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Abstract

Institute of Theoretical Physics, Faculty of Physics

Doctor of Philosophy

Nonlinear coupled systems:

effects of gain, loss and nonlocality

by Aleksandr Ramaniuk

Nonlinear phenomena exist in almost every type of physical system. Arguably, the

most prevalent type of interaction is third-order nonlinearity, which is usually de-

scribed by Gross-Pitaevskii Equations or Nonlinear Schrodinger Equations (NLSE).

In certain cases, a nonlinear medium allows for the coexistence of multiple components

interacting with each other. In this case, Coupled Nonlinear Schrodinger Equations

are used to describe the complete physical system. Coupled NLSE is used in multiple

fields of study, including optical waveguides, liquid crystals, cold atoms, and polariton

condensates. The main goal of this thesis is to explore the influence of nonlocality,

saturable gain, and other effects on coupled nonlinear systems. The additional goal is

to present different analytical and numerical methods for the exploration of nonlinear

effects in a concise manner.

The research presented in my thesis is divided into two parts. In the first part,

we focus on two linearly coupled rings with saturable gain. This system is based

on rings traps for polariton condensates. We discovered a rich family of solutions,

exhibiting several interesting phenomena, including modulational instability, inho-

mogeneous stable states, chaotic behavior, and spontaneous symmetry breaking. We

also observed spontaneous vortex generation in the system with localized coupling

between rings. These processes are explained by observing current flow both inside

and between rings.

In the second part, we explore beam propagation in a system with nonlocal

nonlinear coupling. This system models two-color vector solitons in nematic liquid

crystals. We focused our research on supermodes - multi-peak fundamental solitons,

emerging due to counteraction of focusing and defocusing nonlinearity. We observed

spontaneous trajectory bending due to the breaking of action-reaction symmetry.

We’ve shown that the dynamics of trajectory bending can be predicted by looking at

the relative shift between two components of vector soliton.
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Chapter 1

Introduction

Our world is nonlinear. Every time we look at clay, hear thunderstorms or feel

air drag during a car ride, we observe something more than the simple sum of its

parts. Every time we explore anything deep enough, we find borders of our linear

intuition. Classical mechanics is a special case of deeply nonlinear relativity theory.

The linearity of Maxwell equations holds its ground until we switch from abstract

charges and currents to atoms and molecules. Even fundamentally linear quantum

mechanics is filled with nonlinear interactions. A simple, linear view of the universe

is nothing more than an approximation of the reality [1].

The difference between linear and nonlinear worlds is defined by the superpo-

sition principle. The superposition principle states that the response of the complex

input can be represented as a sum of the simpler inputs.

F(∑
m

amXm) = ∑
m

amF(Xm) (1.1)

All linear systems follow the superposition principle. Every state of linear sys-

tems can be represented as a sum of basic solutions – modes. However, nonlinear

states can’t be exactly represented through the superposition of modes.

1.1 Brief history of nonlinear optics

Scientists have tried to describe the physical world in a purely linear manner

since the very beginning of classical mechanics. Simple nonlinear systems, such as

oscillating gravity pendulum or spring at the deformation limit, were known to the

physicists, but they were approximated by the appropriately linear models. Develop-

ment of the nonlinear physics started only in the 19th century. In 1834, John Scott

Russell discovered ”waves of translation” – the first experimentally observed example

of the soliton [2]. Research of the liquid and gas thermodynamics led to the devel-

opment of the kinetic theory of gases and the creation of the Boltzmann equation

for molecular dynamics [3]. Works of Poincare on the three-body problem of celes-

tial mechanics became foundational to the dynamical systems theory [4]. In 1895,
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Figure 1.1: Photographies of water soliton waves at Nuevo Vallarta,
Mexico. Photographs made by M.J. Ablowitz. After Ref. [11].

Diederik Korteweg and Gustav de Vries created the first explicitly nonlinear model

that could explain solitary water waves – this model is known as KdV equation [5].

Nonlinear effects in electrodynamics were explored both in the fundamental theory of

electron interactions, leading to the creation of the Born-Infeld model [6], and in the

experimental research on the electrical circuits [7]. Even the classical mechanics itself

was expanded to the nonlinear model of general relativity [8]. Nowadays, nonlinear

processes are explored in every field of modern physics [9, 10].

This thesis focuses on the particular field of nonlinear sciences – nonlinear op-

tics [12, 13]. Nonlinear optics examine the light propagation inside the nonlinear

media. First nonlinear optical effects, such as two-photon absorption [14] and non-

linear quantum electrodynamics limit [15] were discussed in the 1930s, and the first

nonlinear effects were experimentally observed only a decade later [16]. Nevertheless,

nonlinear optics were propelled into modern physics with the invention of the laser

in 1960 [17]. In the next year, both second harmonic generation [18] and two-photon

absorption [19] were experimentally observed. The first theoretical model of nonlinear

optics appeared in 1965 [20]. In 1973, Akira Hasegawa suggested the existence of the

temporal solitons in the optical fibers [21]. Since then, nonlinear optics effects are

observed in crystals, glasses, liquids, and gases [22]. One sub-field of nonlinear optics

that deserves particular mention is nonlinear atom optics [23]. Particle-wave duality

of the atoms was discovered theoretically by de Broglie [24] and shown experimentally

by Stern [25]. Since then, physicists were trying to replicate optical phenomena in

atomic matter. Observation of the four-wave mixing in atomic waves was the key ex-

periment for the nonlinear atomic physics [26]. My thesis is based on the publications

relevant to the fields of both classical and atomic nonlinear optics.
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Figure 1.2: First experimental observation of the nonlinear optical
effect – second harmonic generation. Actual nonlinear signal was in-
famously mistaken for noise by the publisher and removed. After Ref.

[18].

1.2 Nonlinear optical processes

Nonlinear effects in optics are usually established by expanding electric polar-

ization into the power series of the electric field[27].

P = χ(1) · E + χ(1) : E2 + χ(3)...E3 + . . . (1.2)

The order of nonlinearity is defined by the order of a power series of inter-

acting fields. By this definition, first-order interaction is linear, KdV is an example

of a second-order (quadratic) nonlinear system, and Nonlinear Schrödinger Equa-

tion (NLSE) is a third-order (cubic) nonlinear equation. Some nonlinear interactions,

such as presented in Sine-Gordon equation [28] and Logarithmic Schrödinger equation

[29], cannot be described by converging power series. In certain fields of mathemat-

ics, order of equation is defined through highest order of derivative [30] – NLSE is

second-order in terms of derivative and third-order in terms of nonlinearity. In the

following thesis, I will reference NLSE as a third-order nonlinear equation.

Third-order effects are particularly significant in nonlinear physics. In general,

higher orders of nonlinearity require a bigger intensity of interacting fields, thus they

are harder to induce [31]. Even then, third-order nonlinear effects appear alongside

high-order terms [32, 33]. Second-order nonlinear effects, while having even smaller

intensity requirements than third-order processes, are topologically limited. For ex-

ample, second-order effects in nonlinear optics demand a lack of central symmetry in

propagation media [22] – a condition that is not required by third-order processes.

Furthermore, the cubic term describes phase-insensitive self-interaction. To conclude,

third-order nonlinearity is the smallest nonlinear term applicable to every kind of op-

tical media.

In general, both linear and nonlinear susceptibility tensors are anisotropic –

dependent on the spatial orientation of the electric fields. Linear susceptibility is

presented as a 3x3 matrix, while third-order nonlinearity tensor has 34 = 81 terms.
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In practice, many nonlinear terms can be eliminated due to the symmetry consider-

ations [34]. Anisotropy of the nonlinear refractive index is especially important in

the crystalline structures and non-uniform media [35]. In my thesis, I assume the use

of specific optical system geometries and precise optical field polarizations, stated in

according chapters.

Nonlinear optical interactions usually require coherent light. The light source

is considered coherent if it exhibits interference patterns in interaction with itself or

other coherent sources, usually by maintaining identical frequency, waveform, and

polarization. Incoherent nonlinear interactions are observed in some optical systems

[36, 37], including liquid crystals [38]. In my thesis, I assume that all light sources

are coherent. Instead, I use the word ”coherent” as a substitute for ”phase-sensitive”.

For example, the Kerr nonlinearity term |E|2 is incoherent in the sense that it does

not contain information about the phase of the electric field.

Nonlinear interactions may influence the amount of light or matter in the optical

system. Optical interactions that change the number of particles are known as non-

conservative. Examples of nonlinear non-conservative interactions include stimulated

emission and two-photon absorption [22]. The process of increasing optical fields is

called gain, while the decrease of the optical field is called loss. Exploration of gain

and loss influence on the nonlinear system dynamics is one of the main goals of my

thesis.

In most cases, nonlinear interactions are influenced only by the optical field in

the exact place and time. These types of interactions are known as local. Nonlinear

interactions can be temporally or spatially nonlocal. Temporal nonlocality means

that the nonlinear response is not instantaneous and is influenced by the optical field

from earlier moments. These interactions are often connected with optical scattering

[39, 40]. Spatial nonlocality means that nonlinear interaction influences the whole

area around the interaction region. This process is observed in the liquid crystals

and photorefractive media [41]. Spatially nonlocal nonlinearities are the second main

topic of my thesis.

1.3 Nonlinear Schrödinger Equation

My thesis is focused on the exploration of the Nonlinear Schrödinger Equa-

tion (NLSE). I use the abbreviation ”NLSE” to describe families of both Nonlinear

Schrödinger equations and closely related Gross-Pitaevskii equations. NLSE takes

the following basic form

ik∂tψ = −d∂xxψ − Γ|ψ|2ψ (1.3)
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In the equation above we used only one spatial dimension. However, in general,

evolution depends on all three dimensions, and it is crucial to identify how many

dimensions need to be included. Often dimensionality is presented as (1 + n)D, where

n is the amount of considered spatial dimensions, plus time as an additional dimension.

Certain equations have strictly defined dimensionalities, such as Korteveg-de Vries

(KdV) or Navier-Stokes equations. Other equations, such as NLSE or Klein-Gordon

equations, can be applied to different numbers of dimensions. The dimensionality

of the physical system influences its properties – solitons found in NLSE are stable

in (1 + 1)D, unstable in (1 + 2)D, and non-existent for (1 + 3)D. I will focus on

(1 + 1)D-dimensional systems in the following thesis.

NLSE-like equations are used in many fields of physical sciences [42, 43], such as

atomic physics [44], superconductivity physics [45], meteorology [46], nonlinear optics

[47] and hydrodynamics [48]. I would like to focus on two particular applications:

Bose-Einstein Condensates (BEC) and high-intensity optics.

Bose-Einstein Condensate is an ultra-cold low-density state of matter, where

multiple particles remain in the same quantum state, thus exhibiting quantum prop-

erties at macroscopic level [44, 49]. BEC was initially observed in cold atoms [50].

Nowadays media capable of supporting BEC include excitons – electron-hole pairs

in semiconductors [51]; exciton-polaritons – quasiparticles, created by strong cou-

pling between confined photons and excitons [52]; and magnons – quasiparticles of

collective electron spin excitations in magnetic crystals [53]. In condensate physics,

Gross-Pitaevskii equations model single boson wavefunction in pseudopotential under

Hartree-Fock approximation [54].

iℏ∂tψ =
−ℏ2

2m
∂2

r⃗ ψ + Vext +
N

∑
j=2

4πℏ2as

m
δ
(⃗
r − r⃗j

)
(1.4)

In this case, nonlinearity is introduced through many-body boson-boson inter-

actions with negligible scattering lengths. To be more exact, the Gross-Pitaevskii

equation describes a ground state of the single-particle wavefunction in variational

approximation and its temporal dynamics.

NLSE is used in optics to describe light propagation in media with Kerr nonlin-

earity [22, 47]. The propagation of optical beams can be described by using paraxial

approximation. Following equation models the spatial distribution of the monochro-

matic light beam.

2in0k0∂zE0 = −∂xxE0 −
(
n2 − n2

0
)

k2
0E0 (1.5)

Here, nonlinearity is contained in intensity-dependent refractive index n =
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Figure 1.3: Formation of optical soliton beam (top) in the photore-
fractive medium. After Ref. [55].

n0 + n2|E|2. A similar equation can be used to depict the transverse profile evo-

lution of the optical pulse in time. Furthermore, a similar equation is used to model

pulse propagation under a slowly varying envelope approximation. Instead of observ-

ing beam spatial distribution, we describe dependence in temporal pulse envelope

structure from propagation distance, influenced by dispersion and Kerr nonlinearity.

i∂z A =
β

2
∂tt A + γ|A|2 (1.6)

Equations presented so far describe the evolution of the single element – beam,

pulse, or condensate. In practice, we often observe multiple components interacting

with each other. This interaction between components of the physical system is

referred to as coupling, and solitons created by multiple interacting elements are called

vector solitons [56]. Examples of vector solitons include condensates with two types

of intrinsic spin structure [57], birefringent optical fibers with two polarization modes

[58], and multicolor optical beams [59]. In my thesis, I focus on the two-component

spatial vector solitons.

Basic NLSE can be easily extended to represent different physical processes.

These modifications include high harmonic generation [60, 61], stimulated scatter-

ing processes [39, 40], self-steepening [62], four-wave mixing [63] and supercontinuum

generation [64]. The introduction of several nonlinear effects simultaneously leads

to systems with competing nonlinearities, which in turn provide additional points of

equilibrium for stable soliton propagation. Examples of such models include compet-

ing local-nonlocal nonlinearities [65], quadratic-cubic [66] and cubic-quintic competing
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Figure 1.4: Simulation of bright soliton collision for in-phase solitons
(left) and out-of-phase solitons (right). After Ref. [82].

nonlinearities [67, 68]. Other processes that stabilize solitons by preventing wavefunc-

tion over-concentration are nonlocality and saturable gain. In some media, such as

liquid crystals and photorefractive materials, nonlinear interactions are nonlocal –

function in each point is influenced not just by its value in this point, but also by its

close vicinity [41, 69]. Other systems, such as polariton condensates and microres-

onators, introduce gain and losses – such systems are called non-conservative [70, 71].

Nonlocality and saturable gain are two specific effects that are analyzed in my thesis.

1.4 Solitons and nonlinear dynamics

Solitons are the most famous phenomena in nonlinear physics. Soliton can be

defined as localized, shape-preserving excitation of nonlinear system. Since their dis-

covery in water waves [72], solitons were observed in fluid dynamics [73], electronics

[74], optics [75, 76], nuclear physics [77], quantum chemistry [78], and even microbi-

ology [79] and neuroscience [80].

Soliton is an ambiguous term, its definition depends on the conventions of the

chosen field of study. In the mathematical sense, a soliton is localized and stable

excitation in the field, described by a partial differential equation, that maintains its

shape and energy after arbitrary collisions with other solitons [81]. In experimental

physics, such solitons are almost impossible to create. In practice, the definition of the

soliton in the nonlinear optics is expanded to include all shape-preserving nonlinear

excitations of the optical field, independent of their stability. I will use this definition

of soliton – localized shape-preserving field excitation – in my thesis.

Under this definition of soliton, soliton stability becomes important for predict-

ing its dynamics. For example, two-dimensional bright solitons in NLSE are unstable

due to the catastrophic collapse – a small increase of the beam energy density fo-

cuses beam profile, further increasing energy density in the positive feedback loop

[56]. Modulational instability – a process of nonlinear amplification of certain pe-

riodic sidebands [83] – is the type of instability inherent to the nonlinear systems.

The modulational instability process typically leads to the fission of the background
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excitation into the trail of several pulses. Modulational instability plays role in the

creation of rogue surface waves [84] and the supercontinuum generation in fiber optics

[85].

Certain solitons are partially stable to the external perturbations. However, as

soliton is created under a certain combination of parameters, even small additional

changes may lead to a different state. Large, qualitative change in system behavior,

caused by a small change of the initial parameters, is known as bifurcation [86].

Phase transitions are the most popular examples of bifurcations [87]. Other examples

of bifurcations are observed in the solid-state physics [88, 89], laser physics [90] and

even cardiology [91].

Not every soliton state remains stationary. Conservative physical systems often

have some form of oscillating solutions. However, only nonlinear systems feature sta-

ble permanently oscillating solutions, also known as limit cycle solutions. Limit cycle

oscillations are not simply periodic – they are self-sustaining. In the case of stable

limit cycle solutions, nonlinear systems naturally settle into an oscillating state. Limit

cycle oscillations are present in aerodynamics [92], electronics [93], atomic physics [94],

chemistry [95] and many instances of mathematical biology [96, 97, 98].

In certain cases, nonlinear system does not converge to either constant state

or stable oscillation. Instead, we observe deterministic chaos – seemingly random

irregular evolution, extremely sensitive to initial parameters [99]. Huge branch of

mathematics, called chaos theory [100], explores chaos and its applications in, among

other fields, meteorology [101], nanotechnology [102], astronomy [103], population

dynamics [104], epidemiology [105], and even politics [106].

Multitude of solitons’ variations was discovered over the decades, including

breather solitons [107], multistable solitons [108, 109], Bragg solitons [110, 111], light

bullets [112], vortex solitons [113, 114, 115] – and more general family of structured

solitons [116, 117] – , parametric solitons [118], discrete solitons [119], incoherent or

partially coherent solitons , dissipative solitons [120], self-written waveguide solitons

[121], nonlocal solitons [122, 123] and more. Shape-preserving properties make soli-

tons perfect means for information and matter transfer [124, 125] and even warp drive

technology [126]. This thesis examines spatial solitons and accompanying nonlinear

phenomena in physical systems modelled by Nonlinear Schrödinger Equations.
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1.5 Thesis outline

Exploration of two-component spatial vector solitons in nonlocal and noncon-

servative media is the main purpose of my doctoral thesis. My research is divided

into two categories: vector solitons in linearly coupled rings with saturable gain, based

on exciton-polariton condensate systems, and multihump solitons in nonlocal media,

based on nematic liquid crystals. In both cases, unusual dynamics, such as sponta-

neous vortex creation and trajectory bending, appear due to a lack of momentum

conservation.

