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Dzieki wykonywanej pracy cztowiek przybliza si¢ do poznania jakiejs
prawdy o ziemi - scenie jego dramatu. Wydobywajgc z ziemi to, co
najlepsze, cztowiek doswiadcza natury swiata jako ziemi obiecanej.
Smakujqgc chleb, cztowiek smakuje obietnice, ktora sie ziscita. Wierzy,

ze nie jest tu intruzem.

- ks. J. Tischner, Filozofia dramatu

Kochanej zonie






Spis tresci

[Podziekowania)
(1 Wprowadzenie|
1.1  Celerozprawy| . . . . . . . . .
(1.2 Struktura rozprawy| . . . . . . . ...
I Kontekst doswiadczalny i teoretyczny]|
{2 Ultrazimne fermiony|
(2.1 Ultrazimne atomy| . . . . . . . . . . . e
[2.1.1  Chlodzenie i pulapkowanie atomow| . . . . ... ... ... ... ... ...
[2.1.2  Probkowanie wiasnosci ultrazimnych gazow|. . . . . . .. .. ... ... ..
2.2 RezonansFeshbachal . . . . .. ... ... ... ... ... . . .
[2.2.1  Teoria rozpraszania dla ultrazimnych gazow|. . . . . . ... ... ... ...
[2.2.2  Magnetyczny rezonans Feshbachal . . . . ... ... ... ... ... ... .
[2.3  Przejscie BCS-BEC|. . . . . . . . .
[2.3.1  Teoria pola sredniego|. . . . . . . . . . . ...
2.3.2  Teoria Nozieresa—Schmitt-Rinkal . . ... ... ... .. ... .. ... ..
[2.4  Mieszaniny gazow fermionowych| . . . . . . .. .. oL oL
[3 Kwantowe przemiany fazowe|

3.1  Teoria skalowanial . . . . . . . ... ...
[3.1.1  Teoria skalowania w przypadku klasycznym|. . . . . ... ... ... .. ..
[3.1.2  Teoria skalowania w przypadku kwantowym| . . . . . ... ... ... ...
[3.1.3  Przejscie miedzy rezimem klasycznym 1 kwantowym| . . . . . . ... .. ..
B.2__TeoriaHertza-Millisal . . . . . ... ... ... ... ... ... ... .......
3.2.1 Dziatanie Hertzal . . . . .. ... ... ... ... . ... L.
[3.2.2  Rownania renormalizacji|. . . . . . .. ... ... ... ... ...
[3.2.3 Rozwigzanie dla d + z > 4 i diagram fazowy| . . . . . .. ... ... ... ..

13

15
16
17

19

21
22
24
28
29
29
31
34
35
36
39



i

Wyniki badan|

4.1 Efektywne dzialanie|. . . . . . . . ... ...

4.2  Etektywny potencjall . . . . . ... .. o

4.3 Fluktuacje parowanial . . . . . . ... .. oo

5.1 Sredniopolowy diagram fazowy| . . . . .. . ... .. ... ... ... ...

[5.1.1  Koncentracje atomow w mieszaninie| . . . . . . . . . . . . ... ... ....

[5.2 Rozwiniecie Landaual . . . . . . ... ... ... ...

[5.2.1  Zerowa temperatural . . . . .. .. ...

[5.3 Kwantowy punkt krytyczny| . . . .. ... oo

[5.3.1  Przypadekd =2 . ... .. ...
[5.3.2  Przypadekd =3 . ... ... ..
[5.3.3  Asymptotyczny ksztalt linii krytycznej T.(h)[. . . . . . ... ... ... ...

[5.4 Kwantowy punkt Lifszyca| . . . . ... ... ... L o

[5.4.1  Propagator fluktuacji parowania w fazie normalnej| . . . . . . .. ... ...

[5.4.2  Rozwiniecie gradientowe| . . . . . . ... ... ...

[6.1 Fonony Andersona-Bogoliubowal . . . . ... ... ... ... .. . L.

[6.2 Thumienie Landaua w fazie nadciektej| . . . . . ... ... ... .. ... ... ...

|6.2.1 Nielokalne cztony w rozwinieciu gradientowym F;l .............

[6.2.2  Wyniki numerycznel . . . .. ...

[6.3 Tiumienie Landaua w fazie normalney| . . . . . . ... .. ... ... ... ... ..

4 Struktura efektywnego dzialanial

[> Diagram fazowy i kwantowe przemiany fazowe|
[6 Mody Goldstone’a i ich ttumienie|

[7 Teoria renormalizacji dla mieszanin Fermiego|

[71.1  Efektywne dzialanie I zalezneod skali k| . . . .. ... ... ... ... ..

[7.1.2 Wtiasnosci regulatora Ri(q)| . . . . . . . . . ..

[7.1.3  Sciste rownanie ptyniecial . . . . ... ... ... ... L.

[7.2  Dziatanie typu Hertza dla mieszanin Fermiego| . . . . . . ... ... .. ... ....

[7.3 Renormalizacja efektywnego potencjaty| . . . . . .. ... ... oo

[7.3.1 Rownanie ptyniecia efektywnego potencjatul. . . . . . . ... ... L.
[7.3.2  Stabilnos¢ QCP ze wzgledu na fluktuacje| . . . . . .. ... ... ... .. ..

[7.4 Teoria Hertza-Millisa w fazie nadciektej| . . . . . . . .. ... ... ... ... ....

|7.4.1 Roéwnania ptyniecia statych pg ;. oraz )Lkl ....................

[7.4.2  Plyniecie RG przy braku ttumienia Landaual . . . . ... ... ... ... ..

[7.4.3  Plyniecie RG przy uwzglednieniu ttumienia Landaua . . . . . . ... .. ..

57

59
60
61
63

67
68
71
73
76
77
77
78
81
82
83
84

89
90
93
93
98
103



[8__Podsumowaniel

Sumy Matsubary|

A.1 Suma typu S = fk % Ynln (ikn - E,‘c’) ...........................

A.2 Suma typu S = % >aliky — Elf)_l

Przedluzenie analityczne M;;(q, iqo)|

u0'|

Wyprowadzenie 3,

127

131
131
132

135

137

138






Streszczenie

Niniejsza rozprawa ma na celu zbadanie kwantowych przemian fazowych w spolaryzowanych
mieszaninach ultrazimnych atomoéw fermionowych o nierd6wnych masach. W takich ukladach wio-
daca niestabilno$¢ morza Fermiego jest zwigzana z parowaniem Coopera w kanale fal parcjalnych s.
Skoncentrujemy sie na przejsciu fazowym zachodzacym miedzy jednorodng faza nadciektls, a fazg
normalng. Niezréwnowazone mieszaniny Fermiego posiadaja szeroki wybor parametréw kontroli,
ktore pozwalaja na dostrajanie ich wlasciwosci. W szczegdlnosci daja one mozliwosé zmodyfiko-
wania cech przemiany fazowej w T = 0. W tej dysertacji, podchodzimy do problemu kwantowych
przemian fazowych z trzech réznych, ale uzupelniajacych sie perspektyw.

Po pierwsze rozwazamy przyblizenie sredniego pola i rozwijamy efektywny potencjal w pote-
gach parametru porzadku ¢ (co jest znane jako teoria Landaua-Ginzburga). Szczegdlnie jestesmy
zainteresowani mozliwos$cia sprowadzenia punktu trojkrytycznego do zerowej temperatury w taki
sposob, ze przemiana fazowa pozostaje ciagla w granicy T — 0. W ten spos6b badany uklad zawiera
kwantowy punkt krytyczny (QCP) na diagramie fazowym. Analitycznie identyfikujemy taka mozli-
wos¢ dla zakresu parametréw ukladu w trzech wymiarach (d = 3). Z drugiej strony pokazujemy, ze
wystepowanie QCP jest wykluczone w d = 2 (na poziomie pola $redniego). Co wiecej uwzgledniajac
wyrazy gradientowe o postaci |V¢|? w efektywnym dziataniu stwierdzamy, ze mozna je sprowadzi¢
do zera w granicy T — 0 poprzez manipulacje parametrami ukladu, co pozwala na zrealizowanie
kwantowego punktu Lifszyca.

Po drugie skupiamy si¢ na wlasnosciach spektralnych fononowych modéw kolektywnych (zna-
nych jako mody Andersona-Bogoliubowa). Wzbudzenia te pelnig istotng role w opisie kwantowych
zjawisk krytycznych. Badamy pochodzenie zespolonego bieguna propagatora fluktuacji parowania
Fg, ktéry pozwala na znalezienie relacji dyspersji modéw kolektywnych oraz ich wspétczynnikow
ttumienia. Otrzymujemy nielokalne w czasie wklady do rozwiniecia gradientowego propagatora
F(;l, ktore sg zwigzane z procesem tltumienia fononéw Andersona-Bogoliubowa. Wyrazenia te po-
zwalaja na wyprowadzenie analitycznego kryterium wystepowania ttumienia Landaua. Okazuje sie,
ze jest ono obecne wylacznie w fazie uporzadkowanej dla odpowiednio duzego niedopasowania po-
wierzchni Fermiego skladnikow mieszaniny (co ma miejsce takze dla T = 0). Nastepnie poréwnuje-
my otrzymane przewidywania z numerycznie obliczonymi wspoétczynnikami thumienia.

Na koniec przeprowadzamy analize wykorzystujaca nieperturbacyjna grupe renormalizacji (RG).
Interesuje nas sytuacja w ktorej kwantowa przemiana fazowa jest ciagta na poziomie pola Sredniego.

Pokazujemy, ze fluktuacje parametru porzadku, wprowadzone przez czlon tlumienia, destabilizujg
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plyniecie RG w kierunku punktu stalego Wilsona-Fishera dla odpowiednio niskich T, co moze ozna-
cza¢ wystepowanie przemiany I rodzaju. Przy zwiekszaniu T wptyw tlumienia znika i obserwuje sie
skalowanie krytyczne scharakteryzowane wykladnikiem dynamicznym z = 1. W tym przypadku
uklad wykazuje ciagle przejscie miedzy rezimem kwantowym i klasycznym dla T > 0. Co wie-
cej, przy braku ttumienia, QCP jest stabilny ze wzgledu na fluktuacje i przemiana fazowa pozostaje

II rodzaju.

Abstract

Quantum phase transitions in polarized mixtures of ultracold fermionic atoms

with unequal masses

This dissertation aims to investigate quantum phase transitions in polarized mixtures of ultracold
fermionic atoms with unequal masses. In such systems, a leading instability of the Fermi sea is related
to Cooper pairing in the s-wave channel. We will focus on the phase transition at the onset of the
uniform superfluid phase. Imbalanced Fermi mixtures possess a wide choice of control parameters,
which allow tuning its properties. In particular, they provide a way to modify the characteristics of
the phase transition at T = 0. In this thesis, we approach the problem of quantum phase transitions
from three distinct but complementary perspectives.

Firstly, we consider a mean-field approximation and expand the effective potential in powers of
the order parameter ¢ (this is known as the Landau-Ginzburg theory). Of our particular interest is
the possibility of suppressing the tricritical point to zero temperature, so that the transition remains
continuous down to T = 0. Thus the system hosts a quantum critical point (QCP) in the phase
diagram. We analytically identify such a possibility for a range of parameters in dimensionality
d = 3, but on the other hand, we demonstrate that the QCP is excluded in d = 2 (at the mean-field
level). Moreover, taking into account a gradient term |V@|? in the effective action, we show that it
can be tuned to zero at T — 0, which gives a route to realizing a quantum Lifshitz point.

Secondly, we focus on the spectral properties of sound-like collective excitations (known as
Anderson-Bogolyubov modes). Such excitations play a prominent role in the description of quan-
tum criticality. We explore the origin of the complex pole of the pair fluctuation propagator F,
which gives dispersion relations of collective modes and its damping rates. We obtain the temporal-
ly non-local contributions to gradient expansion of F!, which correspond to the damping process
of collective phonons. These terms allow us to derive analytical conditions under which damping
is active. It turns out that Landau damping is exclusively present in the ordered phase for a large
enough mismatch of the Fermi surfaces (even at T = 0). We subsequently compare this prediction
with numerically obtained damping rates.

Lastly, we perform a nonperturbative renormalization group (RG) analysis using its one-particle-

irreducible variant. We consider a situation in which the quantum phase transition is continuous at
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the mean-field level. Then one finds that order-parameter fluctuations, introduced by the Landau-
damping term, obstruct the RG flow toward the Wilson-Fisher fixed point at sufficiently low T,
which may indicate a first-order transition. Upon increasing T, the impact of damping ceases, and a
critical scaling characterized by the dynamical exponent z = 1 is observed. In this case, the system
shows a quantum-classical crossover at T > 0. Moreover, without damping, the QCP is stable with

respect to fluctuations and the transition remains second-order.
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Rozdziat 1
Wprowadzenie

Jedna z najprezniej rozwijajacych sie gatezi badan w fizyce materii skondensowanej w ostatnich
50 latach sa kwantowe przemiany fazowe. Zainteresowanie nimi jest stymulowane przez pojawianie
si¢ nowych materiatow w ktorych mozliwa jest ich realizacja. Do waznych przykladow tego typu
substancji naleza miedzy innymi silnie skorelowane materiaty elektronowe takie jak wysokotem-
peraturowe nadprzewodniki miedzianowe (np. Bi;Sr,CaCu;0g,5), uklady ciezkich fermionéw (np.
CePd;Siy), czy tez przewodniki organiczne (np. EtMesSb-dmitf) [44][192][212,213].

Kwantowe przemiany fazowe zachodza w zerowej temperaturze (T = 0). W tym przypadku uklad
jest przyblizany do przemiany za posrednictwem nietermicznych parametréw kontrolnych § (takich
jak ci$nienie, domieszkowanie, pole magnetyczne, etc.), przy czym przemiana zachodzi dla § = ..
Decydujaca role w opisie przemian fazowych w T = 0 pelnig fluktuacje kwantowe, a nie termiczne
jak to ma miejsce w przypadku klasycznych zjawisk krytycznych. Okazuje sie, ze wystepowanie
kwantowego punktu krytycznego (QCP) na diagramie fazowym wplywa na zachowanie mierzal-
nych wielkosci fizycznych przy zblizaniu si¢ do QCP wzdluz trajektorii 6 = §, oraz T — 0. Dzieki
temu sygnatury wskazujace na wystgpowanie kwantowej przemiany fazowej pojawiaja sie takze
dlaT > 0. W odpowiednio niskich temperaturach fluktuacje termiczne o charakterystycznej energii
kpT wspotzawodniczg z fluktuacjami kwantowymi o charakterystycznej energii iw. Gdy fiw > kpT,
zachowanie uktadu jest zdominowane przez fluktuacje kwantowe. W przeciwnym przypadku decy-
dujaca role pelnig fluktuacje termiczne. Wspodlzawodnictwo to prowadzi do interesujacych ciagtych
przejsc (ang. crossovers) miedzy rezimem klasycznym i kwantowym [35}44,192].

Wystepowanie QCP wplywa takze na charakter fermionowych wzbudzen kwaziczastkowych.
W szczeg6lnosci w poblizu QCP w wyniku fluktuacji o naturze kwantowej moze nastapic¢ zatama-
nie sie teorii cieczy Fermiego sformutowanej przez Landaua. Prowadzi to do powstania tzw. cieczy
nielandauowskiej (ang. non-Fermi liquid) w ktorej kwaziczastki nie sa dobrze zdefiniowane. Zrozu-
mienie tego typu zachowania stanowi duze wyzwanie wspolczesnej teorii materii skondensowanej
i jest waznym zagadnieniem pojawiajacym sie miedzy innymi w kontekscie fazy dziwnego metalu

wystepujacej w nadprzewodnikach miedzianowych [212,214].

2Skrot Me oznacza grupe metylows, Et oznacza grupe etylowa, a dmit oznacza grupe siarkoorganiczng o angielskiej

nazwie systematycznej 1,3-dithiole-2-thione-4,5-dithiolate.
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16 ROZDZIAL 1. WPROWADZENIE

Nowe perspektywy badan nad kwantowymi przemianami fazowymi otworzyly intensywne pra-
ce nad ultrazimnymi gazami fermionowymi w ostatnich 20 latach. Wyjatkowa wiasnoscia tych ukla-
dow jest mozliwosc strojenia oddziatywan kontaktowych pomiedzy atomami wystepujacymi w roz-
nych stanach nadsubtelnych za posrednictwem magnetycznego rezonansu Feshbacha. Pozwala on
na precyzyjnie kontrolowana zmiane wartosci dlugosci rozpraszania ar, ktéra w pelni charaktery-
zuje oddzialywania migdzyatomowe w rozrzedzonych gazach, poprzez modyfikacje natezenia ze-
wnetrznego pola magnetycznego. Dominujaca niestabilno$cig obserwowana w tego typu ukladach
jest parowanie Coopera w kanale fal s (ang. s-wave), ktore prowadzi do kondensacji gazu do stanu
nadcieklego (ang. superfluid). Wspomniany wczesniej rezonans Feshbacha umozliwia realizacje cia-
glego przejscia od stanu Bardeena-Coopera-Schrieffera dla fermionowych atoméw do kondensatu
Bosego-Einsteina bozonowych dimeréw utworzonych z silnie zwigzanych fermionéw (ang. BCS-
BEC crossover) [[24,76,221]).

Wspolczesne techniki doswiadczalne pozwalaja na tworzenie spolaryzowanych ultrazimnych
mieszanin atom6w fermionowych o nieréwnych masach. Na przyktad aktualnie prowadzone sa ba-
dania nad mieszaninami atoméw °Li oraz “°K [[103,225}227,239], °K i 1*!Dy [185,/186]], a takze °Li
i 3Cr [155]]. Wszystkie atomy danego rodzaju znajduja sie w tym samym stanie spinowym ("1" lub
"|") i w ogblnosci populacje atoméw roéznych gatunkéw moga by¢ rézne, a w konsekwencji takze
potencjaly chemiczne tych gatunkow sa rézne py # . Oznacza to, ze w ukladach tego typu ma-
my do dyspozycji trzy nietermiczne parametry za pomoca ktérych mozemy kontrolowac charakter
i potozenie kwantowej przemiany fazowej miedzy fazg nadciekla, a normalna. Zaliczamy do nich
amplitude oddziatywania kontaktowego g ~ ar, tzw. pole Zeemana h = (uy — p1;)/2 oraz stosunek
mas atomow tworzacych mieszanine r = m/mj.

Mimo rosnacego zainteresowania spolaryzowanymi mieszaninami Fermiego tylko nieliczne z do-
tychczas prowadzonych badan teoretycznych obieraly jako swoj cel opis kwantowych przemian
fazowych miedzy faza nadciekly, a normalna. Wiele potencjalnie interesujacych probleméw zwia-
zanych z tego typu mieszaninami czeka na rozwigzanie, co jest gltéwna motywacja wyboru tematu

badan wyrazonego w tytule dysertacji. W dalszej czesci przedstawimy gléwne cele tej rozprawy.

1.1 Cele rozprawy

Celem rozprawy jest opisanie kwantowej przemiany fazowej miedzy stanem nadcieklym, a faza
normalng dla spolaryzowanych mieszanin gazoéw fermionowych o nieré6wnych masach. W szczegol-
nosci chcemy zbada¢ wplyw niezrownowazenia (ang. imbalance) mieszaniny na wlasciwosci rozwa-
zanej przemiany fazowej w T = 0. Analiza tego problemu bedzie obejmowata wykorzystanie teo-
rii Sredniego pola, zbadanie dynamicznych wlasnosci wzbudzen kolektywnych oraz wykorzystanie
grupy renormalizacji do uwzglednienia fluktuacji parametru porzadku ¢.

W ramach teorii pola $§redniego wyprowadzimy rozwiniecie Landaua-Ginzburga dla efektywne-
go potencjatu. Na jego podstawie zbadamy jakie warunki musza by¢ spelnione, aby na diagramie

fazowym byl obecny QCP. Zastanowimy si¢ takze nad mozliwoscia wygenerowania przemiany mul-
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tikrytycznej w T = 0 dla ktérej znika wyraz gradientowy |V$|? w rozwinieciu Landaua-Ginzburga.
Wykorzystujac przyblizenie pola sredniego otrzymamy diagram fazowy w skonczonych tempera-
turach i opiszemy jego najwazniejsze cechy w granicy T — 0.

Na zachowanie przemiany fazowej w zerowej temperaturze majg wplyw dynamiczne wlasnosci
modéw kolektywnych obecnych w ukladzie [89,(147]]. W szczegdlnosci postaé¢ ttumienia Landaua
modoéw Goldstone’a jest istotna w poblizu kwantowej przemiany fazowej. Z tego powodu drugim
tematem poruszanym w pracy bedzie zbadanie ttumienia wzbudzen kolektywnych w fazie uporzad-
kowanej oraz nieuporzadkowanej. Odpowiemy na pytanie jakie kryteria muszg by¢ spelnione by
proces tltumienia byt aktywny. Ponadto zbadamy czy niezrownowazenie mieszaniny prowadzi do
istotnych zmian w zachowaniu ukladu zwlaszcza w granicy T — 0. Rozwazania te pozwola na
wyprowadzenie efektywnego dzialania opisujacego kwantowa przemiane fazowa.

Ostatnim tematem podejmowanym w tej pracy bedzie kwestia uwzglednienia fluktuacji parame-
tru porzadku. Postugujac sie nieperturbacyjnym sformulowaniem teorii renormalizacji odpowiemy
na pytanie czy QCP jest stabilny ze wzgledu na fluktuacje, a takze jaki jest wptyw tlumienia Landaua
na obserwowang przemiane fazowa. W szczegélnosci wyznaczymy ksztalt linii krytycznej, a takze

przedyskutujemy zjawisko cigglego przejscia miedzy rezimem kwantowy i klasycznym.

1.2 Struktura rozprawy

Rozprawa jest podzielona na dwie gldwne czesci. Pierwsza ma na celu zarysowanie szerszego
kontekstu doswiadczalnego i teoretycznego dla rozwazanego problemu. W drugiej czesci nastepuje
szczegOtowe omowienie otrzymanych wynikéw badan dla niezrownowazonych mieszanin Fermie-
go.

Czes¢ pierwsza sklada si¢ z dwoch rozdzialow. Pierwszy z nich (rozdziat 2) poswiecony jest ul-
trazimnym fermionom. Rozdziat ten stuzy do zaprezentowania kontekstu historycznego oraz tech-
nik doswiadczalnych wykorzystywanych w badaniach ultrazimnych atoméw. Ponadto omawiamy
w nim zjawisko rezonansu Feshbacha, a takze podajemy opis teoretyczny przejscia BEC-BCS. Roz-
dzial ten konczymy podsumowaniem dotychczasowych wynikéw badan dotyczacych spolaryzo-
wanych mieszanin fermionéw o nierdwnych masach. W rozdziale 3 zaprezentujemy podstawowe
informacje dotyczace kwantowych przemian fazowych. Nastepnie omawiamy w nim teori¢ Hertza-
Millisa, ktora stanowi punkt odniesienia dla prowadzonych przez nas badan.

W drugiej czesci dysertacji prezentujemy oryginalne wyniki dotyczace kwantowych przemian
fazowych w niezrownowazonych mieszaninach Fermiego. Czes¢ ta sklada sie z czterech rozdziatow,

ktorych podstawg byly trzy artykuly opublikowane w recenzowanych pismach naukowych:

« P. Zdybel, P. Jakubczyk; "Effective potential and quantum criticality for imbalanced Fermi
mixtures", J. Phys.: Condens. Matter 30 (2018) 305604 [248|.

« P. Zdybel, P. Jakubczyk; "Damping of the Anderson-Bogolyubov mode in Fermi mixtures by
spin and mass imbalance", Phys. Rev. A 100 (2019) 053622 [249].
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« P. Zdybel, P. Jakubczyk; "Quantum Lifshitz points and fluctuation-induced first-order phase
transitions in imbalanced Fermi mixtures", Phys. Rev. Research 2 (2020) 033486 [250]].

Rozdziat 4 jest przeznaczony na ustalenie wykorzystywanej notacji, a takze na wyprowadzenie pod-
stawowych réwnan, ktorych analiza jest omowiona w dalszej czesci dysertacji. W rozdziale 5 ba-
damy S$redniopolowe wlasnosci nadcieklej przemiany fazowej i otrzymujemy diagram fazowy. Tu-
taj rowniez dyskutujemy mozliwos¢ otrzymania QCP. W nastepnym rozdziale zajmujemy sie wia-
sno$ciami bozonowych modéw kolektywnych i w szczegdlnosci opisujemy ich ttumienie w fazie
normalnej i nadcieklej. Na koniec tej czesci opisujemy procedure renormalizacji dla rozwazanego
ukladu i tym samym uwzgledniamy wplyw fluktuacji parametru porzadku na zachowanie uktadu.
Rozprawe konczymy podsumowaniem najwazniejszych wynikoéw, a takze prezentujemy poten-
cjalne kierunki rozwoju badan nad kwantowymi przemianami fazowymi w niezréwnowazonych
mieszaninach Fermiego. Bardziej szczegétowe omoéwienie zawartosci kazdego z rozdziatow jest po-

dane na poczatku kazdego z nich.
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Rozdzial 2
Ultrazimne fermiony

Problem wielu oddziatujacych ze sobg fermionéw jest jednym z najwazniejszych zagadnien teo-
retycznych wspolczesnej fizyki materii skondensowanej. Zachowanie elektronéw w nadprzewodni-
kach wysokotemperaturowych, nukleoné6w w jadrach atomowych, czy tez modelowanie struktury
elektronowej zwigzkow chemicznych nie moze by¢ poprawnie opisane bez uwzglednienia korelacji
miedzy fermionami. Mimo dynamicznego rozwoju takich technik teoretycznych jak wielocialowy
rachunek zaburzen, teoria dynamicznego pola sredniego oraz metoda kwantowego Monte Carlo
uklady wielu oddziatujacych fermionéw ciggle stanowia olbrzymie wyzwanie dla badaczy. Gtow-
nym powodem takiego stanu rzeczy jest wymiar przestrzeni Hilberta dla rozwazanego problemu.
ZYozono$¢ obliczeniowa zagadnienia N fermion6éw rosnie eksponencjalne wraz z N, co skutecz-
nie uniemozliwia stosowanie metod obliczeniowych do ukladéw o rozmiarach, ktére moglibysmy
traktowac jako makroskopowe [[142]]. Ponadto uktady tego typu zwykle wykazuja duze bogactwo
emergentnych faz, ktére moga wspolistniec¢ ze sobg, a takze obserwuje si¢ ich wspoétzawodnictwo.
Korelacje miedzy wieloma czastkami sprawiaja, ze w trywialny sposob nie da sie sprowadzi¢ wia-
snosci takich uktadow do sumy odpowiednich wtasnosci jednociatowych [7]. Sztandarowym przy-
kladem materiatow, ktore wykazujg tego typu cechy sg spieki ceramiczne na bazie tlenkoéw miedzi
w ktorych obserwowane jest nadprzewodnictwo wysokotemperaturowe [[176].

Oddzielna klasg syntetycznych ukltadéow fermionowych, ktérych intensywny rozwoj na pogra-
niczu optyki kwantowej, fizyki molekularnej oraz fizyki materii skondensowanej obserwuje sie od
20 lat, sg ultrazimne gazy atomow fermionowych [54,187]. Duze mozliwosci ich kontrolowania oraz
uzyskiwana precyzja badan do§wiadczalnych sprawiajg, ze stanowig one obiecujacy uktad za pomo-
ca ktorego mozna zrozumie¢ zachowania oddziatujacych fermionow [76]]. Wspotczesny rozwoj tej
dziedziny pozwala na projektowanie potencjatu w ktorym poruszaja si¢ atomy oraz tworzenie sieci
optycznych symulujacych sieci krystaliczne wystepujace w ciele staltym [24]. Innym aspektem spra-
wiajacym, ze uklady te sa niezwykle ciekawym obiektem badan jest mozliwos$¢ tworzenia sztucz-
nych p6l cechowania, ktore wplywaja na topologiczne wlasnosci badanego gazu [47]. Wspomniane
cechy sprawiaja, ze uklady te §wietnie nadaja sie¢ do badania wiasnosci takich modeli teoretycz-
nych jak model Hubbarda, ktory jest uwazany za minimalny model pozwalajacy opisac¢ zachowanie

nadprzewodniké6w miedzianowych [8]]. Uktady zimnych atoméw fermionowych pozwalajg na zba-
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danie wlasnosci modelu Hubbarda nie na drodze obliczenn numerycznych, ale przy wykorzystaniu
symulatora kwantowego tego modelu w warunkach laboratoryjnych [23]].

Syntetyczne gazy fermionowe pozwalaja takze na badania ukladéw, ktore nie maja swoich odpo-
wiednikow w ciele stalym. Przyktadem mogg tu by¢ spolaryzowane mieszaniny atomoéw o nieréw-
nych masach, ktérych wlasciwosci stanowiag przedmiot niniejszej dysertacji. W uktadach tego typu
mozliwe jest wystepowanie egzotycznych faz materii takich jak nadciecz Sarmy-Liu-Wilczka (SLW)
[135,198] czy niejednorodnej nadcieczy Fuldego—Ferrella-Larkina—Ovchinnikova (FFLO) [73,/129].
Co wiecej przemiany fazowe miedzy nadciecza, a faza normalng w tego typu ukltadach nie sa w petni
zrozumiane i ich opisem, w szczeg6lnosci dla temperatur bliskich zera bezwzglednego, poswigcona
jest ta praca.

Struktura tego rozdziatu jest nastepujaca:

Podrozdzial 2.1. Zaczniemy od przedstawienia historycznego kontekstu badan nad zimnymi ato-
mami oraz omoéwienia gldownych metod eksperymentalnych wykorzystywanych do ich chtodzenia
i probkowania.

Podrozdzial 2.2. Nastepnie zajmiemy si¢ zwieztym opisem zjawiska rezonansu Feshbacha, ktory
pozwala na precyzyjne kontrolowanie oddzialywania kontaktowego pomiedzy atomami w gazie.
Podrozdzial 2.3. Zaprezentujemy zjawisko cigglego przejscia (ang. crossover) miedzy stanem ty-
pu Bardeena-Coopera-Schrieffera (BCS), a kondensatem Bosego-Einsteina (BEC) ciasno zwigzanych
par atomow. Przedstawimy tez przeglad prac dotyczacy opisu teoretycznego tego zagadnienia.
Podrozdzial 2.4. Na koniec podsumujemy dotychczasowe wyniki do§wiadczalne oraz teoretyczne

dotyczace mieszanin gazéw fermionowych o nieréwnych populacjach i masach.

2.1 Ultrazimne atomy

Za symboliczny poczatek dziedziny zajmujacej sie ultrazimnymi gazami atomowymi mozna
przyjac¢ zaobserwowanie kondensacji Bosego-Einsteina (BEC) w rozrzedzonych gazach zltozonych
z bozonowych atoméw alkalicznych. Osiagniecia tego dokonano niezaleznie w 1995 roku w gru-
pach kierowanych przez Cornella i Wiemana (prace prowadzono nad ’Rb) [5], Huleta (w ekspe-
rymentach wykorzystano atomy ’Li) [31]] oraz Ketterlego (tutaj badano kondensacje w 2*Na) [51].
Wiele z metod opracowanych i udoskonalonych w trakcie prac nad otrzymaniem kondensatu przez
te grupy zostalo p6zniej wykorzystanych w innych uktadach doswiadczalnych ultrazimnych ato-
moéw. Warto zaznaczy¢, ze wezesniej takze prowadzono badania nad nimi, np. od lat 80 XX wieku
probowano osiggnaé BEC w atomowym wodorze [42,209], ale osiggniete zostato to dopiero w 1998
roku przez grupe Kleppnera i Greytaka [72]]. Kolejnym przetomem eksperymentalnym w tej dzie-
dzinie bylo otrzymanie zdegenerowanego gazu fermionowych atoméw *°K w 1999 roku [54] przez
grupe Jin. Eksperymenty prowadzone z ultrazimnymi fermionami okazaty si¢ duzym wyzwaniem
i uzyskanie ich kondensatu byto mozliwe tylko dzieki wykorzystaniu rezonansu Feshbacha [38].
Pierwsze eksperymentalne otrzymanie tego rezonansu dla bozonowych atoméw sodu przez grupe

z MIT nastapito w 1998 roku [95] dajac tym samym doswiadczalne narzedzia do sprowadzenia zde-
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generowanego gazu fermion6éw do stanu nadcieklego. Korzystajac z tej metody uzyskano najpierw
kondensat dimeréw “°K, w 2003 roku [81], a w koncu takze kondensat luzno zwigzanych par *°K
w 2004 roku [187]. Powyzsze rezultaty zostaly po raz pierwszy otrzymane przez grupe z Uniwer-
sytetu Kolorado w Boulder. Réwnolegle podobne wyniki dla fermionowych atoméw °Li uzyskalo
kilka innych grup eksperymentalnych na $wiecie [15,29,113,/166}258].

Otrzymanie kondensatow atomowych wymaga wykorzystania bardzo rozrzedzonych gazéw,
aby zapobiec ich krystalizacji. Typowe koncentracje atoméw alkalicznych jakie sa wykorzystywa-
ne we wspodlczesnych eksperymentach wynosza n ~ 102 — 10" cm™ [217], co przektada sie na
putapkowanie kilkuset tysiecy atoméw. Wraz z obnizaniem temperatury atomy zaczynaja ujawniac
swoja nature kwantowa i zachowywac sie jak paczki falowe, ktorych rozmiar jest dany przez ter-
miczna dlugos¢ de Brogile’a Ay = \/m , gdzie m to masa czastek. Szerokos¢ paczki jest dana
nieoznaczonoscia potozenia, ktora jest zwigzana z termicznym rozkladem pedéw atoméw. Rozmycie
paczki staje sie tym wigksze im nizsza jest temperatura T. Gdy rozmiary paczek falowych Ar stajg sie
poréwnywalne ze $rednimi odleglo$ciami miedzy atomami d ~ 1/+/n, atomowe paczki falowe prze-
krywaja sie i opis uktadu dominujg efekty kwantowe. W szczegoélnosci zgodnie z przewidywaniem
Einsteina z 1925 roku, gdy temperatura jednorodnego idealnego gazu bozonéw osiagnie temperature
T = T, co odpowiada n)L%C ={(3/2) 2.61% atomy obsadzaja makroskopowo stan podstawowy,
czyli tworza kondensat Bosego-Einsteina [48,/112]. Typowe wartos$ci temperatur krytycznych dla
bozonowych atoméw alkalicznych wynoszg T, ~ 1 — 100 nK [217].

W przypadku kondensatéw fermionowych wymagane jest wystepowanie oddziatywan przy-
ciaggajacych miedzy atomami w gazie, ktére mozna wywola¢ w procesie wzajemnego rozpraszania
czastek. Dzieki temu, ze badane gazy sa rozrzedzone mozna ograniczy¢ sie jedynie do uwzglednie-
nia fal parcjalnych typu s w teorii rozpraszania. Okazuje sie, ze wykorzystujac rezonans Feshbacha
miedzy dwoma stanami nadsubtelnymi |F, mp) i |F, m})ﬁ atomow uzywanych w eksperymencie
mozna otrzymac efektywne przyciagajace oddzialywanie kontaktowe miedzy atomami znajduja-
cymi sie w tych dwoch stanach. Amplitude tego oddzialywania mozna modyfikowaé¢ za pomoca
zewnetrznego pola magnetycznego. Prowadzi ono do formowania si¢ par Coopera [[46] miedzy ato-
mami znajdujacymi sie we wspomnianych wyzej stanach nadsubtelnych w analogiczny sposoéb jak
przewiduje to teoria BCS w kontekscie konwencjonalnych nadprzewodnikéw [14]. W odpowiednio
niskich temperaturach powstate pary Coopera kondensujg tworzac faze nadciekla.

Przewidywana w tym przypadku temperatura krytyczna (w granicy stabych sprzezen, tj. ar <

—1) jest dana rownaniem [217]]

T, =

4(97)'/3 h2n?/3 N ( P )’ @.1)

e27VE mkg P _2kF|aF|

gdzie yg ~ 0.5772 to stata Eulera, kr = V3x2n jest liczba falowa Fermiego, a ar jest fermiono-

wa dlugoscia rozpraszania odpowiadajaca fali parcjalnej s. Zmieniajac wartos¢ zewnetrznego pola

a(s) = Yoy n° to funkcja ¢ Riemanna.
bF jest liczba kwantows catkowitego momentu pedu F = J + 1, gdzie J to catkowity moment pedu elektronéw, a I to

catkowity moment pedu jadra. mr jest liczbg kwantowa odpowiadajaca rzutowi F na wybrang os.
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magnetycznego mozna dostroi¢ ar tak, aby wartos¢ T, byla osiggalna w eksperymentach. Dla kon-
densatéw fermionowych mamy dwie charakterystyczne skale energetyczne jedna zwigzang z tem-
peraturg Fermiego kgTr = e = 7i°k%/2m, a druga z temperaturg krytyczna kpT,. Dla ukladow ul-
trazimnych atomow fermionowych stosunek T,/Tr =~ 0.2. Dla poréwnania w konwencjonalnych
nadprzewodnikach ten stosunek wynosi 10~ — 107>, a w nadprzewodnikach wysokotemperaturo-
wych jest on rzedu 1072, Ze wzgledu na niewielkie koncentracje ultrazimnych atoméw widzimy,
ze w skali wzglednej T./Tr mozemy kondensaty fermionowe w rozrzedzonych gazach traktowac
jako nadciecze wysokotemperaturowe. Dzieje sie tak mimo iz wartosci temperatur krytycznych T,
charakterystycznych dla typowych nadprzewodnikéw sg zwykle znacznie wyzsze niz te dla rozwa-

zanych gazéw fermionowych [76].

2.1.1 Chlodzenie i putapkowanie atomow

Chlodzenie atoméw do ultraniskich temperatur w ktérych mozliwe jest powstawanie fazy nad-
ciektej nie jest zadaniem prostym. Na wstepnym etapie zmniejsza si¢ temperature wigzki atomo-
wej badanego izotopu przy wykorzystaniu chlodzenia laserowego [169,177]. Proces ten polega na
o$wietlaniu atomoéw przeciwbiezng skolimowang wigzka monochromatycznego swiatla laserowe-
go o czestosci w zblizonej do rezonansowej czestosci wy przejscia pomiedzy stanem podstawowym
atomu |g) i jednym ze standéw wzbudzonych |e). Po pochlonigciu fotonu o energii fick ped atomu
ulega zmniejszeniu o warto$¢ fik, przy czym nalezy uwzgledni¢ przesuniecie dopplerowskie] zwia-
zane z tym, ze atom gazu porusza sie z predkoscig v. Nastepnie dochodzi do spontanicznej emisji
fotonu w losowym kierunku przez wzbudzony atom powracajacy do stanu |g). Po wielu procesach
tego typu przekaz pedu zwiazany z emisja foton6w przez atom usrednia si¢ do zera i efektywnie ped
atomu ulega zmniejszeniu na skutek ich absorpcji. Usredniona sita wywierana na chtodzony atom

po wielu aktach rozpraszania fotonéw na nim ma postac [71]]

hk Q?/2
F, ) = — R 2.2
rozp(9) T 82+ Q2/2+ 772 (22)
gdzie 7 = 2/T to $redni czas zycia stanu |e), I' to szerokos$¢ rezonansu, Q to czestos¢ Rabiego,

ad = w(1+v/c)—w, to odstrojenie od rezonansu, przy czym uwzgledniono w nim takze przesuniecie
Dopplera wynoszace wv/c = kv. Wystepowanie efektu Dopplera sprawia, ze wraz ze spowalnianiem
atomow zmienia sie czestos¢ przejscia i uktad ulega odstrojeniu od rezonansu. Zapobiega sie temu
wykorzystujac efekt Zeemana za pomoca, ktérego mozna przy wykorzystaniu zewnetrznego pola
magnetycznego B przesuwac polozenie stanéw |g) i |e) wzgledem siebie. W praktyce wigzka ato-
mowa jest o§wietlana laserem o czgstosci w w trakcie przechodzenia przez solenoid o zmiennym
polu magnetycznym, ktore maleje jak B(z) = BoV1 —z/Lo + By, gdzie By jest wartoscig induk-
cji dostrojong tak, aby spowolni¢ atomy poruszajace si¢ z najbardziej prawdopodobna predkoscia

w rozktadzie termicznym v, do niemalze zerowej predkoéci na dystansie Ly. Natomiast B,,, dobiera

“Nie mozemy poming¢ tego efektu, gdyz zmiany predkosci atoméw na etapie wstepnym sg najwieksze, co powoduje

zauwazalne odstrojenie od przejscia rezonansowego.
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sie tak, aby ochtodzony gaz opuszczat spowalniacz zeemanowski z bardzo niewielkimi predkos$ciami,

co pozwala na ekstrakcje atomow do dalszego etapu ich chlodzenia.
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Rys. 2.1: Schemat budowy putapki magnetooptycznej (MOT). Dwie cewki Helmholtza, w ktorych
prad o natezeniu I plynie w przeciwnych kierunkach, wytwarzaja kwadrupolowe pole magnetyczne
B, ktore znika w centrum pulapki. Trzy pary przeciwbieznych wigzek laserowych, ustawionych
wzdluz wzajemnie prostopadlych kierunkow, spotykaja si¢ w srodku putapki. Wiazki propagujace
sie w przeciwnych kierunkach posiadaja przeciwne polaryzacje kotowe o i o~. Swiatlo laserowe

powoduje ochladzanie i putapkowanie atomow we wnetrzu MOT.

W nastepnym etapie chlodzenie atoméw zachodzi przy wykorzystaniu putapki magnetooptycz-
nej (MOT) [148,,169]. Metoda ta polega na wykorzystaniu trzech par przeciwbieznych wigzek lasero-
wych spotykajacych sie w centrum putapki. Poszczegdlne pary wiagzek sg ustawione wzdtuz trzech
wzajemnie ortogonalnych kierunkéow tak jak to zostato przedstawione na schematycznym rys.
Wiazki te oddzialuja ze wstepnie schlodzonymi atomami wywierajac na dang czastke wypadkowa
site o postaci [71]]

Frel = Frozp(@ — wo — kv) = Frozp(w — wo + kv) = —av, (2.3)

ow
szaja sie z niewielkimi predkosciami, tj. kv < 77!. Uzyskana w ten sposéb wypadkowa sita oporu

gdzie a = 2k ~ 2hk28Q% 03 /[1 + 6%1%]%, przy czym wykorzystaliémy zalozenie, Ze atomy poru-

jest proporcjonalna do predkosci atomow, co przypomina site oporu wystepujaca dla cial porusza-

jacych sie w osrodku lepkim. Z tego powodu zachowanie to jest nazywane melasa optyczng [40]].
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Minimalng temperature, ktorg mozna uzyskac¢ wykorzysujac przeciwbiezne wigzki laseréw jest na-
zywana dopplerowska granica chlodzenia (ang. Doppler cooling limit) i wynosi Tp = %/ Tkgﬂ Na
przyklad dla atoméw ?*Na temperatura ta wynosi 240 uK. Melasa optyczna pozwala na chlodzenie
atomow, ale nie prowadzi do ich putapkowania, gdyz sita oporu jest niezalezna od potozenia.
Wybierajac w odpowiedni sposoéb polaryzacje swiatla laserowego uzywanego do otrzymania
melasy optycznej, a takze wprowadzajac gradient pola magnetycznego w ukladzie mozna dokonac
pulapkowania chlodzonych atoméw. W tym celu wykorzystuje sie dwie cewki Helmholtza w kto-
rych prad elektryczny plynie w przeciwnych kierunkach (patrz rys. [2.1). W efekcie uzyskuje sie
kwadrupolowa konfiguracje pola magnetycznego w przestrzeni. W srodku putapki pole magnetycz-
ne znika, a w jego poblizu ma ono jednorodny gradient. Samo pole magnetyczne o tej postaci jest
niewystarczajace do uwigzienia atomoéw i nalezy uwzglednic strukture ich pozioméw energetycz-
nych. W celu ilustracji mechanizmu odpowiedzialnego za putapkowanie atomow w MOT zalézmy,
ze absorpcja fotonu przez atom powoduje przejscie miedzy stanem podstawowym o J = 0, a stanem
wzbudzonym o J’ = 1. Ze wzgledu na wystepowanie jednorodnego gradientu pola magnetycznego
B w poblizu centrum pufapki poziomy wzbudzone o m’ = +1 ulegaja przesunieciu ze wzgledu na
efekt Zeemana. Oddalenie si¢ 0 z > 0 od $rodka putapki powoduje, ze stan wzbudzony o m = -1
zmniejsza swoja energie o #fz, gdzie Aiff = gup ‘é—f, przy czym g to czynnik Landégo, a pip to magne-
ton Bohra. Podobnie stan wzbudzony o m;. = +1 zwieksza swoja energie o 718z. Jezeli spolaryzujemy
wiagzke laserowa padajaca z kierunku odpowiadajacego z > 0 tak, aby miata polaryzacje kotowg o™,
wtedy ze wzgledu na reguly wyboru przejscie ] = 0 — J' = 1 moze nastapi¢ tylko, gdy spelnio-
ny jest warunek Am; = —1. Analogicznie, gdy oddalimy si¢ od centrum putapki o z < 0 nastapi
przeciwne przesunigcie poziomow energetycznych, tj. stan o m;. = +1 tym razem zmniejszy swoja
energie ze wzgledu na przesuniecie zeemanowskie. Jezeli wigzke laserowsg biegnacg od kierunku od-
powiadajacego z < 0 spolaryzujemy przeciwng polaryzacjg kolowa o*, wtedy mozliwe bedg jedynie
przejscia spetniajace regute wyboru Am; = +1. Prowadzi to do modyfikacji wyrazenia na wypadko-
wa sile dzialajaca na atom w melasie optycznej (patrz réwnanie (2.3)) o odpowiednie przesuniecia

zeemanowskie [71]]

Fyor = Frfzp(w — [wo + Bz] — kv) - F,‘L_zp(a) — [wo — Bz] + kv) = —av — %ﬂz. (2.4)

Widzimy, ze tym razem oprocz czynnika proporcjonalnego do predkosci dostajemy takze czynnik
zwigzany z polozeniem atoméw w pulapce. Polaryzujac w analogiczny sposob pozostate wigzki la-
serowe wykorzystywane w melasie optycznej uzyskujemy tzw. pulapke magnetooptyczna w ktore;

atomy poruszajg si¢ w potencjale harmonicznym w poblizu jej srodkd]

dTemperature Tp mozna powiazaé ze wspotezynnikiem dyfuzji Dy. Sredni przekaz pedu (p) zwiazany z procesami
absorpcji i emisji fotonéw jest réwny zero, ale jego éredni kwadrat (p?) jest niezerowy, co prowadzi do btagdzenia loso-
wego w przestrzeni pedowej. Stan stacjonarny dla tego procesu jest osiagany dla temperatury Tp = Dy/akp = #i/tkp,
gdy 6 = —r1. Wiecej szczeg6téw na ten temat mozna znalezé w artykule [[145]).

