

Gestosci wechodzace w sktad funkcjonatu energii wygodnie dalej przegrupowac ze wzgledu
na symetri¢ odwrocenia w czasie. I tak gestosci skalarne i tensorowe p, 7, .J,,, s przemienne
z operatorem odwrocenia w czasie T. Wktady do energii pochodzace od tych gestosci two-
rzg tzw. kanal 7 —parzysty hamiltonianu. Do kanatu 7 —nieparzystego naleza natomiast
pozostale gestosci wektorowe s, T, j, ktore pod wpltywem dziatania operatora odwrocenia
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w czasie zmieniaja znak®| W takiej klasyfikacji lokalna gestos¢ hamiltonianu H przyjmuje
postac:

Hteven — C’fp? + CtAthAPt + CtTPtTt + C,;]JtQ + Ctvjptﬁ']t (337)
HOM = O8s? + CP%Asy + CTsy Ty + Cije® + CYse(V X o), (3.38)

gdzie wspolezynniki C; wyrazaja sie przez parametry oddziatywania Skyrme’a (3.17)). Ich
jawng posta¢ mozna znalez¢ np. w pracy [89]. Nalezy mie¢ na uwadze, ze kwadrat tensora
J? =2, T, a jego wektorowa czeS¢ Jxy = 30 Expw -

W tym miejscu nalezy podkresli¢, ze lokalny funkcjonal jadrowy (3.37)-(3.38)) jest
najogoélniejszym mozliwym funkcjonalem biliniowym w gestosciach lokalnych p, 7, J,, i
S¢, jt, Te zgodnym z symetriami oddziatywania jadrowego o ile CJ = —C7, ¢/ = —CT i
cY = C’tv 7 ¢o wynika z niezmienniczosci galileuszowskiej. To co rézni lokalne funkcjo-
naly jadrowe generowane w ramach réwnych modeli teoretycznych to zaleznosé od gesto-
Sci czastkowej stalych sprzezenia C;. Widac¢ to wyraznie poprzez poréwnanie funkcjonatu
Skyrme’a na przyktad z funkcjonatem wywiedzionym z modelu QMC (Quark-Meson Co-
upling) w pracy [114], ktory to model konstruuje sie wychodzac z zupelnie innych zalozen
fizycznych nawigzujacych do fenomenologii QCD.

Parametryzacja Kohna-Shama jest prosta w interpretacji, jednak jej koszt jest spory.
Doktadny opis gestosci czastek sparametryzowanych przez wyznacznik Slatera prowa-
dzi do niedoktadnego opisu gestodci kinetycznej tamiacej symetrie translacyjng. Symetrie
przesunie¢ mozna przywrocié przy uzyciu metody zbednych zmiennych wewnetrznych (re-
dundant internal methods) [18]. Woéwczas energie kinetyczna nalezy poprawic ze wzgledu

na ruch srodka masy:
h? 1
T=o- (1 - A) /drro(r), (3.39)

przy czym wspotczynnik (1 — —) pochodzi od jednociatowego przyblizenia P? ~ Zle p?
na ruch srodka masy. We wszystkich obliczeniach w niniejszej pracy symetrie translacyjna
traktujemy w sposob przyblizony, stosujac przyblizenie jednociatowe, zgodnie z protoko-
tem fitowania uzywanych oddziatywan.

Catkowity funkcjonal energii Skyrme’a-Hartree’ego-Focka uwzgledniajacy energie po-
chodzaca od oddzialywania coulombowskiego jest suma wktadow (3.37)),(3.38),(3.39) oraz
(13.22):

ESHF(p) — 1 —_ — /drTO —|— Z /d Heven Hodd( )]
t=0,1
Pp(r)pp(r) / oo, Ty (' )
* 2 /drd v —r/| 2 drdr Ir— 1| (3.40)

8 Calkowity hamiltonian jest parzysty wzgledem dzialania operatora odwrécenia w czasie. Terminologia
pochodzi jedynie od gestosci, ktére moga by¢ parzyste lub nieparzyste wzgledem symetrii odwrécenia w
czasie. Gestos§¢ energii jest biliniowa w gestosciach i zawsze 7 —parzysta
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Rownania Kohna-Shama uzyskuje sie, wariujac gestosci (orbitale jednoczastkowe). Ha-
miltonian pola Sredniego przedstawia sie wowczas:

hQ
he = 5 A TP+ TP 4 U, (3.41)

gdzie, UF" jest potencjatem pochodzacym od oddziatywania Coulomba — obecnym jedy-
nie w polu protonowym, a ['{"*" to potencjaly odpowiednio 7 -parzyste i 7T -nieparzyste:

I = —V[M)V] + Ui) + o (Vo) Bilr) + Bu(r)(Vo))
re = —V|[(aCy(r))V]| + o % (r) + ;Z,(VIt(r) +1,(r)V). (3.42)

Funkcje definiujace potencjaly pola sredniego to odpowiednio:

Uy = 2Cf0,+2C, Vo, + Cim+ CYINVI 4+ U™
3, = 20%s,+20YVs, + CI'T, + CY/V % j,

M, = CtTQt

C, = C’tht

B, = 2C/J,—CY'Vo,

L= 207j,+CY'V xs,. (3.43)

Pojecie samozgodnosci rozwigzan metody iteracyjnej ma co najmniej kilka aspektow. Mia-
nowicie:

e gestosc czastkowa i—tej iteracji jest rowna co do pewnego ustalonego obciecia gestosci
czastkowej 7 + 1—ej iteracji.

e cnergia calkowita i—tej iteracji z doktadnoscia do pewnego ustalonego obciecia jest
roOwna energii catkowitej w ¢ + 1-¢j iteracji.

e Najsilniejszym warunkiem samozgodnosci jest warunek, w ktérym energia £ pocho-
dzgca od wycaltkowanej gestoéci hamiltonianu jest rowna z pewng zadang doktad-
noscig energii:

S_ _ 1gs.p. 1Ekin grear 1£Cou
- 5 + 5 - + g exch (344)
W kodzie numerycznym HFODD stabilnos¢ rozwiazania rownan pola sredniego uzyskuje
sie przez nalozenie warunku: 66 = € — & = 0. Wowczas zar6wno pola srednie jak i gesto-

Sci nie zmieniaja sie z uptywem kolejnych iteracji a o rozwigzaniu mozemy mowic, ze jest

stabilne.

Teoria SHF bedzie w tej pracy wykorzystywana jako zrédto rozwigzan samozgodnych,
czy to stanéw podstawowych, czy stanéw wzbudzonych. Te natomiast, po zastosowaniu
technik rzutowych, beda nastepnie mieszane. Poniewaz kombinacja liniowa stanéow ilo-
czynowych nie jest w ogoélnoéci stanem iloczynowym rozwijany dalej formalizm bedzie
rozszerzeniem metody HF. Zanim jednak przejdziemy do formalizmu wychodzacego poza
pole Srednie, skupimy uwage na charakterze uzywanego oddzialywania najpierw w kanale
izoskalarnym nastepnie w kanale izowektorowym.
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§4. Oddziatywania Skyrme’a niezalezne od gestosci.

Saturacje sity jadrowej w efektywnym oddzialywaniu jadrowym otrzymuje sie stan-
dardowo poprzez zastapienie cztonéow wielociatlowych oddzialywaniem zaleznym od gesto-
ci. Jak sie jednak okazuje taki czton generuje niestabilnosci w rozwigzaniach rzutowych
wychodzacych poza przyblizenie pola sredniego [115], 116, 117, 118, 119]. Przywrocenie
spontanicznie ztamanych symetrii przez pole Srednie jest jednak kluczowe w opisie obser-
wabli zwiazanych z rozpadami jadrowymi. Stabilno$¢ numeryczna w technikach rzutowych
zobowiazuje zatem do uzywania oddziatywania niezaleznego od gestosci. Najstarszym od-
dzialywaniem dwucialowym niezaleznym od gestosci jest parametryzacja SV [109]. Co
ciekawe wraz z parametryzacja SVI powstala ona jako produkt uboczny badan nad wta-
snosciami oddzialywania w zaleznosci od parametru t3 sity oddzialywania zaleznego od
gestosci. Parametryzacje SIIT i SIV powstaly przy dopasowaniu parametrow tg, xg, t1, to
przy ustalonym parametrze t3. W kanale wymiany spinu uwzgledniono jedynie czlon cen-
tralny, zatem parametrow xp,xs nie wzieto do rozwazan. Ponadto o = 1, bowiem idea
potegowej zaleznosci od gestosci zostata wprowadzona do oddziatywania p6zniej. Wiacza-
jac do analizy parametryzacje SII otrzymana z pelnego dopasowania (wraz z parametrem
t3) w pracy [94] sprawdzono, ze odpowied7 wszystkich parametréw na zmiane natezenia
wkladu zaleznego od gestosci jest z bardzo duzg doktadno$cia liniowa. Wobec tej obser-
wacji dokonano ekstrapolacji liniowej parametrow przy t3 — 0 — parametryzacja SV oraz
ts — 17000 MeV fm? w przypadku parametryzacji SVI. Przyjeto wowczas zalozenie, ze sila
oddzialywania spin-orbita nie jest bezposrednio skorelowana z pozostatymi parametrami
oddziatlywania i ze zamiast ekstrapolacji nalezy ja dopasowa¢ do poziomoéw jednoczast-
kowych w jadrze 2°®Pb. Koncepcja spinu wynika bezposrednio z teorii relatywistyczne;
Diraca, wobec czego oddzialywanie spin-orbita nie jest ad hoc dodanym do hamiltonianu
cztonem. Ponadto jak sie okazuje [120] sile krotkozasiegowego oddzialywania spin-orbita
mozna powigzaé ze skyrmowskimi parametrami ¢1,f, oraz z masami mezonéw posredni-
czacych w krotkozasiegowej czedci oddziatywania: my,, m, oraz m,. Okazuje si¢ wowczas,
ze zalezno$¢ W od parametrow tq,to rowniez jest liniowa. Zmiana tych parametréow pod-
czas ekstrapolacji wptywa zatem na zmiane natezenia oddzialywania spin-orbita. Przyjety
parametr Wy dla oddzialywania SV wynosi Wy = 150 MeVfm®. Ekstrapolowany z sit SIII
oraz SIV wynosi Wy = 167 MeVfm?® natomiast z sit SIT oraz SIV wynosi Wy = 202 MeVim®.
Rozbieznos¢ wynika z faktu, ze parametr Wy dla sit SIIT oraz SIV zostal ustalony i nie
byl dopasowywany w pelnym ficie. W naszych rachunkach wykorzystujemy site SV w dwu
wariantach: z oryginalng wartoscig W, oraz z powiekszong o 20% tj. Wy = 180 MeVfm®
dalej zwang SVgo.

Dla nieskoniczonej materii Srodowisko jadrowe mozemy traktowac¢ w przyblizeniu gazu
Fermiego. Takie przyblizenie daje intuicyjne pojecie o oddziatywaniu. Zatozenie nieskon-
czonosci natychmiast implikuje jednorodno$¢ uktadu, a ta niezmienniczos¢ wzgledem
translacji. Zatem cze$¢ oddzialywania zalezna od pedu czastek znika a funkcje falowe
mozemy opisywaé falami ptaskimi. Wowczas energia wigzania na czastke zgodnie ze wzo-
rem (3.40) wynosi:

EZHF = HSPHF A= ‘;’T + :top + 116153;)2 + 8?6(&1 + 5ty) pk (3.45)

Warunek saturacji sity jadrowej wyznacza gesto$¢ jadrowa p w stanie rownowagi. Ma-
tematycznie ciSnienie tj. zmiana gestosci energii w otoczeniu gestosci saturacji jest roéwne
zero. Zgodnie ze wzorem (3.45)) za réwnowage sity jadrowej odpowiada balans pomiedzy
energetycznym wkladem od cztonu centralnego wraz z czltonem zaleznym od gestosci oraz
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Tabela 3.1: Wartosci parametréow Skyrme’a oraz niektore wlasnosci nieskonczone;j
materii jadrowej dla oddziatywan SII-SVI uporzadkowanych z rosnacym parame-
trem t3 [94, 109].

t3 to Zo tl t2 W()
(MeV fm®)  (MeV fm?) (MeV fm®) (MeV fm®) (MeV fm®)
SV 0 -1248.29 -0.17 970.6 107.2 150
SIV 5000 -1205.6 0.05 765 35 150
SII 9331 -1169.9 0.34 586.6 -27.1 105
SIII 14000 -1128.75 0.45 395 -95 120
SVI 17000 -1101.29 0.58 271.7 -138 115
P Ey K e J Vo w 10Ca
(fm~3) (MeV)  (MeV) (MeV) (MeV)
SV 0.155 -16 306 0.38 32.72 -79.7
SIV 0.152 -16 325 0.47 31.22 -66
SII 0.148 -16 342 0.58 34.2 -955.3
SIII 0.145 -16 356 0.76 28.16 -44.6
SVI 0.145 -16 364 0.95 26.89 -38.1

cztonu pr. W przypadku braku cztonu w funkcjonale reprezentujacego oddziatywania wie-
lociatowe — tak jak w oddzialywaniu SV, balans ustala sie poprzez zwiekszenie wktadu
od cztonu centralnego (wzrost parametru ) z jednoczesnym zmniejszeniem tzw. masy
efektywnej m* tj:

(3.46)

2 OHgen\ ! 2m !
i =m(1+ (3t
m <h2 5 m( 1+ 16h(3z‘1 + 5ta)p

wzgledem oddzialywania zaleznego od gestosci p.(3.45) oraz Tab. .

Mechanizm wysycenia sit jadrowych poprzez znaczne obnizenie masy efektywnej ma
negatywne skutki. W szczeg6lnosci, prowadzi on do zmniejszenia gestosci stanow jadro-
wych przy powierzchni Fermiego, co w konsekwencji prowadzi do niestabilnosci lub wrecz
zaniku korelacji nadprzewodnikowych i wymusza stosowanie formalizmu Hartree’go-Focka
w praktycznych zastosowaniach. Wlasnie z tego powodu, w niniejszej rozprawie, zmuszeni
jestesmy do rozwijania technik rzutowych z wyznacznikoéw Slatera, a nie z rozwigzan typu
nadprzewodnikowego.

Niska masa efektywna to gléwny mankament sity SV. Jedyna mozliwoscia jej zwiek-
szenia, przy jednoczesnym utrzymaniu stabilnosci numerycznej w rachunkach rzutowych
jest dodanie do oddzialywania czlonow wielocialowych zerowego zasiegu. Takie oddzialy-
wanie, w ktorym efekty wielociatowe uwzgledniono w postaci kontaktowej sity trojciatowej
oraz czterocialowej jest obecnie rozwijane 111, 121]. Na chwile obecna nie spetnia jed-
nak wielu wymogéw oczekiwanych od oddzialywania jadrowego. Przewidywania energii
stanow podstawowych sit SLyMRO oraz SLyMR13 nadal sa ponizej oczekiwan, a ener-
gia symetrii J ~ 22MeV [I11] tych oddzialywan daleko odbiega od przedzialu ufnosci
J € (30;35)MeV [122]. Nalezy jednak podkresli¢, ze prace nad nowymi funkcjonatami,
ktore mozna bytoby zaaplikowa¢ do metod rzutowych sa niezwykle istotne szczegodlnie z
perspektywy zwiekszenia masy efektywnej.
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Warto natomiast zauwazy¢, ze warto$¢ energii symetrii J = 32.7MeV p. Tab.
dla oddzialywania SV jest bardzo bliska wartosci do$wiadczalnej otrzymanej z analizy
pigmejskich rezonanséw dipolowych (PDR, Pigmy Dipole Resonance) [123] 124], czy tez
wartodci otrzymanej z wielkoskalowych dopasowan do mas jadrowych przy uzyciu modelu
FRDM (Finite-Range Droplet Model) [125], gdzie J = 32.5 £ 2.5 MeV [122].

§5. Symetria obrotowa w izoprzestrzeni

Szczegbdtowy analize zagadnienia tamania symetrii izospinowej przez efektywne od-
dzialywanie silne czytelnik znajdzie w doktoracie Pawla Baczyka [8]. W tym paragrafie
ograniczymy sie jedynie do skréconego opisu tamania symetrii tadunkowej, catkowicie po-
mijajac zagadnienie tamania niezaleznosci tadunkowej. W ten sposob rozszerzymy stan-
dardowe oddzialywanie Skyrme’a opisane w poprzednim paragrafie o cze$¢ izowektorows.
Przeprowadzenie badan uwzgledniajacych tamanie niezaleznoéci tadunkowej jest zwigzane
z konieczno$cig ztamania osiowej symetrii izospinowej. W rachunkach wychodzacych poza
przyblizenie pola sredniego oznacza to koniecznos¢ wykorzystania technik rzutowych w
trojwymiarowej izoprzestrzeni. Na chwile obecna takie rachunki w kodzie HFODD sa nie-
mozliwe. Przedstawimy réwniez uzyskane w ramach wspotpracy gtowne wyniki badan i
plynace z nich wnioski niezbedne do szerszego zrozumienia badan nad rozpadami Fer-
miego.

Przedstawione w oddziatywanie Skyrme’a jest niezmiennicze ze wzgledu na ob-
r6t w izoprzestrzeni, co oznacza, ze w zaden sposéb protony nie sa wyréznione nad neu-
tronami i czastki wchodzace w sktad jadra mozemy nazywa¢ nukleonami. W konsekwencji
zachodza relacje komutacyjne [126]:

[HSkyrme7 Tﬂ =0 [HSkyrmea T] =0 (347)

i tak jak dyskutowaliémy w paragrafie 2 rozdzialu 1 méwimy woéwczas o zachowaniu nie-
zmienniczosci oraz niezaleznodci tadunkowej. Dane eksperymentalne wskazuja, ze powyz-
sze reguly komutacyjne spelnione sa z bardzo dobrg doktadnoscia. W zwigzku z tym
wiekszos§¢ modeli wielocialowych wykorzystuje oddzialywania izoskalarne. Dzieki temu,
konstrukcja konfiguracji np. w przypadku modelu powlokowego moze opierac¢ sie na sta-
nach z dobrymi liczbami kwantowymi |IM,TT.), co znacznie upraszcza rachunki.

Symetria izospinowa oddzialywania jadrowego jest jednak ztamana w sposéb oczy-
wisty przez wkiad pochodzacy od sity coulombowskiej. Nadal dominujacy wklad tej sity
pochodzi od kanalu monopolowego niezaburzajacego symetrii izospinowej, a jej tamanie
odbywa si¢ dopiero w o wiele stabszych kanatach izowektorowym oraz izotensorowym.

Wyréznienie czastki ze wzgledu na jej tadunek nie jest jednak jedynym Zrédiem ta-
mania symetrii izospinowej. Okazuje sie rowniez, ze roznica mas miedzy kwarkami u i d,
a w konsekwencji pomiedzy neutronem i protonem roéwniez przyczynia sie do zaburzenia
tej symetrii jednak tym razem w oddzialtywaniu silnym. Réznica mas implikuje r6znice w
energiach kinetycznych. Ma tez wplyw na wymiane bozon6éw posredniczacych.

FLamanie symetrii izospinowej przez oddziatywanie silne jest widoczne w danych do-
$wiadczalnych. W pierwszej kolejnosci rozroznienie czastek uwidacznia sie w eksperymen-
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tach rozproszeniowych, ktére pokazuja réznice w dlugosciach rozpraszania w zaleznosci
od pary nukleonéw. I tak, po usunieciu wktadu od oddziatywania Coulomba, w kanale * Sy
dtugosci rozpraszania neutron-neutron (nn), neutron-proton (np) oraz proton-proton (pp)
sg rowne a,, ~ —18.9fm, a,, ~ —23.7fm oraz a,, ~ —17.3fm [127]. Te dane wskazuja,
ze oddzialywanie jadrowe nie dziala jednakowo miedzy dwoma neutronami oraz miedzy
dwoma protonami V,,,, # V,,. Na podstawie danych mozna wywnioskowac, ze V,, jest
silniejsze od Vj, o okolo 1%, a w konsekwencji, ze zlamana jest symetria tadunkowa.
Ponadto réznice w oddziatywaniu miedzy tymi parami uwidaczniaja sie w strukturze ja-
drowej. Badajac réznice energii wigzania w parach jader zwierciadlanych dla szerokiego
zakresu mas (mirror displacement energy, MDE):

MDE = BE(T,T, = -T) — BE(T, T, = T) (3.48)

Nolen i Shiffer [128] zauwazyli, ze nawet przy bardzo dokladnym uwzglednieniu wptywu
oddziatywania Coulomba rachunki z izospinowo-niezmieniczym oddzialywaniem silnym
nie odtwarzaja réznic eksperymentalnych. W literaturze to zagadnienie nazywa sie ano-
malia Nolena-Shiffera i $wiadczy o tamaniu symetrii tadunkowej przez efektywne oddzia-
tywanie silne.

Efekty lamania symetrii izospinowej przez oddzialywanie silne byly obiektem badan
przeprowadzanych przez wiele grup badawczych wykorzystujacych rézne metody wielo-
cialowe w opisie jadra atomowego. Poczawszy od obliczen w modelach ab initio [129],
pola $redniego Hartree’ego—Focka [I30] az do modelu powtokowego [I31, 132]. Roz-
wo6j kodu numerycznego HFODD [5] pozwolil na globalne badania nad anomalia Nolena-
Shiffera po raz pierwszy przy uzyciu metody jadrowego funkcjonatlu gestosci z funkcjona-
tem Skyrme’a [9] 133] i funkcjonalem wyprowadzonym z modelu QMC [114] [134].

Oddzialywania tamiace symetrie izospinowa standardowo klasyfikuje sie zgodnie z po-
dziatlem zaproponowanym przez Henley’a i Millera [126]:

Vi, 5) = a+b7()7()) (3.49)
Viig) = c[R)R0) - 57070) (3.50)
V(i 5) = d7.(i) + 7.())] (3.51)
V(i j) = el (i) = ()L ) + 7))

+  flo(i) x a(j)]LIT(i) x 7(j)]- (3.52)

I tak sita klasy I komutuje z operatorem catkowitego izospinu jadra przez co jest
izospinowo-niezmiennicza. Jej posta¢ jest tozsama z lokalnym oddzialywaniem nukleon-
nukleon zapisanym w postaci Landaua (3.13). Klasa II reprezentuje sily tamigce
symetrie izospinowg w kanale izotensorowym i odpowiada za ztamanie niezaleznosci tadun-
kowej, jednoczesnie zachowujac symetrie tadunkowa. Okazuje sie, ze jest ona kluczowa w

opisie krzywizny energii wigzania w trypletach izospinowych — triplet displacement energy
TDE:

TDE = BE(T =1,T,=-1)+ BE(T=1,T,=1)—2BE(T=1,T, =0)  (3.53)
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jednak marginalna przy opisie MDE w jadrach zwierciadlanych T' = 1/2 oraz T = 1 |8, [11].
Z tego powodu nie bedziemy dalej jej omawiac.

Izowektorowe oddzialywanie klasy I11 opisuje famanie symetrii tadunkowej. Roz-
nicuje oddziatywanie miedzy dwoma neutronami oraz dwoma protonami. W przypadku
oddzialtywania Skyrme’a dla czlonéw objetosciowego oraz powierzchniowego oddziatywa-
nie klasy IIT przyjmuje posta¢ [133]:

I 111 1 [ 72 221 |y 2Us oy a (s
VLG, j) = {to 5(r; — 1))+ B 6 — 1))+ 0(es — 1))k | 11 k;(i(ri—rj)k}[Tz(z)—i-TZ(j)}
(3.54)
Dla tak sformutowanego oddziatywania podobnie do (3.37),(B3.38) wyprowadzono funkcjo-
nal gestodci energii. Parametry dodatkowej sity zostaly dopasowane do réznic ekspery-
mentalnych MDE w jadrach zwierciadlanych w zakresie mas A = 6 — 75. Dopasowano w
ten sposob kilka funkcjonaléow w tym: SV, SkM* oraz SLy4.

Z perspektywy dalszej czesci tej pracy i rachunkow rzutowych szczegdlnie istotna jest
parametryzacja i dopasowanie klasy III z sita SVgo [8]. Ponizej przedstawiono odpowiednie
parametry dopasowane do danych doswiadczalnych w jadrach zwierciadlanych 7' = 1/2
oraz T'=1 w zakresie mas A =7 — 75 oraz A =6 — 58:

9 = —6.7 £ 0.3 MeVim® (3.55)
tPNO — 5 £ 2 MeVim® "N = —3 43 MeVim® 5 "N0 = —7.4 4+ 0.8 MeVhm®
(3.56)

Na wykresie przedstawiono warto$ci MDE otrzymane z funkcjonatami rézniacymi
sie 7Zrodtem lamania symetrii izospinowej. Oddzialywanie SVgo lamie symetrie izospi-
nowa jedynie przez oddzialywanie Coulomba, w SVIS%%LO wtaczono oddziatywanie klasy
111 w wiodacym rzedzie z parametrem (3.55), natomiast w SVESyo oddzialywa-
nie klasy III wraz z cztonami powierzchniowymi z parametrami . Wykorzystanie
cztonow klasy IIT w obliczeniach juz w wiodacym rzedzie zdaje si¢ wyjasnia¢ anomalie
Nolena-Shiffera, a uwzglednienie kolejnego rzedu rozwiniecia dodatkowo poprawia zgod-

no$¢ z danymi doswiadczalnymi szczegdlnie w rejonach lekkich i ciezkich jader.

Wprawdzie dwucialowa sita klasy TV (3.52) tamie zaréwno symetrie jak i niezalez-
nos¢ tadunkowa, to jej wktad do obserwabli jest zaniedbywalny [129]. Z tego powodu we
wszystkich przeprowadzanych rachunkach nie uwzgledniamy tej klasy.

Izowektorowe oddziatywanie Skyrme’a zostalo zaimplementowane w kodzie HFODD w
wersji opublikowanej w pracy [5].

§6. Przywracanie symetrii rotacyjnej metoda rzutowania

Niemal kazdy dotychczasowy paragraf tego rozdzialu dotyka problemu tamania sy-
metrii. Parametryzacja gestoéci w ujeciu Kohna-Shama prowadzi do tamania symetrii
translacyjnej a w konsekwencji do niedoktadnego opisu energii kinetycznej. Uwzglednie-
nie efektoéw tamania tej symetrii wymaga wprowadzenia dodatkowej poprawki ze wzgledu
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Rys. 3.1: Warto$ci MDE z odjetym trendem liniowym podane w MeV w jadrach
zwierciadlanych T' = 1/2 (panel gorny) oraz T = 1 (panel dolny) w zakresach mas
A=7-—"T50raz A =6 — 58. Czarna linia kropkowana reprezentuje $redniopolowe
obliczenia wykonane z funkcjonatem SVgo bez izowektorowych cztonoéw tamigcych
izospin w oddziatlywaniu silnym, czerwona linia kropkowana przedstawia rachunki z
uwzglednieniem klasy III w wiodacym rzedzie SVES) o, natomiast czerwona
linia ciggla ze znacznikiem odnosi sie do obliczen z klasa I1I w kolejnym po wiodacym
rzedzie rozwiniecia SVIS%B;NLO. Czarnymi kwadratami oznaczono dane eksperymen-
talne [135]

na ruch srodka masy. W celu zachowania niezmienniczosci wzgledem transformacji Galile-
usza, wprowadza sie do struktury funkcjonalu np. gestos$¢ tensorows. Wreszcie w ostatniej
sekcji przedstawiliémy oddziatywanie nukleon-nukleon wychodzace poza standardowa site
Skyrme’a . Wraz z oddziatywaniem Coulomba tamie ono — w sposéb jawny, a wiec
fizyczny — symetrie izospinows.

Metoda Hartree’ego—Focka jest narzedziem teoretycznym pozwalajacym obliczy¢ stany
wielofermionowe nukleon6w poruszajacych sie w sposob niezalezny w pewnym jednociato-
wym potencjale wyznaczonym przez usrednienie efektywnego oddzialywania miedzy nimi.
Przyblizenie pola $redniego generuje tamanie symetrii petnego hamiltonianu ze wzgledu
na koniecznos$¢ wyboru okreslonej klasy funkcji probnych potrzebnej do zastosowania
metody wariacyjnej i przyblizony charakter rozwigzan. Przykladem moze by¢ tamanie
symetrii liczby czastek w teorii HFB, czy tez symetrii izospinowej, ktéra naruszana jest
przez przyblizenie pola sredniego takze spontanicznie, w sposéb niefizyczny. Glownym po-
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wodem wprowadzenia wieloreferencyjnej teorii funkcjonatu gestosci jest jednak tamanie
przez pole $rednie symetrii obrotowej. Przywrdcenie tej symetrii umozliwia zastosowanie
metody DFT do obliczen struktury stanéw wzbudzonych jak réwniez wyznaczania ele-
mentow macierzowych przejsé elektromagnetycznych oraz przejsé beta.

Metoda pola sredniego w ujeciu Hartree’ego-Focka zachowuje symetrie rotacyjng ha-
miltonianu w przypadku jader, w ktorych czastki catkowicie zapelniajg okreslone powtoki.
7 tego powodu parametry oddzialywania w metodzie HF dopasowuje si¢ jedynie do da-
nych eksperymentalnych jader podwojnie magicznych. W przypadku dodania do uktadu
niewielkiej liczby czastek, tworzac w ten sposob uktad z otwarta powtoka, uktad po przej-
Sciu procedury wariacyjnej staje sie ukltadem zdeformowanym. Dzieje sie tak, bowiem ze
wzgledu na narzucenie na funkcje falowa postaci wyznacznika Slatera, obsadzenie kilku
czastek ponad zamknieta powloka taczy sie z koniecznoscia wyboru zdegenerowanych or-
bitali o okreslonym rzucie momentu pedu. Takie rozwiazanie, wyrézniajace pewne orbitale
ze wzgledu na magnetyczna liczbe kwantowa sposréd 25+1 o tej samej energii natychmiast
tamie symetrie obrotowa. Nowa funkcja falowa generuje w kolejnej iteracji - ze wzgledu
na nieliniowo$¢ rownan Hartree’ego-Focka, zdeformowane pole srednie. A wowczas wa-
lencyjne czastki w zdeformowanym polu srednim zaczynaja oddziatywaé z tzw. rdzeniem
i caly uktad ulega deformacji. W ten sposéb spontaniczne tamanie symetrii obrotowe;j
wzbogaca funkcje falowa o bardzo istotne korelacje zwiazane z tzw. polaryzacja rdzenia.
Opisany tu efekt znoszenia degeneracji nosi w chemii kwantowej i fizyce molekularnej na-
zwe efektu Jahna-Tellera. W my$l twierdzenia udowodnionego przez Jahna i Tellera uktad
czasteczkowy, w ktorym wystepuje degeneracja orbitali bedzie nietrwaty i bedzie ulegal
zaburzeniu tworzac uktad o nizszej energii i nizszej symetrii dzieki zmniejszeniu krotnosci
degeneracji poziomoéw energetycznych [I36]. Zdeformowany model $redniego pola bazu-
jacy na fenomenologicznym potencjale osiowego oscylatora harmonicznego wprowadzit do
fizyki jadrowej po raz pierwszy Nilsson [137]. Stad poziomy (orbitale) jednoczastkowe w
fizyce jadrowej okresla sie mianem pozioméw Nilssona, niezaleznie od tego czy sa one
rozwigzaniami modeli samozgodnych Hartree’ego-Focka, czy tez modeli bazujacych na
zdeformowanych potencjatach fenomenologicznych. W tym kontekscie warto podkreslié
role nadprzewodnictwa jadrowego, ktore preferuje symetrie sferyczna. W jadrach atomo-
wych pole pairing bedzie zatem dazyto do pewnej redukcji deformacji jadrowej w stosunku
do rozwiazan Hartree’ego-Focka.

Lamanie symetrii obrotowej wzbogaca funkcje falowa uktadu kwantowego o wiele
dodatkowych korelacji tworzac, jak moéwi przytoczone wyzej twierdzenie Jahna-Tellera,
uktad o nizszej energii i nizszej symetrii dzieki zmniejszeniu krotnosci degeneracji pozio-
moéw energetycznych. Rozwigzania ze ztamana symetrig pozwalaja na odtworzenie szeregu
obserwabli zwanych popularnie objetosciowymi, do ktoérych zaliczamy masy, promienie
czy tez momenty kwadrupolowe jader. Funkcja falowa modelu zdeformowanego jest jed-
nak zupelnie bezuzyteczna przy obliczeniach wielu innych obserwabli takich jak przejscia
elektromagnetyczne czy tez rozpady beta. Wynika to z faktu, ze hamiltonian jadrowy, w
przeciwienstwie do czasteczkowego, jest sferycznie symetryczny co oznacza koniecznoscé
przywrocenia naruszonej symetrii rotacyjnej.

