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Abstract

This thesis focuses on open topological string theory on Calabi-Yau threefolds without com-

pact four-cycles. We first review relevant aspects of topological string theories and gauge

theories. Then we use the refined topological vertex formalism to compute refined open topo-

logical string amplitudes. We find that the refined geometric transition, or in other words,

Higgsing, is the key step in this computation. We find there are different types of refined

open topological branes, and the corresponding refined Ooguri-Vafa formulas encode refined

open BPS invariants. Moreover, we discuss a quiver structure of refined open topological string

amplitudes on toric Calabi-Yau threefolds. In order to physically understand this quiver struc-

ture, we study the corresponding 3d N = 2 gauge theories and find quivers encode actually

effective mixed Chern-Simons levels of the mirror dual theories. Along the way, we discuss

brane webs for 3d N = 2 theories and find quiver structure also for nonabelian theories.
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Chapter 1

Overview

The story that we are going to discuss involves many aspects of topological strings and gauge

theories, including geometric engineering, M-theory/type IIB string duality, brane webs and

geometric transition.

Geometric engineering enables to construct gauge theories of various dimensions from

string theory compactified on Calabi-Yau manifolds [1]. In a parallel way, brane systems can

also be used to construct gauge theories. In this thesis, we are only interested in 5d N = 1

gauge theories and 3d N = 2 gauge theories that are constructed by M-theory compactified

on Calabi-Yau threefolds. The brane constructions referred to as brane webs, are in type IIB

string theory. Because of M/IIB duality, these brane webs are dual to Calabi-Yau threefolds in

M-theory [2]. The BPS particles of gauge theories are hence realized as M2-branes ending on

M5-branes. The summation of all contributions from these M2-branes gives rise to partition

functions of gauge theories.

Topological string theory is powerful enough to compute partition functions of gauge the-

ories [3, 4, 5]. In particular, closed topological strings are related to 5d N = 1 gauge theories

and open topological strings are related to 3d N = 2 gauge theories [6]. Topological string

partition functions are interpreted as gauge theory partition functions, because BPS particles

are identified with M2-brane states through geometric engineering. Topological string meth-

ods for computing string amplitudes therefore can be used to obtain the partition functions of

gauge theories without addressing the difficulty of computing the path integral in the quan-

tum field theory description. In addition, the 3d N = 2 theories we consider are obtained by

Higgsing appropriate 5d N = 1 brane webs [6]. Higgsing could introduce D3-branes, on which

a 3d N = 2 theory lives. Generically, we get 3d-5d coupled theories with the D3-brane as the

surface defect. Higgsing can also be interpreted as the geometric transition in the A-model of

topological string theories.

The geometric transition is the correspondence between open topological strings and closed

topological strings, which is similar to AdS/CFT correspondence, and can be reinterpreted

as the large N transition [7]. Initially, open topological strings are described by the Chern-

Simons theory on a three sphere S3 on which we wrap N couples of M5-branes. This U(N)

Chern-Simons theory is equivalent to the closed topological strings on a two sphere S2 inside

the resolved conifold on which there is no brane but with magnetic flux around S2 which gives
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CHAPTER 1. OVERVIEW

rise to the Kähler deformation. By using this geometric transition, the closed topological

string partition functions are related to amplitudes of the Chern-Simons theory that are more

easy to compute [8].

The topological vertex method is formulated in [9] to compute the closed topological

string amplitudes of toric Calab-Yau thereefolds that are represented as toric diagrams. Toric

diagrams consist of several vertices connected by lines, and each vertex denotes a C3 patch.

By putting branes and antibranes on these external lines, vertices are glued to large toric

diagrams. Toric diagrams through M-theory/IIB duality are identical to (p, q)-brane webs

that engineer 5d N = 1 gauge theories in type IIB string theory [2]. If we implement the

geometric transition on a two sphere S2 in a toric diagram by tuning its Kähler parameter

(volume of the two sphere) to particular values, then a Lagrangian submanifold with topology

S3 emerges, which carries D3-branes in the dual type IIB string theory. In this case we obtain

3d N = 2 theories.

The purpose of the thesis is to study the refined open topological string theory and its

corresponding 3d N = 2 theories. Since the computation of refined open topological strings is

missing in literature, we develop the refined topological vertex by using geometric transition

(Higgsing) to compute refined open string amplitudes. Along the way, we find the relations

between different types of refined open topological branes, as well as corresponding refined

Ooguri-Vafa formulas. We compute the amplitudes for some strip Calabi-Yau threefolds and

find they have quiver structure at refined level. In order to understand the quivers for strip

Calabi-Yau threefolds we implement mirror transformations on sphere partition functions of

the corresponding 3d N = 2 theories. By reading off information from effective superpoten-

tials, we find that quivers encode effective mixed Chern-Simons levels. In this process, we

consider a particular type of theories denoted by TA,N . Since toric diagrams are identical

to brane webs, in the end we discuss the 3d brane webs, using vortex partition functions

and quivers. We find many equivalent 3d brane webs, corresponding to different real mass

deformations.

Publications

This thesis is based on the author’s papers:

• S. Cheng, 3d N = 2 Brane Webs and Quivers, arXiv:2108.03696 (submitted to Journal

of High Energy Physics).

• S. Cheng and P. Su lkowski, Refined open topological strings revisited, arXiv:2104.00713

(submitted to PRD).

• S. Cheng, Mirror Symmetry and Mixed Chern-Simons Levels for Abelian 3d N = 2

theories, Phys.Rev.D 104, 046011 (2021), arXiv:2010.15074.

In addition, I have another two papers involving 2d mirror symmetry, 5d gauge theories and

closed topological strings:
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CHAPTER 1. OVERVIEW

• S. Cheng and S.-S. Kim, Refined topological vertex for a 5d sp(n) gaugetheories with

antisymmetric matter, Phys.Rev.D 104, 086004 (2021), arXiv:1809.00629.

• S. Cheng, F. J. Xu and F. Z. Yang, Off-shell D-brane/F-theory effective superpotentials

and Ooguri-Vafa invariants of several compact Calabi-Yau manifolds, Mod. Phys. Lett.

A 29, no. 12, 1450061 (2014), arXiv:1303.3318.

Outline of the thesis

This thesis consists of six chapters.

In chapter 2, we give a short review of topological string theory. We discuss 2d sigma

models, toric geometry, and geometric transition that relates open topological strings and

closed topological strings. After that, we focus on the topological vertex method and Ooguri-

Vafa formula. In this chapter the discussion on refined Ooguri-Vafa formulas and refined

topological vertex for open topological strings is based on [10].

In chapter 3, we give a short introduction to 3d N = 2 gauge theories and discuss the

structure of partition functions as well as effective superpotentials [11]. We also briefly review

3d mirror symmetry and localization results. The second part of this chapter is devoted to

brane constructions of gauge theories. In this chapter, we refer to some results from [11],

including vortex partition functions and quivers for 3d abelian theories.

In chapter 4, we mainly discuss the computation of refined open topological string partition

functions in the presence of a Lagrangian brane on strip Calabi-Yau threefolds. We also

discuss the relations between different types of topological branes and their refined Ooguri-

Vafa formulas. Some non-toric diagrams resulting from Hanany-Witten transitions are also

discussed. This chapter is based on the paper [10].

In chapter 5, we use the 3d mirror symmetry to analyze 3dN = 2 gauge theories engineered

by strip Calabi-Yau manifolds. The quivers encoded in open topological string partition func-

tions are shown to be the effective mixed Chern-Simons levels of the mirror dual 3d abelian

gauge theories. This chapter is based on the paper [11].

In chapter 6, we discuss the correspondence between 3d brane webs and quivers. It turns

out that there are many equivalent 3d brane webs related by 3d mirror symmetry. These

3d brane webs come from real mass deformations of the massless theories. We show that

nonabelian theories also have quiver structure. This chapter is based on the paper [12].

In the appendix A, we summarize some useful identities.

3
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Chapter 2

Topological string theory

Topological string theories are basically two dimensional supersymmetric sigma models cou-

pled to 2d gravity. There are two types of topological strings called A-model and B-model,

depending on different topological twists [13].

Because of geometric engineering, topological string partition functions are interpreted as

gauge theory partition functions which capture contributions from BPS particles. The de-

generacy numbers of these particles are closed (Gopakumar-Vafa) and open (Ooguri-Vafa)

BPS invariants [3, 14]. In some cases, closed topological strings and open topological strings

are related by geometric transitions [7]. The topological string partition functions on toric

Calabi-Yau threefolds can be computed in the formalism of the topological vertex [9]. Be-

cause of the duality between M-theory and type IIB string theory, the toric diagrams of

Calabi-Yau manifolds that engineer gauge theories through M-theory are identical with the

brane webs in type IIB string theory [2]. Therefore, the topological vertex method can be

used to analyze gauge theories.

In this chapter, we review topological string theories and also mention the connections to

gauge theories. Firstly, we review the 2d N = (2, 2) sigma model, which is the worldsheet

description of topological strings [15], which leads to A-model and B-model after topological

twist. The target spaces of topological strings are Calabi-Yau manifolds. In order to describe

target spaces, we review toric geometry that is used to construct Calabi-Yau manifolds. In

the second part of this chapter, we review the geometric transition between open topological

strings and closed topological strings, which finally leads to the topological vertex method [9].

There are some nice introductions to topological string theories; we refer to [16, 17].

2.1 2d N = (2, 2) sigma model

In this section, we give an introduction to the two dimensional sigma model with super-

symmetry N = (2, 2). After the topological twist, there are two types of theories, namely

A-model and B-model. The relation between these two models is 2d mirror symmetry; see

[13, 15, 18, 19] for more details.
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CHAPTER 2. TOPOLOGICAL STRING THEORY

2.1.1 2d N = (2, 2) nonlinear sigma model

The definition of the 2d sigma model is similar to string theory, which is described by the map

from a world-sheet Σg to a target space X

φ : Σg → X . (2.1)

The 2d worldsheet has coordinate z ∈ C and its conjugate z̄. We denote ∂z by ∂+ and ∂z̄

by ∂−. The Lorentz symmetry is U(1) that acts on the coordinates as z → eiαz and acts on

fermonic coordinates as θ± → e±iαθ± , θ̄± → e±iαθ̄±. In the 2d nonlinear sigma model, we

have the chiral superfield

Φ = φ(z, z̄) + ψ+(z, z̄)θ+ + ψ−(z, z̄)θ− + F (z, z̄)θ+θ− , (2.2)

satisfying D±Φ = 0.

To begin with, we show generators and commutators of the supersymmetry algebra. There

are Hamiltonian and momentum operator

H = −i(∂+ − ∂−) , P = −i(∂+ + ∂−) , (2.3)

Lorentz rotation operator

M = 2z∂+ − 2z̄∂− + θ+ d

dθ+
− θ− d

dθ−
+ θ̄+ d

dθ̄+
− θ̄− d

dθ̄−
, (2.4)

and

Q± =
∂

∂θ±
+ iθ

±
∂± , Q± = − ∂

∂θ±
− iθ±∂± , (2.5)

D± =
∂

∂θ±
− iθ±∂± , D± = − ∂

∂θ±
+ iθ

±
∂± , (2.6)

where Q± and Q± are supersymmetry generators, transforming as spin 1
2 fermions under the

Lorentz group. The commutators between them are

{Q±, Q±} = −2i∂± = P ±H , (2.7)

{Q±, D±} = 2i∂± = −P ∓H (2.8)

[M,Q±] = ∓Q± , [M,Q±] = ∓Q± , (2.9)

[M,D±] = ∓D± , [M,D±] = ∓D± , (2.10)

[M,H] = −2P , [M,P ] = −2H . (2.11)

In addition, there are R-symmetries acting on variables, which can be recombined into the

5



CHAPTER 2. TOPOLOGICAL STRING THEORY

vector symmetry U(1)V and axial symmetry U(1)A

U(1)V : (θ+, θ
+

)→ (e−iαθ+, eiαθ
+

) , (θ−, θ
−

)→ (e−iαθ−, eiαθ
−

) , (2.12)

U(1)A : (θ+, θ
+

)→ (e−iαθ+, eiαθ
+

) , (θ−, θ
−

)→ (e−iαθ−, eiαθ
−

) , (2.13)

with generators

FV = −θ+ d

dθ+
− θ− d

dθ−
+ θ̄+ d

dθ̄+
+ θ̄−

d

dθ̄−
, (2.14)

FA = −θ+ d

dθ+
+ θ−

d

dθ−
+ θ̄+ d

dθ̄+
− θ̄− d

dθ̄−
. (2.15)

The associated commutators are

[FV , Q±] = Q± , [FV , Q±] = −Q± , [FA , Q±] = ±Q± , [FA , Q±] = ∓Q± . (2.16)

In addition, the chiral superfield carries charges (qV , qA) under R-symmetries.

In the following, we show the Lagrangian description of 2d nonlinear sigma model. The

Lagrangian is given by a Kähler potential

SD =

∫
d2zd4θK(Φi,Φi) , (2.17)

where is also called D-term, and the measure is d2zd4θ = dzdz̄dθ+dθ−dθ̄+dθ̄−. One could also

include the F-term

SF =

∫
d2zd2θW (Φi)|θ̄±=0 . (2.18)

In this thesis, we do not consider this F-term. The bosonic part of the action is

Sφ = −
∫
d2zgij̄η

αβ∂αφ
i∂βφ

j
, (2.19)

where φ is the scalar in Φ, and the spacetime metric gij̄ is given by

gij̄ =
d2K

dφidφ
j
. (2.20)

Therefore, the target space is a Kähler manifold. The worldsheet metric ηαβ can be fixed by

conformal transformation

η+− = η−+ = 2 , η++ = η−− = 0 . (2.21)

If we add the fermonic part, then the D-term Lagrangian reads

L = gij̄(∂zφ
i∂z̄φ

j̄ + ∂z̄φi∂zφj̄) + iBij̄(∂zφ
i∂z̄φ

j̄ − ∂z̄φi∂zφj̄) (2.22)

+igij̄ψ
j
−D+ψ

i
+ + igij̄ψ

j
−D−ψ

i
+ −Rij̄kl̄ψi+ψk−ψ

j
+ψ

l
− , (2.23)

6



CHAPTER 2. TOPOLOGICAL STRING THEORY

where

Rij̄kl̄ = gmn̄gmj̄,l̄gn̄i,k − gij̄,kl̄ , (2.24)

D±ψ
i = ∂±ψ

i + Γijk∂±φ
jψk , (2.25)

Γijk = gil̄gl̄j,k , (2.26)

and the field Bij̄ is an anti-symmetric (1, 1)-form that can be added without breaking super-

symmetry. Fermionic fields are sections of bundles on the worldsheet

ψi+ ∈ Γ(K1/2 ⊗ φ∗T 1,0X) , ψī+ ∈ Γ(K1/2 ⊗ φ∗T 0,1X) , (2.27)

ψi− ∈ Γ(K
1/2 ⊗ ψ∗T 1,0X) , ψī− ∈ Γ(K

1/2 ⊗ φ∗T 0,1X) , (2.28)

where K is the canonical bundle on the target space X and we split the tangent bundle into

holomorphic and antiholomorphic parts TX = T 1,0X ⊕ T 0,1X. The fermions ψi+ and ψi− are

the left and the right moving modes respectively. The supersymmetry variation is

δ = ε+Q+ + ε−Q− + ε̃+Q+ + ε̃−Q− , (2.29)

which transforms various fields as follows

δφi = iε−ψ
i
+ + iε+ψ

i
− , (2.30)

δφī = iε̃−ψ
i
+ + iε̃+ψ

i
− , (2.31)

δψi+ = −ε̃−∂zφi − iε+ψj−Γijkψ
k
+ , (2.32)

δψī+ = −ε−∂zφī − iε̃+ψj̄−Γīj̄k̄ψ
k̄
+ , (2.33)

δψi− = −ε̃+∂z̄φi − iε−ψj+Γijkψ
k
− , (2.34)

δψī− = −ε+∂z̄φī − iε̃−ψj̄+Γīj̄k̄ψ
k̄
− , (2.35)

where fermonic parameters ε−, ε̃− are sections of K−1/2, and ε+, ε̃+ are sections of K
−1/2

.

2.1.2 A-model and B-model

The supersymmetry cannot be preserved on the worldsheet with genus g 6= 1. In order to have

convariant spinors on the whole worldsheet of genus g, we need to change the transformations

of fields such that the supersymmetry transformation becomes a scalar on the worldsheet.

One way is to use the topological twist, which redefines a new Lorentz generator by combining

it with R-symmetry generators

MA = M − FV , MB = M − FA (2.36)

7



CHAPTER 2. TOPOLOGICAL STRING THEORY

Then we have commutators

[MA , Q+ +Q−] = 0 , [MA , Q−] = 0 , [MA , Q+] = 0 , (2.37)

[MB , Q+ +Q−] = 0 , [MB , Q+−] = 0 , [MB , Q−] = 0 . (2.38)

After the topological twist, the operator QA := Q+ + Q− becomes a scalar for MA, and

QB := Q+ + Q− becomes a scalar for MB. These twisted operators can exist on Riemann

surfaces with any genus. We have two kinds of twists, for which the associated R-symmetries

are different:

A-twist: U(1)V , B-twist: U(1)A . (2.39)

If the R-symmetry is U(1)V , then the target space is a Kähler manifold, while if the R-

symmetry is U(1)A, the target space is not only a Kähler manifold but is also a Calabi-Yau

manifold such that U(1)A is anomalous [13]. Therefore, there are two types of theories called

A-model and B-model accordingly.

A-model

In the A-twist, the bundles for fields are changed, and we have

χi = ψi+ ∈ Γ(φ∗T 1,0X) (2.40)

χi = ψi− ∈ Γ(φ∗T 0,1X) (2.41)

ψiz = ψi+ ∈ Γ(K ⊗ φ∗T 0,1X) (2.42)

ψiz = ψi− ∈ Γ(K ⊗ φ∗T 0,1X) . (2.43)

Note that χi and χī become scalars on the worldsheet once we set ε− = ε̃+ = ε and ε̃− = ε+ = 0,

then the supersymmetry variation is

δ = εQA = ε(Q− +Q+) , δ2 = 0 . (2.44)

The variations of scalars φi reduce to

δφi = iεχi , δφī = iεχī, (2.45)

and the variations of other fields are zero. In the A-model, there is an interesting correspon-

dence between supersymmetry operator and differential operator

QA ↔ d = ∂ + ∂ , χi ↔ dxi , χī ↔ dxī , (2.46)

8
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where xi and xī are local coordinates on X and d is de Rham differential. The action in this

twist degenerates to

S = i

∫

Σ
{QA, V } − 2πφ∗(B + iJ) , (2.47)

where V = 2πgij̄(ψ
j̄
z∂φi + ∂φj̄ψiz̄), and B + iJ ∈ H2(X,C) is the complexified Kähler form.

Note that the A-model does not depend on the complex structure.

The infinite dimensional space of all maps φ : Σ→ X localizes at saddle points of V = 0,

which are finite dimensional if we perform path integral:

Z =

∫
DφDψDχ e−S =

∑

β∈H2(X,Z)

e−2πitβ

∫

fixed β
dφdψdχ e−i

∫
{QA,V } . (2.48)

At saddle points V = 0, we have ∂φi = 0 and fields φi become holomorphic. These holomorphic

maps are worldsheet instantons. If we consider a genus g 6= 0 Riemann surface, then the A-

model becomes trivial because of ghost number conservation constraints [13]. In this case,

to obtain nontrivial theory the worldsheet gravity needs to be included, namely including all

metrics on Σg in the path integral. This is the topological string theory we discuss. Note that

the target space of A-model is a Kähler manifold. If we couple A-model with 2d gravity, then

the target space should be a Calabi-Yau manifold. Before discussing that, let us first review

the B-model.

B-model

The B-model has a different setting in comparison with the A-model. We have fields

ψj̄± ∈ Γ(φ∗T 0,1X) , (2.49)

ψj+ ∈ Γ(K ⊗ φ∗T 1,0X) , (2.50)

ψj− ∈ Γ(K ⊗ φ∗T 1,0X) , (2.51)

and define scalars

ηj̄ = ψj̄+ + ψj̄− , θj = gik̄(ψ
k̄
+ − ψk̄−) . (2.52)

If we set ε± = 0 and ε̃± = ε, then the supersymmetry variation is

δ = εQB = ε(Q− +Q+) , δ2 = 0 . (2.53)

There is a correspondence

ηī ↔ dx̄ī , θi ↔
∂

∂xi
, QB ↔ ∂ . (2.54)

9
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The action for the B-model is

S = i

∫
{Q,V }+ U , (2.55)

where

V = gik̄

(
ρjz∂φ

k̄ + ρjz̄∂φ
k̄
)
, (2.56)

U =

(
−θjDρj −

i

2
Rjj̄kk̄

)
ρj ∧ ρkηj̄θlglk̄ . (2.57)

Here U only depends on the complex structure of the target space Y .

At the saddle point V = 0, we have ∂φk̄ = 0 and ∂φk̄ = 0, so fields φk map to points

in the Calabi-Yau manifold Y . Hence correlation functions are classical integrals. There is

no worldsheet instanton correction in the B-model. The target space of B-model should be a

Calabi-Yau manifold to be free of U(1)A anomaly. There is a unique holomorphic (3, 0)-form

Ω on the target space Y . The complex structure deformations in B-model are elements in

H2,1(Y ).

2.1.3 2d N = (2, 2) linear sigma model

A more general theory is the linear sigma model discussed in [15], which probes the global

moduli space, while the nonlinear sigma model can only probe the large parameter regime.

In this subsection, we review the 2d linear sigma model and discuss in particular its moduli

space.

We can add the vector multiplet

V =(A0 −A1)θ−θ
−

+ (A0 +A1)θ+θ
+ − σθ−θ+ − σθ+θ

−
+ iθ−θ+(θ

−
λ− + θ

+
λ+)

+ iθ
−
θ

+
(θ−λ− + θ+λ+) + θ−θ+θ

+
θ
−
D

(2.58)

and write down the Lagrangian

L = Lkin + Lgauge + LW + LFI =

=

∫
d4θΦ†eq·V Φ−

∫
d4θ

1

2g2
Σ†Σ +

∫
d2θW(Φ) +

1

2

(
−t
∫
d2ϑ Σ + c.c.

)
, (2.59)

where the field strength is Σ = D+D−V and the Fayet-Iliopoulos parameter is t = r − iϑ.

We consider the theory with a gauge group U(1) as an example. Its Lagrangian can be

expanded as

L = − 1

2g2
(|∂µσ|2 + F 2

01)− |Dµφ|2 − U(σ, φ) + ϑF0,1 + fermions , (2.60)

10
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where the scalar potential is

U(σ, φ) =
1

2g2
D2 +

∑

i

|Fi|2 + |qiσ|2|φi|2 . (2.61)

The D-term and F-term are

D = −g2

(∑

i

qi|φi|2 − r
)
, Fi =

∂W
∂φi

. (2.62)

The vacua moduli space is defined by U(σ, φ) = 0 [15]. We assume r > 0 and σ = 0; then

the Coulomb branch moduli spaceMC can be obtained by the D-term after modding out the

U(1) gauge group:

MC =
{ N∑

i=1

qi|φi|2 = r
}
/U(1) . (2.63)

This is a toric Cabi-Yau manifold by definition. This moduli space is identified with the target

space of topological string theory. Note that the R-symmetry U(1)A is anomaly free only if∑
i qi = 0; otherwise the measure in the path integral is not invariant. This condition is the

Calabi-Yau condition [15].

