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Streszczenie

Niniejsza rozprawa ma na celu zbadanie kwantowych przemian fazowych w spolaryzowanych
mieszaninach ultrazimnych atomów fermionowych o nierównych masach. W takich układach wio-
dąca niestabilność morza Fermiego jest związana z parowaniem Coopera w kanale fal parcjalnych s .
Skoncentrujemy się na przejściu fazowym zachodzącym między jednorodną fazą nadciekłą, a fazą
normalną. Niezrównoważone mieszaniny Fermiego posiadają szeroki wybór parametrów kontroli,
które pozwalają na dostrajanie ich właściwości. W szczególności dają one możliwość zmody�ko-
wania cech przemiany fazowej w T = 0. W tej dysertacji, podchodzimy do problemu kwantowych
przemian fazowych z trzech różnych, ale uzupełniających się perspektyw.

Po pierwsze rozważamy przybliżenie średniego pola i rozwijamy efektywny potencjał w potę-
gach parametru porządku ϕ (co jest znane jako teoria Landaua-Ginzburga). Szczególnie jesteśmy
zainteresowani możliwością sprowadzenia punktu trójkrytycznego do zerowej temperatury w taki
sposób, że przemiana fazowa pozostaje ciągła w granicyT → 0. W ten sposób badany układ zawiera
kwantowy punkt krytyczny (QCP) na diagramie fazowym. Analitycznie identy�kujemy taką możli-
wość dla zakresu parametrów układu w trzech wymiarach (d = 3). Z drugiej strony pokazujemy, że
występowanie QCP jest wykluczone wd = 2 (na poziomie pola średniego). Co więcej uwzględniając
wyrazy gradientowe o postaci |∇ϕ |2 w efektywnym działaniu stwierdzamy, że można je sprowadzić
do zera w granicy T → 0 poprzez manipulację parametrami układu, co pozwala na zrealizowanie
kwantowego punktu Lifszyca.

Po drugie skupiamy się na własnościach spektralnych fononowych modów kolektywnych (zna-
nych jako mody Andersona-Bogoliubowa). Wzbudzenia te pełnią istotną rolę w opisie kwantowych
zjawisk krytycznych. Badamy pochodzenie zespolonego bieguna propagatora �uktuacji parowania
Fq , który pozwala na znalezienie relacji dyspersji modów kolektywnych oraz ich współczynników
tłumienia. Otrzymujemy nielokalne w czasie wkłady do rozwinięcia gradientowego propagatora
F−1
q , które są związane z procesem tłumienia fononów Andersona-Bogoliubowa. Wyrażenia te po-

zwalają na wyprowadzenie analitycznego kryterium występowania tłumienia Landaua. Okazuje się,
że jest ono obecne wyłącznie w fazie uporządkowanej dla odpowiednio dużego niedopasowania po-
wierzchni Fermiego składników mieszaniny (co ma miejsce także dlaT = 0). Następnie porównuje-
my otrzymane przewidywania z numerycznie obliczonymi współczynnikami tłumienia.

Na koniec przeprowadzamy analizę wykorzystującą nieperturbacyjną grupę renormalizacji (RG).
Interesuje nas sytuacja w której kwantowa przemiana fazowa jest ciągła na poziomie pola średniego.
Pokazujemy, że �uktuacje parametru porządku, wprowadzone przez człon tłumienia, destabilizują
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płynięcie RG w kierunku punktu stałego Wilsona-Fishera dla odpowiednio niskichT , co może ozna-
czać występowanie przemiany I rodzaju. Przy zwiększaniuT wpływ tłumienia znika i obserwuje się
skalowanie krytyczne scharakteryzowane wykładnikiem dynamicznym z = 1. W tym przypadku
układ wykazuje ciągłe przejście między reżimem kwantowym i klasycznym dla T > 0. Co wię-
cej, przy braku tłumienia, QCP jest stabilny ze względu na �uktuacje i przemiana fazowa pozostaje
II rodzaju.

Abstract

Quantum phase transitions in polarized mixtures of ultracold fermionic atoms
with unequal masses

This dissertation aims to investigate quantum phase transitions in polarized mixtures of ultracold
fermionic atoms with unequal masses. In such systems, a leading instability of the Fermi sea is related
to Cooper pairing in the s-wave channel. We will focus on the phase transition at the onset of the
uniform super�uid phase. Imbalanced Fermi mixtures possess a wide choice of control parameters,
which allow tuning its properties. In particular, they provide a way to modify the characteristics of
the phase transition atT = 0. In this thesis, we approach the problem of quantum phase transitions
from three distinct but complementary perspectives.

Firstly, we consider a mean-�eld approximation and expand the e�ective potential in powers of
the order parameter ϕ (this is known as the Landau-Ginzburg theory). Of our particular interest is
the possibility of suppressing the tricritical point to zero temperature, so that the transition remains
continuous down to T = 0. Thus the system hosts a quantum critical point (QCP) in the phase
diagram. We analytically identify such a possibility for a range of parameters in dimensionality
d = 3, but on the other hand, we demonstrate that the QCP is excluded in d = 2 (at the mean-�eld
level). Moreover, taking into account a gradient term |∇ϕ |2 in the e�ective action, we show that it
can be tuned to zero at T → 0, which gives a route to realizing a quantum Lifshitz point.

Secondly, we focus on the spectral properties of sound-like collective excitations (known as
Anderson-Bogolyubov modes). Such excitations play a prominent role in the description of quan-
tum criticality. We explore the origin of the complex pole of the pair �uctuation propagator Fq ,
which gives dispersion relations of collective modes and its damping rates. We obtain the temporal-
ly non-local contributions to gradient expansion of F−1

q , which correspond to the damping process
of collective phonons. These terms allow us to derive analytical conditions under which damping
is active. It turns out that Landau damping is exclusively present in the ordered phase for a large
enough mismatch of the Fermi surfaces (even at T = 0). We subsequently compare this prediction
with numerically obtained damping rates.

Lastly, we perform a nonperturbative renormalization group (RG) analysis using its one-particle-
irreducible variant. We consider a situation in which the quantum phase transition is continuous at
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the mean-�eld level. Then one �nds that order-parameter �uctuations, introduced by the Landau-
damping term, obstruct the RG �ow toward the Wilson-Fisher �xed point at su�ciently low T ,
which may indicate a �rst-order transition. Upon increasingT , the impact of damping ceases, and a
critical scaling characterized by the dynamical exponent z = 1 is observed. In this case, the system
shows a quantum-classical crossover at T > 0. Moreover, without damping, the QCP is stable with
respect to �uctuations and the transition remains second-order.
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Rozdział 1

Wprowadzenie

Jedną z najprężniej rozwijających się gałęzi badań w �zyce materii skondensowanej w ostatnich
50 latach są kwantowe przemiany fazowe. Zainteresowanie nimi jest stymulowane przez pojawianie
się nowych materiałów w których możliwa jest ich realizacja. Do ważnych przykładów tego typu
substancji należą między innymi silnie skorelowane materiały elektronowe takie jak wysokotem-
peraturowe nadprzewodniki miedzianowe (np. Bi2Sr2CaCu2O8+δ ), układy ciężkich fermionów (np.
CePd2Si2), czy też przewodniki organiczne (np. EtMe3Sb-dmita) [44, 192, 212, 213].

Kwantowe przemiany fazowe zachodzą w zerowej temperaturze (T = 0). W tym przypadku układ
jest przybliżany do przemiany za pośrednictwem nietermicznych parametrów kontrolnych δ (takich
jak ciśnienie, domieszkowanie, pole magnetyczne, etc.), przy czym przemiana zachodzi dla δ = δc .
Decydującą rolę w opisie przemian fazowych w T = 0 pełnią �uktuacje kwantowe, a nie termiczne
jak to ma miejsce w przypadku klasycznych zjawisk krytycznych. Okazuje się, że występowanie
kwantowego punktu krytycznego (QCP) na diagramie fazowym wpływa na zachowanie mierzal-
nych wielkości �zycznych przy zbliżaniu się do QCP wzdłuż trajektorii δ = δc oraz T → 0. Dzięki
temu sygnatury wskazujące na występowanie kwantowej przemiany fazowej pojawiają się także
dlaT > 0. W odpowiednio niskich temperaturach �uktuacje termiczne o charakterystycznej energii
kBT współzawodniczą z �uktuacjami kwantowymi o charakterystycznej energii }ω. Gdy }ω > kBT ,
zachowanie układu jest zdominowane przez �uktuacje kwantowe. W przeciwnym przypadku decy-
dującą rolę pełnią �uktuacje termiczne. Współzawodnictwo to prowadzi do interesujących ciągłych
przejść (ang. crossovers) między reżimem klasycznym i kwantowym [35, 44, 192].

Występowanie QCP wpływa także na charakter fermionowych wzbudzeń kwazicząstkowych.
W szczególności w pobliżu QCP w wyniku �uktuacji o naturze kwantowej może nastąpić załama-
nie się teorii cieczy Fermiego sformułowanej przez Landaua. Prowadzi to do powstania tzw. cieczy
nielandauowskiej (ang. non-Fermi liquid) w której kwazicząstki nie są dobrze zde�niowane. Zrozu-
mienie tego typu zachowania stanowi duże wyzwanie współczesnej teorii materii skondensowanej
i jest ważnym zagadnieniem pojawiającym się między innymi w kontekście fazy dziwnego metalu
występującej w nadprzewodnikach miedzianowych [212, 214].

aSkrót Me oznacza grupę metylową, Et oznacza grupę etylową, a dmit oznacza grupę siarkoorganiczną o angielskiej
nazwie systematycznej 1,3-dithiole-2-thione-4,5-dithiolate.
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16 ROZDZIAŁ 1. WPROWADZENIE

Nowe perspektywy badań nad kwantowymi przemianami fazowymi otworzyły intensywne pra-
ce nad ultrazimnymi gazami fermionowymi w ostatnich 20 latach. Wyjątkową własnością tych ukła-
dów jest możliwość strojenia oddziaływań kontaktowych pomiędzy atomami występującymi w róż-
nych stanach nadsubtelnych za pośrednictwem magnetycznego rezonansu Feshbacha. Pozwala on
na precyzyjnie kontrolowaną zmianę wartości długości rozpraszania aF , która w pełni charaktery-
zuje oddziaływania międzyatomowe w rozrzedzonych gazach, poprzez mody�kację natężenia ze-
wnętrznego pola magnetycznego. Dominującą niestabilnością obserwowaną w tego typu układach
jest parowanie Coopera w kanale fal s (ang. s-wave), które prowadzi do kondensacji gazu do stanu
nadciekłego (ang. super�uid). Wspomniany wcześniej rezonans Feshbacha umożliwia realizację cią-
głego przejścia od stanu Bardeena-Coopera-Schrie�era dla fermionowych atomów do kondensatu
Bosego-Einsteina bozonowych dimerów utworzonych z silnie związanych fermionów (ang. BCS-
BEC crossover) [24, 76, 221].

Współczesne techniki doświadczalne pozwalają na tworzenie spolaryzowanych ultrazimnych
mieszanin atomów fermionowych o nierównych masach. Na przykład aktualnie prowadzone są ba-
dania nad mieszaninami atomów 6Li oraz 40K [103, 225, 227, 239], 40K i 161Dy [185, 186], a także 6Li
i 53Cr [155]. Wszystkie atomy danego rodzaju znajdują się w tym samym stanie spinowym ("↑" lub
"↓") i w ogólności populacje atomów różnych gatunków mogą być różne, a w konsekwencji także
potencjały chemiczne tych gatunków są różne µ↑ , µ↓. Oznacza to, że w układach tego typu ma-
my do dyspozycji trzy nietermiczne parametry za pomocą których możemy kontrolować charakter
i położenie kwantowej przemiany fazowej między fazą nadciekłą, a normalną. Zaliczamy do nich
amplitudę oddziaływania kontaktowego д ∼ aF , tzw. pole Zeemana h = (µ↑ − µ↓)/2 oraz stosunek
mas atomów tworzących mieszaninę r =m↓/m↑.

Mimo rosnącego zainteresowania spolaryzowanymi mieszaninami Fermiego tylko nieliczne z do-
tychczas prowadzonych badań teoretycznych obierały jako swój cel opis kwantowych przemian
fazowych między fazą nadciekłą, a normalną. Wiele potencjalnie interesujących problemów zwią-
zanych z tego typu mieszaninami czeka na rozwiązanie, co jest główną motywacją wyboru tematu
badań wyrażonego w tytule dysertacji. W dalszej części przedstawimy główne cele tej rozprawy.

1.1 Cele rozprawy

Celem rozprawy jest opisanie kwantowej przemiany fazowej między stanem nadciekłym, a fazą
normalną dla spolaryzowanych mieszanin gazów fermionowych o nierównych masach. W szczegól-
ności chcemy zbadać wpływ niezrównoważenia (ang. imbalance) mieszaniny na właściwości rozwa-
żanej przemiany fazowej w T = 0. Analiza tego problemu będzie obejmowała wykorzystanie teo-
rii średniego pola, zbadanie dynamicznych własności wzbudzeń kolektywnych oraz wykorzystanie
grupy renormalizacji do uwzględnienia �uktuacji parametru porządku ϕ.

W ramach teorii pola średniego wyprowadzimy rozwinięcie Landaua-Ginzburga dla efektywne-
go potencjału. Na jego podstawie zbadamy jakie warunki muszą być spełnione, aby na diagramie
fazowym był obecny QCP. Zastanowimy się także nad możliwością wygenerowania przemiany mul-
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tikrytycznej w T = 0 dla której znika wyraz gradientowy |∇ϕ |2 w rozwinięciu Landaua-Ginzburga.
Wykorzystując przybliżenie pola średniego otrzymamy diagram fazowy w skończonych tempera-
turach i opiszemy jego najważniejsze cechy w granicy T → 0.

Na zachowanie przemiany fazowej w zerowej temperaturze mają wpływ dynamiczne własności
modów kolektywnych obecnych w układzie [89, 147]. W szczególności postać tłumienia Landaua
modów Goldstone’a jest istotna w pobliżu kwantowej przemiany fazowej. Z tego powodu drugim
tematem poruszanym w pracy będzie zbadanie tłumienia wzbudzeń kolektywnych w fazie uporząd-
kowanej oraz nieuporządkowanej. Odpowiemy na pytanie jakie kryteria muszą być spełnione by
proces tłumienia był aktywny. Ponadto zbadamy czy niezrównoważenie mieszaniny prowadzi do
istotnych zmian w zachowaniu układu zwłaszcza w granicy T → 0. Rozważania te pozwolą na
wyprowadzenie efektywnego działania opisującego kwantową przemianę fazową.

Ostatnim tematem podejmowanym w tej pracy będzie kwestia uwzględnienia �uktuacji parame-
tru porządku. Posługując się nieperturbacyjnym sformułowaniem teorii renormalizacji odpowiemy
na pytanie czy QCP jest stabilny ze względu na �uktuacje, a także jaki jest wpływ tłumienia Landaua
na obserwowaną przemianę fazową. W szczególności wyznaczymy kształt linii krytycznej, a także
przedyskutujemy zjawisko ciągłego przejścia między reżimem kwantowy i klasycznym.

1.2 Struktura rozprawy

Rozprawa jest podzielona na dwie główne części. Pierwsza ma na celu zarysowanie szerszego
kontekstu doświadczalnego i teoretycznego dla rozważanego problemu. W drugiej części następuje
szczegółowe omówienie otrzymanych wyników badań dla niezrównoważonych mieszanin Fermie-
go.

Część pierwsza składa się z dwóch rozdziałów. Pierwszy z nich (rozdział 2) poświęcony jest ul-
trazimnym fermionom. Rozdział ten służy do zaprezentowania kontekstu historycznego oraz tech-
nik doświadczalnych wykorzystywanych w badaniach ultrazimnych atomów. Ponadto omawiamy
w nim zjawisko rezonansu Feshbacha, a także podajemy opis teoretyczny przejścia BEC-BCS. Roz-
dział ten kończymy podsumowaniem dotychczasowych wyników badań dotyczących spolaryzo-
wanych mieszanin fermionów o nierównych masach. W rozdziale 3 zaprezentujemy podstawowe
informacje dotyczące kwantowych przemian fazowych. Następnie omawiamy w nim teorię Hertza-
Millisa, która stanowi punkt odniesienia dla prowadzonych przez nas badań.

W drugiej części dysertacji prezentujemy oryginalne wyniki dotyczące kwantowych przemian
fazowych w niezrównoważonych mieszaninach Fermiego. Część ta składa się z czterech rozdziałów,
których podstawą były trzy artykuły opublikowane w recenzowanych pismach naukowych:

• P. Zdybel, P. Jakubczyk; "E�ective potential and quantum criticality for imbalanced Fermi
mixtures", J. Phys.: Condens. Matter 30 (2018) 305604 [248].

• P. Zdybel, P. Jakubczyk; "Damping of the Anderson-Bogolyubov mode in Fermi mixtures by
spin and mass imbalance", Phys. Rev. A 100 (2019) 053622 [249].
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• P. Zdybel, P. Jakubczyk; "Quantum Lifshitz points and �uctuation-induced �rst-order phase
transitions in imbalanced Fermi mixtures", Phys. Rev. Research 2 (2020) 033486 [250].

Rozdział 4 jest przeznaczony na ustalenie wykorzystywanej notacji, a także na wyprowadzenie pod-
stawowych równań, których analiza jest omówiona w dalszej części dysertacji. W rozdziale 5 ba-
damy średniopolowe własności nadciekłej przemiany fazowej i otrzymujemy diagram fazowy. Tu-
taj również dyskutujemy możliwość otrzymania QCP. W następnym rozdziale zajmujemy się wła-
snościami bozonowych modów kolektywnych i w szczególności opisujemy ich tłumienie w fazie
normalnej i nadciekłej. Na koniec tej części opisujemy procedurę renormalizacji dla rozważanego
układu i tym samym uwzględniamy wpływ �uktuacji parametru porządku na zachowanie układu.

Rozprawę kończymy podsumowaniem najważniejszych wyników, a także prezentujemy poten-
cjalne kierunki rozwoju badań nad kwantowymi przemianami fazowymi w niezrównoważonych
mieszaninach Fermiego. Bardziej szczegółowe omówienie zawartości każdego z rozdziałów jest po-
dane na początku każdego z nich.



Część I

Kontekst doświadczalny i teoretyczny
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Rozdział 2

Ultrazimne fermiony

Problem wielu oddziałujących ze sobą fermionów jest jednym z najważniejszych zagadnień teo-
retycznych współczesnej �zyki materii skondensowanej. Zachowanie elektronów w nadprzewodni-
kach wysokotemperaturowych, nukleonów w jądrach atomowych, czy też modelowanie struktury
elektronowej związków chemicznych nie może być poprawnie opisane bez uwzględnienia korelacji
między fermionami. Mimo dynamicznego rozwoju takich technik teoretycznych jak wielociałowy
rachunek zaburzeń, teoria dynamicznego pola średniego oraz metoda kwantowego Monte Carlo
układy wielu oddziałujących fermionów ciągle stanowią olbrzymie wyzwanie dla badaczy. Głów-
nym powodem takiego stanu rzeczy jest wymiar przestrzeni Hilberta dla rozważanego problemu.
Złożoność obliczeniowa zagadnienia N fermionów rośnie eksponencjalne wraz z N , co skutecz-
nie uniemożliwia stosowanie metod obliczeniowych do układów o rozmiarach, które moglibyśmy
traktować jako makroskopowe [142]. Ponadto układy tego typu zwykle wykazują duże bogactwo
emergentnych faz, które mogą współistnieć ze sobą, a także obserwuje się ich współzawodnictwo.
Korelacje między wieloma cząstkami sprawiają, że w trywialny sposób nie da się sprowadzić wła-
sności takich układów do sumy odpowiednich własności jednociałowych [7]. Sztandarowym przy-
kładem materiałów, które wykazują tego typu cechy są spieki ceramiczne na bazie tlenków miedzi
w których obserwowane jest nadprzewodnictwo wysokotemperaturowe [176].

Oddzielną klasą syntetycznych układów fermionowych, których intensywny rozwój na pogra-
niczu optyki kwantowej, �zyki molekularnej oraz �zyki materii skondensowanej obserwuje się od
20 lat, są ultrazimne gazy atomów fermionowych [54,187]. Duże możliwości ich kontrolowania oraz
uzyskiwana precyzja badań doświadczalnych sprawiają, że stanowią one obiecujący układ za pomo-
cą którego można zrozumieć zachowania oddziałujących fermionów [76]. Współczesny rozwój tej
dziedziny pozwala na projektowanie potencjału w którym poruszają się atomy oraz tworzenie sieci
optycznych symulujących sieci krystaliczne występujące w ciele stałym [24]. Innym aspektem spra-
wiającym, że układy te są niezwykle ciekawym obiektem badań jest możliwość tworzenia sztucz-
nych pól cechowania, które wpływają na topologiczne własności badanego gazu [47]. Wspomniane
cechy sprawiają, że układy te świetnie nadają się do badania własności takich modeli teoretycz-
nych jak model Hubbarda, który jest uważany za minimalny model pozwalający opisać zachowanie
nadprzewodników miedzianowych [8]. Układy zimnych atomów fermionowych pozwalają na zba-
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danie własności modelu Hubbarda nie na drodze obliczeń numerycznych, ale przy wykorzystaniu
symulatora kwantowego tego modelu w warunkach laboratoryjnych [23].

Syntetyczne gazy fermionowe pozwalają także na badania układów, które nie mają swoich odpo-
wiedników w ciele stałym. Przykładem mogą tu być spolaryzowane mieszaniny atomów o nierów-
nych masach, których właściwości stanowią przedmiot niniejszej dysertacji. W układach tego typu
możliwe jest występowanie egzotycznych faz materii takich jak nadciecz Sarmy-Liu-Wilczka (SLW)
[135, 198] czy niejednorodnej nadcieczy Fuldego–Ferrella–Larkina–Ovchinnikova (FFLO) [73, 129].
Co więcej przemiany fazowe między nadcieczą, a fazą normalną w tego typu układach nie są w pełni
zrozumiane i ich opisem, w szczególności dla temperatur bliskich zera bezwzględnego, poświęcona
jest ta praca.

Struktura tego rozdziału jest następująca:
Podrozdział 2.1. Zaczniemy od przedstawienia historycznego kontekstu badań nad zimnymi ato-
mami oraz omówienia głównych metod eksperymentalnych wykorzystywanych do ich chłodzenia
i próbkowania.
Podrozdział 2.2. Następnie zajmiemy się zwięzłym opisem zjawiska rezonansu Feshbacha, który
pozwala na precyzyjne kontrolowanie oddziaływania kontaktowego pomiędzy atomami w gazie.
Podrozdział 2.3. Zaprezentujemy zjawisko ciągłego przejścia (ang. crossover) między stanem ty-
pu Bardeena-Coopera-Schrie�era (BCS), a kondensatem Bosego-Einsteina (BEC) ciasno związanych
par atomów. Przedstawimy też przegląd prac dotyczący opisu teoretycznego tego zagadnienia.
Podrozdział 2.4. Na koniec podsumujemy dotychczasowe wyniki doświadczalne oraz teoretyczne
dotyczące mieszanin gazów fermionowych o nierównych populacjach i masach.

2.1 Ultrazimne atomy

Za symboliczny początek dziedziny zajmującej się ultrazimnymi gazami atomowymi można
przyjąć zaobserwowanie kondensacji Bosego-Einsteina (BEC) w rozrzedzonych gazach złożonych
z bozonowych atomów alkalicznych. Osiągnięcia tego dokonano niezależnie w 1995 roku w gru-
pach kierowanych przez Cornella i Wiemana (prace prowadzono nad 87Rb) [5], Huleta (w ekspe-
rymentach wykorzystano atomy 7Li) [31] oraz Ketterlego (tutaj badano kondensację w 23Na) [51].
Wiele z metod opracowanych i udoskonalonych w trakcie prac nad otrzymaniem kondensatu przez
te grupy zostało później wykorzystanych w innych układach doświadczalnych ultrazimnych ato-
mów. Warto zaznaczyć, że wcześniej także prowadzono badania nad nimi, np. od lat 80 XX wieku
próbowano osiągnąć BEC w atomowym wodorze [42, 209], ale osiągnięte zostało to dopiero w 1998
roku przez grupę Kleppnera i Greytaka [72]. Kolejnym przełomem eksperymentalnym w tej dzie-
dzinie było otrzymanie zdegenerowanego gazu fermionowych atomów 40K w 1999 roku [54] przez
grupę Jin. Eksperymenty prowadzone z ultrazimnymi fermionami okazały się dużym wyzwaniem
i uzyskanie ich kondensatu było możliwe tylko dzięki wykorzystaniu rezonansu Feshbacha [38].
Pierwsze eksperymentalne otrzymanie tego rezonansu dla bozonowych atomów sodu przez grupę
z MIT nastąpiło w 1998 roku [95] dając tym samym doświadczalne narzędzia do sprowadzenia zde-



2.1. ULTRAZIMNE ATOMY 23

generowanego gazu fermionów do stanu nadciekłego. Korzystając z tej metody uzyskano najpierw
kondensat dimerów 40K2 w 2003 roku [81], a w końcu także kondensat luźno związanych par 40K
w 2004 roku [187]. Powyższe rezultaty zostały po raz pierwszy otrzymane przez grupę z Uniwer-
sytetu Kolorado w Boulder. Równolegle podobne wyniki dla fermionowych atomów 6Li uzyskało
kilka innych grup eksperymentalnych na świecie [15, 29, 113, 166, 258].

Otrzymanie kondensatów atomowych wymaga wykorzystania bardzo rozrzedzonych gazów,
aby zapobiec ich krystalizacji. Typowe koncentracje atomów alkalicznych jakie są wykorzystywa-
ne we współczesnych eksperymentach wynoszą n ≈ 1012 − 1015 cm−3 [217], co przekłada się na
pułapkowanie kilkuset tysięcy atomów. Wraz z obniżaniem temperatury atomy zaczynają ujawniać
swoją naturę kwantową i zachowywać się jak paczki falowe, których rozmiar jest dany przez ter-
miczną długość de Brogile’a λT =

√
2π}2/mkBT , gdziem to masa cząstek. Szerokość paczki jest dana

nieoznaczonością położenia, która jest związana z termicznym rozkładem pędów atomów. Rozmycie
paczki staje się tym większe im niższa jest temperaturaT . Gdy rozmiary paczek falowych λT stają się
porównywalne ze średnimi odległościami między atomami d ≈ 1/ 3√n, atomowe paczki falowe prze-
krywają się i opis układu dominują efekty kwantowe. W szczególności zgodnie z przewidywaniem
Einsteina z 1925 roku, gdy temperatura jednorodnego idealnego gazu bozonów osiągnie temperaturę
T = Tc , co odpowiada nλ3

Tc
= ζ (3/2) ≈ 2.612a, atomy obsadzają makroskopowo stan podstawowy,

czyli tworzą kondensat Bosego-Einsteina [48, 112]. Typowe wartości temperatur krytycznych dla
bozonowych atomów alkalicznych wynoszą Tc ≈ 1 − 100 nK [217].

W przypadku kondensatów fermionowych wymagane jest występowanie oddziaływań przy-
ciągających między atomami w gazie, które można wywołać w procesie wzajemnego rozpraszania
cząstek. Dzięki temu, że badane gazy są rozrzedzone można ograniczyć się jedynie do uwzględnie-
nia fal parcjalnych typu s w teorii rozpraszania. Okazuje się, że wykorzystując rezonans Feshbacha
między dwoma stanami nadsubtelnymi |F ,mF 〉 i |F ′,m′F 〉

b atomów używanych w eksperymencie
można otrzymać efektywne przyciągające oddziaływanie kontaktowe między atomami znajdują-
cymi się w tych dwóch stanach. Amplitudę tego oddziaływania można mody�kować za pomocą
zewnętrznego pola magnetycznego. Prowadzi ono do formowania się par Coopera [46] między ato-
mami znajdującymi się we wspomnianych wyżej stanach nadsubtelnych w analogiczny sposób jak
przewiduje to teoria BCS w kontekście konwencjonalnych nadprzewodników [14]. W odpowiednio
niskich temperaturach powstałe pary Coopera kondensują tworząc fazę nadciekłą.

Przewidywana w tym przypadku temperatura krytyczna (w granicy słabych sprzężeń, tj. aF <
−1) jest dana równaniem [217]

Tc =
4(9π )1/3

e2−γE
}2n2/3

mkB
exp

(
−

π

2kF |aF |

)
, (2.1)

gdzie γE ≈ 0.5772 to stała Eulera, kF =
3√3π 2n jest liczbą falową Fermiego, a aF jest fermiono-

wą długością rozpraszania odpowiadającą fali parcjalnej s . Zmieniając wartość zewnętrznego pola
aζ (s ) =

∑∞
n=1 n

−s to funkcja ζ Riemanna.
bF jest liczbą kwantową całkowitego momentu pędu F̂ = Ĵ + Î, gdzie Ĵ to całkowity moment pędu elektronów, a Î to

całkowity moment pędu jądra.mF jest liczbą kwantową odpowiadającą rzutowi F na wybraną oś.
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magnetycznego można dostroić aF tak, aby wartość Tc była osiągalna w eksperymentach. Dla kon-
densatów fermionowych mamy dwie charakterystyczne skale energetyczne jedną związaną z tem-
peraturą Fermiego kBTF = εF = }

2k2
F/2m, a drugą z temperaturą krytyczną kBTc . Dla układów ul-

trazimnych atomów fermionowych stosunek Tc/TF ≈ 0.2. Dla porównania w konwencjonalnych
nadprzewodnikach ten stosunek wynosi 10−4 − 10−5, a w nadprzewodnikach wysokotemperaturo-
wych jest on rzędu 10−2. Ze względu na niewielkie koncentracje ultrazimnych atomów widzimy,
że w skali względnej Tc/TF możemy kondensaty fermionowe w rozrzedzonych gazach traktować
jako nadciecze wysokotemperaturowe. Dzieje się tak mimo iż wartości temperatur krytycznych Tc

charakterystycznych dla typowych nadprzewodników są zwykle znacznie wyższe niż te dla rozwa-
żanych gazów fermionowych [76].

2.1.1 Chłodzenie i pułapkowanie atomów

Chłodzenie atomów do ultraniskich temperatur w których możliwe jest powstawanie fazy nad-
ciekłej nie jest zadaniem prostym. Na wstępnym etapie zmniejsza się temperaturę wiązki atomo-
wej badanego izotopu przy wykorzystaniu chłodzenia laserowego [169, 177]. Proces ten polega na
oświetlaniu atomów przeciwbieżną skolimowaną wiązką monochromatycznego światła laserowe-
go o częstości ω zbliżonej do rezonansowej częstości ω0 przejścia pomiędzy stanem podstawowym
atomu |д〉 i jednym ze stanów wzbudzonych |e〉. Po pochłonięciu fotonu o energii }ck pęd atomu
ulega zmniejszeniu o wartość }k , przy czym należy uwzględnić przesunięcie dopplerowskiec zwią-
zane z tym, że atom gazu porusza się z prędkością v . Następnie dochodzi do spontanicznej emisji
fotonu w losowym kierunku przez wzbudzony atom powracający do stanu |д〉. Po wielu procesach
tego typu przekaz pędu związany z emisją fotonów przez atom uśrednia się do zera i efektywnie pęd
atomu ulega zmniejszeniu na skutek ich absorpcji. Uśredniona siła wywierana na chłodzony atom
po wielu aktach rozpraszania fotonów na nim ma postać [71]

Frozp (δ ) =
}k

τ

Ω2/2
δ 2 + Ω2/2 + τ−2 , (2.2)

gdzie τ = 2/Γ to średni czas życia stanu |e〉, Γ to szerokość rezonansu, Ω to częstość Rabiego,
a δ = ω (1+v/c )−ω0 to odstrojenie od rezonansu, przy czym uwzględniono w nim także przesunięcie
Dopplera wynosząceωv/c = kv . Występowanie efektu Dopplera sprawia, że wraz ze spowalnianiem
atomów zmienia się częstość przejścia i układ ulega odstrojeniu od rezonansu. Zapobiega się temu
wykorzystując efekt Zeemana za pomocą, którego można przy wykorzystaniu zewnętrznego pola
magnetycznego B przesuwać położenie stanów |д〉 i |e〉 względem siebie. W praktyce wiązka ato-
mowa jest oświetlana laserem o częstości ω w trakcie przechodzenia przez solenoid o zmiennym
polu magnetycznym, które maleje jak B (z) = B0

√
1 − z/L0 + Bprz , gdzie B0 jest wartością induk-

cji dostrojoną tak, aby spowolnić atomy poruszające się z najbardziej prawdopodobną prędkością
w rozkładzie termicznym v0 do niemalże zerowej prędkości na dystansie L0. Natomiast Bprz dobiera

cNie możemy pominąć tego efektu, gdyż zmiany prędkości atomów na etapie wstępnym są największe, co powoduje
zauważalne odstrojenie od przejścia rezonansowego.
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się tak, aby ochłodzony gaz opuszczał spowalniacz zeemanowski z bardzo niewielkimi prędkościami,
co pozwala na ekstrakcję atomów do dalszego etapu ich chłodzenia.

Rys. 2.1: Schemat budowy pułapki magnetooptycznej (MOT). Dwie cewki Helmholtza, w których
prąd o natężeniu I płynie w przeciwnych kierunkach, wytwarzają kwadrupolowe pole magnetyczne
B, które znika w centrum pułapki. Trzy pary przeciwbieżnych wiązek laserowych, ustawionych
wzdłuż wzajemnie prostopadłych kierunków, spotykają się w środku pułapki. Wiązki propagujące
się w przeciwnych kierunkach posiadają przeciwne polaryzacje kołowe σ+ i σ−. Światło laserowe
powoduje ochładzanie i pułapkowanie atomów we wnętrzu MOT.

W następnym etapie chłodzenie atomów zachodzi przy wykorzystaniu pułapki magnetooptycz-
nej (MOT) [148,169]. Metoda ta polega na wykorzystaniu trzech par przeciwbieżnych wiązek lasero-
wych spotykających się w centrum pułapki. Poszczególne pary wiązek są ustawione wzdłuż trzech
wzajemnie ortogonalnych kierunków tak jak to zostało przedstawione na schematycznym rys. 2.1.
Wiązki te oddziałują ze wstępnie schłodzonymi atomami wywierając na daną cząstkę wypadkową
siłę o postaci [71]

Fmel = Frozp (ω − ω0 − kv ) − Frozp (ω − ω0 + kv ) ≈ −αv, (2.3)

gdzie α = 2k ∂Frozp∂ω ≈ 2}k2δΩ2τ 3/[1+ δ 2τ 2]2, przy czym wykorzystaliśmy założenie, że atomy poru-
szają się z niewielkimi prędkościami, tj. kv � τ−1. Uzyskana w ten sposób wypadkowa siła oporu
jest proporcjonalna do prędkości atomów, co przypomina siłę oporu występującą dla ciał porusza-
jących się w ośrodku lepkim. Z tego powodu zachowanie to jest nazywane melasą optyczną [40].
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Minimalną temperaturę, którą można uzyskać wykorzysując przeciwbieżne wiązki laserów jest na-
zywana dopplerowską granicą chłodzenia (ang. Doppler cooling limit) i wynosi TD = }/τkBd. Na
przykład dla atomów 23Na temperatura ta wynosi 240 µK. Melasa optyczna pozwala na chłodzenie
atomów, ale nie prowadzi do ich pułapkowania, gdyż siła oporu jest niezależna od położenia.

Wybierając w odpowiedni sposób polaryzację światła laserowego używanego do otrzymania
melasy optycznej, a także wprowadzając gradient pola magnetycznego w układzie można dokonać
pułapkowania chłodzonych atomów. W tym celu wykorzystuje się dwie cewki Helmholtza w któ-
rych prąd elektryczny płynie w przeciwnych kierunkach (patrz rys. 2.1). W efekcie uzyskuje się
kwadrupolową kon�gurację pola magnetycznego w przestrzeni. W środku pułapki pole magnetycz-
ne znika, a w jego pobliżu ma ono jednorodny gradient. Samo pole magnetyczne o tej postaci jest
niewystarczające do uwięzienia atomów i należy uwzględnić strukturę ich poziomów energetycz-
nych. W celu ilustracji mechanizmu odpowiedzialnego za pułapkowanie atomów w MOT załóżmy,
że absorpcja fotonu przez atom powoduje przejście między stanem podstawowym o J = 0, a stanem
wzbudzonym o J ′ = 1. Ze względu na występowanie jednorodnego gradientu pola magnetycznego
B w pobliżu centrum pułapki poziomy wzbudzone o m′J = ±1 ulegają przesunięciu ze względu na
efekt Zeemana. Oddalenie się o z > 0 od środka pułapki powoduje, że stan wzbudzony o m′J = −1
zmniejsza swoją energię o }βz, gdzie }β = дµB dB

dz , przy czym д to czynnik Landégo, a µB to magne-
ton Bohra. Podobnie stan wzbudzony om′j = +1 zwiększa swoją energię o }βz. Jeżeli spolaryzujemy
wiązkę laserową padającą z kierunku odpowiadającego z > 0 tak, aby miała polaryzację kołową σ−,
wtedy ze względu na reguły wyboru przejście J = 0 → J ′ = 1 może nastąpić tylko, gdy spełnio-
ny jest warunek ∆mj = −1. Analogicznie, gdy oddalimy się od centrum pułapki o z < 0 nastąpi
przeciwne przesunięcie poziomów energetycznych, tj. stan o m′j = +1 tym razem zmniejszy swoją
energię ze względu na przesunięcie zeemanowskie. Jeżeli wiązkę laserową biegnącą od kierunku od-
powiadającego z < 0 spolaryzujemy przeciwną polaryzacją kołową σ+, wtedy możliwe będą jedynie
przejścia spełniające regułę wyboru ∆mj = +1. Prowadzi to do mody�kacji wyrażenia na wypadko-
wą siłę działającą na atom w melasie optycznej (patrz równanie (2.3)) o odpowiednie przesunięcia
zeemanowskie [71]

FMOT = Fσ
+

rozp (ω − [ω0 + βz] − kv ) − Fσ−rozp (ω − [ω0 − βz] + kv ) ≈ −αv − αβ
k
z. (2.4)

Widzimy, że tym razem oprócz czynnika proporcjonalnego do prędkości dostajemy także czynnik
związany z położeniem atomów w pułapce. Polaryzując w analogiczny sposób pozostałe wiązki la-
serowe wykorzystywane w melasie optycznej uzyskujemy tzw. pułapkę magnetooptyczną w której
atomy poruszają się w potencjale harmonicznym w pobliżu jej środkae.

dTemperaturę TD można powiązać ze współczynnikiem dyfuzji D0. Średni przekaz pędu 〈p〉 związany z procesami
absorpcji i emisji fotonów jest równy zero, ale jego średni kwadrat 〈p2〉 jest niezerowy, co prowadzi do błądzenia loso-
wego w przestrzeni pędowej. Stan stacjonarny dla tego procesu jest osiągany dla temperatury TD = D0/αkB = }/τkB ,
gdy δ = −τ−1. Więcej szczegółów na ten temat można znaleźć w artykule [145].

eWystępowanie harmonicznego potencjału pułapkującego powoduje, że mody�kacji ulegają także warunki przy
których zachodzi kondensacja Bosego-Einsteina. Dla gazów bozonowych temperatura krytyczna w tym przypadku jest
równa Tc = }ω0

kB

(
N
ζ (3)

)1/3
, gdzie ω0 = 3

√
ωxωyωz oraz N to liczba pułapkowanych atomów [167].
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W rzeczywistości otrzymanie MOT dla atomów alkalicznych jest bardziej skomplikowane i na-
leży wziąć pod uwagę strukturę nadsubtelną chłodzonych atomów. W szczególności stany podsta-
wowe atomów alkalicznych posiadają więcej niż jeden poziom nadsubtelny. Na przykład w 23Na
stan podstawowy 3S1/2 posiada stany nadsubtelne o F = 1 i 2, a stan wzbudzony 3P3/2 posiada
z kolei stany nadsubtelne o F ′ = 0, 1, 2 i 3f. Jeżeli laser jest dostrojony rezonansowo do przejścia
F = 2 → F ′ = 3, to w trakcie tego procesu część atomów będzie nierezonansowo przechodziła do
stanu wzbudzonego o F ′ = 2. Następnie atomy w stanie o F ′ = 2 powracają do stanu podstawowego,
przy czym przejście to może zachodzić zarówno do stanu o F = 2 jak i o F = 1. Okazuje się jednak, że
nie ma możliwości rezonansowego wzbudzenia atomów w stanie o F = 1 do stanu o F ′ = 2. Z tego
powodu stan ten nazywany jest stanem ciemnym (ang. dark state), a stan o F = 2 stanem jasnym
(ang. bright state). W efekcie w trakcie prowadzenie tego procesu ilość atomów obsadzających stan
ciemny zaczyna rosnąć i coraz mniej atomów znajduje się w stanie jasnym, który podlega mechani-
zmowi działania MOT. Proces taki nazywany jest pompowaniem optycznym (ang. optical pumping).
Aby zapewnić dobre działanie MOT w tym przypadku należy dodać dodatkowy laser dostrojony do
przejścia między stanami F = 1 oraz F ′ = 2, który powoduje "przepompowanie" atomów ze stanu
ciemnego do stanu wzbudzonego dla którego MOT działania poprawnie [168].

Ostatnim etapem zmniejszania temperatury atomów uwięzionych w MOT jest wykorzystanie
tzw. chłodzenia przez odparowanie [143,169]. Przyjmijmy, że ε̄ to średnia energia atomów w pułapce.
Jeżeli w wyniku odparowania ilość atomów zmieni się o dN < 0 i uniesiona przez nie energia będzie
równa (1 + γ )ε̄dN , wtedy ze względu na zachowanie energii mamy [168]

ε̄ + dε̄ = E + (1 + γ )ε̄dN
N + dN , (2.5)

gdzie dε̄ to zmiana średniej energii atomów związaną z odparowaniem, γ jest pewną dodatnią stałą
niezależną od N , która wskazuje na to, że cząstki ulegające odparowaniu mają średnio wyższą ener-
gię niż ε̄ , E jest całkowitą energią atomów, a N jest ich całkowitą liczbą. Wyrażenie (2.5) możemy
zapisać jako

d ln ε̄
d lnN

= γ ⇒
ε̄

ε̄ (0) =
(

N

N (0)

)γ
, (2.6)

gdzie ε̄ (0) to średnia energia atomów przed odparowaniem, a N (0) to ich liczba przed odparowa-
niem. Widzimy, że uwolnienie najszybszych atomów z pułapki powoduje zmniejszenie średniej ener-
gii atomów ε̄ , a tym samym prowadzi do zmniejszenia temperatury gazu. Proces ten pozwala na
osiągnięcie temperatur nawet poniżej 10 nK. W praktyce do odparowania najszybszych atomów
w gazie wykorzystuje się przejścia między stanami będącymi pułapkowanymi w MOT, a tymi które
pułapkowane nie są poprzez wykorzystanie impulsów promieniowania radiowego [71].

fUżyto tutaj notacji spektroskopowej dla termów atomowych. Symbol nL J oznacza, że atom jest w stanie o głównej
liczbie kwantowej n, całkowitej orbitalnej liczbie kwantowej L (przy czym tradycyjnie używa się oznaczenia S na stan
o L = 0, P na stan o L = 1, etc.) oraz liczbie kwantowej J charakteryzującej całkowity moment pędu atomu.
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2.1.2 Próbkowanie własności ultrazimnych gazów

Po spułapkowaniu i ochłodzeniu atomów do odpowiednio niskich temperatur pozostaje problem
próbkowania ich własności. Typową metodą wykorzystywaną w układach ultrazimnych atomów
alkalicznych jest pomiar czasu lotu (ang. time of �ight). W technice tej chmura atomów jest uwal-
niana z pułapki i opada w polu grawitacyjnym. W trakcie spadku swobodnego chmura atomów
ulega balistycznemu rozszerzaniu i po pewnym czasie jest obrazowana za pomocą wiązki lasero-
wej i kamery. Metoda ta pozwala na estymację temperatury chmury przed wyłączeniem pułapki
[33], pomiar jednociałowej macierzy gęstości w przestrzeni odwrotnej [24], a także na obrazowanie
interferencji kondensatów [9] oraz powstawania sieci wirów Abrikosowa [257]. Inną ważną tech-
niką wykorzystującą obraz otrzymywany po termicznej ekspansji opadającej swobodnie chmury
atomów jest metoda korelacji szumów [3]. Polega ona na pomiarze przestrzennych korelacji szumu
występującego na otrzymanym w trakcie pomiaru obrazie chmury powstałym w wyniku absorpcji
światła laserowego. Metoda ta pozwala na próbkowanie dwuciałowej macierzy gęstości w przestrze-
ni fourierowskiej [24].