*Wystepowanie harmonicznego potencjatu putapkujacego powoduje, ze modyfikacji ulegajg takze warunki przy
ktérych zachodzi kondensacja Bosego-Einsteina. Dla gazéw bozonowych temperatura krytyczna w tym przypadku jest

1/3
rowna T, = % (%) ! , gdzie wy = fwxwyw; oraz N to liczba putapkowanych atoméw [167]].
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W rzeczywistosci otrzymanie MOT dla atomoéw alkalicznych jest bardziej skomplikowane i na-
lezy wzia¢ pod uwage strukture nadsubtelng chtodzonych atoméw. W szczegdlnosci stany podsta-
wowe atoméw alkalicznych posiadaja wiecej niz jeden poziom nadsubtelny. Na przyktad w **Na
stan podstawowy 3S;/, posiada stany nadsubtelne o F = 11i 2, a stan wzbudzony 3P;/, posiada
z kolei stany nadsubtelne o F' = 0, 1, 2 i 3|ﬂ Jezeli laser jest dostrojony rezonansowo do przejscia
F =2 — F’ = 3, to w trakcie tego procesu cze$¢ atoméw bedzie nierezonansowo przechodzita do
stanu wzbudzonego o F’ = 2. Nastepnie atomy w stanie o F’ = 2 powracaja do stanu podstawowego,
przy czym przejécie to moze zachodzi¢ zarowno do stanu o F = 2 jakio F = 1. Okazuje si¢ jednak, ze
nie ma mozliwosci rezonansowego wzbudzenia atoméw w stanie o F = 1 do stanu o F’ = 2. Z tego
powodu stan ten nazywany jest stanem ciemnym (ang. dark state), a stan o F = 2 stanem jasnym
(ang. bright state). W efekcie w trakcie prowadzenie tego procesu ilos¢ atomoéw obsadzajacych stan
ciemny zaczyna rosna¢ i coraz mniej atomow znajduje si¢ w stanie jasnym, ktoéry podlega mechani-
zmowi dziatania MOT. Proces taki nazywany jest pompowaniem optycznym (ang. optical pumping).
Aby zapewni¢ dobre dziatanie MOT w tym przypadku nalezy doda¢ dodatkowy laser dostrojony do
przejscia miedzy stanami F = 1 oraz F’ = 2, ktory powoduje "przepompowanie" atomoéw ze stanu

ciemnego do stanu wzbudzonego dla ktérego MOT dziatania poprawnie [[168]].

Ostatnim etapem zmniejszania temperatury atomow uwiezionych w MOT jest wykorzystanie
tzw. chlodzenia przez odparowanie [143,169]. Przyjmijmy, Ze ¢ to srednia energia atom6éw w pulapce.
Jezeli w wyniku odparowania ilo§¢ atoméw zmieni sie o dN < 0 i uniesiona przez nie energia bedzie

rowna (1 + y)édN, wtedy ze wzgledu na zachowanie energii mamy [168]]

E+ (1+y)&dN
N+dN ~

E+de = (2.5)
gdzie d¢ to zmiana $redniej energii atomoéw zwigzang z odparowaniem, y jest pewna dodatnia stala
niezalezng od N, ktora wskazuje na to, ze czastki ulegajace odparowaniu maja Srednio wyzsza ener-
gie niz &, E jest calkowitg energia atomoéw, a N jest ich catkowita liczbg. Wyrazenie (2.5) mozemy

zapisac jako

dlné 3 :( N )Y, (26)

dnN 7 7 o)~ N
gdzie £(0) to Srednia energia atomoéw przed odparowaniem, a N(0) to ich liczba przed odparowa-
niem. Widzimy, ze uwolnienie najszybszych atomoéw z putapki powoduje zmniejszenie Sredniej ener-
gii atomoéw &, a tym samym prowadzi do zmniejszenia temperatury gazu. Proces ten pozwala na
osiggniecie temperatur nawet ponizej 10 nK. W praktyce do odparowania najszybszych atomoéow
w gazie wykorzystuje si¢ przejScia miedzy stanami bedacymi putapkowanymi w MOT, a tymi ktoére

pulapkowane nie sa poprzez wykorzystanie impulséw promieniowania radiowego [71].

fUzyto tutaj notacji spektroskopowej dla terméw atomowych. Symbol nL 7 oznacza, ze atom jest w stanie o gtéwnej
liczbie kwantowej n, calkowitej orbitalnej liczbie kwantowej L (przy czym tradycyjnie uzywa sie oznaczenia S na stan

0L =0, Pnastan o L = 1, etc.) oraz liczbie kwantowej J charakteryzujacej catkowity moment pedu atomu.
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2.1.2 Probkowanie wlasnosci ultrazimnych gazow

Po sputapkowaniu i ochtodzeniu atoméw do odpowiednio niskich temperatur pozostaje problem
probkowania ich wlasnosci. Typowa metodg wykorzystywana w uktadach ultrazimnych atoméw
alkalicznych jest pomiar czasu lotu (ang. time of flight). W technice tej chmura atomow jest uwal-
niana z pulapki i opada w polu grawitacyjnym. W trakcie spadku swobodnego chmura atoméw
ulega balistycznemu rozszerzaniu i po pewnym czasie jest obrazowana za pomoca wigzki lasero-
wej i kamery. Metoda ta pozwala na estymacje temperatury chmury przed wylaczeniem putapki
[33]], pomiar jednocialowej macierzy gestosci w przestrzeni odwrotnej [24], a takze na obrazowanie
interferencji kondensatow [9] oraz powstawania sieci wirow Abrikosowa [257]. Inng wazng tech-
nikg wykorzystujacg obraz otrzymywany po termicznej ekspansji opadajacej swobodnie chmury
atomow jest metoda korelacji szuméw [3]. Polega ona na pomiarze przestrzennych korelacji szumu
wystepujacego na otrzymanym w trakcie pomiaru obrazie chmury powstalym w wyniku absorpcji
$wiatla laserowego. Metoda ta pozwala na probkowanie dwucialowej macierzy gestosci w przestrze-

ni fourierowskiej [24]].

Inng klasa metod wykorzystywana w badaniach ultrazimnych atomoéw sa techniki spektrosko-
powe, ktore pozwalajg na pomiar widma wzbudzen. W spektroskopii radiowej (ang. radio-frequency
spectroscopy) [86] wykorzystuje sie impulsy promieniowania radiowego o czestosci v, ktére powo-
duja przejscia pomiedzy podpoziomami Zeemana dla danego atomu alkalicznego. W trakcie tego
procesu jest mierzona liczba atoméw wzbudzanych do nieobsadzonych wysokoenergetycznych pod-
poziomoéw. Metoda ta pozwala na pomiar czestosci przejs¢ radiowych I'(v) (ang. rf transition rate)
w funkcji czestosci promieniowania radiowego. Wielkos¢ I'(v) wiaze sie z wieloma waznymi obser-
wablami charakteryzujacymi kondensat [207]. Umozliwia ona pomiar takich wlasnosci uktadu jak
wartos¢ przerwy energetycznej zwigzanej z parowaniem [37], rozmiar powstatych par [202]], relacja
dyspersji kwaziczastek [199], jednocialowa funkcja spektralna [216] czy wartos¢ energii wigzania
powstatych w wyniku oddziatywan kontaktowych molekul dwuatomowych [259]. Metoda ta zostata
takze z powodzeniem zastosowana do obserwacji pseudoszczeliny (ang. pseudogap) w oddziatujacym
gazie Fermiego [74], a takze demonstracji zalamania teorii cieczy Fermiego w uktadach ultrazimnych
fermionow [193]. Inng wazng metodg spektroskopows wykorzystywana do badania ultrazimnych
atomow jest technika wykorzystujaca rozpraszanie Bragga [215,230]]. W metodzie tej wykorzystuje
sie dwie skrzyzowane wiazki laserowe, przy czym ich czestosci wynosza odpowiednio wiw +4,a d
moze by¢ przestrajana w trakcie trwania eksperymentu. Wigzki te przecinaja si¢ w srodku putapki
i powodujg powstanie periodycznego potencjatu. Nastepnie obserwuje sie¢ proces dwufotonowego
rozpraszania Bragga zwigzanego z przekazem pedu #q, ktoéry pozwala na zrekonstruowanie czyn-
nika struktury S(q, d) (ang. structure factor) za posrednictwem pomiaru przesuniecia Srodka masy
chmury atoméw w putapce [230]. Metoda ta wykazuje duza selektywnos¢ pomiaru ze wzgledu na
ped. Za jej posrednictwem udato si¢ dokonaé obserwacji modow Goldstone’a oraz Higgsa w ultra-

zimnych gazach fermionowych [91]].

W badaniach ultrazimnych atomoéw zastosowano takze metody kalorymetryczne. Udalo sie do-
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kona¢ pomiaru pojemnosci cieplnej dla ultrazimnych fermionéw [[114] i bozonéw [190]. Metody te
pozwalaja na precyzyjne wyznaczenie temperatury krytycznej oraz badania zachowania pojemnosci
cieplnej w poblizu przejscia fazowego.

Oczywiscie przedstawione w tej czesci metody nie sa jedynymi wykorzystywanymi we wspot-
czesnych eksperymentach. Wyczerpujace podsumowanie innych technik mozna znalez¢é w pracach
[24,/501/145,/169]. Na szczego6lng uwage zastuguja prace grupy doswiadczalnej pod kierownictwem
Hadzibabicia, ktorej udalo sie otrzymac¢ w 2013 roku jednorodna pulapke magnetooptyczng [75].
Atomy w tym eksperymencie zostaly uwiezione w pudle o wymiarach 70 um X 35 ym X 6 pym, przy
czym boki pudla tworzyto swiatto laserowe wywotujgce odpychajacy potencjal. Wplyw pola grawi-
tacyjnego zostat skompensowany poprzez odpowiednie dobranie gradientu pola magnetycznego we
wnetrzu pudla. Obecnie prace grupy Hadzibabicia koncentruja si¢ na uktadach bozonowych. Prze-
prowadzono w tym przypadku badania wzbudzen kolektywnych [137], a takze wykonano pomiary
dotyczace krytycznego spowolnienia (ang. critical slowing down) przewidywanego przez mechanizm
Kibble’a-Zurka [153]]. Opracowane przez nich metody stanowig potencjalny kierunek rozwoju ba-

dan doswiadczalnych takze dla atomoéw fermionowych.

2.2 Rezonans Feshbacha

Wyjatkowosc dziedziny zajmujacej si¢ ultrazimnymi gazami atomowymi polega w duzej mierze
na niezwyktej mozliwosci strojenia sity oddzialywan pomiedzy atomami z wykorzystaniem rezo-
nansu Feshbacha. Zjawisko to zostalo niezaleznie opisane przez Feshbacha [67,/68]] oraz Fano [65]
na przelomie lat 60 i 70 XX wieku. Wspolczesne zastosowania rezonansu Feshbacha zostaly w wy-

czerpujacy sposob zaprezentowane w pracy przegladowe;j [38].

2.2.1 Teoria rozpraszania dla ultrazimnych gazow

Omowienie zagadnienia rezonansu Feshbacha zaczniemy od krotkiej dyskusji teorii rozpraszania
dla zderzen dwoch atoméw oddziatujacych ze sobg potencjatem V(r), gdzie r to odleglo$¢ miedzy
atomami. Przyjmujac, Ze potencjal oddzialywania pomiedzy parami neutralnych atoméw mozna
przyblizy¢ za pomoca potencjatu o twardym rdzeniu dla odleglosci miedzy atomami mniejszych niz
rc oraz przyciagajacym "ogonem" typu van der Waalsa otrzymujemy [82]]

— dla r>r,

V(r) = (2.7)
o dla r <r..

Dla potencjatu tego mozna wprowadzié¢ charakterystyczng dhugosé a, = +/2m,cs/H?, gdzie m, =
mimy/(my + my) to masa zredukowana zderzajacych sie atomow. Uzyskuje sie ja poprzez porow-
nanie energii kinetycznej zwigzanej z ruchem wzglednym zderzajacych si¢ atoméw, a ich energia

potencjalng®] W przypadku typowych atoméw alkalicznych wykorzystywanych w eksperymentach

8Przyjmuje sie przy tym, ze zgodnie z zasadg nieoznaczonos$ci Heisenberga #ikr ~ i, przy czym r = a..
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ac > r. [24]).
Funkcja falowa opisujaca proces rozpraszania dla sferycznie symetrycznego potencjatu V(r) jest
dana rownaniem | ke
() = e f ke, 0)—, (2.8)
gdzie pierwszy wktad odpowiada padajacej fali ptaskiej, a drugi wkiad sferycznej fali rozproszone;j.
Proces rozpraszania jest opisywany przez amplitude rozpraszania f(k, 6), ktora mozemy wyrazic za
pomoca fal parcjalnych [128]

oo

f(k,0) = 2(25 + 1) fe(k)P¢(cos 6), (2.9)

£=0
gdzie Py(x) to odpowiednie wielomiany Legendre’a. Podobnie rozkladamy fale ptaska w bazie fal
sferycznych
ikr _ e—i(kr—é’zr)

2ikr

ek = Z(Zf + 1)je(kr)Pe(cos 0) —— Z(% +1)Py(cos 6) ’ (2.10)
=0

=0
gdzie je(kr) jest sferyczng funkcja Bessela. Porownanie tych rownan prozwala na zdefiniowanie

przesunie¢ fazowych charakteryzujacych rozpraszanie w dalekim polu jako
20k = 1 4 2ik fy (k). (2.11)

Dla ¢ # 0 w efektywnym potencjale trzeba uwzgledni¢ pojawienie si¢ bariery centryfugalnej, ktorej
wysoko$¢ mozna oszacowac jako Ec¢ ~ fit> /m.ai. W odpowiednio niskich temperaturach energia
kinetyczna ruchu wzglednego atoméw #%k?/2m, jest mniejsza od E.s. Oznacza to, ze mozna po-
minaé stany rozproszeniowe o £ # 0, bo nie sa one aktywne [24]. Korzystajac z wyrazenia (2.9)
oraz przesunie¢ fazowych dla ¢ = 0 dostajemy, ze dla ultrazimnych atoméw alkalicznych amplitude
rozpraszania mozemy rozwing¢ dla matych wartosci k, co prowadzi do wyraZeniaH

1 1

k.0) ~ fi(k) = _ , 2.12
f(k,0) ~ fo(k) kctgdo(k) —ik —a1+ %rek2 - ik @12

przy czym z definicji a = — limy_,o tg do(k)/k to dlugosc¢ rozpraszania dla fali parcjalnej s odpowia-
dajacej ¢ = 0, a r, to efektywny zasieg potencjatu, ktory definiowany jest przedstawionym wyzej
rozwinieciem k ctg &y (k) dla matych wartosci k. W rozwazanym problemie efektywny zasieg r, oka-
zuje sie by¢ rzedu a.. Ponadto dla ultrazimnych zderzen atomoéw spelniony jest warunek ka, < 1,
co pozwala zaniedbaé wyraz k? w mianowniku réwnania , co daje amplitude rozpraszania

o postaci [24]
a

JO) = 1iak

Jezeli spetnione sg warunki zachodzenia ultrazimnych zderzen (kgT< E.r) mozliwe jest wpro-

(2.13)

wadzenie pseudopotencjatu opisujacego dwucialowe zderzenia atomoéw dla fali parcjalnej s [93]

Arhla
2m,

V(©)y(r) = 5(r)% [ry ()], (2.14)

hWykorzystujemy tutaj relacje exp(2id,(k)) = 1 + 2ik f;(k) (patrz réwnanie ), ktora dla £ = 0 prowadzi do
wyrazenia fo(k) = SR — (g ctg 5, (k) — ik) .
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przy czym pochodna stuzy regularyzacji wyrazenia, gdy funkcja falowa /(r) dzialajaca na pseu-
dopotencjal nie jest regularna dla r = 0. Potencjal ten daje amplitude rozpraszania f (k) o postaci
otrzymanej w rownaniu (2.13). Widzimy, ze znak dlugosci rozpraszania a determinuje to czy poten-
cjal jest przyciagajacy (a < 0), czy tez odpychajacy (a > 0). Co wiecej wiadomo, Ze potencjal typu
5(r) posiada dokladnie jeden stan zwigzany, gdy a < 0. Energia wigzania &, = —#°x?/2m, tego sta-
nu jest zadana przez biegun amplitudy rozpraszania f (k) w dolnej potplaszczyznie zespolonej dany
przez k = ik = i/a. Gdy a > 0 nie obserwuje si¢ stanu zwigzanego, ale stan wirtualny potozony tuz

nad continuum potencjalu danego réwnaniem (2.7) [128].

2.2.2 Magnetyczny rezonans Feshbacha
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Pole magnetyczne, B/ G

Rys. 2.2: Zaleznoéé dlugosci rozpraszania a dla °Li w funkcji pola magnetycznego B dla magnetycz-
nego rezonansu Feshbacha. Diugos¢ rozpraszania dla tla wynosi a5, = —1405 ao, gdzie ag to pro-
mien Bohra, rezonansowa wartos¢ pola magnetycznego By = 834 G, a szerokos¢ rezonansu wynosi

|AB| = 300 G [24].

Magnetyczny rezonans Feshbach pozwala na modyfikacje wartosci dlugosci rozpraszania a za
posrednictwem zewnetrznego pola magnetycznego B, a w konsekwencji takze na strojenie sily od-
dzialywan miedzy atomami w trakcie zderzen. Fenomenologicznie rezonans mozna scharakteryzo-
wac za pomocg trzech parametréow: dtugosci rozpraszania dla tla ab ktora otrzymywana jest dla
zderzen odstrojonych od rezonansu, wartosci pola magnetycznego By dla ktérego zachodzi rezonans
oraz szerokosci rezonansu AB, przy czym By+AB mowi o wartosci pola dla ktorej dtugos¢ rozprasza-

nia a(B) si¢ zeruje. Rezonansowg wartos¢ dtugosci rozpraszania mozna, wtedy opisac przy pomocy

iDlugoéé rozpraszania dla tta apg jest asymptotyka a(B), gdy B — +oo.
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roéwnania [24]]

a(B) = apg (1 - BA—BBO) . (2.15)

Wykres przedstawiajacy ten rezonans dla atoméw °Li zostal zaprezentowany na rys. Warto
zwréci¢ uwage, ze warto$¢ |a| gwaltownie ro$nie w poblizu rezonansu, tj. B — By. Zakres ten
odpowiada wystepowaniu silnych oddzialtywan miedzy atomami w gazie.

Zrozumienie pochodzenia rezonansu Feshbacha wymaga odwolania si¢ do struktury nadsub-
telnej zderzajacych si¢ atomoéw oraz konfiguracji ich spinéw w trakcie zderzenia. Zilustrujemy ten
problem odwotujac sie do dwukanatowego modelu rezonansu Feshbacha na przyktadzie atoméw °Li,
ktorych spin elektronowy wynosi S = 1/2, a spin jadrowy I = 1. Hamiltonian opisujacy strukture

nadsubtelng mozna w tym przypadku przedstawi¢ w postaci
H = ApgS -1+ (2upS, — pnl)B, (2.16)

gdzie pierwszy czton odpowiada sprzezeniu nadsubtelnemu, drugi rozszczepieniu Zeemana pozio-
mow elektronowych i jadrowych w zewnetrznym polu magnetycznym, a pyy to magneton jadrowy.
W poblizu rezonansu Feshbacha, ktory dla litu wystepuje dla pol magnetycznych rzedu By = 834 G
stany wlasne powyzszego hamiltonianu sa numerowane liczbami kwantowymi mg oraz mj, przy
czym mp = mgs + my, a nie za pomocy liczb kwantowych F i mp jak to ma miejsce dla stabych pol
magnetycznych. Powyzsza wlasno$¢ jest spelniona, gdy B > Apr/pp (= 30 G dla litu), tj. gdy domi-
nujacym wkladem w hamiltonianie jest czes¢ zeemanowska [[24]].

Rozwazmy zderzenia miedzy atomami litu w dwdch stanach, ktére bedziemy nazywali stana-
mi pseudospinowymi. Pierwszy z nich to |T) = |ms; = —1/2,m; = 1) (stan ten posiada niewielka
domieszke stanu |ms = 1/2,m; = 0)) o mp = 1/2, a drugi to ||) = |ms = —1/2,m; = 0) (ten stan
takze posiada niewielka domieszke tym razem stanu |mg; = 1/2,m; = —1)) o mp = —1/2. W silnych
polach magnetycznych spiny elektronéw w zderzajacych sie atomach ustawiaja sie rownolegle, co
powoduje, ze zderzenie nastepuje w przyblizeniu w konfiguracji trypletowej dla spinow elektronow
walencyjnych zderzajacych si¢ atomoéw. Stan dwuciatlowy |op) = [T); @ |]), = Im;f? 1)1 ® Im;{’ 2)2 pa-
dajacych atom6w odpowiada zatem potencjatowi trypletowemu Vj,(r) miedzy tymi czastkami i jest
nazywany kanatem otwartym. W trakcie zderzenia atomy w kanale otwartym moga, ze wzgledu na

. . ’ . . _ l l
sprze¢zenie nadsubtelne, przeskoczy¢ do singletowego stanu zwigzanego |cl) = Im%J)1 ® |m§~“,2>2’ przy

op _ ¢l
F2 = Mgy

Stan |cl) nazywamy kanatem zamknietym. Atomy w tym przypadku znajdujg sie w stanie zwig-

czym rzut calkowitego momentu pedu na o$ z pozostaje zachowany, czyli mOF{’ L tm + m%l 5
zanym dla potencjatu singletowego V.(r) (patrz rys. . Potozenie V,(r) wzgledem Vj,(r) mozna
zmieniac¢ za posrednictwem modyfikacji wartosci zewnetrznego pola magnetycznego o 6B. Jest to
zwiazane z tym, ze momenty magnetyczne standéw |op) i |cl) sa rozne. Jezeli oznaczymy ich réznice
jako p, wtedy przesuniecie V.(r) wzgledem Vy,(r) jest zwigzane z energia Zeemana uéB, przy czym
0B = B — By, bo uklad znajduje sie blisko rezonansu [24].

Dwukanatowy model opisujacy rezonans Feshbacha mozna zilustrowac¢ przy pomocy nastepu-
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N6

kanal otwarty

ng(?’)

Rys. 2.3: Uproszczony dwukanalowy model rezonansu Feshbacha. Atomy przygotowane w kana-
le otwartym, odpowiadajacym potencjatowi V4 (r), zderzaja sie ze sobg z mata energia E. W trakcie
zderzenia kanal otwarty sprzega sie z kanatem zamknietym, ktory jest dany potozeniem stanu zwig-
zanego dla potencjatu V. (r). Gdy polozenie stanu zwigzanego E. wzgledem plateau potencjatu Vyy(r)
jest bliskie zera zachodzi proces rozpraszania rezonansowego. Polozenie kanatu zamknietego E. dla
magnetycznego rezonansu Feshbacha jest przesuwane przy pomocy zewnetrznego pola magnetycz-

nego B.

jacego hamiltonianu [[159]

2
. —,f’Ter + Vg (1) W(r)

_ o v | (2.17)

gdzie W(r) jest potencjalem odpowiedzialnym za sprzeganie sie kanatu otwartego z kanalem za-
mknietym i ujawnia sie dopiero dla odleglo$ci miedzy atomami rzedu r, (patrz réwnanie (2.7)). Zakta-
damy, Ze zderzenie atoméw w kanale otwartym zachodzi dla niskich energii, tj. E(k) = #*k?*/2m, —
0 (patrz rys. [2.3). W poblizu rezonansu energia stanu zwiazanego E. = y(B — By) i dla kanatu za-
mknietego jest bliska zeru (patrz rys.[2.3), co powoduje rezonansowe sprzezenie miedzy kanatami.
Sprzezenie to prowadzi do pojawienia sie dodatkowego przesuniecia fazowego dla procesu rozpra-
szania (tak jak dla problemu rozpraszania rezonansowego Breita-Wignera [128])
I'(k) h’k
(E(k) —=v) k=0 2m,r*v’

tg Ores(k) = _2 (2.18)

gdzie I'(k) to szerokosc¢ rezonansu, a v = (B — By) to odstrojenie od rezonansu. Charakterystyczna

dlugos$¢ r* jest definiowana przez amplitude przejécia miedzy kanalem otwartym, a zamknietym
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2
l| W lop) = JZ (2.19)
2m, N r*

Dhugos$¢ r* opisuje, wiec to jak bardzo kanaly otwarty i zamkniety sprzegaja sie ze sobg. Uzyskane

[24]

wyniki pozwalaja na otrzymanie dlugosci rozpraszania w tym problemie
hz

S umm— 2.20
2m,r*v (2.20)

1
a(B) = lim —tg (39 (k) + Ores(k) ) ~ apg -

gdzie ap, jest dtugo$cig rozpraszania zwigzang z rozpraszaniem w kanale otwartym. Wprowadzajac

AB = #?/ 2m, pr*ap, odtwarza sie fenomenologiczne réwnanie 1D

2.3 Przejscie BCS-BEC

Wystepowanie rezonansu Feshbacha w uktadach ultrazimnych fermionéw pozwala na realizacje
cigglego przejscia (ang. crossover) miedzy kondensatem par Coopera (stan BCS), a kondensatem bo-
zonowych molekut ztozonych z dwoch atomoéw fermionowych (stan BEC). Poczatkowo problem ten
pojawit sie w kontekscie nadprzewodnikow, ktore posiadajg niewielka koncentracje nosnikow i tym
samym przyciagajace oddzialywania miedzy elektronami sg pordownywalne z energig Fermiego [61]].
Nastepnie przejécie BCS-BEC bylo badane w przypadku nadcieklego *He, dla ktérego Leggett teore-
tycznie sformulowal to zagadnienie w zerowych temperaturach [130]. Jego prace na skoniczone tem-
peratury uogo6lnili Noziéres i Schmitt-Rink (teoria NSR) [158]] i to sformutowanie zostanie pdzniej
przez nas wykorzystane do omoéwienia najwazniejszych aspektow tego zjawiska. Odkrycie nadprze-
wodnictwa wysokotemperaturowego w 1986 roku [17]] spowodowato naglty wzrost zainteresowania
ciaglym przejsciem BCS-BEC [581/182,/183/222]. Bylo to spowodowane obserwacja, ze kré&y ~ 5 — 20
dla nadprzewodnikéw miedzianowych, gdzie & to Sredni rozmiar pary Coopera. Dla poréwnania
w standardowych nadprzewodnikach parametr kp& ~ 10° — 10%. Jednak dopiero prace nad konden-
satami fermionowymi w ultrazimnych gazach [15}29,81}113}/166,(187,258] pozwolily w pelni zbadac

to zjawisko, a takze osiggnaé granice unitarng w ktorej (krap)™!

— 0. W rezimie unitarnym gaz
fermionowy wykazuje niezmienniczo$¢ skalowania oraz konforemnosé. Wspoélczesny stan wiedzy
dotyczacej wlasnosci przejscia BCS-BEC oraz unitarnego gazu fermionoéw zostal zaprezentowany
w monografii [256] oraz pracy przegladowej [220]].

Do opisu przejscia BCS-BEC wykorzystamy model w ktérym przyjmiemy, ze fermiony mogg
znajdowac si¢ w jednym z dwoch stanow pseudospinowych |T) lub ||). Atomy w przeciwnych sta-
nach pseudospinowych ulegaja parowaniu na skutek wystepowania efektywnego oddzialywania
kontaktowego V(r) = gd(r), gdzie g < 0. Rozwazamy sytuacje w ktorej populacje oraz masy ato-
moéw o przeciwnych spinach sa jednakowe. Hamiltonian ma w tym przypadku posta¢

H-pN = kZ: §kcli,ack,a + %k; clt+q/2,Tcik+q/2,Lck’+q/2,LC—k’+q/2,T’ (2.21)
0 Xk'.q

()
k,o

to odpowiedni operator anihilacji (kreacji) czastki o pedzie 7ik oraz pseudospinie o € {T,]}. Wy-

gdzie & = h%k?/2m — p to relacja dyspersji, y to potencjat chemiczny, V to objeto$é uktadu, a c
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korzystanie tego modelu prowadzi do pojawienia si¢ osobliwosci w granicy krotkofalowej k — oo,
gdyz potencjal kontaktowy nie posiada naturalnej regularyzacji #A dla pedow zwiazanej z jego za-
siegiem r,, tj. A ~ 1/r, — o0,bo r, — 0. Mozna zregularyzowac ten problem korzystajac z rOwnania

Lippmanna-Schwingera [217]]

2m, 1 f d’k 2m, (2.22)
anhitar g Jjen (27)° B2KP '

przy czym m, = m/2. W przypadku ultrazimnych gazéw oddzialywanie dwucialowe jest parame-
tryzowane tylko przez dlugos¢ rozpraszania ar. Wykonujac granice g — 0~ oraz A — oo w taki

sposob, ze utrzymujemy stalg wartos¢ ar mozemy pozbyc¢ sie rozbieznosci ultrafioletowych [220].

2.3.1 Teoria pola sredniego

Na poziomie teorii pola sredniego (MFT) przyjmujemy, ze parowanie nastepuje przy q = 0iprzy-

blizamy czton oddzialywania w rownaniu (2.21) korzystajac z relacji

PePi = (POP = PP + (POPe) = (P = (PO (P — (Pi) = 0, (2.23)
gdzie Plj = clt chk | oraz Pr = ¢ (Cowp 52 operatorami kreacji i anihilacji pary Coopera. W przybli-

zeniu $redniego pola zaniedbujemy fluktuacje parowania, tj. (7)11 - (SDE N (P —(Py)) = 01iwprowa-
dzajac przerwe energetyczng jako A = 7 i Py otrzymujemy $redniopolowy hamiltonian, ktory
jest forma kwadratowg operatoréow kreacji i anihilacji co sprawia, ze moze on zosta¢ latwo zdiago-

nalizowany. Pozwala to otrzymac¢ dwa sprzezone réwnania opisujgce zachowanie uktadu [201]]

m Bk [1-2f(Er) m)
f( ( , (2.24)

B 4rhlar - 271')3 2E; B h2K>

[ &k £

gdzie pierwsze z nich to roOwnanie przerwy energetycznej, a drugie to rownanie na koncentracje

oraz

atomo6w n. Ponadto f(E) = (exp(E/kgT) +1)7}, Ex = , /f,f + A?, a A to przerwa energetyczna zwia-
zana z powstawaniem w ukladzie par Coopera. Petni ona funkcje parametru porzadku. W granicy
T — T* parametr porzadku znika, tj. A — 0, co pozwala na rozwigzanie powyzszego uktadu roéwnan
i wyznaczenie wartos$¢ T*, gdzie jest to warto$¢ temperatury krytycznej otrzymana w ramach MFT.

Najpierw rozpatrzymy granice stabych sprzezen w ktérej (krap)™' < —1 (rezim BCS). Réwnanie
pozwala powigzac potencjal chemiczny p i koncentracje atoméw n, a to prowadzi do wyni-
ku spodziewanego dla idealnego gazu fermionéw, tj. y ~ ep = #%(27%n)*3/2m. Nastepnie mozna

rozwigza¢ rownanie (2.24) wyznaczajgc tym samym wartos¢ T*, ktora jest rowna

e}/E_Z pd
e2krar (2.26)

T = Tr

czyli T* < T, gdyz (kpap) ™ < —1.
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N |

Analogicznie mozemy postapi¢ w granicy silnych sprzezen, ktéra odpowiada (kpap)~
(rezim BEC). Zaktadajac w tym przypadku, ze |u| > T* (1 < 0) mozemy przyjac, ze wyrazenie
1 - 2f(&)|r=r = tgh(&/2kgT*) = 1 w réwnaniu i sprowadza si¢ ono do rownania na stan
zwigzany &, = h*/2maj. ~ p/2. Natomiast z réwnania mozemy wyznaczy¢ T*, co daje
€p

Y R—
2kgIn (ep/er)’

(2.27)

przy czym wyrazenie to jest rozbiezne w granicy silnych sprzezen dla n = const. Wynik ten mozemy
zrozumie¢ zauwazajac, ze odpowiada on temperaturze dysocjacji w ktorej proces tworzenia i rozpa-
du bozonowej pary, ztozonej z fermionéw o pseudospinach "1"i"|", osigga rownowage chemiczna
(fr + fi = b). Oznacza to, ze ¢, jest wkladem entalpowym zwigzanym z energia uwalniang w trakcie
tworzenia si¢ stanu zwigzanego, a czynnik z logarytmem odpowiada wkladowi entropowemu, kto-
ry faworyzuje rozpadanie sie pary [222]. Zalezno§¢ temperatury T* od parametru (krar)~! zostala

pokazana na rys. 2.4|(czerwona linia przerywana).

2.3.2 Teoria Noziéresa—Schmitt-Rinka

Widzimy, Ze uzyskane wyniki w ramach MFT niewlasciwie opisuja przejscie BCS-BEC w granicy
duzych sprzezen, bo nie prowadzg do poprawnej temperatury kondensacji dla bozonowych dimerow

powstatych z atomow o przeciwnych pseudospinach, ktéra powinna wynosic

Zﬂhz Ndim 2/3
T = 2.28
BEC ™ smaim (g“(z/z)) ’ (2.28)

gdzie mgi, = 2m to masa dimeru, a ng;,, = n/2 to ich koncentracja.

W celu poprawienia tego wyniku odwolamy si¢ do teorii NSR, ktora uwzglednia gaussowskie
fluktuacje parowania. W tym celu postuzymy sie metoda funkcji Greena [1,139]. W fazie normalnej,
tj. A = 0, przyblizone wyrazenie na fermionowg selfenergie ma postac (przyjmujemy, ze i = kg = 1)

o0

d3
20 =- [ T 2, hl@)Glg b (2.29)

Powyzej wykorzystano notacje k = (k, w,) oraz q = (q, @), gdzie w, = (2n + 1)nT (n € Z) jest

m=—00

fermionowa czestoscig Matsubary, a @, = 2mxT (m € Z) jest jej bozonowym odpowiednikiem.
Wielkoé¢ Gy(k) = (iw, — &)1 jest nieoddziatujaca funkcja Greena, a Iy (q) propagatorem fluktuacji

parowania. Oddziatlujaca fermionowa funkcja Greena G(k) jest dana rownaniem Dysona

G(k) = = Go(k) + Go(k)(K)Go (k) + . . ., (2.30)

Gyl (k) = (k)

przy czym w teorii NSR ograniczamy sie tylko do poprawki liniowej w (k). Propagator fluk-

tuacji parowania I(q) uzyskuje si¢ poprzez wysumowanie podklasy diagraméw drabinkowych

(ang. ladder diagrams), ktére pokazane sa na rys. [2.5] (c). Korzystajac z diagramu (c) na rys. [2.5| (tj.
[o0] 3 .o . .

Io(q) =—g9—9T >0 f %Go(k + q)Go(—k)Ty(q)) oraz relacji (2.22)) dostajemy, ze [220]

&k -
w0 g~ (arer [ G 9 o
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’ Bosego
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Rys. 2.4: Schematyczny diagram fazowy dla przejscia BCS-BEC. Niebieska linia odpowiada ewolucji
temperatury krytycznej T, w trakcie cigglego przejécia od stabych ((kpap)™' — —o0) do silnych
sprzezen ((kpap)™' — o0). W temperaturze T, zachodzi przemiana fazowa miedzy faza normalna,
a faza nadciekls. Linia czerwona odpowiada temperaturze T* ponizej, ktorej w ukladzie powstajg
pary Coopera. W rezimie poérednim (|(krar)~!| < 1) oddziatywania w ukladzie sg silne. W obszarze
tym uklad chrakteryzuje sie pseudoszczeling w fazie normalnej, zwigzana z istnieniem par, ktore nie

ulegly kondensacji [256]].

przy czym x,,(q) odpowiada diagramowi pecherzykowemu typu czastka-czastka (ang. particle-particle
bubble diagram) dla ktérego mamy

o0

Pk
(zﬂ)3:r Z Go(k + q)Go(~k). (2.32)

Korzystajac z ubranej funkcji Greena G(k) mozemy otrzymac przesuniecie wartosci wielkiego po-

pr(Q) =

tencjatu kanonicznego Q(T,V, u) wzgledem jego wartosci dla uktadu nieoddziatujacego Qo (T, V, u)

korzystajac z rownania (poréwnaj z rOwnaniem (14.41) w [32]] lub z rownaniem (23.22) w [69])

&Pk -GMk)
Q-Qp = da =T ikn0 ~
° f f Z Go(k)

d3
(27)°

Poprzez rézniczkowanie wzgledem p mozemy otrzymac wyrazanie na koncentracje czastek po uwzgled-

(2.33)

~V TZ 4n0" 1n[1 + gxpp(q)]-
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(a) (b)

O~Wl —~—+—O—
(c)
- W

Rys. 2.5: Diagramatyczna reprezentacja: (a) selfenergii fermionowej X(k), (b) rownania Dysona dla

@ ===-9

oddziatujacej fermionowej funkcji Greena G(k), ktore zostato obciete do liniowego rzedu w % (k) oraz
(c) propagator fluktuacji parowania I)(q) w przyblizeniu NSR. Podwdjna linia odpowiada oddziatuja-
cej funkcji Greena G(k), linia pojedyncza nieoddziatujacej funkcji Greena Gy(k), a linia przerywana

oznacza stalg sprzezenia —g.

nieniu fluktuacji parowania w ramach teorii NSR, wtedy [220]

n—nyg=-—

l(a(g—go)) o, [k
T,V

Vv ou (27)3 T Zn: Go(k)=(k). (2.34)

Jedynym elementem ulegajacym modyfikacji w teorii NSR w stosunku do MFT jest wyrazenie na

koncentracje czastek n. RdOwnoczesne rozwigzanie roéwnania (2.24) oraz (2.34) prowadzi do popraw-

nego oszacowania wartosci temperatury krytycznej T, ponizej ktorej uktad przechodzi do fazy nad-
cieklej. Uzyskany w ten sposob wynik zostal naniesiony na rys. [2.4| (niebieska linia). W granicy du-
zych sprzezen odtwarza sie spodziewany wynik dla temperatury krytycznej, tj. T./Tr = Tppc/Tr =
0.218, gdzie Tgpc jest dane rownaniem [220].

Temperatura T* odpowiada skali energetycznej ponizej ktorej w ukladzie zaczynajg formowac
sie¢ pary Coopera, ale nie tworza one jeszcze kondensatu. Przy dalszym zmniejszaniu temperatury
ponizej T = T, uktad kondensuje i zachodzi przemiana fazowa miedzy fazg normalng i nadcie-
kla. Obszar wystepowania wstepnie powstatych par Coopera, ktore nie sg jeszcze skondensowane
jest nazywany pseudoszczeling i jest charakterystyczny dla sytuacji w ktérej |(krar)™!| < 1 (patrz
rys. [2.4). Jest to rezim przejsciowy, w ktorym wystepuja najsilniejsze oddzialywania miedzy ato-
mami, przy czym dla (krap)™' = 0 uklad znajduje sie w granicy unitarnej. Z kolei faza normalna
dla stabych sprzezen jest poprawnie opisywana przez teorie cieczy Fermiego, a dla silnych sprze-
zen teorig cieczy Bosego [[173]]. Warto tu podkresli¢, ze granica silnych sprzezen odpowiada stabo
oddzialujacym dimerom bozonowym, ktére posiadaja resztkowy potencjat odpychajacy powigzany

z zakazem Pauliego dla fermionéw bedacych ich sktadowymi [256]].
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2.4 Mieszaniny gazow fermionowych

Uklady ultrazimnych fermionéw pozwalajg na eksperymentalng realizacje mieszanin o rézno-
licznych populacjach atoméw o pseudospinach "1"1"|" [165], tj. ny # n,. Przeklada si¢ to na nieréw-
nos¢ ich potencjatow chemicznych (y1 # p)). Kontrolujac koncentracje atoméw mozemy zmieniac
polaryzacje P = (ny — n})/(ny + ny) lub tzw. pole Zeemana h = (y; — y;)/2. Badania w ramach
teorii pola sredniego (MFT) przewiduja, ze na diagramie fazowym w zmiennych (P, T) oprocz fazy
nadciektej i normalnej obecny jest takze obszar wystepowania separacji faz, ktory nie jest obecny
dla niespolaryzowanego gazu, tj. P = 0. Ponadto temperatura krytyczna T, jest maksymalna, gdy
P = 0. Obszar separacji faz w granicy unitarnej, tj. |ap| — oo, pojawia si¢ dla temperatur T =~ 0.6T,
i w zerowej temperaturze rozcigga sie dla polaryzacji P €]0, 1] [84]. W uktadach spolaryzowanych
mozna bada¢ takze zjawisko cigglego przejécia BEC-BCS poprzez modyfikacje wartosci az'. Wyniki
badan sugeruja, ze obszar separacji faz w zmiennych (a;', P, T) jest najwiekszy w poblizu granicy
unitarnej (la;'| < 1), czyli w rezimie silnych oddzialywar miedzy fermionami. Dla wigkszych war-
tosci Iagll ulega on redukgcji lub catkowicie znika. Z kolei przemiana dla temperatur T > T;,; jest
ciagla, przy czym T},; jest temperaturg trojkrytyczng. W zmiennych (h, T) sytuacja jest analogiczna,
ale obszar separacji faz jest niewidoczny. Przemiana fazowa miedzy faza normalna i nadciekls dla

T < Ty jest I rodzaju, zas w wyzszych temperaturach (T > T;,;) przemiana ta jest ciggla [[163].