I present the fundamentals of vector soliton theory in Chapter 2. In it, I discuss

types of scalar and vector solitons, soliton stability analysis, symmetry breaking, and

integrals of motion. Conservation laws are expanded upon in Appendix 1.

Chapter 3 introduces numerical methods used in modeling coupled nonlinear

systems. This chapter is separated into two parts – algorithms for finding solitons,

and methods for exploring propagation in such systems. Several methods, such as

finite difference, split-step, and imaginary time, are presented. The algorithm for one

of the methods – Newton Conjugate Gradient – is tailored for coupled NLSE and

derived in Appendix 2.

Chapter 4 shows an example of vector solitons in a conservative medium with lo-

cal nonlinearity. Our model of two-channel coupled planar waveguides with nonlinear

inclusions shows vector solitons with multiple types of symmetry breaking.

Chapter 5 explores our research on the coupled rings with saturated gain. It

can be separated into three parts – model introduction, the case of homogeneous cou-

pling, and the case of localized coupling. Homogeneously coupled rings present a rich

variety of evolution scenarios, including limit cycle oscillations and chaotic behavior.

Localized coupling allows for asymmetric oscillations resulting in spontaneous vortex

generation.

Chapter 6 presents the results of exploring vector solitons in nematic liquid

crystals. Instead of using a full system of equations for propagation, reorientation,

and temperature, it is possible to apply a simplified model with nonlocal nonlinear

effects. The family of multi-peak fundamental solitons is displayed. Bending of soliton

trajectory emerges as a new type of instability, impossible in scalar soliton systems.
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Chapter 2

Theory of solitons in coupled

nonlinear systems

Solitary waves are localized excitations that preserve their shape during both

free propagation and collisions with other solitons. Solitons are formed due to the

mutual compensation of dispersive and nonlinear interactions. Dispersion tends to

flatten any excitations. Nonlinear effect strength depends on local intensity, thus it

amplifies present excitations.

Before further discussion, it is useful to introduce dimensionless form of NLSE,

presented in equation (1.3), by rescaling coordinates as Z =
Γ
k

z, X =

√
Γ
2d

x.

i∂Zψ +
1
2

∂XXψ ± |ψ|2ψ = 0 (2.1)

This form of rescaling assumes that k, d, Γ are real numbers. This presump-

tion infers a lack of external amplification of attenuation and is often referred to as

hermiticity.

The exact form of the soliton depends on the direction of nonlinear interactions.

If nonlinear and diffraction terms have the same sign, nonlinearity has a focusing ef-

fect. In this case, we observe localized peaks of bright solitons [127]. If the nonlinear

term sign is opposite to the diffraction sign, we observe respectively defocusing non-

linearity and dark solitons – localized low-intensity areas within constant background

[128].

Not every soliton maintains its shape constant at every moment. Only funda-

mental solitons, also known as first-order solitons, maintain constant phase front and

thus constant shape. It is possible to observe higher-order temporal solitons – solitons

with periodically oscillating structure [56, 129]. In my thesis, I will focus purely on

fundamental solitons.
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Figure 2.1: Schematic representation of diffraction term (red) and
nonlinear term (blue) influence on the formation of bright (left) and

dark (right) solitons.

Fundamental solitons can be separated into phase oscillation and transverse

distribution term u(x)

ψ(x, z) = u(x)eiµz+iβx (2.2)

where β is transverse propagation velocity and µ is propagation constant. Phys-

ical interpretation of the propagation constant depends on the modeled system – in

optics, µ is phase or group velocity for spatial and temporal solitons respectively,

while in BEC µ is interpreted as chemical potential.

2.1 Integrals of motion - scalar case

Solutions of NLSE typically have multiple time-independent integrals of motion,

also known as constants of motion. According to Noether’s theorem, each constant

of motion corresponds to a certain system symmetry [130]. Popularly considered

constants of motion with simple physical interpretations are norm, energy, and mo-

mentum [30].

Norm is defined as total wavefunction intensity N =
∫ ∞
−∞ |ψ|2dx. Norm is

analogous to the amount of matter, particles, or probability density in the system.

Norm can be changed by interaction with the outside world or coupling with other

systems. Any coefficient in the equations with imaginary factor leads to gain or loss

and norm, in general, is not conserved. The second mechanism of norm change is

coherent coupling, which will be discussed later. If the initial system is hermitian,

then the norm of the localized solution is conserved.

The next constant of motion is total system energy. Its formulation slightly

depends on the exact form of NLSE. In case of equation (2.1) energy is defined as

following

E =
1
2

∫ ∞

−∞
|∂xψ|2 ∓ Γ|ψ|4dx (2.3)
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Momentum is defined as the total current of the wavefunction. Conservation

of momentum requires additional assumption – neither dispersion nor nonlinearity

coefficients can be non-constant.

M =
∫ ∞

−∞
jdx = i

∫ ∞

−∞
(ψ∂xψ∗ − ψ∗∂xψ) dx (2.4)

2.2 Scalar solitons

Equation (2.1) belongs to the category of integrable equations, as it can be

solved by using inverse scattering method [131] or soliton perturbation theory [132].

The inverse scattering method allows us to derive bright and dark solitons for scalar

NLSE. However, most modifications of NLSE are non-integrable and require numeri-

cal calculations to find possible solitons. These methods will be thoroughly discussed

in the next chapter.

For simplicity of derivation I assume β = 0, constant phase front (u ∈ R) and

focusing nonlinearity. First, we substitute separated wavefunction (2.2) into (2.1).

− µu +
1
2

∂xxu + u3 = 0 (2.5)

The next step is to multiply the equation by 4∂xu.

2∂xu∂xxu = 4u∂xu − 4u3∂xu (2.6)

This equation is simplified by applying ∂xu2 = 2u∂xu and integrating over x

(∂xu)2 = 2µu2 − u4 + C (2.7)

Integration constant C is assumed to be zero, as u|x=±∞ = ∂xu|x=±∞ = 0.

Remaining differential equation has a solution in form u = a sech(ax).

Similar calculations can be performed for self-defocusing nonlinearity. In this

case, instead of the localized peak, we observe localized dip with phase shift in the

constant background. Complete formulas for bright and dark solitons take the fol-

lowing form

ψb = ψ0 sech [a (X − vZ)] eivX exp
(

i
a2 − v2

2
Z
)

ψd = ψ0 [tanh (ψ0 [X − ψ0 sin ϕZ] cos ϕ) cos ϕ + i sin ϕ] e−iψ2
0 Z (2.8)
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where ψ0 is maximal amplitude, a is bright soliton width, v is bright soliton

velocity, and ϕ is dark soliton phase shift parameter.

2.3 Linear stability analysis

As mentioned in the introduction, ”solitons” in their physical sense are not

guaranteed to endure external interactions. Soliton stability is required to ensure its

robustness to unavoidable external perturbations. Nonlinear systems are particularly

prone to modulational instability – spontaneous nonlinear amplification of certain

background frequencies.

The easiest, brute-force way to confirm stability is to simulate the propagation

of soliton with the small random perturbation. Analytical criteria for stability analysis

are based on perturbation theory. The most popular method for integrable systems

is linear stability analysis [133].

To provide an example of linear stability analysis, I will consider trivial plane

wave background in NLSE. It is easy to show that ψ = ψ0eiβX+iµZ is a solution for

NLSE, as long as µ = ψ2
0 −

β2

2
. The first step of stability analysis is an introduction

of perturbation.

ψper = eiβX+iµZ
[
ψ0 + U(X)eλZ + V∗(X)eλ∗Z

]
(2.9)

Here U, V are complex functions of X, representing perturbation distribution.

These functions should form a complete basis, to cover every possible perturbation

that can be created due to random noise. λ is a parameter responsible for pertur-

bation component dynamics. If ℜ (λ) > 0, this perturbation will increase during

propagation, leading to state instability.

Next step is to substitute (2.9) into (2.1) and linearize the equation in terms of

U, V ≪ 1. Nonlinear term is linearized in the following manner

|ψper|2ψper = ψ2
0eiβX+iµZ

[
ψ0 + 2UeλZ + 2V∗eλ∗Z+

+ U∗eλ∗Z + VeλZ
]

+ O
(
U2, V2, UV

)
(2.10)

The linearized equation can be separated according to exponential terms.

[
iλU +

1
2

∂XXU + ψ2
0 (U + V)

]
eλZ +

[
iλ∗V∗ +

1
2

∂XXV∗ + ψ2
0 (U∗ + V∗)

]
eλ∗Z = 0

(2.11)
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This relation is maintained at every point of propagation, which is possible only

if both terms in square parentheses are simultaneously equal to zero. Furthermore,

we represent perturbation in the basis of plane waves U, V = U0, V0eikX. This allows

to transform equation (2.11) into the following eigenproblem.

 iψ2
0 − i

k2

2
iψ2

0

−iψ2
0 i

k2

2
− iψ2

0

 [ U0

V0

]
= λ

[
U0

V0

]
(2.12)

with following eigenvalues

λ = ± k
2

√
4ψ2

0 − k2 (2.13)

This analysis shows that perturbation waves with |k| < 2ψ0 become amplified.

This modulational instability leads to the generation of the periodic bright solitons.

Finally, linear stability analysis can be generalized for arbitrary soliton states.

For single-peak fundamental solitons this generalization leads to Vakhitov-Kolokolov

stability criterion [134]

∂µN > 0 (2.14)

where N is the soliton norm. Vakhitov-Kolokolov stability criterion can also

be applied to modified versions of NLSE, as long as the nonlinearity term can be

described by a function of |ψ|2 [135].

2.4 Vector solitons

The analysis presented above considered single component scalar solitons. This

model requires purification and separation of possible parameters – for example, op-

tical scalar solitons are monochromatic and maintain single polarization. If these

components are not separated, we observe multicomponent coupled solitons – vector

solitons. In this thesis, I will focus on two-component vector solitons.

Two coupled NLSE can be generalized to take the following form

i∂tψ1 = d1∂xxψ1 + γ1ψ1 + Γ1|ψ1|2ψ1 + κ1ψ2 + C1|ψ2|2ψ1 + K1ψ2
2ψ∗

1

i∂tψ2 = d2∂xxψ2 + γ2ψ2 + Γ2|ψ2|2ψ2 + κ2ψ1 + C2|ψ1|2ψ2 + K2ψ2
1ψ∗

2

(2.15)
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Here dm is diffraction coefficient, γm is linear potential, Γm is nonlinear self-

phase modulation term, κm is linear coupling term, Cm is nonlinear incoherent cou-

pling term, and Km is nonlinear coherent coupling coefficient. All coefficients d, γ, Γ, κ, K, C
are functions – or, in case of nonlocal systems, distributions – of x.

In most cases, one coupling type dominates over other terms. Linear coupling κ

appears due to the modal approach. In certain systems, such as collinear waveguides,

the nonlinear term can be simplified by specific components definition, at a cost of

introducing linear coupling term. Coherent coupling term K represents phase-sensitive

processes that appear in weakly anisotropic birefringent media. Incoherent coupling

C appears as the result of phase-insensitive refractive index change, such as the Kerr

effect or molecular reorientation in anisotropic media.

Many different types of vector solitons can be observed depending on the non-

linearity. If nonlinear terms in both channels maintain the same sign, we observe

vector bright solitons [136] and vector dark solitons [137] for focusing and defocus-

ing interactions respectively. Other possibilities include mixed bright-dark solitons in

media with opposing nonlinearities [138], multihump solitons [139] and waveguides

induced by both bright [140] and dark [141] solitons.

Linear stability analysis can still be applied to vector solitons. For example,

in the case of NLSE with incoherent coupling Vakhitov-Kolokolov criterion can be

expanded to the condition for Hessian matrix [133].

Hmn =
∂Nm

∂µn
> 0 for every m, n (2.16)

Additional modes of instability occur in vector solitons. One of such examples

is walk-off instability – separation of soliton components due to discrepancy in group

velocities [142]. Overall, linear stability analysis is much more complicated in vector

NLSE.

2.4.1 Constants of motion in coupled NLSE

Integrals of motion, previously discussed for the scalar case, can still be applied

to vector solitons. In vector systems, total norm N = N1 + N2, total momentum

M = M1 + M2 and total energy E are conserved under certain conditions. Hermiticity

of coupled NLSE – lack of imaginary terms in all dispersion, potential and coupling

coefficients – and action-reaction symmetry (C1 = C2, κ1 = κ2, K1 = K2) are sufficient

conditions for norm and energy conservation. Momentum conservation additionally

requires that neither potential nor coupling terms depend on x. Complete derivation

conservation laws and conditions for coupled NLSE are presented in Appendix 1.
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Integrals of motion for each channel separately are not conserved, as components

actively interact with each other. Energy cannot be defined for a single channel and

has to be reformulated for the whole system.

E =
∫ ∞

−∞

[
−d1|∂xψ1|2 − d2|∂xψ2|2 + γ1|ψ1|2 + γ2|ψ2|2+

+
Γ1

2
|ψ1|4 +

Γ2

2
|ψ2|4 + κ (ψ1ψ∗

2 + ψ∗
1 ψ2) + K|ψ1|2|ψ2|2

]
dx (2.17)

Norm is a particular integral of motion that can be conserved for each com-

ponent under particular circumstances. The norm in each channel is changed by

interaction with the outside world or coupling with other systems. Any coefficient in

the equations with imaginary factor leads to gain or loss and norm, in general, is not

conserved. The second mechanism of norm change is coherent coupling, both linear

and nonlinear. The current between channels can be described as following:

J⊥ =
∫ ∞

−∞
j⊥dx = −i

∫ ∞

−∞
κ1 (ψ∗

1 ψ2 − ψ∗
2 ψ1) + K1

(
[ψ∗

1 ψ2]2 − [ψ∗
2 ψ1]2

)
dx (2.18)

Incoherent coupling does not influence inter-channel current – if a system is

hermitian and coherent coupling is absent, the norm is also conserved in each channel

separately.
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Chapter 3

Numerical methods for coupled

nonlinear systems simulation

Coupled NLSE in general are non-integrable and cannot be solved analytically.

Numerical methods are required to explore such systems. Some algorithms assume

linear differential equations and thus cannot be used for NLSE. A vast array of tech-

niques was developed to solve specifically nonlinear differential equations [143, 144,

145].

This section will be divided into two parts. The first part explains basic ap-

proaches to initial value problems – simulating propagation in a system for a known

state. The second part considers boundary value problems – methods for finding

soliton states.

3.1 Propagation methods

Simulations are the fundamental way of exploring state evolution in physical

systems. Many algorithms were developed for initial value problems, such as Galerkin

method [146], method of lines [147] and meshless methods [148]. In my thesis, I will

discuss two main families of approaches – finite difference (FD) methods and spectral

methods. I will use the following notation for two coupled NLSE.

i∂tψm = dm∂xxψm + Nm (3.1)

where m ∈ {1, 2} is channel index, and Nm = γmψm + Γm|ψm|2ψm + κmψ3−m +

Cm|ψ3−m|2ψm + Kmψ2
3−mψ∗

m is total potential and coupling term.

Both FD and spectral methods require the creation of mesh – discretization of

space and time coordinates onto a grid. Typically mesh grids are uniform. Size of

mesh step is the key parameter of a simulation – smaller step size increases accuracy

at time and memory cost.
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3.1.1 Finite difference methods

The main idea of the FD methods is to present derivatives as finite differences

on the established mesh. The simplest example of the FD algorithm is the forward-

time centered-space (FTCS) scheme. To use it, we substitute the following definitions

of derivatives into (3.1)

∂tψm(x,t) =
ψm(x,t+1) − ψm(x,t)

∆t

∂xxψm(x,t) =
ψm(x+1,t) + ψm(x−1,t) − 2 ∗ ψm(x,t)

(∆x)2 (3.2)

where ψm(x,t) represent wavefunction in particular mesh point (x, t).

FTCS is called an explicit scheme because every point in the next step explicitly

depends only on previous points. Even though it’s simple, FTCS has problems with

its stability and accuracy. This method has second-order accuracy in space and only

first-order accuracy in time. Furthermore, if the time step is not small enough, this

method becomes numerically unstable [144]. The largest possible time step is defined

by the von Neumann stability condition:

d∆t
∆x2 ≤ 1

2
(3.3)

One way to fix stability issues is to use implicit methods. In implicit schemes,

the future state depends on both the previous and the new state. The most famous

example is the Crank-Nicholson algorithm, which is based on averaging implicit and

explicit time steps [149].

i
ψm(x,t+1) − ψm(x,t)

∆t
=

= dm
ψm(x−1,t+1/2) + ψm(x+1,t+1/2) − 2ψm(x,t+1/2)

∆x2 + Nm(x,t+1/2) (3.4)

where ψm(x,t+1/2) =
ψm(x,t+1) + ψm(x,t)

2
.

The biggest benefit of this method is that it’s always numerically stable. The

downside is that these equations are much harder to solve for nonlinear systems

– it is impossible for general coupled NLSE. Solutions used for intrinsic methods

are approximated by linearizing solved equations. One example of linearization is

Newton’s method.
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ψm(t+1) = ψm(t) − ω
F
(

ψm(t)

)
F′
(

ψm(t)

) (3.5)

where ω is relaxation parameter [150], and F(ψm) = i∂tψm − dm∂xxψm − Nm is

defined depending on differentiation algorithm.

Numerical methods used for coupled NLSE are typically extrinsic, as problems

of stability can be overcome by simpler means. Issue of accuracy in explicit methods

can be corrected through intermediate point calculations. Generally, calculations with

intermediate points belong to the family of Runge-Kutta (RK) methods [144]. The

simplest example is RK2, also known as the ”midpoint method”. RK2 calculates state

at (t + 1/2) step and uses it to calculate time derivative. Most popular is the RK4

method, which is relatively easy to implement and has a fourth-order of accuracy in

time.

ψm(t+1) − ψm(t)

∆t
=

k1 + 2k2 + 2k3 + k4

6
k1 = f (ψm(t))

k2 = f (ψm(t) + k1∆t/2)

k3 = f (ψm(t) + k2∆t/2)

k4 = f (ψm(t) + k3∆t)

(3.6)

where f (ψm) = −i (dm∂xxψm + Nm).