Inną klasą metod wykorzystywaną w badaniach ultrazimnych atomów są techniki spektrosko-
powe, które pozwalają na pomiar widma wzbudzeń. W spektroskopii radiowej (ang. radio-frequency
spectroscopy) [86] wykorzystuje się impulsy promieniowania radiowego o częstości ν , które powo-
dują przejścia pomiędzy podpoziomami Zeemana dla danego atomu alkalicznego. W trakcie tego
procesu jest mierzona liczba atomów wzbudzanych do nieobsadzonych wysokoenergetycznych pod-
poziomów. Metoda ta pozwala na pomiar częstości przejść radiowych Γ(ν ) (ang. rf transition rate)
w funkcji częstości promieniowania radiowego. Wielkość Γ(ν ) wiąże się z wieloma ważnymi obser-
wablami charakteryzującymi kondensat [207]. Umożliwia ona pomiar takich własności układu jak
wartość przerwy energetycznej związanej z parowaniem [37], rozmiar powstałych par [202], relacja
dyspersji kwazicząstek [199], jednociałowa funkcja spektralna [216] czy wartość energii wiązania
powstałych w wyniku oddziaływań kontaktowych molekuł dwuatomowych [259]. Metoda ta została
także z powodzeniem zastosowana do obserwacji pseudoszczeliny (ang. pseudogap) w oddziałującym
gazie Fermiego [74], a także demonstracji załamania teorii cieczy Fermiego w układach ultrazimnych
fermionów [193]. Inną ważną metodą spektroskopową wykorzystywaną do badania ultrazimnych
atomów jest technika wykorzystująca rozpraszanie Bragga [215,230]. W metodzie tej wykorzystuje
się dwie skrzyżowane wiązki laserowe, przy czym ich częstości wynoszą odpowiednio ω i ω +δ , a δ
może być przestrajana w trakcie trwania eksperymentu. Wiązki te przecinają się w środku pułapki
i powodują powstanie periodycznego potencjału. Następnie obserwuje się proces dwufotonowego
rozpraszania Bragga związanego z przekazem pędu }q, który pozwala na zrekonstruowanie czyn-
nika struktury S (q,δ ) (ang. structure factor) za pośrednictwem pomiaru przesunięcia środka masy
chmury atomów w pułapce [230]. Metoda ta wykazuje dużą selektywność pomiaru ze względu na
pęd. Za jej pośrednictwem udało się dokonać obserwacji modów Goldstone’a oraz Higgsa w ultra-
zimnych gazach fermionowych [91].

W badaniach ultrazimnych atomów zastosowano także metody kalorymetryczne. Udało się do-
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konać pomiaru pojemności cieplnej dla ultrazimnych fermionów [114] i bozonów [190]. Metody te
pozwalają na precyzyjne wyznaczenie temperatury krytycznej oraz badania zachowania pojemności
cieplnej w pobliżu przejścia fazowego.

Oczywiście przedstawione w tej części metody nie są jedynymi wykorzystywanymi we współ-
czesnych eksperymentach. Wyczerpujące podsumowanie innych technik można znaleźć w pracach
[24, 50, 145, 169]. Na szczególną uwagę zasługują prace grupy doświadczalnej pod kierownictwem
Hadzibabicia, której udało się otrzymać w 2013 roku jednorodną pułapkę magnetooptyczną [75].
Atomy w tym eksperymencie zostały uwięzione w pudle o wymiarach 70 µm × 35 µm × 6 µm, przy
czym boki pudła tworzyło światło laserowe wywołujące odpychający potencjał. Wpływ pola grawi-
tacyjnego został skompensowany poprzez odpowiednie dobranie gradientu pola magnetycznego we
wnętrzu pudła. Obecnie prace grupy Hadzibabicia koncentrują się na układach bozonowych. Prze-
prowadzono w tym przypadku badania wzbudzeń kolektywnych [137], a także wykonano pomiary
dotyczące krytycznego spowolnienia (ang. critical slowing down) przewidywanego przez mechanizm
Kibble’a-Żurka [153]. Opracowane przez nich metody stanowią potencjalny kierunek rozwoju ba-
dań doświadczalnych także dla atomów fermionowych.

2.2 Rezonans Feshbacha

Wyjątkowość dziedziny zajmującej się ultrazimnymi gazami atomowymi polega w dużej mierze
na niezwykłej możliwości strojenia siły oddziaływań pomiędzy atomami z wykorzystaniem rezo-
nansu Feshbacha. Zjawisko to zostało niezależnie opisane przez Feshbacha [67, 68] oraz Fano [65]
na przełomie lat 60 i 70 XX wieku. Współczesne zastosowania rezonansu Feshbacha zostały w wy-
czerpujący sposób zaprezentowane w pracy przeglądowej [38].

2.2.1 Teoria rozpraszania dla ultrazimnych gazów

Omówienie zagadnienia rezonansu Feshbacha zaczniemy od krótkiej dyskusji teorii rozpraszania
dla zderzeń dwóch atomów oddziałujących ze sobą potencjałem V (r ), gdzie r to odległość między
atomami. Przyjmując, że potencjał oddziaływania pomiędzy parami neutralnych atomów można
przybliżyć za pomocą potencjału o twardym rdzeniu dla odległości między atomami mniejszych niż
rc oraz przyciągającym "ogonem" typu van der Waalsa otrzymujemy [82]

V (r ) =




−c6
r 6 dla r > rc ,

∞ dla r 6 rc .
(2.7)

Dla potencjału tego można wprowadzić charakterystyczną długość ac =
4
√

2mrc6/}2, gdzie mr =

m1m2/(m1 +m2) to masa zredukowana zderzających się atomów. Uzyskuje się ją poprzez porów-
nanie energii kinetycznej związanej z ruchem względnym zderzających się atomów, a ich energią
potencjalnąg. W przypadku typowych atomów alkalicznych wykorzystywanych w eksperymentach

gPrzyjmuje się przy tym, że zgodnie z zasadą nieoznaczoności Heisenberga }kr ≈ }, przy czym r = ac .
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ac � rc [24].
Funkcja falowa opisująca proces rozpraszania dla sferycznie symetrycznego potencjałuV (r ) jest

dana równaniem
ψ sc
k (r) = eik·r + f (k,θ )

eikr
r
, (2.8)

gdzie pierwszy wkład odpowiada padającej fali płaskiej, a drugi wkład sferycznej fali rozproszonej.
Proces rozpraszania jest opisywany przez amplitudę rozpraszania f (k,θ ), którą możemy wyrazić za
pomocą fal parcjalnych [128]

f (k,θ ) =
∞∑
`=0

(2` + 1) f` (k )P` (cosθ ), (2.9)

gdzie P` (x ) to odpowiednie wielomiany Legendre’a. Podobnie rozkładamy falę płaską w bazie fal
sferycznych

eik·r =
∞∑
`=0

(2` + 1)j` (kr )P` (cosθ ) −−−−→
r→∞

∞∑
`=0

(2` + 1)P` (cosθ ) eikr − e−i (kr−`π )
2ikr , (2.10)

gdzie j` (kr ) jest sferyczną funkcją Bessela. Porównanie tych równań prozwala na zde�niowanie
przesunięć fazowych charakteryzujących rozpraszanie w dalekim polu jako

e2iδ` (k ) = 1 + 2ik f` (k ). (2.11)

Dla ` , 0 w efektywnym potencjale trzeba uwzględnić pojawienie się bariery centryfugalnej, której
wysokość można oszacować jako Ec f ≈ }`

3/mra
2
c . W odpowiednio niskich temperaturach energia

kinetyczna ruchu względnego atomów }2k2/2mr jest mniejsza od Ec f . Oznacza to, że można po-
minąć stany rozproszeniowe o ` , 0, bo nie są one aktywne [24]. Korzystając z wyrażenia (2.9)
oraz przesunięć fazowych dla ` = 0 dostajemy, że dla ultrazimnych atomów alkalicznych amplitudę
rozpraszania możemy rozwinąć dla małych wartości k , co prowadzi do wyrażeniah

f (k,θ ) ≈ f0(k ) =
1

k ctgδ0(k ) − ik
=

1
−a−1 + 1

2rek
2 − ik

, (2.12)

przy czym z de�nicji a = − limk→0 tgδ0(k )/k to długość rozpraszania dla fali parcjalnej s odpowia-
dającej ` = 0, a re to efektywny zasięg potencjału, który de�niowany jest przedstawionym wyżej
rozwinięciem k ctgδ0(k ) dla małych wartości k . W rozważanym problemie efektywny zasięg re oka-
zuje się być rzędu ac . Ponadto dla ultrazimnych zderzeń atomów spełniony jest warunek kac � 1,
co pozwala zaniedbać wyraz k2 w mianowniku równania (2.12), co daje amplitudę rozpraszania
o postaci [24]

f (k ) = −
a

1 + iak . (2.13)

Jeżeli spełnione są warunki zachodzenia ultrazimnych zderzeń (kBT< Ec f ) możliwe jest wpro-
wadzenie pseudopotencjału opisującego dwuciałowe zderzenia atomów dla fali parcjalnej s [93]

V (r)ψ (r ) =
4π}2a

2mr
δ (r)

∂

∂r
[rψ (r )] , (2.14)

hWykorzystujemy tutaj relację exp(2iδ` (k )) = 1 + 2ik f` (k ) (patrz równanie (2.11)), która dla ` = 0 prowadzi do
wyrażenia f0 (k ) =

exp(2iδ0 (k ))−1
2ik = (k ctgδ0 (k ) − ik )

−1.
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przy czym pochodna służy regularyzacji wyrażenia, gdy funkcja falowa ψ (r ) działająca na pseu-
dopotencjał nie jest regularna dla r = 0. Potencjał ten daje amplitudę rozpraszania f (k ) o postaci
otrzymanej w równaniu (2.13). Widzimy, że znak długości rozpraszania a determinuje to czy poten-
cjał jest przyciągający (a < 0), czy też odpychający (a > 0). Co więcej wiadomo, że potencjał typu
δ (r) posiada dokładnie jeden stan związany, gdy a < 0. Energia wiązania εb = −}2κ2/2mr tego sta-
nu jest zadana przez biegun amplitudy rozpraszania f (k ) w dolnej półpłaszczyźnie zespolonej dany
przez k = iκ = i/a. Gdy a > 0 nie obserwuje się stanu związanego, ale stan wirtualny położony tuż
nad continuum potencjału danego równaniem (2.7) [128].

2.2.2 Magnetyczny rezonans Feshbacha

Rys. 2.2: Zależność długości rozpraszania a dla 6Li w funkcji pola magnetycznego B dla magnetycz-
nego rezonansu Feshbacha. Długość rozpraszania dla tła wynosi abд = −1405 a0, gdzie a0 to pro-
mień Bohra, rezonansowa wartość pola magnetycznego B0 = 834 G, a szerokość rezonansu wynosi
|∆B | = 300 G [24].

Magnetyczny rezonans Feshbach pozwala na mody�kację wartości długości rozpraszania a za
pośrednictwem zewnętrznego pola magnetycznego B, a w konsekwencji także na strojenie siły od-
działywań między atomami w trakcie zderzeń. Fenomenologicznie rezonans można scharakteryzo-
wać za pomocą trzech parametrów: długości rozpraszania dla tła abд

i, która otrzymywana jest dla
zderzeń odstrojonych od rezonansu, wartości pola magnetycznego B0 dla którego zachodzi rezonans
oraz szerokości rezonansu ∆B, przy czym B0+∆B mówi o wartości pola dla której długość rozprasza-
nia a(B) się zeruje. Rezonansową wartość długości rozpraszania można, wtedy opisać przy pomocy

iDługość rozpraszania dla tła abд jest asymptotyką a(B), gdy B → ±∞.
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równania [24]

a(B) = abд

(
1 − ∆B

B − B0

)
. (2.15)

Wykres przedstawiający ten rezonans dla atomów 6Li został zaprezentowany na rys. 2.2. Warto
zwrócić uwagę, że wartość |a | gwałtownie rośnie w pobliżu rezonansu, tj. B → B0. Zakres ten
odpowiada występowaniu silnych oddziaływań między atomami w gazie.

Zrozumienie pochodzenia rezonansu Feshbacha wymaga odwołania się do struktury nadsub-
telnej zderzających się atomów oraz kon�guracji ich spinów w trakcie zderzenia. Zilustrujemy ten
problem odwołując się do dwukanałowego modelu rezonansu Feshbacha na przykładzie atomów 6Li,
których spin elektronowy wynosi S = 1/2, a spin jądrowy I = 1. Hamiltonian opisujący strukturę
nadsubtelną można w tym przypadku przedstawić w postaci

Ĥ ′ = Ahf Ŝ · Î + (2µBŜz − µN Îz )B, (2.16)

gdzie pierwszy człon odpowiada sprzężeniu nadsubtelnemu, drugi rozszczepieniu Zeemana pozio-
mów elektronowych i jądrowych w zewnętrznym polu magnetycznym, a µN to magneton jądrowy.
W pobliżu rezonansu Feshbacha, który dla litu występuje dla pól magnetycznych rzędu B0 = 834 G
stany własne powyższego hamiltonianu są numerowane liczbami kwantowymi ms oraz mI , przy
czym mF = ms +mI , a nie za pomocą liczb kwantowych F i mF jak to ma miejsce dla słabych pól
magnetycznych. Powyższa własność jest spełniona, gdy B � Ahf /µB (≈ 30 G dla litu), tj. gdy domi-
nującym wkładem w hamiltonianie jest część zeemanowska [24].

Rozważmy zderzenia między atomami litu w dwóch stanach, które będziemy nazywali stana-
mi pseudospinowymi. Pierwszy z nich to |↑〉 ≈ |ms = −1/2,mI = 1〉 (stan ten posiada niewielką
domieszkę stanu |ms = 1/2,mI = 0〉) o mF = 1/2, a drugi to |↓〉 ≈ |ms = −1/2,mI = 0〉 (ten stan
także posiada niewielką domieszkę tym razem stanu |ms = 1/2,mI = −1〉) o mF = −1/2. W silnych
polach magnetycznych spiny elektronów w zderzających się atomach ustawiają się równolegle, co
powoduje, że zderzenie następuje w przybliżeniu w kon�guracji trypletowej dla spinów elektronów
walencyjnych zderzających się atomów. Stan dwuciałowy |op〉 ≡ |↑〉1 ⊗ |↓〉2 = |m

op
F ,1〉1 ⊗ |m

op
F ,2〉2 pa-

dających atomów odpowiada zatem potencjałowi trypletowemuVbд (r ) między tymi cząstkami i jest
nazywany kanałem otwartym. W trakcie zderzenia atomy w kanale otwartym mogą, ze względu na
sprzężenie nadsubtelne, przeskoczyć do singletowego stanu związanego |cl〉 = |mcl

F ,1〉1⊗ |m
cl
F ,2〉2, przy

czym rzut całkowitego momentu pędu na oś z pozostaje zachowany, czylimop
F ,1 +m

op
F ,2 =m

cl
F ,1 +m

cl
F ,2.

Stan |cl〉 nazywamy kanałem zamkniętym. Atomy w tym przypadku znajdują się w stanie zwią-
zanym dla potencjału singletowego Vc (r ) (patrz rys. 2.3). Położenie Vc (r ) względem Vbд (r ) można
zmieniać za pośrednictwem mody�kacji wartości zewnętrznego pola magnetycznego o δB. Jest to
związane z tym, że momenty magnetyczne stanów |op〉 i |cl〉 są różne. Jeżeli oznaczymy ich różnicę
jako µ, wtedy przesunięcieVc (r ) względemVbд (r ) jest związane z energią Zeemana µδB, przy czym
δB = B − B0, bo układ znajduje się blisko rezonansu [24].

Dwukanałowy model opisujący rezonans Feshbacha można zilustrować przy pomocy następu-
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Rys. 2.3: Uproszczony dwukanałowy model rezonansu Feshbacha. Atomy przygotowane w kana-
le otwartym, odpowiadającym potencjałowiVbд (r ), zderzają się ze sobą z małą energią E. W trakcie
zderzenia kanał otwarty sprzęga się z kanałem zamkniętym, który jest dany położeniem stanu zwią-
zanego dla potencjałuVc (r ). Gdy położenie stanu związanego Ec względem plateau potencjałuVbд (r )
jest bliskie zera zachodzi proces rozpraszania rezonansowego. Położenie kanału zamkniętego Ec dla
magnetycznego rezonansu Feshbacha jest przesuwane przy pomocy zewnętrznego pola magnetycz-
nego B.

jącego hamiltonianu [159]

Ĥ =


− }
2

2mr
∇2 +Vbд (r ) W (r )

W (r ) − }
2

2mr
∇2 +Vc (r )


, (2.17)

gdzie W (r ) jest potencjałem odpowiedzialnym za sprzęganie się kanału otwartego z kanałem za-
mkniętym i ujawnia się dopiero dla odległości między atomami rzędu rc (patrz równanie (2.7)). Zakła-
damy, że zderzenie atomów w kanale otwartym zachodzi dla niskich energii, tj. E (k ) = }2k2/2mr →

0 (patrz rys. 2.3). W pobliżu rezonansu energia stanu związanego Ec = µ (B − B0) i dla kanału za-
mkniętego jest bliska zeru (patrz rys. 2.3), co powoduje rezonansowe sprzężenie między kanałami.
Sprzężenie to prowadzi do pojawienia się dodatkowego przesunięcia fazowego dla procesu rozpra-
szania (tak jak dla problemu rozpraszania rezonansowego Breita-Wignera [128])

tgδres (k ) = −
Γ(k )

2(E (k ) − ν ) −−−→k→0

}2k

2mrr?ν
, (2.18)

gdzie Γ(k ) to szerokość rezonansu, a ν = µ (B − B0) to odstrojenie od rezonansu. Charakterystyczna
długość r? jest de�niowana przez amplitudę przejścia między kanałem otwartym, a zamkniętym
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[24]

〈cl |W |op〉 =
}2

2mr

√
4π
r?
. (2.19)

Długość r? opisuje, więc to jak bardzo kanały otwarty i zamknięty sprzęgają się ze sobą. Uzyskane
wyniki pozwalają na otrzymanie długości rozpraszania w tym problemie

a(B) = lim
k→0

1
k

tg
(
δbд (k ) + δres (k )

)
≈ abд −

}2

2mrr?ν
, (2.20)

gdzie abд jest długością rozpraszania związaną z rozpraszaniem w kanale otwartym. Wprowadzając
∆B = }2/2mr µr

?abд odtwarza się fenomenologiczne równanie (2.15).

2.3 Przejście BCS-BEC

Występowanie rezonansu Feshbacha w układach ultrazimnych fermionów pozwala na realizację
ciągłego przejścia (ang. crossover) między kondensatem par Coopera (stan BCS), a kondensatem bo-
zonowych molekuł złożonych z dwóch atomów fermionowych (stan BEC). Początkowo problem ten
pojawił się w kontekście nadprzewodników, które posiadają niewielką koncentrację nośników i tym
samym przyciągające oddziaływania między elektronami są porównywalne z energią Fermiego [61].
Następnie przejście BCS-BEC było badane w przypadku nadciekłego 3He, dla którego Leggett teore-
tycznie sformułował to zagadnienie w zerowych temperaturach [130]. Jego pracę na skończone tem-
peratury uogólnili Nozières i Schmitt-Rink (teoria NSR) [158] i to sformułowanie zostanie później
przez nas wykorzystane do omówienia najważniejszych aspektów tego zjawiska. Odkrycie nadprze-
wodnictwa wysokotemperaturowego w 1986 roku [17] spowodowało nagły wzrost zainteresowania
ciągłym przejściem BCS-BEC [58, 182, 183, 222]. Było to spowodowane obserwacją, że kFξ0 ∼ 5 − 20
dla nadprzewodników miedzianowych, gdzie ξ0 to średni rozmiar pary Coopera. Dla porównania
w standardowych nadprzewodnikach parametr kFξ0 ∼ 103 − 104. Jednak dopiero prace nad konden-
satami fermionowymi w ultrazimnych gazach [15,29,81,113,166,187,258] pozwoliły w pełni zbadać
to zjawisko, a także osiągnąć granicę unitarną w której (kFaF )−1 → 0. W reżimie unitarnym gaz
fermionowy wykazuje niezmienniczość skalowania oraz konforemność. Współczesny stan wiedzy
dotyczącej własności przejścia BCS-BEC oraz unitarnego gazu fermionów został zaprezentowany
w monogra�i [256] oraz pracy przeglądowej [220].

Do opisu przejścia BCS-BEC wykorzystamy model w którym przyjmiemy, że fermiony mogą
znajdować się w jednym z dwóch stanów pseudospinowych |↑〉 lub |↓〉. Atomy w przeciwnych sta-
nach pseudospinowych ulegają parowaniu na skutek występowania efektywnego oddziaływania
kontaktowego V (r) = дδ (r), gdzie д < 0. Rozważamy sytuację w której populacje oraz masy ato-
mów o przeciwnych spinach są jednakowe. Hamiltonian ma w tym przypadku postać

Ĥ − µN̂ =
∑
k,σ

ξkc
†

k,σck,σ +
д

V

∑
k,k′,q

c†k+q/2,↑c
†

−k+q/2,↓ck′+q/2,↓c−k′+q/2,↑, (2.21)

gdzie ξk = }2k2/2m − µ to relacja dyspersji, µ to potencjał chemiczny, V to objętość układu, a c (†)k,σ

to odpowiedni operator anihilacji (kreacji) cząstki o pędzie }k oraz pseudospinie σ ∈ {↑,↓}. Wy-
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korzystanie tego modelu prowadzi do pojawienia się osobliwości w granicy krótkofalowej k → ∞,
gdyż potencjał kontaktowy nie posiada naturalnej regularyzacji }Λ dla pędów związanej z jego za-
sięgiem re , tj. Λ ∼ 1/re → ∞, bo re → 0. Można zregularyzować ten problem korzystając z równania
Lippmanna-Schwingera [217]

2mr

4π}2aF
=

1
д
−

∫
|k|6Λ

d3k
(2π )3

2mr

}2k2 , (2.22)

przy czym mr = m/2. W przypadku ultrazimnych gazów oddziaływanie dwuciałowe jest parame-
tryzowane tylko przez długość rozpraszania aF . Wykonując granicę д → 0− oraz Λ → ∞ w taki
sposób, że utrzymujemy stałą wartość aF możemy pozbyć się rozbieżności ultra�oletowych [220].

2.3.1 Teoria pola średniego

Na poziomie teorii pola średniego (MFT) przyjmujemy, że parowanie następuje przy q = 0 i przy-
bliżamy człon oddziaływania w równaniu (2.21) korzystając z relacji

P
†

kPk
′ − 〈P

†

k 〉Pk
′ − P

†

k 〈Pk
′〉 + 〈P

†

k 〉〈Pk
′〉 = (P†k − 〈P

†

k 〉) (Pk′ − 〈Pk′〉) ≈ 0, (2.23)

gdzie P†k = c
†

k,↑c
†

−k,↓ oraz Pk′ = ck′,↓c−k′,↑ są operatorami kreacji i anihilacji pary Coopera. W przybli-
żeniu średniego pola zaniedbujemy �uktuacje parowania, tj. (P†k −〈P

†

k 〉) (Pk′−〈Pk′〉) ≈ 0 i wprowa-
dzając przerwę energetyczną jako ∆ =

д
V

∑
k′ Pk′ otrzymujemy średniopolowy hamiltonian, który

jest formą kwadratową operatorów kreacji i anihilacji co sprawia, że może on zostać łatwo zdiago-
nalizowany. Pozwala to otrzymać dwa sprzężone równania opisujące zachowanie układu [201]

−
m

4π}2aF
=

∫ d3k
(2π )3

(
1 − 2f (Ek )

2Ek
−

m

}2k2

)
, (2.24)

oraz
n =

∫ d3k
(2π )3

(
1 − ξk

Ek
(1 − 2f (Ek ))

)
, (2.25)

gdzie pierwsze z nich to równanie przerwy energetycznej, a drugie to równanie na koncentrację
atomów n. Ponadto f (E) = (exp(E/kBT ) + 1)−1, Ek =

√
ξ 2
k
+ ∆2, a ∆ to przerwa energetyczna zwią-

zana z powstawaniem w układzie par Coopera. Pełni ona funkcję parametru porządku. W granicy
T → T ∗ parametr porządku znika, tj. ∆→ 0, co pozwala na rozwiązanie powyższego układu równań
i wyznaczenie wartośćT ∗, gdzie jest to wartość temperatury krytycznej otrzymana w ramach MFT.

Najpierw rozpatrzymy granicę słabych sprzężeń w której (kFaF )−1 � −1 (reżim BCS). Równanie
(2.25) pozwala powiązać potencjał chemiczny µ i koncentrację atomów n, a to prowadzi do wyni-
ku spodziewanego dla idealnego gazu fermionów, tj. µ ≈ εF = }

2(2π 2n)2/3/2m. Następnie można
rozwiązać równanie (2.24) wyznaczając tym samym wartość T ∗, która jest równa

T ∗ = TF
eγE−2

π
e

π
2kF aF , (2.26)

czyli T ∗ � TF , gdyż (kFaF )
−1 � −1.
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Analogicznie możemy postąpić w granicy silnych sprzężeń, która odpowiada (kFaF )
−1 � 1

(reżim BEC). Zakładając w tym przypadku, że |µ | � T ∗ (µ < 0) możemy przyjąć, że wyrażenie
1 − 2f (ξk ) |T=T ∗ = tgh(ξk/2kBT ∗) ≈ 1 w równaniu (2.24) i sprowadza się ono do równania na stan
związany εb = }2/2ma2

F ≈ µ/2. Natomiast z równania (2.25) możemy wyznaczyć T ∗, co daje

T ∗ =
εb

2kB ln (εb/εF )
, (2.27)

przy czym wyrażenie to jest rozbieżne w granicy silnych sprzężeń dla n = const. Wynik ten możemy
zrozumieć zauważając, że odpowiada on temperaturze dysocjacji w której proces tworzenia i rozpa-
du bozonowej pary, złożonej z fermionów o pseudospinach "↑" i "↓", osiąga równowagę chemiczną
(f↑+ f↓ 
 b). Oznacza to, że εb jest wkładem entalpowym związanym z energią uwalnianą w trakcie
tworzenia się stanu związanego, a czynnik z logarytmem odpowiada wkładowi entropowemu, któ-
ry faworyzuje rozpadanie się pary [222]. Zależność temperatury T ∗ od parametru (kFaF )

−1 została
pokazana na rys. 2.4 (czerwona linia przerywana).

2.3.2 Teoria Nozièresa–Schmitt-Rinka

Widzimy, że uzyskane wyniki w ramach MFT niewłaściwie opisują przejście BCS-BEC w granicy
dużych sprzężeń, bo nie prowadzą do poprawnej temperatury kondensacji dla bozonowych dimerów
powstałych z atomów o przeciwnych pseudospinach, która powinna wynosić

TBEC =
2π}2

kBmdim

(
ndim
ζ (3/2)

)2/3
, (2.28)

gdziemdim = 2m to masa dimeru, a ndim = n/2 to ich koncentracja.
W celu poprawienia tego wyniku odwołamy się do teorii NSR, która uwzględnia gaussowskie

�uktuacje parowania. W tym celu posłużymy się metodą funkcji Greena [1,139]. W fazie normalnej,
tj. ∆ = 0, przybliżone wyrażenie na fermionową selfenergię ma postać (przyjmujemy, że } = kB = 1)

Σ(k ) = −

∫ d3q

(2π )3T
∞∑

m=−∞

Γ0(q)G0(q − k ). (2.29)

Powyżej wykorzystano notację k = (k,ωn ) oraz q = (q,ϖm ), gdzie ωn = (2n + 1)πT (n ∈ Z) jest
fermionową częstością Matsubary, a ϖm = 2mπT (m ∈ Z) jest jej bozonowym odpowiednikiem.
Wielkość G0(k ) = (iωn − ξk )

−1 jest nieoddziałującą funkcją Greena, a Γ0(q) propagatorem �uktuacji
parowania. Oddziałująca fermionowa funkcja Greena G (k ) jest dana równaniem Dysona

G (k ) =
1

G−1
0 (k ) − Σ(k )

= G0(k ) +G0(k )Σ(k )G0(k ) + . . . , (2.30)

przy czym w teorii NSR ograniczamy się tylko do poprawki liniowej w Σ(k ). Propagator �uk-
tuacji parowania Γ0(q) uzyskuje się poprzez wysumowanie podklasy diagramów drabinkowych
(ang. ladder diagrams), które pokazane są na rys. 2.5 (c). Korzystając z diagramu (c) na rys. 2.5 (tj.
Γ0(q) = −д − дT

∑∞
n=−∞

∫ d3k
(2π )3G0(k + q)G0(−k )Γ0(q)) oraz relacji (2.22) dostajemy, że [220]

Γ0(q) = −
д

1 + дχpp (q)
= −

(
m

4πaF
−

∫ d3k
(2π )3

m

k2 + χpp (q)

)−1
, (2.31)
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Rys. 2.4: Schematyczny diagram fazowy dla przejścia BCS-BEC. Niebieska linia odpowiada ewolucji
temperatury krytycznej Tc w trakcie ciągłego przejścia od słabych ((kFaF )−1 → −∞) do silnych
sprzężeń ((kFaF )−1 → ∞). W temperaturze Tc zachodzi przemiana fazowa między fazą normalną,
a fazą nadciekłą. Linia czerwona odpowiada temperaturze T ∗ poniżej, której w układzie powstają
pary Coopera. W reżimie pośrednim (|(kFaF )−1 | < 1) oddziaływania w układzie są silne. W obszarze
tym układ chrakteryzuje się pseudoszczeliną w fazie normalnej, związaną z istnieniem par, które nie
uległy kondensacji [256].

przy czym χpp (q) odpowiada diagramowi pęcherzykowemu typu cząstka-cząstka (ang. particle-particle
bubble diagram) dla którego mamy

χpp (q) =

∫ d3k
(2π )3T

∞∑
n=−∞

G0(k + q)G0(−k ). (2.32)

Korzystając z ubranej funkcji Greena G (k ) możemy otrzymać przesunięcie wartości wielkiego po-
tencjału kanonicznego Ω(T ,V , µ ) względem jego wartości dla układu nieoddziałującego Ω0(T ,V , µ )

korzystając z równania (porównaj z równaniem (14.41) w [32] lub z równaniem (23.22) w [69])

Ω − Ω0 = V

∫ 1

0
dλ

∫ d3k
(2π )3 T

∑
n

eikn0+G
λ (k )

G0(k )
≈

≈ V

∫ d3q
(2π )3 T

∑
m

eiqm0+ ln[1 + дχpp (q)].
(2.33)

Poprzez różniczkowanie względem µ możemy otrzymać wyrażanie na koncentrację cząstek po uwzględ-
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Rys. 2.5: Diagramatyczna reprezentacja: (a) selfenergii fermionowej Σ(k ), (b) równania Dysona dla
oddziałującej fermionowej funkcji GreenaG (k ), które zostało obcięte do liniowego rzędu w Σ(k ) oraz
(c) propagator �uktuacji parowania Γ0(q) w przybliżeniu NSR. Podwójna linia odpowiada oddziałują-
cej funkcji GreenaG (k ), linia pojedyncza nieoddziałującej funkcji GreenaG0(k ), a linia przerywana
oznacza stałą sprzężenia −д.

nieniu �uktuacji parowania w ramach teorii NSR, wtedy [220]

n − n0 = −
1
V

(
∂(Ω − Ω0)

∂µ

)
T ,V

≈ 2
∫ d3k

(2π )3 T
∑
n

G2
0 (k )Σ(k ). (2.34)

Jedynym elementem ulegającym mody�kacji w teorii NSR w stosunku do MFT jest wyrażenie na
koncentrację cząstek n. Równoczesne rozwiązanie równania (2.24) oraz (2.34) prowadzi do popraw-
nego oszacowania wartości temperatury krytycznejTc poniżej której układ przechodzi do fazy nad-
ciekłej. Uzyskany w ten sposób wynik został naniesiony na rys. 2.4 (niebieska linia). W granicy du-
żych sprzężeń odtwarza się spodziewany wynik dla temperatury krytycznej, tj. Tc/TF = TBEC/TF ≈

0.218, gdzie TBEC jest dane równaniem (2.28) [220].

Temperatura T ∗ odpowiada skali energetycznej poniżej której w układzie zaczynają formować
się pary Coopera, ale nie tworzą one jeszcze kondensatu. Przy dalszym zmniejszaniu temperatury
poniżej T = Tc układ kondensuje i zachodzi przemiana fazowa między fazą normalną i nadcie-
kłą. Obszar występowania wstępnie powstałych par Coopera, które nie są jeszcze skondensowane
jest nazywany pseudoszczeliną i jest charakterystyczny dla sytuacji w której |(kFaF )−1 | < 1 (patrz
rys. 2.4). Jest to reżim przejściowy, w którym występują najsilniejsze oddziaływania między ato-
mami, przy czym dla (kFaF )

−1 = 0 układ znajduję się w granicy unitarnej. Z kolei faza normalna
dla słabych sprzężeń jest poprawnie opisywana przez teorię cieczy Fermiego, a dla silnych sprzę-
żeń teorią cieczy Bosego [173]. Warto tu podkreślić, że granica silnych sprzężeń odpowiada słabo
oddziałującym dimerom bozonowym, które posiadają resztkowy potencjał odpychający powiązany
z zakazem Pauliego dla fermionów będących ich składowymi [256].
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2.4 Mieszaniny gazów fermionowych

Układy ultrazimnych fermionów pozwalają na eksperymentalną realizację mieszanin o różno-
licznych populacjach atomów o pseudospinach "↑" i "↓" [165], tj. n↑ , n↓. Przekłada się to na nierów-
ność ich potencjałów chemicznych (µ↑ , µ↓). Kontrolując koncentracje atomów możemy zmieniać
polaryzację P = (n↑ − n↓)/(n↑ + n↓) lub tzw. pole Zeemana h = (µ↑ − µ↓)/2. Badania w ramach
teorii pola średniego (MFT) przewidują, że na diagramie fazowym w zmiennych (P , T ) oprócz fazy
nadciekłej i normalnej obecny jest także obszar występowania separacji faz, który nie jest obecny
dla niespolaryzowanego gazu, tj. P = 0. Ponadto temperatura krytyczna Tc jest maksymalna, gdy
P = 0. Obszar separacji faz w granicy unitarnej, tj. |aF | → ∞, pojawia się dla temperatur T ≈ 0.6Tc
i w zerowej temperaturze rozciąga się dla polaryzacji P ∈]0, 1] [84]. W układach spolaryzowanych
można badać także zjawisko ciągłego przejścia BEC-BCS poprzez mody�kację wartości a−1

F . Wyniki
badań sugerują, że obszar separacji faz w zmiennych (a−1

F , P , T ) jest największy w pobliżu granicy
unitarnej (|a−1

F | < 1), czyli w reżimie silnych oddziaływań między fermionami. Dla większych war-
tości |a−1

F | ulega on redukcji lub całkowicie znika. Z kolei przemiana dla temperatur T > Ttri jest
ciągła, przy czymTtri jest temperaturą trójkrytyczną. W zmiennych (h, T ) sytuacja jest analogiczna,
ale obszar separacji faz jest niewidoczny. Przemiana fazowa między fazą normalną i nadciekłą dla
T < Ttri jest I rodzaju, zaś w wyższych temperaturach (T > Ttri ) przemiana ta jest ciągła [163].

Wykorzystanie przybliżenia lokalnej gęstości (ang. local density approximation) pozwala uwzględ-
nić wpływ potencjału pułapkującego w którym znajdują się atomy. Prowadzi to do przewidywania
radialnego pro�lu gęstości chmury atomów i sekwencji następujących po sobie faz, przy czym ty-
powo faza nadciekła znajduje się w środku chmury, a atomy w stanie normalnym znajdują się na jej
obrzeżach [179]. Ponadto wpływ �uktuacji na diagram fazowy był badany przy wykorzystaniu per-
turbacyjnej grupy renormalizacji [85], a także jej nieperturbacyjnego wariantu wykorzystującego
równanie Wettericha [25]. Ich uwzględnienie powoduje zmniejszenie obszaru dla którego obserwo-
wana jest faza uporządkowana na diagramie fazowym, a także redukcję wartościTtri w porównaniu
z wynikiem średniopolowym. Innym ważnym kierunkiem badań jest scharakteryzowanie zachowa-
nia modów kolektywnych w układzie. W fazie nadciekłej mają one charakter wzbudzeń fononowych
nazywanych modami Andersona-Bogoliubowa, przy czym ich relacja dyspersji jest liniowa dla ma-
łych pędów [118]. Mody te w skończonych temperaturach ulegają tłumieniu w wyniku sprzężenia
z kwazicząstkami fermionowymi [115, 118]. Innym ważnym przykładem wzbudzenia kolektywne-
go obserwowanego w tego typu układach jest tzw. mod oddychający (ang. breathing mode), gdzie
chmura atomów wykonuje pulsujący ruch polegający na naprzemiennym kurczeniu się i rozsze-
rzaniu [90]. Mody te potencjalnie można wykorzystać do próbkowania własności faz, które wystę-
pują w badanym układzie [62]. Wyczerpującą dyskusję dotyczącą także innych aspektów badanych
w kontekście spolaryzowanych gazów Fermiego można znaleźć w następujących pracach przeglą-
dowych [36, 85, 179, 204, 223].

W tej dysertacji skupimy się na układach w których, oprócz różnych koncentracji, składniki
posiadają także różne masy, tj. m↑ , m↓. W takich mieszaninach wszystkie atomy o danym pseu-
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dospinie są jednakowe, ale te posiadające przeciwne pseudospiny odpowiadają różnym izotopom.
Mieszaniny takie udało się doświadczalnie zrealizować w kilku wariantach różniących się stosun-
kiem mas atomów r =m↓/m↑, takich jak mieszanina 6Li-40K (r = 6.67) [103,225,227,239], mieszanina
40K-161Dy (r = 4.03) [185,186] oraz mieszanina 6Li-53Cr (r = 8.83) [155]. Układy te charakteryzują się
występowaniem dwóch powierzchni Fermiego o pędach Fermiego wynoszących kσF =

√
2mσ µσ . Po-

krywają się one tylko wtedy, gdy zachodzi warunek h = ζ µ, gdzie µ = (µ↑+µ↓)/2 to średni potencjał
chemiczny, a ζ = (r−1)/(r+1) to wygodny parametr charakteryzujący nierówność mas składników
mieszaniny. Jedną z konsekwencji istnienia dwóch niepokrywających się kul Fermiego jest możli-
wość występowania egzotycznych faz materii, takich jak niejednorodny stan FFLO [73, 129] oraz
nadciecz SLW [135, 198]. W ogólności nierówność mas składników mieszaniny powoduje, że dia-
gram fazowy nie jest symetryczny ze względu na odbicie względem prostej odpowiadającej sytuacji
niespolaryzowanej, tj. P = 0 lub h = 0 [12, 164, 234].

W przypadku nadcieczy typu FFLO parowanie zachodzi w sytuacji w której położenia środków
kul Fermiego atomów o pseudospinie "↑" oraz "↓" nie pokrywa się. Powoduje to, że zachodzi ono przy
niezerowym całkowitym pędzie środka masy pary Coopera, tj. |Q| ≈ k↑F −k

↓

F . W rezultacie parametr
porządku dla tego typu nadcieczy ulega periodycznej modulacji w przestrzeni ∆(x) = ∆0 cos(Q · x)
dla stanu LO, a w przypadku stanu FF parametr porządku ma postać fali płaskiej ∆(x) = ∆0eiQ·x

[179]. Faza FFLO może powstać, gdy wytworzenie niejednorodnej kon�guracji ∆(x) w układzie jest
korzystne energetycznie. Dzieje się tak, gdy współczynnik proporcjonalności przy członie |∇∆(x) |2

w rozwinięciu Landaua-Ginzburga dla potencjału termodynamicznego jest ujemny [83]. Istnienie tej
fazy dla spolaryzowanych mieszanin Fermiego zostało przewidziane w ramach MFT. W tej sytuacji
faza FFLO zajmuje bardzo niewielki obszar diagramu fazowego odpowiadający dużym wartościom
h lub P oraz stosunkowo niskim temperaturom [12,13,188]. Stwierdzono także możliwość występo-
wania w tym kontekście punktu przemiany multikrytycznej, który jest nazwany punktem Lifszyca.
Występuje on w skończonych temperaturach i spotykają się w nim faza normalna, nadciekła oraz
niejednorodna faza FFLO [13, 83, 174]. Badania nad wpływem zmiany stosunku mas składników
mieszaniny pokazują, że jego zwiększenie prowadzi do rozrostu obszaru odpowiadającemu niejed-
norodnej nadcieczy na diagramie fazowym w zmiennych (P , T , a−1

F ) [99, 101, 189, 234]. Jeżeli chodzi
o stabilność tej fazy to wyniki badań nie są jednoznaczne [105, 189]. Uwzględnienie wpływu �uk-
tuacji związanych z występowaniem modów Goldstone’a sugerują jednak, że faza FFLO jest niesta-
blina dlaT > 0 w przypadku neutralnych gazów fermionowych [105,178]. Zdają się to potwierdzać
także eksperymenty w których brak jest śladów nadcieczy typu FFLO w izotropowych układach
obojętnych elektrycznie.

W przypadku fazy SLW powstająca nadciecz charakteryzuje się parowaniem pod powierzchnią
Fermiego jednego ze składników. Przyjmijmy, że k↓F > k↑F . Przyciąganie pomiędzy atomami po-
woduje powstawanie par Coopera dla których pędy parujących się atomów są przeciwne. W tym
przypadku parowanie może występować jedynie dla pędów w pobliżu k↑F . Ponadto warunek mó-
wiący o zerowym całkowitym pędzie pary powoduje, że niektóre atomy o pseudospinach "↓" są
promowane na powierzchnię Fermiego k↓F z wnętrza morza Fermiego pozostawiając w nim przerwę
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energetyczną dla pędów równych k↑F . Proces formowania się par zachodzi dla powłoki o promieniu
k↑F oraz o szerokości κ. Zysk energetyczny, który jest związany z energią kondensacji pojedynczej
pary wynosi Epar ∼ k↑Fκ/mr , gdziemr jest masą zredukowaną dla atomów tworzących parę Coopera.
Z kolei koszt związany z promowaniem niektórych atomów o pseudospinie "↓", tak aby odpowiadały
im pędy zbliżone do k↓F , jest dany przez Eprom ∼ [(k↓F )

2− (k↑F )
2]/2m↓ dla pojedynczej pary. Proces ten

jest korzystny energetycznie, gdy Epar > Eprom. W przypadku, gdy k↓F − k
↑

F > κ mamy do czynienia
z parowaniem we wnętrzu morza Fermiego cięższego z atomów [135]. Istnienie tej fazy wiąże się
z pojawieniam nadmiaru atomów jednego typu w fazie uporządkowanej i tym samym obserwowana
nadciecz jest spolaryzowana. Tego typu scenariusz może zostać zrealizowany dla spolaryzowanych
mieszanin Fermiego o nierównych masach [12, 84, 234]. Fazę tą udało się także zidenty�kować eks-
perymentalnie w tego typu układach [244].