Wykorzystanie przyblizenia lokalnej gestosci (ang. local density approximation) pozwala uwzgled-
ni¢ wpltyw potencjatu putapkujacego w ktorym znajduja si¢ atomy. Prowadzi to do przewidywania
radialnego profilu gestosci chmury atomow i sekwencji nastepujacych po sobie faz, przy czym ty-
powo faza nadciekla znajduje si¢ w srodku chmury, a atomy w stanie normalnym znajduja si¢ na jej
obrzezach [179]]. Ponadto wptyw fluktuacji na diagram fazowy byt badany przy wykorzystaniu per-
turbacyjnej grupy renormalizacji [85], a takze jej nieperturbacyjnego wariantu wykorzystujacego
rownanie Wettericha [25]]. Ich uwzglednienie powoduje zmniejszenie obszaru dla ktérego obserwo-
wana jest faza uporzadkowana na diagramie fazowym, a takze redukcje wartosci T;,; w poréwnaniu
z wynikiem $redniopolowym. Innym waznym kierunkiem badan jest scharakteryzowanie zachowa-
nia modow kolektywnych w ukladzie. W fazie nadcieklej majg one charakter wzbudzen fononowych
nazywanych modami Andersona-Bogoliubowa, przy czym ich relacja dyspersji jest liniowa dla ma-
tych pedow [118]]. Mody te w skonczonych temperaturach ulegajg ttumieniu w wyniku sprzezenia
z kwaziczastkami fermionowymi [115,118]]. Innym waznym przyktadem wzbudzenia kolektywne-
go obserwowanego w tego typu ukladach jest tzw. mod oddychajacy (ang. breathing mode), gdzie
chmura atoméw wykonuje pulsujacy ruch polegajacy na naprzemiennym kurczeniu sie i rozsze-
rzaniu [90]. Mody te potencjalnie mozna wykorzysta¢ do probkowania wlasnosci faz, ktore wyste-
puja w badanym ukladzie [62]. Wyczerpujaca dyskusje dotyczaca takze innych aspektéw badanych
w kontekscie spolaryzowanych gazéw Fermiego mozna znalez¢é w nastepujacych pracach przegla-
dowych [36}85][179.[204][223].

W tej dysertacji skupimy sie na uktadach w ktorych, oprocz réznych koncentracji, sktadniki

posiadaja takze rézne masy, tj. my # m;. W takich mieszaninach wszystkie atomy o danym pseu-
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dospinie sa jednakowe, ale te posiadajgce przeciwne pseudospiny odpowiadaja réznym izotopom.
Mieszaniny takie udato sie doswiadczalnie zrealizowac¢ w kilku wariantach r6znigcych sie stosun-
kiem mas atomoéw r = m| /my, takich jak mieszanina SLi-1K (r = 6.67) [103,225227.239]], mieszanina
HK-11Dy (r = 4.03) [185,186] oraz mieszanina °Li->>Cr (r = 8.83) [155]]. Uktady te charakteryzuja sie
wystepowaniem dwoch powierzchni Fermiego o pedach Fermiego wynoszacych k§ = /2mg ;. Po-
krywaja si¢ one tylko wtedy, gdy zachodzi warunek h = {p, gdzie yu = (1 +p)/2 to Sredni potencjat
chemiczny,a { = (r—1)/(r+1) to wygodny parametr charakteryzujacy nier6wnos¢ mas sktadnikow
mieszaniny. Jedna z konsekwencji istnienia dwoch niepokrywajacych si¢ kul Fermiego jest mozli-
wos$¢ wystepowania egzotycznych faz materii, takich jak niejednorodny stan FFLO [73,129]] oraz
nadciecz SLW [135/198]. W ogélnosci nier6wnos¢ mas sktadnikoéw mieszaniny powoduje, ze dia-
gram fazowy nie jest symetryczny ze wzgledu na odbicie wzgledem prostej odpowiadajacej sytuacji
niespolaryzowanej, tj. P = 0 lub h = 0 [12,/164,]234].

W przypadku nadcieczy typu FFLO parowanie zachodzi w sytuacji w ktorej potozenia srodkow
kul Fermiego atomow o pseudospinie "1" oraz "|" nie pokrywa si¢. Powoduje to, ze zachodzi ono przy
niezerowym catkowitym pedzie srodka masy pary Coopera, tj. |Q| = k; - k}?. W rezultacie parametr
porzadku dla tego typu nadcieczy ulega periodycznej modulacji w przestrzeni A(x) = Ag cos(Q - x)
dla stanu LO, a w przypadku stanu FF parametr porzadku ma postaé fali plaskiej A(x) = Age'Q*
[179]. Faza FFLO moze powsta¢, gdy wytworzenie niejednorodnej konfiguracji A(x) w ukladzie jest
korzystne energetycznie. Dzieje sie tak, gdy wspolczynnik proporcjonalnosci przy cztonie [VA(x)|?
w rozwinieciu Landaua-Ginzburga dla potencjalu termodynamicznego jest ujemny [83]. Istnienie tej
fazy dla spolaryzowanych mieszanin Fermiego zostalo przewidziane w ramach MFT. W tej sytuacji
faza FFLO zajmuje bardzo niewielki obszar diagramu fazowego odpowiadajacy duzym wartosciom
hlub P oraz stosunkowo niskim temperaturom [12,(13,/188]]. Stwierdzono takze mozliwos§¢ wystepo-
wania w tym kontekscie punktu przemiany multikrytycznej, ktory jest nazwany punktem Lifszyca.
Wystepuje on w skonczonych temperaturach i spotykajg sie w nim faza normalna, nadciekla oraz
niejednorodna faza FFLO [13}[83}|174]. Badania nad wplywem zmiany stosunku mas sktadnikow
mieszaniny pokazuja, ze jego zwigkszenie prowadzi do rozrostu obszaru odpowiadajacemu niejed-
norodnej nadcieczy na diagramie fazowym w zmiennych (P, T, a;') [99,101,(189,[234]. Jezeli chodzi
o stabilnos¢ tej fazy to wyniki badan nie sg jednoznaczne [105}/189]. Uwzglednienie wpltywu fluk-
tuacji zwigzanych z wystepowaniem modow Goldstone’a sugeruja jednak, ze faza FFLO jest niesta-
blina dla T > 0 w przypadku neutralnych gazow fermionowych [[105/178]]. Zdaja sie to potwierdzac
takze eksperymenty w ktorych brak jest sladow nadcieczy typu FFLO w izotropowych uktadach
obojetnych elektrycznie.

W przypadku fazy SLW powstajaca nadciecz charakteryzuje sie parowaniem pod powierzchnig
Fermiego jednego ze skladnikoéw. Przyjmijmy, ze k}c > k;. Przyciagganie pomiedzy atomami po-
woduje powstawanie par Coopera dla ktorych pedy parujacych sie atomoéw sa przeciwne. W tym
przypadku parowanie moze wystepowaé jedynie dla pedow w poblizu k;. Ponadto warunek moé-
wigcy o zerowym catkowitym pedzie pary powoduje, ze niektore atomy o pseudospinach "|" s3

promowane na powierzchnie Fermiego k}c z wnetrza morza Fermiego pozostawiajagc w nim przerwe
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energetyczng dla pedow rownych k;. Proces formowania sie par zachodzi dla powloki o promieniu
k; oraz o szerokosci k. Zysk energetyczny, ktory jest zwigzany z energia kondensacji pojedyncze;j
pary wynosi Epg ~ k;K /m,, gdzie m, jest masg zredukowang dla atomow tworzacych pare Coopera.
Z kolei koszt zwigzany z promowaniem niektérych atomow o pseudospinie "|", tak aby odpowiadatly
im pedy zblizone do ke, jest dany przez Epom ~ [(kllg)2 - (kIT,)2] /2m dla pojedynczej pary. Proces ten
jest korzystny energetycznie, gdy Epar > Eprom. W przypadku, gdy kﬁ — k; > k mamy do czynienia
z parowaniem we wnetrzu morza Fermiego cigzszego z atomow [135]]. Istnienie tej fazy wigze sie
z pojawieniam nadmiaru atomow jednego typu w fazie uporzadkowanej i tym samym obserwowana
nadciecz jest spolaryzowana. Tego typu scenariusz moze zostac¢ zrealizowany dla spolaryzowanych
mieszanin Fermiego o nieréwnych masach [12,84,234]. Faze ta udalo si¢ takze zidentyfikowac eks-
perymentalnie w tego typu ukladach [244]].

W kontekscie ultrazimnych mieszanin fermionéw o nieréwnych masach prowadzono badania
dotyczace problemu polaronu Fermiego. Dla duzych polaryzacji mieszaniny pojedyncze atomy mniej-
szosciowego skladnika zachowuja si¢ jak domieszki zanurzone w morzu atoméw sktadnika stano-
wiacego wigkszo§¢ mieszaniny. W wyniku oddzialywan atomy mniejszosciowe efektywnie "ubie-
raja si¢" w chmure atoméw drugiego skladnika i powoduja, ze atomy te zachowuja sie jak kwa-
ziczastki o okreSlonym czasie zycia [11,|122]]. Zbadano takze problem istnienia i wlasnosci pseu-
doszczeliny dla mieszanin w putapkach harmonicznych [236] oraz znajdujacych sie w regularnych
sieciach optycznych [111]]. W szczegolnosci zidentyfikowano nowy egzotyczny typ pseudoszczeliny
w ktorym uktad posiada radialny profil faz w ktorych na przemian wystepuje faza normalna i pseu-
doszczelina, przy czym pojawia sie on jedynie dla odpowiednio duzych stosunkéw mas sktadnikow
mieszaniny [236]. Sprawdzono takze zachowanie ukladu w granicy silnych oddzialywan w ktore;
efektywnie mieszanina sklada si¢ z fermion6éw i bozonowych dimeréw [102]]. Poza tym uogdlniono
ten problem uwzgledniajac sprzezenie spin-orbita [97]], a takze zbadano go gdy wiodacg niestabilno-
$cig jest ferromagnetyzm wedrujacych fermionéw (ang. itinerant ferromagnetism), a nie nadcieklos¢
[233]. Pokazano takze mozliwos¢ realizacji topologicznej przemiany fazowej dla T = 0 w trakcie
ktorej widmo wzbudzen fermionowych zmienia si¢ z posiadajacego przerwe energetyczng na ta-
kie, ktore tej przerwy nie ma [101]]. Jak widzimy spolaryzowane ultrazimne mieszaniny Fermiego
z nierd0wnymi masami sg ukladem obfitujacym w mnogos¢ interesujacych efektéw oraz faz.

Wazng inspiracje do podjecia badan nad ultrazimnymi mieszaninami fermionéw stanowia dla
nas prace, ktore dotyczg kwantowych przemian fazowych w tych uktadach. W pierwszej z nich wy-
kazano mozliwos¢ strojenia polozenia punktu trojkrytycznego na diagramie fazowym w zmiennych
(h, T) na poziomie MFT za posrednictwem zmiany stosunku mas skltadnikéw mieszaniny [164]]. Wy-
niki tej pracy sugeruja, ze da si¢ odpowiednio dobierajac nietermiczne parametry kontrolne uktadu
otrzymac¢ kwantowy punkt krytyczny. Ponadto badania wptywu fluktuacji w takich uktadach poka-
zaly, ze moga one prowadzi¢ do zmiany rzedu przemiany fazowej. W szczegoélnosci dla dwuwymia-
rowej mieszaniny Fermiego pokazano, ze fluktuacje prowadza do wyindukowana ciaglej przemiany
fazowej miedzy faza nadciekla oraz normalng. Dzieje sie tak mimo iz MFT przewiduje, ze przemiana

powinna by¢ w tym przypadku I rodzaju [219]. Wplyw fluktuacji zostat zbadany takze w kontekscie
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gazu unitarnego o niero6wnych masach w trzech wymiarach w ktérym zaobserwowano zmniejszenie
obszaru wystepowania fazy uporzadkowanej [189]], podobne zachowanie zaobserwowano takze we
wspomnianym wczesniej ukladzie dwuwymiarowym [219]. W obu tych przypadkach nie uwzgled-
niono tlumienia Landaua modéw Goldstone’a w fazie ze zlamang symetria, ktére powinno miec¢
wplyw na zachowanie uktadu w przypadku spolaryzowanym [[101]]. Spodziewamy sie, ze uwzgled-
nienie ttumienia jest istotne dla zrozumienia charakteru kwantowej przemiany fazowej podobnie
jak to ma miejsce w przypadku teorii Hertza-Millisa dla ukladow magnetycznych [89,/147].

W tej pracy zbadamy mozliwosci otrzymania kwantowego punktu krytycznego oraz jego sta-
bilnos¢ ze wzgledu na fluktuacje. Uwzglednimy takze efekty zwigzane z wystepowaniem tlumienia
Landaua. Jako punkt wyjscia przyjmiemy, ze wiodaca niestabilnoscia w naszym ukladzie jest pa-
rowanie singletowe dla ktorego jedynie atomy o przeciwnych pseudospinach paruja si¢ ze soba.
Zakladamy, ze oddzialywania miedzy fermionami sa przyciggajace i modelujemy je potencjalem

kontaktowym o amplitudzie g < 0. Hamiltonian dla tego uktadu ma posta¢

N = ot 9 f t
H—-pN = Z &k CoCies T v Ckrq/2.16k+q/2. K +q/2,. C K +q/2,1 (2.35)
k,o kk',q
gdzie &7 = #?k?/2my — 15, co stanowi to uogdlnienie wzoru 1} W dalszej czes$ci pracy bedziemy
postugiwali si¢ naturalnym uktadem jednostek w ktérym przyjmujemy, ze i = kg = my = 1. Ponadto

bedziemy oznaczac stany pseudospinowe jako |T) = |+) oraz ||) = |-).



Rozdzial 3
Kwantowe przemiany fazowe

Jednym z glownych paradygmatéw wspolczesnej fizyki materii skondensowanej jest pojecie
przemiany fazowej, a takze zwigzane z nim spontaniczne famanie symetrii [35}|77,/156]]. Okazaly
si¢ one niezwykle uzyteczne przy zrozumieniu emergentnych zjawisk wystepujacych w réznych
dziedzinach nauki [210]]. Za ich pomoca mozemy opisa¢ ewolucje naszego Wszechswiata od bar-
dzo goracego i jednorodnego stanu tuz po Wielkim Wybuchu, az do chwili obecnej w ktorej jest on
wypelniony réznymi strukturami i niejednorodnosciami [30]. Postugujac si¢ analogicznymi koncep-
cjami badacze staraja sie zbudowaé ramy teoretyczne opisujgce ewolucje biologiczng oraz problem
powstawania zycia [78,210], a takze lepiej zrozumie¢ zachowania spoleczne i ekonomiczne [228].
W tym kontekscie zagadnienia spontanicznego tamania symetrii oraz powstawania hierarchicznych
struktur w przyrodzie zdaja sie by¢ ze sobg Scisle zwigzane [7].

Przemiany fazowe w kontekscie materii skondensowanej maja miejsce, gdy w wyniku mody-
fikacji pewnego parametru kontrolnego jakosciowe witasnosci badanego uktadu ulegaja gwattow-
nej zmianie. Przemiany takie zwykle zachodza w skonczonych temperaturach i makroskopowy po-
rzadek ulega w ich trakcie zniszczeniu na skutek fluktuacji termicznych [35}/77,156]]. Mozliwe jest
takze zrealizowanie przemiany fazowej w zerowej temperaturze. W tym przypadku faza uporzad-
kowana ulega zniszczeniu na skutek fluktuacji kwantowych zwigzanych z zasada nieoznaczonosci
Heisenberga, a nie z fluktuacjami termicznymi jak to ma miejsce w przypadku klasycznym. Prze-
miany tego typu nazywamy kwantowymi przemianami fazowymi i ich wystepowanie w ukladzie
ma wplyw takze na jego wlasnosci w T > 0 [44,192,231]]. W szczegolnosci obecnosé kwantowego
punktu krytycznego (QCP) na diagramie fazowym jest zwigzana z intrygujacymi efektami obse-
rowowanymi w takich materiatach jak magnetyczne izolatory oparte na metalach ziem rzadkich
[22], wysokotemperaturowe nadprzewodniki [[49}/140,|146,(152,/162,|191]], a takze organiczne prze-
wodniki [59]. Kwantowa krytycznos$¢ zostala zaobserwowana takze w kontekscie ultrazimnych ato-
mow [252,253]. Szczegdtowe omoOwienie tego problemu mozna znalezé w pracach przegladowych
[201/441(138}/192,211}[231}[232].

Struktura tego rozdziatu jest nastepujaca:

Podrozdzial 3.1. Zaczniemy od przedstawienie podstaw teorii skalowania dla klasycznych (T > 0)

oraz kwantowych (T = 0) przemian fazowych. Scharakteryzujemy najwazniejsze r6znice miedzy

43
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tymi dwoma typami przemian oraz wprowadzimy wykladnik dynamiczny z. Ponadto pokazemy, ze
istnieje korespondencja miedzy kwantowa przemiana fazowa w d wymiarach, a klasyczng przemia-
na w D = d + z wymiarach.

Podrozdzial 3.2. Nastepnie zaprezentujemy podstawowe informacje na temat teorii Hertza-Millisa
w przypadku ferromagnetyzmu wedrujacych elektronéw. Opiszemy jaki wpltyw na przemiane fazo-
wa ma tlumienie Landaua paramagnonow. Nastepnie omoéwimy ciagle przejscie od rezimu klasycz-
nego do kwantowego dlaT > 0 w obszarze zlokalizowanym ponad QCP i przedstawimy uzyskiwany

diagram fazowy.

3.1 Teoria skalowania

W tej czesci skupimy sie na opisie uktadu w poblizu ciagglej przemiany fazowej. Mozna ja scha-
rakteryzowac poprzez wprowadzenie parametru porzadku ¢, ktory przyjmuje niezerowa wartosc
w fazie o ztamanej symetrii, a w fazie symetrycznej jest rowny zero. Zblizajac si¢ do przemiany
fluktuacje parametru porzadku staja sie coraz wieksze i w poblizu punktu krytycznego przestrzen-
ne korelacje sa dlugozasiegowe. W tym przypadku uklad jest charakteryzowany skalg dlugos¢ &
zwigzang z zasiegiem korelacji, przy czym rozbiega ona w punkcie krytycznym zgodnie z prawem

potegowym

£ oc 1], (3.1)

gdzie ¢t jest bezwymiarowa wielkoscig charakteryzujaca odleglos¢ od punktu krytycznego, a v jest
wykladnikiem krytycznym zwigzanym z dtugoscia korelacji. W analogiczny sposéb mozemy wpro-
wadzi¢ charakterystyczng skale czasowa 7, zwigzang z czasem zaniku korelacji w uktadzie. Podobnie

jak &, takze 7. rozbiega w poblizu przemiany fazowej zgodnie z prawem potegowym
e oc £ e |17, (3.2)

przy czym zaleznosc¢ ta definiuje wykladnik dynamiczny z. W otoczeniu przemiany fazowej jedy-
ng istotna skalg dlugosci jest ¢, a skalg czasu 7. Obie te wielkoS$ci rozbiegaja do nieskonczonosci
w punkcie krytycznym. Oznacza to, ze fluktuacje pojawiaja sie we wszystkich skalach czasowych
i na wszystkich dlugosciach. W konsekwencji uklad jest niezmienniczy ze wzgledu na skalowanie
(ang. scale invariant) [231]].

Zachowanie krytyczne ukladu moze by¢ scharakteryzowane przez podanie zestawu wykladni-
kow krytycznych opisujacych nieanalitycznosci réznych wielkosci fizycznych przy podchodzeniu
do przemiany fazowej. Definicje tych wyktadnikow zostaly zawarte w tabeli Ciagte przemiany
fazowe wykazuja uniwersalnos¢, tzn. wartosci wyktadnikow krytycznych sg takie same dla catych
klas przemian wystepujacych w roéznych ukladach fizycznych. O przynaleznosci ukladu do danej
klasy uniwersalnosci decyduje jego wymiarowos¢, symetria parametru porzadku oraz zasieg od-
dzialywania. Mechanizm pojawiania sie uniwersalnosci jest zwigzany z silnymi fluktuacjami wyste-

pujacymi w poblizu punktu krytycznego. Rozbieznos¢ &€ powoduje, ze efektywnie wtasnosci uktadu
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ulegajg usrednieniu po duzych objetosciach tracac tym samym wrazliwo$¢ na mikroskopowe szcze-
goly [1564231]. Fluktuacje sa w pelni uwzglednione w opisie $redniopolowym uktadu, gdy d > d,
przy czymd; to gébrny wymiar krytyczny. W tym przypadku $redniopolowe wartosci wykladnikow

krytycznych przewidywane przez teorie Landaua-Ginzburga sa poprawne [77,156]].

Tab. 3.1: Definicje wyktadnikow krytycznych zwigzanych z zachowaniem r6znych obserwabli przy
podchodzeniu do punktu krytycznego. Parametry charakteryzujace uklad to w tym przypadku zre-
dukowana temperatura t = (T — T,)/T,, parametr porzadku ¢ (np. magnetyzacja m dla ferroma-
gnetykow) oraz sprzezone z nim pole Zréodtowe J (np. pole magnetyczne B dla ferromagnetykow).

Przyjmujemy, ze uklad jest d-wymiarowy [77,156,231].

Obserwabla Wykladnik Definicja Dodatkowe warunki

Pojemnos¢ cieplna a C o |t t—0, J=0
Parametr porzadku B ¢ oc (—t)P t—07, J=0
Podatnosé¢ Y X = (%) o |t 7Y t—0, J=0
Izoterma krytyczna ) J o |$|°sgn ¢ J—0, t=0
Dhugosc¢ korelacji v Eoc [t]TY t—0, J=0
Funkcja korelacji n G(r) o |p|74+2n t=0, J=0
Czas korelacji z T, oc &F t—0, J=0

3.1.1 Teoria skalowania w przypadku klasycznym

Niezmienniczos¢ skalowania w poblizu punktu krytycznego powoduje, ze wlasnosci fizyczne
ukladu nie powinny ulec zmianie pod wplywem przeskalowania wszystkich dlugosci wystepuja-
cych w ukladzie wykorzystujac wspolny czynnik b € R,. W trakcie tej procedury nalezy w taki
sposob dostosowac wartosci zewnetrznych parametrow {t, J, . ..} opisujacych stan ukltadu, aby dtu-
gos¢ korelacji nie ulegla zmianie. Zakltadamy, Ze jedynymi istotnymi statymi sprzezenia sa ¢ oraz J.

Prowadzi to do nastepujacej relacji jednorodnosci dla osobliwej czesci gestosci energii swobodnej

f(t,J) = b7f, (¢b™, JbY), (3.3)

przy czym t = (T — T.)/T,, a wykladniki x = d/(2 — a) oraz y = d6/(1 + &) sa dobrane w taki
sposéb, aby byly konsystentne z definicjami wykladnikéw krytycznych z tabeli ktére mozna
otrzyma¢ poprzez obliczenie odpowiednich pochodnych termodynamicznych energii swobodnejf]

Powyzsza relacje jako pierwszy zaproponowal na podstawie dociekan fenomenologicznych Widom

W celu powigzania wykladnikoéw x oraz y z tymi zdefiniowanymi w tabeli [3.1| nalezy skorzystac z nastepujacych

s o? s (1,0 ofs(t, 92 (2,
relacji C(t,0) o %, P(t,]) o % oraz y(t,0) o J;;é D) ‘]

B=d-y)/x,y=Q2y—-d)/xid=y/(d-y).

- W rezultacie otrzymuje sie, ze « = 2 — d/x,
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w 1965 roku [238]], a zostala ona uzasadniona na gruncie teorii renormalizacji przez Kadanoffa [[110]]
i Wilsona [240,241]).
Przeskalowanie dlugosci o czynnik b jest arbitralne i mozna go dokona¢ w taki sposéb, aby

tb* = 1. W rezultacie otrzymujemy tzw. prawo skalowania [[156]]

fit, J) =t f(1, ) = e (v, (3.4)

gdzie ¥(-) to funkcja skalujaca. Obserwujemy, ze w granicy ¢t — 0 funkcja fi(t, ]) zalezy jedynie
od J. Oznacza to, ze czynnik t%/* znajdujacy sie w réwnaniu musi by¢ kasowany w tej granicy,

a konsekwencji

)d/y

q/(]t—y/x) ﬁ (]t—y/x ]d/yt—d/x’ (3.5)

czyli £;(0,]) o J¥Y. Wniosek ten pozwala otrzyma¢ zwiazki pomiedzy termodynamicznymi wy-

ktadnikami krytycznymi {a, §, y, §}. Relacje skalowania miedzy nimi maja postaé [156]
a+2+y=2 oraz y=p(6—-1). (3.6)

W przypadku wykladnikow dotyczacych funkcji korelacji {v, n} mozemy skonstruowaé¢ w ana-

logiczny sposob przeskalowana posta¢ funkeji korelacji, ktora jest dana WyraZenieIrﬂ

G(r; 1) = p(r)@(0)): — {(r)){e(0)):. (3.7)

Po przeskalowaniu dtugosci w G(r; t) wykorzystujac czynnik b dostajemy [[156]]
G(r;t) = b2 WG (b7 r; b*1). (3.8)

Powyzej wykorzystano rownanie oraz posta¢ skalowania dla parametru porzadku ¢(b*t,0) =
b¥Y$(t, 0), ktora pozwala na znalezienie wymiaru skalowania dla pola ¢(r), ktéry wynosi d —y. Dla

t # 0 mozemy przyjaé, ze b*t = 1. Prowadzi to do prawa skalowania dla funkcji korelacji
G(r;t) = 21, (3.9)

Jezeli ustalimy ¢ tak, aby jego wartos¢ byla skonczona i bliska zeru, wtedy spodziewamy si¢ zani-
kania G(r;t # 0) ~ exp(—r/&) w granicy r — oco. Asymptotyka ta powinna by¢ odtwarzana przez
funkcje skalujaca ®(rt'/*), co w polaczeniu z réwnaniem prowadzi do relacji v = 1/x. Z kolei
dla t = 0 dostajemy z rdwnania , ze G(r;0) o r~2@Y) co po poréwnaniu z definicja z tabeli
pozwala na otrzymanie relacji n = d — 2y + 2. Zwiazki te pozwalaja na wyprowadzenie relacji

skalowania

r=@-nv (3.10)

bWielko$é ¢ = (¢(r)); jest parametrem porzadku, ktéry otrzymuje sie w wyniku termicznego uéredniania pola ¢(r)

(np. dla ferromagnetyka jest to pole spinowe s(r), ktére po usrednieniu daje magnetyzacje m).
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oraz relacji hiperskalowania
2—a=dv, (3.11)

ktora wigze wyktadniki krytyczne z wymiarowoscia uktadu [156].

Warto zauwazy¢, ze dla klasycznych ciaglych przemian fazowych (T > 0) w relacjach skalo-
wania nie wystepuje wykladnik dynamiczny z. Jest to spowodowane tym, ze suma statystyczna
Z = Tr{exp(—H/T)} faktoryzuje sie na cze$¢ zwigzang z energig kinetyczna uktadu Hg;, oraz czes¢
potencjalng Hyo, czyli Z = Zy;nZp,;. Czg$C kinetyczna wymaga policzenia calek gaussowskich, ktore
nie generujg osobliwego wktadu do gestosci energii swobodnej. W konsekwencji w przypadku kla-
sycznym uklad efektywnie jest opisywany za pomocg modeli niezaleznych od czasu, a tym samym

czas korelacji nie pojawia sie w problemie [231].

3.1.2 Teoria skalowania w przypadku kwantowym

W przypadku kwantowym czesci kinetyczna i potencjalna hamiltonianu w ogélnosci nie komu-
tuja, co powoduje, ze kwantowo-mechaniczna suma statystyczna nie ulega faktoryzacji. Oznacza to,
ze wlasnosci statyczne i dynamiczne ukladu sprzegaja sie. Problem kwantowy musi by¢ formuto-
wany w jezyku po6l zaleznych zaréwno od wspotrzednych przestrzennych, jak i czasowych. Ponadto
macierz gestoéci w zespole kanonicznym p ~ exp(—H/T) ma postaé operatora ewolucji dla czasu
urojonego 7 = 1/T = —it, przy czym t to czas rzeczywisty. W konsekwencji uktad kwantowy poza
d kierunkami przestrzennymi posiada dodatkowy kierunek czasowy zwigzany z jego temperatura.
Gdy T — 0, wtedy staje sie on nieskonczony. Co wiecej, zgodnie z rOwnaniem kierunek cza-
sowy skaluje sie z z-tg potega dtugosci [231]]. Powyzsze rozumowanie wskazuje na korespondencje
pomiedzy D = d + z wymiarowym uktadem klasycznym, a d wymiarowym ukladem kwantowym.

W zerowej temperaturze przemiana fazowa jest dostrajana za posrednictwem nietermicznych
parametréw kontrolnych t = (K — K;)/K,, gdzie K, to warto$¢ K dla ktorej osigga sie QCP. Na
przyktad parametr K moze by¢ ci$nieniem, domieszkowaniem, polem magnetycznym, etc. Wyko-
rzystanie korespondencji miedzy problemem kwantowym, a klasycznym pozwala na zmodyfikowa-
nie relacji jednorodnosci dla osobliwej czesci gestosci energii swobodnej dla T = 0 w nastepujacy
sposob [231]]

fi(t,]) = b= 9D £ (16, JbY) . (3.12)

Relacja ta pozwala wyprowadzi¢ w analogiczny sposob jak dla przypadku klasycznego zwigzek mie-
dzy x iy, a wykladnikami zdefiniowanymi w tabeli|3.1|z tym, ze teraz t = (K — K,)/K.. W rezultacie
dostajemy te same relacje, co dla punktu krytycznego w T > 0 w ktorych nalezy jedynie wymienié¢
dna D = d+z. Efektywne zwigkszenie wymiarowosci uktadu do D = d+z w przypadku kwantowym
powoduje, ze D moze sta¢ sie wieksze od d. Oznacza to, ze wykladniki krytyczne przyjmuja warto-
$ci Sredniopolowe, a fluktuacje niegaussowskie stajg si¢ nieistotne [44]. Do kwantowej przemiany

fazowej mozemy zbliza¢ sie takze poprzez redukcje temperatury ukladu do zera przy jednoczesnym
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utrzymywaniu K = K.. W tym przypadku nalezy uogoélnic¢ relacje jednorodnosci tak, aby zawierata

takze zaleznosc¢ od temperatury uktadu [231]
fi(t, J,T) = b= P £, (16, JbY, TH) . (3.13)

Przedyskutujemy teraz skalowanie dla obserwabli O(k, ) opisujacych rozwazany uklad (np.
funkcji spektralnych). W poblizu QCP problem mozna opisa¢ przy pomocy skalowania skoniczonych
rozmiaroéw (ang. finite-size scaling) [35]. W tym przypadku uklad jest scharakteryzowany pojedyn-
cza skala dlugosci & oraz czasu 7, = w.! o« & ~ T, ktora jest zwigzana z temperaturg T. Gdy
T — 0 rozmiary ukladu w kierunku czasowym zwigkszaja sie i gdy T = 0 uktad w tym kierunku

staje sie nieskoniczony. Prowadzi to do nastepujacej relacji [211]]

O(k, w;t, ], T) = £900, (k&, wE; JE, TE) =

iy » y (3.14)
= 79020, (kT7%, 0/ T; JTV, TE)

gdzie O; i O, sg roznymi postaciami funkeji skalujacych, a dp jest wymiarem skalujacym obserwa-
bli O. W punkcie krytycznym, tj. t = T = J = 0, skala dlugosci w ukladzie jest zwigzana tylko
z mierzonym wektorem falowym k. Analogicznie skala energii jest zadana mierzona wartoscia w,

co prowadzi do wniosku, ze
O(k,w) = k%0, (1, 0/k?) = k%05 (w/k?) . (3.15)

Podobnie, gdy podchodzimy do QCP redukujac temperature T do zera jednocze$nie utrzymujac
t =0, wtedy

Ok = 0,w;T) = T"9/20, (w/T) . (3.16)

Warto zwroci¢ uwage, ze skalowanie skonczonych rozmiaréw przedstawione w rownaniu jest
uprawnione, gdy punkt krytyczny speinia relacje hiperskalowania. Sytuacja taka ma miejsce, gdy
D < df [231]. W przypadku, gdy D > d uklad opisuja takze niebezpiecznie nieistotne zmienne
(ang. dangerously irrelevant variables), ktére powoduja naruszanie relacji hiperskalowania, a takze
modyfikacje skalowania O w poblizu QCP [138]]. Z tego powodu przedstawione wyzej skalowanie

dla obserwabli O jest nazywane w literaturze skalowaniem naiwnym.

3.1.3 Przejscie miedzy rezimem klasycznym i kwantowym

Przedyskutujemy teraz podstawowe aspekty diagramu fazowego dla T > 0 w przypadku, gdy
uktad posiada QCP. Na razie ograniczymy sie do sytuacji w ktorej faza uporzadkowana wystepuje
tylko w zerowych temperaturach. Z sytuacjg takg mamy do czynienia, gdy uklad jest niskowymia-
rowy i fluktuacje termiczne niszczg porzadek w wyzszych temperaturach w zgodzie z twierdzeniem
Mermina-Wagnera [77,156]. Diagram fazowy w sytuacji, gdy faza uporzadkowana jest obecna takze

w skonczonych temperaturach zostanie przedyskutowany przy omawianiu teorii Hertza-Millisa.
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Rys. 3.1: Schematyczny diagram fazowy w poblizu kwantowego punktu krytycznego (QCP). Prze-
miana fazowa jest manipulowana za posrednictwem nietermicznego parametru K, przy czym QCP
odpowiada K = K,. Przemiana fazowa zachodzi w zerowej temperaturze miedzy faza uporzadko-
wang (K < K.), a fazg symetryczng. Dalekozasiegowy porzadek ulega zniszczeniu w skonczonych
temperaturach na skutek fluktuacji termicznych. Obszar ten nazywamy termicznie nieuporzadko-
wanym. Z kolei, gdy K > K. dominuja fluktuacje kwantowe i jest to tzw. obszar nieuporzadkowany
kwantowo. Bezposrednio nad QCP znajduje si¢ obszar, w ktérym fluktuacje termiczne i kwantowe
sa porownywalne. Ciggle przejscie miedzy rezimem klasycznym i kwantowym wyznacza zaleznosc¢
T oc |K — K |"* [231]).

W skonczonych temperaturach zachowanie ukiadu jest okreslone poprzez wspoédtzawodnictwo
efektow termicznych z fluktuacjami kwantowymi. Skala energetyczna zwigzana z fluktuacjami ter-
micznymi jest dana przez T, a energia zwigzana z dalekozasiegowymi fluktuacjami parametru po-
rzadku wynosi w, o« 7% o [t|"*. Gdy T > o, wtedy dominujaca role w uktadzie pelnig fluktu-
acje termiczne (rezim klasyczny) i odpowiadajg one za zniszczenie porzadku dalekozasiegowego dla
T > 0. Zkolei, gdy T < w, tylko fluktuacje kwantowe sg istotne w opisie uktadu (rezim kwantowy).
W tym przypadku uklad znajduje sie w fazie symetrycznej takze dla T = 0. Gdy w, ~ T, wtedy znaj-
dujemy sie w obszarze krytycznym zlokalizowanym w skonczonych temperaturach powyzej QCP,
tj. K = K,. Jest to obszar przejsciowy w ktorym zaré6wno efekty termiczne jak i kwantowe sg istot-
ne. Granice tego obszaru sa wyznaczone przez warunek T = w, « |K — K,|"*. Warto wspomniec, ze
uniwersalne zachowanie obserwowane w obszarze krytycznym jest obecne tylko w odpowiednio

niskich temperaturach. Gdy T przekroczy pewng charakterystyczng mikroskopowsa skale energii
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obecnos¢ QCP nie wplywa na wlasnosci ukladu. Ciggle przejscie obserwowane miedzy rezimem
klasycznym i kwantowym zostalo schematycznie przedstawione na rys. (3.1 [231].

Wystepowanie obszaru krytycznego jest odpowiedzialne za mozliwo$¢ obserwacji QCP takze
w skonczonych temperaturach. W tym przypadku ukiad jest scharakteryzowany przez termiczne
wzbudzenia kwantowego stanu podstawowego, ktore cechuje brak obecnosci konwencjonalnych
kwaziczastek. Powoduje to, Zze w obszarze tym zalamuje si¢ teoria cieczy Fermiego prowadzac do
pojawienia sie tzw. cieczy nielandauowskiej (ang. non-Fermi liquid). Jej obecnos¢ jest sygnalizowana
przez nietypowe prawa potegowe dla réznych obserwabli mierzonych w uktadzie [200,229/231]]. Na
o €2 ~ T?

dla cieczy Fermiego, a w przypadku cieczy nielandauowskiej dostajemy, ze Tq_ula s € T¢, gdzie £ < 2.

przyklad czas zycia kwaziczastek 74,4 skaluje sie z energig ich wzbudzenia e jak Tq_ulasi
Oznacza, ze kwaziczastki sg znacznie silniej thumione w kwantowym obszarze krytycznym nad QCP

niz poza nim [200].

3.2 Teoria Hertza-Millisa

W przetomowej pracy z 1976 roku Hertz zastosowal teori¢ renormalizacji do ferromagnetyczne;j
przemiany fazowej w T = 0 dla ukladu wedrujacych elektronow [89]. Pokazal, ze cechy statyczne
i dynamiczne dla QCP sa ze soba powigzane, co prowadzi do pojawienia sie w ich opisie wyktadnika
dynamicznego z. Poza tym wykazal, ze mozliwa jest realizacja przejs¢ miedzy rezimem klasycznym
i kwantowym. W 1993 roku Millis dokonat rewizji pracy Hertza wprowadzajac konieczne poprawki
oraz zbadal zachowanie ukltadu w poblizu QCP dla skonczonych temperatur [[147]. Prace te stano-
wia podwaliny teorii kwantowych przemian krytycznych w ukladach fermionowych i ta czesc jest

dedykowana przegladowi najwazniejszych aspektow i wynikow teorii Hertza-Millisa.

3.2.1 Dzialanie Hertza

Skupimy sie na ferromagnetycznej przemianie fazowej w ukladzie wedrujacych elektronéw, przy
czym bedziemy do niej podchodzi¢ od strony fazy paramagnetycznej. Wzbudzenia kolektywne tego
uktadu sg opisywane w poblizu przemiany za pomocg bozonowego pola porzadku ¢(r, ) przyjmuja-
cego wartosci rzeczywiste. Sume statystyczna Z mozna przedstawi¢ wykorzystujac formalizm caltek
funkcjonalnych [2}/154] jako Z = f D[¢] exp(=Su[¢]), przy czym efektywne dziatanie Hertza Sy [¢]
ma w tym przypadku posta¢ [2,|138}|147]]

Sul) <357 3 (3464 F1) dycntg o
9, Om (3.17)

B
o4 [Car [l fgan] = 5O+ 5019

gdzie p = 1/T, I, = I'lq| dla przemiany ferromagnetycznej, zas I jest stalg charakteryzujaca thu-

mienie modow kolektywnych, § jest parametrem kontrolujacym przemiane fazows, a u to parametr
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okreslajacy site samooddziatywania fluktuacji spinowych w cztonie S®[¢] ~ ¢*. Szczegdlowe wy-
prowadzenie powyzszego dzialania wychodzace z modelu Hubbarda dla elektronéw mozna znalez¢
w monografiach Continentino [44]] i Nagaosy [[150]]. Analogiczne wyprowadzenie zostanie w spo-
sob szczegdtowy omowione w dalszej czesci dysertacji w kontekscie przemiany fazowej do stanu
nadciektego dla ultrazimnych mieszanin atoméw fermionowych.

Wspbétezynnik proporcjonalnoéci w cztonie S@[¢] rzedu ¢? jest zwiazany z odwrotnoscia podat-

(firq)—f(
noéci spinowej )(Spm(q, om) ~ 1-¥ 3y J:wgmk q£k+f+52;

f () jest rozkladem Fermiego-Diraca, V jest objetosciag uktadu, a U to stala oddzialywania miedzy

, gdzie & = ex—pt jest relacja dyspersji elektronow,

elektronami w modelu Hubbarda. Podatno$¢ x;pin(q, @) pelni role propagatora paramagnonéw,
ktore sa wzbudzeniami kolektywnymi ukladu w fazie symetrycznej. Biegun tego propagatora dla
q = @y, = 0 odpowiada kryterium Stonera i wyznacza polozenie przemiany fazowej w przyblizeniu
pola $redniego [2,/139]. Rozwiniecie gradientowe yqpin(q, ®m) dla matych wartosci q oraz |@n,|/Iq|
prowadzi do wyrazenia w roOwnaniu . Dynamiczny wktad rzedu |@,,|/|q| jest zwigzany z thumie-
niem Landaua paramagnonow. W trakcie tego procesu paramagnony sprzegaja sie z fermionowym
continuum par czastka-dziura wzbudzanych w poblizu powierzchni Fermiego. Efektem tlumienia
jest modyfikacja dynamicznego zachowania ukladu, co objawia si¢ tym, ze z = 3 dla przemiany fer-
romagnetycznej. W granicy |q| — 0 ilos¢ dostepnych par czgstka-dziura o matych pedach jest duza,
co prowadzi w efekcie do silnego tlumienia fluktuacji spinowych. W tym sensie czton odpowiada-
jacy tlumieniu Landaua efektywnie uwzglednia sprzeganie sie fermionowych i bozonowych stopni

swobody [89,138l(147].

3.2.2 Roéwnania renormalizacji

Korzystajac z dzialania Hertza zadanego rownaniem mozemy wyprowadzi¢ rownania ply-
niecia stalych sprzezenia postugujac sie perturbacyjng teorig renormalizacji zgodnie z procedurg
przedstawiong w pracy Millisa [147]. Zaczynamy od przypadku gaussowskiego w ktorym bierzemy
pod uwage tylko S [¢], tj. § > 01 u = 0. Réwnania plyniecia (ang. RG flow equations) w przypadku

gaussowskim mozemy wyprowadzi¢ wychodzac z gestosci energii swobodnej fi o postaci [[147]]

A ddq 1
5, T ——1 Z 1 5 ml/T,
fc(6,T) = ﬁVnG vfo (zndﬂzn +q* + ol /T;) o
(3.18)
f qd—wcth( )arct (a)/Fq)
(27r)d & & 5+q?)’
przy czym Zg = f D[p] exp(-=SP[¢]), A to obciecie ultrafioletowe i |@,| = —i Zgodnie ze

standardowg procedura renormalizacji pola bozonowe ¢ w S[¢] mozemy rozdzieli¢ na mody wolne

‘Sume¢ Matsubary w réwnaniu wykonano poprzez zrézniczkowanie powyziszego wyrazenia po J,

a nastepnie zastapienie |®,,| przez —iw i wykonanie calki konturowej danej wyrazeniem EZ@m g(loml) =

Pfg zd;’l ctgh(fw/2)g(—iw), gdzie g(x) = (5 + ¢* + x/T;)™" , a P to czes¢ glowna calki. Nastepnie catkujac otrzy-

mane wyrazenie po § otrzymujemy powyzszy wynik [2].
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¢~ oraz mody szybkie ¢~ tak, ze

Paons Ay 0<Iql <A/b,
Paon: 8y A/b <|ql <A,

Pq.om = (3.19)

gdzie b > 1. Na poziomie teorii gaussowskiej dzialanie dla modéw wolnych ¢= i szybkich ¢~ roz-
przegasie, tj. SP[¢] = S@[$<]1+5P[¢>], wiec wyrazenia na gestosé energii swobodnej po odcatko-
waniu szybkich modéw ma posta¢ fg = f +const-In b, gdzie posta¢ f; jest taka sama w réwnaniu
(3.18), ale obcigcie dla pedow zostalo przeskalowane, tj. A — A’ = A/b. Chcac przywroci¢ obcigcie
A’ do jego wyjsciowej wartosci A nalezy przeskalowac q' = bq oraz o’ = b*w. Procedura przeska-
lowania w zmusza nas takze do odcalkowania czestosci z przedzialu ’ € [Iy/, [/ b], co prowadzi do
modyfikacji stalej const’ - In b w wyrazeniu na f; otrzymanego po odcatkowaniu szybkich modéw.
Procedura ta odtwarza obciecie w czestosciach wystepujace w rownaniu (3.18)).