Runge-Kutta methods can be upgraded in different manners. It is possible to

derive intrinsic RK methods, even though they are not used in nonlinear systems

[151]. Another useful upgrade is the adaptive time step, for example, Runge-Kutta-

Fehlberg method [152]. The adaptive time step allows shortening simulation time by

focusing on more dynamic parts of the simulation.

3.1.2 Spectral methods

Spectral methods substitute explicit differentiation of FD methods by using the

following property of Fourier Transform (FT).

∂xxψ = F−1 ((ik)2ψ̃
)

(3.7)

where ψ̃ = F (ψ). We can use the Fast Fourier Transform algorithm [153]

to calculate space derivatives faster than using the FD approach. The downside of

this method is that its accuracy decreases in presence of discontinuous or complex

potentials, as they depend on Fourier transforms. Another thing to consider is that

FT assumes periodic boundary conditions. In practice, we can assume periodicity

if a solution is well localized. Additional damping, such as Evanescent Boundary
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Conditions [154] can be introduced on simulations borders to eliminate radiative

waves.

The combination of spectral approach for space derivative and Runge-Kutta for

time propagation is known as pseudospectral method [143]. Properties and modifica-

tions of RK methods before – explicit calculations, fourth-order of accuracy, adaptive

time step – can be applied in the pseudospectral method. Stability condition for

spectral methods takes a slightly different form:

∆t
∆x2 ≤ 2

√
2

π2 (3.8)

It is possible to modify the system even further by performing FT of NLSE and

using substitution ψ̃m = ϕ̃meidmk2t. This leads to integrating-factor method:

∂zϕ̃m = −ie−idmk2tF (Nm) (3.9)

This method is slightly more stable than the pseudospectral method. The

integrating-factor method should be used when potential, nonlinearity, and coupling

coefficients do not depend on x.

3.1.3 Split-step methods

Split-step methods are popular alternatives to finite difference and pseudospec-

tral methods. Split-Step Fourier Method (SSFM) uses a spectral approach for space

derivative and evolution operators instead of finite time differences. A general idea

of SSFM is to calculate propagation using a unitary evolution operator

ψ̂(t+∆t) = e−i(D̂+N̂)∆tψ̂(t) (3.10)

where ψ̂ =

[
ψ1

ψ2

]
is state vector, D̂ =

[
d1∂xxψ1 0

0 d2∂xxψ2

]
is dispersive oper-

ator and

N̂ =

[
γ1 + Γ1|ψ1|2 + C1|ψ2|2 κ1 + K1ψ∗

1 ψ2

κ2 + K2ψ∗
2 ψ1 γ2 + Γ2|ψ2|2 + C2|ψ1|2

]
(3.11)

is the nonlinear operator.

The ”Split-step” approach is based on the idea that we can calculate evolution

for both operators separately. Baker–Campbell–Hausdorff formula [155] allows us to

present total evolution as series of interchanging operators

e(D̂+N̂)∆t ≃ eα1D̂∆teβ1 N̂∆t . . . eαnD̂∆teβn N̂∆t (3.12)
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The most popular variation of SSFM is symmetrical split-step [156], also known

as Strang splitting.

ψt+∆t = e−iD̂∆t/2e−iN̂∆te−iD̂∆t/2ψt (3.13)

This method is second-order accurate in time. SSFM method with fourth-order

time accuracy takes the following form.

ψt+∆t = e
−i

c1

2
D̂∆t

e−ic1 N̂∆te
−i

1 − c1

2
D̂∆t

e−i(1−2c1)N̂∆t×

× e
−i

1 − c1

2
D̂∆t

e−ic1 N̂∆te
−i

c1

2
D̂∆t

ψt (3.14)

where c1 =
1

2 − 3
√

2
.

SSFM is an explicit method and has slightly less straining stability condition.

∆t
∆x2 ≤ 1

π
(3.15)

SSFM can be modified to introduce adaptive step size [157]. Additionally, SSFM

maintains both norm and energy in long-term simulations of conservative systems. It

has similar downsides as other spectral methods.

3.2 Soliton relaxation methods

If we can’t solve equations analytically (and usually we can’t), we need nu-

merical methods to find soliton states in our system. Because original equations are

nonlinear, we can’t simply solve the eigenproblem – we need some original guess of the

state. There are several techniques, such as finite elements analysis [158], Petviashvili

method [159] or Modified Squared Operator method [160]. In this work I will focus

on two techniques: Imaginary Time methods [161] and Newton Conjugate Gradient

method [162].

3.2.1 Imaginary time method

Imaginary Time Evolution Method (ITEM) is based on the change of standard

propagation in time t into fictitious diffusion in imaginary time it. In this case,

different components of the initial state will vanish at different speeds, with the slowest

decline for the fundamental state. If we renormalize the norm with every step, the

resulting state will slowly converge into the fundamental soliton of a physical system.

This gives us an algorithm for the classic imaginary time method.
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ψm(n+1) =

√
P∫

|ψm(n+1)|2dx

[
ψm(n) + ∆tL0ψm(n)

]
(3.16)

where ψm(n) is n-th iteration of the wavefunction, P =
∫
|ψm(0)|2dx is initial

power, and L0ψm(n) = dm∂xxψm(n) + Nm is propagation operator.

The biggest benefit of this method is the ability to easily repurpose propaga-

tion code for the imaginary time method. Such an algorithm can be based on any of

the previously discussed methods, such as Split-Step or Finite Difference. However,

standard ITEM is very slow, as stability conditions require very small time steps.

This issue could be fixed by using implicit methods of propagation, but in nonlin-

ear systems, we encounter the same problems as in propagation equations. Another

limitation of imaginary time methods is that it converges only for fundamental soli-

tons, and thus it’s impossible to find excited states and higher-order solitons with

this method.

The imaginary time method can be accelerated by using a preconditioning op-

erator and accounting for phase velocity on every time step. In this case equation for

Accelerated Imaginary Time Evolution Method (AITEM) takes the following form

∂tψm = M−1 (L0ψm − µψm) (3.17)

where µ =

∫ (
M−1ψ∗

m
)

L0ψmdx∫
(M−1ψ∗

m) ψmdx
is phase velocity of soliton and M is self-

adjoint, positive-definite and easily invertible preconditioning operator. In case of

spectral methods standard choice of preconditioning operator is M = c − ∂xx, be-

cause M−1ψ = F−1
(

ψ̃

c + k2

)
. c is positive constant adjusted manually to particular

problems. In case of localised potentials c ≃ µ leads to fastest convergence results.

AITEM is significantly faster than classic ITEM. Furthermore, conditions for

convergence of AITEM intersect with conditions for linear stability of fundamental

soliton. Therefore, we can guarantee that solitons generated from AITEM are linearly

stable.

3.2.2 Newton Conjugate Method

Newton Conjugate Gradient (NCG) method is in general even faster than

AITEM. NGG method is based on iterative linearization of the original equation

using the Newton method, described above. This leads to a linearized set of equa-

tions.
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L1

[
δ1(n)

δ2(n)

]
= L0

[
ψ1(n)

ψ2(n)

]
(3.18)

where L0 is full nonlinear operator, L1 is its linearized version and δm(n) =

ψm(n+1) − ψm(n) is error correction term. Equation for error correction is solved

through conjugate gradient method [163]. Complete derivation of linearization oper-

ator and conjugate gradient iterations is presented in Appendix 2.

NCG method has several benefits - it is orders of magnitude faster than AITEM

and it can be used to find higher-order solitons. The biggest drawback of NCG is

its relatively complicated implementation algorithm. Furthermore, NCG methods

are not convergent in a strict sense, thus in some rare cases, this method requires

subtle adjustments to achieve sensible results, especially in cases of linear coupling.

In particular, the NCG method assumes the hermiticity and coupling symmetry of

the original system. In the case of non-conservative systems, NCG is substituted by

the biconjugate gradient stabilized method [164].
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Chapter 4

Vector solitons in planar waveguides

with nonlinear inclusions

This chapter introduces our research on coupled planar waveguides with sub-

wavelength nonlinear inclusions, presented in [165]. The goal of this chapter is to

introduce an example of vector solitons with analytical solutions before studying non-

conservative and nonlocal systems. Additionally, this model serves as an example of

several types of symmetry breaking.

Even though the system itself can be symmetrical, states in the system don’t

have to be. Spontaneous symmetry breaking (SSB) is a process, by which symmetry

of the ground state differs from system symmetry [166]. SSB can be observed in

both linear and nonlinear systems. In nonlinear systems, symmetry of the ground

state may depend on state energy, thus allowing for energy-dependent bifurcation

curves. Symmetry breaking can appear slowly, through a subcritical phase change, or

with a supercritical phase change – sudden qualitative jump due to the instability of

intermediary states [167]. SSB is used in nano-optics to create optoelectronic devices

and regulate the strength of the nonlinear effects [168].

Both one-dimensional BEC traps and planar optical waveguides are modeled

by linearly coupled equations with nonlinear inclusions. In this chapter, I will focus

on model derivation from the integrated optics’ point of view.

4.1 Planar waveguides

The technology of guiding light through the total internal reflection was in-

vented in the 19th century, but waveguide and fiber optics started to develop only

after the formulation of electromagnetism theory [169]. Nowadays, planar waveguides

are the essential blocks used in integrated optics [170, 171].

A basic planar waveguide is constructed from slabs of optically dense material

inside the substrate with a smaller refractive index. Refractive index difference serves

as a potential trap, confining light beam in transverse directions. Examples of planar

waveguides are shown in Figure (4.1).
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Figure 4.1: Schematic representation of the planar waveguides (top)
and photos of silicon-based waveguides (bottom). Image from NTT-
AT archives www.keytech.ntt-at.co.jp/optic2/prd_e0015.html.

Propagation in planar waveguides follows modified Helmholtz equation with

slowly varying envelope approximation [172]

iβ∂zE = ∂xxE +

(
4π2ω2

c2 n2(x) − β2
)

E − µ0ω2Ppert (4.1)

where E is the scalar electric field component of the monochromatic wave with

frequency ω, β is the mode propagation constant, and n(x) is the linear refractive

index. This formulation assumes that waveguide structure confines light in the y
direction and mode distribution in this direction is eliminated through the separation

of variables.

Perturbation polarization Ppert is combined from different terms, depending on

the underlying mechanism. In this chapter I focus on two perturbation terms –

nonlinearity term Pnl and coupling term Pcp. Nonlinear polarization appears due to

the third-order process [22].

Pnl = ϵ0χ̂(3)...E3 (4.2)

If phase-matching conditions are not satisfied, third harmonic generation pro-

cess becomes negligible and we can simplify tensor multiplication down to the Kerr

nonlinearity Pnl = ϵ0χ(3)|E|2E. Nonlinear effects can be introduced in localized spots

of the waveguide through the holographic techniques [173] or through the doping

processes [174].

Coupling polarization Pcp is calculated by applying the Coupled Mode Theory

(CMT) [175]. CMT models a system of multilayer stacked waveguides as a combi-

nation of single waveguide solutions and perturbations introduced by the presence of

the other waveguides n1+2(x, y) = n1 + ∆n2 = n2 + ∆n1. Polarization perturbation

appears due to the overlap of the second channel mode with the first channel structure

perturbation and vice versa.

www.keytech.ntt-at.co.jp/optic2/prd_e0015.html


4.2. Single-delta waveguides 29

Pcp,1 = ϵ0∆n2
1E2 (4.3)

Substitutions of polarization terms into equations 4.1 and following rescaling

lead to a system of dimensionless equations

i∂zψ1 + 1
2 ∂xxψ1 + g(x)|ψ1|2ψ1 + κψ2 = 0

i∂zψ2 + 1
2 ∂xxψ2 + g(x)|ψ2|2ψ2 + κψ1 = 0

(4.4)

where g(x) is nonlinear doping distribution function. Total norm and energy

are defined in the following manner.

N =
∫ ∞

−∞

[
|ψ1|2 + |ψ2|2

]
dx (4.5)

E =
1
2

∫ +∞

−∞

[
|∂xψ1|2 + |∂xψ2|2 + g (x)

(
|ψ1|4 + |ψ2|4

)
− 2κ (ψ1ψ∗

2 + ψ∗
1 ψ2)

]
dx (4.6)

Nonlinear material distribution is often modelled as a sum of Gaussian-shaped

inclusions g(x) = ∑m
Gm

wm
√

π
exp

(
−(x − x0m)2

w2
m

)
. If the inclusion size is much

smaller than optical wavelength, Gaussian distribution approaches Dirac Delta func-

tion δ(x0m). Introduction of Dirac Delta distributions allows to solve system of

equations 4.4 analytically. Following sections present soliton states for single-delta

and double-delta cases respectively. Final section presents numerical examples of

symmetry-breaking in two-dimensional rectangular waveguide structure.

4.2 Single-delta waveguides

The following set of equations models two parallel waveguides stacked on top

of each other, each with single subwavelength nonlinear inclusion in x = 0.

i∂zψ1 + 1
2 ∂xxψ1 + δ(x)|ψ1|2ψ1 + κψ2 = 0

i∂zψ2 + 1
2 ∂xxψ2 + δ(x)|ψ2|2ψ2 + κψ1 = 0

(4.7)

To find soliton states, we assume stationary solutions with constant phase ve-

locity

ψm(x, t) = ϕm(x)e−iµt (4.8)

and substitute them into equations (4.7).
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µϕ1 = − 1
2 ∂xxϕ1 − δ(x)|ψ1|2ϕ1 − κϕ2

µϕ2 = − 1
2 ∂xxϕ2 − δ(x)|ϕ2|2ϕ2 − κϕ1

(4.9)

Nonlinearity is present only in x = 0, thus we can solve equations at every other

point and then enforce continuity. Outside of nonlinear influence we can represent

coupled system in basis of w1 ≡ ϕ1 + ϕ2 and w2 ≡ ϕ1 − ϕ2.

∂xxw1 = µ+w1

∂xxw2 = µ−w2

(4.10)

where µ± = −2(µ ± k). We can easily solve 4.10 and substitute exponential

solutions into 4.9.

ϕ1 =

Ae
√

µ+x + Ce
√

µ−x x < 0

Ae−
√

µ+x + Ce−
√

µ−x x > 0
(4.11)

ϕ2 =

Ae
√

µ+x − Ce
√

µ−x x < 0

Ae−
√

µ+x − Ce−
√

µ−x x > 0
(4.12)

Our next step is to introduce continuity conditions. This form of the solutions

automatically satisfies continuity condition at x = 0. Jump of derivative is estimated

by integrating equations 4.9 around x = 0, which gives ∂xϕm|x=0 = −2ϕ3
x=0. This

condition for derivatives leads to the following set of equations.


√

µ+ A +
√

µ−C = (A + C)3

√
µ+ A −√

µ−C = (A − C)3
(4.13)

This set of equations has three distinct solutions. Symmetric and antisymmetric

states can be easily found by assuming C = 0 and A = 0 respectively

A2
sym =

√
µ+/2, Nsym = 2, Esym = −κ (4.14)

C2
anti =

√
µ−/2, Nanti = 2, Eanti = κ (4.15)

The third solution leads to the family of asymmetric states
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A = ±1
2

√
3
2
√

µ− − 1
2
√

µ+ (4.16)

C = ±1
2

√
3
2
√

µ+ − 1
2
√

µ− (4.17)

with the following norm and energy

Nasym =
−3µ −

√
µ2 − κ2

2
√

µ2 − κ2
(4.18)

Easym = −3
8

κ

[√
µ−
µ+

−
√

µ+

µ−

]
(4.19)

Asymmetric states exist only if C > 0 in equation 4.16, which leads to the

following bifurcation condition

µ <
−5
4

κ (4.20)

To measure state asymmetry, we introduce channel asymmetry coefficient Θc.

Θc =

∫ ∞
−∞ |ϕ1|2 − |ϕ2|2dx∫ ∞
−∞ |ϕ1|2 + |ϕ2|2dx

(4.21)

We find channel asymmetry coefficient for single-delta asymmetric states by

substituting 4.16 into 4.21

Θc =
4
√

5
√

µ2 − κ2 + 3µ ·
√

µ2 − κ2(
−3µ −

√
µ2 − κ2

) (√
−2(µ + κ) +

√
−2(µ − κ)

) (4.22)

All results presented in this section are summed up in Figure (4.2). Channel

asymmetry coefficient figure shows that transition to asymmetric states is subcritical

– Θc(µ) is a continuous function.

Numerical stability analysis shows that asymmetric states found in this con-

figuration are always unstable for Delta functions. In the case of wider Gaussian

nonlinear potentials, stable asymmetric states are observed. This fact shows that

model with Dirac Delta functions can be used to explore general soliton states, but

it doesn’t provide good predictions of the soliton dynamics.
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Figure 4.2: Norm (left), energy (center) and asymmetry coefficients
(right) for the stationary states in one-delta system for κ = 1. Dashed

lines represent unstable states. After Ref. [165].

4.3 Double-delta waveguides

Our next step is to introduce double nonlinear inclusions in x = ±1 for each

channel.

i∂zψ1 + 1
2 ∂xxψ1 + [δ(x − 1) + δ(x + 1)] |ψ1|2ψ1 + κψ2 = 0

i∂zψ2 + 1
2 ∂xxψ2 + [δ(x − 1) + δ(x + 1)] |ψ2|2ψ2 + κψ1 = 0

(4.23)

The general algorithm used to find soliton states remains the same. However,

the introduction of the second impurity leads to the possibility of the second symmetry

breaking type – spatial symmetry breaking. This process will be measured by the

spatial asymmetry coefficient.