W kontekście ultrazimnych mieszanin fermionów o nierównych masach prowadzono badania
dotyczące problemu polaronu Fermiego. Dla dużych polaryzacji mieszaniny pojedyncze atomy mniej-
szościowego składnika zachowują się jak domieszki zanurzone w morzu atomów składnika stano-
wiącego większość mieszaniny. W wyniku oddziaływań atomy mniejszościowe efektywnie "ubie-
rają się" w chmurę atomów drugiego składnika i powodują, że atomy te zachowują się jak kwa-
zicząstki o określonym czasie życia [11, 122]. Zbadano także problem istnienia i własności pseu-
doszczeliny dla mieszanin w pułapkach harmonicznych [236] oraz znajdujących się w regularnych
sieciach optycznych [111]. W szczególności zidenty�kowano nowy egzotyczny typ pseudoszczeliny
w którym układ posiada radialny pro�l faz w których na przemian występuje faza normalna i pseu-
doszczelina, przy czym pojawia się on jedynie dla odpowiednio dużych stosunków mas składników
mieszaniny [236]. Sprawdzono także zachowanie układu w granicy silnych oddziaływań w której
efektywnie mieszanina składa się z fermionów i bozonowych dimerów [102]. Poza tym uogólniono
ten problem uwzględniając sprzężenie spin-orbita [97], a także zbadano go gdy wiodącą niestabilno-
ścią jest ferromagnetyzm wędrujących fermionów (ang. itinerant ferromagnetism), a nie nadciekłość
[233]. Pokazano także możliwość realizacji topologicznej przemiany fazowej dla T = 0 w trakcie
której widmo wzbudzeń fermionowych zmienia się z posiadającego przerwę energetyczną na ta-
kie, które tej przerwy nie ma [101]. Jak widzimy spolaryzowane ultrazimne mieszaniny Fermiego
z nierównymi masami są układem ob�tującym w mnogość interesujących efektów oraz faz.

Ważną inspirację do podjęcia badań nad ultrazimnymi mieszaninami fermionów stanowią dla
nas prace, które dotyczą kwantowych przemian fazowych w tych układach. W pierwszej z nich wy-
kazano możliwość strojenia położenia punktu trójkrytycznego na diagramie fazowym w zmiennych
(h,T ) na poziomie MFT za pośrednictwem zmiany stosunku mas składników mieszaniny [164]. Wy-
niki tej pracy sugerują, że da się odpowiednio dobierając nietermiczne parametry kontrolne układu
otrzymać kwantowy punkt krytyczny. Ponadto badania wpływu �uktuacji w takich układach poka-
zały, że mogą one prowadzić do zmiany rzędu przemiany fazowej. W szczególności dla dwuwymia-
rowej mieszaniny Fermiego pokazano, że �uktuacje prowadzą do wyindukowana ciągłej przemiany
fazowej między fazą nadciekłą oraz normalną. Dzieje się tak mimo iż MFT przewiduje, że przemiana
powinna być w tym przypadku I rodzaju [219]. Wpływ �uktuacji został zbadany także w kontekście
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gazu unitarnego o nierównych masach w trzech wymiarach w którym zaobserwowano zmniejszenie
obszaru występowania fazy uporządkowanej [189], podobne zachowanie zaobserwowano także we
wspomnianym wcześniej układzie dwuwymiarowym [219]. W obu tych przypadkach nie uwzględ-
niono tłumienia Landaua modów Goldstone’a w fazie ze złamaną symetrią, które powinno mieć
wpływ na zachowanie układu w przypadku spolaryzowanym [101]. Spodziewamy się, że uwzględ-
nienie tłumienia jest istotne dla zrozumienia charakteru kwantowej przemiany fazowej podobnie
jak to ma miejsce w przypadku teorii Hertza-Millisa dla układów magnetycznych [89, 147].

W tej pracy zbadamy możliwości otrzymania kwantowego punktu krytycznego oraz jego sta-
bilność ze względu na �uktuacje. Uwzględnimy także efekty związane z występowaniem tłumienia
Landaua. Jako punkt wyjścia przyjmiemy, że wiodącą niestabilnością w naszym układzie jest pa-
rowanie singletowe dla którego jedynie atomy o przeciwnych pseudospinach parują się ze sobą.
Zakładamy, że oddziaływania między fermionami są przyciągające i modelujemy je potencjałem
kontaktowym o amplitudzie д < 0. Hamiltonian dla tego układu ma postać

Ĥ − µN̂ =
∑
k,σ

ξσk c
†

k,σck,σ +
д

V

∑
k,k′,q

c†k+q/2,↑c
†

−k+q/2,↓ck′+q/2,↓c−k′+q/2,↑, (2.35)

gdzie ξσ
k
= }2k2/2mσ − µσ , co stanowi to uogólnienie wzoru (2.21). W dalszej części pracy będziemy

posługiwali się naturalnym układem jednostek w którym przyjmujemy, że } = kB =m↑ = 1. Ponadto
będziemy oznaczać stany pseudospinowe jako |↑〉 ≡ |+〉 oraz |↓〉 ≡ |−〉.



Rozdział 3

Kwantowe przemiany fazowe

Jednym z głównych paradygmatów współczesnej �zyki materii skondensowanej jest pojęcie
przemiany fazowej, a także związane z nim spontaniczne łamanie symetrii [35, 77, 156]. Okazały
się one niezwykle użyteczne przy zrozumieniu emergentnych zjawisk występujących w różnych
dziedzinach nauki [210]. Za ich pomocą możemy opisać ewolucję naszego Wszechświata od bar-
dzo gorącego i jednorodnego stanu tuż po Wielkim Wybuchu, aż do chwili obecnej w której jest on
wypełniony różnymi strukturami i niejednorodnościami [30]. Posługując się analogicznymi koncep-
cjami badacze starają się zbudować ramy teoretyczne opisujące ewolucję biologiczną oraz problem
powstawania życia [78, 210], a także lepiej zrozumieć zachowania społeczne i ekonomiczne [228].
W tym kontekście zagadnienia spontanicznego łamania symetrii oraz powstawania hierarchicznych
struktur w przyrodzie zdają się być ze sobą ściśle związane [7].

Przemiany fazowe w kontekście materii skondensowanej mają miejsce, gdy w wyniku mody-
�kacji pewnego parametru kontrolnego jakościowe własności badanego układu ulegają gwałtow-
nej zmianie. Przemiany takie zwykle zachodzą w skończonych temperaturach i makroskopowy po-
rządek ulega w ich trakcie zniszczeniu na skutek �uktuacji termicznych [35, 77, 156]. Możliwe jest
także zrealizowanie przemiany fazowej w zerowej temperaturze. W tym przypadku faza uporząd-
kowana ulega zniszczeniu na skutek �uktuacji kwantowych związanych z zasadą nieoznaczoności
Heisenberga, a nie z �uktuacjami termicznymi jak to ma miejsce w przypadku klasycznym. Prze-
miany tego typu nazywamy kwantowymi przemianami fazowymi i ich występowanie w układzie
ma wpływ także na jego własności w T > 0 [44, 192, 231]. W szczególności obecność kwantowego
punktu krytycznego (QCP) na diagramie fazowym jest związana z intrygującymi efektami obse-
rowowanymi w takich materiałach jak magnetyczne izolatory oparte na metalach ziem rzadkich
[22], wysokotemperaturowe nadprzewodniki [49, 140, 146, 152, 162, 191], a także organiczne prze-
wodniki [59]. Kwantowa krytyczność została zaobserwowana także w kontekście ultrazimnych ato-
mów [252, 253]. Szczegółowe omówienie tego problemu można znaleźć w pracach przeglądowych
[20, 44, 138, 192, 211, 231, 232].

Struktura tego rozdziału jest następująca:
Podrozdział 3.1. Zaczniemy od przedstawienie podstaw teorii skalowania dla klasycznych (T > 0)
oraz kwantowych (T = 0) przemian fazowych. Scharakteryzujemy najważniejsze różnice między

43
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tymi dwoma typami przemian oraz wprowadzimy wykładnik dynamiczny z. Ponadto pokażemy, że
istnieje korespondencja między kwantową przemianą fazową w d wymiarach, a klasyczną przemia-
ną w D = d + z wymiarach.
Podrozdział 3.2. Następnie zaprezentujemy podstawowe informacje na temat teorii Hertza-Millisa
w przypadku ferromagnetyzmu wędrujących elektronów. Opiszemy jaki wpływ na przemianę fazo-
wą ma tłumienie Landaua paramagnonów. Następnie omówimy ciągłe przejście od reżimu klasycz-
nego do kwantowego dlaT > 0 w obszarze zlokalizowanym ponad QCP i przedstawimy uzyskiwany
diagram fazowy.

3.1 Teoria skalowania

W tej części skupimy się na opisie układu w pobliżu ciągłej przemiany fazowej. Można ją scha-
rakteryzować poprzez wprowadzenie parametru porządku ϕ, który przyjmuje niezerową wartość
w fazie o złamanej symetrii, a w fazie symetrycznej jest równy zero. Zbliżając się do przemiany
�uktuacje parametru porządku stają się coraz większe i w pobliżu punktu krytycznego przestrzen-
ne korelacje są długozasięgowe. W tym przypadku układ jest charakteryzowany skalą długość ξ
związaną z zasięgiem korelacji, przy czym rozbiega ona w punkcie krytycznym zgodnie z prawem
potęgowym

ξ ∝ |t |−ν , (3.1)

gdzie t jest bezwymiarową wielkością charakteryzującą odległość od punktu krytycznego, a ν jest
wykładnikiem krytycznym związanym z długością korelacji. W analogiczny sposób możemy wpro-
wadzić charakterystyczną skalę czasową τc związaną z czasem zaniku korelacji w układzie. Podobnie
jak ξ , także τc rozbiega w pobliżu przemiany fazowej zgodnie z prawem potęgowym

τc ∝ ξ
z ∝ |t |−νz, (3.2)

przy czym zależność ta de�niuje wykładnik dynamiczny z. W otoczeniu przemiany fazowej jedy-
ną istotną skalą długości jest ξ , a skalą czasu τc . Obie te wielkości rozbiegają do nieskończoności
w punkcie krytycznym. Oznacza to, że �uktuacje pojawiają się we wszystkich skalach czasowych
i na wszystkich długościach. W konsekwencji układ jest niezmienniczy ze względu na skalowanie
(ang. scale invariant) [231].

Zachowanie krytyczne układu może być scharakteryzowane przez podanie zestawu wykładni-
ków krytycznych opisujących nieanalityczności różnych wielkości �zycznych przy podchodzeniu
do przemiany fazowej. De�nicje tych wykładników zostały zawarte w tabeli 3.1. Ciągłe przemiany
fazowe wykazują uniwersalność, tzn. wartości wykładników krytycznych są takie same dla całych
klas przemian występujących w różnych układach �zycznych. O przynależności układu do danej
klasy uniwersalności decyduje jego wymiarowość, symetria parametru porządku oraz zasięg od-
działywania. Mechanizm pojawiania się uniwersalności jest związany z silnymi �uktuacjami wystę-
pującymi w pobliżu punktu krytycznego. Rozbieżność ξ powoduje, że efektywnie własności układu
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ulegają uśrednieniu po dużych objętościach tracąc tym samym wrażliwość na mikroskopowe szcze-
góły [156, 231]. Fluktuacje są w pełni uwzględnione w opisie średniopolowym układu, gdy d > d+c ,
przy czym d+c to górny wymiar krytyczny. W tym przypadku średniopolowe wartości wykładników
krytycznych przewidywane przez teorię Landaua-Ginzburga są poprawne [77, 156].

Tab. 3.1: De�nicje wykładników krytycznych związanych z zachowaniem różnych obserwabli przy
podchodzeniu do punktu krytycznego. Parametry charakteryzujące układ to w tym przypadku zre-
dukowana temperatura t = (T − Tc )/Tc , parametr porządku ϕ (np. magnetyzacja m dla ferroma-
gnetyków) oraz sprzężone z nim pole źródłowe J (np. pole magnetyczne B dla ferromagnetyków).
Przyjmujemy, że układ jest d-wymiarowy [77, 156, 231].

Obserwabla Wykładnik De�nicja Dodatkowe warunki

Pojemność cieplna α C ∝ |t |−α t → 0, J = 0
Parametr porządku β ϕ ∝ (−t )β t → 0−, J = 0

Podatność γ χ =
(
∂ϕ
∂J

)
∝ |t |−γ t → 0, J = 0

Izoterma krytyczna δ J ∝ |ϕ |δ sgnϕ J → 0, t = 0
Długość korelacji ν ξ ∝ |t |−ν t → 0, J = 0
Funkcja korelacji η G (r ) ∝ |r |−d+2−η t = 0, J = 0

Czas korelacji z τc ∝ ξ
z t → 0, J = 0

3.1.1 Teoria skalowania w przypadku klasycznym

Niezmienniczość skalowania w pobliżu punktu krytycznego powoduje, że własności �zyczne
układu nie powinny ulec zmianie pod wpływem przeskalowania wszystkich długości występują-
cych w układzie wykorzystując wspólny czynnik b ∈ R+. W trakcie tej procedury należy w taki
sposób dostosować wartości zewnętrznych parametrów {t , J , . . . } opisujących stan układu, aby dłu-
gość korelacji nie uległa zmianie. Zakładamy, że jedynymi istotnymi stałymi sprzężenia są t oraz J .
Prowadzi to do następującej relacji jednorodności dla osobliwej części gęstości energii swobodnej

fs (t , J ) = b
−d fs (tb

x , Jby ) , (3.3)

przy czym t = (T − Tc )/Tc , a wykładniki x = d/(2 − α ) oraz y = dδ/(1 + δ ) są dobrane w taki
sposób, aby były konsystentne z de�nicjami wykładników krytycznych z tabeli 3.1, które można
otrzymać poprzez obliczenie odpowiednich pochodnych termodynamicznych energii swobodneja.
Powyższą relację jako pierwszy zaproponował na podstawie dociekań fenomenologicznych Widom

aW celu powiązania wykładników x oraz y z tymi zde�niowanymi w tabeli 3.1 należy skorzystać z następujących
relacji C (t , 0) ∝ ∂2fs (t,0)

∂t 2 , ϕ (t , J ) ∝ ∂fs (t, J )
∂ J oraz χ (t , 0) ∝ ∂2fs (t, J )

∂ J 2
���J=0

. W rezultacie otrzymuje się, że α = 2 − d/x ,
β = (d − y)/x , γ = (2y − d )/x i δ = y/(d − y).
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w 1965 roku [238], a została ona uzasadniona na gruncie teorii renormalizacji przez Kadano�a [110]
i Wilsona [240, 241].

Przeskalowanie długości o czynnik b jest arbitralne i można go dokonać w taki sposób, aby
tbx = 1. W rezultacie otrzymujemy tzw. prawo skalowania [156]

fs (t , J ) = td/x fs (1, Jt−y/x ) = td/xΨ(Jt−y/x ), (3.4)

gdzie Ψ(·) to funkcja skalująca. Obserwujemy, że w granicy t → 0 funkcja fs (t , J ) zależy jedynie
od J . Oznacza to, że czynnik td/x znajdujący się w równaniu (3.4) musi być kasowany w tej granicy,
a konsekwencji

Ψ(Jt−y/x ) −−−→
t→0

(
Jt−y/x

)d/y
= Jd/yt−d/x , (3.5)

czyli fs (0, J ) ∝ Jd/y . Wniosek ten pozwala otrzymać związki pomiędzy termodynamicznymi wy-
kładnikami krytycznymi {α , β,γ ,δ }. Relacje skalowania między nimi mają postać [156]

α + 2β + γ = 2 oraz γ = β (δ − 1). (3.6)

W przypadku wykładników dotyczących funkcji korelacji {ν ,η} możemy skonstruować w ana-
logiczny sposób przeskalowaną postać funkcji korelacji, która jest dana wyrażeniemb

G (r ; t ) = 〈φ (r )φ (0)〉t − 〈φ (r )〉t 〈φ (0)〉t . (3.7)

Po przeskalowaniu długości w G (r ; t ) wykorzystując czynnik b dostajemy [156]

G (r ; t ) = b−2d+2yG (b−1r ;bxt ). (3.8)

Powyżej wykorzystano równanie (3.7) oraz postać skalowania dla parametru porządku ϕ (bxt , 0) =
bd−yϕ (t , 0), która pozwala na znalezienie wymiaru skalowania dla pola φ (r ), który wynosi d −y. Dla
t , 0 możemy przyjąć, że bxt = 1. Prowadzi to do prawa skalowania dla funkcji korelacji

G (r ; t ) = t2(d+y)/xΦ(rt1/x ). (3.9)

Jeżeli ustalimy t tak, aby jego wartość była skończona i bliska zeru, wtedy spodziewamy się zani-
kania G (r ; t , 0) ∼ exp(−r/ξ ) w granicy r → ∞. Asymptotyka ta powinna być odtwarzana przez
funkcję skalującą Φ(rt1/x ), co w połączeniu z równaniem (3.1) prowadzi do relacji ν = 1/x . Z kolei
dla t = 0 dostajemy z równania (3.8), że G (r ; 0) ∝ r−2(d−y) , co po porównaniu z de�nicją z tabeli
3.1 pozwala na otrzymanie relacji η = d − 2y + 2. Związki te pozwalają na wyprowadzenie relacji
skalowania

γ = (2 − η)ν , (3.10)

bWielkość ϕ = 〈φ (r )〉t jest parametrem porządku, który otrzymuje się w wyniku termicznego uśredniania pola φ (r )
(np. dla ferromagnetyka jest to pole spinowe s (r ), które po uśrednieniu daje magnetyzacjęm).
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oraz relacji hiperskalowania

2 − α = dν , (3.11)

która wiąże wykładniki krytyczne z wymiarowością układu [156].
Warto zauważyć, że dla klasycznych ciągłych przemian fazowych (T > 0) w relacjach skalo-

wania nie występuje wykładnik dynamiczny z. Jest to spowodowane tym, że suma statystyczna
Z = Tr{exp(−H/T )} faktoryzuje się na część związaną z energią kinetyczną układu Hkin oraz część
potencjalnąHpot , czyliZ = ZkinZpot . Część kinetyczna wymaga policzenia całek gaussowskich, które
nie generują osobliwego wkładu do gęstości energii swobodnej. W konsekwencji w przypadku kla-
sycznym układ efektywnie jest opisywany za pomocą modeli niezależnych od czasu, a tym samym
czas korelacji nie pojawia się w problemie [231].

3.1.2 Teoria skalowania w przypadku kwantowym

W przypadku kwantowym części kinetyczna i potencjalna hamiltonianu w ogólności nie komu-
tują, co powoduje, że kwantowo-mechaniczna suma statystyczna nie ulega faktoryzacji. Oznacza to,
że własności statyczne i dynamiczne układu sprzęgają się. Problem kwantowy musi być formuło-
wany w języku pól zależnych zarówno od współrzędnych przestrzennych, jak i czasowych. Ponadto
macierz gęstości w zespole kanonicznym ρ̂ ∼ exp(−Ĥ/T ) ma postać operatora ewolucji dla czasu
urojonego τ = 1/T = −it, przy czym t to czas rzeczywisty. W konsekwencji układ kwantowy poza
d kierunkami przestrzennymi posiada dodatkowy kierunek czasowy związany z jego temperaturą.
Gdy T → 0, wtedy staje się on nieskończony. Co więcej, zgodnie z równaniem (3.2) kierunek cza-
sowy skaluje się z z-tą potęgą długości [231]. Powyższe rozumowanie wskazuje na korespondencję
pomiędzy D = d + z wymiarowym układem klasycznym, a d wymiarowym układem kwantowym.

W zerowej temperaturze przemiana fazowa jest dostrajana za pośrednictwem nietermicznych
parametrów kontrolnych t = (K − Kc )/Kc , gdzie Kc to wartość K dla której osiąga się QCP. Na
przykład parametr K może być ciśnieniem, domieszkowaniem, polem magnetycznym, etc. Wyko-
rzystanie korespondencji między problemem kwantowym, a klasycznym pozwala na zmody�kowa-
nie relacji jednorodności dla osobliwej części gęstości energii swobodnej dla T = 0 w następujący
sposób [231]

fs (t , J ) = b
−(d+z) fs (tb

x , Jby ) . (3.12)

Relacja ta pozwala wyprowadzić w analogiczny sposób jak dla przypadku klasycznego związek mię-
dzy x i y, a wykładnikami zde�niowanymi w tabeli 3.1 z tym, że teraz t = (K −Kc )/Kc . W rezultacie
dostajemy te same relacje, co dla punktu krytycznego w T > 0 w których należy jedynie wymienić
d naD = d+z. Efektywne zwiększenie wymiarowości układu doD = d+z w przypadku kwantowym
powoduje, że D może stać się większe od d+c . Oznacza to, że wykładniki krytyczne przyjmują warto-
ści średniopolowe, a �uktuacje niegaussowskie stają się nieistotne [44]. Do kwantowej przemiany
fazowej możemy zbliżać się także poprzez redukcję temperatury układu do zera przy jednoczesnym
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utrzymywaniu K = Kc . W tym przypadku należy uogólnić relację jednorodności tak, aby zawierała
także zależność od temperatury układu [231]

fs (t , J ,T ) = b
−(d+z) fs (tb

x , Jby,Tbz ) . (3.13)

Przedyskutujemy teraz skalowanie dla obserwabli O (k,ω) opisujących rozważany układ (np.
funkcji spektralnych). W pobliżu QCP problem można opisać przy pomocy skalowania skończonych
rozmiarów (ang. �nite-size scaling) [35]. W tym przypadku układ jest scharakteryzowany pojedyn-
czą skalą długości ξ oraz czasu τc = ω−1

c ∝ ξ z ∼ T −1, która jest związana z temperaturą T . Gdy
T → 0 rozmiary układu w kierunku czasowym zwiększają się i gdy T = 0 układ w tym kierunku
staje się nieskończony. Prowadzi to do następującej relacji [211]

O (k,ω; t , J ,T ) = ξdOO1 (kξ ,ωξ
z ; Jξy,Tξ z ) =

= T −dO/zO2
(
kT −1/z,ω/T ; JT −y/z,Tξ z

)
,

(3.14)

gdzie O1 i O2 są różnymi postaciami funkcji skalujących, a dO jest wymiarem skalującym obserwa-
bli O. W punkcie krytycznym, tj. t = T = J = 0, skala długości w układzie jest związana tylko
z mierzonym wektorem falowym k . Analogicznie skala energii jest zadana mierzoną wartością ω,
co prowadzi do wniosku, że

O (k,ω) = k−dOO1 (1,ω/kz ) = k−dOO3 (ω/k
z ) . (3.15)

Podobnie, gdy podchodzimy do QCP redukując temperaturę T do zera jednocześnie utrzymując
t = 0, wtedy

O (k = 0,ω;T ) = T −dO/zO4 (ω/T ) . (3.16)

Warto zwrócić uwagę, że skalowanie skończonych rozmiarów przedstawione w równaniu (3.14) jest
uprawnione, gdy punkt krytyczny spełnia relacje hiperskalowania. Sytuacja taka ma miejsce, gdy
D < d+c [231]. W przypadku, gdy D > d+c układ opisują także niebezpiecznie nieistotne zmienne
(ang. dangerously irrelevant variables), które powodują naruszanie relacji hiperskalowania, a także
mody�kację skalowania O w pobliżu QCP [138]. Z tego powodu przedstawione wyżej skalowanie
dla obserwabli O jest nazywane w literaturze skalowaniem naiwnym.

3.1.3 Przejście między reżimem klasycznym i kwantowym

Przedyskutujemy teraz podstawowe aspekty diagramu fazowego dla T > 0 w przypadku, gdy
układ posiada QCP. Na razie ograniczymy się do sytuacji w której faza uporządkowana występuje
tylko w zerowych temperaturach. Z sytuacją taką mamy do czynienia, gdy układ jest niskowymia-
rowy i �uktuacje termiczne niszczą porządek w wyższych temperaturach w zgodzie z twierdzeniem
Mermina-Wagnera [77,156]. Diagram fazowy w sytuacji, gdy faza uporządkowana jest obecna także
w skończonych temperaturach zostanie przedyskutowany przy omawianiu teorii Hertza-Millisa.
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Rys. 3.1: Schematyczny diagram fazowy w pobliżu kwantowego punktu krytycznego (QCP). Prze-
miana fazowa jest manipulowana za pośrednictwem nietermicznego parametru K , przy czym QCP
odpowiada K = Kc . Przemiana fazowa zachodzi w zerowej temperaturze między fazą uporządko-
waną (K < Kc ), a fazą symetryczną. Dalekozasięgowy porządek ulega zniszczeniu w skończonych
temperaturach na skutek �uktuacji termicznych. Obszar ten nazywamy termicznie nieuporządko-
wanym. Z kolei, gdy K > Kc dominują �uktuacje kwantowe i jest to tzw. obszar nieuporządkowany
kwantowo. Bezpośrednio nad QCP znajduje się obszar, w którym �uktuacje termiczne i kwantowe
są porównywalne. Ciągłe przejście między reżimem klasycznym i kwantowym wyznacza zależność
T ∝ |K − Kc |

νz [231].

W skończonych temperaturach zachowanie układu jest określone poprzez współzawodnictwo
efektów termicznych z �uktuacjami kwantowymi. Skala energetyczna związana z �uktuacjami ter-
micznymi jest dana przez T , a energia związana z dalekozasięgowymi �uktuacjami parametru po-
rządku wynosi ωc ∝ ξ−z ∝ |t |νz . Gdy T � ωc , wtedy dominującą rolę w układzie pełnią �uktu-
acje termiczne (reżim klasyczny) i odpowiadają one za zniszczenie porządku dalekozasięgowego dla
T > 0. Z kolei, gdyT � ωc tylko �uktuacje kwantowe są istotne w opisie układu (reżim kwantowy).
W tym przypadku układ znajduje się w fazie symetrycznej także dlaT = 0. Gdy ωc ≈ T , wtedy znaj-
dujemy się w obszarze krytycznym zlokalizowanym w skończonych temperaturach powyżej QCP,
tj. K = Kc . Jest to obszar przejściowy w którym zarówno efekty termiczne jak i kwantowe są istot-
ne. Granice tego obszaru są wyznaczone przez warunek T ≈ ωc ∝ |K − Kc |

νz . Warto wspomnieć, że
uniwersalne zachowanie obserwowane w obszarze krytycznym jest obecne tylko w odpowiednio
niskich temperaturach. Gdy T przekroczy pewną charakterystyczną mikroskopową skalę energii
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obecność QCP nie wpływa na własności układu. Ciągłe przejście obserwowane między reżimem
klasycznym i kwantowym zostało schematycznie przedstawione na rys. 3.1 [231].

Występowanie obszaru krytycznego jest odpowiedzialne za możliwość obserwacji QCP także
w skończonych temperaturach. W tym przypadku układ jest scharakteryzowany przez termiczne
wzbudzenia kwantowego stanu podstawowego, które cechuje brak obecności konwencjonalnych
kwazicząstek. Powoduje to, że w obszarze tym załamuje się teoria cieczy Fermiego prowadząc do
pojawienia się tzw. cieczy nielandauowskiej (ang. non-Fermi liquid). Jej obecność jest sygnalizowana
przez nietypowe prawa potęgowe dla różnych obserwabli mierzonych w układzie [200,229,231]. Na
przykład czas życia kwazicząstek τquasi skaluje się z energią ich wzbudzenia ϵ jak τ−1

quasi ∝ ϵ
2 ∼ T 2

dla cieczy Fermiego, a w przypadku cieczy nielandauowskiej dostajemy, że τ−1
quasi ∝ T

` , gdzie ` < 2.
Oznacza, że kwazicząstki są znacznie silniej tłumione w kwantowym obszarze krytycznym nad QCP
niż poza nim [200].

3.2 Teoria Hertza-Millisa

W przełomowej pracy z 1976 roku Hertz zastosował teorię renormalizacji do ferromagnetycznej
przemiany fazowej w T = 0 dla układu wędrujących elektronów [89]. Pokazał, że cechy statyczne
i dynamiczne dla QCP są ze sobą powiązane, co prowadzi do pojawienia się w ich opisie wykładnika
dynamicznego z. Poza tym wykazał, że możliwa jest realizacja przejść między reżimem klasycznym
i kwantowym. W 1993 roku Millis dokonał rewizji pracy Hertza wprowadzając konieczne poprawki
oraz zbadał zachowanie układu w pobliżu QCP dla skończonych temperatur [147]. Prace te stano-
wią podwaliny teorii kwantowych przemian krytycznych w układach fermionowych i ta część jest
dedykowana przeglądowi najważniejszych aspektów i wyników teorii Hertza-Millisa.

3.2.1 Działanie Hertza

Skupimy się na ferromagnetycznej przemianie fazowej w układzie wędrujących elektronów, przy
czym będziemy do niej podchodzić od strony fazy paramagnetycznej. Wzbudzenia kolektywne tego
układu są opisywane w pobliżu przemiany za pomocą bozonowego pola porządkuϕ (r,τ ) przyjmują-
cego wartości rzeczywiste. Sumę statystyczną Z można przedstawić wykorzystując formalizm całek
funkcjonalnych [2,154] jakoZ =

∫
D[ϕ] exp(−SH [ϕ]), przy czym efektywne działanie Hertza SH [ϕ]

ma w tym przypadku postać [2, 138, 147]

SH [ϕ] ≈ 1
2βV

∑
q,ϖm

(
δ + q2 +

|ϖm |

Γq

)
ϕq,ϖmϕ−q,−ϖm+

+
u

4

∫ β

0
dτ

∫
ddr

[
ϕ2(r,τ )

]2
= S (2)[ϕ] + S (4)[ϕ],

(3.17)

gdzie β = 1/T , Γq = Γ |q| dla przemiany ferromagnetycznej, zaś Γ jest stałą charakteryzującą tłu-
mienie modów kolektywnych, δ jest parametrem kontrolującym przemianę fazową, a u to parametr
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określający siłę samooddziaływania �uktuacji spinowych w członie S (4)[ϕ] ∼ ϕ4. Szczegółowe wy-
prowadzenie powyższego działania wychodzące z modelu Hubbarda dla elektronów można znaleźć
w monogra�ach Continentino [44] i Nagaosy [150]. Analogiczne wyprowadzenie zostanie w spo-
sób szczegółowy omówione w dalszej części dysertacji w kontekście przemiany fazowej do stanu
nadciekłego dla ultrazimnych mieszanin atomów fermionowych.

Współczynnik proporcjonalności w członie S (2)[ϕ] rzędu ϕ2 jest związany z odwrotnością podat-
ności spinowej χ−1

spin (q,ϖm ) ∼ 1−U
V

∑
k

f (ξk+q)−f (ξk)

iϖm−ξk+q+ξk
, gdzie ξk = ϵk−µ jest relacją dyspersji elektronów,

f (·) jest rozkładem Fermiego-Diraca, V jest objętością układu, a U to stała oddziaływania między
elektronami w modelu Hubbarda. Podatność χspin (q,ϖm ) pełni rolę propagatora paramagnonów,
które są wzbudzeniami kolektywnymi układu w fazie symetrycznej. Biegun tego propagatora dla
q = ϖm = 0 odpowiada kryterium Stonera i wyznacza położenie przemiany fazowej w przybliżeniu
pola średniego [2, 139]. Rozwinięcie gradientowe χspin (q,ϖm ) dla małych wartości q oraz |ϖm |/|q|

prowadzi do wyrażenia w równaniu (3.17). Dynamiczny wkład rzędu |ϖm |/|q| jest związany z tłumie-
niem Landaua paramagnonów. W trakcie tego procesu paramagnony sprzęgają się z fermionowym
continuum par cząstka-dziura wzbudzanych w pobliżu powierzchni Fermiego. Efektem tłumienia
jest mody�kacja dynamicznego zachowania układu, co objawia się tym, że z = 3 dla przemiany fer-
romagnetycznej. W granicy |q| → 0 ilość dostępnych par cząstka-dziura o małych pędach jest duża,
co prowadzi w efekcie do silnego tłumienia �uktuacji spinowych. W tym sensie człon odpowiada-
jący tłumieniu Landaua efektywnie uwzględnia sprzęganie się fermionowych i bozonowych stopni
swobody [89, 138, 147].

3.2.2 Równania renormalizacji

Korzystając z działania Hertza zadanego równaniem (3.17) możemy wyprowadzić równania pły-
nięcia stałych sprzężenia posługując się perturbacyjną teorią renormalizacji zgodnie z procedurą
przedstawioną w pracy Millisa [147]. Zaczynamy od przypadku gaussowskiego w którym bierzemy
pod uwagę tylko S (2)[ϕ], tj. δ > 0 i u = 0. Równania płynięcia (ang. RG �ow equations) w przypadku
gaussowskim możemy wyprowadzić wychodząc z gęstości energii swobodnej fG o postaci [147]

fG (δ ,T ) = −
1
βV

lnZG ∝

∫ Λ

0

ddq
(2π )d

1
β

∑
ϖm

ln
(
δ + q2 + |ϖm |/Γq

)
∝

∝

∫ Λ

0

ddq
(2π )d

∫ Γq

0

dω
π

ctgh
(
βω

2

)
arctg

(
ω/Γq

δ + q2

)
,

(3.18)

przy czym ZG =
∫
D[ϕ] exp(−S (2)[ϕ]), Λ to obcięcie ultra�oletowe i |ϖm | = −iω

c. Zgodnie ze
standardową procedurą renormalizacji pola bozonowe ϕ w S[ϕ] możemy rozdzielić na mody wolne

cSumę Matsubary w równaniu (3.18) wykonano poprzez zróżniczkowanie powyższego wyrażenia po δ ,
a następnie zastąpienie |ϖm | przez −iω i wykonanie całki konturowej danej wyrażeniem 1

β
∑
ϖm д( |ϖm |) =

P
∫ Γq
−Γq

dω
2πi ctgh(βω/2)д(−iω), gdzie д(x ) = (δ + q2 + x/Γq )

−1 , a P to część główna całki. Następnie całkując otrzy-
mane wyrażenie po δ otrzymujemy powyższy wynik [2].
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ϕ< oraz mody szybkie ϕ> tak, że

ϕq,ϖm =




ϕ<q,ϖm
, gdy 0 < |q| < Λ/b,

ϕ>q,ϖm
, gdy Λ/b < |q| < Λ,

(3.19)

gdzie b > 1. Na poziomie teorii gaussowskiej działanie dla modów wolnych ϕ< i szybkich ϕ> roz-
przęga się, tj. S (2)[ϕ] = S (2)[ϕ<]+S (2)[ϕ>], więc wyrażenia na gęstość energii swobodnej po odcałko-
waniu szybkich modów ma postać fG = f <G +const · lnb, gdzie postać f <G jest taka sama w równaniu
(3.18), ale obcięcie dla pędów zostało przeskalowane, tj. Λ 7→ Λ′ = Λ/b. Chcąc przywrócić obcięcie
Λ′ do jego wyjściowej wartości Λ należy przeskalować q′ = bq oraz ω′ = bzω. Procedura przeska-
lowania ω zmusza nas także do odcałkowania częstości z przedziału ω′ ∈ [Γq′, Γq′b], co prowadzi do
mody�kacji stałej const′ · lnb w wyrażeniu na fG otrzymanego po odcałkowaniu szybkich modów.
Procedura ta odtwarza obcięcie w częstościach występujące w równaniu (3.18).

Korzystając z otrzymanej relacji można zauważyć, że przeskalowanie częstości ω′ jest związa-
ne z rede�nicją temperatury T ′ = Tbz , przy czym dla przemiany ferromagnetycznej z = 3d. Co
więcej niezmienniczość wyrażenia f <G ze względu na przeskalowanie pędu q′ wymaga by parametr
δ skalował się jak δ ′ = b2δ . Obserwacje te pozwalają wypisać równania płynięcia w przypadku
gaussowskim

dT (b)
d lnb = zT (b),

dδ (b)
d lnb = 2δ (b).

(3.20)

Powyższy układ równań dla T = δ = 0 posiada tzw. gaussowski punkt stały, który jest związany
z występowaniem QCP na diagramie fazowym.

Kolejnym krokiem jest uwzględnienie członu oddziaływania S (4)[ϕ] i znalezienie równania pły-
nięcia dla stałej u. Korzystając z uzyskanego skalowania dla przypadku gaussowskiego oraz postaci
działania Hertza (patrz równanie (3.17)) możemy znaleźć skalowanie polaϕ′(r′,τ ′) = ϕ (r,τ )/`, gdzie
` = b (2−d−z)/2. W efekcie dostajemy, że

u

4

∫ β

0
dτ

∫
ddr [ϕ (r,τ )]4

7→
u

4b
d+z`4

∫ β

0
dτ

∫
ddr [

ϕ′(r′,τ ′)
]4 , (3.21)

co prowadzi do u′ = b4−d−zu. Wynik ten oznacza, że gdy d + z > 4 wartość u w trakcie płynięcia
zmniejsza się i w obszarze w pobliżu QCP (T = δ = u = 0) spodziewamy się, że układ będzie
opisywany za pomocą średniopolowych wykładników krytycznych.

Występowanie oddziaływania S (4)[ϕ] powoduje mody�kację równań płynięcia (3.20) uzyska-
nych wyżej. Możemy uwzględnić poprawkę pochodzącą od oddziaływania postępując analogicznie

dSkalowanie dla temperatury T i parametru δ można otrzymać poprzez przeskalowanie wyrazu
arctg

[
(ω/Γq )/(δ + q2)

]
= arctg

[
(ω/Γ |q|)/(δ + q2)

]
w równaniu (3.18). Po pierwsze widzimy, że δ skaluje się jak

q2, a w konsekwencji ω skaluje się jak |q|3, co daje δ ′ = b2δ i ω ′ = b3ω. Takie samo skalowanie temperatury T jak
częstości ω wiąże się z występowaniem czynnika ω/T w funkcji ctgh(βω/2) w równaniu (3.18).
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jak w problemie gaussowskim, ale tym razem musimy rozwinąć człon S (4)[ϕ] ≡ Sint [ϕ] dla małych
wartości u > 0 uzyskując tym samym perturbacyjne wyrażenie na sumę statystyczną [2]

Z =

∫
D[ϕ<]e−Sef [ϕ<] =

∫
D[ϕ<]

∫
D[ϕ>]e−S[ϕ<+ϕ>] =

=

∫
D[ϕ<]

∫
D[ϕ>]e−S (2)[ϕ<]−S (2)[ϕ>]−S (4)[ϕ<+ϕ>] =

=

∫
D[ϕ<]e−S (2)[ϕ<] Z>G

〈
e−Sint [ϕ<+ϕ>]

〉>
G
≈

≈

∫
D[ϕ<]e−S (2)[ϕ<] Z>G

(
1 − 〈Sint 〉>G +

1
2
〈
S2
int

〉>
G
+ . . .

)
,

(3.22)

gdzie wartość oczekiwana 〈O〉>G =
1
Z>
G

∫
D[ϕ>]O exp(−S (2)[ϕ>]). Wystarczy, że uwzględnimy tylko

wkłady liniowe w u, czyli pomijamy 〈S2
int 〉
>
G ∼ u2 i wyrazy wyższego rzędu. Powyższe wyraże-

nie pozwala na wyprowadzenie liniowej poprawki w u do płynięcia parametru δ , która jest rzędu
∼ u

∫
ddr

∫
dτ [ϕ< (r,τ )]2〈[ϕ>]2〉>G . Ewaluując 〈[ϕ>]2〉>G należy odcałkować mody leżące w powłoce

(ω, |q|) ∈ ∂Λ zde�niowanej poprzez warunki {ω ∈ [0, Γq] ; |q| ∈ [Λ/b,Λ]} i {|q| ∈ [0,Λ] ; ω ∈
[Γq/bz, Γq]}, a następnie przeskalować uzyskane wyrażenia tak, aby odtworzyć wyjściowe obcięcia.
Ostatecznie zlinearyzowane równania płynięcia mają postać [2, 147]

dT (b)
d lnb = zT (b),

dδ (b)
d lnb = 2δ (b) + 12u (b) f (2)[T (b)],

du (b)
d lnb = (4 − d − z)u (b),

(3.23)

gdzie f (2)[T (b)] = ΛdSdΓΛ
∫ 1

0
ds
π

[
ctgh

(
sΓΛ
2T

)
s

(δ+Λ2)+s2 + z ctgh
(
sz−2ΓΛ

2T

)
sd+z−3

(δ+s2Λ)2+1

]
, Sd to powierzchnia

d-wymiarowej sfery, a ΓΛ = ΓΛ. Techniczne szczegóły tego wyprowadzenia można znaleźć w pracy
Millisa [147]. Widzimy, że uwzględniona poprawka sprawia, że gaussowski punkt stały jest niesta-
bilny.

3.2.3 Rozwiązanie dla d + z > 4 i diagram fazowy

Przyjrzymy się teraz rozwiązaniu powyższych równań w przypadku, gdy d + z > 4. Zaczniemy
od położenia Λ = ΓΛ = 1, aby uprościć rozważane równania. Warto zauważyć, że temperatura
T (b) = Tbz rośnie dla T , 0 w trakcie procedury renormalizacji i tym samym wpływa na wartość
f (2)[T (b)]. GdyT (b) ≈ 1, tj. lnb ≈ lnb0 = −

1
z lnT skończone rozmiary układu w kierunku czasowym

zaczynają mieć znaczenie. Przyjmujemy, że δ (b) � 1, aby pozostać w reżimie skalowania. Gdy
δ (b) ∼ δ (b1) = 1 skalowanie ulega zatrzymaniu. Korzystając z wprowadzonych skali b0 i b1 możemy
przedyskutować przejście między reżimem kwantowym i klasycznym w fazie paramagnetycznej.

Dla odpowiednio niskich temperatur, gdy 1 � b1 � b0 układ charakteryzuje się kwantowym
zachowaniem krytycznym. Jest ono kontrolowane przez gaussowski punkt stały dla T = 0. W tym
przypadku możemy przyjąć, że T (b) ≈ 0 i wtedy z równania płynięcia dla δ (patrz równanie (3.23))
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Rys. 3.2: Schematyczny diagram fazowy w pobliżu kwantowego punktu krytycznego (QCP) w przy-
padku, gdy faza uporządkowana występuje w skończonych temperaturach. Przemiana fazowa jest
manipulowana za pośrednictwem nietermicznego parametru porządkuK , przy czym QCP odpowia-
da K = Kc dla T = 0. W jasno żółty obszarze występują silne niegaussowskie �uktuacje termiczne.
Jest on nazywany klasycznym obszarem krytycznym i otacza linię krytyczną, która jest dana relacją
Tc ∝ (Kc −K )ψ , przy czymψ to wykładnik przesunięcia. W ogólnym przypadku nad klasycznym ob-
szarem krytycznym może występować faza nieuporządkowana termicznie. Ciągłe przejście między
reżimem klasycznym i kwantowym określa zależność T ∝ |K − Kc |

νz , przy czym wewnątrz obsza-
ru wyznaczanego tym warunkiem zarówno �uktuacje kwantowe jak i klasyczne są istotne. Jest to
kwantowy obszar krytyczny. W odpowiednio wysokich temperaturach układ przestaje wykazywać
uniwersalne zachowanie związane z obecnością QCP [138].

dostajemy w wyniku jego odcałkowania wyrażenie

δ (b) = b2
[
δ +

12u f (2) (0)
z + d − 2

]
≡ b2t , (3.24)

gdzie t jest zrenormalizowaną odległością od przemiany fazowej wT = 0, tj. t = δ − δc . Korzystając
z warunku, że δ (b1) = 1 oraz b1 � T −1/z możemy otrzymać z równania (3.24) granice obszaru nie-
uporządkowanego kwantowo, które prowadzą do nierównościT � T̃ ∝ tzν , przy czym ν = 1/2 jest
wartością średniopolową [147]. W obszarze tym fermiony zachowują się zgodnie z przewidywania-
mi teorii Landaua dla cieczy Fermiego. Obszar dla T > T̃ jest kwantowym obszarem krytycznym
(patrz rys. 3.2).