We can also consider the effective theory of the linear sigma model by integrating out

matter fields

eiSeff(Σ) =

∫
DΦeiS(Σ,Φ) . (2.64)

The effective Lagrangian is

Leff =

∫
d4θKeff(Σ,Σ) +

1

2

(∫
d2ϑ2W̃eff(Σ) + c.c

)
, (2.65)

and the scalar potential is

Ueff(σ) = −
(
∂Keff

∂σ∂σ†

)−1 ∣∣∣W̃eff

∂σ

∣∣∣
2
, (2.66)

which gives rise to the vacuum equation

exp

(
W̃eff

∂σ

)
= 1 . (2.67)

This equation is also called Bethe equation in the Bethe/gauge correspondence [20]

2.1.4 2d mirror symmetry

A-model and B-model are related by the famous mirror symmetry [13, 21]. In this subsection,

we give a short review on this duality. Note that the mirror symmetry corresponds to the

11
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T-duality between type IIA and type IIB string theories.

The Calabi-Yau manifold X has complex structure parameters and Kähler deformation

parameters as follows:

complex structure moduli: h2,1 = dimH2,1(X) , Kähler moduli: h1,1 = dimH1,1(X) .

(2.68)

Two mirror dual manifolds (X,Y ) are target spaces of A-model and B-model respectively,

satisfying

h1,1(X) = H2,1(Y ) , h2,1(X) = H1,1(Y ) . (2.69)

In the A-model moduli parameters are Kähler parameters in the Calabi-Yau manifold X

tI =

∫

βI

B + iJ , I = 1, . . . , h1,1(X) , (2.70)

where βI ∈ H2(X) and J is the Kähler form. In the B-model, moduli parameters are complex

structure parameters of the Calabi-Yau manifold Y :

zI =

∫

αI

Ω , I = 1, . . . , h2,1(Y ) , (2.71)

where αI ∈ H3(Y ). In order to connect A-model and B-model, we need to construct the

mirror maps between these parameters, which is defined as

tI =

∫
αI

Ω∫
α0

Ω
=

1

2πi
(log zI + · · · ) , I = 1, . . . , h2,1(Y ) , αI ∈ H3(Y ) , (2.72)

where Ω is the unique (3, 0)-form on Y . In the symplectic basis (αI1 , β
I2), the unique three-

form can be written as

Ω = XI1αI1 + FI2β
I2 . (2.73)

The mirror symmetry can also be extended to open topological strings, which needs the

presence of D-branes [22]. Then one obtains the open-closed mirror symmetry; see [23, 18, 24].

D-branes are boundaries of open strings from the worldsheet perspective. In the A-model,

open strings should end on a Lagrangian submanifold L in the Calabi-Yau manifold X. The

Lagrangian is defined as the submanifold that the dimension of L is a half of X and the

Kähler form ω vanishes when it is restricted to L. Such L is a real section of X, and open

topological strings ending on such a manifold L preserve a half of the supersymmetry. On the

other hand, the B-model admits Dp-branes of even dimensions, and supermymmetric branes

should wrap holomorphic submanifolds. In particular, for the mirror Calabi-Yau pair (X,Y )

with a Lagrangian L ⊂ X and a holomorphic curve C ⊂ Y , D6-branes wrapping R4 × L are
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mirror dual to D5-branes wrapping R4 × C. Hence the open-closed mirror pair is

(X,L)
mirror←−−→ (Y, C) . (2.74)

2.1.5 Topological string theory

Topological string theory is defined as a 2d N = (2, 2) nonlinear sigma model with maps from

worldsheets to a target space φ : Σ → X and then couples to 2d gravity. In order for the 2d

theory to be superconformal, the target space needs to be a Kähler manifold that satisfies the

Calabi-Yau condition c1(TX) = 0. After topological twist, this theory becomes anomaly free

and topological. The partition function sums over all maps φ : Σ→ X

∫
DφDge−

∫
Σ L(φ) , (2.75)

where g is the metric on Σ. This path integral is an integral over the complex structure

parameters on Σ. Moreover, we need to define the free energy for the Riemann surface of any

genus. The free energy is the integral over the moduli spaceMg of the Riemann surface with

genus g. For genus g = 0, the moduli space is a point, and for g = 1, the moduli space is the

fundamental domain for torus. For higher genus g > 1, free energy is

Fg =

∫

Mg

[dmdm]
〈 3g−3∏

a=1

(∫

Σ
µaG

−
)(∫

Σ
µāG

−
)〉

Σg
. (2.76)

For more details on this worldsheet description of topological string, see [25, 19].

In string theory, worldsheets of any genus need to be summed up to get a complete string

partition functions. Similarly, in topological string theories, we should to sum up all genus

contributions and get the free energy

F =

∞∑

g=0

Fgg2g−2
s , (2.77)

where gs is the string coupling and the free energy is defined through the topological string

partition function

F = logZ . (2.78)

2.2 Toric Calabi-Yau threefolds

In this section we give a brief introduction to toric Calabi-Yau manifolds. Toric geometry is

important in our context as it represents Calabi-Yau threefolds in terms of toric diagrams,

which through the duality between M-theory and IIB string theory, are identical to 5-brane

webs in type IIB string theory, and D3-branes on 5-brane webs correspond to Lagrangian

submanifolds [2, 24]. In this section, we first give the definition of Calabi-Yau manifolds and

then discuss toric diagrams. For a nice introduction to toric geometry, see [26].
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Calabi-Yau manifolds. The target space of topological string theory should be Calabi-Yau

manifold X, satisfying the following properties:

• X is a complex manifold with a metric g satisfying gij = gīj̄ = 0.

• X is a Kähler manifold. Namely, there is a real function K(z, z̄) such that gij̄ = ∂i∂j̄K,

and the Kähler form is ω = gij̄dzi ∧ dzj satisfying dω = 0.

• X has a holomorphic n-form Ω = f(z1, . . . , zn)dz1 ∧ · · · ∧ dzn. This is equivalent to the

Calabi-Yau condition c1(TX) = 0, where TX is the tangent bundle of X.

Typical examples of one dimensional Calabi-Yau manifolds are complex plane C and torus

T 2. Two dimensional Calabi-Yau manifolds are K3 surfaces which are defined as hypersurfaces

in P3. Note that the complex projective space Pn is not a Calabi-Yau manifold. In this

thesis, we focus on non-compact Calabi-Yau three dimensional complex manifolds (also called

Calabi-Yau threefolds), which are considered as fiber bundles, for instance

O(−3)→ P2 , O(−2,−2)→ P1 × P1 , O(−1)⊕O(−1)→ P1 .

2.2.1 Toric diagrams

Toric geometry has been used in many aspects of string theory for constructing Calabi-Yau

manifolds and brane webs. In the following, we give a short introduction to toric diagrams.

Toric geometry represents Calabi-Yau manifolds in terms of toric diagrams. Toric ge-

ometry can be understood by considering C3 as building blocks. The n-complex dimen-

sional manifold Cn has complex coordinates (z1, . . . , zn). We write zi = |zi|eiθi and then

use angular coordinates (|z1|2, . . . , |zn|2, θ1, . . . , θn). Then the Kähler form can be written as

ω =
∑

i dzi∧dzi =
∑

i d|zi|2∧dθi. Angular coordinates (θ1, . . . , θn) parameterize n-dimensional

torus Tn = S1×· · ·×S1, and |zi| is the radius for i-th circle S1. The space Cn can be factorized

as Cn = On+ × Tn where On+ denotes the special locus defined as {|zi|2 > 0}, which looks

like a frame, as shown in Figure 2.1. The frame in Figure 2.1 is known as the toric diagram.

|z3|2

|z1|2

|z2|2

Figure 2.1: The frame of special locus for C3, which is known as the toric diagram if we
project the frame to a plane.

Since zi = |zi|eiθi , when |zi| = 0, the circle S1 parameterized by θi shrinks. Therefore, on

closed surfaces (divisors) of the toric diagram, there is a circle S1 that shrinks and a torus T 2

is left. On edges of toric diagrams, a circle S1 is left and two-cycles S1 × S1 shrink. On the

bulk of toric diagrams, no cycle shrinks and T 3 = S1 × S1 × S1 is left. In particular, at each
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vertex of toric diagrams all circles shrink. We illustrate the toric diagram of C3 in Figure 2.1.

Similarly, we can describe projective spaces such as Pn, which satisfies |z1|2 + · · ·+ |zn+1|2 = r

and the identification (z1, . . . , zn+1) ∼ (eiθz1, . . . , e
iθzn+1).

Each compact (noncompact) polygon in a toric diagram is called a divisor, and corresponds

to a compact (noncompact) four-cycle. The compact divisors give rise to vector multiplets,

while noncompact divisors give rise to hypermultiplets in the geometric engineering of 5d

N = 1 gauge theories, see e.g. [27]. Each internal line corresponds to a two-cycle P1, and each

external line corresponds to a disk C. A typical example is O(−2,−2) → P1 × P1 illustrated

in Figure 2.2, in which the compact divisor represents a four-cycle P1 × P1, and there are two

independent compact two-sphere P1.

P1

P1

Figure 2.2: This toric diagram is for the geometry O(−2,−2) → P1 × P1. This manifold
contains one compact divisor, four noncompact divisors, four compact two-spheres P1, and
four disks R+ × S1.

Resolved conifold. Conifold geometry is particularly useful in toric diagrams, because it

relates to the geometric transition in topological strings and hypermultiplets in gauge theries.

The toric diagram for the geometry O(−1)⊕O(−1)→ P1 is shown in Figure 2.3. This Calabi-

Yau threefold is called resolved conifold1. Sometimes, we also call it local conifold in this thesis

for convenience. The local conifold plays an important role, as it gives rise to BPS particle in

M-theory if we wrap M2-brane on it, or gives rise to hypermultiplets in brane constructions

of gauge theories. In addition, conifold geometry can undergo a geometric transition in the

A-model.

P1

Figure 2.3: Resolved conifold (local conifold).

Geometrically, the conifold is a singular manifold in C4 with coordinates (x, y, z, t), defined

by a polynomial equation

xy − zt = 0 , (2.79)

1The P1 is a two-sphere introduced by blowing up the conifold singularity. Note that the conifold itself is a
singularity which is the limit that this two-sphere P1 shrinks.
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which can be deformed by turning on a complex structure parameter

xy − zt = µ . (2.80)

Then one can change variables to write (2.80) as

x2
1 + x2

2 + x2
3 + x2

4 = r , (2.81)

whose real part is a three-sphere S3. The full geometry including the fiber is a cotangent

bundle T ∗S3. On the other hand, the conifold singularity can also be resolved by blowing

up the singularity by introducing a two-sphere P1 at the singular point. These two ways of

resolutions are illustrated in Figure 2.4.

S3

deform. blow up
P1

Figure 2.4: The P1 in the resolved conifold can be wrapped by M2-branes. These two different
resolutions are connected by the geometric transition. The three-sphere S3 in the left diagram
carries a Chern-Simons theory, while the P1 in the right diagram carries closed topological
strings [7].

Recall that the volume of P1 in the resolved conifold is given by

t = vol(P1) =

∫

P1

J + iB . (2.82)

When t → 0, the P1 shrinks to a point. The resolved conifold is obtained by turning on the

Kähler parameter for P1.

2.2.2 Lagrangian submanifolds

Lagrangian submanifolds are boundaries of open topological strings. The toric geometry

construction of these submanifolds is discussed in [24]. In the following, we give a short

introduction to such submanifolds. If some branes wrap Lagrangian submanifolds, then these

branes are called Lagrangian branes or Aganagic-Vafa branes [24]. In type IIB string theory,

wrapping D3-branes on Lagrangian submanifolds give rise to 3d N = 2 theories.

The Lagrangian submanifold in toric geometry is a real slice of the Calabi-Yau manifold.

For instance, R3 ⊂ C3 with fixed θi is a Lagrangian submanifold. Generically, the Lagrangian

submanifold is a n-dimensional real space parametrized by |zi|2 and Kähler forms vanish on

it ω|L = 0. On toric diagrams, we only consider Lagrangian submanifolds that have topology

C × S1. Lagrangian submanifolds are represented as additional lines attached to some edges

on toric diagrams. For instance, we can find Lagrangian submanifolds in O(−2)⊕O(0)→ P1.

As illustrated in Figure 2.5, blue lines stretching in the bulk denote Lagrangian submanifolds.
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The slopes of these lines correspondes to the charges of Lagrangian branes.

Figure 2.5: The Calabi-Yau threefoldO(−2)⊕O(0)→ P1 with some Lagrangian submanifolds
denoted by blue lines.

2.2.3 D-terms and brane webs

In this section, we use algebraic polynomials to define toric diagrams, and discuss relations

between toric diagrams and brane webs.

As we discussed in subsection 2.1.3, the D-term in the 2d linear sigma model gives rise to

a toric geometry construction of Calabi-Yau manifolds. The target space of A-model is the

Coulomb moduli spaceMC of a 2d N = (2, 2) linear sigma model. We assume that there are

Nc + 3 chiral multiplets Φi whose lowest components are scalar fields zi
2. Then D-terms give

rise to a toric Calabi-Yau threefold X in the A-model, defined by linear equations:

X :
∑

i

qAi |zi|2 = tA , A = 1, . . . , Nc , (2.83)

where qAi are charges for coordinates zi under the gauge group U(1)Nc and satisfy
∑

i q
A
i = 0

which is known as the Calabi-Yau condition; see e.g. [28], and tA are complexified Kähler

parameters. The action of the gauge group U(1)Nc on coordinate zi is

zi → exp
(
iqAi θA

)
zi . (2.84)

Note that the Lagrangian submanifold can also be defined by (2.83) with an additional charge

vector qLi satisfying
∑

i q
L
i = 0. Because of this property, both open topological strings and

closed topological strings can be considered by toric geometry.

Let us go to the relations between toric diagrams and brane webs. Recall that a toric

Calabi-Yau threefold is fiber bundle with the torus T 2 as the fiber and a complex two di-

mensional manifold as the base. Since the M-theory/IIB duality argues that the M-theory

compactified on torus T 2 is dual to the type IIB string theory compactified on a cycle S1. It

is natural to relate the toric Calabi-Yau manifolds X in M-theory and brane webs in type IIB

string theory [2]. It turns out that the toric diagrams as the degeneration locus of torus are

mapped to the (p, q)-brane webs in type IIB string theory. For example, the brane web in

Figure 2.2 gives rise to a pure 5d N = 1 theory with a gauge group SU(2), and the resolved

conifold in Figure 2.3 gives rise to a theory with a gauge group U(1).

Note that at each vertex of the brane web, there are three edges. Because of charge

2These scalar fields are denoted by φi in previous sections. Here we denote then by zi as they are coordinates
for toric Calabi-Yau manifolds.
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conservation, the sum of charges for three edges is zero:

3∑

i=1

pi = 0 ,

3∑

i=1

qi = 0 , (2.85)

which is equivalent to the Calab-Yau condition for the corresponding toric diagrams [29]. In

addition, the SL(2,Z) symmetry of the toric diagrams is the SL(2,Z) symmetry in type IIB

string theory. This symmetry can be used to change the slope of toric diagrams, namely the

charges of 5-branes. More explicitly, we can use this SL(2,Z) transformation to change the

electric charges of the whole brane web in the way:

(1, 0)→ (1, 0) , (p, 1)→ (p+ n, 1) , (2.86)

and change the magnetic charges in another way:

(0, 1)→ (0, 1) , (1, q)→ (1, q + n) , (2.87)

where n can be any integer. These two ways of changing charges can be implemented on

brane webs one after another, leading to equivalent brane webs. In particular, the S-operator

in SL(2,Z) is the S-duality in type IIB string theory, which rotates toric diagrams (brane

webs) by a 90 degree.

2.3 Open topological string theory

Open and closed topological strings are combined with each other and developed together;

hence it is hard to distinguish them and discuss one type of topological strings independent of

the other one. We prefer to start from the open-closed duality which arises from Chern-Simons

theory and geometric transition [7]. In this section, we also discuss Gopakumar Vafa formula

and Ooguri-Vafa formula that encode BPS invariants [5, 30, 14, 6, 10]. In the end, we give a

review of the refined topological vertex, which is the main tool that we will use in this thesis.

The A-model admits D-branes of odd dimensions inside Calabi-Yau manifolds. The open

topological strings have boundaries ending on D-branes wrapping Lagrangian submanifolds.

A key example is the deformed conifold, namely, the cotangent bundle T ∗S3. We wrap N

D-branes on the base S3. In this way, we obtain a topological field theory with a gauge group

U(N). In [31], Witten found that open topological string theory in this case is Chern-Simons

theory. In this section we show how Chern-Simons theory is crucially related to topological

strings.

2.3.1 Geometric transition

We can analyze Chern-Simons theory instead of the open topological string theory. The

geometric transition makes the story complete by connecting open topological strings to closed

topological strings [7].
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To begin with, the Chern-Simons theory on a three-sphere S3 has action

S =
k

4π

∫

S3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.88)

In order for it to be gauge invariant, the Chern-Simons level k should be integer. The path

integral of the partition function of Chern-Simons theory is

Z =

∫
DAeiS[A] . (2.89)

In the A-model, geometric transition states that the Chern-Simons theory on S3 with a

gauge group U(N) and a level k is equivalent to the closed topological string theory on resolved

conifold O(−1)⊕O(−1)→ P1, with the identification of parameters

gs =
2π

k +N
, t =

2πiN

k +N
= igsN , (2.90)

where gs is the string coupling, t is the Kähler parameter of P1. In addition, the U(N) Chern-

Simons theory is constructed by wrapping N D-branes on S3. It can be checked that the

’t-Hooft expansion of the Chern-Simons partition function on S3 is exactly equal to the closed

A-model amplitude on S2 to all genus [7], with Ngs = λ as the ’t-Hooft coupling.

Recall that the Chern-Simons theory on S3 describes the open topological strings of the A-

model. Hence the geometric transition is an open-closed duality, connecting open topological

strings and closed topological strings.

2.3.2 Chern-Simons correlation functions

One can use Chern-Simons theory to compute topological string partition functions for generic

Calabi-Yau manifolds. In this subsection, we given a review on the computation, following

[14, 8].

We start from the Ooguri-Vafa construction of knots in M-theory [14]. As we have discussed

above, N overlapped branes wrapping on the base S3 of deformed conifold T ∗S3 are described

by Chern-Simons theory. We can probe the dynamics on these branes by another stack of M

overlapped branes which wrap a Lagrangian submanifold LK and intersect the base S3 along

a knot K

LK ∩ S3 = K .

Note that LK is along the fiber of tangent bundle T ∗S3.

This Ooguri-Vafa brane system describes the Chern-Simons theory with the gauge group

U(N)× U(M). There are two types of Wilson loops along the knot

U = Pe
∮
K A ∈ U(N) , V = Pe

∮
K Ã ∈ U(M) , (2.91)

where A and Ã are gauge fields on these two stacks of branes respectively. In M-theory, the

open strings connecting these two stacks of branes are lifted to M2-branes with two boundaries,
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which in this case have the topology of annulus. In [14, 8], it is derived that M2-branes lead

to the annulus amplitude

O(U, V ; r) = exp
[
− Tr log

(
1− e−rU ⊗ V −1

) ]
(2.92)

= exp
[ ∞∑

n=1

e−rn

n
TrUn TrV −n

]
, (2.93)

where r is the length of this annulus and n is the winding number. The Chern-Simons path

integrals for generic toric geometries can be computed by using this annulus operator.

geo. trans.

L1

L2

Figure 2.6: After geometric transitions, the amplitude of closed topological strings become the
correlation function of Chern-Simons theory. In this example, the boundaries of M2-branes
ending on Lagrangian submanifolds L1 and L2 are unknots S1.

The procedure of computing topological string amplitudes is the following. Firstly, one

needs to implement geometric transitions on some resolved conifolds and get Lagrangian sub-

manifolds Li which are three-spheres S3. On each of these three-spheres we wrap M5-branes

to get a gauge group, and the M2-branes connecting two stacks of M5-branes contribute to the

annulus operator O(Vi, Vj). Finally, by taking all annulus operators into account, one ends

up with topological string amplitudes. We use an example to illustrate. The strip Calabi-Yau

threefold described by the left toric diagram in Figure 2.6 captures the closed string amplitude

of the A-model, which is transformed into the correlation function of Chern-Simons theory:

Zclosed top. = 〈O(V1, V2; r)〉 =

∫
DA1DA2e

SCS(A1)+SCS(A2) exp
[ ∞∑

n=1

e−rn

n
TrV n

1 TrV −n2

]
.

(2.94)

Moreover, by using the Frobenius formula

Tr~kV :=

∞∏

j=1

(TrV j)kj =
∑

R

χR(~k)TrRV , (2.95)

where χR(~k) is the character of the symmetric group S|R|, the annuls operator can be rewritten

in terms of Young diagram R

O(V1, V2) =
∑

R

TrRV1e
−|R|rTrRV

−1
2 , (2.96)

where Vi is the homolomy of the gauge field on the Lagrangian submanifold Li. By gluing

the annulus operators, one can compute the path integrals of correlation functions for more
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complicated toric diagrams

Ztop.string =

∫ n∏

i

DAie
∑
i SCS(Ai)O(V1, V2; r1)O(V2, V3; r2) . . .O(Vn, V1, rn) , (2.97)

which can be represented as the summation over Young diagrams

Ztop. string =
∑

R1,R2,...,Rn

〈R1|VL2e
−|R2|r2R2〉〈R2|VL3e

−|R3|r2R3〉 · · · 〈Rn|VL1e
−|R1|r1R1〉 , (2.98)

where VLi ∈ SL(2,Z) are the operators transferring the Wilson loop Vi+1 to the Wilson loop

Vi. In particular, the amplitude for the Hopf link K1 ∪K2 is

WR1,R2 = 〈TrR1V1TrR2V2〉 . (2.99)

If one of Young diagrams is empty, we get the correlation function for a single unknot

WR(K) = 〈TrRV 〉 = sR(Q) , (2.100)

where sR(Q) is a Schur function. More explicitly, the Wilson loop of the unknot in represen-

tation R is

WR =
S0R

S00
= dimq R , (2.101)

and for the Hopf link

WR1R2 = q|R1||R2|/N S
−1
R1R2

S00
. (2.102)

One can represent Wilson loops in terms of Kähler parameters, using

TrUn = −ie
nt/2 − e−nt/2
qn/2 − q−n/2 . (2.103)

Then the annulus amplitude (2.92) is

〈O(U, V )〉S3 = exp
[
− i

∞∑

n=1

ent/2 − e−nt/2
n(qn/2 − q−n/2)

TrV −n
]
, (2.104)

where two components ent/2 and e−nt/2 correspond to two disks that are the two hemispheres

of P1 in the resolved conifold.

2.4 Topological string invariants

Topological string theories have a target space interpretation in M-theory. The M-theory com-

pactified on Calabi-Yau threefolds through geometric engineering gives rise to supersymmetric

gauge theories. Therefore, topological string partition functions are interpreted as gauge the-
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ory partition functions. In this section, we first discuss the refinement of gauge theories

and then discuss Gopakumar-Vafa formula and Ooguri-Vafa formula that encode degeneracy

numbers of BPS particles.