Korzystajac z otrzymanej relacji mozna zauwazy¢, ze przeskalowanie czestosci «’ jest zwigza-
ne z redefinicjg temperatury 77 = Tb? przy czym dla przemiany ferromagnetycznej z = 3H Co
wiecej niezmienniczoé¢ wyrazenia f ze wzgledu na przeskalowanie pedu q" wymaga by parametr
5 skalowat sie jak 8 = b*5. Obserwacje te pozwalaja wypisa¢ rownania plyniecia w przypadku

gaussowskim

dT(b)

amp ~ O (3.20)
o) _ 25(b)
dlnb '

Powyzszy uklad rownan dla T = § = 0 posiada tzw. gaussowski punkt staly, ktory jest zwigzany
z wystepowaniem QCP na diagramie fazowym.

Kolejnym krokiem jest uwzglednienie cztonu oddziatywania S™[¢] i znalezienie réwnania ply-
niecia dla statej u. Korzystajac z uzyskanego skalowania dla przypadku gaussowskiego oraz postaci
dziatania Hertza (patrz rownanie (3.17)) mozemy znalez¢ skalowanie pola ¢’ (r', 7’) = §(r, 7) /¢, gdzie
£ = b?=4-2)/2 W efekcie dostajemy, ze

p p
% fo dr f dr [p(r,7)]* - %bd”f“ fo dr f d%r [¢' (', )], (3.21)

co prowadzi do v’ = b*""*u. Wynik ten oznacza, ze gdy d + z > 4 warto$¢ u w trakcie plyniecia
zmniejsza sie i w obszarze w poblizu QCP (T = § = u = 0) spodziewamy sie, ze uklad bedzie
opisywany za pomocg Sredniopolowych wykltadnikow krytycznych.

Wystepowanie oddziatywania S [$] powoduje modyfikacje réwnan plyniecia uzyska-
nych wyzej. Mozemy uwzgledni¢ poprawke pochodzaca od oddzialywania postepujac analogicznie

dSkalowanie dla temperatury T i parametru § mozna otrzymaé poprzez przeskalowanie wyrazu
arctg [(a)/Fq)/((S + qz)] = arctg [(w/FIqI)/(5 + q2)] w réownaniu 1| Po pierwsze widzimy, ze § skaluje sie jak
q?, a w konsekwencji w skaluje sie jak |q|*, co daje ' = b5 i 0’ = b*w. Takie samo skalowanie temperatury T jak

czestosci w wiaze sie z wystepowaniem czynnika w/T w funkcji ctgh(fw/2) w réwnaniu 1!
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jak w problemie gaussowskim, ale tym razem musimy rozwina¢ czton S®[$] = Si:[¢] dla matych

wartosci u > 0 uzyskujac tym samym perturbacyjne wyrazenie na sume statystyczna [2]

=f1)[¢<]e f@ f@ e S[P=+¢7]
f Db f Db ~SO[F]-sD (94471 _

(3.22)
f D§<)e 507 23 (Sl +71)
G
-S@1g >
~ fi)[¢<]e S99 72 (1 — (Sint)3 + (sfm> +. )
gdzie warto$¢ oczekiwana (O);, = Z> f D[$>10 exp(-S@[$>]). Wystarczy, ze uwzglednimy tylko

wklady liniowe w u, czyli pomijamy (Smt)G ~ u? i wyrazy wyzszego rzedu. Powyzsze wyraze-
nie pozwala na wyprowadzenie liniowej poprawki w u do plyniecia parametru §, ktora jest rzedu
~u f dr f dr[p=(r, T)]Z([¢>]2>(>;. Ewaluujac ([¢~]%); nalezy odcatkowaé¢ mody lezace w powloce
(w,1q]) € OA zdefiniowanej poprzez warunki {w € [0,I;] ; |q] € [A/b,A]}i{lq] € [0,A] ; w €
[Ty/b*, T;]}, a nastepnie przeskalowa¢ uzyskane wyrazenia tak, aby odtworzy¢ wyjsciowe obciecia.

Ostatecznie zlinearyzowane réwnania plyniecia maja postac [2,/147]]

dT(b)

dnp 2T

ds(b) o

S0 = 26(0) + 1200) fOT G, (3.23)
du(b)

Y (4 —d-2)u(b),

d+z-3

. z=2 . .
gdzie fOT(D)] = ATST [ 4 [Ctgh (3) Goames +2cteh () <(sf-szA>2+1]’ 54 to powierzchinia

d-wymiarowej sfery, a Iy = T'A. Techniczne szczegdly tego wyprowadzenia mozna znalez¢ w pracy

Millisa [147]. Widzimy, ze uwzgledniona poprawka sprawia, ze gaussowski punkt staly jest niesta-

bilny.

3.2.3 Rozwiazanie dlad + z > 4 i diagram fazowy

Przyjrzymy sie teraz rozwigzaniu powyzszych rownan w przypadku, gdy d + z > 4. Zaczniemy
od potozenia A = Tp = 1, aby uprosci¢ rozwazane réwnania. Warto zauwazy¢, ze temperatura
T(b) = Tb” rosnie dla T # 0 w trakcie procedury renormalizacji i tym samym wplywa na wartosé¢
FO[T(b)].Gdy T(b) ~ 1,tj.Inb ~ Inb, = —% In T skonczone rozmiary uktadu w kierunku czasowym
zaczynaja mie¢ znaczenie. Przyjmujemy, ze 6(b) < 1, aby pozosta¢ w rezimie skalowania. Gdy
d(b) ~ 6(b1) = 1 skalowanie ulega zatrzymaniu. Korzystajac z wprowadzonych skali b, i b; mozemy
przedyskutowac przejscie miedzy rezimem kwantowym i klasycznym w fazie paramagnetyczne;j.

Dla odpowiednio niskich temperatur, gdy 1 <« b; < by uklad charakteryzuje sie kwantowym
zachowaniem krytycznym. Jest ono kontrolowane przez gaussowski punkt staly dla T = 0. W tym

przypadku mozemy przyjaé, ze T(b) ~ 0 i wtedy z rOwnania plyniecia dla § (patrz roéwnanie (3.23))
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Zachowanie
nieuniwersalne

Ny
Obszar termicznie | ~s  OPszar krytyczny ,

nieuporzadkowany \~‘ (kwantowy) ) ’
A Y

‘ L4
. ’

L\ ’
TC(K )/1 N # | Obszar kwantowo

nieuporzadkowany

Obszar krytyczny R
(klasyczny) ot T

| Faza uporzadkowana QCP '...-"'

I K K

C

Rys. 3.2: Schematyczny diagram fazowy w poblizu kwantowego punktu krytycznego (QCP) w przy-
padku, gdy faza uporzadkowana wystepuje w skonczonych temperaturach. Przemiana fazowa jest
manipulowana za posrednictwem nietermicznego parametru porzadku K, przy czym QCP odpowia-
da K = K. dlaT = 0. W jasno z6lty obszarze wystepujg silne niegaussowskie fluktuacje termiczne.
Jest on nazywany klasycznym obszarem krytycznym i otacza linie¢ krytyczna, ktora jest dana relacja
T. o (K. —K)Y, przy czym / to wyktadnik przesuniecia. W ogélnym przypadku nad klasycznym ob-
szarem krytycznym moze wystepowac faza nieuporzadkowana termicznie. Ciggle przejscie miedzy
rezimem klasycznym i kwantowym okresla zaleznos¢ T « |K — K.|"?, przy czym wewnatrz obsza-
ru wyznaczanego tym warunkiem zaréwno fluktuacje kwantowe jak i klasyczne sg istotne. Jest to
kwantowy obszar krytyczny. W odpowiednio wysokich temperaturach uklad przestaje wykazywac

uniwersalne zachowanie zwigzane z obecnoscig QCP [138]].

dostajemy w wyniku jego odcatkowania wyrazenie

12uf®(0)

_ 1.2
5@)_b[5+z+d_2

] =, (3.2

gdzie t jest zrenormalizowang odlegloscia od przemiany fazowej w T = 0, tj. t = § — .. Korzystajac

1/Z mozemy otrzymaé z rownania (3.24) granice obszaru nie-

z warunku, ze §(b;) = 1orazb; < T~
uporzadkowanego kwantowo, ktére prowadza do nierdwnosci T < T o 2, przy czym v = 1/2 jest
wartos$cia Sredniopolowa [[147]. W obszarze tym fermiony zachowuja sie zgodnie z przewidywania-
mi teorii Landaua dla cieczy Fermiego. Obszar dla T > T jest kwantowym obszarem krytycznym

(patrz rys.[3.2).

Gdy b; > by, wtedy skalowanie nalezy rozseparowac na dwa rezimy: (A) b > by dla T(b) > 1
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oraz (B) b < by dla T(b) < 1. Zauwazajac, ze fP[T(b)] « T(b), gdy T(b) > 1 mozna wprowadzi¢
wielkos$¢ v(b) = u(b)T (b). Pozwala ona na zmodyfikowanie i uproszczenie rownan plyniecia w tym

przypadku w nastepujacy sposoéb

dé(b
() = 26(b) + Cou(b)
dlnbd
Golb) (3.25)
= (4= dyo(b),
gdzie C jest stalg proporcjonalnosci. Rozwigzujac powyzszy uktad roéwnan catkujgc go od by do b
dostajemy
Cobe)\ (b2 Coby) [ b\
o) =[8(by) - —|[— — | = ,
®) ( (bo) 2—d)(b0) T2 d \by
i (3.26)
b
v(b) = v(by) (b_) :
0

Odcatkowanie rownan w rezimie (B) pozwala na znalezienie warunku poczatkowego &(by) i v(by)
w réwnaniu (3.26). W tym celu wprowadzamy f® (Te*) = f®(0) + [f® (Te*) — £?(0)]. Czton
F®(0) prowadzi do tego samego wyniku jak w réwnaniu (3.24), a czton w nawiasie kwadratowym

pozwala na znalezienie poprawki dla skoniczonych temperatur. W wyniku dostajemy [147]]

8(bo) = T™* [t + BuT*+=912],

v(by) = uT @9z, 20

gdzie B = % fol dT T?=4=22)72[ £@)(T) — £)(0)]. Uzyskane réwnania pozwola nam na zbadanie
w jaki sposob renormalizuje si¢ linia krytyczna T, (t).

Mozliwe jest zaobserwowanie dwoch roznych scenariuszy dotyczacych zachowania uktadu. W
pierwszym przypadku, gdy (b) ~ 1, tj. skalowanie ulega zatrzymaniu, gdy wartos¢ v(b) pozostaje
mala, mozna postugiwac si¢ bezpiecznie rozwinieciem perturbacyjnym. W drugim zas$ w trakcie pty-
niecia parametr v(b) ro$nie przyjmujac wartosci rzedu jednosci, przy czym 6 (b) pozostaje niewielka.
W tym przypadku plyniecie stalych sprzezenia nastepuje w kierunku obszaru w ktorym wystepuja
silne niegaussowskie fluktuacje. Korzystajac z tej obserwacji mozemy sformutowac tzw. kryterium
Ginzburga, ktore okresla warunki dla ktorych fluktuacje gaussowskie sg dominujace. W naszym

przypadku odpowiada to §(b) = 1 oraz v(b) < 1, co mozna zapisa¢ w postaci nierownosci [147]

uT(d+z—4)/z

<1
1/2 * (328)
[t +(B+C)u T(d”—?)/z]
Warto zauwazy¢, ze nier6wnos¢ ta jest ztamana, gdy mianownik powyzszego wyrazenia zeruje sie.

Odpowiadajaca tej sytuacji temperature utozsamiamy z linig krytyczna T,(t), ktéra ma postac [[147]]
¢ z/(d+z-2)
] (3.29)

Tc(t <0, u) = [—m

Uzyskany wyktadnik ¢/ = z/(d + z — 2) nosi nazwe wykladnika przesuniecia i opisuje renormali-

zacje ksztaltu linii krytycznej w poblizu QCP. Warto zauwazyc¢, ze obszar diagramu w poblizu T,(t)
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charakteryzuje sie niegaussowskimi fluktuacjami, a jego granice sg wyznaczone przez temperature
Ginzburga Tg; (patrz rys.3.2).

Mimo iz stala u jest nieistotna, tj. skaluje sie do zera (patrz réwnanie (3.23)) w trakcie procedury
renormalizacji wzgledem gaussowskiego punktu stalego, to jej jawne wystepowanie w wyrazeniu na
temperature krytyczng T, oznacza, ze stala ta jest tzw. zmienng niebezpiecznie nieistotng. Oznacza
to, ze mimo iz u nie wpltywa na istnienie gaussowskiego punktu krytycznego dla d + z > 4 to nadal
pelni wazna role w opisie ksztaltu linii krytycznej i nie moze zostac potozone u = 0. Okazuje sig, ze
takze zachowanie uktadu przy podchodzeniu do QCP wzdluz trajektorii t = 01T — 0 zalezy od u.
Jako przyktad mozna przytoczyé zachowanie dtugosci korelacji £(t = 0, T) oc u™"T~"/V [44,/138].

Linia punktow krytycznych w skonczonych T jest rzadzona przez punkt staly Wilsona-Fishera
[35], ktory pojawia sie przy uwzglednieniu poprawek rzedu u? w réwnaniach ptyniecia. W szcze-

goélnosci zostaje zmodyfikowane plyniecie statej u(b), ktére ma postaé

du(b
d‘IiZ = (4~ d —2)u(b) - 36u*(0) f V[T (D)), (3.30)

gdzie f®[T(b)] jest analogiczna funkcja jak f?[T(b)], ktérej doktadna posta¢ nie jest istotna. Gdy
w trakcie plyniecia osiagana jest skala Inb, = —% InT nastepuje ciagle przejscie miedzy rezimem
kwantowym rzadzonym przez gaussowski punkt staty dla T = 0, a rezimem klasycznym w ktérym

to punkt Wilsona-Fishera jest decydujacy w opisie przemiany fazowej dla T > 0 [147].
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Rozdzial 4
Struktura efektywnego dzialania

Dotychczasowe rozwazania mialy charakter wprowadzenia do gléwnego tematu tej pracy jakim
sa kwantowe przemiany fazowe w ukladach spolaryzowanych fermionéw o nieréwnych masach.
Opis tego problemu zostanie sformutowany przy wykorzystaniu formalizmu catek funkcjonalnych
[2,/154] za pomoca ktorych mozna zapisa¢ sume statystyczng w wielkim zespole kanonicznym dla

ukladu wielu fermionéw

2= [ DLy (41)

gdzie dziatanie S[1/, /] jest zwigzane z modelowym hamiltonianem zadanym réwnaniem (2.35) w na-
stepujacy sposob

_ o[- T ¥
st = [ INAC [E‘ 2m, " ”]¢ o )

oe{+,—}
‘ f fy PP WV Y W)Y ().

W powyzszym rownaniu zastosowano skrocony zapis w ktéorym x = (r, 7),a fx ()= fO’B dr fV d’r ().
Przyjmujemy, ze fermiony oddziatuja ze soba przyciagajacym potencjalem kontaktowym V(x—y) =
g8(x — y), gdzie g < 0. Pola fermionowe {i/°, 9’} sa antyprzemiennymi zmiennymi grassman-
nowskimi, ktore spelniaja antyperiodyczne warunki brzegowe w domenie czaséw urojonych, tj.
Yo(r,0) = =y7(r, ).

Struktura tego rozdziatu jest nastepujaca:
Podrozdzial 4.1. Zaczniemy od wyprowadzenia efektywnego dzialania poprzez zastosowanie trans-
formacji Hubbarda-Stratonovicha za pomoca ktérej wprowadzimy bozonowe pole porzadku. Na-
stepnie odcatkujemy pola fermionowe otrzymujac tym samym bozonowy opis uktadu.
Podrozdzial 4.2. Przyjrzymy si¢ wkladowi do efektywnego dziatania zwiazanemu z jednorodna
konfiguracja pola porzadku, ktory nosi nazwe efektywnego potencjatu.
Podrozdzial 4.3. Na koniec wigczymy do opisu fluktuacje pola porzadku wokoét jego wartosci jed-
norodnej i tym samym uwzglednimy dynamiczne wtasnosci bozonowych stopni swobody. Przedys-

kutujemy takze zwiazek uzyskanych wyrazen z metoda funkcji Greena.

59
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4.1 Efektywne dzialanie

Dzialanie przedstawione w rownaniu (4.2) posiada czlton oddzialtywania co sprawia, ze nie jest
ono forma kwadratowg pdl fermionowych. W celu wykonania calki funkcjonalnej po zmiennych
Grassmanna w rownaniu nalezy ten czton rozprzac wykorzystujac Scislg transformacje Hubbarda-
Stratonovicha [2{154]]. Przyjmujemy, ze wiodgca niestabilno$¢ w rozwazanym ukladzie jest zwigzana
z parowaniem Coopera i wykorzystujemy relacje

exp (gfxﬁtﬁ;lﬁ;%?) =f1>[r7]e><p (fx [—m;lz Y + Y 3?'732]), (4.3)

gdzie ¥ = °(x) oraz , = n(x). Transformacja ta sprowadza wyjsciowe dziatanie do postaci w kto-
rej jest ono forma kwadratowa pél {17, 17}, ale poniesionym kosztem jest wprowadzenie dodatko-
wej catki funkcjonalnej po bozonowym polu pomocniczym 7 przyjmujacym wartosci zespolone.
Wstawiajac wyrazenie do rownania otrzymujemy

2mgy g

_ (0 V2 N .
SHSWW,U]:f[ZIPf(E_ x _ua)sb,?_lnl Y Y e + Uy xnx]. (4.4)

Pole parowania 7, jest sprzezone do formy dwuliniowej g 71/, a tym samym bedzie ono pelni¢
role pola porzadku opisujacego powstawanie par Coopera w ukladzie.
Dziatanie Sgs[V/, ¥/, ¢] mozemy przedstawi¢ w reprezentacji pedowej wykorzystujac transforma-

cje Fouiera dla pol fermionowych i bozonowych dang za pomoca

ikxlﬁa
k )

SR EE o)
S
T 1 —ikx 70

lﬁ;:WZk:e g (4.5)
igx

Ng»

1
Ux—\/ﬁzq:e

gdzie k = (k, k,) oraz q = (q, qm), gdzie k, = 2F”(n + 1) [n € Z] to fermionowa czesto$¢ Matsubary,
aqm = %”m [m € Z] to jej bozonowy odpowiednik. Ponadto powyzej skorzystano ze skroconych
oznaczen kx = k - x — k,7 oraz i (-) = Xk 2k, (+). Po przejsciu do przestrzeni odwrotnej dziatanie

ma postac

Stsli. 0] = —; 2. nal’ + ) Weeq [l ] i (4.6)
q k.q

przy czym wykorzystano notacje Nambu ¥y = [y, l}_‘k]T oraz ¥y = [l}; . ¥~ ] Macierz G!=G;'-
jest odwrotnosciag macierzy funkcji Greena dla tego problemu, przy czym mozemy ja podzieli¢ na
cze$¢ swobodng G, oraz selfenergie  zwigzana z parowaniem. Elementy macierzowe G;'i  maja

postac

-1

[GO ]k+q,k =94(9) 0 —G(Il_(_k)
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gdzie Gos(k) = (ikn — & )~! jest swobodng funkcja Greena fermionu o pseudospinie o, a & =
k?/2my — . jest jego relacja dyspersji.

Opisana powyzej procedura sprawia, ze dzialanie Sy zapisane zostaje jako forma kwadratowa
pol fermionowych i tym samym mozliwe jest analityczne wykonania catkowania funkcjonalnego ze
wzgledu na fermionowe stopnie swobody. Wykorzystanie spinoré6w Nambu w dzialaniu z rownania

skutkuje zamiang kolejnosci po6l fermionowych w mierze catki funkcjonalnej
[ o0 = [ [lageao = [ [-vazaasago -

:fqu;\p;:pf@[@,\lf](-),

gdzie i to indeks numerujacy sktadowg odpowiedniego spinora Nambu. Pocigga to za sobg pojawie-

(4.8)

nie si¢ dodatkowego czynnika p = [ 4(—1) w reprezentacji pedowej wynikajacego z antyprzemien-
nosci pol grassmanowskich, ktérego modut jest rowny 1 i tym samym w granicy termodynamicznej

jest on nieistotny [223[]. W zwigzku z tym wykonujac catki gaussowskie otrzymujemy

p f D[Y, ¥] exp (— kz’q: Yierqg [—G];qu,k] ‘I’k) = exp (;} In (— dgt [—G]Ziq,k] )) ) (4.9)

W dalszej czesci rozdziatu bedziemy postugiwac sie skroconym zapisem w ktérym Tr [ln(—G_l)] =
2kgln (det(y [—G,:iq k] ) Postepowanie to prowadzi do w pelni bozonowego efektywnego dzialania,

S

za pomoca ktérego wyrazona jest suma statystyczna Z = p f Dnle Sl Efektywne dziatanie jest

dane réwnaniem

Serln] = —;Zlnqlz—Tr {In(-G7'[n)} . (4.10)
q

W celu znalezienia Z nadal musimy obliczy¢ catke funkcjonalng po polach bozonowych 7, przy
czym niemozliwe jest jej analityczne wykonanie. Jednakze uzyskana posta¢ sumy statystycznej jest
doskonalym punktem wyjscia do dalszych przyblizen, ktore beda omoéwione w dalszej czesci tego

rozdzialu.

4.2 Efektywny potencjal

Naszym celem jest zbadanie w rozwazanym ukladzie przemiany fazowej miedzy fazg nadcie-
kla, a normalng. Zachodzi ona na skutek kondensacji par Coopera, ktére w fazie nadciektej tworzg
makroskopowy stan koherentny. Przyjmujemy, ze wktad do efektywnego dziatania odpowiadajacy
q = 0 jest dominujacy. Zaczniemy od ewaluacji S.¢[n] dla jednorodnej konfiguracji pola porzad-
ku, tj. ny = A = const. Wkiad ten bedzie odpowiadal efektywnemu potencjalowi U(A), ktory jest
zwigzany z efektywnym dzialaniem relacja fx U(A) =S, f[’]]|17x:A:const'

Warto podkresli¢, ze mozliwe jest takze rozwazenie bardziej ogolnej sytuacji w ktorej parowanie
nastepuje przy niezerowej wartosci Q wektora falowego srodka masy pary Coopera. W rezultacie

otrzymuje sie stan FFLO w ktorym pole porzadku ulega periodycznej modulacji w przestrzeni A(x) =
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Ao cos(Q-x) [991014179189234]]. Dotychczasowe badania sugeruja jednak, ze faza ta jest niestabilna
dla T > 0 i moze reprezentowac jedynie stan podstawowy uktadu [105,(178,235]. Z tego powodu
zaniedbujemy mozliwos¢ realizacji fazy FFLO w rozwazanym uktadzie. Do tego problemu wrocimy
pod koniec kolejnego rozdziatu, gdzie przedyskutujemy mozliwos¢ otrzymania kwantowego punktu
Lifszyca w ktorym wspotistnieje jednorodna nadciecz, niejednorodny stan FFLO oraz faza normalna.

W przestrzeni odwrotnej jednorodna konfiguracja pola porzadku odpowiada

1 = BV 85(q). (4.11)

Wstawienie 74 do efektywnego dziatania S, ¢[n] sprawia, ze catka funkcjonalna zawiera tylko poje-
dynczy wktad odpowiadajacy q = g, = 0, czyli
A2 1 »
Zy = exp [—,BV (—— — —Triln (-G , (4.12)
g BV { ( A )}
przy czym wyrazenie w okraglych nawiasach odpowiada efektywnemu potencjatowi. Funkcja Gre-

ena G ma postac analogiczng jak w teorii BCS nadprzewodnictwa [1,69,/139] i jest dana wyrazeniem

5(q)
det, [G3!]

Gl (=k) A

R 4.13
—A*T GyL(K) (4.13)

[Calksqr =

gdzie det, [Ggl] = [],(ikn—E} ). Energie dwoch galezi wzbudzen fermionowych w uktadzie sa dane

rOwnaniem

Ef =&+ 0Lk =& — (h—{u) + ok, (4.14)

przy czym & = (§ — &)/2, & = (& + £)/2 oraz E; = (& + |A]%2. Ponadto w powyzszym
rownaniu wprowadzono trzy wazne parametry kontrolne, ktore beda czesto pojawialy sie w dalsze;j

czesci tekstu. Pierwszym z nich jest sredni potencjat chemiczny

+ U
el (4.15)
2
Drugim parametrem jest pole Zeemana dane wyrazenim
h=t ;“-, (4.16)

a ostatnim jest wielko$¢ mierzaca nierownowage mas skltadnikow mieszaniny dana rownaniem

r—1
b

r+1

(= (4.17)

gdzie r = m_/my jest stosunkiem mas skladnikéw. Widzimy na podstawie powyzszych roéwnan, ze
widmo wzbudzen fermionowych posiada przerwe energetyczng zwigzang z wartoscig A, tj. AE(k) =
El — E, = 2Ej i jest ona rowna 2A dla & = k%/2m — u = 0, ktéry odpowiada "sredniemu" pedowi
Fermiego kr, gdzie m = 2mym_/(my + m_) jest podwojona masg zredukowana.

Korzystajac z tego, ze Tr [ln(—Ggl)] = Yln (det(7 [—Ggl]
tywnego potencjatu, ktora wynosi

U(A) = i sz In (ik — EY) . (4.18)

9

. k) mozemy otrzymac postac efek-
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gdzie w powyzszym wyrazeniu wykonano juz przejscie do granicy termodynamicznej % k() P
fk(-) = (27)7¢ f d?k(-) i wprowadzono oznaczenie fk(-) = fk % >n(). W powyzszym wyrazeniu
mozemy wykona¢ sumy Matsubary o postaci % >n 9(iky) poprzez zastapienie sumy catkg konturo-
wa

d
= 950 Z 401 (4.19)

przy czym g(-) jest pewna funkcja, a f(-) jest rozkladem Fermiego-Diraca. Wybor konturu catkowa-
nia C zalezy od wlasnosci analitycznych funkcji g(z). Szczegotowe obliczenia zostaly przedstawione

w dodatku A.1. Po ich wykonaniu otrzymujemy

AP 1 f _BE®
UA) = -—— - = In (1+ePE0) . 4.20
9 Bk Z{,: ( ) (4:20)
Efektywny potencjal jest zwigzany z wielkim potencjatem termodynamicznym Q, = —TlnZ; za

pomocy relacji Qy = Vminp U(A). Wartos¢ A = A, minimalizujaca U(A) odpowiada fizycznej
wartosci parametru porzadku i pozwala na wyznaczenie diagramu fazowego w przyblizeniu pola

sredniego, przy czym pomijamy mozliwo$¢ wystepowania stanu FFLO.

4.3 Fluktuacje parowania

Kolejnym krokiem jest uwzglednienie fluktuacji parowania wokot jednorodnej konfiguracji pola
porzadku. Fluktuacje sprawiaja, ze nalezy uwzglednic takze przyczynki pochodzace od q # 0. Przyj-
mujemy, ze jedynie czlony o odpowiednio matych pedach q beda dawaly istotny wkiad do catki
funkcjonalnej, co pozwala na wykorzystanie rozwiniecia w gradientach pola .. W zwigzku z tym
przyjmujemy nastepujaca postac

N = \JBY B5(@) + dy. (4.21)

przy czym ¢, jest polem niewielkich fluktuacji parowania dla ktérych zachodzi ¢4=¢ = 0.
Wykorzystujac rownanie (4.21) i wstawiajac je do wyrazenia na sume statystyczng otrzymujemy;,

ze

$4l® VBV . ‘
7 = pZon)[ng] exp Z ;’ + (Ao + ¢sA) + Tr {In (1-Ga 4)}]. (4.22)
q
gdzie czlony w ktoérych wystepuje ¢g-0 = ¢ = 0 znikaja, a macierz selfenergii 4 ma ta samga
posta¢ jak w réwnaniu , przy czym zastgpiono w nim 1,4 przez pole ¢,. Funkcje Greena G
dang rownaniem (4.13) mozna zapisa¢ w wygodniejszej formie poprzez sprowadzenie propagatorow

do odpowiednich utamkoéw prostych, co prowadzi do réwnania

gt Tk
— k
[GAJHq,k—(S(q)[gZ; o ] (423)

gdzie diagonalna cze$¢ funkcji Greena jest zwiazana z normalnymi funkcjami Greena typu BCS

0 postaci
g+ = |uge|? ok |?

= +
T iky—Ef  ikn— E;

(4.24)
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oraz
P N &

= + ,
K iky— B ikn — Ep

(4.25)

gdzie |ug|? + |vg|? = 1 oraz |ug|? = % (1 + & /Ey). Czynniki uy i vy sa czynnikami koherencji, ktore
wystepuja w transformacji Bogoliubowa-Valatina pdl fermionowych pozwalajacej na diagonalizacje
macierzy G™! w réwnaniu , przy zalozeniu, ze uwzglednia sie tylko wklad jednorodny, tj. ¢ = 0.

Czes¢ pozadiagonalna jest zwigzana z anomalng funkcja Greena o postaci

T = ukv,’; - - (4.26)

gdzie uyv; = A/2Ex [1,69,[139]. W dalszej czesci dysertacji bedziemy przyjmowac, ze A € R, a co za
tym idzie |uy|? = ui, log)? = vz oraz ukvz = u,tvk = UL V.

Mozemy przyblizy¢ rownanie biorac pod uwage tylko fluktuacje gaussowskie pola parowa-
nia ¢,. Zrobimy to rozwijajac logarytm i pozostawiajac tylko wyrazy rzedu ;, tj. In (1 - Ga ¢) =
- D % [GA ¢]n ~=Gp ¢— % [GA ¢]2. Ponadto korzystajac z tego, ze Tr(-) = X 4 tro(-) pozwala
to na otrzymanie sumy statystycznej uwzgledniajacej gaussowskie fluktuacje parowania wynosza-

cej

V e
ZxpZyZs=pZy f D(p] exp [—ﬁ? f(Dqulqu] , (4.27)
q

gdzie @y = [¢g, ¢l 1 Oy = [Pg. ngfq]T s3 odpowiednimi spinorami Nambu dla pdl ¢,. W powyzszym
rownaniu dokonano przejscia do granicy termodynamicznej i skorzystano z tego, ze Tr (GA ¢) =
0, bo ¢9 = 0. Macierz F, jest propagatorem fluktuacji parowania i odpowiada macierzy funkcji
Greena dla bozonowych stopni swobody w ukladzie. Elementy macierzowe odwrotnego propagatora

fluktuacji parowania F;l sg dane rOwnaniem

[F‘;l]n - [F:}I]zz - _é a fk‘gktrq &

F'],, :

(4.28)

[F;1]21 - ﬁffkﬂ]ﬁ_k'

Warto podkresli¢, ze ograniczajac sie tylko do wkladow kwadratowych w polach ¢ mozemy wy-
kona¢ analitycznie catke funkcjonalng po konfiguracjach pola ¢, co prowadzi do gaussowskiej po-
prawki do wielkiego potencjatu termodynamicznego wynoszacej Qg = % fq In [detG{Fq—l(Ao)} / 7[4].

Otrzymane w tym przypadku rownania sg rownowazne przyblizeniu fazy losowej (RPA) w kto-
rym wysumowuje sie nieskonczong podklase diagramoéw drabinkowych podobnie jak dla teorii NSR
(patrz rownanie irys.[2.5(c)). Jednak w tym przypadku uzyskane wyrazenia sa poprawne row-
niez w fazie uporzadkowanej, a takze sg uogdlnione na przypadek nieréwnych mas i populacji ato-
moéw tworzacych mieszanine. Widzimy, ze macierz F;l mozemy podzieli¢ na dwa wkiady. Pierwszy
zwigzany z odwrotno$cig stalej oddziatywania kontaktowego —g~'1, a drugi zwigzany z macierza

funkcji korelacji par — g, tj. F;l =-g'—- 4= F;=-9(1+g 4)~' (poréwnaj z rownaniem )
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W funkcji korelacji par ; wystepujg fermionowe sumy Matsubary, ktore majg postac

1 1 1
B Z ik + iqm — EY, ikn—EJ
(4.29)

B 1 1 Z 1 1
igm + E —E7, B4 [ikn —E] iqm+ikn —EJ

Mozna je wykona¢ zamieniajac sume na catke podobnie jak to bylo pokazane w przypadku efek-
tywnego potencjalu, a nastepnie korzystajac z twierdzenia o residuach mozna otrzymac¢ wynik su-

mowania. Szczeg6lowe obliczenia znajdujg sie¢ w dodatku A.2. Po ich wykonaniu otrzymujemy, ze

o,0’
Jrg

I D =
q 111 — kq . o,0"’
9 ko iQm — Ek’q
, (4.30)
ka',O'
F), = | Dz
koo iqm — By
. , . o0’ _ oy _ o’ o0’ _ o _ o’
gdzie zostaly wprowadzone skrocone oznaczenia fk,q = f(E]) — f(E] +q), Ek,q = (Ek E} +q),
.@]Z’qa = 00" UpUUksqUk+g, @ takze
u? v?, gdy o=+ oraz ¢/ =+
k+qYk 89y ’
2 2 ’
, u' u;, gdy o=— oraz o' =+,
oo — ] TktqTk (4.31)

k.q 2 .2
UierqUic gdy 0=+ oraz o’ = —,

2 2 _ _
Ve sg¥ic gdy o =- oraz ¢’ =—.

Strukture elementéw macierzowych F;l danych réwnaniem mozna lepiej zrozumie¢ blizej
przygladajac sie wlasno$ciom funkcji Greena ¢ oraz F.

Zaczniemy od znalezienia funkcji spektralnej odpowiadajacej funkcji Greena &, ktora jest zdefi-
niowana jako A(k, 0) = —+Im G, (k, ) = u}8(w—E{)+v28(w—E;), gdzie G}, (k, 0) = G (k, ik, —
o + i0") to retardowana funkcja Greena. Widzimy, ze funkcja spektralna posiada dwa piki zloka-
lizowane dla energii wzbudzen EJ. Pierwszy pik odpowiada energii atomu o pseudospinie o, kto-
rego wprowadza si¢ do uktadu powyzej "sredniej" powierzchni Fermiego kr zdefiniowanej rowna-
niem &, = 0. Z kolei drugi pik odpowiada energii atomu o przeciwnym pseudospinie & = —o
usuwanego ponizej kr. Oznacza to, ze czynnik ui zawiera informacje o amplitudzie prawdopo-
dobienstwa wytworzenia wzbudzenia kwaziczastkowego, a czynnik vz o amplitudzie prawdopo-
dobieristwa wytworzenia stanu kwazidziurowego. W przypadku funkcji Greena ¢, atomy o spi-
nie ¢ i & zamieniajg sie rolami. Wzbudzenia fermionowe wystepujace w ukladzie sg zatem dane
przez superpozycje standw kwaziczastkowych i kwazidziurowych tak jak ma to miejsce w typo-
wych nadprzewodnikach. Warto zauwazy¢, ze gdy A — 0, wtedy ui dazy do jednosci, a vz dazy
do zera. Oznacza to, ze znikanie przerwy energetycznej w ukladzie na "Sredniej" powierzchni Fer-

miego kr jest zwigzane z tym, ze wzbudzenia elementarne przestaja by¢ superpozycjami. Co wiecej
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przedstawiona wyzej funkcja spektralna A(k, ) spelnia regute sum f dow A(k,w) = 1. W analo-
giczny sposob mozemy znalez¢ funkcje spektralng dla anomalnego komponentu %, ktéra wynosi
Bk, w) = —%Im Fret(k, 0) = wvp[6(w — Ep) — 8(w — E)]. W tym przypadku spetnione s3 nieco
inne reguly sum o postaci f dw B(k,w) = 0 oraz f dow wB(k,w) = —A. Warto zauwazy¢, ze czes¢
anomalna funkcji Greena G jest obecna tylko w fazie ztamanej, tj. gdy A # 0.

Przedstawiona powyzej dyskusja pozwala na zinterpretowanie elementéw macierzowych F;l
danych réwnaniem (4.30). Wklady pochodzace od czlonow dla ktérych ¢’ # o odpowiadaja dia-
gramom pecherzykowym typu czastka-czastka. Z kolei wktady dla ktérych ¢’ = o pochodza od
diagramow typu czastka-dziura. Przy przejsciu do granicy A — 0 okazuje si¢, ze mogg przetrwac
tylko wktady typu czastka-czgstka, co bedzie miato konsekwencje zwigzane ze zmiang zachowania
wzbudzen kolektywnych przy przejsciu miedzy faza normalng i nadciekts. Uzyskane w tym rozdzia-

le wyrazenia stanowig podstawe do dalszych rozwazan.



Rozdzial 5

Diagram fazowy i kwantowe przemiany

fazowe

Interesujacym zagadnieniem dotyczacym spolaryzowanych mieszanin atomoéw fermionowych
o nieréwnych masach jest pytanie o charakter przemiany fazowej miedzy faza nadciekls, a normalng
w granicy T — 0. Przemiana taka moze by¢ osiggana na przyktad poprzez zmiane koncentracji
roznych typow atomoéw wystepujacych w mieszaninie. W przypadku mieszanin o dwoch réznych
powierzchniach Fermiego badania wykorzystujgce przyblizenie sredniego pola [[12,34,66,84,117,123,
1631/189,[226|] wskazuja, ze przemiana fazowa jest generycznie I rodzaju i staje sie ciagla powyzej
temperatury trojkrytycznej T;,;. Jednakze zgodnie z rezultatami otrzymanymi w pracy [164] dla
mieszanin w ktorych stosunek mas r = m_/my jest odpowiednio duzy mozliwe jest otrzymanie
QCP, a takze kwantowego punktu trojkrytycznego na poziomie MFT.

Problem dotyczacy faktycznego rzedu kwantowej przemiany fazowej jest interesujacy, gdyz wy-
stepowanie QCP na diagramie fazowym jest zwigzane ze wzmocnieniem fluktuacji parametru po-
rzadku, ktére sprzegaja sie z fermionowymi stopniami swobody (patrz np. [20,/138]). W efekcie
prowadzi to do modyfikacji selfenergii fermionowych, ktére doprowadzi¢ moze do zalamania sie
teorii Landaua dla cieczy Fermiego, co objawia si¢ brakiem wystepowania typowych kwaziczastek
w ukladzie. Ponadto obserwowane jest pojawianie si¢ anomalnych obszaréw na diagramie fazowym
zaro6wno w fazie normalnej jak i nadcieklej. Zagadnienie to nie zostalo jeszcze w tym kontekscie
w pelni zbadane.

Sprawia to, ze zrozumienie warunkow dla ktorych w rozwazanym uktadzie mozna wygenero-
wac QCP jest interesujagce. Wiekszos¢ badan prowadzonych wczesniej nad tym tematem opierata sie
na numerycznej ekstrakcji sredniopolowych profili energii swobodnej za pomocs, ktérych mozna
otrzymac¢ diagramy fazowe. W tym rozdziale zostanie sformulowane analityczne podejscie do tego
problemu odwotujace sie do rozwiniecia Landaua-Ginzburga dla efektywnego potencjatu U(A). Wy-
niki omawiane w tym rozdziale stanowig oryginalny wklad autora dysertacji i zostaly opublikowane
w artykutach [248}250].

Struktura tego rozdziatu jest nastepujaca:

Podrozdzial 3.1. Zaczniemy od przedstawienia typowych sredniopolowych diagramoéw fazowych

67
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otrzymywanych dla mieszanin Fermiego. Przedyskutujemy takze w jaki sposéb wygladaja profile
koncentracji atomoéw w mieszaninie w zaleznos$ci od wartosci pola Zeemana h = (py — p—)/2.
Podrozdzial 3.2. Wychodzac z efektywnego potencjatu U(A), otrzymanego w poprzednim rozdzia-
le, wyprowadzimy wspotczynniki rozwiniecia Landaua dla potencjalu termodynamicznego w ze-
rowej temperaturze. Pokazemy, ze rozwiniecie Landaua jest osobliwe, gdy powierzchnie Fermiego
atomow tworzacych mieszanine pokrywaja sie.

Podrozdzial 3.3. Rozwinigcie Landaua postuzy nam do zbadania mozliwosci wygenerowania QCP
na poziomie MFT w dwoch i trzech wymiarach. Wykazemy przy tym, ze dla d = 2 nie jest mozliwe
otrzymanie QCP, ale dla d = 3 w przypadku odpowiednio duzych stosunkéw mas r atomow two-
rzacych mieszaning mozna go zaobserwowac na diagramie fazowym. Wykorzystujac rozwinigcie
Sommerfelda opiszemy asymptotyczny ksztalt lini krytycznej T, (h) w poblizu QCP.

Podrozdzial 3.4. Na koniec uwzglednimy fluktuacje gaussowskie parametru porzadku przy pod-
chodzeniu od strony fazy normalnej do przemiany fazowej. Przy ich pomocy wyprowadzimy wspot-
czynniki rozwiniecia gradientowego efektywnego dzialania w fazie normalnej dla T = 0. Badajac
znak wspoétczynnika stojacego przy wyrazie |V@|* wskazemy na mozliwos¢ otrzymania kwantowe-

go punktu Lifszyca w tym przypadku.

5.1 Sredniopolowy diagram fazowy

Termodynamiczne wlasnosci rozwazanej mieszaniny sg opisane przy pomocy gestosci wielkiego

potencjatu termodynamicznego (T, y, h,r) = Q(V, T, u, h,r)/V, ktora jest dana rownaniem

————fZln 1+eﬁE } (5.1)

Warunek minimalizacji mozna przeksztalci¢ do postaci rOwnania przerwy energetycznej poprzez

%((JA(%) acn, = 0 €0 prowadzi do
. [Le-re 52
N K 2Ex ' |

Roéwnanie to pozwala wyznaczy¢ wartos¢ przerwy energetycznej Ay w funkcji pozostatych parame-

(T, pu, h,r) = mAin U(A) = m1n

obliczenie

trow uktadu. Gdy A # 0, wtedy na poziomie pola $redniego otrzymujemy jednorodna faze nadcie-
kla. W przeciwnym przypadku, tj. gdy Ay = 0, znajdujemy sie w fazie normalne;j.

Zwigkszanie warto$¢ pola Zeemana h, ktdre opisuje stopien spolaryzowania mieszaniny, powo-
duje wzrost niedopasowania powierzchni Fermiego dla poszczegélnych gatunkéw atomow znajdu-
jacych sie w mieszaninie. Towarzyszy temu zmniejszenie obszaru na diagramie fazowym w kto-
rym wystepuje faza nadciekla. Pole h jest zatem naturalnym nietermicznym parametrem kontroli
pozwalajacym na dostrojenie mieszaniny do kwantowej przemiany fazowej miedzy stanem nadcie-
kltym, a normalnym. Sredniopolowy diagram fazowy tego uktadu byt wielokrotnie badany w ciggu

ostatnich kilku lat. Poza jednorodng fazg nadciekls oraz fazg normalng mozliwe jest wystepowanie
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Rys. 5.1: Typowy $redniopolowy diagram fazowy dla d = 3. Faza nadciekla w niskich temperatu-
rach jest odseparowana od fazy normalnej przemiang fazowg I rodzaju (ciggla linia). Dla T > T,
przemiana ta staje sie ciagla (przerywana linia). Niebieskie kropki na diagramie wskazuja potozenie
punktow trojkrytycznych. Kolor tla na diagramie fazowym odpowiada warto$ci parametru porzad-
ku (A). Parametry diagramu sa nastepujace r = m_/my = 2, p = 0.1, g = —1.7 oraz A = 10, przy

czym A jest wartoScia obciecia ultrafioletowego.

nadciektosci typu FFLO, ktéra powinna by¢ obecna w niewielkim obszarze pomiedzy nimi dla od-
powiednio niskich temperatur. Faza ta jest niezwykle krucha ze wzgledu na fluktuacje termiczne.
Obecnos¢ modéw Goldstone’a (w tym zwigzanych z tamaniem symetrii translacyjnej) sprawia, ze

staje sie niestabilna dla T > 0 i moze wystepowac jedynie jako faza uporzadkowana algebraicznie

(takze w trzech wymiarach) [[178}/180}/197, 206} 245]]. Ponadto uwzglednienie fluktuacji parowania

i analiza wykorzystujaca nieperturbacyjng grupe renormalizacji takze wskazuje na nie-
stabilnos¢ fazy FFLO dla skonczonych temperatur w dwoch i trzech wymiarach. Jedynie w stanie
podstawowym uktad moze posiadac stabilng niejednorodna faze typu FFLO. Z tego powodu w wiek-
szo$ci tej dysertacji bedziemy pomijali mozliwo$¢ wystepowania niejednorodnej nadcieczy przyj-
mujac, ze parowanie zachodzi jedynie dla wektora falowego q = 0. Powr6cimy do tego zagadnienia
w podrozdziale 5.4., gdzie uwzgledniajac fluktuacje gaussowskie zbadamy mozliwos¢ wygenerowa-
nia kwantowego punktu Lifszyca dla spolaryzowanych mieszanin Fermiego.