Θs =

∫ ∞
0 |ϕ1|2 + |ϕ2|2dx −

∫ 0
−∞ |ϕ1|2 + |ϕ2|2dx∫ ∞

−∞ |ϕ1|2 + |ϕ2|2dx
(4.24)

Double-impurity soliton states take the following form

ϕ1 =


Be

√
µ+(1+x) + De

√
µ−(1+x) x < −1

B0e
√

µ+(1+x) + D0e
√

µ−(1+x) + A0e
√

µ+(1−x) + C0e
√

µ−(1−x) −1 < x < 1

Ae
√

µ+(1−x) + Ce
√

µ−(1−x) x > 1

(4.25)

ϕ2 =


Be

√
µ+(1+x) − De

√
µ−(1+x) x < −1

B0e
√

µ+(1+x) − D0e
√

µ−(1+x) + A0e
√

µ+(1−x) − C0e
√

µ−(1−x) −1 < x < 1

Ae
√

µ+(1−x) − Ce
√

µ−(1−x) x > 1

(4.26)

Continuity of the wavefunctions at x = ±1 leads to the following substitutions.
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Figure 4.3: Examples of states with different symmetry properties.
(a) – fully symmetric state; (b) – ”inter-symmetric” state; (c) – ”intra-

symmetric” state; (d) – fully asymmetric state. After Ref. [165].

A0 =
e2

√
µ+ B − A

e4
√

µ+ − 1
, B0 =

e2
√

µ+ A − B
e4

√
µ+ − 1

, C0 =
e2

√
µ−D − C

e4
√

µ− − 1
, D0 =

e2
√

µ−C − D
e4

√
µ− − 1

(4.27)

The condition for derivatives continuity leads to the following set of equations.



√
µ+e2

√
µ+
(
e2

√
µ+ B − A

)
=
(
e4

√
µ+ − 1

)
B(B2 + 3D2)

√
µ+e2

√
µ+
(
e2

√
µ+ A − B

)
=
(
e4

√
µ+ − 1

)
A(A2 + 3C2)

√
µ−e2

√
µ−
(
e2

√
µ−C − D

)
=
(
e4

√
µ− − 1

)
C(C2 + 3A2)

√
µ−e2

√
µ−
(
e2

√
µ−D − C

)
=
(
e4

√
µ− − 1

)
D(D2 + 3B2)

(4.28)

This system of equations has 81 solutions in general, with 20 unique non-trivial

solutions. Some of the resulting states are presented in Figure (4.3). This system of

equations cannot be solved analytically, however, the solutions can be simply calcu-

lated with numerical methods. For example, states with two simultaneously broken

symmetries can be found only numerically. States with certain symmetries can be

found analytically.

We observe two different types of symmetry breaking, separately or simultane-

ously. First, we can calculate a fully symmetrical state (A=B, C=D=0).
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Figure 4.4: Map of solution types for different values of κ and µ+.
Fully asymmetric states are found numerically in the red region, while
fully symmetric states exist in both red and peach areas. Additional
color filters represent areas with present intra-symmetric states (blue
region defined by the equation 4.31) and inter-symmetric states (green

region defined by the equation 4.33). After Ref. [165].

A = B =

√ √
µ+

1 + e−2
√

µ+
(4.29)

Symmetry breaking in space with maintaining symmetry between channels

(C=D=0) creates ”intra-symmetric” states.

A =
4
√

µ+

(√
1 + 2e−2

√
µ+ +

√
1 − 2e−2

√
µ+

)
2
√

1 − e−4
√

µ+

B =
4
√

µ+

(√
1 + 2e−2

√
µ+ −

√
1 − 2e−2

√
µ+

)
2
√

1 − e−4
√

µ+
(4.30)

Such ”intra-symmetric” states break spatial symmetry below the bifurcation

line.

µ+ =

(
log 2

2

)2

(4.31)
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Figure 4.5: Norm (left), energy (center) and asymmetry coefficients
(right) for the stationary states in two-delta system for κ = 0.05.
Black curves represent fully symmetric states, orange curves – ”inter-
symmetric” states, cyan curves – ”intra-symmetric” states. Inset in
subfigure (a) zooms on bifurcation points for both asymmetry states.
Orange and cyan curve in subfigure (c) represent Θc and Θs respec-

tively. After Ref. [165].

Breaking symmetry between channels and maintaining spatial symmetry (A=B,

C=D) leads to ”inter-symmetric” states.

A = B =
3
√

µ−
(
1 + e−2

√
µ+
)
−√

µ+

(
1 + e−2

√
µ−
)

8
(
1 + e−2

√
µ+
) (

1 + e−2
√

µ−
)

C = D =
3
√

µ+

(
1 + e−2

√
µ−
)
−√

µ−
(
1 + e−2

√
µ+
)

8
(
1 + e−2

√
µ+
) (

1 + e−2
√

µ−
) (4.32)

These ”inter-symmetric” states exist below the following bifurcation curve.

3
√

µ+

µ−
=

e2µ+ + 1
e2µ− + 1

(4.33)

A general map of symmetry breaking types is presented in Figure (4.4). Multiple

types of symmetry breakings appear for large phase velocities. States with both

broken symmetries always appear before both types of single symmetry breakings

occur. It is even possible to observe a small region around κ ≃ 0.13, where both

symmetries are broken simultaneously before any single process occurs.

Norm, energy, and asymmetry coefficients can be calculated analytically for

fully and partially symmetric states. Resulting curves for κ = 0.05 and κ = 0.2 are

presented in Figures (4.5) and (4.6) respectively. A fully symmetric state remains

both the lowest energy state and the only stable state in both cases. Bifurcation

of channel symmetry breaking (cyan curve) remains subcritical for every value of

κ, similar to the single-delta result. On the other side, spatial symmetry breaking

becomes supercritical – Θs is no more a function of N, as it allows for multiple unstable

states. This result depends on the exact shape of the nonlinearity distribution, as

this kind of bifurcation is supercritical for Gaussian nonlinearity [176] and is never

subcritical for double-well structure [177].
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Figure 4.6: Norm (left), energy (center) and asymmetry coefficients
(right) for the stationary states in two-delta system for κ = 0.2.
Black curves represent fully symmetric states, orange curves – ”inter-
symmetric” states, cyan curves – ”intra-symmetric” states. Inset in
subfigure (a) zooms on bifurcation points for both asymmetry states.
Orange and cyan curve in subfigure (c) represent Θc and Θs respec-

tively. After Ref. [165].

4.4 Two-dimensional waveguide model

As mentioned in the previous section, all types of asymmetric states are linearly

unstable. This result is known to be dependent on nonlinear distribution shape,

especially for highly degenerate distributions of Dirac Delta. The main goal of our

numerical calculations is to check whether stable asymmetric states exist in the two-

dimensional double inclusion configuration.

i
∂ψ

∂t
= −1

2

(
∂2ψ

∂x2 +
∂2ψ

∂y2

)
+ g (x, y) |ψ|2ψ + U(x)ψ, (4.34)

The schematic of this two-dimensional system is presented in Figure (4.7). In

the case of the big coupling strength, corresponding to the small distance between

waveguides, the assumption of variables separability is no longer fulfilled and CMT is

not applicable [178]. The introduction of the second dimension instead of the coupled

equation allows us to confirm CMT assumptions. Formulation of the model as double-

well potential was used to compare our results to the present models of the atomic

BEC [179].

Soliton states were calculated using ITEM, and their stability was confirmed by

SSFM propagation. Resulting states are shown in Figure (4.8). The main numerical

result of these simulations is the existence of stable solitons with every type of possible

symmetry breaking. Additionally, we’ve found that symmetry breaking is observed

even in the case of the small gap between waveguides. Solitons maintain their shape

even after the addition of two-dimensional random amplitude noise up to 5% of the

maximum soliton amplitude.

In conclusion, we’ve explored a double-waveguide coupled system with single

and double nonlinear inclusions. Our results show large variability in possible types

of symmetry breaking, including double symmetry breaking. It is also important

to note that linear stability analysis may give non-applicable results for integrable
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Figure 4.7: Schematic representation of two potential wells with
double nonlinear inclusions. After Ref. [165].

models, and thus an exploration of soliton dynamics must always be confirmed by

the numerical simulations.
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Figure 4.8: Contour plots of wavefunction distribution of the stable
two-dimensional solitons. Panels present fully symmetric states (a-
b), states with single symmetry breaking (c-d) and states with double
symmetry breaking (e-f). Parameters for the (a,c,e) simulations – L =
11, D = 1, W = 4, V = 2 and N = 0.6(a), N = 1.5(c), N = 2.5(e).
Parameters for the (b,d,f) simulations – L = 1, D = 1, W = 3, V = 52

and N = 1(b), N = 4(d), N = 5.1( f ). After Ref. [165].
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Chapter 5

Gain and loss in coupled nonlinear

systems

Losses are omnipresent in every field of physical sciences. Attenuation is the

main limiting factor in signal transmission. Solitons can be observed in dissipative

media [180, 181, 182], but they still have limited lifetime. There are multiple ways to

counteract this effect – one of them is continuous pumping of energy.

In this chapter I would like to focus on one example of a physical system with

continuous pumping - Exciton-Polariton Condensate (EPC) [52]. The biggest differ-

ence of EPC from other types of condensates is its non-equilibrium nature.

5.1 Exciton polariton condensates

EPC is created inside semiconductor quantum wells, such as presented in Fig-

ure (5.1.a). Light is trapped inside the cavity by two Bragg mirrors. Inside quantum

well, light serves two purposes. First, pumping creates excitons – electron-hole pairs

– in semiconductor materials. Second, light strongly couples with excitons, creat-

ing exciton-polaritons. These polaritons emit energy through phonons, as presented

in Figure (5.1.b), and condensate in a fundamental state. The lifespan of exciton-

polaritons rarely exceeds several nanoseconds due to photons escaping from the cavity.

Because of this, EPC requires constant light flow to support condensated state.

EPC is described by the combination of the mean-field equation for polariton

wavefunction and population equation for exciton reservoir [183].

i∂tψ = −∇2ψ + 2gc|ψ|2ψ + grn0
r ψ + U(⃗r)ψ + i

(
Rn0

r − γc
)

ψ (5.1)

where n0
r =

P
γR + R|ψ|2 is exciton reservoir density. Exciton reservoir remains

saturable near equilibrium intensity Is = |ψs|2 = 1/R. We can transform combination

of saturable gain and linear dissipation into linear gain and nonlinear loss system by

expanding formula for low intensities
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Figure 5.1: Fundamentals of exciton-polariton condensation. (a) –
structure of quantum well used for polariton excitation. (b) – scheme

of exciton-polariton pumping and condensation. After Ref. [52].

∂t I =
PR

γR + RI
− γc ≃ (

PR
γR

− γc) −
PR2

γ2
R

I ≡ γ − ΓI (5.2)

This formula is similar to the description of laser pumping with nonlinear ab-

sorber [184]. Even though this model does not conserve norm at every point locally,

its total intensity is expected to remain close to equilibrium point I = γ/Γ.

By default, EPC is generated in two-dimensional quantum wells. The dimen-

sionality of EPC is further regulated by inducing ring geometry. This can be done

by limiting geometry to the closed loop and observing whispering gallery modes[185,

186], or by observing vortices generated by structured pumping light [187, 188]. An

example of ring-shaped EPC is presented in Figure (5.2).

EPC can be separated into two components in a magnetic field due to the

intrinsic spin structure of excitons [189]. Linear coupling between components is

induced through the Feshbach resonance mechanism [190, 191]. Feshbach’s resonance

is controlled with the additional optical beam. Change of beam structure allows

controlling coupling distribution.

Our main goal is to model coupled ring structures in EPC. However, resulting

equations can also be applied in other physical systems, such as plasmonic resonators

[192]. Pumping can be introduced into plasmonic waveguides through active opti-

cal material [193]. Typically, nonlinear effects accompanying optical resonators are

self-focusing; however, it is possible to create solitons in media with defocusing non-

linearity [194]. We have proposed a microresonator system, based on two-layered

microresonators, in [195]. The general design of such a system is presented in Figure

(5.3).

Coupled ring resonators with gain and loss are described by the following equa-

tions
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Figure 5.2: Experimental observation of exciton-polariton ring con-
densates. (a-d) – single-ring condensate. (e) – double-ring condensate.
(f) – schematic of ring condensate observation device. (g) – phase por-

trait of the condensate in example (b). After Ref. [188].

Figure 5.3: (a-b) – examples of fabricated microresonator array. (c)
– possible configurations of microresonators with inhomogeneous cou-

pling. After Ref. [195].
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Figure 5.4: Schematic of double-ring structure described by Equa-
tions 5.3. After Ref. [196].

i∂tψ1 = −∂xxψ1 + iγψ1 + (1 − iΓ) |ψ1|2ψ1 + cψ2

i∂tψ2 = −∂xxψ2 + iγψ2 + (1 − iΓ) |ψ2|2ψ2 + cψ1

(5.3)

Spatial coordinates were rescaled so that x ∈ [0, 2π). By definition, this system

has periodic boundary conditions. Note that in terms of both conservation laws and

spectral numerical methods loops are even easier to work with, as any soliton becomes

localized by default. Currents inside and between channels are defined as J =
∫ 2π

0 jdx,

where

jm =
ψ∗

m∂xψm − ψm∂xψ∗
m

2i
, j⊥ =

c
2i

(ψ∗
1 ψ2 − ψ1ψ∗

2) (5.4)

I will explore two cases in separate sections. Section 5.2 explores homogeneous

coupling c = const, based on [196] and [197]. Section 5.3 is based on [195] and explores

inhomogeneous coupling with Gaussian distribution c ∼ e−x2/w2
.

5.2 Homogeneous coupling

We are looking for fundamental solutions in the following form.

ψm = ρmeiκx−iµt±iθ (5.5)

Here κ is an integer number representing angular velocity; µ is propagation

constant or, in the context of BEC, chemical potential; and 2θ is the relative phase

between channels. In the context of whispering gallery modes, κ can be treated as

vorticity or topological charge. This approach is similar to vortex states analysis of

structured light [198].
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We can easily find solution for decoupled rings (c = 0): ρ =
√

γ/Γ, µ =

γ/Γ + κ2. If rings are coupled, we substitute 5.5 into 5.3 and get following equation

(
ρ2

1 − ρ2
2
) (

µ − κ2 − ρ2
1 − ρ2

2
)

= 0 (5.6)

This equation in general gives us 4 solutions. Two of them are symmetric and

antisymmetric states respectively:

ρsym =

√
γ

Γ
, µsym =

γ

Γ
+ κ2 + c, θsym = 0 (5.7)

ρanti =

√
γ

Γ
, µanti =

γ

Γ
+ κ2 − c, θanti = π/2 (5.8)

Additionally, we found two branches of asymmetric solutions.

µ̃± =
3Γ2 − 1 ±

√
(Γ2 + 1)2 − 8c̃2Γ2 (Γ2 − 1)

2Γ (Γ2 − 1)

ρ1,± =
γ

2

(
µ̃± −

√
2µ̃±

Γ
− µ̃2

±

)

ρ2,± =
γ

2

(
µ̃± +

√
2µ̃±

Γ
− µ̃2

±

)

cos2(2θ±) =
µ̃±
2c̃

(
µ̃± − 1

Γ

)
(5.9)

where following normalizations were applied: c̃ =
c
γ

, µ̃ =
µ − κ2

γ
. Normal-

ized chemical potentials can also simplify formulas for symmetric and antisymmetric

states: µ̃sym,anti =
1
Γ
± c̃.

Several conditions define regions of asymmetric modes’ existence. Amplitudes

and phase mismatches must be real. This fact restricts chemical potential

1
Γ
≤ µ̃± ≤ 2

Γ
(5.10)

µ̃± must be real, which gives condition for critical losses

Γ < Γcrit =
1√

4c̃
(√

c̃2 + 1 − 1
)
− 1

(5.11)
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Figure 5.5: Asymmetric branches domains. (a-b) – Branches of
stationary solutions for c̃ = 0.38 < c̃2 (a) and c̃ = 0.8 > c̃2 (b).
Red and blue curves represent symmetric and antisymmetric solutions,
green and black curves represent asymmetric solutions µ+ and µ−. (c)
– domains of existence for asymmetric states. Both asymmetric states
exist inside green area, but only µ̃− solutions exist in gray area. Upper
border of both areas is defined by Γcrit, lower bound of green area is

described by Γbi f . After Ref. [196].

Asymmetric states can be achieved for sufficiently small coupling, as condition

5.11 is always fulfilled for c̃ < c̃1 =
1√
8

. On the other side, one of the asymmetric

solutions µ+ merges with symmetric branch at bifurcation curve Γbi f =
1
c̃

. Comparing

Γbi f and Γcrit leads to upper limit on µ+ state existence – c̃ < c̃2 =
1√
3

. Second

asymmetric solution µ− does not have similar limitations. Parametric curves and

conditions presented above are shown in Figure (5.5).

Current densities in symmetric and antisymmetric states are trivial – current

between channels is absent, while current in each ring is constant and equal to topo-

logical charge κ. Wavefunction momenta for asymmetric states remain the same,

however, we observe non-zero transverse current.
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Figure 5.6: Transverse currents in asymmetric states for c̃ = 0.38 <
c̃2 (a) and c̃ = 0.8 > c̃2 (b). After Ref. [196].

|J⊥,±| = πγ2
√

τ± (2c̃2 − τ±) (5.12)

where τ± = µ̃2
± − µ̃±

Γ
. In asymmetric states we observe spontaneous symmetry

breaking – both rings are identical, thus both current directions are equally valid.

Examples of intra-channel currents are presented in Figure (5.6).

5.2.1 Stability analysis

The next step in soliton exploration is stability analysis. As we’ve found analytic

formulas for wavefunctions, we can use a linear stability analysis framework. We

follow the procedure from Chapter 2, starting with the definition of perturbed states.