Ω-background in gauge theories

In 4d and 5d, supersymmetric gague theories depend on two parameters ε1 and ε2, which

are Ω-deformation parameters [32, 33]. The Ω-deformations are interpreted as the rotation

symmetry SO(4) acting on spacetime R4. This rotation symmetry is generated by a vector

field on R4. The metric is deformed

ds2 = gij
(
dxii+ V idxi

) (
dxj + V jdxj

)
, (2.105)

and the vector field is

V = V i ∂

∂xi
= Ωj

jx
j ∂

∂xi
, (2.106)

where

Ωij =




0 ε1 0 0

−ε1 0 0 0

0 0 0 ε2

0 0 −ε2 0



. (2.107)

If we regard the spacetime as two complex planes R4 = C1×C2, then V can be written as

V = iε1

(
z1

∂

∂z1
− z1

∂

z1

)
+ iε2

(
z2

∂

∂z2
− z2

∂

z2

)
. (2.108)

Moreover, V is a Killing vector field acting on the moduli space of k-instantons M+
k . By

adding this deformation, the integral over moduli space are localized to fixed points. For

instance, the k-instanton partition function

Zk =

∫

M+
k

1 =
∑

fixed points

1

det(· · · ) . (2.109)

These fixed points are labeled by Young diagrams [32]. The Ω-deformations are introduced

as a method to perform localization, but immediately it is realized that the Ω-deformation is

the graviphoton field strength [32, 33].

2.4.1 Gopakumar-Vafa formula

The topological string theories can also be refined. There are refined formulas for topological

partition functions, which sum up all the contributions of BPS particles. Let us first discuss the

geometric engineering of these BPS particles and then discuss the Gopakumar-Vafa formula.

For details of this construction, see e.g. [30].

The topological string amplitudes can be interpreted as partition functions of 5d N = 1

gauge theories which are engineered by the M-theory compactified on noncompact Calabi-Yau
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threefolds X. The BPS particles in 5d gauge theories are engineered as M2-branes wrapped

on holomorphic curves β ∈ H2(X,Z). The masses of these BPS particles are the areas of

holomorphic curves Tβ =
∫
β ω, where ω = J + iB is the complexified Kähler form on X.

These BPS particles are charged under the little group SO(4) = SU(2)L×SU(2)R and hence

are classified by spins (jL, jR). In addition, M2-branes have momentums along the circle S1

direction. Therefore, the mass of the M2-brane with momentum n is given by Tβ + 2πin/gs.

Because of the M-theory/IIB-string duality, BPS particles given by M2-branes carry electric

and magnetic charges, and hence correspond to (p, q)-strings in brane webs

M2-branes↔ (p, q)-strings . (2.110)

On the Coulomb branch the gauge group is broken to U(1)Nc , which can also be interpreted

via the Calabi-Yau geometry X. Each U(1)i corresponds to a compact divisor Di ⊂ X, and

gauge fields come from the three-form C
(3)
11 in M-theory

C
(3)
11 =

Nc∑

i=1

A(i)
µ ∧ ω(i) , (2.111)

by wrapping a M2-brane on a curve β

Nc∑

i=1

A(i)
µ

∫

β
ω(i) =

Nc∑

i=1

A(i)
µ (Di · β) , (2.112)

where the term Di · β (intersection number) is the electric charge for the BPS particle.

Moreover, we can get 4d N = 2 theories by shrinking the circle S1 in the 5d spacetime

R4 × S1. There is a graviphoton field strength

F = ε1dx
1 ∧ dx2 + ε2dx

3 ∧ dx4 , (2.113)

which can be interpreted as the field V in (2.108). In 5d gauge theories, BPS particles

go around the circle S1 and are charged under this field strength F . The Ω-deformation

leads to refined partition functions of 5d theories and 4d theories [32, 33]; there should exist

a refinement of topological strings. The original topological string theory is the unrefined

topological string theory that defined at the unrefined limit ε1 + ε2 = 0. Because of geometric

engineering discussed above, we have the equivalence between partition functions in this limit3

Ztop.(gs) = ZNek.(ε1, ε2)|gs=ε2=−ε1 . (2.114)

However, unrefined partition functions do not capture the full rotation symmetry on R4
ε1,ε2 ,

so we prefer to refine it.

Let us go back to M-theory and discuss how the Ω-deformation rotates the spacetime

coordinates. In our context, the M-theory compactified on Calabi-Yau threefold X has the

3Note that the gauge theroy partition functions for 5d N = 1 theories and 4d N = 2 theories are usually
called Nekrasov partition functions.
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spacetime TN × S1, where TN is the Taub-NUT space similar to C1 × C2 and has two

complex coordinates z1 and z2. The Taub-NUT is twisted along the S1. If we go around the

S1, complex coordinates rotate by

(z1, z2)→ (qz1, t
−1z2) , (2.115)

where q = eiε1 and t = e−iε2 . In order to preserve supersymmetry we need ε1 + ε2 = 0, namely

the unrefined limit q = t. The refinement of topological string is obtained by relaxing this

constraint on ε1,2. However, in order to preserve supersymmetry, we need R-symmetry U(1)R

acting on X. Since the M-theory partition function is the same as the A-model topological

string partition function on X, the refined M-theory partition function defines the refined

topological strings.

The refined M-theory partition function has a very nice formula. As discussed in [30], the

summation of contributions of BPS particles gives rise to the free energy:

F =
∑

β∈H2(X,Z)

∑

n∈Z

∑

jL,jR

N
(jL,jR)
β

∫ ∞

ε

ds

s

Tr(jL,jR)(−1)σL+σRe−sTβ−2πine−2s(σLε++σRε−)

(2 sinh(sε1/2))(−2 sinh(sε2/2))
,

(2.116)

where N
(jL.jR)
β is the number of BPS particles. The refined closed topological string partition

functions Z = exp(F) take form

Zclosed(Q, q, t) =

∏

β∈H2(X,Z)

∏

jL,jR

jL∏

kL=−jL

jR∏

kR=−jR

∞∏

m1,2=1

(
1− tkL+kR+m1− 1

2 qkL−kR+m2− 1
2Qβ

)(−1)2jL+2jR+1N
(jL,jR)

β
,

(2.117)

where the parameters
√
qt and

√
t
q are fugacities for SU(2)L and SU(2)R, and Qβ = e−

∫
β ω.

One can write (2.117) in another form

Zclosed(Q, q, t)

= exp


 ∑

β∈H2(X,Z)

∞∑

n=1

∑

jL,jR

(−1)2jL+2jRN
(jL,jR)
β χjL((qt)n)χjR

((
t
q

)n)

n(tn/2 − t−n/2)(qn/2 − q−n/2)
Qnβ


 (2.118)

= PE

[ ∑

β∈H2(X,Z)

∑

jL,jR

(−1)2jL+2jRN
(jL,jR)
β χjL((qt))χjR

((
t
q

))

n(t1/2 − t−1/2)(q1/2 − q−1/2)
Qβ

]
, (2.119)

where χj(x) := x−j + x−j+1 + · · ·+ xj . This formula is called Gopakumar-Vafa (GV) formula

[30]. The integers N
(jL,jR)
β are called Gopakumar-Vafa invariants or closed BPS invariants.
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2.4.2 Ooguri-Vafa formula

Open topological strings are also related to gauge theories through geometric engineering. In

this subsection, we discuss the Ooguri-Vafa formula encoding open BPS invariants.

The topological branes in the A-model can be lifted to M5-branes wrapping the Lagrangian

submanifold L ⊂ X and the spacetime R2 × S1 ⊂ TN × S1. These branes preserve a half of

supersymmetry. Hence the theory on Lagrangian branes has four supercharges and turns out

to be a 3d N = 2 theory on the spacetime R2 × S1. In M-theory interpretation, M2-branes

wrap holomorphic disks in X and end on L. These M2-branes engineer vortex particles in 3d

N = 2 theories.

As we have discussed in section 2.3.2, the annulus amplitude (2.104) is engineered by

the M2-branes stretching between two stacks of M5-branes. In [14], it is found that by us-

ing Schwinger computation and summing up all particles with the representation P on the

boundary, one can get a unrefined formula for the open topological string free energy:

F(t, V ) = i

∞∑

n=1

∑

β∈H2(X,L,Z)

∑

P,j

N j
β,P q

nj

n(qn/2 − q−n/2)
Qnβ TrPV

n , (2.120)

where P is the Young diagram on the Lagrangian brane. This formula is called unrefined

Ooguri-Vafa (OV) formula. The unrefined Ooguri-Vafa invariants N j
β,P are the degeneracy

numbers of open BPS particles, which can be positive or negative integers.

In the Ω-background, there are two types of Lagrangian branes, depending on which C of

TN the M5 brane wraps [34]:

q-brane : L× Cq × S1 , t̄-brane : L× Ct̄ × S1 . (2.121)

The refined open topological strings are charged under the rotation symmetry SO(2) on R2

and the R-symmetry U(1)R. There are refined open Gopakumar-Vafa formulas e.g. [6, 10].

The t-brane partition function takes form

Zopen(Q, q, t) = exp

[ ∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

∞∑

n=1

(−1)2j+2rqnj
(
t
q

)n r
N

(j,r)
β

n
(
q
n
2 − q−n2

) Qnβ

]

= PE

[ ∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

(−1)2j+2rqj
(
t
q

) r
N

(j,r)
β(

q
1
2 − q− 1

2

) Qβ

]
,

(2.122)

where refined Ooguri-Vafa invariants N
(j,r)
β are degeneracy numbers of vortex particles. The

variables e−RTβ is the Kähler parameter for the relative two-cycle β ∈ H2(X,L,Z), and Tβ

is area of the M2-brane wrapping β, and R is the radius of S1. We will discuss the relations

between different types of refined open topological branes (Lagrangian branes) in chapter 4.
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In addition, the free energy of open topological strings with multiple boundaries takes form

F(t, V ) =
∞∑

g=0

∞∑

ni=1

g2g−2+h
s Fg,n1,··· ,nh(t)TrV n1

1 · · ·TrV nh
h . (2.123)

Here Fg,n1,··· ,nh(t) is the amplitude for open topological strings with genus g and h boundaries,

and Vi is the holonomy along the i-th boundary.

2.5 Topological vertex formalism

We have discussed that Chern-Simons amplitudes are equal to topological string amplitudes

due to the geometric transition. Using the Chern-Simons theory, one can compute the topo-

logical string amplitudes associated to generic toric Calabi-Yau threefolds. This method was

further generalized to the topological vertex method [9], which also has a refined version be-

cause of the Ω-deformations, computing the refined topological string amplitudes. Topological

vertex is a powerful method in the A-model, which enables to compute even the amplitudes

of non-toric diagrams, see e.g. [35, 36]. It can be viewed as a reformulation of the localization

method used in supersymmetric gauge theories. In this section, we first mention unrefined

topological vertex, and then focus on the computation details of the refined topological vertex.

2.5.1 Unrefined topological vertex

L3

L2

L1

Figure 2.7: The building block for toric diagrams is C3, on which we can attach Lagrangian
branes.

The idea of topological vertex is simple. One can put brane/anti-brane pairs to a generic

toric diagram, which chop off the Calabi-Yau to building blocks C3 shown in Figure 2.7.

Computing the open topological string amplitude on C3 defines the cubic topological vertex

amplitude

CR1,R2,R3(q) =
∑

R,Q1,Q2

NR1
Q1R

N
RT3
QT3 R

qκR2
/2+κR3

/2
WRT2 Q1

(q)WR2QT3
(q)

WR2(q)
, (2.124)

where NR2
R1R2

is the tensor product coefficients. Then one can glue these cubic vertices to get

the full topological string amplitude. In this thesis, we only use refined topological vertex.
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Since it reduces to unrefined topological vertex in the limit q = t, we only briefly discuss

unrefined topological vertex.

2.5.2 Refined topological vertex

The refined topological string amplitudes can be computed by using refined topological vertex

[30, 37], which is also related to refined Chern-Simons theory [34]. Refined topological vertex

has been developed into a computational method, so in the following we only discuss how to

implement it on toric diagrams. This section follows the notation in [10].

The first step is the assignment of Ω-deformation parameters q, t and preferred directions.

Recall that the structure of a toric Calabi-Yau manifold can be encoded in a toric diagram,

which consists of trivalent vertices connected by edges (internal lines) and some edges (external

lines) extend from vertices to infinity. In the refined setting we also need to have preferred

directions, which are not unique but lead to the same result. The preferred direction is denoted

by || assigned on parallel lines on toric diagrams, and each vertex should be associated with

one || on one of its connected lines, and other two legs should be assigned with parameters q

and t respectively. Note that the assignment of q and t does not play a role in the computation

of closed topological string amplitudes. Namely, two possible choices of such an assignment

yield the same refined closed string partition functions.

Having made the above choices, we assign to all edges of a toric diagram their directions

(represented by arrows, see e.g. Figure 2.8 and 2.9), and to edges around each vertex we

assign Young diagrams (µ, ν, λ, . . .) (for outgoing arrows) or their transpose (µT , νT , λT , . . .)

(for incoming arrows), as well as framing numbers. Here we change the notation for Young

diagrams from Ri to µ · · · , following the convention in literature. Furthermore, to internal

edges we assign Kähler parameters Q•, where • in the subscript stands for an appropriate label

of a given leg. Then, each vertex with edges labeled by Young diagrams (µ, ν, λ), contributes

to a topological vertex amplitude defined as

Cλµν(t, q) = q
||µ||2+||ν||2

2 t−
||µT ||2

2 Z̃ν(t, q)
∑

η

(q
t

) |η|+|λ|−|µ|
2

sλT /η(t
−ρq−ν)sµ/η(q

−ρt−ν
T

) ,

(2.125)

where sλ/η are skew Schur functions, tρ = (t−1/2, t−3/2, t−5/2, . . .), and

Z̃ν(t, q) =
∏

(i,j)∈ν

(
1− qνi−jtνTj −i+1

)−1
. (2.126)

Parameters q = e−ε2 and t = eε1 parametrize the Ω-deformation. Note that (2.125) is the

refined version of (2.124). Similarly, each edge contributes to a edge factor

f•ν (t, q)framing numberLν(Q), Lν(Q) = (−Q)|ν|, (2.127)

where f•(t, q) denotes either fp(t, q) for the edges along the preferred direction, or f(t, q) for
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other edges of non-preferred directions, such that

fpν (t, q) = (−1)|ν|t
||νT ||2

2 q−
||ν||2

2 , fν(t, q) =
(q
t

)− |ν|
2
fpν (t, q). (2.128)

The assignment of vertex factors and edge factors is illustrated in Figure 2.8 and Figure

2.9; in particular, pink arrows in these figures denote the ordering of diagrams µ, ν, λ at a

given vertex and the ordering of arguments q and t in the function f•(·, ·). For more details

see e.g. [38].

µ

t
|| λ

ν

q

= Cµνλ(t, q)

µ

t
|| λ

ν

q

= CµνTλ(t, q)

Figure 2.8: Assignment of the vertex factor. The direction of arrows on edges can be chosen
arbitrarily, and the associated Young diagram is transposed if the arrow is reversed.

tq

Q

ν

b

b a

a

= Lν(Q)fν(t, q)a∧b
q

t t

qQ

ν

c

c d

d

= Lν(Q)fpν (t, q)c∧d

Figure 2.9: Factors assigned to an edge along a non-preferred direction (left) and preferred
direction (right). The directions of external legs are specified by vectors a, b, c, d, whose cross
products are denoted by a wedge ∧. Consistency conditions impose that the value a∧ b is the
same for both blue and red a and b, and similarly c ∧ d is the same for both blue and red c
and d.

Finally, the topological string partition function schematically takes form

Ztop =
∑

µ•

∏
(edge factor) ·

∏
(vertex factor) . (2.129)

After summing over Young diagrams along non-preferred directions and many contractions of

Schur functions through Cauchy identities, the above expression generically reduces to

Ztop(Q•, t, q) = ZM · Zsum , (2.130)

where ZM is a product of MacMahon functions

ZM =
∏

M±(Q•, t, q) , (2.131)

and Zsum is the sum over Young diagrams along preferred directions, which has the following
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structure

Zsum =
∑

µ•, ν•

Q
|µ•|
•
∏

µ•

||Z̃µ•(t, q)||2
∏
Nhalf,−
ν• (Q•, t

−1, q−1)Nµ•ν•(Q•, t
−1, q−1)∏

Nµ•ν•(Q•, t
−1, q−1)

, (2.132)

where ||Z̃µ(t, q)||2 = Z̃µT (t, q)Z̃µ(q, t), and Nµν(Q; t, q) is called the Nekrasov factor

Nµν(Q; t, q) =
∞∏

i,j=1

1−Q qνi−j tµ
T
j −i+1

1−Q q−j t−i+1
, (2.133)

and half-Nekrasov factors are defined by

Nhalf,−
ν (Q; t, q) = Nν∅

(
Q

√
q

t
, t, q

)
, Nhalf,+

ν (Q; t, q) = N∅ν

(
Q

√
q

t
, t, q

)
. (2.134)

Note that ZM is an overall factor in Ztop and it can be obtained by setting Young diagrams

along preferred directions to ∅, i.e. ZM = Ztop|µi=∅.
There may be extra closed string contributions that should be removed by hand, which are

the closed strings stretching between parallel external lines in toric diagrams. These strings are

not charged under the gauge symmetry, and do not satisfy closed Gopakumar-Vafa formula.

More details on such extra closed states can be found in [39, 40, 41, 36].

In the above, we have summarized the formalism of refined topological vertex, following

the notation in [36]. To implement computations, we use the Mathematica notebook schur-

cancellation.nb [42].

Lagrangian brane

q

t
t

q

q

t

t

q

=

t

q
q

t

Figure 2.10: Choices of preferred direction together with a standard assignment of q and t
at the vertex to which a topological brane (Lagrangian brane) is attached. These are the
assignments that we appreciate. The assignment of q and t in the rest of a toric diagram (for
simplicity not shown in this figure) follows uniquely from the above choices. The vertical line
in gray comes from the geometric transitions that produce the open topological branes. We
will discuss this in section ??.

We emphasize that in the presence of open topological branes, the assignment of (q, t)
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CHAPTER 2. TOPOLOGICAL STRING THEORY

becomes important [10]. If we change the assignment, we would get a different refined open

topological string amplitude. We summarize all possible standard assignments in Figure 2.10.

The assignment of the rest of toric diagrams can be determined accordingly. We note that

it is possible to exchange the parameters q ↔ t and get another six assignments. We refer

to opposite assignments of q and t as alternative assignments; for these opposite choices,

definitions of topological brane types and refined open BPS states must be appropriately

adjusted [10].

Refined open topological string partition functions are also independent of preferred direc-

tions. We find these standard assignments by matching the open topological string partition

functions assigned with different preferred directions. By computing specific examples, we find

the threes cases in the top row of Figure 2.10 are equivalent. In addition, the open topological

string amplitudes are invariant under flop transitions of closed Kähler parameters. By using

this property, we relate the diagrams in the top and bottom rows of Figure 2.10.
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Chapter 3

Gauge theory and brane webs

3d N = 2 gauge theories have nice properties, such as 3d mirror symmetry [43] and various

other dualities [44, 45, 46, 47]. We mainly consider the 3d gauge theories constructed by

Higgsing 5d N = 1 gauge theories [6, 48]. We have discussed the corresponding M-theory

interpretation in chapter 2, i.e. the geometric engineering using Calabi-Yau three-manifolds.

On the other hand, these gauge theories can also be constructed through brane webs in type

IIB string theory [27, 29, 49, 50, 51, 52]. In this chapter, we review field theory descriptions

for 3d gauge theories and brane constructions. This chapter contains some results from [11].

3.1 3d gauge theories

In this section, we give a short introduction to 3d gauge theories from the aspects of vector and

hyper multiplets, Lagrangians and moduli spaces; see e.g. [44, 45]. In particular, we discuss

the relations between effective superpotentials and holomorphic disk potentials encoded in

open topological string amplitudes [11].

3.1.1 Lagrangian description

3d N = 2 theories have four supercharges with the algebra

{Qα, Qβ} = {Q̄α, Q̄β} = 0, {Qα, Q̄β} = 2γµαβPµ + 2iεαβZ , α, β = 1, 2 , µ = 0, 1, 2 , (3.1)

where γµ = (−1, σ1, σ3) are chosen to be real and symmetric, and Z is the real central charge

corresponding to the momentum P3 in dimension reduction from 4d N = 1 theories. Note that

supercharge Qα and Q̄α are complex, and the automorphism of this algebra is R-symmetry

U(1)R.

The multiplets in 3d N = 2 theories come from the dimensional reduction of the 4d

N = 1 superfields; see [44] for a nice introduction. 3d N = 2 gauge theories contain the

vector multiplet V = (Aµ, σ, λ,D) in the adjoint representation and the chiral multiplet Q =

(φ, ψ, F ), in which σ is a real adjoint scalar field and φ is a complex scalar, λ and φ are

two-component Dirac fermions, D and F are auxiliary fields. Chiral multiplets could compose

a holomorphic function W(Qi) called superpotential describing the interaction between chiral
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multiplets. More explicitly, the chiral multiplet

Qi = φi + θψi + θ2Fi (3.2)

and vector multiplets

Va = −iθθ̄σa − θγµθ̄Aaµ + iθ2λ̄a − iθ̄2θλa +
1

2
θ2θ̄2Da , a = 1 , . . . , rank(G) , (3.3)

which satisfy Va = V †a , and a goes from one to the rank of the gauge group G. The superspace

derivatives are

Dα =
∂

∂θα
+ iγµαβ∂µ , D̄α = − ∂

∂θ̄α
− iθβγµβα∂µ . (3.4)

The gauge field strength is in the linear multiplet defined as

Σa := − i
2
εαβD̄αDβVa = σa + θλ̄a + θ̄λa +

1

2
θγµθ̄F νρa εµνρ + iθθ̄Da +

i

2
θ̄2θγµ∂µλ̄a +

1

4
θ2θ̄2∂2σa ,

(3.5)

which satisfies D2Σa = D̄2Σa = 0. The linear multiplet is the current superfield for the U(1)J

topological symmetry, which is associated with each gauge node U(Nc) and has a conserved

current

jJ =
1

2π
∗ TrF . (3.6)

3d N = 2 gague theories have Lagrangian descriptions, which contains kinetic term,

Chern-Simons term and Fayet-Iliopoulos term. Depending on gauge groups and matter mul-

tiplets, Lagrangians for different theories are slightly different. In the following, we illustrate

Lagrangian and moduli space by reviewing two typical theories that have been discussed in

[45, 53].

U(Nc) + NfF

This theory has a gauge group U(Nc) and Nf hypermultiplets. We quote the discussion of this

theory from [45]. This theory has global symmetries SU(Nf )× SU(Naf )× U(1)A × U(1)T ×
U(1)R. The Lagrangian for this theory is

L =

∫
d4θ

(
+

1

g2
Σ2 +

k

4π
ΣV +

ξ

2π
V

)
+
∑

i

∫
d4 θQ†ie

qiV+imiθθQi , (3.7)

where the second term is the Chern-Simons term and the third term is the Fayet-Iliopoulos

term. We denote the hypermultiplet Qi by F, which has charges qi under the gauge symmetry

and mi is its real mass parameter.
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After expanding the superfield in Chern-Simons term, one can obtain

LCS =
k

4π
Tr
[
AdA+

2

3
A3 +

(
2Dσ − λ̄λ

)]
. (3.8)

The interaction between U(1)T topological symmetry and the U(1) factor of U(Nc) gives rise

to the term

LFI =
1

2π
Dξ , (3.9)

where the Fayet-Iliopoulos (FI) parameter ξ can be viewed as the real scalar of a background

vector multiplet for the U(1)T topological symmetry.