Symetrii obrotowej nie da sie przywroéci¢ metoda redukeji zmiennych jak w przypadku
symetrii translacyjnej. Ciezko bowiem znalez¢ wspoltrzedne rozdzielajace zmienne uktadu
wewnetrznego i zmienne kolektywne, jak réwniez nie ma dobrze zdefiniowanego odpowied-
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nika Srodka masy dla katow. Jest wiele dostepnych metod w obrebie teorii pola sredniego,
ktore stuza do przywracania ztamanych symetrii. Zaliczaja sie do nich m.in. eranking [18],
isocranking [138, [139] 140] - metody przywracajace moment pedu lub izospin, metoda Lip-
kina [I41], 142], czy Lipkina-Nogami [143] [144] dbajace o zachowanie przez funkcje falowa
liczby czastek. Powyzsze metody sa jednak przyblizeniami. W pelni $cisty kwantowo-
mechaniczny opis przywracania zlamanych symetrii mozna uzyska¢ przy uzyciu metod
rzutowych [145]. W szczegolnosci w przypadku symetrii obrotowej w przestrzeni i w izo-
przestrzeni wykorzystuje sie wlasnosci grupy SU(2) opisane w rozdziale 1.

Grupe obrotow SU(2) mozna sparametryzowaé przy uzyciu trzech katow Eulera Q =
(e, B,7). Funkcja falowa pod wptywem obrotu uktadu wspotrzednych przyjmuje postac:

2(Q)) = R(Q) |2) (3.57)

gdzie operator R jest operatorem obrotu wprowadzonym w (1.12)). W przypadku grupy
SU(2) sparametryzowanej katami Eulera na podstawie (1.23) przyjmuje on postac:

R(Q) = eilzeilein T, (3.58)

Dla sferycznie symetrycznego hamiltonianu wartosci srednie wyznaczone dla stanéw po-
staci |®(€2)) beda identyczne. Uwzglednienie nieskoriczenie wielu zdegenerowanych roz-
wigzan prowadzi do funkcji falowej postaci:

:/ﬂﬁ«n@m», (3.59)

gdzie f(Q2) sa funkcjami wagowymi, a element objetosci d2 = sin Sdaddy. Postaé¢ funkeji
f(82) wyznacza sie, rozwijajac ja w bazie reprezentacji grupy tak, aby funkcja falowa |¥)
spetniata warunek ((1.12] - W przypadku symetrii rotacyjnej grupy SU( ) (1.27) rozwiniecie
odbywa sie w tzw. funkcjach D—Wignera, ktére w przestrzeni przyjmuja postac:

Dy () = (IK|R(Q) [IM) = X djep (8)e™™, (3.60)

gdzie funkcje

dKM(ﬁ) = <IK‘ 7%(5) ‘]M> (3-61)

nazywa sie funkcja d—Wignera, a operator 7@(6) jest operatorem jednowymiarowego ob-
rotu wokot osi y. Funkcja wagowa dla okreslonego momentu pedu I oraz rzutu M na o$
Oz przyjmuje postac:

2[—0—1
- 8n2

wowcezas funkcja falowa, zgodnie ze wzorami (3.59) i (3.62)) wyraza si¢ jako:

2[+1

[, IM) S [ dui Dl (R 19) = Sl Pl [9). (3.63)
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Druga rownos¢ wynika bezposrednio ze wzoru na operator rzutowy (1.14]), ktory w obrebie
grupy SU(2) przyjmuje postac:

o ar+
pr.—t + = [ Dil(@R()d0, (3.64)

gdzie 21 4+ 1 jest wymiarem reprezentacji, a |G| = Jd = 872 objetodcia w przestrzeni
sparametryzowanej katami Eulera. Operator rzutowy PM x mozna takze zapisa¢ w postaci
spektralnej:

Pl = S |IM;a) (IKsal, (3.65)

gdzie sumowanie rozciaga si¢ na pozostale liczby kwantowe Korzystajac z tej postaci
mozna latwo pokaza¢, ze operator Pj,, spelnia relacje (I oraz ([1.16)):

p]&Kp]ﬁlK/ == 5[[’6M/Kp]{4[(/ (p]\IJK)T - pII(M (366)

W ogolnosci wspotezynniki rozwiniecia al. (3.62) otrzymuje sie, korzystajac z zasady
wariacyjnej 0 E; = 0 [18]. Energia uktadu kwantowego w bazie wyrzutowanych liczb kwan-
towych przyjmuje postaé:

(W, IM| H U, IM)  Yki agajo Mk

(U IM|W, IM) Y ailataNEe'
gdzie, korzystajac z relacji oraz z faktu, ze hamiltonian komutuje z operatorem
rzutowym PL,,, zdefiniowano catkowe kernele hamiltonianu:

E; = (3.67)

Hirer = (O|H Py | @) (3.68)
oraz normy:
KK’ = <(I)|PII(K"®> (3.69)
Kernel dowolnego operatora O:
O(2) = (©[0]9(2)), (3.70)

jest wartoscia srednig obliczang na stanach wyrzutowanych. A zatem zgodnie z twierdze-
niem Wicka dla dowolnych operatoréw jedno F' i dwucialowych V kernele [146]:

1 (D] F| D) _
o) = ———=> Fu.p (3.71)
N(©) old) 5
1 (2| V|®) _
7])(9) = — =, == Vu)mp)\ pm/ (372)
N(©) (®|P) 2% .
oblicza sie, przy uzyciu gestosci przejéciowych:
1
! (®|ala, |(2)) (3.73)

pVM - a/LaV - N( )
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Ze wzgledu na fakt, iz liczba kwantowa K nie musi by¢ zachowana wspotczynniki al; sa
rozwiagzaniem wariacyjnego rownania zwanego w literaturze rownaniem Hilla—Wheelera [147,
148]:

> g (Hicr — E'Nie) = 0 (3.74)
K/

Powyzsze rownanie nie jest typowym réwnaniem wlasnym. Rozwigzanie otrzymuje sie po-
przez diagonalizacje Hamiltonianu w bazie nieortogonalnej rozpietej przez wyrzutowane
stany . W ogo6lnosci stany te sa liniowo zalezne. W takim przypadku generowana
przez nie baza jest nadzupelna. Wowczas diagonalizacje przeprowadza sie w podprze-
strzeni rozpietej przez wybrane liniowo niezalezne stany, bedace kombinacjami liniowymi
stanow wyrzutowanych. Takg podprzestrzen nazywa sie przestrzenia kolektywna. Wyboru
dokonuje sie przez ortogonalizacje wyrzutowanych stanéw. Procedure mozna przeprowa-
dzi¢ przy uzyciu metody Grama-Shmidta lub dokonujac diagonalizacji macierzy norm [18].
W uzywanym programie numerycznym HFODD [5] stosuje sie te druga metode. Przy zato-
zeniu, ze wartosci wlasne macierzy norm sa dodatnie n; > 0, a &; sa odpowiadajacymi im
wektorami wlasnymi, ortogonalne stany rozpinajace przestrzen kolektywng zwane stanami
naturalnymi przyjmuja postac:

1
VAL

Indeks m numeruje stany do pewnego zadanego ny., Wyzhaczajacego wymiar przestrzeni
kolektywnej. W teorii wystarcza, aby n,, > 0. Jednak w praktyce niedoktadno$¢ nume-
ryczna w catkowaniu kerneli wymusza wprowadzenie parametru obciecia norm n,, < (
bliskich zera, zmniejszajac jednocze$nie wymiar przestrzeni kolektywnej. Rownanie Hilla-
Wheelera w przestrzeni kolektywnej przyjmuje posta¢ hermitowskiego rownania wtasnego.
Wobec czego diagonalizacja hamiltonianu w tejze przestrzeni prowadzi do wyznaczenia

wspotczynnikow zmieszania al.

|D; TM) ™ = S e |o; IMK) (3.75)
K

Przywracanie spontanicznie ztamanych symetrii opisang wyzej metoda rzutowania na-
zywa sie wieloreferencyjna metoda DFT (multireference DFT) i oznacza MR DFT. Nazwa
oddaje istote calej procedury zawarta w rownaniu (3.59). Stan z dobrze okreslonymi sy-
metriami jest bowiem kombinacja liniowa wielu obréconych stanéw ze ztamanymi syme-
triami. Wprowadzajac do uzytku nomenklature stanéw referencyjnych, stan wyznaczony
w ramach metody DFT ze spontanicznie naruszonymi symetriami nazywamy pojedyn-
czym stanem referencyjnym single-reference DF'T' i oznaczamy SR DFT.

Znajomo$¢ wspolczynnikow zmieszania oraz kerneli hamiltonianu i normy umozliwia
wyznaczenie energii wiazania w stanach wyrzutowanych ((3.67).

Funkcjonalow ze stalymi dopasowanymi do jader podwdjnie magicznych uzywamy w
niniejszej rozprawie zaréowno w rachunkach SR DFT jak i MR DFT. W przypadku me-
tody wieloreferencyjnej ograniczamy sie do funkcjonaléw generowanych sitami Skyrme’a
niezaleznymi od gestosci. Stad w przypadku oddzialtywan typu SV zasadne jest porow-
nanie obu metod. Residua energii stanow podstawowych jader zwierciadlanych T" = 1/2
z walencyjnym neutronem z zakresu A = 11 — 55, Rys. wskazuja, ze metoda MR
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SR DFT SV,
A MR DFT T=1/2T,=1/2
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Rys. 3.2: Residua energii wigzania dla stanéw podstawowych neutronowo-
nadmiarowych jader zwierciadlanych T' = 1/2 z zakresu A = 11 — 55. Obliczenia
wykonano przy uzyciu oddzialywania SVgo w modelu pola Sredniego ze spontanicz-
nie zlamanymi symetriami (SR DFT) oraz w wersji z przywrocona symetria rota-
cyjna (MR DFT) oznaczonymi odpowiednio przez otwarte pomaranczowe i pelne
niebieskie trojkaty.

DFT z funkcjonatem SVgo znacznie poprawia zgodno$é¢ z doswiadczeniem dla tych ja-
der. Zastosowanie metody MR DFT redukuje niemal dwukrotnie odchylenie standardowe
z osgprT = 3.06MeV do oyrprr = 1.54MeV, co $rednio stanowi 0.9% energii wigza-
nia. Roznica w energiach dla obu metod jest szczegblnie widoczna dla jader trojosiowych
A =11 oraz A = 25—37. Nagly wzrost residuum dla jader A = 53 — 55 jest najprawdopo-
dobniej spowodowany oddzialywaniem tensorowym. W przypadku starszych oddziatywan
Skyrme’a, jak SV, dopasowanie stalych sprzezenia wykonywano z nieaktywnym cztonem
tensorowym C; = 0 [94, 109]. W tej pracy, w rachunkach MR DFT uzywany funkcjonal
jest generowany pelnym oddzialywaniem Skyrme’a. Zawiera on zatem czlon tensorowy,
ktorego stata sprzezenia C) jest prawdopodobnie do$¢ przypadkowa. Zostala ona bo-
wiem obliczona z parametrow oddziatywania Skyrme’a dopasowanego bez udziatu tego
cztonu. Procedure dopasowania nalezaloby wykona¢ przy aktywnych wszystkich sktado-
wych funkcjonatu. Oddzialywanie tensorowe jest szczeg6lnie aktywne dla jader maksymal-
nie spinowo-niewysyconych, w szczegolnosci dla jader w okolicy %°Ni, ktére ma w pelni
obsadzong podpowtoke 0f7 /9 i pusta podpowtoke 0 fs/o.

Obnizenie energii wigzania w wyniku przywréocenia symetrii obrotowej jest $cisle zwia-
zane z geometrig jadra. Na wykresie przedstawiono te energie w zaleznosci od parame-
tru deformacji jadra 5y dla jader zwierciadlanych 7' = 1/2. W przypadku jader osiowych
zalezno$¢ miedzy energia uzyskana w wyniku rzutowania na okreslony moment pedu a
parametrem (3, z bardzo dobra dokladnodcia jest liniowa. Wspolezynnik determinacji R?,
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Rys. 3.3: Energia uzyskana w wyniku przywrécenia symetrii rotacyjnej w zaleznosci
od parametru deformacji 35 dla neutronowo-nadmiarowych jader zwierciadlanych
T =1/2 7 zakresu A = 11 — 55. Osiowo zdeformowane jadra oznaczono niebieskimi
punktami, natomiast jadra tréjosiowe przedstawiono przy pomocy pomaranczowych
trojkatow. Etykiety obok punktoéw oznaczajg liczbe masows jadra. Liniowa krzywa
regresji zostata dopasowana do jader osiowych.

bedacy miarg dopasowania krzywej regresji jest rowny 0.89 i wzrasta do 0.95 przy usunie-
ciu przypadku jadra 37Ar. Jak sie okaze w pozniejszej dyskusji jadra A = 37 oraz A = 38
wykazuja anomalne zachowania ze wzgledu na niefizyczne mieszanie orbitali s oraz d.
Wzrost deformacji o 0.1 powoduje przyrost energii o 900 keV. Najmniejszy przyrost ener-
gii obserwuje sie dla jader sferycznych lub w bardzo niewielkim stopniu zdeformowanych.
Najwiekszy natomiast dla jader trojosiowych, dla ktérych przyrost energii zwiazany jest
7 mieszaniem magnetycznej wewnetrznej liczby kwantowej K.

Warto skomentowaé konieczno$é wprowadzenia dodatkowej liczby kwantowej K do
rzutowania. Otoz funkeja falowa Pj;,, |®) nie spetnia relacji (L.12)), wobec czego nie trans-
formuje sie jak tensor w obrebie grupy SU(2) pod wplywem obrotu generowanego przez R
(3-49). Jest to bezposrednia konsekwencja faktu, iz trojwymiarowa grupa obrotow nie jest
przemienna. Stad niezbedne jest rozszerzenie rzutowania o dodatkowsa liczbe kwantowsa
K. Taki zabieg powoduje jednak, ze operator pz{/m nie jest juz operatorem rzutowym w
sensie matematycznym. Przypadek jednowymiarowego obrotu opisywany jest juz w ob-
rebie grupy abelowej. Wowczas nie ma potrzeby rozszerzania operatora rzutowego o rzut
na z—owa o$ ukladu wewnetrznego. Jednowymiarowe rzutowanie jest wystarczajace w
przypadku: osiowo zdeformowanych jader, dla ktérych rzut momentu pedu na z—owa 0§ w
uktadzie wewnetrznym jest dobra liczba kwantowa | W przypadku przestrzeni izospinowe;

W praktyce jednak, szczegdlnie w przypadku pozniejszego korelowania uktadu wzbudzeniami typu
czastka-dziura, ktore nierzadko deformuja sie w kierunku tréjosiowym, lepiej stosowaé procedure rzuto-
wania tréjwymiarowego.
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rzutowanie w jednym wymiarze aplikowane jest do metod zachowujacych liczbe czastek
oraz przy oddziatywaniach nieuwzgledniajacych kanatu mieszania protonéw z neutronami.

§7. Przywracanie symetrii izospinowej metoda rzutowa-
nia

Przedstawione powyzej postepowanie mozna zaaplikowaé¢ do przywracania symetrii
izospinowej. W niniejszej pracy do obliczeni strukturalnych wykorzystuje sie teorie ba-
zujaca na polu Srednim Hartree’ego—Focka. Wowcezas, ze wzgledu na dobrze okreslong
liczbe czastek przez wyznacznik Slatera procedura rzutowania na okreslony izospin moze
zosta¢ ograniczona do rzutowania w jednym wymiarze. W programie HFODD rzutowanie
na moment pedu i na izospin wykonywane jest jednocze$nie. Uwzglednienie rzutowania
na izospin uzupelnia stany o dobrze okreslony izospin oraz jego rzut na o§ Oz w
izoprzestrzeni :

O, IM;TT,) =Y ald PEy Pl |®), (3.76)
K
gdzie, na podstawie relacji (3.66)), operator rzutowy:

. 2T —|— 1 -

Ply. = =5 [ dBrsin Brdf o, (3r)R(5r) (3.77)
jest operatorem idempotentnym oraz hermitowskim. Spelnia on zatem wymogi operatora
rzutowego w sensie matematycznym. Powyzszy operator w dzialaniu na stan ze zlamana
symetrig izospinowa usuwa z niego wszelkie (réwniez te generowane przez efekty jawnego
naruszenia symetrii izospinowej) domieszki:

PL. |®) = PLy S by, |9, T'T,) = bye, |5 TT) . (3.78)
T/

Operator obrotu w izoprzestrzeni wystepujacy we wzorze (3.77) jest, w analogii do ([3.58)),
postaci:

R(Br) = Prly. (3.79)

Wspolezynniki all wyznaczaloby sie w zasadzie identycznie jak w przypadku przy-

wracania jedynie symetrii rotacyjnej. Rzutowanie jednowymiarowe nie wymaga bowiem

wprowadzenia dodatkowej liczby kwantowej. Nalezy jednak pamietaé, ze symetria izospi-

nowa tamana jest zaréwno spontanicznie jak i jawnie. Wobec czego stany wyrzutowane

(13.76|) nie reprezentuja uktadu kwantowego z prawidtowo opisana symetrig izospinowa.
Aby uchwycié¢ fizyczne tamanie symetrii nalezy wyznaczy¢ wspotezynniki bl rozktadu

@, IM; TN = S bl | @ IM; TT.)Y (3.80)

GT>|Ty|

rediagonalizujac peten hamiltonian w przestrzeni kolektywnej [77, [149)]. Indeks i w powyz-
szej rOwnosci numeruje stany naturalne, a indeks n kolejne stany z prawidtowo opisana
symetrig izospinowg uporzadkowane wraz z rosnaca energia. Wspotczynnik

aisp = 1 — Z |sz \TZ|’2 = Z |b |2 (3-81)

5T>|Ts |
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nazywany jest wspolczynnikiem zmieszania izospinowego i stanowi miare tamania syme-
trii izospinowej w jadrze.

Rediagonalizacja hamiltonianu wymaga znajomosci elementéw macierzowych w sta-
nach (3.76). Do wyznaczenia tych kerneli przydatne jest rozdzielenie hamiltonianu na
czeS¢ izoskalarna, izowektorowq oraz izotensorowa:

H=T+Vs+ Vo =T+ VI 4 VI7 L vI=2 L vI=0 L vI=t L yI=2 (3.82)

Caly hamiltonian jest niezmienniczy ze wzgledu na obrot w przestrzeni. W izoprzestrzeni
natomiast niezmienniczy jest jedynie kanal izoskalarny oddziatywania, do ktérego naleza:
energia kinetyczna”] standardowa czes¢ oddzialywania Skyrme’a oraz czesé izo-
skalarna oddzialywania Coulomba. Na podstawie twierdzenia Wicka otrzymujemy
natychmiast kernele energii kinetycznej:

T :N( ﬁT) (1 - > /dI‘TO r, Q 5T) (383)
i oddzialywania Skyrme’a:
VI N(Q, Br) Y / dr[HE (v, 0, Br) + H(x, Q, 5r)] (3.84)
t=0,1

przy czym gestosci hamiltonianu wyrazaja sie identycznie jak w (3.37)),(3.38)), z ta roznica,
ze gestosci sktadowe sa gestosciami przejSciowymi.

Wiekszg trudnosé stanowi wyznaczenie elementéw niediagonalnych, bowiem hamilto-
nian w kanale izowektorowym, czy tez izotensorowym nie komutuje z operatorem rzuto-
wym ]5%; .- Dla uproszczenia notacji dalsze rachunki przeprowadzamy, rzutujac jedynie
na okreslony izospin, co mozemy bezpiecznie przeprowadzi¢ ze wzgledu na symetrie ha-
miltonianu w przestrzeni.

W celu wyznaczenia niediagonalnych elementéw macierzowych hamiltonianu

(@ Pfy HP[ 1 |®)

bTTZ bT’Tz

Hrp = (3.85)
przekomutujemy operator rzutowy stojacy z lewej strony z hamiltonianem, wykorzystujac
fakt, ze jest on suma tensoréow sferycznych w izoprzestrzeni. Wykorzystamy przy tym
relacje [19]:

~T Tf]\/ff

rop plh Ty Ky o BT
PKfoT)\MPMiKi TM Ap Z CT,'M)\;L’T)\N'PMIQ' (3.86)

Elementy macierzowe oddzialywania Coulomba zostaly wyznaczone w pracy [I50] i zaim-
plementowane w kodzie HFODD. W niniejszej pracy skupimy sie zatem na izowektorowej
czesci oddzialywania Skyrme’a. Izotensorowe oddzialywanie mieszajace protony z neutro-
nami tamie symetrie liczby czastek. Jak wspomnieliémy wczesniej przywrocenie symetrii
izospinowej w takiej sytuacji wymagaloby rzutowania trojwymiarowego, co wychodzi poza
ramy tej rozprawy i stanowi wyzwanie w dalszej perspektywie badania efektéw tamania

1OW hamiltonianie Skyrme’a przyjmuje si¢ réwne masy protonu i neutronu.
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symetrii izospinowe;.

Na podstawie relacji (3.85) oraz (3.86)) element macierzowy oddzialywania VI =! wy-

nosi:
. Ccrr:
(@ TT V@ T'T) = e ST Ol BV Pl |9). (387
TT, s

Korzystajac ze wzoru na trojwymiarowy operator rzutowy - zaaplikowany do izo-
przestrzeni, otrzymujemy dalej, ze:

(@ VS="Plyr, @) =
2T’ +1

/ dordBr sin Bre®™ 4T (Br) (B|VIFeTTR(37)|D) . (3.88)

Przekomutowanie operatora oddziatywania z eksponensem pozwoli na uproszczenie po-
wyzsze]j catki do jednowymiarowej catki po Or. Na podstawie wzoru (|1.28]) oraz wlasnosci
funkcji d— oraz D—Wignera:

V;MG—ZO&TZ _ G—ZQ(TZ—N)V;“’ (389)

co pozwala zapisa¢ wyrazenie (3.87)) w postaci:

(@; TT,| VI |; T'T,) =
Ciriig 2T +1 & m . , L
R Z CT’TZ ul,u‘/o dﬁT S111 ﬁngZ—p,Tz (5T) <q)| V;#R(ﬁT) |q)> ) (390)

p=-1

N bTTZbT/Tz 2
gdzie kernel oddzialywania klasy IIT w wiodacym rzedzie E

(B V§"R(Br) |®) =t} N (Br) / dri / di3d (77 — 73) Ve (i, 73), (3.91)

oblicza sie na podstawie uogo6lnionego twierdzenia Wicka (3.70)):

Véo(ﬂa 73) = —poo(71)p10(72)
+ ;{500(7727 7)Ao (7, 73) + S00(3,71)S10(71, 73) } (3.92)

VEEL (71, 73) = foo(13) pra (73)
— oo s (71, 75) + G5, 7)1, 7)) (3.93)

Element macierzowy upraszcza sie¢ po odcatkowaniu delty Diraca z powyzszymi kernelami
otrzymujac:

(OIVLOR(6r) [9) = —SIN(B) [ A = il al) + 5oFi0()  (3:94
(®|VE R(B) | D) = —*tm/\/’ /dT Poo (P) 121 (F) — 500(7) 511 (F)> (3.95)

1 Analogiczne wyprowadzenie mozna przedstawié dla kolejnego rzedu rozwinigcia — NLO
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Powyzsze elementy macierzowe nalezy wstawi¢ do sumy (33.90)) i dalej przeprowadzié cal-
kowanie numeryczne po kacie By przy uzyciu kwadratur Gaussa-Legendre’a.
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Rys. 3.4: Wspoélczynnik zmieszania izospinowego asp obliczony w jadrach
parzysto-parzystych o N = Z przed rediagonalizacja (BR) i po rediagonalizacji
(AR). W obliczeniach uzyto funkcjonalu SLy4. Niebieska i zielona krzywa to ra-
chunki, w ktorych za fizyczne tamanie symetrii izospinowej odpowiada oddzialy-
wanie Coulomba. Pomaranczowe punkty przedstawiaja rachunki z uwzglednieniem
oddziatywania klasy TII w wiodacym rzedzie LO. Rombami oznaczono wyniki eks-
perymentalne w przypadku jader %‘Ge [I51] oraz 89Zr [152).

Na Rys. przedstawiono wyniki obliczenn wspotczynnika zmieszania izospinowego
Q1S dla jader parzysto-parzystych o N = Z. Obliczenia przeprowadzono, uzywa-
jac jednowymiarowego rzutowania na izospin bez rzutowania na moment pedu, co umoz-
liwito wykorzystanie w rachunkach funkcjonatu zaleznego od gestosci SLy4. Jak pokazano
w [149] przywrocenie jedynie symetrii izospinowej wolne jest od biegunéw w kernelu hamil-
tonianu. Poréwnanie niebieskiej i zielonej krzywej reprezentujacych kolejno wspotczynnik
zmieszania izospinowego przed i po rediagonalizacji pokazuje, ze efekt niefizycznego tama-
nia symetrii izospinowej przez pole Srednie nie jest zaniedbywalny. Dla wariantu obliczen
uwzgledniajacego wytacznie oddziatywanie coulombowskie jako Zroédto naruszenia syme-
trii izospinowe]j redukuje on wspolezynnik aggg o okoto 30%. w stosunku do wktadu od
oddziatywania Coulomba.

Pomaranczowa krzywa przedstawia wspolczynnik agg obliczony z uwzglednieniem
oddzialywania kontaktowego klasy III w wiodacym rzedzie (LO) dopasowanej do warto-
$ci MDE obliczanych w modelu pola §redniego. W przypadku oddziatywania SLy4 stata
sprzezenia wynosi ti = —5.5MeVfm? [9]. Uwzglednienie tak zdefiniowanego oddziatywa-
nia kontaktowego w kanale izowektorowym powoduje zaskakujaco duzy wzrost parametru
zmieszania agsg W poréwnaniu z obliczeniami bioragcymi pod uwage wytacznie oddziaty-
wanie coulombowskie. Rachunki sa jednak nadal zgodne ze znanymi dwoma przypadkami
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eksperymentalnymi w zakresie 1o.

Dopasowane w modelu pola Sredniego parametry izowektorowej czesci hamiltonianu
Skyrme’a zawieraja niefizyczne efekty zwiazane ze spontanicznym zlamaniem symetrii
izospinowej. W zwiazku z faktem, iz wzrost wspolczynnika zmieszania ze wzgledu na
uwzglednienie klasy III wynosi od 70% dla bardzo lekkich jader do 20% dla '°°Sn, niefi-
zyczne efekty mieszania izospinowego mogg by¢ istotne. W pelni wlasciwe przywrdcenie
symetrii izospinowej, wymaga dopasowania parametréow do warto$ci MDE otrzymanych
po rediagonalizacji hamiltonianu w przestrzeni kolektywnej i zostanie przeprowadzone w
rozdziale 4 paragraf 1.

Dane dogwiadczalne dotyczace agp uzyskane w przypadku jadra % Ge amgg = 2.575 - %
z izospinowo wzbronionych przejs¢ E1 [I51] oraz z gigantycznego rezonansu dipolowego w
jadrze 89Zr [152] ausg = 5 + 1% oznaczone na wykresie [3.4] z6ltymi rombami sa w dobrej
zgodnosci z przedstawionymi rachunkami po rediagonalizacji.

W jadrach N = Z efekty tamania symetrii izospinowej przez oddzialywanie silne maja
podtoze zar6wno w kanale izowektorowym jak i izotensorowym. 7 tego wzgledu a priori
nie wiadomo jaki finalny wpltyw na wspolczynnik zmieszania ajsg maja czlony tamigce
izospin w efektywnym oddziatywaniu silnym.

1
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Rys. 3.5: Usredniony wspolczynnik zmieszania izospinowego disp obliczony
w jadrach zwierciadlanych T" = 1/2. Obliczenia wykonano w modelu z przywroco-
nymi symetriami rotacyjng i izospinowg wykorzystujac funkcjonat SVgg. Niebieska
krzywa (C) uwzglednia tylko oddziatywanie Coulomba. Krzywe zielona i pomaran-
czowa uwzgledniaja dodatkowo oddziatywanie kontaktowe klasy III w rzedzie wio-
dacym (LO) i kolejnym po wiodacym (NLO).

W przypadku jader zwierciadlanych T' = 1/2 wplyw sily izotensorowej jest zaniedby-
walny, co pokazano w pracy [9]. Wowczas sita kontaktowa klasy III oraz oddzialywanie
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Coulomba wydaja sie wyczerpywac¢ zrodla tamania symetrii izospinowej. Na Rys.
przedstawiono usredniony wspotczynnik zmieszania izospinowego:

2

QrsB =

obliczony dla jader zwierciadlanych T = 1/2 z zakresu A = 11 — 47 w wariancie, w
ktorym symetria izospinowa lamana jest przez oddzialywanie coulombowskie (C), oraz
oddzialywanie coulombowskie wraz z kontaktows sita klasy III w rzedzie wiodacym (LO)
oraz w kolejnym rzedzie rozwiniecia (NLO). Wszystkie obliczenia dotycza wspolezynnika
zmieszania izospinowego po rediagonalizacji . W rachunkach uzyto parametryzacji
SVso z parametrami ISB dopasowanymi na poziomie modelu pola $redniego do ekspery-
mentalnych wartosci MDE dla jader T =1 A =6 —58 oraz T = 1/2 A = 7 — 75, patrz

wzory (13.55)) oraz (3.56) .

Na wykresie obserwujemy wzrost wspotczynnika ajsg wraz z dodaniem czlonow klasy
[T podobnie jak to mialo miejsce w przypadku jader N = Z przedstawionych na Rys.
Znaczny wpltyw izowektorowej czesci oddziatywania silnego na aqsp jest niezalezny od od-
dzialywania Skyrme’a uzywanego w obliczeniach. Dla lekkich jader wzgledna réznica po-
miedzy rachunkami uwzgledniajacymi oddziatywanie klasy I1I ar,o, a obliczeniami uwzgled-
niajacymi wylacznie oddzialywanie coulombowskie acou:

aro — 0cou

QLo
wynosi nawet 90% i spada z liczbg masowa do 40% dla ciezszych jader z powloki pf.
Rachunki w rzedzie NLO daja dodatkowy wktad do ajsg ale znacznie mniejszy od rzedu
wiodacego, co jest charakterystyczne dla zbieznej teorii efektywnej.

Saiss = (3.97)

§8. Model mieszania konfiguracji DFT-NCCI

Brak zewnetrznego potencjatlu wiazacego jadra atomowe powoduje koniecznos¢ opisu
jadra w jezyku wewnetrznych, a nie laboratoryjnych, gestosci. Takie podejscie prowa-
dzi z kolei do spontanicznego tamania symetrii hamiltonianu jadrowego, w szczeg6lno-
$ci symetrii obrotowej oraz izospinowej. Wynikowa funkcja falowa nie ma zatem dobrze
okreslonych liczb kwantowych, co stanowi powazny problem w petni kwantowomechanicz-
nych obliczeniach dotyczacych pozioméw wzbudzonych, elementoéw macierzowych przejsé
elektromagnetycznych miedzy nimi oraz przej$¢ beta. Takie rachunki sa mozliwe po przy-
wroceniu ztamanych symetrii. W teorii jadrowego funkcjonaltu gestosci, aby nie korzystac
z metod przyblizonych i unikngé¢ bardzo czasochtonnych obliczen numerycznych, przy-
wrocenie ztamanych symetrii dokonuje sie przy uzyciu uogoélnionego twierdzenia Wicka
oraz . Zastosowanie tego twierdzenia wymaga przeformutowania opisu uktadu
kwantowego. W tym celu uzywa sie gestosci przejsciowych . Od tego momentu teorie
funkcjonaltu gestosci nazywamy wieloreferencyjna (MR DFT), podobnie sam funkcjonal
gestosci (MR EDF). Niestety okazuje sie, ze tak zdefiniowany funkcjonal, na ogot, wyka-
zuje osobliwosci zwigzane z cztonem jawnie zaleznym od gestosci w generujacych go od-
dziatywaniach [115], 116, 117, 118 [119]. Wowczas uzyskanie stabilnosci wymaga przepro-
wadzenia procedury regularyzacyjnej. Jak dotad jednak proby regularyzacji nie przyniosty
satysfakcjonujacego rozwiazania problemu wystepujacych biegunow [I53]. Wykorzystanie
funkcjonatow niegenerujacych osobliwosci stanowi obejécie tego problemu. W tej pracy,
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zgodnie z dyskusja przedstawiona w paragrafie 4 tego rozdziatu, wykorzystamy niezalezna
od gestosci site Skyrme’a SV g0 z powiekszong wzgledem pierwotnej parametryzacji SV
sita oddziatywania spin-orbita oraz z wlaczonym oddzialywaniem tensorowym. Cena jaka
za to placimy jest wysoka. Sita SV ma znacznie gorsze wlasnosci spektroskopowe niz no-
woczesne, zalezne od gestosci, parametryzacje sit Skyrma’a. Nie pozwala ona takze na
uwzglednienie korelacji par na poziomie pola §redniego.