Gdy b1 > b0, wtedy skalowanie należy rozseparować na dwa reżimy: (A) b > b0 dla T (b) > 1
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oraz (B) b < b0 dla T (b) < 1. Zauważając, że f (2)[T (b)] ∝ T (b), gdy T (b) � 1 można wprowadzić
wielkość v (b) = u (b)T (b). Pozwala ona na zmody�kowanie i uproszczenie równań płynięcia w tym
przypadku w następujący sposób

dδ (b)
d lnb = 2δ (b) +Cv (b)

dv (b)
d lnb = (4 − d )v (b),

(3.25)

gdzie C jest stałą proporcjonalności. Rozwiązując powyższy układ równań całkując go od b0 do b

dostajemy

δ (b) =

(
δ (b0) −

Cv (b0)

2 − d

) (
b

b0

)2
+
Cv (b0)

2 − d

(
b

b0

)4−d
,

v (b) = v (b0)

(
b

b0

)4−d
.

(3.26)

Odcałkowanie równań w reżimie (B) pozwala na znalezienie warunku początkowego δ (b0) i v (b0)

w równaniu (3.26). W tym celu wprowadzamy f (2) (T ezx ) = f (2) (0) + [f (2) (T ezx ) − f (2) (0)]. Człon
f (2) (0) prowadzi do tego samego wyniku jak w równaniu (3.24), a człon w nawiasie kwadratowym
pozwala na znalezienie poprawki dla skończonych temperatur. W wyniku dostajemy [147]

δ (b0) = T
−2/z

[
t + BuT (d+z−2)/2

]
,

v (b0) = uT
(d+z−4)/z,

(3.27)

gdzie B = 12
z

∫ 1
0 dT T (2−d−2z)/2[f (2) (T ) − f (2) (0)]. Uzyskane równania pozwolą nam na zbadanie

w jaki sposób renormalizuje się linia krytyczna Tc (t ).
Możliwe jest zaobserwowanie dwóch różnych scenariuszy dotyczących zachowania układu. W

pierwszym przypadku, gdy δ (b) ∼ 1, tj. skalowanie ulega zatrzymaniu, gdy wartość v (b) pozostaje
mała, można posługiwać się bezpiecznie rozwinięciem perturbacyjnym. W drugim zaś w trakcie pły-
nięcia parametrv (b) rośnie przyjmując wartości rzędu jedności, przy czym δ (b) pozostaje niewielka.
W tym przypadku płynięcie stałych sprzężenia następuje w kierunku obszaru w którym występują
silne niegaussowskie �uktuacje. Korzystając z tej obserwacji możemy sformułować tzw. kryterium
Ginzburga, które określa warunki dla których �uktuacje gaussowskie są dominujące. W naszym
przypadku odpowiada to δ (b) = 1 oraz v (b) � 1, co można zapisać w postaci nierówności [147]

uT (d+z−4)/z
[
t + (B +C )uT (d+z−2)/z

]1/2 � 1. (3.28)

Warto zauważyć, że nierówność ta jest złamana, gdy mianownik powyższego wyrażenia zeruje się.
Odpowiadającą tej sytuacji temperaturę utożsamiamy z linią krytycznąTc (t ), która ma postać [147]

Tc (t < 0,u) =
[
−

t

(B +C )u

]z/(d+z−2)
. (3.29)

Uzyskany wykładnik ψ = z/(d + z − 2) nosi nazwę wykładnika przesunięcia i opisuje renormali-
zację kształtu linii krytycznej w pobliżu QCP. Warto zauważyć, że obszar diagramu w pobliżu Tc (t )
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charakteryzuje się niegaussowskimi �uktuacjami, a jego granice są wyznaczone przez temperaturę
Ginzburga TG (patrz rys. 3.2).

Mimo iż stała u jest nieistotna, tj. skaluje się do zera (patrz równanie (3.23)) w trakcie procedury
renormalizacji względem gaussowskiego punktu stałego, to jej jawne występowanie w wyrażeniu na
temperaturę krytyczną Tc oznacza, że stała ta jest tzw. zmienną niebezpiecznie nieistotną. Oznacza
to, że mimo iż u nie wpływa na istnienie gaussowskiego punktu krytycznego dla d + z > 4 to nadal
pełni ważną rolę w opisie kształtu linii krytycznej i nie może zostać położone u = 0. Okazuje się, że
także zachowanie układu przy podchodzeniu do QCP wzdłuż trajektorii t = 0 i T → 0 zależy od u.
Jako przykład można przytoczyć zachowanie długości korelacji ξ (t = 0,T ) ∝ u−νT −ν/ψ [44, 138].

Linia punktów krytycznych w skończonych T jest rządzona przez punkt stały Wilsona-Fishera
[35], który pojawia się przy uwzględnieniu poprawek rzędu u2 w równaniach płynięcia. W szcze-
gólności zostaje zmody�kowane płynięcie stałej u (b), które ma postać

du (b)
d lnb = (4 − d − z)u (b) − 36u2(b) f (4)[T (b)], (3.30)

gdzie f (4)[T (b)] jest analogiczną funkcją jak f (2)[T (b)], której dokładna postać nie jest istotna. Gdy
w trakcie płynięcia osiągana jest skala lnb0 = −

1
z lnT następuje ciągłe przejście między reżimem

kwantowym rządzonym przez gaussowski punkt stały dla T = 0, a reżimem klasycznym w którym
to punkt Wilsona-Fishera jest decydujący w opisie przemiany fazowej dla T > 0 [147].
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Rozdział 4

Struktura efektywnego działania

Dotychczasowe rozważania miały charakter wprowadzenia do głównego tematu tej pracy jakim
są kwantowe przemiany fazowe w układach spolaryzowanych fermionów o nierównych masach.
Opis tego problemu zostanie sformułowany przy wykorzystaniu formalizmu całek funkcjonalnych
[2, 154] za pomocą których można zapisać sumę statystyczną w wielkim zespole kanonicznym dla
układu wielu fermionów

Z =

∫
D[ψ̄ ,ψ ]e−S[ψ̄ ,ψ ], (4.1)

gdzie działanie S[ψ̄ ,ψ ] jest związane z modelowym hamiltonianem zadanym równaniem (2.35) w na-
stępujący sposób

S[ψ̄ ,ψ ] =
∫
x

∑
σ∈{+,−}

ψ̄σ (x )

[
∂

∂τ
−
∇2
x

2mσ
− µσ

]
ψσ (x )+

+

∫
x

∫
y
ψ̄+(x )ψ̄−(y)V (x − y)ψ−(y)ψ+(x ).

(4.2)

W powyższym równaniu zastosowano skrócony zapis w którym x = (r,τ ), a
∫
x
(·) =

∫ β

0 dτ
∫
V

ddr (·).
Przyjmujemy, że fermiony oddziałują ze sobą przyciągającym potencjałem kontaktowymV (x−y) =

дδ (x − y), gdzie д < 0. Pola fermionowe {ψ̄σ ,ψσ } są antyprzemiennymi zmiennymi grassman-
nowskimi, które spełniają antyperiodyczne warunki brzegowe w domenie czasów urojonych, tj.
ψσ (r, 0) = −ψσ (r, β ).

Struktura tego rozdziału jest następująca:
Podrozdział 4.1.Zaczniemy od wyprowadzenia efektywnego działania poprzez zastosowanie trans-
formacji Hubbarda-Stratonovicha za pomocą której wprowadzimy bozonowe pole porządku. Na-
stępnie odcałkujemy pola fermionowe otrzymując tym samym bozonowy opis układu.
Podrozdział 4.2. Przyjrzymy się wkładowi do efektywnego działania związanemu z jednorodną
kon�guracją pola porządku, który nosi nazwę efektywnego potencjału.
Podrozdział 4.3. Na koniec włączymy do opisu �uktuacje pola porządku wokół jego wartości jed-
norodnej i tym samym uwzględnimy dynamiczne własności bozonowych stopni swobody. Przedys-
kutujemy także związek uzyskanych wyrażeń z metodą funkcji Greena.
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4.1 Efektywne działanie

Działanie przedstawione w równaniu (4.2) posiada człon oddziaływania co sprawia, że nie jest
ono formą kwadratową pól fermionowych. W celu wykonania całki funkcjonalnej po zmiennych
Grassmanna w równaniu (4.1) należy ten człon rozprząc wykorzystując ścisłą transformację Hubbarda-
Stratonovicha [2,154]. Przyjmujemy, że wiodąca niestabilność w rozważanym układzie jest związana
z parowaniem Coopera i wykorzystujemy relację

exp
(
д

∫
x
ψ̄+x ψ̄

−
x ψ
−
x ψ
+
x

)
=

∫
D[η] exp

(∫
x

[
−
|ηx |

2

д
+ ψ̄+x ψ̄

−
x ηx +ψ

−
x ψ
+
x η
∗
x

])
, (4.3)

gdzieψσ
x ≡ ψ

σ (x ) oraz ηx ≡ η(x ). Transformacja ta sprowadza wyjściowe działanie do postaci w któ-
rej jest ono formą kwadratową pól {ψ̄σ ,ψσ }, ale poniesionym kosztem jest wprowadzenie dodatko-
wej całki funkcjonalnej po bozonowym polu pomocniczym η przyjmującym wartości zespolone.
Wstawiając wyrażenie (4.3) do równania (4.2) otrzymujemy

SHS[ψ̄ ,ψ ,η] =
∫
x



∑
σ

ψ̄σ
x

(
∂

∂τ
−
∇2
x

2mσ
− µσ

)
ψσ
x −
|ηx |

2

д
+ ψ̄+x ψ̄

−
x ηx +ψ

−
x ψ
+
x η
∗
x


. (4.4)

Pole parowania ηx jest sprzężone do formy dwuliniowej дψ−x ψ+x , a tym samym będzie ono pełnić
rolę pola porządku opisującego powstawanie par Coopera w układzie.

Działanie SHS[ψ̄ ,ψ ,ϕ] możemy przedstawić w reprezentacji pędowej wykorzystując transforma-
cję Fouiera dla pól fermionowych i bozonowych daną za pomocą

ψσ
x =

1√
βV

∑
k

eikxψσ
k ,

ψ̄σ
x =

1√
βV

∑
k

e−ikxψ̄σ
k ,

ηx =
1√
βV

∑
q

eiqxηq,

(4.5)

gdzie k = (k,kn ) oraz q = (q,qm ), gdzie kn = 2π
β (n + 1

2 ) [n ∈ Z] to fermionowa częstość Matsubary,
a qm =

2π
β m [m ∈ Z] to jej bozonowy odpowiednik. Ponadto powyżej skorzystano ze skróconych

oznaczeń kx = k · x − knτ oraz ∑
k (·) =

∑
k
∑

kn (·). Po przejściu do przestrzeni odwrotnej działanie
ma postać

SHS[ψ̄ ,ψ ,η] = −1
д

∑
q

|ηq |
2 +

∑
k,q

Ψ̄k+q
[
−G−1

k+q,k

]
Ψk , (4.6)

przy czym wykorzystano notację NambuΨk = [ψ+
k
,ψ̄−
−k

]T oraz Ψ̄k = [ψ̄+
k
,ψ−
−k

]. MacierzG−1 = G−1
0 −�

jest odwrotnością macierzy funkcji Greena dla tego problemu, przy czym możemy ją podzielić na
część swobodną G−1

0 oraz selfenergię � związaną z parowaniem. Elementy macierzowe G−1
0 i � mają

postać

[
G−1

0
]
k+q,k

= δ (q)


G−1
0,+(k ) 0

0 −G−1
0,−(−k )


oraz �k+q,k =

1√
βV



0 ηq

η∗−q 0


, (4.7)
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gdzie G0,σ (k ) = (ikn − ξ
σ
k
)−1 jest swobodną funkcją Greena fermionu o pseudospinie σ , a ξσ

k
=

k2/2mσ − µσ jest jego relacją dyspersji.
Opisana powyżej procedura sprawia, że działanie SHS zapisane zostaje jako forma kwadratowa

pól fermionowych i tym samym możliwe jest analityczne wykonania całkowania funkcjonalnego ze
względu na fermionowe stopnie swobody. Wykorzystanie spinorów Nambu w działaniu z równania
(4.6) skutkuje zamianą kolejności pól fermionowych w mierze całki funkcjonalnej∫

D[ψ̄ ,ψ ](·) =
∫ ∏

x ,σ

dψ̄σ
x dψσ

x (·) =

∫ ∏
x

(−1)dψ̄+x dψ+x dψ−x dψ̄−x (·) =

=

∫ ∏
x ,i

Ψ̄i
xΨ

i
x = ρ

∫
D[Ψ̄,Ψ](·),

(4.8)

gdzie i to indeks numerujący składową odpowiedniego spinora Nambu. Pociąga to za sobą pojawie-
nie się dodatkowego czynnika ρ =∏

k,q (−1) w reprezentacji pędowej wynikającego z antyprzemien-
ności pól grassmanowskich, którego moduł jest równy 1 i tym samym w granicy termodynamicznej
jest on nieistotny [223]. W związku z tym wykonując całki gaussowskie otrzymujemy

ρ

∫
D[Ψ̄,Ψ] exp *.

,
−

∑
k,q

Ψ̄k+q
[
−G−1

k+q,k

]
Ψk

+/
-
= exp *.

,

∑
k,q

ln
(
− det

σ

[
−G−1

k+q,k

])+/
-
. (4.9)

W dalszej części rozdziału będziemy posługiwać się skróconym zapisem w którym Tr
[
ln(−G−1)

]
=∑

k,q ln
(
detσ

[
−G−1

k+q,k

] )
. Postępowanie to prowadzi do w pełni bozonowego efektywnego działania,

za pomocą którego wyrażona jest suma statystyczna Z = ρ
∫
D[η]e−Sef [η]. Efektywne działanie jest

dane równaniem
Se f [η] = −1

д

∑
q

|ηq |
2 − Tr

{
ln

(
−G−1[η]

)}
. (4.10)

W celu znalezienia Z nadal musimy obliczyć całkę funkcjonalną po polach bozonowych η, przy
czym niemożliwe jest jej analityczne wykonanie. Jednakże uzyskana postać sumy statystycznej jest
doskonałym punktem wyjścia do dalszych przybliżeń, które będą omówione w dalszej części tego
rozdziału.

4.2 Efektywny potencjał

Naszym celem jest zbadanie w rozważanym układzie przemiany fazowej między fazą nadcie-
kła, a normalną. Zachodzi ona na skutek kondensacji par Coopera, które w fazie nadciekłej tworzą
makroskopowy stan koherentny. Przyjmujemy, że wkład do efektywnego działania odpowiadający
q = 0 jest dominujący. Zaczniemy od ewaluacji Se f [η] dla jednorodnej kon�guracji pola porząd-
ku, tj. ηx = ∆ = const. Wkład ten będzie odpowiadał efektywnemu potencjałowi U (∆), który jest
związany z efektywnym działaniem relacją

∫
x
U (∆) = Se f [η]���ηx=∆=const.

Warto podkreślić, że możliwe jest także rozważenie bardziej ogólnej sytuacji w której parowanie
następuje przy niezerowej wartości Q wektora falowego środka masy pary Coopera. W rezultacie
otrzymuje się stan FFLO w którym pole porządku ulega periodycznej modulacji w przestrzeni∆(x) =
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∆0 cos(Q·x) [99,101,179,189,234]. Dotychczasowe badania sugerują jednak, że faza ta jest niestabilna
dla T > 0 i może reprezentować jedynie stan podstawowy układu [105, 178, 235]. Z tego powodu
zaniedbujemy możliwość realizacji fazy FFLO w rozważanym układzie. Do tego problemu wrócimy
pod koniec kolejnego rozdziału, gdzie przedyskutujemy możliwość otrzymania kwantowego punktu
Lifszyca w którym współistnieje jednorodna nadciecz, niejednorodny stan FFLO oraz faza normalna.

W przestrzeni odwrotnej jednorodna kon�guracja pola porządku odpowiada

ηq =
√
βV ∆δ (q). (4.11)

Wstawienie ηq do efektywnego działania Se f [η] sprawia, że całka funkcjonalna zawiera tylko poje-
dynczy wkład odpowiadający q = qm = 0, czyli

Z0 = exp
[
−βV

(
−
|∆|2

д
−

1
βV

Tr
{
ln

(
−G−1

∆

)})]
, (4.12)

przy czym wyrażenie w okrągłych nawiasach odpowiada efektywnemu potencjałowi. Funkcja Gre-
ena G∆ ma postać analogiczną jak w teorii BCS nadprzewodnictwa [1,69,139] i jest dana wyrażeniem

[G∆]k+q,k =
δ (q)

detσ
[
G−1
∆

]


−G−1
0,−(−k ) −∆

−∆∗ G−1
0,+(k )


, (4.13)

gdzie detσ
[
G−1
∆

]
=

∏
σ (ikn−E

σ
k
). Energie dwóch gałęzi wzbudzeń fermionowych w układzie są dane

równaniem
Eσk = ξ̄k + σEk = ζ ξk − (h − ζ µ ) + σEk , (4.14)

przy czym ξ̄k = (ξ+
k
− ξ−

k
)/2, ξk = (ξ+

k
+ ξ−

k
)/2 oraz Ek =

√
ξ 2
k
+ |∆|2. Ponadto w powyższym

równaniu wprowadzono trzy ważne parametry kontrolne, które będą często pojawiały się w dalszej
części tekstu. Pierwszym z nich jest średni potencjał chemiczny

µ =
µ+ + µ−

2 . (4.15)

Drugim parametrem jest pole Zeemana dane wyrażenim

h =
µ+ − µ−

2 , (4.16)

a ostatnim jest wielkość mierząca nierównowagę mas składników mieszaniny dana równaniem

ζ =
r − 1
r + 1 ,

(4.17)

gdzie r =m−/m+ jest stosunkiem mas składników. Widzimy na podstawie powyższych równań, że
widmo wzbudzeń fermionowych posiada przerwę energetyczną związaną z wartością ∆, tj. ∆E (k ) =
E+
k
− E−

k
= 2Ek i jest ona równa 2∆ dla ξk = k2/2m − µ = 0, który odpowiada "średniemu" pędowi

Fermiego kF , gdziem = 2m+m−/(m+ +m−) jest podwojoną masą zredukowaną.
Korzystając z tego, że Tr

[
ln(−G−1

∆ )
]
=

∑
k ln

(
detσ

[
−G−1

∆

]
k,k

)
możemy otrzymać postać efek-

tywnego potencjału, która wynosi

U (∆) = −
|∆|2

д
−

∫
k

∑
σ

ln
(
ikn − E

σ
k

)
, (4.18)
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gdzie w powyższym wyrażeniu wykonano już przejście do granicy termodynamicznej 1
V

∑
k(·) −−−−→

V→∞∫
k(·) ≡ (2π )−d

∫
ddk(·) i wprowadzono oznaczenie

∫
k
(·) ≡

∫
k

1
β

∑
n (·). W powyższym wyrażeniu

możemy wykonać sumy Matsubary o postaci 1
β

∑
n д(ikn ) poprzez zastąpienie sumy całką konturo-

wą
I =

∮
C

dz
2πiд(z) f (z), (4.19)

przy czym д(·) jest pewną funkcją, a f (·) jest rozkładem Fermiego-Diraca. Wybór konturu całkowa-
nia C zależy od własności analitycznych funkcji д(z). Szczegółowe obliczenia zostały przedstawione
w dodatku A.1. Po ich wykonaniu otrzymujemy

U (∆) = −
|∆|2

д
−

1
β

∫
k

∑
σ

ln
(
1 + e−βEσk

)
. (4.20)

Efektywny potencjał jest związany z wielkim potencjałem termodynamicznym Ω0 = −T lnZ0 za
pomocą relacji Ω0 = V min∆U (∆). Wartość ∆ = ∆0 minimalizująca U (∆) odpowiada �zycznej
wartości parametru porządku i pozwala na wyznaczenie diagramu fazowego w przybliżeniu pola
średniego, przy czym pomijamy możliwość występowania stanu FFLO.

4.3 Fluktuacje parowania

Kolejnym krokiem jest uwzględnienie �uktuacji parowania wokół jednorodnej kon�guracji pola
porządku. Fluktuacje sprawiają, że należy uwzględnić także przyczynki pochodzące od q , 0. Przyj-
mujemy, że jedynie człony o odpowiednio małych pędach q będą dawały istotny wkład do całki
funkcjonalnej, co pozwala na wykorzystanie rozwinięcia w gradientach pola ηx . W związku z tym
przyjmujemy następującą postać

ηq =
√
βV ∆δ (q) + ϕq, (4.21)

przy czym ϕq jest polem niewielkich �uktuacji parowania dla których zachodzi ϕq=0 = 0.
Wykorzystując równanie (4.21) i wstawiając je do wyrażenia na sumę statystyczną otrzymujemy,

że

Z = ρ Z0

∫
D[ϕ] exp



∑
q

|ϕq |
2

д
+

√
βV

д

(
∆∗ϕ0 + ϕ

∗
0∆

)
+ Tr

{
ln

(
1 − G∆�ϕ

)}
, (4.22)

gdzie człony w których występuje ϕq=0 ≡ ϕ0 = 0 znikają, a macierz selfenergii �ϕ ma tą samą
postać jak � w równaniu (4.7), przy czym zastąpiono w nim ηq przez pole ϕq . Funkcję Greena G∆

daną równaniem (4.13) można zapisać w wygodniejszej formie poprzez sprowadzenie propagatorów
do odpowiednich ułamków prostych, co prowadzi do równania

[G∆]k+q,k = δ (q)


G +
k

Fk

F ∗
k
−G −
−k


, (4.23)

gdzie diagonalna część funkcji Greena jest związana z normalnymi funkcjami Greena typu BCS
o postaci

G +k =
|uk |

2

ikn − E
+
k

+
|vk |

2

ikn − E
−
k

(4.24)
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oraz

−G −
−k =

|vk |
2

ikn − E
+
k

+
|uk |

2

ikn − E
−
k

, (4.25)

gdzie |uk |2 + |vk |2 = 1 oraz |uk |2 = 1
2 (1 + ξk/Ek ). Czynniki uk i vk są czynnikami koherencji, które

występują w transformacji Bogoliubowa-Valatina pól fermionowych pozwalającej na diagonalizację
macierzy G−1 w równaniu (4.6), przy założeniu, że uwzględnia się tylko wkład jednorodny, tj. q = 0.
Część pozadiagonalna jest związana z anomalną funkcją Greena o postaci

Fk = ukv
∗
k

(
1

ikn − E
−
k

−
1

ikn − E
+
k

)
, (4.26)

gdzie ukv∗k = ∆/2Ek [1, 69, 139]. W dalszej części dysertacji będziemy przyjmować, że ∆ ∈ R, a co za
tym idzie |uk |2 = u2

k
, |vk |2 = v2

k
oraz ukv∗k = u

∗
k
vk = ukvk .

Możemy przybliżyć równanie (4.22) biorąc pod uwagę tylko �uktuacje gaussowskie pola parowa-
nia ϕq . Zrobimy to rozwijając logarytm i pozostawiając tylko wyrazy rzędu �2

ϕ
, tj. ln

(
1 − G∆�ϕ

)
=

−
∑∞

n=1
1
n

[
G∆�ϕ

]n
≈ −G∆�ϕ − 1

2

[
G∆�ϕ

]2
. Ponadto korzystając z tego, że Tr(·) = ∑

k,q trσ (·) pozwala
to na otrzymanie sumy statystycznej uwzględniającej gaussowskie �uktuacje parowania wynoszą-
cej

Z ≈ ρ Z0 ZG = ρ Z0

∫
D[ϕ] exp

[
−
βV

2

∫
q
Φ∗qF

−1
q Φq

]
, (4.27)

gdzie Φ∗q = [ϕ∗q,ϕ−q] i Φ∗q = [ϕq,ϕ∗−q]T są odpowiednimi spinorami Nambu dla pól ϕq . W powyższym
równaniu dokonano przejścia do granicy termodynamicznej i skorzystano z tego, że Tr

(
G∆�ϕ

)
=

0, bo ϕ0 = 0. Macierz Fq jest propagatorem �uktuacji parowania i odpowiada macierzy funkcji
Greena dla bozonowych stopni swobody w układzie. Elementy macierzowe odwrotnego propagatora
�uktuacji parowania F−1

q są dane równaniem

[
F−1
q

]
11 =

[
F−1
−q

]
22 = −

1
д
−

∫
k
G +k+qG

−
−k ,

[
F−1
q

]
12 =

[
F−1
q

]∗
21 =

∫
k
Fk+qF−k .

(4.28)

Warto podkreślić, że ograniczając się tylko do wkładów kwadratowych w polach ϕ możemy wy-
konać analitycznie całkę funkcjonalną po kon�guracjach pola ϕ, co prowadzi do gaussowskiej po-
prawki do wielkiego potencjału termodynamicznego wynoszącej ΩG =

V
2
∫
q

ln
[
detσ {F−1

q (∆0)}/π
4

]
.

Otrzymane w tym przypadku równania są równoważne przybliżeniu fazy losowej (RPA) w któ-
rym wysumowuje się nieskończoną podklasę diagramów drabinkowych podobnie jak dla teorii NSR
(patrz równanie (2.31) i rys. 2.5(c)). Jednak w tym przypadku uzyskane wyrażenia są poprawne rów-
nież w fazie uporządkowanej, a także są uogólnione na przypadek nierównych mas i populacji ato-
mów tworzących mieszaninę. Widzimy, że macierz F−1

q możemy podzielić na dwa wkłady. Pierwszy
związany z odwrotnością stałej oddziaływania kontaktowego −д−11, a drugi związany z macierzą
funkcji korelacji par −�q , tj. F−1

q = −д
−1−�q ⇒ Fq = −д(1+д�q )

−1 (porównaj z równaniem (2.31)).
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W funkcji korelacji par �q występują fermionowe sumy Matsubary, które mają postać

1
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∑
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σ
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·
1

ikn − E
σ ′

k

=

=
1

iqm + E
σ ′
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·
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∑
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1
ikn − E

σ ′

k

−
1

iqm + ikn − E
σ
k+q


.

(4.29)

Można je wykonać zamieniając sumę na całkę podobnie jak to było pokazane w przypadku efek-
tywnego potencjału, a następnie korzystając z twierdzenia o residuach można otrzymać wynik su-
mowania. Szczegółowe obliczenia znajdują się w dodatku A.2. Po ich wykonaniu otrzymujemy, że

[
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q

]
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1
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+

∫
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∑
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(4.30)

gdzie zostały wprowadzone skrócone oznaczenia f σ ,σ
′

k,q
= f (Eσ

k
) − f (Eσ

′

k+q
), Eσ ,σ

′

k,q
= −

(
Eσ
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′

k+q

)
,

Dσ ,σ ′

k,q
= σσ ′ukvkuk+qvk+q , a także
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=
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, gdy σ = + oraz σ ′ = +,
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k+q
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k
, gdy σ = − oraz σ ′ = +,
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k+q
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k
, gdy σ = + oraz σ ′ = −,

v2
k+q

u2
k
, gdy σ = − oraz σ ′ = −.

(4.31)

Strukturę elementów macierzowych F−1
q danych równaniem (4.30) można lepiej zrozumieć bliżej

przyglądając się własnościom funkcji Greena G σ
k

oraz Fk .
Zaczniemy od znalezienia funkcji spektralnej odpowiadającej funkcji Greena G +

k
, która jest zde�-

niowana jakoA(k,ω) = − 1
π ImG+ret (k,ω) = u

2
k
δ (ω−E+

k
)+v2

k
δ (ω−E−

k
), gdzieG+ret (k,ω) ≡ G +(k, ikn →

ω + i0+) to retardowana funkcja Greena. Widzimy, że funkcja spektralna posiada dwa piki zloka-
lizowane dla energii wzbudzeń Eσ

k
. Pierwszy pik odpowiada energii atomu o pseudospinie σ , któ-

rego wprowadza się do układu powyżej "średniej" powierzchni Fermiego kF zde�niowanej równa-
niem ξkF = 0. Z kolei drugi pik odpowiada energii atomu o przeciwnym pseudospinie σ̄ ≡ −σ
usuwanego poniżej kF . Oznacza to, że czynnik u2

k
zawiera informację o amplitudzie prawdopo-

dobieństwa wytworzenia wzbudzenia kwazicząstkowego, a czynnik v2
k

o amplitudzie prawdopo-
dobieństwa wytworzenia stanu kwazidziurowego. W przypadku funkcji Greena G −

k
atomy o spi-

nie σ i σ̄ zamieniają się rolami. Wzbudzenia fermionowe występujące w układzie są zatem dane
przez superpozycję stanów kwazicząstkowych i kwazidziurowych tak jak ma to miejsce w typo-
wych nadprzewodnikach. Warto zauważyć, że gdy ∆ → 0, wtedy u2

k
dąży do jedności, a v2

k
dąży

do zera. Oznacza to, że znikanie przerwy energetycznej w układzie na "średniej" powierzchni Fer-
miego kF jest związane z tym, że wzbudzenia elementarne przestają być superpozycjami. Co więcej
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przedstawiona wyżej funkcja spektralna A(k,ω) spełnia regułę sum
∫

dω A(k,ω) = 1. W analo-
giczny sposób możemy znaleźć funkcję spektralną dla anomalnego komponentu Fk , która wynosi
B (k,ω) = − 1

π Im Fret (k,ω) = ukvk[δ (ω − E−
k
) − δ (ω − E+

k
)]. W tym przypadku spełnione są nieco

inne reguły sum o postaci
∫

dω B (k,ω) = 0 oraz
∫

dω ωB (k,ω) = −∆. Warto zauważyć, że część
anomalna funkcji Greena G∆ jest obecna tylko w fazie złamanej, tj. gdy ∆ , 0.

Przedstawiona powyżej dyskusja pozwala na zinterpretowanie elementów macierzowych F−1
q

danych równaniem (4.30). Wkłady pochodzące od członów dla których σ ′ , σ odpowiadają dia-
gramom pęcherzykowym typu cząstka-cząstka. Z kolei wkłady dla których σ ′ = σ pochodzą od
diagramów typu cząstka-dziura. Przy przejściu do granicy ∆ → 0 okazuje się, że mogą przetrwać
tylko wkłady typu cząstka-cząstka, co będzie miało konsekwencje związane ze zmianą zachowania
wzbudzeń kolektywnych przy przejściu między fazą normalną i nadciekłą. Uzyskane w tym rozdzia-
le wyrażenia stanowią podstawę do dalszych rozważań.



Rozdział 5

Diagram fazowy i kwantowe przemiany
fazowe

Interesującym zagadnieniem dotyczącym spolaryzowanych mieszanin atomów fermionowych
o nierównych masach jest pytanie o charakter przemiany fazowej między fazą nadciekłą, a normalną
w granicy T → 0. Przemiana taka może być osiągana na przykład poprzez zmianę koncentracji
różnych typów atomów występujących w mieszaninie. W przypadku mieszanin o dwóch różnych
powierzchniach Fermiego badania wykorzystujące przybliżenie średniego pola [12,34,66,84,117,123,
163, 189, 226] wskazują, że przemiana fazowa jest generycznie I rodzaju i staje się ciągła powyżej
temperatury trójkrytycznej Ttri . Jednakże zgodnie z rezultatami otrzymanymi w pracy [164] dla
mieszanin w których stosunek mas r = m−/m+ jest odpowiednio duży możliwe jest otrzymanie
QCP, a także kwantowego punktu trójkrytycznego na poziomie MFT.

Problem dotyczący faktycznego rzędu kwantowej przemiany fazowej jest interesujący, gdyż wy-
stępowanie QCP na diagramie fazowym jest związane ze wzmocnieniem �uktuacji parametru po-
rządku, które sprzęgają się z fermionowymi stopniami swobody (patrz np. [20, 138]). W efekcie
prowadzi to do mody�kacji selfenergii fermionowych, które doprowadzić może do załamania się
teorii Landaua dla cieczy Fermiego, co objawia się brakiem występowania typowych kwazicząstek
w układzie. Ponadto obserwowane jest pojawianie się anomalnych obszarów na diagramie fazowym
zarówno w fazie normalnej jak i nadciekłej. Zagadnienie to nie zostało jeszcze w tym kontekście
w pełni zbadane.

Sprawia to, że zrozumienie warunków dla których w rozważanym układzie można wygenero-
wać QCP jest interesujące. Większość badań prowadzonych wcześniej nad tym tematem opierała się
na numerycznej ekstrakcji średniopolowych pro�li energii swobodnej za pomocą, których można
otrzymać diagramy fazowe. W tym rozdziale zostanie sformułowane analityczne podejście do tego
problemu odwołujące się do rozwinięcia Landaua-Ginzburga dla efektywnego potencjałuU (∆). Wy-
niki omawiane w tym rozdziale stanowią oryginalny wkład autora dysertacji i zostały opublikowane
w artykułach [248, 250].

Struktura tego rozdziału jest następująca:
Podrozdział 3.1. Zaczniemy od przedstawienia typowych średniopolowych diagramów fazowych

67
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otrzymywanych dla mieszanin Fermiego. Przedyskutujemy także w jaki sposób wyglądają pro�le
koncentracji atomów w mieszaninie w zależności od wartości pola Zeemana h = (µ+ − µ−)/2.
Podrozdział 3.2. Wychodząc z efektywnego potencjałuU (∆), otrzymanego w poprzednim rozdzia-
le, wyprowadzimy współczynniki rozwinięcia Landaua dla potencjału termodynamicznego w ze-
rowej temperaturze. Pokażemy, że rozwinięcie Landaua jest osobliwe, gdy powierzchnie Fermiego
atomów tworzących mieszaninę pokrywają się.
Podrozdział 3.3. Rozwinięcie Landaua posłuży nam do zbadania możliwości wygenerowania QCP
na poziomie MFT w dwóch i trzech wymiarach. Wykażemy przy tym, że dla d = 2 nie jest możliwe
otrzymanie QCP, ale dla d = 3 w przypadku odpowiednio dużych stosunków mas r atomów two-
rzących mieszaninę można go zaobserwować na diagramie fazowym. Wykorzystując rozwinięcie
Sommerfelda opiszemy asymptotyczny kształt lini krytycznej Tc (h) w pobliżu QCP.
Podrozdział 3.4. Na koniec uwzględnimy �uktuacje gaussowskie parametru porządku przy pod-
chodzeniu od strony fazy normalnej do przemiany fazowej. Przy ich pomocy wyprowadzimy współ-
czynniki rozwinięcia gradientowego efektywnego działania w fazie normalnej dla T = 0. Badając
znak współczynnika stojącego przy wyrazie |∇ϕ |2 wskażemy na możliwość otrzymania kwantowe-
go punktu Lifszyca w tym przypadku.

5.1 Średniopolowy diagram fazowy

Termodynamiczne własności rozważanej mieszaniny są opisane przy pomocy gęstości wielkiego
potencjału termodynamicznego ω̃ (T , µ,h, r ) = Ω(V ,T , µ,h, r )/V , która jest dana równaniem

ω̃ (T , µ,h, r ) = min
∆

U (∆) = min
∆
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−

1
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. (5.1)

Warunek minimalizacji można przekształcić do postaci równania przerwy energetycznej poprzez
obliczenie ∂U (∆)

∂(∆2)
���∆=∆0

= 0, co prowadzi do

1
д
=
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k

f (E+
k
) − f (E−

k
)

2Ek
. (5.2)

Równanie to pozwala wyznaczyć wartość przerwy energetycznej ∆0 w funkcji pozostałych parame-
trów układu. Gdy ∆0 , 0, wtedy na poziomie pola średniego otrzymujemy jednorodną fazę nadcie-
kłą. W przeciwnym przypadku, tj. gdy ∆0 = 0, znajdujemy się w fazie normalnej.

Zwiększanie wartość pola Zeemana h, które opisuje stopień spolaryzowania mieszaniny, powo-
duje wzrost niedopasowania powierzchni Fermiego dla poszczególnych gatunków atomów znajdu-
jących się w mieszaninie. Towarzyszy temu zmniejszenie obszaru na diagramie fazowym w któ-
rym występuje faza nadciekła. Pole h jest zatem naturalnym nietermicznym parametrem kontroli
pozwalającym na dostrojenie mieszaniny do kwantowej przemiany fazowej między stanem nadcie-
kłym, a normalnym. Średniopolowy diagram fazowy tego układu był wielokrotnie badany w ciągu
ostatnich kilku lat. Poza jednorodną fazą nadciekłą oraz fazą normalną możliwe jest występowanie



5.1. ŚREDNIOPOLOWY DIAGRAM FAZOWY 69

Rys. 5.1: Typowy średniopolowy diagram fazowy dla d = 3. Faza nadciekła w niskich temperatu-
rach jest odseparowana od fazy normalnej przemianą fazową I rodzaju (ciągła linia). Dla T > Ttri

przemiana ta staje się ciągła (przerywana linia). Niebieskie kropki na diagramie wskazują położenie
punktów trójkrytycznych. Kolor tła na diagramie fazowym odpowiada wartości parametru porząd-
ku (∆). Parametry diagramu są następujące r = m−/m+ = 2, µ = 0.1, д = −1.7 oraz Λ = 10, przy
czym Λ jest wartością obcięcia ultra�oletowego.

nadciekłości typu FFLO, która powinna być obecna w niewielkim obszarze pomiędzy nimi dla od-
powiednio niskich temperatur. Faza ta jest niezwykle krucha ze względu na �uktuacje termiczne.
Obecność modów Goldstone’a (w tym związanych z łamaniem symetrii translacyjnej) sprawia, że
staje się niestabilna dla T > 0 i może występować jedynie jako faza uporządkowana algebraicznie
(także w trzech wymiarach) [178, 180, 197, 206, 245]. Ponadto uwzględnienie �uktuacji parowania
[235] i analiza wykorzystująca nieperturbacyjną grupę renormalizacji [105] także wskazuje na nie-
stabilność fazy FFLO dla skończonych temperatur w dwóch i trzech wymiarach. Jedynie w stanie
podstawowym układ może posiadać stabilną niejednorodną fazę typu FFLO. Z tego powodu w więk-
szości tej dysertacji będziemy pomijali możliwość występowania niejednorodnej nadcieczy przyj-
mując, że parowanie zachodzi jedynie dla wektora falowego q = 0. Powrócimy do tego zagadnienia
w podrozdziale 5.4., gdzie uwzględniając �uktuacje gaussowskie zbadamy możliwość wygenerowa-
nia kwantowego punktu Lifszyca dla spolaryzowanych mieszanin Fermiego.

Typowy diagram fazowy w zmiennych (h, T ) w sytuacji o równych masach jest symetryczny
względem linii h = 0 i dla odpowiednio niskich temperatur (poniżejTtri ) obszar nadciekły jest ogra-
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Rys. 5.2: Przykładowy średniopolowy diagram fazowy dla d = 3 na którym występuje QCP. Kolor
tła diagramu odpowiada wartości parametru porządku (∆). Ciągła linia oznacza przemianę fazową
I rodzaju, a linia przerywana oznacza przemianę II rodzaju. Niebieska kropka wskazuje na poło-
żeniu punktu trójkrytycznego. Warto zauważyć, że faza uporządkowana rozciąga się ponad QCP.
Parametry tego wykresu są następujące r =m−/m+ = 5, µ = 0.1, д = −1.4 oraz Λ = 10.

niczony linią nieciągłej przemiany fazowej. Powyżej punktu trójkrytycznegoTtri przemiana staje się
ciągła i obszar nadciekły zanika dla odpowiednio wysokich temperatur [163]. Szczegółowa analiza
własności przejścia BEC-BCS dla mieszanin o równych masach, a także własności stanów rezonan-
sowych w tym przypadku została zaprezentowana w pracy [87]. W przypadku niewielkiej różnicy
mas atomów tworzących ultrazimną mieszaninę diagram fazowy posiada podobne charakterystycz-
ne cechy jak dla przypadku o równych masach, tj. na "skrzydłach" obszaru nadciekłego występuje
przemiana fazowa I rodzaju dla T < Ttri , a dla "kopuły" obszaru nadciekłego powyżej T > Ttri

zachodzi ciągła przemiana fazowa. W tym przypadku zostaje jednak zburzona symetria diagramu
ze względu na linię h = 0. Gdy r > 1 punkt odpowiadający maksymalnej wartości temperatury
krytycznej Tmax

c przesuwa się w kierunku większych wartości h. Z kolei punkty trójkrytyczne są
rozmieszczone niesymetrycznie dla lewej i prawej strony diagramu, przy czym punkt leżący dla
h > 0 i r > 1 pojawia się w niższych temperaturach. Przykładowy diagram fazowy przedstawiający
tą sytuację został przedstawiony na rys. 5.1.

Zwiększenie stosunku mas r składników mieszaniny może doprowadzić do zmiany charaktery-
styki diagramu fazowego [164]. W szczególności możliwe jest dla odpowiednio dużych wartości r
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sprowadzenie punktu trójkrytycznego leżącego po prawej stronie obszaru nadciekłego do zerowej
temperatury. Pozwala to na realizację kwantowego punktu trójkrytycznego oraz QCP dla miesza-
nin fermionowych o nierównych masach, a tym samym przemiana fazowa na jednym ze "skrzydeł"
jest ciągła dla T → 0. Przykładowy diagram fazowy ilustrujący tą sytuację został przedstawiony
na rys. 5.2. Warto zwrócić uwagę, że obecność QCP na diagramie fazowym powoduje, że faza nad-
ciekła staje się obszarem wklęsłym (ang. reentrant phase behaviour). Oznacza to, że faza nadciekła
w temperaturach T > 0 rozciąga się ponad QCP.

5.1.1 Koncentracje atomów w mieszaninie

W celu głębszego zrozumienia charakteru kwantowej przemiany fazowej zachodzącej w roz-
ważanym układzie zajmiemy się w tej części zbadaniem związku między koncentracjami atomów
w mieszaninie nσ , a wartościami ich potencjałów chemicznych µσ . Korzystamy przy tym z relacji
µσ = µ + σh. Koncentracje atomów można, wtedy otrzymać z gęstości wielkiego potencjału termo-
dynamicznego ω̃ (T , µ,h, r ) za pomocą relacji nσ = −

(
∂ω̃
∂µσ

)
T ,r ,µσ̄

, przy czym wartość ∆ w funkcji µσ
wyznaczamy przy pomocy równania (5.2).

Rys. 5.3: Koncentracje atomów nσ dla nieoddziałującej (д = 0) dwuskładnikowej mieszaniny Fer-
miego w funkcji h dla d = 3. W tym przypadku T = 0 oraz r = 5. Na wykresie czarne linie n+σ

odpowiadają wartości µ = 0.5. Z kolei czerwone linie n−σ zostały sporządzone dla µ = −0.5. W ob-
szarze zacienionym oba gatunki atomów są obecne dla µ = 0.5. Gdy µ = −0.5, wtedy w obszarze
zacienionym nieobecne są żadne cząstki.
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Rys. 5.4: Koncentracje atomów nσ wyznaczone w funkcji h dla d = 3, przy czym ustalono wartości
T = 0, r = 5 oraz д = −1.5. Czarne linie n+σ odpowiadają wartości µ = 0.1, a czerwone linie n−σ

wartości µ = −0.1. Dla obu wartości µ obserwuje się przemianę fazową I rodzaju dla h ≈ −1 oraz
przemianę II rodzaju dlah ≈ 2, przy czymn− w ciągły sposób dąży w tym przypadku do zera. W fazie
normalnej koncentracje nσ są dane prawem potęgowym przedstawionym w równaniu (5.3).