In the case of abelian theory Nc = 1, after integrating out auxiliary fields, one gets the

scalar potential:

U = g2
(∑

i

qi|φi|2 − ξ − kσ
)2

+
∑

i

(qiσ +mi)
2|φi|2 , (3.10)

where φi is the complex scalar in the chiral multiplet Qi that carries charge qi and real mass

mi, and σ is the real scalar in the vector multiplet. There are one loop quantum corrections

to Fayet-Iliopoulos parameter ξ and Chern-Simons level k; therefore effective parameters read

ξeff = ξ +
1

2

∑

i

qimi sign(mi + qiσ) , (3.11)

keff = k +
1

2

∑

i

q2
i sign(mi + qiσ) . (3.12)

The vacua are given by the solutions of U = 0, so we have

∑

i

2πqi|φi|2 − ξeff − keffσ = 0 , (mi + qiσ)φi = 0 . (3.13)

The Higgs vacuum MH is given by the solutions with nonzero vacuum expectation value

〈φi〉 6= 0 which requires mi + qiσ = 0. Higgs branch consists of discrete points {σ = mi/qi}.
The Coulomb branch MV is defined by 〈φi〉 = 0 and hence the solutions are given by ξeff =

keff = 0. There may also other branches; see [45].

U(1)Nc + NfF

This theory has a gauge group U(1)Nc and Nf hypermultiplets. This abelian theory has been

discussed in [53]. Its special case is the TA,N theory that we will use for considering mirror

transformation in chapter 5. This abelian theory has a gauge group U(1)Nc , vector multiplets

Va (a = 1, · · · , Nc) and chiral superfields Qi (i = 1, · · · , N). There are Nc linear superfields

Σa = εαβD̄αDβVa and hence the topological groups are U(1)NcJ . In the following, we quote

the discussion on this theory from [53].
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The Lagrangian of this theory contains terms

L = Lkin + LFI + LCS + LW . (3.14)

The kinetic term for vector multiplets and chiral multiplets reads

Lkin =

∫
d4θ

Nc∑

a=1

1

g2
a

Σ2
a +

Nf∑

i=1

Q†i e

Nc∑
a=1

qai Va
Qi , (3.15)

where the ga is the a-th gauge coupling that has dimension (mass)1/2 and qai is the charge of

the i-th chiral multiplet under the a-th gauge group.

A real mass parameter can be turned on for each chiral multiplet, which can be interpreted

as weakly gauging the flavor symmetry of the theory and giving a vacuum expectation value

(VEV) to the scalar in the background vector multiplet. Namely

∫
d4θ

Nf∑

i=1

Q†i e
miθθ̄Qi . (3.16)

Note that there are only Nf − Nc independent real mass parameters, and the remaining Nc

parameters are set to zero by shifting scalars σa. The 3d superpotential is the gauge invariant

monomial of chiral superfields Qi

LW =

∫
d2θ W(Qi) + h.c. (3.17)

In addition, Fayet-Iliopoulos parameters ξa have the dimension of mass, whose Lagrangian

term is

LFI =

Nc∑

a=1

ξa

∫
d4θ Va . (3.18)

The mixed Chern-Simons levels kab have dimension zero, whose Lagrangian term is

LCS =

Nc∑

a,b=1

kab

∫
d4θ ΣaVb . (3.19)

After integrating out auxiliary fields Di and Fi, one can obtain the scalar potential

U =

Nc∑

a=1

g2
a




Nf∑

i=1

qai |φi|2 −
Nc∑

i=1

kabσb − ξa




2

+

Nf∑

i=1

(qai σa +mi)|φi|2 +

Nf∑

i=1

∣∣∣∣
∂W
∂φi

∣∣∣∣
2

. (3.20)

In the caseW = 0, the effective Chern-Simons term is obtained by integrating out the charged
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fermions:

keff
ab = kab +

1

2

Nf∑

i=1

qai q
b
jsign(qi · σ +mi) . (3.21)

Note that the theory with keff
ab ∈ Z is free of the parity anomaly [44]. The effective Fayet-

Iliopoulos parameters read

ξeff
a = ξa +

Nc∑

b=1

keff
abσb +

1

2

Nf∑

i=1

qaimi sign(qi · σ +mi) . (3.22)

Similarly, the Higgs branch MH consists of discrete points {qai σa +mi = 0}.

Vortex particles

Vortex particles are BPS states on the Higgs branch. Let us analyze the theory U(1) +NfF

to illustrate; see e.g. [45]. We first define new supercharges Q±

Q± =
1

2
(Q1 ± iQ2) , (3.23)

then the algebra (3.1) is written as

{Q± , Q±} = ±iP1 + P2 , {Q± , Q∓} = P 0 ± Z . (3.24)

We assume the coordinates on the 3d spacetime are (t, x, y). Then supersymmetry transfor-

mations on the vector multiplet read

{Q− λ−} = Fz̄t + ∂z̄σ ,

{Q+, λ+} = Fzt − ∂zσ ,
{Q−, λ+} = Fzz̄ + ∂tσ − iD ,

{Q+, λ−} = Fzz̄ + ∂tσ + iD ,

(3.25)

where the field strength Fzz̄ = iFxy, z = x + iy, and λ± = λ1 ± iλ2. One can get the

transformations for complex conjugation of these fields by replacing Q± → Q∓ , λ± → λ∓ , z →
z̄. The supersymmetric variation of the chiral multiplet Qi with a charge qi and a real mass

mi = 0 are

{Q+, ψi+} = Dzφi ,

{Q−, ψi−} = Dz̄φi ,

{Q+, ψi−} = iDtφi + qiσφi

{Q−, ψi+} = −iDtφi + qiφi ,

{Q−, ψi+} = Fi ,

{Q+, ψi−} = Fi ,

(3.26)
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where Dµ → ∂µ − iqiAµ and Dz := 1
2(Dx − iDy).

The half-BPS state is defined as the state that has a central charge Z > 0 and is annihilated

by Q− and its complex conjugate Q+. Its anti-BPS state is given by the CPT conjugation

and should be annihilated by Q− and Q+. We consider the BPS equtions for BPS states

annihilated by Q− and Q+, which are given by (3.25) and (3.26)

∂tσ = 0 , Fzt + ∂zσ = 0 , Fzz̄ − iD = 0 ,

i∂tφi + qi(σ +At)φi = 0 , Dzφi = 0 , Fi = 0 .
(3.27)

The static configuration giving by setting ∂t → 0 and At = −σ, leads to the BPS equations

for vortex particles

Fzz̄ = iD , Dzφi = 0 , Fi = 0 , (3.28)

where D is the D-term. Moreover, vortex particles on the Higgs branch have non-vanishing

magnetic charges qJ under the topological symmetry U(1)J . The fields for vortex particles

take form

φ =

√
ξ

2π
eiqJθ + · · · , Aθ = qJ + · · · , (3.29)

where z = x+ iy = |z|eiθ. The central charge is

Z =
ξJ
2π

∫
d2z Fzz̄ =

ξJ
2π

∫
d2z j0

J = qJξJ , (3.30)

where the magnetic charge is the winding number

qJ =
1

2π

∫
F = c1(F ) ∈ Z . (3.31)

Since vortex particles are BPS saturated, their charges are equal to masses |Z| = m = qJξJ .

Surface defect

One could introduce a surface defect (surface operator) in the 5d N = 1 gauge theory. On the

surface defect lives the 3d N = 2 theory. We consider the 3d-5d coupled theories engineered

by toric diagrams (toric Calabi-Yau threefolds) with Lagrangian branes in M-theory. Gauge

theory partition functions count vortex particles and instanton particles that are engineered

by M2-branes. The leading terms of partition functions are propotentials that encode the

information of gauge theories. In this section, we discuss these physical quantities. For a nice

review on surface defects, see e.g. [6, 20]

Surface defects are similar to Wilson lines and ’t Hooft lines. In this thesis, we only consider

the surface defects of co-dimension two, which are half-BPS and supported on spacetime

R2 ⊂ R4. Recall that the Ω-deformation acts as the rotation symmetries SO(2)1 × SO(2)2 of

R2
ε1 × R2

ε2 = R4. The 3d theories preserve the rotation symmetry SO(2) on surface defects.

36



CHAPTER 3. GAUGE THEORY AND BRANE WEBS

Depending on which Rεi are located surface defects, we get two types of defects, corresponding

to the q-brane and t̄-brane discussed in (2.121).

Surface defect satisfies vortex BPS equations (3.28). The gauge field is singular nearby it

Aθ = mdθ + · · · , (3.32)

where the θ is the angular coordinate for the spacetime perpendicular to surface defect. Hence

the field strength F = 2πmδD + · · · . The integral along the normal direction of the surface

defect D, the magnetic charge, is the vortex number

m =
1

2π

∫

D
F , (3.33)

where D = R2 in our context.

Instantons

There are non-perturbative contributions in the bulk theory, which are instantons. Instantons

have origin in the topological term in the Lagrangian. In 4d theories, the Yang-Mills term

reads

SYM =

∫

R4

1

4g2
TrF ∧ ∗F +

iθ

8π2
TrF ∧ F , (3.34)

where τ = 4πi
g2 + θ

2π in the coupling. If we set the self-dual field strength F+ = (F +∗F )/2 = 0

(instanton equation), then we get instantons with the charge (instanton number)

k =
1

8π2

∫

R4

TrF ∧ F ∈ Z . (3.35)

In 5d N = 1 theories, the topological term comes from 6d (1, 0) theories. As discussed in e.g.

[54], the relevant term is

∫

R6

B ∧ Tr(F ∧ F ) , (3.36)

where B is the B-field Bµν . After the dimensional reduction on a circle S1 ∈ R6, one gets a

gauge field A =
∫
S1 B, and the topological term in 5d reads

∫

R5

A ∧ Tr(F ∧ F ) =

∫

R5

AµJ
µ , (3.37)

which couples the gauge field to the current Jµ = ∗Tr(F ∧ F ) of the conserved topological

symmetry U(1)I , satisfying ∂µJ
µ = 0.

Since instantons are one dimensional objects in 5d theories, they are called instanton

particles. Upon the compactification on S1, the gauge coupling for the 5d theory on R4 × S1

is complexified by picking up a theta angle θ =
∮
S1 A in the term (3.37). Then one gets the
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5d gauge coupling

τ5d =
4πiR

g2
+

θ

2π
, (3.38)

which contributes to the phase factor qk where the instanton parameter is defined as q = e2πiτ .

In addition, the instanton particle has the central charge

Z = m0

∫
d4xJ0 = m0q

0
J , (3.39)

where the U(1)J charge q0
J is the instanton number, and m0 is the effective gauge coupling

m0 = 1/g2
eff. Since there are one-loop quantum corrections from hypermultiplets, we use the

effective gauge coupling geff. As we have reviewed in section 2.4.1, these instanton particles

are engineered by M2-branes wrapping two-cycles, whose magnetic dual objects are magnetic

strings given by M5-branes wrapped on compact four-cycles in Calabi-Yau threefolds. In addi-

tion, the M-theory interpretation of 5d partition functions leads to Gopakumar-Vafa formula

(2.118).

3.1.2 Prepotentials

In this subsection we review properties of prepotentials in 3d and 5d theories, which are the

leading terms of free energy, as found in [55, 56] and discussed in [6].

In the presence of the surface defect, the instanton partition function of the 3d-5d coupled

theory is ramified:

Z inst
k,m =

∮

Mk,m

1 , (3.40)

where Mk,m is the ramified instanton moduli space with the instanton number k = c2(E) 1

and the vortex number m. The partition function takes form

Z inst =
∞∑

k=0

∞∑

m=0

qkzmZ inst
k,m , (3.41)

where q = e2πiτ is the instanton parameter and z = eiξ relates to the Fayet-Iliopoulos param-

eter ξ.

The 3d partition function in the Ω-background counts vortex particles on R2 × S1. We

can expand the vortex partition function and read off the leading term

Zvortex = exp

(W
~

+ · · · O(~)

)
, (3.42)

where the leading termW is the 3d prepotential [56]. Here, the Ω-deformation can be regarded

1Here E is the gauge bundle restricted on the surface defect.
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as a regularization of the 2d gauge theory on R2,

vol(R2) =

∫

R2

1 =
1

~
. (3.43)

More explicitly, both the bulk spacetime and the surface defect are regularized by the Ω-

deformation:

vol(R2) =

∫

R2
ε1

1 =
1

ε1
, vol(R4) =

∫

R4
ε1,ε2

1 =
1

ε1ε2
. (3.44)

The combined partition function encodes prepotentials [48, 6]

Z3d-5d(ε1, ε2) = exp

(
− 1

ε1ε2
F +

W
ε1

+ · · ·+O(ε1, ε2)

)
, (3.45)

where F is the prepotential of the bulk 5d N = 1 gauge theory and W is the prepotential for

the 3d N = 2 theory on the surface defect. The 3d theory and the 5d bulk theory considered

in this thesis can be decoupled. As the closed topological string theory corresponds to the

bulk 5d theory and the open topological string theory corresponds to the 3d surface defect

theory, by setting the instanton parameter q or the Fayet-Iliopoulos parameter to zero, we

can end up with only the 3d theory or the 5d bulk theory. Namely,

Z3d
R2×S1(z, q, t) = Zopen top.(Q, q, t) , (3.46)

Z5d
R4×S1(q, q, t) = Zclosed top.(Q, q, t) . (3.47)

In addition, using the mirror symmetry between A-model and B-model, we can identify

the prepotential with an integral over the Seiberg-Witten differential [48]

W =

∫ p

p∗
λSW . (3.48)

The Seiberg-Witten curve is the mirror curve in the B-model, which can also be interpreted as

the moduli space of the surface defect. The surface defect is engineered by a D5-brane in the

B-model, which mirrors to a D6-brane wrapping a Lagrangian submanifold in the A-model

[28].

3.1.3 Effective superpotential

The 3d N = 2 gauge theory compactified on a circle S1 can be viewed as a 2d N = (2, 2) sigma

models with infinite many Kaluza-Klein modes. The effective theories of 2d sigma models are

described by effective superpotentials, see e.g.[15, 18, 20]. It is argued in [57, 58, 59, 60] that

both vortex partition function, sphere partition function and superconformal index have the

same asymptotic expansion in the semi-classical limit ~ → 0, and the leading term is the
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effective superpotential

Zvortex
R2×S1 , ZS3

b
, ZS2×S1 ∼

∫ ∏

i

d xi e
1
~W̃

eff
3dN=2(ξi, xi)+O(~) . (3.49)

Moreover, the leading term plays the role of the 3d prepotential and encodes the effective CS

levels. In particular, the equivariant parameter ~ is related to the Plank constant ~:

Q =
log(q)

2πb i
, ~ = 2π i b2 , q = e~ = e2π i b2 . (3.50)

There are intricate relations between prepotentials and superpotentials. In the following

part of this subsection we review the discussion in [11]. It turns out that the prepotential is

the disk potential from the open topological string perspective. Refined Ooguri-Vafa formulas

can be used to find the relations between various invariants at different limits.

The 3d gauge theory on the surface defect R2
ε1 × S1 has vortex partition function on the

Higgs branch. According to (3.45), this theory has a prepotential given by [55, 56, 61, 62]

WR2×S1 = lim
ε1,ε2→0

ε2 logZvortex
R2×S1 , (3.51)

where the vortex partition function is equal to the open topological string amplitude. In

addition, the prepotential and quantum integrable system are related [20, 63]. If we relate ε1

to the Plank constant ~ by ~ = Rε1, then the combination of (3.49) and (3.51) reveals the

relation between the prepotential and the effective superpotential:

e
WR2×S1

~ =

∫ ∏

i

d xi e
1
~W̃

eff
3dN=2(kij , ξi, xi) . (3.52)

The prepotential and the holomorphic disk potential are also related. By using the refined

Ooguri-Vafa formula in (2.122) and the definition of prepotential, we find

WR2×S1 = lim
ε1,ε2→0

ε2 logZvortex
R2×S1

= − 1

R

∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

(−1)2j+2rN
(j,r)
β Li2

(
e−RTβ

)
. (3.53)

Expanding the polylogarithm function Li2(z) :=
∞∑
n=1

zn

n2 , one can obtain

−RWR2×S1 =
∞∑

n=1

∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

(−1)2j+2rN
(j,r)
β

e−nRTβ

n2
, (3.54)

which has the same form as the holomorphic disc potential encoding classical Ooguri-Vafa
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invariants in the A-model [14, 24]

Wopen =
∑

β∈H2(X,L,Z)

NOV
β Li2

(
e−RTβ

)
=
∞∑

n=1

∑

β∈H2(X,L,Z)

NOV
β

e−nRTβ

n2
. (3.55)

Therefore, the propotential is equivalent to the holomorphic disk potential

−RWR2×S1 =Wopen , (3.56)

and the classical Ooguri-Vafa invariant can be represented as the summation of refined open

BPS invariants

NOV
β =

∑

j,r∈Z/2

(−1)2j+2rN
(j,r)
β . (3.57)

Note that the disk potential is classical and can be expressed as an integral in the B-model

Wopen =

∫
λSW =

∫
log y

dx

x
, (3.58)

where is consistent with (3.48), and λSW is the differential one-form on the mirror curve

[24, 28].

We emphasize that the prepotential WR2×S1 is not complete at the decompactification

limit R → ∞. Following the treatment in [64], we define the complete prepotential for 3d

N = 2 theory in this limit

Wcomplete
R2×S1 := lim

R→+∞

1

R
WR2×S1 , (3.59)

which takes form

Wcomplete
R2×S1 = −1

2

∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

(−1)2j+2rN
(j,r)
β 〚Tβ〛2 , (3.60)

where we used (A.39). Furthermore, refined open BPS invariants can be resummed into

different invariants in various limits. In the Nekrasov-Shatashvili limit ε 6= 0, ε2 = 0 [56],

using Gopakumar-Vafa formula (4.17) we get

lim
ε2→0

ε2 logZR2×S1 = − 1

R

∑

β∈H2(X,L,Z)

∑

j,r∈Z/2

(−1)2j+2rN
(j,r)
β Li2

(
tr e−RTβ

)
, (3.61)

which implies that N r
β :=

∑
j∈Z/2

(−1)2jN
(j,r)
β are the invariants in Nekrasov-Shatashvili limit

[20]. In the unrefined limit ε1 = ε2, refined formula (2.122) reduces to unrefined formula and

we define N j
β :=

∑
r∈Z/2

(−1)2rN
(j,r)
β as the unrefined invariants.
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3.1.4 3d mirror symmetry

Generically, 3d mirror symmetry is the duality between Higgs branch MH and Coulomb

branchMV [43]. The mass parameters for hypermultiplets are mirror to the Fayet-Iliopoulos

parameters for vector multiplets. This argument is correct for the 2d mirror symmetry between

A-model and B-model, as well as the 3d mirror symmetry, which is one kind of electric-

magnetic duality, relating different theories. The mirror symmetry in 3d N = 4 theories is

interpreted as the S-duality which exchanges various branes (3.92). In 3d N = 2 theories,

since mirror dual theories have equivalent partition functions, the mirror symmetry can be in

principle interpreted as a transformation. In this thesis we appreciate the interpretation that

3d mirror symmetry is a functional Fourier transformation on the path integral of partition

functions [65]. On the other hand, in [66, 57] it is pointed out that 3d mirror symmetry is the

ST -operator in the group SL(2,Z), such that (ST )3 = 1.

To begin with, we consider the 3d N = 4 SQED, which has a gauge group U(1) and a

hypermultiplet H. Note that each hypermultiplet in N = 4 contains two chiral multiplets in

N = 2, namely 1H = 1F + 1AF. The Fayet-Iliopoulos parameter can be promoted to be

a background vector multiplet V associated to the topological symmetry; then its partition

function is

ZSQED[V] =

∫
DVDQeSkin(V )/g2+SBF(V,V)+SH(V,Q) , (3.62)

where Skin(V ) and SF(V,Q) are kinetic terms for vector multiplets and hypermultiplets. The

BF coupling involves a vector multiplet V , an adjoint chiral multiplet Φ, a background linear

multiplet Σ and a background chiral multiplet Φ:

SBF(V,V) =

∫
d4θ V Σ−

(∫
d2θ iΦΦ + c.c.

)
. (3.63)

The partition function of the free hypermultiplet is a function of a background vector multiplet

V associated to the U(1) global symmetry:

ZH[V] =

∫
DQeiSH(V,Q) . (3.64)

In the infrared g →∞, the theory becomes free, and the mirror dual pair becomes

ZSQED[V] =

∫
DV eSBF(V,V)

∫
DQeSH(V,Q) = ZH[V] , (3.65)

which is equivalent to a transformation for the free hypermultiplet:

∫
DV eSBF(V,V)ZH[V ] = ZH[V] . (3.66)

Therefore, in this case the mirror symmetry is interpreted as a transformation for the hyper

multiplet. This mirror transformation can be used to derive other mirror pairs in literature

[67].
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In N = 4 language the abelian mirror pair that we discussed above is

U(1) + 1H + 1Adj , W = QQ̃Φ ←→ {q , q̃} ,W = 0 , (3.67)

which can also be represented in N = 2 language as the mirror pair between SQED and

XYZ-model:

U(1) + 1F + 1AF , W = 0 ←→ {X,Y, Z} , W = XY Z . (3.68)

3.1.5 Sphere partition function

The localization is a powerful technique that could compute partition functions of theories

on curved manifolds. Localization method needs to introduce an artificial potential to the

Lagrangian, which does not change the path integral, but could localize the path integral to

finite dimensional contour integrals [68]. The localization of 3d N = 2 gauge theories on

three-sphere was developed in [69, 70]. In this section we only use their results.

To begin with, the three-sphere is defined as

S3
b : b2|z1|2 + b−2|z2|2 = 1 , z1, z2 ∈ C , (3.69)

Note that when b = 1, we return to the standard three-sphere S3. On Coulomb branch, the

sphere partition function only contains the perturbative part and one-loop parts from chiral

multiplets and vector multiples. The higher loops contributions vanishes for supersymmetric

theories. More explicitly, bare Chern-Simons level k and Fayet-Iliopoulos term ξ appear in

the perturbative part

exp
(
− i π kx2 + 2 i πξx

)
, (3.70)

where x is the gauge transformation parameter for the gauge group U(1). The one-loop

contributions from the fundamental chiral multiplet F and antifundamental chiral multiplet

AF are given by

sb

(
x+

iQ

2
+
u

2

)
, sb

( iQ
2
− x+

u

2

)
, (3.71)

where Q = b+ 1/b is the localization parameter and u is the real mass parameter. Note that

chiral multiplets F and AF have charges 1 and -1 respectively under the gauge group U(1).