Typowy diagram fazowy w zmiennych (h, T) w sytuacji o rownych masach jest symetryczny

wzgledem linii & = 0 i dla odpowiednio niskich temperatur (ponizej T;,;) obszar nadciekly jest ogra-
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0.5

Rys. 5.2: Przykladowy sredniopolowy diagram fazowy dla d = 3 na ktéorym wystepuje QCP. Kolor
tla diagramu odpowiada wartosci parametru porzadku (A). Ciagla linia oznacza przemiane fazowsg
I rodzaju, a linia przerywana oznacza przemiane II rodzaju. Niebieska kropka wskazuje na poto-
zeniu punktu trojkrytycznego. Warto zauwazy¢, ze faza uporzadkowana rozcigga sie ponad QCP.

Parametry tego wykresu sg nastepujace r = m_/my =5, p = 0.1,g = —1.4 oraz A = 10.

niczony linia nieciaglej przemiany fazowej. Powyzej punktu trojkrytycznego T;,; przemiana staje sie
ciggla i obszar nadciekly zanika dla odpowiednio wysokich temperatur [[163]. Szczegblowa analiza
wlasnosci przejscia BEC-BCS dla mieszanin o rownych masach, a takze wtasnosci stanéw rezonan-
sowych w tym przypadku zostata zaprezentowana w pracy [87]. W przypadku niewielkiej réznicy
mas atomow tworzacych ultrazimna mieszanine diagram fazowy posiada podobne charakterystycz-
ne cechy jak dla przypadku o réwnych masach, tj. na "skrzydtach" obszaru nadcieklego wystepuje
przemiana fazowa I rodzaju dla T < T, a dla "kopuly” obszaru nadcieklego powyzej T > T
zachodzi ciagla przemiana fazowa. W tym przypadku zostaje jednak zburzona symetria diagramu
ze wzgledu na linie h = 0. Gdy r > 1 punkt odpowiadajacy maksymalnej wartosci temperatury
krytycznej T"** przesuwa si¢ w kierunku wigkszych wartosci h. Z kolei punkty tréjkrytyczne sa
rozmieszczone niesymetrycznie dla lewej i prawej strony diagramu, przy czym punkt lezacy dla
h > 0ir > 1 pojawia si¢ w nizszych temperaturach. Przykladowy diagram fazowy przedstawiajacy
ta sytuacje zostat przedstawiony na rys.

Zwiekszenie stosunku mas r sktadnikéw mieszaniny moze doprowadzi¢ do zmiany charaktery-

styki diagramu fazowego [164]. W szczegdlnosci mozliwe jest dla odpowiednio duzych wartosci r
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sprowadzenie punktu trojkrytycznego lezacego po prawej stronie obszaru nadciekltego do zerowe;j
temperatury. Pozwala to na realizacje kwantowego punktu trojkrytycznego oraz QCP dla miesza-
nin fermionowych o nieréwnych masach, a tym samym przemiana fazowa na jednym ze "skrzydel"
jest ciggla dla T — 0. Przykladowy diagram fazowy ilustrujacy ta sytuacje zostal przedstawiony
narys. Warto zwrdcic¢ uwage, ze obecnos¢ QCP na diagramie fazowym powoduje, ze faza nad-
ciekla staje si¢ obszarem wklestym (ang. reentrant phase behaviour). Oznacza to, ze faza nadciekta

w temperaturach T > 0 rozcigga sie ponad QCP.

5.1.1 Koncentracje atomow w mieszaninie

W celu glebszego zrozumienia charakteru kwantowej przemiany fazowej zachodzacej w roz-
wazanym ukladzie zajmiemy sie w tej czesci zbadaniem zwigzku miedzy koncentracjami atomow
W mieszaninie n,, a wartosciami ich potencjaléw chemicznych p,. Korzystamy przy tym z relacji
Uo = [ + oh. Koncentracje atoméw mozna, wtedy otrzymac z gestosci wielkiego potencjatu termo-
dynamicznego &(T, y, h,r) za pomoca relacji n, = — (gl—i)h,u&, przy czym warto$¢ A w funkcji p1,

wyznaczamy przy pomocy roéwnania (5.2).

Rys. 5.3: Koncentracje atoméw n, dla nieoddziatujacej (g = 0) dwuskladnikowej mieszaniny Fer-
miego w funkcji h dla d = 3. W tym przypadku T = 0 oraz r = 5. Na wykresie czarne linie n}
odpowiadaja wartosci p = 0.5. Z kolei czerwone linie n, zostaty sporzadzone dla p = —0.5. W ob-
szarze zacienionym oba gatunki atomow sg obecne dla p = 0.5. Gdy p = —0.5, wtedy w obszarze

zacienionym nieobecne sg zadne czastki.
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Rys. 5.4: Koncentracje atomoéw n, wyznaczone w funkcji h dla d = 3, przy czym ustalono wartosci
T = 0,r = 5o0raz g = —1.5. Czarne linie n} odpowiadaja wartosci p = 0.1, a czerwone linie n;
wartosci g = —0.1. Dla obu wartosci i obserwuje si¢ przemiane fazowa I rodzaju dla h ~ —1 oraz
przemiane Il rodzaju dla h = 2, przy czym n_ w ciagly sposéb dazy w tym przypadku do zera. W fazie

normalnej koncentracje n, sa dane prawem potegowym przedstawionym w rownaniu (5.3).

Zaczniemy od rozwazenia sytuacji odniesienia dla ktorej A = 0 dla wszystkich mozliwych warto-

$ci pt oraz h, co odpowiada nieoddziatujacej dwuskladnikowej mieszaninie Fermiego (g = 0). Zwiazek
miedzy n, oraz u, jest w tym przypadku dla T = 0 dany rownaniem

n = (molla)d/ze(ﬂo)
° ryder@ sy

(5.3)
gdzie 0(-) to funkcja schodkowa Heaviside’a, a I'(-) to funkcja I' Eulera. Wykres przedstawiajacy ta
zaleznos¢ jest pokazany na rys.|5.3[dla p > 0 oraz u < 0. Oczywiscie atomy o pseudospinie o nie sg
obecne w uktadzie, gdy y, < 0.

W przypadku, gdy g < 0 mozliwe jest parowanie si¢ atomow o przeciwnych pseudospinach, co
dla pewnego zakresu parametréw prowadzi do niezerowej wartosci A i jest zwigzane z wystepowa-

niem fazy nadcieklej na poziomie MFT. Koncentracja gatunku atoméw o pseudospinie o wynosi

Ny = fk |uf £(oE]) + 0} (1- fGED))]. (5.4)
gdzie ui oraz vi sa czynnikami BCS wprowadzonymi w réwnaniu 1) Po pierwsze mozna zaob-
serwowac, ze dla A = 0 oraz T = 0 rownanie (5.4) redukuje si¢ do wyniku otrzymanego w przypadku
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nieoddziatujacym (patrz réwnanie (5.3)). Implikuje to, ze ewentualna kwantowa przemiana fazowa
zachodzaca dla p; < 0 lub p_ < 0 ma miejsce pomiedzy faza nadciekla, a catkowicie spolaryzowa-
nym gazem. Generycznie wystepowanie A > 0 oznacza wystepowanie obu skltadnikow mieszaniny
w ukladzie jak zostalo to zaprezentowane na rys.[5.4, W konsekwencji kwantowa przemiana fazowa
dla gy < 0 (lub p— < 0) wymaga, aby wartos$¢ koncentracji tego gatunku atoméw zwiekszyla sie od
zerowej do pewnej skonczonej wartosci. Zmiana wartosci koncentracji moze nastepowac skokowo
lub w sposob ciggly w zaleznosci od tego jaki jest rodzaj zachodzacej przemiany fazowej. Parametry
na rys. 5.4 zostaly dobrane tak, aby dla h < 0 wystepowala przemiana fazowa I rodzaju, adla h > 0

przemiana fazowa II rodzaju.

5.2 Rozwiniecie Landaua

Teoria przemian fazowych Landaua postuluje istnienie analitycznego rozwiniecia efektywnego

potencjatu U(A) w potegach parametru porzadku A danego rownaniem
U(A) = U + azlAI” + as| AI* + aglAI° + . . ., (5.5)

przy czym uwzgledniamy tylko parzyste potegi parametru porzadku ze wzgledu na niezmienniczos¢
efektywnego dziatania U(A) ze wzgledu na symetrie U(1). Wspolczynniki Landaua a; sa funkcjami
parametréw termodynamicznych ukladu. W rozwazanym przypadku mozliwe jest wyprowadzenie
ich postaci poprzez kolejne obliczenie pochodnych U(A) danego réwnaniem (4.20) wzgledem A,

a nastepnie polozenie A = 0. W rezultacie otrzymujemy, ze wspolczynnik a; ma postaé

_ (20U o1 P&
az_(ﬁlAlz)m,z:O_ g 4fk§k;tgh( > ) (5.6)

z kolei wspotczynnik ay4 jest dany rownaniem

LY IR IS B 0 ) ﬁ)_@m_z(@)]
4_2(8(|A|2>2)|A|z=0_16 kg,fz[tgh( 2 5 cosh =1 (5.7)

(o2

Wspotcezynniki wyzszego rzedu mozna wyprowadzi¢ w analogiczny sposob poprzez dalsze réznicz-
kowanie rownania (4.20).

Wspolczynnik Landaua ap moze zosta¢ zinterpretowany jako petla fermionowa posiadajaca ¢ ze-
wnetrznych bozonowych linii, ktéra zostala ewaluowana dla zewnetrznych pedéw rownych zero.
Diagramy Feynmana odpowiadajace wspolczynnikowi a, oraz a4 zostaly przedstawione na rys.
Propagatory fermionow Go (k) = (ik, — &7 )~! posiadaja przerwe ze wzgledu na wartoéci czestosci
Matsubary k, = nT(2n + 1) polozone najblizej zera, ktéra znika w granicy T — 0. Oznacza to, ze
nie jest klarowne pod jakimi warunkami diagramy petlowe w rozwazanym problemie sa zbiezne
w granicy T — 0, tj. wyrazenia dane rownaniami oraz pozostaja skonczone przy tem-
peraturze dazacej do zera. Na przyklad ograniczajac si¢ do przypadku zbilansowanego dla ktorego

& = & = & mozemy zauwazy¢, ze wspotczynnik a; (dany réwnaniem (5.6)) zawiera rozbiezny



74 ROZDZIAL 5. DIAGRAM FAZOWY I KWANTOWE PRZEMIANY FAZOWE

_k,o-=_ _k,0-=_

Rys. 5.5: Diagramatyczna interpretacja dwoch pierwszych wspotczynnikéw Landaua jako petli fer-
mionowych typu czastka-czastka. Linia ciggla odpowiada swobodnej funkcji Greena Gy, (k) =
(ikn— &7 )~1, a linia przerywana odpowiada "amputowanej" linii bozonowej wykonywanej dla pedu

q=0.

wklad, gdy f — oco. Wskazuje to na zalamanie si¢ rozwiniecia Landaua w przypadku zbilansowa-
nym. Warto zauwazyc¢, ze w tym przypadku powierzchnie Fermiego skladnikow mieszaniny pokry-
waja si¢. Okazuje sie, ze wystepowanie niepokrywajacych si¢ powierzchni Fermiego réznych gatun-
kow atoméw w mieszaninie prowadzi do regularyzacji wspoétczynnika a, co pozwala na otrzymanie
skonczonego wyrazenia w sytuacji niezbilansowanej w zerowej temperaturze.

Analiza zbieznosci wspolczynnika a4 (patrz réwnanie (5.7)) jest nieco bardziej zlozona. Osobliwa
czg$¢ tego wyrazenia jest zwigzana z otoczeniem & = 0. Korzystajac z tego, ze £ = 2& — &'
i rozwijajac wyrazenie podcatkowe w as wzgledem & otrzymujemy, ze

A P&
as o« = j; dkk?" [cosh(BE}) - 2| cosh™ (Tk) +o. (5.8)
Dokonujac zamiany zmiennych tak, aby nowa zmienna catkowania bylo x = & i wyodrebniajac
cze$¢ osobliwag afﬁ"gul wyrazenia odpowiadajaca przedzialowi catkowania x € [—¢,¢], gdzie
¢ jest dodatnig i niewielka stalg, otrzymuje sie

B (mx — )

azingul o _ﬂ3 fg dx|2m(x + ‘u)|%—1 [cosh(f (mx — n)) — 2] cosh™ ( 7

) . (59

gdzie n = (1 — m)u + h. Nastepnie zamieniajac zmienne tak, aby y = f(mx — 1) otrzymujemy

' 3_2 mﬂé‘—ﬂﬂ
L o S f dyly + Bus|? " [cosh(y) — 2] cosh™ (%) N

m _
w _’”ﬁf Pn (5.10)
gz (mbehn ay o (Bn
o= dyly + Bu.|2™" [cosh(fn) — 2] cosh™ | — | .
M Jmpe—pn 2

Gdy n # 0 w granicy § — oo osobliwa czes¢ aimg ul dazy do zera dzieki temu, ze cosh™ (%) dazy eks-
ponencjalnie do 0 w tej granicy. Tym samym wspotczynnik a4 jest zbiezny. Gdy jednak n = 0, wtedy
cze¢$¢ osobliwa nie jest regularyzowana i wyrazenie rozbiega. Warunek n # 0 mozna przedstawi¢ w

postaci
r+1

r—1

p# h={"h. (5.11)
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Warunek regularnosci rozwiniecia Landaua dany rownaniem (5.11)) jest spetniony, gdy powierzch-
nie Fermiego sktadnikow mieszaniny nie pokrywaja sie, tj. ki # k. Rownanie h = {u wyzna-
cza jednowymiarowy podzbidr diagramu fazowego w zmiennych (y, h) w zerowych temperaturach
dla ktérego rozwiniecie Landaua nie jest dobrze zdefiniowane z powodu osobliwosci zwigzanych
z naktadaniem sie powierzchni Fermiego atoméw. Gdy r — 1% nachylenie linii g = {~'h rozbie-
ga, co odpowiada sytuacji mieszaniny o rownych masach. Ponadto wzdtuz linii h = 0ir = 1 dla
u > 0 rozwiniecie Landaua nie istnieje i przypadek ten odpowiada sytuacji zbilansowanej dla ktore;j
& = & = & . Analogiczne rozumowanie dla wspétezynnikow wyzszego rzedu prowadzi do tych

samych wnioskéw. Uzyskany warunek jest spelniony zaré6wno w dwoch i trzech wymiarach.

u(a)

Rys. 5.6: Schematyczna ilustracja efektywnego potencjatu U(A) dla dodatnich wartosci wspotczyn-
nika a4. W tym przypadku a; > 0 odpowiada fazie normalnej, a; < 0 jest wewnatrz fazy nadciektej,

a a; = 0 dla przemiany fazowej II rodzaju.

Korzystajac z wspotczynnikow Landaua mozemy okresli¢ polozenie oraz charakter przemiany
fazowej na poziomie MFT. Pod warunkiem, Ze istnieje rozwinigcie efektywnego potencjalu dane

réwnaniem (5.5) warunek wystepowania przemiany fazowej I rodzaju jest dany
a, =0, a4 >0. (5.12)
Z kolei punktu trojkrytyczny jest obecny na diagramie fazowym, gdy
a, =0, a4 =0 oraz ag > 0. (5.13)

Warto zwrdci¢ uwage, ze warunek a, = 0 jest rOwnowazny réwnaniu (5.2) w ktérym kladzie sie

A = 01itym samym moze by¢ on wykorzystany do otrzymania potozenia przemiany fazowej na
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poziomie pola $redniego. Schematyczny wykres przedstawiajacy ksztalt efektywnego potencjatu
w zaleznosci od znaku aj jest przedstawiony na rys. [5.6| przy zalozeniu, ze a4 > 0.

W dalszej czesci dysertacji bedziemy zakladac, ze m_ > my, czyli r > 1. Okazuje sie, ze sytuacja
w ktorej 0 < r < 1 prowadzi do tych samych rezultatow, przy czym nalezy dokona¢ transformacji
h < —h.

5.2.1 Zerowa temperatura

Rys. 5.7: Wyro6znione obszary diagramu fazowego dla T = 0. Gdy $redni potencjal chemiczny y > 0,
wtedy plaszczyzne (h, i) dzielimy na obszary: (A) uy > 0, p— > 0; (B) gy > 0, p— < 0; (C) py < 0,
p- > 0.Gdy p < 0, wtedy diagram dzielimy takze na trzy podzbiory: (D) py > 0, p— < 0; (E) gy < 0,
p->0;(F) py <0, u_ <0.

Warunki przedstawione wyzej moéwiace o charakterze przemiany fazowej mozna takze zasto-
sowa¢ w zerowej temperaturze. W celu ustalenia warunkow wystepowania QCP na diagramie fa-

zowym musimy przyjrzec sie jakg graniczng posta¢ maja wspolczynniki Landaua (patrz réwnania
oraz ) dla T — 0. Korzystajac z tego, ze tgh (ﬂfk ) =1-2f (&) otrzymujemy

<>_¥g(1)a2__$__fk§k -3 o gk} (5.14)

Podobnie mozemy postapi¢ dla wspélezynnika a, wykorzystujac relacje i tgh (ﬁ§k ) = g cosh™2 (ﬁ% )
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W rezultacie otrzymujemy

o = lim a; = %fké [1 - (08 + &sD) | (5.15)
k

o
przy czym S(-) jest delta Diraca. Catkowanie przedstawione w powyzszych wyrazeniach mozna
wykona¢ analitycznie, ale ich koncowa postac bedzie zalezata od wymiarowosci d uktadu. W dalszej
czesci zostang przedyskutowane dwa najbardziej fizycznie istotne przypadki, czylid = 2 oraz d = 3.

Dalsza analiza réwnan oraz wymaga podziatu ptaszczyzny (h, u) dla T = 0 na kil-
ka podzbiorow, ktore zostaly przedstawione na rys. Komplikacja ta jest zwigzana z umiejsco-
wieniem zer funkcji schodkowej Heaviside’a oraz delty Diraca wystepujacych w réwnaniach
i (5.15), ktore moga leze¢ wewnatrz przedzialu calkowania po k| € [0,A] lub poza nim w zalez-
nosci od znaku odpowiedniego potencjatu chemicznego atomu o pseudospinie 0. W efekcie nalezy

wyro6znic szes¢ réznych obszaré6w na diagramie fazowym w zmiennych (h, p).

5.3 Kwantowy punkt krytyczny

5.3.1 Przypadekd =2

W dwoch wymiarach wspotczynnik ago) w obszarach przedstawionych na rys.bgdzie posiadat
rézng postaé. Wykonujac catkowanie w réwnaniu (5.14) w rezimie (A), otrzymujemy nastepujace

wyrazenie

(5.16)

|A2 — 2mpy| - 2my
Ha |k12:',(7 - 2m,u| ’
gdzie kr; = kJ = v2mgpis jest pedem Fermiego atomu o pseudospinie o. Postepujac podobnie dla

obszarow (B)-(E) otrzymujemy

- 1 A -2
L A" = 2mpl k my| , (5.17)
g 4r |kF7U — 2my|
gdzie 0 = + w obszarach (B) i (D), a ¢ = — w rezimach (C) oraz (E). Natomiast w obszarze (F)
dostajemy, ze
1 A -2
dP=--_-"pn A" = 2my| (5.18)
g 4r |2mpy|

Warto zauwazy¢, ze gdy Sredni potencjat chemiczny p > 0, wtedy mozemy wprowadzi¢ "sredni" ped

Fermiego zdefiniowany réwnaniem &, = 0, co prowadzi do kr = v2my.

Wspotczynnik aéo) musi znikac¢ dla QCP zgodnie z warunkiem 1D W réwnaniach GH)

wklad zawierajacy logarytm jest ujemny (pod warunkiem, ze obcigcie ultrafioletowe A jest odpo-

wiednio duze). Ze wzgledu na mozliwos¢ dostrajania przyciggajacego oddzialywania miedzy atoma-

(0)

mi o przeciwnych pseudospinach g < 0 wspélczynnik Landaua a,

zawsze mozna sprowadzi¢ do

zera. W warunkach eksperymentalnych mozna tego dokonac¢ wykorzystujac rezonans Feshbacha.

(0) (0)
4

Oznacza to, ze o istnieniu QCP w d = 2 decyduje znak wspolczynnika a, ’. Warto zauwazy¢, ze a

(0)

jest niezalezny od g. Dzieki temu wspotczynnik ago) mozna stroi¢ bez wplywu na znak a, '
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W analogii do powyzszej analizy wspotczynnika aéo)

trow pokazanej na rys. i wykonujemy catkowanie w réwnaniu 1b dla wspotczynnika aflo)

rozwazamy rezimy w przestrzeni parame-

w przypadku dwuwymiarowym. Dla obszaru (A) otrzymujemy

1 1 (mg/ms)
& gy G " T - 2um>2] ’ 1

8

(‘ l) —
a i

przy czym 6 = —o. W podobny sposob dla podzbioréw B-E otrzymujemy, ze

_ 3 1 5
dBD = + z(m"/m") : (5.20)
8m | (A% —2um)? (k% —2pm)?
gdzie o = + w obszarze (B) i (D), a 0 = — w rezimie (C) i (E). Natomiast w obszarze (F) otrzymujemy
3
(F) m 1 1
= —— - . 5.21
“ 87 [(AZ — 2um)? (Zum)z] 21

Z wyjatkiem rownania (5.21) powyzsze wyrazenia sg w sposdb oczywisty ujemne. W rezimie (F)
mozna zauwazy¢, ze wyrazenia dla agF) oraz ale) nie zaleza od h, a w konsekwencji A pozostaje stale
przy zmienianiu h (przy stalym p) w tym obszarze. Oznacza to, ze w obszarze (F) nie zachodzi zadna

przemiana fazowa (niezaleznie od jej rodzaju). Warunek (5.12)) nigdy nie jest spelniony dla d = 2.

5.3.2 Przypadekd =3

Analiza dotyczaca przypadku tréjwymiarowego jest analogiczna do powyzszych rozwazan dla
d = 2. Znowu nalezy podzieli¢ przestrzen parametréw na podzbiory przedstawione na rys.[5.7, Wy-
konujac odpowiednie catki w rownaniach (5.14) oraz (5.15) otrzymujemy analityczng posta¢ wspot-
cz ikow Land 0) . (0) kté huz d d . i . .
ynnikéw Landaua a,” i a, ', ktére postuza nam do sprawdzenia czy mozliwe jest wystepowanie
QCP w tym przypadku.

Wspoélczynnik ago) w obszarze (A), gdzie py > 0 oraz py_ > 0, ma postac

@w_ 1 m Va2mpu A = +2mpy|
a; =-————|A+ In -+
g 2r 2 A + v2my| (5.22)
5.22
Z {k . \2mpy I (lkp,g —\2my| )}
- F .
72 \kr.o + v2my|
Dla obszaréw (B) oraz (C), gdzie u > 0, iy > 0 oraz yz < 0, otrzymujemy
1 2 A—+/2
a;B,C):___iZA_i_ m'uln(l Vm,Ul)+
g 2r 2 A+ v2myl (5.23)
5.23
e Mln(|kF,g—«/M|)
Fo 2 \kpo +2mpu|) |
W rezimie (D) oraz (E) dla ktoérych g = —u > 0, p, > 0 oraz pz < 0 dostajemy
(D,E) 1 m - A
a =———-—|A—+/2mjiarct +
2 g 2r? prarce (vzmﬂ)
(5.24)

kF o
—kr.s + \/2mji arctg (— .
' V2miji
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Wreszcie dla podzbioru (F), gdzie py < 0 oraz p— < 0, wspdlczynnik a;o) ma postac

1 A
agF) == A= 2mparctg | ——| |- (5.25)
g 2n? \2mj

Podobnie jak w przypadku dwuwymiarowym wspoétczynnik ago) zawiera dodatni wktad zwigzany
ze stalg sprzezenia g oraz wkiad ujemny pochodzacy od wyrazenia w nawiasie kwadratowym. W re-
zultacie modyfikujac warto$¢ g mozna dostroi¢ wartosc ago) do zera, co odpowiada wystepowaniu
przemiany fazowej. Warto podkresli¢, ze podobnie jak poprzednio wspoétczynnik aio) jest niezalezny

od g i to znak tego wspodlczynnika Landaua decyduje o rodzaju przemiany.

15 15
10 10
5 5
X0 X 0
-5 -5
-10 -10
_15| -15
-15 -10 -5 0 5 10 15 -15 -10- -5 0 5 10 15

15

10

5

Y 0

-5

-10

-15

-15 -10 -5 0 5 10 15

Rys. 5.8: Ewolucja podzbioru na ptaszczyznie (h, ) dla ktérego aflo) > 0 dla r6znych wartosci stosun-
ku mas sktadnikéw mieszaniny r. Bezowy obszar odpowiada ujemnym warto$ciom wspoéiczynnika
aio), podczas gdy podzbiér pomaranczowy odpowiada aflo) > 0. Wspolczynnik Landaua aflo) jest
osobliwy wzdluz czerwonych prostych na wykresie. Pierwszy diagram odpowiada r = 1.5, drugi
odpowiada r = 5, a ostatni r = 10. W granicy r — oo obszar pomaranczowy pokrywa potowe

plaszczyzny (h, u) zlokalizowang ponizej przekatnej wykresu.
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(0)

Teraz przejdziemy do oméwienia wspoélczynnika a, . W obszarze (A) ma on postac

(A) m? | A(A? + 2my) N m__ |A = 2mpl| N
a n
4 3272 | p(A? — 2mp)?  (2mpy)3/2 |A ++2mpy| (5.26)
5.26
B Z kr, o(k + 2my1) Lom lkr.s — \2mpl| _ 8Mmykr.o
p(kz = 2mp)?  (2mp)*2 " \|kpo +V2mpl) (ki —2mp)? | |
Dla rezimu (B) i (C) otrzymujemy
By mt | A(A® + 2my) Lom —\2my|
Y 3272 | p(AZ - 2mp)?  (2mp)3/? |A +2my| (5.27)
_ kF,cr(kzzr,g + Zmy) + m In ( |kF,O' - \/Zm/ll) _ 8m0kp7o- ‘
p(kz = 2mp)?  (2mp)*2  \|kpo +V2mpl ) (kj = 2mp)? | |
W podzbiorach (D) i (E) dostajemy
2 | A(A% + 2mji 2
(D.E) _ m — ( m:u) + r_n arctg | —— | +
3272 | i(A? — 2mp)? — (2mjz)3/2 2mji (5.28)
5.28
kF,cr(klz:p- + Zmﬂ) N 2m ; kF,o ) N 8mo'kF,g
- arc .
A —2mpp?  Cmpy o \Namp) T (2, - 2mp)?
Natomiast w obszarze (F) mamy
2 2 -
(F) m® | A(A® + 2mj) 2m A
= + tg | — 5.29
4 3272 | i(A? — 2myji)? (2mﬂ)3/zarc & \V2mji (5.29)
Mozna zwrdci¢ uwage, ze podobnie jak w przypadku d = 2 wspoétczynniki Landaua ago) oraz aflo)

w obszarze (F) nie zaleza od h, co wyklucza mozliwos$¢ zachodzenia tam przemiany fazowej.
Zgodnie z kryterium 1) znak wspoétczynnika aflo) decyduje o rodzaju przemiany fazowej za-
chodzacej w T = 0. Gdy aflo) > 0 przemiana fazowa jest II rodzaju. Postugujac sie wyrazeniami

5.26)-(5.29) mozna naszkicowa¢ diagramy przedstawiajace znak wspolczynnika aio)

na plaszczyz-

nie (h, ) dla r6znych wartosci stosunku mas atoméw r tak jak to zostato zaprezentowane na rys.

(0)

Dla niewielkiego niezrownowazenia mas, tj. r ~ 1, obszar odpowiadajacy a,

> 0 zajmuje
podzbiér (F) oraz niewielkie fragmenty podzbioréow (D) oraz (E) przylegajace do niego (w zaleznosci
od tego czy r > 1, czy tez r < 1). Dalsze zwigkszanie r powoduje, ze obszar w ktérym znak aflo)
jest dodatni pokrywa coraz wieksza czesc rezimu (D), a gdy r > r, = 3.01 obszar ten wdziera sie do
rezimu (B). W granicy r — oo obszar dla ktérego moze zachodzi¢ ciagla przemiana fazowa pokrywa
w calosci obszary (F), (D) oraz (B) Zachowanie to zostalo zilustrowane na rys. 5.8 przy czym warto
zauwazy¢, ze wspotczynnik a Jest osobliwy dla y = 0 oraz gdy spelniony jest warunek h = {y jak
zostalo uzasadnione wczesnie;.

Obraz pojawiajacy sie na skutek powyzszej analizy diametralnie rézni si¢ od przypadku d = 2,
gdzie wystepowanie QCP bylo catkowicie wykluczone (na poziomie MFT). Dla d = 3 mozliwosé¢

wygenerowania ciaglej przemiany fazowej na diagramie fazowym dla T = 0 jest ograniczona do

sytuacji, gdy tylko jeden z potencjaléw chemicznych skltadnikéw mieszaniny jest dodatni, tj. g, > 0
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oraz iz < 0. Co wiecej korzystajac z diagraméw koncentracji atoméw w mieszaninie przedsta-
wionych na rys. mozna wciggna¢ wniosek, ze QCP w d = 3 wystepuje miedzy faza nadciekla,
a catkowicie spolaryzowanym gazem o czym $wiadczy to, ze potencjat chemiczny tylko jednego ze
sktadnikow mieszaniny jest dodatni. Warto tez podkresli¢, ze na skutek efektow zwiazanych z od-
dzialywaniami (A > 0) dodatnie koncentracje czastek mozna otrzymac takze dla ujemnych wartosci
potencjaléw chemicznych (patrz rys. [5.4). Warto tu doda¢, ze mozliwe jest otrzymanie QCP takze
w sytuacji zréwnowazonej (r = 1) po stronie BEC dla przejscia BEC-BCS [87].

5.3.3 Asymptotyczny ksztalt linii krytycznej T, (h)

Numerycznie otrzymany $redniopolowy diagram fazowy (patrz rys. pokazuje, ze faza upo-
rzagdkowana rozcigga sie ponad QCP dla skonczonych temperatur. Oznacza to, ze nachylenie linii
krytycznej T.(h) jest dodatnie dla dostatecznie niskich temperatur.

Zbadamy asymptotyczny ksztatt linii krytycznej wykorzystujac w tym celu rozwiniecie Sommer-
felda [[10]] dla wspolczynnika Landaua a; w obszarze (B) dla ktorego py > 0 oraz p— < 0. W rezimie
tym, zgodnie z analizg znaku aflo), znajduje sie QCP z rys. Rozwiniecie niskotemperaturowe ma
w tym przypadku postaé

A
2mg

o
des g(ga)f(go - ,Ua) = f de, 9(50)+

0 0
©0 1 L d2n—lg(€0)
+ Z{ (2 ~ D ) {(2n)p~*" [—dg?,"—l )

ﬂ.Zn
(2n)!

(5.30)

- 22”—1

gdzie &, = k?/2my, g(-) to pewna funkcja, { (2n) B,,, a B, to liczby Bernoulliego. Ustalajac

u oraz r i korzystajac z wyrazenia otrzymujemy
a(T,h) = a) —a()T? + ..., (5.31)

gdzie wspoélczynnik a(h) jest dany rownaniem

_ mmi(klz:ﬁ + 2my)
 12kpa (K2, - 2mp)?’

a(h) (5.32)

Pierwszy czlton w rozwinieciu Sommerfelda odpowiada wspotczynnikowi Landaua dla T = 0 danego

rownaniem (5.22), a drugi wklad odpowiada niskotemperaturowej poprawce. Rozwijamy a;o) wokot
krytycznej wartosci h, dla T = 0. Prowadzi to do nastepujacego wyniku
opal”| sk
T.(he + k) ~ —(|Z—)’lc o \h— h, (5.33)
a\ne

gdzie Sh jest niewielkim odchyleniem od h.. Sredniopolowa linia krytyczna T,(h) jest opisywana
przez prawo potegowe o wykladniku 1/2, ktory jest typowa wartoscig dla uktadow fermionowych.

Warto zauwazy¢, ze 6h jest dodatnie w zgodzie z wynikami numerycznymi przedstawionymi na

rys.[5.2}
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54 Kwantowy punkt Lifszyca

Jednym z interesujacych i jak dotad niezbadanych w pelni aspektow diagraméw fazowych dla
mieszanin ultrazimnych fermionéw sg zjawiska multikrytyczne. Jak to zostalo wczesniej wspo-
mniane, w typowej sytuacji przemiana fazowa zachodzgca miedzy jednorodna nadciecza, a fazg
normalng jest I rodzaju dla odpowiednio niskich temperatur i staje si¢ ciggta powyzej tempera-
tury trojkrytycznej Ty;. Wyniki badan omoéwione do tej pory w tym rozdziale wskazuja ponadto
na mozliwos¢ sprowadzenie T;,; do zera dla odpowiednio duzego niezrownowazenia mas skiadni-
koéw mieszaniny, co prowadzi do wystepowania QCP na diagramie fazowym. Zgodnie z badaniami
wykorzystujacymi przyblizenie sredniego pola mozliwe jest zaobserwowanie takze catkowicie in-
nego typu zjawiska multikrytycznego wystepujacego dla T > 0 zwigzanego z wystepowaniem tzw.
punktu Lifszyca [12,[83]]. W tym przypadku dwie fazy uporzadkowane (jednorodna oraz niejedno-
rodna nadciecz) wspolistnieja z fazg normalng. Uniwersalne krytyczne osobliwosci wystepujace dla
klasycznego (T > 0) punktu Lifszyca sa zupelnie inne od tych kontrolujacych punkty krytyczne
oraz trojkrytyczne [55,564247]. W szczegdlnosci gérny wymiar krytyczny d) dla przemiany tréj-
krytycznej jest rOwny 3, tymczasem jest on znacznie wyzszy (wynosi przynajmniej 9/2) dla punktu
Lifszyca [55}64,246]. Z tego powodu standardowe metody stosowane do opisu zjawisk krytycznych
w ukladach o wymiarowosci d = 3 wykorzystujace rozwiniecie € = d — d stajg sie problematyczne.
Dodatkowo wystepowanie punktu Lifszyca prowadzi do bogatych i interesujacych zjawisk takich

jak ciagle przejscia pomiedzy réznymi rezimami (ang. crossover phenomena) [55].

W punkcie przemiany T = T,(h) w przypadku mieszanin Fermiego punkt Lifszyca na poziomie
MFT mozna wyznaczy¢ z warunku znikania wyrazu |V¢|?> wystepujacego w rozwinieciu gradien-
towym efektywnego dzialania. Warunek ten oznacza, ze w punkcie Lifszyca wspoélistnieja ze soba
jednorodna nadciecz, niejednorodny stan typu FFLO oraz faza normalna. Wyraz stojacy przy |Ve|?
ma interpretacje kosztu energetycznego zwigzanego z powstaniem przestrzennej modulacji pola
porzadku i gdy zmienia on swoéj znak na ujemny uklad wykazuje tendencje do wytworzenia niejed-

norodnej konfiguracji parametru porzadku.

Przemiany fazowe w T > 0 oraz T = 0 s3 odpowiednio wywotywane przez fluktuacje klasyczne
oraz kwantowe. Naturalnym pytaniem dotyczacym fizyki niezréwnowazonych mieszanin Fermiego
jest to czy istnieje mozliwos¢ sprowadzenia punktu Lifszyca do zerowej temperatury podobnie jak
mozna bylo tego dokona¢ dla punktu trojkrytycznego. W tym przypadku punkt Lifszyca powstawal-
by na skutek jedynie kwantowych fluktuacji. W tym podrozdziale postaramy sie odpowiedzie¢ na to
pytanie poprzez wyprowadzenie sredniopolowego analitycznego kryterium przewidujacego wyste-
powanie takiego kwantowego punktu Lifszyca (QLP). Zaproponujemy takze mozliwe doswiadczalne
realizacje QLP w mieszaninach, ktore sg aktualnie wykorzystywane w badaniach eksperymental-

nych.
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5.4.1 Propagator fluktuacji parowania w fazie normalnej

Zaczniemy od przyjrzenia sie strukturze propagatora fluktuacji parowania w fazie normalne;j.
Skupimy si¢ na przypadku o wymiarowosci d = 3 oraz na sytuacji w ktorej (na poziomie MFT)
przemiana fazowa jest ciagta takze w temperaturze T = 0. Jak pokazane zostalo to we wczesniejsze;j
czesci tego rozdzialu moze by¢ to osiggniete dla mieszaniny, ktorej stosunek mas r > r. = 3. Zacho-
wanie ukladu w d = 2 nie pozwala na otrzymanie QCP na $redniopolowym diagramie fazowym, ale
przemiana fazowa moze stac si¢ Il rodzaju na skutek efektow zwiagzanych z fluktuacjami parametru
porzadku [219]. Ukiad pozostaje nieuporzadkowany dla h > h., gdzie h, mozemy wyrazi¢ poprzez
mikroskopowe parametry korzystajac z tego, ze na poziomie MFT zachodzi ago)(hc) =0dlaT =0.
Wystepowanie niestabilnosci w kierunku niejednorodnej cieczy typu FFLO manifestuje sie przez
ujemna warto$¢ wspoélczynnika rozwiniecia gradientowego Z, ktorego posta¢ bedziemy chcieli wy-
prowadzi¢ w tym podrozdziale. Skupimy sie na sytuacji, gdy znajdujemy sie w zakresie parametréw
odpowiadajacym rezimowi (B) przedstawionemu na rys.

Propagator fluktuacji parowania wyznaczymy postugujac sie metoda NSR [158] skupiajac si¢ na
zerowej temperaturze oraz otoczeniu przemiany fazowej, przy czym bedziemy sie do niej zbliza¢ od
strony fazy normalnej [136]. Obliczamy odwrotny propagator fluktuacji parowania F, ' (q) poprzez

ewaluacje diagramu pecherzykowego typu czastka-czastka [220]] (poréwnaj z rOwnaniem (2.31))
T
Skq m

—_— 1+
qu - gkq k2

Fo_l(q)=—$—kao,+(k+q)GO,_(_k):_ mn +j;

4mwar

m (5.34)

gdzie &g = & + f,;q, z?kTq =1-1(&) —f(§k++q), ar to fermionowa dtugosc rozpraszania, a gy = 277T¢
(¢ € Z) jest bozonowa czestosciag Matsubary. W powyzszym wyrazeniu zastosowano regularyzacje

calki przy wykorzystaniu réwnania Lippmanna-Schwingera [217] (poréwnaj z réwnaniem (2.22))

1 m 1 (5.35)
g 4mar Jy 2e0 '

gdzie e, = k?/2m, a takze catka jest obcieta dla pedéw wiekszych niz A. Powyzsza procedura pozwala
na usuniecie rozbieznosci ultrafioletowych w granicy ¢ — 0~ oraz A — oo przy jednoczesnym
utrzymywaniu stalej wartosci ar.

Wykonujac przedluzenie analityczne (igy — w + i0") rownania (5.34) mozemy rozdzieli¢ otrzy-

mang retardowana funkcje F, !

rer. (@, Q) na czeS¢ rzeczywisty oraz urojona przy wykorzystaniu toz-

samosci Sochockiego ﬁ = P% F ind(x), gdzie P jest czescig gtéwng Cauchy’ego. W rezultacie
otrzymujemy
» m % m
ReFy er (0,q) = = + fk [Pw ot (5.36)
oraz
Iy, (0,0) = 7 [ 9,5(6, - ). (537)

W nastepnym podrozdziale skupimy si¢ na analizie rozwinigcia gradientowego ReF; 1, dlaT = 0.

Z kolei czesci urojonej przyjrzymy sie dokladniej w nastepnym rozdziale.
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Przedstawione tutaj postepowanie jest w pewnym sensie analogiczne do opisu teoretycznego
plazmonéw w jednorodnym gazie elektronowym przy wykorzystaniu przyblizenia RPA [109]]. Jed-
nak propagator bozonowy dla plazmonéw jest zadany diagramem pecherzykowym typu czastka-

dziura, a nie typu czastka-czastka jak to ma miejsce w rozwazanym przypadku.

5.4.2 Rozwiniecie gradientowe

Skupiajgc si¢ na przypadku T = 0 wykonujemy rozwinigcie ReF ' (@, q) dla niewielkich war-
tosci czestosci oraz pedow. Uwzgledniamy w nim czlony do drugiego rzedu w w i q. Prowadzi to do

nastepujacego wyrazenia

ReFy L, (0,q) = al¥ + Z¢* - We - Zyw? + .. .. (5.38)

Postac¢ analityczng wspolczynnikow gradientowych {Z, Z,, W}, a takze wspolczynnika a;o) mozna

otrzymac¢ w granicy T — 0 korzystajac z tego, ze wtedy f(x) — 0(—x), co prowadzi do catek tego
same - , o (0) (0) L
go typu jak w przypadku wspolczynnikow a,’ oraz a,’ w rozwinieciu Landaua.
Staly wkiad ReF{, ! . (0,0) odpowiada wspotczynnikowi Landaua stojacemu przy |A|? i jest dany

rownaniem

612 477,'ap+27[2|:F+ 1 |kF++kF| ( )

gdzie kr = +/2my to "$redni" ped Fermiego. Warto zwrdcié uwage, ze powyzsze wyrazenie jest
zregularyzowang postaciag roOwnania dla py > 0, przy czym wprowadzenie ar pozwolilo na
przejscie do granicy A — oco. W fazie normalne;j ago) > 0. Natomiast przemiana fazowa zachodzi,
gdy ago) (h = h;) = 0. W fazie nadciektej nalezy postugiwacé sie wyrazeniami uwzgledniajacymi selfe-
nergie typu BCS zwigzang z wystepowaniem parowania w ukladzie, ktéra prowadzi do pojawienia
sie anomalnej czesci fermionowych funkcji Greena. Stosowne wyrazenia zostaly wyprowadzone
w poprzednim rozdziale i s3 dane réwnaniem (4.30).

Wspolczynniki gradientowe sg dane wyrazeniami

m? ke + 1 |kp+ — krl
W= | S 5.40
4w [kz —kf_ 2kF n(lkF,++kF|) (5.40)
g L[mlm | _kee 1 (lkrs—kel)f
o2\ 4 my k12:+—k2 2kp " |kp+ + kFl
2 [ 5k}, —3kik k k
m _ F+ ln(l F+ — Fl) + (5_41)
6m? ( - kz)2 ZkF |kf,+ + kF|

m+kF’+ zk%"_{_ m 2 2 mkF +( 3k2)
+ k2 —k2)2 | 3m? - om (kF»‘F _kF) 6(k2 — 2
( F+ F) my + ( F,+ F)

oraz

ZO = (542)

m k;,+ + k%ka+ + L In (|kF,+ - kF|)
1672k | (K2, —kp)?  2kp \lkpe + kel )|
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Rys. 5.9: Wspoélczynnik gradientowy Z w funkcji pola Zeemana h. Czerwony punkt odpowiada war-

tosci h, dla ktérej Z = 0. Parametry wykresu sa nastepujace my =1, T = 0, r = 4.03 oraz u = 0.1.

Znak wspotczynnika Z determinuje (przy znikajacym wspotczynniku ago)) czy uktad wykazuje ten-
dencje do kondensowania w jednorodnym (typu BCS) lub niejednorodnym (typu FFLO) stanie pod-
stawowym. W szczeg6lnosci jesteSmy zainteresowani sytuacja w ktorej oba wspoétczynniki ago) oraz
Z sa jednoczes$nie rowne zero, co stanowi kryterium wystepowania QLP na diagramie fazowym.
Wprowadzamy h, jako warto$¢ pola Zeemana h dla ktérej zachodzi warunek Z(h,) = 0 i analizu-
jemy sytuacje dla ktorej h. = h.. Warto zwroci¢ uwage, ze wspolczynniki gradientowe {Z, Z,, W}
nie zaleza od dlugosci rozpraszania ar. Mozna zatem najpierw dostroi¢ ukltad do wartosci h., a na-
stepnie niezaleznie zmieniajac warto$¢ ar dostroi¢ h do h.. Na rys.[5.9 przedstawiony zostat wykres
wspolczynnika Z w funkcji h dla eksperymentalnie realizowanej mieszaniny atoméw *!Dy oraz *°K

[185.[186]], ktora jest scharakteryzowana r = 4.03 oraz u = 0.1.