Uzywany w niniejszej pracy model oparty jest o teoric MR DFT, w ramach kto-
rej przywraca sie zlamane symetrie zaré6wno rotacyjng jak i izospinowa. Takie unikalne
podejécie pozwala na bardzo precyzyjne wyznaczanie elementéw macierzowych przejsc
beta [2 3] 6, [77, 149, 154]. W konsekwencji umozliwia skonfrontowanie po raz pierwszy
wynikéow modelu bazujacego na jadrowym funkcjonale gestosci z wieloma bardzo cieka-
wymi problemami w fizyce jadrowej. W szczegdlnoéci do takich naleza badania nad uni-
tarnoscia macierzy CKM [I} [6, 154], ale rowniez efekt redukcji stalej sprzezenia pradow
osiowo-wektorowych w §rodowisku jadrowym [3].

Wieloreferencyjny model funkcjonatu gestoéci aplikowany do stanéw podstawowych
jader mozna dalej rozszerzy¢ do modelu uwzgledniajacego korelacje pochodzace od in-
nych samozgodnie wyznaczonych wyznacznikow Slatera w szczegolnosci reprezentujacych
stany wzbudzone. Technicznie, mieszanie konfiguracji dokonuje sie w analogii do modelu
wspohrzednej generujacej (GCM) mieszajacej stany z przywroconymi symetriami, z ta
réznica, ze w przypadku rozszerzenia metody MR DFT w obecnej wersji przestrzen kon-
figuracyjna jest dyskretna.

W chemii kwantowej opartej o modele bazujace na teorii DFT taka metoda popu-
larnie zwana jest metodsg oddzialywania konfiguracji CI. W fizyce jadrowej natomiast,
w $lad za odkryciem struktury powlokowej jadra przez Marie Goeppert-Mayer metoda
CI otrzymata ogolna nazwe jadrowego modelu powlokowego [79]. Zasadnicza roznica po-
miedzy naszym rozszerzeniem metody MR DFT a modelem powlokowym jest przestrzen
modelowa. W tym drugim podejsciu stosuje sie tzw. przyblizenie rdzenia nieobecne w
rachunkach DFT. Majac na uwadze powyzsze model mieszania konfiguracji oparty o teo-
rie funkcjonatu gestoséci nazwalismy bezrdzeniowym modelem oddzialywania konfiguracji
DFT-NCCI (DFT-rooted No-Core Configuration-Interaction) [6].

8.1 Formalizm oraz przestrzen konfiguracyjna w modelu DFT-
NCCI

Obliczenia w modelu DFT-NCCI przebiegaja zgodnie z ponizsza procedura:

1. W pierwszej kolejnosci w modelu pola $redniego wyznacza sie tzw. przestrzen kon-
figuracyjna, ktora stanowi zbior samozgodnych rozwiazan Hartree’ego-Focka (kon-
figuracji) {y;} reprezentujacych stan podstawowy oraz istotne z punktu widzenia
fizyki rozpatrywanego problemu, niskolezace wzbudzenia typu 1plh, 2p2h itd. Kon-
figuracje obliczamy wykorzystujac oddzialywanie Skyrme’a z parametryzacja SV
lub tez jednym z jej wariantéw omawianych wezeéniej jak SV g0, SVITSE’O.

2. Nastepnie, z kazdej z konfiguracji {y; } wyrzutowujemy stany o okreslonym izospinie
T,T,, momencie pedu I, M oraz jego rzucie na trzecig o§ w uktadzie wewnetrznym
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K - {U{) 1. Dla uproszczenia notacji pomijamy zachowane liczby kwantowe T, i
M.

3. Prawidlowe przywrbcenie obu symetrii wymaga zmieszania stanow {\Ifgf)IK}, tak
aby uwzgledni¢ mieszanie K oraz fizyczne tamanie symetrii izospinowej. Dokonu-
jemy tego w obrebie kazdej konfiguracji z osobna uzyskujac stany {\IIEZT)I}
o okreslonym momencie pedu [ i przyblizonym izospinie T. Wskaznik J numeruje
kolejne rozwiazania o tych samych I i T w obrebie ustalonej konfiguracji ¢ — jego
zakres zalezy zatem od i. W metodzie DEF'T-NCCI przestrzen rozpieta przez te stany
bedziemy nazywaé przestrzenia modelu[]

4. Stany i energie wlasne w metodzie DFT-NCCI otrzymuje sie przez zmleszame
wszystkich stanéw z przestrzeni modelu tj. stanéw otrzymanych w kroku 3 {\If }

O ile kroki 1-3 zostaly szczegotowo omoéwione w poprzednich paragrafach, tak ostatni
— 4 etap, polegajacy na wyznaczeniu stanow DFT-NCCI , wymaga dodatkowego komen-
tarza.

Mieszanie konfiguracji w metodzie DF'T-NCCI przebiega podobnie jak mieszanie liczby
kwantowej K omoéwione w paragrafie 6 tego rozdziatu. Stany wlasne w metodzie DFT-
NCCI wyznaczone sa przez rozwiazanie rownania Hilla-Wheelera:

HY Y = BN (3.98)

w przestrzeni kolektywnej rozpietej przez stany naturalne skonstruowane z wektoréw wta-
snych macierzy norm N o niezerowych wartosciach wlasnych n,, > 0, w praktyce o n,, > €
tj. o wartosciach wlasnych wiekszych niz zadany z zewnatrz parametr e. W wyniku dia-
gonalizacji otrzymuje sie stany DFT-NCCI postaci:

1
S0l i IM; 71.)" (3.99)

V NIJW T ij

gdzie stany |p;; IM; TTZW) sy stanami przestrzeni modelowej, a NI(”M);TZ jest norma stanu
DFT-NCCI . Sumowanie w powyzszej rownosci przebiega po wszystkich ¢ dostepnych kon-
figuracjach oraz po indeksie j. Indeks n numeruje stany koricowe do pewnego zadanego

nl .. Wyznaczajacego wymiar przestrzeni kolektywnej. Procedura DFT-NCCI dostepna
jest w najnowszych, jeszcze nieopublikowanych wersjach kodu HFODD — w wersjach 284 i
nowszych. Nalezy podkresli¢, ze w obecnej wersji kodu do rozwigzania row. uzy-
wamy tego samego hamiltonianu, ktorego uzyliémy do wyznaczania konfiguracji w kroku
1. Wymaganie to mozna jednak zrelaksowaé¢ i uzyé¢ innego hamiltonianu do mieszania
konfiguracji.

[IM;T.)"™ =

W przeciwienstwie do modelu powlokowego, przestrzen konfiguracyjna w modelu DFT-
NCCI nie jest ustalona z gory. Buduje sie ja przez dodawanie, krok po kroku, istotnych z
punktu widzenia fizyki rozwazanego zagadnienia, niskolezacych konfiguracji sredniopolo-
wych.

12W modelu MR DFT bez rozszerzenia teorii o mieszanie konfiguracji taka przestrzein nazywamy prze-
strzenia kolektywna, (3.75). Wprowadzamy taka nazwe, aby uniknaé¢ konfuzji poje¢. Przestrzen kolektywna
w modelu DFT-NCCI otrzymuje sie bowiem po przejsciu kroku 4.
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SR-DFT MR-DFT NCCI

;'184‘ 0.0177 0.0117
Q
Z -186f 0.0056 0.0066 -
©
% 188- - .
©
z
= -190 |
o
2 192} .
LI-I S —

194 0.1754 0.1753

Rys. 3.6: Pierwsza kolumna z lewej strony pokazuje energie Hartree’ego-Focka wy-
znaczone w ramach przyblizenia pola $redniego dla stanu podstawowego oraz najni-
zej lezacego wzbudzenia typu czastka-dziura neutronu (czerwona, linia kreskowana)
oraz protonu (niebieska, linia ciagta) w jadrze **Mg. W nastepnej kolumnie za-
prezentowano wyrzutowane z tych konfiguracji energie stanow 4 w modelu MR
DFT bez ich mieszania. Dwie ostatnie kolumny przedstawiaja stany uzyskane w
modelu DFT-NCCI z r6znymi przestrzeniami konfiguracyjnymi — stan podstawowy
oraz wzbudzenie neutronowe (kolumna 3) oraz dodane do nich wzbudzenie proto-
nowe (kolumna 4). Liczby nad stanami oznaczaja wartosci elementu macierzowego
Gamowa-Tellera dla przejscia | 2*Al; 47) — [**Mg; 4;).

W jadrach parzysto-parzystych przestrzen konfiguracyjna modelu DFT-NCCI zawiera
stan podstawowy oraz niskolezace uszeregowane (|h) @ |p) lub |k) @ |p)) oraz antyusze-
regowane (|h) @ |p) lub |h) @ |p)) konfiguracje typu czastka-dziura, gdzie [p) i |p) (|h) i
|h)) oznaczaja stany ze wzbudzong czastka (dziura) o przeciwnej sygnaturze p.(L.17). W
przypadku jader nieparzystych przestrzen konfiguracyjna buduje sie przez wzbudzanie w
pierwszej kolejnosci niesparowanego nukleonu do kolejnych nieobsadzonych orbitali nilsso-
nowskich, a nastepnie niskolezacych konfiguracji z rozerwana para. Podobnie, przestrzen
budujemy w przypadku jader nieparzysto-nieparzystych z ta roznica, ze woéwczas nalezy
uwzgledni¢ zarowno konfiguracje uszeregowane, jak i antyuszeregowane.

Ze wzgledu na podobienistwo miedzy neutronowymi oraz protonowymi wzbudzeniami
czastka-dziura w jadrach N = Z przestrzen konfiguracyjng mozna zredukowa¢ o poltowe
pod warunkiem zastosowania rzutowania w izoprzestrzeni [2]. Ilustruje to schematyczny
rachunek dotyczacy jadra Mg przedstawiony na Rys. Obliczenia uwzgledniaja stan
podstawowy oraz energetycznie najnizej lezace wzbudzenie protonowe (mp-mh) oraz neu-
tronowe (vp-vh) typu czastka-dziura. Energie tych stanéw wzbudzonych w modelu pola
sredniego roznia sie zaledwie o 80 keV, patrz Rys. 3.6l Przy uzyciu technik rzutowych na
dobrze okreslony izospin oraz moment pedu (I = 47) w obrebie wyspecyfikowanych kon-
figuracji uzyskujemy stan I = 41 pochodzacy od stanu podstawowego oraz cztery stany
wzbudzone I = 4" przedstawione w drugiej kolumnie wykresu Trzecia oraz czwarta
kolumna przedstawia energie stanow I = 4% wyznaczone przy uzyciu modelu DFT-NCCI .
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W trzeciej kolumnie rachunek uwzglednia stan podstawowy oraz wzbudzenie neutronowe.
Natomiast w czwartej przestrzen konfiguracyjna rozszerzono o wzbudzenie protonowe.
Dodanie wzbudzenia protonowego niemal wcale nie wptywa ani na energie stanéw wzbu-
dzonych, ani na element macierzowy Gamowa-Tellera rozpadu | 21Al; 47) — [**Mg; 4;).

Wszystkie poziomy jednoczastkowe sg wyznaczane w ramach teorii DFT i nazywamy
je poziomami Kohna-Shama. Natomiast dla uproszczenia zaré6wno notacji jak i intuicji
fizycznej do ich opisu wykorzystujemy sferyczne orbitale, lub, znacznie czesciej, liczby
kwantowe Nilssona. Z tego wzgledu dalej w tekscie poziomy Kohna-Shama nazywamy
poziomami Nilssona. Nalezy jednak mie¢ $wiadomosé, ze jest to przyblizenie, szczeg6lnie
w przypadku stabo zdeformowanego uktadu.

8.2 Wlasnosci modelu DFT-NCCI

Model DFT-NCCI jest unikalnym narzedziem teoretycznym, taczacym cechy teorii ja-
drowego funkcjonalu gestosci, z cechami modelu powlokowego bazujacego na mieszaniu
konfiguracji o dobrze okreslonych liczbach kwantowych. Taka metoda taczy zalety obu
wspomnianych modeli, a w konsekwencji ma szanse na udzielanie odpowiedzi na pyta-
nia dotyczace energii stanéw podstawowych, momentéow kwadrupolowych czy promieni
jadrowych jak réwniez struktury stanéw wzbudzonych, intensywnosci przejéé elektroma-
gnetycznych oraz przejé¢ beta. Metoda DFT-NCCI ma rowniez swoje wady. Podstawowym
problemem sg osobliwo$ci wystepujace przy zastosowaniu uogoélnionego twierdzenia Wicka
do funkcjonaléw generowanych przez oddziatywania zalezne jawnie od gestosci. Kolejnym
mankamentem jest nieuwzglednienie oddzialywania pairingowego na poziomie budowania
przestrzeni konfiguracyjnej. Parametryzacja SV, czy tez jej warianty majg ujemny wspol-
czynnik Landaua (go ~ —0.5) opisujacy natezenie oddzialywania zwigzanego z kreacja
par [122]. Wowczas zastosowanie metody HEB bez dodatkowego funkcjonatu opisujacego
oddzialywanie pairingowe okazuje sie by¢ nieskuteczne [12I]. W efekcie nie dostarcza
do uktadu kwantowego korelacji zwigzanych z tworzeniem si¢ par. Rachunki przeprowa-
dzone w tym krotkim podrozdziale stuza przyblizeniu wlasnoéci modelu DFT-NCCI oraz
obnazeniu jego brakow. Glowne wnioski beda sie przewijaly w wiekszosci rachunkéw pre-
zentowanych w niniejszej rozprawie. Dyskusje rozpoczniemy od bardzo lekkiego uktadu
kwantowego L.

Przestrzen konfiguracyjng dla nieparzysto-nieparzystego uktadu jakim jest 9Li two-
rzymy zgodnie z przepisem opisanym w poprzedniej podsekcji, tworzac uszeregowane oraz
antyuszeregowane wzbudzenia w obrebie stanéw jednoczastkowych pochodzacych ze sfe-
rycznej podpowloki ps/o. Przestrzen mozna byloby dalej wzbogaci¢ roéwniez o wzbudzenia
do stanow podpowloki p; /2, jednak sg one polozone znacznie wyzej w energii przez co nie
powinny wplywaé znaczaco na widmo niskoenergetyczne. Wszystkie uwzglednione kon-
figuracje przedstawiono w tabeli Poza czterema podstawowymi konfiguracjami zna-
leziono jeszcze konfiguracje o ksztalcie prolate. Konfiguracja ta zostata uwzgledniona w
mieszaniu ze wzgledu na jej niewielka energie wzbudzenia jedynie 0.5 MeV ponad stanem
podstawowym oraz ze wzgledu na uszeregowanie spinéw czastek walencyjnych K = 1.
Wyrzutowane stany maja bowiem catkowity moment pedu I > |K|. Moga zatem w spo-
sOb istotny wplywaé na strukture w tym jadrze.

Na wykresie przedstawiono obliczenia w jadrze SLi oraz celem poréwnania w jg-
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Rys. 3.7: Poréwnanie doswiadczalnego i teoretycznego widma energetycznego w
jadrach SLi po lewej oraz ®Li po prawej stronie rysunku. Na wykresie podano nie-
normalizowane, bezwzgledne wartosci energii.

drze ®Li, gdzie uwzgledniono podobnie jak w °Li jedynie najbardziej istotne konfiguracje.
Szersza dyskusja przypadku ®Li zostanie przeprowadzona przy okazji omawiania rozpadu
Gamowa-Tellera jadra 8He, dlatego w tym miejscu ograniczymy sie do podania jedynie
szkicu struktury tego jadra. W przypadku jadra °Li teoria nie zgadza si¢ z danymi do-
Swiadczalnymi zaréwno ze wzgledu na energie jak i uporzadkowanie stanéw wzbudzonych.
Zacznijmy od przypadku multipletu 7' = 0 zbudowanego ze stanéow 11 oraz 3. Stan 17
jest stanem podstawowym z energia —31.995 MeV. W rachunkach natomiast jest potozony
znacznie wyzej niemal 5 MeV ponad eksperymentalnym stanem podstawowym, co stanowi
btad okoto 15%, a wiec znacznie wickszy niz dla innych jader lezacych na linii N = Z.

Tabela 3.2: Przestrzen konfiguracyjna w jadrze Li. Wyszczegolniono w kolejnosci:
energie Hartree’ego-Focka Epp [MeV], parametr wydtuzenia (2, parametr trojosio-
wosci 7, neutronowe i protonowe wartosci momentu pedu czastek walencyjnych j,,
Jr oraz ich orientacje k w ukladzie wewnetrznym.

i Enr B2 g Jv o =k
1 —=27.244 0.207 60° 1.50 1.50 Y
2 —26.846 0.090 60° 1.50 050 Y
3 —=26.787 0.330 Q0° 0.50 0.50 Z
4 —-26.510 0.216 60° —1.50 1.50 Y
5 —25.972 0.008 0° —0.50 1.50 Z

Co wiecej stan 17 lezy powyzej stanu I = 37, T = 0. Stan 3% jest odtwarzany przez mo-
del DE'T-NCCI lepiej — rozni sie od wartosci do$wiadczalnej o niecate 2 MeV. Z tej dyskus;ji
mozna wnioskowac, ze w modelu brakuje korelacji zwiazanych z pairingiem izoskalarnym
I =1,T = 0 oraz, ze model pola sredniego faworyzuje maksymalnie uszeregowane stany
T =0.
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W przypadku multipletu 7" = 1 skladajacego sie ze stanow 07 oraz 2%, model DFT-
NCCI przeszacowuje energie stanu 07 o 0.8 MeV i niedoszacowuje energi¢ stanu 2% o
0.4 MeV. Poziom zgodnosci jest lepszy niz w przypadku multipletu izoskalarnego.
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Rys. 3.8: Energie stanéw wzbudzonych multipletow izowektrowego (kotka) oraz
izoskalarnego (kwadraty) w jadrze 42Sc wzgledem energii stanu 07. Wartosci teore-
tyczne i doswiadczalne oznaczono odpowiednio otwartymi i zamknietymi symbolami.

Dodanie do uktadu dwoch neutronéw, czyli przejécie do ®Li znacznie poprawia po-
ziom zgodnosci obliczen z danymi eksperymentalnymi. Konfiguracje uzyte do obliczenia
widma 8Li zaprezentowanego na wykresie sa wyszczegoOlnione w Tab. w rozdziale
5. Zaréwno energie wigzania jak i kolejnosé¢ pozioméw dobrze zgadzaja sie z danymi. Od-
stepstwem sa stan 15 niedoszacowany o niemal 3 MeV oraz kolejnosé stanow 17 oraz 37 .

Podobne rachunki do tych przeprowadzonych w jadrze °Li wykonano dla '8F oraz
428c. Ze wzgledu na wieksza ilogé stanéw w multiplecie T = 0 w pézniejszej dyskusji
skoncentrujemy sie jedynie na przypadku jadra 42Sc. W nomenklaturze modelu powloko-
wego ze wzgledu na stosowanie przyblizenia rdzenia jadra °Li, ®F oraz *?Sc sg uktadami
dwuciatowymi. Z tego powodu stuza do dopasowania izoskalarnych T'=0 oraz izowekto-
rowych T=1 elementéw macierzowych. Naturalnie w przypadku modelu DFT-NCCI ba-
zujacego na teorii funkcjonatu gestosci jadro *?Sc jest uktadem 42 czastek. Na podstawie
wykresu mozna wywnioskowac, ze:

e Tak jak w przypadku jadra SLi, tak w rachunkach w *?Sc brakuje korelacji zwigza-
nych z pairingiem izoskalarnym 7" = 0, [ = 1. Energia wzbudzenia wzgledem stanu
T = 1,1 =0 jest okoto trzy razy wieksza w teorii niz w eksperymencie.

e Model faworyzuje stany izoskalarne z catkowitym uszeregowaniem spinéw czastek
walencyjnych T' = 0, I,ax = 7, podobnie jak stan T = 0, I,,,x = 3 w jadrze SLi. W
przypadku jadra 2Sc maksymalnie uszeregowany stan z multipletu izoskalarnego
jest w rachunkach teoretycznych stanem podstawowym.
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Tabela 3.3: Podobnie jak w Tab. , ale dla jadra 4?Sc. Wyszczegolnione konfigura-
cje sa zbudowane z obsadzeniem walencyjnych czastek na poziomie f7/2: v f7/o@7 f7/
i s oznaczone przez liczbe kwantowa K walencyjnych neutronu i protonu w uktadzie
wewnetrznym: |v; K,) ® |m; K). Stany i=1-4 reprezentuja konfiguracje antyuszere-
gowane, K, = — K. Nastepnie wypisano konfiguracje uszeregowane i=5-8 K, = K
oraz dwie pozostate i=9-10 energetycznie niskolezace antyuszeregowane z catkowi-
tym |K|=1. W tabeli wyszczegolniono energie Hartree’ego-Focka tych konfiguracji
AE_ k| wzgledem rozwigzania |v; %) ® |m; %> Podano parametry deformacji 3, oraz
~v. W ostatniej kolumnie natomiast przedstawiono energie wzbudzenia najnizszych
stanow [ = | K| wyrzutowanych z danej konfiguracji.

i |*2Sc; ) AEqp B v AE_
1 phenl) 0.000 0.063 0  0.000
2 |y e|mi) 0.802 0.031 0  0.561
3 2)®|m2) 0.986 0.008 60  0.551
4 |nhemi) 0.759 0.062 60  0.085
5 D elmI) —0.929 0.061 60 —0.647
6 |12)®|m2) 0.082 0.007 60  1.160
7T |y e|mi) 0.345 0.032 0  1.594
8 |vi3)®|m3) 0.340 0.060 0  1.719
9 i em—3) 0716 0.043 0  2.164
10 |d)ye|m—2) 098 0011 0  2.338

e Energia stanéw izowektorowych AEr_y = Er—y j—¢ — Er—1 1—0 jest dwa razy mniej-
sza w rachunkach z modelem DFT-NCCI niz w eksperymencie. Jednoczesnie za-
chowuje eksperymentalny trend multipletu. Przyczyng obserwowanej réznicy moze
by¢ zarowno brak korelacji pairingu typu izowektorowego, jak i zbyt silne wiazanie
stanow uszeregowanych w polu Srednim.

W Tab. wyszczegolniono konfiguracje uzyte w analizie struktury jadrowej w 42Sc
w ramach modelu DFT-NCCI .

Niedoskonatosci modelu DFT-NCCI wynikaja po czesci z uzywanej teorii $redniopo-
lowej — w naszym przypadku teorii Hartree’ego—Focka, a po czesci z oddzialywania ge-
nerujacego to pole srednie. Naturalnie, nie ma powodu, aby pasmo otrzymane w wyniku
rzutowania ze stanu podstawowego, nawet w obecnosci funkcjonatu energii o bardzo do-
brych wlasnosciach spektroskopowych, byto dobrze odtwarzane. Stany o wyzszym spinie
pochodza bowiem od nieznanych a priori wzbudzen w obrebie jednoczastkowych orbitali
nilssonowskich (Kohna-Shama). Warto zatem przeanalizowa¢ wplyw przestrzeni konfigu-
racyjnej uzytej w modelu DFT-NCCI na pasmo rotacyjne. Bardzo dobrym przyktadem
relatywnie lekkiego jadra, w ktorym wystepuje potwierdzone doswiadczalnie pasmo ro-
tacyjne jest jadro ze $rodka powloki 0f7, — **Cr. Budowa przestrzeni konfiguracyjne;
przebiega jak opisano w przepisie w poprzednim podrozdziale. Zbudowana jest ona ze
stanu podstawowego, 8 wzbudzen neutronowych typu czastka-dziura oraz czterech wzbu-
dzen typu 2p2h gdzie ograniczylisémy sie jedynie do wzbudzen typu pairingowego, a zatem
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Rys. 3.9: Poréwnanie eksperymentalnego i teoretycznego pasma rotacyjnego w
jadrze 8Cr dla parzystych spinéw od I = 0 do I = 16. Niebieskimi trojkatami
oznaczono rachunek MR DFT, pomaranczowymi rombami obliczenia DFT-NCCI
w przestrzeni konfiguracyjnej zbudowanej ze wzbudzen czastka-dziura, a szarymi
kwadratami obliczenia DFT-NCCI w przestrzeni konfiguracyjnej uwzgledniajacej
niskolezace wzbudzenia 2p2h typu pairing. Wyniki obliczen zestawiono z danymi
do$wiadczalnymi oznaczonymi zottymi kotami.

do rozproszenia dwoch neutronéw do kolejnych orbitali jednoczastkowych bez rozrywania
pary. Szczegoly zawiera tabela [3.4]

Na wykresie przedstawiono pasmo rotacyjne w jadrze **Cr. Dla niskich spinow
rachunki MR DFT oraz DFT-NCCI réznia si¢ od 40keV dla stanu I = 2 do 400keV dla
I = 6. Im wiekszy spin stanu tym bardziej istotne okazuja sie by¢ korelacje pochodzace od
zmieszanych stanéw wzbudzonych. Energie wzbudzenia tych stanéw sg dwukrotnie mniej-
sze w porownaniu z danymi eksperymentalnymi. Ten efekt obserwowaliSmy juz wczesniej
w przypadku multipletu izowektorowego w jadrze *2Sc. Wynik w “Cr zdaje sie zatem po-
twierdza¢ poprzednie wnioski. Dla wyzszych spinéw [ > 8 rozszerzanie rachunkéw od MR
DFT po DFT-NCCI ze wzbudzeniami 2p2h okazuje sie by¢ znacznie bardziej efektywne.
Najwicksza roznice miedzy rachunkami obserwuje siec w stanie o maksymalnym spinie.
W rachunkach MR DFT energia tego stanu wynosi 27 MeV. Zmieszanie konfiguracji w
obrebie przestrzeni 1plh obniza te energie do 21 MeV, a przy uwzglednieniu wzbudzen
2p2h do 18 MeV, zblizajac sie jednoczesnie do wartosci eksperymentalnej 13.3 MeV. Natu-
ralnie, aby odtworzy¢ gorna cze$¢ pasma rotacyjnego nalezatoby uwzgledni¢ wzbudzenia
wyzszych rzedow z rozerwanymi parami, majace duzy uszeregowany moment pedu. W
szezeg6lnym przypadku stanu krancowego I,.x = 16 kluczowa role bedzie odgrywaé kon-
figuracja, w ktorej rozerwane sg wszystkie pary z catkowitym uszeregowaniem K = 16.

Podejscie DFT-NCCI daje unikalng mozliwo$¢ interpretacji poszczegblnych standw
w jezyku intuicyjnych konfiguracji sredniopolowych. Zawartos¢ n-tej hartree—fockowskiej
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Tabela 3.4: Samozgodne konfiguracje sredniopolowe uzyte do obliczen w jadrze
48Cr. Konfiguracje oznaczono liczbami kwantowymi Nilssona wraz z sygnaturg nie-
sparowanej czastki i dziury walencyjnej. Nastepne 3 kolumny zawieraja informacje
na temat wtasnosci poszcezegolnych konfiguracji: energia HF w MeV, deformacje kwa-
drupolowa przedstawiong przy uzyciu parametru (3, oraz catkowite uszeregowanie
(7) wraz z orientacja w uktadzie wewnetrznym. Parametru + nie wyszczegolniono ze
wzgledu na osiowa deformacje wszystkich konfiguracji.

i 1*Cr; ¢5) By By (4)
1 st. podst. —409.18 0.28 0y
2 |v3213/2—)"' @ |[¥3125/2+)" —405.10 0.24 4,
3 |v3213/2+4) '@ [v3125/2+)' —405.38 0.25 1,
4 |[13213/24) ' @ |v3037/2+)" —403.49 021 2,
5 |v3213/24) ' @ |v3037/2—)"  —403.20 021 5,
6 |13301/2—)"'®[¥3125/2—)"  —402.47 0.20 2,
7 |v3301/2-)" @ |v3125/2+)" —402.44 020 3y
8 |¥3301/2—)""®|¥3037/2+) —400.37 0.17 4y
9  |¥3301/2=)"'®[1¥3037/2—)"  —40045 0.17 3y
10 [13213/2+) ' @ [1¥3125/2 )" —402.18 0.21 0y
®|v3213/2 —) " @ [v3125/2+)"
11 [v3213/24) ' ®|v3037/2—)"  —399.44 0.14 0y
®|v3213/2 =)' @ |v3037/2+)"
12 |v3211/24) '@ [v3125/2 )" —399.32 0.14 0y
®|v3211/2 =) @ |v3125/2+)"
13 |[¥3211/2+) ' @ [13037/2 )" —396.23 0.06 0y

®[v3211/2 =)' @ |v3037/2+)

konfiguracji w k-tym stanie modelu DFT-NCCI o danym [ oraz T, dana jest wyrazeniem:
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Rys. 3.10: Procentowy wktad poszczegoélnych konfiguracji wymienionych enume-
ratywnie w tabeli do stanow DFT-NCCI o I = 0,4,8,12 oraz 16 w pasmie
rotacyjnym jadra **Cr.

Na wykresie kolumnowym [3.10] przedstawiono wktady procentowe poszczegolnych $red-
niopolowych konfiguracji do funkcji falowych opisujacych co drugi stan pasma rotacyjnego.
Widzimy od razu, ze wktad konfiguracji stanu podstawowego do stanéw o coraz wyzszym
spinie rownomiernie spada od 81% dla stanu I = 0 do 2.5% dla stanu I = 16. Niemal
20% wkladu do stanu I = 0 pochodzi od konfiguracji nr 10 typu 2p2h, co nie wplywa
jednak na zmiane energii tego stanu. Po uwzglednieniu tej konfiguracji jego energia ob-
niza sie zaledwie o 1keV. Z wykresu mozna odczytaé, ze stany o spinach I = 0, [ = 4
maja dominujacy sktadowa reprezentowang przez stan podstawowy. Dopiero od stanu o
spinie I = 8 wplyw konfiguracji wzbudzonych staje sie znacznie bardziej istotny. Stany
z gornej czesci pasma — [ = 8, [ = 12 oraz I = 16 sg rozmyte po wiekszos$ci dostepnych
konfiguracji w przestrzeni konfiguracyjnej. Oznacza to, jak wcze$niej wspomnielismy, ze w
uzytej przestrzeni konfiguracyjnej nie ma konfiguracji, ktére by je reprezentowaly. Stany
o niskim spinie sg zatem dobrze reprezentowane w obliczeniach DFT-NCCI z przestrzenia
1plh. Konfiguracje wzbudzone typu 2p2h sa niezbedne w szczego6lnosci do opisu stanow
o wysokim spinie.






Rozdzial 4

Rozpad beta typu Fermiego

Po omoéwieniu konstrukeji oraz wlasciwosci modelu DFT-NCCI opartego na jadro-
wym funkcjonale gestosci mozemy przej$¢ do analizy rozpadoéw beta. W niniejszej pracy
skupimy sie na rozpadach dozwolonych, ktore, zgodnie z klasyfikacja opisang w rozdziale
2, dzielg sie na rozpady Fermiego oraz rozpady Gamowa-Tellera. Szczegbétowa analiza
zaréwno jednych, jak i drugich odstania fizyke wychodzaca poza ramy fizyki jadrowe;j.
Badania tamania symetrii izospinowej w jadrach atomowych w kontekscie rozpadéw Fer-
miego stanowig najbardziej precyzyjne Zrodto informacji na temat wiodacego elementu
macierzy mieszania kwarkéw. W konsekwencji przyczyniaja sie do testow unitarnosci tejze
macierzy i w efekcie do poszukiwania fizyki poza Modelem Standardowym w aspekcie ko-
lejnych generacji kwarkow. Takie rachunki wykonuje sie zarowno w przypadku przejsc
superdozwolonych miedzy stanami analogowymi 7" = 1 jak i miedzy jadrami zwierciadla-
nymi 7" = 1/2.

Nie mniej interesujace okazujg sie by¢ rozpady Gamowa-Tellera omawiane szerzej w
nastepnym rozdziale. Analiza wspomnianego w rozdziale 2 efektu redukcji statej sprzezenia
pradow osiowowektorowych przyczynia sie do gtebszego zrozumienia natury natadowanych
pradow stabych. Ponadto, badania zaréwno nad procesami Fermiego jak i Gamowa-Tellera
doskonale przyczyniaja sie do zrozumienia struktury jadrowej uktadéw uczestniczacych w
rozpadzie, a w konsekwencji natury oddziatywania silnego.