The charge q appears in the coefficient of the variable x in the one-loop contribution

sb(qx+ iQ/2 + u/2) . (3.72)

Now we use examples to illustrate. U(1)k +NFF has the sphere partition function

Z
U(1)k+NF

S3
b

=

∫
dx e−i π kx

2+2 i πξx
NF∏

i=1

sb

( iQ
2

+ x+
ui
2

)
, (3.73)
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and U(1)k +NF F +NAF AF has the sphere partition function

Z
U(1)k+NF F+NAF AF

S3
b

=

∫
dx e−i π kx

2+2 i πξx
NF∏

i=1

sb

( iQ
2

+ x+
ui
2

)NAF∏

j=1

sb

( iQ
2
− x+

uj
2

)
.

(3.74)

The sphere partition functions for the mirror pair in (3.68) are equivalent

∫
dxe−2πixyHm(x) = sb(m)H−m(y) , (3.75)

where

Hm(x) := sb

(
x+ i

Q

4
+
m

2

)
sb

(
−x+ i

Q

4
+
m

2

)
.

This is an identity that can be used to derive other mirror dual pairs [67].

3.2 Brane construction

Gauge theories can also be realized by branes via the Hanany-Witten construction [71]. There

are different types of branes in string theories, carrying charges and gauge fields. Branes

could overlap, intersect and cross other branes, leading to diverse brane configurations. Brane

systems have successfully constructed many supersymmetric gauge theories of various dimen-

sions from 2d to 6d. Particularly, in 5d N = 1 theories, the corresponding toric diagrams can

be identical with 5d brane webs [27]. We can also have 3d brane webs by Higging 5d brane

webs; see chapter 6. In this section we review basic picture of brane constructions. For a nice

introduction to string theory, D-brane and brane constructions, see e.g. [72, 73, 74, 75].

3.2.1 D-branes and higher form gauge fields

Dp-brane is the brane of p-dimension, which is the source of a (p + 1)-form gauge field in

supergravity. Dp-brane has tension TDp = 1/gsl
p+1
s and along (x1, . . . , xp) directions. The

chiralities of type IIA string theory and type IIB string theory are different. Type IIA string

theory has (1, 1) spacetime supersymmetry, while the type IIB string theory has (2, 0) space-

time supersymmetry. For Dp-branes in type IIA string theory, the spacetime supersymmetries

are generated by the left and the right moving worldsheet supercharges QL and QR with op-

posite chirality for spinors

Γ0 · · ·ΓpεL = εL , Γ0 · · ·ΓpεR = −εR . (3.76)

The Dp-branes in type IIB string theory have the same chirality

Γ0 · · ·ΓpεL = εL , Γ0 · · ·ΓpεR = εR . (3.77)
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In addition, the supercharges obey Γ0Γ1 · · ·Γ9QL,R = QL,R. Dp-branes are half-BPS objects,

preserving the following supercharges

εLQL + εRQR (3.78)

with εL = ∓Γ0Γ1 · · ·ΓpεR. εL and εR are spinors that have 16 + 16 independent real compo-

nents. In addition, anti-Dp-branes are defined as the Dp-branes that carry opposite Ramond-

Ramond charges and preserve the other half of supercharges.

The solitonic fivebrane NS5-branes are similar to D-branes, preserving a half of super-

symmetries but have much heavier tension TNS5 = 1/g2
s l

6
s . NS5-branes couple magneti-

cally to the B
(2)
µν field in the NS-NS sector2. NS5-brane stretches in (x1, · · · , x5) and pre-

serves the supersymmetry εLQL + εRQR, where spinors εL,R in type IIA string theory satisfy

εL = Γ0Γ1Γ2Γ3Γ4Γ5εL , εR = Γ0Γ1Γ2Γ3Γ4Γ5εR, while the NS5-brane in type IIB string theory

satisfies εL = Γ0Γ1Γ2Γ3Γ4Γ5εL , εR = −Γ0Γ1Γ2Γ3Γ4Γ5εR.

Branes can be regarded as boundaries of open strings. From gauge theory perspective,

branes carry electric or magnetic charges, and are sources of higher form gauge fields. Recall

that in the 4d electronic-magnetic field theory, the gauge field Aµ gives rise to the field strength

F = dA. The associated equations of motion in the presence of monopoles or electrons are

dF = δ(3) → magnetic monopole , (3.79)

d ∗ F = δ(3) → electric object . (3.80)

In d > 4 dimensions, there are higher form gauge fields. If the field strength F is a n-form

field, then ∗F is a d − n-form field. The higher dimensional charged objects are referred as

branes. The corresponding equations of motions are as follows:

dF (n) = δ(n+1) → magnetic monopole→ D(d− n− 2)-brane , (3.81)

d ∗ F (n) = δ(d−n+1) → electric object → D(n− 2)-brane . (3.82)

The electric charge and magnetic charge are given by flux integrals

qe =

∫

D(n−2)
∗F (n) , qm =

∫

D(d−n−2)
F (n) . (3.83)

Each higher form gauge field sources two types of charged objects (branes). The NS-NS

(Neveu-Schwarz) fields and Ramond-Ramond fields in string theories source the following

2where the NS stands for Neveu-Schwarz.
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branes:

C
(3)
11

e−→ M2 , C
(3)
11

m−→ M5 ,

B
(2)
10

e−→ F1 , B
(2)
10

m−→ NS5 ,

C
(0)
10

e−→ D(−1) , C
(3)
10

m−→ D7 ,

C
(1)
10

e−→ D0 , C
(1)
10

m−→ D6 ,

C
(2)
10

e−→ D1 , C
(2)
10

m−→ D5 ,

C
(3)
10

e−→ D2 , C
(3)
10

m−→ D4 ,

C
(4)
10

e−→ D3 , C
(4)
10

m−→ D3 .

(3.84)

In particular, we remind that the B-field in NS-NS sectors of string theory is self-dual and its

field strength is denoted by H = dB. Its equations of motion and associated branes are

dH = δ(4) → NS5-brane , (3.85)

d ∗H = δ(8) → F1-brane , (3.86)

where F1-brane is the fundamental string in both type IIA and type IIB string theories. The

F1-brane is special as it can end on any Dp-brane and provides a gauge field Aµ on the

worldvolume of branes.

3.2.2 M-branes and D-branes

The low energy effective theory of M-theory is a 11 dimensional supergravity (SUGRA) with

32 supercharges and fields:

a metric GMN , a higher form gauge field C
(3)
MNP , fermonic fields ψMα , α = 0, 1, . . . , 32 .

The three-form C
(3)
MNP implies that there are branes of 2 dimensional and 5 dimensional,

namely M2-brane and M5-brane, which are charged electrically and magnetically respectively.

Note that there is no string in M-theory.

The type IIA supergravity is obtained by the dimensional reduction of this 11 dimensional

SUGRA on a circle S1, and has (1, 1) supersymmetry. Then the metric GMN gives the metric

gµν , a gauge field Aµ and a dilaton φ = G10,10. The antisymmetric tensor C
(3)
MNP gives

rise to a three-form Cµνλ and a two-form Bµν . The fields (gµν , Bµν , φ) compose the NS-NS

sector; Aµ and Cµνλ compose the Ramond-Ramond (RR) sector. According to (3.84), the

gauge field Aµ is sourced by D0-branes and D6-brane, and the higher form gauge field Cµνλ

is sourced electrically by D2-brane and magnetically by D4-brane. Type IIB supergravity has

(2, 0) supersymmetry. The NS-NS sector contains (gµν , Bµν , φ), and the RR sector contains

(C(0), C(2), C(4)). The 4-form C(4) is self dual ∗dC(4) = dC(4) and couples to D3-brane.

We summarize some possible branes in M-theory, type IIA and type IIB string theories as
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follows:

M-theory: M2 , M5 , (3.87)

type IIA: D0, F1, D2, D4, D6, D8, NS5 , (3.88)

type IIB: D(-1), F1, D1, D3, D5, D7, D9, NS5 . (3.89)

3.2.3 T-duality and S-duality

The T-duality and S-duality are important dualities, which connect different types of strings

and brane configurations. The T-duality exchanges Kaluza-Klein momentum and winding

number of strings, and also changes the types of branes3:

Dp-brane wrapped on xi ←→ D(p-1)-brane at a point of xi , (3.90)

type IIA NS5-brane wrapped on xi ←→ type IIB NS5-brane wrapped on xi . (3.91)

Note that T-duality can be implemented on any xi direction. The T-duality is the duality

between type IIA string theory and type IIB string theory. The type IIA string theory can

be considered as the dimensional reduction of M-theory compactified on a circle S1; in other

words, the M-theory is strong coupling limit of the type IIA string theory. If the M2-brane

wrapps this circle S1, one gets a F1 brane. If the M2-brane does not wrap this circle, one gets

a D2-brane. Similarly, if the M5-brane wraps this circle, then we get D4 brane, and if not we

get a NS5-brane.

As we have discussed before, type IIB string theory is dual to the M-theory compactified

on a torus T 2 with a complex structure τ and vanishing area. This M/IIB-duality transfers the

the SL(2,Z) symmetry between field B(2) and C(2) in type IIB string theory, to the symmetry

acting on (p, q)-brane webs. S-duality is the S-generator in this SL(2,Z) global symmetry,

which also acts on the complex structure of the dual M-theory compactified on a torus T 2.

The S-duality is a strong-weak duality τ → −1/τ , exchanging B(2) ↔ C(2) and the types of

branes:

F1↔ D1 , D3↔ D3 , NS5↔ D5 , D7→ D7 . (3.92)

The NS5-brane and D5-brane are united by S-duality and hence we call them (p, q)-branes,

where p is the electric charge and q is the magnetic charge, which are charged under B(2) and

C(2) respectively. The strings stretching in (p, q)-brane webs are named (p, q)-strings which

dual to M2-branes in M-theory. In particular, the (1, 0)-string is the F1-brane and the (0, 1)-

string is the D1-brane. In 5d N = 1 gauge theories, the D1-brane contributes to instanton

particles, while F1-brane contributes to W-bosons.

Moreover, the type IIB string theory has a complex string coupling

τ = C
(0)
10 +

i

gs
, gs = eφ , (3.93)

3We quote the following description of T-duality from [73].
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where φ is the dilation. This gauge coupling can be regarded as the complex structure of a

torus T 2. At the non-perturbative region of type IIB string theory, one can artificially add

such a torus T 2 at each point of the complex three manifold to construct a fourfold. This

torus as the fiber has zero volume but a varying complex structure τ over the base threefold

B3. This fiber bundle is a Calabi-Yau fourfold X4 : T 2 → B3, on which the F-theory lives

[76, 77, 78].

3.2.4 Brane intersections

Brane action

In classical physics, gauge field couples to a electric charge qe along its worldline:

qe

∫
A = qe

∫
Aµ

∂xµ

∂τ
dτ = AµJ

µ . (3.94)

Similarly, B-field couples to a string with charge q on its worldvolume:

q

∫
B(2) = q

∫
Bµν

dxµ

dσ1

dxν

dσ2
d2σ = BµνJ

µν (3.95)

In string theory, we have many Ramond-Ramond (RR) forms. The p + 1-form C(p+1) plays

the role of a gauge field and should couple electrically to the world volume of the Dp-brane:

Sint = µp

∫

Dp-brane
C(p+1) , (3.96)

where µp is the electric charge of the brane. In addition, the electric charge and magnetic are

defined as

µp =

∫

Sd−p−2

∗F (p+2) , µd−p−4 =

∫

Sp+2

F (p+2) , (3.97)

where F (p+2) = dC(p+1) and d = 10 in string theories. Therefore, the action (3.96) gives rise

to a phase

exp(iSint) = exp

(
iµp

∫
C(p+1)

)
= exp(iµp µd−p−4) . (3.98)

Using Dirac quantization condition, one can get a constraint

µp · µd−p−4 ∈ 2πZ .

If including kinetic term and Chern-Simons term to the D-brane action, we have

Sbrane =
1

2

∫

Xd

F (p+2) ∧ ∗F (p+2) + iµp

∫

Dp-brane
C(p+1) +

∫

Xd

C(pa+1) ∧ F (d−pb−2) ∧ F (pb−pa+1) ,

(3.99)
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where Xd is the spacetime and d = 10. This brane action gives rise to the equation of motion

d ∗d F (pa+2) = µpaδ
(d−pa−1) + F (d−pb−2) ∧ F (pb−pa+1) , (3.100)

from which one can read off possible cases of coupled branes. We show some coupled brane

configurations in the following

type IIA : F1−D2 , D0−D2 ,

F1−D4 , D2−D4 ,

F1−D6 , D4−D6 , D4−D6 ,

D0−NS5 , D2−NS5 , D4−NS5 , D6−NS5 ,

type IIB : F1−D1 ,

F1−D3 , D1−D3 ,

D1−D5 , D3−D5 ,

F1−D7 , D5−D7 ,

D1−NS5 , D3−NS5 , D5−NS5 .

(3.101)

These coupled branes in (3.101) are important for brane construction of gauge theories. In

particular, F1-branes can end on any Dp-brane, and Dp-brane could end on particular types

of branes:

Dp−D(p+ 2) , Dp−D(p+ 4) , Dp−NS5 . (3.102)

Branes ending on branes

The Dp-brane stretching in the (x1, . . . , xp) hyperplane, is located at a point in (xp+1, . . . , x9).

The open string moves with Neumann boundary conditions on directions (x1, . . . , xp), while

with Dirichlet boundary conditions on (xp+1, . . . , x9) directions. We illustrate the D-brane and

an open string in Figure 3.1. The coupled branes in (3.101) are the brane configurations that

Dp

F1

x1,...,p

xp+1,...,9

Figure 3.1: A F1-string ends on a Dp-brane.

Dp

D(p+2)

Figure 3.2: A Dp-brane ends on a D(p+ 2)-brane.

lower dimensional branes end on higher dimensional branes. We illustrate the Dp−D(p+ 2)
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coupled brane in Figure 3.2.

The brane intersection in M-theory is also important. For a single M2-brane, the three-

form C(3) lives on its worldvolume

∫

M2
C

(3)
11 . (3.103)

When a M2-brane ends on a M5-brane, we have the coupling

∫

M5
d6x C

(3)
11 ∧H(3) (3.104)

where H(3) = dB(2). The M2-M5 brane intersection is particularly interesting, on which there

is a F1-string coupling with the two form B(2). We illustrate this brane configuration in Figure

3.2.4.

M5 M2

F1

Figure 3.3: The intersection of M2-brane and M5-brane is a F1-string.

The supersymmetries on coupled brane configurations may be further broken. For the

Dp-D(p+4) brane system, spinors satisfy εL = Γ0Γ1 · · ·ΓpεR = Γ0Γ1 · · ·Γp+4εR, and hence

there is the constraint εR = Γp+1 · · ·Γp+4εR. The total number of supercharges is broken from

32 to 8. One can relate Dp−D(p+ 4) to Dp−D(p+ 2) by compactification on a torus. This

operation does not break supersymmetry as the torus is flat. Performing T-duality n-times

relates Dp−D(p+2) to D(p+n)−D(p+2+n). To reduce the number of supersymmetries from

eight to four, one can add another stack of D-branes, for instance Dp−D(p+ 2)−D(p+ 2)′

with a relative angle between D(p+ 2)-brane and D(p+ 2)′-branes. Note that two NS5-branes

with a relative angle could also break half of the supersymmetry. When this angle vanishes,

the number of supersummetries recovered to eight. In order to get generic Dp − NS5 brane

intersection, one can begin with D3−D5, which after S-duality becomes D3−NS5; then one

uses T-duality to map it to Dp− NS5. The transformations between different types of brane

intersectons are summarized as follows:

F1−D3
S−→ D1−D3

T−→ Dp−D(p+ 2) , (3.105)

D3−D5
S−→ D3−NS5

T−→ Dp−NS5 . (3.106)
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The corresponding brane configurations are

F1 D1 Dp

D3 D3 D(p+2)

S T

D3 D3 Dp

D5 NS5 NS5

S T

.

(3.107)

3.2.5 Vector multiplets and hypermultiplets

A simple brane configuration for constructing gauge theories is parallel branes. On the world-

volume of N parallel Dp-branes lives a N = 4 supersymmetric Yang-Mills theory with a gauge

group U(N), as illustrated in Figure 3.4. When Dp-branes are separated, the open strings

2 Dp Dp

F1

Dp

L

Figure 3.4: F1-strings connect parallel Dp-branes.

between parallel Dp-branes give rise to massive W±-bosons and the gauge group breaks to

U(1)N . Inversely, when W± bosons become massless, the gauge group enhances to U(N).

In addition, on Dp-branes there is a gauge field Aµ , (µ = 0, 1, . . . , p − 1) that comes from

B(2) = dA(1) since F1-strings end on Dp-branes, and q − p scalars (xp+1, . . . , x9) describing

the fluctuations of branes along transversal directions. These fields compose the bosonic part

of the vector multiplet. Branes could describe Higgs mechanism. When the distance L be-

tween two parallel branes is not zero, then the gauge group U(N) breaks to U(1)N with several

massive W-bosons. When L = 0, the gauge group gets enhanced to U(N). Note that there is

no gauge field on the fundamental string.

The configuration that branes end on larger branes, encodes the fields in vector multiplets

and hypermultiplets; hence it is very useful to construct supersymmetric gauge theories. In
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the following, we discuss two basic cases Dp−D(p+ 2) and Dp−NS5

Dp

D(p+2)

xp
xp+1,...,p+3

x7,8,9

Dp

NS5

x6
x5

x7,8,9
(3.108)

to identify the corresponding multiplets. Note that the gauge theory living on Dp-branes is

p-dimensional.

For the Dp − D(p + 2) brane configuration, the Dp-brane takes direction (x0, x1, . . . , xp)

and the D(p+ 2)-brane takes directions (x0, x1, . . . , xp, xp+1, xp+2, xp+3). The bosonic part of

the hypermultiplet contains three scalars (xp+1, xp+2, xp+3) that parameterize the movement

of Dp-brane along the D(p + 2)-brane, and a gauge field Aµ (µ = p) on the Dp-brane. The

vector multiplet contains the 9 − p scalars along directions (xp+1, . . . , x9) and a gauge field

Aµ (µ = 0, 1, . . . , p− 1) on the Dp-brane. In particular, when p = 3, the S-duality exchanges

NS5-brane and D5-brane; therefore in this case the hypermultiplet and vector multiplet are

exchanged.

For the Dp−NS5 brane configuration, the Dp-brane takes direction (x0, x1, . . . , xp−1, x6),

and the NS5-brane takes directions (x0, x1, . . . , x5). The hypermultiplet contains three scalars

on (x7, x8, x8) and the gauge field A6. The vector multiplet contains 6 − p scalars describ-

ing the movement of the boundary of Dp-brane on the NS5-brane, and the gauge field Aµ,

(µ = 0, 1, . . . , p− 1) on the spacetime.

3.2.6 Hanany-Witten transitions

Hanany-Witten transition is found in [71], which is the phenomenon that when a brane cross

other branes, some low dimensional branes may be created or annihilated without changing

the underlying gauge theories. This process needs to follow the s-rule [71]. Hanany-Witten

transition is powerful as it provide a way to manipulate brane webs, and many dualities in

gauge theories can be interpreted as Hanany-Witten transitions, such as some dualities in 3d

theories [46, 47].

Dp

NS5NS5
D(p+2)

HW Dp

NS5
Dp

Figure 3.5: This figure illustrates the Hanany-Witten transitions of a D(p+ 2)-brane. When
a flavor D(p + 2)-brane moves to the right and crosses a NS5-brane, there should be one
additional Dp-brane created. The fundamental hypermultiplet is given by the string stretching
the Dp-brane and the D(p+ 2)-brane.

52



CHAPTER 3. GAUGE THEORY AND BRANE WEBS

We follow the s-rule in order to preserve supersymmetry. If brane configurations do not

follow the s-rule, then supersymmetry is broken. The s-rule is summarized as the follow: a NS5-

brane and a D(p+ 2)-brane are connected by more than one Dp-brane is not supersymmetric.

In other words, there can be at most one Dp-branes connecting a D(p+ 2)-brane and a NS5-

brane.

The gauge coupling of the gauge theory is 1/g2 = |tj − ti| . The string stretching between

a left Dp-brane and the right Dp-brane gives a hypermultiplet, whose mass parameter is the

length of this string |xj − xi|. As illustrated in Figure 3.2.6, this fundamental hypermultiplet

xi

D(p+ 2)

Dp

xj

Dp

ti tj

D(p+ 2)

Figure 3.6: When the string becomes length zero, the Dp-branes on the two sides of NS5-brane
merge into a single Dp-brane. This phenomenon is consistent with the s-rule.

becomes massless in the limit that two Dp-branes meet, where two Dp-branes join into one.

3.2.7 3d brane construction

In this subsection, we review the 3d brane webs for 3d N = 4 , 2 theories. We refer to [79] for

more details.

In 3d N = 4 theories, each N = 4 hypermultiplet can be written as two N = 2 chiral

multiplets Q and Q̃ with charges 1 and -1 respectively. The N = 4 vector multiplet consists

a N = 2 vector multiplet V and an adjoint chiral multiplet Φ. The R-symmetry is SU(2)R

corresponding to the rotation symmetry on x7,8,9. Vector multiplets are given by open strings

connecting Nc D3-branes, and hypermultiplets are given by open strings connecting D3-brane

and D5-branes sandwiching between two parallel NS5-branes. We show the brane construction

for a 3d N = 4 theory in Figure 3.7.

Nc D3

NS5NS5

· · ·
D5

Figure 3.7: This brane system describes a 3d N = 4 theory with a gauge group U(Nc) and
some hypermultiplets. The locations of these branes are shown in Table 3.1.

The 3d N = 4 mirror symmetry is interpreted as the S-duality in (3.92) that exchange

the D5-branes and NS5-branes. Hence the Coulumb branch moduli and Higgs branch moduli

space are exchanged MC ↔ MH . The mass parameters and Fayet-Iliopoulos parameters
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0 1 2 3 4 5 6 7 8 9

NS5 − − − − − −
D3 − − − −
D5 − − − − − −

Table 3.1: The common directions of these branes are x0,1,2, which is the spacetime of 3d
N = 4 theories.

are exchanged as well. In addition, the Coulomb branch is given by D-terms, and the Higgs

branch is given by F-terms.

The brane system for a 3d N = 2 theories is shown in Figure 3.8, in which there is a

relative angle between NS5-brane and NS5’-brane in the plane x4,5. This angle breaks the

number of supersymmetries from eight to four. The positions of branes is illustrated in Table

3.2.

x6

x3,4,5

x7

NS5’ NS5

D3

Qi, Q̃i

D5

Figure 3.8: The brane web of the 3d N = 2 gauge theory with a gauge group U(N) and chiral
multiplets (Qi, Q̃i).

0 1 2 3 4 5 6 7 8 9

NS5 − − − − − −
NS5’ − − − − − −
D3 − − − −
D5 − − − − − −

Table 3.2: The directions of D3-branes, D5-branes and NS5 branes for 3d N = 2 brane webs.

Mass parameters, Fayet-Iliopoulos parameters and scalar fields are related to the relative

positions of D3-banes and D5-branes. We summarize them as follows:

• x3, the scalar fields σa in the vector multiplets on D3-branes.

• x3, the position of i-th D5-brane corresponds to the real mass parameter mreal
i .

• x4,5, the position of i-th D5-brane corresponds to the complex mass parameter mcomplex
i .