Dopasowujemy warto$¢ h, (patrz rownanie (5.39)) do k. manipulujac parametrem (krar) ! (patrz
rys.|5.10). QLP odpowiada wartoéci (krar); ! = 0.977692 w tym przypadku. Ponadto mozna zauwa-
zy¢, ze dla fizyczne istotnego zakresu parametréw wspotczynniki W oraz Z, sg dodatnie i monoto-

nicznie maleja wraz z h.

Analogiczne rozumowanie mozna poprowadzi¢ takze dla innych badanych eksperymentalnie
mieszanin Fermiego, ktore sa scharakteryzowane wystarczajaco duzym niezrownowazeniem mas
skladnikéw mieszaniny r > r. ~ 3. Jako przyklad mozna tu poda¢ mieszanine °Li-*°K (r = 6.67)
[103}[225,1227,1239]], a takze mieszanine °Li->*Cr (r = 8.83) [155]]. Dla wspomnianych uktadéw QLP
wystepuje dla (krap);! = 0.879942 w przypadku mieszaniny litu i potasu oraz (krar);! = 0.836476

dla mieszaniny litu i chromu (przyjeto, ze 4 = 0.1 w obu przypadkach). W ogélnosci wartosc h.
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Rys. 5.10: Wspotczynnik Landaua ago)

w funkcji pola Zeemana h oraz dla trzech réznych warto-
éci (kpar)~!. Warunek ago) (hc) = 0 wyznacza krytyczng wartos¢ pola Zeemana h.. Czerwony punkt
odpowiada wartosci h, dla ktorej wspotczynnik gradientowy Z = 0. Kwantowy punkt Lifszyca poja-
wia sie, gdy h. = h, i w rozwazanym przypadku odpowiada on (krar);! = 0.977692. Warto zwrdcié
uwage, ze gdy h. > h, wtedy niestabilno$¢ w kierunku parowania typu FFLO jest obserwowana

w uktadzie. Parametry wykresu sg nastepujace my =1, T = 0, r = 4.03 oraz u = 0.1.

zmniejsza si¢ wraz ze wzrostem r. Jest to zwigzane z tym, ze wieksza roznica mas skutkuje wyste-

powaniem parowania typu FFLO dla mniejszych asymetrii w populacjach skltadnikow mieszaniny.

Wystepowanie QLP wywiera gleboki wpltyw na skalowanie uktadu w granicy T — 0. Punkt sta-
ly dla grupy renormalizacji kontrolujacy przemiane fazowa w T = 0 moze by¢ niegaussowski nawet
w przypadku tréjwymiarowym w przeciwienstwie do typowej sytuacji wystepujacej dla uktadow
elektronowych. Uktad w poblizu QLP powinien takze wykazywac zlozone i interesujace zjawiska
zwigzane z przejSciem miedzy rezimem kwantowym i klasycznym. Analiza wystepujacych w tym
przypadku osobliwosci krytycznych dla T — 0 znajduje si¢ poza zakresem tematéw poruszanych
w tej dysertacji, ale stanowi interesujacy kierunek ich rozwoju. Z calg pewnoscig osobliwos¢ kry-
tyczna bedzie w tym przypadku zaleze¢ od postaci cztonu tlumienia Landaua wystepujacego w pro-
pagatorze bozonowym w fazie ztamanej i tym samym zachowanie to nie bedzie nalezalo do zadne;j
z klas zachowan krytycznych badanych do tej pory w kontekscie niestabilnosci magnetycznych

w uktadach elektronowych [45]181].

Na koniec warto wspomnie¢, ze dotychczasowe badania wychodzace poza przyblizenie pola
sredniego wskazuja, ze nadciecze typu FFLO sa marginalnie niestabilne ze wzgledu na efekty fluk-

tuacyjne w ukladach obojetnych elektrycznie atoméw dla T > 01id = 3 (nie dotyczy to zerowych
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temperatur) [105,178,235]]. Zat6zmy, ze faza FFLO jest stanem podstawowym (tj. T = 0) badanego
ukladu dla h € [h., hrrro], gdzie hrrro jest wartoscig h dla ktorej nastepuje przemiana miedzy faza
niejednorodng i normalna, a dla h = h, zachodzi przemiana fazowa miedzy nadcieczg niejednorod-
na i jednorodna. Oznacza to, ze przynajmniej dla uktadéw nieskonczonych oraz jednorodnych QLP
powinien zawsze pojawiac sie na diagramie fazowym o ile zachodzi przemiana fazowa miedzy nad-
cieczg jednorodng i niejednorodng typu FFLO w zerowej temperaturze (co ma miejsce dla h = h,
zgodnie z przyjetym zalozeniem). W tym punkcie dla T = 0 spotykaja sie¢ nadciecz typu BCS (dla
h < h.), faza FFLO (dlah > h. i T = 0) oraz faza normalna (dlah > h. i T — 0%).
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Rozdzial 6
Mody Goldstone’a i ich thumienie

Interesujacym aspektem badan nad uktadami nadcieklych fermionéw sg ich widma wzbudzen,
a takze zmiana wlasnosci spektralnych wywotana zwiekszaniem niezrownowazenia miedzy po-
szczegoOlnymi sktadnikami w rozwazanych w tej dysertacji mieszaninach. W ogolnosci oczekuje
sie pojawienia nie posiadajacych przerwy energetycznej wzbudzen kolektywnych typu fononowe-
go (tzw. mody Andersona-Bogoliubowa) oraz posiadajacych przerwe modéow amplitudowych. Warto
zaznaczy¢, ze mody kolektywne innego typu sg obecne w dwupasmowych nadcieczach [981/100,119]
oraz w ukladach dla ktorych wystepuje sprzezenie spin-orbita [96,/132,203}251].

Szczegoblnie interesujacym problemem jest opis wiasnosci fononéw Bogoliubowa-Andersona
(AB) [6}28]] zwanych takze modami Nambu-Goldstone’a [79,[151|] w granicy matych pedéw unoszo-
nych przez wzbudzenie. Zgodnie z twierdzeniem Goldstone’a [80] spontaniczne tamanie ciaglej sy-
metrii U(1) dla gazéw Fermiego powoduje powstanie niskoenergetycznych fononowych wzbudzen
kolektywnych. Mody te zostaly zaobserwowane w kilku eksperymentach [4}/15,91,[208/224]], a takze
obszernie zbadane w wielu pracach teoretycznych [43}/57,163,92,101,/115,116,[124}|141}|161]] w ciagu
ostatnich 20 lat. Jednakze wiekszosc¢ tych badan nie podejmuje tematu wplywu niezréwnowazenia
mieszanin ze wzgledu na populacje i masy sktadnikow na widma wzbudzen, a w szczegdlnosci na ttu-
mienie modoéw kolektywnych. Dominujacy mechanizm tlumienia w takich uktadach jest zwigzany
z niesprezystym rozpraszaniem fononéw Goldstone’a na termicznie wzbudzanych kwaziczastkach
fermionowych [255]]. Wspdlczynnik ttumienia dazy do 0 w granicy T — 0 [205}[255]] ze wzgledu na
znikanie termicznej chmury kwaziczastek obecnej w uktadzie w skonczonych temperaturach [254].
Przedstawiony obraz zjawiska tlumienia jest spojny z analizg przedstawiong w pracy [126], ktora
pokazuje, ze proces absorpcji i emisji fononu AB przez kwaziczastki fermionowe prowadzi do eks-
ponencjalnego zmniejszania wspotczynnikow ttumienia w niskich temperaturach przy obecnosci
przerwy energetycznej w widmie wzbudzen. Omoéwiona zaleznos¢ temperaturowa jest charaktery-
styczng cechg tzw. thumienia Landaua [32]] dla modoéw posiadajacych przerwe energetyczna. Jednak
w artykule [144] pokazano, ze dla odpowiednio duzych polaryzacji mieszaniny Fermiego wspot-
czynniki thumienia przyjmuja wieksze wartosci nawet dla stosunkowo niskich temperatur. Sugeruje
to zwiazek pomiedzy niedopasowaniem powierzchni Fermiego (zwigzanej z wystepowaniem dwoch

roznych sktadnikow tworzacych mieszanine), a mechanizmem procesu tlumienia Landaua.

89
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W zwigzku z tym warto jest blizej przyjrze¢ sie wplywowi niezrownowazenia populacji oraz mas
atomow znajdujacych sie w mieszaninie Fermiego na proces ttumienia. W dalszej czesci rozdziatu
zbadana zostanie struktura propagatora fluktuacji parowania w granicy matych pedéw q i czestosci
qms tj- ¢ = 0. Wyprowadzimy nieréwnos¢, ktorej spetnienie stanowi warunek konieczny wystepo-
wania niezerowych wspoétczynnikow tltumienia dla modéw AB w jednorodnej nadcieczy przy obec-
nosci niezrownowazenia mas oraz populacji sktadnikéw mieszaniny. Nasz gtéwny wynik wskazuje
na to, ze mody Goldstone’a sg ttumione nawet w zerowej temperaturze dla odpowiednio duzego
niedopasowania powierzchni Fermiego. Wyniki analityczne poréwnujemy z numerycznie otrzyma-
nymi zespolonymi biegunami propagatora fluktuacji parowania z; = wg — ily/2, przy czym cze$¢
rzeczywista z; odpowiada relacji dyspersji modu kolektywnego, a cz¢s¢ urojona z, jego wspoétczyn-
nikowi tlumienia. Powr6cimy takze do analizy czesci urojonej propagatora fluktuacji parowania
w fazie normalnej (patrz podrozdziat 5.4.1) i na jej podstawie wykazemy, ze thumienie Landaua jest
nieobecne w niskoenergetycznym rozwinieciu tego propagatora w fazie symetrycznej. Przedstawio-
ne wyniki zostaly opublikowane w pracach [2491[250].

Struktura tego rozdziatu jest nastepujaca:

Podrozdzial 6.1. Zaczniemy od wyprowadzenia rozwiniecia gradientowego dla propagatora gaus-
sowskich fluktuacji parowania w fazie uporzadkowanej. Na tej podstawie przedstawiona zostanie
analityczna postac relacji dyspersji dla modéw AB. W tej czesci pominiete beda wyrazy odpowie-
dzialne za powstawanie tlumienia Landaua.

Podrozdzial 6.2. Nastepnie uwzglednimy w rozwinieciu gradientowym wyrazy, ktére powoduja
pojawienie si¢ zespolonego bieguna propagatora fluktuacji parowania i tym samym sa odpowie-
dzialne za tlumienia Landaua. Przeanalizujemy uzyskane wspoétczynniki i podamy warunki dla kto-
rych ttumienie jest obecne takze dla T = 0. Uzyskane wyniki analityczne pordwnamy z numerycznie
otrzymanymi wspolczynnikami ttumienia.

Podrozdzial 6.3. Na koniec opiszemy proces thumienia Landaua w fazie normalnej poprzez analize
czesci urojonej propagatora fluktuacji parowania. Pokazemy, ze czlony odpowiadajace tlumieniu w
fazie normalnej nie wystepuja w rozwinieciu propagatora dla matych pedoéw i czestosci w przeci-

wienstwie do zachowania obserwowanego w fazie o ztamanej symetrii.

6.1 Fonony Andersona-Bogoliubowa

Punktem wyjscia do rozwazan dotyczacych wzbudzen kolektywnych jest odwrotny propagator
fluktuacji parowania F(;l, ktorego postac zostata wyprowadzona w podrozdziale 4.3. Jego elementy
macierzowe sg dane wyrazeniem (4.30). Relacje dyspersji modow kolektywnych wystepujacych w
ukladzie mozna znalez¢ poprzez zbadanie biegunow retardowanego propagatora fluktuacji parowa-

nia danego wyrazeniem

(6.1)

1 M I Ol _M .
Fret(qa iqm = w+ i0+) = ( 11( q w) 12(‘1 w)),

detF(q 0 +107) | My(q,0)  Mi(q )
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gdzie M;j(q, w) = [Fy 1;j. Oznacza to, ze mozna je znalez¢ rozwiazujac wzgledem w réwnanie [115,
125]
detF!(q, 0 +i0%) = 0. (6.2)

Powyzsze rownanie pozwala na wyznaczenie relacji dyspersji w, dla fononéw AB, ale jest niewy-
starczajace do znalezienia zespolonego bieguna propagatora F;. W celu zbadania ttumienia modow
kolektywnych nalezy przedtuzy¢ to rownanie na cala plaszczyzne zespolona postugujac si¢ metoda
Nozieresa, ktorej szczegoély zostang omowione w nastepnym podrozdziale.

Relacje dyspersji dla modéw Goldstone’a mozna otrzymac korzystajac z rozwiniecia gradiento-
wego wzgledem matych wartosci pedow q oraz czestosci gy, Odpowiednie wspoétczynniki rozwi-
nigcia gradientowego uzyskujemy systematycznie rozwijajac w szereg Taylora poszczegoélne czlony
zalezace od q lub g,, w rownaniu (4.30). Korzystajac z tej procedury dla energii wzbudzen kwa-
ziczastek fermionowych (patrz rownanie i opis pod nim) znajdujacych sie¢ w mianowniku

elementéw macierzowych M;j(q, w) otrzymujemy, ze

Ek+q =FE, + axq + 5kq2 +..., (6.3)
gdzie oy = g" kcos@oraz O = ﬁ%%"'ﬁ%"‘z 2E3k cos? 0, przy czym cos 0 = q-k/kq,aq = |q|.

W analoglczny sposob otrzymuje sie, ze

EO'

k+q—E,‘§+al‘C’q+5’fq2+..., (6.4)

gdzie ay = %k cos 0 + oay, a takze 5,? = % + 06. Rozwing¢ mozna takze czynniki koherencji uy4
oraz Uyq znajdujace si¢ w wyrazach ¢, ;10/ oraz 7, ’q”/ wystepujacych w elementach macierzowych
odwrotnego propagatora fluktuacji parowania F;l (patrz rownanie ). W rezultacie otrzymuje-
my, ze (patrz rownania (4.24)- (4.26) i opisy pod nimi)

2 _ 2 2
uk+q—uk+akq+bkq +...,

2 _ 2 2
Vkrq =% — %4 beq” + ..., (6.5)
2
Uk +qUktq = =uvx +dkq + grq° + - . .,
2Ek+q
_ _ LA NE 3N o _ _
przy czym ai = E3kc039 by = e + 1 G 2E5k cos®0, di = E3kc039 oraz gy =

ﬁ (mAsz + m§k + A?k? cos? 0 — 2k2§£ cos? 9). Ostatnim elementem, ktéry mozna rozwina¢ w sze-
k

reg Taylora sa funkcje rozkladu Fermiego-Diraca f(E} +q), co prowadzi do wyrazenia

FELLg) = FED) + f1(EDIEL,, — E{1+ 5 ~FUEDIEL,, - 7T+

1
o fOEDEL ~ BT + ..

(6.6)

gdzie f'(E7) = —gsechz (MTZ),f”(E]f) = tgh(ﬁ )sech2 (/31; ) oraz f 3)(E‘7 = ﬂ sech* (ﬁETU) -
k

EY . . . , S .
) tgh? (ﬁT" ) Korzystajac z tych wyrazen mozna otrzymacé rozwiniecia gradientowe ele-



92 ROZDZIAL 6. MODY GOLDSTONE’A I ICH TLUMIENIE

mentéw macierzowych M;; odwrotnego propagatora fluktuacji parowania F;l, ktore majg postaé

Mi1(q, igm) =A + qu +iCqm + qun + O(q3),

. 2 2 3 (6.7)
Mi2(q, igm) =D + Eq” + Hq,, + O(q’),

gdzie A = M11(0,0), a D = M;,(0,0). Otrzymane wspotczynniki rozwiniecia gradientowego wyno-

1
B:f :
k24Ek

+ 4830 (377 (BD) {awart + 8fut) + obif (B]) + (@) FO (Bt )+
+ 3u,§([ FED) - FEO 20 arEx + 4beEL — u? (267 Ex - (a)?) )+
+ 20 f/(ED)Ex (2aiEx — aful} + 22l {(ad)* £ (E}) + 267 f'(E}) )+

+ 3013([]”(5;) - f(ED)] {za/;akEk + 4bE; — v,f((a,;)z + 25,;Ek)} +

SZ3

—4E,§u,§(3f”(E,;) {aka,; —5,;v,§} + 6bi.f'(Ex) — (o) 2 f O (E;) k)+

(6.8)

+ 20 f(ED)Ex(2aiEx - og o) — 2E207 { (o) f " (E ,;)+25,;f'(E,;)})

)

U4
= [ [ren -] S ©9)

4E2

+ 4
0 [ [fEn) - rie)] SEf, (6.10)

3
E= f S| = e (B - 3 def(Bf) - —= (26 £ (B E{2diBicr
k © 4Ek

- a,;ukvk} + [f(EIZ) - f(E;:)] {zak_dkEk + 4Eigk — UR Ok {(ak_)z + 25k_Ek}} +
- "G - £ (5= 3 + o1t

— 2Bu { ()1 () + 287 £ (Ep) ) n 4—Ez(2ak f (Ek)Ek{zdkEk+ o

+ a,jukvk} + [f(EIZ) - f(E;:)] {Zak dpEp — 4Ekgk — UR Uk {ZEk5 (0{;)2}} +

2Efucor {(af )2 f7(Ef) + 287 f () ) + 3wy {8 f7 () + 85 f7(EO) ) +

+ e (@) FOED) + @0 FOED) - sge {£/(Ep) - FED} |
oraz
2 2

H= f (Ef) - f(E; )] 4E3. (6.12)

W powstzych rownaniach wartos¢ A jest wyznaczana z rOwnania przerwy energetycznej (patrz
rownanie (5.2)). Wykorzystujac uzyskang posta¢ rozwiniecia gradientowego dana rownaniem (6.7)
mozemy po wykonaniu przedtuzenia analitycznego (ign, — «© + i0") wykorzysta¢ ja do znalezienia

przyblizonej postaci relacji dyspersji modow AB. Rozwiazujac rownanie

det F (g, 0) = My1(q, 0)My1(~=q, —0) = Miy(q, @) = 0 (6.13)
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otrzymujemy, ze dla fononéw AB mamy [116}|194}/196]

wg = A|Viq? + Ag* — v, (6.14)
q—)
gdzie
v = 2A(B—E) (6.15)
CZ+ 2A(H - 0)
oraz

C*(B - E) [4A(BH - EQ) + C*(B+E)]

(6.16)
[C? + 2A(H - Q)]

A=

Uzyskana relacja dyspersji ma postac¢ przewidywana przez teorie Bogoliubowa dla stabo oddziatu-
jacych bozonéw [1]]. Otrzymany parametr v; ma wymiar predkosci i odpowiada predkosci dzwigku
z jaka rozchodzg si¢ fonony AB w nadcieczy. Dla malych pedéw wj jest liniowa w q. Uzyskane wzbu-
dzenia kolektywne sa bezmasowymi modami Goldstone’a zwigzanymi ze spontanicznym tamaniem

symetrii U(1).

6.2 Tlumienie Landaua w fazie nadcieklej

W tej czesci zajmiemy si¢ analiza zespolonego bieguna propagatora fluktuacji parowania. Omo-

-1
q

ne wklady, ktore sa zwigzane z procesem ttumienia Landaua. W celu ich uwzglednienia postuzy-

wiona powyzej procedura prowadzaca do rozwinigcia gradientowego dla F_* zaniedbuje nielokal-
my sie strategia postepowania, ktora jest wykorzystywana przy wyprowadzaniu dziatania Hertza-
Millisa-Moriya w kontekscie kwantowych przemian fazowych w uktadach wedrujacych elektronow
[44,/89,[138l[147}150]. W tym przypadku nielokalne cztony |gm|/y{]|pojawiajace si¢ w dziataniu gaus-
sowskim po jego rozwinieciu dla matych wartosci |q| oraz |gn,|/|q| sa zwiazane z ttumieniem Lan-
daua kolektywnych fluktuacji spinowych przez wzbudzenia fermionowe typu czastka-dziura [138]].
Czlon ten jest odpowiedzialny za pojawienie si¢ zespolonego bieguna dla propagatora paramagno-
noéw, przy czym y, jest wspotczynnikiem ich thumienia [89]. Zauwazalne podobienstwo strukturalne
pomiedzy podejsciem Hertza, a rozwazanym przez nas problemem zacheca do wykorzystania tej me-
tody do zbadania ttumienia Landaua modéw AB dla spolaryzowanej mieszaniny Fermiego zlozonej

z czastek o nierdownych masach.

6.2.1 Nielokalne czlony w rozwinieciu gradientowym F;l

W celu uwzglednienia w rozwinieciu gradientowym F;l czton6éw nielokalnych rzedu |gn,|/1q]

rozwazamy wyrazenie M;;(q, iqm) — M11(q, 0). Korzystajac z notacji wprowadzonej w rownaniu

Warto tu podkresli¢, ze po wykonaniu przedtuzenia analitycznego (ig,, — @ + i0%) czlon nielokalny w dziataniu

Hertza ma postac i|w|/y, [44.89].
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(4.30) otrzymujemy

, fka,(r’ 9
Ahquqm)—AhﬂqJD=:—yf . W YR ' | (6.17)

k.q 2 0,0
k 7 2 o,0’ E
0,0 qm + (Ek,q ) k.q

Wiodacy wklad zawierajacy jednoczeénie male czestosci oraz pedy, a tym samym nie uwzgledniony

w rozwinieciu danym réwnaniem (6.7), pochodzi z drugiego czlonu w nawiasie w réwnaniu (6.17)

dla elementéw w ktérych o = ¢’ i jest dany wyrazeniem

2
dm
f%wa Z([K]) cos? O1al” + (619

przy czym podobnie jak poprzednio cos 6 = q - k/|q|[k]|, f'(x) = ﬁ cosh™?(Bx/2), a takze a, (|k|) =

(( +o ) |k|. Wszystkie pozostate wklady (dla A > 0) w rozwinieciu roéwnania (6.17) sa wyzszego

rzedu lub zostaly uwzglednione w rozwinieciu danym réwnaniem (6.7).

W nastepnym kroku wykonujemy catkowanie po zmiennej katowej 6 rozwazajac tym samym
z osobna przypadek d = 2 oraz d = 3. Zakladamy, Ze stosunek |q,,|/|q| jest maly [[89}/150]. Warto
zauwazy¢, ze jest to mozliwe jedynie wtedy, gdy rozwazane mody sa bezmasowe [57]. W wyra-
zeniu 1} wykonujemy zamiane zmiennych, |k| — ¢ = k*/2m > 0, a nastepnie wykonujemy
catkowanie. Prowadzi to do wyrazenia

(f

lqmlfdscdD (e)ulv Z E) |Qm|, (6.19)

las (e

gdzie ¢y jest rowne 1 dlad = 2 oraz /2 dla d = 3. WprowadziliSmy takze gestos¢ stanéw przy-

padajaca na spin Dy(¢), przy czym Dy(¢) = m/2m oraz Ds(e) = \/2@51/2 Roéwnanie (6.19) definiuje

wspotczynnik y,. Analogiczne postepowanie mozna zastosowa¢ do pozadiagonalnych elementow
macierzowych M2(q, igm). W rezultacie otrzymujemy dokladnie takie same wyrazenie jak w row-
naniu (6.19). W zwiazku z tym rozwiniecie gradientowe dane réwnaniem powinno by¢ uzupet-
nione o nielokalne wktady dane rownaniem (6.19). Do tej pory nie zostaly one zauwazone w innych
badaniach.

Przyjrzymy si¢ teraz postaci y, ! w granicy zerowych temperatur. Korzystajace z tego, ze f'(E?) —
—8(—E?) dlaT — 0 dostajemy

yol= f de cqDg(e Z OEE) (6.20)
Yo T i ag ()] |
Réwnanie mozemy dalej uprosci¢ korzystajac z tozsamosci
d(x — x;)
S[h(x)] = ) ——, 6.21
ZIMMI (6.21)
gdzie x; sg pierwiastkami h(x). Rownanie E? = 0 posiada dwa rozwiazania, ktore sg jednakowe dla
0 = + oraz 0 = —. Sa one dane rownaniem
—{h+y/(h—{p)? - N2(1- 2
- LR - (6.22)

1- 02
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Ze wzgledu na to, ze ¢ = k?/2m jest nieujemne wybieramy tylko te pierwiastki, ktére spetniaja
warunek ¢ > 0. Wykorzystujac relacje (6.21) i wykonujac catkowanie ze wzgledu na ¢ otrzymujemy;,

ze

_ 1
Vg = Il 2 caPae)u; v ZL () (6.23)
gy e120
gdzie {; = 2me; oraz L,(¢) = Vm/ Zelag ()2 Przedyskutujemy teraz implikacje rownania (6.23).

Po pierwsze mozna zaobserwowac ze yq ~ uk k = A?/ 4E2 w konsekwenql Yq ! znika w granicy
A — 0. Ponadto u2 2 . przyjmuje maksymalng wartos¢ dla k = v/2m
Jak wspomniane zostalo wyzej ¢; w rownaniu (6.23) musi by¢ nieujemne. Prowadzi to do warun-

ku koniecznego wystepowania thumienia Landaua o postaci

\h—Cul > A1 - 2. (6.24)

Gdy spelniony jest powyzszy warunek rownanie EZ = 0 posiada dwa rzeczywiste pierwiastki.
W szczegdlnosci gdy powierzchnie Fermiego sktadnikéw mieszaniny pokrywaja sie (h = {u) wi-
dzimy, ze y 1'=0dlaT = 0iw zwigzku z tym mody Goldstone’a nie sa ttumione. Jednakze zgod-
nosc¢ z warunkiem nie gwarantuje, ze spetniona jest nieré6wnosc ¢ > 0. Dla ustalenia uwagi

przyjmiemy, ze h — {1 > 0, a nastepnie rozwazamy ¢; > 0, ktora prowadzi do uktadu nieréwnosci
> A1 - 2 dla z
=0 dlay> S5
h > \Jp? + A? dla y < —2
g PN

Pierwsza niero6wnos$¢ w powyzszym warunku zapewnia istnienie przynajmniej jednego dodatniego

(6.25)

zera funkcji EY (patrz rys.[6.1), a druga z nich odpowiada dokladnie jednemu dodatniemu pierwiast-
kowi rownania EY = 0 (patrz rys.[6.2).

Zinterpretujemy teraz uzyskane wyniki w kontekscie mechanizmu tlumienia Landaua. Zakla-
damy, ze r € [1,00[, czyli { € [0, 1[. Widmo wzbudzen dla kwaziczastek fermionowych posiada
dwie galezie (patrz réwnanie (4.14)). Gdy dwie powierzchnie Fermiego skladnikéw mieszaniny po-
krywaja sie (h — {u = 0), wtedy dolna galaZ E; jest w pelni obsadzona, a gorna E; jest pusta [254].
W tym przypadku tlumienie Landaua jest obecne tylko dla niezerowych temperatur, przy czym
w granicy T — 0 zanika ono eksponencjalnie. Fonony Goldstone’a niesprezyscie rozpraszajg sie
z termicznie wzbudzonymi kwaziczgstkami w gornej galezi spektrum. Zwigkszanie niezrownowa-
zenia mieszaniny zwigzanego z niedopasowaniem powierzchni Fermiego prowadzi do niezerowego
obsadzenia fermionéw w gatezi Ef takze dla T = 0. W konsekwencji thumienie Landaua jest obec-
ne takze w zerowej temperaturze. Sytuacja ta zostala zilustrowana na rys. oraz Polozenie
minimum funkeji E; jest dane rownaniem épin = g — {A/ W i w tym punkcie E} jest rowna
A\/1——§2. Gdy €pin > 0, wtedy minimalne niedopasowanie powierzchni Fermiego, ktore prowadzi
do niezerowego obsadzenia gérnej galezi, jest dane przez Am (patrz rys. . Gdy emin < 0,
wtedy minimalne niedopasowanie powierzchni Fermiego prowadzace do niezerowego obsadzenia
galezi E} jest dane przez wartos¢ funkcji E; dla e = 0 (patrz rys. [6.2). Przedstawione rozumowanie

pozwala na zinterpretowanie warunku (6.25).
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(a) h = Cu

(b) h > Cu

Rys. 6.1: Schematyczna ilustracja spektrum dla fermionowych kwaziczastek, E} = (& — (h— {p) +
o Ef, jako funkcji & = £ -y, gdzie minimum E; znajduje si¢ w obszarze fizycznym, tj. ¢ > 0. Czerwo-
na gwizdka wskazuje potozenie minimum E;’, a w obszarze zacieniowanym mamy ¢ < 0. (a) W tym
przypadku powierzchnie Fermiego sktadnikow mieszaniny pokrywaja sie (h = {'u). Dolna gataz wid-
ma kwaziczastkowego jest catkowicie obsadzona, podczas gdy gorna gataz jest pusta. W tym przy-
padku tlumienie Landaua jest zwigzane z niesprezystym rozpraszaniem fononéw Goldstone’a na
termicznie wzbudzonych kwaziczastkach i staje si¢ ono nieaktywne w granicy T — 0 z powodu bra-
ku dostepnych stanéw rozproszeniowych. (b) Niedopasowanie powierzchni Fermiego sktadnikow
prowadzi do niezerowego obsadzenia gornej gatezi, gdy spelniony jest warunek h— {u > A4/1 — 2.

W tym przypadku proces ttumienia jest obecny takze w zerowej temperaturze.

Co wiecej widzimy, ze w granicy r — oo otrzymany warunek wystepowania tlumienia jest nie-
zalezny od { i jest dany przez h > +/p? + A%. Natomiast gdy r = 1 rozwazany warunek przyjmuje
postac h > A, co jest zgodne z wynikami otrzymanymi w pracy [144]. Warto podkresli¢, ze powyz-

sze wnioski wymagaja obecnosci przerwy zwiazanej z parowaniem, czyli A > 0. W dalszej czesci



6.2. TLUMIENIE LANDAUA W FAZIE NADCIEKLE] 97

(a) h = Cu

(b) h > Cu

Rys. 6.2: Widmo wzbudzen kwaziczastek fermionowych E7 w funkcji § = ¢ — p, przy czym mini-
mum E; znajduje si¢ w obszarze niefizycznym (¢ < 0). Czerowna gwiazdka odpowiada potozeniu
minimum E;, niebieska kropka odpowiada ¢ = 0, a w zacieniowanym obszarze ¢ < 0. (a) W tym
przypadku powierzchnie Fermiego sktadnikoéw sie pokrywaja (h = {p). Gérna gataz widma kwazi-
czastkowego jest pusta (dolna galaz jest catkowicie obsadzona) w zwigzku z tym tlumienie Landaua
jest mozliwe jedynie przy obecnosci wzbudzen termicznych od E,” do E;. (b) Niedopasowanie po-
wierzchni Fermiego powoduje, ze gorna galaz posiada niezerowe obsadzenie, gdy spelniony jest
warunek h — {p > [uZ + A* — {p. Thumienie Landaua jest w tym przypadku aktywne takze dla
T=0.

pokazemy, ze nieré6wnosc (6.25) jest spetniona dla h istotnie mniejszego od krytycznej wartosci h,
w przypadku mieszaniny °Li-*’K. Oznacza to, ze thumienie jest obecne w szerokim obszarze diagra-
mu fazowego wewnatrz fazy nadciektej. Ponadto wystepowanie tlumienia Landaua jest niezalezne

od rzedu przemiany fazowej miedzy faza ztamang i symetryczna.

Na koniec rozwazymy proces tlumienia w poblizu QCP, ktory zgodnie z wynikami poprzednie-
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go rozdzialu moze by¢ otrzymany dla szerokiego zakresu parametréw ukladu. Na poziomie MFT
w granicy h — h, przerwa A dazy w sposob ciagly do zera. W otoczeniu QCP warunek ¢; > 0
mozna rozwing¢ dla matej wartosci A, co prowadzi do

1+¢
2k =)

Zgodnie z wynikami z poprzedniego rozdziatu powyzszy warunek jest zawsze spelniony dlar > 3.01

h+p A* + O(A*) > 0. (6.26)

oraz h > u > 0, co odpowiada obszarowi w ktérym mozliwe jest wygenerowanie QCP na diagramie
fazowym. Oznacza to, ze ttumienie Landaua jest nieuchronnie obecne w poblizu QCP, gdy kwantowa

przemiana fazowa jest ciagla.

6.2.2 Wyniki numeryczne

W tej czesci zbadamy numerycznie thumienie modow kolektywnych poprzez przeanalizowanie
zespolonego bieguna propagatora fluktuacji parowania. Sprowadza sie to do znalezienia zespolo-

nych pierwiastkow nastepujacego roéwnania [63,/1154(144]
det F(q. igm > z4) = 0, (6.27)

gdzie zg = wg — iI5/2, wq jest relacjy dyspersji, a [; < 0 jest wspolczynnikiem thumienia. I ! jest
zwigzana z czasem zycia modu kolektywnego. Elementy macierzowe M;;(q, z;) posiadaja ciecie (ang.
branch cut) wzdtuz osi rzeczywistej [115]]. Spodziewamy sie, ze biegun opisujacy ttumienie Landaua
powinien znajdowac sie w dolnej pélptaszczyznie zespolonej, bo I; < 0. Oznacza to, ze musimy
przedtuzy¢ analitycznie M;j(q, z4) z gornej na dolng polptaszczyzne zespolona, co skutkuje przej-
$ciem do innej powierzchni Riemanna funkcji wieloznacznych jakimi sg M;;(q, z;). Wykorzystujac

metode opisang przez Noziresa [157] wprowadzamy wielkos¢
1
Aij(q @) = - —Im M,-(,R)(q, ), (6.28)

gdzie indeks (R) oznacza, ze bierzemy retardowany element macierzowy M;j(q,iq — « + i0%).
Pozwala ona na znalezienie przedtuzenia analitycznego ]\7I,-j elementu macierzowego M;; do dolnej

polplaszczyzny zespolonej o postaci [115,/144]

MV (q.0) = MY (q. ) - 21iA;(q. ), (6.29)

gdzie indeks (A) oznacza, ze bierzemy awansowang cze$¢ elementu macierzowego, tj. ig, — w—i0*.
]\;Iij otrzymany w powyzszej procedurze moze by¢ rozszerzony tak, ze v — z = w—il'/2,gdzie" < 0.
Wyjasnienie tej procedury znajduje si¢ w dodatku B.

Wykorzystujac procedure opisang powyzej (patrz [[115,144,157]]) przedyskutujemy numerycznie
otrzymane relacje dyspersji w, oraz wspoélczynniki thumienia Iy, dla r = 1.0 oraz r = 6.67 zmienia-
jac wartosci pola Zeemana h w granicy T — 0. Rozwazamy przypadek trojwymiarowy (d = 3).
Sprawdzamy takze a posteriori spetnienie warunku v = limjq0 wg/|q| < 1, ktéry odpowiada zato-
zeniom przyjetym przy wyprowadzeniu wyrazenia (6.23). Zaczniemy od dyskusji sytuacji zbilanso-

wanej (r = 1). Przemiana fazowa pomiedzy faza normalna, a nadcieklg jest generycznie nieciagla dla
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Rys. 6.3: (a) Relacje dyspersji modéw Goldstone’a w, (w jednostkach p) jako funkcja pedu g dla
r = 1 oraz kilku wartosci pola h. Dla odpowiednio matych wartosci |q|/v/2mp otrzymujemy, ze
wg = vslq| + O(Iq)?). (b) Analogiczny wykres dla wspolczynnikow tlumienia I, (w jednostkach p).
Wszystkie krzywe pokrywaja sie z powodu stabej zaleznosci przerwy A od h. Uzyskane wspotczyn-
niki ttumienia sa zaniedbywalnie mate. Parametry wykresu sg nastepujace my = 1,r = 1, p = 0.5,

T =0.005,g = —2.0 oraz A = 10.

r < 3.01 oraz T — 0 na poziomie pola sredniego. Spodziewamy sie zatem, ze zmiana A jako funk-
cji h powinna by¢ niewielka, az do pojawienia si¢ przemiany fazowej. W tym przypadku czestosci
oraz czynniki thumienia dla modéw Goldstone’a jako funkcji pedoéw |q| zostaly zaprezentowane na
rys. Uzyskane wyniki nie sa zalezne od wartos$ci h zmieniajacej sie od 0.0 do 0.4164 dla kto-

rej nastepuje nieciggla przemiana fazowa. Powodem tego jest pomijalna zmiana wartosci przerwy
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Rys. 6.4: (a) Relacje dyspersji w, dla modéw Goldstone’a (w jednostkach p) jako funkcje pedu dla
r = 6.67 oraz kilku wartoéci h. Dla wystarczajaco malych wartosci |q|/v/2mpu otrzymujemy, ze
wg = vslql + O(Iq)?). (b) Analogiczny wykres dla wspolczynnikow thumienia I, (w jednostkach
). Tlumienie Landaua staje si¢ aktywne powyzej h ~ 1.59, ktdora to warto$¢ jest znaczgco mniejsza
od wartosci krytycznej h, =~ 1.97. Parametry wykresu sg nastepujace my = 1,r = 6.67, g = 0.1,
T =0.04,g = -1.4 oraz A = 10.

A w trakcie zblizania si¢ do przemiany fazowej. Dla wszystkich h (pokazanych na rys. wartos¢
stosunku T/A < 0.01 co oznacza, ze mozemy poming¢ fermionowe wzbudzenia termiczne. Dlar = 1
(¢ = 0) zawsze spelniona jest relacja p > {A/ W = 0, zatem warunek 1} przyjmuje w tym
przypadku posta¢ h > A, ktore nigdy nie jest spelnione w rozwazanej sytuacji. Implikuje to, ze

tlumienie Landaua jest nieobecne w granicy T — 0 w zgodzie z wynikami otrzymanymi numerycz-
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nie z rys. [6.3| (numerycznie otrzymane wspétczynniki thumienia w tym przypadku sg rzedu 10711).

Otrzymane wynik sg konsystentne z pracami [116,(144]].
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Rys. 6.5: Wspotczynniki thumienia modéw Goldstone’a Iy, (w jednostkach p i przy wykorzystaniu
skali logarytmicznej) jako funkcji pola Zeemana dla r = 6.67 oraz |q|/+/2mpu = 4.24 X 1073, Thumie-
nie jest aktywne dla h > m = 1.59. Ponadto dla wartosci pola h odpowiadajacych poblizu
przemiany fazowej (h € [1.88,1.95]) ttumienie staje si¢ znaczgco silniejsze. Parametry wykresu sg
nastepujace my = 1,r = 6.67, p = 0.1, T = 0.04, g = —1.4 oraz A = 10. Ciagla przemiana fazowa
miedzy nadciecza, a faza normalng zachodzi dla h. = 1.9706.

Zajmiemy si¢ teraz przypadkiem o nieréwnych masach ustalajac r = 6.67, co odpowiada mie-
szaninie atoméw °Li oraz *°K [[103,225,227,239]. Dobieramy parametry w taki sposéb, aby uklad
posiadatl QCP na diagramie fazowym. Warto zauwazy¢, ze rzad przemiany fazowej nie wpltywa na
wystepowanie thumienia Landaua. W tym przypadku QCP na poziomie MFT jest zlokalizowany dla
h. = 1.9706. Relacje dyspersji oraz wspotczynniki ttumienia fononéw Goldstone’a sg zaprezentowa-
ne na rys.[6.4/dla kilku wartosci h < h.. Ze wzgledu na T/A < 0.04 dla wszystkich wartosci h na rys.
mozemy zaniedba¢ wzbudzenia termiczne. Okazuje sig, ze dla wszystkich wartosci pola h mo-
zemy zastosowac kryterium h > m, ktore mowi o wystepowaniu tlumienia Landaua (patrz
rownanie (6.25)). Po pierwsze obserwujemy, ze dla h = 1.4 powyzszy warunek nie jest spelniony.
Oznacza to, ze gorna galaz widma fermionowych kwaziczgstek jest nie obsadzona, a tym samym
mechanizm tlumienia jest nieaktywny (patrz podrozdzial 6.2.1). Pozostaje to w zgodzie z wynika-
mi numerycznymi ktére pokazuja, ze wspotczynnik thumienia jest w tym przypadku rzedu 1071
Po drugie dla h = 1.6 widzimy, ze h = m = 1.59. Otrzymana numerycznie warto$¢ Iy/u

jest rzedu 107>, co jest znaczenie wieksza wartoécig od tej otrzymanej dla h = 1.4. W pozostatych
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Rys. 6.6: Wspolczynniki thumienia modéw Goldstone’a I, (w jednostkach ) jako funkcje pola Ze-
emana dla r = 3.47 oraz |q|/v2mp = 0.0179. Thumienie jest aktywne dla h > /AZ + p% = 0.563.
W tym przypadku na diagramie fazowym wystepuje przemiana fazowa I rodzaju dla h; = 0.59106.
Parametry wykresu sg nastepujace my = 1,r = 3.47, u = 0.1, T = 0.002, g = —1.4 oraz A = 10.

przypadkach rozwazany warunek jest takze spelniony. W konsekwencji gorna gataz widma kwa-
ziczastkowego jest czeSciowo obsadzona przez kwaziczastki takze dla T — 0. W zwigzku z tym
mody Goldstone’a moga zostac¢ zaabsorbowane przez wzbudzenia fermionowe i thumienie Landaua
jest obecne. Jak widzimy na rys. 6.4 przewidywanie to jest zgodne z wynikami numerycznymi. Co
wiecej zaleznos¢ Iy /p od h jest pokazana narys. dla lql/V2mu = 4.24x1073. Widzimy, ze aktywo-
wanie tlumienia Landaua zachodzi dokladnie dla przewidywanej przez wzor h > \/m = 1.59

wartosci h.

Zaprezentowane wyzej wyniki odpowiadajg sytuacji w ktorej przemiana fazowa miedzy faza
nadciekls, a normalng jest ciaggla w granicy T — 0. Uzyskane wnioski sg jednak niezalezne od
rodzaju zachodzacej przemiany. Zademonstrujemy to bezposrednio dobierajac parametry w taki
sposob, aby rozwazana przemiana fazowa byla I rodzaju w niskich temperaturach. Przyjmujemy
r =3.47, 4 = 0.1 oraz g = —1.4. W tym przypadku kwantowa przemiana fazowa I rodzaju zachodzi
dla h; = 0.59106 (na poziomie MFT). Numerycznie otrzymana zalezno$¢ Iy;/u od h zostala zapre-
zentowana na rys. dla |q|/+/2mp = 0.0179. Zgodnie z warunkiem otrzymanym w poprzednim
podrozdziale spodziewamy sig, ze thumienie Landaua powinno pojawic sie dla h > 4/A? + pu? = 0.563,

co bardzo dobrze zgadza sie z danymi numerycznymi z rys.
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6.3 Tlumienie Landaua w fazie normalnej

Zbadamy teraz urojong czes¢ odwrotnego propagatora fluktuacji parowania w fazie normalne;j
ImF; !

O,ret.

(q,w) dla T = 0 (patrz rownanie ) Ilekro¢ ImF, 0r1et # 0 propagator Fy . posiada
zespolony biegun, ktéry prowadzi do poszerzenia piku odpowiadajacemu modowi kolektywnemu
w funkcji spektralnej A¢(q, w) = —%ImFO,ret,(q, ) [2,/109]. W rezultacie obecny jest w ukladzie
proces ttumienie Landaua ktory powoduje, ze czas zycia modoéw kolektywnych staje sie skonczony.

Rozwazamy granice T — 0 w réwnaniu i wprowadzamy u = |k|? > 0. Zaktadamy przy
tym, ze znajdujemy si¢ w obszarze (B) z rys. [5.7|w ktorym znajduje si¢ faza normalna przylegajaca

do QCP. Catkowanie po katach prowadzi do

ImFOret(q, 8”| lf du [1-0(=¢&)) - 0(&, —w)] x
u q’ 2
m? _
X9(1 - ulq|? {w_ m +2p - 2m+} )_ (6.30)

m Ao m?2 u qz 2
=7 duf1- +2{a)——+2y— } ,
87lql Jo ulq| m 2m,

gdzie A, = 2m,r(p—h+w). W powyzszym wyrazeniu widzimy, ze ImFO ver. (Q, @) moze by¢ niezerowe

jedynie, gdy w > h — pu. Zatem dla wartosci h = h, > p, gdzie zachodzi przemiana fazowa, ttumienie
jest nieobecne dla niskich energii w fazie normalnej.
Wyrazenie podcatkowe w rownaniu (6.30) jest rowne jednosci w przedziale [u_, u,] oraz zeru

w przeciwnym przypadku. Tylko u. > 0 sa fizycznie istotne. Wartosci te majg postaé

o o 2o 2 (2]

2
gdzie A = (lil) orazB=w+2u— zqﬁ. Powyzsze wyrazenie jest rzeczywiste, gdy w > > L4 _ 2.

r+12my

Oznaczato, ze ImF0 ret.