§1. Superdozwolone rozpady beta Fermiego

W ponizszym paragrafie uwage skupimy na superdozwolonych rozpadach Fermiego
miedzy stanami analogowymi 7" = 1. Temat poruszamy w niniejszej pracy bardzie] w
formie podsumowania niz w formie wnikliwej analizy ze wzgledu na fakt, ze stanowit
on temat przewodni pracy doktorskiej [I50], mojej pracy magisterskiej [I55] oraz kilku
publikacji [77, 149]. W Zadnych z tych prac jednak poprawki izospinowe dc do wszyst-
kich dostepnych przejsé superdozwolonych nie zostaty wyznaczone w modelu DFT-NCCI
. Mieszanie konfiguracji okazuje sie by¢ niezbedng procedura w przypadku jader, dla kto-
rych stan podstawowy w procedurze Hartree’ego-Focka nie jest wyznaczany w sposob
jednoznaczny. Ot6z okazuje sie, ze w przypadku jader nieparzystych lub nieparzysto-
nieparzystych prad generowany przez walencyjny nukleon, czy tez odpowiednio przez
walencyjne nukleony moze by¢ zorientowany wzdtuz réznych osi rozkladu masy jadra.
Niejednoznacznos¢ rozwiazania wynika bezposrednio z metody opisu jadra. W przypadku
jadra o sferycznym rozkladzie gestosci rozwiazania, w ktorych prad czastek walencyj-
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nych jest zorientowany wzdtuz osi X, Y oraz Z, sa zdegenerowane. Rozktady gestosci o
ksztatcie osiowo symetrycznym oraz trojosiowym ze wzgledu na swoja geometrie znosza te
degeneracje. W ten sposob stan podstawowy moze by¢ reprezentowany nawet przez trzy
sredniopolowe rozwigzania roznigce sie jedynie orientacjg pradu czastek walencyjnych.
Przez czastki walencyjne rozumiemy tu niesparowane jeden lub dwa nukleony krazace
wokot parzysto-parzystego poduktadu zwanego dla uproszczenia rdzenia. Okazuje sie, ze
poprawka izospinowa zalezy w sposOb znaczacy od reprezentacji stanu podstawowego.
Dotychczas, tj. w pracy [I54] oraz w pracy doktorskiej [I50], wyznaczano poprawki dla
kazdej reprezentacji niezaleznie, a wartos¢ koncowsg stuzaca do obliczen zredukowanego
czasu zycia, wyznaczano jako ich $rednig arytmetyczna. W ponizszym paragrafie zapre-
zentujemy wyniki, w ktoérych poprawka jest otrzymywana poprzez zmieszanie wszystkich
dostepnych reprezentacji stanu podstawowego przy pomocy metody DFT-NCCI .

W przedstawionych w tym paragrafie rachunkach ztamana symetria izospinowa w na-
szym modelu jest wynikiem jedynie oddzialywania Coulomba. Naturalnie korelacje zwia-
zane z lamaniem tejze symetrii zwiazane sa réwniez z oddzialywaniem silnym zaréwno w
kanale tamania symetrii tadunkowej jak i mieszania protonéw z neutronami manifestu-
jacego sie szczegblnie w nieparzysto-nieparzystym jadrze N = Z. Te ostatnie powoduje
jednak lamanie osiowej symetrii izospinowej. W konsekwencji uzywane przez nas jedno-
wymiarowe rzutowanie na izospin jest niewystarczajace. Mozna bytoby pokusié sie o prze-
prowadzenie rachunkéw poprawek izospinowych do superdozwolonych przej$¢ Fermiego,
wytaczajac klase I1 zwiazana z mieszaniem protondéw z neutronami. Taki rachunek prezen-
tujemy w kolejnym podrozdziale jednak dla jader zwierciadlanych T = 1/2, dla ktérych
wiadomo [9], ze efekt klasy II jest zaniedbywalny.

Stan podstawowy jadra parzysto-parzystego o N — Z = £2, | =0,T ~ 1,T, = £1),
jest wyznaczony w sposob jednoznaczny ze wzgledu na brak niesparowanych nukleonéw.
Lamanie symetrii izospinowej w tym stanie opisane jest przez mieszanie coulombowskie :

[=0,T~1T.=x1)=> cr|I =0;T",T, ==+1), (4.1)

T'>1

stanéw o przywroconej symetrii obrotowej z momentem pedu [ = 0. W jadrze nieparzysto-
nieparzystym o N = Z odpowiedni izospinowy stan analogowy |[[ =0,7 ~ 1,7, =0)
wyznaczamy przez zmieszanie réznych, zaleznych od orientacji pradu niesparowanych nu-
kleonow, reprezentacji sredniopolowych tego stanu. A zatem:

I=0,T~1,T.=0)= S Y &ir=o01,1.=0". (4.2)

k=X,Y,Z T'=0,1,2

Stany | =0,T,T, = 0>(k) powstaly przez wyrzutowanie momentu pedu oraz izospinu ze
sredniopolowych rozwigzan ¢, bedacych antyuszeregowanymi wyznacznikami Slatera z
okreslonym kierunkiem pradu, a $cislej kierunku jednoczastkowego momentu pedu, neu-
tronu i protonu wzdhuz osi k = X, Y, Z. Antyuszeregowany stan $redniopolowy w jadrze
nieparzysto-nieparzystym N = Z zbudowany jest w taki sposob, ze walencyjne neutron i
proton obsadzaja najnizszy dostepny stan jednoczastkowy tak, ze jedna z czastek zajmuje
stan odwrocony w czasie (w sygnaturze) wzgledem drugiej |7 ® 7; k) (lub |v ® 7; k)). Taki
stan przez konstrukcje jawnie tamie symetrie izospinowa.
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Antyuszeregowane stany, o ktorych mowa, réznigce sie jedynie kierunkiem pradu cza-
stek walencyjnych okazuja sie by¢ od siebie liniowo zalezne. W przestrzeni kolektywnej
zbudowanej ze stanow wyrzutowanych z tych konfiguracji mamy 6 (9) stanow dla jader
osiowych (trojosiowych) roznigcych sie orientacja pradu oraz izospinem T = 0, 1, 2. Prze-
prowadzajac mieszanie konfiguracji , dostrzegamy, ze wszystkie wartosci wtasne ma-
cierzy norm sg niezerowe. Niemniej liniowa zalezno$¢ stanow uwidacznia si¢ w zachowaniu
tych wartosci wtasnych. Okazuje sie, ze trend jest identyczny we wszystkich rozwazanych
przypadkach jader. Na wykresie przedstawiono dwa przyklady: jadro osiowe 40V oraz
trojosiowe °Mn. Wartoéci wlasne macierzy norm tworza, w zaleznoéci od przypadku, dwie
lub trzy grupy podobnych wartosci. Co istotne réznica pomiedzy tymi grupami jest zna-
czaca siegajaca nawet kilku rzedow wielkosci. Obliczane poprawki izospinowe d¢c okazuja
sie by¢ niestabilne w pelnym rachunku uwzgledniajacym stany o niskich normach. Do-
piero obciecie bazy do trzech stanéw odpowiadajacych najwickszym wartosciom wlasnym
stabilizuje wynik. W zwiazku z czym w tych i w przyszlych rachunkach uwzgledniajacych
mieszanie konfiguracji r6znigcych sie orientacja pradu dokonujemy redukeji przestrzeni
kolektywnej jedynie do stanow, ktorych wartosci wltasne macierzy norm grupuja sie przy
najwiekszych wartosciach.
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Rys. 4.1: Wartoséci wlasne macierzy norm w rachunkach DFT-NCCI dla stanéw
I = 0,7 =~ 1 w jadrach nieparzysto-nieparzystych dla dwu przypadkéw: zdefor-
mowanego osiowo jadra 9V oraz zdeformowanego tréjosiowo jadra °°Mn. Podane
energie zostaly uzyskane przy obcieciu do trzech, szesciu oraz dziewieciu wartosci
wlasnych macierzy norm.

W tabelach oraz podano obliczenia zwigzane z superdozwolonymi przej$ciami
Fermiego. W pierwszej zaprezentowano 12 przypadkoéw jader, dla ktérych bardzo wysoka
precyzja wyznaczenia czasu zycia pozwala na uwzglednienie ich w statystyce zwiazanej
z analiza elementu macierzowego V,q. W drugiej przedstawiono przejscia, dla ktorych
ta precyzja nie jest wystarczajaca. W Tab. przedstawiono poprawki izospinowe wy-
znaczone pomiedzy rozwigzaniami o okreslonym kierunku pradu czastek walencyjnych w
nieparzysto-nieparzystym jadrze N = Z zaczerpniete z pracy [154] oraz jej wartosé¢ kori-

cowa g ™ obliczona w wyniku zmieszania tych konfiguracji. Nastepnie na podstawie
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Tabela 4.1: Wyniki obliczen dla przejs¢ superdozwolonych, ktérych do$wiadczalna
precyzja pozwala na uwzglednienie w analizie elementu macierzowego V,q. W tabeli
podano poprawki obliczone w modelu MR DFT dla trzech orientacji pradu gene-
rowanego przez czastki walencyjne X,Y oraz Z, nastepnie wartos¢ poprawki uzy-
skanej w wyniku zmieszania tychze konfiguracji w modelu DFT-NCCI | obliczony
na podstawie wzoru zredukowany czas zycia Ft, empiryczng poprawke 5S xP)

wprowadzong dalej w tekscie (4.5) oraz wktad poszczegolnych przejsé do testu 2.

Jadro 680 69 8 gV Ft R
matki (%) (%) (%) (%) (s) (%)
T, = -1
100 0.559 0.559 0.823 0.579(87)  3064.5(52) 0.37(15) 3.5
140 0.303 0303 0.303 0.303(30)  3072.3(33) 0.36(6) 0.0
2N\ 0243 0.243 0417 0.270(41)  3081.4(72) 0.62(23) 1.4
MAT 0865 0.997 1475 0.87(13)  3063.6(91) 0.63(27) 1.3
T,=0
2% 7] 0.308 0308 0.494 0.329(49)  3071.8(20) 0.37(4) 0.8
30 0.809 0.679 1504 0.75(11)  3067.6(38) 0.65(5) 10.9
12g 0.770 0770 0770 0.77(27)  3060.2(85) 0.72(6) 3.1
16y 0.486 0.486 0.759 0.563(84)  3075.1(32) 0.7L(6) L3
OMn 0460 0.460 0.740 0.476(71)  3076.5(32) 0.67(7) 2.4
Mo 0.622 0.622 0.671 0.586(38)  3075.6(36) 0.75(8) 1.3
©Ga 0925 0.840 0.881 0.78(12)  3093.1(48) L51(9) 43.2
MRbL  2.054 1995 1273 1.63(24) 3078(12) 1.86(27) 0.3
FUU = 3073.7(11) 2= 695
Val=  0.97396(25) 3= 6.3

0.99892(65)

obliczonych poprawek izospinowych oraz poprawek radiacyjnych 6% [67, [68], Ar [69] oraz
dxs [67, 68, [76] podano zredukowany czas zycia Ft wyliczony ze wzoru (2.52). Nalezy
podkresli¢, ze rachunki dla przejs¢ superdozwolonych zostaly przeprowadzone z uzyciem
standardowego natezenia sity spin-orbita tj. Wy = 150 MeV fm® w parametryzacji SV.

Poza przejéciami “O—14N oraz 42Sc—*2Ca wszystkie poprawki zostaly wyznaczone
przy obcieciu bazy przestrzeni kolektywnej do trzech stanéw zgodnie z wezedniejsza dysku-
sja. W éredniopolowych rachunkach jadro O jest sferyczne, a 42Sc niemal sferyczne, wo-
bec czego reprezentujace je antyuszeregowane konfiguracje sg jednoznacznie wyznaczone
i nie zachodzi koniecznosé¢ mieszania réznych orientacji. Dla pozostatych przypadkow, ze
wzgledu na obciecie stanéw w przestrzeni kolektywnej oraz ze wzgledu na ograniczenie
bazy, blad szacowany jest na 15%.

Ponadto, podobnie jak w poprzednich pracach, wykluczyliémy przejécia 3*K—3%Ar
oraz *¥Ca—3K z analizy statystycznej. Ze wzgledu na silne mieszanie pozioméw jed-
noczastkowych pochodzacych od powlok ds/ oraz si/o poprawka izospinowa dla tych
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Tabela 4.2: Podobnie jak w Tabeli jednak dla przej$¢ dotychczas niezmie-
rzonych lub zmierzonych z niewystarczajaca precyzja, aby moc je zastosowaé do
wyznaczenia elementu macierzowego V4.

jadro 5ésv) jadro 5(CSV)
matki (%) matki (%)
T, =-1 T.=0
18Ne  1.37(21) BF 1.22(18)
265i 0.427(64) 2Na  0.335(50)
303 1.24(19) 0P 0.98(15)

przejsé jest niefizycznie duza i wynosi nawet 10%. Istnieje duza szansa, ze rozseparowanie
poziomdéw jednoczastkowych przy zwiekszeniu natezenia oddziatywania spin-orbita wraz
z uwzglednieniem w metodzie DF'T-NCCI konfiguracji wzbudzonych typu 1p-1h oraz 2p-
2h ustabilizuje te poprawke. Taki rachunek przeprowadzono w przypadku rozpadu 3"K—
37Ar, gdzie udato sie obnizy¢ niefizyczna wartoé¢ poprawki izospinowej p. par. 2 niniej-
szego rozdziatu.

Srednia wartosé ﬁmﬂm = 3073.7(11) wyznaczona na podstawie $redniej wazonej
btedem prowadzi do wartosci V,q réwne;j:

Via = 0.97396(25). (4.3)

Wartos¢ ta jest w pelni zgodna z wartoscig otrzymanag w rachunkach modelu powtoko-
wego (2.35). A na podstawie wartosci elementow macierzowych Vg oraz Vi, (2.40) wartosé
testu unitarno$ci macierzy CKM wynosi:

[V |? + [Vas|? + [V |? = 0.99892(65) (4.4)

Ta wartoéé¢ sugeruje unitarnosé¢ macierzy CKM z dokltadnoscia do 3o.

Dwie ostatnie kolumny w Tab. przedstawiaja test zgodnosci zaproponowany w
pracy [156]. Zaktadajac spelnienie hipotezy o zachowaniu pradu wektorowego tj. nieza-

lezng od przejscia wartosé ﬂ(ﬁ%w oraz prawidtowo wyznaczone poprawki radiacyjne
dns 1 0% na podstawie wzoru (2.52) mozna wyprowadzi¢ tzw. eksperymentalne wartosci
poprawek izospinowych:
ﬂOJf—ﬂJr

SN = 1 4 Gy — Tl (4.5)
ktore przedstawiono w przedostatniej kolumnie. W ostatniej natomiast podano wartosci
testu x? tj. zgodnoéci poprawki obliczonej w ramach modelu DFT-NCCI z poprawka wy-
znaczong na podstawie powyzszego wzoru dla poszczeg6lnych przejéé z osobna. Catkowita
warto$¢ testu na ilos¢ stopni swobody (x2 = x?/ng dla ng = 11) wynosi x2 = 6.3. Otrzy-
mana warto$¢ jest znacznie mniejsza niz ta uzyskana we wezesniejszej pracy [154], gdzie
poprawke izospinowa uzyskiwano jako sredniag arytmetycznag poprawek pochodzacych od
$redniopolowych rozwiazan z réznymi orientacjami pradu czastek walencyjnych. Warto



76 Rozdziat 4. Rozpad beta typu Fermiego

zauwazy(, ze tak jak w poprzedniej pracy [154], tak i w rachunkach DFT-NCCI nasza
warto$é x?/ng jest zdominowana przez przez dwa przejécia 2Ga—%As oraz *1C1—31S.
Wrykluczajac je z analizy otrzymaliby$my x2 = x2/9 = 1.7, a zatem liczbe podobna do
uzyskanych w ramach innych modeli:

e modelu perturbacyjnego (x2 = 1.5) [156]

modelu powlokowego z funkcjami radialnymi Woodsa-Saxona (x2 = 0.4) [70]

modelu powlokowego z funkcjami radialnymi Hartree’ego-Focka (x3 = 2.0) [157, [158]

przyblizenia faz przypadkowych (RPA) z potencjalem Skyrme’a-Hartree’ego-Focka
(G = 2.1) [159)

RPA z relatywistyczng teorig Hartree’ego-Focka (x3 = 1.7) [160]

§2. Rozpady beta Fermiego w jadrach zwierciadlanych
T=1/2

Tak jak opisano w rozdziale 2 przejécia Fermiego miedzy jadrami zwierciadlanymi
T = 1/2 stanowig alternatywna do przejs¢ superdozwolonych metode jadrows wyznacza-
nia elementu macierzowego V,,q. W niniejszym paragrafie poprawki izospinowe oznaczamy
przez Oisp, aby podkresli¢, ze w rachunkach uwzgledniono rézne 7rodta tamania syme-
trii izospinowej, poza przypadkiem rachunkéw z uwzglednieniem jedynie oddziatywania
coulombowskiego, gdzie poprawke oznaczamy przez dc.

2.1 Dopasowanie parametrow izowektorowej czesci sily Skyrme’a
do obliczen z rzutowaniem

Przyblizenie pola sredniego prowadzi do spontanicznego tamania symetrii oddziatywa-
nia. W szczegolnodci ztamana jest symetria izospinowa. Aby przywroci¢ izospin w sposob
wlasciwy nalezy wykluczy¢ niefizyczne tamanie tejze symetrii a zachowac to, ktore faktycz-
nie wystepuje w przyrodzie, mianowicie lamanie izospinu przez oddziatywanie Coulomba
oraz przez oddzialywanie silne. Zatem aby funkcja falowa byta wolna od niefizycznego
mieszania izospinu, nalezy z rozwiazania Sredniopolowego wyrzutowaé¢ dobry izospin, a
nastepnie otrzymane w ten sposéb stany zrediagonalizowa¢ w bazie kolektywnej z tym
samym oddzialywaniem. W ten sposob otrzymane energie wlasne wyznaczajace stany
podstawowe jader zwierciadlanych N ~ Z moga postuzy¢ do dopasowania MDE do
danych doswiadczalnych. W przypadku oddziatywania Coulomba (3.22)) nie ma parametru
wymagajacego dopasowania. W uzywanym przez nas modelu tadunek e nie jest parame-
trem efektywnym. W przypadku silnego oddzialywania klasy TII dopasowanie parametrow
t'11 do tak otrzymanych wartosci MDE bedzie wolne od sztucznego efektu mieszania izo-
spinu generowanego przez pole $rednie. Mozna spodziewac sie, a priori, ze ten efekt nie
bedzie znaczacy. Jednak istota rachunkéw zwiazanych z poprawkami izospinowymi disg,
a w konsekwencji z elementem macierzowym V,q jest ich precyzja. Dlatego warto pokusi¢
sie o dopasowanie statych sprzezenia na poziomie teorii z rzutowaniem.
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Taka precyzja nie byta wymagana w rachunkach dotyczacych wspotczynnika zmiesza-
nia izospinowego przedstawionych w poprzednim rozdziale. Wobec tego wowczas uzyto pa-
rametréw dopasowywanych do energii wyznaczonych w ramach formalizmu Hartree’ego—Focka
do jader zwierciadlanych 7' = 1/2 z zakresu A = 7 — 75 oraz jader ' =1 A = 6 — 58

p. [8].

Tabela 4.3: Zestawy parametrow kontaktowego oddzialywania klasy III dopaso-
wane w dwu wariantach obliczen teoretycznych — SR DFT oraz MR DFT z uzyciem
funkcjonatu SVgo. W przypadku obliczern SR DFT zestawy parametrow roznig sie
danymi do$wiadczalnymi uzytymi do dopasowania. Szczegdly znajdzie czytelnik w
tekscie.

to RMSD Lo Lo thLo RMSD

metoda  (MeV fm?)  (keV) (MeVim?) (MeVim®) (MeVim®) (keV)
1 SRDFT —-6.7£0.3 138 5%2 —-3x3 —74+£08 97
2 SR DFT —-6.240.3 102 2412 —1£3 —56+£1.1 75
3 SRDFT —-6240.5 96 0+3 —1+£5 —-48+1.3 74
4 MR DFT —-6.34+0.5 116 0+2 —2+£2 —4+1 106

Zaltozenie liniowosci fitu [9] pozwala na dopasowanie parametrow w rzedzie wioda-
cym przy dwu punktach, a w kolejnym rzedzie rozwiniecia przy czterech. Ze wzgledu na
ztozono$c¢ obliczeniowa problemu dopasowanie parametréow w formalizmie MR DFT zawe-
ziliémy do badanych jader o izospinie T = 1/2 7 zakresu A = 11—47. Analiza por6wnawcza,
parametré6w obu modeli wymaga takiej samej procedury dopasowania. Skupmy uwage na
zmianie parametru t5°. Zestaw 1 w Tab. przedstawia parametry sily SVgo dopasowane
do wszystkich znanych wartosci doswiadczalnych MDE. Zestaw 2 przedstawia parametry
dopasowane do jader zwierciadlanych 7' = 1/2 z zakresu A = 11 — 47 oraz sasiadujacych
jader T'=1 0 A = 10 — 48. Ograniczenie zakresu danych doswiadczalnych spowodowato
nieznaczny wzrost parametru. Wreszcie zestaw 3 przedstawia parametry wyznaczone tylko
dla jader zwierciadlanych T'=1/2 A = 11 — 47. Pominiecie potowy danych nie wplyneto
na wartos¢ parametru, podnoszac w sposob oczywisty wartoéé¢ btedu dopasowania. Trzy
powyzsze dopasowania zostaty wykonane przy uzyciu rachunkéw SR-DFT. Z powyzszej
analizy wynika, ze wykluczenie wartosci MDE jader T' =1 w dopasowaniu parametru w
modelu MR DFT nie powinno wptynaé¢ znaczaco na jego warto$¢. Poréwnanie parametrow
z zestawu 3 1 4 oddaje zatem wplyw mieszania izospinu generowanego przez pole érednie.
Roéznica parametrow miesci sie w bledzie, zatem dyskutowany wpltyw jest pomijalny. Ob-
serwujemy rowniez, ze fit z rzutowaniem nieznacznie pogarsza zgodno$¢ z doswiadczeniem.

Nalezy jeszcze zwroci¢ uwage na parametry w kolejnym rzedzie rozwiniecia. Parametry
w rzedzie NLO sg Scigle skorelowane — )€ i YO g3 koliniowe. Tlumaczy to z pozoru
istotniejsze niz w wiodagcym rzedzie zmiany parametréw w kolejnych zestawach z Tab.
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Rys. 4.2: Wplyw rzutowania na izospin (IP) na poprawke izospinowa w jadrach
zwierciadlanych T'= 1/2 z zakresu A = 17 — 47. Obliczenia z oddziatywaniem Cou-
lomba jako jedynym Zrodlem lamania symetrii izospinowej zostaly przedstawione
przez szare i niebieskie krzywe. Zotte i pomaranczowe krzywe pokazuja rachunki
uwzgledniajgce takze oddzialywanie klasy III w wiodgcym rzedzie. Oblicze-
nia zostaly wykonane przy uzyciu 10 powlok oscylatora harmonicznego.

2.2 Wplyw rzutowania na izospin na wartos¢é poprawki izospinowej

Rzutowanie na izospin ma kluczowe znaczenie w wyznaczaniu wspotczynnika zmiesza-
nia izospinowego aisp, jak rowniez przy obliczeniach dotyczacych poprawek izospinowych
O1sg. Wplyw rzutowania na izospin na te poprawke widoczny jest na wykresie Ra-
chunki poprawki izospinowej przeprowadzono dla jader zwierciadlanych T = 1/2 7 zakresu
A = 17—47 w 2 wariantach z uwzglednieniem oddziatywania Coulomba jako jedynego Zro6-
dia tamania symetrii izospinowej (C) oraz po dodaniu oddzialywania kontaktowego klasy
IIT w rzedzie LO. Poréwnanie krzywych z rzutowaniem jedynie na moment pedu (angular-
momentum projection, AMP) oraz z uwzglednieniem jednowymiarowego rzutowania na
izospin (angular-momentum and isospin projection, AMPIP) wskazuje, ze przywrocenie
symetrii izospinowej obniza warto$¢ poprawki wzgledem rachunkéw AMP dwukrotnie dla
1zejszych jader, a nawet kilkukrotnie dla ciezszych.

2.3 Wplyw orientacji pradu czastek walencyjnych w rozwigzaniach
Sredniopolowych na warto$é poprawki izospinowej.
W paragrafie dotyczacym superdozwolonych rozpadéw Fermiego opisaliémy problem

niejednoznacznosci rozwigzan §redniopolowych. Mianowicie, w zaleznosci od typu defor-
macji istnieja 2 lub 3 minima, rézniace sie kierunkiem pradu generowanego przez czastki
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Rys. 4.3: Residua poprawek izospinowych obliczanych pomiedzy konfiguracjami
stanu podstawowego o réznych orientacjach pradu czastek walencyjnych 6ip, disp
oraz 6% wrgledem poprawki 6XGCT uzyskanej ze zmieszania tychze konfiguracji w
jadrach zwierciadlanych T' = 1/2 7z zakresu A = 11 — 47. Na wykresie przerywana
niebieska linia odnosi sie do rozwiazan z uszeregowaniem momentu pedu wzdhuz osi
OX, ciaglta pomaranczowa krzywa wzdluz osi OY, a punktowana krzywa zielona

wzdluz osi OZ.

walencyjne wzgledem rozkladu masy jadra w ukladzie wewnetrznym. Podobna niejedno-
znacznosé sredniopolowych rozwigzan HF wystepuje rowniez w przypadku jader niepa-
rzystych.

Okazuje sie, ze warto$¢ poprawki izospinowej disg zalezy w sposéb znaczacy od orienta-
cji momentu pedu nieparzystej czastki wzgledem rozktadu masy jadra. Wobec tego, w celu
wyznaczenia poprawki, konieczne jest przeprowadzenie mieszania wszystkich konfiguracji
reprezentujacych stan podstawowy. Ze wzgledu na liniowa zaleznosé¢ tych rozwiazan, tak
jak opisano w paragrafie o przejsciach superdozwolonych, przestrzen kolektywna nalezy
zredukowad, obcinajac wartosci wtasne macierzy norm bliskie zeru.

Na wykresie przedstawiono residua poprawek izospinowych obliczonych pomiedzy
konfiguracjami stanu podstawowego o réznych orientacjach pradu czastek walencyjnych
0Xg, Ofsp oraz 04y wzgledem poprawki dhg ! uzyskanej z mieszania wszystkich orientacji.
W przypadku jader z dubletu o A=11, pomimo deformacji tréjosiowej znaleziono jedynie
rozwigzanie z orientacja pradu wzdtuz osi OZ. Przypadki A = 13 — 17 oraz A = 39 — 43
s3 rozwigzaniami niemal sferycznymi, dla ktorych, z przyczyn geometrycznych, istnieje
tylko jedno rozwiazanie. W przypadku jader osiowych, ze wzgledu na degeneracje rozwia-
zan, krzywe diqg(A) oraz disg(A) sie pokrywaja. Najwieksze odchylenie od wartodci dRG"

obserwowane jest w przypadku przejécia *Cl —33S, dla ktorego poprawka 6%, wykazuje
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najbardziej anomalne zachowanie.

Traktujac wartos¢ poprawki DFT-NCCI jako wartosé referencyjng, obliczamy nastep-
nie test x? zgodnoéci poprawek wyznaczonych dla poszczegolnych orientacji. Okazuje sie,
7e x? jest najmniejsze dla 0, a éredni blad odstepstwa wartosci o od ORGCT wy-
nosi 0.008% dla jader zdeformowanych osiowo i 0.07% dla jader trojosiowych. Na srednio
stanowi to blad odpowiednio 1.5% oraz 8% od wartosci poprawki ze wzgledu na nie-
uwzglednienie mieszania wszystkich orientacji. W celu zmniejszenia przestrzeni konfigu-
racyjnej, w rachunkach DFT-NCCI prezentowanych w dalszej czesci pracy ograniczymy
sie do uwzglednienia jedynie rozwigzan, dla ktérych prad czastek walencyjnych jest zo-
rientowany wzdluz osi OY. To ograniczenie powoduje jednoczesnie konieczno$¢ narzucenia
bledu na wyznaczona poprawke w wartosci 1.5% dla jader zdeformowanych osiowo oraz
8% dla jader trojosiowych od wartosci poprawki. Naturalnie, bledu nie naklada sie w
przypadku konfiguracji sferycznej.

Metoda MR DFT nie moze by¢ zastosowana do wyznaczania elementu macierzowego
Vi 7 przejsé Fermiego miedzy jadrami zwierciadlanymi 7' = 1/2. W dwoch 7z czterech eks-
perymentalnych przypadkéw wyznaczenie poprawki izospinowej disg wigze sie bowiem z
konieczno$cig skorelowania funkcji falowej stanu podstawowego ze wzbudzeniami czastka-
dziura. Powodem jest zbyt silne mieszanie orbitali 15, oraz Ods/, zwigzane z niewlasciwie
opisana struktura jednoczastkowa w oddzialywaniu SVt go. Aby unikna¢ probleméw z
niejednoznacznoscia standéw wzbudzonych spowodowang réznymi orientacjami pradu ge-
nerowanego przez czastki walencyjne przestrzen konfiguracyjng w rachunkach DFT-NCCI
ograniczymy do stan6w $redniopolowych z uszeregowaniem wzdluz osi OY, zwieksza-
jac jednoczesnie niepewnosé teoretyczng obliczanej poprawki zgodnie z wynikami analizy
przeprowadzonej powyzej.

2.4 Wplyw izowektorowego oddzialywania kontaktowego na war-
tos¢ poprawki izospinowej

[zowektorowe oddzialywanie silne okazalo sie by¢ kluczowe w zrozumieniu anomalii
Nolena-Shiffera obserwowanej w jadrach zwierciadlanych 7' = 1/2 oraz T' = 1. Ponadto,
jak pokazuje wykres wspoOtczynnik zmieszania izospinowego ajsp jest niezwykle czuly
ze wzgledu na skorelowanie stanu kwantowego przez czlony tamigce symetrie tadunkows.
Podobnie reaguje poprawka izospinowa. Na wykresie przedstawiono zalezno$¢ po-
prawki d;sp wyznaczonej dla przej$¢ Fermiego miedzy jadrami zwierciadlanymi 7" = 1/2
od liczby masowej w zakresie A = 11 — 47. Obliczenia wykonano w trzech wariantach: z
oddzialywaniem Coulomba jako jedynym zréodlem tamania symetrii izospinowej (C) oraz z
uwzglednieniem wiodacego (L.O) oraz kolejnego rzedu (NLO) rozwiniecia izowektorowego
oddziatywania Skyrme’a. Wraz z dodaniem oddzialywania w wiodacym rzedzie rozwinie-
cia poprawka wzrasta od 70% dla lekkich jader do 20% dla jader z powloki pf. Wzrost
jest zatem podobny jak w przypadku aisp, patrz Rys. Uwzglednienie oddzialywania
izowektorowego w rzedzie NLO wnosi wynosi kolejne 10% w porownaniu do obliczen w
rzedzie LO. Poprawka jest zatem zbiezna ze wzgledu na dodawanie cztonéow klasy I11 rzad
po rzedzie.
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Rys. 4.4: Wartos¢ poprawki izospinowej disp dla jader zwierciadlanych 7= 1/2 z
zakresu mas A = 11—47. Rachunki uwzgledniajace jedynie oddzialywanie Coulomba
ilustruje krzywa niebieska. Krzywa zielona odpowiada rachunkom z uwzglednieniem
klasy IIT w wiodacym rzedzie, a krzywa pomaranczowa w nastepnym rzedzie rozwi-
niecia.

2.5 Wplyw struktury jadrowej na poprawke izospinowa

W zdeformowanym osiowo polu $rednim stany (orbitale) jednoczastkowe znakowane
sa zwykle tzw. liczbami kwantowymi Nilssona |Nn,A, Q). Sa to liczby przyblizone, a
jedyna zachowang jest rzut momentu pedu €2 na os§ kwantyzacji. Pozostale liczby kwan-
towe [Nn,A] mowia jedynie, ktory ze stanow bazy ma najwieksza domieszke w rozktadzie
jednoczastkowego stanu wltasnego w bazie. Liczby nilssonowskie sg liczbami asymptotycz-
nymi tj. bardzo dobrze odzwierciedlaja strukture stanu jednoczastkowego dla ukladow
silnie zdeformowanych. Dla ukladow stabo zdeformowanych strukture stanéw znacznie
lepiej, aczkolwiek nadal w sposob przyblizony, oddaje notacja sferyczna. W przypadku
deformacji trojosiowej zadna z liczb kwantowych Nilssona nie jest zachowana, a poziomy
jednoczastkowe sg jeszcze silniej zmieszane, w sensie rozktadu w bazie, niz w przypadku
osiowym.