• x7, Fayet-Iliopulos (FI) parameter is the distance between NS5-barne and NS5’-brane.

• The open strings between D3-brane and i-th D5-brane give rise to a chiral multiplets Qi

and an antichiral multiplets Q̃i.

In addition, there are two global symmetries U(1)4,5 and U(1)8,9, rotating the coordinates x4,5

and x8,9 respectively. We choose the global symmetry to be U(1)8,9 as U(1)4,5 is broken by

turning on complex mass parameters. This global symmetry is the R-symmetry U(1)R in 3d
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N = 2 theories. There are Coulomb branch and Higgs branch as well, determined by D-term

and F-term respectively.

3.2.8 U(1)k + NFF + NAFAF

In this subsection, we show the 3d brane web for U(1)k + NF F + NAF AF in Figure 3.9,

and discuss physical parameters encoded in the web. This theory is interesting, as it can be

obtained by Higgsing 5d N = 1 brane webs.

z

↵i�j

F

AF

NS5

D5
NS50

D3
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Figure 3.9: The D3-brane denoted by the blue line is perpendicular to the D5/NS5/NS5’-
brane web. There is a relative angle θ between NS5-brane and NS5’-brane. This diagram is
the 3d brane web for U(1)k +NFF +NAFAF in type IIB string theory.

This 3d brane web is dual to a toric Calabi-Yau threefold with a Lagrangian brane through

M-theory/type IIB string duality. The matter content is given by open strings in this brane

web. More explicitly, open strings connecting D3-brane and D5-brane on the left hand side

of the NS5-brane give rise to fundamental chiral multiplets NFF, while the open strings

connecting the D3-brane and D5-branes on the right hand side of NS5-brane give rise to anti-

fundamental chiral multiplets NAFAF. Note that in this brane configuration, there is the

freedom of putting D3-brane on any D5-branes on the left hand side of NS5-brane. These

different positions of D3-branes compose the Higgs branch MH determined by the vacua

equation (3.13). In particular, the open string located at the D3-D5-brane intersection is

of length zero, hence the corresponding F is massless; see e.g.[6]. From the gauge theory

perspective, its real mass parameter is absorbed by shifting the kinetic term in (3.16).

The vortex partition function is interpreted as the open topological string amplitude.

Hence implementing the topological vertex on the toric diagram shown in Figure 3.9, one can

obtain its vortex partition function [80, 81, 10, 12, 82, 6], which in the unrefined limit q = t

takes form

Zvortex
U(1)k+NF F+NAF AF(z, α, β) =

∞∑

n=0

(−√q)keff n2
zn

(q, q)n

(α1, q)n (α2, q)n · · · (αNAF , q)n
(β1, q)n (β2, q)n · · · (βNF−1, q)n

. (3.109)

In chapter 5, we discuss its refined version.
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Note that the mass parameter for fundamental chiral multiplet F is associated to βi and

for antifundamental chiral multiplet AF is associated to αi. Real mass parameters are related

to Kähler parameters by αi = eimi , βi = eim̃i . The Fayet-Iliopoulos parameter is encoded in

z. We illustrate these parameters in Figure 3.9. The interpretation from M-theory perspective

is that the open strings are given by M2-branes wrapping a chain of P1’s and a disk. The

associated Kähler parameters are

zn
NAF∏

i=1

NF−1∏

j=1

αdii β
dj
j , (3.110)

where (n, di, dj) are degrees for (z, αi, bj), z is the open Kähler parameter, and αi, βj are closed

Kähler parameters for AF and F respectively. The contributions of chiral multiplets F and

AF to vortex partition functions are terms:

AF→ (α, q)n , F→ 1

(β, q)n
. (3.111)

In particular, the term (q, q)−1
n in the vortex partition function (3.109) arises from the massless

chiral multiplet F located at the D3-D5-brane intersection. In addition, one can decouple chiral

multiplets by sending corresponding D5-branes to infinity.

3.2.9 Quiver generating series

It turns out that open topological string partition function can be written in the form of quiver

motivic generating series. Originally this relation was found in the context of knot invariants

that relate to open topological strings [83, 84]. It is then noticed that quivers also exist for

open topological strings on strip Calabi-Yau threefolds in the presence of Lagrangian branes

[10, 85, 86]. This subsection is based on [11].

In quiver representation theory, the motivic generating series associated to a symmetric

quiver with Cij = Cji takes form

PCij (q;x1, x2, . . . , xN ) =

∞∑

d1,...,dm=0

(−q1/2)
∑N
i,j=1 Cijdidj

xd1
1 · · ·xdNN

(q, q)d1 · · · (q, q)dN
, (3.112)

where xi are variables. It is then shown that this generating series has the following product

decomposition

PCij (q;x1, x2, . . . , xN ) =
∏

d1,...,dN=0

∏

j∈Z

∞∏

n=0

(
1− qn+ j−1

2 xd1
1 · · ·xdNm

)(−1)j+1Ωd1,...,dN ;j

, (3.113)

where Ωd1,...,dN ;j are integer motivic Donaldson-Thomas (DT) invariants [87, 88]. In some

cases, motivic DT invariants can be refined. In particular, for the strip Calabi-Yau threefold

with one Lagrangain brane, refined motivic DT invariants are equal to refined Ooguri-Vafa
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invariants

Ω
(j,r)
d1,...,dN

= N
(j,r)
d1,...,dN

, (3.114)

For more details, see section 4.2.1 or [10].

The open partition function (3.109) can be written in terms of the form (3.112):

Zvortex(z, α, β) = Z0 · PCij (x1, · · · , xN ) , (3.115)

where Z0 relates to one-loop contributions of chiral multiplets that we will discuss in chapter

5. Note that the product decomposition (3.113) is analogous to the product decomposition of

the open topological string partition function (4.17). In chapter 4 we show that refined open

string partition functions for strip Calabi-Yau threefolds can also be written in the quiver form

with appropriate identification of xi with closed and open Kähler parameters.

More explicitly, to write (3.109) in terms of quiver forms, we need to expand each Pochham-

mer product:

(αi, q)
±
n ∼

∞∑

di=0

(−√q)C0,0[αi]n
2+2C0,i[αi]ndi+Cii[αi]d

2
i
xdii

(q, q)n
, (3.116)

where C··[αi] denotes the coefficients in front of the degrees n, di. There are two equivalent

ways to expand Pochhammer products:

(αi; q)n =
(αi, q)∞

(αiqn, q)∞
= (αi, q)∞

∞∑

di=0

(−√q)2ndi
αdii

(q; q)di
(3.117)

= (αi, q)∞ (αi/
√
q)n

∞∑

di=0

(−√q)n2−2ndi+d
2
i
(
√
qα−1

i )di

(q; q)di
, (3.118)

1

(βj ; q)n
=

(βjq
n, q)∞

(βj , q)∞
=

1

(βj , q)∞

∞∑

dj=0

(−√q)2ndj+d
2
j

(
βj√
q

)dj

(q; q)di
(3.119)

=
1

(βj , q)∞
(
√
q/βj)

n
∞∑

dj=0

(−√q)−n2−2ndj

(
q β−1

j

)dj

(q; q)di
. (3.120)

To get the quiver generating series, we denote the contribution of each q-Pochhammer product

by

(αi, q)
±
n → (




C0,0[αi] . . . C0,i[αi]
...

. . .
...

Ci,0[αi] . . . Ci,i[αi]


 , xi) , (3.121)

where all the elements denoted by “· · · ” in the above matrices are zero, and xi are expansion
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variables. The quiver Cij is the combination of them

Cij = C··[z] +
∑

i

C··[αi] +
∑

j

C··[βj ] . (3.122)

The contribution from each F is

(αi; q)n →
(



0 . . . 1
...

. . .
...

1 · · · 0


 , αi

)
, or

(



1 · · · −1
...

. . .
...

−1 · · · 1


 ,
√
q α−1

i

)
, (3.123)

and the contribution from each AF is

1

(βj ; q)n
→
(



0 · · · 1
...

. . .
...

1 · · · 1


 ,

βj√
q

)
, or

(



−1 · · · −1
...

. . .
...

−1 · · · 0


 ,
√
q

(
βj√
q

)−1 )
. (3.124)

Therefore the quivers for (3.109) are not unique.
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Chapter 4

Strip geometry with a Lagrangian

brane

The computation of refined open topological string amplitudes is a challenging problem. Re-

fined BPS invariants associated to the knots on the deformed conifold have been discussed in

[89]. However the computation method of refined invariants has not been found for generic

toric manifolds with Lagrangian branes. In literature, geometric transition is extensively

used in gauge theories [6, 10, 81, 80, 90, 91, 34, 92], which usually gives rise to theories on

surface defects. Inspired by this, we study refined open topological string amplitudes for a

large class of strip Calabi-Yau threefolds, using refined geometric transition (Higgsing) and

Nekrasov factors. More explicitly, we first use refined topological vertex [30, 37, 6] to compute

refined closed partition functions of toric diagrams, and then apply Higgsing. The Higgsing

procedure amounts to giving specific values to some Kähler parameters, so that refined closed

amplitudes are reduced to refined open amplitudes associated to different types of refined open

Lagrangian branes, from which one can extract refined invariants for open BPS states. We

verify the integrality of these BPS invariants for some toric Calabi-Yau manifolds, and find

different types of refined topological branes are equivalent under an exchange symmetry and

flop transitions. Since refined geometric transitions introduce refined topological branes to

toric diagrams, our methods can be considered as the generalization of the refined topological

vertex formalism.

We focus on strip Calabi-Yau threefolds with nontrivial open topological string sector as

well as non-toric strip Calabi-Yau threefolds that have some overlapped lines on corresponding

toric diagrams. We show that for these manifolds refined open amplitudes take form of quiver

generating series. The underlying quivers encode Donaldson-Thomas invariants [87, 88]. The

existence of quivers in open topological strings was originally found in knot theories [83, 84].

Its relations with 3d gauge theories were conjectured in [93, 94], and (still in the unrefined

case) were generalized to strip geometries with a Lagrangian brane in [85, 86]. We show that

the refinement does not change the quiver structure. This implies some particular structure

of refined BPS invariants. Namely, open BPS invariants can be expressed in terms of motivic

Donaldson-Thomas invariants.

On the other hand, topological string theories relate to gauge theories, thanks to geometric

59



CHAPTER 4. STRIP GEOMETRY WITH A LAGRANGIAN BRANE

engineering. The open-closed topological string amplitudes encode the partition functions of

5d N = 1 gauge theories with surface defects [2, 95]. From this viewpoint one can perform

Hanany-Witten transitions that involve the movement of 7-branes. The Hanany-Witten tran-

sitions create or annihilate 5-branes when 7-branes cross other 5-branes [71, 96, 40, 36]. Open

topological string partition functions for brane webs related by Hanany-Witten transitions

should be equivalent. We find that this argument is almost correct upon taking into account

the fact that Hanany-Witten transitions introduce certain open string states, which is a new

phenomenon that does not exist in closed topological strings.

This chapter is based on [10]. In section 4.1 we give an introduction to the refined geometric

transition and discuss its connection to Nekrasov functions. We also discuss refined Ooguri-

Vafa (OV) formulas. In section 4.2 we compute refined open amplitudes for strip geometries,

and extract refined Ooguri-Vafa invariants and quivers. In section 4.3 we discuss Hanany-

Witten transitions for non-toric strip geometries in the presence of an open topological brane.

In section 4.4 we compute refined open amplitudes for toric diagrams with compact four-cycles

and find that open BPS invariants are positive integers.

4.1 Refined geometric transitions and Lagrangian branes

Geometric transition is the open-closed duality in the A-model, connecting open and closed

topological strings, which is accompanied by the transformation of local conifolds in Calabi-

Yau manifolds [7]. As proposed in [6, 97], geometric transitions can be used to introduce

surface defects engineered by Lagrangian branes in the A-model. In this context and from the

viewpoint of 5d N = 1 gauge theories, geometric transitions play the role of Higgsing, which

tune the 5d theories to some roots of the Higgs branch. The theory on the defect is the 3d

N = 2 theory.

In the Ω-deformed background, rotations of complex coordinates z1 and z2 are parametrized

respectively by q = e−ε2 and t = eε1

(z1, z2)→ (qz1, t
−1z2), (4.1)

and correspondingly there are four types of Lagrangian branes. The Lagrangian brane along

z1 is called a q-brane, and the Lagrangian brane along z2 is called a t̄-brane (anti-t-brane);

there exist also their partner q̄-brane and t-brane. In this section we show how to identify

all these branes through analysis of geometric transitions and Nekrasov factors that arise in

topological string partition functions, and discuss relations between them.

The crucial feature of the geometric transition is that closed topological string partition

functions with certain Kähler parameters tuned to specific values Q∗ can be identified as open

topological string partition functions. The presence of a Lagrangian brane with open modulus

z is identified with one Kähler parameter Q before the transition

Zclosed(Q,Q∗, t, q) = Zopen(z, t, q). (4.2)
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Figure 4.1: Geometric transition turns closed topological strings to open topological strings,
which is interpreted as tuning the Kähler parameter Q of a resolved conifold to some specific
value Q∗. Geometric transition (Higgsing) results in a simpler geometry with a Lagrangian
brane with open Kähler parameter Qc = z. The gray circle represents the remaining part of
the toric diagram.

We illustrate this geometric transition in Figure 4.1, where one particular closed string Kähler

parameter Qc is identified as an open Kähler parameter z for a Lagrangian brane after the

geometric transition (or, equivalently, as the FI parameter of vortex particles in the 3d N = 2

gauge theory on the surface defect). In general, such specific values Q∗ can be determined

through constraints involving the half-Nekrasov factors Nhalf,±
ν (Q∗, t−1, q−1) that appear in

closed topological string partition functions. If no Lagrangian brane is created during the

geometric transition, the Kähler parameter Q∗ = (q/t)±1/2 is fixed through the constraints

Nhalf,+
ν

(√
q

t
; t−1, q−1

)
=





1 ν = ∅
0 ν 6= ∅

, Nhalf,−
νT

(√
t

q
; t−1, q−1

)
=





1 ν = ∅
0 ν 6= ∅

. (4.3)

If a single Lagrangian brane is created, the constraints on half-Nekrasov factors take form

Nhalf,+
ν

(
q

√
q

t
;

1

t
,
1

q

)
6= 0 only if ν = {n}A ,

Nhalf,+
ν

(
1

t

√
q

t
;

1

t
,
1

q

)
6= 0 only if ν = {n}S ,

Nhalf,−
ν

(
t

√
t

q
;

1

t
,
1

q

)
6= 0 only if ν = {n}S ,

Nhalf,−
ν

(
1

q

√
t

q
;

1

t
,
1

q

)
6= 0 only if ν = {n}A ,

(4.4)

where ν = {n}A and ν = {n}S denote respectively antisymmetric and symmetric representa-

tions, whose Young diagrams are shown in (A.22). These conditions fix four possible values

of Q∗ which we identify with four types of Lagrangian branes mentioned above

q-brane : Q∗ = q

√
q

t
, t-brane : Q∗ = t

√
t

q
,

q̄-brane : Q∗ =
1

q

√
t

q
, t̄-brane : Q∗ =

1

t

√
q

t
.

(4.5)

This identification is consistent with the Lagrangian branes in the refined Chern-Simon theory

[34]. In fact, for these special values of Q∗, the above half-Nekrasov factors can be expressed
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in terms of q-Pochhammers (x; q)n =
∏n−1
i=0 (1− xqi):

Nhalf,+
{n}A

(
q

√
q

t
;

1

t
,
1

q

)
= (q; t)n ,

Nhalf,+
{n}S

(
1

t

√
q

t
;

1

t
,
1

q

)
=

(
1

t
;
1

q

)

n

,

Nhalf,−
{n}S

(
t

√
t

q
;

1

t
,
1

q

)
= (t; q)n ,

Nhalf,−
{n}A

(
1

q

√
t

q
;

1

t
,
1

q

)
=

(
1

q
;
1

t

)

n

.

(4.6)

For future reference, we also note the following results for ν = {n}A:

|ν| = n, ||ν||2 = n, ||νT ||2 = n2, Z̃ν(t, q) =
1

(t; t)n
, Z̃ν(q, t) =

1

(q; q)n
,

Nhalf,+
ν (Q, t−1, q−1) =

(
Q

√
t

q
; t
)
n
, Nhalf,−

ν (Q, t−1, q−1) =
(
Q

√
q

t
;
1

t

)
n
,

(4.7)

and analogous results for ν = {n}S :

|ν| = n, ||ν||2 = n2, ||νT ||2 = n, Z̃ν(t, q) =
1

(t; q)n
, Z̃ν(q, t) =

1

(q; t)n
,

Nhalf,+
ν (Q, t−1, q−1) =

(
Q

√
t

q
;
1

q

)
n
, Nhalf,−

ν (Q, t−1, q−1) =
(
Q

√
q

t
; q
)
n
.

(4.8)

Some other useful identities involving Nekrasov factors are listed in appendix A.1.

Having identified four types of Lagrangian branes, we now show that they are related by

two types of operations. First, there is an exchange symmetry q → t−1 that relates t-brane to

q̄-brane and q-brane to t̄-brane. Second, q-brane and t-brane are related to their anti-branes

by flop transitions. The flop transition turns out to be the shift of open Kähler parameters.

We argue that the flop transition preserves for open topological strings, and open topological

branes (Lagrangian branes) are equivalent to their anti-branes in our context. The relations

are summarized in the following diagram:

q̄-brane t-brane
(q, t)↔ (t−1, q−1)

q-brane t̄-brane
(q, t)↔ (t−1, q−1)

flop/shift flop/shift (4.9)

The exchange symmetry q ↔ t−1 is a consequence of a relation between half-Nekrasov
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Q

Q

;

Qm1

Qm1
! t

r
t

q

geo. trans.

Qm2
!
r

t

q

geo. trans.

Qm2

Qm1

Q

q
t

⌫1

⌫2

(a) (b) (c)

Figure 4.2: Geometric transitions can be used to engineer insertions of topological branes upon
a specific choice of Kähler parameters Q∗ that appear in Nekrasov factors. In this example,
a toric Calabi-Yau manifold in (a) that engineers SU(2) with three massive fundamental
hypermultiples, which after two geometric transitions and the appropriate choice of Kähler
parameters is reduced to a double-P1 strip geometry with an insertion of a Lagrangian brane
in (c).

factors

Nhalf,+
ν

(
Q; t−1, q−1

)
= Nhalf,−

νT

(
Q; q−1, t−1

)
, (4.10)

which implies the equality of open partition functions

Zq-brane(z,Q; t, q) = Zt̄-brane

(
z,Q; q−1, t−1

)
,

Zt-brane(z,Q; t, q) = Zq̄-brane

(
z,Q; q−1, t−1

)
,

(4.11)

where z is the open parameter and Q are closed Kähler parameters. We verified above relations

in numerous examples. This exchange symmetry was found independently in [34] by the

analysis of the partition function of refined Chern-Simon theory on S3. On the other hand,

the flop transition leads to the following relations between partition functions for topological

branes and anti-branes that involve a shift of the open Kähler parameter z

Zq-brane

(
z

1

q

√
t

q
,Q; t, q

)
= Zq̄-brane (z,Q; t, q) ,

Zt-brane

(
z

1

t

√
q

t
,Q; t, q

)
= Zt̄-brane (z,Q; t, q) .

(4.12)

We can also combine the exchange symmetry and the flop transition, which yields the following

relations

Zq-brane

(
z t

√
t

q
,Q;

1

q
,
1

t

)
= Zt-brane (z,Q; t, q) ,

Zt-brane

(
z q

√
q

t
,Q;

1

q
,
1

t

)
= Zq-brane(z,Q; t, q).

(4.13)

Note that upon taking the unrefined limit q = t we are left with two types of branes, q-brane

and t-brane, which are related by q → 1/q, and thus can be identified with a topological brane

and its anti-brane.
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Let us illustrate the above considerations in a more involved example, shown in Figure 4.2.

In this case, there are terms Nhalf,−
ν1 (Qm1 ; t−1, q−1) and Nhalf,−

ν2 (Qm2 ; t−1, q−1) in the closed

partition function. If we want to introduce a Lagrangian brane at the position where the local

resolved conifold has the Kähler parameter Qm1 , we have to set Qm1 = t
√

t
q or 1

q

√
t
q and

Qm2 =
√

t
q because of constraints (4.3) and (4.4). This identifies the resulting brane as a

t-brane or a q̄-brane.

Finally, we stress that the above identification of q-branes or t-branes is defined in the

assignment of q and t to toric legs presented in Figure 2.10. If one changes the assignment

(q, t)↔ (t, q) then the the definition of open topological branes are changed.

For future reference, let us classify all possible choices of preferred directions in a local

resolved conifold and the resulting identification of topological branes. First, for a horizontal

preferred direction we get

t

q

||

||

;

⌫ Nhalf,+
⌫ (Q⇤; t�1, q�1) ,(a) Q⇤

t

;
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For vertical preferred direction we find

;
<latexit sha1_base64="vGGGnHSj8V15dse//AtpBaB1Gps=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXJXoMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI77xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE974Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4pXrVzeX5Vq1SyOPJzAKZTBg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AirWNSA==</latexit>

(c)

t

; q

<latexit sha1_base64="kpLqeGKfQaz/kb5fY6TNXFqotLA=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXpXosePFY0X5Au5RsNtuGZrNLkhXK0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbm+Yng2jjONyqsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWXZ9oJrhkLcONYN1EMRL5gnX88e3M7zwxpXksH80kYV5EhpKHnBJjpYdqcD4oV5yaMwdeJW5OKpCjOSh/9YOYphGThgqidc91EuNlRBlOBZuW+qlmCaFjMmQ9SyWJmPay+alTfGaVAIexsiUNnqu/JzISaT2JfNsZETPSy95M/M/rpSa88TIuk9QwSReLwlRgE+PZ3zjgilEjJpYQqri9FdMRUYQam07JhuAuv7xK2hc1t167vL+qNOp5HEU4gVOoggvX0IA7aEILKAzhGV7hDQn0gt7Rx6K1gPKZY/gD9PkDjDqNSQ==</latexit>

(d)

q

tQ⇤

Q⇤

<latexit sha1_base64="GB/8j8cQc7M1AGSAvr2jopUXEf0=">AAAClHicbVFdaxNBFJ3d+lHXr1TBF18uBkVEw6621gcLKUXwSVo0bSETw+zkbjp0d3Yzc7cYhu0f8t/45r9xkiyoaS8MnHvunDN37k2rXFmK499BuHHj5q3bm3eiu/fuP3jY2Xp0bMvaSBzIMi/NaSos5krjgBTleFoZFEWa40l6frCon1ygsarU32he4agQU60yJQV5atz5efT91R7wFKdKO+mNbBPNgNuZIQc8M0K6WeOoaeDyEl4AzDjhD3JvUiM0Np4Drus97jRvxvvgMx6tVMlCBdc6tVY8Fcbn64Z//b4Cfx1x1JO2sXGnG/fiZcBVkLSgy9o4HHd+8Ukp6wI1yVxYO0ziikZOGFIyxybitcVKyHMxxaGHWhRoR2451Aaee2YCWWn80QRL9l+FE4W18yL1NwtBZ3a9tiCvqw1ryj6MnNJVTajl6qGszoFKWGwIJsqgpHzugZBG+V5Bngk/P/J7jPwQkvUvXwXHb3vJ+967o+1uf6cdxyZ7yp6xlyxhu6zPPrNDNmAy2Ap2g36wHz4JP4YH4afV1TBoNY/ZfxF++QNgIckz</latexit>

Q⇤ =

(
q
p

q
t q-brane ⌫ = {n}A

1
t

p
q
t t̄-brane ⌫ = {n}S

<latexit sha1_base64="KqBrDI7CAIa7QFhmkX9l8undJkI="></latexit>

Q⇤ =

8
<
:

t
q

t
q t-brane ⌫ = {n}S

1
q

q
t
q q̄-brane ⌫ = {n}A

.