(q, w) # 0 wtedy i tylko wtedy, gdy [u—, u+ ]N[0, A,] # 0, co dzieli ptaszczyzne
(lql, ) na trzy rézne obszary.
Pierwszy z obszarow (reg. 1) jest zdefiniowany przez u, < A,. Tutaj thumienie Landaua jest

obecne, a ImF. !

0.rer. Ma postac

ImF; ., [(q, ®) € reg. 1] = LI P 24 — L & (6.32)
O,ret. s . 4 1 2m+ .

Analogicznie drugi rezim (reg. 2) jest otrzymany z warunku u_ < A, < uy. W tym przypadku

ttumienie jest takze aktywne, ale posta¢ ImF; !

o.rer. Jest inna i wynosi

2

[2m+r(y h+ o) - {gz‘l +

my

ImF; ., [(q, ®) € reg. 2] = ~ 51l

(6.33)
1 2
+a)+2,u—m m(a)+2,u— d )H
my r+12m,




104 ROZDZIAL 6. MODY GOLDSTONE’A I ICH TLUMIENIE

Absence of
Landau damping

reg. 3

>
g

q

Rys. 6.7: Schematyczna ilustracja diagramu (|q|, w) dla T = 0 pokazujaca rézne obszary dla ktorych

tlumienie Landaua jest aktywne lub nieobecne w fazie normalne;j.

Ostatni obszar (reg. 3) pojawia si¢, gdy A, < u_. Tutaj ImFO_’rlet.[(q, w) € reg. 3] = 01w zwiazku z
tym tlumienie Landaua jest nieobecne. Uzyskane wyniki zostaly schematycznie przedstawione na
rys.[6.7}

Uzyskane wyniki posiadajg przejrzystg interpretacje fizyczna. ZidentyfikowaliSmy dwa warun-
ki: (@) o > h — poraz (b) w > ﬁ% — 2. Naruszenie ktorego$ z nich implikuje, ze ImFO_,rlet_ = 0.
Kwantowa przemiana fazowa zachodzi pomiedzy gazem calkowicie spolaryzowanym, a nadcie-
czg. Oznacza to, ze czastki o pseudospinie "|" sg nieobecne w fazie normalnej dla T = 0, zatem
p- < 0dlah > h, > pu. Mozemy przeformutowac¢ warunek (a) jako @ > |p—| > 0, co oznacza,
ze tlumienie moze wystgpic¢ tylko wtedy, gdy energia jest wystarczajaco duza, aby wprowadzi¢
do ukladu czastke o pseudospinie "|". Z drugiej strony mozemy przeformutowac¢ warunek (b) ja-

2
ko w > &puir(q) = 2,,2] — — [pair, gdzie mpgy = my + m_ = my(1 + r) jest masg pary stworzonej z

czastek o pseudospinach "1" oraz "|", a takze ppeir = pi+ + p— = 21 jest potencjalem chemicznym
tej pary. Oznacza to, ze ttumienie Landaua moze by¢ aktywne tylko wtedy, gdy wzbudzenie pary

unoszacej ped q jest mozliwe.

Warunki (a) i (b) nie uwzgledniaja zachowania momentu pedu, ktéry prowadzi do dalszych
ograniczen obszaru dla ktorego ImF 1, # 0. W szczegolnosci funkcja schodkowa w réwnaniu
zadaje warto$ci w oraz q, ktore sa konsystentne z mozliwymi kierunkami pedu danymi przez
cos® = k- q/lkl|q| € [-1, 1] i powoduje to dalsze zmniejszenie obszaru dla ktérego tlumienie jest

aktywne.

. -1
Zawracamy uwage, ze ImFg

mienie jest aktywne. Zapewnia to, ze funkcja spektralna Ay(q, w) jest nieujemna dla wszystkich

(q, w) jest niedodatnia funkcja w obu obszarach w ktorych thu-
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warto$ci w oraz |q].

Co wiecej dla malych wartosci |q| thumienie pojawia sie dla w > 2h — %,u > 0, poniewaz
h. > p. Z tego powodu w poblizu kwantowej przemiany fazowej po stronie fazy normalnej czltony
tlumienia nie pojawiaja sie w rozwinieciu gradientowych dla matych pedéw oraz czestosci. Sytu-
acja ta jest calkowicie inna w poréwnaniu do przypadku wewnatrz fazy uporzadkowanej opisanego

w poprzednim podrozdziale.
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Rozdzial 7

Teoria renormalizacji dla mieszanin

Fermiego

Ostatnim zagadnieniem dyskutowanym w tej dysertacji jest wplyw fluktuacji parametru porzad-
ku na nature kwantowej przemiany fazowej miedzy jednorodna faza nadciekla, a faza normalna.
Skupimy si¢ przy tym na sytuacji w ktorej na poziomie MFT przemiana fazowa jest ciagla w T = 0
i nie jest przemiang multikrytyczna. Do tego celu wykorzystamy nieperturbacyjne sformutowanie
teorii grupy renormalizacji (RG) zaproponowane przez Wettericha w 1993 roku [21}53}237]].

W kilku przypadkach w fizyce materii skondensowanej fluktuacje parametru porzadku powodu-
ja, ze kwantowa przemiana fazowa staje sie nieciagla [20//138]]. Taka sytuacja ma miejsce na przyktad
w ferromagnetykach [[19] oraz nadprzewodnikach [27,[88}|131]]. Postugujac si¢ renormalizacja efek-
tywnego potencjatu zbadamy czy tego typu niestabilnosé¢ QCP ze wzgledu na fluktuacje wystepuje
w przypadku niezréwnowazonych mieszanin Fermiego. Na tym etapie zaniedbujemy wystepowanie
tlumienia Landaua. Przeprowadzona analiza wykazuje, ze QCP zidentyfikowany w ramach przybli-
zenia pola sredniego dla d = 3 jest odporny na wplyw fluktuacji i nie obserwuje sie niestabilnosci
w kierunku przemiany I rodzaju.

Ogolne podejscie pozwalajace na opisanie kwantowej krytycznosci w uktadach fermionowych
wykorzystuje teorie Hertza-Millisa [891|147]]. W podejéciu tym informacje o badanym ukladzie jest
zawarta w efektywnym dziataniu, ktére odpowiada kolektywnym modom bozonowym (patrz roz-
dziat 2). Oddzialywanie pomiedzy modami kolektywnymi pola porzadku, a kwaziczastkowymi wzbu-
dzeniami fermionowymi wzdluz powierzchni Fermiego jest uwzglednione poprzez nielokalne czto-
ny odpowiadajace ttumieniu Landaua, ktére pojawiaja si¢ w odwrotnym propagatorze fluktuacji
parowania F;l. Wystepowanie tlumienia Landaua (badz jego brak), a takze jego doktadna postac,
ma istotny wptyw na zachowanie uktadu w kwantowym rezimie krytycznym. W szczegélnosci de-
cyduje ono o warto$ci dynamicznego wykladnika krytycznego z, ktory jest istotny w opisie wielu
wielkosci termodynamicznych oraz wlasnosci transportu. Jak pokazaliSmy w poprzednim rozdziale
tlumienie Landaua jest zawsze obecne w fazie uporzadkowanej w poblizu nadcieklej przemiany fa-
zowej w T = 0, ktora jest wywolywana przez niezrownowazenie badanej mieszaniny fermionowe;j.

Poza tym w fazie normalnej tlumienie jest nieaktywne. Powoduje to, Ze badana sytuacja znacza-

107
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co rozni sie od tej wystepujacej w kontekscie magnetycznych kwantowych punktéw krytycznych
i w konsekwencji teorie renormalizacji nalezy formulowaé¢ w fazie uporzadkowanej dla niezréwno-
wazonych mieszanin Fermiego [108]. Zbadamy ten problem wykorzystujac nieperturbacyjng RG.
Nasze wyniki, opierajace si¢ na bardzo prostym obcieciu rownan plyniecia dla funkcjonalnej RG,
odtwarzaja spodziewane zachowanie uktadu przy braku ttumienia Landaua. Jednakze dla odpowied-
nio niskich temperatur obecnos¢ ttumienia o postaci wyprowadzonej z mikroskopowego modelu
powoduje destabilizacje plyniecia statych sprzezenia w kierunku punktu stalego Wilsona-Fishera,
co przejawia sie tym, Ze nie jest osiggany asymptotyczny rezim skalowania. Zachowanie to mo-
ze wskazywac na wystepowanie kwantowej przemiany fazowej I rodzaju, ktora jest wywotywana
przez wystepowanie ttumienia Landaua. Omawiana sytuacja stanowi catkowicie inny mechanizm
pojawiania sie przemiany I rodzaju wywolywanej przez fluktuacje parametru porzadku w porow-
naniu do dobrze zbadanego przypadku ferromagnetycznych kwantowych przemian fazowych [20].
Wyniki prezentowane w tym rozdziale zostaly opublikowane w artykutach [248[250]].

Struktura tego rozdziatu jest nastepujaca:
Podrozdzial 7.1. Zaczniemy od krotkiego wprowadzenia do nieperturbacyjnej teorii renormaliza-
cji. Wyprowadzimy réwnanie Wettericha i przedyskutujemy jego najwazniejsze cechy.
Podrozdzial 7.2. Nastepnie postugujac sie dotychczas zaprezentowanymi w tej rozprawie wyni-
kami przedstawimy wygodng parametryzacje efektywnego dziatania rozkladajac pole porzadku ¢,
na skltadowg podluzng o, oraz poprzeczng n,. Pokazemy, ze thumienie Landaua ma wptyw tylko na
sktadowq oy.
Podrozdzial 7.3. W koleinym podrozdziale zaniedbamy wplyw tlumienia Landaua i wyprowadzimy
rownanie plyniecia efektywnego potencjatu. Na jego podstawie zbadamy stabilno$¢ QCP w d = 3 ze
wzgledu na fluktuacje parametru porzadku i pokazemy, ze uklad nie wykazuje niestabilnosci w kie-
runku kwantowej przemiany I rodzaju.
Podrozdzial 7.4. Na koniec przedyskutujemy efekt destabilizacji ptyniecia statych sprzezenia w kie-
runku punktu stalego Wilsona-Fishera dla odpowiednio niskich temperatur (T > 0) wywolanego

wystepowaniem tlumienia Landaua.

7.1 Rownanie Wettericha

Idea stojaca za RG Wilsona opiera si¢ na dwoch krokach: decymacji oraz przeskalowaniu. W pierw-
szym z nich dokonujemy eliminacji krétkozasiegowych (szybkich) modéw ¢~ co powoduje, ze uktad
jest efektywnie opisywany przez dzialanie dla modéw wolnych ¢=. W nastepnym kroku przeska-
lowujemy pola oraz state sprzezenia w taki sposob, aby otrzymane dzialanie miato taka sama po-
sta¢ jak to sprzed wykonania decymacji modow. Procedura ta pozwala mapowaé wyjsciowe sta-
le g = [ggo), géo), géo), ... ] charakteryzujace uklad na zmodyfikowany zestaw stalych sprzezenia
g = R(b;g0) = [gil), ggl), ggl), ... ], ktore pojawiaja sie w przeskalowanym dziataniu po decyma-
cji. Funkcja R (b; g) reprezentuje transformacj¢ RG i jest postac jest zalezna od czynnika skalujacego

b zwigzanego z przeskalowaniem pedéw k’ = bk. Transformacje ta mozemy wykona¢ wielokrotnie,
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przy czym g = R(b; g V) = R(b; R(b; g"?)) = - - - = R(b™; gV) i charakteryzuje ona ptyniecie
stalych sprzezenia przy n-krotnym przeskalowaniu ukladu. W granicy n — oo "odcatkowujemy”
wszystkie mody i tym samym uzyskane w trakcie tej procedury efektywne dzialanie staje sie do-
kladna gestoscia energii swobodnej badanego ukladu, ktéra uwzglednia w pelni fluktuacje [120].
W praktyce procedury tej zazwyczaj nie da sie przeprowadzi¢ bez wykonania pewnych przyblizen,
a takze wspomniane kroki mozemy wdrozy¢ na r6zne sposoby. Celem tego rozdzialu bedzie wypro-
wadzenia funkcjonalnego rownania rézniczkowego charakteryzujacego ptyniecie nieperturbacyjnej
RG, ktore stanowi wygodna implementacj¢ powyzszych idei przy wykorzystaniu procedury zapro-

ponowanej przez Wettericha [21/53}237].

7.1.1 Efektywne dzialanie I} zalezne od skali k

Zaczniemy od skonstruowania jednoparametrowej rodziny ukladow modelowych scharaktery-
zowanych efektywnym dzialaniem I} [¢], ktore jest indeksowane przy pomocy skali k. Oczekujemy,
ze gdy k = A, wtedy fluktuacje nie zostaly jeszcze odcatkowane i w zwigzku z tym [i-p[@] = S[e =
@], gdzie S jest mikroskopowym dziataniem, a A jest mikroskopowym obcieciem nadfioletowym dla
pedow. Z kolei gdy k = 0, wtedy wszystkie mody zostaly odcatkowane i tym samym I [¢] = G[¢],
gdzie G jest termodynamiczng energiag swobodna Gibbsa [53]]. W powyzszych relacjach ¢ = (@) jest
N-komponentowym parametrem porzadku, ktéry otrzymuje sie w wyniku usredniania pola porzad-

ku ¢. Suma statystyczna uktadu ma w tym przypadku postac

Z[J] =f1)[<p]e‘5[‘”]+frj"”, (7.1)

gdzie J jest zewnetrznym polem Zrodlowym, ktore sprzega si¢ z polem porzadku, a dzialanie S{¢]
wykazuje symetrie O(N). Ponadto 7 [J] = —T In Z[J] jest energia swobodng Helmholtza. Za pomocy

powyzszej relacji mozna obliczy¢ dwupunktowe funkcje korelacji

521n Z[J]
SIS,

Zaleznos¢ od skali k w sumie statystycznej mozemy wprowadzi¢ dodajac do dziatania S{¢] czlon

Gij(r —1') = (pi(r)p;(r')) — (@i(r) Xg; (') = (7.2)

bedacy forma kwadratows pola porzadku o postaci [53,60]
1
aSilel = [ ¢ CoRU@ola) 7
q

gdzie macierz R¢(q) = diag [R}C(q),Ri(q), L RY (q)], a R; (q) jest tzw. regulatorem dla i-tej skia-
dowej pola ¢. Posta¢ funkcji R} (q) dobieramy w taki sposob, aby powodowata nadanie modom
wolnym ¢; duzej masy (tj. ich fluktuacje termiczne staja si¢ male) i w zwigzku z tym ulegaja one
rozprzegnieciu w sumie statystycznej. Wprowadzenie cztonu ASy[¢] do dzialania w Z[J] stanowi
praktyczne wdrozenie idei decymacji modéw wspomnianej na poczatku tego podrozdziatu.
Korzystajac ze (zmodyfikowanej) transformacji Legendre’a mozemy zdefiniowac efektywne dzia-

tanie I [¢] zalezne od skali k jako [53,60]]

L [¢] :—ankU]+fJ-¢—ASk[¢J. (7.4
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W powyzszym wyrazeniu odejmujemy wyraz ASi[¢], aby w granicy k — A powyzsze wyraze-
nie sprowadzalo sie¢ do mikroskopowego dziatania S jak to bylo antycypowane wczesniej. Ptyniecie
efektywnego dziatania 0iI;[¢] zawiera w sobie pelng informacje o transformacji RG i jego wypro-
wadzeniem zajmiemy sie w dalszej czesci. Wykorzystujac dzialanie I [¢@] mozemy opisa¢ wlasnosci
termodynamiczne ukladu poprzez jego ewaluacje na jednorodnej konfiguracji pola ¢,,,,;, ktéra pro-

wadzi do efektywnego potencjatu [53,60]

1
Ue(p) = L 1kle)l . (7.5)
gdzie V to objetos¢ ukladu, a p = ¢?. Efektywny potencjat Ui(p) moze posiadaé minimum dla

pok # 0, co wskazuje na spontaniczne tamanie symetrii O(N).

7.1.2 Wlasnosci regulatora Ry(q)

Jak wspomnieliSmy wczes$niej regulator Ry (q) wybieramy tak, aby I} w gladki sposéb interpolo-
wata pomiedzy mikroskopowym dziataniem S dla k — A, a potencjatem Gibbsa G dla rozwazanego
ukladu w granicy k — 0. Oznacza to, ze dla k = A regulator przyjmuje posta¢ Ry(q) = oo i tym
samym fluktuacje pola ¢ sg "zamrozone". Natomiast gdy k = 0 otrzymujemy, ze Ry(q) = 0 i tym
samym fluktuacje na wszystkich skalach sg uwzgledniane [53]]. Dla k €]0, A[ chcemy, aby funkcja
Ry (q) ttumita fluktuacje ponizej skali k, a pozostawiata bez zmian mody powyzej tej skali. Typowo
regulator ma posta¢ Ry(q) = q°f(q?/k?), przy czym funkcja f(x) zachowuje sie jak ~ 1/x w granicy
x — 0oraz f(x) < 1, gdy x > 1 [60]]. Przyktadowy wykres funkcji Rr(q) spelniajacej te warunki
jest przedstawiony na rys.

R(q)%
k2

—p

k |q|

Rys. 7.1: Typowy ksztalt regulatora Rx(q). Mody ponizej skali k posiadaja duza mase i ulegajg "za-
mrozeniu" w sumie statystycznej. Natomiast fluktuacje powyzej skali k majg niewielka mase i ule-

gaja odcatkowaniu w I [¢].
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Jednym z popularnych wyboréw funkecji Rx(q) jest tzw. regulator Litima [[133] o postaci
Ri(q) = a(k® - ¢*)0(k* - ¢°), (7.6)

gdzie a to pewna stata. Jego zaletg jest to, ze pozwala na analityczne obliczenie catek pojawiajacych
sie w rownaniach plyniecia. Inng wygodna postacia Ri(q) jest regulator eksponencjalny o postaci

[120]
2

aq

= 7.7

Ri(q) T (7.7)

Z powodu analitycznosci powyzszej funkcji jest to lepszy wyboér w przypadku numerycznego roz-

wigzywania rownan plyniecia.

7.1.3 Scisle rownanie ptyniecia

Zaczniemy od znalezienia plyniecia funkcjonatu generujacego dla "spéjnych” funkeji korelacji

(ang. connected correlation functions) Wi[J] = In Zy[J] wraz ze skalg k. Otrzymujemy, ze [53]

01 Zx[J] = —%fﬂ[(l’] (f (pT(r)atRk(r—r’)(p(r’)) ~Slel-ASclol+[J o

r/

5 (7.8)
:"(f, 2,00 tr - DS ))Z Ul

gdzie t = In(k/A) = —s €] — o0, 0] jest tzw. (ujemnym) "czasem RG", czyli 0;X = ki X. Powyzsze

roOwnanie pozwala na znalezienie plyniecia funkcjonatu Wi[J] [[60]]:

N
1 i ’
6th[J]‘J:—5f > GR.(r ~ 1)
L%

Przejdziemy teraz do wyprowadzenia rownania plyniecia dla efektywnego dziatania I [¢], ktore

(7.9)

( Wi J] +5WkU]5WkU])
y\8Ji()dJi(x') ~ 6Ji(r) 8Ji(x') )

jest dane wyrazeniem

0trk[¢]‘ = 0 (—WkU] + f] P - ASk[d’])' =
¢ r ¢ (7.10)

= 0w+ [odw], 001 [ #T@aR-1p)

.
W powyzszym rownaniu skorzystano z tego, ze J = Ji[¢] jest zalezne od skali k, przy czym ¢, [r,]] =
OWi[J1/0](r) oraz Ji[r, @] = STk [¢]/d¢(r). Ponadto dzieki tozsamosci [53]

SWi[J]
8J(r)

oraz rownaniu (7.9) otrzymujemy plyniecie efektywnego dzialania dane rownaniem Wettericha [53|

60]

atwkm\ - atwkm\ ¥ L 8,J(r) (7.11)
¢ J ¢

= atwkm‘] + Lﬁ(r) - 01 J(r) .

i / 52WkU] _ 1
8tFk ‘[ Z GtR m = ETI' [GkatRk] , (712)
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gdzie Tr() = fr L tr(), przy czym tr(-) to $lad macierzy. Macierz propagatora Gy znajdujaca si¢
w réwnaniu (7.12) jest dana relacja

RN
6J(r) ~ 6J(r')

Gk =

Wil = (P11 +Re) = (B9) (7.13)

gdzie l“k(z) (¢] = ¢( 7 ® 5 ¢( 53y Lk[@] jest macierza drugiej pochodnej funkcjonalnej efektywnego dzia-
tania. Wzor (7.12) stanowi podstawowag relacje charakteryzujaca ptyniecie RG.

(a) ol = Q(

Rys. 7.2: Diagramatyczna reprezentacja rownan ptyniecia dla (a) efektywnego dziatania I, (b) wierz-
chotka Fk(l) oraz (c) wierzchotka Fk(z) . Ciagla linia odpowiada propagatorowi Gx = (fqﬁ)‘l, zielony

krzyz odpowiada 0;R, a czerwona kropka z n "nogami" odpowiada wierzchotkowi I“k(").

Sukcesywnie rozniczkujac funkcjonalnie rownanie Wettericha wzgledem ¢ (patrz rownanie (7.12))
otrzymuje si¢ nieskonczona hierarchie réwnan ptyniecia dla jednoczastkowych nieredukowalnych
wierzchotkow F(n) [{rj}, Pl = W%%. Mozemy ja przedstawi¢ w postaci diagramatycznej
jak zostalo to pokazane dla pierwszych trzech rownan na rys. Hierarchia ta pozwala na wypro-

wadzenie rownan ptyniecia dla poszczegdlnych stalych sprzezenia opisujacych badany uklad.

7.2 Dzialanie typu Hertza dla mieszanin Fermiego

Jak pokazalismy to w poprzednich rozdziatach dzialanie Hertza Sy opisujace bozonowe wzbu-

dzenia kolektywne dla niezrownowazonych mieszanin Fermiego ma posta¢
1 S
Sulg] = - j;d)quICDq +U[$], (7.14)

gdzie @ = [qgf], (;;_q], o, = [ng, gzgi 1", a ¢g = ¢oBq0 + (,zgq jest bozonowym polem parowania, ktore
zostalo podzielone na wklad jednorodny ¢, oraz fluktuacje ¢~q, przy czym g[;q:o = 0. Ograniczamy si¢

do zbadania faz jednorodnych, a tym samym nastepujace rozwiniecia w pedach beda wykonywane
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wokot q = 0. Czton U [¢p] mozna zapisa¢ jako

wm=£$ﬁww=ﬁr§+3£2ﬂ%®

przy czym U (¢) to efektywny potencjal o postaci przedyskutowanej w rozdziatach 4 i 5.

, (7.15)

Macierz odwrotnego propagatora fluktuacji parowania Fq_l, ktorego analize zaprezentowalismy
w poprzednim rozdziale, zawiera informacje o dynamicznych wtasnosciach wzbudzen kolektyw-
nych w ukladzie. Przypominamy, ze jednym z uzyskanych wnioskow bylo stwierdzenie, ze thumienie
Landaua fononéw AB jest zawsze obecne w otoczeniu kwantowej przemiany fazowej przy zblizaniu

sie do niej od strony fazy nadciektej. Ttumienie powoduje modyfikacje dynamiki uktadu, co przeja-

Iqol
Tql

macierzowych odwrotnego propagatora F;l. Elementy macierzowe M;;(q) := [Fq ]ij mozemy spra-

wia si¢ poprzez wystapienie nielokalnych cztonéw ~ =+ w rozwinieciu gradientowym elementow

metryzowac jako

E@@q

1
Mi1(q) = Mi2(—q) = 2 [Zqz — iWqo + Zog5 + > Tal

(7.16)
Miz(q) = M21(q) =

Yq + YO% + — > ||QO||]

przy czym wktady M;i(q = 0) wlaczamy do lokalnego potencjatu U [¢]. Wielkosci Z, Z, Y, Yy, W
oraz L mozna powigzac¢ z parametrami charakteryzujacymi mikroskopowe dzialanie fermionowe
Sy (patrz rozdzial 6), natomiast py := |¢o|? jest parametrem porzadku. Warto zauwazy¢, ze wklady
zwigzane z thumieniem modoéw kolektywnych sa proporcjonalne do Poqr lqo' . W fazie uporzadkowanej
kwaziczaski sa superpozycjami wzbudzen typu czastkowego oraz dz1urowego [171}[220]]. W rezul-
tacie przy obliczaniu elementéw macierzowych F;l zaréwno diagramy typu czastka-czagstka jak
i czgstka-dziura daja wkiad [[171]. Fluktuacje parowania ¢, sprzegaja si¢ z fermionowymi wzbu-
dzeniami typu czastka-dziura wzdluz powierzchni Fermiego co powoduje, zZe ttumienie Landaua
jest aktywne [[118}/126]. Jednakze gdy przechodzimy do fazy normalnej (py = 0) znika continuum
czastka-dziura i czlony tlumienia znikaja (jak zostalo to przez nas pokazane w poprzednim roz-
dziale). Manifestuje sie¢ to tym, ze wspoélczynniki odpowiadajace thumieniu sg proporcjonalne do py
w poblizu przemiany fazowej. Ta cecha sprawia, ze charakterystyka kwantowej przemiany fazo-
wej w niezréwnowazonych mieszaninach Fermiego jest inna niz w analogicznych przypadkach dla
ukladéw magnetycznych (patrz np. [20,/44,/138,|150]).

Rozktadamy pole gzgq przy wykorzystaniu tzw. reprezentacji kartezjanskiej
gi;q = 04 + iny, gzgz; =0_q—im_g, (7.17)

gdzie o, to podtuzna sktadowa, a 7, to poprzeczna sktadowa pola opisujacego fluktuacje parowania.
Wkiad jednorodny ¢, jest rzeczywisty. Ponadto o5 = 0_q oraz r; = 71— co jest spowodowane tym, ze
pola o (x) oraz 7 (x) sg rzeczywiste. Wstawiajac postac (7.17) do rownania (7.14)) oraz parametryzujac
efektywny potencjal, poprzez jego rozwiniecie w potegach p := |¢|? do drugiego rzedu wlacznie,
jako

U$) = (o po)’ (7.15)
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prowadzi do dziatania Hertza o postaci
Sy=8,2+8,2+Ssr+S8s +Ss52+Sse +Spe + Sy, (7.19)

Wyrazy kwadratowe w polach oy i 7, maja nastepujaca postac

1
Sp2 == f m2 + Z2q5 + Z,q° + Lp()@] 040—¢»
2 Jq Iq]
1
S,: = > f [qug + Z,,qz] TTgT—gs (7.20)
q

1
Scrn = _5 quO [Uq”—q + 7[‘10_‘]] ’
q

gdzie m, = /2Ap, jestmasa pola og, Zy = Z+poY, Z2 = Zo+poYo, Zr = Z—poY oraz Zy = Zy— poYo.

Z kolei wyrazy wyzszego rzedu maja postac

1
S, = Ef V(@) VPpoopoqo—q—p.
q9-p

1
Sonz = Ef V(q)\/mo'p”qﬂ'—q—pa
9P

1
804 = —f V(q)o.qo-p_qo—q’o-—P—q’, (7.21)
8 Jaq»

1
Spe = 3 f V(q)mgmp—q7Tq T—p—g,
q.9".p

1
Spopz = Zf V(q)040p—qTq' T—p—q'>
9.q9"p

gdzie V(q) = A + Yq® + Yyq’ jest potencjatem bozonowym.

Dla L = 0 otrzymane dzialanie Sy jest podobne do dziatania dla oddziatujacych bozonéw [160,
175]. Zgodnie z oczekiwaniami mod poprzeczny r, jest bezmasowy. Warto zauwazy¢, ze czton od-
powiadajacy thumieniu Landaua pojawia sie jedynie w czesci zwigzanej z modem podhuznym oy,
Jego wystepowanie nie bylo do tej pory uwzgledniane w zadnych z badan dotyczacych efektow

fluktuacyjnych dla niezréwnowazonych mieszanin Fermiego [25}219].

7.3 Renormalizacja efektywnego potencjatu

W rozdziale 5 wskazaliSmy na mozliwo$¢ wygenerowania QCP na diagramie fazowym dla spo-
laryzowanych mieszanin Fermiego o nieré6wnych masach, przy czym r > r, = 3.01. W tym podroz-
dziale wykorzystamy funkcjonalng RG, aby przedyskutowa¢ wptyw fluktuacji na stabilnos¢ QCP.
Poki co pomijamy tlumienie Landaua (tj. kladziemy L = 0) i uwzglednimy je pdznie;.

W wielu sytuacjach spotykanych w fizyce materii skondensowanej fluktuacje pola porzadku
moga doprowadzi¢ do wyindukowania kwantowej przemiany fazowej I rodzaju [20,|138]]. Dobrze
znanymi przykladami jest ferromagnetyczna kwantowa przemiana fazowa [[19]], a takze nadprze-
wodniki w ktorych parowanie zachodzi w kanale fal s [88] lub w kanale fal p [131]. W przypad-

ku wedrujacych ferromagnetykéw przemiana fazowa w T = 0 jest I rodzaju ze wzgledu na czlon
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~ ¢*In ¢ pojawiajacy sie w efektywnym dziataniu po odcatkowaniu fermionowych stopni swobody
(nie posiadajacych przerwy energetycznej). Innego rodzaju nieanalitycznos¢ efektywnego dziatania
jest generowana w przypadku nadprzewodnikow, ktéra pojawia sie ze wzgledu na sprzeganie sie

parametru porzadku z elektromagnetycznym potencjatlem wektorowym.

Twierdzimy, ze mechanizm tego typu nie jest obecny w przypadku uktadu spolaryzowanych
gazow fermionowych o nieréwnych masach. Postugujac sie obliczeniami wykorzystujacymi funk-
cjonalng RG pokazemy, ze QCP (przy L = 0) otrzymany na poziomie MFT w d = 3 jest stabilny
ze wzgledu na fluktuacje parametru porzadku. Dodatkowo warto wspomnie¢, ze mozliwos¢ zmiany
rzedu kwantowej przemiany fazowej z I rodzaju do przemiany ciagtej spowodowana fluktuacja-
mi pola porzadku zostala zademonstrowana dla efektywnych bozonowych teorii pola [104,/106],
a takze dla niektorych modeli fermionowych [25}26,/41,/107,242}243]. W rozwazanym przypadku
antycypujemy, ze podobny efekt zachodzi, tj. fluktuacje stabilizujg przemiane II rodzaju w T = 0
(przy zaniedbaniu ttumienia Landaua). Warto podkresli¢, ze funkcjonalna RG byla wykorzystana do
otrzymania diagramu fazowego w przypadku mieszaniny o rownych masach [25], a takze zbadania

niezrownowazonej mieszaniny Fermiego w rezimie unitarnym [[189]].

7.3.1 Roéwnanie plyniecia efektywnego potencjalu

Postugujac sie rownaniem Wettericha wyprowadzimy réwnanie ptyniecia efektywnego poten-

cjatu Uk(p). Zapisujemy je w reprezentacji pedowej i wybierajac ¢, = [oq, mg)" otrzymujemy, ze

1 R(q) 0 \[Gool(q) Gonr(q)
I = — t k . =
el¢] 2fq g ( 0 RZ(C])>(G7I,0(q) Gm(q))] (7.22)
1 (. :
-1 fq [ (@)Goo (@) + R} (9)Grr(9)] -

gdzie X = 0,X, q = (q, qo) oraz fq () = fq T g, (+). Efektywne dzialanie I} [¢] parametryzujemy
korzystajac z przyblizenia lokalnego potencjatu (ang. local potential approximation) [53}/60], wtedy

1
4] = 5 [ oM@+ [ i),
q X
7.23
A kq(z) + Zg,qu + Lpo,kM -Wkqo ) ( )

M(q) ={ .
! ( Wieqo Z3 8 + Znjd’

T

gdzie stale wystepujace w macierzy My zostaly uzaleznione od skali k, p = ¢?, a takze pox jest
definiowane jako polozenie minimum funkcji Ui (p). Ponadto widzimy, ze zgodnie z oczekiwaniami
I [¢] = Sulg).

W zwiazku z powyzszym réwnanie plyniecia Uy (p) mozemy otrzymaé ewaluujac rownanie Wet-

T
tericha (patrz wzor (7.22)) dla jednorodnej konfiguracji pola ¢,,; = [\/,T), O] . Zaczniemy od znale-
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quZ;) _ |¢:¢uni

52rLPA[¢] 52rLPA[¢] -1
Sor5o, T R1(9) Sord,
Gr(q) =

zienia macierzy propagatora Gy = ( w tym przypadku. Ma ona postaé:

52rLPA[¢] 52FLPA [¢]
Srosas srom, T R (@)

$=buni (724)
_ l( Yr.r(q) Ya,fr(‘]))
D ~Yon (q) }/O',O'(q) ’

7@

Py ktorej elementy macierzowe wynosza

gdzie D = Y5 oVrr + yg’ﬂ jest wyznacznikiem macierzy

|CI0| Y 7
Yoo = Zogxdo + Zokq’ + Lpo,kr.” +Ul(p) + 2pU}'(p) + R7(q).

y p 2
Ynn = Zg,kq(z) + Zﬂ,qu + Up(p) + R (9), (7.25)

Yor = _quOa

gdzie X' = 9,X(p). Korzystajac z powyzszych relacji widzimy, ze Gy = Yrn/(VooVnr + Yor), a

Grn = Yoo/ Yo.oYnn + YZ,). Pozwala to na napisanie réwnania

Urlg] = 5 fq %q) (R (@ 1rn(@) + RE@Yo.0(9)] (7.26)

ktore charakteryzuje renormalizacje efektywnego potencjatu Uy (p). Warto podkresli¢, ze rowna-
nie to jest nietrywialne i zwiera w sobie wyrazy az do nieskoniczonego rzedu w p. Odpowiada to

uwzglednieniu wszystkich wierzchotkéw o postaci ~ ﬁgUk w teorii perturbacyjnej [[60]].

7.3.2 Stabilnosé¢ QCP ze wzgledu na fluktuacje

Stabilnos¢ QCP w d = 3 ze wzgledu na fluktuacje zbadamy pomijajac renormalizacje statych
gradientowych, tj. bedziemy je traktowac jako stale niezalezne od skali k. Co wiecej przyjmujemy,
2e Zy = Zy = Z oraz Z0 = Z° = Z,. Zaniedbujemy takze w tej chwili wplyw ttumienia Landaua
poprzez polozenie L = 0. Renormalizacja ksztattu efektywnego potencjatu wraz ze zmiang skali k
jest dana rownaniem . Przyjmujemy, ze funkcje R} oraz R}’ wystepujace w tym réwnaniu majg
identyczna postac¢ dang regulatorem Litima, czyli

Z Z
Re(q) = Ri(q) =R (q9) =Z (k2 -q¢* - %qﬁ) 0 (k2 - EOqg) . (7.27)

Wielkos¢ Uk (p) mozemy zinterpretowaé jako energie swobodng w ktorej uwzglednione zosta-
ly fluktuacje pomiedzy skalami pedu k oraz A. Dla k = A fluktuacje sg "zamrozone" i Up(p) =
—§ +T fp 2o f(=Ej(p)) jest dane przez Sredniopolowy efektywny potencjal. Z kolei dla k — 0
wszystkie fluktuacje sg odcatkowane i tym samym Uy(p) jest pelnym potencjatem Gibbsa ukladu.
Zatem roéwnanie interpoluje miedzy Sredniopolowym, a pelnym efektywnym potencjatem
w trakcie zmieniania skali k dla ktorej nastepuje obciecie pedow. ROwnanie nie wigze sie z roz-
winieciem w potegach p potencjatu Ui (p). Z tego powodu podejscie to dobrze nadaje si¢ do zbadania

wptywu fluktuacji na rzad przemiany fazowej. Z drugiej strony otrzymane réwnanie ptyniecia U (p)
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Rys. 7.3: Sredniopolowy [Ux(A = 4/p)] oraz zrenormalizowany [Up(A = +/p)] efektywny potencjat
dla zestawu parametréw odpowiadajacy rys. dlaT = 0 oraz h = h, = 1.346. Parametry pro-
pagatora wynosza Z = Z, = 10W = 1. Uwzglednienie fluktuacji parametru porzadku powoduje
przesuniecie potozenia QCP od hMFT ~ 1.362 do h, ~ 1.346. Przemiana fazowa pozostaje II rodzaju
(przy L = 0) po uwzglednieniu wptywu fluktuacji przy wykorzystaniu réwnan ptyniecia RG. War-
to$¢ oczekiwana parametru porzadku zanika w sposob ciagly, gdy h zmienia si¢ w kierunku wartosci

krytycznej h.

jest nieliniowym roéwnaniem rézniczkowym, ktoére moze zostac¢ zbadane tylko numerycznie. Warto
podkresli¢, ze prostsze obciecia rownania Wettericha byly wykorzystywane w podobnym kontek-

$cie w pracach [[70[121]).

Dyskretyzujac przestrzen wartosci p catkujemy rownanie dla T = 0 przyjmujac jako wa-
runek poczatkowy sredniopolowa posta¢ efektywnego potencjatu Up(p). Uzyskane wyniki nie wy-
kazuja sladow niestabilnos$ci QCP otrzymanego na poziomie MFT w kierunku przemiany fazowej
I rodzaju. Pokazujemy to na rys. [7.3| poprzez narysowanie wykresu $sredniopolowego oraz zrenor-
malizowanego efektywnego potencjatlu odpowiadajacego parametrom wykorzystanym na rys.
Wartos¢ h dobrano tak, aby odpowiadata dokladnemu potozeniu przemiany fazowej dla T = 0 po
wykonaniu procedury renormalizacji. W tym przypadku ksztalt $redniopolowego efektywnego po-
tencjatu wskazuje, ze znajdujemy sie we wnetrzu fazy uporzadkowanej, tj. minimum U (A) odpo-
wiada Ay # 0. Rachunek ten pokazuje stabilnos¢ QCP ze wzgledu na fluktuacje parametru porzadku

w d = 3, przy zaniedbaniu ttumienia Landaua.
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7.4 Teoria Hertza-Millisa w fazie nadcieklej

Teoria Hertza-Millisa w swoim pierwotnym ksztalcie zostata sformutowana w odniesieniu do
fazy paramagnetycznej i jej celem bylo scharakteryzowanie magnetycznych przemian fazowych
w ukladach wedrujacych fermionéw. Jednym z jej wynikow jest stwierdzenie, ze ciagla przemiana
fazowa w T = 0 nalezy do klasy uniwersalnosci modeli O(N)-symetrycznych o efektywnej wy-
miarowosci D = d + z, gdzie wykladnik dynamiczny z przyjmuje warto$¢ z = 3, gdy niestabilnos¢
zachodzi przy magnetycznym wektorze uporzadkowania wynoszacym Q = 0 [89,/147].

Wartos¢ wykladnika z jest zwigzana z ttumieniem Landaua modow kolektywnych i w rozwa-
zanej przez nas sytuacji nie jest od razu jasnym jaka ona bedzie. Spowodowane jest to tym, ze
w niezrownowazonych mieszaninach Fermiego ttumienie Landaua jest obecne tylko w fazie upo-
rzadkowanej i wspotczynnik w czlonie ~ I%I jest proporcjonalny do pg i tym samym znika przy
podchodzeniu do punktu krytycznego. Co wigcej zwracamy uwage, ze kwantowy punkt krytyczny
odpowiada stanowi, ktory jest uporzadkowany na poziomie MFT i oznacza to, ze czlton opisujacy
tlumienie jest obecny w rownaniach pltyniecia RG we wszystkich skalach opisujacych podchodzenie
do krytycznosci, przy czym zanika jedynie w asymptotycznie matych skalach RG.

Standardowo teoria Hertza-Millisa jest formutowana w odniesieniu do fazy nieuporzadkowane;.
Z tego powodu wykorzystujemy nieperturbacyjne sformutowanie RG, ktére mozna zastosowac za-
rowno do fazy symetrycznej i uporzadkowanej [108]. Pozwala ona takze na otrzymanie zaréwno
gaussowskiego punktu statego, jak i punktu statego Wilsona-Fishera. Pokazemy jak spodziewane
przejscie miedzy rezimem kwantowym, a klasycznym jest precyzyjnie odtwarzane dla T > 0 przy
90

%. Nasze wyniki wskazuja,

ze jego obecnos¢ zakloca plyniecie RG w kierunku punktu statego Wilsona-Fishera, ktory pojawia

braku ttumienia Landaua. Nastepnie uwzglednimy czton thumienia ~ p,

si¢ dla posrednich skal RG. Wskazuje to na mozliwos¢ indukowania przemiany fazowej I rodzaju
poprzez fluktuacje, ktore sa zwigzane z tlumieniem modu podluznego o. Mechanizm destabiliza-
cji QCP obecny w tym przypadku jest catkowicie r6zny od tych badanych dotychczas [20,138] np.
w kontekscie ferromagnetykow [[19]] lub nadprzewodnikow [27,88,/131]).

7.4.1 Rownania plyniecia stalych pj . oraz Ak

W naszym problemie postuzymy si¢ jednoczgstkowym nieredukowalnym wariantem niepertur-
bacyjnej teorii renormalizacji i jako punkt wyjscia przyjmujemy rownanie Wettericha. Metoda ta
jest szczego6lnie wygodna do opisu cigglych przejs¢ miedzy réznymi rezimami zwigzanymi z wy-
stepowaniem kilku punktow statych, ktore rzadza ptynieciem RG w réznych skalach [39}(52} /127,
18411218]. W dalszej czesci postuzymy sie przyblizeniami, ktore zostaly opracowane w kontekscie
badan nad magnetycznymi przemianami fazowymi w ukladach fermionéw posiadajacych symetrie
Isinga [104,[106,/108]], a takze typowego dzialania Hertza-Millisa. Z powodu silnie anizotropowego
propagatora danego relacjami bedziemy wykorzystywa¢ dwie rozne funkcje obciecia R°/* dla
poszczeg6lnych kierunkow.

Naszym celem jest zbadanie wpltywu cztonu ttumienia Landaua ~ poq—OI na skalowanie w kwan-

|
lql
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towym rezimie krytycznym. Dla prostoty pomijamy pozadiagonalny propagator o — 7, tj. ktadziemy
W = 0. Czlon ten jest nieobecny dla uktadow posiadajacych symetrie czastka-dziura i przypuszcza
sie, ze skaluje si¢ do zera w trakcie ptyniecia RG wewnatrz fazy uporzadkowanej [160]. W ogdl-
nosci wpltywa on na niektore wlasnosci transportowe oraz termodynamiczne takie jak $cisliwosc
kondensatu [175].

Postugujac si¢ tymi przyblizeniami postepujemy w standardowy sposob [21] wychodzac z row-
nan plyniecia efektywnego potencjalu (patrz réwnanie (7.26)), ktére wyprowadzilismy w poprzed-

nim podrozdziale. W rozwazanym przypadku otrzymujemy, ze

Uk (p) 1f u + i (7.28)
k = - . .
P 2Jq Yoo P)  Yrr(p)
Ponadto parametryzujemy efektywny potencjat korzystajac z postaci
Ak 2
Us(p) = £ (p = pos)* (7.29)

W rozwazanym przyblizeniu pomijamy takze ptyniecie wspolczynnikéow gradientowych (zaréwno
w kierunku przestrzennym jak i czasowym). Jest to rOwnowazne z pominigciem wymiaru anomal-
nego 7y, (ang. anomalous dimension), gdyz Z°/™ = —n4/,Z°/" [53]. Poza tym wartos¢ 15/, jest
mata w przypadku ukladow tréojwymiarowych, a takim zajmujemy si¢ w tym problemie. W kon-
sekwencji rOwnania plyniecia RG sg parametryzowane przez zbior tylko dwoch zaleznych od skali
statych sprzezenia p x oraz Ax. W kontekscie kwantowej krytycznosci dla wedrujacych fermionow
wykorzystywane przyblizenia pozwalaja na uchwycenie istotnych aspektow fizyki tych ukladow
w d = 3 [106]. Jednakze postepowanie to jest niewystarczajace w d = 2, gdzie plyniecie stalych
gradientowych Z i zwigzanych z nimi wymiaréw anomalnych 7 pelni istotng role.

