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Abstract

Many-body Correlations as a Resource for Quantum Metrology

by Artur Niezgoda

Quantum metrology is a field of physics that exploits quantum phenomena in order
to increase precision of measurements. In atom interferometry, a branch of metrology,
such measurements are bounded by the shot-noise limit whenever the system is clas-
sically correlated. It has been shown that states exhibiting quantum correlations –
such as entanglement – enhance the sensitivity of quantum sensors, allowing for preci-
sion beyond the standard quantum limit. For these reasons, entanglement is a useful
resource for quantum metrology. However, the strongest entangled states exhibit a
phenomenon known as nonlocality that has been the object of intensive research for
several decades. Nonlocally correlated states are also of scientific interest from the
perspective of quantum metrology.

We begin by showing that the interference pattern formed by two overlapping
Bose-Einstein condensates can be used to detect Bell correlations in the system. In
our analysis we include various noise sources present in typical experiments.

In the next step, we explore systems of Bose-Einstein condensates in two-mode and
three-mode configurations, in which the entangled states useful for quantum metrology
are generated through the dynamics governed by the given Hamiltonians. We show a
scheme allowing for ultra-precise measurements that saturate the quantum Cramér-
Rao bound.

We then derive a correlator that detects many-body correlations from the single
element of the density matrix. Moreover, we show that such an object, properly
analyzed, provides information about the extent of many-body entanglement and
nonlocality. We illustrate our findings with experimentally accessible interacting spin
chains.

In the last part of this dissertation we derive a lower bound for quantum Fisher
information using the previously constructed correlators, and we affirm that many-
body nonlocality is a resource for quantum metrology.





Streszczenie

Korelacje wielociałowe jako zasób dla metrologii kwantowej

Artur Niezgoda

Metrologia kwantowa to dziedzina fizyki, która wykorzystuje zjawiska kwantowe w
celu zwiększenia precyzji pomiarów. W interferometrii atomowej, technice metrologii
wykorzystującej atomy, granica szumu śrutowego zadaje maksymalną dokładność po-
miaru przy użyciu układów klasycznie skorelowanych. Wykazano, że stany wykazujące
korelacje kwantowe – takie jak splątanie – zwiększają dokładność czujników kwan-
towych umożliwiając precyzję wykraczającą poza standardową granicę kwantową.
Z tych powodów splątanie jest użytecznym zasobem dla metrologii kwantowej. Wśród
układów najsilniej splątanych występuje zjawisko zwane nielokalnością, które jest
przedmiotem intensywnych badań od kilkudziesięciu lat. Stany nielokalnie skorelowane
są również przedmiotem zainteresowania naukowego z perspektywy metrologii kwan-
towej.

Zaczynamy od pokazania tego, że prążki interferencyjne będące wynikiem interfer-
encji dwóch kondensatów Bosego-Einsteina można wykorzystać do wykrycia korelacji
Bella w układach kwantowych. W naszej analizie uwzględniamy różne źródła szumu
występujące w typowych eksperymentach.

W kolejnym kroku badamy układy kondensatów Bosego-Einsteina w konfigurac-
jach dwu- i trój-modowych, w których stany splątane przydatne w metrologii kwan-
towej są generowane poprzez dynamikę zadaną Hamiltonianem. Prezentujemy schemat
pozwalający na ultra-precyzyjne pomiary, które nasycają kwantową granicę Craméra-
Rao.

Następnie wyprowadzamy korelator, który wykrywa korelacje wielociałowe z poje-
dynczego elementu macierzy gęstości. Ponadto pokazujemy, że taki obiekt, odpowied-
nio przeanalizowany, dostarcza informacji o stopniu wielociałowego splątania
i nielokalności. Nasze odkrycia ilustrujemy dostępnymi eksperymentalnie
oddziałującymi łańcuchami spinowymi.

W ostatniej części niniejszej rozprawy, przy użyciu wcześniej skonstruowanych ko-
relatorów, wyprowadzamy dolną granicę dla kwantowej informacji Fishera
i stwierdzamy, że wielociałowa nielokalność jest zasobem metrologii kwantowej.
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Introduction

“The most exciting phrase to hear in science, the one that heralds new discoveries,
is not ‘Eureka!’ (I found it!) but ‘That’s funny....’ ”

Isaac Asimov

By the end of 19th Century it was believed that physics had come to the point
where the most important laws had already been discovered. In the early 1900s, how-
ever, many doubts were raised as theoretical descriptions of some physical phenomena
based on fundamental laws led to absurd conclusions when applied to special cases.
These single incompatibilities would soon inspire a few great thinkers to lead the world
of physics into the modern era.

The first significant steps toward developing a new theory were undertaken when
Max Planck proposed an explanation of black-body radiation by assuming that elec-
tromagnetic energy could be emitted only in quantized form. Planck’s approach ex-
plained experimental observations very well, though the meaning of quanta remained
a purely formal assumption. In 1905, in one of his Annus mirabilis papers [1], Albert
Einstein proposed a simple description of photons, the quanta of light, that would
explain the experimental data of the photoelectric effect. This revolution started a
process that culminated in the formulation of a consistent quantum theory describing
physical phenomena on the atomic level. The development of quantum mechanics led
to many discoveries and explained phenomena in areas where classical mechanics had
failed. Within quantum mechanics lies the foundation for many modern technologies.
One brilliant idea by Planck, like the domino effect, started a revolution in physics
that shaped the world we know today.

Although numerous problems were solved through scientific progress
in the 20th Century, many new topics and questions emerged. One great example
is the connection between general relativity and quantum mechanics which, despite
many years of exploration, has not yet been established. Equipped with powerful com-
puters and algorithms, today’s scientists continue to search for signs of new physics
that will illuminate a pathway into a new era. Even entanglement, which allows for
measurements with precision beyond classical limits and is a main resource in quantum
metrology, remains a bit of a mystery nowadays. Although a handful of interpreta-
tions of quantum mechanics have fostered debate regarding the effect of entanglement
on the measured system, collective agreement exists that entanglement produces cor-
relations between measurement outcomes which are exploited in many branches of
quantum information, such as quantum cryptography, quantum computing and, most
significantly from our perspective, quantum interferometry. There is one type of cor-
relations to which special attention has been devoted – nonlocality – and research in
this area has led to advanced applications in quantum theory and computing [2].

One main focus of this dissertation is to explore a class of entangled states useful for
quantum metrology in commonly-used experimental setups. We devote a special inter-
est to the strongest type of quantum correlations, namely Bell’s nonlocality, providing
new methods of its detection. At the end of this work we establish a link between
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the presence of nonlocality and quantum metrology. Although as scientists, we are
aware that only a few individuals will be remembered through the ages for their great
breakthroughs, we hope that through our research we will build on previous successes
and advance discoveries as we approach the next turning point in the history of physics.

This dissertation is structured in the following way:

• Chapter 1 is devoted to the concept of quantum correlations. We discuss the
historical events that led to the formation of the Bell theorem and then provide
a condition that allows us to distinguish entangled states. One of the Bell
inequalities is derived and then we demonstrate that, in some special cases, this
inequality can be violated – signaling the nonlocal character of quantum theory.

• We introduce in Chapter 2 the basic concepts of quantum metrology. We present
how information about some unknown parameter θ encoded in a system can be
estimated using the tools of statistical mechanics. We derive a bound for the
precision of any unbiased estimator, introducing Fisher information, and we
show that its optimization over all possible measurements, called the quantum
Fisher information (QFI), sets the ultimate bound for the precision of the es-
timation process. Finally, we discuss the relation between Fisher information
and entanglement, introducing a criterion for useful states for sub-shot noise
interferometry.

• In Chapter 3 we present a method for detecting Bell correlations from the inter-
ference pattern formed by two overlapping Bose-Einstein condensates. We show
the relation between Bell witness and the precision of the phase estimation
through a fit of the one-body density to the interference pattern. We illustrate
our results for the bosonic Josephson junction in the presence of experimental
imperfections such as finite temperature, energy imbalance of the wells, limited
detection resolution and fluctuations of the atom number.

• We discuss the generation of entangled states useful for quantum metrology
in spin-1/2 and spin-1 Bose-Einstein condensates in Chapter 4. We quantify
entanglement using the QFI and present optimal generators for interferometric
transformation. We show that the inverse of the error propagation formula for
parity measurement saturates the QFI, enabling precision at the Heisenberg
level.

• In Chapter 5 we introduce a correlator, allowing us to extract the information
about many-body entanglement and nonlocality from the single element of the
density matrix. We present our results with examples of the one-dimensional
Ising model and XXZ spin chain.

• Finally, in Chapter 6, we derive a lower bound of the QFI in the language of the
Bell correlators introduced in Chapter 5. The results presented here allow us to
establish a link between metrology and many-body nonlocality. We apply our
results to a one-dimensional Ising model and a Bose-Einstein condenstate in a
double-well potential.

The results included in this dissertation are based on the research published in the
following papers:

1. Artur Niezgoda, Jan Chwedeńczuk, Luca Pezzé, and Augusto Smerzi, Detection
of Bell correlations at finite temperature from matter-wave interference fringes,
Phys. Rev. A 99, 062115 (2019);
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2. Artur Niezgoda, Miłosz Panfil, and Jan Chwedeńczuk, Characterizing quantum
correlations in spin chains, Phys. Rev. A 102, 042206 (2020);

3. Artur Niezgoda, Emilia Witkowska, and Safoura Sadat Mirkhalaf, Twist-and-
store entanglement in bimodal and spin-1 Bose-Einstein condensates, Phys. Rev.
A 102, 053315 (2020); and
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quantum-enhanced metrology, arXiv:2011.06612 (2020).
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Chapter 1

Quantum Correlations

In this chapter we discuss some of the most prominent consequences of quantum
correlations. Firstly, we present a short insight in the “EPR paradox” [3] that led to the
introduction of the postulates of local realism and the subsequent formulation of Bell
inequalities [4]. In the second step we provide a condition for separability of quantum
states, which allows us to distinguish states with a special type of correlations, i.e.
the entanglement. Finally, we derive one of the Bell inequalities based on a simple
hypothetical experiment involving two spatially-separated systems. We show that
some special entangled states are able to violate this inequality, signaling the nonlocal
character of quantum theory.

Contents
1.1 Entangled Quantum Systems . . . . . . . . . . . . . . . . . 6
1.2 Bell Nonlocality . . . . . . . . . . . . . . . . . . . . . . . . . 8

In 1932, John von Neumann outlined the basics of nonrelativistic quantum me-
chanics [5]. Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) [3] pointed
out a problem nowadays referred to as the “EPR paradox”: in correlated two-particle
systems, the outcome of the measurement on one particle can be determined by per-
forming a proper measurement on the other particle. Assuming that the measurement
on the second particle does not affect the first one – in the sense that no superluminal
(faster-than-light) communication is allowed – Einstein, Podolsky and Rosen stated
that the outcomes must be ascribed to physical quantities prior to measurement, thus
implying that quantum theory should be expanded by adding extra “hidden variables”
that would be crucial when predicting the measurement outcomes.

In the 1935 EPR paper, the three physicists considered the predictions for mea-
surements of position and momentum. After 15 years, in 1950, David Bohm simplified
the EPR experiment by considering discrete measurements of spin-1/2 particles [6] in-
stead of the continuous range of the outcomes for position and momentum. We will
simplify this hypothetical experiment even further by considering measurements of
photon polarizations, which are closely related to Bohm’s experiment. Since photons
are massless particles, the spin definition of massive particles is irrelevant, as there is
no rest frame for moving with speed-of-light photons [7]. However, the polarization of
the light is generally accepted as its spin angular momentum, since this corresponds
to helicity, the projection of the spin operator onto the momentum operator. The two
possible values of helicity, +~ and −~, coincide with horizontal and vertical polariza-
tion of a photon, which can be determined by using a polarizing filter. The photon
will either pass through or be absorbed by the ideal filter with a certain orientation,
and the probability of such event may be calculated using simple linear optics.

Imagine that two photons are traveling apart from each other in the same direc-
tion, prepared in the so-called “twin state” polarization. The term twin state means
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that these two photons, when measured using identical polarizing filters, will always
produce the same result. In quantum mechanics this state is defined by an entangled
isotropic state of the form:

|Ψ〉 =
1√
2

(|x〉1 ⊗ |x〉2 + |y〉1 ⊗ |y〉2) , (1.1)

where |x〉i (|y〉i) represents a polarization state of the i-th photon that is guaranteed to
pass through a horizontal (vertical) filter and be absorbed by a vertical (horizontal)
filter. To measure polarization of both photons we use identical polarizing filters
oriented at the same angle. If the first photon passes through then, from the form of
the state in Eq. (1.1), we are assured that the second one will pass as well. Also, if
the first photon is absorbed, then it is guaranteed that the second photon will share
the same fate. Therefore, the outcomes are perfectly correlated.

Since the measurement of the polarization on the second photon can be deter-
mined by measuring the polarization of the first photon, the authors of the EPR
paper suggested that the polarization of the second photon is a well-defined observ-
able. Since the measurement on the first photon did not affect the other photon,
the outcome of the measurement must have been decided even before any measure-
ment was performed. Therefore they introduced an “element of reality” existing in
the second photon – that would provide information about the polarization – while
performing a measurement on the first photon.

In contrast, quantum mechanics states that the poralizations of the photons are
not precisely defined before the measurements take place. The form of the state in
Eq. (1.1) indicates the existence of correlations between both photons, but neither
has a well-defined individual polarization. Einstein, Podolsky and Rosen argued, that
quantum mechanics cannot specify an element of reality responsible for measurement
outcomes. The uncertainties that emerged in quantum theory are a result of neglect-
ing such elements and consequently quantum mechanical theory is incomplete. Their
hypothesis assumed that the system of the second photon knew all about the first
photon long before any measurement was performed. Such “elements of reality”, re-
ferred to later as “hidden variables”, would also be local in the sense that “spooky
action” at a distance could be excluded. The conclusion found in the EPR paper was
used as an assumption in the local hidden variable model, formalized by John Stewart
Bell in 1964 [4], which provides constraints on the set of inequalities on statistical
correlations for bipartite systems. Violation of any of these inequalities would signal
that an assumption of the existence of such local “elements of reality” is incorrect.

In the following sections we will provide a mathematical description of quantum
correlations, starting with the condition for determining whether the state is entangled
or characterized by classical correlations.

1.1 Entangled Quantum Systems

The nonclassical aspect of entanglement was first recognized in 1935 by Erwin
Schrödinger. Inspired by the EPR paper [3], Schrödinger noticed that the two-particle
EPR state cannot be written as a product of the states of each particle. This phe-
nomenon is still of importance in 21st Century physics, since it can be now produced
in various systems, e.g. photons [8–10], trapped ions [11, 12] and other massive
particles [13–16]. Entanglement is exploited in tests of the fundamentals of quantum
mechanics such as the Hong-Ou-Mandel effect [8, 17, 18], ghost imaging [9, 19, 20], the
sub-Poissonian atom number fluctuations [21] or the violation of the Cauchy-Schwarz
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inequality [22–24]. Therefore, it is important to translate Schrödinger’s conclusion
into mathematical language.

In order to determine if the quantum state is entangled, we begin by specifying
which states are not entangled. This can be decided by using a simple condition of
separability. Let us consider a quantum system composed of two subsystems, namely
A and B. If the pure state of that system cannot be expressed as the product of both
subsystems, i.e.

|Ψ〉AB = |ϕ〉A ⊗ |φ〉B, (1.2)

where |ϕ〉A (|φ〉B) describes subsystem A (B), then the state is entangled [25]. Ana-
logically, the mixed state is entangled if its density matrix cannot be expressed as

%̂AB =
∑
i

pi%̂
(i)
A ⊗ %̂

(i)
B , (1.3)

where %̂A,B are local density matrices of particles A and B, pi > 0 and
∑

i pi = 1.
The states described by formulas given in Eq. (1.2) or (1.3) are called separable (or
not entangled) and are characterized by classical correlations, established via local
operations [26], like mixing the product states. For N = 2, the quantum state is
either entangled or separable, but when N > 2 further classification is necessary [27,
28]. A state of fully separable N particles has the form

|Ψ〉 = |ψ(1)〉 ⊗ |ψ(2)〉 ⊗ ...⊗ |ψ(N)〉 (1.4a)

%̂sep =
∑
k

pk|Ψk〉〈Ψk|, (1.4b)

where |ψ(i)〉 is a state of the i-th particle and
∑

k pk = 1. A multiparticle state is
then entangled if, for at least two qubits, the reduced two-qubit density matrix is
entangled. The number of entangled particles is quantified by the so-called entan-
glement depth, which is defined by the largest number of non-separable qubits. For
example, a quantum state is i-separable if it can be written in the form of a mixture
of i-producible pure states [29]:

|Ψi−prod〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψm〉 (1.5a)

%̂i−sep =
∑
k

pk|Ψi−prod,k〉〈Ψi−prod,k|, (1.5b)

where |ψj〉 is a state of maximum i particles and m ≥ N/i holds. The quantum
state is i-particle entangled if it is i-separable but not (i − 1)-separable. In other
words, a state is i-particle entangled if the correlations cannot be explained assuming
entanglement between i− 1 particles.

Strongly entangled states can manifest other phenomena such as steerability (or
EPR-steering), for which the entanglement is a necessary but insufficient condition [30].
Let us consider a pure state of two systems, held by two distant observers, Alice and
Bob,

|Ψ〉 =

∞∑
n=1

cn|un〉|ψn〉 =

∞∑
n=1

dn|vn〉|ϕn〉, (1.6)

where {|un〉} and {|vn〉} ({|ψn〉} and {|ϕn〉}) are two orthonormal bases of Alice’s
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(Bob’s) system. The existence of such states implies that if Alice performs measure-
ment in the basis {|un〉} then Bob’s system collapses into one of the states {|ψn〉},
analogically for the other basis. Therefore Alice can “steer” Bob’s system, despite the
separation and the fact that both systems no longer interact. One of the consequences
of this phenomenon is that Alice’s measurement can increase the precision of Bob’s
measurement on his system [31–33].

Nevertheless, certain steerable states can exhibit even stronger correlations be-
tween parties, namely Bell correlations. A common feature of this class of states is
nonlocality, which requires both the presence of entanglement and steerability in the
system. In the next section we will derive the condition for observing Bell correlations
in the given system.

1.2 Bell Nonlocality

Bell’s theorem is one of the most important scientific discoveries, representing a
remarkable contribution to our understanding of physics. In his paper [4], Bell showed
that a theory satisfying locality constraints and realism is, in general, in contradiction
to quantum theory. Over the past 50 years, nonlocality of quantum theory has become
the subject of intensive studies. We will now provide a mathematical description of a
locality constraint for experiments involving two separate systems. We will derive one
of the Bell inequalities and show that, in some special cases, quantum theory predicts
its violation, thus signalling nonlocality.

Let us consider two systems that may have interacted in the past – for example,
they could have been produced by the same source. In our experiment, these two
systems are now space-like separated and can be measured by one of the two distant
observers, Alice and Bob. Both independently choose measurements on their system.
We denote Alice’s and Bob’s choice by x and y, respectively, and the outcomes of
performed measurements on the two systems by a and b. It is natural to expect that
the outcomes a and b may vary from shot to shot, even if the same measurements
x and y are performed. In general the results of the experiment are governed by a
probability distribution p(ab|xy) and for correlated outcomes of measurements it holds

p(ab|xy) 6= p(a|x)p(b|y). (1.7)

The expectation, using local theory, is that the correlations between the measure-
ments do not result from the effect of the direct influence of one system on the other,
especially if they are space-like separated, but were rather established during their
interaction in the past. Their communication is not prohibited; however, we assume
that the measurement is performed before any information from the second system
is transferred. For example, we can assume a situation where the two systems A
(Alice’s) and B (Bob’s) are separated, see Fig. 1.1, and at a given moment, indicated
by the RNG symbol, both observers choose a random basis for their measurements.
As indicated by the measurement symbol, these measurements are completed before
any information about the basis choice from the other system has been transferred
with the speed of light (colored regions). This means that there should exist some
past factors that have joint influence on the outcomes of the measurements and are
responsible for the dependence between a and b. Such factors can be described by
some variables λ, and modify the probability distribution in Eq. (1.7) in a way that
the probabilities for obtaining the results a and b should now factorize

p(ab|xy, λ) = p(a|x, λ)p(b|y, λ). (1.8)
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Figure 1.1: Space-time diagram of the Bell test from [34]. The x-axis
denotes distance between the measurements performed at location A
and B, and the y-axis is time scale starting at 10µs. We can assume
that preparation of the system takes place in the first 10µs. At the
moment indicated by the RNG symbol, the setups at A and B choose
a random basis. The readout on each side, indicated by the mea-
surement symbol, is completed before any information about the basis
choice from the other side can be transferred with the speed of light
(colored regions). Such an experimental setup ensures that neither
of the measurements has any immediate effect in the space-separated
regions.

The probability of the outcome a (b) depends now only on the past variables λ and
the choice of the local measurement x (y), but not on the measurement performed on
the distant system. In general, λ will also vary in each run of the experiment, even
with the fixed preparation procedure. Thus, the range of values of λ is described by
a probability distribution q(λ), which also assumes that the measurement choices x
and y are independent of λ. The result we get

p(ab|xy) =

∫
Λ
dλq(λ)p(a|x, λ)p(b|y, λ) (1.9)

represents a precise condition for locality, without assumptions of determinism or
classicality and with no restrictions on the physical laws. The index Λ indicates
integration over a complete set of hidden variables. If Eq. (1.9) can explain correlations
between two distant particles, then events in one region of space-time should not have
any impact on events in spacelike separated regions.

One can, however, design an experiment involving entangled particles that cannot
be explained assuming the decomposition given in Eq. (1.9). For simplicity we consider
an experiment with only two measurement choices for each of the observers x, y ∈
{0, 1} for which possible outcomes are labeled a, b ∈ {−1,+1}. The expectation value
of the product ab for given measurements choices x and y is then

E(ax, by) =
∑
a,b

ab p(ab|xy). (1.10)

Let’s consider an expression

S = E(a0, b0) + E(a1, b0) + E(a0, b1)− E(a1, b1) (1.11)
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which is a function of probabilities p(ab|xy). Using Eq. (1.9) in the definition of
E(ax, by) we can rewrite this average as an expectation value

E(ax, by) =
∑
a,b

∫
Λ
dλq(λ)Ax(λ)By(λ) (1.12)

of a product of local averages Ax(λ) =
∑

a ap(a|x, λ) and By(λ) =
∑

b bp(b|y, λ) taking
values from [−1, 1]. Inserting Eq. (1.12) into Eq. (1.11), we got S =

∫
Λ dλq(λ)S(λ),

where

S(λ) = A0(λ)B0(λ) +A0(λ)B1(λ) +A1(λ)B0(λ)−A1(λ)B1(λ). (1.13)

Since we have A0(λ), A1(λ) ∈ [−1, 1], the expression (1.13) is limited from above

S(λ) ≤ |B0(λ) +B1(λ)|+ |B0(λ)−B1(λ)|, (1.14)

which assuming, without loss of generality, that B0(λ) ≥ B0(λ) ≥ 0 yields the upper
bound for S(λ) ≤ 2 and in consequence

|S| ≤ 2. (1.15)

Combining expression (1.11) with the limitation in Eq. (1.15), we arrive at

S = |E(a0, b0) + E(a1, b0) + E(a0, b1)− E(a1, b1)| ≤ 2, (1.16)

known as the Clauser-Horne-Shimony-Holt (CHSH) inequality [35]. It is one of the Bell
inequalities verified by any model satisfying the locality condition given in Eq. (1.9),
but violated by performing proper measurements on the entangled state.

Let us consider an experiment in which the two systems measured by Bob and
Alice are two qubits in the singlet state

|Ψ−〉 =
1√
2

(| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2) , (1.17)

where | ↑〉 and | ↓〉 are the eigenstates of the spin projection in z-direction with the
eigenvalues ±1, respectively. The measurement choices x and y are associated with
vectors ~x, ~y corresponding to Alice’s measurement ~x · ~σ on the first qubit and Bob’s
~y · ~σ on the second, where ~σ = {~σ1, ~σ2, ~σ3} is Pauli vector. The expectation value is
then

E(ax, by) = 〈Ψ−|(~x · ~σ)(A)(~y · ~σ)(B)|Ψ−〉 = −~x · ~y. (1.18)

Now if the two settings of measurements x ∈ {0, 1} correspond to measurements in the
orthogonal directions ê1 and ê2 and the settings y ∈ {0, 1} to directions −(ê1 + ê2)/

√
2

and (−ê1 + ê2)/
√

2, then we arrive at E(a0, b0) = E(a1, b0) = E(a0, b1) = 1/
√

2 and
E(a1, b1) = −1/

√
2. The result is S = 2

√
2 > 2 which is a violation of inequality (1.15)

and thus the locality constraint in Eq. (1.9).
Since 1972, the violation of the Bell inequality has been confirmed in many ex-

periments involving photons [36–43], ions in a Paul trap [44], solid state spins [45],
Josephson phase qubits [46] and even many-body systems such as Bose-Einstein con-
densates [47].

The main foci of this thesis explore new methods for detecting Bell correlations
in quantum systems, and the link between the presence of Bell’s nonlocality and
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quantum metrology. Therefore, in the following chapter we will introduce the basics
of estimation theory in order to provide a short introduction to the world of precise
measurements.
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Chapter 2

Estimation Theory

In this chapter we introduce some basic concepts of quantum metrology. We con-
sider a system whose properties depend on some unknown parameter θ. Estimation
theory sets its goal to deduce the value of θ with the highest possible precision. We
derive a bound for the uncertainty of any unbiased estimator using the Fisher informa-
tion and then show that it can be saturated asymptotically in the special case of the
maximum likelihood estimator. We present an alternative method of estimation based
on the first and the second moments, and conclude that the uncertainty is a lower
bound for the Fisher information. Additionally we derive the upper bound, called the
quantum Fisher information. Finally, we show that entangled states can enhance the
precision of the estimation beyond the classical limit and therefore entanglement is a
resource for quantum metrology.