Brak zachowanych liczb kwantowych powoduje, ze nie ma transparentnych regut wy-
boru dla elementéw macierzowych Fermiego pomiedzy stanami jednoczastkowymi w ja-
drze matki i corki. Co wiecej, na skutek przypadkowych degeneracji w widmie jedno-
czastkowym jednoczastkowe stany wlasne mogg sie r6zni¢ w jadrze matki i corki na tyle
istotnie, by w efekcie prowadzi¢ do anomalii w przebiegu zwtaszcza tak subtelnej wielko-
sci jaka jest poprawka digg w funkcji A. Na Rys. takie anomalne zachowanie widaé
wyraznie dla dubletéw izospinowych o A = 191 A = 37 oraz w w obszarze od A=27 do
A=33, gdzie nasze obliczenia przewidujg ksztalty trojosiowe.

Anomalne zachowanie poprawki d;sg dla przejsé miedzy jadrami zwierciadlanymi o
A = 19 oraz A = 37 jest skutkiem zle odtwarzanych przerw energetycznych przez od-
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Rys. 4.5: Poprawki izospinowe wyznaczone w modelu MR DFT (pomaranczowe
trojkaty) z oddzialywaniem SV dla jader zwierciadlanych T = 1/2 z zakresu
A = 11 — 55. Szare kwadraty prezentujg wyniki uzyskane w modelu powtokowym
NSM dla jader z zakresu A = 11 — 45. Krzyzykami oznaczono obliczenia poprawki
izospinowej w modelu DFT-NCCI . Rachunki DFT-NCCI wykonano dla 4 rozpadéw

branych do analizy elementu macierzowego V4.

dzialywanie SVt go miedzy sferycznymi podpowlokami, odpowiednio, 1s1/, a 0ds/; oraz
1s1/2 a 0d3/e. Oba przypadki wchodza do puli czterech dobrze zmierzonych przejsé, kto-
rych uzywa sie do wyznaczenia elementu macierzowego V,q. Z omawianego wykresu widac
wyraznie, ze poprawki dgg dla przej$¢ w A = 19 oraz A = 37 wyliczone w modelu MR
DFT sa niewiarygodne i nie moga by¢ wykorzystane do testowania Modelu Standardo-
wego. Podobna sytuacja miala miejsce dla przejsé superdozwolonych 07 — 07 w tryplecie
izospinowym o A = 38, gdzie wyliczona metoda MR DFT poprawka izospinowa byta ano-
malnie duza.

Aby lepiej zrozumie¢ przyczyny fizyczne anomalii pojawiajacych sie dla przejs¢ w du-
bletach o A = 19 oraz A = 37 i zaproponowaé stosowne remedium przejdzmy do opisu
nilssonowskiego zdeformowanych orbitali jednoczastkowych. W powloce sd mamy szesé
orbitali Nilssona, ktére mozna powiaza¢ z podpowlokami sferycznymi. Stany [220 1/2),
|211 3/2) oraz |202 5/2) pochodza ze sferycznej podpowloki 0ds,e, orbital 200 1/2) po-
chodzi ze sferycznej podpowloki 1si/, oraz dwa orbitale [211 1/2) i |202 3/2) pocho-
dzace z podpowloki 0ds /. Konfiguracje stanow podstawowych jader F oraz 3"Ar wraz
z energiami nilssonowskich pozioméw jednoczastkowych przedstawia Rys. Oba ja-
dra sa osiowe, a niesparowany nukleon obsadza stan o dominujacej konfiguracji bazowe;j
|220 1/2). Zauwazmy, ze w przypadku A = 37 stan ten jest szczeg6lnie silnie zmieszany,
do tego stopnia, ze dominujaca konfiguracja bazowa wskazuje, iz pochodzi on ze sferycznej
podpowtoki Ods/2, a nie Ods/e. Jest to skutkiem silnego mieszania tego stanu ze stanem
|200 1/2) spowodowanego degeneracja tych stanéw widoczna na Rys. co w efekcie
prowadzi do jego silnej fragmentacji w bazie.



83

Silne mieszanie stanéw jednoczastkowych w rozpatrywanych przypadkach wymaga
rediagonalizacji hamiltonianu z wykorzystaniem metody DFT-NCCI . Wyniki takich ob-
liczen dla przejs¢ w dubletach o A=19, A=21, A=35 oraz A=37 ilustruje Rys. [£.5] Ob-
liczenia z mieszaniem konfiguracji wykonano wylacznie dla jader, ktorych czasy zycia
oraz parametry korelacji zostaty zmierzone najdoktadniej sposroéd dostepnych zmierzonych
przypadkéw w dubletach o A = 11 — 45. Jadra te sa wykorzystywane do obliczenia ele-
mentu V4. W rachunkach wykorzystano izowektorowe oddziatywanie Skyrma’a w rzedzie
NLO, SVESO. Obliczenia DFT-NCCI wykonano w przestrzeni konfiguracyjnej uwzgled-
niajacej konfiguracje stanu podstawowego oraz wszystkie wzbudzenia typu czastka-dziura
w podukladzie nieparzystym (wzbudzenia o liczbie kwantowej seniority v=1), w ktérym
niesparowany nukleon obsadza nilssonowski stan jednoczastkowy o tej samej liczbie kwan-
towej {2 co w stanie podstawowym — wszystkie konfiguracje uwzglednione w obliczeniach
sa osiowo zdeformowane. Z wykresu obserwujemy wyraznie, ze mieszanie konfiguracji nie
wplywa na poprawke disgp w przypadku przejsé miedzy jadrami o A = 21 oraz A = 35. Na-
tomiast zdecydowanie poprawia zachowanie poprawki dla przejs¢ w A = 19 oraz A = 37.

A Neutronowe i protonowe A Neutronowe i protonowe
. orbitale jednoczastkowe dla F orbitale jednoczastkowe dla *Ar
_ o L
l 202 3/2 s | _
211 1/2
-10 | ——O—
0 220 1/2
5o 202 3/2
4 | 202 5/2 = _ _
_— 20 | =
211 3/2 T
s | . b | — _2111/2
220 1/ —O— 921132
12 o O—0O— a0 L 202 5/2
Bye=0.30; Q,y=0.57; Y=0° K=0.5 Bye=0.13; Q,=0.68; Y=60°; K=0.5

Rys. 4.6: Obsadzenie stanéw jednoczastkowych w stanach podstawowych jader 1F
oraz 3"Ar.

Dla przejécia 1?Ne —1F obserwujemy spadek disp z 0.738% do 0.580% po zmiesza-
niu stanu podstawowego z konfiguracja odpowiadajaca wzbudzeniu czastki walencyjnej
na orbital [200 1/2) i do 0.430% po dodaniu do przestrzeni konfiguracyjnej wzbudzenia
na orbital 211 1/2). Stan podstawowy oraz dwa wymienione wzbudzenia wyczerpuja ak-
tywna (AQ = 0) przestrzen konfiguracyjna stanéw 1p-1h o seniority v = 1 dla tych jader.
Warto przedyskutowaé jeszcze spadek poprawki przy uwzglednieniu trzeciej konfiguracji.
Orbital |211 1/2) lezy wyzej o ok. 12MeV niz |220 1/2), patrz Rys. Wydawaloby sie,
ze taka przerwa energetyczna spowoduje jedynie nieznaczne mieszanie tej konfiguracji ze
stanem podstawowym. W istocie, jezeli w mieszaniu uwzgledni¢ jedynie stan podstawowy
oraz wzbudzenie czastki na orbital [211 1/2) to poprawka disg z 0.738% spada jedynie do
0.699%. Nalezy jednak zwroci¢ uwage na fakt, iz roznica energetyczna miedzy orbitalami
1200 1/2) i 211 1/2) jest niewielka, w zwiazku z czym zbudowane na nich konfiguracje
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moga istotnie sie miesza¢. To mieszanie jest odpowiedzialne za znaczny spadek disp z
0.580% do 0.430% przy uwzglednieniu energetycznie najwyzej lezacego wzbudzenia. Po-
dobng analize mozna przeprowadzi¢ dla przejécia 3"K —37Ar, budujac konfiguracje 1p-1h
v = 1 przez wykreowanie dziury w stanach |200 1/2) oraz |211 1/2). Uwzglednienie tych
wzbudzenn w mieszaniu konfiguracji powoduje, ze poprawka disp z wartosci 1.833% spada
do 1.099% i do 1.042%. Stany te wyczerpuja aktywna przestrzenn konfiguracyjna 1p-1h
v=10AQ=0.

Znaczacy spadek poprawki disg w modelu DFT-NCCI umozliwia dalsze obliczenia
zwiazane z wyznaczeniem elementu macierzowego V4. Niemniej nadal poprawka disg, dla
przejécia 3TK —37Ar jest znacznie wieksza od poprawek w sgsiadujacych przejsciach w
A =35 oraz A = 39, co moze sugerowac, ze mieszanie konfiguracji w obrebie przestrzeni
konfiguracyjnej zbudowanej ze wzbudzen 1p-1h v = 1 nie rekompensuje w pelni $rednio-
polowego efektu niefizycznego mieszania orbitali.

2.6 Analiza bledu poprawki izospinowej

Zanim przejdziemy do analizy unitarnosci macierzy CKM, przeprowadzimy analize
btedu obliczonej poprawki izospinowej. Zrédta btedu mozna podzieli¢ na kilka niezalez-
nych sktadowych. Mianowicie:

1) btad spowodowany obcieciem bazy do 12 powlok oscylatora harmonicznego

Zbieznos$é poprawki do dla przejscia *'Fe—>'Mn w funkcji rozmiaru bazy ilustruje
Rys. Analiza zbieznosci pozwala przyjac¢ 3% (powloka sd) oraz 5% (powloka pf)
btad dla poprawek ze wzgledu na obciecie bazy do 12 powtok oscylatora harmonicz-
nego.

09 r

0.8 r

6c[%]

0.7

0.6 | | | | | |
4 6 8 10 12 14 16 18

Liczba powlok oscylatora harmonicznego

Rys. 4.7: Zbiezno$¢ poprawki izospinowej dc w funkcji rozmiaru bazy mierzonej
ilo$cig powtok sferycznego oscylatora harmonicznego dla rozpadu Fermiego miedzy
stanami podstawowymi 'Fe —°'Mn.
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2)

btad ze wzgledu na rézne orientacje pradu generowanego przez czastke walencyjng

Kolejnym zrodtem bledu jest ograniczenie sie w obliczeniach DFT-NCCI do konfi-
guracji, dla ktorych prad czastki walencyjnej zorientowany jest w kierunku osi OY'.
Zgodnie z dyskusja w podrozdziale 3 tego paragrafu dla jader osiowych takie zalozenie
generuje blad rzedu 1.5%, a dla jader trojosiowych blad rzedu 8% wartosci poprawki
izospinowej.

btad ze wzgledu na dopasowanie statych sprzezenia t'!!

Propagacja bledu dopasowania natezenia izowektorowego oddzialywania silnego !
wymaga znajomosci zaleznosci poprawki izospinowej od tego parametru dgp (™). Li-
nearyzacja tej zaleznosci dla cztonu centralnego (LO) prowadzi do zalozenia:

SN — gl 4, (4.6)

gdzie wyrazem wolnym jest poprawka, dla ktorej jedynym Zrédlem tamania symetrii
izospinowej jest oddzialywanie Coulomba. Wspotezynnik kierunkowy dopasowano do
obliczen poprawki 0igg(ti! = —6.3MeVfm®). Liniowa zalezno$é¢ przetestowano, prze-
prowadzajac rachunki poprawki izospinowej z uwzglednieniem izowektorowego cztonu
centralnego o natezeniu —7.4MeVfm?® oraz, wyznaczajac poprawke 6N na podstawie

wzoru (4.6). Sredni btad (Residual Standard Error)

1 & 2
RSE = $ — > (OME PFT — SN} < 0.002% (4.7)
i=1
jest catkowicie pomijalny, co pozwala przyja¢ zalozenie liniowosci pomiedzy parame-
trem t'!' a poprawks izospinows. Wowczas blad parametru dopasowania propaguje sie
zgodnie z:

6((515}3) = a(S(téH). (48)

Usredniony btad po wszystkich przypadkach wynosi 0.01%, co $rednio stanowi 3%
wartosci poprawki izospinowej dla rachunkéw w rzedzie L.LO. Analogiczne rozumowanie
przeprowadzono dla izowektorowego oddziatywania do rzedu NLO. Woéwcezas $redni
blad wynosi 4% wartosci poprawki.

btad zwigzany z ograniczeniem przestrzeni konfiguracyjnej

Przy wyznaczaniu poprawki izospinowej w modelu DFT-NCCI ograniczyliSmy prze-
strzen konfiguracyjna do stanu podstawowego i wzbudzen 1p-1h v = 1 o tej samej licz-
bie kwantowej €2 zwanych konfiguracjami aktywnymi. Wykluczenie z przestrzeni konfi-
guracyjnej wzbudzen typu 2p-2h jest Zrodlem niepewnodci. Rys. ilustruje test sta-
bilnosci poprawki ze wzgledu na rozmiar przestrzeni konfiguracyjnej. Rachunek wyko-
nano dla przypadku A=37, dla ktorego poprawka jest anomalnie duza, patrz Rys.
Konfiguracje 1-5 rozpinaja przestrzen wzbudzen jednoczastkowych, z czego pierwsze
trzy naleza do aktywnej przestrzeni konfiguracyjnej, dyskutowanej w poprzednim pod-
rozdziale. Konfiguracje 4 i 5 sg konfiguracjami 1p-1h v = 1 o Q = 3/2. Skorelowanie
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uktadu kwantowego tymi dwoma wzbudzeniami 1p-1h nienalezacymi do przestrzeni
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Rys. 4.8: Wykres stabilnosci poprawki izospinowej disp dla przejscia miedzy ja-
drami o A = 37. Zacieniowany obszar przedstawia btad poprawki wyznaczonej w
obrebie przestrzeni konfiguracyjnej 1p-1h (punkt 5) ze wzgledu na nieuwzglednienie
w mieszaniu wzbudzen typu 2p-2h.

Na podstawie anomalnego zachowania poprawki digg w punkcie A = 37 p. Rys.
mozna przypuszczac, ze przestrzen konfiguracyjna zbudowana ze wzbudzen 1p-1h moze
by¢ niewystarczajaca i ze nalezaloby ja rozszerzy¢ do wzbudzen 2p-2h. W modelu DFT-
NCCI do takich wzbudzen naleza tzw. konfiguracje pairingowe w kanatach neutronowo-
protonowym (np), neutronowo-neutronowym (nn) oraz protonowo-protonowym (pp).
Naturalnie ilo$¢ takich wzbudzen jest duza, ale mozna je zawezi¢ do konfiguracji o
AQ = 0 tj. takich, dla ktérych rzut momentu pedu na o§ kwantyzacji jest taki sam
jak dla konfiguracji stanu podstawowego. W przypadku jadra *'K, patrz Rys. ta-
kie konfiguracje otrzymamy, wzbudzajac neutron z poziomu [200 1/2) lub z poziomu
|211 1/2) na poziom [220 1/2) w obrebie tej samej sygnatury. Kolejne konfiguracje
pairingowe np otrzymamy przez jednoczesne wzbudzenie protonu oraz odpowiednie
rozerwanie pary neutronowej. Na wykresie Rys. konfiguracje 6 1 7 stanowia energe-
tycznie najnizej lezace wzbudzenia np o AQ2 = 0 w stosunku do stanu podstawowego.
Obserwujemy znaczny spadek disg— o 12% wartosci poprawki. Na chwile obecna w
kodzie HFODD nie mozna uzbiezni¢ konfiguracji 2p-2h typu nn-pairing oraz pp-pairing
w jadrach A = 37, uzywajac oddziatywania SV go. Powodem jest bardzo niewielka
przerwa energetyczna miedzy orbitalami |202 3/2) oraz [200 1/2).
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Podobng analize wykonalismy dla A = 21, mieszajac 10 konfiguracji, w tym konfigura-
cje 2p-2h typu pairing w kanatach nn, pp i np uzywajac mniejszej bazy, sktadajacej sie z
10 powtok oscylatora harmonicznego, i nieco zmodyfikowanego oddzialywania SV go.
Te obliczenia pokazuja, ze w tym przypadku uwzglednienie najnizej lezacych wzbudzen
2p-2h typu pairing generuje niepewno$¢ teoretyczna rzedu 5% wartosci poprawki. Na
obecnym etapie badan przyjmujemy jednak blad 12% wartosci poprawki ze wzgledu
na ograniczenie przestrzeni konfiguracyjnej do wzbudzen 1p-1h v = 1. Z pewnoscia
dla A =211 A = 35 jest to warto$¢ zawyzona. Jednak szczegbtowe wyznaczenie bledu
wymagaltoby znajomosci zachowania poprawki izospinowej przy wysyceniu przestrzeni
konfiguracyjnej. Takie rachunki sg niezwykle czasochtonne ale mozliwe do wykonania,
a zatem niepewnos¢ z tytulu obciecia przestrzeni konfiguracyjnej mozna zmniejszy¢.

Podsumowujac, cztery niezalezne zrédta btedu predykeji poprawki izospinowej daja
taczny blad poprawki dla przej$¢ Fermiego miedzy jadrami:

e osiowymi dla calego zakresu jader - 13% wartosci poprawki

e trojosiowymi - 15% wartosci poprawki

Warto nadmienié¢ réwniez, ze do analizy btedu nalezatoby doda¢ niepewnosé ze wzgledu
na przyjeta parametryzacje Skyrme’a. Jednak ze wzgledu na brak mozliwosci przeprowa-
dzenia analogicznych rachunkéw poprawki izospinowej z inng niz SV parametryzacja,
oszacowanie takiego btedu jest niemozliwe.

2.7 Analiza unitarnosci macierzy Cabbibo-Kobayashiego-Maskawy

Wprowadzony w rozdziale 2. wzor (2.57)) wiaze zredukowany czas zycia jadra nieza-
lezny od przej$cia z elementem macierzowym V4. Zestawienie wielkoéci niezbednych do
przeprowadzenia analizy warto$ci elementu macierzowego V,q umieszczono w Tab.
Wszystkie podane liczby zostaly uzyskane wykorzystujac wartosci dxp obliczone meto-
dami MR DFT lub DFT-NCCI z uwzglednieniem tamania symetrii izospinowej przez
oddziatywanie silne w rzedzie NLO.

Przy obecnej doktadnosci teorii wyliczenie wspoétczynnika mieszania p bezposrednio ze
wzoru jest obarczone zbyt duza niepewnoscia z powodu nieznajomosci statej sprze-
zenia ga w oSrodku. Wzor (2.55) pomaga jednak ustali¢ znak p. Wartosé¢ wspodlezynnik
mieszania mozna natomiast wyznaczy¢, wykorzystujac wzor (2.56]):

o fv [ F0
="—2— —1]. 4.9
0 fA ( ftmlrror ( )

Znajomos$¢ p pozwala z kolei wyznaczy¢ parametry korelacji Ag, ag, oraz B, na podsta-
wie wzoroéw f. Wartosci parametru mieszania podane w Tab. obliczono
2z powyzszego wzoru dla Ft® —0" = 3073.7 &+ 1.1 uzyskanego w modelu DFT-NCCI w
rachunkach przedstawionych w poprzednim paragrafie.

W celu wyznaczenia elementu macierzowego V,q niezbedna jest eksperymentalnie wy-
znaczona warto$é¢ czasu zycia oraz jednego ze wspoOtczynnikéw korelacji. Znajomosé ta-
kiego wspotczynnika, na podstawie wzordéw —, pozwala na wyznaczenie empi-
rycznej wartosci wspotczynnika mieszania o i w konsekwencji zredukowanego czasu zycia
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Tabela 4.4: Zestawienie wielkosci niezbednych do przeprowadzenia analizy wartosci
elementu macierzowego Vi,q na podstawie przej$¢ Fermiego w jadrach zwierciadla-
nych 7" = 1/2. Wartosci podano dla wszystkich przej$¢ z zakresu A = 11 — 45. W
kolejnych kolumnach tabeli podano: zredukowany czas zycia fyt, stosunek czynni-
kow fazowych ;—3 oraz poprawki radiacyjne &% oraz 0Yg. Te wartosci zaczerpnieto z

pracy [71]. Kolejna kolumna, 85y zawiera poprawki izospinowe wyznaczone w mo-
delu MR DFT, z wyjatkiem przejs¢ miedzy jadrami o A=19, 21, 35 oraz 35, gdzie

podano warto$¢ poprawki wyznaczonej w ramach modelu DFT-NCCT .

Ostatnie

dwie kolumny przedstawiaja wyznaczong w ramach modeli MR DFT i DFT-NCCI
wartos¢ zredukowanego czasu zycia Ft™™" dang wzorem (2.54) oraz wartos¢ wspol-

czynnika mieszania p wyliczona wedlug wzoru (4.9)).

A

fvtls]

fa
fv

f‘tmirror [S]

0

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45

3910(16)
4622.3(47)
4344(11)
2278.5(61)
1701.5(30)
4041(11)
4675(17)
3686.1(67)

3959(15)
4682.3(48)
4398(11)
2305.9(63)
1718.3(31)
4083(11)
4718(17)
3718.2(68)
4138(20)
4806(18)
4812(32)
(13)

0.7396(40
0.5576(13
-0.6294(28
-1.2794(35
1.5936(30
-0.7043(31
0.5446(44
-0.7984(26
0.6872(54
-0.5219(46
0.5212(81
0.3137(41
-0.2884(24
0.5803(24
-0.6475(41
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
-1.0540(52)

jadra niezaleznego od przejscia Ft.

Dane eksperymentalne odnosnie wspotczynnikow korelacji dla 5 przypadkow przejéc

beta w jadrach zwierciadlanych o A =19, 21, 29, 35 i 37 podano w Tab. [£.5] Najdoktad-
niejszy pomiar wykonano dla przej$é¢ Ne —!F [161] oraz 3'K —37Ar [162]. W ostatnim
przypadku zmierzono dwa parametry B, = —0.755(24) [163] oraz Ag = —0.5707(19) [162],
przy czym znacznie dokladniejszy pomiar wykonano dla wspoétczynnika Ag. Pomiar ten
zostal poprzedzony bardzo doktadnym wyznaczeniem polowicznego czasu zycia jadra 37K
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Rys. 4.9: Zredukowany czas zycia niezalezny od jadra dla 5 przypadkéw przejsé
miedzy jadrami zwierciadlanymi 7' = 1/2, dla ktorych zmierzono wspotczynniki
korelacji z wyznaczona $rednig wazona oraz jej btedem - zacieniowany obszar.

t1/2 = 1.23651(94) [164] w poréwnaniu z wcze$niejszymi, mniej doktadnymi eksperymen-
tami, ktorych usredniona warto$¢ dawata przewidywanie 1/, = 1.2248(73). Doktadnos¢
pomiaru czasu zycia oraz wspotczynnika korelacji stanowia najwieksze zrodlo btedu pre-
dykceji elementu macierzowego V4. Z kolei dla przejscia 3° Ar —3°Cl pomiar wspo6lczynnika
Az wykonano dwukrotnie, otrzymujac Ag = 0.49(10) [165] oraz Ag = 0.427(23) [166]. W
dalszej analizie wspotczynnik mieszania o wyznacza si¢ na podstawie najdokladniejszego
pomiaru, lub $redniej wazonej btedem w przypadku pomiaréw o zblizonej doktadnosci.

Na wykresie przedstawiono wartosci Fto (2.56|) uzyskane dla pieciu przypadkow,
dla ktérych wartosé wspoleczynnika mieszania p zostata wyznaczona na podstawie danych
eksperymentalnych oraz ich srednig wazona bledem wraz z bledem dopasowania obliczo-

Tabela 4.5: Warto$ci wyznaczonych eksperymentalnie wspolczynnikéw korelacji
Ap,ap, oraz B, i wyznaczony na ich podstawie wspolczynnik mieszania o dla przy-
padku 5 przejs¢ miedzy jadrami zwierciadlanymi o A = 19, 21, 29, 35 oraz 37.

A Ag CLﬁl, Bl, 1Y

19 -0.0391(14) [161] - - 1.5995(45)
21 - 0.5502(60) [167] - -0.7136(72)
29 0.681(86)  [168] - - -0.59(10)
35 0.430(22) [78] - - -0.279(16)

37 -0.5707(19) [167] - 0.755(24) [163]  0.5760(60)
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nym zgodnie ze wzorem:

S wir —1/2
fi&fzﬁi (Zw) , (4.10)
gdzie wagi
1

Niewystarczajaca precyzja pomiaru parametru Ag = 0.681(86) [168] dla przejscia mie-
dzy jadrami o liczbie masowej A = 29 wyklucza ten przypadek z dalszej analizy.

Tabela 4.6: W gérnym panelu wartosci poprawek izospinowych wraz z btedami w
modelu powlokowym oraz w modelu DFT-NCCI dla trzech wariantéw zrodet ta-
mania symetrii izospinowej: z uwzglednieniem tylko oddzialywania Coulomba (C),
z dotaczeniem izowektorowej klasy III oddzialywania silnego w rzedzie wiodacym
(LO) oraz w kolejnym rzedzie rozwiniecia (NLO). W dolnej czesci wyznaczone zre-
dukowany czas zycia niezalezny od przejscia Fty, wartos¢ elementu macierzowego
Viua oraz unitarno$é¢ macierzy CKM w zaleznosci od uzywanego modelu tj. NSM,
DFT-NCCI (C), DFT-NCCI (LO) oraz DFT-NCCI (NLO).

A NSM C LO NLO
19 0.415(39) 0.231(30) 0.412(54)  0.430(56)
S 21 0.348(27) 0.251(33)  0.387(50)  0.415(54)
35 0.493(46) 0.474(62)  0.647(84)  0.688(89)
37 0.734(61)  0.714(93)  0.97(13)  1.04(14)
Fto 6162(15) 6166(18) 6156(18) 6152(21)
Vi 0.9727(14) 0.9725(14) 0.9732(14) 0.9736(16)
unitarnoéé  0.9967(31) 0.9961(31) 0.9976(31) 0.9983(35)

W ten spos6b uzyskano:

Fto = 6152 £ 21s, (4.12)

a w konsekwencji, przy wartosci poprawki radiacyjnej A} = 2.361(38)% [69] wartosé

elementu macierzowego wynosi:

Via = 0.9736 = 0.0016. (4.13)

Wrynik jest catkowicie konsystentny z wartoscig uzyskana w modelu powtokowym, dla
ktorego Viq = 0.9727(14) [78]. Ponadto uzyskana wartos¢ jest zgodna z wartosdcia Vig
wyznaczong z przejs¢ superdozwolonych co do Z. Jednak jest nadal rzad wielkosci mniej
doktadna. Powodem jest przede wszystkim bardzo niewielka ilos¢ przej$¢ miedzy jadrami
zwierciadlanymi 7" = 1/2, dla ktorych doktadnie zmierzono potowiczne czasy rozpadu ty -
oraz parametry korelacji. Dla przejs¢ superdozwolonych przypadkéow kontrybuujacych w
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analizie unitarno$ci macierzy CKM jest az 14.

Srednia wazona bledem powoduje, ze w powyzsze]j analizie najistotniejsze wklady po-
chodza od rozpadow ?Ne oraz 3"K. Zgodnie z dyskusjg calego powyzszego paragrafu obok
jader tréjosiowych sa to jedyne przypadki wymagajace rozszerzenia metody MR DFT o
mieszanie wzbudzonych konfiguracji. I o ile ostateczny wynik digg dla przejscia **Ne —1F
wygtadza trend poprawki, co wiecej jest w pelnej zgodnosci z obliczeniami modelu po-
wlokowego, tak dla przypadku rozpadu 3"K disp odstaje zaréwno od wartoéci w jadrach
sasiadujacych, jak i od wartosci uzyskanej w modelu powtokowym. Wiemy, ze poprawka
izospinowa w tym rozpadzie spada wraz z rozszerzeniem przestrzeni konfiguracyjnej o naj-
nizej lezgce pairingowe wzbudzenia 2p-2h typu np i znacznie wygladza trend. Naturalnie
stabilnos¢ poprawki nalezaloby przetestowa¢ ze wzgledu na dodanie wiekszej liczby kon-
figuracji typu 2p-2h uzytych w mieszaniu DFT-NCCI .

Celem weryfikacji wpltywu lamania symetrii tadunkowej powyzsza analize przeprowa-
dzono dla trzech wariantow obliczen: uwzgledniajac jedynie oddzialywanie Coulomba (C),
z cztonem objetosciowym (LO) oraz cztonem powierzchniowym (NLO) oddziatlywania sil-
nego lamiacym symetrie izospinowa.

0.976

0.975

0.974

-
-
-
-
-

"5 0973

0.972

0.971
0t-0*

NSM ¢ LO  NLO

0.970

Rys. 4.10: Warto$¢ elementu macierzowego V,q wraz z bledem uzyskana z analizy
przejsé¢ beta miedzy jadrami zwierciadlanymi 7' = 1/2 w modelach NSM, DFT-NCCI
(C),DFT-NCCI (LO) oraz DFT-NCCI (NLO) poréwnana z wartoScia otrzymana z
przejs¢ superdozwolonych w modelu NSM.

W Tab. przedstawiono wartosci poprawek izospinowych, usrednionego zreduko-
wanego czasu zycia Fty oraz elementu macierzowego V,q 1 testu unitarnosci macierzy
CKM dla wszystkich trzech wariantéw obliczenn wraz z rachunkami modelu powtokowego.
Wszystkie obliczenia zostaly wykonane z uwzglednieniem mieszania wzbudzen z aktywnej
przestrzeni konfiguracyjnej 1p-1h. Wartosci V,,q przedstawiono na wykresie [4.10}
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Wzrost elementu Viq przy uwzglednieniu tamania symetrii tadunkowej jest znaczacy,
szczegblnie dostrzegalny pomiedzy rachunkami w wariancie C i LO. Kolejny, mniejszy,
wzrost obserwuje sie przy uwzglednieniu kolejnego rzedu rozwiniecia NLO. Uwzglednienie
izowektorowej cze$ci oddzialywania silnego znacznie przybliza wartos¢ elementu V4 do
tej pochodzacej od przejs¢ superdozwolonych.



Rozdziat 5

Rozpad beta typu Gamowa-Tellera

§1. Element macierzowy Gamowa-Tellera

Procedury rzutowania (MR DFT) oraz mieszania konfiguracji (DFT-NCCI) dostar-
czaja funkcji falowych z dobrze okreslonymi liczbami kwantowymi I, M oraz T, = (N —
Z)/2. Tak skonstruowana teoria pozwala na wyznaczenie elementoéw macierzowych przejsé
beta. W modelu DFT-NCCI stany kwantowe jadra rozpadajacego sie (jadra matki) oraz
jadra po rozpadzie (jadra corki) przyjmuja, zgodnie z wzorami oraz (3.99), naste-
pujaca postac:

n; IMGT,) = Za“‘”M;TZ s IMT.) %

2,7
nIMTz
= Z Z jKT PTZTZPMK|SOJ> (5~1)
7] KT>\TZ\
i PMBTY) = 3 Day ) i LT
mIM T A /
— Z S f T P P [ty (5.2)
pr K/ T'>|TY|

gdzie n,m numeruja stany wltasne modelu DFT-NCCI o tym samym momencie pedu,
jego rzucie na trzecig o$ oraz rzucie na trzecig o§ w izoprzestrzeni rosnaco zgodnie z ich
energia, zas ¢, p przebiegaja po stanach o tych samych liczbach kwantowych I, M, T, wy-
rzutowanych z okreS§lonego wyznacznika Slatera ¢; w przypadku jadra matki oraz 1, w
przypadku jadra corki.

Wyznaczenie elementow macierzowych jednociatowego wektorowego operatora Gamowa-
Tellera w powyzszych stanach (5.1] . - upraszcza sie, jezeli przedstawimy go w postaci
operatora sferycznego:

. 1 A
O5f = —=> w6l (5.3)
M \/i = I

przy czym zalezno$¢ izospinowa p = =£1 zalezy od tego, czy przejScie nastepuje w kanale
BT, czy 5. Postac sferyczna operatora pozwala skorzystac z reguly komutacyjnej dla ten-
sorow sferycznych (1.28) i zredukowaé procedure rzutowania w obu stanach kwantowych
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— matki i corki do rzutowania z jednego stanu np. ze stanu kwantowego opisujacego jadro
matki zgodnie z (3.80). Element macierzowy Gamowa-Tellera przyjmuje wtedy postac:

IM;T, I'M'\T!
M}?VT Z Z z(jnKT ) ;nK’T’ )<¢r| ’T’PII(’M’OGTPTTZP]{IK|90J> (5.4)
i KT pryK'T

T
M ;(l,;u

przy czym

7T Y T'T! 1K
MGT CTT 1MC}]\]4V,[1VZCTTZ’—77,IUCIII§ €,1¢ <¢r‘7'1770'1£P/ nTZPK’ gK|90J> (5.5)

Skorzystanie z definicji operatora obrotu (1.27)), funkcji D-Wignera oraz relacji (3.86)
pozwala zapisaé¢ element macierzowy wystepujacy w powyzszym wzorze w nastepujacej
postaci:

<7vz)7"|7A—1?76-1£P77’;717TZPII(’7§K|90j> =

2T +1 2] —|— 1
o [ [ QDT 1 (Q0)DI (@) Wl ROD R o)
2T 1271 +1 y , / :
87:; + /dQ iap(T,— dT/ o <5T) z'yTTze—zaT(Tz —n)e—wTTz
[ 4Dk Q) (e B RO ey)
2N+ 121+ 1 gy~ . . . . =
= 2 87'['2 /0 dﬁT S ﬁTd;; —n, T (ﬁT) / dQD;(’—n,K<Q) <¢7‘ |7'1770'1§ |()0J> .