(4.15)

64



CHAPTER 4. STRIP GEOMETRY WITH A LAGRANGIAN BRANE

Finally, for the third choice of preferred direction, we get
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Refined Ooguri-Vafa formula

M-theory interpretation of topological strings leads to integrality properties of open BPS

invariants (Ooguri-Vafa invariants) encoded in refined open amplitudes, which however have

not been systematically analyzed in literature. One goal of this chapter is to reveal that

these invariants in M-theory realization also count appropriate BPS states for a wide class of

Calabi-Yau manifolds; see also e.g. [6].

In our context, for a t-brane, the refined open amplitude takes form

Zt-brane(z,Q, t, q) =
∏

β∈H2(X,L,Z)

∏

s,r∈Z/2

∞∏

n=0

(
1− q−s+n+ 1

2 tr+
1
2 Qβ

)(−1)2sN
(s,r)
β
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( ∑
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∑

s,r∈Z/2
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(−1)2sN
(s,r)
β q−nstn(r+

1
2)

n
(
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) Qnβ

)
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[
(−1)2sN

(s,r)
β q−str+

1
2

q
1
2 − q− 1

2

Qβ

]

≡
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β∈H2(X,L,Z)

∏

s,r∈Z/2

PE
[
zdQβ, N

(s,r)
β , s, r

]
t-brane

,

(4.17)

where Qβ are closed Kähler parameters of Calabi-Yau manifold X, z is the open parame-

ter associated to the Lagrangian brane, and N
(s,r)
β are refined open BPS invariants (refined

Ooguri-Vafa invariants). We introduce a shorter notation PE
[
zdQβ, N

(s,r)
β , s, r

]
∗-brane

to de-

note plethystic exponents. Note that for a t-brane, the contribution from each open BPS state

takes form

PE
[
zdQβ, N

(s,r)
β , s, r

]
t-brane

=
(
q−s+

1
2 tr+

1
2Qβ, q

)(−1)2sN
(s,r)
β

∞
. (4.18)

Once we presented an integral expansion for a t-brane, we can use (4.11) and (4.12) to

write down analogous expansions for other types of branes. Note that four types of Lagrangian

branes have the same refined open BPS invariants.
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For a q̄-brane, using the exchange symmetry q → t−1 we get its refined formula

Zq̄-brane =
∏
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where
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We can reformulate the refined Ooguri-Vafa formula for q̄-brane as follows

Zq̄-brane = exp

[ ∑
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(4.21)

where we have shifted s and r.

In what follows, we read off open BPS invariants N
(s,r)
β from the above product expansions

of open topological string partition functions; for example, a factor (z
√
qt, q)∞ encodes the

open BPS invariant N
(0,0)
z = 1.

Finally, we stress that all formulas presented above are relevant in the assignment of q and

t to the lines on toric diagrams presented in Figure 2.10. The alternative assignment is the

opposite assignment of q and t, namely exchanging q ↔ t. The Ooguri-Vafa formula in the

above should be modified. We consider first the formula (4.17). Exchanging the assignment

of q and t changes the Higgsing value of a t-brane to q
√

q
t and makes it natural to use

s′ = −s, r′ = −r − 1, so that (4.17) is transformed into

Zq-brane(z,Q, t, q)
alt. =

∏
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∏
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PE

[
−

(−1)2s′+1N
(s′,r′)
β ts

′
q−r

′− 1
2

t
1
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]
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which we identify with a partition functon of a q-brane in the alternative assignment (we

stress that it is not equal to the partition function for a q-brane in the standard assignment).

Similarly, after the exchange q ↔ t, the formula (4.19) is turned into the refined Ooguri-Vafa

formula for t̄-brane in the alternative assignment

Zt̄-brane(z,Q, t, q)
alt. =

∏

β∈H2(X,L,Z)

∏

s′,r′∈Z/2

PE
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β q−s

′
tr
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q
1
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2

Qβ

]
, (4.23)
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where s′ = −s, r′ = −r−1. We emphasize that refined BPS invariants are always the same in

both standard and alternative assignments, up to a shift of indices s and r. In what follows,

to avoid confusion, we always choose the standard assignment presented in Figure 2.10.

4.2 Strip geometry with a Lagrangian brane

In this section we discuss toric manifolds without compact four-cycles, which are called strip

geometries [98]. Strip geometries enable us to illustrate the Higgsing method that discussed in

the last section. We compute open partition functions for several strip geometries and show

that refined open BPS invariants are non-negative integers, thereby confirming the consistency

of refined open topological string theory. We also represent refined open amplitudes in terms

of quiver generating functions, generalizing the results of [85]. We also show that refined open

BPS invariants for strip geometries have some interesting structures.

Recall that toric diagrams for strip geometries consist of a chain of finite segments that

represent local P1’s, as well as some vertical and horizontal external lines extending to infinity.

We consider the strip geometries that contain only one Lagrangian brane attached either to

a vertical line see Figure 4.3, or to a horizontal line, see Figure 4.5. These two cases are

qualitatively different. In what follows we discuss these two cases in general, and then present

explicit results for some strip geometries. We stress that Figure 4.3 and 4.5 are not drown

precisely, so keep in mind that (p, q)-charges should be conserved for each vertex.

In principle we could compute open amplitudes in the above setting directly using refined

topological vertex. However, such computations are quite subtle because of the framing num-

ber and other issues. For this reason we compute refined open partition functions using the

Higgsing method presented in section 4.1. The computations for strip geometries and also

other manifolds are analyzed in subsequent sections, illustrating that this method is indeed

powerful and can be effectively used in complicated diagrams. Moreover, we also extract

refined open BPS invariants encoded in these partition functions and show that they are non-

negative integers, which provides a non-trivial confirmation of correctness and consistency of

the refined Higgsing method.

4.2.1 Refined open amplitudes for strip geometries

In this subsection, we compute refined open topological string amplitudes for strip geome-

tries, and get the refined version in (3.109). To start with, we compute the diagram with

a Lagrangian brane attached to a vertical leg, as shown in Figure 4.3. We denote the open

Käahler parameter by z (which is identified with a closed Kähler parameter Q before the

transition, as in Figure 4.2), and closed Kähler parameters of the strip geometry are denoted

by Qi for i = 1, . . . , ρ + σ. We introduce more appropriate parameters αi = Q1Q2 · · ·Qi
where i = 1, . . . , ρ labels one of the legs pointing downwards, and βj = Q1Q2 · · ·Qj where

j = 1, . . . , σ labels one of the legs pointing upwards.

As mentioned above, to determine open partition functions we use the method of geometric

transition presented in section 4.1. To this end, we first need to engineer an appropriate mother
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…. …

…

z

Q1

Q2

Q3

Q4 Q⇢+�

Figure 4.3: A Lagrangian brane (in blue) is attached to a vertical leg. Open topological
strings stretched between this open topological brane and other branes are shown as wavy
lines. This toric diagram is identical to the 3d brane web in Figure 3.9; here we rotate it by
a 90 degree for convenience.

toric diagram, which will produce a Lagrangian brane of our interest after the geometric

transition. We have illustrated this process in Figure 4.2. For a general strip geometry, we

simply need to generalize this approach; see Figure 4.4. We first introduce a horizontal lines
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Figure 4.4: In the left diagram, we introduce a horizontal line, and then resolve intersections
in the middle diagram. After giving appropriate values to Qmi , we end up with the strip
geometry in the presence of a Lagrangian brane. Note that the gray line does not contribute
to the open string partition functions, hence we can ignore it from the open topological string
perspective.

intersecting all vertical lines pointing upwards. Each intersection is a local conifold that can

be resolved with Kähler parameter denoted by Qmi , whose value is set to be
√

q
t or

√
t
q (which

are equivalent upon flop transition) for i > 1, while the Qm1 is given a value in (4.5), which

results in an appropriate Lagrangian brane on which the Young diagram is either symmetric

{n}S or antisymmetric representation {n}A, depending on the arrow direction for the Young

diagram we choose. This procedure is illustrated in Figure 4.4.

In particular, following (4.5) and setting Qm1 = 1
q

√
t
q , we obtain refined the open partition

function for the q̄-brane, which takes form

Zq̄-brane(z, αi, βj) =
∞∑

n=0

(
z
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t
q

)n

(t, t)n

(
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(
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n
· · ·
(
βσ

t
q , t
)
n

.

(4.24)

Similarly, the t-brane partition function can be obtained by setting Qm1 = t
√

t
q , or by using
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equivalence relations in (4.9) and substituting t↔ q−1, which takes form

Zt-brane(z, αi, βj) =

∞∑

n=0

(
z
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(4.25)

Having found the above open topological partition functions (amplitudes), we can ex-

tract associated open BPS numbers using refined Ooguri-Vafa formulas. In the case of strip

geometries we consider two perspectives: on one hand we analyze the refined Ooguri-Vafa

decomposition, and on the other hand motivic Donaldson-Thomas invariants.

First, we consider refined Ooguri-Vafa forms of open partition function, and show that

for refined Lagrangian branes the corresponding refined BPS invariants have some particular

structures. Using refined Ooguri-Vafa formula, we write refined open amplitudes for strip

geometry in the form

Zt-brane(z, t, q) =
∞∏

d=1

∞∏

l,k=0

∏

r∈Z/2,j∈Z

∞∏

n=0

(
1− qn+ j−1

2

( t
q

)r
zdαlβk

)(−1)2r−jÑ
(j,r)
d,l,k

, (4.26)

where Ñ
(j,r)
d,l,k are refined Ooguri-Vafa invariants upon the shift of indices j and r. On the other

hand, note that the dependence on q and t in (4.25) is equivalent to shifting parameters αi

and βj :

z̃ = z

√
t

q
, α̃i = αi

√
t

q
, β̃j = βj

t

q
. (4.27)

Then the expression (4.25) takes form

Zt-brane(z, t, q) =

∞∑

n=0

z̃n(
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)
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, (4.28)

which is the same as the unrefined open partition function for the strip geometry. Hence the

refined open amplitudes has another decomposition

Zt-brane(z, t, q) =

∞∏

d=1

∞∏

l,k=0

∏

j∈Z
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n=0

(
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2 z̃dα̃lβ̃k
)(−1)jNj
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=
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(4.29)

Note that (4.26) should be equal to the second line of (4.29). Hence we derive that for fixed

d, l, k and j, there is only one value of r

r = (n+
∑

i

li)/2 +
∑

j

kj , (4.30)
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for which Ñ
(j,r)
d,l,k is non-zero, and we then get a relation between unrefined Ooguri-Vafa invari-

ants and refined Ooguri-Vafa invariants

N j
n,l,k = (−1)2rÑ

(j,r)
n,l,k . (4.31)

Although it seems that the refinement for open topological strings on strip geometries is

trivial, but explains the negative sign problem of unrefined Ooguri-Vafa invariants. Namely,

the refined Ooguri-Vafa invariants extracted through refined Ooguri-Vafa formula are positive

integers. We verified their positivity by examples in the next section.

In turn, we consider the relation to quivers. It arises from rewriting open partition func-

tions in the form of quiver generating series (3.112); see also [85]. We can rewrite refined open

partition functions in the quiver form using the identities (A.31) and (A.32). After rewriting,

the q̄-brane partition function (4.24) takes form

Zq̄-brane(z, αi, βj) = Z0 · PCij
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q
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)
, (4.32)

where the z-independent prefactor reads
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. (4.33)

Note that the factor Z0 does not satisfy refined Ooguri-Vafa formula. We ignore this factor

Z0 for a while, and in the next chapter we argue that Z0 actually is the inverse of the one-loop

partition function of the corresponding 3d N = 2 theory. The quiver matrix for strip geometry

takes form

Cij =




0 1 . . . 1 1 . . . 1

1 0 . . . 0 0 . . . 0
...

. . .
. . .

1 0 . . . 0 0 . . . 0

1 0 . . . 0 1 . . . 0
...

. . .
. . .

1 0 . . . 0 0 . . . 1




.

Similarly, the partition function (4.25) for t-brane can be written in the quiver form (3.112)

as

Zt-brane(z, αi, βj) = Z0 · PCij
(
q; z
√
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√
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)
, (4.34)

where the extra z-independent factor is
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(4.35)
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and the quiver matrix takes form

Cij =




1 −1 . . . −1 −1 . . . −1

−1 1 . . . 0 0 . . . 0
...

. . .
. . .

−1 0 . . . 1 0 . . . 0

−1 0 . . . 0 0 . . . 0
...

. . .
. . .

−1 0 . . . 0 0 . . . 0




. (4.36)

Since there is the equivalence relation (4.9), we only need to consider one particular type of

refined open topological branes and quiver matrices.

Having determined the above quivers, we can then identify Ooguri-Vafa (OV) invariants

Ñ j
n,l,k with motivic Donaldson-Thomas (DT) invariants Ωj

n,l,k defined via (3.113). Here we

can define the refined motivic DT invariants Ω
(j,r)
n,l,k as refined invariants Ñ

(j,r)
n,l,k in (4.26). The

DT invariants should be non-negative integers [87, 88], which implies that all refined open

BPS numbers for strip geometries must be non-negative integers too. Our statement is that

for strip geometries with one Lagrangian brane, we have the equivalence between these two

kinds of invariants

OV = DT . (4.37)

The Lagrangian brane on a horizontal line

….…

…

z
Q1

Q2

Q3

Q4 Q⇢+�

Figure 4.5: Open strings connect the Lagrangian brane and vertical lines (5-branes).

We now consider a different configuration with a Lagrangian brane attached to the hor-

izontal line, as shown in Figure 4.5. Similarly, we first introduce a vertical line, and then

resolve the local conifold. After Higgsing, we get the diagram in Figure 4.5. In this case the
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partition function takes a form of q-Pochhammer products:
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(4.38)

Each q-Pochhammer product corresponds to a BPS invariant, and hence there are finite many

open BPS invariants:

N (1/2,1/2)
z = 1, N (0,0)

zαi = 1, N
(1/2,1/2)
zβj

= 1. (4.39)

Expanding all factors in (4.38), we can also determine the associated quivers, which consist

of a finite number of disconnected nodes. Furthermore, open partition functions (4.38), from

the viewpoint of 3d N = 2 theories, represent just a bunch of chiral multiplets.

4.2.2 C3 geometry

q
z

Qm
zt

q

t

Figure 4.6: A geometric transition that transforms a double P1 strip geometry with Kähler
parameters Qm and z into C3 with a Lagrangian brane. After the transition, the closed Kähler
parameter z becomes an open Kähler parameter, relating to the FI parameter in the 3d N = 2
theory. The assignment of q, t, and the preferred direction are shown in the diagram.

In what follows we illustrate the above analysis in specific examples, starting from C3

geometry. First, we compute the closed partition function for the left diagram in Figure 4.6,

which takes form

Zclosed(z,Qm) =
M
(
zQm

√
t
q , t, q

)

M
(
z tq , t, q

) , (4.40)

where refined MacMahon function M(z, q, t) is defined in (A.1). By comparing the diagram

in Figure 4.6 (left) with (4.14) we find that the Lagrangian brane that can be introduced is

t-brane or q̄-brane. Imposing Qm = t
√

t
q and interpreting z as an open Kähler parameter we
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get

Zt-brane = Zclosed

(
z,Qm = t

√
t

q

)
=

1

(zt, q)∞
. (4.41)

Similarly, setting Qm = 1
q

√
t
q , we obtain

Zq̄-brane = Zclosed

(
z,Qm =

1

q

√
t

q

)
=

(
z
t

q
, t

)

∞
. (4.42)

Using identities for q-Pochhammer symbols in appendix we confirm that the exchange sym-

metry holds

Zt-brane
t↔q−1

←−−−→ Zq̄-brane . (4.43)

We can also write the above open partition functions in terms of the refined Ooguri-Vafa form,

as well as the quiver form (3.112)

Zt-brane =
1

(zt, q)∞
= PE[z, 1, 1/2, 1/2]t-brane = PCt(q; zt) , Ct = [0] ,

Zq̄-brane =

(
z
t

q
, t

)

∞
= PE[z, 1, 1/2, 1/2]q̄-brane = PCq̄

(
q; z

√
t

q

)
, Cq̄ = [1] .

(4.44)

It follows from (4.17) and (4.19) that in these cases there is only one BPS number N
(1/2,1/2)
z =

1. Furthermore, open partition functions for t̄-brane and q-brane can be obtained by using

relations (4.12), which yield

Zt̄-brane = (z
√
tq, t)∞ , Zq-brane =

1(
z
√

q
t , q
)
∞

, (4.45)

and encode the same BPS invariant.

4.2.3 Resolved conifold

q
Qz

Qm

q
Qz

Figure 4.7: Implementing geometric transition (Higgsing) on a triple-P1 geometry leads to a
resolved conifold with a Lagrangian brane. In this process the Qm is given a value, and z
becomes the open Kähler parameter.

Following the strategy presented in section 4.1, we first consider the geometry represented

by the left diagram in Figure 4.7, whose closed partition function takes form of a product of
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refined MacMahon functions

Zclosed ∼
M
(
z
√

t
q , t, q

)
M
(
zQQm

√
t
q , t, q

)

M (zQm, t, q)M
(
zQ t

q , t, q
) , (4.46)

where ∼ means that we have ignored the closed string contributions that do not depend on

Kähler parameter z. Geometric transition fixes Qm = t
√

t
q , and gives rise to the t-brane open

partition function

Zt-brane = Zclosed

(
z,Qm = t

√
t

q

)
=

(z
√
tq, q)∞

(zQt, q)∞
=

∞∑

n=0

(
z
√

t
q

)n (
Q
√

t
q ,

1
q

)
n(

1
q ,

1
q

)
n

= PE[z, 1, 0, 0]tPE[zQ, 1/2, 1/2]t = PCt

(
q; z
√
t, zQt

)
.

(4.47)

Similarly, we substitute Qm = 1
q

√
t
q to get a q̄-brane, which yields the open refined partition

function

Zq̄-brane = Zclosed

(
z,Qm =

1

q

√
t

q

)
=

(
zQ t

q , t
)
∞(

z
√

t
q , t
)
∞

=

∞∑

n=0

(
z
√

t
q

)n (
Q
√

t
q , t
)
n

(t, t)n

= PE[z, 1, 0, 0]q̄PE[zQ, 1/2, 1/2]q̄ = PCq̄

(
t; z

√
t

q
, zQ

√
t

q

)
.

(4.48)

Above we have also provided quiver forms (3.112), in this example we get quiver matrices of

the same form

Cq̄ =

[
1 0

0 0

]
, Ct =

[
1 0

0 0

]
. (4.49)

Moreover, by comparing with (4.17) and (4.19), we read off refined Ooguri-Vafa invariants

N
(0,0)
z = 1, N

(1/2,1/2)
zQ = 1.

4.2.4 Resolution of C3/Z2

Another example of a strip geometry with one local P1 is O(0)⊕O(−2)→ P1, or equivalently

the resolution of C3/Z2. We consider two topological brane locations, either on a horizontal

or a vertical leg (in our earlier conventions), as shown in Figure 4.8. Partition functions for

these two brane configurations can be obtained by two different geometric transitions. For

the Lagrangian brane on a horizontal line the partition function takes form of a product of a

finite number of quantum dilogarithms. We obtain open amplitudes for t-brane and q̄-brane

Z
(a)
t-brane =

1

(zt, q)∞(zQt, q)∞
, Z

(a)
q̄-brane =

(
z
t

q
, t

)

∞

(
zQ

t

q
, t

)

∞
. (4.50)

The corresponding open BPS invariants are N
(1/2,1/2)
z = 1 and N

(1/2,1/2)
zQ = 1.
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(b)

q

Q Q

(a)

QQ t t

t

zz

zz

Figure 4.8: Geometric transitions that produce a Lagrangian brane on the horizontal line (a)
or the vertical line (b) in the resolution of C3/Z2.

On the other hand, the partition function for t-brane in the configuration (b) in Figure 4.8

takes form

Z
(b)
t-brane =

∞∑

n=0

Qntn

(q, q)n

(
Q1

t
q ,

1
q

)
n

=
1

(Q t
q ,

1
q )∞

∞∑

n,d=0

(−√q)−2nd (Qt)n(Q1t)
d

(q, q)n (q, q)d

=
1

(Q1
t
q ,

1
q )∞

PCt(q;Qt,Q1t) .

(4.51)

The quiver matrix in the representation (3.112) in this case reads

Ct =

[
0 −1

−1 0

]
. (4.52)

In this case there is an infinite number of open BPS invariants, see Table A.1. Note that

for fixed d0 and d1, non-zero invariants arise only for one particular value of r, in agreement

with our earlier prediction. As usual, the partition function for a q̄-brane can be obtained by

exchanging q → 1/t in (4.51)

Z
(b)
q̄-brane =

∞∑

n=0

(−
√
t)n

2
(
Q
√

t
q

)n

(t, t)n

(
Q1

t
q , t
)
n

=
1

(Q t
q , t)∞

PCq̄

(
t;Q

√
t

q
,Q1

√
t

q

)
(4.53)

with quiver matrix in the representation (3.112)

Cq̄ =

[
1 1

1 1

]
. (4.54)
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4.2.5 Double-P1
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Q1Q2

Figure 4.9: Two strip geometries related by a flop transition produces the same double-P1

geometry through Higgsing. However the introduced Lagrangian branes are different types.

In turn, we consider the Lagrangian brane in a double-P1 geometry (that involves two

local P1’s), either on a horizontal or vertical line. First, by considering the Lagrangian brane

attached to a horizontal line, as shown in Figure 4.9, we illustrate the effect of a flop transition

on the resulting Lagrangian brane. Second, we consider the Lagrangian brane on a vertical

line shown in Figure 4.11, and show that open BPS invariants are non-negative integers.

To start with, we consider the top left diagram in Figure 4.9. This is a strip geometry

with a closed partition function expressed in terms of a finite number of refined MacMahon

functions

Zclosed =
M
(
Q1

√
t
q , t, q

)
M
(
Q2

√
t
q , t, q

)
M
(
Q3

√
t
q , t, q

)
M
(
Q4

√
t
q , t, q

)

M
(
Q1Q2, q, t

)
M
(
Q2Q3, t, q

)
M
(
Q3Q4, q, t

)
M
(
Q1Q2Q3Q4, q, t

)×

×M
(
Q1Q2Q3

√
t

q
, t, q

)
M
(
Q2Q3Q4

√
t

q
, t, q

)
.