Contents
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Every day using common devices we perform countless measurements, some of
which can be appraised simply and directly, such as distance, using standardized ap-
paratus. Performing other measurements requires more complicated processes. For
example, in order to find velocity of an object we have to measure its displacement
during the time period when the change of position occurred. The precision of such a
process depends on the uncertainty of both the distance measurement and the clock.
Generally speaking, the more complicated the process of measurement is, the more
factors affecting the precision of the results. Although one may think that on an
everyday basis we should be satisfied with relatively low precision, the demand for
exceptionally precise measurements is growing in numerous widely-available technolo-
gies, such as global positioning systems which require highly precise atomic clocks [48–
50]. In order to reach a desirable level of precision we have to dive into the world of
atoms and molecules, where the laws of classical physics no longer work and quantum
mechanics is required to provide a correct description of the measurement process.

Therefore, we must adapt our tools to be able to perform highly precise mea-
surements on the quantum systems. For example, to measure the temperature of
an object we usually bring it to the equilibrium with a thermometer and then read
out the temperature. However, if we use ultra-cold gases, such a procedure is no
longer possible because, due to the fragility of the system, it needs to be isolated from
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any macroscopic environment. Alternatively, we may use the methods of statistical
mechanics to estimate the temperature from the measurements of the momentum or
spatial profile of the gas. We now take a closer look at the tools of estimation theory.

2.1 Estimators

We assume that some properties of a system depend on a parameter θ. This
parameter can be associated, e.g. with the position of a particle x, its mass m, or for
quantum systems a relative phase between two sub-systems. The goal of estimation
procedure is to find the value of that parameter with the highest possible precision.
In order to do so properly, we need to perform a measurement x, the outcome of
which depends strongly on θ, i.e. x(θ). Now let us consider a situation, where m
measurements of x were performed in one experimental sequence. Based on the results,
we build an estimator Θ that provides the value of the parameter θ:

θ
(i)
E = Θ(x

(i)
1 , x

(i)
2 , ..., x(i)

m ), (2.1)

where the superscript i indicates an i-th experimental sequence. In practice the results
xj will fluctuate from shot to shot. Thus in order to find the estimation error we have
to repeat the experimental sequence multiple times. After M repetitions we arrive
with the set of estimated values Θ(1),Θ(2), ...,Θ(M) which can be used to plot the
histogram of Θ(i)(Fig. 2.1) and estimate the unknown parameter θ using for example
the mean value of this distribution:

〈Θ〉 =
1

M

M∑
i=1

θ
(i)
E . (2.2)

In general, averaging can be performed over all possible values of the measurement xj
using joined probability distribution of these values P (x1, x2, ..., xm|θ), which condi-
tionally depends on the true value of the unknown parameter. The average in Eq. (2.2)
takes the form:

〈Θ〉 =

∫
dx1...dxmΘ(x1, ..., xm)P (x1, ..., xm|θ). (2.3)

Since the estimator is a function of fluctuating outcomes, we expect that some estima-
tors are better than others. In general we would like our estimator to have a minimal
variance

∆2Θ ≡
∫
d~x (Θ(~x)− θ)2 P (~x|θ), (2.4)

where ~x = (x1, ..., xm). But since we could choose an estimator to be a constant
function 〈Θ(~x)〉 = θ0, which with a pinch of luck could be equal to the true value
θ0 = θ and therefor have zero uncertainty, we need a condition that eliminates cases
such as this. Thus we can consider estimators that satisfy the unbiasedness condition

〈Θ〉 = θ, (2.5)

which means that on average the estimator gives the true value for all values of θ. In
practice, we may find that an optimal estimator for the whole range of parameter θ
does not exist. Therefore, generally we consider estimators that are asymptotically
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Figure 2.1: An example of a histogram for Θ with m = 2000. The
estimated value of the unknown parameter is the mean value 〈Θ〉 of
the histogram, whilst the precision is given by the width of the distri-
bution. For m→∞ the histogram resembles normal distribution as a
consequence of the central limit theorem.

unbiased, i.e. an average value tends to the true value of the parameter θ for m→∞:

lim
m→∞

〈Θ〉 = θ. (2.6)

Additionally, an optimal estimator would have to be consistent – meaning that, with
an increasing number of measurements, the probability that that estimator will give
results closer to the true value θ will increase as well

lim
m→∞

Θ(x
(i)
1 , ..., x(i)

m ) = θ for all i. (2.7)

In other words, as the sample size increases, the distribution of the estimator will
concentrate at the true value of the parameter θ.

We have presented here conditions that have to be satisfied in order to choose an
optimal estimator. In addition we would like to minimize the variance in Eq. (2.4),
which requires knowledge of all possible estimators. In practice it is much easier to
proceed using another criterion, so, in the next section, we will derive a lower bound
of the variance for any unbiased estimator – the Cramér-Rao bound – that can be
used to determine useful estimators.
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2.2 The Cramér-Rao Bound

The Cramér-Rao bound was developed independently through the work of
Cramér [51], Rao [52], and Frechet [53], who found a lower bound to the variance
of any arbitrary estimator. For an unbiased estimator and m independent measure-
ments, the Cramér-Rao bound reads

∆Θ > ∆θCRB =
1√
Im(θ)

, (2.8)

where

Im(θ) =

∫
d~x

1

P (~x|θ)

(
∂P (~x|θ)
∂θ

)
(2.9)

is the Fisher information [54, 55] and m stands for xm measurements in the joined
probability distribution P (x1, x2, ..., xm|θ).

To derive the Cramér-Rao bound we start with the assumption that the estimator
is unbiased, see Eq. (2.5), for which the following condition is satisfied

d 〈Θ〉
dθ

=

∫
d~xΘ(~x)

dP (~x|θ)
dθ

= 1, (2.10)

while the probability function is regular∫
d~x
dP (~x|θ)
dθ

=
d

dθ

∫
d~xP (~x|θ) = 0. (2.11)

Rewriting Eq. (2.3) under the unbiasedness condition, we obtain∫
d~x(Θ(~x)− θ)P (~x|θ) = 0. (2.12)

A derivative of Eq. (2.12) with respect to θ, based on Eqs. (2.10) and (2.11), gives∫
d~x(Θ(~x)− θ)dP (~x|θ)

dθ
= 1. (2.13)

Then, using the Cauchy-Schwarz inequality stating that for two functions f(~x) and
g(~x) the following condition is satisfied∣∣∣∣∫ d~xf(~x)g(~x)

∣∣∣∣2 6
∫
d~x |f(~x)|2

∫
d~x |g(~x)|2 , (2.14)

with f(~x) = 1√
P (~x|θ)

∂P (~x|θ)
∂θ and g(x) =

√
P (~x|θ)(Θ(~x) − θ), we arrive at the final

inequality ∫
d~x (Θ(~x)− θ)2 P (~x|θ)

∫
d~x

1

P (~x|θ)

(
∂P (~x|θ)
∂θ

)2

> 1, (2.15)

where we can recognize the variance of the estimator from Eq. (2.4) in the first part
and the Fisher information from Eq. (2.9) in the second part. In the case where
x1, ..., xm are the same, single and independent measurements, the joint probability
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simplifies P (~x|θ) =

m∏
j=1

p(xj |θ) and so the Fisher information takes a form

Im(θ) = m

∫
dx

1

p(x|θ)

(
∂p(x|θ)
∂θ

)
= mI(θ). (2.16)

As the result, the Cramér-Rao bound now reads

∆Θ >
1√
mI(θ)

, (2.17)

where the factor 1
m is a consequence of the additivity of the Fisher information. In

addition to the expression in Eq. (2.16), Fisher information can be also calculated
from the following expressions:

I(θ) =

〈(
d

dθ
log (P (~x|θ))

)2
〉

(2.18)

I(θ) = −
〈
d2

dθ2
log (P (~x|θ))

〉
. (2.19)

If Eq. (2.17) is saturated then the estimator is optimal and moreover it is called
efficient. The saturation of the Cramér-Rao bound is equivalent to the saturation of
the Cauchy-Schwarz inequality (2.14), hence the condition

1√
P (~x|θ)

∂P (~x|θ)
∂θ

= α(θ)
√
P (~x|θ)(Θ− θ). (2.20)

The above equation can be solved analytically with a Gaussian probability distribution

P (~x|θ) =

N∏
i=1

1√
2πσ2

e−
(xi−θ)

2

2σ2 , (2.21)

with Θ(~x) =
∑N

i=1
xi
N and α(θ) = N

σ2 . The result implies that if the probability in the
estimator is Gaussian, it saturates the Cramér-Rao bound. Although we never know
if the saturating estimator exists, there is one estimator that always asymptotically
saturates the Cramér-Rao bound – which will we prove in the following section.

2.3 Maximum Likelihood Estimator

As mentioned previously, we never know if the estimator that saturates Eq. (2.17)
exists, unless the probability P (~x|θ) is Gaussian. Fortunately we can always build
the Maximum Likelihood Estimator (MLE) that saturates the Cramér-Rao bound
asymptotically.

We establish such estimator by assuming that x is measured m times, and the
probability of the outcome p(x|θ) is known. We construct the following likelihood
function

L(ϕ) = log

 m∏
j=1

p(xj |ϕ)

 , (2.22)



18 Chapter 2. Estimation Theory

which is the function of variable ϕ with the other variables fixed by the measurement
outcomes. The estimator is now defined with the value of ϕ for which L is maximized

Θ
(m)
MLE :

∂L(ϕ)

∂ϕ

∣∣∣∣
ϕ=ΘmMLE

= 0. (2.23)

In other words, if we put the true value of the parameter in ΘMLE , then the probability
to observe xj would be the highest. The asymptotic efficiency of the MLE plays
the essential role in the parameter estimation, meaning that the MLE saturates the
Cramér-Rao bound for a large number of identical and independent measurements.
In order to prove this, first we show that the MLE is consistent. We calculate the
difference between Eq. (2.22) and the likelihood function with the true value of the
parameter θ as follows:

L(ϕ)− L(θ) =

m∑
j=1

log

(
p(xj |ϕ)

p(xj |θ)

)
m→∞−−−−→ m

∫
dxp(x|θ) log

(
p(x|ϕ)

p(x|θ)

)
. (2.24)

We bound the result from above using the expression log(β) 6 β − 1 and obtain

m

∫
dxp(x|θ) log

(
p(x|ϕ)

p(x|θ)

)
6 m

∫
dxp(x|θ)

(
p(x|ϕ)

p(x|θ)
− 1

)
= 0. (2.25)

The last expression is bounded by 0 for p(x|ϕ) = p(x|θ), hence ϕ = θ. Therefore the
MLE is consistent in the limit m→∞, i.e.

lim
m→∞

Θ
(m)
MLE = θ. (2.26)

To prove asymptotic unbiasedness we start with a calculation of the derivative of the
likelihood function from Eq. (2.22) with respect to ϕ and expand it in the Taylor
series around the true value θ

L′(ϕ) = L′(θ) + L′′(θ)(ϕ− θ) + .... (2.27)

If we choose ϕ = Θm
MLE then by definition we have L′(Θm

MLE) = 0. Assuming m� 1
we use the consistency of MLE and thus we can neglect the higher order terms. As a
result we obtain

Θm
MLE − θ ' −

L′(θ)
L′′(θ)

. (2.28)

The second derivative of the likelihood function from Eq. (2.22) has a form

L′′(θ) =

m∑
i=1

− 1

p(xi|θ)2

(
∂p(xi|ϕ)

∂ϕ

∣∣∣∣
ϕ=θ

)2

+
1

p(xi|θ)
∂2p(xi|ϕ)

∂ϕ2

∣∣∣∣
ϕ=θ

 , (2.29)

for which the summation can be replaced with an integral by averaging with the
probability p(x|θ) under the condition m→∞:

L′′(θ) m→∞−−−−→ m

∫
dx

− 1

p(x|θ)

(
∂p(x|ϕ)

∂ϕ

∣∣∣∣
ϕ=θ

)2

+
∂2p(x|ϕ)

∂ϕ2

∣∣∣∣
ϕ=θ

 . (2.30)

The second expression in the parenthesis of Eq. (2.30) vanishes, and the remaining part
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is equal to −mI(θ). By implementing the result into the denominator of Eq. (2.28),
we obtain

Θ
(m)
MLE − θ '

1

m

m∑
i=1

[
1

I(θ)

1

p(xi|θ)
∂p(xi|θ)
∂ϕ

∣∣∣∣
ϕ=θ

]
. (2.31)

Now we can see that the object on the right-hand side of Eq. (2.31) is an average of m
random variables in the square bracket. The Central Limit Theorem [56] states that
with m→∞ the probability distribution of the object tends to Gaussian distribution,
so the mean value of the object on the left-hand side can be calulated as follows:

〈
Θ

(m)
MLE − θ

〉
m→∞−−−−→

∫
dxp(x|θ)

[
1

I(θ)

1

p(x|θ)
∂p(x|θ)
∂ϕ

∣∣∣∣
ϕ=θ

]
=

=
1

I(θ)

∫
dx
∂p(x|θ)
∂ϕ

∣∣∣∣
ϕ=θ

= 0. (2.32)

The last expression proves that the MLE is unbiased. The final step is to show that
the MLE saturates the Cramér-Rao bound. Based on Eq. (2.32), we can calculate the
variance of the estimator

∆2Θm
MLE

m→∞−−−−→ 1

m

∫
dxp(x|θ)

[
1

I(θ)

1

p(x|θ)
∂p(x|θ)
∂ϕ

∣∣∣∣
ϕ=θ

]2

=

=
1

m

1

I(θ)2

∫
dx

1

p(x|θ)

(
∂p(x|θ)
∂ϕ

∣∣∣∣
ϕ=θ

)2

=
1

m

1

I(θ)
. (2.33)

This proves that the MLE is an asymptotically efficient estimator. Although the MLE
requires a priori knowledge of P (~x|θ) for the complete domain of θ and the set of the
measurement outcomes ~x, it has been used in several experiments [57–61]. There are
also alternative methods to estimate the unknown parameter θ. In the next section
we present an estimation from the method of moments.

2.4 The Method of Moments

The method of moments takes advantage of collective properties of the probability
distribution such as the mean value x̄ and variance ∆2x, but may be used as long
as x̄ is a monotonous function of parameter θ. The expectation value x̄ over m
measurement results x1, ..., xm, where xi ≡ xi(θ), is given with

x̄m =
1

m

m∑
j=1

xj . (2.34)

The expected value of the estimator of the method of moments Θmom will then be the
value for which x̄ = x̄m. This method requires the average value x̄ to be a monotonous
function of the parameter θ. Therefore, applying the Taylor expansion of x̄m around
the true value θ yields

x̄m ≈ x̄+
dx̄

dθ
(Θmom − θ). (2.35)
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By identifying x̄m − x̄ ≈ ∆x/
√
m and Θmom − θ ≈ ∆θmom we obtain

∆θmom =
∆x

|
√
mdx̄
dθ |

. (2.36)

The uncertainty obtained using the method of moments is the lower bound to the
Fisher information [62], i.e.

I(θ) >

(
∂x̄
dθ

)2
∆2x

, (2.37)

so, in other words, the Fisher information is more sensitive to the change of the
parameter θ than the average moments of probability distribution. One may then ask
if the upper bound can be derived. The answer is positive, and we will go through
the process in the following section.

2.5 The Ultimate Bound

For quantum systems probability is expressed in the language of the Positive-
Operator Valued Measures Π̂x – positive semi-definite matrices that sum up to the
identity matrix ∑

x

Π̂x = 1̂ or
∫
dx Π̂x = 1̂. (2.38)

Using these operators, the probability of obtaining the outcome x when measured on
the system described with density matrix ρ̂θ ≡ ρ̂(θ) has the form

p(x|θ) = Tr
[
Π̂xρ̂θ

]
. (2.39)

The quantum estimation scheme requires us to find not only an optimal estimator but
also an optimal measurement for our system; besides that, it resembles the classical
procedure. Therefore, first we will derive the quantum Cramér-Rao bound. Classi-
cal Fisher information, defined in Eq. (2.9), can be rewritten using the definition of
probability given in Eq. (2.39) as follows:

Iθ =

∫
dx

1

Tr
[
Π̂xρ̂θ

]
∂Tr

[
Π̂xρ̂θ

]
∂θ

2

=

∫
dx

1

Tr
[
Π̂xρ̂θ

] (Tr

[
Π̂x

∂ρ̂θ
∂θ

])2

. (2.40)

Let us denote that the derivative of the density matrix is given with

∂ρ̂θ
∂θ

=
1

2

[
L̂θρ̂θ + ρ̂θL̂θ

]
, (2.41)

where L̂θ is a θ-dependent operator called the symmetric logarithmic derivative (SLD)
[63]. In eigenbasis of ρ̂θ, i.e. ρ̂θ =

∑
i pi|i〉〈i|, where pi ≡ pi(θ), pi > 0 and

∑
i pi = 1,

we have

〈i|∂ρ̂θ
∂θ
|j〉 =

1

2

(
pi〈i|L̂θ|j〉+ 〈i|L̂θ|j〉pj

)
, (2.42)
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hence

〈i|L̂θ|j〉 =
2

pi + pj
〈i|∂ρ̂θ

∂θ
|j〉. (2.43)

We now take the enumerator of Eq. (2.40) and based on the Hermitian properties of
ρ̂θ, L̂θ and Π̂x we obtain

Tr

[
Π̂x

1

2

(
L̂θρ̂θ + ρ̂θL̂θ

)]
= Tr

[
1

2

(
Π̂xL̂θρ̂θ +

(
Π̂xL̂θρ̂θ

)†)]
=

= Re
(

Tr
[
Π̂xL̂θρ̂θ

])
6 Tr

[
Π̂xL̂θρ̂θ

]
. (2.44)

This expression is saturated if the imaginary part is equal to zero,
i.e. Im

(
Tr
[
Π̂xL̂θρ̂θ

])
= 0. Using the Cauchy-Schwarz inequality with respect to

the Hilbert-Schmidt matrix scalar product |Tr
[
AB†

]
|2 6 Tr

[
A†A

]
Tr
[
B†B

]
, where

we set A =

√
Π̂xρ̂θ and B =

√
Π̂xL̂θρ̂θ, we arrive at

|Tr
[
Π̂xL̂θρ̂θ

]
|2 6 Tr

[
Π̂xρ̂θ

]
Tr
[
L̂θΠ̂xL̂θρ̂θ

]
. (2.45)

Then, by substituting the above inequality into Eq. (2.40), we obtain an inequality

I(θ) 6
∫
dxTr

[
L̂θΠ̂xL̂θρ̂θ

]
= Tr

[
L̂2
θρ̂θ

]
≡ FQ(ρ̂θ), (2.46)

where FQ(ρ̂θ) is quantum Fisher information, fully determined by the output state
ρ̂θ. In fact, the quantum Fisher information is Fisher information maximized over all
measurements [64], thus the condition I(θ) 6 FQ always holds. With this new result,
we can set a corresponding bound on the estimation for unbiased estimators with m
independent measurements, called the quantum Cramér-Rao bound [63] which reads

∆ΘCR > ∆ΘQCR =
1√

mFQ(ρ̂θ)
. (2.47)

To simplify the expression of quantum Fisher information, we can calculate the trace
in Eq. (2.46), i.e.

FQ(ρ̂θ) = Tr
[
L̂2
θρ̂θ

]
=
∑
i,j

pi + pj
2
|〈i|L̂θ|j〉|2. (2.48)

The average value of the SLD operator is given with Eq. (2.43) for pi + pj 6= 0,
therefore we obtain

FQ(ρ̂θ) =
∑
i,j

2

pi + pj
|〈i|∂ρ̂θ

∂θ
|j〉|2. (2.49)

Finally we have to calculate the derivative of the density matrix

∂θρ̂θ =
∑
k

(∂θpk)|k〉〈k|+
∑
k

pk (|∂θk〉〈k|+ |k〉〈∂θk|) , (2.50)
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whose elements take the following form

〈i|∂θρ̂θ|j〉 = ∂θpiδij + pi〈∂θi|j〉+ pj〈i|∂θj〉. (2.51)

Using the identity ∂θ〈i|j〉 = 〈∂θi|j〉+ 〈i|∂θj〉 = 0 we obtain

〈i|∂θρ̂θ|j〉 = ∂θpiδij + pi〈∂θi|j〉 − pj〈∂θi|j〉 (2.52)

and by implementing it into the Eq. (2.49), we arrive at a simple formula for the
quantum Fisher information

FQ(ρ̂θ) =
∑
i,j

2

pi + pj
|∂θpiδi,j + (pi − pj)〈∂θi|j〉|2 =

=
∑
i

(∂θpi)
2

pi
+ 2

∑
i,j

(pi − pj)2

pi + pj
|〈∂θi|j〉|2. (2.53)

Let us now consider a scenario where the information of the parameter θ is im-
printed on the quantum system in the initial state, described with density matrix ρ̂in,
through some unitary transformation

ρ̂in → ρ̂θ = e−iθĥρ̂ine
iθĥ, (2.54)

where ĥ is generator of the evolution. Therefore, since the eigenvalues do not change,
the formula for the quantum Fisher information is of the following form

FQ(ρ̂θ) = 2
∑
i,j

(pi − pj)2

pi + pj
|〈i|ĥ|j〉|2 (2.55)

with the condition pi + pj > 0 [64, 65]. For the special case of pure states,
e.g. ρ̂θ = |Ψ(θ)〉〈Ψ(θ)|, the quantum Fisher information reduces to

FQ(Ψ(θ)) = 4
(
〈∂θΨ(θ)|∂θΨ(θ)〉 − |〈∂θΨ(θ)|Ψ(θ)〉|2

)
, (2.56)

which for unitary transformation is equal to

FQ(Ψ(θ)) = 4
(
〈Ψ0|ĥ2|Ψ0〉 − |〈Ψ0|ĥ|Ψ0〉|2

)
= 4∆2ĥ. (2.57)

Note that here the quantum Fisher information does not depend on θ, due to com-
mutation between ĥ and e±iθĥ. In general, if the unitary transformation has a more
complicated form, for example U(θ) = e−i(Âθ+B̂), then the generator of evolution is
calculated according to

ĥ = (∂θÛ(θ))Û †(θ). (2.58)

In general, the quantum Fisher information is limited by

FQ(Ψ(θ)) 6 4∆2ĥ, (2.59)

which is saturated for the pure states. Inequality (2.59) provides a powerful tool for
distinguishing metrologically useful states from the point of view of the parameter
estimation. Before we demonstrate this tool, we want to focus our attention on the
two-mode quantum interferometry.
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The two-mode quantum interferometer is a device that imprints a relative phase
θ between the two modes. Such an operation can be represented by a unitary trans-
formation of the form

U(θ) = e−iθĴ~n . (2.60)

Here Ĵ~n consists of angular momentum operators {Ĵx, Ĵy, Ĵz} forming Lie algebra
with commutation relation [Ĵi, Ĵj ] = iεijkĴk. In the case of two-mode interferome-
ter the operators can be defined as a sum of Pauli matrices acting on each particle
independently

Ĵk =
1

2

∑
i

σ̂
(i)
k . (2.61)

Eq. (2.60) corresponds to the rotation, for which the direction ~n can be optimized in
order to maximize the quantum Fisher information ([66] and reference therein). Thus
we can use another definition of quantum Fisher information which depends on the
input state ρ̂ and the generator of the interferometric rotation Λ̂~n, which for simplicity
we will refer to as an interferometer. The quantum Fisher information is then defined
as [67]

FQ(ρ̂, Λ̂~n) = 4~nT · Γ(ρ̂) · ~n, (2.62)

where Λ̂n = Λ̂ · n, Λ̂ is the vector of generators spanning Lie algebra and ~n is a unit
vector defining the interferometer. Γ(ρ̂) is the covariance matrix of the form

Γi,j(ρ̂) =
1

2

∑
k,l

(vk − vl)2

vk + vl
Re
[
〈k|Λ̂i|l〉〈l|Λ̂j |k〉

]
. (2.63)

vk and vl are eigenvalues of the eigenvector |k〉 and |l〉 of the input density matrix
ρ̂ =

∑
k vk|k〉〈k| and Λ̂j as an element of Λ̂~n. The dimension of the covariance

matrix is equal to the squared number of generators in Lie algebra, for instance in
bosonic SU(2) we have 9 elements in the 3x3 covariance matrix. The maximal value
of the quantum Fisher information is then given by the largest eigenvalue λmax of
the covariance matrix and the generator of the optimal interferometric rotation is
determined by the corresponding eigenvector. The choice of direction of Λ̂n strongly
influences the presision of the measurement.

2.5.1 Physical Interpretation of the Fisher Information

Estimation of the unknown parameter is related to the statistical distance between
neighboring quantum states [64]. The precision of phase estimation for an interferom-
eter is associated with the smallest phase shift for which two states ρ̂in and ρ̂dθ can
be distinguished. For this reason it is justified to introduce a statistical difference

d2
H(P0, Pdθ) = 1−Fcl(P0, Pdθ), (2.64)

called the Hellinger distance [68], where Fcl(P0, Pdθ) =
∑

x

√
p(x|0)p(x|dθ) is the

overlap of probability distributions called fidelity. The Taylor expansion of dH around
θ = 0, i.e.

d2
H(P0, Pdθ) =

I(0)

8
dθ2 +O(dθ3) (2.65)
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shows that the Fisher information can be identified with the statistical speed

vH =
∂dH
∂θ

=
√
I(0)/8, (2.66)

which measures how the probability distribution varies with the shift of the parameter
θ. Since the Fisher information depends on the measurement choice, we can maximize
the Hellinger distance over all possible observables, namely Bures distance [69]

dB(ρ̂0, ρ̂dθ) = maxΠ̂x
dH(P0, Pdθ), (2.67)

which reads [70]

d2
B(ρ̂0, ρ̂dθ) = 1−FQ(ρ̂0, ρ̂dθ), (2.68)

where ρ̂dθ = e−idθΛ̂n ρ̂0e
idθΛ̂n and the quantum fidelity between two states FQ(ρ̂0, ρ̂dθ)

has a form

FQ(ρ̂0, ρ̂dθ) =

√√
ρ̂dθρ̂0

√
ρ̂dθ. (2.69)

As in Eq. (2.64), dB can also be expanded into Taylor series around θ = 0 giving

d2
B =

FQ(ρ̂0, Λ̂n)

8
dθ2 +O(θ3). (2.70)

Thus the quantum Fisher can also be identified with the square of a quantum statistical
speed

vB =
∂dB
∂θ

=

√
FQ(ρ̂0, Λ̂n)/8. (2.71)

This means that input states ρ̂0 for which quantum Fisher information has high
value are sensitive to optimal interferometric rotation Λ̂n, in the way that even a small
change of parameter θ allows us to distinguish ρ̂dθ from the initial state (see Fig. 2.2).
Therefore, it increases the precision of the estimation the of parameter θ.