Zaczniemy od rozważenia sytuacji odniesienia dla której∆ = 0 dla wszystkich możliwych warto-
ści µ orazh, co odpowiada nieoddziałującej dwuskładnikowej mieszaninie Fermiego (д = 0). Związek
między nσ oraz µσ jest w tym przypadku dla T = 0 dany równaniem

nσ =
(mσ µσ )

d/2θ (µσ )

(2π )d/2Γ(d2 + 1)
, (5.3)

gdzie θ (·) to funkcja schodkowa Heaviside’a, a Γ(·) to funkcja Γ Eulera. Wykres przedstawiający tą
zależność jest pokazany na rys. 5.3 dla µ > 0 oraz µ < 0. Oczywiście atomy o pseudospinie σ nie są
obecne w układzie, gdy µσ < 0.

W przypadku, gdy д < 0 możliwe jest parowanie się atomów o przeciwnych pseudospinach, co
dla pewnego zakresu parametrów prowadzi do niezerowej wartości ∆ i jest związane z występowa-
niem fazy nadciekłej na poziomie MFT. Koncentracja gatunku atomów o pseudospinie σ wynosi

nσ =

∫
k

[
u2
k f (σE

σ
k ) +v

2
k

(
1 − f (σ̄Eσ̄k )

)]
, (5.4)

gdzie u2
k

oraz v2
k

są czynnikami BCS wprowadzonymi w równaniu (4.23). Po pierwsze można zaob-
serwować, że dla ∆ = 0 orazT = 0 równanie (5.4) redukuje się do wyniku otrzymanego w przypadku
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nieoddziałującym (patrz równanie (5.3)). Implikuje to, że ewentualna kwantowa przemiana fazowa
zachodząca dla µ+ < 0 lub µ− < 0 ma miejsce pomiędzy fazą nadciekłą, a całkowicie spolaryzowa-
nym gazem. Generycznie występowanie ∆ > 0 oznacza występowanie obu składników mieszaniny
w układzie jak zostało to zaprezentowane na rys. 5.4. W konsekwencji kwantowa przemiana fazowa
dla µ+ < 0 (lub µ− < 0) wymaga, aby wartość koncentracji tego gatunku atomów zwiększyła się od
zerowej do pewnej skończonej wartości. Zmiana wartości koncentracji może następować skokowo
lub w sposób ciągły w zależności od tego jaki jest rodzaj zachodzącej przemiany fazowej. Parametry
na rys. 5.4 zostały dobrane tak, aby dla h < 0 występowała przemiana fazowa I rodzaju, a dla h > 0
przemiana fazowa II rodzaju.

5.2 Rozwinięcie Landaua

Teoria przemian fazowych Landaua postuluje istnienie analitycznego rozwinięcia efektywnego
potencjału U (∆) w potęgach parametru porządku ∆ danego równaniem

U (∆) = U0 + a2 |∆|
2 + a4 |∆|

4 + a6 |∆|
6 + . . . , (5.5)

przy czym uwzględniamy tylko parzyste potęgi parametru porządku ze względu na niezmienniczość
efektywnego działaniaU (∆) ze względu na symetrięU (1). Współczynniki Landaua ai są funkcjami
parametrów termodynamicznych układu. W rozważanym przypadku możliwe jest wyprowadzenie
ich postaci poprzez kolejne obliczenie pochodnych U (∆) danego równaniem (4.20) względem ∆,
a następnie położenie ∆ = 0. W rezultacie otrzymujemy, że współczynnik a2 ma postać

a2 =

(
∂U

∂ |∆|2

)
|∆|2=0

= −
1
д
−

1
4

∫
k

1
ξk

∑
σ

tgh
(
βξσ

k

2

)
, (5.6)

z kolei współczynnik a4 jest dany równaniem

a4 =
1
2

(
∂2U

∂ ( |∆|2)2

)
|∆|2=0

=
1
16

∫
k

1
ξ 3
k

∑
σ

[
tgh

(
βξσ

k

2

)
−
βξk
2 cosh−2

(
βξσ

k

2

)]
. (5.7)

Współczynniki wyższego rzędu można wyprowadzić w analogiczny sposób poprzez dalsze różnicz-
kowanie równania (4.20).

Współczynnik Landaua a` może zostać zinterpretowany jako pętla fermionowa posiadająca ` ze-
wnętrznych bozonowych linii, która została ewaluowana dla zewnętrznych pędów równych zero.
Diagramy Feynmana odpowiadające współczynnikowi a2 oraz a4 zostały przedstawione na rys. 5.5.
Propagatory fermionów G0,σ (k ) = (ikn − ξ

σ
k
)−1 posiadają przerwę ze względu na wartości częstości

Matsubary kn = πT (2n + 1) położone najbliżej zera, która znika w granicy T → 0. Oznacza to, że
nie jest klarowne pod jakimi warunkami diagramy pętlowe w rozważanym problemie są zbieżne
w granicy T → 0, tj. wyrażenia dane równaniami (5.6) oraz (5.7) pozostają skończone przy tem-
peraturze dążącej do zera. Na przykład ograniczając się do przypadku zbilansowanego dla którego
ξ+
k
= ξ−

k
= ξk możemy zauważyć, że współczynnik a2 (dany równaniem (5.6)) zawiera rozbieżny
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Rys. 5.5: Diagramatyczna interpretacja dwóch pierwszych współczynników Landaua jako pętli fer-
mionowych typu cząstka-cząstka. Linia ciągła odpowiada swobodnej funkcji Greena G0,σ (k ) =

(ikn − ξ
σ
k
)−1, a linia przerywana odpowiada "amputowanej" linii bozonowej wykonywanej dla pędu

q = 0.

wkład, gdy β → ∞. Wskazuje to na załamanie się rozwinięcia Landaua w przypadku zbilansowa-
nym. Warto zauważyć, że w tym przypadku powierzchnie Fermiego składników mieszaniny pokry-
wają się. Okazuje się, że występowanie niepokrywających się powierzchni Fermiego różnych gatun-
ków atomów w mieszaninie prowadzi do regularyzacji współczynnika a2, co pozwala na otrzymanie
skończonego wyrażenia w sytuacji niezbilansowanej w zerowej temperaturze.

Analiza zbieżności współczynnika a4 (patrz równanie (5.7)) jest nieco bardziej złożona. Osobliwa
część tego wyrażenia jest związana z otoczeniem ξk = 0. Korzystając z tego, że ξ−

k
= 2ξk − ξ+k

i rozwijając wyrażenie podcałkowe w a4 względem ξk otrzymujemy, że

a4 ∝ −β
3
∫ Λ

0
dkkd−1

[
cosh(βξ+k ) − 2

]
cosh−4

(
βξ+

k

2

)
+ . . . . (5.8)

Dokonując zamiany zmiennych tak, aby nową zmienną całkowania było x = ξk i wyodrębniając
część osobliwą a

sinдul
4 wyrażenia (5.8) odpowiadającą przedziałowi całkowania x ∈ [−ε, ε], gdzie

ε jest dodatnią i niewielką stałą, otrzymuje się

a
sinдul
4 ∝ −β3

∫ ε

−ε
dx |2m(x + µ ) |

d
2 −1 [cosh(β (mx − η)) − 2] cosh−4

(
β (mx − η)

2

)
, (5.9)

gdzie η = (1 −m)µ + h. Następnie zamieniając zmienne tak, aby y = β (mx − η) otrzymujemy

a
sinдul
4 ∝ −

β3−d
2

m

∫ mβε−βη

−mβε−βη
dy |y + βµ+ |

d
2 −1 [cosh(y) − 2] cosh−4

(y
2

)
≈

≈ −
β3−d

2

m

∫ mβε−βη

−mβε−βη
dy |y + βµ+ |

d
2 −1 [cosh(βη) − 2] cosh−4

(
βη

2

)
.

(5.10)

Gdy η , 0 w granicy β → ∞ osobliwa część asinдul4 dąży do zera dzięki temu, że cosh−4
(
βη
2

)
dąży eks-

ponencjalnie do 0 w tej granicy. Tym samym współczynnik a4 jest zbieżny. Gdy jednak η = 0, wtedy
część osobliwa nie jest regularyzowana i wyrażenie rozbiega. Warunek η , 0 można przedstawić w
postaci

µ ,
r + 1
r − 1h = ζ

−1h. (5.11)
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Warunek regularności rozwinięcia Landaua dany równaniem (5.11) jest spełniony, gdy powierzch-
nie Fermiego składników mieszaniny nie pokrywają się, tj. k+F , k−F . Równanie h = ζ µ wyzna-
cza jednowymiarowy podzbiór diagramu fazowego w zmiennych (µ,h) w zerowych temperaturach
dla którego rozwinięcie Landaua nie jest dobrze zde�niowane z powodu osobliwości związanych
z nakładaniem się powierzchni Fermiego atomów. Gdy r → 1+ nachylenie linii µ = ζ −1h rozbie-
ga, co odpowiada sytuacji mieszaniny o równych masach. Ponadto wzdłuż linii h = 0 i r = 1 dla
µ > 0 rozwinięcie Landaua nie istnieje i przypadek ten odpowiada sytuacji zbilansowanej dla której
ξk = ξ+

k
= ξ−

k
. Analogiczne rozumowanie dla współczynników wyższego rzędu prowadzi do tych

samych wniosków. Uzyskany warunek jest spełniony zarówno w dwóch i trzech wymiarach.

U
(Δ

)

Δ

Rys. 5.6: Schematyczna ilustracja efektywnego potencjałuU (∆) dla dodatnich wartości współczyn-
nika a4. W tym przypadku a2 > 0 odpowiada fazie normalnej, a2 < 0 jest wewnątrz fazy nadciekłej,
a a2 = 0 dla przemiany fazowej II rodzaju.

Korzystając z współczynników Landaua możemy określić położenie oraz charakter przemiany
fazowej na poziomie MFT. Pod warunkiem, że istnieje rozwinięcie efektywnego potencjału dane
równaniem (5.5) warunek występowania przemiany fazowej II rodzaju jest dany

a2 = 0, a4 > 0. (5.12)

Z kolei punktu trójkrytyczny jest obecny na diagramie fazowym, gdy

a2 = 0, a4 = 0 oraz a6 > 0. (5.13)

Warto zwrócić uwagę, że warunek a2 = 0 jest równoważny równaniu (5.2) w którym kładzie się
∆ = 0 i tym samym może być on wykorzystany do otrzymania położenia przemiany fazowej na
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poziomie pola średniego. Schematyczny wykres przedstawiający kształt efektywnego potencjału
w zależności od znaku a2 jest przedstawiony na rys. 5.6 przy założeniu, że a4 > 0.

W dalszej części dysertacji będziemy zakładać, żem− > m+, czyli r > 1. Okazuje się, że sytuacja
w której 0 6 r 6 1 prowadzi do tych samych rezultatów, przy czym należy dokonać transformacji
h ↔ −h.

5.2.1 Zerowa temperatura

Rys. 5.7: Wyróżnione obszary diagramu fazowego dlaT = 0. Gdy średni potencjał chemiczny µ > 0,
wtedy płaszczyznę (h, µ) dzielimy na obszary: (A) µ+ > 0, µ− > 0; (B) µ+ > 0, µ− < 0; (C) µ+ < 0,
µ− > 0. Gdy µ < 0, wtedy diagram dzielimy także na trzy podzbiory: (D) µ+ > 0, µ− < 0; (E) µ+ < 0,
µ− > 0; (F) µ+ < 0, µ− < 0.

Warunki przedstawione wyżej mówiące o charakterze przemiany fazowej można także zasto-
sować w zerowej temperaturze. W celu ustalenia warunków występowania QCP na diagramie fa-
zowym musimy przyjrzeć się jaką graniczną postać mają współczynniki Landaua (patrz równania
(5.6) oraz (5.7)) dla T → 0. Korzystając z tego, że tgh

(
βξ σk

2

)
= 1 − 2f (ξσ

k
) otrzymujemy

a (0)2 = lim
T→0

a2 = −
1
д
−

1
2

∫
k

1
ξk


1 −

∑
σ

θ (−ξσk )

. (5.14)

Podobnie możemy postąpić dla współczynnikaa4 wykorzystując relację d
dξ σk

tgh
(
βξ σk

2

)
=

β
2 cosh−2

(
βξ σk

2

)
.
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W rezultacie otrzymujemy

a (0)4 = lim
T→0

a4 =
1
8

∫
k

1
ξ 3
k


1 −

∑
σ

(
θ (−ξσk ) + ξkδ (ξ

σ
k )

)
, (5.15)

przy czym δ (·) jest deltą Diraca. Całkowanie przedstawione w powyższych wyrażeniach można
wykonać analitycznie, ale ich końcowa postać będzie zależała od wymiarowości d układu. W dalszej
części zostaną przedyskutowane dwa najbardziej �zycznie istotne przypadki, czyli d = 2 oraz d = 3.

Dalsza analiza równań (5.14) oraz (5.15) wymaga podziału płaszczyzny (h, µ) dla T = 0 na kil-
ka podzbiorów, które zostały przedstawione na rys. 5.7. Komplikacja ta jest związana z umiejsco-
wieniem zer funkcji schodkowej Heaviside’a oraz delty Diraca występujących w równaniach (5.14)
i (5.15), które mogą leżeć wewnątrz przedziału całkowania po |k| ∈ [0,Λ] lub poza nim w zależ-
ności od znaku odpowiedniego potencjału chemicznego atomu o pseudospinie σ . W efekcie należy
wyróżnić sześć różnych obszarów na diagramie fazowym w zmiennych (h, µ).

5.3 Kwantowy punkt krytyczny

5.3.1 Przypadek d = 2

W dwóch wymiarach współczynnika (0)2 w obszarach przedstawionych na rys. 5.7 będzie posiadał
różną postać. Wykonując całkowanie w równaniu (5.14) w reżimie (A), otrzymujemy następujące
wyrażenie

a (A)2 = −
1
д
−

m

4π ln


|Λ2 − 2mµ | · 2mµ∏
σ |k

2
F ,σ − 2mµ |


, (5.16)

gdzie kF ,σ = kσF =
√

2mσ µσ jest pędem Fermiego atomu o pseudospinie σ . Postępując podobnie dla
obszarów (B)-(E) otrzymujemy

a (B−E)2 = −
1
д
−

m

4π ln


|Λ2 − 2mµ |
|k2
F ,σ − 2mµ |


, (5.17)

gdzie σ = + w obszarach (B) i (D), a σ = − w reżimach (C) oraz (E). Natomiast w obszarze (F)
dostajemy, że

a (F )2 = −
1
д
−

m

4π ln
[
|Λ2 − 2mµ |
|2mµ |

]
. (5.18)

Warto zauważyć, że gdy średni potencjał chemiczny µ > 0, wtedy możemy wprowadzić "średni" pęd
Fermiego zde�niowany równaniem ξkF = 0, co prowadzi do kF =

√
2mµ.

Współczynnik a (0)2 musi znikać dla QCP zgodnie z warunkiem (5.12). W równaniach (5.16)-(5.18)
wkład zawierający logarytm jest ujemny (pod warunkiem, że obcięcie ultra�oletowe Λ jest odpo-
wiednio duże). Ze względu na możliwość dostrajania przyciągającego oddziaływania między atoma-
mi o przeciwnych pseudospinach д < 0 współczynnik Landaua a (0)2 zawsze można sprowadzić do
zera. W warunkach eksperymentalnych można tego dokonać wykorzystując rezonans Feshbacha.
Oznacza to, że o istnieniu QCP w d = 2 decyduje znak współczynnika a (0)4 . Warto zauważyć, że a (0)4
jest niezależny od д. Dzięki temu współczynnik a (0)2 można stroić bez wpływu na znak a (0)4 .
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W analogii do powyższej analizy współczynnika a (0)2 rozważamy reżimy w przestrzeni parame-
trów pokazanej na rys. 5.7 i wykonujemy całkowanie w równaniu (5.15) dla współczynnika a (0)4
w przypadku dwuwymiarowym. Dla obszaru (A) otrzymujemy

a (A)4 = −
m3

8π



1
(Λ2 − 2µm)2

+
1

(2µm)2
+

∑
σ

(mσ/mσ̄ )

(k2
F ,σ − 2µm)2


, (5.19)

przy czym σ̄ = −σ . W podobny sposób dla podzbiorów B-E otrzymujemy, że

a (B−E)4 = −
m3

8π



1
(Λ2 − 2µm)2

+
(mσ/mσ̄ )

(k2
F ,σ − 2µm)2


, (5.20)

gdzie σ = +w obszarze (B) i (D), a σ = −w reżimie (C) i (E). Natomiast w obszarze (F) otrzymujemy

a (F )4 = −
m3

8π

[
1

(Λ2 − 2µm)2
−

1
(2µm)2

]
. (5.21)

Z wyjątkiem równania (5.21) powyższe wyrażenia są w sposób oczywisty ujemne. W reżimie (F)
można zauważyć, że wyrażenia dla a (F )2 oraz a (F )4 nie zależą od h, a w konsekwencji ∆ pozostaje stałe
przy zmienianiu h (przy stałym µ) w tym obszarze. Oznacza to, że w obszarze (F) nie zachodzi żadna
przemiana fazowa (niezależnie od jej rodzaju). Warunek (5.12) nigdy nie jest spełniony dla d = 2.

5.3.2 Przypadek d = 3

Analiza dotycząca przypadku trójwymiarowego jest analogiczna do powyższych rozważań dla
d = 2. Znowu należy podzielić przestrzeń parametrów na podzbiory przedstawione na rys. 5.7. Wy-
konując odpowiednie całki w równaniach (5.14) oraz (5.15) otrzymujemy analityczną postać współ-
czynników Landaua a (0)2 i a (0)4 , które posłużą nam do sprawdzenia czy możliwe jest występowanie
QCP w tym przypadku.

Współczynnik a (0)2 w obszarze (A), gdzie µ+ > 0 oraz µ− > 0, ma postać

a (A)2 = −
1
д
−

m

2π 2
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Λ +

√
2mµ
2 ln

(
|Λ −

√
2mµ |

|Λ +
√

2mµ |

)
+

−
∑
σ

{
kF ,σ +

√
2mµ
2 ln

(
|kF ,σ −

√
2mµ |

|kF ,σ +
√

2mµ |

)} 
.

(5.22)

Dla obszarów (B) oraz (C), gdzie µ > 0, µσ > 0 oraz µσ̄ < 0, otrzymujemy

a (B,C )2 = −
1
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m
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√
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.

(5.23)

W reżimie (D) oraz (E) dla których µ̄ = −µ > 0, µσ > 0 oraz µσ̄ < 0 dostajemy

a (D,E)2 = −
1
д
−

m

2π 2


Λ −

√
2mµ̄ arctg

(
Λ
√

2mµ̄

)
+

−kF ,σ +
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2mµ̄ arctg
(
kF ,σ
√
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) 
.

(5.24)
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Wreszcie dla podzbioru (F), gdzie µ+ < 0 oraz µ− < 0, współczynnik a (0)2 ma postać

a (F )2 = −
1
д
−

m

2π 2


Λ −

√
2mµ̄ arctg

(
Λ
√

2mµ̄

) 
. (5.25)

Podobnie jak w przypadku dwuwymiarowym współczynnik a (0)2 zawiera dodatni wkład związany
ze stałą sprzężeniaд oraz wkład ujemny pochodzący od wyrażenia w nawiasie kwadratowym. W re-
zultacie mody�kując wartość д można dostroić wartość a (0)2 do zera, co odpowiada występowaniu
przemiany fazowej. Warto podkreślić, że podobnie jak poprzednio współczynnik a (0)4 jest niezależny
od д i to znak tego współczynnika Landaua decyduje o rodzaju przemiany.

Rys. 5.8: Ewolucja podzbioru na płaszczyźnie (h, µ) dla którego a (0)4 > 0 dla różnych wartości stosun-
ku mas składników mieszaniny r . Beżowy obszar odpowiada ujemnym wartościom współczynnika
a (0)4 , podczas gdy podzbiór pomarańczowy odpowiada a (0)4 > 0. Współczynnik Landaua a (0)4 jest
osobliwy wzdłuż czerwonych prostych na wykresie. Pierwszy diagram odpowiada r = 1.5, drugi
odpowiada r = 5, a ostatni r = 10. W granicy r → ∞ obszar pomarańczowy pokrywa połowę
płaszczyzny (h, µ) zlokalizowaną poniżej przekątnej wykresu.
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Teraz przejdziemy do omówienia współczynnika a (0)4 . W obszarze (A) ma on postać
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(5.26)

Dla reżimu (B) i (C) otrzymujemy
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√

2mµ |
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
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2
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µ (k2
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√
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√
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.

(5.27)

W podzbiorach (D) i (E) dostajemy

a (D,E)4 =
m2

32π 2
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(5.28)

Natomiast w obszarze (F) mamy

a (F )4 =
m2

32π 2



Λ(Λ2 + 2mµ̄ )
µ̄ (Λ2 − 2mµ̄ )2 +

2m
(2mµ̄ )3/2

arctg
(

Λ
√

2mµ̄

) 
. (5.29)

Można zwrócić uwagę, że podobnie jak w przypadku d = 2 współczynniki Landaua a (0)2 oraz a (0)4
w obszarze (F) nie zależą od h, co wyklucza możliwość zachodzenia tam przemiany fazowej.

Zgodnie z kryterium (5.12) znak współczynnika a (0)4 decyduje o rodzaju przemiany fazowej za-
chodzącej w T = 0. Gdy a (0)4 > 0 przemiana fazowa jest II rodzaju. Posługując się wyrażeniami
(5.26)-(5.29) można naszkicować diagramy przedstawiające znak współczynnika a (0)4 na płaszczyź-
nie (h, µ) dla różnych wartości stosunku mas atomów r tak jak to zostało zaprezentowane na rys. 5.8.

Dla niewielkiego niezrównoważenia mas, tj. r ≈ 1, obszar odpowiadający a (0)4 > 0 zajmuje
podzbiór (F) oraz niewielkie fragmenty podzbiorów (D) oraz (E) przylegające do niego (w zależności
od tego czy r > 1, czy też r < 1). Dalsze zwiększanie r powoduje, że obszar w którym znak a (0)4
jest dodatni pokrywa coraz większą część reżimu (D), a gdy r > rc = 3.01 obszar ten wdziera się do
reżimu (B). W granicy r → ∞ obszar dla którego może zachodzić ciągła przemiana fazowa pokrywa
w całości obszary (F), (D) oraz (B). Zachowanie to zostało zilustrowane na rys. 5.8, przy czym warto
zauważyć, że współczynnik a (0)4 jest osobliwy dla µ = 0 oraz gdy spełniony jest warunek h = ζ µ jak
zostało uzasadnione wcześniej.

Obraz pojawiający się na skutek powyższej analizy diametralnie różni się od przypadku d = 2,
gdzie występowanie QCP było całkowicie wykluczone (na poziomie MFT). Dla d = 3 możliwość
wygenerowania ciągłej przemiany fazowej na diagramie fazowym dla T = 0 jest ograniczona do
sytuacji, gdy tylko jeden z potencjałów chemicznych składników mieszaniny jest dodatni, tj. µσ > 0
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oraz µσ̄ < 0. Co więcej korzystając z diagramów koncentracji atomów w mieszaninie przedsta-
wionych na rys. 5.4 można wciągnąć wniosek, że QCP w d = 3 występuje między fazą nadciekłą,
a całkowicie spolaryzowanym gazem o czym świadczy to, że potencjał chemiczny tylko jednego ze
składników mieszaniny jest dodatni. Warto też podkreślić, że na skutek efektów związanych z od-
działywaniami (∆ > 0) dodatnie koncentracje cząstek można otrzymać także dla ujemnych wartości
potencjałów chemicznych (patrz rys. 5.4). Warto tu dodać, że możliwe jest otrzymanie QCP także
w sytuacji zrównoważonej (r = 1) po stronie BEC dla przejścia BEC-BCS [87].

5.3.3 Asymptotyczny kształt linii krytycznej Tc (h)

Numerycznie otrzymany średniopolowy diagram fazowy (patrz rys. 5.2) pokazuje, że faza upo-
rządkowana rozciąga się ponad QCP dla skończonych temperatur. Oznacza to, że nachylenie linii
krytycznej Tc (h) jest dodatnie dla dostatecznie niskich temperatur.

Zbadamy asymptotyczny kształt linii krytycznej wykorzystując w tym celu rozwinięcie Sommer-
felda [10] dla współczynnika Landaua a2 w obszarze (B) dla którego µ+ > 0 oraz µ− < 0. W reżimie
tym, zgodnie z analizą znaku a (0)4 , znajduje się QCP z rys. 5.2. Rozwinięcie niskotemperaturowe ma
w tym przypadku postać ∫ Λ2

2mσ

0
dεσ д(εσ ) f (εσ − µσ ) =

∫ µσ

0
dεσ д(εσ )+

+

∞∑
n=1

(
2 − 1

22(n−1)

)
ζ (2n)β−2n

[
d2n−1д(εσ )

dε2n−1
σ

]

εσ=µσ

,

(5.30)

gdzie εσ = k2/2mσ , д(·) to pewna funkcja, ζ (2n) = 22n−1 π 2n

(2n)!Bn, a Bn to liczby Bernoulliego. Ustalając
µ oraz r i korzystając z wyrażenia (5.6) otrzymujemy

a2(T ,h) = a (0)2 − α (h)T
2 + . . . , (5.31)

gdzie współczynnik α (h) jest dany równaniem

α (h) =
mm2

+(k
2
F ,+ + 2mµ )

12kF ,+(k2
F ,+ − 2mµ )2

. (5.32)

Pierwszy człon w rozwinięciu Sommerfelda odpowiada współczynnikowi Landaua dlaT = 0 danego
równaniem (5.22), a drugi wkład odpowiada niskotemperaturowej poprawce. Rozwijamy a (0)2 wokół
krytycznej wartości hc dla T = 0. Prowadzi to do następującego wyniku

Tc (hc + δh) ≈

√√
∂ha

(0)
2

���h=hcδh
α (hc )

∝
√
h − hc ,

(5.33)

gdzie δh jest niewielkim odchyleniem od hc . Średniopolowa linia krytyczna Tc (h) jest opisywana
przez prawo potęgowe o wykładniku 1/2, który jest typową wartością dla układów fermionowych.
Warto zauważyć, że δh jest dodatnie w zgodzie z wynikami numerycznymi przedstawionymi na
rys. 5.2.
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5.4 Kwantowy punkt Lifszyca

Jednym z interesujących i jak dotąd niezbadanych w pełni aspektów diagramów fazowych dla
mieszanin ultrazimnych fermionów są zjawiska multikrytyczne. Jak to zostało wcześniej wspo-
mniane, w typowej sytuacji przemiana fazowa zachodząca między jednorodną nadcieczą, a fazą
normalną jest I rodzaju dla odpowiednio niskich temperatur i staje się ciągła powyżej tempera-
tury trójkrytycznej Ttri . Wyniki badań omówione do tej pory w tym rozdziale wskazują ponadto
na możliwość sprowadzenie Ttri do zera dla odpowiednio dużego niezrównoważenia mas składni-
ków mieszaniny, co prowadzi do występowania QCP na diagramie fazowym. Zgodnie z badaniami
wykorzystującymi przybliżenie średniego pola możliwe jest zaobserwowanie także całkowicie in-
nego typu zjawiska multikrytycznego występującego dla T > 0 związanego z występowaniem tzw.
punktu Lifszyca [12, 83]. W tym przypadku dwie fazy uporządkowane (jednorodna oraz niejedno-
rodna nadciecz) współistnieją z fazą normalną. Uniwersalne krytyczne osobliwości występujące dla
klasycznego (T > 0) punktu Lifszyca są zupełnie inne od tych kontrolujących punkty krytyczne
oraz trójkrytyczne [55, 56, 247]. W szczególności górny wymiar krytyczny d+c dla przemiany trój-
krytycznej jest równy 3, tymczasem jest on znacznie wyższy (wynosi przynajmniej 9/2) dla punktu
Lifszyca [55,64,246]. Z tego powodu standardowe metody stosowane do opisu zjawisk krytycznych
w układach o wymiarowości d = 3 wykorzystujące rozwinięcie ϵ = d+c −d stają się problematyczne.
Dodatkowo występowanie punktu Lifszyca prowadzi do bogatych i interesujących zjawisk takich
jak ciągłe przejścia pomiędzy różnymi reżimami (ang. crossover phenomena) [55].

W punkcie przemiany T = Tc (h) w przypadku mieszanin Fermiego punkt Lifszyca na poziomie
MFT można wyznaczyć z warunku znikania wyrazu |∇ϕ |2 występującego w rozwinięciu gradien-
towym efektywnego działania. Warunek ten oznacza, że w punkcie Lifszyca współistnieją ze sobą
jednorodna nadciecz, niejednorodny stan typu FFLO oraz faza normalna. Wyraz stojący przy |∇ϕ |2

ma interpretację kosztu energetycznego związanego z powstaniem przestrzennej modulacji pola
porządku i gdy zmienia on swój znak na ujemny układ wykazuje tendencję do wytworzenia niejed-
norodnej kon�guracji parametru porządku.

Przemiany fazowe wT > 0 orazT = 0 są odpowiednio wywoływane przez �uktuacje klasyczne
oraz kwantowe. Naturalnym pytaniem dotyczącym �zyki niezrównoważonych mieszanin Fermiego
jest to czy istnieje możliwość sprowadzenia punktu Lifszyca do zerowej temperatury podobnie jak
można było tego dokonać dla punktu trójkrytycznego. W tym przypadku punkt Lifszyca powstawał-
by na skutek jedynie kwantowych �uktuacji. W tym podrozdziale postaramy się odpowiedzieć na to
pytanie poprzez wyprowadzenie średniopolowego analitycznego kryterium przewidującego wystę-
powanie takiego kwantowego punktu Lifszyca (QLP). Zaproponujemy także możliwe doświadczalne
realizacje QLP w mieszaninach, które są aktualnie wykorzystywane w badaniach eksperymental-
nych.
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5.4.1 Propagator �uktuacji parowania w fazie normalnej

Zaczniemy od przyjrzenia się strukturze propagatora �uktuacji parowania w fazie normalnej.
Skupimy się na przypadku o wymiarowości d = 3 oraz na sytuacji w której (na poziomie MFT)
przemiana fazowa jest ciągła także w temperaturzeT = 0. Jak pokazane zostało to we wcześniejszej
części tego rozdziału może być to osiągnięte dla mieszaniny, której stosunek mas r > rc ≈ 3. Zacho-
wanie układu w d = 2 nie pozwala na otrzymanie QCP na średniopolowym diagramie fazowym, ale
przemiana fazowa może stać się II rodzaju na skutek efektów związanych z �uktuacjami parametru
porządku [219]. Układ pozostaje nieuporządkowany dla h > hc , gdzie hc możemy wyrazić poprzez
mikroskopowe parametry korzystając z tego, że na poziomie MFT zachodzi a (0)2 (hc ) = 0 dla T = 0.
Występowanie niestabilności w kierunku niejednorodnej cieczy typu FFLO manifestuje się przez
ujemną wartość współczynnika rozwinięcia gradientowego Z , którego postać będziemy chcieli wy-
prowadzić w tym podrozdziale. Skupimy się na sytuacji, gdy znajdujemy się w zakresie parametrów
odpowiadającym reżimowi (B) przedstawionemu na rys. 5.7.

Propagator �uktuacji parowania wyznaczymy posługując się metodą NSR [158] skupiając się na
zerowej temperaturze oraz otoczeniu przemiany fazowej, przy czym będziemy się do niej zbliżać od
strony fazy normalnej [136]. Obliczamy odwrotny propagator �uktuacji parowania F−1

0 (q) poprzez
ewaluację diagramu pęcherzykowego typu cząstka-cząstka [220] (porównaj z równaniem (2.31))

F−1
0 (q) = −

1
д
−

∫
k
G0,+(k + q)G0,−(−k ) = −

m

4πaF
+

∫
k



ϑT
kq

iq0 − ξkq
+
m

k2


, (5.34)

gdzie ξkq = ξ−k +ξ
+
k+q

, ϑT
kq
= 1− f (ξ−

k
)− f (ξ+

k+q
), aF to fermionowa długość rozpraszania, a q0 = 2πT `

(` ∈ Z) jest bozonową częstością Matsubary. W powyższym wyrażeniu zastosowano regularyzację
całki przy wykorzystaniu równania Lippmanna-Schwingera [217] (porównaj z równaniem (2.22))

1
д
=

m

4πaF
−

∫
k

1
2εk
, (5.35)

gdzie εk = k2/2m, a także całka jest obcięta dla pędów większych niżΛ. Powyższa procedura pozwala
na usunięcie rozbieżności ultra�oletowych w granicy д → 0− oraz Λ → ∞ przy jednoczesnym
utrzymywaniu stałej wartości aF .

Wykonując przedłużenie analityczne (iq0 7→ ω + i0+) równania (5.34) możemy rozdzielić otrzy-
maną retardowaną funkcję F−1

0,ret . (ω, q) na część rzeczywistą oraz urojoną przy wykorzystaniu toż-
samości Sochockiego 1

x±i0+ = P
1
x ∓ iπδ (x ), gdzie P jest częścią główną Cauchy’ego. W rezultacie

otrzymujemy

ReF−1
0,ret . (ω, q) = −

m

4πaF
+

∫
k


P

ϑT
kq

ω − ξkq
+
m

k2


(5.36)

oraz
ImF−1

0,ret . (ω, q) = −π
∫
k
ϑTkqδ (ξkq − ω). (5.37)

W następnym podrozdziale skupimy się na analizie rozwinięcia gradientowego ReF−1
0,ret . dla T = 0.

Z kolei części urojonej przyjrzymy się dokładniej w następnym rozdziale.
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Przedstawione tutaj postępowanie jest w pewnym sensie analogiczne do opisu teoretycznego
plazmonów w jednorodnym gazie elektronowym przy wykorzystaniu przybliżenia RPA [109]. Jed-
nak propagator bozonowy dla plazmonów jest zadany diagramem pęcherzykowym typu cząstka-
dziura, a nie typu cząstka-cząstka jak to ma miejsce w rozważanym przypadku.

5.4.2 Rozwinięcie gradientowe

Skupiając się na przypadku T = 0 wykonujemy rozwinięcie ReF−1
0,ret . (ω, q) dla niewielkich war-

tości częstości oraz pędów. Uwzględniamy w nim człony do drugiego rzędu w ω i q. Prowadzi to do
następującego wyrażenia

ReF−1
0,ret . (ω, q) = a (0)2 + Zq

2 −Wω − Z0ω
2 + . . . . (5.38)

Postać analityczną współczynników gradientowych {Z , Z0, W }, a także współczynnika a (0)2 można
otrzymać w granicy T → 0 korzystając z tego, że wtedy f (x ) → θ (−x ), co prowadzi do całek tego
samego typu jak w przypadku współczynników a (0)2 oraz a (0)4 w rozwinięciu Landaua.

Stały wkład ReF−1
0,ret . (0, 0) odpowiada współczynnikowi Landaua stojącemu przy |∆|2 i jest dany

równaniem
a (0)2 = −

m

4πaF
+

m

2π 2

[
kF ,+ +

kF
2 ln

(
|kF ,+ − kF |

|kF ,+ + kF |

)]
, (5.39)

gdzie kF =
√

2mµ to "średni" pęd Fermiego. Warto zwrócić uwagę, że powyższe wyrażenie jest
zregularyzowaną postacią równania (5.23) dla µ+ > 0, przy czym wprowadzenie aF pozwoliło na
przejście do granicy Λ → ∞. W fazie normalnej a (0)2 > 0. Natomiast przemiana fazowa zachodzi,
gdy a (0)2 (h = hc ) = 0. W fazie nadciekłej należy posługiwać się wyrażeniami uwzględniającymi selfe-
nergię typu BCS związaną z występowaniem parowania w układzie, która prowadzi do pojawienia
się anomalnej części fermionowych funkcji Greena. Stosowne wyrażenia zostały wyprowadzone
w poprzednim rozdziale i są dane równaniem (4.30).

Współczynniki gradientowe są dane wyrażeniami
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, (5.40)
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oraz
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16π 2k2
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Rys. 5.9: Współczynnik gradientowy Z w funkcji pola Zeemana h. Czerwony punkt odpowiada war-
tości h∗ dla której Z = 0. Parametry wykresu są następującem+ = 1, T = 0, r = 4.03 oraz µ = 0.1.

Znak współczynnika Z determinuje (przy znikającym współczynniku a (0)2 ) czy układ wykazuje ten-
dencje do kondensowania w jednorodnym (typu BCS) lub niejednorodnym (typu FFLO) stanie pod-
stawowym. W szczególności jesteśmy zainteresowani sytuacją w której oba współczynniki a (0)2 oraz
Z są jednocześnie równe zero, co stanowi kryterium występowania QLP na diagramie fazowym.
Wprowadzamy h∗ jako wartość pola Zeemana h dla której zachodzi warunek Z (h∗) = 0 i analizu-
jemy sytuację dla której h∗ = hc . Warto zwrócić uwagę, że współczynniki gradientowe {Z , Z0, W }

nie zależą od długości rozpraszania aF . Można zatem najpierw dostroić układ do wartości h∗, a na-
stępnie niezależnie zmieniając wartość aF dostroić hc do h∗. Na rys. 5.9 przedstawiony został wykres
współczynnikaZ w funkcjih dla eksperymentalnie realizowanej mieszaniny atomów 161Dy oraz 40K
[185, 186], która jest scharakteryzowana r = 4.03 oraz µ = 0.1.

Dopasowujemy wartośćhc (patrz równanie (5.39)) doh∗manipulując parametrem (kFaF )
−1 (patrz

rys. 5.10). QLP odpowiada wartości (kFaF )−1
∗ = 0.977692 w tym przypadku. Ponadto można zauwa-

żyć, że dla �zyczne istotnego zakresu parametrów współczynnikiW oraz Z0 są dodatnie i monoto-
nicznie maleją wraz z h.

Analogiczne rozumowanie można poprowadzić także dla innych badanych eksperymentalnie
mieszanin Fermiego, które są scharakteryzowane wystarczająco dużym niezrównoważeniem mas
składników mieszaniny r > rc ≈ 3. Jako przykład można tu podać mieszaninę 6Li-40K (r = 6.67)
[103, 225, 227, 239], a także mieszaninę 6Li-53Cr (r = 8.83) [155]. Dla wspomnianych układów QLP
występuje dla (kFaF )

−1
∗ = 0.879942 w przypadku mieszaniny litu i potasu oraz (kFaF )

−1
∗ = 0.836476

dla mieszaniny litu i chromu (przyjęto, że µ = 0.1 w obu przypadkach). W ogólności wartość h∗
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Rys. 5.10: Współczynnik Landaua a (0)2 w funkcji pola Zeemana h oraz dla trzech różnych warto-
ści (kFaF )−1. Warunek a (0)2 (hc ) = 0 wyznacza krytyczną wartość pola Zeemana hc . Czerwony punkt
odpowiada wartościh∗ dla której współczynnik gradientowyZ = 0. Kwantowy punkt Lifszyca poja-
wia się, gdy hc = h∗ i w rozważanym przypadku odpowiada on (kFaF )

−1
∗ = 0.977692. Warto zwrócić

uwagę, że gdy hc > h∗ wtedy niestabilność w kierunku parowania typu FFLO jest obserwowana
w układzie. Parametry wykresu są następującem+ = 1, T = 0, r = 4.03 oraz µ = 0.1.

zmniejsza się wraz ze wzrostem r . Jest to związane z tym, że większa różnica mas skutkuje wystę-
powaniem parowania typu FFLO dla mniejszych asymetrii w populacjach składników mieszaniny.

Występowanie QLP wywiera głęboki wpływ na skalowanie układu w granicyT → 0. Punkt sta-
ły dla grupy renormalizacji kontrolujący przemianę fazową wT = 0 może być niegaussowski nawet
w przypadku trójwymiarowym w przeciwieństwie do typowej sytuacji występującej dla układów
elektronowych. Układ w pobliżu QLP powinien także wykazywać złożone i interesujące zjawiska
związane z przejściem między reżimem kwantowym i klasycznym. Analiza występujących w tym
przypadku osobliwości krytycznych dla T → 0 znajduje się poza zakresem tematów poruszanych
w tej dysertacji, ale stanowi interesujący kierunek ich rozwoju. Z całą pewnością osobliwość kry-
tyczna będzie w tym przypadku zależeć od postaci członu tłumienia Landaua występującego w pro-
pagatorze bozonowym w fazie złamanej i tym samym zachowanie to nie będzie należało do żadnej
z klas zachowań krytycznych badanych do tej pory w kontekście niestabilności magnetycznych
w układach elektronowych [45, 181].

Na koniec warto wspomnieć, że dotychczasowe badania wychodzące poza przybliżenie pola
średniego wskazują, że nadciecze typu FFLO są marginalnie niestabilne ze względu na efekty �uk-
tuacyjne w układach obojętnych elektrycznie atomów dla T > 0 i d = 3 (nie dotyczy to zerowych
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temperatur) [105, 178, 235]. Załóżmy, że faza FFLO jest stanem podstawowym (tj. T = 0) badanego
układu dla h ∈ [hc ,hFFLO], gdzie hFFLO jest wartością h dla której następuje przemiana między fazą
niejednorodną i normalną, a dla h = hc zachodzi przemiana fazowa między nadcieczą niejednorod-
ną i jednorodną. Oznacza to, że przynajmniej dla układów nieskończonych oraz jednorodnych QLP
powinien zawsze pojawiać się na diagramie fazowym o ile zachodzi przemiana fazowa między nad-
cieczą jednorodną i niejednorodną typu FFLO w zerowej temperaturze (co ma miejsce dla h = hc

zgodnie z przyjętym założeniem). W tym punkcie dla T = 0 spotykają się nadciecz typu BCS (dla
h 6 hc ), faza FFLO (dla h > hc i T = 0) oraz faza normalna (dla h > hc i T → 0+).
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Rozdział 6

Mody Goldstone’a i ich tłumienie

Interesującym aspektem badań nad układami nadciekłych fermionów są ich widma wzbudzeń,
a także zmiana własności spektralnych wywołana zwiększaniem niezrównoważenia między po-
szczególnymi składnikami w rozważanych w tej dysertacji mieszaninach. W ogólności oczekuje
się pojawienia nie posiadających przerwy energetycznej wzbudzeń kolektywnych typu fononowe-
go (tzw. mody Andersona-Bogoliubowa) oraz posiadających przerwę modów amplitudowych. Warto
zaznaczyć, że mody kolektywne innego typu są obecne w dwupasmowych nadcieczach [98,100,119]
oraz w układach dla których występuje sprzężenie spin-orbita [96, 132, 203, 251].

Szczególnie interesującym problemem jest opis własności fononów Bogoliubowa-Andersona
(AB) [6,28] zwanych także modami Nambu-Goldstone’a [79,151] w granicy małych pędów unoszo-
nych przez wzbudzenie. Zgodnie z twierdzeniem Goldstone’a [80] spontaniczne łamanie ciągłej sy-
metriiU (1) dla gazów Fermiego powoduje powstanie niskoenergetycznych fononowych wzbudzeń
kolektywnych. Mody te zostały zaobserwowane w kilku eksperymentach [4,15,91,208,224], a także
obszernie zbadane w wielu pracach teoretycznych [43, 57, 63, 92, 101, 115, 116, 124, 141, 161] w ciągu
ostatnich 20 lat. Jednakże większość tych badań nie podejmuje tematu wpływu niezrównoważenia
mieszanin ze względu na populacje i masy składników na widma wzbudzeń, a w szczególności na tłu-
mienie modów kolektywnych. Dominujący mechanizm tłumienia w takich układach jest związany
z niesprężystym rozpraszaniem fononów Goldstone’a na termicznie wzbudzanych kwazicząstkach
fermionowych [255]. Współczynnik tłumienia dąży do 0 w granicy T → 0 [205, 255] ze względu na
znikanie termicznej chmury kwazicząstek obecnej w układzie w skończonych temperaturach [254].
Przedstawiony obraz zjawiska tłumienia jest spójny z analizą przedstawioną w pracy [126], która
pokazuje, że proces absorpcji i emisji fononu AB przez kwazicząstki fermionowe prowadzi do eks-
ponencjalnego zmniejszania współczynników tłumienia w niskich temperaturach przy obecności
przerwy energetycznej w widmie wzbudzeń. Omówiona zależność temperaturowa jest charaktery-
styczną cechą tzw. tłumienia Landaua [32] dla modów posiadających przerwę energetyczną. Jednak
w artykule [144] pokazano, że dla odpowiednio dużych polaryzacji mieszaniny Fermiego współ-
czynniki tłumienia przyjmują większe wartości nawet dla stosunkowo niskich temperatur. Sugeruje
to związek pomiędzy niedopasowaniem powierzchni Fermiego (związanej z występowaniem dwóch
różnych składników tworzących mieszaninę), a mechanizmem procesu tłumienia Landaua.