(5.6)

Korzystajac z uogolnionego twierdzenia Wicka (3.71) i (3.72)) element macierzowy pomie-
dzy wyznacznikami Slatera wystepujacy w powyzszej calce mozna zapisa¢ nastepujaco:

<wr|%1n61£’éj> wT|90J /dr q’%m’(ﬂ <‘7|‘71£“7> (ra q; roq). (5.7)

qq o0’

Aby go wyliczy¢ nalezy obliczy¢ zatem kontrakcje gestosci przej$ciowej z elementami ma-
cierzowymi operatora oy i 7.

Gestos¢ przejsciowa (3.73) wyraza sie nastepujaco:

. Lf. . .
pdson =3 {pd 0+ X (lonlo) sula.q)] (5.9
k‘Z(JZ,y,Z)
i jest rownoznaczna definicji sformulowanej w jezyku tensoréw sferycznych:
1

P o) = 5P )+ 3 (el ol (5.9

2 =(1,0,—1)

Wowezas kontrakcja jest rowna:
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>_{olorelo’) plo'd's o) =

oo’

=3 S {6 e+ T (ool (o) el )

a=(1,0,—1)

1 L. . .
= 522 (0l01c610l0) prald @) = (~1)pr-e(d 0)

(5.10)
Wobec powyzszego element macierzowy przyjmuje postac:
(Wr|T101el 25) = <¢r|95j>/dr(— 1) pr—g 1y (1) (5.11)

W programie HFODD gestosci sg wyrazone w uktadzie kartezjanskim, wobec czego powyzsze
wymaga jeszcze przeksztalcenia:

(Vr|F1901¢|5) =

yER !

(1) {5 ()0 — 5 (Saamal() i1 (1) Oca
+\}§ (gx,ln(r) = i§y,1n(r)>(5§1}. (5.12)

—

Nalezy podkresli¢, ze operator Gamowa-Tellera w postaci nie posiada zadnych
wolnych parametrow i nie jest wobec tego dopasowywany do wartosci eksperymentalnych.
W modelu MR DFT operator ten dziata na stany kwantowe uwzgledniajace korelacje zwia-
zane 7z tamaniem a nastepnie przywracaniem symetrii np. obrotowej czy izospinowej. W
modelu powlokowym natomiast takie korelacje wprowadza sie przez mieszanie konfigu-
racji w przestrzeni walencyjnej. W modelu powtokowym czesto definiuje sie efektywny
operator Gamowa-Tellera. W szczegolnosci, w powtoce sd (szczegdly czytelnik znajdzie
w [169]) ma on postaé:

O = Z o7 + 6097, (5.13)

k=1
gdzie

A A A
0Ot = 6,(d —d) Y~ o +85(s — 5) D o + 0u(d — d) Y Ly

k=1 k=1 k=1
A A
+0p(s —d) Y paTi + 0p(d — d) Y PaTi- (5.14)
k=1 k=1

Wartosci § sa czynnikami renormalizujacymi w obrebie powtoki sd, ktore dopasowuje sie
do danych do$wiadczalnych, a operator

pr = V87 [V (r)) x o . (5.15)
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Dopasowane parametry efektywne tak skonstruowanego operatora maja za zadanie od-
tworzenie korelacji, ktorych pozbawiona jest jadrowa funkcja falowa. W tym kontekscie
r6zni autorzy wymieniaja wysokoenergetyczne wzbudzenia nieuwzgledniane w mieszaniu
konfiguracji oraz efekty zwigzane ze wzbudzeniem nukleonu do rezonansu A, ktory przed
deekscytacja moze rozpasé sie w procesie rozpadu beta w kanale Gamowa-Tellera [50].
Dodatkowo parametry moga zawiera¢ korelacje zwigzane z wielocialowymi pradami zmie-
niajacymi tadunek, jak sie okazuje [3, 47, 170, I71] kluczowymi w rozumieniu efektu
quenchingu.

Zaimplementowany w kodzie HFODD element macierzowy Gamowa-Tellera zostal prze-
testowany w obliczeniach 5 jednocialowych elementéw macierzowych w przestrzeni sd
w przejsciach: 1"F—170 oraz *Ca—%K, na ktore skladaja si¢ przejscia: 0ds/2 — 0ds 2,
Ods/o — 0dsj2, Odsjp — Odsjo, 1512 — 18172 oraz 1sy;2 — 0dz/s. W modelu powtoko-
wym jadra 'F, 170 sg 3Ca i 3K sg uktadami jednocialowymi z jedna czastka badz jedna
dziura w przestrzeni walencyjnej. W modelu pola $redniego nastepuje zniesienie degenera-
cji sferycznej. Podpowtoki sferyczne rozszczepiaja sie na 6 pozioméw Nilssona ze wzgledu
na magnetyczng liczbe kwantowa, co schematycznie zilustrowano na Rys. dla przy-
padku A = 17. Obok schematu rozszczepienia na rysunku podano takze wyniki obliczen
diagonalnych elementéw macierzowych Mgt metoda MR DFT.

M(l\}/ITR DFT
o 6 1548 6
e e
Lsy /9 1 9.444 1 15y /2
s 82805 5
- RN
Ods;, N 2 28%H >/ 0dsy
1 2.894 1
17F 170

Rys. 5.1: Schemat przedstawiajacy strukture jednoczastkowsg w modelu Nilssona w
jadrach uczestniczacych w rozpadzie "F—'70. Pomiedzy stanami podano wartosci

jednoczastkowych elementéw macierzowych Gamowa-Tellera obliczone metoda MR
DFT.

Okazuje sie, ze wartosci przejs¢ Gamowa-Tellera pomiedzy wzbudzeniami w obrebie
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tego samego orbitalu sferycznego sa niemal identyczne zaréwno w przypadkach diagonal-
nych, takich jak np. 1 — 1, co jest widoczne na schemacie [5.1] jak i niediagonalncyh
np. 1 — 2. Wynika to z faktu, ze analizowane jadra sa niemal sferyczne. W takim przy-
padku rozszczepienie orbitali sferycznych jest bardzo niewielkie, a mieszanie sie orbitali
zaniedbywalne. W konsekwencji, poréwnanie jednoczastkowych elementéow macierzowych
pomiedzy modelami MR DFT i NSM oraz sferycznymi jednoczastkowymi elementami
macierzowymi jest zasadne i stanowi znakomity test dla teorii MR DF'T.

W celu wyznaczenia jednoczastkowych elementéw macierzowych Gamowa-Tellera w
sferycznej bazie |nljs) nalezy skorzystaé¢ z twierdzenia Wignera-Eckarta oraz z twierdze-
nia o zredukowanym elemencie macierzowym iloczynu skalarnego dwoéch komutujacych
tensorow sferycznych [44]:

(1723l TS Ll|i1d25") =
6jjf<—1>f'2ﬂ'+ﬂ\/2j+1{j; i i}w|TL||j1><j2\|sLHj;>. (5.16)

Dokonujac w powyzszym wzorze podstawienia o = [1o|;, a nastepnie korzystajac z row-
nosci:

Gl =0,V20 + 1, (Fllellj) = V6, (5.17)

otrzymujemy ostateczny wzor:

MG = (nglyggllolinidisi) =

1 1
3 : i) 2oz L
Vb2t a2 s L e

Wartosci interesujacych nas 5 elementow macierzowych MYT w bazie sferycznej (sph)
obliczonych na podstawie wzoru (5.18) przedstawiono w Tab. [p.1]wraz z wynikami obliczen
w modelach MR DFT oraz NSM.

Tabela 5.1: Jednoczastkowe elementy macierzowe Gamowa-Tellera w powloce sd
wyznaczone w bazie sferycznej wedlug wzoru (5.18), obliczone w modelu MR DFT
oraz w modelu powtokowym (NSM) z efektywnym operatorem Gamowa-Tellera dla
jader zwierciadlanych o A = 17 oraz A = 39.

MR DFT NSM eff
j— g sph | A=17 A=39|A=17 A=39
Odsjs — Odsjp | 2.898 | 2.894  2.890 | 2.880  2.655
Odsja — Odsjy | -3.098 | -2.942  -3.080 | -2.966 -2.687
Odsjy — Odsjy | -1.549 | -1.548  -1.547 | -1.521  -1.395
Isijp — lsijn | 2.449 | 2.444 2444 | 2430 2238
1s1/2 — Odgjp | 0 0 0 0.038  0.050
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Wszystkie elementy macierzowe obliczone w modelu MR DFT dotyczace przejs¢ w
jadrach A = 17 z jedna czastka walencyjna oraz A = 39 z jedna dziura sa zgodne
7z wartoSciami obliczonymi w bazie sferycznej. Drobne réznice, najwieksze dla przejscia
0dsj2 — 0d3/, w Al7, mozna wyttumaczy¢ poprawkami izowektorowymi uwzglednionymi
w modelu MR DFT. Zar6wno wartosci NSM jak i jednocialowe elementy macierzowe zo-
staly wyznaczone przy zalozeniu pelnej symetrii izospinowej. Wartosci obliczone w przej-
sciu A = 17 s3 zgodne w modelu MR DFT jak i w podej$ciu NSM z efektywnym opera-
torem Gamowa-Tellera. Roznice wida¢ jednak w przejsciu A = 39, gdzie rachunki modelu
NSM nie sa zgodne z rachunkami w bazie sferycznej. Autorzy ttumacza te réznice brakiem
korelacji wysokoenergetycznych wzbudzen rdzenia, podajac ten argument jako wiodacy w
wyjasnieniu zjawiska redukcji elementu macierzowego Gamowa-Tellera lub réwnowaznie
koniecznosci renormalizacji stalej sprzezenia pradow osiowowektorowych w osrodku.

§2. Efekt quenchingu w modelu MR DFT

Badanie przejs¢ beta typu Gamowa-Tellera jest o tyle ekscytujace, iz po dzien dzi-
siejszy nie wyjasniono w pelni fenomenu redukcji elementu macierzowego w osrodku
jadrowym popularnie zwanego efektem quenchingu. Na podstawie obliczen modelu po-
wlokowego [169], 172, [173] 174, [I75] od lat stawia sie teze, wedlug ktorej ograniczenie
obliczert do mieszania konfiguracji w obrebie poszczegblnych powlok stanowi gtowne zro-
dlo systematycznego przeszacowania elementu macierzowego wzgledem wartosci doswiad-
czalnych. Wprowadzenie efektywnego operatora Gamowa-Tellera i (5.14), ktorego
wolne parametry dopasowane byly do eksperymentalnych elementéw macierzowych miato
za zadanie uchwycenie brakujacych korelacji zwiazanych, jak przypuszczano, z wysoko-
energetycznymi wzbudzeniami rdzenia. Obliczenia elementu przejécia Gamowa-Tellera w
bezrdzeniowym modelu jadrowym, jakim jest prezentowany w niniejszej rozprawie model
bazujacy na teorii jadrowego, wieloreferencyjnego funkcjonalu gestoséci stanowig zatem
doskonala okazje do weryfikacji tej hipotezy. Funkcja falowa skonstruowana w naszym
modelu zawiera bowiem domieszki pochodzace od wyzej potozonych powtok az do zada-
nego obciecia bazy. W przypadku prezentowanych ponizej rachunkéw jako bazy uzyto 12
powlok sferycznego oscylatora harmonicznego.

Warto podkresli¢, ze wlasciwe zrozumienie efektu redukeji jest istotne nie tylko z per-
spektywy badan strukturalnych jader atomowych, ale réwniez w modelowaniu proceséw
astrofizycznych zachodzacych w gwiazdach, czy we wlasciwym oszacowaniu czasu zycia
ze wzgledu na przewidywany podwojny rozpad beta w kanale bezneutrinowym.

Na Rys. [5.2] przedstawiono systematyczne obliczenia elementu macierzowego Gamowa-
Tellera w jadrach zwierciadlanych T' = 1/2 z powlok p, sd i dolnej czesci powtoki pf.
Wyniki modelu DFT-NCCI poréwnano z danymi do$wiadczalnymi i rachunkami w mo-
delu powlokowym. Wyniki modelu powlokowego sa kompilacja wynikéow z kilku prac. Dla
powloki p wzieto je z prac [174], 175], wyniki w powloce sd pochodza z obliczen [169] z
oddziatywaniem USDb, a wyniki w dolnej czesci powloki pf z prac [172, 173]. Rachunki
DFT-NCCI obejmuja mieszanie 4-5 energetycznie najnizej lezacych wzbudzen 1p-1h. Oka-
zuje sie, ze poza przejéciem °V—4Ti obliczenia DFT-NCCI nie r67nig sie zasadniczo od
znacznie prostszego rachunku metoda MR DFT, ktory uwzglednia wytacznie konfiguracje
stanu podstawowego.

Obliczenia obu modeli systematycznie przeszacowuja eksperymentalnie wyznaczony
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Rys. 5.2: Element macierzowy Gamowa-Tellera dla przej$¢ pomiedzy jadrami zwier-
ciadlanymi 7' = 1/2 z zakresu mas A = 11 — 55 wyznaczony na podstawie danych
eksperymentalnych (czarne trojkaty), w modelu powtokowym NSM (pomaranczowe
kwadraty) oraz w modelu DFT-NCCI (niebieskie kotka).

element macierzowy poza obszarem jader tréjosiowych A = 29 — 35 w modelu DFT-
NCCI , natomiast w pelni odwzorowuja trend eksperymentalny. Obserwujemy rowniez
zaskakujaca zgodnos¢ obliczenn miedzy obydwoma modelami. Wartosci dla przejsé z za-
kresu A = 13—27 oraz A = 37—43 sg niemal identyczne. Sttumiony element macierzowy w
rejonie A = 2935 jest efektem silnego mieszania orbitali s,/ oraz ds/, generujacego trojo-
siowos$¢ w tych jadrach. W przypadku elementu macierzowego Gamowa-Tellera procedura
DFT-NCCI wydaje sie nie rekompensowa¢ niedoskonatosci struktury jadrowej wyznaczo-
nej przez funkcjonat SVgp. Najwieksza réznice miedzy modelami obserwujemy w jadrach
z powloki pf, a szczegblnie duzy element macierzowy dla przej$é¢ miedzy jadrami A = 53
oraz A = 55. Anomalne zachowanie w ostatnich dwéch przypadkach widoczne réwniez
w energiach wiazania oraz w poprawce izospinowej mozna prawdopodobnie wyttumaczy¢
niedopasowanym do danych do$wiadczalnych oddzialtywaniem tensorowym szczegdblnie ak-
tywnym dla tych jader.

Eksperymentalne wartosci elementu macierzowego Gamowa-Tellera przedstawione na

wykresie mozna wyznaczy¢ na podstawie wzorow (2.55)) i (2.56) oraz teoretycznej

wartosci elementu macierzowego Fermiego. Mianowicie:

Ft0t—0*
MESP — z:MFJ jz: <2ﬂm - 1) (5.19)

Wprawdzie powyzsza wartosé zalezy od wielu teoretycznych poprawek (patrz rozdzial
IV§2), to kluczowe sa niepewnosci eksperymentu dotyczace czasu zycia rozpadajacego sie
jadra oraz wspoétczynnik rozgalezienia.

Systematyczne przeszacowanie elementu macierzowego Gamowa-Tellera jest znane w
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literaturze pod nazwa efektu redukcji (quenching) stalej sprzezenia pradéw osiowowekto-
rowych. W rzeczywistosci, jak pokazuja najnowsze wyniki badan, redukcji ulega nie stata
sprzezenia g4, lecz element macierzowy przejécia. Zatem:

Mgy = qMgy (5.20)

Wartos¢ czynnika skalujacego g w obliczeniach wykonanych przy pomocy modelu powtoko-
wego zalezy od A i wynosi g ~ 0.82 [174}, 175], ¢ ~ 0.77 [169] oraz ¢ ~ 0.74 [172] w powto-
kach, odpowiednio, p—, sd— oraz pf—. W ciezszych jadrach A = 100 — 134 [176] 177, [178|
warto$¢ elementu macierzowego jest nawet dwukrotnie wicksza niz przewidywania ekspe-
rymentalne, a $redni czynnik ¢ =~ 0.48.

2 [ NSM gq=0.74(11)
I NCCI q=0.74(21)
L _q:1
a2
<
25 L
R
=1 |
O _| 1 1 1 ] 1 1 1 1 ] 1 1 1 1 ] 1 1
0 1 2 3

MGT(TH)

Rys. 5.3: Wartosci elementéow macierzowych Gamowa-Tellera wyznaczonych w ra-
mach modelu powlokowego NSM (niebieskie romby) oraz modelu DFT-NCCI (po-
maranczowe kotka). Pomaraniczowymi trojkatami oznaczono elementy macierzowe
Gamowa-Tellera nieuwzglednione w analizie warto$ci parametru skalujacego ¢ w
przejsciach miedzy jadrami tréjosiowymi A = 29 — 35 oraz jadrami A = 53 — 55.
Szczegoly analizy opisane sg w teksScie. Przerywane linie przedstawiaja krzywa re-
gresji liniowej w modelu NSM (prosta niebieska) oraz w modelu DET-NCCI (prosta
pomaranczowa). Odstepstwo prostych regresji od linii czarnej odzwierciedla wiel-
kos¢ efektu redukcji elementu macierzowego wyznaczonego teoretycznie wzgledem
wartosci doswiadczalne;j.

Dla przej$¢ w jadrach zwierciadlanych T' = 1/2 z zakresu A = 11— 55 przedstawionych
na wykresie warto$¢ czynnika skalujacego ¢ w regresji liniowej wynosi ¢ = 0.74(11) w
przypadku wartosci uzyskanych w ramach modelu powlokowego oraz ¢ = 0.74(21) w mo-
delu DFT-NCCI . Nalezy podkredli¢, ze wartosé ¢N°C! uzyskano, wykluczajac klopotliwe
przypadki A = 29 — 35 oraz A = 53 — 55 zaznaczone na wykresie pomaranczowymi troj-
katami. Zarowno w modelu powlokowym jak i w modelu jadrowego funkcjonatu gestosci
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rozklad wartosci reszt wokdédt zera:

ress = MEE — g™ M2, (5.21)
jest w bardzo dobrym przyblizeniu normalny. Wobec tego regresja liniowa jest uzasad-

niona. Niemal dwukrotnie wiekszy niz w modelu powtokowym rozrzut pochodzi przede
wszystkim od wartosci przejs¢ w jadrach z powloki pf.

Jest niezwykle interesujace, iz wartosci parametru ¢ wyznaczone w dwoch roéznych
modelach sg identyczne. Taka informacja sugeruje, ze za efektem quenchingu nie stoja
korelacje zwiazane ze wzbudzeniami rdzenia sugerowane przez autoréw rachunkéw mo-
delu powlokowego. Taka hipoteze mozna wykluczy¢ ze wzgledu na oczywiste roéznice po-
miedzy prezentowanymi modelami. W podejsciu jadrowego funkcjonatu gestosci funkcja
falowa posiada korelacje zwiazane z tzw. polaryzacja rdzenia, jak réwniez domieszki z
wyzej lezacych powlok. To spostrzezenie oraz fakt, iz pokazano, ze wptyw kanatu rozpadu
Gamowa-Tellera przez rezonans A na efekt quenchingu jest zaniedbywalny [50] pozwolity
odrzuci¢ stawiane hipotezy. Takie wykluczenie sugeruje zatem wplyw wielociatowych pra-
dow. W istocie, w 2019r. w Nature ukazala sie praca [47], w ktorej przedstawiono rachunki
ab initio na podstawie ktorych pokazano, ze dodanie dwuciatowych pradéw natadowanych
konsystentnie z oddziatywaniem trojciatowym, ktorego brakowato w obliczeniach modelu
powlokowego jak i w rachunkach jadrowego funkcjonatu gestosci, powoduje zwickszenie
parametru ¢ z ¢ = 0.80 do ¢ = 0.96 w powloce sd oraz z ¢ = 0.75 do ¢ = 0.92 w dolnej
powloce pf.
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Rys. 5.4: Residua elementow macierzowych Gamowa-Tellera wyznaczonych dla roz-
wiazan 7 orientacja pradu czastki walencyjnej wzdtuz osi OX (niebieska przerywana
linia), wzdtuz osi OY (pomaraiiczowa linia ciagla) oraz wzdtuz osi OZ (zielona linia
punktowa) wzgledem wartosci elementu macierzowego Gamowa-Tellera wyznaczo-
nego w ramach zmieszania konfiguracji o r6znych orientacjach metoda DFT-NCCI

Prezentowane wyzej wyniki obliczen teoretycznych obarczone sa oczywiscie niepewno-
Scia teoretyczng. Podobnie jak w przypadku obliczen zwiazanych z poprawka izospinowa,
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01sB, teoretyczny blad elementu macierzowego Gamowa-Tellera ma co najmniej trzy zro-
dta:

1. wybér rozwigzania HF, w ktorym orientacja pradu generowanego przez czastke wa-
lencyjna jest ustawiona wzdtuz osi OY

2. ograniczenie bazy do 12 powtok oscylatora harmonicznego

3. ograniczenie przestrzeni konfiguracyjnej w modelu DFT-NCCI do 3-5 najnizej leza-
cych wzbudzen

Na wykresie przedstawiono residua elementow macierzowych Gamowa-Tellera ob-

liczane miedzy konfiguracjami o okreslonym kierunku pradu (momentu pedu) generowa-
. k=X,Y,Z . . .

nego przez czastke walencyjna Mg a rezultatem zmieszania wszystkich dostepnych

konfiguracji stanu podstawowego MYS“!. Poza szczegdlnymi przypadkami przejsé w ja-

drach A = 33 oraz A = 35 najmniejsze odchylenia od wartosci MEEC! obserwujemy dla

MQ+. Ograniczajac sie do tak zorientowanych konfiguracji, popelniamy btad wynoszacy

srednio ok. 0.5% wartosci elementu macierzowego.

Blad ze wzgledu na ograniczenie bazy do 12 powlok oscylatora harmonicznego jest
niemal pomijalny i nie przekracza 1%.

Uwzglednienie niskolezacych wzbudzen 1p-1h w procedurze DFT-NCCI w niewielkim
stopniu, w zakresie nie przekraczajacym 5% wartoéci elementu macierzowego, zmienia
wyniki MR DFT. Wyjatkiem sa dwa przejécia: 3°Ar—35Cl gdzie uwzglednienie mieszania
konfiguracji powoduje wzrost elementu macierzowego o ok. 13% oraz przejscie 45V —45Ti.
W tym drugim przypadku zmieszanie stanu podstawowego z najnizej lezacym wzbudze-
niem czastka-dziura powoduje wzrost elementu macierzowego z wartosci 0.895 do 1.256.
Reasumujac, przeprowadzone obliczenia sugerujg, ze Sredni blad z tytulu ograniczenia
przestrzeni konfiguracyjnej do 3-5 konfiguracji nie powinien przekroczy¢ kilku procent.

W chwili obecnej nie da sie oszacowa¢ w sposéb wiarygodny systematycznej niepew-
no$ci wynikajacej z przyjecia konkretnej parametryzacji SV oddzialywania Skyrme’a ze
wzgledu na brak mozliwosci uzycia alternatywnego oddziatywania.

§3. Funkcja odpowiedzi na wymuszenie Spinowo-izospi-
nowe

Model DFT-NCCI, pod wzgledem funkcjonalnym, jest zblizony do modelu powtoko-
wego. Jego niewatpliwa zaletg w stosunku do modelu powtokowego jest mozliwosé za-
stosowania do badania struktury dowolnego jadra z tablicy nuklidow. Ta uniwersalnosc¢
wynika z uzycia do jego konstrukcji funkcjonatu gestosci ze spontanicznie naruszonymi
symetriami, generowanego stosunkowo prostym oddzialywaniem, ktérego parametry dopa-
sowane sg globalnie. To samo oddzialywanie jest uzywane zaré6wno na poziome budowania
przestrzeni konfiguracyjnej modelu jak i diagonalizacji w procedurze mieszania konfigura-
cji. W tym sensie zaprezentowane podejscie jest wolne od parametrow. Cena jaka ptacimy
za uniwersalnos$¢ to mniejsza dokladno$é przewidywan w poréwnaniu z przewidywalno-
Scia modelu powltokowego, ktory jest z duza precyzja dopasowany lokalnie do okreslonej
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przestrzeni walencyjne;j.

Modele DFT-NCCI i powtokowy sa modelami o zblizonej funkcjonalnosci, ale zbudo-
wane sg na zupelnie innych zasadach. W tym sensie mozna je uzna¢ za komplementarne.
W tym kontekscie analiza poréwnawcza obu modeli jest niezwykle cenna. Przykladem
takiej analizy sa prezentowane wczeSniej obliczenia dla superdozowlonych przejsé beta.
Zgodnosé przewidywan modelu DFT-NCCI i modelu powtokowego w kontekscie analizy
elementu macierzowego V,q uwiarygadnia teoretyczne rachunki poprawek izospinowych i
w konsekwencji testy Modelu Standardowego metodami jadrowymi. Innym przyktadem sa
badania nad efektem redukcji elementu macierzowego Gamowa-Tellera zaprezentowane w
poprzednim paragrafie. Analiza poréwnawcza obu modeli pozwolita wykluczy¢ stawiane
wczedniej hipotezy, wedle ktorych za quenching odpowiedzialne jest zawezenie przestrzeni
modelowej i jednoczesnie przychylita sie do wytlumaczenia tego efektu brakiem pradéow
wielociatowych.

W niniejszym paragrafie przedstawione zostang pierwsze wyniki obliczen w modelu
DFT-NCCI funkcji odpowiedzi jadra na wymuszenie spinowo-izospinowe. Funkcja odpo-
wiedzi spinowo-izospinowej, inaczej odpowiedzi Gamowa-Tellera, dostarcza wartosciowych
informacji zarowno dotyczacych oddziatywan elektrostabych jak i bezposrednio struktury
jadrowej. U podstaw modelu DFT-NCCI lezy efekt spontanicznego naruszenia symetrii,
co otwiera mozliwos¢ dyskusji ztozonych schematéw wynikajacych ze struktury funkceji
odpowiedzi w jezyku prostych zdeformowanych stanéw jednoczastkowych Nilssona, beda-
cych fundamentem modelu DFT-NCCI. W tym sensie rachunki modelu DFT-NCCI moga
by¢ potraktowane jako komplementarne do modelu powlokowego [179, 180, 181], modelu
coupled cluster [IT1], czy tez kwaziczastkowego przyblizenia faz przypadkowych (QRPA)
[182] [183], 184, 185, [186, 187]. W kontekscie obliczen funkeji odpowiedzi Gamowa-Tellera
nalezy przywotaé jeszcze rachunki dotyczace rozpadu beta w powloce pf w modelu VAM-
PIR [188, 189, 190], w ktorym wykorzystuje sie funkcje falowe pola $redniego z przywroco-
nymi symetriami. Pomimo pewnego podobienistwa pomiedzy modelami DFT-NCCI oraz
VAMPIR wynikajacego z zastosowania technik rzutowych do zdeformowanych stanéw
pola sredniego ich catosciowa konstrukcja tj. przestrzen modelowa oraz sposob korelowa-
nia uktadu kwantowego rézni sie w sposob znaczacy.

W niniejszym paragrafie przedstawimy dyskusje funkcji odpowiedzi Gamowa-Tellera:

1. w bardzo lekkich jadrach o liczbie masowej A = 8. Ze wzgledu na niewielky liczbe
konfiguracji wzbudzonych w powtoce p jest to Swietna okazja do przedyskutowania
reguty sum Ikedy.

2. w jadrze ?*Mg ze $rodka powloki sd

3. oraz w superdozwolonym przejsciu 1°°Sn — 1%1n, dla ktérego zmierzono najwickszy
element Gamowa-Tellera w calej tablicy nuklidéw.

We wszystkich przypadkach przeprowadzono rowniez dyskusje, w ktorej funkcje falowe
reprezentujace poszczegélne elementy widma roztozono w bazie rozpinajacej przestrzen
konfiguracji dostepnych w mieszaniu DFT-NCCI . Taki rozktad pozwala na interpretacje
poszczegblnych elementéw widma w jezyku wzbudzen w obrebie nilssonowskich stanéw
jednoczastkowych.
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3.1 Niskoenergetyczna struktura jadrowa oraz rozklad nasilenia
rozpadu Gamowa-Tellera w jadrach o liczbie masowej A = 8

W ponizszej dyskusji uwage skupimy na strukturze oraz wlasnosciach rozpadu beta w
bardzo lekkich jadrach ®Be, ®Li oraz 8He. Jadra z powloki p stanowig doskonaly materiat
do przetestowania zaleznosci modelu od przestrzeni konfiguracyjnej uzywanej w podejsciu
DFT-NCCI. Z drugiej strony nalezy zwrdci¢ uwage, ze bezposrednie poré6wnanie do danych
do$wiadczalnych moze by¢ mylace. Otéz wyznaczona w przyblizeniu pola $redniego funk-
cja falowa jest roztozona w bazie oscylatora harmonicznego. W konsekwencji nie opisuje
korelacji wtasciwych dla tzw. uktadéw otwartych, dla ktorych sprzezenie do continuum
moze mie¢ kluczowe znaczenie w opisie struktury jadrowej [191L 192]. Do takich efektow
naleza: klasteryzacja czastek w jadrze, niskolezace stany rezonansowe, czy tez rozpady
jader w kanale emisji czastek konkurujacym z elektrostabym rozpadem beta. Naturalnie
ma to wplyw na eksperymentalne widmo stanow i na rozktad nasilenia Gamowa-Tellera.
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Rys. 5.5: Lewy (prawy) panel przedstawia neutronowe (protonowe) poziomy jed-
noczastkowe Nilssona w stanach podstawowych jader ®Be, 8Li oraz ®He. Orbitale
sa oznaczone przyblizonymi liczbami kwantowymi Nilssona. Pelne kotka oznaczaja
stany obsadzone a kolory r6znicuja orbitale pochodzgce z réznych podpowlok sfe-
rycznych.

Zacznijmy dyskusje od budowy przestrzeni konfiguracyjnej. Tak jak w poprzednich
przypadkach obliczamy w procedurze samozgodnej stan podstawowy. Uzyskane w ten
sposob jednoczastkowe poziomy Nilssona numerowane dodatkowo za pomocg liczby kwan-
towej symetrii sygnatury stuza do konstrukcji stanéw wzbudzonych. W pierwszej kolej-
nosci, zgodnie z przepisem podanym w rozdz. I11§8, budujemy przestrzen konfiguracyjna
ze wzbudzen 1p-1h nastepnie, jezeli trzeba, uzupelniamy ja niskolezacymi wzbudzeniami
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2p-2h.

Na Rys. pokazano neutronowe (po lewej) oraz protonowe (po prawej) jednoczast-
kowe stany Nilssona wyznaczone dla stanéw podstawowych w ®Be, 8Li oraz 8He. Nalezy
zwrocié uwage, ze konfiguracje stanéw podstawowych w 8Be i w 8Li sg zdeformowane,
podczas gdy ksztalt jadra ®He jest sferyczny. Zniesienie degeneracji Kramersa w ®Li jest
spowodowane ztamaniem symetrii odwrécenia w czasie w polu Srednim.

W przypadku jadra ®Be o rownej liczbie protonéw i neutronoéw przestrzeni konfigu-
racyjna budujemy ze stanu podstawowego oraz z 4 dostepnych |[N=1n,A Q+) uszerego-
wanych oraz antyuszeregowanych wzbudzenn 1p-1h, gdzie £+ oznacza sygnature r = 1.
Okazuje sie jednak, ze jedna z tych konfiguracji — antyuszeregowane wzbudzenie do pierw-
szego nilssonowskiego stanu jednoczastkowego |1013/2) — nie zbiega si¢ w procedurze
iteracyjnej Hartree’ego-Focka. Ten brak, jak sie okaze mozna jednak zastapié¢ przez skore-
lowanie uktadu dodatkowymi wzbudzeniami typu 2p-2h. Zatem przestrzeni konfiguracyjna
jadra ®Be sklada sie ze stanu podstawowego, 2 uszeregowanych wzbudzeni 1p-1h, 1 anty-
uszeregowanego wzbudzenia 1p-1h oraz 3 energetycznie najnizej lezacych wzbudzen 2p-2h.