2.6 States Useful for Quantum Metrology

In Chapter 1 we discussed the nonclassical effects manifesting with entanglement.
In this section we prove that entangled states can enhance precision in estimation
procedure over the best achievable sensititvity obtained using nonentangled states.

In order to derive a mathematical bound that allows one to indentify states that
provide high precision, we assume a unitary transformation U(θ) represented by a
linear interferometer that does not entangle particles in the system itself, i.e.

%̂insep
Û(θ)−−−→ %̂outsep(θ), (2.72)

where %̂insep is a separable state of N particles. This can be realized, for example, if
the generator of the evolution is given with the angular momentum operator defined
as in Eq. (2.61). Consequently the transformation does not correlate particles, and
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Figure 2.2: An example of interferometric rotation of the initial state
ρ̂0 (gray cigar shape). The output state produced by interferometer
given by Λ̂1 (blue cigar shape) is distinguishable from the input state
ρ̂0, consequently the quantum system is sensitive to the shift of the
parameter θ. Alternatively, if the direction is not optimal, for example
Λ̂2, the states will be indistinguishable and estimation of the parameter
θ will no longer be possible. The blue solid line and red solid line
present the rotation axis for Λ̂1 and Λ̂2, respectively.

the unitary transformation can be rewritten in the form

Û(θ) =
N∏
i=1

Û (i)(θ). (2.73)

Previously, we showed that the precision of estimation parameter θ imprinted by
the interferometer is bounded by quantum Fisher information, i.e. ∆θ ∝ 1/

√
Fq.

Moreover, with a choice of generator ĥ = ~n · ~̂J = Ĵ~n, from the inequality (2.59) we get

FQ 6 4
〈

∆2Ĵ~n

〉
. (2.74)

For a separable state of a form (1.4a), using the definition in Eq. (2.61), we can show
that

FQ 6 4
〈

∆2Ĵ~n

〉
=

〈(∑
i

σ̂
(i)
k

)2〉
−

〈
1

2

∑
i

σ̂
(i)
k

〉2

= (2.75)

= N −

〈1

2

∑
i

σ̂
(i)
k

〉2

−
∑
i 6=j

〈
σ̂(i)
n

〉〈
σ̂(j)
n

〉 =

= N −

〈
1

2

∑
i

σ̂
(i)
k

〉2

6 N.
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The above result shows that the sensitivity of the interferometer for nonentangled
states is bounded by the so-called shot-noise limit or standard quantum limit

∆θest >
1

√
m
√
N
. (2.76)

In general, we see that

FQ 6 4
〈

∆2Ĵ~n

〉
6

〈(∑
i

σ̂
(i)
k

)2〉
6 N2, (2.77)

which provides the upper bound for the precision: the so-called Heisenberg limit

∆θest >
1√
m

1

N
. (2.78)

By combining both Eqs. (2.76) and (2.78), the uncertainty of the estimation in range

1
√
m
√
N
> ∆θest >

1√
m

1

N
(2.79)

requires FQ > N and, in consequence, the entangled input state in the interferometer.
This shows that entanglement is a necessary resource for precision beyond the standard
quantum limit [62, 71].

In this chapter we covered the basics of estimation theory, an essential part of
quantum metrology. We derived a bound for the classical process of estimation, and
proved that entangled states are crucial in the process of ultra precise measurements.
In the next chapter we will present a method for detecting Bell correlations based on
the interference pattern formed by two overlaping Bose-Einstein condensates and we
will make a first atempt towards establishing a relation between the Bell nonlocality
and metrology.
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Chapter 3

Bose-Einstein Condensate in a
Double Well

In this chapter we present a method for detection of Bell correlations using the fit of
the one-body density function to the interference pattern, formed by two overlapping
Bose-Einstein condensates, with the relative phase as a free parameter. Part of this
study was originally a subject of my Secondary Degree Thesis [72]. However, it was
greatly expanded during my PhD studies [73], and published as a research paper.
These extensive results justify inclusion as part of a PhD thesis.

To begin we introduce the scheme of the Josephson junction in Bose-Einstein
condensates. In the next step we bring in the concept of squeezing to classify the
ground states for both attractive and repulsive interactions in the model. Then, we
introduce a method of phase estimation from the interference pattern and connect
it to the Bell witness, signaling the presence of the Bell correlations in the system.
Finally, we illustrate the efficiency of such witness in the presence of the experimental
imperfections: finite temperature, energy imbalance of the wells, limited detection
resolution and atom number fluctuations.

Contents
3.1 Mean-field Approximation and Beyond . . . . . . . . . . . 29
3.2 Ground States of the BJJ Model . . . . . . . . . . . . . . . 30
3.3 Estimation from the One-body Density Function . . . . . 34
3.4 The Bell Inequality Witness . . . . . . . . . . . . . . . . . . 35
3.5 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bose-Einstein condensate (BEC) is an exotic form of matter, created for the first
time in 1995 by Carl Wieman and Eric Cornell’s group at the University of Colorado at
Boulder [74]. Shortly thereafter Wolfgang Ketterle reported the successful creation of
BEC with hundreds times more atoms than his precursors, allowing him to perform
spectacular measurements of the properties of the condensate such as interference
of two separate condensate clouds [75]. These achievements started a new era of
scientific exploration, bringing novel ways to test the foundations of quantum theory.
The system of ultra-cold atoms can be used, for example, to study the Josephson
effect [76] by confining a single BEC in a double-well potential [77].

A bosonic Josephson junction (BJJ) consists of two localized matter wave packets
weakly coupled by the tunneling of particles through the barrier due to a chemical
potential gradient. The BEC is confined in a double-well potential

Vdw =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) + V0 cos2

(πx
d

)
, (3.1)
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which contains three-dimensional harmonic confinement characterized by the three
trapping frequencies ωx,y,z and one-dimensional periodic potential of a height V0 and
a periodicity of d acting as the barrier. Parameter M stands for atomic mass. Due
to weak coupling to the environment the quantum description of this system can be
simplified using a two-mode approximation. Therefore, a bosonic field operator is
given with

Ψ̂(r, t) = ψa(r, t)â+ ψb(r, t)b̂, (3.2)

where â and b̂ annihilate a particle in the left and right well, respectively, and
ψa,b are the ground state single-particle wave functions generated by the external
potential in both wells. The wave functions ψa and ψb are not orthogonal, i.e.∫
drψ∗j (r, t)ψk(r, t) = δjk+ε(1−δjk) for j, k = a, b, where ε is the overlap between the

modes of opposite wells. However, since ε� 1, the overlap can be neglected and the
local modes can be treated as orthogonal [78]. Thus, with the normalization condition∫
dr
〈

Ψ̂†(r, t)Ψ̂(r, t)
〉

=
〈
â†â+ b̂†b̂

〉
= N , where N is the total number of particles,

the two-mode approximation of the BJJ Hamiltonian is given by

Ĥ = ~χĴ2
z − ~ΩĴx + ~δĴz, (3.3)

where χ and Ω are the strength of interactions and the coupling parameters, respec-
tively, and ~δ is the energy difference between the wells. The parameters χ and
Ω can be controlled precisely in the experiment, while δ can change from shot to
shot. To this end, we assume Ω > 0 without loss of generality. The first operator
in Hamiltonian (3.3), Ĵ2

z , describes intaractions between atoms, Ĵx accounts for the
linear coupling between the wells and Ĵz stands for the energy imbalance between
both sites. For the N -body system of bosons in two modes, the angular momentum
operators in Hamiltonian (3.3) can be mapped on a system of spin-1/2, where the two
modes of BJJ, namely |a〉 corresponding to the left well and |b〉 to the right well, can
be identified with two spin states +1/2 and −1/2 [78]. Thus, the collective angular
momentum operators, defined previously with Pauli matrices (see Eq. (2.61)), can be
rewritten in terms of the creation and annihilation operators acting in each mode, in
so-called Schwinger representation [79], as follows:

Ĵx =
1

2

(
â†b̂+ b̂†â

)
, (3.4a)

Ĵy =
1

2i

(
â†b̂− b̂†â

)
, (3.4b)

Ĵz =
1

2

(
â†â− b̂†b̂

)
. (3.4c)

The BEC trapped in the double-well potential is an example of the external BJJ.
If the barrier is high enough, the ground state and the first excited state are almost
degenerated and separated from higher energy levels of potential. The two-mode
approximation is valid even if the weak interactions are included. In the case of the
external junction, the parameters in Hamiltonian (3.3) are identified as [78, 80, 81]

~Ω = |Eb − Ea|, (3.5a)

~χ =
8π~2as
M

∫
dr|ψa(r, t)|2|ψb(r, t)|2, (3.5b)

where Ea and Eb are the energies of the modes a and b, M is the atomic mass and
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as is the s-wave scattering length positive for repulsive interactions and negative for
attractive interactions.

Another possible realization of a BJJ can be achieved with a trapped BEC in
two different hyperfine states. The coupling is produced by an electromagnetic field
that coherently transfers atoms between two states via Rabi rotations [82, 83]. In the
internal BJJ the cross-interaction term, involving the overlap of two different atomic-
species orbitals ψa,b(r, t) cannot be neglected, since both species are confined in the
same harmonic potential. The many-body Hamiltonian is given by Eq. (3.3) with
coefficients of the following form

~Ω = ΩR

∫
drψ∗a(r, t)ψb(r, t), (3.6a)

~χ = Uaa + Ubb − 2Uab, (3.6b)

Uij =
2π~2a

(i,j)
s

M

∫
dr|ψa(r, t)|2|ψb(r, t)|2, (3.6c)

where ΩR is the Rabi frequency and a
(a,a)
s , a

(b,b)
s , a

(a,b)
s are intra-species and inter-

species s-wave scattering lengths. In the internal BJJ we can assume that single
particle wave functions of the two hyperfine states are the same, i.e. ψa(r) ' ψb(r)
and effects can be neglected during Rabi coupling pulses with Ω� Nχ.

In the next section we provide a semi-classical approach of Hamiltonian (3.3)
in order to elucidate the structure of the ground states in different regimes of the
interactions.

3.1 Mean-field Approximation and Beyond

In order to understand the structure of the ground states we use the mean-field
approximation [84, 85]. The dynamics of the BJJ model in the classical phase space
is acquired by replacing the mode operators with complex numbers as follows: â →√
Nae

−φa , b̂→
√
Nbe

−φb , whereNa,b are the numbers of particles and φa,b the phases of
the condensate in modes |a〉 and |b〉, respectively. Therefore, we replace the pseudospin
operators in Eq. (3.4) with real numbers:

Ĵx →
N

2

√
1− z2 cosφ, (3.7a)

Ĵy →
N

2

√
1− z2 sinφ, (3.7b)

Ĵz →
N

2
z, (3.7c)

where φ = φa−φb is the relative phase between modes and z = Na−Nb
N is the fraction

of population difference. The mean-field approximation of the Hamiltonian (3.3) is
then

H(z, ϕ) =
Λz2

2
−
√

1− z2 cosφ+ Ξz, (3.8)

where the energy unit is 1
2N~Ω,Λ = Nχ/Ω and Ξ = δ/Ω. From this point we focus

on the case with δ = 0, unless explicitly stated.
In the next step of our analysis, we use a naive procedure of quantization of the

classical Hamiltonian (3.8). We expand Eq. (3.8) to the second order around the
minimum point (z = 0, φ = 0) and replace the conjugate number and phase variables,
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z and φ, with operators ẑ, φ̂ = − 2i
N ∂̂z. It is important to note that the rigorous phase

operator in quantum mechanics is missing, so the above process may bring notable
artifacts when the phase fluctuations are large. Therefore we obtain the quantum
Hamiltonian

Ĥz = − 2

N2
∂̂2
z +

Λ + 1

2
ẑ2 (3.9)

in the number representation. If, instead, we replace z → 2i
N ∂̂φ and φ → φ̂, obey-

ing the same commutation relation, we obtain the quantum Hamiltonian in a phase
representation

Ĥz = −2(Λ + 1)

N2
∂̂2
φ +

1

2
ẑ2. (3.10)

Hamiltonians (3.9) and (3.10) predict the Gaussian wave function for the ground
state [86] when Λ > −1 with variances

σ2
z =

1

N
√

1 + Λ
and σ2

φ =

√
1 + Λ

N
. (3.11)

The potential changes at Λ = −1 and, therefore, the improvements have to be made
by considering the second-order expansion of Eq. (3.8) around φ = 0 and rewriting
the term 1

2

√
1− z2φ2 = φ1

2

√
1− z2φ. This leads to

Ĥz = −∂̂z
2

N2

√
1− ẑ∂̂z +W0(ẑ) (3.12)

with

W0(ẑ) =
Λẑ2

2
−
√

1− ẑ2. (3.13)

Hamiltonian (3.12) describes a fictitious quantum particle with effective mass mov-
ing in the z−direction in an anharmonic one-dimensional potential W0. The above
Hamiltonian was derived by [87] using a continous approximation of the population
imbalance z, and avoiding commutation relations between phase and number opera-
tors. In the analyzed case (Ξ = 0) the effective potential is harmonic when Λ > −1,
changes to quadratic at Λ = −1 and changes to a double-well shape for Λ < −1 with
the wells centered at z± = ±

√
1− 1/Λ2.

3.2 Ground States of the BJJ Model

The structure of the ground state of the BJJ Model depends strongly on the
character of the interactions. When the interactions are repulsive the fluctuations in
atom number between the two modes are energetically unfavorable, while the phase
fluctuations are increased. However, in the case of attractive interactions, the system
favors all atoms localized in one mode. For weak attractive interactions, moreover, we
observe reduced phase fluctuations. Therefore it is convenient to characterize these
fluctuations in the language of spin-squeezing parameter. This concept is related
to entangled states for which spin variance along one direction is squeezed, at the
cost of anti-squeezed variance along an orthogonal direction [88, 89]. Moreover, it
is also a resource to interferometry beyond the standard quantum limit. In general,
the spin-squeezing parameter can be defined in many different ways, but for the use
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of this chapter we choose the one introduced by David Wineland [88]. Wineland’s
squeezing parameter ξ2

R is linked to the sensitivity of the states to the unitary rotation
represented by generators Ĵn. The sensitivity of the phase estimation from the spin
measurement along a direction n1 orthogonal to the rotation direction n2 can be
calculated from the method of moments as follows:

∆2θ =
∆2Ĵn1

m|∂
〈
Ĵn1

〉
/∂θ|2

, for m� 1. (3.14)

Using the Baker-Campbell-Hausdorff formula:

eX̂ Ŷ e−X̂ = Ŷ +
[
X̂, Ŷ

]
+

1

2!

[
X̂,
[
X̂, Ŷ

]]
+

1

3!

[
X̂,
[
X̂,
[
X̂, Ŷ

]]]
+ ... (3.15)

and the commutation relation
[
Ĵn1 , Ĵn2

]
= iĴn3 , we obtain〈

Ĵn1

〉
=
〈
eiθĴn2 Ĵn1e

−iθĴn2

〉
0

=
〈
Ĵn1

〉
0

cos θ +
〈
Ĵn3

〉
0

sin θ, (3.16)

where subscript 0 indicates the average calculated on the state prior to the rotation.
Therefore, the phase sensitivity in Eq. (3.14) for θ → 0 is

∆2θ =
∆2Ĵn1

m
∣∣∣〈Ĵn3

〉∣∣∣2 , for m� 1. (3.17)

The squeezing parameter can be defined by the condition for sub-shot noise precision

ξ2
R ≡

∆2θ

∆2θSN
=
N∆2Ĵn1∣∣∣〈Ĵn3

〉∣∣∣2 < 1, (3.18)

where ∆2θSN = 1/(mN). The state is spin-squeezed along the direction n1 whenever
the above inequality holds, i.e. ξ2

R < 1.
Based on these results, we now determine a structure of the ground state of the

Hamiltonian (3.3). First, we rewrite our Hamiltonian in the following form (~ = 1)

Ĥ =
Λ

N
Ĵ2
z − Ĵx + δĴz, (3.19)

where Λ = NΩ
χ can be negative for attractive interactions and positive for repulsive

interactions, and δ is the energy imbalance between the modes.

Noninteracting System Λ = 0

When Λ = 0, no interactions are present in the system and the Hamiltonian (3.19)
is reduced to Ĥ = −Ĵx. The ground state in this case is a coherent spin state (CSS),
polarized in the positive direction of the x-axis

|Ψ〉 =
1√
N !

(
â† + b̂†√

2

)N
|0, 0〉. (3.20)



32 Chapter 3. Bose-Einstein Condensate in a Double Well

CSS can be rewritten in the basis of mode occupations with the coefficients of binomial
form

|Ψ〉 =

N∑
n=0

Cn|n,N − n〉 =
1

2N/2

N∑
n=0

√(
N

n

)
|n,N − n〉. (3.21)

For N � 1 the binomial distribution given in Eq. (3.21) can be approximated with a
Gaussian distribution

1

2N/2

√(
N

n

)
≈ 1

(σ2π/2)1/4
e−

(n−N2 )2

σ2 (3.22)

with the width σ =
√
N controlling fluctuations between the two modes. Measuring

the spin component along x direction we obtain
〈
Ĵx

〉
= N/2, while measurements in

any orthogonal direction give
〈
Ĵ⊥

〉
= 0 and ∆2Ĵ⊥ = N

4 . Therefore, no squeezing is
present as ξ2 = 1, and sensitivity of phase estimation ∆θ = 1/(mN) corresponds to
a shot-noise limit.

Positive Nonlinearity

For positive effective nonlinearity (Λ > 0) the ground state of Hamiltonian (3.19)
can mostly be approximated by the Gaussian distribution with σN <

√
N , character-

izing a squeezed atom-number distribution. Therefore the fluctuations of spin along
the z-axis (∆Ĵz) will be reduced at the cost of anti-squeezing in the y-direction. We
can distinguish three regimes depending on the value of Λ [90]: the Rabi, Josephson
and Fock regimes.

In the Rabi regime (0 < Λ � 1), the BJJ is dominated by tunneling and so a
relative phase between the two modes is well-defined, leading to high coherent states(〈
Ĵx

〉
≈ N/2

)
. With the Gaussian ground state approximation we obtain

∆2Ĵz = N2σ2
z/4, (3.23a)

∆2Ĵy = N2σ2
φ/4, (3.23b)

where the number and phase distribution widths are

σ2
z = 1/(N

√
Λ + 1), (3.24a)

σ2
φ =
√

Λ + 1/N. (3.24b)

Therefore we see that the state is spin-squeezed in z-direction and the parameter from
Eq. (3.18) is given by

ξ2
R =

1√
Λ + 1

. (3.25)

In the Josephson regime, 1� Λ� N , the number fluctuations are further reduced,
but coherence remains high and the Gaussian approximation still holds. The Gaussian
number and phase distribution widths are well approximated by σ2

z = 1/(N
√

Λ) and
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σ2
φ =
√

Λ/N , hence the number-squeezing parameter is given by

ξ2
R =

1√
Λ
. (3.26)

In the Fock regime, where the effective nonlinearity is very large comparing to
the atom number, Λ� N2, a fragmented BEC is created. The phase fluctuations in
the Fock regime are ill-defined and the Gaussian approximation is no longer valid. In
the limit of N → ∞ the energetically favorable state is the one where all atoms are
equally divided between both modes, consequently it is approximated by

|Ψ〉GS ≈ |N/2〉a|N/2〉b for even N (3.27a)

|Ψ〉GS ≈
1√
2

(
|N + 1

2
〉a|
N − 1

2
〉b + |N − 1

2
〉a|
N + 1

2
〉b
)

for odd N. (3.27b)

In this regime, the ground state is an extremely spin-squeezed state with both num-
ber fluctuations ∆2Ĵz and mean spin length

〈
Ĵx

〉
vanishing; however the squeezing

parameter ξ2
R is finite, but susceptible to experimental noise. It is given by

ξ2
R =

2

N + 2
for even N (3.28a)

ξ2
R =

4N

N(N + 2) + 1
for odd N. (3.28b)

Negative Nonlinearity

In the symmetric Josephson junction, a negative nonlinearity favors a configuration
in which all the particles are localized in one mode, hence the number fluctuations are
enhanced. Competition between the coupling and interaction gives rise to quantum
phase transition with discrete symmetry breaking, which occurs at Λ = −1 in the
thermodynamic limit (N →∞ and χ→ 0) [91–93]. The properties of the condensate
near the transition point have been studied in recent years [94, 95], leading to a
distinction between two phases: the disordered phase and the ordered phase.

In the disordered phase, 1 < Λ < 0, the Gaussian approximation remains valid for
weak attractive interactions (thus Eqs. (3.23) and (3.24) remain valid as well). The
phase fluctuations are reduced, compared to the noninteracting case, at the cost of
the atom number anti-squeezing. The state remains coherent,

〈
Ĵx

〉
≈ N/2, and the

squeezing parameter is given by

ξ2
R =
√

Λ + 1. (3.29)

The ordered phase, corresponding to Λ < −1, is characterized by the macroscopic
superposition of the states of atoms localized on the left and on the right well of
the effective double-well potential given by Eq. (3.13). The ground state can be
approximated by the superposition of two Gaussian distributions centered at z± =
±
√

1− 1/Λ2, which in the basis of mode occupations for even N has the form

|Ψ〉GS =

N/2∑
n=0

1√
2(σ2π/2)1/4

(
e−

(n−N2 z+)2

σ2 |n,N − n〉+ e−
(n−N2 z−)2

σ2 |N − n, n〉
)
,

(3.30)
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where σ =
√

Λ2−1
N |Λ| . With increasing attractive interactions, the mean spin length is

vanishing (
〈
Ĵx

〉
= N

2
1
|Λ|) and the ground state is no longer squeezed since

ξ2
R = |Λ|

√
Λ2 − 1. (3.31)

For Λ� −
√
N the ground state can be approximated by a NOON state, a super-

position of all particles either in a or in b mode:

|Ψ〉GS =
1√
2

(|N, 0〉+ |0, N〉), (3.32)

which leads to maximal fluctuations of the atom number imbalance between two
modes. Therefore, it is sensitive to rotations around the z-axis as the quantum Fisher
information given by Eq. (2.57) reaches the Heisenberg limit, namely FQ = 4∆2Ĵz =
N2. Although it is useful for quantum metrology, infinitesimally small energy imbal-
ances (δ 6= 0) destroy the symmetry of W0(z) and thus the state in Eq. (3.32).

The insight into the structure of the ground states of the BJJ model is important in
the perspective of construction of a witness capable of detecting the Bell correlations
in the system. However, before we present the main results of this chapter, we must
discuss the procedure of estimation of a relative phase between two interfering BECs.

3.3 Estimation from the One-body Density Function

The first step of this estimation scheme is the preparation of a BEC in a double
well. After that step is completed, a phase shift ϕ between two modes can be im-
printed. This is done by applying an external force that leads to an energy imbalance
δϕ between the two modes for a time tϕ short enough so the effects of tunneling and
interaction are negligible χtϕ,Ωtϕ � ϕ, where ϕ = δϕtϕ (we set ~ ≡ 1). In the next
step, the trap is turned off and the wave packets, initially localized in the two wells,
expand and overlap. Consequently, the field operator can be approximated by

Ψ̂(r, tf , ϕ) = φ(r, tf )(âe
i
2

(kr+ϕ) + b̂e−
i
2

(kr+ϕ)), (3.33)

where φ(r, tf ) is the common envelope, k = 2r0M/tf , 2r0 is the vector pointing from
the center of one well to the other, M is the mass of an atom and tf is the flight time.

After the expansion time tf , in so-called far-field, the wave packets form fringes
and the phase ϕ can be estimated [96] using the fit of the normalized one-body density
function

%(r, tf , ϕ) =

〈
Ψ̂(r, tf , ϕ)†Ψ̂(r, tf , ϕ)

〉
N

. (3.34)

Using the field operators from Eq. (3.33) we obtain

%(r, tf , ϕ) =
1

N
|φ(r, tf )|2

〈
â†â+ b̂†b̂+ â†b̂e−

i
2

(kr+ϕ) + b̂†âe
i
2

(kr+ϕ)
〉

= (3.35)

= |φ(r, tf )|2
[
1 +

2

N

(〈
Ĵx

〉
cos (kr + ϕ) +

〈
Ĵy

〉
sin (kr + ϕ)

)]
.

For the Hamiltonian (3.19) the eigenstates have real coefficients in the occupation
basis, thus

〈
Ĵy

〉
= 0. This condition will also hold when we will consider different



3.4. The Bell Inequality Witness 35

sources of the noise, such as thermal fluctuations. Therefore, the visibility of the
fringes is given with

ν =
%max − %min

%max + %min
=

2

N
|
〈
Ĵx

〉
|, where (3.36a)

%max/min =
|φ(r, tf )|2

N

(
N ± 2

∣∣∣〈Ĵx〉∣∣∣) . (3.36b)

Hence, the one-body density can be expressed using the visibility ν as follows

%(r, tf ;ϕ) =

〈
Ψ̂†(r, tf , ϕ)Ψ̂(r, tf , ϕ)

〉
N

= 1 + ν cos(k · r + ϕ). (3.37)

In the experiment, the central interference fringes, where the density is almost con-
stant, are of primary interest.