89
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W związku z tym warto jest bliżej przyjrzeć się wpływowi niezrównoważenia populacji oraz mas
atomów znajdujących się w mieszaninie Fermiego na proces tłumienia. W dalszej części rozdziału
zbadana zostanie struktura propagatora �uktuacji parowania w granicy małych pędów q i częstości
qm, tj. q → 0. Wyprowadzimy nierówność, której spełnienie stanowi warunek konieczny występo-
wania niezerowych współczynników tłumienia dla modów AB w jednorodnej nadcieczy przy obec-
ności niezrównoważenia mas oraz populacji składników mieszaniny. Nasz główny wynik wskazuje
na to, że mody Goldstone’a są tłumione nawet w zerowej temperaturze dla odpowiednio dużego
niedopasowania powierzchni Fermiego. Wyniki analityczne porównujemy z numerycznie otrzyma-
nymi zespolonymi biegunami propagatora �uktuacji parowania zq = ωq − iΓq/2, przy czym część
rzeczywista zq odpowiada relacji dyspersji modu kolektywnego, a część urojona zq jego współczyn-
nikowi tłumienia. Powrócimy także do analizy części urojonej propagatora �uktuacji parowania
w fazie normalnej (patrz podrozdział 5.4.1) i na jej podstawie wykażemy, że tłumienie Landaua jest
nieobecne w niskoenergetycznym rozwinięciu tego propagatora w fazie symetrycznej. Przedstawio-
ne wyniki zostały opublikowane w pracach [249, 250].

Struktura tego rozdziału jest następująca:
Podrozdział 6.1. Zaczniemy od wyprowadzenia rozwinięcia gradientowego dla propagatora gaus-
sowskich �uktuacji parowania w fazie uporządkowanej. Na tej podstawie przedstawiona zostanie
analityczna postać relacji dyspersji dla modów AB. W tej części pominięte będą wyrazy odpowie-
dzialne za powstawanie tłumienia Landaua.
Podrozdział 6.2. Następnie uwzględnimy w rozwinięciu gradientowym wyrazy, które powodują
pojawienie się zespolonego bieguna propagatora �uktuacji parowania i tym samym są odpowie-
dzialne za tłumienia Landaua. Przeanalizujemy uzyskane współczynniki i podamy warunki dla któ-
rych tłumienie jest obecne także dlaT = 0. Uzyskane wyniki analityczne porównamy z numerycznie
otrzymanymi współczynnikami tłumienia.
Podrozdział 6.3. Na koniec opiszemy proces tłumienia Landaua w fazie normalnej poprzez analizę
części urojonej propagatora �uktuacji parowania. Pokażemy, że człony odpowiadające tłumieniu w
fazie normalnej nie występują w rozwinięciu propagatora dla małych pędów i częstości w przeci-
wieństwie do zachowania obserwowanego w fazie o złamanej symetrii.

6.1 Fonony Andersona-Bogoliubowa

Punktem wyjścia do rozważań dotyczących wzbudzeń kolektywnych jest odwrotny propagator
�uktuacji parowania F−1

q , którego postać została wyprowadzona w podrozdziale 4.3. Jego elementy
macierzowe są dane wyrażeniem (4.30). Relacje dyspersji modów kolektywnych występujących w
układzie można znaleźć poprzez zbadanie biegunów retardowanego propagatora �uktuacji parowa-
nia danego wyrażeniem

Fret (q, iqm 7→ ω + i0+) = 1
detF−1(q,ω + i0+)

*
,

M11(−q,−ω) −M12(q,ω)

M∗12(q,ω) M11(q,ω)
+
-
, (6.1)
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gdzie Mij (q,ω) ≡ [F−1
q ]ij . Oznacza to, że można je znaleźć rozwiązując względem ω równanie [115,

125]
detF−1(q,ω + i0+) = 0. (6.2)

Powyższe równanie pozwala na wyznaczenie relacji dyspersji ωq dla fononów AB, ale jest niewy-
starczające do znalezienia zespolonego bieguna propagatora Fq . W celu zbadania tłumienia modów
kolektywnych należy przedłużyć to równanie na całą płaszczyznę zespoloną posługując się metodą
Nozièresa, której szczegóły zostaną omówione w następnym podrozdziale.

Relację dyspersji dla modów Goldstone’a można otrzymać korzystając z rozwinięcia gradiento-
wego względem małych wartości pędów q oraz częstości qm. Odpowiednie współczynniki rozwi-
nięcia gradientowego uzyskujemy systematycznie rozwijając w szereg Taylora poszczególne człony
zależące od q lub qm w równaniu (4.30). Korzystając z tej procedury dla energii wzbudzeń kwa-
zicząstek fermionowych (patrz równanie (4.14) i opis pod nim) znajdujących się w mianowniku
elementów macierzowych Mij (q,ω) otrzymujemy, że

Ek+q = Ek + αkq + δkq
2 + . . . , (6.3)

gdzie αk = ξk
mEk

k cosθ oraz δk = 1
2m

ξk
Ek

∆2

E2
k
+ 1

2m
ξ 3
k
E3
k
+ ∆2

2m2E3
k
k2 cos2 θ , przy czym cosθ = q ·k/kq, a q = |q|.

W analogiczny sposób otrzymuje się, że

Eσk+q = Eσk + α
σ
k q + δ

σ
k q

2 + . . . , (6.4)

gdzie ασ
k
=

ζ
mk cosθ + σαk , a także δσ

k
=

ζ
2m + σδk . Rozwinąć można także czynniki koherencji uk+q

oraz vk+q znajdujące się w wyrazach C σ ,σ ′

k,q
oraz Dσ ,σ ′

k,q
występujących w elementach macierzowych

odwrotnego propagatora �uktuacji parowania F−1
q (patrz równanie (4.30)). W rezultacie otrzymuje-

my, że (patrz równania (4.24)- (4.26) i opisy pod nimi)

u2
k+q =u

2
k + akq + bkq

2 + . . . ,

v2
k+q =v

2
k − akq − bkq

2 + . . . ,

uk+qvk+q =
∆

2Ek+q
= ukvk + dkq + дkq

2 + . . . ,

(6.5)

przy czym ak =
∆2

2mE3
k
k cosθ , bk = 1

4m
∆4

E5
k
+ 1

4m
∆2ξ 2

k
E5
k
−

3∆2ξk
4m2E5

k
k2 cos2 θ , dk = ∆ξk

2mE3
k
k cosθ oraz дk =

∆
4m2E5

k

(
m∆2ξk +mξ

3
k
+ ∆2k2 cos2 θ − 2k2ξ 2

k
cos2 θ

)
. Ostatnim elementem, który można rozwinąć w sze-

reg Taylora są funkcje rozkładu Fermiego-Diraca f (Eσ
k+q

), co prowadzi do wyrażenia

f (Eσk+q ) = f (Eσk ) + f ′(Eσk )[E
σ
k+q − E

σ
k ] + 1

2 f
′′(Eσk )[E

σ
k+q − E

σ
k ]2+

+
1
3! f

(3) (Eσk )[E
σ
k+q − E

σ
k ]3 + . . . ,

(6.6)

gdzie f ′(Eσ
k
) = −

β
4 sech2

(
βEσk

2

)
, f ′′(Eσ

k
) =

β2

4 tgh
(
βEσk

2

)
sech2

(
βEσk

2

)
oraz f (3) (Eσ

k
) =

β3

8 sech4
(
βEσk

2

)
−

β3

4 sech2
(
βEσk

2

)
tgh2

(
βEσk

2

)
. Korzystając z tych wyrażeń można otrzymać rozwinięcia gradientowe ele-
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mentów macierzowych Mij odwrotnego propagatora �uktuacji parowania F−1
q , które mają postać

M11(q, iqm ) =A + Bq2 + iCqm +Qq
2
m + O (q

3),

M12(q, iqm ) =D + Eq2 + Hq2
m + O (q

3),
(6.7)

gdzie A = M11(0, 0), a D = M12(0, 0). Otrzymane współczynniki rozwinięcia gradientowego wyno-
szą

B =

∫
k

1
24E3

k


− 4E3

ku
2
k

(
3f ′′(E−k )

{
akα

−
k − δ

−
k v

2
k

}
+ 6bk f ′(E−k ) − (α−k )

2 f (3) (E−k )v
2
k

)
+

+ 4E3
kv

2
k

(
3f ′′(E+k )

{
akα

+
k + δ

+
k u

2
k

}
+ 6bk f ′(E+k ) + (α+k )

2 f (3) (E+k )u
2
k

)
+

+ 3u2
k

(
[f (E+k ) − f (E−k )]{−2α+k akEk + 4bkE2

k − u
2
k

(
2δ+k Ek − (α+k )

2
)
}+

+ 2α+k f
′(E+k )Ek

{
2akEk − α+k u

2
k

}
+ 2E2

ku
2
k

{
(α+k )

2 f ′′(E+k ) + 2δ+k f
′(E+k )

} )
+

+ 3v2
k

(
[f (E−k ) − f (E+k )]

{
2α−k akEk + 4bkE2

k −v
2
k

(
(α−k )

2 + 2δ−k Ek
)}
+

+ 2α−k f
′(E−k )Ek {2akEk − α

−
k v

2
k } − 2E2

kv
2
k

{
(α−k )

2 f ′′(E−k ) + 2δ−k f
′(E−k )

} )
,

(6.8)

C =

∫
k

[
f (E+k ) − f (E−k )

] u4
k
−v4

k

4E2
k

, (6.9)

Q =

∫
k

[
f (E−k ) − f (E+k )

] u4
k
+v4

k

8E3
k

, (6.10)

E =

∫
k

ukvk
6

[
− 3α−k dk f

′′(E−k ) − 3α+k dk f
′′(E+k ) −

3
4E3

k

(
2α−k f

′(E−k )Ek

{
2dkEk+

− α−k ukvk

}
+ [f (E−k ) − f (E+k )]
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2α−k dkEk + 4E2
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(α−k )
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(α−k )
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′(E−k )
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+

3
4E3

k

(
2α+k f

′(E+k )Ek
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2dkEk+

+ α+k ukvk

}
+ [f (E−k ) − f (E+k )]

{
2α+k dkEk − 4E2

kдk − ukvk
{
2Ekδ+k − (α+k )

2
}}
+

2E2
kukvk

{
(α+k )

2 f ′′(E+k ) + 2δ+k f
′(E+k )

} )
+ 3ukvk

{
δ−k f

′′(E−k ) + δ
+
k f
′′(E+k )

}
+

+ ukvk
{
(α−k )

2 f (3) (E−k ) + (α+k )
2 f (3) (E+k )

}
− 6дk

{
f ′(E−k ) − f ′(E+k )

} ]

(6.11)

oraz

H =

∫
k

[
f (E+k ) − f (E−k )

] u2
k
v2
k

4E3
k

. (6.12)

W powyższych równaniach wartość ∆ jest wyznaczana z równania przerwy energetycznej (patrz
równanie (5.2)). Wykorzystując uzyskaną postać rozwinięcia gradientowego daną równaniem (6.7)
możemy po wykonaniu przedłużenia analitycznego (iqm 7→ ω + i0+) wykorzystać ją do znalezienia
przybliżonej postaci relacji dyspersji modów AB. Rozwiązując równanie

detF−1
ret (q,ω) = M11(q,ω)M11(−q,−ω) −M2

12(q,ω) = 0 (6.13)
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otrzymujemy, że dla fononów AB mamy [116, 194, 196]

ωq =

√
v2
sq2 + λq4 −−−→

q→0
vsq, (6.14)

gdzie

vs =

√
2A(B − E)

C2 + 2A(H −Q )
(6.15)

oraz

λ =
C2(B − E)

[
4A(BH − EQ ) +C2(B + E)

]

[C2 + 2A(H −Q )]3 . (6.16)

Uzyskana relacja dyspersji ma postać przewidywaną przez teorię Bogoliubowa dla słabo oddziału-
jących bozonów [1]. Otrzymany parametr vs ma wymiar prędkości i odpowiada prędkości dźwięku
z jaką rozchodzą się fonony AB w nadcieczy. Dla małych pędówωq jest liniowa wq. Uzyskane wzbu-
dzenia kolektywne są bezmasowymi modami Goldstone’a związanymi ze spontanicznym łamaniem
symetrii U (1).

6.2 Tłumienie Landaua w fazie nadciekłej

W tej części zajmiemy się analizą zespolonego bieguna propagatora �uktuacji parowania. Omó-
wiona powyżej procedura prowadząca do rozwinięcia gradientowego dla F−1

q zaniedbuje nielokal-
ne wkłady, które są związane z procesem tłumienia Landaua. W celu ich uwzględnienia posłuży-
my się strategią postępowania, która jest wykorzystywana przy wyprowadzaniu działania Hertza-
Millisa-Moriya w kontekście kwantowych przemian fazowych w układach wędrujących elektronów
[44,89,138,147,150]. W tym przypadku nielokalne człony |qm |/γqa pojawiające się w działaniu gaus-
sowskim po jego rozwinięciu dla małych wartości |q| oraz |qm |/|q| są związane z tłumieniem Lan-
daua kolektywnych �uktuacji spinowych przez wzbudzenia fermionowe typu cząstka-dziura [138].
Człon ten jest odpowiedzialny za pojawienie się zespolonego bieguna dla propagatora paramagno-
nów, przy czym γq jest współczynnikiem ich tłumienia [89]. Zauważalne podobieństwo strukturalne
pomiędzy podejściem Hertza, a rozważanym przez nas problemem zachęca do wykorzystania tej me-
tody do zbadania tłumienia Landaua modów AB dla spolaryzowanej mieszaniny Fermiego złożonej
z cząstek o nierównych masach.

6.2.1 Nielokalne człony w rozwinięciu gradientowym F−1
q

W celu uwzględnienia w rozwinięciu gradientowym F−1
q członów nielokalnych rzędu |qm |/|q|

rozważamy wyrażenie M11(q, iqm ) − M11(q, 0). Korzystając z notacji wprowadzonej w równaniu
aWarto tu podkreślić, że po wykonaniu przedłużenia analitycznego (iqm 7→ ω + i0+) człon nielokalny w działaniu

Hertza ma postać i|ω |/γq [44, 89].
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(4.30) otrzymujemy

M11(q, iqm ) −M11(q, 0) = −
∫
k

∑
σ ,σ ′

C σ ,σ ′

k,q

f σ ,σ
′

k,q

q2
m +

(
Eσ ,σ

′

k,q

)2
*.
,
iqm −

q2
m

Eσ ,σ
′

k,q

+/
-
. (6.17)

Wiodący wkład zawierający jednocześnie małe częstości oraz pędy, a tym samym nie uwzględniony
w rozwinięciu danym równaniem (6.7), pochodzi z drugiego członu w nawiasie w równaniu (6.17)
dla elementów w których σ = σ ′ i jest dany wyrażeniem

−

∫
k
u2
kv

2
k

∑
σ

f ′(Eσk )
q2
m

a2
σ ( |k|) cos2 θ |q|2 + q2

m

, (6.18)

przy czym podobnie jak poprzednio cosθ = q · k/|q| |k|, f ′(x ) = − β4 cosh−2(βx/2), a także aσ ( |k|) =(
ζ
m + σ

ξk
mEk

)
|k|. Wszystkie pozostałe wkłady (dla ∆ > 0) w rozwinięciu równania (6.17) są wyższego

rzędu lub zostały uwzględnione w rozwinięciu danym równaniem (6.7).
W następnym kroku wykonujemy całkowanie po zmiennej kątowej θ rozważając tym samym

z osobna przypadek d = 2 oraz d = 3. Zakładamy, że stosunek |qm |/|q| jest mały [89, 150]. Warto
zauważyć, że jest to możliwe jedynie wtedy, gdy rozważane mody są bezmasowe [57]. W wyra-
żeniu (6.18) wykonujemy zamianę zmiennych, |k| 7→ ε = k2/2m > 0, a następnie wykonujemy
całkowanie. Prowadzi to do wyrażenia

−
|qm |

|q|

∫
dε cdDd (ε )u

2
εv

2
ε

∑
σ

f ′(Eσε )

|aσ (ϵ ) |
=
|qm |

γq
, (6.19)

gdzie cd jest równe 1 dla d = 2 oraz π/2 dla d = 3. Wprowadziliśmy także gęstość stanów przy-
padającą na spin Dd (ε ), przy czym D2(ε ) = m/2π oraz D3(ε ) =

√
2m3

2π 2 ε
1/2. Równanie (6.19) de�niuje

współczynnik γq . Analogiczne postępowanie można zastosować do pozadiagonalnych elementów
macierzowych M12(q, iqm ). W rezultacie otrzymujemy dokładnie takie same wyrażenie jak w rów-
naniu (6.19). W związku z tym rozwinięcie gradientowe dane równaniem (6.7) powinno być uzupeł-
nione o nielokalne wkłady dane równaniem (6.19). Do tej pory nie zostały one zauważone w innych
badaniach.

Przyjrzymy się teraz postaciγ−1
q w granicy zerowych temperatur. Korzystające z tego, że f ′(Eσε ) →

−δ (−Eσε ) dla T → 0 dostajemy

γ−1
q =

1
|q|

∫
dε cdDd (ε )u

2
εv

2
ε

∑
σ

δ (Eσε )

|aσ (ϵ ) |
. (6.20)

Równanie (6.20) możemy dalej uprościć korzystając z tożsamości

δ [h(x )] =
∑
i

δ (x − xi )

|h′(xi ) |
, (6.21)

gdzie xi są pierwiastkami h(x ). Równanie Eσε = 0 posiada dwa rozwiązania, które są jednakowe dla
σ = + oraz σ = −. Są one dane równaniem

ε1,2 =
µ − ζh ±

√
(h − ζ µ )2 − ∆2(1 − ζ 2)

1 − ζ 2 . (6.22)
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Ze względu na to, że ε = k2/2m jest nieujemne wybieramy tylko te pierwiastki, które spełniają
warunek εi > 0. Wykorzystując relację (6.21) i wykonując całkowanie ze względu na ε otrzymujemy,
że

γ−1
q =

1
|q|

∑
i=1,2;

gdy εi >0

cdDd (εi )u
2
`i
v2
`i

∑
σ

L−1
σ (εi ) , (6.23)

gdzie `i =
√

2mεi oraz Lσ (ε ) =
√
m/2ε |aσ (`) |2. Przedyskutujemy teraz implikacje równania (6.23).

Po pierwsze można zaobserwować, że γ−1
q ∼ u2

k
v2
k
= ∆2/4E2

k
. W konsekwencji γ−1

q znika w granicy
∆→ 0. Ponadto u2

k
v2
k

przyjmuje maksymalną wartość dla k =
√

2mµ.
Jak wspomniane zostało wyżej εi w równaniu (6.23) musi być nieujemne. Prowadzi to do warun-

ku koniecznego występowania tłumienia Landaua o postaci

|h − ζ µ | > ∆
√

1 − ζ 2. (6.24)

Gdy spełniony jest powyższy warunek równanie Eσε = 0 posiada dwa rzeczywiste pierwiastki.
W szczególności gdy powierzchnie Fermiego składników mieszaniny pokrywają się (h = ζ µ) wi-
dzimy, że γ−1

q = 0 dla T = 0 i w związku z tym mody Goldstone’a nie są tłumione. Jednakże zgod-
ność z warunkiem (6.24) nie gwarantuje, że spełniona jest nierówność εi > 0. Dla ustalenia uwagi
przyjmiemy, że h − ζ µ > 0, a następnie rozważamy εi > 0, która prowadzi do układu nierówności




h − ζ µ > ∆
√

1 − ζ 2 dla µ > ζ∆
√

1−ζ 2
,

h >
√
µ2 + ∆2 dla µ < ζ∆

√
1−ζ 2
.

(6.25)

Pierwsza nierówność w powyższym warunku zapewnia istnienie przynajmniej jednego dodatniego
zera funkcji Eσε (patrz rys. 6.1), a druga z nich odpowiada dokładnie jednemu dodatniemu pierwiast-
kowi równania Eσε = 0 (patrz rys. 6.2).

Zinterpretujemy teraz uzyskane wyniki w kontekście mechanizmu tłumienia Landaua. Zakła-
damy, że r ∈ [1,∞[, czyli ζ ∈ [0, 1[. Widmo wzbudzeń dla kwazicząstek fermionowych posiada
dwie gałęzie (patrz równanie (4.14)). Gdy dwie powierzchnie Fermiego składników mieszaniny po-
krywają się (h − ζ µ = 0), wtedy dolna gałąź E−ε jest w pełni obsadzona, a górna E+ε jest pusta [254].
W tym przypadku tłumienie Landaua jest obecne tylko dla niezerowych temperatur, przy czym
w granicy T → 0 zanika ono eksponencjalnie. Fonony Goldstone’a niesprężyście rozpraszają się
z termicznie wzbudzonymi kwazicząstkami w górnej gałęzi spektrum. Zwiększanie niezrównowa-
żenia mieszaniny związanego z niedopasowaniem powierzchni Fermiego prowadzi do niezerowego
obsadzenia fermionów w gałęzi E+ε także dla T = 0. W konsekwencji tłumienie Landaua jest obec-
ne także w zerowej temperaturze. Sytuacja ta została zilustrowana na rys. 6.1 oraz 6.2. Położenie
minimum funkcji E+ε jest dane równaniem εmin = µ − ζ∆/

√
1 − ζ 2 i w tym punkcie E+ε jest równa

∆
√

1 − ζ 2. Gdy εmin > 0, wtedy minimalne niedopasowanie powierzchni Fermiego, które prowadzi
do niezerowego obsadzenia górnej gałęzi, jest dane przez ∆

√
1 − ζ 2 (patrz rys. 6.1). Gdy εmin < 0,

wtedy minimalne niedopasowanie powierzchni Fermiego prowadzące do niezerowego obsadzenia
gałęzi E+ε jest dane przez wartość funkcji E+ε dla ε = 0 (patrz rys. 6.2). Przedstawione rozumowanie
pozwala na zinterpretowanie warunku (6.25).
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Rys. 6.1: Schematyczna ilustracja spektrum dla fermionowych kwazicząstek, Eσ
k
= ζ ξk − (h − ζ µ ) +

σEk , jako funkcji ξk = ε−µ, gdzie minimum E+
k

znajduje się w obszarze �zycznym, tj. ε > 0. Czerwo-
na gwizdka wskazuje położenie minimum E+

k
, a w obszarze zacieniowanym mamy ε < 0. (a) W tym

przypadku powierzchnie Fermiego składników mieszaniny pokrywają się (h = ζ µ). Dolna gałąź wid-
ma kwazicząstkowego jest całkowicie obsadzona, podczas gdy górna gałąź jest pusta. W tym przy-
padku tłumienie Landaua jest związane z niesprężystym rozpraszaniem fononów Goldstone’a na
termicznie wzbudzonych kwazicząstkach i staje się ono nieaktywne w granicyT → 0 z powodu bra-
ku dostępnych stanów rozproszeniowych. (b) Niedopasowanie powierzchni Fermiego składników
prowadzi do niezerowego obsadzenia górnej gałęzi, gdy spełniony jest warunek h− ζ µ > ∆

√
1 − ζ 2.

W tym przypadku proces tłumienia jest obecny także w zerowej temperaturze.

Co więcej widzimy, że w granicy r → ∞ otrzymany warunek występowania tłumienia jest nie-
zależny od ζ i jest dany przez h >

√
µ2 + ∆2. Natomiast gdy r = 1 rozważany warunek przyjmuje

postać h > ∆, co jest zgodne z wynikami otrzymanymi w pracy [144]. Warto podkreślić, że powyż-
sze wnioski wymagają obecności przerwy związanej z parowaniem, czyli ∆ > 0. W dalszej części
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Rys. 6.2: Widmo wzbudzeń kwazicząstek fermionowych Eσ
k

w funkcji ξk = ε − µ, przy czym mini-
mum E+

k
znajduje się w obszarze nie�zycznym (ε < 0). Czerowna gwiazdka odpowiada położeniu

minimum E+
k

, niebieska kropka odpowiada ε = 0, a w zacieniowanym obszarze ε < 0. (a) W tym
przypadku powierzchnie Fermiego składników się pokrywają (h = ζ µ). Górna gałąź widma kwazi-
cząstkowego jest pusta (dolna gałąź jest całkowicie obsadzona) w związku z tym tłumienie Landaua
jest możliwe jedynie przy obecności wzbudzeń termicznych od E−

k
do E+

k
. (b) Niedopasowanie po-

wierzchni Fermiego powoduje, że górna gałąź posiada niezerowe obsadzenie, gdy spełniony jest
warunek h − ζ µ >

√
µ2 + ∆2 − ζ µ. Tłumienie Landaua jest w tym przypadku aktywne także dla

T = 0.

pokażemy, że nierówność (6.25) jest spełniona dla h istotnie mniejszego od krytycznej wartości hc
w przypadku mieszaniny 6Li-40K. Oznacza to, że tłumienie jest obecne w szerokim obszarze diagra-
mu fazowego wewnątrz fazy nadciekłej. Ponadto występowanie tłumienia Landaua jest niezależne
od rzędu przemiany fazowej między fazą złamaną i symetryczną.

Na koniec rozważymy proces tłumienia w pobliżu QCP, który zgodnie z wynikami poprzednie-
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go rozdziału może być otrzymany dla szerokiego zakresu parametrów układu. Na poziomie MFT
w granicy h → h−c przerwa ∆ dąży w sposób ciągły do zera. W otoczeniu QCP warunek ε1 > 0
można rozwinąć dla małej wartości ∆, co prowadzi do

h + µ −
1 + ζ

2(h − ζ µ ) ∆
2 + O (∆4) > 0. (6.26)

Zgodnie z wynikami z poprzedniego rozdziału powyższy warunek jest zawsze spełniony dla r > 3.01
oraz h > µ > 0, co odpowiada obszarowi w którym możliwe jest wygenerowanie QCP na diagramie
fazowym. Oznacza to, że tłumienie Landaua jest nieuchronnie obecne w pobliżu QCP, gdy kwantowa
przemiana fazowa jest ciągła.

6.2.2 Wyniki numeryczne

W tej części zbadamy numerycznie tłumienie modów kolektywnych poprzez przeanalizowanie
zespolonego bieguna propagatora �uktuacji parowania. Sprowadza się to do znalezienia zespolo-
nych pierwiastków następującego równania [63, 115, 144]

detF−1(q, iqm 7→ zq ) = 0, (6.27)

gdzie zq = ωq − iΓq/2, ωq jest relacją dyspersji, a Γq < 0 jest współczynnikiem tłumienia. Γ−1
q jest

związana z czasem życia modu kolektywnego. Elementy macierzoweMij (q, zq ) posiadają cięcie (ang.
branch cut) wzdłuż osi rzeczywistej [115]. Spodziewamy się, że biegun opisujący tłumienie Landaua
powinien znajdować się w dolnej półpłaszczyźnie zespolonej, bo Γq < 0. Oznacza to, że musimy
przedłużyć analitycznie Mij (q, zq ) z górnej na dolną półpłaszczyznę zespoloną, co skutkuje przej-
ściem do innej powierzchni Riemanna funkcji wieloznacznych jakimi są Mij (q, zq ). Wykorzystując
metodę opisaną przez Nozirèsa [157] wprowadzamy wielkość

Aij (q,ω) = −
1
π

ImM (R)
ij (q,ω), (6.28)

gdzie indeks (R) oznacza, że bierzemy retardowany element macierzowy Mij (q, iq 7→ ω + i0+).
Pozwala ona na znalezienie przedłużenia analitycznego M̃ij elementu macierzowego Mij do dolnej
półpłaszczyzny zespolonej o postaci [115, 144]

M̃ (A)
ij (q,ω) = M (A)

ij (q,ω) − 2πiAij (q,ω), (6.29)

gdzie indeks (A) oznacza, że bierzemy awansowaną część elementu macierzowego, tj. iqm 7→ ω−i0+.
M̃ij otrzymany w powyższej procedurze może być rozszerzony tak, żeω 7→ z = ω−iΓ/2, gdzie Γ < 0.
Wyjaśnienie tej procedury znajduje się w dodatku B.

Wykorzystując procedurę opisaną powyżej (patrz [115,144,157]) przedyskutujemy numerycznie
otrzymane relacje dyspersji ωq oraz współczynniki tłumienia Γq dla r = 1.0 oraz r = 6.67 zmienia-
jąc wartości pola Zeemana h w granicy T → 0. Rozważamy przypadek trójwymiarowy (d = 3).
Sprawdzamy także a posteriori spełnienie warunku vs = lim|q|→0ωq/|q| < 1, który odpowiada zało-
żeniom przyjętym przy wyprowadzeniu wyrażenia (6.23). Zaczniemy od dyskusji sytuacji zbilanso-
wanej (r = 1). Przemiana fazowa pomiędzy fazą normalną, a nadciekłą jest generycznie nieciągła dla
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Rys. 6.3: (a) Relacje dyspersji modów Goldstone’a ωq (w jednostkach µ) jako funkcja pędu q dla
r = 1 oraz kilku wartości pola h. Dla odpowiednio małych wartości |q|/

√
2mµ otrzymujemy, że

ωq = vs |q| + O ( |q|3). (b) Analogiczny wykres dla współczynników tłumienia Γq (w jednostkach µ).
Wszystkie krzywe pokrywają się z powodu słabej zależności przerwy ∆ od h. Uzyskane współczyn-
niki tłumienia są zaniedbywalnie małe. Parametry wykresu są następujące m+ = 1, r = 1, µ = 0.5,
T = 0.005, д = −2.0 oraz Λ = 10.

r < 3.01 oraz T → 0 na poziomie pola średniego. Spodziewamy się zatem, że zmiana ∆ jako funk-
cji h powinna być niewielka, aż do pojawienia się przemiany fazowej. W tym przypadku częstości
oraz czynniki tłumienia dla modów Goldstone’a jako funkcji pędów |q| zostały zaprezentowane na
rys. 6.3. Uzyskane wyniki nie są zależne od wartości h zmieniającej się od 0.0 do 0.4164 dla któ-
rej następuje nieciągła przemiana fazowa. Powodem tego jest pomijalna zmiana wartości przerwy
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Rys. 6.4: (a) Relacje dyspersji ωq dla modów Goldstone’a (w jednostkach µ) jako funkcję pędu dla
r = 6.67 oraz kilku wartości h. Dla wystarczająco małych wartości |q|/

√
2mµ otrzymujemy, że

ωq = vs |q| + O ( |q|3). (b) Analogiczny wykres dla współczynników tłumienia Γq (w jednostkach
µ). Tłumienie Landaua staje się aktywne powyżej h ≈ 1.59, która to wartość jest znacząco mniejsza
od wartości krytycznej hc ≈ 1.97. Parametry wykresu są następujące m+ = 1, r = 6.67, µ = 0.1,
T = 0.04, д = −1.4 oraz Λ = 10.

∆ w trakcie zbliżania się do przemiany fazowej. Dla wszystkich h (pokazanych na rys. 6.3) wartość
stosunkuT /∆ < 0.01 co oznacza, że możemy pominąć fermionowe wzbudzenia termiczne. Dla r = 1
(ζ = 0) zawsze spełniona jest relacja µ > ζ∆/

√
1 − ζ 2 = 0, zatem warunek (6.25) przyjmuje w tym

przypadku postać h > ∆, które nigdy nie jest spełnione w rozważanej sytuacji. Implikuje to, że
tłumienie Landaua jest nieobecne w granicyT → 0 w zgodzie z wynikami otrzymanymi numerycz-
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nie z rys. 6.3 (numerycznie otrzymane współczynniki tłumienia w tym przypadku są rzędu 10−11).
Otrzymane wynik są konsystentne z pracami [116, 144].

Rys. 6.5: Współczynniki tłumienia modów Goldstone’a Γq (w jednostkach µ i przy wykorzystaniu
skali logarytmicznej) jako funkcji pola Zeemana dla r = 6.67 oraz |q|/

√
2mµ = 4.24 × 10−3. Tłumie-

nie jest aktywne dla h &
√
∆2 + µ2 = 1.59. Ponadto dla wartości pola h odpowiadających pobliżu

przemiany fazowej (h ∈ [1.88, 1.95]) tłumienie staje się znacząco silniejsze. Parametry wykresu są
następujące m+ = 1, r = 6.67, µ = 0.1, T = 0.04, д = −1.4 oraz Λ = 10. Ciągła przemiana fazowa
między nadcieczą, a fazą normalną zachodzi dla hc = 1.9706.

Zajmiemy się teraz przypadkiem o nierównych masach ustalając r = 6.67, co odpowiada mie-
szaninie atomów 6Li oraz 40K [103, 225, 227, 239]. Dobieramy parametry w taki sposób, aby układ
posiadał QCP na diagramie fazowym. Warto zauważyć, że rząd przemiany fazowej nie wpływa na
występowanie tłumienia Landaua. W tym przypadku QCP na poziomie MFT jest zlokalizowany dla
hc = 1.9706. Relacje dyspersji oraz współczynniki tłumienia fononów Goldstone’a są zaprezentowa-
ne na rys. 6.4 dla kilku wartości h < hc . Ze względu naT /∆ < 0.04 dla wszystkich wartości h na rys.
6.4 możemy zaniedbać wzbudzenia termiczne. Okazuje się, że dla wszystkich wartości pola h mo-
żemy zastosować kryterium h >

√
µ2 + ∆2, które mówi o występowaniu tłumienia Landaua (patrz

równanie (6.25)). Po pierwsze obserwujemy, że dla h = 1.4 powyższy warunek nie jest spełniony.
Oznacza to, że górna gałąź widma fermionowych kwazicząstek jest nie obsadzona, a tym samym
mechanizm tłumienia jest nieaktywny (patrz podrozdział 6.2.1). Pozostaje to w zgodzie z wynika-
mi numerycznymi które pokazują, że współczynnik tłumienia jest w tym przypadku rzędu 10−10.
Po drugie dla h = 1.6 widzimy, że h ≈

√
µ2 + ∆2 = 1.59. Otrzymana numerycznie wartość Γq/µ

jest rzędu 10−5, co jest znaczenie większą wartością od tej otrzymanej dla h = 1.4. W pozostałych
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Rys. 6.6: Współczynniki tłumienia modów Goldstone’a Γq (w jednostkach µ) jako funkcję pola Ze-
emana dla r = 3.47 oraz |q|/

√
2mµ = 0.0179. Tłumienie jest aktywne dla h &

√
∆2 + µ2 = 0.563.

W tym przypadku na diagramie fazowym występuje przemiana fazowa I rodzaju dla hI = 0.59106.
Parametry wykresu są następującem+ = 1, r = 3.47, µ = 0.1, T = 0.002, д = −1.4 oraz Λ = 10.

przypadkach rozważany warunek jest także spełniony. W konsekwencji górna gałąź widma kwa-
zicząstkowego jest częściowo obsadzona przez kwazicząstki także dla T → 0. W związku z tym
mody Goldstone’a mogą zostać zaabsorbowane przez wzbudzenia fermionowe i tłumienie Landaua
jest obecne. Jak widzimy na rys. 6.4 przewidywanie to jest zgodne z wynikami numerycznymi. Co
więcej zależność Γq/µ odh jest pokazana na rys. 6.5 dla |q|/

√
2mµ = 4.24×10−3. Widzimy, że aktywo-

wanie tłumienia Landaua zachodzi dokładnie dla przewidywanej przez wzór h &
√
∆2 + µ2 = 1.59

wartości h.

Zaprezentowane wyżej wyniki odpowiadają sytuacji w której przemiana fazowa między fazą
nadciekłą, a normalną jest ciągła w granicy T → 0. Uzyskane wnioski są jednak niezależne od
rodzaju zachodzącej przemiany. Zademonstrujemy to bezpośrednio dobierając parametry w taki
sposób, aby rozważana przemiana fazowa była I rodzaju w niskich temperaturach. Przyjmujemy
r = 3.47, µ = 0.1 oraz д = −1.4. W tym przypadku kwantowa przemiana fazowa I rodzaju zachodzi
dla hI = 0.59106 (na poziomie MFT). Numerycznie otrzymana zależność Γq/µ od h została zapre-
zentowana na rys. 6.6 dla |q|/

√
2mµ = 0.0179. Zgodnie z warunkiem otrzymanym w poprzednim

podrozdziale spodziewamy się, że tłumienie Landaua powinno pojawić się dlah &
√
∆2 + µ2 = 0.563,

co bardzo dobrze zgadza się z danymi numerycznymi z rys. 6.6.
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6.3 Tłumienie Landaua w fazie normalnej

Zbadamy teraz urojoną część odwrotnego propagatora �uktuacji parowania w fazie normalnej
ImF−1

0,ret . (q,ω) dla T = 0 (patrz równanie (5.37)). Ilekroć ImF−1
0,ret . , 0 propagator F0,ret . posiada

zespolony biegun, który prowadzi do poszerzenia piku odpowiadającemu modowi kolektywnemu
w funkcji spektralnej A0(q,ω) = − 1

π ImF0,ret . (q,ω) [2, 109]. W rezultacie obecny jest w układzie
proces tłumienie Landaua który powoduje, że czas życia modów kolektywnych staje się skończony.

Rozważamy granicę T → 0 w równaniu (5.37) i wprowadzamy u = |k|2 > 0. Zakładamy przy
tym, że znajdujemy się w obszarze (B) z rys. 5.7 w którym znajduje się faza normalna przylegająca
do QCP. Całkowanie po kątach prowadzi do

ImF−1
0,ret . (q,ω) = −

m+
8π |q|

∫ ∞

0
du [1 − θ (−ξ−u ) − θ (ξ−u − ω)] ×

× θ *
,
1 −

m2
+

u |q|2

{
ω −

u

m
+ 2µ − q2

2m+

}2
+
-
=

= −
m+

8π |q|

∫ λω

0
du θ *

,
1 −

m2
+

u |q|2

{
ω −

u

m
+ 2µ − q2

2m+

}2
+
-
,

(6.30)

gdzie λω = 2m+r (µ−h+ω). W powyższym wyrażeniu widzimy, że ImF−1
0,ret . (q,ω) może być niezerowe

jedynie, gdy ω > h − µ. Zatem dla wartości h = hc > µ, gdzie zachodzi przemiana fazowa, tłumienie
jest nieobecne dla niskich energii w fazie normalnej.

Wyrażenie podcałkowe w równaniu (6.30) jest równe jedności w przedziale [u−,u+] oraz zeru
w przeciwnym przypadku. Tylko u± > 0 są �zycznie istotne. Wartości te mają postać

u± =
m2

2



(
A +

2B
m

)
±

√(
A +

2B
m

)2
−

(2B
m

)2
, (6.31)

gdzie A =
(
|q|
m+

)2
oraz B = ω + 2µ − q2

2m+ . Powyższe wyrażenie jest rzeczywiste, gdy ω > 1
r+1

q2

2m+ − 2µ.
Oznacza to, że ImF−1

0,ret . (q,ω) , 0 wtedy i tylko wtedy, gdy [u−,u+]∩[0, λω] , ∅, co dzieli płaszczyznę
( |q|,ω) na trzy różne obszary.

Pierwszy z obszarów (reg. 1) jest zde�niowany przez u+ 6 λω . Tutaj tłumienie Landaua jest
obecne, a ImF−1

0,ret . ma postać

ImF−1
0,ret .[(q,ω) ∈ reg. 1] = −m

3/2

4π

√
ω + 2µ − 1

r + 1
q2

2m+
. (6.32)

Analogicznie drugi reżim (reg. 2) jest otrzymany z warunku u− 6 λω < u+. W tym przypadku
tłumienie jest także aktywne, ale postać ImF−1

0,ret . jest inna i wynosi

ImF−1
0,ret .[(q,ω) ∈ reg. 2] = − m+

8π |q|


2m+r (µ − h + ω) −m



ζ

q2

2m+
+

+ ω + 2µ − |q|
m+

√
m

(
ω + 2µ − 1

r + 1
q2

2m+

)



.

(6.33)
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ω

| ⃗q |

2h − r − 1
2r

μ

u+ ≤ λω u− ≤ λω < u+

reg. 1 reg. 2

reg. 3

Landau  
damping

Absence of  
Landau damping

λω < u−

Rys. 6.7: Schematyczna ilustracja diagramu ( |q|,ω) dla T = 0 pokazująca różne obszary dla których
tłumienie Landaua jest aktywne lub nieobecne w fazie normalnej.

Ostatni obszar (reg. 3) pojawia się, gdy λω < u−. Tutaj ImF−1
0,ret .[(q,ω) ∈ reg. 3] = 0 i w związku z

tym tłumienie Landaua jest nieobecne. Uzyskane wyniki zostały schematycznie przedstawione na
rys. 6.7.

Uzyskane wyniki posiadają przejrzystą interpretację �zyczną. Zidenty�kowaliśmy dwa warun-
ki: (a) ω > h − µ oraz (b) ω > 1

r+1
q2

2m+ − 2µ. Naruszenie któregoś z nich implikuje, że ImF−1
0,ret . = 0.

Kwantowa przemiana fazowa zachodzi pomiędzy gazem całkowicie spolaryzowanym, a nadcie-
czą. Oznacza to, że cząstki o pseudospinie "↓" są nieobecne w fazie normalnej dla T = 0, zatem
µ− < 0 dla h > hc > µ. Możemy przeformułować warunek (a) jako ω > |µ− | > 0, co oznacza,
że tłumienie może wystąpić tylko wtedy, gdy energia jest wystarczająco duża, aby wprowadzić
do układu cząstkę o pseudospinie "↓". Z drugiej strony możemy przeformułować warunek (b) ja-
ko ω > ξpair (q) =

q2

2mpair
− µpair , gdzie mpair = m+ +m− = m+(1 + r ) jest masą pary stworzonej z

cząstek o pseudospinach "↑" oraz "↓", a także µpair = µ+ + µ− = 2µ jest potencjałem chemicznym
tej pary. Oznacza to, że tłumienie Landaua może być aktywne tylko wtedy, gdy wzbudzenie pary
unoszącej pęd q jest możliwe.

Warunki (a) i (b) nie uwzględniają zachowania momentu pędu, który prowadzi do dalszych
ograniczeń obszaru dla którego ImF−1

0,ret . , 0. W szczególności funkcja schodkowa w równaniu
(6.30) zadaje wartości ω oraz q, które są konsystentne z możliwymi kierunkami pędu danymi przez
cosθ = k · q/|k| |q| ∈ [−1, 1] i powoduje to dalsze zmniejszenie obszaru dla którego tłumienie jest
aktywne.

Zawracamy uwagę, że ImF−1
0,ret . (q,ω) jest niedodatnią funkcją w obu obszarach w których tłu-

mienie jest aktywne. Zapewnia to, że funkcja spektralna A0(q,ω) jest nieujemna dla wszystkich
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wartości ω oraz |q|.
Co więcej dla małych wartości |q| tłumienie pojawia się dla ω > 2h − r−1

2r µ > 0, ponieważ
hc > µ. Z tego powodu w pobliżu kwantowej przemiany fazowej po stronie fazy normalnej człony
tłumienia nie pojawiają się w rozwinięciu gradientowych dla małych pędów oraz częstości. Sytu-
acja ta jest całkowicie inna w porównaniu do przypadku wewnątrz fazy uporządkowanej opisanego
w poprzednim podrozdziale.