ψ̃m = eiκx−iµt
[
ρmei(−1)mθ + eλtUm(x) + eλ∗tV∗

m(x)
]

(5.13)

We assume spectral form of perturbations U, V ∼ eikx, as they represent a

complete basis. Note that perturbation wavenumbers k are limited to integers due

to periodic boundary conditions. After substitution of 5.13 into 5.3 and linearization

with respect to U, V ≪ ρm, we get following eigenproblem


α1 β∗

1 −ic 0
β1 α∗

1 0 ic
−ic 0 α2 β∗

2

0 ic β2 α∗
2




U1

V1

U2

V2

 = λ


U1

V1

U2

V2

 (5.14)

where

αm = γ − 2Γρ2
m + i

(
µ − (k + κ)2 − 2ρ2

m
)

(5.15)

βm = ρ2
me2i(−1)mθ (i − Γ) (5.16)
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Figure 5.7: Stability analysis of symmetric states. (a) – instability
domains. Wavenumbers of unstable modes are noted in each domain.
Colours signify different amount of unstable modes, gray color denotes
stable domains. Red square outlines parametric area explored numer-
ically. (b) – states reached through propagation of perturbed sym-
metrical state. Gray areas correspond to stable domains. Blue dots
show symmetric states evolving into antisymmetric states; red trian-
gles – into out-of-phase vortices with κ = 1; red stars show limit cycle
oscillations with homogeneous density; red squares lead to stationary
inhomogeneous states; red circle at γ = c = 2 represents chaotic mo-
tion; black stripe in lower left corner shows evolution into asymmetric
state. Points on left axis correspond to c = 0.01. All calculations were

made for Γ = 1. After Ref. [196].

Stability matrix depends on vorticity only as a combination k + κ, thus states

with the same amplitudes and chemical potentials have the same stability, indepen-

dent from state vorticity. I will concentrate on the linear stability of states with zero

vorticity.

Substitution of four possible states into 5.14 shows that antisymmetric and

asymmetric states are always stable. Symmetric states are unstable in domains,

where perturbation wavevector satisfies inequation 2
(

c − γ

Γ

)
< k2 < 2c. Domains of

instability for symmetric states are shown in Figure (5.7.a).

The evolution of unstable states in dissipative systems typically leads to stable

solutions – attractors [167]. Our next step is a simulation of symmetric state evolution

using SSFM. Additional periodic perturbation around 5% of the original amplitude is

introduced to stimulate modulational instability. Results of simulations are presented

in Figure (5.7.b).

We observed abundant variability in soliton dynamics, which is shown in Fig-

ure (5.7.b). Our simulations confirmed theoretical stability domains. Unstable states

typically evolve into antisymmetric states (blue circles). In the case of low coupling

states near stability regions (black stripe) tend to evolve into asymmetric states de-

scribed earlier. Other observed states include stationary inhomogeneous solutions

(red squares), out-of-phase pairs of vortices with κ = 1 (red triangles), periodically
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oscillating homogeneous symmetric solutions (red stars), and even chaotic motion

(red circle). Types of exhibited behaviors roughly correlate with wavenumber in-

stability domains – instability of k = 0 wavenumber typically signifies evolution to

antisymmetric states, while k = 1 instability typically leads to vortex creation. More

dynamic solutions appear near borders of instability domains.

5.2.2 Inhomogeneous states

Inhomogeneous states were explored deeper, as they present simultaneous spa-

tial and intra-channel symmetry breaking. An example of such a state is presented

in Figure (5.8). Inhomogeneity of state takes the form of periodic modulation. If an

initial state has non-zero vorticity, inhomogeneity becomes modulated in time with

the same total vorticity. The exact position of wavefunction maximum depends on

initial perturbation. Inhomogeneity of final states leads to permanent current flow

structure, as presented in (5.8.d).

The inhomogeneous state has a period of one ring length. This fact suggests a

small number of modes involved in evolution dynamics. Fourier decomposition, pre-

sented in (5.8.b), shows dominant contribution of k = ±1 components and constant

background k = 0. Based on these facts, we hypothesize that state evolution can be

estimated through Galerkin approximation [199]. The general idea of the Galerkin

methods is to represent the continuous problem as a system of coupled discrete equa-

tions. The initial state under the Galerkin approximation is represented as a sum of

basis functions. We chose the Fourier basis, as it is natural for periodical geometry.

ψm(x, t) = eiκx−iµt
∞

∑
n=−∞

Bm,n(t)einx (5.17)

Numerical simulations show several symmetries present in case of inhomoge-

neous states. First, Galerkin coefficients in one channel define coefficient in another:

B1,n = (−1)nB2,n. Second, Fourier transform maintains symmetry around initial

vorticity: |Bm,n| = |Bm,2K−n|, where K is the vorticity of initial state.

We’ve explored inhomogeneous state with no initial vorticity with the assump-

tion that only three Galerkin terms play role in evolution. This leads to the following

system of ordinary differential equations.
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Figure 5.8: Inhomogeneous state, obtained for γ = 1.5, Γ = 1, c =
1.75. (a) – wavefunctions amplitudes. (b) – time evolution of central
Fourier components. Inset present final Fourier spectrum of inhomoge-
neous state. (c) – relative phase θ. Figures (a-c) present full numerical
simulation (solid line) and Galerkin approximation with k = {−1, 0, 1}
modes (dashed line). (d) – Intra-ring current j⊥ (solid line) and inner

ring currents jm (dashed and dotted curves). After Ref. [196].

i∂tB1,n =
(
iγ + (κ + n)2 − µ

)
B1,n + cB2,n + (1 − iΓ)

1

∑
p=−1

1

∑
q=−1

B∗
1,p+q−nB1,pB1,q

(5.18)

i∂tB2,n =
(
iγ + (κ + n)2 − µ

)
B2,n + cB1,n + (1 − iΓ)

1

∑
p=−1

1

∑
q=−1

B∗
2,p+q−nB2,pB2,q

(5.19)

Results of Galerkin approximation are compared with full simulation in Figure

(5.8.a-c). Galerkin approximation accurately represents the final state. The biggest

discrepancy is observed in the evolution time needed to reach an inhomogeneous state.

This delay appears as the initial perturbation profile involves higher modes, which

are comparable in numerical simulations but neglected in Galerkin approximation.
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5.2.3 Dynamic states

Another type of state that demands our attention is dynamic states - limit cy-

cle oscillations and chaotic oscillations. Limit cycle oscillations can be distinguished

from converging, diverging or chaotic oscillations through the construction of phase

portraits [167]. In particular, we use multidimensional phase space consisting of total

norm value in different moments of time N(t), N(t + ∆t), N(t + 2∆t) with arbitrary

delay ∆t. Idea of expanding scalar function onto multidimensional space is based

on Takens-Mane theorem [200, 201]. Essentially, this phase portrait visualizes pre-

dictions on future total norm value based on two previous points. Phase portraits

for both limit cycle oscillations and chaotic oscillations are presented in Figure (5.9).

Total norm (presented in the small frame) oscillates near Neq = 4π
γ

Γ
in both cases.

Two dynamic regimes differ with intensity and frequency of norm jumps – both are

regular for limit cycle and irregular for chaotic oscillations.

Galerkin approximation can be used to simulate limit cycle and even chaotic

behavior. Results of Galerkin approximation for chaotic oscillations are presented in

Figure (5.10). Full analysis of bifurcation between limit cycle and chaotic oscillations

was performed by my colleagues in [197].

Figure 5.9: Phase portraits of norm oscillations. (a) – limit cycle
oscillations, observed at Γ = 1, γ = 1, c = 1.25. (b) – chaotic oscilla-
tions at Γ = 1, γ = 2, c = 2. Small frames show corresponding time

evolution of total norm. After Ref. [196].

Figure 5.10: Comparison of norm dynamics Fourier spectra for
numerical simulations (black) and Galerkin approximation using 11
modes (color). Two frames correspond to different initial perturba-
tions. Initial parameters Γ = 1, γ = 1.75, c = 1.81. After Ref. [197].
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5.3 Inhomogeneous coupling

Previous section scrutinized case of constant, evenly distributed coupling. In

this chapter, I analyze case of linear coupling localized in finite spot. I will use local

Gaussian coupling in particular:

c(x) =
c0√
πw

e
−

x2

w2 (5.20)

This coupling function is defined only by two parameters – coupling strength

c0 and width w. Similar states with identical conditions, thresholds and general

shapes, were also achieved for super-Gaussian coupling shapes c(x) ∼ e−(x/w)p
with

p ∈ [8, 20].

System of equations 5.3 with inhomogeneous coupling does not have analytic

solutions. Because of this, our approach is based on the inherent instability of sym-

metric stationary states shown in the previous chapter. Results are obtained by the

propagation of a homogeneous symmetric state with an initial small perturbation

using SSFM.

ψ1,2(t = 0) =

√
γ

Γ
(1 + β sin[kx]) (5.21)

Symmetric initial states show different possible attractors. Evolution results do

not depend on perturbation strength or wavenumber. All results remain qualitatively

similar for different values of γ and Γ, as long as γ ≥ Γ. Case of losses dominating

over gain γ < Γ are not presented. All results exhibited below assume γ = 3, Γ = 1,

unless stated otherwise.

Simulations show that antisymmetric states always converge to stationary anti-

symmetric states, similarly to the constant coupling case. Antisymmetric states can

also be achieved from initial symmetric states if the initial coupling is relatively weak

(c0 ≤ 1). Examples of antisymmetric states are presented in Figure (5.11).

The general shape of the stationary state can be understood by considering the

coupling term as a perturbation of the initial uncoupled state. In antisymmetric case,

coupling term c(x)ψ3−m = −c(x)ψm serves as a potential well, increasing wavefunc-

tion presence inside coupled region. Average wavefunction level remains close to the

expected value for uncoupled case ρ(c = 0) =

√
γ

Γ
. Another interesting property

of antisymmetric states is the appearance of two minima in points, different from

x = ±π, for strong or narrow coupling. This effect appears as a point furthest from

coupling influence competes to maintain value close to
γ

Γ
, as if it was unperturbed.

At this point, three coupling regimes can be considered. Wide coupling w ≫ π

converges to homogeneous coupling, discussed in the previous chapter. Simulations
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show that narrow coupling w ≪ 1 allows for asymmetric stationary states, meanwhile,

both narrow and intermediate coupling range w ≃ 1 lead to limit cycle oscillating

states in presence of sufficiently strong coupling.

5.3.1 Narrow coupling

Asymmetric stationary states, recovered from narrow coupling simulations, are

presented in Figure (5.12). Constant phase oscillation term is removed through by

assuming first channel phase ϕ1(x = ±π) = 0. Symmetry breaking appears in the

narrow window for c0 ≃ 1.5. One of the channels maintains a single minimum at x =

±π, while the second channel develops two minima, similarly to the antisymmetric

case described above. Furthermore, we observe unusual current distribution near the

coupling region. We observe local minimum in relative phase distribution ϕ1 of the

more populated channel at x = 0, while the less populated channel maintains local

phase maximum at the same point. This means that current in a more populated ring

flows outwards from the center, while current in a less populated channel flows towards

the coupling region. Even more interesting is the fact that j⊥(x = 0) > 0, thus intra-

channel current flows from less populated channel to more populated channel. This

behavior can be explained through the nonlinear absorption term – high-intensity

peak in the first channel serves as a faster sink than a similar structure in the second

channel.

An increase of coupling strength in narrow coupling case leads to limit cycle

oscillations. Similar oscillations are observed for broader coupling.

5.3.2 Broad coupling

Pseudocolor plots and norm evolution curves, representing limit cycle oscilla-

tions for w = 1, are presented in Figure (5.13). The case of broad coupling simulations

shows evolution into stationary antisymmetric states for c0 ≲ 3.5, similarly to the

narrow coupling case. Stationary asymmetric states were not observed for broader

coupling – instead, symmetrical oscillations appear. Both oscillations frequency and

Figure 5.11: Antisymmetric stationary states in inhomogeneously
coupled system. Left – amplitudes (absolute values) of wavefunction
ψ1 for various coupling strengths and fixed coupling width w = 1.
Black curve represents homogeneous state of the decoupled system.
Right – amplitudes of ψ1 for fixed coupling strength c0 = 1 and varying

widths. After Ref. [195].
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Figure 5.12: Absolute value |ψ1| (left) and relative phase (right) of
the asymmetric (blue and red) and antisymmetric (black) states in case
of narrow coupling w = 0.01. Antisymmetric and asymmetric state are
calculated for c0 = 1 and c0 = 1.5 respectively. Phase oscillation term

is calibrated so that ϕ1(x = ±π) = 0. After Ref. [195].

Figure 5.13: Top: pseudocolor plots of absolute values and relative
phases of ψ1 wavefunction component during limit cycle oscillations
for c0 = 4 (left) and c0 = 5 (right). Oscillations of the second channel
are shifted by half-period and reflected around x = 0 axis in case of
asymmetric oscillations. Phase oscillation term is calibrated so that
ϕ1(x = ±π) = 0. Bottom: total norms in both channels and norm
average during one oscillation period for c0 = 4 (left) and c0 = 5
(right). Coupling width is equal to w = 1 in both cases. After Ref.

[195].
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Figure 5.14: Snapshots of symmetric limit cycle oscillations, rep-
resenting half-period of oscillation for c0 = 4, w = 1. Frames are
presented in pairs – top frames (a1-h1) show absolute values of wave-
functions ψ1 and ψ2 (blue and red curve respectively) and rescaled
coupling distribution (green curve); bottom frames (a2-h2) show rel-
ative phases in both channels. Phase oscillation term is calibrated so

that ϕ1(x = ±π) = 0 (blue curve). After Ref. [195].

transience time – the time of transition from the initial state to established oscillations

– increase with coupling strength. Snapshots of symmetric oscillations dynamics are

shown in Figure (5.14).

The process of phase difference buildup can be explained once again through the

treatment of coupling as a perturbation. The phase difference between two channels

remains close to π during the whole oscillation period. Wavefunction phase inside

the coupled region of one channel experiences additional drift due to the presence of

coupling term, building up phase mismatch between coupled and uncoupled region.

The formation of phase gradient leads to the depopulation of the regions around the

coupled area. After a slight jump of phase velocity in coupled area, channels switch

their roles and oscillations continue.

Further increase in coupling strength leads to new behavior, not observed in

narrow coupling case – the creation of phase jumps on both sides of coupling potential

loses simultaneity. This leads to periodic creation and annihilation of topological

charges in both channels. Vortices, periodically appearing in each channel, maintain

the same direction, opposing to vorticity reappearing in the other channel. Snapshots

of asymmetric limit cycle oscillations are presented in Figure (5.15).

Oscillations frequency was also investigated. Results are presented in Figure

(5.16). The panel on the left shows changes in oscillation frequency for different gain

and coupling strengths. Frequency rapidly grows up with coupling strength until a

jump from symmetric to asymmetric oscillations occurs. The frequency of asymmetric

oscillations is linearly proportional to the coupling strength.
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Figure 5.15: Snapshots of asymmetric limit cycle oscillations, rep-
resenting full period of oscillation for c0 = 5, w = 1. Frames are
presented in pairs – top frames (a1-h1) show absolute values of wave-
functions ψ1 and ψ2 (blue and red curve respectively) and rescaled
coupling distribution (green curve); bottom frames (a2-h2) show rel-
ative phases in both channels. Phase oscillation term is calibrated so

that ϕ1(x = ±π) = 0 (blue curve). After Ref. [195].
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Figure 5.16: Left – frequency of the symmetric (solid lines) and
asymmetric (dashed lines) limit cycle oscillations for three different
values of γ. All calculations performed for w = 1, Γ = 1. Right
– norm in both channels during oscillations transition for c0 = 4.5
(point of blue line discontinuity on the left panel). After initial prop-
agation (not shown) systems temporarily develops symmetric oscilla-
tions, which morph into asymmetric oscillations after several periods

of oscillation. After Ref. [195].

One particularly interesting example can be observed near the point of transi-

tion between oscillation types (in the case of γ = 3 it appears around J ≃ 3.5). In this

example, the initial state temporarily converges to a symmetrically oscillating state.

Symmetric oscillations hold for 3-4 periods, depending on the perturbation. After

that, the system develops an asymmetric type of oscillations. Right panel of Fig-

ure (5.16) shows changes in total norm during transition period, while Figure (5.17)

presents snapshots of oscillations transition.

Asymmetric oscillations introduce a new method of ring state tailoring. In po-

lariton condensates, the coupling is controlled through the additional laser beam, thus

it can be instantly turned on and off. We’ve already established that homogeneous

coupling can lead to the simultaneous creation of vortices in both rings. Asymmetric

oscillations observed for inhomogeneous coupling temporarily create a vortex in one

channel at a time. Simulations show that after removal of linear coupling states con-

serve their topological charge and quickly relax into homogeneous stationary states.

Thus, we can turn off the coupling term during a certain interval of oscillation to

conserve the vortex in one channel while having zero vorticity of the second channel.

Conclusion

Non-conservative coupled ring structures present a surprisingly rich landscape

of attractors, including inhomogeneous, oscillating, and even chaotic states. We have

identified several cases of symmetry breaking, both between and inside rings. Precise

control over coupling allows for topological charge manipulation without additional

stirring or a complex structure of interacting elements.
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Figure 5.17: Snapshots of transition from symmetric to asymmetric
oscillations for c0 = 4.5, w = 1. Frames are presented in pairs – top
frames show absolute values of wavefunctions ψ1 and ψ2 (blue and red
curve respectively) and rescaled coupling distribution (green curve);
bottom frames show relative phases in both channels. Phase oscillation
term is calibrated so that ϕ1(x = ±π) = 0 (blue curve). After Ref.

[195].
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Chapter 6

Nonlocal nonlinearity in coupled

systems

Bright optical solitons have been investigated in various forms over the years

[72, 47]. The main problem of traditional spatial solitons in Kerr optical media is their

instability due to catastrophic collapse. Different approaches are used to counteract

soliton instability, including spatial limitation of one transverse dimension [202], use

of saturable media [203] or introduction of nonlocal nonlinearity [41]. This chapter

specifically focuses on nematic liquid crystals as an example of a nonlocal nonlinear

medium.

This chapter is divided into three sections. First, I introduce liquid crystals

(particularly nematic liquid crystals) as an optical medium, and a special form of

optical solitons, characteristic for nematic liquid crystals – nematicons. In the second

section, I display the system of equations used for nematicons simulation and its

approximation with interacting nonlocal nonlinearities based on [204]. The third

section presents my research of supermode solitons, published in [205], and expands

on it with the analysis of trajectory bending instability.