The phase estimation of ϕ can be performed by fitting the one-body density
%(r, tf ;ϕest) to the measurement of the position of the atoms, i.e. by using the least-
squares method, with ϕest as a free parameter. This gives an asymptotically unbiased
estimator ϕest of ϕ [97]. Sensitivity of the double-well interferometer, thus a variance
of the estimator ϕest, has the following form [97]

∆2ϕest =
1

N

[
ξ2
φ +

√
1− ν2

ν2

]
, (3.38)

where ξ2
φ = N

〈
Ĵ2
y

〉
/〈Ĵx〉2 is the spin-squeezing parameter [98]. When ξ2

φ < 1, the

state is phase-squeezed [88, 89], with reduced variance of Ĵy spin component. We
introduce the parameter

A ≡ N∆2φest − 1 = ξ2
φ +

√
1− ν2 − ν2

ν2
(3.39)

which indicates sub-shot noise sensitivity when A < 0.
In the next section we present the main result of this chapter by introducing a Bell

witness capable of detecting the Bell correlations and relating it to the parameter A.

3.4 The Bell Inequality Witness

Bell correlations can be observed in the states that are entangled, although en-
tanglement alone is insufficient for nonlocality. Therefore, the entanglement criteria,
such as the separability condition or the squeezing parameter from Eq. (3.18), cannot
be used to determine if a system violates a Bell inequality. However, in this section
we will introduce a criterion that adapts the squeezing parameter and will relate it to
the sensitivity of the double-well interferometer introduced in the previous section.

We focus on the Bell witness introduced in Refs. [99, 100], i.e. B(θ) ≡ 〈B̂(θ)〉,
where

B̂(θ) = 2N cos2

(
θ

2

)
− 4Ĵ1 + +8 sin2

(
θ

2

)[
−Ĵ1 sin

(
θ

2

)
+ Ĵ2 cos

(
θ

2

)]2

(3.40)

is built from only one- and two-body operators. Ĵ1 and Ĵ2 denote a pair of operators
in the orthogonal directions. The Bell witness signals Bell correlations if B(θ) < 0.
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To relate the parameter A to the witness of Bell correlations, we choose(
Ĵ1

Ĵ2

)
=

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)(
Ĵx
Ĵy

)
, (3.41)

and apply it to Eq. (3.40). As a result, we arrive with the Bell operator [100] of the
form

B̂(θ) = 2N cos2 θ

2
− 4

(
Ĵx cos

θ

2
− Ĵy sin

θ

2

)
+ 8 sin2 θ

2
Ĵ2
y . (3.42)

The minimization of B(θ) with respect to θ gives

cos

(
θ0

2

)
=

ν

2(1− ξ2
φν

2)
. (3.43)

Substituting condition from Eq. (3.43) into Eq. (3.42) leads to an inequality that
signals Bell correlations when

B ≡ ξ2
φ +

√
1− ν2 − 1

2ν2
< 0, (3.44)

the result first obtained in [100]. Finally, the relation between parameter A, from
Eq. (3.39), and B can be established by a function of the fringe visibility:

B = A+ f(ν), (3.45)

where f(ν) = 1 −
√

1−ν2+1
2ν2 . Therefore sensitivity of the estimation procedure based

on a fit to a one-body density can signal the presence of the Bell correlations in the
system. We will now illustrate the results for the system of the BEC trapped in a
double-well potential.

3.5 The Results

Noiseless Case

First we present the noiseless case of the balanced system (δ = 0) given by Hamil-
tonian (3.12). The analytical expressions for A and B can be derived assuming the
semi-classical approximation [101, 102] with N � 1.

In the region of negative nonlinearities – attractive interactions – the system is
phase-squeezed when −(1 +

√
5)/2 < Λ < 0 [103]. However, for the semi-classical

approximation we need to consider two areas: for −1 . Λ < 0, in which the visibility
is constant and approximately ν ≈ 1; and for −(1 +

√
5)/2 < Λ . −1, where the

visibility drops rapidly and is given with ν ≈ 1/|Λ|. In the first case, the phase-
squeezing parameter is approximated with Eq. (3.29): ξ2

φ ≈
√

1 + Λ, and, therefore,
according to Eqs. (3.39) and (3.45) the parameters A and B are:

A ≈
√

1 + Λ− 1, B ≈
√

1 + Λ− 1/2. (3.46)

From the above equations we see that the Bell correlations are witnessed (B < 0)
when ξ2

φ < 1/2 and thus Λ < −3/4. In the second case, the visibility drops according
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Figure 3.1: Coefficients A (gray lines) and B (black lines) as a func-
tion of interaction strength Λ for T = 0, δ = 0 and N = 1000. The
dashed and solid lines represent analytical and numerical results, re-
spectively. The shaded regions indicate where A < 0 (lighter) and
B < 0 (darker). Additionally, vertical lines for Λ = −3

2
√
2
,− 3

4 , and 3

indicate the value of Λ, which is the analytical solution for B = 0.

to ν ≈ 1/|Λ| and ξ2
φ ≈ |Λ|

√
Λ2 − 1 as in Eq. (3.31). We obtain

A ≈ 2|Λ|
√

Λ2 − 1− 1, B ≈ 3

2
|Λ|
√

Λ2 − 1− Λ2

2
. (3.47)

Here the Bell correlations are present when Λ > −3/(2
√

2). The analytic formulas
derived in Eqs. (3.46) and (3.47) are accurate in the thermodynamical limit N →∞
except for the point Λ = −1, where the effective potential changes [103].

In the regime of repulsive interactions (0 6 Λ � N2) the ground state of the
Hamiltonian (3.12) is number-squeezed: ξ2

N = N(∆Ĵz)
2/〈Ĵx〉2 < 1 [98, 104, 105].

The additional rotation through π/2 around the x axis is, consequently, required to
transform number-squeezing into phase-squeezing, since the phase estimation from the
interference pattern requires phased-squeezed states for sub-shot noise sensitivity, see
Eq. (3.38). The realization of such transformation can be obtained, for example, by
quench of tunneling for a time tπ/2Ω = π/2 such that tπ/2χ� 1. This transformation
does not entangle the atoms and sustains ν ≈ 1. As a result, we obtain

A ≈ 1√
1 + Λ

− 1, B ≈ 1√
1 + Λ

− 1

2
. (3.48)

The observation of Bell correlations, B < 0, is possible for states where ξ2
φ < 1/2

and, from Eq. (3.48), we can see that it is satisfied for Λ > 3. In Fig. 3.1 we show
A (solid line) and B (dashed line) as a function of Λ for N = 1000. The numerical
calculations obtained with the method of exact diagonalization of BJJ Hamiltonian,
Eq. (3.19), reproduce well the analytical formulas derived in this chapter. The slight
divergence observed for Λ > 3 is caused by the approximation of the perfect visibility,
ν = 1 in Eq. (3.48), and by the finite atom number used in the numerical calculations
compared to the thermodynamical limit N →∞ for analytic formulas.

Please note: in a realistic experiment the final precision will be affected by many
factors. Therefore, as we proceed it is important to incorporate such factors into our
considerations.
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Noisy Case

Energy Imbalance Fluctuations

We now present a case where the wells are not perfectly balanced, i.e. δ 6= 0, which
is one of the main sources of noise present in current double-well experiments [106,
107]. In a general experiment, the parameter δ can change from shot to shot, so
consequently we model these fluctuations with a Gaussian distribution of width σδ.
The quantum state in this case will be described with a density matrix

%̂σδ,Λ = N
∫
dδ e

− δ2

2σ2
δ |Ψδ,Λ〉〈Ψδ,Λ|, (3.49)

where N is the normalization constant and |Ψδ,Λ〉 is the ground state of Hamilto-
nian (3.12) for given Λ and δ. Coefficients A and B can be calculated numerically.
We plot the results in Figs. 3.2(a) and (b). The gray-scaled regions therein correspond
to B < 0 signaling presence of the Bell correlations. We observe that the increase of
σδ shrinks the regions. Moreover, the effect is much greater for Λ < 0. The sub-shot
noise sensitivity regime, A < 0, shrinks proportionally, according to Eq. (3.45).

Thermal Fluctuations

We will now consider the system in a finite temperature. In such a case the system
is described with the density matrix at thermal equilibrium for the Hamiltonian (3.12),
given as

%̂th =
1

Z

N∑
n=0

|Ψn〉〈Ψn|e−βEn , (3.50)

where Z is the partition function, Ĥ|Ψn〉 = En|Ψn〉 and β = EJ/(kBT ) (where kB is
the Boltzmann constant). The coefficientsA and B are calculated using %̂th for the cor-
responding spin moments, for example

〈
Ĵ2
y

〉
th

= Tr
[
%̂thĴ

2
y

]
=
∑N

n=0
e−βEn
Z 〈Ψn|Ĵ2

y |Ψn〉.
Results from the numerical calculations are presented in Figs. 3.2(c) and (d). The
dashed lines in these plots stand for the case B = 0 and are obtained from an analyt-
ical formula for the spin-squeezing parameter [103], valid for sufficiently large N :

ξ2
φ(T ) =


|Λ|
√

Λ2 − 1 coth
(
β
√

Λ2−1
2

)
, Λ < −1,

√
1 + Λ coth

(
β
√

1+Λ
2

)
, −1 < Λ < 0,

1√
1+Λ

coth
(
β
√

1+Λ
2

)
, Λ > 0,

 (3.51)

under an assumption that visibility is unaffected by temperature. The thermal noise
is responsible for a spread of spin fluctuations in any direction, therefore it is justified
to approximate mean spin length

〈
Ĵx

〉
by formulas valid for T = 0.

Finite Resolution

Another source of noise that can impact the experiment is the finite resolution
in the detection of the atoms. In order to account for this effect in our formulas we
convolute the density in Eq. (3.35) with a Gaussian probability of detecting an atom
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Figure 3.2: Numerical calculations for N = 1000 for B with the
shaded regions corresponding to B < 0. The dashed lines in panels
(c)− (f) are analytic predictions for B = 0 obtained from Eq. (3.53).
Panels (a) and (b) show the effect of the energy imbalance (modeled
as a normal distribution with width σδ) at T = 0; (c) and (d) show the
case of finite temperature T , for σδ = 0; (e) and (f) show the effect
of finite resolution σ of spatial detection of the atoms, at T = 0 and
σδ = 0.

at position r instead on its true position r′:

%̃(r, tf ;ϕ) =
1

(
√

2πσ)3

∫
dr′ e−

(r−r′)2

2σ2 %(r′, tf ;ϕ) =

= 1 + ν̃ cos(k · r + ϕ), (3.52)

where ν̃ = νe−
1
2
k2σ2

is blurred visibility. Therefore, using %̃(r, tf ;ϕ), we can calculate
the sensitivity ∆2ϕest, which is equivalent to replacing ν with ν̃ in Eq. (3.44) and
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Figure 3.3: Coefficients A (gray lines) and B (black lines) in the
presence of the accumulated impact of all types of noise in a function of
the interaction strength Λ for both negative (left column) and positive
(right column) nonlinearity and N = 500. a): T = 0.1, σ = 0.1,
σδ = 0.01 (dashed line) and σδ = 0.05 (dash-dotted line) b): σδ = 0.01,
σ = 0.1, T = 0.1 (dashed line) and T = 0.2 (dash-dotted line) c):
σδ = 0.01, T = 0.1, σ = 0.05 (dashed line) and σ = 0.2 (dash-dotted
line). The shaded regions signal the sub-shot noise sensitivity (light
gray line) and Bell correlations (dark gray line) present in an ideal
noise-free case.

using the temperature dependent phase-squeezing parameter from Eq. (3.51). As a
result, we obtain the formula for the Bell witness, i.e.

B(T, σ) = ξ2
φ(T ) +

√
1− ν̃2 − 1

2ν̃2
. (3.53)

We plot the results for T = 0 on Figs. 3.2(e) and (f) showing B(0, σ) < 0 with the
shaded regions. The dashed lines correspond to the analytical predictions for B = 0.

In Fig. 3.3 we show the combined effect of all the sources of noise we presented so
far, both on A and B. In the top row a) we show that the increase of Gaussian width
σδ from 0.01 to 0.05 (i.e., from dashed to dash-dotted lines, with fixed T = 0.1 and
σ = 0.1) has great impact, especially on B in the regime of attractive interactions.
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Figure 3.4: The Bell witness B in the presence of atom number
fluctuations. (a) N̄ = 30 (top row) with σN =

√
N̄ (solid line) and

σN = 20 (dash-dotted line). (b) N̄ = 300 and σN =
√
N̄ (solid line)

and σN = 200 (dash-dotted line). Gray areas indicate regions where
B detects the Bell correlations, i.e. in the absence of atom number
fluctuations.

This can also be seen in the middle row b) when the temperature increases from
T = 0.1 to T = 0.2 (with fixed σ = 0.1 and σδ = 0.01). However, a loss of resolution
from 0.05 to 0.2 with fixed σδ = 0.01 and T = 0.2 does not have a strong effect in any
of the regions, as can be observed in the bottom row c). These observations can be
helpful for designing future experiments with entangled quantum gases.

Atom Number Fluctuations

In the last part of this section we include the atom number fluctuations. We
construct a mixture, based on the method in the supplementary materials of Ref. [100],
as follows

%̂σN ,Λ =

∞∑
N=0

PN |ψN,Λ〉〈ψN,Λ|, (3.54)

where |ψN,Λ〉 is the ground-state of the Hamiltonian (3.12) at δ = 0 and fixed N
and Λ, and PN is the probability for having N atoms in the system, modeled with a
Gaussian function of width σN , i.e.

PN ∝ exp

[
−(N − N̄)2

2σ2
N

]
. (3.55)

Here N̄ stands for the mean number of atoms in the system and the proportionality
stands for the normalization.

The angular momentum operators, Ĵx, Ĵy, Ĵz, act within a fixed-N subspace of the
total Hilbert space, therefore we divide the Bell operator from Eq. (3.40) by the atom
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number operator N̂ , which results with the witness analogical to that in Eq. (3.42),
namely

b(θ) = 2 cos2

(
θ

2

)
− 4x cos

(
θ

2

)
+ 8y2 sin2

(
θ

2

)
, (3.56)

where we introduce

x =

〈
Ĵx

N̂

〉
, y2 =

〈
Ĵ2
y

N̂

〉
(3.57)

and the expectation value is calculated on the state given with Eq. (3.54). This
expression can be optimized with respect to θ which leads to the inequality

B ≡ y2

x2
+

√
1− 4x2 − 1

8x2
< 0 (3.58)

signaling the presence of Bell correlations. In Fig. 3.4 we plot B for N̄ = 30 (top
row) with the typical fluctuations expected in the experiment at the shot-noise level,
i.e. σN =

√
N̄ ' 5.5 (solid line), and to compare, with the much greater value

σN = 20 (dash-dotted line). The bottom row presents the results for N̄ = 300

and analogically: σN =
√
N̄ ' 17.3 (solid line) and σN = 200 (dash-dotted line).

Additionally, we plotted gray regions indicating Bell correlations for the case with
no atom-number fluctuations (i.e., σN → 0). We observe small changes with the
fluctuations at the shot-noise level in both the low-N̄ and the high-N̄ case, because,
in a good approximation, B is intensive in N (see Eqs. (3.46), (3.47) and (3.48)). In
consequence both x and y2 have weak dependence on N in this regime. Only vast
atom number fluctuations shrink the region of Λ, for which the Bell correlations can
be detected by Eq. (3.56).

In this chapter we presented a method to detect non-local Bell correlations from
the interference pattern formed by atoms released from a double-well potential. We
found the relation between the Bell coefficient B introduced in Refs. [100, 108] with
the precision of the phase estimation through a fit of the one-body density to the
interference pattern. We showed the influence of the noise effects – energy imbalance
between the wells, non-zero temperature, finite resolution and atom number fluctua-
tions. The energy imbalance and finite temperature have a significant impact on the
regions where Bell correlations can be detected, especially for attractive interactions.
In the current experiments, the remaining two sources seem to be less destructive.
In the next chapter we will show that the bosonic Josephson junction can also be
achieved in spinor-1 condensates. We will consider a case where the system is not
described by the ground state of the Hamiltonian but, instead, is initially prepared
in the particular state. Such a state is a subject of unitary evolution which correlates
atoms and provides entangled states useful for metrology. In this scenario the quan-
tum Fisher information scales with the Heisenberg limit, although it varies during the
time evolution. We will show that the dynamics governed by the BJJ Hamiltonian
produce entangled states useful for quantum metrology.
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Chapter 4

Entanglement in the System of
Ultra-cold Atoms

In this chapter we report on the results of collaboration with dr hab. Emilia
Witkowska from the Institute of Physics at The Polish Academy of Sciences [109].
During the past three years we have been exploring spin-1 Bose-Einstein condenstates
for application in quantum metrology which resulted with articles published in [110,
111]. Although in the original work we presented a scheme for the dynamical stabi-
lization of entanglement, here we limit our description to analysis of the generation
of entangled states useful for ultraprecise interferometry. We start with the general
description of the spin-1 systems. We show similarities in the mean-field approxima-
tion between spinor (spin-1) and, as described in the previous section, the two-mode
condensate in a double-well potential. We derive the optimal interferometer rotation
during the entire time evolution and provide an efficient measurement choice in order
to obtain precision proportional to Heisenberg scaling.
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Multi-component Bose-Einstein condensates are acknowledged as highly control-
lable systems which could be used for the generation of entangled states [112–119]
for application in atomic interferometry [120, 121]. In this chapter, we focus on Bose
condensates with a total spin F = 1. The spin-1 condensate consists of three com-
ponents (modes) distinguished by the quantum magnetic number of internal levels
mF = 0,±1 with conserved magnetization of the system M = N+ − N−, where N±
is a number of atoms occupying m = ±1 level. The many-body Hamiltonian for such
a system has a form

Ĥ =

∫
drΨ̂†i (r)

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂i(r) +

∫
drΨ̂†i (r)

(
pmF + qm2

F

)
Ψ̂i(r)+ (4.1)

+
c0

2

∫
drΨ̂†i (r)Ψ̂†j(r)Ψ̂j(r)Ψ̂i(r) +

c2

2

∫
drΨ̂†i (r)Ψ̂†j(r)Fjk · FilΨ̂k(r)Ψ̂l(r),

with the summation convention going over all three mF states. The vector
F = (Jx, Jy, Jz)

T consists of spin-1 angular momentum matrices (for details see
App. A) and Ψ̂j(r) is a field operator annihilating an atom at the position r in the
given hyperfine state, satisfying the standard commutation relation

[
Ψ̂i(r), Ψ̂†j(r

′)
]

=

δijδ(r − r′). The first term is a single-particle kinetic energy with external trapping
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potential Vext(r) = m(ωxx
2 +ωyy

2 +ωzz
2)/2. The linear Zeeman effect is included in

the parameter p = gµBB, where g is the Landé g-factor, B is the strength of the mag-
netic field and µB is the Bohr magneton. The quadratic Zeeman coefficient q has two
contributions: from the external magnetic field (qB) and from the microwave or light
field (qMW ), leading to q = qB+qWM [122]. The part depending on the magnetic field
is given with qB = (µBB)2/(4∆Ehf ), where ∆Ehf is the hyperfine energy splitting.
Both the value and the sign of qMW can be tuned independently of qB by employing a
microwave field that is off-resonant with the other hyperfine state [123]. The param-
eter p is always positive, while the sign of q depends on ∆Ehf . The spin-independent
and -dependent coefficients, c0 and c2 respectively, describe elastic collisions of the
spin-1 atom expressed in terms of the scattering length a0 (a2) for two spin-1 atoms
in the combined symmetric channel of total spin 0 (2): c0 = 4π~2(a0 +2a2)/(3m) and
c2 = 4π~2(a2 − a0)/(3m).

To simplify the Hamiltonian (4.1) we use the single-mode approximation [124, 125],
which assumes that the spatial atomic density distribution is equal for each of the spin
components and is not affected by the dynamics of the system. The spatial wave func-
tion of each mode can be approximated by φmF (r) = φ(r) for mF = {−1, 0, 1}, where
φ(r) is a solution of the Gross-Pitaevskii equation with spin-dependent interactions
neglected [126]. In consequence the field operators can be decomposed in the following
way

Ψ̂j(r) = âjφ(r), (4.2)

where the boson operator âj annihilates atom in mode j and satisfies a standard
commutation relation

[
âi, â

†
j

]
= δij . The single mode approximation holds for the

case where the spin-independent part of the contact interaction dominates over the
spin-dependent part [127, 128]. Thus the Hamiltonian of the system (4.1) can be
written in the language of generators of SU(3) algebra (App. A) as follows

Ĥ = µN̂ − c′0N̂(N̂ − 1) + c′2(Ĵ2 − 2N̂)− pĴz + qN̂s, (4.3)

where c′0 and c′2 are modified, dependent on the number of atoms in the system
N , coefficients: 2c′i = ci

∫
dr|φ(r)|4. The operator Ĵ2 is the total spin operator,

Ĵz = N̂+ − N̂− is the population imbalance between modes mF = +1 and mF = −1,
N̂ = N̂+ + N̂0 + N̂− is the total particle number operator and N̂s = N̂1 + N̂−1. To
this end, we will consider a Hamiltonian of the form

Ĥ

c′2
= − 1

2N
Ĵ2 + qN̂s, (4.4)

where the constant terms, including linear Zeeman energy, were dropped and
c′2 = −1 corresponds to the case of ferromagnetic phase of spinor condensate [122,
129]. This system can be employed in experiments, e.g. in F = 1 hyperfine manifold
using Rb87 atoms [119, 130–133].

In the next section we will present a method of obtaining the phase portrait for
both the bosonic Josephson junction (BJJ) presented in the previous chapter and the
spinor system, and show their similarities from a certain perspective. We will analyze
how the presence of fixed points impacts the evolution of the initial states.
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4.1 The Structure of Classical Mean-Field Phase Space

We now turn our attention to two-mode systems. Let us recall the BJJ Hamilto-
nian considered in the previous chapter:

Ĥ2m = ~χŜ2
z − ~ΩŜx, (4.5)

where we set δ = 0 and changed the notation of pseudo-spin operators from Ĵi to Ŝi
to distinguish two-mode operators from the ones of the spinor system. We introduce
the subscript “2m” to distinguish, in general, objects that concern two-mode system.
In the previous chapter we obtained a mean-field approximation by replacing the
mode operators with complex numbers; here we will use an alternative method. We
calculate an average value of Hamiltonian (4.5) on the spin coherent state given by

|ϕ, θ〉2m = e−iϕŜxe−iθŜy |N, 0〉, (4.6)

where â†N√
N !
|0, 0〉 = |N, 0〉 and ϕ ∈ [0, 2π], θ ∈ [0, π]. It can be interpreted as a

double rotation of a maximally polarized state (with all atoms in the first mode). The
calculations give the following formula

H2m =
Λ

2
z2 −

√
1− z2cosϕ, (4.7)

where z ≡ cos θ and Λ = 2Nχ/2Ω, which is the same as in Eq. (3.8). The dynamics
of unitary evolution are governed by the Hamiltonian (4.7) set by the equations of
motion

ż = −
√

1− z2sinϕ (4.8a)

ϕ̇ = Λz +
z√

1− z2
cosϕ. (4.8b)

The structure of the phase space consists of fixed points and closed trajectories, lines
of constant energy, allowing us to study the dynamics of the system, see Fig. 4.1. The
distinctive features of the phase portrait are the fixed points at which the velocity
field (ż, ϕ̇) vanishes. Their position can be found by solving a set of equations (ż = 0,
ϕ̇ = 0), while the stability can be determined from a stability matrix [134]. We distin-
guish two important types of fixed points in our system, namely: a stable center fixed
point and an unstable saddle fixed point. In the former case all the trajectories near
the stable center fixed point are circular. In the latter case the trajectories along one
direction move toward and eventually converge at the critical point, while the trajec-
tories in the other direction start at the critical point and diverge away. Every other
trajectory moves toward but never converges at the critical point, before changing
direction and diverging away. The unitary evolution of the state can be represented
using Q-function (or Husimi function) by calculating Q2m(ϕ, θ) = |〈Ψ(t)|ϕ, θ〉2m|2 for
a given time. |Ψ(t)〉 is the state evolved with the Hamiltonian (4.5) according to

|Ψ(t)〉2m = e−
iĤ2mt

~ |Ψ0〉2m, (4.9)

where |Ψ0〉2m is the initial state, see Fig. 4.1.
As previously mentioned, for Λ > 0 we can distinguish three regimes depending

on the value of Λ, which from the perspective of phase space can be characterized by
a different number and positions of fixed points [85, 90]. For Λ� 1 (Rabi regime) the
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Figure 4.1: The classical mean-field phase space for the bimodal
system for different values of Λ. The upper panels show the view from
the positive side of x-axis, while the bottom panels show the view from
the negative side. The three regimes are distinguished as discussed in
the main text. Here we consider a case of Λ = 2 with the initial state
located around an unstable fixed point at the negative side of x-axis.

linear term in Hamiltonian (4.5) dominates and, in the limit of Λ→ 0, the evolution is
similar to resonant Rabi oscillations with N independent particles. The localization of
the two stable center fixed points is given by points (z, ϕ) = (0, 0) and (z, ϕ) = (0, π).
In the Josephson regime, at the bifurcation point Λ = 1, the fixed point localized
at (z, ϕ) = (0, π) becomes unstable and additionally we observe formation of two
new stable fixed points at (z, ϕ) = (±

√
1− 1

Λ2 , π). In the mean-field phase space,
the bifurcation point is defined by the moment when the characteristic “∞” shape
of trajectories centered around an unstable fixed point at (z, ϕ) = (0, π) appears,
see Fig. 4.1. For the Fock regime (Λ � N2) the equations of motion reproduce the
structure of the one-axis twisting (OAT) model [89], with two stable fixed points at
(z, ϕ) = (±1, ϕ), and an unstable one at (z, ϕ) = (0, ϕ).