W magicznym jadrze ®He przestrzen konfiguracyjna sklada sie ze stanu podstawowego
oraz z 4 neutronowych wzbudzen 1p-1h.

W nieparzysto-nieparzystym jadrze ®Li stan podstawowy reprezentowany jest przez
dwa stany uszeregowany oraz antyuszeregowany zbudowane przez obsadzenie najnizszych
stanow w studni potencjalu do poziomu Fermiego. Nastepnie, trzymajac dwa neutrony
7 odwrotna sygnatura (sparowane) na najnizszym dostepnym orbitalu Nilssona, wyzna-
czamy konfiguracje |v) ® |7}, wzbudzajac niesparowany neutron lub proton na wszystkie
orbitale Nilssona z powtoki p. W kolejnym kroku rozrywamy pare neutronowa i budujemy
catkowicie niesparowane konfiguracje wzbudzone. Takie konfiguracje okazuja sie by¢ wy-
soko wzbudzone przez co trudniejsze do uzbieznienia w procedurze iteracyjnej. W dyskusji
zwiazanej z reguty sum Ikedy, czy tez rozktadem nasilenia Gamowa-Tellera kluczowa role
pelnia konfiguracje o niewielkiej liczbie kwantowej K. UzbiezniliSmy dwa rozwiazania z
rozerwang parg spelniajace ten warunek. Jak sie okaze w dalszej dyskusji wplyw tych
konfiguracji na niskoenergetyczng strukture jadrowa jest zaniedbywalny, jednak przy dys-
kusji rezonansu Gamowa-Tellera bardzo istotny.

Wszystkie konfiguracje zawarte w przestrzeniach konfiguracyjnych jader ®Be, 8Li, and
8He zostaly wyszczegolnione w Tab. i oznaczone przy uzyciu sygnatury oraz liczb
kwantowych Nilssona |Nn,AQ+) odnoszacych sie do niesparowanych nukleonéw wa-
lencyjnych. W tabeli przedstawiono réwniez deformacje kwadrupolows poszczegdlnych
konfiguracji sparametryzowang przez 3o oraz . Wartosci v # 0° i v # 60° oznaczaja
rozwigzanie trojosiowe. Liczb kwantowych Nilssona uzywamy nie tylko do zdeformowa-
nych konfiguracji, ale rowniez do tych bliskich ksztaltowi sferycznemu. W lekkich jadrach,
w szczegolnodci w 8Li, jest to uzasadnione ze wzgledu na wykazywanie przezen bardzo
osobliwego izowektorowego ksztaltu. Mianowicie, wezmy za przyklad niemalze sferyczna
konfiguracje nr 6. Jest ona superpozycja rozktadu gestosci neutronowej w ksztatcie oblate
oraz gestosci protonowej w ksztalcie prolate. W przypadku konfiguracji nr 5 oraz 8 roz-
ktad gestosci ma ksztalt prolate dla neutronéow oraz oblate dla protonow. Konfiguracje nr
7, 9 oraz 10 sa z kolei zbudowane na prawie sferycznym rozktadzie gestosci protonowe;j
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Tabela 5.2: Samozgodne konfiguracje $redniopolowe w jadrach ®He, ®Be oraz ®Li.
Konfiguracje wyszczegolniono zgodnie z ich energia (indeks ¢) i oznaczono przy-
blizonymi liczbami kwantowymi Nilssona wraz z sygnatura niesparowanej czastki i
dziury walencyjnej. Nastepne 4 kolumny zawieraja informacje na temat wlasnosci
poszczegdlnych konfiguracji: energie HF w MeV, deformacje kwadrupolows przed-
stawiona przy uzyciu parametrow (3, oraz -y oraz catkowite uszeregowanie (j) wraz
z orientacja w uktadzie wewnetrznym.

l *He; i) Eyr B2 v )
1 VD32 © 1812 —3726 0 0° 0
2 [v1013/2—-)"" @ |v1011/24)" —3247 014 0° 24
3 [p1013/24) '@ [v1011/2-)" —30.81 0.03 60° 1y
4 [p1101/24) ' @ [p1011/24)"  —30.04 0.03 60° Oy
5 [p1101/2+) '@ |v1011/2 =)' —29.13 0.02 0° 1y
i 1*Be; ©;) Eyp By v )
1 ¥1101/2)* ® [71101/2)>  —48.66 0.68 0° 0y
2 |[p1101/2 )" ®@|v1013/2+)" —38.87 040 0° 1y
3 w1101/2-) " @ [v1011/24)" —34.08 039 0° 1y
4 [w1101/24) '@ p1011/24)" 3163 027 3 0.7,
5 [v1101/2+) ' ®@|v1013/2+)'  —36.81 0.20 60° 0y
71101/24) " @ |71013/2 +)"
6  [¥1101/2) 7 ® [#1013/2)>  —35.74 011 5° 0y
7 p1101/24) 7 @ [v1013/2+)" —34.28 012 00 2,
)

|71101/2+) " @ [71013/2+)"
i °Li; ;) Enr B v )
1 |[v1013/24) @ [r1101/2+)  —39.08 0.38 0° 1y
2 [v1013/2+) ® |71101/2—)  —39.03 0.36 0° 2,
3 v1011/24) ® [r1101/2+)  —34.04 036 0° 1,
4 |p1011/2-) @ |r1101/2+)  —33.44 035 0° 0y
5 [v1101/24) ® |71101/2—)  —36.51 0.07 60° Oy
6 ) )
7 ) )
8 ) )
9 ) )

v1013/2+) ® [71013/2+)  —35.68 0.03 0° Oy
v¥1013/24) ® [71011/2—)  —32.34 012 0° 24
¥1011/24) ® [71101/2+)  —31.19 0.06 60° 1y
¥1013/24) ® [¥1101/24)  —29.25 0.04 60° Oy
® |¥1011/2 ) ® |71013/2 —)

10 [p1013/24) @ [11101/2+)  —29.06 0.07 60° 1y
®|11011/2+) ® |71013/2 )
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(nr 7), neutronowej (nr 91 10) oraz zdeformowanej gestosci odpowiednio neutronowej lub
protonowej. Nalezy zwroci¢ uwage, ze dyskutowany izowektorowy efekt ksztalttu prowadzi
do réznego uporzadkowania wzgledem liczby kwantowej €2 neutronowych i protonowych
pozioméw jednoczastkowych.
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Rys. 5.6: Rozklad nasilenia Gamowa-Tellera stanow 17 w jadrze SLi w skali lo-
garytmicznej przedstawiony przy uzyciu funkcji Lorentza z szerokoscig potowkowa
' = 0.5MeV. Przerywana linia przedstawia dane doswiadczalne uzyskane przy uzy-
ciu teorii macierzy R [193, [194]. Linia kropkowana oznaczono wyniki uzyskane w
modelu powlokowym [193], natomiast linia ciagta obliczenia w modelu DFT-NCCI.

Rozpad beta ze stanu podstawowego 07 jadra He populuje 4 stany 17 w 8Li w oknie
energetycznym zdeterminowanym przez eksperymentalng wartos¢ ()g. Poza energetycznie
najnizej lezacym stanem 17, pozostale 3 rozpadaja sie w réznych procesach emisji czastek.
Fakt ten sprawia, ze eksperymentalne wyznaczenie zaréwno energii jak i wartosci Bgt roz-
padajacego sie jadra bedacego w jednym z tych stanéw jest niezwykle skomplikowane. W
istocie, doswiadczalne wyznaczenie charakterystyki rozpadu beta jadra ®He oparte jest
o wieloparametrowy formalizm macierzy R, ktorego poczatkowe wartosci parametrow
wyznaczane sg przy uzyciu rachunkéw modelu powtokowego. Parametry sa wariowane
tak, aby najlepiej dopasowac si¢ do danych czasu zycia, wspo6tczynnika rozgalezienia oraz
widma energetycznego czastek opdznionych [193], 195, 196]. Uwzglednienie kanatu emisji
czastek redukuje eksperymentalng wartosé¢ Bgr stanow rezonansowych 17 w 8Li i prze-
suwa ich energie (centroidy) w poréwnaniu z poczatkowymi warto$ciami wyznaczonymi
w modelu powlokowym. Najwiekszy efekt widoczny jest dla rezonansu Gamowa-Tellera
p- Rys. ~ 4 stanu 17, ktory rozpada sie zarowno w kanale emisji neutronu jak i, z
mniejszym prawdopodobienstwem, trytu.

Na wykresie przedstawiono funkcje odpowiedzi Gamowa-Tellera dla rozpadu stanu
podstawowego 0* ®He standardowo uciaglong rozktadem Lorentza o szerokoéci potowkowej
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I' = 0.5 MeV. Maksima lokalne rozktadu odzwierciedlajg energie stanow wzbudzonych 1+
populowanych przez rozpad Gamowa-Tellera stanéw w jadrze 8Li. Rozklad zostal znorma-
lizowany do pierwszego, zwigzanego stanu 17. Takg normalizacje przyjmuje sie ze wzgledu
na brak dodatkowych kanaléw rozpadu tego stanu.

Model DFT-NCCI przewiduje, ze energia stanu podstawowego 2% w jadrze ®Li wy-
nosi —41.9MeV, co rézni sie od wartosci do$wiadczalnej jedynie o ~0.6 MeV. Rezonan-
sowe maksimum w widmie DFT-NCCI jest przesuniete o ~1MeV w kierunku wyzszych
energii w poréwnaniu z widmem eksperymentalnym. Podobnie z drugim i trzecim mak-
simum przesunietym mniej wiecej o 2 MeV wzgledem energii doswiadczalnych. Wysokosé
maksimow jest przeszacowana w szczeg6lnosci w przypadku rezonansu Gamowa-Tellera.
Naturalnie tak duzej r6znicy nie da sie wyjasni¢ na gruncie opisanej w poprzednim para-
grafie teorii redukcji elementu macierzowego przez uwzglednienie pradéw wielociatowych,
tym bardziej, ze w lekkich jadrach ich wktad jest niewielki a parametr quenchingu jedynie
nieznacznie rézni sie od ¢ = 1. Obserwowana rozbieznos¢ w wiekszosci mozna wythuma-
czy¢ brakiem sprzezenia w modelu DFT-NCCI do kanaléw emisji czastek. W tym sensie
prezentowane wyniki moga stuzyé¢ jako dane wejsciowe do macierzy R i bezposrednio po-
rownane z rachunkami modelu powlokowego uzywanymi w analizie danych doswiadczal-
nych. Takie por6wnanie, patrz Rys. 5.6] pokazuje, ze rozktad nasilenia Gamowa-Tellera
uzyskany w obu modelach jest bardzo zblizony. Jest to bardzo optymistyczny wniosek w
szczegblnosei ze wzgledu na fakt, iz w modelu DFT-NCCI nie ma wolnych parametrow
dopasowywanych do danych do$wiadczalnych w przeciwienstwie do rachunkéw modelu
powlokowego [197]. Ponadto, najlzejszym jadrem podwojnie magicznym stuzacym do do-
pasowania parametréw Skyrme’a jest jadro 0O a same rachunki DFT sa uwazane za
niedoktadne dla 1zejszych jader. Naturalnie, dyskutowana rozbieznos¢ moze mie¢ réwniez
swoje zrédlo w nieuwzglednieniu oddziatywan trojciatowych w modelu NCCI[[] Jak po-
kazano w rachunkach ab initio sily trojcialowe odgrywaja kluczowa role w wyjasnieniu
zjawiska redukcji elementu macierzowego Gamowa-Tellera w jadrze '*C [198].

Podejscie NCCI bazujace na formalizmie DFT daje unikalng mozliwos$é interpreta-
cji rozktadu nasilenia Gamowa-Tellera w jezyku intuicyjnych $redniopolowych konfigu-
racji. Taka analiza moze by¢ szczeg6lnie uzyteczna w przypadku jader zdeformowanych,
ktore mozna opisaé przy uzyciu nilssonowskich liczb kwantowych. Zawartosé n-tej hartree-
fockowskiej konfiguracji w k-tym stanie wlasnym modelu DFT-NCCI o danym [ oraz T,
a zatem w k-tym lokalnym maksimum funkcji odpowiedzi dana jest wyrazeniem ([3.100)).

Wykres przedstawia rozkltad funkcji falowej pierwszego oraz czwartego stanu 1
w 8Li w jezyku wszystkich sredniopolowych konfiguracji, ktore zostaly wyszczegolnione
w tabeli 5.2 Jak pokazano na wykresie, pierwszy stan 17 jest mieszaning silnie zdefor-
mowanego uszeregowanego stanu podstawowego |*Li; ¢1) z dwoma stabo zdeformowanymi
wzbudzeniami protonowymi ¢ = 5,6. Pierwsze z tych wzbudzen ma ksztaltt oblate, dru-
gie za$ ksztalt prolate. Stan rezonansowy jest skoncentrowany wokot stabo zdeformowa-
nej konfiguracji o ksztalcie oblate |®Li; pg). Konfiguracja ta odpowiada uszeregowanemu
wzbudzeniu ze stanu podstawowego, w ktorym neutron obsadza |#1013/2+) do spinorbi-
talnego partnera [¥101 1/2 +). Wzbudzenie powoduje drastyczna zmiang ksztaltu gestosci
neutronowej ze zdeformowanej osiowo na niemal sferyczna. W tym miejscu warto przypo-

W funkcjonale brakuje jawnych cztonéw opisujacych oddziatywania trojciatowe. Naturalnie korelacje
zwigzane z tymi sitami sa uwzgledniane w parametrach Skyrme’a.
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Rys. 5.7: Rozktad funkcji falowej pierwszego i czwartego stanu (rezonansu GT) 17
w 8Li w jezyku konfiguracji §redniopolowych HF, ¢,,, uwzglednionych w przestrzeni
konfiguracyjnej. Na osi odcietych podano numery konfiguracji wyszczegélnionych w

tabeli

mnie¢, ze ksztalt gestosci neutronowej rozpadajacego sie jadra 8He jest sferyczny wobec
czego catka przekrycia w rozpadzie Gamowa-Tellera pomiedzy tymi dwoma stanami be-
dzie duza. Wyréznienie konfiguracji [8Li; g) jest zatem zrozumiate w kontekscie duzego
elementu macierzowego w rozpadzie beta. Domieszka stanu z rozerwanag para |°Li; p9) daje
wklad do rezonansu na poziomie 25%, a 20% pochodzi od energetycznie najnizej lezacego
wzbudzenia protonowego [3Li; ).

Przejdzmy do jadra ®Be, ktorego stan podstawowy jest stanem rezonansowym zbudo-
wanym z dwoch czastek a. Jego molekularna struktura charakteryzuje sie bardzo wydtu-
zonym rozktadem gestosci, ktory, jak sie okazuje, jest $wietnie odtworzony przez rachunki
pola éredniego przewidujace naglty wzrost deformacji z o = 0.38 w 8Li do 3, = 0.68 w ®Be.
Jednakze, ani model pola $redniego, ani jego rozszerzenie w postaci modelu DFT-NCCI nie
odtwarzaja w pelni korelacji zwigzanych z klasteryzacja tego stanu. Ot6z wyznaczony w
rachunkach DFT-NCCI stan podstawowy ma energie réwna —52.8 MeV, wyzsza o 3.7 MeV
w poréwnaniu z wartoscig eksperymentalna. Dla poréwnania, roznica miedzy teoretyczna
i doswiadczalng energia stanu podstawowego w sgsiednim ®Li to jedynie 0.6 MeV.

Na wykresie 5.8 przedstawiono niskoenergetyczng strukture jadrows ®Be. Poza danymi
eksperymentalnymi oraz rachunkami DFT-NCCI, naniesiono réwniez rachunki modelu
NCCI bazujacego na rachunkach ab initio [199] z oddziatywaniem JISP16. Obliczenia ab
initio przewiduja energie stanu podstawowego —57.5 MeV, a zatem 1 MeV ponizej warto-
Sci eksperymentalne;j.

Jak pokazano na wykresie, rachunki DFT-NCCI calkiem dobrze odtwarzaja energie
stanow z nieparzystymi spinami. Poziom zgodnosci jest poréwnywalny, o ile nie lepszy,
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Rys. 5.8: Struktura jadrowa w jadrze ®Be ponizej 30 MeV. Poszczegolne ry-
sunki, liczac kolejno od lewej strony, przedstawiaja poziomy energetyczne o spinie
I™=07%,17,2% 3" oraz 4*. Na kazdym panelu podano widma eksperymentalne (po
lewej), wyznaczone w modelu DFT-NCCI (w srodku) oraz w modelu ab-initio NCCT
(po prawej) znormalizowane do stanu podstawowego.

7z obliczeniami ab initio NCCI. Wyznaczony dublet izospinowy stanéw 11 o energii bli-
skiej 24 MeV moze reprezentowac¢ eksperymentalnie obserwowane dwa lezace blisko siebie
stany o energii ok. 23 MeV. Nie przypisano jednak jeszcze spinéw do tych stanéw. Z dru-
giej strony stany z parzystymi spinami w naszym modelu sg systematycznie zwigzane zbyt
silnie. Najnizej lezace stany 27 i 4] interpretuje sie jako stany wchodzace w sktad pasma
rotacyjnego zbudowanego na stanie podstawowym. Wszystkie trzy maja wysokie praw-
dopodobieristwo rozpadu w kanale emisji czastki a. Empiryczna warto$¢ wspotczynnika
Ry = E4+/E + wynosi 3.75 i zalicza sie¢ tym samym do najwickszych w calej tablicy
nuklidow. W rachunkach DFT-NCCT ten stosunek wynosi Ry, = 3.77, a zatem model
odtwarza ta warto$¢ bardzo dobrze. Oznacza to, ze teoria odtwarza zmiane momentu bez-
wladnosci w pasmie z dobra doktadnoscig a jednoczesnie, co wida¢ po potozeniu standéw
27 1 4%, silnie przeszacowuje jego wartosc.

Problemy ze zbyt duzym momentem bezwladnosci (stany 27 i 47 sa zbyt nisko w ener-
gii) oraz z brakujacymi korelacjami w wyznaczonym stanie podstawowym sa widoczne w
rozkladzie nasilenia Gamowa-Tellera rozpadu 8Li, 27 —8Be, 2. Poréwnanie rachunkow
DFT-NCCI w przestrzeni 1p-lh oraz danych do$wiadczalnych zestawiono w Tab.
Wktad konfiguracji wzbudzonych 2p-2h jest zaniedbywalny. Nasilenie przejscia do stanow
2% jest wyraznie przeszacowane. Nalezy jednak mieé¢ na uwadze, ze stan 23 o izospinie
T = 0 jest stanem rezonansowym w zwiazku z czym moze silnie oddziatywaé¢ z energe-
tycznie blisko lezacym stanem T' = 1 25 i w konsekwencji wptywa¢ na nasilenie przejscia

Reguta sum Tkedy lub reguta sum Gamowa-Tellera jest powszechnie uzywana jako
wskaznik poziomu zupetlnosci uzywanej przestrzeni konfiguracyjnej. Przy zatozeniu zu-
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Rys. 5.9: Regula sum Gamowa-Tellera dla najnizszych stanow [™ = 01, 11 2% 3+
w 8Li wzgledem iloci konfiguracji uwzglednionych w ®Be. Konfiguracje zostaly wy-
szczegbOlnione w tabeli

Tabela 5.3: Doswiadczalne oraz teoretyczne energie stanéow wzbudzonych trzech
energetycznie najnizej potozonych stanéow 2+ w ®Be oraz odpowiadajace im wartosci
log ft. Dane doswiadczalne zaczerpnieto z [200)].

Eksperyment DFT-NCCI
stan E (MeV) log ft | E (MeV) log ft
27 T =0 3.030 5.36 2.698 4.74
20 T=0]| 16626 293 | 11.869  3.54
27 T=1 16.922 — 12.812 4.13

petnosci przestrzeni reguta sum Ikedy jest rownas:
1 - ™ s ™ ™
2 | Banllr = 1) = Baaliy — 1p)| = 3(v — 2). (5.22)
Af

gdzie suma przebiega przez wszystkie dostepne stany [ = I;+k z k = 0, 1. Zredukowane
prawdopodobienistwo przejscia Bgr, zgodnie ze wzorem (2.27)), jest zdefiniowane jako:

+ T T 2 ’MéTyz
Ber (I — ]f) = gA2Ii+ 1

(5.23)

gdzie M(jfT oznacza zredukowany element macierzowy Gamowa-Tellera. W kolejnych pa-
ragrafach przedyskutujemy regule sum Ikedy w jadrze ®Li w kontekscie zalezno$ci od
przestrzeni konfiguracyjnej w modelu DFT-NCCI . Wszystkie §redniopolowe konfiguracje
zostaly przedstawione w Tab. 5.2l Przypomnijmy w tym miejscu, ze przestrzen kolektywna
modelu jest rozpieta przez liniowo niezalezne stany naturalne o wartosciach wtasnych ma-
cierzy norm n;, wiekszych niz zadany parametr obciecia ¢, p. dyskusja w rozdz. I1I §8, co
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Rys. 5.10: Regula sum lkedy dla stanow 17, 2§ oraz 37 w ®Li w funkcji ilosci
konfiguracji uwzglednionych w przestrzeni konfiguracyjnej *Li. Dolny (gorny) panel
przedstawia regule sum wyznaczong przy parametrze obciecia ¢ = 0 (0.01). Szcze-
gbty opisano w tekscie.

determinuje jej wymiar.

Na wykresie [5.9| przedstawiono poziom wysycenia reguly sum Ikedy dla stanéw poczat-
kowych 17, 2{ oraz 37 w jadrze 8Li wzgledem iloéci konfiguracji w przestrzeni konfigu-
racyjnej stanu koricowego w ®Be. Warto$¢ Blr ustalono przy przestrzeni konfiguracyjnej
zbudowanej ze wszystkich dostepnych wzbudzett 1p-1h w jadrach *He oraz 8Li p. Tab.[5.2]
Z wykresu mozemy wyciagnaé¢ wniosek, ze juz przy 5 konfiguracjach w jadrze ®Be regula
sum Ikedy osigga 90% poziom wysycenia. Pozostale konfiguracje, zbudowane na energe-
tycznie niskolezacych wzbudzeniach 2p-2h, dostarczaja kolejnych 5%. Dodatkowo przed-
stawione wyniki wydaja sie by¢ interesujace z perspektywy nieuzbieznionej konfiguracji
1p-1h na poziomie rozwiazania rownania Hartree’ego-Focka. Okazuje sie, ze dyskutowane
wzbudzenie do nilssonowskiego orbitalu [1013/2) mozna z powodzeniem zastapi¢ wzbu-
dzeniem 2p-2h do tego orbitalu.

Wykres przedstawia regule sum Ikedy w jadrze 8Li i jej zachowanie ze wzgledu
na uzywany w procedurze DF'T-NCCI parametr obciecia € niskich wartosci wlasnych ma-
cierzy norm. Rachunek zostal przeprowadzony dla stanow 27, 17 oraz 37 w jadrze 8Li.
Przestrzen konfiguracyjna w jadrach ®Be oraz 8He zawiera wszystkie wzbudzenia 1p-1h
oraz, w przypadku ®Be, jedno dodatkowe wzbudzenie typu 2p-2h zastepujace nieuzbiez-
nione wzbudzenie jednoczastkowe. Wysycenie reguty sum Ikedy badano, dodajac kolejne
konfiguracje w jadrze ®Li. Na dolnym rysunku przedstawiono wyniki, w ktorych nie za-
stosowano zadnego obciecia wartosci wtasnych macierzy norm. Jak wida¢, do odtworzenia
90% reguly sum, niezaleznie od spinu, wystarcza jedna konfiguracja reprezentujaca stan
podstawowy w jadrze 8Li. Regula sum wydaje si¢ by¢ nieczuta na uwzglednianie kolejnych
wzbudzen przedstawionych w Tab. Na tej podstawie mozna wnioskowaé, ze najnizej
lezace stany 27, 17 oraz 37 bardzo dobrze opisuje jedna konfiguracja reprezentujaca stan
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Rys. 5.11: Wartosci wlasne macierzy norm dla stanow 01, 17, 2%, 3%, oraz 47 w
jadrze ®Be (po lewej) oraz w 8Li (po prawej).

podstawowy.

W wielu przypadkach stany naturalne o bardzo niewielkich wartosciach wlasnych ma-
cierzy norm prowadza do niestabilnosci rachunkéw DFT-NCCI . Te mozna kontrolowac
przy uzyciu parametru obciecia €. Wartosé tego parametru nie jest jednak jednoznaczna.
Wyboru dokonujemy na podstawie zachowania wartosci wlasnych macierzy norm, obcina-
jac je zgodnie 7 obserwowanymi nieciagtosciami (skokami). W 8Li, p. Rys. najbardziej
naturalnym wyborem jest obciecie € ~ 0.01. Taki wybor nie wplywa znaczaco na regule
sum Ikedy. Mozna zauwazy¢ jednak, ze rachunki z parametrem obciecia sa bardziej sta-
bilne z dodawaniem kolejnych konfiguracji w poréwnaniu z rachunkami bez parametru
E.

3.2 Funkcja odpowiedzi Gamowa-Tellera w jadrze ?*Mg

W tym podrozdziale prezentujemy wyniki dotyczace rozkladu nasilenia Gamowa-
Tellera (Gamow-Teller strength distribution, GTSD) w jadrze **Mg populowanym w roz-
padzie beta stanu podstawowego **Al o I7, = 4%.

W terminologii uzywanej standardowo w modelu powlokowym, Mg jest jadrem z
powloki sd z o$mioma czastkami walencyjnymi powyzej rdzenia 0. Rachunki w mo-
delu pola sredniego przewiduja z drugiej strony, ze jest to jadro silnie zdeformowane o
parametrze (55 = 0.42. Do opisu takiego uktadu idealnie nadaja sie zdeformowane stany
jednoczastkowe Nilssona. Widmo jednoczastkowe w stanie podstawowym 24Mg pokazuje
Rys. Przestrzen konfiguracyjna skonstruujemy w oparciu o wzbudzenia pomiedzy
aktywnymi poziomami Nilssona z powloki sd uwzgledniajac stany [2201/2), |2113/2)
oraz |2025/2) pochodzace z podpowloki sferycznej ds/, poziom |2001/2) pochodzacy ze
sferycznego stanu s; /o oraz stany [2111/2) i |2023/2) pochodzace ze sferycznej podpow-
toki d3/2.
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Rys. 5.12: Neutronowe poziomy jednoczastkowe w stanie podstawowym **Mg. Po-
ziomom zostaly przypisane przyblizone liczby kwantowe Nilssona. Kotkami ozna-
czono stany obsadzone.

Przestrzen konfiguracyjna parzysto-parzystego jadra Mg zbudowana wedlug standar-
dowych regut. W jej sktad wchodza: stan podstawowy oraz wszystkie wzbudzenia czastka-
dziura w obrebie aktywnych pozioméw Nilssona. Rzutowanie na izospin pozwala na dalsze
zawezenie przestrzeni w jadrze N = Z do wzbudzent 1p-1h nukleonu jednego typu, co zwe-
ryfikowano, uwzgledniajac w obliczeniach konfiguracje najnizej lezacego wzbudzenia pro-
tonu (konfiguracja nr 18) . W rozwazanym jadrze istnieje zatem 16 réznych wzbudzen typu
1p-1h, z uszeregowanymi oraz antyuszeregowanymi spinami niesparowanych nukleonow.
Dodatkowo, celem sprawdzenia stabilnosci rachunkéw, w przestrzeni uwzgledniono dwa
energetycznie najnizej lezace wzbudzenia 2p-2h. Wszystkie konfiguracje zostaly wyszcze-
golnione w Tab. [5.4] Wszystkie sa osiowo zdeformowane, a moment pedu niesparowanych
czastek walencyjnych jest zorientowany wzdluz osi OZ.

Systematyczne rachunki elementéw macierzowych Gamowa-Tellera w jadrach zwier-
ciadlanych T' = 1/2 pokazaly, ze jego warto$¢ obliczona ze stanu podstawowego do stanu
podstawowego I™ — [™ jest praktycznie nieczuta ze wzgledu na mieszanie konfiguracji.
Podobne zachowanie ujawnia sie w przypadku badania rozktadu nasilenia Gamowa-Tellera
zaprezentowanym na wykresie [5.13] Rysunek przedstawia obliczenia elementu macierzo-
wego Gamowa-Tellera w rozpadzie jadra **Al 4} —** Mg 4;” w modelu DFT-NCCI z 17.
konfiguracjami przestrzeni modelowej w 24Mg, obejmujgcej stan podstawowy oraz wszyst-
kie dostepne wzbudzenia 1p-1h. Kazdy panel rézni sie przestrzenia konfiguracyjna uzyta
do wyznaczenia stanu podstawowego 2*Al. Na rysunku (a), funkcje falowa 2*Al wyznacza
sie z jednej konfiguracji uszeregowanego stanu podstawowego, nastepnie przestrzen konfi-
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Tabela 5.4: Konfiguracje wchodzace w sktad przestrzeni konfiguracyjnej jadra
2 Mg. Konfiguracje oznaczono liczbami kwantowymi Nilssona. W tabeli podano row-
niez wlasnosci poszczegdlnych konfiguracji: ich energie HF podang w MeV, energie
wzgledem stanu podstawowego podang w MeV, parametr deformacji 3, oraz magne-
tyczng liczbe kwantowsg w uktadzie wewnetrznym K wraz z jej orientacja.

i 24Mg; 7) Eqp AE 3, K
1 85 —194.33 0 042 0
2 [12113/2—)"' @ [12025/2—)" —187.92 641 034 1y
3 [p2113/2+4) ' @ [12025/2—)"  —187.25 7.08 0.34 4,
4 |w2113/24) '@ p2111/2-)" —187.46 6.87 043 2,
5 |v2113/2=)' @ [p2111/2—)" —184.89 9.44 0.40 1y
6 [12201/2—)"'® [12025/2—)" —183.34 10.99 0.24 2,
7 |v2201/24) 7" @ |v2025/2—)"  —183.27 11.06 0.23 3,
8 |v2113/24) ' ®@[v2001/2+)" —181.79 12.54 0.36 1,
9 |v2113/24) ' @ [p2001/2—)" —181.50 12.83 0.34 2,
10 |v2201/24) ' @ [p2111/2=)" —181.99 1234 0.35 1y
11 [#2201/2-)"' @ [p2111/2=)" —180.78 13.55 0.33 0y
12 [12113/2—)"' ® [12023/2+)" —178.83 1550 0.34 3y
13 [12113/24) 7' ® [12023/2+)"  —177.16 17.17 0.33 0y
14 [12201/2-)"' @ [12001/2—)" —177.04 17.29 0.27 0y
15 [12201/24+) ' @ [12001/2—-)" —176.94 17.39 0.25 1y
16 [12201/2—)"' ® [12023/2+)"  —174.00 20.33 0.25 2
17 [12113/24) 7' ® [12023/2+)"  —173.47 20.86 0.24 1y
18 [72113/2—)"' @ |72025/2—)" —188.00 6.33 0.34 1y
19 [12113/2—)"" @ [12025/2—)" —184.29 10.04 0.10 14
|2113/2—) " @ |72025/2—)"
20 [v¥2113/2) 2 ® |v2025/2)°  —183.13 11.20 0.26 0y

guracyjna rozbudowuje sie o antyuszeregowany stan podstawowy (b) oraz o energetycznie
najnizej lezace wzbudzenie 1p-1h (¢). Por6wnanie wszystkich trzech rysunkoéw ewidentnie
wskazuje, ze wyznaczone elementy macierzowe sg niemal nieczule na korelowanie funkcji
falowej jadra 24Al.