6.1 Nematic liquid crystals and nematicons

Liquid crystals (LCs) are an intermediate state of matter between solid and

liquid phase [206, 207]. Typically LCs are formed from long organic molecules. These

molecules interact with each other, maintaining correlation in their positions, while

simultaneously being able to flow like a liquid. Liquid crystalline phases – also known

as mesophases – are categorized according to the parameters required for mesophase

existence. Mesophase creation may depend on molecules concentration in the solvent

in the case of lyotropic LC, or the presence of inorganic elements in the case of metal-

lotropic LC. In this chapter I will focus on thermotropic LCs – their phase transitions

are defined by temperature – as the temperature can be easily and reversibly changed

in LC cells.
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Figure 6.1: Schematic representation of molecules positioning in dif-
ferent LC phases. (a) – Nematic, (b) – Smectic A, (c) – Smectic C,

(d) – Cholesteric (chiral nematic). After Ref. [208].

LCs mesophases are divided into multiple types, based on molecules distribu-

tion. The most known types of LC phases are nematic and smectic phases. Molecules

of nematic LC have randomly distributed centers of mass, while all molecules have

approximately the same direction of their long axes. Smectic LC is additionally

structured – molecules in smectics are packed in layers. Furthermore, molecules di-

rections may change from layer to layer, creating helical structures. These forms are

known as chiral nematics/smectics or cholesterics. Visual representations of different

mesophases are presented in Figure (6.1).

The molecular structure of LC directly impacts its optical properties. Rod-like

molecular shapes induce high anisotropy of electric permittivity and refractive index.

Waves oscillating perpendicular or parallel to the molecule central axis are called

ordinary and extraordinary waves respectively.

Just as molecules orientation influences multiple LC properties, there are many

ways to influence LC orientation. Temperature rise decreases molecules ordering, in

extreme cases leading to phase transition and total loss of crystalline structure. LC

orientation can also be controlled through the presence of an external electric field

[209, 210]. Borders of LC cells can be designed through rubbing so that molecules next

to the cell borders have precisely defined initial orientation [211, 212]. The influence

of boundary conditions on the orientation decreases inside LC bulk, however, it is

still the defining condition in an equilibrium state.

Reorientation of LC molecules can be induced by optical beam propagation. Re-

orientation nonlinearity appears because the optical field exerts a torque on molecules,
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Figure 6.2: Example of experimental setup for exploration of soliton
propagation in nematic LC cell. Initial beam propagates in linear
regime or forms a soliton depending on the polarization in respect to

the LC molecules. After Ref. [213].

rotating them to stand according to the electric field. In turn, reorientation shifts

birefringence axes and influences the refractive index. Reorientation nonlinearity is

incoherent, due to the slow reaction time of LC, nonlocal, due to the intramolecular

interactions in the fluid, and saturable, as reorientation angle has the maximum value.

An optical beam can increase the refractive index of the material proportionally

to its intensity due to the mechanism described above. Beam becomes confined in

a self-induced waveguide, limiting its diffraction. This process creates a new type

of solitons, characteristic for nematic LC – nematicon [214, 215]. An example of an

experimental setup used for nematicon research is presented in Figure (6.2).

Nematicons have been extensively researched in literature [216, 217, 218]. This

section focuses specifically on coupled beams in nematic LC – vector nematicons [219,

220, 221]. Vector nematicons are created by injecting several beams with different

wavelengths at the same place and direction. Molecules of LC experience the total

intensity of the combination of the beams. An example of experimentally observed

vector nematicon is presented in Figure (6.3).

Vector nematicon dynamics can be changed through the addition of wavelength-

specific absorption. Introduction of absorptive dye, while depleting soliton power,

drastically increases nonlinear response [222]. Furthermore, the absorption process

increases LC temperature in the propagation area, thus influencing LC refractive

index. Temperature effects create additional defocusing interaction, which can be

used for further beam stabilization [115, 223]. To conclude, the analysis of nonlocal

coupling in the following chapters is based on vector nematicons with competing

reorientation and temperature interactions.
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Figure 6.3: Experimental observation of three-colour vector nemati-
con. Each of the three components diffracts during separate propa-
gation (a-c), but they form soliton once launched together (d). After

Ref. [221].
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6.2 Nonlocal model of liquid crystal medium

The full model of beam propagation in nematic LC includes differential equa-

tions for the optical field, molecular orientation, and temperature. Electric field

propagation is based on paraxial equation for the uniaxial anisotropic media [224,

225].

2ik0nre f (∂zE + tan δ∂xE) = ∂yyE + Da∂xxE + k2
0

(
n2(θ, T) − n2

re f

)
E (6.1)

where E is electric field amplitude, k0 =
2π

λ
is the central propagation con-

stant, nre f is reference frame refractive index, n(θ, T) is LC refractive index depen-

dent on molecules orientation angle θ and temperature T, Da is dispersion anisotropy

coefficient and δ(θ) is walk-off angle. Choice of nre f is arbitrary, but typically

nre f = n(θ0, T0) gives best results from numerical point of view [226].

Derivation of equation 6.1 assumes specific orientation of LC cell and light

polarization – LC molecules are aligned in yz plane and electric field is polarized

in y direction, as presented in Figure (6.4). Dispersion term in y direction can be

compensated through a combination of geometric confinement and nonlinear processes

and will be neglected in the following steps.

Anisotropy of nematic LC leads to the appearance of the walk-off angle δ. This

effect can be compensated by applying moving frame substitution E′ = Eei(2k0nre f tan δ)x.

In the case of multiple co-propagating nematicons, walk-off angles may be slightly dif-

ferent for different components. This misalignment might be compensated by focusing

different beams entering LC under corrected angles.

Geometry considerations presented above lead to the one-dimensional form of

the propagation equation.

2ik0nre f ∂zE′ = Da∂xxE′ + k2
0

(
n2(θ, T) − n2

re f

)
E′ (6.2)

Nematic LC is a birefringent material, defined by ordinary and extraordinary

refractive indices no and ne. Typically, ne < no. The refractive index of liquid crystals

is approximately time-independent, as we are interested in stationary solutions, and

LC response time is much slower than oscillation period [227]. Refractive index,

perceived by optical beam, depends on relative molecules orientation

n(θ, T) =
no(T)ne(T)√

n2
o(T) sin2 θ + n2

e (T) cos2 θ
(6.3)
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Figure 6.4: Schematic representation of optical beam (red) propa-
gation in LC cell with planar orientation of molecules (blue). Ey is
the electric field polarization vector and n is the molecule orientation

vector.

where θ is an angle between molecule orientation vector n⃗ and beam polarization

vector Êy. Both ne and no are temperature-dependent. Temperature increase lowers

LC ordering and decreases LC birefringence ∆ϵ = n2
o(T)− n2

e (T). Exact temperature

effect on the refractive index is typically measured experimentally [228].

Molecules orientation is calculated by minimizing LC energy density f . LC

energy density consists of electric field interaction term fel and LC deformation term,

based on Frank’s equation [229].

fel = −ϵ0

2

[(
n2

e − 1
)
|E|2 + ∆ϵ

(
E⃗ · n⃗

)2
]

(6.4)

f f r =
K11

2
(∇ · n⃗)2 +

K22

2
(⃗n · ∇ × n⃗ + G)2 +

K33

2
(⃗n ×∇× n⃗)2 (6.5)

where K is the elasticity coefficient, and G is the chirality number. Total energy

density can be minimized through Euler-Lagrange equations [230]. The general result

depends on a huge system of equations for two orientation angles. This system can be

remarkably simplified through a combination of assumptions and particular cell ge-

ometry [231]. Elasticity constants are assumes to be mutually equal and independent

from temperature K11 = K22 = K33 = K. This assumption, combined with previously

established LC cell architecture – molecules are aligned in yz plane, the electric field

is linearly polarized in y direction – final equation for molecular orientation.
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∂xxθ =
ϵ0∆ϵ

2K
|E|2 sin (2θ) (6.6)

The temperature of LC is influenced by the absorption of optical beam energy.

The temperature distribution is governed by the heat equation

∂xxT = − cϵ0α

2κ
|E|2 (6.7)

Combined equations 6.2, 6.6 and 6.7 can be used to simulate nematicon prop-

agation in a precise manner. One of my publications explores the influence of tem-

perature and absorption effects on vortex solitons stability [115]. This publication

remains out of the scope of my thesis, as the model presented above is not based on

NLSE.

Full system of equations (6.2, 6.6, 6.7) is numerically demanding in terms of

calculations. Instead, reorientational and thermal nonlinearity can be presented as

nonlocal nonlinear responses [204], leading to NLSE-like equation.

This representation is based on two assumptions of variables separation. First,

we neglect temperature dependence of
∆ϵϵ0

K
– in other words, we assume that orienta-

tion angle depends only on the electric field intensity. Second, we transform refractive

index term, using
∆ϵ

n2
o
≪ 1

n2(θ, T) − n2
re f (θ0, T) = n2

on2
e

[
1

n2
o + ∆ϵ cos2 θ

− 1
n2

o + ∆ϵ cos2 θ0

]
≃

≃ n2
e ∆ϵ

n2
o

(
cos2 θ − cos2 θ0

)
= P(T)Θ(θ, θ0) (6.8)

If the LC cell is sufficiently large, its boundaries don’t influence temperature

and orientation near the propagation region. In this case, both responses can be sub-

stituted with nonlinear response distributions. Equation 6.1 with nonlocal response

takes the following rescaled form

i∂Zψ =
1
2

∂XXψ + α
(
|ψ|2

)
β
(
|ψ|2

)
ψ (6.9)

where α
(
|ψ|2

)
and β

(
|ψ|2

)
represent phenomenological functions of reorienta-

tional and thermal nonlinearity respectively

α
(
|ψ|2

)
=
[
Rα(X) ∗ |ψ|2

]
, β
(
|ψ|2

)
= 1 − B

[
Rβ(X) ∗ |ψ|2

]
, (6.10)

B is the relative strength of thermal defocusing nonlinearity,
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Rα,β =
1

σα,β
√

π
exp

[
−
(

X
σα,β

)2
]

(6.11)

is normalized nonlocal response function, and f (x) ∗ g(x) =
∫

f (x− x′)g(x′)dx′

is convolution operation.

Convolution operation has several advantages from a numerical point of view.

The appearance of convolution in coupled equations does not influence conservation

laws. Numerically, convolutions can be calculated with an FFT algorithm.

f (x) ∗ g(x) = F−1 ( f̃ g̃
)

(6.12)

Equation 6.9 presents so-called multiplicative model of nonlinearity [232, 233],

as different nonlinear terms are multiplied. As a result, thermal effects have fifth order

of nonlinearity. Another approach uses the additive model of nonlinearity [234]. In

this case, rescaled nonlinear function maintains its linear and nonlinear components

α
(
|ψ|2

)
= n +

[
Rα(X) ∗ |ψ|2

]
, β
(
|ψ|2

)
= 1 − B

[
Rβ(X) ∗ |ψ|2

]
(6.13)

The resulting nonlinear term can be limited to third-order effects

α
(
|ψ|2

)
β
(
|ψ|2

)
= n +

[
Rα ∗ |ψ|2

]
− nB

[
Rβ ∗ |ψ|2

]
+ O(|ψ|4) ≃ nlin + α′ − β′

(6.14)

Substitution ψ′ = ψe−inZ eliminates linear term. Final additive model equation

takes following form.

i∂Zψ′ =
1
2

∂XXψ′ + α′ (|ψ′|2
)

ψ′ − β′ (|ψ′|2
)

ψ′ (6.15)

The additive model uses only third-order nonlinearity terms, thus it can be

applied to a wider range of materials. The next section considers two coupled nonlocal

nonlinear equations with additive nonlinearity.

6.3 Supermode spatial solitons in nonlocal media

Competing nonlocal nonlinearities lead to the creation of a new soliton family –

supermode solitons [204, 228]. Typically fundamental spatial solitons have a one-peak

bell shape. Supermode solitons possess multiple peaks while maintaining constant

phase front characteristics for fundamental solitons. Two-peak supermode solutions



6.3. Supermode spatial solitons in nonlocal media 65

were found in the case of both multiplicative and additive models [234]. The primary

goal of my research [205] was to explore possible vector supermode solitons.

6.3.1 Rescaled coupled model

The following model assumes co-propagation of both beam components. One

of the components induces defocusing. Energy loss due to absorption is neglected

unless stated otherwise. We assume that the nonlinear refractive index is wavelength-

independent. For simplicity’s sake, a component with both focusing and defocusing

elements is described as a ”defocusing channel”, while a component without defocusing

term is called ”focusing channel”.

Initially coupled equations are based on beam evolution with slowly varying

envelope

−2in01k01∂zE1 = ∂xxE1 + 2n01nNLk2
01E1

−2in02k02∂zE2 = ∂xxE2 + 2n02nNLk2
02E2.

(6.16)

where E1 is focusing beam electric field, E2 is defocusing beam electric field, n0m

are reference linear refractive indices in m-th channel, k0m =
ωm

c
are m-th propagation

constants, and nNL is nonlinear refractive index, consisting of the following terms

nNL = ρ1
[
R f ∗ |E1|2

]
+ ρ2

[
R f ∗ |E2|2

]
− β

[
Rd ∗ |E2|2

]
(6.17)

Here R f ,d =
1√

πσf ,d
e−x2/σ2

f ,d are focusing and defocusing nonlocal response

functions respectively. Equations 6.16 and 6.17 can be rescaled into dimensionless

form with X =
x
σf

, Z =
−z

2n02k02σ2
f
, ψm =

√
2n02k2

02σ2
f α
∫
|E1|2dx∫

|Em|2dx
Em. In order

to gain dimensions intuition, we can assume values of parameters, typical for LC

experiments – n01 = 1.5, λ1 =
2π

k01
= 1µm, σf = 10µm. These parameters lead to

x = 10µm ∗ X, z ≃ 1.9mm ∗ Z.

Coupled nonlinear equations take the following rescaled form

i∂Zψ1 = 1
NK ∂XXψ1 + KF (ψ1, ψ2) ψ1

i∂Zψ2 = ∂XXψ2 + F (ψ1, ψ2) ψ2

(6.18)

with a following joint nonlinear potential:

F (ψ1, ψ2) = A
[
R f ∗ |ψ1|2

]
+ (1 − A)

[
R f ∗ |ψ2|2

]
− B

[
Rd ∗ |ψ2|2

]
(6.19)
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Here K =
k02

k01
represents wavelength ratio between beam components, N =

n02

n01
is linear refractive index ratio, A =

ρ1
∫
|E1|2dx

ρ1
∫
|E1|2dx + ρ2

∫
|E2|2dx

is the relative

focusing strength of the focusing channel, and B =
β
∫
|E2|2dx

ρ1
∫
|E1|2dx + ρ2

∫
|E2|2dx

is the

defocusing strength. In the above, beam amplitudes are scaled to identical powers

P =
∫
|ψ1|2dx =

∫
|ψ2|2dx. Nonlinear response functions take following rescaled form

R f =
1√
π

e−X2
, Rd =

1√
πσ

e−X2/σ2
(6.20)

where σ =
σd

σf
is nonlocality range ratio. All simulation results presented below

were also performed with Lorenzian profiles R ∼ σ2

X2 + σ2 – distribution shape has

negligible effects on both soliton shape and its stability properties. Note that two

channels in equations 6.18 are not symmetrical in terms of coupling interactions.

6.3.2 Family of supermode states

Nonlocal coupled nonlinear equations are generally non-integrable, thus a sys-

tem of equations 6.18 was explored with numerical methods. The accelerated imag-

inary time method was used to find soliton states, and the finite-difference beam

propagation method was utilized to explore soliton propagation and stability.

Pseudo-scalar soliton case

Vector soliton equations 6.18 can be degenerated back to scalar system in two

cases. If A = 0, the focusing beam does not influence nonlinear effects at all –

it simply co-propagates inside the waveguide, induced by defocusing beam. Wave

equation for defocusing beam takes the exact form discussed in [234]. Physically

A = 0 case corresponds to focusing beam with negligible power in comparison with

the defocusing beam. On the other hand, in case of K = N = 1 both equations

become identical and have symmetric solutions ψ1 = ψ2. Physically N = K = 1 case

corresponds to two components with very similar wavelengths. It is worth mentioning,

that even though both cases lead to the same scalar equation and the same supermode

states, their dynamics are significantly different. I will discuss the scalar supermode

case based on the N = K = 1 assumption. Examples of scalar supermode states are

presented in Figure (6.5).

The appearance of multiple humps can be analyzed through nonlinear potential

exploration. Nonlinear potential in its scalar limit takes the following form.

F (ψ) =
[
R f ∗ |ψ|2

]
− B

[
Rd ∗ |ψ|2

]
(6.21)
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Figure 6.5: Formation of scalar supermode solitons for N = K =
1, A = 1, B = 0.5. (a) – wavefunction profile for nonlocality ratio
σ = 0.7 and different values of power P. (b) – wavefunction profile
for different values of nonlocality ratio σ and power P = 2500. (c-
e) – Normalized intensity (blue) and nonlinear potential (magenta)
distributions for one-peak (c), two-peak (d) and smoothed peak (e)
states. Distributions are normalized so that ψmax = 1 and Fmax =
1. Dashed boxes are zooms of nonlinear potential shapes near beam

center. After Ref. [205].
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Figure 6.6: Scalar supermode states map for N = K = 1, P = 2500.
Top graphs show intensity profiles calculated at B = 0.7 points marked
by red circles on the bottom map. Profile colors correspond to map
regions colors. Dashed line represents σ = 3

√
B curve. After Ref. [205].
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In a low power regime, soliton maintain a one-hump shape, which can be ap-

proximated with Gaussian function

ψ1 = ψ2 = ψmax exp
(
−X2

w2

)
(6.22)

Nonlinear potential maintains similar shape with potential width w f ≃
√

w2 + 1.