The presence of the unstable saddle fixed point is characteristic for twisting evo-
lution, such as given with the Hamiltonian (4.5). The saddle point is given at
(z, ϕ) = (0, π) and has great significance for our system. For example, if the ini-
tial coherent state is localized around the instability (Fig. 4.2(a)), it is therefore given
by |φ, θ〉2m with φ = π and z = 0, then the saddle fixed point squeezes the variance of
the initial state of the spin component in the z-direction (Fig. 4.2(b)). The squeezed
states are useful for quantum metrology as they allow us to overcome classical limits
on sensitivity [88, 135]. Further evolution produces an over-squeezed state (as demon-
strated in Fig. 4.2(c)), which on the phase portrait is represented by an elongated
shape turning around the stable center fixed points. At this point, the state provides
the highest sensitivity for an optimum interferometric protocol as we will prove later
with numerical calculations. If the evolution continues beyond this point, the density
function on the phase portrait breaks in half and the further evolution is represented
by a superposition of two elongated shapes following the lines around stable points
(Fig. 4.2(d)), until the moment when they merge again at the unstable fixed point.
Although the sensitivity remains beyond the standard quantum limit, it diminishes
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(a) (b)

(c) (d)

Figure 4.2: The classical mean-field phase space for the bimodal
system (trajectories with arrows) with the Husimi function (colored
areas) for the state in Eq. (4.9), calculated for Λ = 1.5 andN = 100. a)
initial state localized at the unstable point (z, ϕ) = (0, π) represented
by |φ, θ〉BI with φ = π and θ. b) the unitary evolution squeezes the
state along z axis, and c) generates over-squeezed states curved around
stable fixed points. d) further evolution brakes the Husimi function
in half, and the two remaining parts merge later in the unstable fixed
point.

over time.
We now shift from the two- to the three-mode case and note that a similar struc-

ture of the phase portrait can also be found in the spin-1 Bose-Einstein condensates.
To demonstrate this, we introduce the symmetric and anti-symmetric bosonic an-
nihilation operators [136], ĝs = (â1 + â−1)/

√
2 and ĝa = (â1 − â−1)/

√
2, and the

corresponding pseudo-spin operators

Ĵx,σ = â†0ĝσ + â0ĝ
†
σ, (4.10a)

Ĵy,σ = i(â†0ĝσ − â0ĝ
†
σ), (4.10b)

Ĵz,σ = ĝ†σ ĝσ − â
†
0â0, (4.10c)

where σ = s and σ = a refer to symmetric and anti-symmetric subspace, respectively.
New operators have the following commutation relations, e.g. [Ĵx,σ, Ĵy,σ] = 2iĴz,σ. We
note that the symmetric subspace is spanned by the three operators

{Ĵx,s, Ĵy,s, Ĵz,s} = {Ĵx, Q̂yz,
1

2
(
√

3Ŷ + D̂xy)}, (4.11)

while the anti-symmetric subspace is spanned by the operators

{Ĵx,a, Ĵy,a, Ĵz,a} = {Q̂zx, Ĵy,
1

2
(
√

3Ŷ − D̂xy)}. (4.12)
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The Hamiltonian (4.4) can be rewritten in terms of symmetric and anti-symmetric
operators [136, 137] as

Ĥ3m

|c′2|
= − 1

2N
Ĵ2
x,s +

q

3
Ĵz,s −

1

2N
Ĵ2
y,a +

q

3
Ĵz,a +

− 1

2N

(
ĝ†sĝa + ĝ†aĝs

)2
(4.13)

up to the constant terms. The subscript “3m” denotes a three-mode system in this
instance. The above Hamiltonian consists of two, non-commuting bimodal Hamilto-
nians for symmetric and anti-symmetric space, as in Eq. (3.19), rotated in respect to
each other, with an extra mixing term coming from the Ĵ2

z operator. Therefore, we
expect that the mean-field phase space of the spinor system in each subspace is similar
to the one in the BJJ condensate in Eq. (3.8). In the case of the spinor condensate,
the mean-field phase space was already considered in [130]; nevertheless, here we are
proposing a different approach.

We focus on the symmetric subspace spanned by the symmetric pseudo-spin op-
erators Ĵx,s, Ĵy,s, Ĵz,s. (For the anti-symmetric mean-field subspace, see App. A.)
In order to obtain the structure of mean-field phase space we calculate the expecta-
tion value of Hamiltonian (4.4) on the spin coherent state defined for the symmetric
subspace as

|ϕ, θ〉3m = e−iϕĴz,s/2e−iθĴy,s/2|N0〉s (4.14)

where |N0〉s = ĝ†sN√
N !
|000〉 and ϕ ∈ (0, 2π), θ ∈ (0, π). This state is obtained by using a

similar pattern to the one in the bimodal system given by Eq. (4.6). The spin coherent
state in Eq. (4.14) can be rewritten as a double-rotated, maximally polarized state
|N0〉s in the symmetric subspace, corresponding to the situation when all atoms are in
the symmetric mode. The state |N0〉s is an eigenstate of Ĵz,s, i.e. Ĵz,s|N0〉s = N |N0〉s;
on the Bloch sphere spanned by the symmetric subspace, it is located on the north
pole. In terms of spin-1 operators the state reads |N0〉s ≡ e−iπ/4Q̂xy |N00〉. On the
south pole of the same Bloch sphere lies the state with N atoms in the mF = 0 mode,
â†0
N

√
N !
|000〉 = |0N0〉. Moreover, one can easily show that

|ϕ, θ〉3m =
1√
N !

[
ĝ†scos

θ

2
+ â†0sin

θ

2
eiϕ
]N
|000〉, (4.15)

up to the phase factor. The state in Eq. (4.15) is a coherent spin state in symmetric
subspace, similar to that defined in Eq. (3.20). The above expression can be used
to illustrate an arbitrary state |Ψ(t)〉 on the Bloch sphere in the symmetric subspace
using Q-function Q3m(ϕ, θ) = |〈Ψ(t)|ϕ, θ〉3m|2.

Following the pattern used for two-mode system, we calculate an average value of
the Hamiltonian (4.4) on the spin coherent state given in Eq. (4.14). We obtain

H3m =
Λ

2
(1− z2) cos2 ϕ+ z + 1, (4.16)

where z ≡ cosθ and Λ = −2/q. The equations of motion for conjugate variables (z, ϕ)
are

ϕ̇ = −Λz cos2 ϕ+ 1, (4.17a)

ż = 2Λ(1− z2) cosϕ sinϕ. (4.17b)
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Figure 4.3: The structure of phase portraits of the spinor system
versus Λ in the symmetric subspace. The upper panels show a view
of the north poles of the Bloch sphere, while the bottom panels show
a view of south poles. The structure is the same as the one for two-
mode system, provided that the latter is rotated by π/2 around the
y-axis. The three different regimes appear as well and are indicated
above the Λ axis. In this chapter, we focus on Λ = −2 and the initial
state located around the unstable saddle fixed point on the south pole
of the Bloch sphere.

The position of fixed points can be found by solving (ż, ϕ̇) = (0, 0) and their stability
can be determined, once again, from the stability matrix. To this end, we consider
Λ > 0 without loss of generality. The positive value of parameter Λ recovers the
same mean-field structure as in two-mode system, but rotated by π/2 around the
Ĵy,s and Ĵz,s axes (see Fig. 4.3). Therefore, similarly to the BJJ, we can also dis-
tinguish three different regimes, depending on the value of Λ. In the Rabi regime
(Λ→ 0) the evolution is dictated by the linear term, so two stable center fixed points
are located at both poles of the Bloch sphere, i.e. z = ±1. This is true up to the
point Λ = −1, where the bifurcation occurs. There, the point at z = −1 becomes
unstable and two additional stable center fixed points appear at (z, ϕ) = (−1/Λ, 0)
and (z, ϕ) = (−1/Λ, π). We observe the same “∞” shape as in the two-mode coun-
terpart. The Fock regime can be distinguished in the situation when the interac-
tion term in Hamiltonian (4.4) dominates. We find two stable center fixed points
at (z, ϕ) = (0, π/2) and (z, ϕ) = (0, 3π/2) and an unstable point along a meridian of
the Bloch sphere at ϕ = 0, π.

In the next section we will quantify entanglement using quantum Fisher informa-
tion (QFI), therefore we will focus on the Josephson regime for Λ = ±2, with the sign
“+” for bimodal (two-mode) system and “−” for spinor (three-mode) system. The
reason for this choice is the position of the unstable saddle fixed point, corresponding
to the position of the initial states of interest to us.

4.2 Quantification of Entanglement

In this section we will quantify entanglement using the QFI in the interferometric
protocol consisting of three steps: unitary evolution, phase imprinting and read-out
measurement. In Chapter 2 we showed that the QFI is a witness for entanglement
useful for quantum interferometry [138], so we will analyze the systems considered in
this chapter from the same perspective.

The scheme starts with the unitary evolution of the initially prepared state

|Ψ(t)〉k = Ûk(t)|Ψ0〉k, for k = 2m, 3m (4.18)



50 Chapter 4. Entanglement in the System of Ultra-cold Atoms

where |Ψ0〉k is the initial state and the unitary evolution is given by Û2m(t) = e−
itĤ2m

~

for bimodal system and by Û3m(t) = e−
itĤ3m

~ for spin-1 system. The initial states
for both systems are the spin coherent states in Eqs. (4.6) and (4.14) located around
the unstable saddle fixed point and have the following form for two- and three-mode
systems

|Ψ0〉2m = |0, π/2〉2m (4.19a)
|Ψ0〉3m = |0, π〉3m. (4.19b)

In the former case we have a coherent spin state given by Eq. (3.21). In the latter
case, the state is equivalent to |0, N, 0〉, easily obtainable in the experiments, located
on the south pole of the symmetric Bloch sphere.

In the next step the phase θ is imprinted on the system by a generic linear inter-
ferometric transformation e−iθΛ̂n , with Λ̂n = n · Λ̂, where Λ̂ is a vector of generators
spanning the bosonic SU(2) Lie algebra for two-mode system: Λ̂2m = {Ŝx, Ŝy, Ŝy}; or
SU(3) Lie algebra for the system of spinors: Λ̂3m = {Ĵx, Q̂yz, Ĵy, Q̂zx, D̂xy, Q̂xy, Ŷ , Ĵz}
(see App. A). The unit vector n defines the direction of rotation axis. This interfer-
ometric transformation corresponds to the rotation on the generalized Bloch sphere
and does not entangle the atoms. The output state of such transformation is then

|Ψ(θ)〉k = e−iθΛ̂n,k |Ψ(t)〉k, for k = 2m, 3m. (4.20)

The QFI sets the limit of the maximal possible precision of estimating the parameter
θ in quantum interferometry [64] and is given by the quantum Cramér-Rao bound
from Eq. (2.47):

∆θ > 1/

√
FQ[|Ψ(θ)〉, Λ̂n]. (4.21)

In this case, the QFI value depends on the input state and generator of an interfero-
metric rotation Λ̂n and for pure states is given by the variance of the generator

FQ = 4∆2Λ̂n. (4.22)

We recall two characteristic limits for the QFI value: the standard quantum limit
(SQL) and the Heisenberg limit (HL). The SQL sets maximal precision for fully sepa-
rable states, such as coherent states and is equal to N for spin-1/2 system and to 4N
for spin-1 system [67]. In general, the QFI is limited by the variance of the generator
of the interferometric transformation FQ 6 4∆2Λ̂n, which for separable states can be
rewritten as FQ 6 N(hmax − hmin)2, where hmax and hmin are the maximum and
minimum eigenvalues of Λ̂n, respectively. For qubits, and thus for any generator from
SU(2), (hmax − hmin) = 1, while in the case of qutrits (equivalent of qubits in spin-1
system) (hmax − hmin) = 2, hence the gain in the SQL for three-mode system. If the
QFI value is greater than the SQL, then the state is entangled [139]. The latter limit
bounds the QFI from above and, in the systems we consider here, is equal to N2 for
bimodal system and 4N2 for spinor system [67], where 4N2 is again a consequence of
FQ 6 N2(hmax − hmin)2.

In order to maximize the QFI we have to optimize the rotation direction n of the
generator Λ̂n. Thus, we recall another definition of the QFI from Chapter 2, namely

FQ[ρ̂, Λ̂n] = 4nT · Γ[ρ̂] · n, (4.23)
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(a) (b)

Figure 4.4: (a) The QFI (black solid line) calculated with Eq. (4.25)
for N = 600. Color lines correspond to variance multiplied by 4 of the
following generators: Λ̂n = (Ŝz − Ŝy)/

√
2 (purple dash-dotted line),

Λ̂n = (Ŝz + Ŝy)/
√

2 (green dash-double-dotted line) and Λ̂n = Ŝz
(blue dashed line). (b) Plots of the optimal direction of interferometric
rotation nmax, i.e. i-th component of the eigenvector of the covariance
matrix in Eq. (4.24) corresponding to λmax,2m. The x component is
presented with the black dashed line, y with the dark gray solid line
and z with the light gray dash-dotted line.

with the covariance matrix Γ[ρ̂] defined as

Γi,j [ρ̂] =
1

2

∑
k,l

(vk − vl)2

vk + vl
Re
[
〈k|Λ̂i|l〉〈l|Λ̂j |k〉

]
, (4.24)

where we used the eigenvalues and the eigenvectors of the input density matrix ρ̂ =∑
k vk|k〉〈k|. The optimal direction of the interferometric transformation can be found

by diagonalization of the covariance matrix. It corresponds to the eigenvector of the
largest eigenvalue λmax, which at the same time maximizes the QFI as FQ = 4λmax.

For bimodal system the covariance matrix has 9 elements built from the operators
in vector Λ̂2m. The QFI corresponding to two-mode system is then

FQ,2m = 4λmax,2m, (4.25)

where by λmax we denote the largest eigenvalue of the covariance matrix. The eigen-
value and thus the generator of the interferometric rotation can be found analytically
for the Hamiltonian (4.5) without coupling (Ω = 0) [140, 141]. Otherwise, we have
to perform numerical analysis. In Fig. 4.4(a) we plot the QFI (black solid line)
given by Eq. (4.25), and the variance of different linear generators multiplied by 4:
Λ̂n = (Ŝz− Ŝy)/

√
2 (purple dash-dotted line), Λ̂n = (Ŝz+ Ŝy)/

√
2 (green dash-double-

dotted line) and Λ̂n = Ŝz (blue dashed line). Initially the optimal generator is given
by linear combination of Λ̂n = (Ŝz − Ŝy)/

√
2 indicated by the purple dash-dotted

line, which corresponds to the direction of twisting in the mean-field phase portrait.
When the state is over-squeezed, the variance of this generator no longer corresponds
to the maximal value of the QFI as the direction of optimal generator changes, see
Fig. 4.4(b). In the real experiment such an optimization in time may be difficult, if
not impossible. Consequently, one may look for a simple, efficient generator for which
the variance does not necessarily saturate the maximized QFI. In this case Λ̂n = Ŝz
can be considered a good generator as its variance is slightly lower than the variance
of the optimal generator. Moreover, for the maximal value of the QFI we see that the
variance of Λ̂n = Ŝz saturates the QFI, i.e. FQ = 4∆2Ŝz.



52 Chapter 4. Entanglement in the System of Ultra-cold Atoms

Figure 4.5: Optimal generators of interferometric rotation Λ̂S,ij for
spinor system with fixed magnetization calculated for N = 100 atoms.
Black solid line represents the QFI optimalized over all directions n.
The corresponding values of the QFI for a given generator derived
in the main text are given with: FQ,3m = 4∆2Λ̂n,s (which equals to
4Λ̂n,a) (yellow dashed line), FQ,3m = 4∆2Λ̂n,5 (brown thin dashed
line) and FQ,3m = 4∆2Λ̂n,7 (thin blue line). Additionally we plot
QFI for generators: Λ̂n = Ĵx (red dashed line), Λ̂n = 1√

2
(Ĵx,s − Ĵy,s)

and Λ̂n = 1√
2
(Ĵxa + Ĵya) (purple dash-dotted and green dash-double-

dotted lines, respectively). We note that the QFI value for short-time
evolution is saturated by 4∆2

(
Ĵxs−Ĵys√

2

)
.

For spinors, vector Λ̂3m has 8 elements, and therefore the optimal direction of the
interferometric rotation is determined from the 8× 8 covariance matrix – the largest
eigenvalue λmax,3m of which corresponds to the QFI

FQ,3m = 4λmax,3m. (4.26)

Although there are 64 elements in the covariance matrix, only a few of them are non-
zero. This is because of the constant magnetization, which introduces the symmetry
of the covariance matrix and simplifies its form to a diagonal structure:

Γ = Γs ⊕ Γa ⊕ [Γ55]⊕ [Γ55]⊕ [Γ77]⊕ [0], (4.27)

where

Γs =

(
Γ11 Γ12

Γ12 Γ22

)
, Γa =

(
Γ11 −Γ12

−Γ12 Γ22

)
. (4.28)

As a result, the possible generators can be found analytically:
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(a) (b)

Figure 4.6: The scaling of the QFI with N as a function of time for
bimodal (a) and spinor (b) systems with |Λ| = 2. The values of N are
given in the legend.

Λ̂n,s =
Ĵx − γ12Q̂yz√

1 + γ2
12

, (4.29)

Λ̂n,a =
Q̂zx + γ34Ĵy√

1 + γ2
34

, (4.30)

Λ̂n,5 = D̂xy, (4.31)

Λ̂n,7 = Ŷ , (4.32)

where γij = (Γjj − Γii −
√

(Γii − Γjj)2 + 4Γij)/(2Γij) and the subscripts s, a, 5 and 7
denote generators set by eigenvectors of the largest eigenvalue in blocks Γs,Γa,Γ55 and
Γ77, respectively. The numerical calculations of the variances of these generators [109],
compared to the QFI, are plotted in Fig. 4.5. We observe that the optimal generator
is the one given by Λ̂n,s or Λ̂n,a, as both correspond to equal eigenvalues. We also plot

variance multiplied by 4 of generators such as: Λ̂n =
Ĵx,s−Ĵy,s√

2
(purple dash-dotted

line) which saturates the QFI for short-time evolution, Λ̂n = Ĵx,s (red dashed line)

which saturates the QFI at its maximum and Λ̂n =
Ĵx,a−Ĵy,a√

2
(green dashed-double-

dotted line) which saturates the QFI after the first maximum. We observe an analogy
to the two-mode system, where Ŝz, here Ĵx, is a simple, efficient generator providing
high value of the QFI close to the maximum. The direction of both generators, Ŝz
and Ĵx, is perpendicular to the direction along which the unstable saddle fixed point
is localized. In addition, for both systems, the linear combination of generators,

1√
2
(Ŝx− Ŝy) for spin-1/2 and 1√

2
(Ĵx,s− Ĵy,s) for spin-1 system, maximize the QFI for

short-time evolution.

4.2.1 Scaling of the QFI

Comparing the maximized QFI for both two-mode and three-mode systems, we ob-
serve the initial growth of the QFI up to the point where the system is over-squeezed.
The QFI in this region exhibits scaling with a number of particles, provided that the
time axis is properly re-scaled as Nt/ln(2N) for bimodal system (Fig. 4.6(a)), and
as t/ln(8N/3) for spinor system (Fig. 4.6(b)) corresponding to the time scaling of the
first maximum. (We prove this in the remaining part of this section.) On both plots
the QFI is calculated for the case of Josephson regime, |Λ| = 2, the reason being
that for two-mode system the presence of the linear coupling in the Hamiltonian (4.5)



54 Chapter 4. Entanglement in the System of Ultra-cold Atoms

Figure 4.7: The maximized QFI for spinor system FmaxQ,3m as a function
of Λ for N = 100. We demonstrate that the maximal entanglement is
generated for Λ ' −2.

accelerates creation of atom entanglement in respect to the OAT model (where cou-
pling is not present). It has been shown that the optimal evolution is obtained for
|Λ| = 2 [142] due to the fact that the angle between in- and out-going constant energy
lines in the mean-field phase space is equal to π/4 [142, 143]. Therefore, based on the
similarities of the mean-field phase portrait in three-mode system, we expect that this
also holds true for spinor condensates. In Fig. 4.7 we see that indeed the maximal
QFI is obtained for entangled states generated for Λ ≈ −2.

The initial states considered here are located around an unstable fixed point. The
scaling of the QFI for short-time evolution can be explained using a theory developed
in [144, 145]. We start with the two-mode system. In the first step we rotate the
Hamiltonian (4.5) around the x-axis of the Bloch sphere through π/4, since the angle
between the outgoing constant energy lines in the saddle fixed point and z-axis for
Λ = 2 is close to π/4. The transformation corresponds to the same rotation of the
mean field phase portrait, and as a result the outgoing trajectories lie along the y-
axis. Therefore, the largest fluctuations (that determine the QFI value) are located
along the y-axis. Next, we introduce a small parameter ε = 1/N and with its use we
transform the spin components as follows: ĥj =

√
εŜj . The commutation relations

now read [ĥi, ĥj ] = i
√
εĥkεijk and the rotated Hamiltonian (4.5) in the language of

the transformed spin components now reads

ˆ̃H2m =
1√
ε

(
ĥ2
z + ĥ2

y + ĥzĥy + ĥyĥz − aĥx
)
, (4.33)

where a = 2εΩ/χ, the energy unit is set to ~χ/(2
√
ε) and so the dimensionless time

is given by τ = χt/(2
√
ε). We calculate the Heisenberg equation of motion for the

operators of spin components, i.e. i∂tĥi = [ĥi, H̃2m]. The expectation values of the
first-order operator involve the terms of the first-order

〈
ĥi

〉
and the second-order

moments
〈
ĥiĥj

〉
, while the time evolution of the second-order moments is governed
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by the second-order and the third-order moments
〈
ĥiĥj k̂

〉
, and so on. This is the

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations of motion
for the expectation values of the products of operators [146]. To solve the set of equa-
tions of motions, the hierarchy needs to be truncated in order to obtain a closed set
of equations. We keep the first-order and the second-order moments and truncate the
BBGKY hierarchy by using the following approximation for the third-order moments:

〈ĥiĥj ĥk〉 ' 〈ĥiĥj〉〈ĥk〉+ 〈ĥj ĥk〉〈ĥi〉+ 〈ĥkĥi〉〈ĥj〉
− 2〈ĥi〉〈ĥj〉〈ĥk〉. (4.34)

With this approximation we obtain the equations of motion for expectation values
sj = 〈ĥj〉 and for the second-order moments δjk = 〈ĥj ĥk + ĥkĥj〉 − 2〈ĥj〉〈ĥk〉, as
follows:

ṡx = (δzz − δyy), (4.35)

δ̇zz = −4δzzsx − 2aδyz, (4.36)

δ̇yy = 4δyysx + 2aδyz. (4.37)

The initial conditions can be obtained by calculating averages for the spin coherent
state |0, π/2〉2m at τ = 0. We obtain: sx(0) = 1/(2

√
ε) and δzz(0) = δyy(0) = 1/2.

Eq. (4.36) is a non-homogeneous differential equation for which the solution of the
homogeneous part (a → 0) is δzz(τ) = δzz(0)e−f(τ) with f(τ) = 4

∫ τ
0 sx(t)dt. The

analysis of the full equation can be performed assuming δzz(τ) = C(τ)e−f(τ) with
C(τ) = C(0) − a

∫ τ
0 δyz(t)e

f(t)dt = δzz(0) + Φ(τ). The time dependent part of the
amplitude Φ(τ) can be neglected for two reasons. Firstly, Φ(τ) is of the order of the
parameter ε. Secondly, for the short-time expansion we have Φ(τ) ' Φ(0)+Φ̇(0)τ = 0
since δyz(0) = 0. Therefore, for the short times of evolution, the solution of Eq. (4.36)
can be well approximated by the homogeneous solution. Analogical reasoning can
be applied to the analysis of Eq. (4.37). As a result we obtain δyy(τ) = δyy(0)ef(τ).
Finally, Eq. (4.35) takes the form

ṡx(τ) = −sinh [f(τ)] . (4.38)

It has an analytical solution when the function f(τ) is expanded into the Taylor
series up to the first order: f(τ) ' f(0) + ḟ(0)τ . The self-consistency condition gives
f(0) = 0 and ḟ(0) = 4sx(0). Therefore, the approximated solution of Eq. (4.38) takes
the form [143]

sx(τ) = sx(0)− cosh(4sx(0)τ)− 1

4sx(0)
. (4.39)

As a result δzz, and thus using the same pattern for δyy, can be calculated

δyy = δyy(0)e
4sx(0)τ− sinh(4sx(0)τ)−4sx(0)τ

[4sx(0)]2 . (4.40)

Since sy(0) = 0 for a given initial state, the maximum of the QFI in the language
of transformed spin operators is given by

FQ,2m(τ) ' 4∆2Ŝy '
2

ε
δyy(τ). (4.41)

The maxima of Eq. (4.41) can be found at χtmax ' ln(2N)/N . Thus, we can calculate
the value of the QFI at tmax and obtain that FmaxQ,2m '

2
e

1
ε2
≈ 0.7N2 which corresponds
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to the maximum observed in Fig. 4.6(a).
The same analysis can be applied to the spinor system. First, we rotate the

spin-1 Hamiltonian (4.4) around the Ĵz,s by π/8 angle. The reason is to locate the
constant energy lines along the Ĵy,s axis of the Bloch sphere in the symmetric subspace;
however, the angle is half of the angle in the bimodal case because of the factor 2 in the
commutation relations, i.e. [Ĵi,s, Ĵj,s] = i2Ĵk,sεijk. Then, following the pattern from
the two-mode system, we introduce the small parameter ε = 1/N which transforms
the spin components into ĥj =

√
εĴj and q̂j =

√
εQ̂j . The rotated and re-scaled

Hamiltonian is given with

ˆ̃H3m = − 1√
ε

[
1

2

(
ĥx,s + ĥy,s

)2
+
(
ĥy,acos

π

8
+ ĥz,asin

π

8

)2

+
(
ĥzcos

π

8
+ q̂xysin

π

8

)2
+ an̂0 − an̂

]
, (4.42)

where n̂0 =
√
εN̂0, n̂ =

√
εN̂ , a = 2q/ε. The energy unit in this case is

√
ε|c′2|/2 and

the dimensionless time τ =
√
εt|c′2|/2~.