106 ROZDZIAŁ 6. MODY GOLDSTONE’A I ICH TŁUMIENIE



Rozdział 7

Teoria renormalizacji dla mieszanin
Fermiego

Ostatnim zagadnieniem dyskutowanym w tej dysertacji jest wpływ �uktuacji parametru porząd-
ku na naturę kwantowej przemiany fazowej między jednorodną fazą nadciekłą, a fazą normalną.
Skupimy się przy tym na sytuacji w której na poziomie MFT przemiana fazowa jest ciągła w T = 0
i nie jest przemianą multikrytyczną. Do tego celu wykorzystamy nieperturbacyjne sformułowanie
teorii grupy renormalizacji (RG) zaproponowane przez Wettericha w 1993 roku [21, 53, 237].

W kilku przypadkach w �zyce materii skondensowanej �uktuacje parametru porządku powodu-
ją, że kwantowa przemiana fazowa staje się nieciągła [20,138]. Taka sytuacja ma miejsce na przykład
w ferromagnetykach [19] oraz nadprzewodnikach [27, 88, 131]. Posługując się renormalizacją efek-
tywnego potencjału zbadamy czy tego typu niestabilność QCP ze względu na �uktuacje występuje
w przypadku niezrównoważonych mieszanin Fermiego. Na tym etapie zaniedbujemy występowanie
tłumienia Landaua. Przeprowadzona analiza wykazuje, że QCP zidenty�kowany w ramach przybli-
żenia pola średniego dla d = 3 jest odporny na wpływ �uktuacji i nie obserwuje się niestabilności
w kierunku przemiany I rodzaju.

Ogólne podejście pozwalające na opisanie kwantowej krytyczności w układach fermionowych
wykorzystuje teorię Hertza-Millisa [89, 147]. W podejściu tym informacje o badanym układzie jest
zawarta w efektywnym działaniu, które odpowiada kolektywnym modom bozonowym (patrz roz-
dział 2). Oddziaływanie pomiędzy modami kolektywnymi pola porządku, a kwazicząstkowymi wzbu-
dzeniami fermionowymi wzdłuż powierzchni Fermiego jest uwzględnione poprzez nielokalne czło-
ny odpowiadające tłumieniu Landaua, które pojawiają się w odwrotnym propagatorze �uktuacji
parowania F−1

q . Występowanie tłumienia Landaua (bądź jego brak), a także jego dokładna postać,
ma istotny wpływ na zachowanie układu w kwantowym reżimie krytycznym. W szczególności de-
cyduje ono o wartości dynamicznego wykładnika krytycznego z, który jest istotny w opisie wielu
wielkości termodynamicznych oraz własności transportu. Jak pokazaliśmy w poprzednim rozdziale
tłumienie Landaua jest zawsze obecne w fazie uporządkowanej w pobliżu nadciekłej przemiany fa-
zowej w T = 0, która jest wywoływana przez niezrównoważenie badanej mieszaniny fermionowej.
Poza tym w fazie normalnej tłumienie jest nieaktywne. Powoduje to, że badana sytuacja znaczą-
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co różni się od tej występującej w kontekście magnetycznych kwantowych punktów krytycznych
i w konsekwencji teorię renormalizacji należy formułować w fazie uporządkowanej dla niezrówno-
ważonych mieszanin Fermiego [108]. Zbadamy ten problem wykorzystując nieperturbacyjną RG.
Nasze wyniki, opierające się na bardzo prostym obcięciu równań płynięcia dla funkcjonalnej RG,
odtwarzają spodziewane zachowanie układu przy braku tłumienia Landaua. Jednakże dla odpowied-
nio niskich temperatur obecność tłumienia o postaci wyprowadzonej z mikroskopowego modelu
powoduje destabilizację płynięcia stałych sprzężenia w kierunku punktu stałego Wilsona-Fishera,
co przejawia się tym, że nie jest osiągany asymptotyczny reżim skalowania. Zachowanie to mo-
że wskazywać na występowanie kwantowej przemiany fazowej I rodzaju, która jest wywoływana
przez występowanie tłumienia Landaua. Omawiana sytuacja stanowi całkowicie inny mechanizm
pojawiania się przemiany I rodzaju wywoływanej przez �uktuacje parametru porządku w porów-
naniu do dobrze zbadanego przypadku ferromagnetycznych kwantowych przemian fazowych [20].
Wyniki prezentowane w tym rozdziale zostały opublikowane w artykułach [248, 250].

Struktura tego rozdziału jest następująca:
Podrozdział 7.1. Zaczniemy od krótkiego wprowadzenia do nieperturbacyjnej teorii renormaliza-
cji. Wyprowadzimy równanie Wettericha i przedyskutujemy jego najważniejsze cechy.
Podrozdział 7.2. Następnie posługując się dotychczas zaprezentowanymi w tej rozprawie wyni-
kami przedstawimy wygodną parametryzację efektywnego działania rozkładając pole porządku ϕq
na składową podłużną σq oraz poprzeczną πq . Pokażemy, że tłumienie Landaua ma wpływ tylko na
składową σq .
Podrozdział 7.3.W koleinym podrozdziale zaniedbamy wpływ tłumienia Landaua i wyprowadzimy
równanie płynięcia efektywnego potencjału. Na jego podstawie zbadamy stabilność QCP w d = 3 ze
względu na �uktuacje parametru porządku i pokażemy, że układ nie wykazuje niestabilności w kie-
runku kwantowej przemiany I rodzaju.
Podrozdział 7.4.Na koniec przedyskutujemy efekt destabilizacji płynięcia stałych sprzężenia w kie-
runku punktu stałego Wilsona-Fishera dla odpowiednio niskich temperatur (T > 0) wywołanego
występowaniem tłumienia Landaua.

7.1 Równanie Wettericha

Idea stojąca za RG Wilsona opiera się na dwóch krokach: decymacji oraz przeskalowaniu. W pierw-
szym z nich dokonujemy eliminacji krótkozasięgowych (szybkich) modówφ> co powoduje, że układ
jest efektywnie opisywany przez działanie dla modów wolnych φ<. W następnym kroku przeska-
lowujemy pola oraz stałe sprzężenia w taki sposób, aby otrzymane działanie miało taką samą po-
stać jak to sprzed wykonania decymacji modów. Procedura ta pozwala mapować wyjściowe sta-
łe g(0) = [д(0)1 ,д

(0)
2 ,д

(0)
3 , . . . ] charakteryzujące układ na zmody�kowany zestaw stałych sprzężenia

g(1) = R (b; g(0) ) = [д(1)1 ,д
(1)
2 ,д

(1)
3 , . . . ], które pojawiają się w przeskalowanym działaniu po decyma-

cji. FunkcjaR (b; g) reprezentuje transformację RG i jest postać jest zależna od czynnika skalującego
b związanego z przeskalowaniem pędów k′ = bk. Transformację tą możemy wykonać wielokrotnie,
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przy czym g(n) = R (b; g(n−1) ) = R (b;R (b; g(n−2) )) = · · · = R (bn; g(0) ) i charakteryzuje ona płynięcie
stałych sprzężenia przy n-krotnym przeskalowaniu układu. W granicy n → ∞ "odcałkowujemy"
wszystkie mody i tym samym uzyskane w trakcie tej procedury efektywne działanie staje się do-
kładną gęstością energii swobodnej badanego układu, która uwzględnia w pełni �uktuacje [120].
W praktyce procedury tej zazwyczaj nie da się przeprowadzić bez wykonania pewnych przybliżeń,
a także wspomniane kroki możemy wdrożyć na różne sposoby. Celem tego rozdziału będzie wypro-
wadzenia funkcjonalnego równania różniczkowego charakteryzującego płynięcie nieperturbacyjnej
RG, które stanowi wygodną implementację powyższych idei przy wykorzystaniu procedury zapro-
ponowanej przez Wettericha [21, 53, 237].

7.1.1 Efektywne działanie Γk zależne od skali k

Zaczniemy od skonstruowania jednoparametrowej rodziny układów modelowych scharaktery-
zowanych efektywnym działaniem Γk[ϕ], które jest indeksowane przy pomocy skali k . Oczekujemy,
że gdy k = Λ, wtedy �uktuacje nie zostały jeszcze odcałkowane i w związku z tym Γk=Λ[ϕ] = S[φ =
ϕ], gdzieS jest mikroskopowym działaniem, a Λ jest mikroskopowym obcięciem nad�oletowym dla
pędów. Z kolei gdy k = 0, wtedy wszystkie mody zostały odcałkowane i tym samym Γk=0[ϕ] = G[ϕ],
gdzie G jest termodynamiczną energią swobodną Gibbsa [53]. W powyższych relacjachϕ = 〈φ〉 jest
N -komponentowym parametrem porządku, który otrzymuje się w wyniku uśredniania pola porząd-
ku φ. Suma statystyczna układu ma w tym przypadku postać

Z [J] =
∫
D[φ]e−S[φ]+

∫
r J·φ, (7.1)

gdzie J jest zewnętrznym polem źródłowym, które sprzęga się z polem porządku, a działanie S[φ]
wykazuje symetrięO (N ). PonadtoF [J] = −T lnZ [J] jest energią swobodną Helmholtza. Za pomocy
powyższej relacji można obliczyć dwupunktowe funkcje korelacji

Gij (r − r′) = 〈φi (r)φj (r′)〉 − 〈φi (r)〉〈φj (r′)〉 =
δ 2 lnZ [J]
δ Ji (r)δ Jj (r′)

������J=0
. (7.2)

Zależność od skalik w sumie statystycznej możemy wprowadzić dodając do działaniaS[φ] człon
będący formą kwadratową pola porządku o postaci [53, 60]

∆Sk[φ] = 1
2

∫
q
φT (−q)Rk (q)φ (q), (7.3)

gdzie macierz Rk (q) = diag
[
R1
k
(q),R2

k
(q), . . . ,RN

k
(q)

]
, a Ri

k
(q) jest tzw. regulatorem dla i-tej skła-

dowej pola φ. Postać funkcji Ri
k
(q) dobieramy w taki sposób, aby powodowała nadanie modom

wolnym φ<i dużej masy (tj. ich �uktuacje termiczne stają się małe) i w związku z tym ulegają one
rozprzęgnięciu w sumie statystycznej. Wprowadzenie członu ∆Sk[φ] do działania w Zk[J] stanowi
praktyczne wdrożenie idei decymacji modów wspomnianej na początku tego podrozdziału.

Korzystając ze (zmody�kowanej) transformacji Legendre’a możemy zde�niować efektywne dzia-
łanie Γk[ϕ] zależne od skali k jako [53, 60]

Γk[ϕ] = − lnZk[J] +
∫
r
J · ϕ − ∆Sk[ϕ]. (7.4)
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W powyższym wyrażeniu odejmujemy wyraz ∆Sk[ϕ], aby w granicy k → Λ powyższe wyraże-
nie sprowadzało się do mikroskopowego działania S jak to było antycypowane wcześniej. Płynięcie
efektywnego działania ∂kΓk[ϕ] zawiera w sobie pełną informację o transformacji RG i jego wypro-
wadzeniem zajmiemy się w dalszej części. Wykorzystując działanie Γk[φ] możemy opisać własności
termodynamiczne układu poprzez jego ewaluację na jednorodnej kon�guracji pola ϕuni , która pro-
wadzi do efektywnego potencjału [53, 60]

Uk (ρ) =
1
V
Γk[ϕ]

����ϕ=ϕuni
, (7.5)

gdzie V to objętość układu, a ρ = ϕ2. Efektywny potencjał Uk (ρ) może posiadać minimum dla
ρ0,k , 0, co wskazuje na spontaniczne łamanie symetrii O (N ).

7.1.2 Własności regulatora Rk (q)

Jak wspomnieliśmy wcześniej regulator Rk (q) wybieramy tak, aby Γk w gładki sposób interpolo-
wała pomiędzy mikroskopowym działaniem S dla k → Λ, a potencjałem Gibbsa G dla rozważanego
układu w granicy k → 0. Oznacza to, że dla k = Λ regulator przyjmuje postać RΛ(q) = ∞ i tym
samym �uktuacje pola φ są "zamrożone". Natomiast gdy k = 0 otrzymujemy, że R0(q) = 0 i tym
samym �uktuacje na wszystkich skalach są uwzględniane [53]. Dla k ∈]0,Λ[ chcemy, aby funkcja
Rk (q) tłumiła �uktuacje poniżej skali k , a pozostawiała bez zmian mody powyżej tej skali. Typowo
regulator ma postać Rk (q) = q2 f (q2/k2), przy czym funkcja f (x ) zachowuje się jak ∼ 1/x w granicy
x → 0 oraz f (x ) � 1, gdy x � 1 [60]. Przykładowy wykres funkcji Rk (q) spełniającej te warunki
jest przedstawiony na rys. 7.1.

Rys. 7.1: Typowy kształt regulatora Rk (q). Mody poniżej skali k posiadają dużą masę i ulegają "za-
mrożeniu" w sumie statystycznej. Natomiast �uktuacje powyżej skali k mają niewielką masę i ule-
gają odcałkowaniu w Γk[ϕ].
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Jednym z popularnych wyborów funkcji Rk (q) jest tzw. regulator Litima [133] o postaci

Rk (q) = α (k2 − q2)θ (k2 − q2), (7.6)

gdzie α to pewna stała. Jego zaletą jest to, że pozwala na analityczne obliczenie całek pojawiających
się w równaniach płynięcia. Inną wygodną postacią Rk (q) jest regulator eksponencjalny o postaci
[120]

Rk (q) =
αq2

eq2/k2
− 1
. (7.7)

Z powodu analityczności powyższej funkcji jest to lepszy wybór w przypadku numerycznego roz-
wiązywania równań płynięcia.

7.1.3 Ścisłe równanie płynięcia

Zaczniemy od znalezienia płynięcia funkcjonału generującego dla "spójnych" funkcji korelacji
(ang. connected correlation functions)Wk[J] = lnZk[J] wraz ze skalą k . Otrzymujemy, że [53]

∂tZk[J] = −1
2

∫
D[φ]

(∫
r,r′
φT (r)∂tRk (r − r′)φ (r′)

)
e−S[φ]−∆Sk [φ]+

∫
r J·φ =

= −
1
2

*
,

∫
r,r′

N∑
i=1
∂tR

i
k (r − r

′)
δ

δ Ji (r)
δ

δ Ji (r′)
+
-
Zk[J],

(7.8)

gdzie t = ln(k/Λ) = −s ∈] − ∞, 0] jest tzw. (ujemnym) "czasem RG", czyli ∂tX = k∂kX . Powyższe
równanie pozwala na znalezienie płynięcia funkcjonałuWk[J] [60]:

∂tWk[J]
����J
= −

1
2

∫
r,r′

N∑
i=1
∂tR

i
k (r − r

′)
����J

(
δ 2Wk[J]

δ Ji (r)δ Ji (r′)
+
δWk[J]
δ Ji (r)

δWk[J]
δ Ji (r′)

)
. (7.9)

Przejdziemy teraz do wyprowadzenia równania płynięcia dla efektywnego działania Γk[ϕ], które
jest dane wyrażeniem

∂tΓk[ϕ]
����ϕ
= ∂t

(
−Wk[J] +

∫
r
J · ϕ − ∆Sk[ϕ]

) ����ϕ
=

= −∂tWk[J]
����ϕ
+

∫
r
∂t J(r)

����ϕ
· ϕ (r) −

1
2

∫
r,r′
ϕT (r)∂tRk (r − r′)ϕ (r′)

����ϕ
.

(7.10)

W powyższym równaniu skorzystano z tego, że J ≡ Jk[ϕ] jest zależne od skalik , przy czymϕk[r, J] =
δWk[J]/∂J(r) oraz Jk[r,ϕ] = δΓk[ϕ]/δϕ (r). Ponadto dzięki tożsamości [53]

∂tWk[J]
����ϕ
= ∂tWk[J]

����J
+

∫
r

δWk[J]
δJ(r)

· ∂t J(r)
����ϕ
= ∂tWk[J]

����J
+

∫
r
ϕ (r) · ∂t J(r)

����ϕ
. (7.11)

oraz równaniu (7.9) otrzymujemy płynięcie efektywnego działania dane równaniem Wettericha [53,
60]

∂tΓk[ϕ] = 1
2

∫
r,r′

N∑
i=1
∂tR

i
k (r − r

′)
δ 2Wk[J]

δ Ji (r)δ Ji (r′)
=

1
2Tr [Gk∂tRk] , (7.12)
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gdzie Tr(·) =
∫
r,r′ tr(·), przy czym tr(·) to ślad macierzy. Macierz propagatora Gk znajdująca się

w równaniu (7.12) jest dana relacją

Gk =
δ

δJ(r)
⊗

δ

δJ(r′)
Wk[J] =

(
Γ (2)
k

[ϕ] + Rk

)−1
r,r′
≡

(
Γ̃ (2)ϕ,ϕ

)−1
, (7.13)

gdzie Γ (2)
k

[ϕ] = δ
δϕ (r) ⊗

δ
δϕ (r′) Γk[ϕ] jest macierzą drugiej pochodnej funkcjonalnej efektywnego dzia-

łania. Wzór (7.12) stanowi podstawową relację charakteryzującą płynięcie RG.

Rys. 7.2: Diagramatyczna reprezentacja równań płynięcia dla (a) efektywnego działania Γk , (b) wierz-
chołka Γ (1)

k
oraz (c) wierzchołka Γ (2)

k
. Ciągła linia odpowiada propagatorowi Gk = (Γ̃ (2)ϕ,ϕ )

−1, zielony
krzyż odpowiada ∂tRk , a czerwona kropka z n "nogami" odpowiada wierzchołkowi Γ (n)

k
.

Sukcesywnie różniczkując funkcjonalnie równanie Wettericha względemϕ (patrz równanie (7.12))
otrzymuje się nieskończoną hierarchię równań płynięcia dla jednocząstkowych nieredukowalnych
wierzchołków Γ (n)

k,{i j }
[{rj },ϕ] = δnΓk [ϕ]

δϕi1 (r1)...δϕin (rn )
. Możemy ją przedstawić w postaci diagramatycznej

jak zostało to pokazane dla pierwszych trzech równań na rys. 7.2. Hierarchia ta pozwala na wypro-
wadzenie równań płynięcia dla poszczególnych stałych sprzężenia opisujących badany układ.

7.2 Działanie typu Hertza dla mieszanin Fermiego

Jak pokazaliśmy to w poprzednich rozdziałach działanie Hertza SH opisujące bozonowe wzbu-
dzenia kolektywne dla niezrównoważonych mieszanin Fermiego ma postać

SH [ϕ] = 1
2

∫
q
Φ∗qF

−1
q Φq +U[ϕ], (7.14)

gdzie Φ∗q = [ϕ̃∗q, ϕ̃−q], Φq = [ϕ̃q, ϕ̃∗−q]T , a ϕq = ϕ0δq,0 + ϕ̃q jest bozonowym polem parowania, które
zostało podzielone na wkład jednorodny ϕ0 oraz �uktuacje ϕ̃q , przy czym ϕ̃q=0 = 0. Ograniczamy się
do zbadania faz jednorodnych, a tym samym następujące rozwinięcia w pędach będą wykonywane
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wokół q = 0. CzłonU[ϕ] można zapisać jako

U[ϕ] =
∫
x=(x,τ )

U (ϕ) =

∫
x


−
ϕ2

д
+T

∫
k

∑
σ

f (−Eσk )

, (7.15)

przy czym U (ϕ) to efektywny potencjał o postaci przedyskutowanej w rozdziałach 4 i 5.
Macierz odwrotnego propagatora �uktuacji parowania F−1

q , którego analizę zaprezentowaliśmy
w poprzednim rozdziale, zawiera informacje o dynamicznych własnościach wzbudzeń kolektyw-
nych w układzie. Przypominamy, że jednym z uzyskanych wniosków było stwierdzenie, że tłumienie
Landaua fononów AB jest zawsze obecne w otoczeniu kwantowej przemiany fazowej przy zbliżaniu
się do niej od strony fazy nadciekłej. Tłumienie powoduje mody�kację dynamiki układu, co przeja-
wia się poprzez wystąpienie nielokalnych członów ∼ |q0 |

|q| w rozwinięciu gradientowym elementów
macierzowych odwrotnego propagatora F−1

q . Elementy macierzowe Mij (q) := [F−1
q ]ij możemy spra-

metryzować jako

M11(q) = M12(−q) =
1
2

[
Zq2 − iWq0 + Z0q

2
0 +

Lρ0
2
|q0 |

|q|

]
,

M12(q) = M21(q) =
ρ0
2

[
Yq2 + Y0q

2
0 +

L

2
|q0 |

|q|

]
,

(7.16)

przy czym wkłady Mij (q = 0) włączamy do lokalnego potencjału U[ϕ]. Wielkości Z , Z0, Y , Y0, W
oraz L można powiązać z parametrami charakteryzującymi mikroskopowe działanie fermionowe
Sψ (patrz rozdział 6), natomiast ρ0 := |ϕ0 |

2 jest parametrem porządku. Warto zauważyć, że wkłady
związane z tłumieniem modów kolektywnych są proporcjonalne do ρ0

|q0 |
|q| . W fazie uporządkowanej

kwazicząski są superpozycjami wzbudzeń typu cząstkowego oraz dziurowego [171, 220]. W rezul-
tacie przy obliczaniu elementów macierzowych F−1

q zarówno diagramy typu cząstka-cząstka jak
i cząstka-dziura dają wkład [171]. Fluktuacje parowania ϕ̃q sprzęgają się z fermionowymi wzbu-
dzeniami typu cząstka-dziura wzdłuż powierzchni Fermiego co powoduje, że tłumienie Landaua
jest aktywne [118, 126]. Jednakże gdy przechodzimy do fazy normalnej (ρ0 = 0) znika continuum
cząstka-dziura i człony tłumienia znikają (jak zostało to przez nas pokazane w poprzednim roz-
dziale). Manifestuje się to tym, że współczynniki odpowiadające tłumieniu są proporcjonalne do ρ0

w pobliżu przemiany fazowej. Ta cecha sprawia, że charakterystyka kwantowej przemiany fazo-
wej w niezrównoważonych mieszaninach Fermiego jest inna niż w analogicznych przypadkach dla
układów magnetycznych (patrz np. [20, 44, 138, 150]).

Rozkładamy pole ϕ̃q przy wykorzystaniu tzw. reprezentacji kartezjańskiej

ϕ̃q = σq + iπq, ϕ̃∗q = σ−q − iπ−q, (7.17)

gdzie σq to podłużna składowa, a πq to poprzeczna składowa pola opisującego �uktuacje parowania.
Wkład jednorodnyϕ0 jest rzeczywisty. Ponadtoσ ∗q = σ−q oraz π ∗q = π−q co jest spowodowane tym, że
pola σ (x ) oraz π (x ) są rzeczywiste. Wstawiając postać (7.17) do równania (7.14) oraz parametryzując
efektywny potencjał, poprzez jego rozwinięcie w potęgach ρ := |ϕ |2 do drugiego rzędu włącznie,
jako

U (ϕ) =
λ

2 (ρ − ρ0)
2 (7.18)
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prowadzi do działania Hertza o postaci

SH = Sσ 2 + Sπ 2 + Sσπ + Sσ 3 + Sσπ 2 + Sσ 4 + Sπ 4 + Sσ 2π 2 . (7.19)

Wyrazy kwadratowe w polach σq i πq mają następującą postać

Sσ 2 =
1
2

∫
q

[
m2
σ + Z

0
σq

2
0 + Zσq

2 + Lρ0
|q0 |

|q|

]
σqσ−q,

Sπ 2 =
1
2

∫
q

[
Z 0
πq

2
0 + Zπq

2
]
πqπ−q,

Sσπ = −
1
2

∫
q
Wq0

[
σqπ−q + πqσ−q

]
,

(7.20)

gdziemσ =
√

2λρ0 jest masą pola σq ,Zσ = Z +ρ0Y ,Z 0
σ = Z0+ρ0Y0,Zπ = Z −ρ0Y orazZ 0

π = Z0−ρ0Y0.
Z kolei wyrazy wyższego rzędu mają postać

Sσ 3 =
1
2

∫
q,p

V (q)
√
ρ0σpσqσ−q−p,

Sσπ 2 =
1
2

∫
q,p

V (q)
√
ρ0σpπqπ−q−p,

Sσ 4 =
1
8

∫
q,q′,p

V (q)σqσp−qσq′σ−p−q′,

Sπ 4 =
1
8

∫
q,q′,p

V (q)πqπp−qπq′π−p−q′,

Sσ 2π 2 =
1
4

∫
q,q′,p

V (q)σqσp−qπq′π−p−q′,

(7.21)

gdzie V (q) = λ + Yq2 + Y0q
2
0 jest potencjałem bozonowym.

Dla L = 0 otrzymane działanie SH jest podobne do działania dla oddziałujących bozonów [160,
175]. Zgodnie z oczekiwaniami mod poprzeczny πq jest bezmasowy. Warto zauważyć, że człon od-
powiadający tłumieniu Landaua pojawia się jedynie w części związanej z modem podłużnym σq .
Jego występowanie nie było do tej pory uwzględniane w żadnych z badań dotyczących efektów
�uktuacyjnych dla niezrównoważonych mieszanin Fermiego [25, 219].

7.3 Renormalizacja efektywnego potencjału

W rozdziale 5 wskazaliśmy na możliwość wygenerowania QCP na diagramie fazowym dla spo-
laryzowanych mieszanin Fermiego o nierównych masach, przy czym r > rc = 3.01. W tym podroz-
dziale wykorzystamy funkcjonalną RG, aby przedyskutować wpływ �uktuacji na stabilność QCP.
Póki co pomijamy tłumienie Landaua (tj. kładziemy L = 0) i uwzględnimy je później.

W wielu sytuacjach spotykanych w �zyce materii skondensowanej �uktuacje pola porządku
mogą doprowadzić do wyindukowania kwantowej przemiany fazowej I rodzaju [20, 138]. Dobrze
znanymi przykładami jest ferromagnetyczna kwantowa przemiana fazowa [19], a także nadprze-
wodniki w których parowanie zachodzi w kanale fal s [88] lub w kanale fal p [131]. W przypad-
ku wędrujących ferromagnetyków przemiana fazowa w T = 0 jest I rodzaju ze względu na człon



7.3. RENORMALIZACJA EFEKTYWNEGO POTENCJAŁU 115

∼ ϕ4 lnϕ pojawiający się w efektywnym działaniu po odcałkowaniu fermionowych stopni swobody
(nie posiadających przerwy energetycznej). Innego rodzaju nieanalityczność efektywnego działania
jest generowana w przypadku nadprzewodników, która pojawia się ze względu na sprzęganie się
parametru porządku z elektromagnetycznym potencjałem wektorowym.

Twierdzimy, że mechanizm tego typu nie jest obecny w przypadku układu spolaryzowanych
gazów fermionowych o nierównych masach. Posługując się obliczeniami wykorzystującymi funk-
cjonalną RG pokażemy, że QCP (przy L = 0) otrzymany na poziomie MFT w d = 3 jest stabilny
ze względu na �uktuacje parametru porządku. Dodatkowo warto wspomnieć, że możliwość zmiany
rzędu kwantowej przemiany fazowej z I rodzaju do przemiany ciągłej spowodowaną �uktuacja-
mi pola porządku została zademonstrowana dla efektywnych bozonowych teorii pola [104, 106],
a także dla niektórych modeli fermionowych [25, 26, 41, 107, 242, 243]. W rozważanym przypadku
antycypujemy, że podobny efekt zachodzi, tj. �uktuacje stabilizują przemianę II rodzaju w T = 0
(przy zaniedbaniu tłumienia Landaua). Warto podkreślić, że funkcjonalna RG była wykorzystana do
otrzymania diagramu fazowego w przypadku mieszaniny o równych masach [25], a także zbadania
niezrównoważonej mieszaniny Fermiego w reżimie unitarnym [189].

7.3.1 Równanie płynięcia efektywnego potencjału

Posługując się równaniem Wettericha wyprowadzimy równanie płynięcia efektywnego poten-
cjału Uk (ρ). Zapisujemy je w reprezentacji pędowej i wybierając ϕq = [σq,πq]T otrzymujemy, że

Γ̇k[ϕ] = 1
2

∫
q

tr

*
,

Ṙσ
k
(q) 0
0 Ṙπ

k
(q)

+
-

*
,

Gσ ,σ (q) Gσ ,π (q)

Gπ ,σ (q) Gπ ,π (q)
+
-


=

=
1
2

∫
q

[
Ṙσk (q)Gσ ,σ (q) + Ṙ

π
k (q)Gπ ,π (q)

]
,

(7.22)

gdzie Ẋ ≡ ∂tX , q = (q,q0) oraz
∫
q
(·) =

∫
qT

∑
q0 (·). Efektywne działanie Γk[ϕ] parametryzujemy

korzystając z przybliżenia lokalnego potencjału (ang. local potential approximation) [53, 60], wtedy

ΓLPAk [ϕ] = 1
2

∫
q
ϕTqMk (q)ϕ−q +

∫
x
Uk (ρ),

Mk (q) =
*.
,

Z 0
σ ,k

q2
0 + Zσ ,kq

2 + Lρ0,k
|q0 |
|q| −Wkq0

Wkq0 Z 0
π ,k

q2
0 + Zπ ,kq

2
+/
-
,

(7.23)

gdzie stałe występujące w macierzy Mk zostały uzależnione od skali k , ρ = ϕ2, a także ρ0,k jest
de�niowane jako położenie minimum funkcjiUk (ρ). Ponadto widzimy, że zgodnie z oczekiwaniami
ΓLPAΛ [ϕ] = SH [ϕ].

W związku z powyższym równanie płynięcia U̇k (ρ) możemy otrzymać ewaluując równanie Wet-
tericha (patrz wzór (7.22)) dla jednorodnej kon�guracji pola ϕuni =

[√
ρ, 0

]T
. Zaczniemy od znale-
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zienia macierzy propagatora Gk =
(
Γ̃ (2)ϕ,ϕ

)−1 ���ϕ=ϕuni w tym przypadku. Ma ona postać:

Gk (q) =
*.
,

δ 2ΓLPAk [ϕ]
δσqδσq

+ Rσ
k
(q)

δ 2ΓLPAk [ϕ]
δσqδπq

δ 2ΓLPAk [ϕ]
δπqδσq

δ 2ΓLPAk [ϕ]
δπqδπq

+ Rπ
k
(q)

+/
-

−1 ������ϕ=ϕuni
=

=
1
D

*
,

γπ ,π (q) γσ ,π (q)

−γσ ,π (q) γσ ,σ (q)
+
-
,

(7.24)

gdzie D = γσ ,σγπ ,π + γ 2
σ ,π jest wyznacznikiem macierzy Γ̃ (2)ϕ,ϕ , której elementy macierzowe wynoszą

γσ ,σ = Z 0
σ ,kq

2
0 + Zσ ,kq

2 + Lρ0,k
|q0 |

|q|
+U ′k (ρ) + 2ρU ′′k (ρ) + R

σ
k (q),

γπ ,π = Z 0
π ,kq

2
0 + Zπ ,kq

2 +U ′k (ρ) + R
π
k (q),

γσ ,π = −Wkq0,

(7.25)

gdzie X ′ = ∂ρX (ρ). Korzystając z powyższych relacji widzimy, że Gσ ,σ = γπ ,π/(γσ ,σγπ ,π + γ
2
σ ,π ), a

Gπ ,π = γσ ,σ/(γσ ,σγπ ,π + γ
2
σ ,π ). Pozwala to na napisanie równania

U̇k[ϕ] = 1
2

∫
q

1
D (q)

[
Ṙσk (q)γπ ,π (q) + Ṙ

π
k (q)γσ ,σ (q)

]
, (7.26)

które charakteryzuje renormalizację efektywnego potencjału Uk (ρ). Warto podkreślić, że równa-
nie to jest nietrywialne i zwiera w sobie wyrazy aż do nieskończonego rzędu w ρ. Odpowiada to
uwzględnieniu wszystkich wierzchołków o postaci ∼ ∂n

ϕ
Uk w teorii perturbacyjnej [60].

7.3.2 Stabilność QCP ze względu na �uktuacje

Stabilność QCP w d = 3 ze względu na �uktuacje zbadamy pomijając renormalizację stałych
gradientowych, tj. będziemy je traktować jako stałe niezależne od skali k . Co więcej przyjmujemy,
że Zσ = Zπ = Z oraz Z 0

σ = Z 0
π = Z0. Zaniedbujemy także w tej chwili wpływ tłumienia Landaua

poprzez położenie L = 0. Renormalizacja kształtu efektywnego potencjału wraz ze zmianą skali k
jest dana równaniem (7.26). Przyjmujemy, że funkcje Rσ

k
oraz Rπ

k
występujące w tym równaniu mają

identyczną postać daną regulatorem Litima, czyli

Rk (q) = Rσk (q) = Rπk (q) = Z
(
k2 − q2 −

Z0
Z
q2

0

)
θ

(
k2 − q2 −

Z0
Z
q2

0

)
. (7.27)

Wielkość Uk (ρ) możemy zinterpretować jako energię swobodną w której uwzględnione zosta-
ły �uktuacje pomiędzy skalami pędu k oraz Λ. Dla k = Λ �uktuacje są "zamrożone" i UΛ(ρ) =

−
ρ
д + T

∫
p
∑
σ f (−Eσp (ρ)) jest dane przez średniopolowy efektywny potencjał. Z kolei dla k → 0

wszystkie �uktuacje są odcałkowane i tym samym U0(ρ) jest pełnym potencjałem Gibbsa układu.
Zatem równanie (7.26) interpoluje między średniopolowym, a pełnym efektywnym potencjałem
w trakcie zmieniania skali k dla której następuje obcięcie pędów. Równanie (7.26) nie wiąże się z roz-
winięciem w potęgach ρ potencjałuUk (ρ). Z tego powodu podejście to dobrze nadaje się do zbadania
wpływu �uktuacji na rząd przemiany fazowej. Z drugiej strony otrzymane równanie płynięcia U̇k (ρ)
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Rys. 7.3: Średniopolowy [UΛ(∆ =
√
ρ)] oraz zrenormalizowany [U0(∆ =

√
ρ)] efektywny potencjał

dla zestawu parametrów odpowiadający rys. 5.2 dla T = 0 oraz h = hc ≈ 1.346. Parametry pro-
pagatora wynoszą Z = Z0 = 10W = 1. Uwzględnienie �uktuacji parametru porządku powoduje
przesunięcie położenia QCP od hMFT

c ≈ 1.362 do hc ≈ 1.346. Przemiana fazowa pozostaje II rodzaju
(przy L = 0) po uwzględnieniu wpływu �uktuacji przy wykorzystaniu równań płynięcia RG. War-
tość oczekiwana parametru porządku zanika w sposób ciągły, gdyh zmienia się w kierunku wartości
krytycznej hc .

jest nieliniowym równaniem różniczkowym, które może zostać zbadane tylko numerycznie. Warto
podkreślić, że prostsze obcięcia równania Wettericha były wykorzystywane w podobnym kontek-
ście w pracach [70, 121].

Dyskretyzując przestrzeń wartości ρ całkujemy równanie (7.26) dla T = 0 przyjmując jako wa-
runek początkowy średniopolową postać efektywnego potencjałuUΛ(ρ). Uzyskane wyniki nie wy-
kazują śladów niestabilności QCP otrzymanego na poziomie MFT w kierunku przemiany fazowej
I rodzaju. Pokazujemy to na rys. 7.3 poprzez narysowanie wykresu średniopolowego oraz zrenor-
malizowanego efektywnego potencjału odpowiadającego parametrom wykorzystanym na rys. 5.2.
Wartość h dobrano tak, aby odpowiadała dokładnemu położeniu przemiany fazowej dla T = 0 po
wykonaniu procedury renormalizacji. W tym przypadku kształt średniopolowego efektywnego po-
tencjału wskazuje, że znajdujemy się we wnętrzu fazy uporządkowanej, tj. minimum UΛ(∆) odpo-
wiada ∆0 , 0. Rachunek ten pokazuje stabilność QCP ze względu na �uktuacje parametru porządku
w d = 3, przy zaniedbaniu tłumienia Landaua.
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7.4 Teoria Hertza-Millisa w fazie nadciekłej

Teoria Hertza-Millisa w swoim pierwotnym kształcie została sformułowana w odniesieniu do
fazy paramagnetycznej i jej celem było scharakteryzowanie magnetycznych przemian fazowych
w układach wędrujących fermionów. Jednym z jej wyników jest stwierdzenie, że ciągła przemiana
fazowa w T = 0 należy do klasy uniwersalności modeli O (N )-symetrycznych o efektywnej wy-
miarowości D = d + z, gdzie wykładnik dynamiczny z przyjmuje wartość z = 3, gdy niestabilność
zachodzi przy magnetycznym wektorze uporządkowania wynoszącym Q = 0 [89, 147].

Wartość wykładnika z jest związana z tłumieniem Landaua modów kolektywnych i w rozwa-
żanej przez nas sytuacji nie jest od razu jasnym jaka ona będzie. Spowodowane jest to tym, że
w niezrównoważonych mieszaninach Fermiego tłumienie Landaua jest obecne tylko w fazie upo-
rządkowanej i współczynnik w członie ∼ |q0 |

|q| jest proporcjonalny do ρ0 i tym samym znika przy
podchodzeniu do punktu krytycznego. Co więcej zwracamy uwagę, że kwantowy punkt krytyczny
odpowiada stanowi, który jest uporządkowany na poziomie MFT i oznacza to, że człon opisujący
tłumienie jest obecny w równaniach płynięcia RG we wszystkich skalach opisujących podchodzenie
do krytyczności, przy czym zanika jedynie w asymptotycznie małych skalach RG.

Standardowo teoria Hertza-Millisa jest formułowana w odniesieniu do fazy nieuporządkowanej.
Z tego powodu wykorzystujemy nieperturbacyjne sformułowanie RG, które można zastosować za-
równo do fazy symetrycznej i uporządkowanej [108]. Pozwala ona także na otrzymanie zarówno
gaussowskiego punktu stałego, jak i punktu stałego Wilsona-Fishera. Pokażemy jak spodziewane
przejście między reżimem kwantowym, a klasycznym jest precyzyjnie odtwarzane dla T > 0 przy
braku tłumienia Landaua. Następnie uwzględnimy człon tłumienia ∼ ρ0

|q0 |
|q| . Nasze wyniki wskazują,

że jego obecność zakłóca płynięcie RG w kierunku punktu stałego Wilsona-Fishera, który pojawia
się dla pośrednich skal RG. Wskazuje to na możliwość indukowania przemiany fazowej I rodzaju
poprzez �uktuacje, które są związane z tłumieniem modu podłużnego σ . Mechanizm destabiliza-
cji QCP obecny w tym przypadku jest całkowicie różny od tych badanych dotychczas [20, 138] np.
w kontekście ferromagnetyków [19] lub nadprzewodników [27, 88, 131].

7.4.1 Równania płynięcia stałych ρ̇0,k oraz λ̇k

W naszym problemie posłużymy się jednocząstkowym nieredukowalnym wariantem niepertur-
bacyjnej teorii renormalizacji i jako punkt wyjścia przyjmujemy równanie Wettericha. Metoda ta
jest szczególnie wygodna do opisu ciągłych przejść między różnymi reżimami związanymi z wy-
stępowaniem kilku punktów stałych, które rządzą płynięciem RG w różnych skalach [39, 52, 127,
184, 218]. W dalszej części posłużymy się przybliżeniami, które zostały opracowane w kontekście
badań nad magnetycznymi przemianami fazowymi w układach fermionów posiadających symetrię
Isinga [104, 106, 108], a także typowego działania Hertza-Millisa. Z powodu silnie anizotropowego
propagatora danego relacjami (7.25) będziemy wykorzystywać dwie różne funkcje obcięcia Rσ/π dla
poszczególnych kierunków.

Naszym celem jest zbadanie wpływu członu tłumienia Landaua ∼ ρ0
|q0 |
|q| na skalowanie w kwan-
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towym reżimie krytycznym. Dla prostoty pomijamy pozadiagonalny propagator σ −π , tj. kładziemy
W = 0. Człon ten jest nieobecny dla układów posiadających symetrię cząstka-dziura i przypuszcza
się, że skaluje się do zera w trakcie płynięcia RG wewnątrz fazy uporządkowanej [160]. W ogól-
ności wpływa on na niektóre własności transportowe oraz termodynamiczne takie jak ściśliwość
kondensatu [175].

Posługując się tymi przybliżeniami postępujemy w standardowy sposób [21] wychodząc z rów-
nań płynięcia efektywnego potencjału (patrz równanie (7.26)), które wyprowadziliśmy w poprzed-
nim podrozdziale. W rozważanym przypadku otrzymujemy, że

U̇k (ρ) =
1
2

∫
q



Ṙσ
k

γσ ,σ (ρ)
+

Ṙπ
k

γπ ,π (ρ)


. (7.28)

Ponadto parametryzujemy efektywny potencjał korzystając z postaci

Uk (ρ) =
λk
2

(
ρ − ρ0,k

)2 . (7.29)

W rozważanym przybliżeniu pomijamy także płynięcie współczynników gradientowych (zarówno
w kierunku przestrzennym jak i czasowym). Jest to równoważne z pominięciem wymiaru anomal-
nego ησ/π (ang. anomalous dimension), gdyż Żσ/π = −ησ/πZ

σ/π [53]. Poza tym wartość ησ/π jest
mała w przypadku układów trójwymiarowych, a takim zajmujemy się w tym problemie. W kon-
sekwencji równania płynięcia RG są parametryzowane przez zbiór tylko dwóch zależnych od skali
stałych sprzężenia ρ0,k oraz λk . W kontekście kwantowej krytyczności dla wędrujących fermionów
wykorzystywane przybliżenia pozwalają na uchwycenie istotnych aspektów �zyki tych układów
w d = 3 [106]. Jednakże postępowanie to jest niewystarczające w d = 2, gdzie płynięcie stałych
gradientowych Z i związanych z nimi wymiarów anomalnych η pełni istotną rolę.

Wyprowadzimy teraz równanie płynięcia stałej ρ0,k korzystając z relacji d
dtU

′(ρ0,k ) = ∂tU
′(ρ0,k )+

U ′′(ρ0,k )ρ̇0,k = 0, która wynika zU ′(ρ0,k ) = 0. Różniczkując równanie (7.29) i kładąc ρ = ρ0,k , a także
korzystając z U ′′(ρ0,k ) = λk otrzymujemy, że

ρ̇0,k =
1
2

∫
q

[
3Ṙσk γ

−2
σ ,σ (ρ0,k ) + Ṙ

π
k γ
−2
π ,π (ρ0,k )

]
. (7.30)

Równanie płynięcia dla stałej λk możemy otrzymać licząc drugą pochodną równania (7.29), którą
obliczamy dla ρ = ρ0,k . W rezultacie otrzymujemy, że

λ̇k = λ
2
k

∫
q

[
9Ṙσk γ

−3
σ ,σ (ρ0,k ) + Ṙ

π
k γ
−3
π ,π (ρ0,k )

]
. (7.31)

Zauważmy, że kładąc ρ = ρ0,k dostajemy bezmasowy propagator modu poprzecznego γ−1
π ,π , bo

U ′(ρ0,k ) = 0 (porównaj z równaniem (7.20)) Z kolei masa modu podłużnegoσ wynosim2
σ = U

′(ρ0,k )+

2ρ0,kU
′′(ρ0,k ) = 2λkρ0,k .

W powyższych równaniach wykorzystujemy funkcję obcięcia Litima, która jest zależna od kie-
runku σ/π i ma postać

Rσ/π
k
= Xσ/πθ (Xσ/π ), (7.32)
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gdzieXσ = Zσ
(
k2 − q2

)
−Z 0

σq
2
0−Lρ0,k

|q0 |
|q| orazXπ = Zπ

(
k2 − q2

)
−Z 0

πq
2
0. Wybór ten sprawia, że całki

występujące w równaniach płynięcia dla ρ0,k oraz λk są ograniczone do obszaru w zmiennych (q,q0),
gdzie γσ ,σ oraz γπ ,π są niezależne od q, co pozwala na analityczne wykonanie całek po pędach q.