Power increase leads to potential flattening inside the beam region, due to increasing

competition between focusing and defocusing nonlinear processes.

Several conditions for supermode appearance can be introduced through this

approach. First, bright solitons require positive nonlinearity, leading to defocusing

strength limit 0 < B < 1. Formation of multihump structure requires the appearance

of local minimum in nonlinear potential. Defocusing nonlinearity has to be more

localized, thus 0 ≤ σ < 1. Third condition is found by evaluating second derivative

condition ∂XX F|X=0 > 0.

(√
w2 + 2σ2
√

w2 + 2

)3

< B (6.23)

This condition can be simplified by assuming high medium nonlocality σ ≥ w.

σ <
3
√

B (6.24)

As the nonlocality ratio decreases, peaks are separated further and additional

structures begin to form. Eventually, additional peaks merge into the smoothed

triangular profile. A complete map of supermode states in the scalar case is shown

in Figure (6.6).

Vector soliton case

Next step is to explore vector supermodes for K ̸= 1. For simplicity’s sake,

we assume N = 1, as refractive index dispersion is relatively small within optical

frequencies. Changes in focusing beam strength A have no qualitative influence on

supermode states. Examples of supermode solitons for A = 0 and A = 1 are shown

in Figure (6.7.b). The following analysis assumes A = 1 unless stated otherwise.

Simulations show a significant difference between K > 1 and K < 1 cases.

Accelerated imaginary time does not converge into supermode states for K > 1, re-

vealing the linear instability of these states. Supermode states still can be explored

for K > 1 by utilizing the imaginary time method without preconditioning and accel-

eration terms. This ”stripped” imaginary time temporarily converges to meta-stable

fundamental states. For K ≤ 1 accelerated imaginary time method finds linearly

stable supermode states.
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Figure 6.7: (a) – Two-hump soliton profiles for different values of
wavelength ratio K and B = 0.5, σ = 0.7, P = 2500. (b) – Three-hump
soliton profiles for A = 0 and A = 1, with the remaining parameters

K = 0.6, B = 0.6, σ = 0.6, P = 2500. After Ref. [205].

Figure 6.8: Vector supermode states map for K = 0.6, P = 2500.
Top graphs show intensity profiles calculated at B = 0.5 points marked
by red circles on the bottom map. Profile colors correspond to map
regions colors. Dashed line represents σ = 3

√
B curve. After Ref. [205].
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Comparison of supermode states for different values of K is shown in Figure

(6.7.a). A decrease of K decreases the nonlinearity-to-diffraction ratio for the focusing

beam, reducing the steepness and number of peaks. Below a certain value of K
focusing beam doesn’t form shapes with three or more peaks, transforming from

two-peak structures straight to triangular shapes. Vector supermode soliton map for

K = 0.6 is shown in Figure (6.8). The dependence of defocusing beam shape on B
and σ remains qualitatively the same as for the scalar case.

6.3.3 Dynamics of nonlocally coupled solitons

Soliton stability was checked by simulating the propagation of vector supermode

with 0.1% random amplitude noise in both channels. Typical propagation results

are shown in Figure (6.9). The most noticeable property of vector solitons is their

curved trajectory. All solitons observed for A > 0 develop trajectory bending during

propagation, even in the N = K = 1 case. Trajectory bending is random and noise-

dependent, but it does not show chaotic dynamics properties. This behavior will be

discussed thoroughly in the next subsection.

In addition to trajectory bending, vector solitons found for K > 1 develop in-

stability of the structure, visible in Figure (6.9.a). The focusing component develops

oscillations in peaks steepness, leading to soliton destruction (not shown). Propaga-

tion distance before soliton collapse rises asymptotically to infinity as K approaches

unity. This instability can be explained through the increase of the nonlinearity-to-

diffraction ratio for the focusing beam. This hypothesis is confirmed by the fact that

vector solitons remain stable for K > 1 as long as N =
1

K2 .

Supermode solitons observed for K ≤ 1 are often destroyed by intense perturba-

tions, caused by trajectory bending. An example of such behavior is shown in Figure

(6.9.b). Once again, solitons become less susceptible to collapse as K approaches

unity. Vector solitons observed in pseudo-scalar case N = K = 1, while showing

trajectory bending, remain stable.

Defocusing nonlinearity is often connected with energy losses, as was explained

in the previous section. Absorption can be included by adding linear losses terms to

the equations.

i∂Zψ1 = 1
NK ∂XXψ1 + KF (ψ1, ψ2) ψ1

i∂Zψ2 = ∂XXψ2 + F (ψ1, ψ2) ψ2 − iα0ψ2

(6.25)

where α0 is the absorption coefficient. Typical results of vector soliton propa-

gation in the dissipative system are presented in Figure (6.9.c). Trajectory bending

still appears during early propagation. Additionally, vector soliton slowly evolves into
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Figure 6.9: Examples of two-hump vector soliton propagation for
B = 0.5, σ = 0.65, P = 2500. (a) – Meta-stable propagation for K =
1.2. (b) – Soliton collapse for K = 0.9. (c) – Soliton evolution for

K = 0.9 with absorption coefficient α0 = 0.25. After Ref. [205].

a one-peak shape as defocusing component gets attenuated. Trajectory bending dis-

appears as a one-hump structure becomes established. Eventually, defocusing term

completely decays.

6.3.4 Trajectory bending in vector supermode solitons

Trajectory bending, found in all cases of vector soliton propagation, demands

further investigation as an example of both momentum conservation breaking and

spontaneous symmetry breaking in optical beams[235]. Walk-off is often observed in

nematic LC due to optical axis misalignment [236], but it does not lead to complex

behavior observed for vector nematicons.

Trajectory bending appears due to the lack of action-reaction symmetry in the

system [237, 238]. If the defocusing beam has no attractive term (A = 1), the defo-

cusing beam has a purely repulsive effect on the focusing beam. In effect, defocusing

beam pushes the focusing beam away, while simultaneously focusing beam pulls de-

focusing beam in. Action-reaction symmetry breaking is additionally reinforced by

the differences between nonlinear response functions R f ̸= Rd. This fact explains

why trajectory bending appears for every value of 0 < A ≤ 1, even when A − 1 > B
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guarantees attractive term domination in the defocusing beam. In the case of A = 0
focusing beam does not influence the nonlinear processes and trajectory bending does

not occur.

Analytical considerations

To explore trajectory bending analytically, we derived mutual forces that beams

exert on each other through nonlinear interactions. Beam interaction forces are de-

rived by utilizing the Ehrenfest theorem [239]. We apply a generalized form of two-

component equations to calculate the evolution of vector state (ψ1, ψ2).

i∂Zψ1 = D1∂XXψ1 + M11P1 (ψ1) ψ1 + M21P2 (ψ2) ψ1

i∂Zψ2 = D2∂XXψ2 + M12P1 (ψ1) ψ2 + M22P2 (ψ2) ψ2

(6.26)

where P (ψ1, ψ2) = P1(ψ1) + P2(ψ2) is a nonlinear potential, which at this stage

we do not specify. We assume that initial condition for this evolution will be a

stationary solution found by any relaxation method. We will derive equations of

motion for the average position ⟨X⟩m, where ⟨ f (ψ)⟩m =

∫
ψ∗

m f (ψm) dx∫
|ψm|2dx

is expected

value of distribution f for ψm state component. Simple analysis leads to the set of

coupled equations for first derivative

∂Z⟨X⟩j = ⟨∂Zϕj|X|ϕj⟩ + ⟨ϕj|X|∂Zϕj⟩ = i
(
⟨ϕj|Dj∂XX|Xϕj⟩ + ⟨ϕj|MjPX|ϕj⟩−

−⟨ϕj|XMjP|ϕj⟩ − ⟨ϕj|DjX∂XX|ϕj⟩
)

= 2iDj⟨ϕj|∂X|ϕj⟩ = 2iDj⟨∂X⟩j (6.27)

and the second derivative

∂ZZ⟨X⟩j = 2iDj
(
⟨∂Zϕj|∂X|ϕj⟩ + ⟨ϕj|∂X|∂Zϕj⟩

)
= 2Dj

(
⟨ϕj|∂XDj∂XX|ϕj⟩+

+⟨ϕj|∂X Mj|Pϕj⟩ − ⟨ϕj|Dj∂XX∂X|ϕj⟩ − ⟨ϕj|MjP∂X|ϕj⟩
)

= 2Dj Mj⟨∂XP⟩j (6.28)

For our specific case, we can substitute coefficients from equations (6.25) and

obtain the following form

∂ZZ⟨X⟩1 = a11(Z) + a12(Z)

∂ZZ⟨X⟩2 = a21(Z) + a22(Z)
(6.29)

where ”acceleration” terms are defined explicitly by
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

a11 =
2
N

∫
|ψ1|2∂X

[
R f ∗ |ψ1|2

]
dx∫

|ψ1|2dx

a12 =
−2B

N

∫
|ψ1|2∂X

[
Rd ∗ |ψ2|2

]
dx∫

|ψ1|2dx

a21 = 2

∫
|ψ2|2∂X

[
R f ∗ |ψ1|2

]
dx∫

|ψ2|2dx

a22 = −2B

∫
|ψ2|2∂X

[
Rd ∗ |ψ2|2

]
dx∫

|ψ2|2dx
.

(6.30)

At the initial stage of the propagation we can assume that solutions are station-

ary and their width is much smaller than nonlocality range of the nonlinear potential.

In this case we have
∫
|ψm|2∂XPkdx ≈ [∂XPk]X=⟨X⟩m

and equations (6.30) can be re-

lated to the examples known in the literature, for instance [238].

Previously we have observed trajectory bending behavior in states perturbed

by random noise. Our goal is to explore and quantify this type of behavior. Instead of

random noise, we introduce three possible types of state perturbation. First approach

to perturbation is the shift perturbation – shifting initial beam position without

changing its shape: ψm,pert(X) = ψm(X − δms). Second is asymmetry perturbation –

it corresponds to perturbing beam shape by breaking state symmetry: ψm,pert = ψm ∗
(1 + δma ∗ X). Third way is adding phase perturbation, corresponding to additional

transverse momentum ψm,pert = ψm ∗ eiδmpX.

To estimate perturbation influence analytically, we assume a one-peak Gaussian

shape of the initial beams, similar to Eqs. 6.22, with additional perturbation terms

ψ1 = A1e−X2/w2
1 eiδ1pX [1 + δ1aX]

ψ2 = A2e−(X−δs)2/w2
2 eiδ2pX [1 + δ2a(X − δs)]

(6.31)

Substitution of Eqs. 6.31 into Eqs. 6.30 leads to disappearance of self-interaction

terms a11 = a22 = 0. Phase perturbations δmp don’t affect acceleration coefficients.

General formula for interaction terms is too unwieldy for practical use. We focus on

two particular cases:

1. The only perturbation is asymmetry in one of the channels: δs = δ2a = 0.
∂ZZ⟨X⟩1 = δ1a

16A2
2w2

1w2B

N
(
δ2

1aw2
1 + 4

) (
2σ2 + w2

1 + w2
2

)3/2

∂ZZ⟨X⟩2 = δ1a
4A2

1w3
1(

2 + w2
1 + w2

2

)3/2

(6.32)

Both terms have the same sign, thus we expect self-acceleration to the right.
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2. The only perturbation is shift between channels: δ1a = δ2a = 0.
∂ZZ⟨X⟩1 = −δs

8A2
2w2e

− 2δ2
s

2σ2+w2
1+w2

2 B

N
(
2σ2 + w2

1 + w2
2

)3/2

∂ZZ⟨X⟩2 = −δs
8A2

1w1e
− 2δ2

s
2+w2

1+w2
2(

2 + w2
1 + w2

2

)3/2

(6.33)

Both terms have the same sign, thus we expect self-acceleration to the left.

We can use these results to estimate acceleration ratio between two channels

ar =
∂ZZ⟨X⟩1

∂ZZ⟨X⟩2
analytically. We expect two distinct propagation regimes for different

ratios. If 0 < ar < 1, defocusing beam has higher acceleration, thus decreasing beam

misalignment and stabilizing propagation. However, if ar > 1, the focusing beam

will separate from defocusing beam due to higher acceleration, thus destabilizing the

soliton and leading to trajectory bending.

We can calculate the acceleration ratio for both cases in small perturbation

limit δ → 0.

ar =
A2

2w2B
A2

1w1N

(
w2

1 + w2
2 + 2

w2
1 + w2

2 + 2σ2

)3/2

(6.34)

Our previous simulations allow us to assume A1 ≃ A2 and w1 ≃ w2 even for

supermode solitons with different wavelength ratios. This allows us to simplify ar

further.

ar ≃
B
N

(
w2 + 1

w2 + σ2

)3/2

(6.35)

In order to achieve stable supermode solitons we require 0 < B < 1 and 0 <

σ < 1. In this case maximal value ar is achieved for w → 0. This leads us to the

following condition for self-accelerating trajectory bending

σ <

(
B
N

)1/3

(6.36)

This is the generalized form of the Eq. 6.24 – condition for the existence of the

supermode solitons. We can conclude that self-accelerating trajectory bending can

be observed only in supermode solitons. These results are supported by numerical

calculations.
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Numerical investigation

Propagation results for quasi-scalar (K = 1) and vector nematicons are pre-

sented in Figure (6.10). Vector solitons don’t exhibit trajectory bending in absence

of perturbation. Initial trajectory bending direction is in agreement with theoretical

predictions. Initial trajectory bending is linearly proportional to perturbation value,

also in agreement with theoretical considerations. Asymmetric perturbation leads

to periodically modulated trajectory. Shift perturbation has a much stronger effect

than asymmetry perturbation – even small shift drives vector soliton onto parabolic

trajectory, with following soliton destruction in case of K < 1. Soliton destruction

appears as focusing and defocusing components slowly become spatially separated.

Similar behavior is observed in the case of phase perturbation.

Based on the first numerical results we propose a hypothesis – misalignment

of solitons’ centers is the main contributor to the trajectory bending. Several in-

direct observations favor this conjecture. First, if the same asymmetric or phase

perturbation is introduced in both channels for K = 1, trajectory bending does not

occur. Second, vector soliton is much more sensitive to the shift perturbation than

to asymmetry perturbation, as asymmetry perturbation has minimal influence on the

center position. Third, phase perturbation leads to trajectory bending contrary to

the theoretical prediction. Phase perturbation can be understood as initial transverse

beam velocity, creating components misalignment and leading to the same dynamics

as observed for the shift perturbation.

To show that the relative shift of soliton centers and the interaction strength

are correlated we present an example of beam acceleration dynamics in Figure (6.11).

Acceleration coefficients based on Eqs. 6.30 are in agreement with numerical results.

Self-interaction terms a11, a22 remain negligible in all simulations. We observed a

high correlation between beam acceleration and center misalignment between two

components. Temporal deviations from these correlations correspond to particularly

asymmetric wavefunction shapes.

Our next step was to analyze the influence of other parameters, such as B and

σ on trajectory bending. Smaller σ leads to states with a larger number of peaks.

Supermode solutions for smaller σ are less stable – they have a stronger response to

perturbations and a bigger risk of collapse. Perturbation of one-peak solutions doesn’t

lead to growing trajectory bending, in agreement with theoretical predictions. Results

are shown in Figure (6.12). Qualitatively, the same behaviors are observed for every

type of perturbation independent from B and σ, as long as supermode states have the

same structure.

To investigate the influence of wavelength ratio further, we explored its influence

on diffractive and nonlinear terms separately. In the general model, such an effect

can be achieved by changing the linear refractive index ratio. Results are presented

in Figure (6.13). The strongest influence on trajectory bending behavior appears due



6.3. Supermode spatial solitons in nonlocal media 77

to the diffractive term – the difference in diffraction between components drastically

destabilizes soliton propagation. Alignment of refractive index ratio to compensate

propagation constant change can drastically increase vector supermode stability.

Conclusion

In conclusion, we investigated vector supermode solitons numerically and ana-

lytically. Coupling between two components immensely influences soliton propagation

dynamics, even in the case of pseudo-scalar propagation. Action-reaction symmetry

breaking leads to instability type unique for vector solitons – trajectory bending.

Trajectory instability is mainly controlled by soliton center mismatch and can be

regulated by adjusting material dispersion.
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Figure 6.10: Trajectory bending with controlled perturbation for
K = 1 (left) and K = 0.9 (right). Top row – propagation with shift
perturbation δ2s = 0.003. Middle row – propagation with asymmetry
perturbation δ1a = 0.1. Bottom row – propagation with phase pertur-
bation δ1p = 0.1. All simulations performed with initial parameters

B = 0.5, σ = 0.75.
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Figure 6.11: Top – soliton center position and acceleration (yellow)
for focusing (solid) and defocusing (dashed) component. Bottom –
soliton acceleration and beam center misalignment ⟨X⟩1 − ⟨X⟩2 (black
dotted curve). Initial parameters: K = 0.9, B = 0.5, σ = 0.75, δ1a =

0.2.
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Figure 6.12: Trajectory bending of different initial supermode states
for K = 1 (left column) and K = 0.9 (middle column). Right column
presents initial state distribution for K = 0.9. All calculations were
performed for B = 0.5 using shift perturbation ∆2,shi f t = 0.003. Each
row corresponds to different value of nonlocality ratio. Top to bottom

– σ = 0.85; σ = 0.75; σ = 0.65; σ = 0.55.
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Figure 6.13: Perturbed soliton propagation for B = 0.5, σ =
0.75, ∆2,shi f t = 0.003 including different terms of coupled structure
influence. Top left – pseudo-scalar case (N = 1, K = 1). Top right
– two components with different diffractive terms and equal nonlinear
terms (N = 0.9, K = 1). Bottom left – two components with equal
diffractive terms and different nonlinear terms (N = 1.11, K = 0.9).
Bottom right – two components with different diffractive and nonlin-

ear terms (N = 1, K = 0.9).
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Chapter 7

Conclusions

During the creation of this thesis, my goal was to provide a brief introduction

to state-of-the-art research of coupled nonlinear systems. Interaction of multiple

nonlinear components leads to interesting state dynamics even in the case of simple

models. The introduction of interaction with propagation medium, both through

nonlocal interactions and external energy flow, creates vector states that are highly

sensitive to the surrounding conditions.