The Heisenberg equations of motion of the spin components in Hamiltonian (4.42),
truncated at the third order according to Eq. (4.34) and setting sj =

〈
ĥj

〉
, have the

following form

ṡzs = −(δys,ys − δxs,xs)−
√

2

4
(δya,ya − δxa,xa), (4.43a)

δ̇xs,xs = −2δxs,xsszs − aδxs,ys, (4.43b)

δ̇ys,ys = 2δys,ysszs + aδxs,ys, (4.43c)

for symmetric operators, and

ṡza = −1

2
(δys,ys − δxs,xs)−

√
2

2
(δya,ya − δxa,xa), (4.44a)

δ̇xa,xa = −
√

2δxa,xasza − aδxa,ya, (4.44b)

δ̇ya,ya =
√

2δya,yasza + aδxa,ya, (4.44c)

for anti-symmetric operators. (The commutation relations between any of the SU(3)
operators can be found in Table A.1 in Appendix A.) The initial conditions for the
above sets of equations can be calculated on the spin coherent state |0, π〉3m giving:
szσ(0) = −1/

√
ε and δxσ,xσ(0) = δyσ,yσ(0) = 1 for σ = s, a. We neglected some

terms in the Eqs. (4.43) and (4.44), such as δz,z and δqxy,xy, since their initial average
values are 0, and remain insignificant in latter times. The equations for symmetric
and anti-symmetric operators are similar to those in the bimodal case. However, there
are two differences: (i) szσ (with σ = s, a) in Eqs. (4.43a) and (4.44a) play the role
of sx in Eq. (4.35) and (ii) symmetric and anti-symmetric subspaces are coupled to
each other in Eqs. (4.43a) and (4.44a). By following the analysis from the two-mode
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system we obtain

szs(τ) = szs(0)−

− cosh(2szs(0)τ)− 1

2szs(0)
−
√

2

4

cosh(
√

2sza(0)τ)− 1√
2sza(0)

, (4.45)

sza(τ) = sza(0)−

− 1

2

cosh(2szs(0)τ)− 1

2szs(0)
−
√

2

2

cosh(
√

2sza(0)τ)− 1√
2sza(0)

. (4.46)

Please note: the coupling of the symmetric and anti-symmetric subspaces persists and
has to be taken into account while explaining the scaling of δxσ,xσ; thus, we need to
calculate time derivatives of both variances in order to express the relation between
cosh functions with different arguments. As a result, we find that the maximum of
the QFI can be approximated by

FQ,3m ' 4∆2Ĵxs ≈
1

ε
δxs,xs(τ). (4.47)

Once again, we search for the extremum of the expression (4.47) and find that the
maximum of the QFI occurs when |c′2|tmax/~ = ln(8N/3). The value of the QFI
calculated for tmax gives FQ,3m ' 16

3 e
−2/3N2 ≈ 2.8N2. Although the results for spinor

condensate do not exactly agree with numerical calculations, the results recover the
time scaling and Heisenberg scaling of the QFI. The discrepancy may be an effect of
neglecting some terms in the Eqs. (4.43) and (4.44) that would impact the relation
between the “cosh” functions.

In the next section we will provide an efficient measurement that can be used to
obtain phase estimation at the level of the optimal generator Λ̂n.

4.3 Efficient Measurement

The uncertainty of estimation of the parameter θ can be obtained using the signal-
to-noise ratio from the method of moments in Eq. (2.36) as

∆θ2 =
∆2Ŝ

|∂θ
〈
Ŝ
〉
|2

(4.48)

where ∆2Ŝ =
〈
Ŝ2
〉
−
〈
Ŝ
〉2

is the variance of the signal Ŝ representing the choice of
measurement. In general, the precision of the estimation of parameter θ is limited by
the quantum Cramér-Rao bound:

1

∆θ2
≤ FQ. (4.49)

Although the QFI gives the maximal possible precision, its measure requires complete
tomography of the state [147]. The inverse of the signal-to-noise ratio is less sensitive
to the change of the parameter θ; nevertheless, this method requires measurement
of the first and second moments of the observable Ŝ, which in some special cases
can saturate Eq. (4.49). In general, a recipe for finding a good measurement Ŝ does
not exist. Nevertheless, in some cases optimal Ŝ is known, like the parity operator
for the Greenberger-Horne-Zeilinger (GHZ) state [148, 149] or Ĵ2

z for the spinor sys-
tem [110]. Also, the nonlinear squeezing parameter was recently proposed [150] to
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Figure 4.8: The QFI (black solid line) calculated using maximal
eigenvalue of the covariance matrix from Eq. (4.24) in bimodal sys-
tem. The inverse of the signal-to-noise ratio of the parity measure-
ment Ŝ = P̂2m = (−1)N/2−Ŝx , with generator Λ̂nmax

given by: the
eigenvector corresponding to λmax,2m(t) (yellow dash-dotted line) and
Ŝz (red dashed line). Numerical calculations performed for N = 600.

saturate the QFI for short-time evolution for bimodal condensates. However, it re-
quires the measurements of higher order moments and correlations. In the systems we
are considering here, we will show that the parity operator provides sensitivity with
Heisenberg scaling. The parity is a well-defined observable in quantum mechanics
and its measurement is useful for quantum metrology [147, 151] in both the optical
and atomic domains for non-Gaussian quantum states. It remains an experimental
challenge due to the requirement of a single atom resolution, nevertheless it has been
partially demonstrated experimentally [152–159].

We start by considering the two-mode system. We consider a parity operator of a
form P̂2m = (−1)S−Ŝx = (−1)N/2−Ŝx used in [150] as an optimal measurement for non-
Guassian states, which commutes with the Hamiltonian (4.5),

[
P̂2m, Ĥ2m

]
= 0. The

initial state given in Eq. (4.19a) is the eigenstate of P̂2m, i.e. P̂2m|Ψ0〉2m = |Ψ0〉2m, and
consequently P̂2m|Ψ(t)〉2m = |Ψ(t)〉2m. Additionally, we have
Λ̂nmaxP̂2m = −P̂2mΛ̂nmax , where Λ̂nmax is the SU(2) generator maximizing the QFI.
This relation also holds for the general generators of the form Λ̂n = aŜz + bŜy, where
a2 + b2 = 1.

Considering these properties we can calculate precision of the phase estimation
given with Eq. (4.48). Firstly, we expand the expectation value of the parity operator
on the state with the accumulated phase, |ψ(θ)〉2m, up to the leading terms in θ

2m〈ψ(θ)|P̂2m|ψ(θ)〉2m = 1− 2θ2
2m〈ψ(t)|Λ̂2

nmax |ψ(t)〉2m + 0(θ3), (4.50)



4.3. Efficient Measurement 59

Figure 4.9: The QFI (black solid line) calculated using maximal
eigenvalue of the covariance matrix from Eq. (4.24) in spinor system.
The inverse of the signal-to-noise ratio of the parity measurement Ŝ =

P̂3m = (−1)N−Ĵz,s (green double-dotted line) and Ĵ2
z (orange dashed

line), with Λ̂n = Ĵx. Numerical calculations performed for N = 100.

and thus the variance can be expressed as

∆2P̂2m = 4θ2〈Λ̂2
nmax〉+ 0(θ3), (4.51)

since 〈P̂2
2m〉 = 1. Then, we perform the same expansion of the derivative, namely

∂θ〈P̂2m〉 = −4θ〈Λ̂2
nmax〉+ 0(θ2). (4.52)

Finally, using Eqs. (4.51) and (4.52) in the precision given by Eq. (4.48), we arrive
with a formula

∆θ−2|θ=0 = 4∆2Λ̂nmax , (4.53)

which saturates the QFI due to the fact that
〈

Λ̂nmax

〉
= 0.

We plot the results in Fig. 4.8 choosing the optimal generator Λ̂nmax numerically
as the eigenvector of the highest eigenvalue of the state at given moment t (yellow
dash-dotted line) and simpler one given by Λ̂n = Ŝz (red dashed line). Indeed, we
observe that the parity operator is the optimal choice to saturate the QFI.

The same procedure can be performed for the spin-1 system with the parity op-
erator chosen as P̂3m = (−1)J−Ĵz,s = (−1)N−Ĵz,s . Here, as well, parity commutes
with the spinor Hamiltonian,

[
P̂3m, Ĥ3m

]
= 0 and the state produced by the unitary

evolution is the eigenstate of the parity operator P3m|Ψ(t)〉3m = |Ψ(t)〉3m at any time
t. Considering the optimal generator of interferometric transformation for spinor sys-
tem of the form Λ̂nmax = aĴx,s + bĴy,s with a2 + b2 = 1 and following the same steps
we used for the two-mode system we obtain ∆θ−2|θ=0 = 4∆2Λ̂nmax , which saturates
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the variance of the optimal generator. We plot the results in Fig. 4.9 for a generator
given by Λ̂n = Ĵx where the double dotted line represents the inverse of Eq. (4.48) for
Ŝ = P̂3m. Additionally, we can show that in this case the measurement Ŝ = Ĵ2

z also
saturates the QFI (see Fig. 4.9 (dashed green line)). This choice of the measurement
is effective because the magnetization is a constant of motion for the spinor system
considered here. Therefore, saturation of the QFI for this measurement can be proved
analytically as well.

In this chapter we showed that the structure of the mean-field phase portrait in
the system of spin-1 condensate is similar to that of the BJJ system. In both cases,
the unstable saddle fixed point squeezes the state entangling the atoms, providing
useful states for quantum metrology. We presented an analysis of the best generators
of the interferometric transformation, enabling us to obtain precision with Heisenberg
scaling. With both analytical and numerical calculations, we showed that for short-
time evolution the QFI scales with the number of atoms. Additionally, we proved that
parity is an optimal measurement which saturates the QFI. In our calculations, we
neglected any source of noise; nevertheless in the context of parity measurement we
would like to address the problem of detection noise. For the signal-to-noise ratio in
Eq. (4.48), the effect of detection noise is included by replacing Ŝ with ˆ̃S = Ŝ+ δ̂S . An
independent Gaussian operator δ̂S satisfies

〈
δ̂S

〉
= 0 and

〈
δ̂2
S

〉
= σ2 [160]. Therefore,

in order to preserve high precision for measurement, single-atom detection resolution
is required (σ2 . 1). Recently, the single atom imaging resolution was presented for
single trapped atoms and optical lattices using fluorescence imaging [161, 162], and
also in the context of mesoscopic ensembles in a cavity, where the number of atoms is
estimated from the shift in the cavity frequency [163]. Moreover, in bimodal and spinor
systems, the detection resolution near a single-atom level has been obtained [164,
165] with the possibility of further enhancement. Therefore, our measurement scheme
can be realized with current state-of-art. In the next chapter we will present a new
method for detecting entanglement and Bell correlations in many-body systems, and
then apply our results to the systems of one-dimensional spin chains.
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Chapter 5

Quantum Correlations in Spin
Chains

In this chapter we introduce a class of Bell inequalities, which allows for a sys-
tematic analysis of correlations with no assumptions on how the local outcomes are
bounded [166–168]. We start in Section 5.1 with the construction of the correlator for
N qubits and analyze how the information about many-body entanglement and non-
locality can be extracted from the single element of the density matrix. We illustrate
our results with spin chain systems of an experimentally accessible quantum Ising
model [169–172] in Section 5.2, and an XXZ spin chain [173, 174] and a Majumdar-
Ghosh model [175, 176] in Section 5.3. The method presented here allows one to
differentiate between the cases where the correlations in the state extend over all
spins [138, 177] and the cases where fewer spins are entangled/nonlocally correlated.
The experimental application of our protocol is reachable with the current state-of-
art [162, 178]. Please note: this method can be applied to any multi-qubit state,
such as many-photon configurations [179, 180] or Bose-Einstein condensates [47, 181],
which is demonstrated in the last chapter of this thesis.
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Ensembles of qubits are ideally suited for the studies of quantum phase transi-
tions [182], many-body entanglement [71] or nonlocality [99]. States of correlated
qubits are essential in quantum-enhanced metrology [71, 147], quantum-information
processing [183] and tests of quantum mechanics. The precise control of the quan-
tum many-body states is possible in the field of quantum simulators [184], including
the systems of ultra-cold atoms [112–114, 185–189], trapped ions [11, 190–195] and
super-conducting qubits [196–198]. With growing interest in quantum correlations,
the precise characterization of many-qubit systems is relevant from the experimen-
tal point of view. For example, measures of entanglement, e.g. the entanglement
entropy [199–206] or negativity [207–209], require a precisely reconstructed density
matrix which makes experimental measurements very demanding [210, 211]. Here we
show that even a single element of the density matrix – associated with the formation
probability [212–215] – is sufficient to extract precise information about many-body
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entanglement [25] and Bell nonlocality [3, 4, 216]. In the first section we will introduce
an N -qubit correlator carrying information about a multitude of quantum features.

5.1 The Bell Inequality for N Qubits

Let us adapt Bell’s gedanken experiment from Chapter 1 to a system of N parts.
A measurement on each party yields two binary results, σ(k)

x = ±1 and σ
(k)
y = ±1,

where the superscript k ∈ {1, 2..., N} labels the k-th body. We take a correlator

CN =
〈
σ

(1)
± · . . . σ

(N)
±

〉
, (5.1)

where σ(k)
± = 1

2(σ
(k)
x ± iσ(k)

y ) and the “±” sign can be chosen independently for each
party. According to Bell’s original argument, see Eq. (1.9), the correlator is consistent
with the local hidden-variable theory (LHV) if CN can be expressed in terms of a
probability distribution p(λ) of some random (hidden) variable λ, i.e.

CN =

∫
dλ p(λ)σ(1)(λ) · . . . · σ(N)(λ). (5.2)

Using a Cauchy-Schwarz inequality, see Eq. (2.14), for EN = |CN |2 we obtain the Bell
inequality [166, 217] in the following form

EN 6
∫
dλ p(λ)|σ(1)(λ)|2 · . . . · |σ(N)(λ)|2. (5.3)

Since
∣∣σ(k)(λ)

∣∣2 = 1
2 , we have

EN 6 2−N , (5.4)

which holds true for all systems consistent with a local hidden variable theory. For
quantum systems each σ

(k)
± (λ) is replaced by the Pauli rising/lowering operator for

k-th qubit, giving the Bell inequality in the form

EN =

∣∣∣∣∣
〈

N⊗
k=1

σ̂
(k)
±

〉∣∣∣∣∣
2

6 2−N . (5.5)

Violation of the above inequality signals that the system is nonlocal. The correlator in
Eq. (5.1) can also detect entanglement. To show this, we consider a separable system,
i.e. a system described with the density matrix

%̂N =

∫
dλ p(λ)

N⊗
k=1

%̂(k)(λ). (5.6)

Using the relation Tr
[
%̂(k)(λ)σ̂

(k)
+

]
=
∣∣∣〈σ̂(k)

+

〉∣∣∣2
λ
6 1

4 we obtain a bound for the class
of separable states

EN 6
∫
dλ p(λ)

N∏
k=1

∣∣∣〈σ̂(k)
+

〉∣∣∣2
λ
6 2−2N . (5.7)
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Violation of inequality (5.7) signals the presence of entanglement in the system [168].
Since the following results are illustrated with the spin ensembles, from this point
we refer to qubit as a single spin-1/2 state for which the two levels can be taken as
“spin-up” | ↑〉 and “spin-down” | ↓〉.

The correlator in Eq. (5.5) can be expressed with a single element of the density
matrix. For example, if we choose the “+” sign for each operator therein, then, since
σ̂

(k)
+ | ↓k〉 = | ↑k〉, the correlator couples |ψa〉 ≡ | ↓1, . . . , ↓N 〉 with |ψb〉 ≡ | ↑1, . . . , ↑N 〉.
Therefore we have EN = |%a,b|2, where %a,b is the matrix element corresponding

to |ψa〉〈ψb|, proving that information about entanglement and nonlocality can be
extracted from a single element of the density matrix. The correlator EN has a size-
independent upper bound

EN = |%a,b|2 6 %a,a%b,b 6
1

4
. (5.8)

As a consequence, while the inequality (5.7) can be violated starting from N = 2, the
inequality (5.4) requires at least N = 3. Note that this correlator is maximal, EN = 1

4 ,
for the Greenberger-Horne-Zeilinger (GHZ) state

|ψ〉 =
1√
2

(
| ↑〉⊗N + | ↓〉⊗N

)
. (5.9)

We showed how the single element of density matrix can be used to determine
correlations in the system. In the next section we provide a few examples of quan-
tum states to demonstrate that EN provides detailed information on multiparticle
entanglement and nonlocality.

5.1.1 Many-body Entanglement and Nonlocality

Consider a system where only two spins are entangled, while the other N − 2 are
separable, i.e.

%̂N =

∫
dλ p(λ)

(
N−2⊗
k=1

%̂(k)(λ)

)
⊗ %̂2(λ). (5.10)

The number in the subscript of the density matrix stands for the number of spins it
describes, while the superscript (k) marks a single k-th spin. In this case, the CSI
bounds the correlator EN in the following way

EN 6
∫
dλ p(λ) EN−2(λ)

∫
dλ p(λ) E2(λ) 6 4−(N−1). (5.11)

The correlator EN−2(λ) is calculated with the product state of
⊗N−2

k=1 %̂(k)(λ), while
E2(λ) with the density matrix of the remaining two entangled spins %̂2(λ). The upper
bound 4−(N−1) is based on Eq. (5.8). Inequality (5.11) is saturated by a product of a
two-spin GHZ state, see Eq. (5.9), and N − 2 states of a form

|ψk〉 =
1√
2

(
|↑k〉+ eiϕk |↓k〉

)
, (5.12)

with ϕk as an arbitrary phase. If the bound in Eq. (5.11) is violated, it signals that
either more pairs than just one are entangled or the entanglement extends for more
than two spins. However, if we consider a state with an even number of spins N for
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which all atoms are pairwise entangled, i.e.

%̂N =

∫
dλ p(λ)

N
2⊗

k=1

%̂
(k)
2 (λ), (5.13)

where %̂(k)
2 (λ) is a density operator of the k-th pair, then the violation of inequality

EN 6 4−
N
2 signals that at least three spins are entangled.

For the systems with entanglement extended over all-but-one spin given with

%̂N =

∫
dλ p(λ) %̂N−1(λ)⊗ %̂(N)(λ), (5.14)

the correlator will take values from the range ] 1
32 ,

1
16 ]. If EN > 1

16 then all the particles
would be entangled.

Analogically, from the value of EN we can also extract information about the extent
of nonlocal correlations in the spin system. For instance, when the LHV theory cannot
explain correlations among more than three spins, then the inequality reads

EN 6
∫
dλ p(λ) EN−3(λ)

∫
dλ p(λ) E3(λ) 6 2−(N−1). (5.15)

The bound of the above inequality is calculated based on the fact that for the locally
correlated N − 3 spins EN−3(λ) 6 2−(N−3), while E3(λ) 6 2−2. The violation of the
inequality (5.15) and EN ∈] 1

16 ,
1
8 ] implies that N − 1 spins are nonlocally correlated.

The correlator takes value from the range EN ∈]1
8 ,

1
4 ] only for systems where the

nonlocality extends over all the spins.
In the following sections we will present these considerations in the context of

spin-chain systems, for which the correlator Em takes the form

Em =
∣∣∣〈σ̂(1)
± ⊗ σ̂

(2)
± ⊗ σ̂

(3)
± . . .⊗ σ̂(m)

±

〉∣∣∣2 , (5.16)

where the average value is calculated on a ground state of some Hamiltonian. The
correlator in Eq. (5.16) can be optimized by the proper choice of signs based on the
expected structure of correlations in a given state. This can be done, for example,
by looking at the largest off-diagonal element of the density matrix in the local spin
basis. The correlators given by Eq. (5.16) are known as formation probabilities and
have been studied in the thermodynamically large systems of spin-chains [212–215,
218–223].

We consider finite systems and provide detailed insight into the structure of entan-
glement and nonlocality in the ground states of experimentally relevant Hamiltonians.
In the next section we show our result in the context of a one-dimentional Ising Hamil-
tonian.

5.2 Ising Hamiltonian

Let us consider a one-dimensional Ising Hamiltonian

Ĥ = −J
N−1∑
j=1

σ̂(j)
z σ̂(j+1)

z − h
N∑
j=1

σ̂(j)
x , (5.17)
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where J represents the energy interaction between nearest neighbors, the parameter h
is the magnitude of the external magnetic field in the x-direction and σ(k)

i is i-th Pauli
operators acting on k-th spin. For J ∝ h the model experiences a phase transition
between an ordered and a disordered regime. The signs in this Hamiltonian are
conventional, and for the choice in Eq. (5.17), J < 0 corresponds to antiferromagnetic
interactions, while J > 0 to ferromagnetic interactions. The upper limit in the sum
of the interaction term implies open boundary conditions.

In the case of strong antiferromagnetic interactions, J → −∞, the ground state
of the Hamiltonian (5.17) is two-fold degenerated and exhibits antiferromagnetic or-
dering. It is given by a superposition of two antiferromagnetic states called the Néel
state [224, 225]

|ψ〉 =
1√
2

(|↑↓↑↓ . . .〉+ |↓↑↓↑ . . .〉) . (5.18)

For J →∞ the ground state is also degenerated. Ferromagnetic interactions favor all
spins aligned in the same direction and as a result it is given by the GHZ state

|ψ〉 =
1√
2

(| ↑↑ ... ↑〉+ | ↓↓ ... ↓〉) . (5.19)

In the remainder of this section we focus on the antiferromagnetic Ising Hamilto-
nian of a form

Ĥ =
N−1∑
j=1

σ̂(j)
z σ̂(j+1)

z + g
N∑
j=1

σ̂(j)
x , (5.20)

where g = h/J is now the control parameter. The system exhibits a phase transition
at |g| = 1, between ordered (|g| < 1) phase and disordered (|g| > 1) phase.

We find the ground state of the Ising model by performing a numerical diagonal-
ization of the Hamiltonian (5.20) for N = 6. Based on the expected structure of the
eigenstate corresponding to the lowest eigenenergy for strong interactions (g → 0), we
choose a correlator in the form of rising and lowering operators alternating from site
to site

Em =
∣∣∣〈σ̂(1)

+ ⊗ σ̂
(2)
− ⊗ σ̂

(3)
+ . . .⊗ σ̂(m)

±

〉∣∣∣2 , (5.21)

where m ∈ [2, 6]. We plot correlators E2 to E5 as a function of g in Fig. 5.1 in
relation to entanglement (4−m) and nonlocality (2−m) bounds. While the lowest order
of correlator (m = 2) implies entanglement in the system, the Bell correlations are
witnessed only with m = 5. The zero value of the correlator at g → 0 is a consequence
of the structure of the ground state in a vanishing magnetic field – the Néel state, see
Eq. (5.18). Thus tracing out the sixth spin results with a classical mixture

ρ̂ =
1

2
(| ↑↓↑↓↑〉〈↑↓↑↓↑ |+ | ↓↑↓↑↓〉〈↓↑↓↑↓ |) (5.22)

and the information in the off-diagonal elements is lost. With g � 1 the interactions
are negligible and so the ground state resembles that of noninteracting spins, and
therefore the value of the correlators tends to 4−m in the limit of g → ∞. The Bell
correlations are observed for m = 5 around the critical point g = 1 of the quantum
phase transition and, moreover, the lower order correlators reach their maximal value.
In this region the correlation length is large (in the thermodynamic limit it approaches



66 Chapter 5. Quantum Correlations in Spin Chains

Figure 5.1: Correlators Em for m = 2 . . . 5 as a function of g calcu-
lated with the ground state of the Ising Hamiltonian (5.20) for N = 6.
The horizontal dashed lines denote the entanglement bound 4−m (red)
and the nonlocality bound 2−m (blue).

infinity) and so a partial trace of a single spin does not completely destroy correlations.
As a result, the value of the lower order correlators Em remains sufficiently large
suggesting that the hierarchy of correlators Em is a useful tool for exploring quantum
correlations.

The full correlator for m = 6 is plotted separately in Fig. 5.2. The maximum value
of E6 is obtained in the region of strong interactions (g = 0) as the ground state is given
by a maximally entangled state given in Eq. (5.18). The plot presents all the bounds
derived from our previous discussion, introduced in Eqs. (5.10) and (5.15). Whenever
E6 < 4−6 the state is not entangled and the correlation can be reproduced with a
separable state of 6 spins. This is illustrated on the RHS bottom with six unboxed
arrows. If E6 ∈]4−6, 4−5[, then the correlation can be reproduced with a system
of two entangled spins and the other four forming a separable state, i.e. described
with the density matrix given in Eq. (5.10). The corresponding pictograph represents
two spins in a box, while the other four remain unboxed. The states with two and
three entangled pairs of spins explain correlations when E6 ∈]4−5, 4−4[ (2x2x1x1)
and E6 ∈]4−4, 4−3[ (2x2x2), respectively. Analogically, the Bell correlations can be
explained on the basis of a full LHV theory when E6 < 2−6. Breaking this inequality
signals that some of the spins are nonlocally correlated, depending on the value of E6.
All the other cases are shown in Fig. (5.2) where boxed spins represent correlations
between the spins – either entanglement on the RHS or nonlocality on the LHS.

5.2.1 Long-range Interactions

We will now consider a case where long-range interactions are present in the system
of the Ising model. This can be done by adding a term connecting every spin with
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Figure 5.2: The full six-spin correlator E6 (solid black line) calculated
with the ground state of the Hamiltonian (5.20) as a function of g.
The horizontal red (entanglement) and blue (nonlocality) dashed lines
separate regions, where E6 can be reproduced by a spin system with a
specific multiparticle correlation; see the main text for an explanation.

the next-to-adjacent one to the Hamiltonian (5.20) as follows

Ĥ =

N−1∑
j=1

σ̂(j)
z σ̂(j+1)

z + g

N∑
j=1

σ̂(j)
x +K

N−2∑
j=1

σ̂(j)
z σ̂(j+2)

z . (5.23)

The ferromagnetic long-range interactions (K < 0) will favor a setting where odd
and even spins are oriented in the same direction. Thus, the correlations in the
ordered phase (g < 1) will be strengthened. However, the antiferromagnetic long-
range interractions (K > 0) will cause frustration in the spin chain due to competition
between long- and short-range interactions, manifested by the appearance of the pairs
of adjacent spins oriented in the same direction. Therefore, the structure of the ground

Figure 5.3: The correlator E6 calculated with the Hamiltonian (5.23)
for K = 0 (solid black line), K = 0.4 (dashed line) and K = −0.4
(dash-dotted line).
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Figure 5.4: Blue dots represent results of finite size scaling of the
position of the maximum of EN/2 using N = 8, 12, 16, 20 (an inset
shows an example of scaling for K = 0.3). The red line denotes the
quantum phase transition separating the antiferromagnetic phase from
the paramagnetic phase [226–228]. The error bars come from the linear
fit estimation of the finite size scaling. The shaded region in the inset
represents the 0.9 confidence interval.

state is disturbed and the value of the correlators will be diminished. In Fig. 5.3 we
compare the E6 for K = 0 and K = ±0.4, showing that indeed the spin chains
behave as expected. Including the long-range interactions in the Hamiltonian (5.23)
enables us to examine the relation between the hierarchy of the correlations and the
quantum phase transition. In the case of a competing interaction (K > 0), the
position of the critical point for K < 0.5 is given by gc = 1 − 2K [226–228]. The
plot presented in Fig. 5.1 suggests that the critical point at gc = 1 for a short-range
Ising model (see Eq. (5.20)) may be related to the maximal value of the correlator E3.
Consequently, we perform the finite-size scaling of the position of the maximum of EN/2
for chains of length N = 8, 12, 16, 20 for different values of K. Fig. 5.4 confirms that
the maximal value of the correlator EN/2 corresponds to the position of the quantum
phase transition. However, EN/2 is not a standard order parameter [182] since it does
not exhibit a singularity at the critical point.