Wyprowadzimy teraz rownanie ptynigcia statej po x korzystajac z relacji % U'(pox) = 0:U (po )+
U” (po.k)pox = 0, ktoéra wynika z U’ (po k) = 0. Rézniczkujac rownanie ikladac p = po, a takze
korzystajac z U” (po k) = Ak otrzymujemy, ze

f [3RZ Vou(pok) + R Vrm (Po,k)] : (7.30)
q

.1
Po,k—2

Réwnanie plyniecia dla stalej Ay mozemy otrzymac liczac druga pochodng réwnania (7.29), ktora

obliczamy dla p = pg k. W rezultacie otrzymujemy;, ze
Ak = A3 f [9RY v5% (o) + R vz (por) | - (7.31)
q

Zauwazmy, ze kladac p = poi dostajemy bezmasowy propagator modu poprzecznego y,;}r, bo
U’ (pok) = 0 (poréwnaj z rownaniem ) Z kolei masa modu podtuznego o wynosi m% = U’(pgx)+
2p0kU" (pox) = 2Akpo k-

W powyzszych rownaniach wykorzystujemy funkcje obciecia Litima, ktora jest zalezna od kie-
runku o /7 i ma posta¢

R]f:/” — Xo./ﬂ—e(Xo'/ﬂ')9 (7'32)
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gdzie X, = Z, (k2 - qz) —Z2q5—Lpo lﬁfll oraz X; = Z, (k2 - qz) —Z2q5. Wybor ten sprawia, ze catki
wystepujace w rownaniach plyniecia dla pg x oraz Ay sa ograniczone do obszaru w zmiennych (q, qo),
gdzie y, , oraz y, » sa niezalezne od g, co pozwala na analityczne wykonanie catek po pedach q.

Nastepnie przeskalowujemy zmienne korzystajac z klasycznych wymiaréw skalujacych
Kk = Z,[kz_dp()’k oraz Uy = Z;zkd_‘l)tk. (7.33)

Procedura ta sprawia, ze w trakcie plyniecia stalych k oraz u osiggany jest punkt staly Wilsona-
Fishera dla T > 0, gdy warunek poczatkowy zostanie wybrany w taki sposob, ze znajdujemy sie
na powierzchni krytycznej (ang. critical manifold). Prawa strone powyzszych rownan plyniecia roz-
dzielamy na wklady klasyczne odpowiadajace gy = 0 oraz na wkiady kwantowe dla ktorych qo # 0.
W rezultacie otrzymujemy
ke = B+ BIUT 4 pINT
g

Ponadto wklady kwantowe w powyzszym rownaniu podzielilimy na czesci pochodzace od fluk-

(7.34)

tuacji podtuznych o oraz poprzecznych z. Czlony wystepujace w rownaniu kK, majg nastepujaca

postac
AT 37
e = @2-d)xp + Z, ( — 2+1), (7.35)
Z + mg)
q5
, 3A4T 27 dj2 J
P —=> |7 {(yo(qo) - (¥5'(90)) /2}+
(7.36)
QLZ2k (d-1)/2 .
I G (@ - 2 { (98100) T - a2 |
2A,4T & d/2
= ) @] (737)
q0>0
zie Ay i - przy czym S9! = d’; jest powierzchnig (d —1)-wymiarowej sfery jednostkowej,
gdzie Ag = 7, pray czy r(1)10 y y
Z = Zy)Zy, M2 = 2k, yM(qo) = qu, podczas gdy y, /m(qo) sa dodatnimi pierwiastkami
nastepujacego rownania
0 LZ_Z B
32 - (1 -7 22 qg) y'/? + —Zf K *kklgol = 0. (7.38)
g

Warto podkresli¢, ze yy/ ™(qo) jest gorng/dolng granica catkowania po y = q*/k? (tj. pochodzi ten
czlon z wykonania catki ﬁl () w BI?) i w zwiazku z tym zachodzi relacja y (qo) > y™(qo) (bardziej

szczegOlowo zostalo to wyjasnione w dodatku C). Suma Matsubary dla wktadu od modu =z (patrz

réwnanie (7.37)) przebiega od qo = 27T do g = g—gk. Z kolei dla wkiadu od modu o (réwnanie

(7.36)) sumowanie przebiega po qo = 27nT (n € N.) jest ograniczone do wartosci spetniajacych

ponizsza nierd6wnosc¢
0

qOZ =

2/3 LZ% 4 s 2
+3(2)” ~ 2 kT Skeqe| -1 <0. (7.39)
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Najwieksza warto$¢ z nich jest oznaczona jako gg. Poza tym wklady wystepujace w rownaniu

maja nastepujaca postac

2A4T 97
= (4—dyu+ ; ( - =+ 1) u?, (7.40)
(Z + ﬁﬁ,)
6u’
o = O g (7.41)
Z +m;
oraz

LT = oy BT (7.42)

Sumy Matsubary wystepujace w powyzszych rownaniach musza zosta¢ wykonane numerycznie.
Powyzsze rownania zostaly zapisane dla dowolnej wymiarowosci d, ale od tej pory ogranicza-
my sie do przypadku d = 3. Jak zostalo to wcze$niej wspomniane wykorzystane przyblizenia nie
sa adekwatne w przypadku d = 2 ze wzgledu na pominiecie wymiaréw anomalnych. Osobliwosé¢
krytyczna jest kontrolowana przez gaussowski punkt staly dla T = 0 oraz przez klasyczny punkt

staly Wilsona-Fishera dla T > 0.

7.4.2 Plyniecie RG przy braku tlumienia Landaua

Zaczniemy od analizy rownan ptyniecia stalych k oraz u dla przypadku w ktérym pomijamy pro-
ces ttumienia Landaua dla modu podtuznego o. Oznacza to, ze kladziemy L = 0 w 1“7 oraz fi .
Plyniecie stalych jest inicjalizowaine dla s = —t = —In(k/A) = 0 przy ustalonej temperaturze T > 0
i wartosciach poczatkowych k = ko > 0, a takze u = uy > 0 wyznaczonych na podstawie wartosci
mikroskopowych parametrow uktadu. W przypadku rozwigzania numerycznego przyjmujemy, ze
u = AN =2, = Z; = Z2 = Z° = 1. Calkujac réwnania ptyniecia w kierunku rosnacych
wartosci s (odpowiadajacych k — 0) znajdujemy, ze x dazy od zera dla pewnych skonczonych skal,
co wskazuje na plyniecie w kierunku fazy nieuporzadkowanej, albo rozbiega dla duzych wartosci
s (co odpowiada zbieganiu p, do pewnej skorniczonej wartosci) wskazujac tym samym na osigganie
fazy uporzadkowanej. Dostrajajac uktad do przemiany fazowej (poprzez zmienianie k() obserwuje-
my, ze (x, u) plyna w kierunku wartosci odpowiadajacych punktom stalym. Wyniki dla ptyniecia
stalej k sg zaprezentowane na rys. dla ciggu temperatur, ktorych wartosci daza do zera. Skala
Scross dla ktorej k odrywa sie od gaussowskiego punktu statego (rzadzacego osobliwoscig krytycz-
na w T = 0)iw sposob ciagly ptynie w kierunku punktu stalego Wilsona-Fishera (kontrolujacego
osobliwos¢ krytyczna w skonczonych temperaturach) rozbiega w granicy T — 0" zgodnie z relacja
Scross ™~ —% InT [[147]. Dopasowanie otrzymanych danych prowadzi do wartosci wyktadnika dyna-
micznego z = 1.0, co w pelni zgadza si¢ z oczekiwanym zachowaniem dla tego uktadu. W zakresie
pedow [0, scross[ uzyskane plyniecie x jest zdominowane przez wklady kwantowe (qo # 0), podczas
gdy zakres [Scross, o[ jest zdominowany wkladami klasycznymi (qo = 0) do rownan plyniecia (7.34).

Przedstawimy teraz wyniki dotyczace zrenormalizowanego ksztattu linii krytycznej T, (k) otrzy-

mane poprzez odcatkowanie rownan ptyniecia RG. Ogolnie oczekuje sig, ze linia krytyczna jest dana
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Rys. 7.4: Plyniecie stalej k dla kilku temperatur T = 10~ (krzywa czerwona), T = 107> (krzywa zie-
lona), T = 1072 (krzywa niebieska) oraz T = 107! (krzywa rézowa) przy braku ttumienia Landaua.
Rezim posredni ptyniecia jest kontrolowany przez gaussowski punkt staly, podczas gdy podczerwo-
ny sektor (duze wartosci s) jest rzadzony przez punkt staly Wilsona-Fishera. Skala s.qs dla ktorej
nastepuje ciagte przejscie miedzy rezimami (tj. oderwanie sie plyniecia k od gaussowskiego punktu
stalego) rozbiega, gdy T — 0. Ogolnie oczekuje sie, ze Scross ~ —% InT [147]. Przewidywanie to jest
w pelni zgodne z otrzymanymi wynikami dla ktérych wyktadnik z = 1.0 (jak zostalo to pokazane

na wykresie wstawionym w prawym goérnym rogu).

prawem potegowym (dla niskich temperatur) o postaci [147]

z

T~ o= V=5

, (7.43)

gdzie ¥ to wykladnik przesuniecia. Warto zauwazy¢, ze wyktadnik ¢ zalezy jedynie od d oraz z.
Przyktadowe wyniki otrzymane dla linii krytycznej zostaly zaprezentowane na rys. Uzyskane
prawo potegowe jest scharakteryzowane wykladnikiem ¢/ = 0.5, co w pelni zgadza sie z oczekiwa-
nym wynikiem dla z = 1 (tj. ¥ = 1/2). Ponadto widzimy, ze uniwersalny ksztalt linii T, nie przystaje
do generycznych przewidywan MFT, ktore to wskazuja, ze faza nadciekla jest obszarem wklestym
(ang. reentrant phase) na diagramie fazowym, co mozna zobaczy¢ na rys.

Powyzsze wyniki odtwarzaja antycypowane zachowanie uktadu przy pominieciu czlonéw thu-
mienia Landaua w rownaniach plyniecia, tj. skalowanie jest analogiczne jak dla kwantowego mo-
delu Isinga [192}218]. Podkreslamy tu role wykladnika dynamicznego, ktéry odpowiada za ksztalt
linii krytycznej T, oraz skali s, dla ktorej nastepuje przejscie miedzy rezimem kwantowym i kla-

sycznym. Naszym celem bedzie teraz zbadanie w jaki sposéb zostanie zmodyfikowane otrzymane
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Rys. 7.5: Linia krytyczna otrzymana poprzez odcatkowanie rownan ptyniecia RG przy braku tlumie-
nia Landaua (L = 0). Granica faz jest opisywana prawem potegowym o wykladniku ¢y = 0.5, co w
pelni zgadza sie z rownaniem (7.43) w ktorym polozono z = 1. Rysunek w prawym dolnym rogu

odpowiada tym samym danym narysowanym w skali liniowe;j.

zachowanie po uwzglednieniu cztonu tlhumienia Landaua w propagatorze modu o.

7.4.3 Plyniecie RG przy uwzglednieniu tlumienia Landaua

W tej czesci powtdrzymy analize zaprezentowana w poprzednim paragrafie, lecz tym razem
uwzglednimy czltony odpowiadajace ttumieniu Landaua (tj. L # 0). Rozwigzujemy rownania plynie-
cia (7.34) i wykorzystujemy procedure dostrajania k, do jej wartosci krytycznej dla kilku tempera-
tur dazacych do zera. Plyniecie RG w rezimie kwantowym jest rzadzone przez wzajemny wpltyw
roznych wkladéw pochodzacych z czlondéw ~ g2 oraz ~ po%’ll. Analiza ptyniecia stalej k jest zapre-
zentowana na rys.|7.6|dla wzglednie niewielkiej wartoéci L = 0.1 oraz niskiej temperatury T = 107%.
Nalozono na nim takze trajektorie RG odpowiadajaca plynieciu x w tej samej temperaturze T oraz
przy tych samych wartosciach pozostatych parametréw, lecz z L = 0. Opisana w poprzednim para-
grafie procedura dychotomii pozwala na zidentyfikowanie dwoch faz obecnych w uktadzie, a takze
na znalezienie granicy faz miedzy nimi w przestrzeni parametréw. Jednakze przemianie fazowej nie
towarzyszy zbieganie plyniecia RG do punktu stalego i zwigzanej z nim niezmienniczos$ci skalowa-
nia. Zachowanie to moze wskazywac na wywotang fluktuacjami przemiane fazowa I rodzaju, ktora
jest spowodowana przez proces tlumienia Landaua modow kolektywnych. Efekt ten pojawia sie

jedynie w odpowiednio niskich temperaturach T; w wyzszych temperaturach obserwujemy ciagla
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Rys. 7.6: Plyniecie statej k dla temperatury T = 107*%, gdy thumienie Landaua jest aktywne i scharak-
teryzowane L = 0.1 (czarne krzywe) oraz dla braku tlumienia Landaua, tj. L = 0 (czerwone krzywe).
Wystepowanie tlumienia Landaua blokuje ptyniecie w kierunku punktu stalego. Przemiana fazo-
wa nadal zachodzi (na co wskazuje to, ze k nadal osigga zero lub plynie do nieskonczonosci), ale
uklad nie wykazuje niezmienniczosci skalowania. Wykres wstawiony w prawym goérnym rogu jest

powigkszeniem obszaru w ktorym trajektorie RG separujg sie.

przemiane fazowa tak jak poprzednio (tj. przy braku thumienia Landaua). Implikuje to wystepowanie
punktu trojkrytycznego na diagramie fazowym dla temperatury T;.;. Zwracamy uwagg, ze uklad dla
T > T, wykazuje bardzo podobne zachowanie do sytuacji w ktorej L = 0. Wartos¢ T;,; wzrasta wraz
ze stalg L oraz dla T < Tj,; warto$¢ krytyczna parametru kontrolnego xq jest w praktyce niezalezna
od T. Oznacza to, ze linia krytyczna T, w plaszczyznie (ko, T) jest pionowa linig prosta. Otrzymana
linia T, zostala zaprezentowana na rys. 7.7/ dla kilku wartosci statej L. Dobrze widoczne jest na nim
odchylenie od zachowania skalujacego scharakteryzowanego przez z = 1 dla niskich temperatur.
Warto podkreslic, ze zastosowana tutaj metoda nieperturbacyjnej RG jest catkowicie konsystent-
na z teorig Hertza-Millisa w kontekscie typowych metalicznych QCP (gdzie wspotczynnik ttumienia
Landaua pozostaje skoniczony w trakcie ptyniecia RG) i dla nich rozwigzania rownan plyniecia, kto-
re wykazuja niezmienniczo$¢ skalowania sg osiggane zarowno w przypadku z = 2, jakiz = 3
[16,(104,106,108]]. W dodatku nieperturbacyjna renormalizacja wykorzystujaca nawet bardzo proste
obciecia rownan plyniecia jest zdolna do uwzglednienia fluktuacji termicznych wychodzacych poza
przyblizenie gaussowskie i pozwala na fatwe uwzglednienie wymiaru anomalnego 7 dla pola porzad-
ku ¢. Jak analitycznie pokazano w pracy [[106] ptyniecie RG wykorzystujace schemat jednoczastko-

wy nieredukowalny precyzyjnie odtwarza wyniki teorii Hertza-Millisa po linearyzacji otrzymanych



7.4. TEORIA HERTZA-MILLISA W FAZIE NADCIEKLE] 125

_2 T T T T T T T
L=0 ——
L=0.1
L=1.0
L=5.0 [
-4t i
>
|_
> -6 | -
o C
— /)K/
x*
-8 + -

.20 -18 -16 -14 -12 -10 -8 -6
0
| 0g( k-1, )

Rys. 7.7: Temperatura krytyczna jako funkcja xy otrzymana dla kilku wartosci L. Dla wysokich tem-
peratur linia krytyczna T.(k() opisywana jest prawem potegowym z wykladnikiem przesuniecia
¥ = 1/2. Odchylenie od tego skalowania nastepuje ponizej progowej wartosci T, ktora zalezy od L.
Wartos¢ krytyczna kq jest niezalezna od T ponizej najnizej ulokowanego punktu dla kazdej z krzy-

wych i w zwigzku z tym In (Ko - K(()O)) dazy do —oo.

rownan wokot gaussowskiego punktu krytycznego dla T = 0.

W omawianym w tej dysertacji problemie spotykamy sie jednak z nieco inng sytuacja, gdyz
wspotczynnik tlumienia Landaua jest proporcjonalny do py i w zwiazku z tym skaluje sie do zera
w trakcie RG dla przemiany fazowej (jak wskazuje na to rownanie ptyniecia dla parametru porzadku
p). Wprowadza to silng zaleznos$¢ propagatoréw od pedéw i czestosci w trakcie renormalizacji, co
w rezultacie powoduje sprzezenie zwrotne z plynieciem efektywnego potencjatu. W efekcie otrzy-
many problem jest w nieunikniony sposob nieliniowy, co nie pozwala na zastosowanie zlinearyzo-
wanego podejscia typu Hertza-Millisa.

Zakonczymy ten rozdzial obserwacja, ze otrzymane odstepstwo od kwantowego skalowania kry-
tycznego danego wykladnikiem dynamicznym z = 1, ktére wskazuje na mozliwg przemiane I ro-
dzaju jest widoczne jedynie dla bardzo niskich temperatur. Podkreslamy takze, ze otrzymane tutaj
zablokowanie ptynigcia RG w kierunku punktu stalego Wilsona-Fishera zostalo zademonstrowane
w ramach bardzo prostej parametryzacji efektywnego dzialania I;[¢] oraz dla warunku poczatko-
wego bedacego teorig typu ¢*. W zwigzku z tym nie mozemy stwierdzi¢ ogolnosci opisanej w tym

paragrafie fenomenologii, gdyz jestesmy ograniczeni poprzez przyjete przez nas przyblizenia.
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Rozdzial 8

Podsumowanie

W niniejszej rozprawie rozwazaliémy wlasnosci kwantowych przemian fazowych w ultrazim-

nych spolaryzowanych mieszaninach gazoéw fermionowych o nieréwnych masach. Zbadali$my struk
ture analityczng efektywnego potencjatu, przy czym w sposob szczegdlny skupilismy sie na wia-
snos$ciach rozwiniecia Landaua w granicy T — 0%, a takze na mozliwosci otrzymania kwantowego
punktu krytycznego w tym kontekscie. PokazalisSmy, ze rozwiniecie Landaua jest dobrze zdefiniowa-
ne dla T = 0 za wyjatkiem jednowymiarowego podzbioru parametréw scharakteryzowanego row-
naniem h = {1, ktére odpowiada warunkowi pokrywania si¢ powierzchni Fermiego poszczegdlnych
sktadnikow tworzacych mieszanine. ZademonstrowaliSmy, ze na poziomie przyblizenia pola Sred-
niego wystepowanie kwantowego punktu krytycznego jest w ogélnosci wykluczone dla d = 2. Z ko-
lei w trzech wymiarach znalezliSmy oraz scharakteryzowalismy zbioér parametréw dla ktérego moz-
liwe jest otrzymanie kwantowego punktu krytycznego na diagramie fazowym. W tej sytuacji kwan-
towa przemiana fazowa zachodzi miedzy jednorodna faza nadciekls, a catkowicie spolaryzowanym
gazem. Co wigcej wystepowanie przemiany fazowej II rodzaju okazuje sie by¢ faworyzowane dla
duzych wartosci stosunku mas atoméw tworzacych mieszanine r = m_/m.. W rozwazaniach tych
pomineli$my mozliwos¢ wystepowania niejednorodnej fazy nadciektej typu FFLO. Wykorzystujac
metode nieperturbacyjnej grupy renormalizacji pokazaliémy takze, zZe renormalizacja efektywnego
potencjatu wskazuje, ze otrzymany punkt krytyczny w T = 0 jest stabilny ze wzgledu na fluktuacje
parametru porzadku (przy zalozeniu braku ttumienia Landaua modéw kolektywnych). Realizacja
takich kwantowych zjawisk krytycznych moze wkrotce stac sie mozliwa dzieki intensywnemu roz-
wojowi technik doswiadczalnych pozwalajgcych na otrzymanie gazéw Fermiego w jednorodnych
putapkach magnetooptycznych [941|149]].

Kolejnym aspektem prezentowanych badan dotyczacych kwantowych przemian fazowych w nie-
zrownowazonych mieszaninach Fermiego jest kwestia wystepowania zjawisk multikrytycznych.
Poprzez analize struktury efektywnego dzialania dla pola porzadku ¢ w fazie normalnej pokaza-
liSmy, ze mozna otrzymac punkt Lifszyca zlokalizowany pomiedzy faza normalna, faza typu FFLO
oraz jednorodng nadcieczg, ktéry moze zosta¢ dostrojony do zerowej temperatury poprzez mody-
fikacje dlugosci rozpraszania. Co wigcej obserwacja ta dotyczy mieszanin realizowanych ekspery-

mentalnie oraz fizycznie istotnego doboru parametréw ukladu. Otrzymany w ten sposoéb kwantowy
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punkt Lifszyca (a takze jego otoczenie) wykazywalby w trzech wymiarach do tej pory niezbadang
sytuacje, ktora potencjalnie zwigzana bylaby z niegaussowska przemiang w zerowej temperaturze.
Moze to mie¢ wazne konsekwencje dla badanego uktadu, ktére wymagaja dalszych badan (w szcze-
goélnosci wykorzystujacych teorie renormalizacji). Na przyktad ksztalt linii krytycznej T, moze w

. P . (0))?/(d+z=2
tym przypadku nie by¢ juz opisywany przy pomocy relacji T, ~ (Ko — K, )

), lecz by¢ w
zamian kontrolowany przez wyktadnik dlugosci korelacji v podobnie jak ma to miejsce dla dwu-
wymiarowego kwantowego modelu Isinga [192]. Warto zwréci¢ uwage, ze w przypadku punktu
Lifszyca mamy dwa rézne wyktadniki krytyczne (v, oraz v|) charakteryzujace zachowanie funkcji
korelacji [55].

Nastepnie zbadalismy wlasnosci kolektywnych wzbudzen fononowych (tzw. modéw Andersona-
Bogoliubowa) zwigzanych z famaniem ciagtej symetrii U(1). Wzbudzenia te s3 modami Goldstone’a
i pelnia istotng role w opisie przemian fazowych zachodzacych w badanym ukladzie. Szczegélng
uwage poswieciliSmy problemowi wystepowania tlumienia Landaua w fazie uporzadkowanej oraz
normalnej, ktore ma wpltyw na dynamiczne wlasnosci modéw Goldstone’a. Prowadzac szczegdtows
analize rozwiniecia gradientowego dla elementéw macierzowych propagatora fluktuacji parowania
F, (otrzymanego przy wykorzystaniu przyblizenia fazy losowej, co jest rownowazne z uwzglednie-
niem fluktuacji gaussowskich parametru porzadku) pokazaliSmy obecno$¢ wkladéw nielokalnych
W czasie ~ %, ktore nie byty dyskutowane w zadnych dotychczasowych badaniach. Czlony te
s3 odpowiedzialne za pojawianie si¢ zespolonego bieguna propagatora Fg, co oznacza wystepowa-
nie ttumienia modow kolektywnych. PokazaliSmy, ze tlumienie Landaua jest aktywowane poprzez
zwiekszenie niezrownowazenia mieszaniny nawet w granicy T — 0 (w przeciwienstwie do ukla-
dow zbilansowanych, tj. h = 0 oraz r = 1). Efekt ten jest zwigzany z wystepowaniem duzego nie-
dopasowania pomiedzy powierzchniami Fermiego sktadnikow mieszaniny. WyprowadziliSmy ana-
lityczne kryterium wystepowania ttumienia (patrz nieréwnosci (6.25)) i podaliSmy jego intuicyjng
interpretacje odwotujacg sie¢ do mechanizmu tlumienia Landaua w mieszaninach Fermiego. Wy-
chodzac poza rozwinigcie gradientowe pokazaliSmy, ze nasze przewidywania analityczne w pelni
pokrywaja si¢ z wspotczynnikami thumienia otrzymanymi numerycznie poprzez znalezienie zespo-
lonych pierwiastkow analitycznie przedtuzonego wyznacznika macierzy odwrotnego propagatora
fluktuacji parowania det F;l (q, z4) = 0. Analogiczna analiza w fazie normalnej wykazata brak wy-
stepowania tlumienia Landaua w przypadku niskoenergetycznych wzbudzen bozonowych.

Jak ustalilismy, jedna z charakterystycznych cech badanego uktadu jest wystepowanie tltumienia
Landaua, ktore pojawia sie wylacznie wewnatrz fazy uporzadkowanej. Wyraz opisujacy tlumienie
Landaua ma postaé¢ ~ polquf” (+/po to parametr porzadku) i pojawia si¢ jedynie w odwrotnym pro-
pagatorze podluznego modu o. Tlumienie w sposéb efektywny uwzglednia sprzeganie sie¢ modow
kolektywnych z fermionowymi wzbudzeniami kwaziczastkowymi wzdtuz powierzchni Fermiego.
Jego obecnos¢ modyfikuje dynamike uktadu i typowo prowadzi do zmiany wartosci dynamicznego
wykladnika krytycznego z. W celu ustalenia wptywu ttumienia Landaua przeprowadziliSmy obli-

czenia wykorzystujac nieperturbacyjne sformutowanie teorii renormalizacji. Nasze wyniki wska-

zuja, ze wystepowanie tlumienia zakloca ptyniecie grupy renormalizacji w kierunku rozwigzania
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wykazujacego niezmienniczo$¢ skalowania (zwigzang z wystepowaniem punktu stalego Wilsona-
Fishera). Fizycznie oznacza to mozliwe wyst¢powanie nieciagltej przemiany fazowej wywotanej po-
przez sprzeganie sie¢ bozonowych modéw kolektywnych (zwigzanych z fluktuacjami parametru po-
rzadku) z fermionowymi wzbudzeniami kwaziczastkowymi. Otrzymana niestabilnosé¢ pojawia sie
jedynie w bardzo niskich temperaturach. W wyzszych temperaturach odtwarzany jest rezim kry-
tycznego skalowania kwantowego, ktory jest scharakteryzowany przez wykladnik z = 1. Oznacza
to, zZe tlumienie Landaua nie ma wpltywu na fizyczne wtasciwosci ukladu. W realistycznej sytuacji
mozna si¢ spodziewac, ze dla T odpowiednio wysokich otrzymywane skalowanie jest analogiczne
jak w przypadku kwantowego modelu Isinga dla d = 3, lecz zachowanie to jest obcigte w niskich
temperaturach. Analogicznej niestabilno$ci mozna spodziewac si¢ takze w przypadku kwantowego
punktu Lifszyca, lecz problem ten wymaga bardziej wnikliwej analizy. Przy braku ttumienia Landaua
w uktadzie obserwuje sie ciggle przejscie miedzy rezimem kwantowym rzadzonym przez gaussow-
ski punkt staly (T = 0), a sektorem w ktérym niezmienniczo$¢ skalowania jest zwigzana z klasyczny
punktem stalym Wilsona-Fishera (T > 0). Przejscie miedzy tymi zachowaniami nastepuje dla skali
Scross ™~ —% InT. Otrzymywana w tym przypadku linia krytyczna T,(k¢) jest dana prawem pote-
gowym, ktore jest scharakteryzowane przez wykladnik przesuniecia = z/(d + z — 2) w zgodzie
z przewidywaniami teorii Hertza-Millisa.

Niedawno zrealizowane mieszaniny Fermiego w ktorych wystepuje duza roéznica mas skitad-
nikéw stanowia potencjalnych kandydatéw na eksperymentalne zbadanie problemu analizowane-
go w tej dysertacji. Jednym z obiecujacych kandydatéw jest mieszanina atoméw 141Dy oraz *°K
[185,(186]], ktora to ze wzgledu na wystepowanie szerokiego rezonansu Feshbacha [38] moze by¢
manipulowana w bardziej elastyczny sposéb w poréwnaniu do wczeéniej badanej mieszaniny °Li
oraz ‘K [[103,/225,1227,239]).

Zaprezentowana tutaj analiza zakladala wystepowanie w pelni rozwinietego uporzadkowania
dalekozasiegowego. Bardzo interesujgcym kierunkiem dalszych badan moze by¢ préba odpowie-
dzi na pytanie w jaki sposob zmieni si¢ zachowanie uktadu przy uwzglednieniu efektow fluktuacji
w przypadku niskowymiarowym. W tego typu uktadach dalekozasiegowe uporzadkowanie zostaje
zdegradowane do porzadku algebraicznego i otrzymuje si¢ faze Kosterlitza-Thoulessa. Innym inte-
resujacym zagadnieniem jest kwestia obserwowanego widma wzbudzen dla przypadku w ktérym
uwzglednione sa takze fluktuacje parametru porzadku typu FFLO, ktoére charakteryzuja sie nieze-
rowym calkowitym pedem srodka masy Q dla par Coopera. Mimo iz badania teoretyczne sugeruja
niestabilnos¢ nadcieczy typu FFLO w skonczonych temperaturach to nadal prawdopodobnie sg one
obecne w stanie podstawowym uktadu [[105}[1781/206|/245]]. Kolejnym interesujacym problemem jest
zagadnienie dotyczace wplywu niezrownowazenia mieszaniny na ttumienie modu amplitudowego
(Higgsa), ktory zostal niedawno zaobserwowany eksperymentalnie [[18,/91,/125,(134,/195].

Problem dotyczacy kwantowych punktow krytycznych w uktadach nadciekltych fermionéw sta-
nowi nadal w duzej mierze nie zglebiong dziedzine badan. W tego typu uktadach nie mozna pomi-
nac sprzegania si¢ fermionowych oraz bozonowych stopni swobody. Dotyczy to zaréwno jednorod-

nych nadcieczy i odpowiadajacej im kwantowej krytycznosci (ktora byta dyskutowana w tej roz-
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prawie), ale takze hipotetycznych kwantowych punktow krytycznych wystepujacych w niejedno-
rodnych stanach typu FFLO [170}/172]]. Pelne zrozumienie takich uktadéw stanowi interesujace wy-
zwanie w ktorym wazne jest wzajemne oddzialywanie fluktuacji fermionowych oraz bozonowych,
a takze istotne jest uwzglednienie aspektow topologicznych w przypadku faz Kosterlitza-Thoulessa
w dwoch wymiarach. W szczegdlnosci zbadanie selfenergii fermionowych moze prowadzi¢ do zi-
dentyfikowania obszaru na diagramie fazowym w poblizu kwantowego punktu krytycznego w kto-
rym uklad wykazuje cechy cieczy nielandauowskiej. Przykladowy mechanizm prowadzacy do tego
typu zachowania w przypadku niezréwnowazonych mieszanin Fermiego w d = 2 zostal opisany

w pracy [219].



Dodatek A

Sumy Matsubary

A.1 Suma typu S = fk % 3. In (ikn — EZ)

Policzymy fermionowg sume S =
f % (ik —E")e"‘k’"0+ rozwazaj te- )
« 7 2n (ikn — Ef jac naste
pujaca catke po konturze przedstawionym

narys.[A.1}
d ¥
Ik = % _Z In (Z - E,f)f(z)ezo s (Al)
c 2

Tl

przy czym f(z) = (exp(Bz) + 1)7! to roz-
klad Fermiego-Diraca. Funkcja In(z — E7)

posiada ciecie (ang. brunch cut) wzdtuz osi
rzeczywistej dla Rez > E?, co sprawia, ze
konieczne jest wykorzystanie konturu C
przedstawionego na rys. Przekrocze-

nie cigcia powoduje przejscie na inng ga-

taz badanej funkcji. Czynnik uzbiezniajacy
e's0" sprawia, ze calki po duzym okregu Rys. A.1: Kontur catkowania.
o promieniu R — oo i po maltym poétokregu
o promieniu § — 0 znikajg, co mozna tatwo oszacowa¢ podstawiajac z = Re’? dla duzego okregu
oraz odpowiednio z = §e'? dla matego pétokregu.

Bieguny f(z) znajdujace si¢ wewnatrz konturu C sg dane przez z, = ik,, gdzie k, = %’(n +
%) sa fermionowymi czesto$ciami Matsubary. Oznacza to, ze residua funkcji podcatkowej g(z) =
In(z — E}) f (z) maja postac Res,-,,g(z) = —ﬁ In(ik, — EJ). Korzystajac z twierdzenia Cauchy’ego

o residuach otrzymujemy;, ze

Iy = 2mi Z Res,—;,9(z) = —% Z In(ik, — EY), (A.2)

czyli S = —fklk.
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Z drugiej strony mozemy wprost wykonac catke Iy korzystajac z tego, ze jedynie catkowanie po
dwoch polprostych od E] do oo powyzej i ponizej osi rzeczywistej bedzie prowadzilo do niezerowego

wkladu. Obserwacja ta prowadzi do zaleznosci

Ik:fwﬁln(e+10+—E”)f(e)+fEEEln(e—zOJr—E(Jr))f(e)

o 27T o 2Tl

(A.3)
de + o
:f f(e)[ln e+10 —E)—cc]
o 271
Korzystajac z tozsamosci f(e) = —%d% In |1 + exp( — ﬂe)| i wykonujac catkowanie przez czesci
dostajemy
1 (% de d
_ - el —Pe| 2 S A
Ik_ﬁ . Zml 1+e de[ln(e+10 Ek) c.c.]
d
T e '1 +ePe [ - 2m5(e - E;g)] (A4)
ﬂ EU 27

1 o
=——1In (1 + e PE ),
p

[ obe) w

A.2 Suma typuS = % Yn(ik, — E7)™!

czyli ostatecznie

Imz4

Wykonamy teraz sume typu S =
% 3, (iky, —E,‘c’)_lei‘“"°+, ktora zamienimy na
catke po konturze o postaci

I = 560 B J& o

Zm'z—El((’

przy czym jako kontur calkowania wy-

bieramy okrag o promieniu R jak na rys.
Catka po okregu znika eksponencjal-
nie dzieki czynnikowi €2 f(z).

Rozktad Fermiego-Diraca posiada bie-

guny w punktach dla ktérych ef? = —1,

ktore prowadzi do z, = ik,, gdzie k, =

2/;,[ (n + 1/2) to fermionowe czestosci Mat-

f(2) Rys. A.2: Kontur catkowania.
z—E7

ma w tych punktach residua wynoszace
RCSZ Zn (Z) 2m,l3z E"

cja h(z) posiada biegun jeszcze w punkcie 2’ = E7, ktéremu odpowiada residuum Res,--h(z) =

subary. Rozwazana funkcja h(z) =

Poza tym funk-
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f(2’)/2ri. Oznacza to, ze korzystajac z twierdzenia o residuach dostajemy, ze

I = 2mi ZResz 2,h(z) + Res,—h(z)| =

Zn

o D - A7)
czyliS = f (EI‘;') Warto tu podkresli¢, ze w przypadku, gdy sume wykonujemy dla funkcji (ik,— E]f: )1
w ktorej ik, zostato zastapione przez ik, +ig, wynik pozostaje ten sam. Dzieje sie tak, gdyz e/4nf = 1,
Czyli ei(qm+kn)ﬂ — eiqmﬁeiknﬁ — _1



134 DODATEK A. SUMY MATSUBARY




Dodatek B
Przedluzenie analityczne M;;(q, iq)

Przedtuzenie analityczne elementéw macierzowych M;;(q, iqy) odwrotnego propagatora fluktu-

acji parowania F;l z gornej polptaszczyzny zespolonej do dolnej ma postaé

Mij(q, © = i€) = Myj(q, @ — i€) + 2miAy(q o + ie), (B.1)

gdzie A;j(q, w + i€) = —%ImMij(q, @ + i€) oraz € > 0. Mozemy ten wynik uzasadni¢ odwotlujac sie
do analizy zaprezentowanej w pracy [144]]. W celu zilustrowania tej procedury dla prostoty przyj-
miemy, ze m, = m_.

Dla niskoenergetycznych wzbudzen kolektywnych wyrazami w M;;(q, iqy) odpowiedzialnymi
za pojawianie sie zespolonego bieguna propagatora fluktuacji parowania sa te w ktorych wystepuje
czynnik [ f(E; +q ) = f (E; a2
Jednakowe dla wszystkich elementéw macierzowych (patrz podrozdziat 6.2.1). Wklady dla retardo-

)]. Gdy |q| jest male, wtedy wktady pochodzace od tych czlonoéw sa

wanych M (t] iqo — w + i€) maja postac

5M(q,a)+ie):—2f . i( Vef(EDa V(B q ) 52
k

w+ie+2q-w wtie—2q-w

gdzie w = VyEj. Oznaczenie SM nalezy rozumie¢ jako wklad do M;j, ktory jest odpowiedzialny
za powstawanie zespolonego bieguna propagatora fluktuacji parowania. W powyzszym réwnaniu

mozemy wykonac catkowanie po katach co prowadzi do wyrazenia

M(q,w + ie) = f on )zukvk E+) + f (Ey) ]

W+ 2qw + i€
2+ In .
2qw W —2qw + i€

Przedtuzenie analityczne funkcji M do dolnej potplaszczyzny zespolonej, ktore bedziemy oznaczaé

(B.3)

jako 8M, mozemy wykonaé poprzez wykorzystanie wlasnosci analitycznych funkcji In z, ktora po-
siada cigcie wzdluz osi rzeczywistej dla Rez > 0.
Logarytm wystepujacy w awansowanym elemencie macierzowym dM(q, w —i€) nalezy obliczy¢

na innej powierzchni Riemanna, co prowadzi do
In(w — ie — 2qw) = In|w — ie — 2qw| + i [arg(w — i€ — 2qw) + 270(1 — x)], (B.4)
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dlax = quW > 0, lub
In(w — ie — 2qw) = In|w — ie — 2qw| + i [arg(w — i€ — 2qw) + 270(1 + x)], (B.5)

dlax = 2qu < 0. Funkcja schodkowa w powyzszych wyrazeniach sprawdza czy przy przechodzeniu
na dolng polplaszczyzne zespolona przekraczamy ciecie funkcji In z, tj. czy Rez > 0, co skutkuje
zmiang wartosci logarytmu o 2i. Prosta algebra prowadzi do wniosku, ze powyzsza procedura jest
rownowazna zdefiniowaniu przedtuzenia analitycznego retardowanego elementu macierzowego na

dolna pélplaszczyzne zespolona SM(q, w — i€) jako
SM(q, w — i€) = SM(q, w — i€) — 2iImSM(q, w + i€), (B.6)

przy czym czlon 2ilmdM(q, w + ie) uwzglednia skok wartosci funkcji przy przechodzeniu na inng
plaszczyzne Riemanna. Rownanie prowadzi do relacji (B.1), ktérg wykorzystaliémy do nume-
rycznego wyznaczenia zespolonego bieguna propagatora F.

Otrzymana wlasnos¢ jest spelniona takze dla funkcji Greena, co wigze si¢ z wystepowaniem
logarytmicznej osobliwosci wzdtuz osi rzeczywistej [157]. W tym przypadku korzystajac z tego, ze
Gret = G, [1] otrzymujemy, ze przedtuzenie analityczne retardowanej funkcji Greena na dolna

polptaszczyzne Gret Wwynosi

éret(c‘)) = Gadv(a)) + [G:et(w) - Gret(c‘))] = Gadv(w) + 27TiA(a)), (B-7)
gdzie A(w) = —%ImGret(w) jest funkcja spektralna, przy czym [G),,(®) — Grer(0)] = —2iImG,¢; ()
jest skokiem funkcji Gy,; przy przechodzeniu na dolng poétptaszczyzne zespolona i jest on niezerowy

tylko, gdy przechodzimy przez ciecie tej funkcji [[157]].



Dodatek C
Wyprowadzenie {"°

Przedstawimy tutaj wyprowadzenie wkiadu kwantowego 1"’ do réwnania plyniecia &;. Pozo-
stale wklady wyprowadza si¢ analogicznie. Wykonanie catek wystepujacych w tym przypadku jest
najbardziej skomplikowane z tego powodu decydujemy si¢ jedynie na analize tego wyrazu.

Wyjsciowe réwnanie plyniecia ma postac

o1 50, ~2 T ~2
po=7 fq [3R7y; % (po) + R™y;%(po) | (C.1)
gdzie pomijamy indeks k dla ptynacych stalych py oraz A. Pierwszy wklad w powyzszej calce jest

~17.d-2
k

przedmiotem naszego zainteresowania. Przeskalowujemy py = Z K, co prowadzi do relacji

k = (2 — d)x + Z;k*¢p,. Dzieki temu mozemy napisaé, ze

17 =37,k Y f Ry, % (po). (C.2)

q0>0

Przeskalowujac yy.o = Zsk*y5.5, Wykorzystujac funkcje obciecia Litima R° = X G(X ), gdzie X, =

Zs(k* — q%)? - Z2q% — Lpo |q°| , a takze zamieniajac zmienne catkowania na y = k2 otrzymujemy, ze

u,o 3A,T 0 kd5 2 R° -2
o2 L5 [Py L 0l e )
222, & Z, 0" 7,2, g T 7 T Zok
L N (C3)
Lk Z0 Lka-5
w2zt = Gk @ m 2y 0] g (1= y - Ze o K laol),
Zy Y Zo Kk ZeZp \Jy)’

gdzie Z =772 aAy =
katach.

d
(2 ) =— jest czynnikiem pochodzacym z miary calki oraz catkowania po
Catkowanie w powyzszym wyrazeniu prowadzi do niezerowego wyniku pod warunkiem, ze

argument funkcji schodkowej jest dodatni, co mozna zapisa¢ w postaci nierownosci

Lkd 5
(1——@)x ———Kqp <0,

Zs k? ZsZy
N—————— ‘,—/

a b>0

(C.4)

gdzie x = \/y € [0, oo, poza tym widzimy, Ze stala b jest dodatnia w naszym przypadku. Mozemy

zbadaé w jakich warunkach speliona jest powyzsza nieréwnoéé analizujac funkcje f(x) = x* —

137



138 DODATEK C. WYPROWADZENIE 9V

ax + b. Widzimy, ze rozwazana funkcja jest dodatnia na krancach swej dziedziny, tj. f(0) > 0 oraz
f(c0) > 0. Funkcja ta ma minimum w Xx;;, = \/g co oznacza, ze catka w rownaniu 1i posiada
niezerowa warto$¢ na pewnym przedziale [y, y™], gdy f(xmin) < 0, co prowadzi do warunku, ze

a > 3(2)73/2b?/3, co mozna zapisa¢ jako

0

qOZ =

172 2/3
+3(2)7%3 (T’de_sxkqo) -1<0. (C.5)

Nieréwnosc¢ ta pozwala znalez¢ wartosci qo dla ktorych funkcja schodkowa w réwnaniu (C.3)) jest

niezerowa i najwiekszg warto$¢ ja spelniajaca oznaczamy jako gg.

J1

3

Rys. C.1: Schematyczna ilustracja typowego ksztattu funkeji f(x) = x° — ax + b. Na wykresie zazna-

czono granice catkowania, ktére prowadza do niezerowej wartosci calki wystepujacej w I°

Granice catkowania dla ktorych argument funkcji schodkowej jest niezerowy wyznaczamy jako

dodatnie pierwiaski rownania (patrz rys.|C.1)

Zoqp\ Lk
3 o 10
—-[1-==|x+ =0. C.6
x ( ) x 77 Kqo (C.6)

Oba omawiane warunki zostaly podane w glownej czesci tekstu (patrz rownania (7.38) oraz (7.39)).
Co wiecej mozemy zaobserwowac, ze gdy znajdujemy sie w przedziale zadanym powyzszymi wa-
runkami takze funkcja schodkowa w propagatorze y; i (po) jest rowna jednosci, co prowadzi do

wyrazenia

= dyy : (C.7)
K
2225 S Jyp [1 + 2]

a5 M 2 _ Lk 1q0l
quo _ 3AdT ZO: fyo 4jzs 22k — (k + (d — 2)K) N

co po wykonaniu catkowania po y prowadzi do rownania (7.36). W analogiczny sposéb mozemy

wykona¢ catkowanie w pozostalych cztonach zar6wno w rownaniu « oraz u.
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