Our exploration of the coupled nonlinear rings with saturable gain shows a rich

family of possible propagation states. Precise coupling control creates inhomogeneous,

oscillating, or chaotic states, or even control system topological charge through precise

vortex creation.

Our research on nonlocal coupled models with competing nonlinearities leads us

to the whole family of vector supermode solitons. The introduction of the interacting

components leads to trajectory bending instability. This process, possible only in

coupled nonlinear systems, is strongly correlated with soliton components’ spatial

mismatch and can be corrected through specific material dispersion matching.
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Appendix A

Derivation of conservation laws in

coupled NLSE

The initial system of two coupled NLSE (m = 1, 2) takes the following form.

i∂tψm = dm∂xxψm + γmψm + Γm|ψm|2ψm+

+ κmψ3−m + Cm|ψ3−m|2ψm + Kmψ2
3−mψ∗

m (A.1)

Generally, d, γ, Γ, κ, K, C are complex, time-independent functions of x. For

simplicity of derivation, we shall assume that d is constant. This assumption is true

if d∂xxψ term represents diffraction. In optical pulse framework, d corresponds to

material dispersion and is not constant. Conservation laws derived below still apply,

even though they require more tedious calculations. In this case dispersion term is

expanded through Taylor series in Fourier space [47]: d(x)∂xxψ = d0∂xxψ + d1∂xxxψ +

d2∂xxxxψ + ....

In order to derive conservation of total norm N =
∫ ∞
−∞ |ψ1|2 + |ψ2|2dx, we

calculate [Eq.A.1]mψ∗
m − [Eq.A.1]∗mψm

i (ψ∗
m∂tψm + ψm∂tψ

∗
m) = dmψ∗

m∂xxψm − d∗mψm∂xxψ∗
m + (γm − γ∗

m) |ψm|2+

+ (Γm − Γ∗
m) |ψm|4 + (κmψ∗

mψ3−m − κ∗mψmψ∗
3−m) +

+ (Cm − C∗
m) |ψ3−m|2|ψm|2 +

(
Km [ψ∗

mψ3−m]2 − K∗
m [ψmψ∗

3−m]2
)

(A.2)

Conservation of norm demands dm = d∗m, γm = γ∗
m, Γm = Γ∗

m, κm = κ∗m, Cm =

C∗
m, Km = K∗

m. Essentially this conditions are the same as the assumption of hermitian

evolution. After simplification and integration over space, we get following relation
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i∂t

∫ ∞

−∞
|ψm|2dx = −dm [ψ∗

m∂xψm − ψm∂xψ∗
m]∞

−∞ +

+
∫ ∞

−∞
κm (ψ∗

mψ3−m − ψmψ∗
3−m) + Km

(
[ψ∗

mψ3−m]2 − [ψmψ∗
3−m]2

)
dx (A.3)

Norm can be defined only in case of localized states, thus ψm|−∞ = ψm|∞ = 0.

In this case, change of the single channel norm depends on total current between

channels

∂t

∫ ∞

−∞
|ψ1|2dx = J⊥ = −i

∫ ∞

−∞
κ1 (ψ∗

1 ψ2 − ψ∗
2 ψ1) + K1

(
[ψ∗

1 ψ2]2 − [ψ∗
2 ψ1]2

)
dx (A.4)

The last assumption for norm conservation is equivalence of action and reaction

between two channels: κ1 = κ2, K1 = K2. In this case ∂t
∫ ∞
−∞ |ψ2|2dx = −J⊥, thus

total norm is conserved. Action-reaction equivalence also assumes C1 = C2. This

assumption does not influence norm, however it will become important for momentum

and energy conservation.

Definition of energy depends on particular physical system. We find it by

calculating ∑m[Eq.A.1]∂tψ
∗
m + [Eq.A.1]∗m∂tψm

i(∂tψ
∗
m)(∂tψm) − i(∂tψm)(∂tψ

∗
m) = d∗m(∂tψm)(∂xxψ∗

m) + dm(∂tψ
∗
m)(∂xxψm)+

+ γmψm∂tψ
∗
m + γ∗

mψ∗
m∂tψm + |ψm|2 (Γmψm∂tψ

∗
m + Γ∗

mψ∗
m∂tψm) +

+ κmψ3−m∂tψ
∗
m + κ∗mψ∗

3−m∂tψm + (Cmψm∂tψ
∗
m + C∗

mψ∗
m∂tψm) +

+
(
Kmψ2

3−mψ∗
m∂tψ

∗
m + K∗

m[ψ∗
3−m]2ψm∂tψm

)
(A.5)

We can simplify this formula by using previous assumptions: hermiticity, action-

reaction equivalence, and localized solutions.

0 = dm∂x ((∂tψ
∗
m)(∂xψm) + (∂xψ∗

m)(∂tψm)) − dm∂t|∂xψm|2 + γm∂t|ψm|2+

+
Γm

2
∂t|ψm|4 + κm (ψ3−m∂tψ

∗
m + ψ∗

3−m∂tψm) +

+ Cm|ψ3−m|2∂t|ψm|2 +
Km

2
(
ψ2

3−m∂t[ψ
∗
m]2 + [ψ∗

3−m]2∂tψ
2
m
)

(A.6)

Integration over space coordinate gives us the final definition of energy.



Appendix A. Derivation of conservation laws in coupled NLSE 87

E =
∫ ∞

−∞

[
−d1|∂xψ1|2 − d2|∂xψ2|2 + γ1|ψ1|2 + γ2|ψ2|2+

+
Γ1

2
|ψ1|4 +

Γ2

2
|ψ2|4 + κ (ψ1ψ∗

2 + ψ∗
1 ψ2) +

+ C|ψ1|2|ψ2|2 +
K
2
(
[ψ1ψ∗

2 ]2 + [ψ∗
1 ψ2]2)] dx = const (A.7)

Momentum is defined as a total current inside a single channel:

Mm =
∫ ∞

−∞
jm =

∫ ∞

−∞

ψ∗
m∂xψm − ψm∂xψ∗

m
i

dx (A.8)

To show conservation of momentum, we need to simplify ∑m[Eq.A.1]m∂xψ∗
m +

[Eq.A.1]∗m∂xψm − ψ∗
m∂x[Eq.A.1]m − ψm∂x[Eq.A.1]∗m. As previously, we assume her-

miticity of all components, action-reaction symmetry and localized solutions.

∂t Mm =
[
−dm

(
ψm∂xxψ∗

m + ψ∗
m∂xxψm − 2|∂xψm|2

)
−

− Γm|ψm|4 − Km
(
[ψ∗

1 ψ2]2 + [ψ1ψ∗
2 ]2)]∞

−∞
−

− 2|ψm|2∂xγm − |ψm|4∂xΓm + 2κm (ψ3−m∂xψ∗
m + ψ∗

3−m∂xψm)−
− 2Cm|ψm|2∂x|ψ3−m|2 −

(
[ψ∗

1 ψ2]2 + [ψ1ψ∗
2 ]2) ∂xKm (A.9)

We can combine both terms to calculate the total momentum.

∂t M = −2
(
|ψ1|2∂xγ1 + |ψ2|2∂xγ2

)
−
(
|ψ1|4∂xΓ1 + |ψ2|4∂xΓ2

)
−

− 2 (ψ∗
1 ψ2 + ψ∗

2 ψ1) ∂xκ − 2|ψ1|2|ψ2|2∂xC − 2
(
[ψ∗

1 ψ2]2 + [ψ1ψ∗
2 ]2) ∂xK (A.10)

As we can see, conservation of total momentum additionally demands that all

coupling and potential terms do not depend on x.
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Appendix B

Newton Conjugate Gradient method

in coupled NLSE

Previously, we formulated this form of coupled NLSE

i∂tψ1 = d1∂xxψ1 + γ1ψ1 + Γ1|ψ1|2ψ1 + κ1ψ2 + C1|ψ2|2ψ1 + K1ψ2
2ψ∗

1

i∂tψ2 = d2∂xxψ2 + γ2ψ2 + Γ2|ψ2|2ψ2 + κ2ψ1 + C2|ψ1|2ψ2 + K2ψ2
1ψ∗

2

(B.1)

We assume existence of states with constant phase velocity: ψm(x, t) = ψm(x)eiµmt.

First, we substitute phase velocity and separate real and imaginary values: ψm(x) =

Rm + iGm.



−µ1R1 = d1∂xxR1 + γ1R1 + Γ1
(

R2
1 + G2

1

)
R1 + κ1R2+

+C1
(

R2
2 + G2

2
)

R1 + K1
(

R1R2
2 + 2R2G1G2 − R1G2

2
)

−µ1G1 = d1∂xxG1 + γ1G1 + Γ1
(

R2
1 + G2

1

)
G1 + κ1G2+

+C1
(

R2
2 + G2

2
)

G1 + K1
(
G1G2

2 + 2G2R1R2 − G1R2
2
)

−µ2R2 = d2∂xxR2 + γ2R2 + Γ1
(

R2
2 + G2

2
)

R2 + κ2R1+

+C2
(

R2
1 + G2

1

)
R2 + K2

(
R2R2

1 + 2R1G1G2 − R2G2
1

)
−µ2G2 = d2∂xxG2 + γ2G2 + Γ1

(
R2

2 + G2
2
)

G2 + κ2G1+

+C2
(

R2
1 + G2

1

)
G2 + K2

(
G2G2

1 + 2G1R1R2 − G2R2
1

)

(B.2)

In the next step we express each term as sum of initial guess and error correction:

Rm = Rm,n + rm,n, Gm = Gm,n + gm,n, where r, j ≪ 1. Tedious, but straightforward

simplification leads us to the following equations.
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

(µ1 + γ1 + d1∂xx) (R1,n + r1,n) + Γ1

[(
R2

1,n + G2
1,n

)
R1,n +

(
3R2

1,n + G2
1,n

)
r1,n+

+2R1,nG1,ng1,n] + κ1 (R2,n + r2,n) + C1
[(

R2
2,n + G2

2,n
)

R1,n+

+
(

R2
2,n + G2

2,n
)

r1,n + 2R1,n (R2,nr2,n + G2,ng2,n)
]

+

+C1
[
R2

2,n (R1,n + r1,n) + 2r2,nR1,nR2,n + 2G1,nG2,n (R1,n + r1,n) +

+ 2R2,n (g1,nG2,n + G1,ng2,n) − R2
2,n (R1,n + r1,n) − 2g2,nR1,nG2,n

]
= O(a2)

(µ1 + γ1 + d1∂xx) (G1n + g1,n) + Γ1

[(
R2

1,n + G2
1,n

)
G1,n +

(
R2

1,n + 3G2
1,n

)
g1,n+

+2R1,nG1,nr1,n] + κ1 (G2,n + g2,n) + C1
[(

R2
2,n + G2

2,n
)

G1,n+

+
(

R2
2,n + G2

2,n
)

g1,n + 2G1,n (R2,nr2,n + G2,ng2,n)
]

+

+C1
[
G2

2,n (G1,n + g1,n) + 2g2,nG1,nG2,n + 2R1,nR2,n (G1,n + g1,n) +

+ 2G2,n (r1,nR2,n + R1,nr2,n) − G2
2,n (G1,n + g1,n) − 2r2,nG1,nR2,n

]
= O(a2)

(µ2 + γ2 + d2∂xx) (R2,n + r2,n) + Γ2
[(

R2
2,n + G2

2,n
)

R2,n +
(
3R2

2,n + G2
2,n
)

r2,n+

+2R2,nG2,ng2,n] + κ2 (R1,n + r1,n) + C2

[(
R2

1,n + G2
1,n

)
R2,n+

+
(

R2
1,n + G2

1,n

)
r2,n + 2R2,n (R1,nr1,n + G1,ng1,n)

]
+

+C2

[
R2

1,n (R2,n + r2,n) + 2r1,nR1,nR2,n + 2G1,nG2,n (R2,n + r2,n) +

+ 2R1,n (g1,nG2,n + G1,ng2,n) − R2
1,n (R2,n + r2,n) − 2g1,nR2,nG1,n

]
= O(a2)

(µ2 + γ2 + d2∂xx) (G2,n + g2,n) + Γ2
[(

R2
2,n + G2

2,n
)

G2,n +
(

R2
2,n + 3G2

2,n
)

g2,n+

+2R2,nG2,nr2,n] + κ2 (G1,n + g1,n) + C2

[(
R2

1,n + G2
1,n

)
G2,n+

+
(

R2
1,n + G2

1,n

)
g2,n + 2G2,n (R1,nr1,n + G1,ng1,n)

]
+

+C2

[
G2

1,n (G2,n + g2,n) + 2g1,nG1,nG2,n + 2R1,nR2,n (G2,n + g2,n) +

+ 2G1,n (r1,nR2,n + R1,nr2,n) − G2
1,n (G2,n + g2,n) − 2r1,nG2,nR1,n

]
= O(a2)

(B.3)

We generate a matrix equation for Newton iteration by neglecting higher orders

of error.

L1u = L0U (B.4)

where u =


r1,n

g1,n

r2,n

g2,n

 is correction vector, added in each iteration step: ψ(k,n+1) =

ψ(k,n) + r(k,n) + i ∗ g(k,n);
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L1u =



[
µ1 + γ1 + d1∂xx +

(
3R2

1,n + G2
1,n

)
Γ1 +

(
R2

2,n + G2
2,n
)

C1+

+
(

R2
2,n − G2

2,n
)

K1
]

r1,n + 2 (Γ1R1,nG1,n + K1R2,nG2,n) g1,n+

+ (κ1 + 2 (C1 + K1) R1,nR2,n + 2K1G1,nG2,n) r2,n+

+2 [(C1 − K1) R1,nG2,n + K1R2,nG1,n] g2,n[
µ1 + γ1 + d1∂xx +

(
R2

1,n + 3G2
1,n

)
Γ1 +

(
R2

2,n + G2
2,n
)

C1+

+
(
G2

2,n − R2
2,n
)

K1
]

g1,n + 2 (Γ1R1,nG1,n + K1R2,nG2,n) r1,n+

+ (κ1 + 2 (C1 + K1) G1,nG2,n + 2K1R1,nR2,n) g2,n+

+2 [(C1 − K1) G1,nR2,n + K1G2,nR1,n] r2,n[
µ2 + γ2 + d2∂xx +

(
3R2

2,n + G2
2,n
)

Γ2 +
(

R2
1,n + G2

1,n

)
C2+

+
(

R2
1,n − G2

1,n

)
K2

]
r2,n + 2 (Γ2R2,nG2,n + K2R1,nG1,n) g2,n+

+ (κ2 + 2 (C2 + K2) R1,nR2,n + 2K2G1,nG2,n) r1,n+

+2 [(C2 − K2) R2,nG1,n + K2R1,nG2,n] g1,n[
µ2 + γ2 + d2∂xx +

(
R2

2,n + 3G2
2,n
)

Γ2 +
(

R2
1,n + G2

1,n

)
C2+

+
(

G2
1,n − R2

1,n

)
K2

]
g2,n + 2 (Γ2R2,nG2,n + K2R1,nG1,n) r2,n+

+ (κ2 + 2 (C2 + K2) G1,nG2,n + 2K2R1,nR2,n) g1,n+

+2 [(C2 − K2) G2,nR1,n + K2G1,nR2,n] r1,n



(B.5)

and

L0U = −



(
µ1 + γ1 + d1∂xx +

(
R2

1,n + G2
1,n

)
Γ1 +

(
R2

2,n + G2
2,n
)

C1

)
R1,n+

+κ1R2,n + C1
(

R1,nR2
2,n + 2R2,nG1,nG2,n − R1,nG2

2,n
)

(
µ1 + γ1 + d1∂xx +

(
R2

1,n + G2
1,n

)
Γ1 +

(
R2

2,n + G2
2,n
)

C1

)
G1,n+

+κ1G2,n + C1
(
G1,nG2

2,n + 2G2,nR1,nR2,n − G1,nR2
2,n
)

(
µ2 + γ2 + d2∂xx +

(
R2

2,n + G2
2,n
)

Γ2 +
(

R2
1,n + G2

1,n

)
C2

)
R2,n+

+κ2R1,n + C2

(
R2,nR2

1,n + 2R1,nG1,nG2,n − R2,nG2
1,n

)
(

µ2 + γ2 + d2∂xx +
(

R2
2,n + G2

2,n
)

Γ2 +
(

R2
1,n + G2

1,n

)
C2

)
G2,n+

+κ2G1,n + C2

(
G2,nG2

1,n + 2G1,nR1,nR2,n − G2,nR2
1,n

)



(B.6)
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Error terms are found using conjugate gradient method:

u0 = 0 (B.7)

Z0 = L0U (B.8)

D0 = M−1Z0 (B.9)

αi =
⟨Zi|M−1Zi⟩
⟨Di|L1Di⟩

(B.10)

ui+1 = ui + αiDi (B.11)

Zi+1 = Zi − αiL1Di (B.12)

βi+1 =
⟨Zi+1|M−1Zi+1⟩
⟨Zi|M−1Zi⟩

(B.13)

Di+1 = M−1Zi+1 + βi+1Di (B.14)

where M =


µ1 − d1∂xx

µ1 − d1∂xx

µ2 − d2∂xx

µ2 − d2∂xx

 is preconditioning operator. Stopping criterion is

determined by residue norm.

⟨Zi|M−1Zi⟩
⟨Z0|M−1Z0⟩

< ϵ (B.15)

Note that L1 operator must be hermitian and symmetrical (κ1 = κ2, K1 =

K2, C1 = C2). These conditions are identical with conditions for energy conservation.

If initial operator L1 is symmetrical but not hermitian, equation can be adjointed

through constructing hermitian operator L†
1L1 [143]. Newton iteration formula for

non-hermitian symmetric systems takes following form.

L†
1L1u = L†

1L0U (B.16)
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