The results presented in this section demonstrate that the hierarchy of the corre-
lations does not only provide detailed tomography of quantum correlations, but also
helps to understand the quantum properties of the many-body systems such as quan-
tum phase transitions. In the next section we will examine the XXZ spin chain model.
We will derive analytical formulas for the correlators and then express them using the
Bethe ansatz solution. Additionally, we will show the impact of temperature on the
hierarchy.
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5.3 One-dimensional Heisenberg Model

The Heisenberg model describes spins interacting with nearest-neighbors. In a
one-dimensional case such system forms a chain or, if the periodic boundaries are
considered, a ring. In the most general case, the Heisenberg’s Hamiltonian is

HXY Z =

N∑
i=1

(JxŜ
(i)
x Ŝ(i+1)

x + JyŜ
(i)
y Ŝ(i+1)

y + JzŜ
(i)
z Ŝ(i+1)

z )− hz
N∑
i=1

Ŝ(i)
z , (5.24)

where N is the number of spins, Jx,y,z are coupling constants corresponding to spin
projection operators Ŝ(i)

α in α ∈ {x, y, z} direction acting on i-th site. Assuming
periodic boundary conditions the identity ŜN+1

α = Ŝ1
α holds. The effect of the external

magnetic field along z-axis is included with the last term in Eq. (5.24), where hz is
the field strength.

In this chapter we focus on the spin-1/2 systems, although, in general, the Heisen-
berg Hamiltonian can be solved for an arbitrary spin [229, 230]. In this case operators
Ŝ can be represented by Pauli matrices Ŝ(i)

α = ~
2 σ̂

(i)
α , where σ̂(i)

α ≡ 1̂⊗(i−1) ⊗ σα ⊗
1̂⊗(N−i).

If all coupling constants are different, the model is called the XY Z Heisenberg
model, introduced by T. Bill Sutherland [231]. If Jx = Jy, then it is the XXZ
Heisenberg model. For the isotropic interactions, namely Jx = Jy = Jz, we have the
XXX Heisenberg model, initially solved by Hans Bethe [232]. Whenever Jz = 0 we
have either the XY model [233] when Jx 6= Jy, or XX model when Jx = Jy [234].
To this end, we focus on the XXZ Heisenberg spin chain in the zero external field,
hz = 0, which has the following form (~ = 1):

HXXZ =
J

4

N∑
j=1

(
σ̂(i)
x σ̂(i+1)

x + σ̂(i)
y σ̂(i+1)

y + ∆σ̂(i)
z σ̂(i+1)

z

)
, (5.25)

where ∆ · J = Jz and ∆ is an order parameter that specifies the different phases
of the model itself. When J > 0 the system is in the ferromagnetic phase for ∆ ≤
−1, in the antiferromagnetic quantum critical phase for −1 < ∆ < 1, and in the
antiferromagnetic phase for 1 ≤ ∆. For ∆→ ±∞ we obtain a simple Ising model. In
the case of ∆� −1, the z-component increases the energy for each pair of antiparallel
spins and so as ∆ → −∞ the ground state is a type of NOON state as shown in
Eq. (5.19). When ∆� 1, we have the opposite situation – adjacent antiparallel spins
are favored with respect to the energy. The ground state is then an antiferromagnet
with the non-trivial form that depends on ∆ and parity of N . Nevertheless with the
∆ → −∞ and even number of spins N , the ground state is represented by the Néel
state (see Eq. (5.18)). For ∆ = 1 we get the isotropic XXX Heisenberg spin chain.
We will now present the exact solution for the chain of length N = 4.

5.3.1 Exact Solution for N = 4

The XXZ Hamiltonian can be solved analytically for any N using the Bethe
ansatz method. Nevertheless, a particularly simple solution exists for N = 4 given
with

Ĥ =
1

4

N=4∑
j=1

σ̂(j)
x σ̂(j+1)

x + σ̂(j)
y σ̂(j+1)

y + ∆σ̂z
(j)σ̂z

(j+1)

 (5.26)
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with a periodic boundary condition ~̂σ(5) ≡ ~̂σ(1). For ∆ ≤ −1 the energy of the ground
state is doubly degenerated Eg = ∆ and the state is represented by the superposition
shown in Eq. (5.19). When ∆ > −1, the lowest energy is Eg = 1

2

(
−∆−

√
8 + ∆2

)
and the ground state in the local spin basis is given with

|Eg〉 = N

(
∆−

√
8 + ∆2

2
√

2
|AF2〉+ |AF 〉

)
, (5.27)

where N is the normalization factor

N =

√
1

4 + 2E2
g

(5.28)

and

|AF2〉 =
1

2
(|↑↑↓↓〉+ |↓↑↑↓〉+ |↓↓↑↑〉+ |↑↓↓↑〉) , (5.29)

|AF 〉 =
1√
2

(|↑↓↑↓〉+ |↓↑↓↑〉) . (5.30)

To this end we will consider the case where ∆ > −1. Therefore, we will use a correlator
of the form

E4 =
∣∣∣〈Eg|σ̂(1)

+ σ̂
(2)
− σ̂

(3)
+ σ̂

(4)
− |Eg〉

∣∣∣ . (5.31)

The average of the correlator in Eq. (5.31) in zero temperature is calculated using the
ground state given by Eq. (5.27) and has the following form

E4 =
1

16

(
1 +

∆√
8 + ∆2

)2

. (5.32)

To include the nonzero temperature effects we have to consider a system described by
the thermal density matrix

%̂T =
1

Z
∑
n

e−βEn |ψ(n)〉〈ψ(n)|, (5.33)

where the sum is performed over the eigenvalues En of the 4-spin Hamiltonian (5.26)
(Ĥ|ψ(n)〉 = En|ψ(n)〉),β = (kBT )−1, with T standing for the temperature, kB the
Boltzmann constant and Z is the statistical sum. The dimension of a Hilbert space
for N = 4 is equal to 24, but for the correlator in Eq. (5.31) only 3 eigenstates have
nonzero expectation values∣∣∣〈E±|σ̂(1)

+ σ̂
(2)
− σ̂

(3)
+ σ̂

(4)
− |E±〉

∣∣∣ =
1

4

∣∣∣∣1∓ ∆√
8 + ∆2

∣∣∣∣ , (5.34a)∣∣∣〈E∆|σ̂(1)
+ σ̂

(2)
− σ̂

(3)
+ σ̂

(4)
− |E∆〉

∣∣∣ = −1

2
, (5.34b)

where Ĥ|E±〉 = E±|E±〉 and Ĥ|E∆〉 = −∆|E∆〉 with

E± =
1

2

(
−∆±

√
8 + ∆2

)
. (5.35)
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Figure 5.5: E4 from Eq. (5.31) as a function of ∆ for β = 10 (solid
line), β = 5 (dotted line), β = 2 (dashed line) and β = 1 (dash-dotted
line).

These states have the following form

|E±〉 = N±

(
∆±

√
8 + ∆2

2
√

2
|AF2〉+ |AF 〉

)
, (5.36)

|E∆〉 =
1√
2

(|↑↓↑↓〉 − |↓↑↓↑〉) (5.37)

with N± =
√

1/(4 + E2
±) standing for the normalization factors. Therefore, we cal-

culate the partition function

E4 =
1

Z2

[
− e−β(∆+

√
8+∆2)

2
+

1

4

(
1 +

∆√
8 + ∆2

)

+
1

4

(
1− ∆√

8 + ∆2

)
e−2β

√
8+∆2

]2

, (5.38a)

Z = 1 + e−β(E+−E−) + e−β(−∆−E−) + 2e−β(−1−E−)

+ 7eβE− + 2e−β(1−E−) + 2e−β(∆−E−), (5.38b)

for the antiferromagnetic correlator given in Eq. (5.31). The results for β = {10, 5, 2, 1}
are plotted in Fig. 5.5 as a function of the parameter ∆. The Bell correlations seem
to vanish for β . ∆ as the energy scale is given by ∆. Nevertheless, even for β = 2 we
observe that the two-particle entangled state cannot reproduce the correlations in the
proximity of ∆ = 1. In the limit of T → 0 (β → ∞) the partition function gives the
formula in Eq. (5.32). Its value breaks the LHV limit (2−4) whenever ∆ is positive
and, additionally, when ∆ > 2

√√
2− 1, then E4 > 2−3, signaling that system is not

only four-spin entangled, but also nonlocally correlated.

5.3.2 Bethe Ansatz Solution

The Bethe ansatz can be applied to solve the XXZ spin chain as well. We will
focus on the case of −1 < ∆ 6 1, where the Hamiltonian spectrum is gapless. We
start with the reference state of all spins up |0〉+

|0〉+ ≡ | ↑↑ ... ↑〉 (5.39)
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with the maximum magnetization of N/2. Therefore, any state can be produced by
flipping a proper number of spins. Let’s, for example, look at the subspace of M = 1
flipped states. In order to account for the translational invariance of the spin chain,
we assume that the eigenstate |Ψ1〉 is a superposition of all N states with one flipped
state:

|Ψ1〉 =
N∑
m=1

χ(m)σ̂
(m)
− |0〉+ =

N∑
m=1

χ(m)|m〉. (5.40)

We project the Schrödinger equation Ĥ|Ψ1〉 = E1|Ψ1〉 on the bra state 〈m| = +〈0|σ̂(m)
+

and obtain

E1χ(mj) =
1

2
(χ(mj − 1) + χ(mj + 1))− ∆

4
χ(mj), for 1 < j < N. (5.41)

Therefore, if |Ψ1〉 is an eigenstate then its amplitude has to satisfy Eq. (5.41) as well
as the periodic boundary condition χ(1) = χ(N + 1). The solution for Eq. (5.41) is
found if we take a plane wave ansatz χ(m) = eikm, where we set lattice spacing to
unity. Therefore the eigenenergy is E1 = cos k − 1

4∆. Moreover, from the boundary
condition we obtain a condition for (quasi-)momentum k

e(ikN) = 1⇒ kĪ =
2πĪ

N
, (5.42)

where the quantum number Ī ∈ {0, 1, ..., N−1}. From Eq. (5.42) we see that N distinct
momenta kĪ lead to a linearly independent eigenstate |Ψ1〉 =

∑N
m=1 e

ikĪm|m〉.
We move now to the case where two spins are flipped. We start with a superposi-

tion of all states with two flipped spins as follows:

|Ψ2〉 =

N∑
m1<m2

χ(m1,m2)σ̂
(m1)
− σ̂

(m2)
− |0〉+ =

N∑
j=1

χ(m1,m2)|m1,m2〉. (5.43)

In this case, when projecting the Schrödinger equation onto the bra 〈m1,m2| we have
to consider two scenarios: either the two flipped spins occupy adjacent sites or they
are separated. In the first case we obtain

(E2 + ∆)χ(m1,m2) =
1

2
(χ(m1 − 1,m2) + χ(m1,m2 + 1)) , (5.44)

for 2 < m1 + 1 = m2 < N , while in the latter

(E2 + 2∆)χ(m1,m2) =
1

2
[χ(m1 − 1,m2) + χ(m1,m2 − 1)+ (5.45)

+ χ(m1 + 1,m2) + χ(m1,m2 + 1)],

for 2 < m1 + 1 < m2 < N . This is solved by a wave function of a form:

χ(m1,m2) = A12e
ik1m1+ik2m2 +A21e

ik2m1+ik1m2 , (5.46)

for 1 6 m1 < m2 6 N . Using the above plane wave ansatz in Eq. (5.45) leads to
E2 = cos k1+cos k2−2∆ and substituting it into Eq. (5.44) with this energy expression



5.3. One-dimensional Heisenberg Model 73

we get a relation for amplitudes A12 and A21 as follows

A12

A21
= −1 + eik1+ik2 − 2∆eik1

1 + eik1+ik2 − 2∆eik2
≡ −e−iΦ(k1,k2), (5.47)

where Φ(k1, k2) is the scattering phase shift. The quasi-momenta k1 and k2 appearing
in the Bethe ansatz wave function can be determined from the periodic boundary
conditions: χ(m1,m2) = χ(m2,m1 +N). As a result, we obtain

k1 =
2πI1

N
+

1

N
Φ(k1, k2) (5.48a)

k2 =
2πI2

N
− 1

N
Φ(k1, k2), (5.48b)

where Ij ∈ {0, 1, ..., N − 1} are integer quantum numbers.
Finally we can generalize the ansatz to arbitraryM , nevertheless due to symmetry

we will consider M 6 N/2. For an arbitrary M , the eigenstate is given by

|ΨM 〉 =
∑

m1<···<mM

χ(mM )|mM 〉, (5.49)

where the bold symbol denotes set mM = {mj}Mj=1. The wave function for arbitrary
M is then

χ(mM ) =
∏

16a≤b6M
sgn(ma −mb)

∑
σ∈PM

(−1)|σ| exp

(
i
M∑
a=1

makσa

)

× exp

(
i

2

∑
b>a

sgn(ma −mb)Φ(kσa , kσb)

)
, (5.50)

where sgn(·) = ±1. From the periodic boundary conditions χ(m1,m2, ...,mM ) =
χ(m2,m3, ...,mM ,mN+1) for every index, we obtainM Bethe equations in logarithmic
form:

ka =
2πĪa
N
−
∑
b 6=a

1

N
Φ(ka, kb), (5.51)

where a = 1, ...,M. Every set of M momenta ka satysfying these equations gives an
eigenstate of the system. The eigenenergy is given by EM =

∑M
a=1 cos ka −∆.

The two-body scattering phase Ψ(k1, k2) is not a translational invariant for shifts of
the momenta and, therefore, it is convenient to introduce rapidities λ̃a to parametrize
the quasi-momenta ka:

eika =
sin(η(λ̃+ i))

sin (η(λ̃− i))
, (5.52)

where η is determined in a way that the scattering phase is a function of the rapidity
difference only, which results with

∆ = cos 2η π > η ≥ 0. (5.53)
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Therefore, the Bethe equations can be parametrized by the rapidities as follows

θ̃1(λ̃a) =
2πIa
N
− 1

N

M∑
b 6=a

θ̃2(λ̃a − λ̃b), a = 1, . . . ,M, (5.54)

with θ̃n(λ̃) ≡ 2 arctan
[
coth nη

2 tan ηλ̃
2

]
. The phase θ̃1(λ̃a) is actually the original

momentum ka:

p(λ̃j) ≡ θ̃1(λ̃a) = ka. (5.55)

The amplitudes in Eq. (5.50) can be also parametrized by rapidities λ = ηλ̃ [235] as
follows

χ(mM |λM ) =
1

|NM |
∑
σ∈PM

(−1)|σ| exp

−i M∑
j=1

mjp(λσj )


× exp

− i
2

∑
k>j

θ(λσk − λσj )

 , (5.56)

where χ(mM |λM ) indicates amplitude in the language of rapidities. Momentum p(λ)
and the two-body scattering phase shift θ(λ) are now

p(λ) = i log
cosh(λ− iη)

cosh(λ+ iη)
, (5.57)

θ(λ) = i log
sinh(2iη + λ)

sinh(2iη − λ)
. (5.58)

The normalization NM in Eq. (5.56) is given with

|NM |2 =
detGM∏M
j=1K1(λj)

, (5.59)

and guarantees that 〈ΨM |ΨM 〉 = 1. The factors appearing in the normalization are
the Gaudin matrix

Gjk = δjk

(
NK1(θj)−

M∑
m=1

K2(λj − λm)

)
+K2(λj − λk) (5.60)

and functions

K1(λ) = ∂λp(λ) =
sin 2η

cosh(λ− iη) cosh(λ+ iη)
, (5.61)

K2(λ) = ∂λθ(λ) =
sin 4η

sinh(λ− 2iη) sinh(λ+ 2iη)
. (5.62)

This representation is especially convenient for computation of the correlator EN in
the ground state |GS〉:

EN = |Tr [|GS〉〈GS| · | ↑↓↑ . . .〉〈↓↑↓ . . . |]|2 = |〈GS|↓↑↓ . . .〉|2 · |〈↑↓↑ . . . |GS〉|2 , (5.63)

where the overlaps 〈GS| ↓↑↓ . . .〉 and 〈↑↓↑ . . . |GS〉 are known exactly for arbitrary
N and ∆, and are given by the corresponding antiferromagnetic components of the
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Figure 5.6: The ground state correlators E10 and E8 for the XXZ
spin chain of length N = 10 as a function of the anisotropy ∆. We
show the analytic results (gray points) of Bethe ansatz (5.63) and
the results of numerical diagonalization (black solid line) of the XXZ
Hamiltonian (5.25). In the limit ∆ → ∞ the correlators approach
those of the Ising model with g = 0.

ground state calculated according to Eq. (5.49) with amplitudes from Eq. (5.56):

〈GS|↓↑↓ . . .〉 = χ(ON|λM), (5.64)
〈↑↓↑ . . . |GS〉 = χ(EN|λM), (5.65)

where Em = {m2,m4, . . . ,mM} denotes odd spins and Om = {m1,m3, . . . ,mM−1}
even spins flipped. The amplitudes χ(mM |λM ) allow us to access the lower order
correlation functions, e.g.

EN−2 =
∣∣∣χ∗(ON−2, N |λM )χ(EN−2, N |λM )

+ χ∗(ON−2, N−1|λM )χ(EN−2, N−1|λM )
∣∣∣2. (5.66)

Figure 5.6 shows the analytic results for N = 10 compared to the numerical solution
of the exact diagonalization of the Hamiltonian (5.25) for the regime between two
isotropic points ∆ = ±1. The correlators are much larger for the isotropic antifer-
romagnet because of the structure of their ground state. In the case of ∆ = 1, the
ground state is best understood as an entangled state of many magnons, whereas for
∆ = −1 it corresponds to a structureless vacuum [225].

5.3.3 Majumdar-Ghosh Model

We will now discuss the Majumdar-Ghosh model [175, 176] with periodic boundary
conditions, described by the Hamiltonian

Ĥ =

N∑
j=1

~̂σ(j)~̂σ(j+1) +
1

2

N∑
j=1

~̂σ(j)~̂σ(j+2), (5.67)
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where ~̂σ is Pauli vector. It is straightforward to see that it is an isotropic XXX
Heisenberg spin chain with long-range interactions. The ground state of the above
Hamiltonian is known exactly for the arbitrary length of the chain. Therefore, we
are able to derive an expression in a closed form for correlators Em. Furthermore,
the valence bound structure of the ground state of the Hamiltonian (5.67) helps to
understand when we should expect strong correlations in the system.

The form of the ground state of the Hamiltonian (5.67)

|ψ〉 = N−1 (|ψ1〉+ |ψ2〉) (5.68)

is a superposition of two products of singlet states

|ψ1〉 =

N
2
−1⊗

j=0

| ↑2j+1, ↓2j+2〉 − | ↓2j+1, ↑2j+2〉√
2

(5.69a)

|ψ2〉 =

N
2
−1⊗

j=0

| ↑2j+2, ↓2j+3〉 − | ↓2j+2, ↑2j+3〉√
2

, (5.69b)

where N is the normalization factor

N 2 = 2−N/2+2
(

1 + 2N/2−1
)
. (5.70)

The expectation values of the antiferromagnetic correlator for even m

Âm = σ̂
(1)
+ σ̂

(2)
− · · · σ̂

(m−1)
+ σ̂

(m)
− , (5.71)

calculated on given states, yield the following values

〈ψ1,2|ÂN |ψ1,2〉 =

(
−1

2

)N/2
, (5.72a)

〈ψ2,1|ÂN |ψ1,2〉 =

(
1

2

)N/2
. (5.72b)

Therefore, we obtain

〈ψ|ÂN |ψ〉 =
1 + (−1)N/2

2

1

1 + 2N/2−1
. (5.73)

For even vlaues of N/2 we obtain

EN =
1

(1 + 2N/2−1)2
, (5.74)

which violates the limit given by the Bell inequality 2−N (and therefore the entan-
glement limit 2−2N ). The lower order correlations are also accessible, e.g. we will
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calculate EN−2 (as EN−1 = 0). We observe that

〈ψ1|ÂN−2|ψ1〉 =

(
−1

2

)N/2−1

, (5.75a)

〈ψ2|ÂN−2|ψ1〉 = −
(

1

2

)N/2
, (5.75b)

〈ψ2|ÂN−2|ψ2〉 = 0 (5.75c)

and in consequence

〈ψ|ÂN−2|ψ〉 = −1

2

1

1 + 2N/2−1
. (5.76)

Therefore, we obtain that

EN−2 =
1

4
EN . (5.77)

The Bell inequality is violated because of the presence of the superposition in the
ground state of |ψ1〉 and |ψ2〉 states. The value of Em correlator on |ψ1〉 alone is 2−m.
It is the addition of |ψ2〉 that allows us to break the Bell limit. The ground state of
the Majumdar-Ghosh model is a simple example of a state for which the hierarchy of
the correlators breaks the Bell limit.

It this chapter we have shown that a single element of the density matrix possesses
information about the correlation in many-body systems. Its value allows one to track
how entanglement and Bell correlations expand over a large distance and number of
spins in the system. This method may be applied to the many-body systems used
in quantum computing, ultraprecise metrology and tests of foundations of quantum
mechanics. Moreover, the formation probability is reachable experimentally with the
current state-of-art in the field of quantum simulators. Additionally, a preliminary
analysis of data of some experimentally reconstructed density matrices [236–238] indi-
cates the presence of quantum correlations. We have also shown that the critical value
point corresponding to a quantum phase transition is correlated with the maxima of
the lower order correlators. The question of whether Em can be used to construct a
proper order parameter exhibiting singularity at the phase transition remains open.
Nevertheless our findings may bring a new motivation into the study of the Bethe
ansatz models as it relates to the methods of computation of the formation proba-
bilities. In the next chapter we will show that the correlator EN , introduced in this
chapter, can be used to bound the QFI and therefore we will prove that many-body
nonlocality is a resource for quantum metrology.
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Chapter 6

Many-body Nonlocality as a
Resource for Quantum-Enhanced

Metrology

Entanglement is a resource for quantum-enhanced metrology allowing for sensitiv-
ity beyond the standard quantum limit (SQL) [62, 71]. Recently, it has been shown
that quantum correlations stronger than entanglement, namely EPR-steering, can be
a resource for quantum-enhanced precision measurements [239]. Also, nonlocality in
some particular configurations has been considered as a resource for sub shot-noise
sensitivity, using the quantum Fisher information (QFI), see Eq. (2.55) [240]. In Chap-
ter 5 we showed that a single element of the density matrix can be used to extract
information about the nature of the correlations in a system. Moreover, we proved
that the formation probability can also be used to track how Bell correlations and
entanglement expand over a system. In this chapter we derive a lower bound of the
QFI, expressed in terms of Bell correlators introduced in Chapter 5. Therefore, we
establish a link between metrology and many-body nonlocality. Finally, as an illus-
tration we apply this formalism to a one-dimensional Ising model and a Bose-Einstein
condensate in a double-well potential, showing the relation between the fundamental
and application-oriented aspects of nonlocality.

Contents
6.1 Lower Bound for the QFI . . . . . . . . . . . . . . . . . . . 80
6.2 Link Between Sensitivity and Nonlocality . . . . . . . . . . 81

We begin by recalling the correlator introduced in Chapter 5:

E~n+,~n− =

∣∣∣∣∣
〈

N⊗
k=1

σ
(k)
±

〉∣∣∣∣∣
2

, (6.1)

where σ(k)
± = 1

2(σ
(k)
1 ± iσ(k)

2 ) and σ
(k)
1,2 = ±1 are the outcomes of measurements for

a k-th qubit. The sign “±” can be chosen independently for each party, as we did
previously. This time, in the subscript of the correlator, we put labels ~n+ and ~n+,
i.e. vectors consisting of the information about the order of the “+” and “−” signs in
Eq. (6.1). For example, if we take E~n+,~n− for the N = 4 body system of the form

E~n+,~n− =
∣∣∣〈σ(1)

+ σ
(2)
− σ

(3)
+ σ

(4)
+

〉∣∣∣2 , (6.2)

then vectors will have the following forms ~n+ = (1, 0, 1, 1) and ~n− = (0, 1, 0, 0), with
1 at a node where σ+ for ~n+, or σ− for ~n−, is present. In addition, we introduce two
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scalars n+ and n− defined as n± = ||~n±||2, where || · ||2 is the square of the vector’s
length and n± = N − n∓. If the correlator in Eq. (6.1) can be reproduced by a
probability distribution p(λ) of some hidden variable λ, then it is consistent with a
local hidden-variable theory and the following inequality holds true

E~n+,~n− =

∣∣∣∣∣
∫
dλ p(λ)

N∏
k=1

σ
(k)
± (λ)

∣∣∣∣∣
2

6
∫
dλ p(λ)

N∏
k=1

∣∣∣σ(k)
± (λ)

∣∣∣2 = 2−N . (6.3)

In the second line of Eq. (6.3) we used the Cauchy-Schwarz inequality (see Eq. (2.14))
to derive the upper bound for the correlator, E~n+,~n− 6 2−N , which is the many-body
Bell inequality used to detect Bell correlations in multi-qubit systems [166–168]. We
showed previously that correlator from Eq. (6.1) is associated with a single element
of the density matrix, which is bounded by |%nm|2 6 1

4 , and thus E~n+,~n− 6 1
4 . More-

over, E~n+,~n− possesses information about the depth of nonlocality or entanglement.
Therefore, if E~n+,~n− ∈] 1

2N
, 1

2N−1 ], then three out of N qubits are non-locally correlated.
For E~n+,~n− ∈] 1

2N−1 ,
1

2N−2 ], four qubits are Bell correlated and if E~n+,~n− ∈]1
8 ,

1
4 ], then

nonlocality extends over all qubits.
In the next section we will derive a lower bound for the QFI based on the density

matrix elements, and in consequence on correlators E~n+,~n− .