Następnie przeskalowujemy zmienne korzystając z klasycznych wymiarów skalujących

κk = Zπk
2−dρ0,k oraz uk = Z−2

π kd−4λk . (7.33)

Procedura ta sprawia, że w trakcie płynięcia stałych κ oraz u osiągany jest punkt stały Wilsona-
Fishera dla T > 0 , gdy warunek początkowy zostanie wybrany w taki sposób, że znajdujemy się
na powierzchni krytycznej (ang. critical manifold). Prawą stronę powyższych równań płynięcia roz-
dzielamy na wkłady klasyczne odpowiadające q0 = 0 oraz na wkłady kwantowe dla których q0 , 0.
W rezultacie otrzymujemy

κ̇k = β
cl
κ + β

qu,σ
κ + β

qu,π
κ ,

u̇k = β
cl
u + β

qu,σ
u + β

qu,π
u .

(7.34)

Ponadto wkłady kwantowe w powyższym równaniu podzieliliśmy na części pochodzące od �uk-
tuacji podłużnych σ oraz poprzecznych π . Człony występujące w równaniu κ̇k mają następującą
postać

βclκ = (2 − d )κk +
AdT

d
*.
,

3Z̃(
Z̃ + m̃2

σ

)2 + 1+/
-
, (7.35)

β
qu,σ
κ =

3AdT(
Z̃ + m̃2

σ

)2

q̃σ0∑
q0>0



2Z̃
d

{(
yMσ (q0)

)d/2
−

(
ymσ (q0)

)d/2}
+

−
q0LZ

−2
π kd−5

d − 1 [κ̇k + (d − 2)κk]
{(
yMσ (q0)

) (d−1)/2
−

(
ymσ (q0)

) (d−1)/2
} 
,

(7.36)

β
qu,π
κ =

2AdT

d

q̃π0∑
q0>0

[
yMπ (q0)

]d/2
, (7.37)

gdzieAd =
Sd−1

(2π )d , przy czym Sd−1 = dπd/2

Γ( d2 +1) jest powierzchnią (d−1)-wymiarowej sfery jednostkowej,

Z̃ = Zσ/Zπ , m̃2
σ = 2κkuk , yMπ (q0) = 1 − Z 0

π
Zπk2q

2
0, podczas gdy yM/mσ (q0) są dodatnimi pierwiastkami

następującego równania

y3/2 −

(
1 −

Z 0
σ

Zσk2q
2
0

)
y1/2 +

LZ−2
π

Z̃
kd−5κk |q0 | = 0. (7.38)

Warto podkreślić, że yM/mσ (q0) jest górną/dolną granicą całkowania po y = q2/k2 (tj. pochodzi ten
człon z wykonania całki

∫
q(·) w β

qu,σ
κ ) i w związku z tym zachodzi relacja yMσ (q0) > y

m
σ (q0) (bardziej

szczegółowo zostało to wyjaśnione w dodatku C). Suma Matsubary dla wkładu od modu π (patrz
równanie (7.37)) przebiega od q0 = 2πT do q̃π0 =

√
Zπ
Z 0
π
k . Z kolei dla wkładu od modu σ (równanie

(7.36)) sumowanie przebiega po q0 = 2πnT (n ∈ N+) jest ograniczone do wartości spełniających
poniższą nierówność

q2
0
Z 0
σ

Zσk2 + 3(2)−2/3
(
LZ−2

π

Z̃
kd−5κkq0

)2/3
− 1 < 0. (7.39)
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Największa wartość z nich jest oznaczona jako q̃σ0 . Poza tym wkłady występujące w równaniu u̇k

mają następującą postać

βclu = (4 − d )u + 2AdT

d
*.
,

9Z̃(
Z̃ + m̃2

σ

)3 + 1+/
-
u2, (7.40)

β
qu,σ
u =

6u2

Z̃ + m̃2
σ

β
qu,σ
κ (7.41)

oraz
β
qu,π
u = 2u2β

qu,π
κ . (7.42)

Sumy Matsubary występujące w powyższych równaniach muszą zostać wykonane numerycznie.
Powyższe równania zostały zapisane dla dowolnej wymiarowości d , ale od tej pory ogranicza-

my się do przypadku d = 3. Jak zostało to wcześniej wspomniane wykorzystane przybliżenia nie
są adekwatne w przypadku d = 2 ze względu na pominięcie wymiarów anomalnych. Osobliwość
krytyczna jest kontrolowana przez gaussowski punkt stały dla T = 0 oraz przez klasyczny punkt
stały Wilsona-Fishera dla T > 0.

7.4.2 Płynięcie RG przy braku tłumienia Landaua

Zaczniemy od analizy równań płynięcia stałychκ orazu dla przypadku w którym pomijamy pro-
ces tłumienia Landaua dla modu podłużnego σ . Oznacza to, że kładziemy L = 0 w β

qu,σ
κ oraz βqu,σu .

Płynięcie stałych jest inicjalizowaine dla s = −t = − ln(k/Λ) = 0 przy ustalonej temperaturzeT > 0
i wartościach początkowych κ = κ0 > 0, a także u = u0 > 0 wyznaczonych na podstawie wartości
mikroskopowych parametrów układu. W przypadku rozwiązania numerycznego przyjmujemy, że
u0 = Λ = Zσ = Zπ = Z 0

σ = Z 0
π = 1. Całkując równania płynięcia (7.34) w kierunku rosnących

wartości s (odpowiadających k → 0) znajdujemy, że κ dąży od zera dla pewnych skończonych skal,
co wskazuje na płynięcie w kierunku fazy nieuporządkowanej, albo rozbiega dla dużych wartości
s (co odpowiada zbieganiu ρ0 do pewnej skończonej wartości) wskazując tym samym na osiąganie
fazy uporządkowanej. Dostrajając układ do przemiany fazowej (poprzez zmienianie κ0) obserwuje-
my, że (κ, u) płyną w kierunku wartości odpowiadających punktom stałym. Wyniki dla płynięcia
stałej κ są zaprezentowane na rys. 7.4 dla ciągu temperatur, których wartości dążą do zera. Skala
scross dla której κ odrywa się od gaussowskiego punktu stałego (rządzącego osobliwością krytycz-
ną w T = 0) i w sposób ciągły płynie w kierunku punktu stałego Wilsona-Fishera (kontrolującego
osobliwość krytyczną w skończonych temperaturach) rozbiega w granicyT → 0+ zgodnie z relacją
scross ∼ −

1
z lnT [147]. Dopasowanie otrzymanych danych prowadzi do wartości wykładnika dyna-

micznego z = 1.0, co w pełni zgadza się z oczekiwanym zachowaniem dla tego układu. W zakresie
pędów [0, scross[ uzyskane płynięcie κ jest zdominowane przez wkłady kwantowe (q0 , 0), podczas
gdy zakres [scross ,∞[ jest zdominowany wkładami klasycznymi (q0 = 0) do równań płynięcia (7.34).

Przedstawimy teraz wyniki dotyczące zrenormalizowanego kształtu linii krytycznejTc (κ0) otrzy-
mane poprzez odcałkowanie równań płynięcia RG. Ogólnie oczekuje się, że linia krytyczna jest dana
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Rys. 7.4: Płynięcie stałej κ dla kilku temperaturT = 10−4 (krzywa czerwona),T = 10−3 (krzywa zie-
lona), T = 10−2 (krzywa niebieska) oraz T = 10−1 (krzywa różowa) przy braku tłumienia Landaua.
Reżim pośredni płynięcia jest kontrolowany przez gaussowski punkt stały, podczas gdy podczerwo-
ny sektor (duże wartości s) jest rządzony przez punkt stały Wilsona-Fishera. Skala scross dla której
następuje ciągłe przejście między reżimami (tj. oderwanie się płynięcia κ od gaussowskiego punktu
stałego) rozbiega, gdy T → 0. Ogólnie oczekuje się, że scross ∼ −1

z lnT [147]. Przewidywanie to jest
w pełni zgodne z otrzymanymi wynikami dla których wykładnik z = 1.0 (jak zostało to pokazane
na wykresie wstawionym w prawym górnym rogu).

prawem potęgowym (dla niskich temperatur) o postaci [147]

Tc ∼ (κ0 − κ
(0)
0 )ψ , ψ =

z

d + z − 2 , (7.43)

gdzie ψ to wykładnik przesunięcia. Warto zauważyć, że wykładnik ψ zależy jedynie od d oraz z.
Przykładowe wyniki otrzymane dla linii krytycznej zostały zaprezentowane na rys. 7.5. Uzyskane
prawo potęgowe jest scharakteryzowane wykładnikiem ψ = 0.5, co w pełni zgadza się z oczekiwa-
nym wynikiem dla z = 1 (tj.ψ = 1/2). Ponadto widzimy, że uniwersalny kształt liniiTc nie przystaje
do generycznych przewidywań MFT, które to wskazują, że faza nadciekła jest obszarem wklęsłym
(ang. reentrant phase) na diagramie fazowym, co można zobaczyć na rys. 5.2.

Powyższe wyniki odtwarzają antycypowane zachowanie układu przy pominięciu członów tłu-
mienia Landaua w równaniach płynięcia, tj. skalowanie jest analogiczne jak dla kwantowego mo-
delu Isinga [192, 218]. Podkreślamy tu rolę wykładnika dynamicznego, który odpowiada za kształt
linii krytycznejTc oraz skali scross dla której następuje przejście między reżimem kwantowym i kla-
sycznym. Naszym celem będzie teraz zbadanie w jaki sposób zostanie zmody�kowane otrzymane
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Rys. 7.5: Linia krytyczna otrzymana poprzez odcałkowanie równań płynięcia RG przy braku tłumie-
nia Landaua (L = 0). Granica faz jest opisywana prawem potęgowym o wykładniku ψ = 0.5, co w
pełni zgadza się z równaniem (7.43) w którym położono z = 1. Rysunek w prawym dolnym rogu
odpowiada tym samym danym narysowanym w skali liniowej.

zachowanie po uwzględnieniu członu tłumienia Landaua w propagatorze modu σ .

7.4.3 Płynięcie RG przy uwzględnieniu tłumienia Landaua

W tej części powtórzymy analizę zaprezentowaną w poprzednim paragra�e, lecz tym razem
uwzględnimy człony odpowiadające tłumieniu Landaua (tj. L , 0). Rozwiązujemy równania płynię-
cia (7.34) i wykorzystujemy procedurę dostrajania κ0 do jej wartości krytycznej dla kilku tempera-
tur dążących do zera. Płynięcie RG w reżimie kwantowym jest rządzone przez wzajemny wpływ
różnych wkładów pochodzących z członów ∼ q2

0 oraz ∼ ρ0
|q0 |
|q| . Analiza płynięcia stałej κ jest zapre-

zentowana na rys. 7.6 dla względnie niewielkiej wartości L = 0.1 oraz niskiej temperaturyT = 10−4.
Nałożono na nim także trajektorię RG odpowiadającą płynięciu κ w tej samej temperaturze T oraz
przy tych samych wartościach pozostałych parametrów, lecz z L = 0. Opisana w poprzednim para-
gra�e procedura dychotomii pozwala na zidenty�kowanie dwóch faz obecnych w układzie, a także
na znalezienie granicy faz między nimi w przestrzeni parametrów. Jednakże przemianie fazowej nie
towarzyszy zbieganie płynięcia RG do punktu stałego i związanej z nim niezmienniczości skalowa-
nia. Zachowanie to może wskazywać na wywołaną �uktuacjami przemianę fazową I rodzaju, która
jest spowodowana przez proces tłumienia Landaua modów kolektywnych. Efekt ten pojawia się
jedynie w odpowiednio niskich temperaturach T ; w wyższych temperaturach obserwujemy ciągłą
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Rys. 7.6: Płynięcie stałej κ dla temperaturyT = 10−4, gdy tłumienie Landaua jest aktywne i scharak-
teryzowane L = 0.1 (czarne krzywe) oraz dla braku tłumienia Landaua, tj. L = 0 (czerwone krzywe).
Występowanie tłumienia Landaua blokuje płynięcie w kierunku punktu stałego. Przemiana fazo-
wa nadal zachodzi (na co wskazuje to, że κ nadal osiąga zero lub płynie do nieskończoności), ale
układ nie wykazuje niezmienniczości skalowania. Wykres wstawiony w prawym górnym rogu jest
powiększeniem obszaru w którym trajektorie RG separują się.

przemianę fazową tak jak poprzednio (tj. przy braku tłumienia Landaua). Implikuje to występowanie
punktu trójkrytycznego na diagramie fazowym dla temperaturyTtri . Zwracamy uwagę, że układ dla
T > Ttri wykazuje bardzo podobne zachowanie do sytuacji w której L = 0. WartośćTtri wzrasta wraz
ze stałą L oraz dlaT � Ttri wartość krytyczna parametru kontrolnego κ0 jest w praktyce niezależna
od T . Oznacza to, że linia krytyczna Tc w płaszczyźnie (κ0,T ) jest pionową linią prostą. Otrzymana
linia Tc została zaprezentowana na rys. 7.7 dla kilku wartości stałej L. Dobrze widoczne jest na nim
odchylenie od zachowania skalującego scharakteryzowanego przez z = 1 dla niskich temperatur.

Warto podkreślić, że zastosowana tutaj metoda nieperturbacyjnej RG jest całkowicie konsystent-
na z teorią Hertza-Millisa w kontekście typowych metalicznych QCP (gdzie współczynnik tłumienia
Landaua pozostaje skończony w trakcie płynięcia RG) i dla nich rozwiązania równań płynięcia, któ-
re wykazują niezmienniczość skalowania są osiągane zarówno w przypadku z = 2, jak i z = 3
[16,104,106,108]. W dodatku nieperturbacyjna renormalizacja wykorzystująca nawet bardzo proste
obcięcia równań płynięcia jest zdolna do uwzględnienia �uktuacji termicznych wychodzących poza
przybliżenie gaussowskie i pozwala na łatwe uwzględnienie wymiaru anomalnegoη dla pola porząd-
ku ϕ. Jak analitycznie pokazano w pracy [106] płynięcie RG wykorzystujące schemat jednocząstko-
wy nieredukowalny precyzyjnie odtwarza wyniki teorii Hertza-Millisa po linearyzacji otrzymanych
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Rys. 7.7: Temperatura krytyczna jako funkcja κ0 otrzymana dla kilku wartości L. Dla wysokich tem-
peratur linia krytyczna Tc (κ0) opisywana jest prawem potęgowym z wykładnikiem przesunięcia
ψ = 1/2. Odchylenie od tego skalowania następuje poniżej progowej wartości T , która zależy od L.
Wartość krytyczna κ0 jest niezależna od T poniżej najniżej ulokowanego punktu dla każdej z krzy-
wych i w związku z tym ln

(
κ0 − κ

(0)
0

)
dąży do −∞.

równań wokół gaussowskiego punktu krytycznego dla T = 0.
W omawianym w tej dysertacji problemie spotykamy się jednak z nieco inną sytuacją, gdyż

współczynnik tłumienia Landaua jest proporcjonalny do ρ0 i w związku z tym skaluje się do zera
w trakcie RG dla przemiany fazowej (jak wskazuje na to równanie płynięcia dla parametru porządku
ρ̇). Wprowadza to silną zależność propagatorów od pędów i częstości w trakcie renormalizacji, co
w rezultacie powoduje sprzężenie zwrotne z płynięciem efektywnego potencjału. W efekcie otrzy-
many problem jest w nieunikniony sposób nieliniowy, co nie pozwala na zastosowanie zlinearyzo-
wanego podejścia typu Hertza-Millisa.

Zakończymy ten rozdział obserwacją, że otrzymane odstępstwo od kwantowego skalowania kry-
tycznego danego wykładnikiem dynamicznym z = 1, które wskazuje na możliwą przemianę I ro-
dzaju jest widoczne jedynie dla bardzo niskich temperatur. Podkreślamy także, że otrzymane tutaj
zablokowanie płynięcia RG w kierunku punktu stałego Wilsona-Fishera zostało zademonstrowane
w ramach bardzo prostej parametryzacji efektywnego działania Γk[ϕ] oraz dla warunku początko-
wego będącego teorią typu ϕ4. W związku z tym nie możemy stwierdzić ogólności opisanej w tym
paragra�e fenomenologii, gdyż jesteśmy ograniczeni poprzez przyjęte przez nas przybliżenia.
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Rozdział 8

Podsumowanie

W niniejszej rozprawie rozważaliśmy własności kwantowych przemian fazowych w ultrazim-
nych spolaryzowanych mieszaninach gazów fermionowych o nierównych masach. Zbadaliśmy struk-
turę analityczną efektywnego potencjału, przy czym w sposób szczególny skupiliśmy się na wła-
snościach rozwinięcia Landaua w granicy T → 0+, a także na możliwości otrzymania kwantowego
punktu krytycznego w tym kontekście. Pokazaliśmy, że rozwinięcie Landaua jest dobrze zde�niowa-
ne dla T = 0 za wyjątkiem jednowymiarowego podzbioru parametrów scharakteryzowanego rów-
naniemh = ζ µ, które odpowiada warunkowi pokrywania się powierzchni Fermiego poszczególnych
składników tworzących mieszaninę. Zademonstrowaliśmy, że na poziomie przybliżenia pola śred-
niego występowanie kwantowego punktu krytycznego jest w ogólności wykluczone dlad = 2. Z ko-
lei w trzech wymiarach znaleźliśmy oraz scharakteryzowaliśmy zbiór parametrów dla którego moż-
liwe jest otrzymanie kwantowego punktu krytycznego na diagramie fazowym. W tej sytuacji kwan-
towa przemiana fazowa zachodzi między jednorodną fazą nadciekłą, a całkowicie spolaryzowanym
gazem. Co więcej występowanie przemiany fazowej II rodzaju okazuje się być faworyzowane dla
dużych wartości stosunku mas atomów tworzących mieszaninę r = m−/m+. W rozważaniach tych
pominęliśmy możliwość występowania niejednorodnej fazy nadciekłej typu FFLO. Wykorzystując
metodę nieperturbacyjnej grupy renormalizacji pokazaliśmy także, że renormalizacja efektywnego
potencjału wskazuje, że otrzymany punkt krytyczny wT = 0 jest stabilny ze względu na �uktuacje
parametru porządku (przy założeniu braku tłumienia Landaua modów kolektywnych). Realizacja
takich kwantowych zjawisk krytycznych może wkrótce stać się możliwa dzięki intensywnemu roz-
wojowi technik doświadczalnych pozwalających na otrzymanie gazów Fermiego w jednorodnych
pułapkach magnetooptycznych [94, 149].

Kolejnym aspektem prezentowanych badań dotyczących kwantowych przemian fazowych w nie-
zrównoważonych mieszaninach Fermiego jest kwestia występowania zjawisk multikrytycznych.
Poprzez analizę struktury efektywnego działania dla pola porządku ϕ w fazie normalnej pokaza-
liśmy, że można otrzymać punkt Lifszyca zlokalizowany pomiędzy fazą normalną, fazą typu FFLO
oraz jednorodną nadcieczą, który może zostać dostrojony do zerowej temperatury poprzez mody-
�kację długości rozpraszania. Co więcej obserwacja ta dotyczy mieszanin realizowanych ekspery-
mentalnie oraz �zycznie istotnego doboru parametrów układu. Otrzymany w ten sposób kwantowy

127
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punkt Lifszyca (a także jego otoczenie) wykazywałby w trzech wymiarach do tej pory niezbadaną
sytuację, która potencjalnie związana byłaby z niegaussowską przemianą w zerowej temperaturze.
Może to mieć ważne konsekwencje dla badanego układu, które wymagają dalszych badań (w szcze-
gólności wykorzystujących teorię renormalizacji). Na przykład kształt linii krytycznej Tc może w
tym przypadku nie być już opisywany przy pomocy relacji Tc ∼

(
κ0 − κ

(0)
0

)z/(d+z−2)
, lecz być w

zamian kontrolowany przez wykładnik długości korelacji ν podobnie jak ma to miejsce dla dwu-
wymiarowego kwantowego modelu Isinga [192]. Warto zwrócić uwagę, że w przypadku punktu
Lifszyca mamy dwa różne wykładniki krytyczne (ν⊥ oraz ν‖) charakteryzujące zachowanie funkcji
korelacji [55].

Następnie zbadaliśmy własności kolektywnych wzbudzeń fononowych (tzw. modów Andersona-
Bogoliubowa) związanych z łamaniem ciągłej symetriiU (1). Wzbudzenia te są modami Goldstone’a
i pełnią istotną rolę w opisie przemian fazowych zachodzących w badanym układzie. Szczególną
uwagę poświęciliśmy problemowi występowania tłumienia Landaua w fazie uporządkowanej oraz
normalnej, które ma wpływ na dynamiczne własności modów Goldstone’a. Prowadząc szczegółową
analizę rozwinięcia gradientowego dla elementów macierzowych propagatora �uktuacji parowania
Fq (otrzymanego przy wykorzystaniu przybliżenia fazy losowej, co jest równoważne z uwzględnie-
niem �uktuacji gaussowskich parametru porządku) pokazaliśmy obecność wkładów nielokalnych
w czasie ∼ |q0 |

|q| , które nie były dyskutowane w żadnych dotychczasowych badaniach. Człony te
są odpowiedzialne za pojawianie się zespolonego bieguna propagatora Fq , co oznacza występowa-
nie tłumienia modów kolektywnych. Pokazaliśmy, że tłumienie Landaua jest aktywowane poprzez
zwiększenie niezrównoważenia mieszaniny nawet w granicy T → 0 (w przeciwieństwie do ukła-
dów zbilansowanych, tj. h = 0 oraz r = 1). Efekt ten jest związany z występowaniem dużego nie-
dopasowania pomiędzy powierzchniami Fermiego składników mieszaniny. Wyprowadziliśmy ana-
lityczne kryterium występowania tłumienia (patrz nierówności (6.25)) i podaliśmy jego intuicyjną
interpretację odwołującą się do mechanizmu tłumienia Landaua w mieszaninach Fermiego. Wy-
chodząc poza rozwinięcie gradientowe pokazaliśmy, że nasze przewidywania analityczne w pełni
pokrywają się z współczynnikami tłumienia otrzymanymi numerycznie poprzez znalezienie zespo-
lonych pierwiastków analitycznie przedłużonego wyznacznika macierzy odwrotnego propagatora
�uktuacji parowania detF−1

q (q, zq ) = 0. Analogiczna analiza w fazie normalnej wykazała brak wy-
stępowania tłumienia Landaua w przypadku niskoenergetycznych wzbudzeń bozonowych.

Jak ustaliliśmy, jedną z charakterystycznych cech badanego układu jest występowanie tłumienia
Landaua, które pojawia się wyłącznie wewnątrz fazy uporządkowanej. Wyraz opisujący tłumienie
Landaua ma postać ∼ ρ0

|q0 |
|q| (√ρ0 to parametr porządku) i pojawia się jedynie w odwrotnym pro-

pagatorze podłużnego modu σ . Tłumienie w sposób efektywny uwzględnia sprzęganie się modów
kolektywnych z fermionowymi wzbudzeniami kwazicząstkowymi wzdłuż powierzchni Fermiego.
Jego obecność mody�kuje dynamikę układu i typowo prowadzi do zmiany wartości dynamicznego
wykładnika krytycznego z. W celu ustalenia wpływu tłumienia Landaua przeprowadziliśmy obli-
czenia wykorzystując nieperturbacyjne sformułowanie teorii renormalizacji. Nasze wyniki wska-
zują, że występowanie tłumienia zakłóca płynięcie grupy renormalizacji w kierunku rozwiązania
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wykazującego niezmienniczość skalowania (związaną z występowaniem punktu stałego Wilsona-
Fishera). Fizycznie oznacza to możliwe występowanie nieciągłej przemiany fazowej wywołanej po-
przez sprzęganie się bozonowych modów kolektywnych (związanych z �uktuacjami parametru po-
rządku) z fermionowymi wzbudzeniami kwazicząstkowymi. Otrzymana niestabilność pojawia się
jedynie w bardzo niskich temperaturach. W wyższych temperaturach odtwarzany jest reżim kry-
tycznego skalowania kwantowego, który jest scharakteryzowany przez wykładnik z = 1. Oznacza
to, że tłumienie Landaua nie ma wpływu na �zyczne właściwości układu. W realistycznej sytuacji
można się spodziewać, że dla T odpowiednio wysokich otrzymywane skalowanie jest analogiczne
jak w przypadku kwantowego modelu Isinga dla d = 3, lecz zachowanie to jest obcięte w niskich
temperaturach. Analogicznej niestabilności można spodziewać się także w przypadku kwantowego
punktu Lifszyca, lecz problem ten wymaga bardziej wnikliwej analizy. Przy braku tłumienia Landaua
w układzie obserwuje się ciągłe przejście między reżimem kwantowym rządzonym przez gaussow-
ski punkt stały (T = 0), a sektorem w którym niezmienniczość skalowania jest związana z klasyczny
punktem stałym Wilsona-Fishera (T > 0). Przejście między tymi zachowaniami następuje dla skali
scross ∼ −

1
z lnT . Otrzymywana w tym przypadku linia krytyczna Tc (κ0) jest dana prawem potę-

gowym, które jest scharakteryzowane przez wykładnik przesunięcia ψ = z/(d + z − 2) w zgodzie
z przewidywaniami teorii Hertza-Millisa.

Niedawno zrealizowane mieszaniny Fermiego w których występuje duża różnica mas skład-
ników stanowią potencjalnych kandydatów na eksperymentalne zbadanie problemu analizowane-
go w tej dysertacji. Jednym z obiecujących kandydatów jest mieszanina atomów 161Dy oraz 40K
[185, 186], która to ze względu na występowanie szerokiego rezonansu Feshbacha [38] może być
manipulowana w bardziej elastyczny sposób w porównaniu do wcześniej badanej mieszaniny 6Li
oraz 40K [103, 225, 227, 239].

Zaprezentowana tutaj analiza zakładała występowanie w pełni rozwiniętego uporządkowania
dalekozasięgowego. Bardzo interesującym kierunkiem dalszych badań może być próba odpowie-
dzi na pytanie w jaki sposób zmieni się zachowanie układu przy uwzględnieniu efektów �uktuacji
w przypadku niskowymiarowym. W tego typu układach dalekozasięgowe uporządkowanie zostaje
zdegradowane do porządku algebraicznego i otrzymuje się fazę Kosterlitza-Thoulessa. Innym inte-
resującym zagadnieniem jest kwestia obserwowanego widma wzbudzeń dla przypadku w którym
uwzględnione są także �uktuacje parametru porządku typu FFLO, które charakteryzują się nieze-
rowym całkowitym pędem środka masy Q dla par Coopera. Mimo iż badania teoretyczne sugerują
niestabilność nadcieczy typu FFLO w skończonych temperaturach to nadal prawdopodobnie są one
obecne w stanie podstawowym układu [105,178,206,245]. Kolejnym interesującym problemem jest
zagadnienie dotyczące wpływu niezrównoważenia mieszaniny na tłumienie modu amplitudowego
(Higgsa), który został niedawno zaobserwowany eksperymentalnie [18, 91, 125, 134, 195].

Problem dotyczący kwantowych punktów krytycznych w układach nadciekłych fermionów sta-
nowi nadal w dużej mierze nie zgłębioną dziedzinę badań. W tego typu układach nie można pomi-
nąć sprzęgania się fermionowych oraz bozonowych stopni swobody. Dotyczy to zarówno jednorod-
nych nadcieczy i odpowiadającej im kwantowej krytyczności (która była dyskutowana w tej roz-
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prawie), ale także hipotetycznych kwantowych punktów krytycznych występujących w niejedno-
rodnych stanach typu FFLO [170,172]. Pełne zrozumienie takich układów stanowi interesujące wy-
zwanie w którym ważne jest wzajemne oddziaływanie �uktuacji fermionowych oraz bozonowych,
a także istotne jest uwzględnienie aspektów topologicznych w przypadku faz Kosterlitza-Thoulessa
w dwóch wymiarach. W szczególności zbadanie selfenergii fermionowych może prowadzić do zi-
denty�kowania obszaru na diagramie fazowym w pobliżu kwantowego punktu krytycznego w któ-
rym układ wykazuje cechy cieczy nielandauowskiej. Przykładowy mechanizm prowadzący do tego
typu zachowania w przypadku niezrównoważonych mieszanin Fermiego w d = 2 został opisany
w pracy [219].



Dodatek A

Sumy Matsubary

A.1 Suma typu S =
∫
k

1
β

∑
n ln

(
ikn − E

σ
k

)

Rez

Imz

Kδ
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Rys. A.1: Kontur całkowania.

Policzymy fermionową sumę S =∫
k

1
β

∑
n

(
ikn − E

σ
k

)
eiωn0+ rozważając nastę-

pującą całkę po konturze przedstawionym
na rys. A.1:

Ik =

∮
C

dz
2πi ln

(
z − Eσk

)
f (z)ez0+, (A.1)

przy czym f (z) = (exp(βz) + 1)−1 to roz-
kład Fermiego-Diraca. Funkcja ln(z − Eσ

k
)

posiada cięcie (ang. brunch cut) wzdłuż osi
rzeczywistej dla Rez > Eσ

k
, co sprawia, że

konieczne jest wykorzystanie konturu C
przedstawionego na rys. A.1. Przekrocze-
nie cięcia powoduje przejście na inną ga-
łąź badanej funkcji. Czynnik uzbieżniający
eikn0+ sprawia, że całki po dużym okręgu
o promieniu R → ∞ i po małym półokręgu
o promieniu δ → 0 znikają, co można łatwo oszacować podstawiając z = Reiφ dla dużego okręgu
oraz odpowiednio z = δeiφ dla małego półokręgu.

Bieguny f (z) znajdujące się wewnątrz konturu C są dane przez zn = ikn, gdzie kn =
2π
β (n +

1
2 ) są fermionowymi częstościami Matsubary. Oznacza to, że residua funkcji podcałkowej д(z) =
ln(z − Eσ

k
) f (z) mają postać Resz=znд(z) = − 1

2πiβ ln(ikn − Eσk ). Korzystając z twierdzenia Cauchy’ego
o residuach otrzymujemy, że

Ik = 2πi
∑
zn

Resz=znд(z) = −
1
β

∑
n

ln(ikn − Eσk ), (A.2)

czyli S = −
∫
k Ik.
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Z drugiej strony możemy wprost wykonać całkę Ik korzystając z tego, że jedynie całkowanie po
dwóch półprostych od Eσ

k
do∞ powyżej i poniżej osi rzeczywistej będzie prowadziło do niezerowego

wkładu. Obserwacja ta prowadzi do zależności

Ik =

∫ ∞

Eσk

dϵ
2πi ln

(
ϵ + i0+ − Eσk

)
f (ϵ ) +

∫ Eσk

∞

dϵ
2πi ln

(
ϵ − i0+ − E (+)

k

)
f (ϵ )

=

∫ ∞

Eσk

dϵ
2πi f (ϵ )

[
ln

(
ϵ + i0+ − Eσk

)
− c .c .

] (A.3)

Korzystając z tożsamości f (ϵ ) = − 1
β

d
dϵ ln ���1 + exp

(
− βϵ

) ��� i wykonując całkowanie przez części
dostajemy

Ik =
1
β

∫ ∞

Eσk

dϵ
2πi ln

����1 + e−βϵ
����

d
dϵ

[
ln

(
ϵ + i0+ − Eσk

)
− c .c .

]

=
1
β

∫ ∞

Eσk

dϵ
2πi ln

����1 + e−βϵ
����

[
− 2πiδ

(
ϵ − Eσk

)]

= −
1
β

ln
(
1 + e−βEσk

)
,

(A.4)

czyli ostatecznie

S =

∫
k

1
β

∑
n

ln
(
ikn − E

σ
k

)
=

1
β

∫
k

ln
(
1 + e−βEσk

)
. (A.5)

A.2 Suma typu S = 1
β

∑
n (ikn − E

σ
k
)−1
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Rys. A.2: Kontur całkowania.

Wykonamy teraz sumę typu S =

1
β

∑
n (ikn−E

σ
k
)−1eiωn0+ , którą zamienimy na

całkę po konturze o postaci

Ik =

∮
C

dz
2πi

f (z)

z − Eσk
ez0+, (A.6)

przy czym jako kontur całkowania wy-
bieramy okrąg o promieniu R jak na rys.
A.2. Całka po okręgu znika eksponencjal-
nie dzięki czynnikowi ez0+ f (z).

Rozkład Fermiego-Diraca posiada bie-
guny w punktach dla których eβz = −1,
które prowadzi do zn = ikn, gdzie kn =
2π
β (n + 1/2) to fermionowe częstości Mat-

subary. Rozważana funkcja h(z) =
f (z)
z−Eσk

ma w tych punktach residua wynoszące
Resz=znh(z) = − 1

2πiβ
1

zn−E
σ
k

. Poza tym funk-
cja h(z) posiada biegun jeszcze w punkcie z′ = Eσ

k
, któremu odpowiada residuum Resz=z ′h(z) =
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β

∑
N (IKN − E

σ
K )
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f (z′)/2πi . Oznacza to, że korzystając z twierdzenia o residuach dostajemy, że

Ik = 2πi


∑
zn

Resz=znh(z) + Resz=z ′h(z)

= −

1
β

∑
n

1
ikn − E

σ
k

+ f (Eσk ) = 0, (A.7)

czyli S = f (Eσ
k
). Warto tu podkreślić, że w przypadku, gdy sumę wykonujemy dla funkcji (ikn−Eσk )

−1

w której ikn zostało zastąpione przez ikn+iqm wynik pozostaje ten sam. Dzieje się tak, gdyż eiqmβ = 1,
czyli ei (qm+kn )β = eiqmβeiknβ = −1.
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Dodatek B

Przedłużenie analityczneMij (q, iq0)

Przedłużenie analityczne elementów macierzowych Mij (q, iq0) odwrotnego propagatora �uktu-
acji parowania F−1

q z górnej półpłaszczyzny zespolonej do dolnej ma postać

M̃ij (q,ω − iϵ ) = Mij (q,ω − iϵ ) + 2πiAij (q,ω + iϵ ), (B.1)

gdzie Aij (q,ω + iϵ ) = − 1
π ImMij (q,ω + iϵ ) oraz ϵ > 0. Możemy ten wynik uzasadnić odwołując się

do analizy zaprezentowanej w pracy [144]. W celu zilustrowania tej procedury dla prostoty przyj-
miemy, żem+ =m−.

Dla niskoenergetycznych wzbudzeń kolektywnych wyrazami w Mij (q, iq0) odpowiedzialnymi
za pojawianie się zespolonego bieguna propagatora �uktuacji parowania są te w których występuje
czynnik [f (E±

k+q/2) − f (E±
k−q/2)]. Gdy |q| jest małe, wtedy wkłady pochodzące od tych członów są

jednakowe dla wszystkich elementów macierzowych (patrz podrozdział 6.2.1). Wkłady dla retardo-
wanych M (R)

ij (tj. iq0 7→ ω + iϵ) mają postać

δM (q,ω + iϵ ) = −2
∫
k
u2
kv

2
k

(
∇k f (E

+
k
) · q

ω + iϵ + 2q ·w −
∇k f (E

−
k
) · q

ω + iϵ − 2q ·w

)
, (B.2)

gdzie w = ∇kEk . Oznaczenie δM należy rozumieć jako wkład do Mij , który jest odpowiedzialny
za powstawanie zespolonego bieguna propagatora �uktuacji parowania. W powyższym równaniu
możemy wykonać całkowanie po kątach co prowadzi do wyrażenia

δM (q,ω + iϵ ) = −
∫ dk

(2π )2u
2
kv

2
k

[
f ′(E+k ) + f ′(E−k )

]
×

×

(
2 + ω

2qw ln
(
ω + 2qw + iϵ
ω − 2qw + iϵ

))
.

(B.3)

Przedłużenie analityczne funkcji δM do dolnej półpłaszczyzny zespolonej, które będziemy oznaczać
jako δM̃ , możemy wykonać poprzez wykorzystanie własności analitycznych funkcji ln z, która po-
siada cięcie wzdłuż osi rzeczywistej dla Rez > 0.

Logarytm występujący w awansowanym elemencie macierzowym δM (q,ω−iϵ ) należy obliczyć
na innej powierzchni Riemanna, co prowadzi do

ln(ω − iϵ − 2qw ) = ln |ω − iϵ − 2qw | + i [arg(ω − iϵ − 2qw ) + 2πθ (1 − x )] , (B.4)
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dla x = ω
2qw > 0, lub

ln(ω − iϵ − 2qw ) = ln |ω − iϵ − 2qw | + i [arg(ω − iϵ − 2qw ) + 2πθ (1 + x )] , (B.5)

dla x = ω
2qw < 0. Funkcja schodkowa w powyższych wyrażeniach sprawdza czy przy przechodzeniu

na dolną półpłaszczyznę zespoloną przekraczamy cięcie funkcji ln z, tj. czy Rez > 0, co skutkuje
zmianą wartości logarytmu o 2πi . Prosta algebra prowadzi do wniosku, że powyższa procedura jest
równoważna zde�niowaniu przedłużenia analitycznego retardowanego elementu macierzowego na
dolną półpłaszczyznę zespoloną δM̃ (q,ω − iϵ ) jako

δM̃ (q,ω − iϵ ) = δM (q,ω − iϵ ) − 2iImδM (q,ω + iϵ ), (B.6)

przy czym człon 2iImδM (q,ω + iϵ ) uwzględnia skok wartości funkcji przy przechodzeniu na inną
płaszczyznę Riemanna. Równanie (B.6) prowadzi do relacji (B.1), którą wykorzystaliśmy do nume-
rycznego wyznaczenia zespolonego bieguna propagatora Fq .

Otrzymana własność jest spełniona także dla funkcji Greena, co wiąże się z występowaniem
logarytmicznej osobliwości wzdłuż osi rzeczywistej [157]. W tym przypadku korzystając z tego, że
Gret = G∗

adv
[1] otrzymujemy, że przedłużenie analityczne retardowanej funkcji Greena na dolną

półpłaszczyznę G̃ret wynosi

G̃ret (ω) = Gadv (ω) +
[
G∗ret (ω) −Gret (ω)

]
= Gadv (ω) + 2πiA(ω), (B.7)

gdzie A(ω) = − 1
π ImGret (ω) jest funkcją spektralną, przy czym [G∗ret (ω) −Gret (ω)] = −2iImGret (ω)

jest skokiem funkcjiGret przy przechodzeniu na dolną półpłaszczyznę zespoloną i jest on niezerowy
tylko, gdy przechodzimy przez cięcie tej funkcji [157].



Dodatek C

Wyprowadzenie βqu,σκ

Przedstawimy tutaj wyprowadzenie wkładu kwantowego βqu,σκ do równania płynięcia κ̇k . Pozo-
stałe wkłady wyprowadza się analogicznie. Wykonanie całek występujących w tym przypadku jest
najbardziej skomplikowane z tego powodu decydujemy się jedynie na analizę tego wyrazu.

Wyjściowe równanie płynięcia ma postać

ρ̇0 =
1
2

∫
q

[
3Ṙσγ−2

σ ,σ (ρ0) + Ṙ
πγ−2

ππ (ρ0)
]
, (C.1)

gdzie pomijamy indeks k dla płynących stałych ρ0 oraz λ. Pierwszy wkład w powyższej całce jest
przedmiotem naszego zainteresowania. Przeskalowujemy ρ0 = Z−1

π kd−2κ, co prowadzi do relacji
κ̇ = (2 − d )κ + Zπk2−d ρ̇0. Dzięki temu możemy napisać, że

β
qu,σ
κ = 3Zπk2−dT

∑
q0>0

∫
q
Ṙσγ−2

σ ,σ (ρ0). (C.2)

Przeskalowując γσ ,σ = Zσk
2γ̃σ ,σ , wykorzystując funkcję obcięcia Litima Rσ = Xσθ (Xσ ), gdzie Xσ =

Zσ (k
2 − q2)2 − Z 0

σq
2
0 − Lρ0

|q0 |
|q| , a także zamieniając zmienne całkowania na y = q2

k2 otrzymujemy, że

β
qu,σ
κ =

3AdT

2Z̃Zσ

∑
q0>0

∫ ∞

0
dy yd/2−1

[
y +

Z 0
σ

Zσ
q2

0 + L
kd−5

ZσZπ
κ
|q0 |
√
y
+

2uκ
Z̃
+

Rσ

Zσk2

]−2
×

×

[
2Zσk2 −

Lkd−5

Zπ
(κ̇ + (d − 2)κ) |q0 |

√
y

]
θ

(
1 − y −

Z 0
σ

Zσ

q2
0

k2 −
Lkd−5

ZσZπ
κ
|q0 |
√
y

)
,

(C.3)

gdzie Z̃ = Zσ/Zπ , a Ad =
Sd−1

(2π )d jest czynnikiem pochodzącym z miary całki oraz całkowania po
kątach.

Całkowanie w powyższym wyrażeniu prowadzi do niezerowego wyniku pod warunkiem, że
argument funkcji schodkowej jest dodatni, co można zapisać w postaci nierówności

x3 −

(
1 −

Z 0
σ

Zσ

q2
0

k2

)
︸         ︷︷         ︸

a

x +
Lkd−5

ZσZπ
κq0︸     ︷︷     ︸

b>0

< 0, (C.4)

gdzie x =
√
y ∈ [0,∞[, poza tym widzimy, że stała b jest dodatnia w naszym przypadku. Możemy

zbadać w jakich warunkach spełniona jest powyższa nierówność analizując funkcję f (x ) = x3 −
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κ

ax + b. Widzimy, że rozważana funkcja jest dodatnia na krańcach swej dziedziny, tj. f (0) > 0 oraz
f (∞) > 0. Funkcja ta ma minimum w xmin =

√
a
3 co oznacza, że całka w równaniu (C.3) posiada

niezerową wartość na pewnym przedziale [ymσ ,yMσ ], gdy f (xmin ) < 0, co prowadzi do warunku, że
a > 3(2)−3/2b2/3, co można zapisać jako

q2
0
Z 0
σ

Zσk2 + 3(2)−2/3
(
LZ−2

π

Z̃
kd−5κkq0

)2/3
− 1 < 0. (C.5)

Nierówność ta pozwala znaleźć wartości q0 dla których funkcja schodkowa w równaniu (C.3) jest
niezerowa i największą wartość ją spełniającą oznaczamy jako q̃σ0 .

Rys. C.1: Schematyczna ilustracja typowego kształtu funkcji f (x ) = x3−ax +b. Na wykresie zazna-
czono granice całkowania, które prowadzą do niezerowej wartości całki występującej w β

qu,σ
κ .

Granice całkowania dla których argument funkcji schodkowej jest niezerowy wyznaczamy jako
dodatnie pierwiaski równania (patrz rys. C.1)

x3 −

(
1 −

Z 0
σ

Zσ

q2
0

k2

)
x +

Lkd−5

ZσZπ
κq0 = 0. (C.6)

Oba omawiane warunki zostały podane w głównej części tekstu (patrz równania (7.38) oraz (7.39)).
Co więcej możemy zaobserwować, że gdy znajdujemy się w przedziale zadanym powyższymi wa-
runkami także funkcja schodkowa w propagatorze γ−1

σ ,σ (ρ0) jest równa jedności, co prowadzi do
wyrażenia

β
qu,σ
κ =

3AdT

2Z̃Zσ

q̃σ0∑
q0>0

∫ yMσ

ymσ

dy yd/2−1
2Zσk2 − Lkd−5

Zπ
(κ̇ + (d − 2)κ) |q0 |

√
y

[
1 + 2uκ

Z̃

]2 , (C.7)

co po wykonaniu całkowania po y prowadzi do równania (7.36). W analogiczny sposób możemy
wykonać całkowanie w pozostałych członach zarówno w równaniu κ̇ oraz u̇.
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