Podobna analize mozna przeprowadzi¢, ustalajac przestrzen konfiguracyjna jadra 24Al
oraz sukcesywnie dodajac kolejne wzbudzenia w jadrze 2*Mg. Taka dyskusja jest szcze-
golnie istotna ze wzgledu na fizyczna interpretacje pojawiajacych sie maksiméw lokalnych
w jezyku wzbudzen miedzy nilssonowskimi orbitalami. Wyniki przedstawiono na wykre-
sie W czesci (a) przedstawiono obliczenia rozkladu nasilenia Gamowa-Tellera, wyko-



116 Rozdziat 5. Rozpad beta typu Gamowa-Tellera

c) 3 SDs %Al —

GTME
= N

0 P I || L |I=l |
b) 2 SDs 24Al —

GTME

a) 1 SD %Al —

GTME
= N

. . . |. b .
00 24 10 12 14 16 18 20 22 24

Energia wzbudzenia (MeV)

Rys. 5.13: Stabilno$¢ elementu macierzowego Gamowa-Tellera wzgledem wy-
miaru przestrzeni konfiguracyjnej modelu DFT-NCCI rozpadajacego sie jadra.
Wykres przedstawia elementy macierzowe Gamowa-Tellera rozpadu \24A1;4gs'> —
|**Mg; 41). Wyniki uzyskano przy uzyciu 17 konfiguracji sktadajacych sie na prze-
strzen konfiguracyjna jadra ?*Mg. Ilo§¢ wyznacznikow Slatera (SD) uzytych do skore-
lowania ukladu jadra ?*Al zmienia sie od jednego reprezentujacego stan podstawowy
(dolny panel) do trzech energetycznie najnizej lezacych (gérny panel).

rzystujac przestrzen konfiguracyjna zbudowana ze stanu podstawowego oraz pierwszych
4 wzbudzenn w obrebie stanéw jednoczastkowych pochodzacych z orbitalu ds . Nastep-
nie, w czesci (b) do przestrzeni konfiguracyjnej dodano wzbudzenia neutronu do poziomu
|2111/2) pochodzacego ze sferycznego orbitalu dss. Okazuje sie, ze ten stan odgrywa
kluczowa role przy odtworzeniu rozktadu nasilenia Gamowa-Tellera, a w szczego6lnosci
w opisie pierwszego rezonansu Gamowa-Tellera (GTR) lezacego ~8 MeV ponad stanem
podstawowym. Warto zwrdci¢ uwage, ze energia centroidu jest identyczna z energia stanu
|2111/2) liczong wzgledem poziomu Fermiego. Ten przyktad wskazuje na wysoks czutosé
rozktadu nasilenia Gamowa-Tellera na potozenie orbitali jednoczastkowych. Na Rys. [5.14

przedstawiono rachunki z przestrzenia konfiguracyjna, w ktorej rozwiazania HF o energii
wzgledem stanu podstawowego AEpp sa ograniczone przez eksperymentalng warto$é (s
tj. AFyp < 14.5 MeV. Na Rys. przedstawiono rachunki z przestrzenia konfiguracyjna
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Rys. 5.14: Elementy macierzowe Gamowa-Tellera rozpadu stanu podstawowego 4™
jadra 2Al do stanow 47 w jadrze Mg wzgledem wymiaru przestrzeni konfigura-
cyjnej jadra 2*Mg. Szczegolty w tekscie.

uwzgledniajaca wszystkie dostepne wzbudzenia 1p-1h. Uwzglednienie tych wzbudzen ma
znacznie przede wszystkim dla wysokoenergetycznej czesci rozktadu nasilenia Gamowa-
Tellera, powyzej okna energetycznego wyznaczonego przez warto$¢ (Jz. Stad brak w tej
czesci widma poziomoéw eksperymentalnych.

Na Rys. przedstawiono ostateczny wynik obliczenn w modelu DFT-NCCT uwzgled-
niajacy przejécia ze stanu podstawowego 47 w 2*Al do wszystkich dostepnych stanow
3%,47 oraz 51 w jadrze 2*Mg. Wyznaczone widmo poréwnano z rachunkami modelu powto-
kowego z oddzialywaniem USDb oraz z wartosciami eksperymentalnymi [169]. Zar6wno
rachunki modelu powlokowego jak i modelu DFT-NCCI idealnie oddaja do$wiadczalne
potozenie centroidu wyznaczonego przez przejscie 47 — 47 jednoczesnie dwukrotnie prze-
szacowuja jego wysokos$é. Ponadto w rachunkach DFT-NCCI pierwszy rezonans rozszcze-
pia sie na dwa blisko lezace maksima. Jest to efekt niewlasciwego mieszania sie orbitali
sd. Drugi rezonans widoczny w rachunkach DFT-NCCI potozony jest poza doswiadczal-
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Rys. 5.15: Rozklad nasilenia Gamowa-Tellera w jadrze **Mg z rozpadu stanu pod-
stawowego 41 w jadrze 2*Al. Rozklad nasilenia uwzglednia elementy macierzowe
sprzegajace stany 37,4" oraz 57 w jadrze 2*Mg. Wynik DFT-NCCI poréwnano z
warto$ciami eksperymentalnymi oraz rachunkami w modelu powlokowym [169]. Roz-

ktad zostal ucigglony przy uzyciu funkcji Lorentza z szerokoscig potéwkowa réwna
' =0.5MeV.

nym oknem energetycznym wyznaczonym przez warto$¢ (Jz. Co ciekawe, jego potozenie,
podobnie jak w przypadku pierwszego rezonansu, jest zdeterminowane energia jednoczast-
kowa poziomu [202 3/2) wzgledem powierzchni Fermiego p.Rys. [5.12]

Podobnie jak w przypadku rozpadu 8He—®Li warto przyjrzeé¢ sie strukturze rezonan-
sow w jezyku pierwotnych konfiguracji $redniopolowych interpretowanych z uzyciem jed-
noczastkowych orbitali Nilssona. Taki rozktad w przypadku jadra **Mg zaprezentowano
na wykresie Stan podstawowy rozpadajacego sie jadra 2*Al o spinie 4* jest zdomino-
wany przez uszeregowana Sredniopolowg konfiguracje, w ktorej niesparowany proton obsa-
dza poziom |2025/2). Jak przedstawiono w Tab. |5.1| ten poziom ma bardzo duzy element
Gamowa-Tellera z poziomami [2025/2) oraz jego partnerem spinorbitalnym [2023/2) w
jadrze corki 2*Mg. Stad pierwszy rezonans widoczny na Rys. powinien gléwnie pocho-
dzi¢ od uszeregowanego wzbudzenia neutronu do poziomu |2025/2). W istocie wklad tej
konfiguracji w pierwszy stan rezonansowy jest wiodacy. Bardzo bliskie potozenie orbitali
|2025/2) oraz [2111/2) powoduje ich efektywne mieszanie w polu $rednim. Rzeczywi-
Scie, uszeregowana konfiguracja ze wzbudzeniem neutronu do poziomu |2111/2), patrz
Tab. [5.4] daje poréwnywalny wklad do rezonansu. Zgodnie z dyskusja Rys. [5.14] w po-
przednim paragrafie, wzbudzenie do orbitalu [2025/2) powoduje pojawienie sie rezonan-
sowego maksimum w widmie. Jednak dopiero uwzglednienie wzbudzen do stanu [2111/2)
stabilizuje jego potozenie energetyczne. Niezaniedbywalny wktad do pierwszego rezonansu
pochodzi réwniez od wyzej wzbudzonych uszeregowanych konfiguracji nr 7 oraz 10, patrz
Tab. w ktorych wzbudzony neutron obsadza stany [2025/2) (7) oraz [2111/2) (10).
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Rys. 5.16: Rozklad funkcji falowej pierwszego (czerwony) oraz drugiego stanu rezo-
nansowego Gamowa-Tellera w bazie konfiguracji sSredniopolowych wyszczeg6élnionych

w tabeli

W przeciwietistwie do pierwszego rezonansu, drugi, lezacy powyzej wartodci ()3, zde-
terminowany jest przez uszeregowana konfiguracje nr 12 (p. Tab. wzbudzenia neu-
tronu do poziomu [2023/2). Jej wklad wynosi niemal ~ 80%. Pozostale 20% pochodzi
od energetycznie wyzej wzbudzonej uszeregowanej konfiguracji nr 16 powstalej rowniez
przez obsadzenie orbitalu [2023/2). Brak energetycznie blisko lezacych stanoéw Nilssona,
powoduje, ze interpretacja drugiego rezonansu jest znacznie bardziej jednoznaczna.

3.3 Superdozwolony rozpad Gamowa-Tellera w jadrze °°Sn

W tym krotkim podrozdziale przedstawiamy wyniki modelu DFT-NCCI dotyczace
superdozwolonego rozpadu beta jadra 1°°Sn 0t —1%In 17 oraz niskoenergetycznej struk-
tury I < 8 w jadrze '®In. Przypadek tych jader jest interesujacy z kilku wzgledow.
Zachodzacy miedzy nimi rozpad beta stanowi najszybszy rejestrowany rozpad Gamowa-
Tellera, a zatem najwiekszy element macierzowy sposrod catej tablicy nuklidow. Wartosé
log ft jest znacznie mniejsza od tej wyznaczonej dla superdozwolonego rozpadu Fermiego
w tym jadrze. Stad nazywa sie go superdozwolonym rozpadem Gamowa-Tellera. Zgodnie
ze wzorem ([5.18) w bazie sferycznej przejScie migdzy 0gg/2 a 0g7/2 wynosi bowiem:

4
MG‘,T(Ogg/Q — 0g7/2) = —g\/ 10 =~ —4.216 (524)
co przeklada sie na wartos¢ Bgr = 28.67 przy zalozeniu, ze g4 = —1.2701. Ponadto

dyskusja struktury jadra po rozpadzie — 1°°In stanowi doskonaly test uzywanego oddzia-
tywania oraz modelu DFT-NCCI w ciezszych jadrach. Jest to region najciezszych jader
lezacych na linii N = Z. Co wiecej jadro '®In jest niemal sferyczne, a w konsekwencji
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mieszanie sie niskolezacych orbitali jednoczastkowych nie jest bardzo efektywne. Natural-
nie, punktem odniesienia nie moze by¢ spektrum wyznaczone na gruncie eksperymentu.
Rozwazany region tablicy nuklidéw nalezy bowiem do egzotycznych jader, dla ktorych
przypisanie nawet spinu stanu podstawowego nie jest pewne. Nasze rachunki struktury
wobec tego zestawimy z rachunkami otrzymanymi w modelu powtokowym [201].
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Rys. 5.17: Widmo niskolezacych stanéw w jadrze °°In wyznaczone przy uzyciu
modelu DFT-NCCI (na $rodku) oraz modelu powlokowego LSSM (po prawej). Z
lewej strony wykresu przedstawiono wartos¢ doswiadczalng (linia kropkowana) oraz
uzyskang w modelu DFT-NCCI (linia ciagla) energii wigzania jadra '°°Sn. Szczegoty
zawarto w tekscie.

W przypadku podwoéjnie magicznego jadra 1°°Sn uktad kwantowy opisujemy przez
sredniopolowa konfiguracje stanu podstawowego. Energia wigzania tego jadra wynosi w
naszych rachunkach 827.7 MeV, przeszacowujac warto$¢ eksperymentalng 825.3+£0.3 MeV
jedynie o 0.3%.

Struktura jadra '%In zostala wyznaczona przy uzyciu dziewieciu osiowo zdeformo-
wanych konfiguracji §redniopolowych. Osiem z nich odpowiada konfiguracjom z dziura
protonowg na orbitalu gg/o oraz ze wzbudzeniem neutronu do stanéw pochodzacych od
sferycznych orbitali ds /o — vds s ®7rgg_/12 1g7/2 —Vg7/2 ®7Tg9_/12. Dziewigta konfiguracja odpo-
wiada energetycznie najnizej lezacemu wzbudzeniu 7p-mh przez powltoke Z=50. Zostata
uwzgledniona w rachunkach DFT-NCCI celem przetestowania stabilnoéci zar6wno struk-
tury jadrowej w %In, jak i wartosci elementu macierzowego superdozwolonego przejscia
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Gamowa-Tellera. Rachunek pokazal, ze skorelowanie uktadu przez uwzglednienie tej kon-
figuracji nie wptywa na zadne z tych wartosci.

Wyznaczone w modelu DFT-NCCI widmo najnizszych stanéw o spinach 17 < I™ < 8%
w jadrze 'In zostato przedstawione na wykresie [5.17, gdzie zaprezentowano réwniez
widmo najnizszych stanoéw o spinach 1t < I™ < 6% wyznaczone w modelu powloko-
wym [202, 203]. Rachunki zostaly unormowane do stanu podstawowego, ktory zaréwno w
modelu DFT-NCCI jak i modelu powlokowym ma spin I = 6*. Energia tak wyliczonego
stanu podstawowego wyznaczona w modelu DFT-NCCI r6zni sie jedynie o 9keV w sto-
sunku do wartosci eksperymentalnej. Pomijajac brak pozioméw 7 oraz 8§ w modelu po-
wlokowym, kolejnos¢ wystepowania poszczegdlnych standéw wzbudzonych jest identyczna
w obu modelach. W modelu DFT-NCCI energie wzbudzenia tych stanéw sa jednak sys-
tematycznie wicksze od tych otrzymanych w modelu powtokowym.

Wartoséé elementu macierzowego Gamowa-Tellera otrzymana w wyniku zmieszania opi-
sanych wyzej konfiguracji w modelu DF'T-NCCI niemal nie r6zni sie od wartosci uzyskane;j

w bazie sferycznej (5.24) i wynosi:
MES = —4.191. (5.25)

Uwzgledniajac fakt, ze dla standardowo zdefiniowanego operatora Gamowa-Tellera (/5.3)),

w jadrach o liczbie masowej A = 100 — 132 wartos¢ parametru ¢ (2.31) wynosi 0.6 [176],

otrzymujemy Bg\]TC “D ~10.2. Tak otrzymana wielko$¢ bardzo dobrze zgadza si¢ z warto-

Scia wyznaczona eksperymentalnie BEx") = 9,172,






Rozdzial 6

Podsumowanie

Jednoreferencyjna metoda DFT w zastosowaniu do fizyki jadrowej ma bardzo ograni-
czona funkcjonalnosé ze wzgledu na efekt spontanicznego naruszenia symetrii. Moze by¢
ona z powodzeniem uzywana do opisu objetosciowych wtasnosci jader jak masy, energie
separacji, promienie czy momenty kwadrupolowe. Naruszenie symetrii nie pozwala jednak
na w petni kwantowy opis struktury stanéw wzbudzonych, przejsé elektromagnetycznych
czy tez kluczowych w kontekscie niniejszej rozprawy przejs¢ beta. Takie badania wyma-
gaja skonstruowania teorii DFT z przywrdéconymi symetriami. Mozna to osiagnaé, stosujac
techniki rzutowania na podprzestrzenie o okre$lonych liczbach kwantowych. Wykorzysta-
nie, w kontekscie rzutowania, uogélnionego twierdzenia Wicka prowadzi do uogoélnione;j
teorii DF'T, w ktorej funkcjonal gestosci zachowuje swojg postac ale wyraza sie za pomoca
gestosci przejsciowych, liczonych pomiedzy réznymi wyznacznikami Slatera — réznymi sta-
nami referencyjnymi. Takie uogoélnienie nosi nazwe wieloreferencyjnej metody DFT. W
tej pracy zaproponowano dalsze uogdlnienie metody MR DFT, polegajace na uwzgled-
nieniu w ramach tego formalizmmu mieszania konfiguracji typu czastka-dziura. Ta metoda,
zwana DEFT-NCCI (DFT-rooted No-Core Configuration-Interaction) stanowi podstawowe
narzedzie teoretyczne, ktore rozwinieto, zaimplementowano kodzie numerycznym HFODD
rozwijanym od dekad przez warszawska grupe teorii struktury jadra. Nastepnie metode
przetestowano w ramach prac sktadajacych sie na niniejszg rozprawe. Formalizm DFT-
NCCI pozwala prowadzi¢ badania spektroskopowe w sposéb w pelni poprawny z punktu
widzenia mechaniki kwantowej, nadajgc tak uogdélnionej teorii DFT funkcjonalnosé mo-
delu powtokowego. Zachowana jest przy tym uniwersalno$¢ metody SR DFT, tj. model
moze by¢ stosowany do dowolnego jadra z tablicy nuklidéw. Przywrdcenie symetrii ro-
tacyjnej i poprawny sposOb opisu jawnego naruszenia symetrii izospinowej umozliwia, w
szczegolnosci, przeprowadzenie analizy rozpadéw beta z punktu widzenia fizyki jadro-
wej, jak rowniez fizyki czastek elementarnych, weryfikujac podstawowe hipotezy Modelu
Standardowego. Tego typu rachunki wymagaja poprawnego opisu jawnego tamania sy-
metrii izospinowej, ktorej podstawowym zrédtem jest oddzialywania Coulomba, ktore, ze
wzgledu na swoj dtugozasiegowy charakter, polaryzuje cate jadro. Opis teoretyczny efektu
polaryzacji coulombowskiej wymaga zatem teorii, ktéra nie operuje pojeciami rdzenia i
przestrzeni walencyjnej. Ten warunek spetniajg modele wywodzace sie z DF'T rozwijane
w tej pracy.

Przedstawiona praca dotyczy badan podstawowych w dziedzinie fizyki jadrowej z za-
stosowaniami do badania wybranych aspektow fizyki czastek elementarnych. Gtéwne za-
dania badawcze jakie w niej postawiono i zrealizowano obejmowaty:
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1. implementacje numeryczng metody DFT-NCCI z przywrécong symetrig rotacyjna
i poprawnie opisana symetrig izospinowa, i jej zastosowanie do obliczen struktural-
nych w jadrach atomowych w celu przetestowania wynikéow w zaleznosci m. in. od
przyjetej przestrzeni konfiguracyjnej [2 6]

2. przeprowadzenie systematycznych rachunkéw dla poprawek izospinowych do przejsé
superdozwolonych 07 — 0" miedzy izospinowymi stanami analogowymi o 7' = 1, a
w konsekwencji do analizy wartosci wiodacego elementu macierzowego V,q macierzy
mieszania kwarkow CKM [6];

3. implementacje oraz przetestowanie elementu macierzowego Gamowa-Tellera (GTME)
i przeprowadzenie obliczen GTME w jadrach zwierciadlanych T = 1/2 z zakresu mas
A =11 — 55 w modelu NCCI [3] w celu przeanalizowania efektu quenchingu stalej
sprzezenia pradow osiowo-wektorowych ga. [3]

4. wyznaczenie funkcji odpowiedzi Gamowa-Tellera (GTR) dla pelnego spektrum sta-
néw wzbudzonych jadra, dla wybranych uktadéw o N ~ Z i o masach z zakresu
A =8 —100 z jednoczesna analiza struktury orbitali jednoczastkowych |2, [4];

5. implementacje kontaktowego oddziatywania klasy I1I w rzedach LO i NLO w module
zwigzanym z przywracaniem symetrii izospinowej w kodzie HFODD [I];

6. analize wplywu poszczegdlnych zrodel tamania symetrii izospinowej tj. oddziatywa-
nia Coulomba oraz efektywnego, kontaktowego oddzialywania klasy I1I na wartosc¢
parametru zmieszania izospinowego aqsg oraz na wartosé poprawki izospinowej disp
do przejs¢ Fermiego w jadrach zwierciadlanych o T" = 1/2, a w konsekwencji na
warto$¢ elementu macierzowego V,q oraz na test unitarnosci macierzy mieszania
kwarkow CKM [I];

W pracy uzyskano szereg ciekawych wynikéw teoretycznych. Obliczenia przeprowa-
dzone w modelu DFT-NCCI dla 12. przypadkoéw bardzo precyzyjnie zmierzonych rozpa-
dow superdozwolonych wraz z analiza niepewnosci teoretycznych prowadza do wartosci:

VO 0" = 0.97396(25). (6.1)

Powyzsza wartosé jest w pelni konsystentna z rachunkami modelu powtokowego z poten-
cjatem Woodsa-Saxona, dla ktorego Vg = 0.97420(21). Wartosci obu modeli wskazuja na
zachowanie unitarnosci macierzy CKM, choé¢ w przypadku modelu DFT-NCCI test jest
speliony dopiero w przedziale 3o.

Nalezy jednak podkredli¢, ze rachunki poprawek izospinowych do przejs¢ superdozwo-
lonych w modelu DF'T-NCCI nie uwzgledniajg czton6w tamigcych izospin przez efektywne
oddziatywanie silne. Wynika to z faktu, ze w jadrach z trypletu izospinowego aktywne sg
zarowno sktadowe izowektorowe jak i izotensorowe sity kontaktowej. Mieszanie protonéw
z neutronami wprowadzane przez oddzialywania klasy II wymaga zastosowania technik
rzutowych w trzech wymiarach w izoprzestrzeni. W chwili obecnej trwaja prace zwiazane
z zaimplementowaniem tréojwymiarowego rzutowania na izospin w kodzie HFODD.

Alternatywna metoda jadrowa sprawdzania unitarnosci macierzy CKM jest bada-
nie rozpadu beta Fermiego w jadrach zwierciadlanych T' = 1/2,1,T, = +1/2 — T =
1/2,1,T, = F1/2. Metoda pozwala obecnie na wyznaczenie wartosci elementu Vyq 2z
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podobng doktadnoscia jaka daje rozpad swobodnego neutronu. Powodem nizszej doktad-
no$ci w wyznaczaniu wiodacego elementu macierzowego V,q jest stosunkowo niewielka
liczba przejsé, dla ktérych zaréwno czas zycia, jak i niezbedny do analizy statystycznej
parametr korelacji, sa wyznaczane w do$wiadczeniu z wysoka precyzja. Jak dotad do
analizy wlacza sie 4 takie przejscia: mianowicie rozpady miedzy jadrami o liczbie maso-
wej A =19, 21, 35 oraz 37. Z drugiej strony badanie przej$¢ Fermiego miedzy jadrami
zwierciadlanymi 7' = 1/2 stanowi doskonaly test badania zaleznosci czlonéow tamiacych
izospin przez oddzialywanie silne. Uwzglednienie oddziatywania klasy III nie ta-
mie osiowej symetrii izospinowej, wobec czego jednowymiarowe rzutowanie na izospin
jest w pelni wystarczajace. W wyniku przeprowadzonych rachunkéow DFT-NCCI, w ni-
niejszej pracy otrzymaliSmy warto§¢ elementu macierzowego VT = (0.9725(14) przy
uwzglednieniu oddzialywania Coulomba jako jedynego Zrodla tamania symetrii izospino-
wej. Pokazaliémy nastepnie, ze wtaczenie klasy III znaczaco wpltywa na wartos¢ elementu
macierzowego, dajac:

mirer — ().9736(14). (6.2)

Powyzszy wynik jest ciekawy z dwu wzgledow. W pierwszej kolejnosci pokazuje, ze uwzgled-
nienie oddzialywan tamiacych izospin przez efektywne oddzialywanie silne jest niezwykle
istotne, nie tylko do odtworzenia anomalii Nolena-Shiffera w masach jader zwierciadla-
nych, ale réwniez ma duzy, a nawet zaskakujaco duzy wplyw na takie wielkosci jak po-
prawki izospinowe, a w konsekwencji na element V4. Ponadto wynik jest w pelni kon-
systentny z obliczeniami modelu powlokowego oraz z wartoscig otrzymang z rachunkow
dotyczacych przejs¢ superdozwolonych . Nalezy przypuszczaé, ze wraz ze zwieksza-
jaca sie liczba bardzo doktadnie zmierzonych przejs¢ pomiedzy jadrami zwierciadlanymi
T = 1/2, blad statystyczny bedzie spada¢ i w przysztosci metoda bedzie konkurencyjna
do tej, w ktorej wykorzystuje sie przejscia superdozwolone 07 — 0.

W teorii V' — A wyrdzniamy dwa rodzaje rozpadéw beta: rozpady typu Fermiego
przy udziale wektorowych pradow elektorstabych oraz typu Gamowa-Tellera (GT) przy
udziale pradéw osiowo-wektorowych. Te ostatnie charakteryzuje hipoteza cze$ciowego
zachowania pradu aksjalnego. Zaklada ona, ze dywergencja aksjalnego pola wektoro-
wego ma wlasnosci pseudoskalarne opisywane w Modelu Standardowym przez piony ule-
gajace rozpadowi w obecnosci oddziatywan silnych. Osiowo-wektorows stata sprzezenia
ga = —1.2723(23) mozna wowczas wyznaczy¢ przy uzyciu relacji Goldbergera—
Trimana. Z drugiej strony doktadnego opisu statej dostarczaja globalne rachunki rozpadéw
beta w kanale Gamowa-Tellera. Dotychczasowe badania w modelu powlokowym wskazuja
jednak, ze g4 zmienia sie w zaleznosci od masy jadra atomowego, a element macierzowy
Gamowa-Tellera jest systematycznie przeszacowywany przez teorie o pewien usredniony

czynnik (2.31)):

97 = q9a (6.3)

Model DFT-NCCI daje mozliwosé¢ opisu rozpadu GT bez uzycia podzialu na rdzen i
przestrzen walencyjna, a wiec z zupelie innej perspektywy niz w dotychczas funkcjonu-
jacym modelu powtokowym. Analiza poréwnawcza obu metod wielociatowych dostarcza
odpowiedzi na wiele pytan, ktore pojawily sie w fizyce jadrowej przez dekady korzysta-
nia z modelu powtokowego. Flagowym przykladem staly sie rachunki dotyczace efektu
quenchingu stalej sprzezenia pradow osiowo-wektorowych. Przedstawione w tej rozprawie
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systematyczne rachunki elementu macierzowego Gamowa-Tellera miedzy jadrami zwier-
ciadlanymi 7" = 1/2, poza nielicznymi, klopotliwymi przypadkami zwiazanymi prawdo-
podobnie z niefizycznym mieszaniem sie orbitali, okazuja sie by¢ w doskonatej zgodnosci
z elementami macierzowym GT wyznaczonymi w ramach modelu powlokowego (a $ci-
$lej wielu réznych modeli powlokowych). Wyznaczony parametr skalujacy tzw. parametr
quenchingu jest identyczny w obu modelach i przyjmuje warto$¢:

q = 0.74(21) (6.4)

Poniewaz konstrukcja obu modeli r6zni sie fundamentalnie to przeprowadzone rachunki
dotyczace rozpadoéw beta typu Gamowa-Tellera w modelu bazujagcym na teorii funkcjo-
natu gestosci pozwolily na zawezenie stawianych hipotez dotyczacych efektu quenchingu
stalej sprzezenia pradoéw osiowo-wektorowych do wptywu pradow dwuciatowych. Wyklu-
czono przede wszystkim przypuszczenia jakoby, przyblizenie rdzenia oraz ograniczenie
przestrzeni walencyjnej, czyli gtéwne mankamenty modelu powtokowego, odpowiadaly
za problem systematycznego przeszacowywania elementu macierzowego na rozpad beta
w kanale osiowo-wektorowym. Rzeczywiscie, najnowsze wyniki badan uwzgledniajacych
prady dwucialowe dopasowane do superdozwolonego rozpadu Gamowa-Tellera jadra 1°°.Sn
znacznie redukuja efekt quenchingu z ¢ = 0.74 do ¢ = 0.92.

W niniejszej rozprawie, dzieki skonstruowaniu modelu DFT-NCCI, wykonano pierw-
sze w historii obliczenia funkcji odpowiedzi Gamowa-Tellera metodami wywodzacymi si¢ z
metod funkcjonalnych bez stosowania przyblizen. Obliczenia funkcji odpowiedzi Gamowa-
Tellera zostaty przeprowadzone w bardzo lekkich jadrach A = 8 oraz w jadrze ze $rodka
powloki sd — ?*Mg. Przeprowadzone rachunki okazaly sie by¢ konkurencyjne z rachun-
kami modelu powtokowego ze wzgledu na zgodnosé¢ z danymi doswiadczalnymi. Struktura
modelu pozwolita na interpretacje rozktadu funkcji nasilenia GT w jezyku niezwykle intu-
icyjnych sredniopolowych wyznacznikow Slatera i zdeformowanych orbitali nilssonowskich.

Model DFT-NCCI jest modelem uniwersalnym, pozbawionym wolnych parametrow,
z mozliwoscia zastosowania do dowolnego jadra z tablicy nuklidéw. W rozprawie wyko-
naliémy obliczenia struktury i elementéw macierzowych rozpadéw beta w jadrach bardzo
lekkich, o A ~ 8 jak i ciezkich 0 A ~ 100. W szczegblnosci wykonaliémy obliczenia
dla superdozwolonego przejécia Gamowa-Tellera °°Sn—1%In. Jest to najszybszy rozpad
Gamowa-Tellera sposérod jader z calej tablicy nuklidow. Jego eksperymentalnie zmierzona
warto$¢ Bgr przystuzyta sie do dopasowania pradéw dwuciatowych oddziatywania sta-
bego. W tej pracy przedstawiam rachunki NCCI i poréwnuje je z rachunkami modelu
powlokowego oraz z jednocialowym elementem macierzowym wyznaczonym w bazie sfe-
rycznej. Ponownie, rachunki okazujg sie przeszacowywaé warto$¢ Bgr w poréwnaniu z
wartoscig doswiadczalna, pozostajac w pelnej zgodnosci z innymi modelami. Réwniez ko-
lejnoé¢ poziomow w 19°In zgadza sie z obliczeniami modelu powlokowego.

Niniejsza rozprawa otwiera szeroko wrota do dalszych badan. Przetestowanie modelu
DFT-NCCI i jego przestrzeni konfiguracyjnej przy okazji badan nad funkcja odpowiedzi
Gamowa-Tellera jest niestychanie istotne ze wzgledu na przyszte badania m.in. nad bez-
neutrinowym podwdjnym rozpadem beta. Jedng z metod oszacowania takiego elementu
macierzowego jest bowiem wyznaczanie elementéw macierzowych pojedynczego rozpadu
7 posredniczacymi stanami wzbudzonymi z jednoczesnym zachowaniem zupetnosci prze-
strzeni konfiguracyjnej. Bezneutrinowy podwdjny rozpad beta (0v(3(3) jest obecnie jednym
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z najbardziej poszukiwanych przez naukowcow w przyrodzie zjawiskiem fizycznym. Zaob-
serwowanie takiego przejécia §wiadczytoby bowiem o istnieniu fizyki, w ktorej niezachowa-
nie liczby leptonowej bytoby dozwolone. Eksplorowany obecnie (zaréwno przez naukow-
cow fizyki teoretycznej i doswiadczalnej czastek elementarnych) model supersymetryczny
(SUSY) rozszerzajacy symetrie Modelu Standardowego, zaktada istnienie neutralina - su-
persymetrycznego partnera neutrina - czgstki Majorany, wymaganej przez rozpad 0v/3[.
Wobec czego badania na tym procesem doprowadzityby do ogromnego postepu zaréwno
w dziedzinie fizyki jadrowej jak i fizyki czastek elementarnych. Odkrycie oscylacji neutrin,
a w konsekwencji potwierdzenie posiadania niezerowej masy przez te czastki, zainspiro-
walo do jeszcze bardziej wzmozonych badan nad rozpadem Ov33 zar6wno w modelach
teoretycznych jak i w coraz kosztowniejszych eksperymentach.

Dalsze prace nad modelem DFT-NCCI moga przyczyni¢ sie do glebszego zrozumienia
procesow elektrostabych w astrofizyce. Mozliwe bedzie bowiem wyznaczenie w prezen-
towanym modelu przekroju czynnego na rozpraszanie neutrina na jadrze. Zrozumienie
oddzialywania neutrino—jadro jest wazne ze wzgledu na badania procesu nukleosyntezy
ciezkich pierwiastkow — procesu, ktory moze zachodzi¢ w neutronowo nadmiarowym srodo-
wisku eksplodujacej gwiazdy. Taka wiedza jest niestychanie istotna w zrozumieniu zjawisk
zachodzacych w warunkach wybuchu gwiazd supernowych, i ze wzgledu na ograniczone
mozliwosci w przeprowadzaniu badan doswiadczalnych, do realizacji symulacji kompute-
rowych ich wybuchu.

Formalizm rzutowania DFT-NCCI nie jest pozbawiony mankamentoéw. Najistotniej-
szym 7 nich sa numeryczne problemy zwigzane z otrzymywanymi przy rzutowaniu osobli-
wosciami. Pochodza one z rzutowania z wyznacznika Slatera otrzymywanego w modelach
DFT z oddzialywaniami zaleznymi od gestosci. Obecnie wiadomo, ze takie funkcjonaly
dobrze oddaja charakterystyke oddzialywan trojcialowych wysycajacych sity jadrowe.
Trwaja obecnie intensywne badania nad regularyzacja funkcjonaléw oraz nad tworze-
niem funkcjonalow nowej generacji — funkcjonaléw skoniczonego zasiegu, ktoére w proce-
durze rzutowania bylyby wolne od probleméw z biegunami. Istnieja realne przestanki, ze
wykorzystanie funkcjonaléw nowej generacji stworzyloby szanse na odtworzenie danych
do$wiadczalnych dotyczacych struktury jader atomowych z jeszcze wieckszg precyzja niz
dotychczas. Drugim z celow takich prac jest realistyczne oszacowanie niepewnosci teore-
tycznych do obliczonych poprawek izospinowych, czy elementéw macierzowych Gamowa-
Tellera spowodowanych zaleznoscig od struktury funkcjonatu.
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