6.1 Lower Bound for the QFI

Consider a quantum system in a spectral form:

%̂ =
∑
j

pj |ψj〉〈ψj |, (6.4)

where
∑

j pj = 1, on which the parameter θ is imprinted, for example during the in-
terferometric transformation described by generator ĥ. The Cramér-Rao lower bound
sets a limit for the precision of the estimation process as follows [64]

∆θ >
1√
Fq
, (6.5)

where Fq is the QFI given with Eq. (2.49), namely

Fq(%̂θ) =
∑
i,j

2

pi + pj
|〈ψi|

∂%̂θ
∂θ
|ψj〉|2, (6.6)

with pi + pj 6= 0. The evolution of such a system under the generator ĥ is given by

i∂θ%̂θ = [ĥ, %̂θ]. (6.7)

Therefore, Eq. (6.6) can be rewritten in the following way

Fq(%̂θ) =
∑
i,j

2

pi + pj
|〈ψi|[%̂θ, ĥ]|ψj〉|2. (6.8)
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Since all the probabilities pi are non-negative, and for any i and j the condition
pi + pj 6 1 holds, we can bound the QFI from below by

Fq > 2
∑
i,j

|〈ψi|[%̂θ, ĥ]|ψj〉|2. (6.9)

As a consequence, the sum over j can be performed instantly and the commutator
can be expanded in the following way

2
∑
i,j

〈ψi|[%̂θ, ĥ]|ψj〉〈ψj |[%̂θ, ĥ]†|ψi〉 = 2
∑
i

〈ψi|[%̂θ, ĥ][%̂θ, ĥ]†|ψi〉 = (6.10)

= 2
∑
i

〈ψi|(%̂θĥ2%̂θ + ĥ%̂2
θĥ− %̂θĥ%̂θĥ− ĥ%̂θĥ%̂θ)|ψi〉.

Each of the terms in the last expression of Eq. (6.10) can be calculated independently
as follows∑

i

〈ψi|%̂θĥ2%̂θ|ψi〉 =
∑
i

p2
i 〈ψi|ĥ2|ψi〉 = Tr

[
%̂2
θĥ

2
]
, (6.11a)∑

i

〈ψi|ĥ%̂2
θĥ|ψi〉 =

∑
i

〈ψi|ĥ
∑
j

p2
j |ψj〉〈ψj |ĥ|ψi〉 =

∑
j

p2
j 〈ψj |ĥ2|ψj〉 = Tr

[
%̂2
θĥ

2
]
,

(6.11b)∑
i

〈ψi|%̂θĥ%̂θĥ|ψi〉 = Tr
[
(%̂θĥ)2

]
, (6.11c)∑

i

〈ψi|ĥ%̂θĥ%̂θ|ψi〉 = Tr
[
ĥ%̂θĥ%̂θ

]
= Tr

[
%̂θĥ%̂θĥ

]
= Tr

[
(%̂θĥ)2

]
. (6.11d)

Therefore, the lower bound given in Eq. (6.9) now reads

Fq > 4
(

Tr
[
%̂2
θĥ

2
]
− Tr

[
(%̂θĥ)2

])
. (6.12)

Since the elements of the density matrix can be expressed in the language of the
correlators E~n+,~n− , therefore the link between QFI and E~n+,~n− can also be established.

In the next section we will rewrite the bound in the inequality (6.12) using E~n+,~n−

introduced at the beginning of this chapter.

6.2 Link Between Sensitivity and Nonlocality

A variety of interferometric transformations are generated by the following oper-
ator:

ĥ =
1

2

N∑
k=1

σ̂
(k)
ξ , (6.13)

where σ̂(k)
ξ is a Pauli matrix of the k-th qubit oriented along the axis ~ξ = (ξx, ξy, ξz),

namely

σ̂
(k)
ξ = ξxσ̂

(k)
x + ξyσ̂

(k)
y + ξzσ̂

(k)
z , |~ξ|2 = 1. (6.14)

The direction ξ = y, in the generator in Eq. (6.13), represents the Mach-Zehnder
interferometer or a Ramsey interferometric sequence employed in atomic clocks, while
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ξ = z corresponds to a phase shift. The eigenstates of a single-qubit operator from
Eq. (6.14) are

σ̂
(k)
ξ | ↑ / ↓〉k = ±1| ↑ / ↓〉k, (6.15)

therefore the density matrix can be rewritten in a basis of N -qubit states |n〉

%̂θ =

2N∑
n,m=0

%nm|n〉〈m|, (6.16)

where |n〉 is the product of the eigenstates given by Eq. (6.15) and %nm ≡ %nm(θ). The
summation indices, n and m, go over all the combinations of ↑ and ↓ independently
for each qubit. Moreover, |n〉 is an eigenstate of ĥ, i.e.

ĥ|n〉 =

(
n↑ −

N

2

)
|n〉, (6.17)

where n↑ is the number of | ↑〉 qubits in |n〉 and, as a consequence of the collective
character of the generator ĥ given in Eq. (6.13), each eigenstate is

(
N
n↑

)
times degen-

erated. Therefore, the first term in the inequality (6.12) can be rewritten in a basis
of |n〉 as follows:

Tr
[
%̂2ĥ2

]
= Tr

∑
n,k,m

(
n↑ −

N

2

)(
m↑ −

N

2

)
%nk%km|n〉〈m|

 = (6.18)

=
∑
n,m

(
n↑ −

N

2

)2

|%nm|2,

where we used the cyclic property of trace operation, i.e. Tr
[
%̂2ĥ2

]
= Tr

[
ĥ%̂2ĥ

]
.

Following the same pattern for the second term, i.e. Tr
[
(%̂ĥ)2

]
= Tr

[
ĥ%̂ĥ%̂

]
, we

obtain

Tr
[
(%̂ĥ)2

]
= Tr

∑
n,m

(
n↑ −

N

2

)(
m↑ −

N

2

)
%nm|n〉〈m|

∑
k,l

%kl|k〉〈l|

 =

=
∑
n,m

(
n↑ −

N

2

)(
m↑ −

N

2

)
|%nm|2. (6.19)

Finally, linking both expressions leads to the following result

Fq > 4
∑
n,m

[(
n↑ −

N

2

)2

−
(
n↑ −

N

2

)(
m↑ −

N

2

)]
|%nm|2 = (6.20)

= 4
∑
n,m

(
n↑ −

N

2

)
(n↑ −m↑)|%nm|2.



6.2. Link Between Sensitivity and Nonlocality 83

We split the sum into two equal parts and then, after exchanging the indices n↔ m
in one of them, we obtain

Fq > 2
∑
n,m

(
n↑ −

N

2

)
(n↑ −m↑)|%nm|2 + 2

∑
n,m

(
m↑ −

N

2

)
(m↑ − n↑)|%mn|2. (6.21)

For any density matrix we have |%mn|2 = |%nm|2; therefore, the expression we obtain
in the final expression (6.21) simplifies significantly to

Fq > 2
∑
n,m

(n↑ −m↑)2|%nm|2. (6.22)

Please note: for a single term in this sum any |m〉 can be obtained from any state |n〉
by using a proper combination of n+ number of rising operators and n− number of
lowering operators

|m〉 = R̂~n+
L̂~n− |n〉. (6.23)

The operators R̂ and L̂ are products of rising and lowering operators, respectively,
given by

R̂~n+
= σ̂

(i1)
+ . . . σ̂

(in+ )

+ , (6.24a)

L̂~n− = σ̂
(j1)
− . . . σ̂

(jn− )

− , (6.24b)

where, for two directions orthogonal to ~ξ, ~ξ1 and ~ξ2, we have

σ̂
(k)
± =

1

2
(σ̂

(k)
ξ1
± iσ̂(k)

ξ2
). (6.25)

Therefore, since m↑ = n↑ + n+ − n−, we obtain

%nm = 〈n|%̂R̂~n+
L̂~n− |n〉. (6.26)

Now we pick a set of the states A~n+,~n− , denoting all the basis states |n〉 that can
be transformed into |m〉, and vice versa, by lowering n− and/or rising n+ qubits.
Moreover, such an operation will produce a prefactor (n↑−m↑)2 = (n+−n−)2, which
will be common for 2N−(n+−n−) due to the fact that one |n〉 can be produced from
multiple |m〉 using the same number of rising and lowering operations, but in different
permutations.

In order to derive the final bound, we need to introduce one more relation, namely

n∑
i=1

|ai|2 >
1

2n

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
2

, (6.27)

which holds true for any set of 2n complex numbers (see Appendix B). Therefore, we
can sum up the modulus square of the density matrix element, namely∑

n,m∈A~n+,~n−

|%nm|2 >
1

2N−(n++n−)

∣∣∣Tr
[
%̂R̂~n+

L̂~n−
]∣∣∣2 , (6.28)
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Figure 6.1: The QFI (black solid lines) normalized to standard quan-
tum limit (gray solid line) for the Ising model as a function of U for
N = 6, 8, 10, 12, 14, 16 (starting from the bottom line for N = 6). Re-
gions where the correlator EN,0 detects at least k-partite nonlocality
are marked on top of each curve, with the darkest patch correspond-
ing to the maximally nonlocal state. The brightest region corresponds
to the case where at least N − 3 qubits are Bell-correlated. The red
lines separate regimes with different strengths of nonlocality. The plot
shows that the Fq grows monotonously with the increase of the num-
ber of nonlocally correlated qubits.

as ∑
n,m∈A~n+,~n−

%nm = Tr
[
%̂R̂~n+

L̂~n−
]
. (6.29)

Since the above expression corresponds to the average of the correlator in Eq. (6.1)
we can define E~n+,~n− as follows:

E~n+,~n− :=
∣∣∣Tr
[
%̂R̂~n+

L̂~n−
]∣∣∣2 . (6.30)

We put the inequality (6.28) in the expression for the lower bound of the QFI from
Eq. (6.22) with the proper sum order: first all possible permutations of ~n+ and ~n−
for their fixed lengths, and then over n+ and n−. As a result, we obtain the central
expression of this chapter:

Fq > 2

N∑
n+=0

N−n+∑
n−=0

(n+ − n−)2

2N−(n++n−)

∑
~n+,~n−

E~n+,~n− . (6.31)
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Therefore, we showed that the QFI and hence the metrological sensitivity is lower-
bounded by a combination of correlators of all orders E~n+,~n− with non-negative coef-
ficients.

Let us now analyze this expression for some particular states. First we take a pure
coherent spin state of N qubits of a form

|ψ〉 =

N⊗
k=1

1√
2

(| ↑〉k + | ↓〉k) . (6.32)

In this case the correlator is E~n+,~n− =
(

1
4

)n++n− for all ~n+ and ~n−, which is a conse-
quence of the spin-permutation symmetry. The inequality (6.27) is therefore saturated
and the sums in the inequality (6.31) can be calculated. The QFI for the coherent
spin state in Eq. (6.32) reaches the upper bound for any system of N classically cor-
related spins, the standard quantum limit, as Fq = N . In order to obtain sub-shot
noise sensitivity, any one of the correlators E~n+,~n− has to grow minimally from the
entanglement-threshold value E~n+,~n− =

(
1
4

)n++n− [167, 241], but not necessarily above
the Bell limit E~n+,~n− =

(
1
2

)n++n− . Nevertheless, the many-body nonlocality can be a
resource for high sensitivity. For example, if EN,0 > 1

4
1

2m+1 , therefor the minimum of
N −m qubits are correlated nonlocally, and the QFI inequality (6.31) gives

Fq >
N2

2m+1
. (6.33)

In a case where all qubits are nonlocally correlated, m = 0, the right-hand side of the
inequality is N2/2 given by a single correlator EN,0.

For the Greenberger-Horne-Zeilinger (GHZ) state

|ψ〉 =
1√
2

(
N⊗
k=1

| ↑〉k +
N⊗
k=1

| ↓〉k

)
, (6.34)

the QFI reaches the Heisenberg limit, namely Fq = N2, due to the fact that all N
qubits are Bell-correlated (EN,0 = E0,N = 1

4).
We will now present some prominent examples of many-body systems in order to

illustrate our results.

Examples

First, we consider the antiferromagnetic Ising Hamiltonian with open boundary
conditions introduced in Chapter 5, namely:

Ĥ = U

N−1∑
j=1

σ̂(j)
z σ̂(j+1)

z −
N∑
j=1

σ̂(j)
x , (6.35)

where U is the strength of the two-body interactions. We find numerically the ground
state of the system for different values of U < 0 and calculate the QFI in Eq. (6.6) with
the generator in Eq. (6.13) in the direction ξ = z. We perform numerical calculations
for N = 6, 8, 10, 12, 14 and 16. We plot the results on Fig. 6.1 with the gray regions
corresponding to the values of U for which EN,0 detects the many-body nonlocality
of the growing order. The region of the highest correlations is highlighted with the
darkest gray, while the lightest gray shows (N − 3)-body nonlocality. We observe
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Figure 6.2: The QFI (black solid lines) normalized to standard quan-
tum limit (gray solid line) for the Bose-Einstein condensate in a double-
well model as a function of U forN = 50, 100, 250, 500, 750, 1000 (start-
ing from the bottom line for N = 50). Regions where the correlator
EN,0 detects at least k-partite nonlocality are marked on top of each
curve, with the darkest patch corresponding to the maximally nonlo-
cal state. The brightest region corresponds to the case where at least
N − 5 qubits are Bell-correlated. The red lines separate regimes with
different strengths of nonlocality. For higher N , the Heisenberg level
is approached even when n < N qubits are nonlocally correlated.

that the growing depth of nonlocality is connected with the QFI approaching the
Heisenberg limit, in agreement with Eq. (6.33).

As the second example, we take an ultra-cold Bose gas in a double-well trap, for
which we recall Hamiltonian in the form:

Ĥ = −Ĵx + UĴ2
z , (6.36)

with, once again, U standing for interactions. The collective spin operators Ĵx and Ĵz
are defined by Eq. (6.13) with ξ = x and ξ = z, respectively. As we showed in previous
chapters, the ground state of this system undergoes a quantum phase transition at
U = −1 [94, 242]. The interesting regime for our purposes, and from the perspective
of the correlator EN,0, would then be U ∈] − ∞,−1] as for U → −∞ the ground
state approaches the GHZ state given in Eq. (6.34). In Fig. 6.2 we plot the QFI as a
function of U for N = 50, 100, 250, 500, 750, 1000. Again, we highlight the regions of U
for which correlator EN,0 detects from N − 5-body nonlocality (the lightest gray area)
to a fully nonlocally correlated state of N qubits (the darkest gray area). We observe
that the system is highly nonlocal, whenever Fq/N ' N . For a sufficiently large
number of qubits the Heisenberg limit plateau is reached even for n < N nonlocally
correlated qubits, because the coefficient (n+−n−)2 from Eq. (6.31) remains close to
N2. Therefore, for N →∞, it is not necessary to have all qubits correlated to obtain
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Figure 6.3: The derivative of QFI with respect to U for N = 100
(bottom) and 150 (top). The curves show a rapid growth around the
point of quantum phase transition U = −1, which corresponds to the
moment when sensitivity in Figs. 6.1 and 6.2 grows rapidly as well. The
red arrows indicate the value of U at the point where the correlator is
able to witness the Bell correlations, EN,0 > 1

2N
.

Heisenberg-like scaling. However, the many-body nonlocality is sufficient to achieve
high sensitivity.

In Fig. 6.3 we plot the derivative of the QFI (black solid lines) in respect to |U | for
N = 100 and N = 150. The rapid growth around quantum phase transition, U = −1,
is accompanied by the appearance of 3-body Bell correlations, EN,0 > 1

2N
, as marked

by red arrows. This shows the importance of nonlocality for quantum metrology and
the peculiarity of the quantum transition point [243, 244].

Summarizing this chapter, we have found a link between a many-body nonlocality
and ultra-precise metrology. We showed that the QFI can be expressed in terms of
various correlators of all orders which are able to witness nonlocality expanding over
many qubits. Therefore, we were able to provide the lower bound for the sensitivity
and find the necessary condition for Heisenberg-like scaling of the QFI. We presented
these results with two examples of multi-qubit systems: a collection of spins forming
the one-dimensional Ising model and a gas of ultra-cold atoms trapped in a double-well
potential.
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Summary and Conclusions

We devoted this dissertation to the study of quantum correlations in many-body
systems. We investigated various many-body systems from the perspective of useful-
ness in quantum metrology. The following paragraphs briefly summarize the results
of our work.

First we considered a Bose-Einstein condensate in a double-well potential, in which
we presented a method for detecting Bell correlations using the interference pattern
of two overlapping atomic clouds. We showed that a certain class of entangled states
exhibits nonlocal correlations, signaled by the Bell witness closely related to the sen-
sitivity of the double-well interferometer. Thus, the initial step towards establishing
a relation between Bell nonlocality and quantum metrology was made.

We also considered systems where entangled states are produced via the dynam-
ics governed by the unstable saddle fixed point in the mean-field phase space. We
showed that these states allow for ultra-precise measurements as the quantum Fisher
information reveals the Heisenberg scaling. We presented the optimal interferometric
transformation in the case of two-mode and three-mode systems, and we provided the
measurement that saturates the quantum Cramér-Rao bound.

In the next step, we derived a correlator that allows one to extract information
about many-body entanglement and nonlocality from the single element of the density
matrix. Such an object distinguishes the cases where the correlations in the state
extend over all spins from the cases where fewer spins are entangled or nonlocally
correlated. This was presented with examples of experimentally relevant Hamiltonians
of Ising and Heisenberg spin chain models.

Finally, we presented a key result of our studies: we derived the lower bound for the
quantum Fisher information in the language of the Bell correlators. This result affirms
that many-body nonlocality can be a resource for highly precise measurements. Based
on the examples of the Ising model and ultra-cold atoms in a two-mode configuration,
we showed that rapid growth of the QFI around the critical point is driven by the
appearance of the nonlocality encompassing an increasing number of particles.

Our research presented herein establishes a link between many-body nonlocality
and quantum metrology. We showed that the presence of the strongest type of corre-
lations in the entangled systems can provide high sensitivity of the quantum sensors.
It is important to note that nonlocality is not a necessary condition for the quan-
tum Fisher information beyond the standard quantum limit, since it has been shown
that some quantum states with a local hidden variable model are metrologically use-
ful [245]. We hope the results furnished in this dissertation will contribute to the
application of nonlocally correlated systems in quantum information.
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Appendix A

Entanglement in the System of
Ultra-cold Atoms

Spin-1 Operators

Matrix Representation

Jx =

 0 1 0
1 0 1
0 1 0

 Jy =
i√
2

 0 −1 0
1 0 −1
0 1 0

 Jz =

 1 0 0
0 0 0
0 0 −1


Qxy = i

 0 0 −1
0 0 0
1 0 0

 Qyz =
i√
2

 0 −1 0
1 0 1
0 −1 0

 Qzx =
1√
2

 1 0 0
0 0 0
0 0 −1


Dxy =

 0 0 1
0 0 0
1 0 0

 Y =
1√
3

 1 0 0
0 −2 0
0 0 1


Second Quantization

The generators of SU(3) algebra in the second quantization:

Ĵx =
1√
2

(
â†−1â0 + â†0â−1 + â†0â+1 + â†+1â0

)
, (A.1)

Q̂zx =
1√
2

(
−â†−1â0 − â†0â−1 + â†0â+1 + â†+1â0

)
, (A.2)

Ĵy =
i√
2

(
â†−1â0 − â†0â−1 + â†0â+1 − â†+1â0

)
, (A.3)

Q̂yz =
i√
2

(
−â†−1â0 + â†0â−1 + â†0â+1 − â†+1â0

)
, (A.4)

D̂xy = â†−1â+1 + â†+1â−1, (A.5)

Q̂xy = i
(
â†−1â+1 − â†+1â−1

)
, (A.6)

Ŷ =
1√
3

(
â†−1â−1 − 2â†0â0 + â†+1â+1

)
, (A.7)

Ĵz = â†+1â+1 − â†−1â−1, (A.8)

where âmF (â†mF ) is the annihilation (creation) operator of the atom in themF Zeeman
component. The commutators of the above operators (plus Ĵz,s = 1

2(
√

3Ŷ + D̂xy) and
Ĵz,a = 1

2(
√

3Ŷ − D̂xy)) are given in the table below.
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Table A.1: List of commutation relations for SU(3) algebra gen-
erators and spin components in the symmetric and anti-symmetric
subspace.

Ti
Tj Ĵx(Ĵx,s) Q̂yz(Ĵy,s) Q̂zx(Ĵx,a) Ĵy(Ĵy,a) Ĵz D̂xy Q̂xy Ŷ Ĵz,s Ĵz,a

Ĵx(Ĵx,s) 0 2iĴz,s −iQ̂xy iĴz −iĴy −iQ̂yz iQ̂zx −i
√

3Q̂yz −2iQ̂yz −iQ̂yz
Q̂yz(Ĵy,s) −2iĴz,s 0 −iĴz −iQ̂xy iQ̂zx iĴx iĴy i

√
3Ĵx i2Ĵx iĴx

Q̂zx(Ĵx,a) iQ̂xy iĴz 0 2iĴz,a −iQ̂yz iĴy −iĴx −i
√

3Ĵy −iĴy −2iĴy
Ĵy(Ĵy,a) −iĴz iQ̂xy −2iĴz,a 0 iĴx −iQ̂zx −iQ̂yz i

√
3Q̂zx iQ̂zx 2iQ̂zx

Ĵz iĴy −iQ̂zx iQ̂yz −iĴx 0 2iQ̂xy −2iD̂xy 0 iQ̂xy −iQ̂xy
D̂xy iĴy,s −iĴx −iĴy iQ̂zx −2iQ̂xy 0 2iĴz 0 0 0
Q̂xy −iQ̂zx −iĴy iĴx iQ̂yz 2iD̂xy −2iĴz 0 0 −iĴz iĴz
Ŷ i

√
3Ĵy,s −i

√
3Ĵx i

√
3Ĵy −i

√
3Q̂zx 0 0 0 0 0 0

Ĵz,s 2iĴy,s −i2Ĵx iĴy −iQ̂zx −iQ̂xy 0 iĴz 0 0 0
Ĵz,a iĴy,s −iĴx 2iĴy −2iQ̂zx iQ̂xy 0 −iĴz 0 0 0

Anti-symmetric Mean-field Phase Space

Here we will show the equivalence of the anti-symmetric subspace. Similarly to
the symmetric case, we have to calculate an average value of Hamiltonian (4.4) on the
spin coherent state defined for the anti-symmetric subspace in the following form

|ϕ, θ〉3m = e−iϕĴz,a/2e−iθĴy,a/2|N0〉a (A.9)

where |N0〉a = ĝ†aN√
N !
|000〉 with ϕ ∈ (0, 2π), θ ∈ (0, π). Analogically, this state is

equivalent to the maximally polarized state |N0〉a in the anti-symmetric subspace
rotated twice in the perpendicular directions. State given by Eq. (A.9) is an eigenstate
of Ĵz,a with the eigenvalue N . Similarly to the symmetric sphere, it is located on the
north pole of the Bloch sphere in the anti-symmetric subspace. In SU(3) algebra it
can be written as |N0〉a = e−iπ/4Q̂xy |00N〉. On the south pole of the anti-symmetric
Bloch sphere we have the state with N atoms in the mF = 0 mode.

Therefore, an average value of Hamiltonian (4.4) calculated on the state in Eq. (A.9)
is

Ĥ3m,a =
Λ

2
(1− z2) sin2 ϕ+ z − 1, (A.10)

where z = cosθ and Λ = −2/q. The difference between Eqs. (A.10) and (4.16) suggest
that the phase portrait for the anti-symmetrical subspace is rotated through π/2
around the z−axis.
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Appendix B

Proof for the Algebraic Inequality

Here we prove that

2n∑
i=1

|ai|2 >
1

2n

∣∣∣ 2n∑
i=1

ai

∣∣∣2, (B.1)

for any set of complex numbers {a1 . . . a2n}. We start with the case n = 1. We obtain
a simple expression:

|a1|2 + |a2|2 =
1

2

(
|a1 + a2|2 + |a1 − a2|2

)
>

1

2
|a1 + a2|2. (B.2)

Similarly, for n = 2

|a1|2 + |a2|2 + |a3|2 + |a4|2 =

=
1

4

(
|a1 + a2 + (a3 + a4)|2 + |a1 + a2 − (a3 + a4)|2 + |a1 − a2 + (a3 − a4)|2+

+ |a1 − a2 − (a3 − a4)|2
)
>

1

4
|a1 + a2 + a3 + a4|2. (B.3)

The calculations can be generalized for higher n as follows: first, we divide the full
expression into two, namely

b1 =

2n−1∑
i=1

ai, b2 =

2n−1∑
i=1

ai+2n−1 (B.4)

and we apply the formula (B.2) with a1 and a2 replaced with b1 and b2. Next, we put
a minus sign between b1 and b2, obtaining

c1 =
2n−2∑
i=1

ai −
2n−2∑
i=1

ai+2n−2 , (B.5)

c2 =
2n−2∑
i=1

ai+2n−1 −
2n−2∑
i=1

ai+2n−1+2n−2 . (B.6)

This procedure is repeated 2n times, giving 2n terms

2n∑
i=1

|ai|2 =
1

2n
(|b1 + b2|2 + |b1 − b2|2 + |c1 + c2|2 + |c1 − c2|2 + . . .). (B.7)

Neglecting all the terms but the first one, leads to the inequality (B.1).
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