(4.55)

In order to introduce a Lagrangian brane we perform a geometric transition at the two sphere

Q1. In this process we can ignore the terms
M(Q3

√
t
q
,t,q)M(Q4

√
t
q
,t,q)

M(Q3Q4,q,t)
that capture only closed

string contributions. Furthermore, following (4.15), we set Q1 = q
√

q
t or 1

t

√
t
q respectively to
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obtain open partition functions for q-brane or t̄-brane with the open Kähler parameter z ≡ Q2

Zq-brane =
M
(
Q2

√
t
q , t, q

)
M (Q2Q3q, t, q)M

(
Q2Q3Q4

√
t
q , t, q

)

M (Q2
√
qt, t, q)M (Q2Q3, t, q)M (Q2Q3Q4

√
qt, t, q)

=
(Q2
√
tq, t)∞(Q2Q3Q4

√
tq, t)∞

(Q2Q3q, t)∞
= PCq (t;Q2

√
q,Q2Q3Q4

√
q,Q2Q3q) ,

Zt̄-brane =
M
(
Q2

√
t
q , t, q

)
M (Q2Q3/t, t, q)M

(
Q2Q3Q4

√
t
q , t, q

)

M (Q2/
√
qt, t, q)M (Q2Q3, t, q)M (Q2Q3Q4/

√
qt, t, q)

=
(Q2Q3

q
t , q)∞

(Q2

√
q
t , q)∞(Q2Q3Q4

√
q
t , q)∞

= PCt̄

(
q;Q2Q3

√
q

t
,Q2

√
q

t
,Q2Q3Q4

√
q

t

)
,

(4.56)

where

Cq =




1 0 0

0 1 0

0 0 0


 , Ct̄ =




1 0 0

0 0 0

0 0 0


 . (4.57)

As a check, the above partition functions satisfy the relation (4.11).

On the other hand, we consider the geometry represented by the diagram in the bottom

left in Figure 4.9, which is related to the previous geometry by a flop transition on the two

sphere Q1. Upon the geometric transition it leads to the same double-P1 geometry, however

with different types of topological branes: substituting Q−1
1 = t

√
t
q or 1

q

√
q
t respectively we

obtain t-brane or q̄-brane with open partition functions

Zt-brane =
M (Q2t, q, t)M

(
Q2Q3

√
t
q , t, q

)
M (Q2Q3Q4t, q, t)

M (Q2, q, t)M (Q2Q3
√
qt, q, t)M (Q2Q3Q4, q, t)

(4.58)

=
(Q2Q3

√
tq, q)∞

(Q2t, q)∞(Q2Q3Q4t, q)∞
= PCt

(
q;Q2Q3

√
t, Q2t, Q2Q3Q4t

)
, (4.59)

Zq̄-brane =
M (Q2/q, q, t)M

(
Q2Q3

√
t
q , t, q

)
M (Q2Q3Q4/q, q, t)

M (Q2, q, t)M (Q2Q3/
√
qt, q, t)M (Q2Q3Q4, q, t)

(4.60)

=
(Q2

t
q , t)∞(Q2Q3Q4

t
q , t)∞

(Q2Q3

√
t
q , t)∞

= PCq̄

(
t;Q2

√
t

q
,Q2Q3Q4

√
t

q
,Q2Q3

√
t

q

)
, (4.61)

where quiver matrices in the representation (3.112) are

Ct =




1 0 0

0 0 0

0 0 0


 , Cq̄ =




1 0 0

0 1 0

0 0 0


 . (4.62)

There are just three open BPS numbers

N
(1/2,1/2)
Q2

= 1, N
(0,0)
Q2Q3

= 1, N
(1/2,1/2)
Q2Q3Q4

= 1 . (4.63)
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To sum up, the geometric transition may produce only two particular types of topological

branes. A flop of the two-cycle that undergoes the geometric transition leads then to another

two types of topological branes. As a check, all relations in (4.9) hold for the partition functions

determined above.

Q1

Q2

q

z

Q1

Q2

q

z0

(a) (b)

Figure 4.10: Branes on various vertical legs of a double-P1 geometry.

Furthermore, we consider the topological brane on vertical lines. Open partition functions

for the q̄-brane and t-brane in the diagram (a) in Figure 4.10 take form

Z
(a)
q̄-brane =

∞∑

n=0

(
z
√

t
q

)n (
Q1

√
t
q , t
)
n

(t, t)n

(
Q1Q2

t
q , t
)
n

=

(
Q1

√
t
q , t
)
∞(

Q1Q2
t
q , t
)
∞

PCq̄

(
t; z

√
t

q
,Q1

√
t

q
,Q1Q2

√
t

q

)
,

Z
(a)
t-brane =

∞∑

n=0

(−z)nq n
2

2 t
n
2

(
Q1

√
t
q ,

1
q

)
n

(q, q)n

(
Q1Q2

t
q ,

1
q

)
n

=

(
Q1

√
t
q ,

1
q

)
∞(

Q1Q2
t
q ,

1
q

)
∞

PCt

(
q; z
√
t, Q1Q2t

)
.

(4.64)

The summation formulae above are special cases of (4.24) and (4.25), and quiver matrices

read

Cq̄ =




0 1 1

1 0 0

1 0 1


 , Ct =




1 −1 −1

−1 1 0

−1 0 0


 . (4.65)

We verify that corresponding refined open BPS invariants are indeed positive integers, as

shown in Table A.2. Note that for fixed (d0, d1, d2), non-zero BPS invariants arise only for

one particular value of r, as predicted before.

On the other hand, open partition functions for the topological brane in the diagram (b)

in Figure 4.10 can be obtained by performing geometric transitions and then blowing down

the two-cycle Q3 → 0, as shown in Figure 4.11. In this way we obtain q-brane and t̄-brane
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Q2
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Q3

Q3

Q1
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Figure 4.11: The geometric transition leads to the diagram (b) in Figure 4.10.

partition functions

Z
(b)
q-brane =

∞∑

n=0

qn(z′Q1)n
(

1
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√
t
q , t
)
n

(
Q2

√
t
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,
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=
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(
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n

(
1
Q2

√
q
t , q
)
n

(q, q)n
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(4.66)

One can now apply the relations (4.12) to get q̄-brane and t-brane partition functions

Z
(b)
q̄-brane =

∞∑

n=0

(
z̃
√

t
q

)n (
Q̃1

√
t
q , t
)
n
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√
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=

(
Q̃1

√
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q
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∞
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√
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∞
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√
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(b)
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∞∑

n=0

(
z̃
√

t
q

)n (
Q̃1

√
t
q ,

1
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)
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Q2

√
t
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1
q

)
n(

1
q ,

1
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= PCt̄(q; z̃
√
t, Q̃1

√
t, Q2

√
t),

(4.67)

where Q̃1 = 1/Q1, z̃ = z′Q1q
√

q
t . These formulas have a standard form for open partition

functions on a strip geometry, thus the corresponding open BPS invariants are non-negative

integers. The corresponding quiver matrices are

Cq =




0 1 1

1 0 0

1 0 0


 , Ct̄ =




1 −1 −1

−1 1 0

−1 0 1


 . (4.68)

4.2.6 Triple-P1

In turn, we consider the topological brane on the vertical line in a triple-P1 geometry, as

shown in Figure 4.12. Similarly as before, the geometric transition gives rise to open partition
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Figure 4.12: A topological brane on a vertical leg in a triple-P1.

functions for q̄-brane and t-brane
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∞∑

n=0

(
Q
√

t
q

)n

(t, t)n

(
Q1

√
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√
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(4.69)
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∞∑
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(4.70)

where

Cq̄ =




0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1



, Ct =




1 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 0



. (4.71)

We verify that refined open BPS invariants N
(s,r)
(d,d1,d2,d3) are non-negative integers as expected,

as shown in Table A.3. Note that for fixed (d, d1, d2, d3), non-zero invariants arise only for one

particular value of r. We also conjecture that, for a given d, non-zero open BPS invariants

arise for indices (s, r) that are in the range

r ≤ s ≤ d+ 1,
1

2

[d
2

]
≤ r ≤ d− 1

2
, (4.72)

and open BPS invariants with the maximal spin s = d+ 1 are equal to one.
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4.3 Hanany-Witten transitions

In this section we consider Hanany-Witten (HW) transitions of 7-branes for brane webs (toric

diagrams). Hanany-Witten transitions often lead to overlapped lines, which imply that there

are some shrinking cycles in brane webs. These diagrams with overlapped lines are non-toric

diagrams [96]. Non-toric diagrams in our context can be resolved by blowing up singular

two-cycles, and finally we end up with toric diagrams that contain some local T2-diagrams

[99, 100, 82, 101]. T2-diagram is a particular example of TN -diagrams that engineer non-

Lagrangian theories [96, 40]. We illustrated T2-diagram in Figure 4.13.

||
Q3

||
ν

Q2

t

q q

Q1

t

||

Figure 4.13: T2-geometry includes three local P1’s that meet in one point.

One aim of this section is to confirm the consistency of refined open topological strings

in processes of Hanany-Witten (HW) transitions. After reinterpreting toric diagrams as five-

branes webs [71, 96], we introduce 7-branes at the end of semi-infinite 5-branes. These 7-brane

can move around a given toric diagram. When such a 7-brane crosses 5-branes, some 5-branes

may be created or annihilated, which is the process referred to as Hanany-Witten transition.

On the level of topological strings, partition functions before and after such a transition should

be equivalent. In this section we verify that this statement is correct for refined open partition

functions for various strip Calabi-Yau threefolds that involve T2-geometry. Furthermore, an-

other interesting phenomenon that involves non-toric diagrams and T2-geometry is T2-tuning

[36], which is a particular Higgsing that we use to obtain the refined open amplitudes for

non-toric brane webs.

To start with, the geometric transitions in Figure 4.14 leads to the refined open amplitude

for T2-diagram and triple-P1 geometry. The HW transition of a 7-brane introduced at the

infinity of a 5-brane relates these two geometries. More explicitly, the T2-geometry with one

Lagrangian brane is shown in diagram (c). This geometry can be obtained by Higgsing the

toric diagram (a). Furthermore, we can make the Hanany-Witten transition of the 7-brane by

moving it up. When applied to the T2-geometry, HW transition produces a triple-P1 geometry

up to an additional open string denoted by the wavy line in the diagram (d). In another way,

this triple-P1 geometry can be obtained by Higgsing the diagram (b). In addition, the geometry

in the diagram (b) itself can be obtained from the geometry (a) upon the Hanany-Witten

transition. Therefore, geometric transition and HW transition compose a commute relation

between these four diagrams, relating both open topological strings and closed topological

strings.
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Q

Q1

Q2

Q3

t

Q⇤

t
Q

Q1

Q2

Q3

Q⇤

t

t

Q

Q1

Q2

Q3

t
Q

Q1

Q2

Q3

t

Hanany-Witten

Hanany-Witten

Higgsing Higgsing

(a) (b)

(c) (d)

Figure 4.14: Geometric transition (Higgsing) and Hanany-Witten transition relate the T2-
geometry (diagram (c)) to a strip Calabi-Yau geometries in the presence of one Lagrangian
brane. The 7-brane is denoted by a gray node.

We stress that geometric transitions and Hanany-Witten transitions have very different

status. Geometric transitions enable us to determine explicitly open partition functions by

giving specific values to certain Kähler parameters of the mother toric diagrams. For exam-

ple, partition functions for diagram (c) and (d) in Figure 4.14 arise respectively from their

mother diagram (a) and (b) upon geometric transitions. On the other hand, Hanany-Witten

transitions change the brane webs significantly and predict that partition functions before and

after the transition should be equivalent.

Let us compute the open partition functions for the diagrams in Figure 4.14 quantitatively.

Closed partition function for the diagram (a) is given by 1

ZT2

(a) =
∑

µ,ν

(−1)|µ|+|ν|q
||µ||2+||ν||2

2 Q|µ|Q
|ν|
2 ||Zµ(q, t)||2||Zν(q, t)||2

×
Nhalf,−
µ (Q∗, t−1, q−1)Nhalf,−

ν (Q3, t
−1, q−1)Nµν

(
Q1

√
t
q , t
−1, q−1

)

Nhalf,−
µ

(
Q1Q3

√
q
t , t
−1, q−1

) ,

(4.73)

where the parameter Q plays the role of open Kähler modulus. Note that geometric transition

tells us that fixing the values of Q∗ in the term Nhalf,−
µ (Q∗, t−1, q−1) by following the rules

1We ignore here the overall contributions of the form ZM (2.131), as it does not depend on the open Kähler
parameter Q.
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from section 4.1, the ZT2

(a) becomes the open amplitude for the diagram (c). For Q∗ = t
√

t
q we

get a t-brane and for Q∗ = 1
q

√
t
q we get q̄-brane, whose open partition functions are denoted

respectively by ZT2
t-brane and ZT2

q̄-brane.

On the other hand, the open amplitude for the diagram (d) in Figure 4.14 can be computed

by Higgsing the closed amplitude for the diagram (b) analogously as in section 4.2.6. Again,

7-brane denoted by the dark node does not play a role as the associated external line are

assigned with empty Young diagram. We get the open partition functions for t-brane and

q̄-brane respectively as follows:

Z3P1

t-brane =
∞∑

n=0

(QQ2t)
n
(
Q1

√
q
t , q
)
n

(
1
Q2

√
q
t , q
)
n

(q, q)n(Q1Q3q/t, q)n
= PCt

(
q;QQ2t, Q1

√
q

t
,Q−1

2

√
q

t
,Q1Q3

√
q

t

)
,

Z3P1

q̄-brane =
∞∑

n=0

(
Q
Q3q

)n (
1
Q1

√
t
q , t
)
n

(
Q2

√
t
q , t
)
n

(t, t)n

(
t

Q1Q3q
, t
)
n

= PCq̄

(
t;QQ2

√
t

q
,Q1
√
q,Q−1

2

√
q,Q1Q3q

)
,

(4.74)

where we also provide quiver forms (3.112) (ignoring Q-independent prefactors analogous to

(4.33) and (4.35)) in the following

Ct =




0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1



, Cq̄ =




−1 −1 −1 −1

−1 1 0 0

−1 0 1 0

1 0 0 0



. (4.75)

We can now compare partition functions in (4.73) with (4.74). We find that the HW transition

does not change open amplitudes up to a simple factor

ZT2
t-brane =

Z3P1

t-brane

(QQ2t, q)
−1
∞
, ZT2

q̄-brane =
Z3P1

q̄-brane

(QQ2
t
q , t)∞

. (4.76)

The factor (QQ2t, q)
−1
∞ = (QQ2

t
q ,

1
q )∞ = PE[QQ2, 1, 1/2, 1/2]t-brane in the denominator for

the t-brane encodes a single open BPS invariant N
(1/2,1/2)
QQ2

= 1, and represents an open string

of length QQ2, denoted in the diagram (d) by a wavy line. The factor (QQ2
t
q , t)∞ for the

q̄-brane has the same interpretation. We note that this additional open string can be easily

identified, as it is not meaningful to have disconnected strings. This additional string with

length QQ2 is connected in the diagram (d), but is not connected in the diagram (c), so this

string exist only in the right diagram (d). Altogether, the relations (4.76) confirm that refined

open topological strings are consistent with Hanany-Witten transitions.

Furthermore, the relations (4.76) immediately imply that open partition functions for T2-

geometry can be also presented in the quiver form – in this case quivers look like the quivers

for triple-P1 geometry in (4.75), and in addition have one extra node that represents the
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denominators on the right side of (4.76). It follows that the quiver forms for T2-geometry read

ZT2
t-brane = PCt

(
q;QQ2

t√
q
,QQ2t, Q1

√
q

t
,Q−1

2

√
q

t
,Q1Q3

√
q

t

)
,

ZT2
q̄-brane = PCq̄

(
t;QQ2

t

q
,QQ2

√
t

q
,Q1
√
q,Q−1

2

√
q,Q1Q3q

)
,

(4.77)

with quiver matrices

Ct =




1 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 0

0 1 0 0 1



, Cq̄ =




0 0 0 0 0

0 1 −1 −1 −1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 0



. (4.78)

Having determined the open partition functions for T2-geometry, let us discuss some of its

properties. One of them is referred to as T2-tuning found in [36]. In the context of closed

strings this is the statement that after adjusting two of the three Kähler parameters of the

T2-geometry, either as Q1 = Q3 =
√

t
q or

√
q
t , or Q2 = Q3 =

√
t
q , or Q1 = Q2 =

√
q
t ,

appropriate two parallel external lines of T2-geometry overlap, and the geometry itself reduces

effectively to two copies of C3 in a non-toric configuration. Such a process is shown in Figure

4.15. Note that for closed strings, in case (a), Q1 and Q3 can be fixed to two equivalent values

Q1

Q2

Q3

t

t

q q

⌫

t t
t

(b) (c)(a)

Q

Figure 4.15: T2-tuning with a Lagrangian brane: tuning appropriately Kähler parameters of
T2-geometry reduces it to two copies of C3, which are non-toric diagrams as some two-cycles
have zero volume.

√
t
q or

√
q
t ; this appears to be a feature of two lines overlapping along the preferred direction.

Note that now in the presence of a Lagrangian brane, the T2-tuning is slightly broken.

In case (a) the parameters Q1 and Q3 can be fixed to only one value
√

t
q . Similarly as in

the closed string case, once we fix values of two Kähler parameters as above, the dependence

on third parameter drops out. For example, fixing Q1 = Q3 =
√

t
q in the partition function

(4.73), it follows from (4.3) that ν = ∅ and hence Q
|ν|
2 = 1. Ultimately, in all configurations

(a), (b) and (c) the t-brane partition function (4.73) reduces to (Q
√
qt, q)∞, which is indeed

the same as t-brane partition function for the geometry C3.

Finally, let us consider more examples to illustrate the effects of Hanany-Witten transitions.

First, consider the process in Figure 4.16, where moving a 7-brane from infinity to the T2-

geometry results in a non-toric structure that involves one additional open string. The open
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Qk

tQ
Q t

Figure 4.16: Hanany-Witten moving a 7-brane (dark node) from infinity to the T2-geometry
results in a non-toric diagram and one additional open string of length QQk.

Figure 4.17: T2-tuning followed by Higgsing two local P1’s (in the second step) gives to a
non-toric diagram with a Lagrangian brane.

partition function for the T2-geometry has been given in (4.74). To determine the open

partition function after HW transition we engineer its mother toric diagram shown in Figure

4.17. We first compute its closed partition function using refined topological vertex, and then

fix appropriate parameters according to the rules of T2-tuning, and fix other Kähler parameters

in the process of geometric transitions to produce a Lagrangian brane. This process finally

gives rise to the geometry shown in Figure 4.17 (right), which is the same as in 4.16 (right), and

we denote its open partition function by Zright
t-brane. Then, comparing open partition functions

of both geometries in Figure 4.16 we find

ZT2
t-brane =

Zright
t-brane

(QQkt, q)
−1
∞
, (4.79)

where the factor (QQkt, q)
−1
∞ = PE[QQk, 1, 1/2, 1/2]t-brane represents the additional open

string of length QQk that is produced by the Hanany-Witten transition.

An analogous example, however involving the triple-P1 geometry, is shown in Figure 4.18.

We have computed the open partition function Z3P1

t-brane for a t-brane in triple-P1 geometry

in (4.74). We determine the partition function Z
(b)
t-brane for the geometry shown in 4.18 in

diagram (b) following Figure 4.19, and again applying T2-tuning and geometric transition to
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an appropriately engineered more complicated geometry. We then find that

Z3P1

t-brane =
Z

(b)
t-brane

(QQ2Qkt2q−1, q)−1
∞
, (4.80)

where the denominator (QQ2Qkt
2q−1, q)−1

∞ = PE[QQ2Qk, 1, 3/2, 3/2]t-brane represents the ad-

ditional open string of length QQ2Qk introduced by the Hanany-Witten transition in Figure

4.18.

t
Qt

Q
Q2 Q2

Qk

(a) (b)

Figure 4.18: Hanany-Witten transition that moves a 7-brane (denoted by a blue dot) from
infinity to the triple-P1 geometry results in a non-toric structure with one extra open strings
of length QQ2Qk.

Figure 4.19: T2-tuning (in the first step) followed by geometric transitions on two local P1’s
(in the second step) gives the geometry with a Lagrangian brane shown in Figure 4.18 (right).

Furthermore, let us consider a more complicated process, where anti-fundamental chiral

multiplets are introduced by sandwiching 7-branes between 5-branes, see Figure 4.20. We

choose either to move one 7-brane down to infinity and another 7-brane up to infinity, see

diagram (a) in Figure 4.20, or to move these 7-branes in opposite directions, see diagram

(c). These operations result respectively in diagrams (b) and (d). We expect that their open

partition functions should be equal, up to some factors representing additional open strings

that arise in these different Hanany-Witten transitions. To verify this claim, we compute

refined open partition functions for diagrams (b) and (d) following respectively Figure 4.21

and Figure 4.22. Denoting these open partition functions by Z
(b)
t-brane and Z

(d)
t-brane, we then find

Z
(b)
t-brane

(QQ5t, q)
−1
∞

=
Z

(d)
t-brane

(QQ2t, q)
−1
∞
. (4.81)

This indeed the expected results, where additional open strings represented by (QQ5t, q)
−1
∞ =

PE[QQ5, 1, 1/2, 1/2]t-brane and (QQ2t, q)
−1
∞ = PE[QQ2, 1, 1/2, 1/2]t-brane. This result again
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confirms the consistency of refined topological strings with Hanany-Witten transitions.

Q

Q
Q2

Q1

Q1

Q3

Q3

Q4

Q4

Q2

Q5

t

t

(c) (d)

Q3Q5

r
q

t

(a) (b)

Figure 4.20: Hanany-Witten transition that involves moving two 7-branes to infinity, and

produces additional open strings. Note that the shift
√

q
t in Q3Q5

√
q
t can be derived by

T2-tuning.

Figure 4.21: T2-tuning on two pairs of lines (in the first step) followed by the geometric
transition on three local P1’s (in the second step) engineers the geometry with a Lagrangian
brane shown in Figure 4.20 (b).

4.4 Generic toric diagrams

In this section we consider examples of toric manifolds with compact four-cycles. We focus

on Lagrangian branes in Hirzebruch surfaces and blow up some points. Let us first make the
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Figure 4.22: Geometric transitions on three local P1’s give rise to a Lagrangian brane shown
in Figure 4.20 (d).

A

B

Figure 4.23: Introducing local P1’s may produce parallel external lines. In this example,
Lagrangian branes can be engineered at positions A or B.

following remark. Our approach seems to work only for introducing Lagrangian branes on

external parallel lines. In other situations one can blow up some points to produce more local

P1’s, see Figure 4.23, which effectively changes the direction of external lines. Finally after

decoupling these introduced lines, we obtain the original refined open partition functions.

The first example we consider is the Hirzebruch surface F2
0 with a Lagrangian brane.

Its toric diagram is shown in Figure 4.24 (right) and can be obtained through Higgsing the

geometry shown on the left. We just calculate the t-brane partition function, as other types

of Lagrangian branes give rise to the same result upon the exchange symmetry (4.9). We set

QB

ν2

ν1
||

q

QF

Q1
Q3

ν3

Q2

Qm2

Qm1

QB

ν2

ν1
||

q

QF

Q1
Q3

ν3

Q2

Figure 4.24: Geometric transitions at Qm1 and Qm2 introduce a Lagrangian brane at one
external line of F2

0. One can also switch the values of Qm1 and Qm2 to introduce the Lagrangian
brane on the bottom external line.
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Kähler parameters Qm1 = t
√

t
q and Qm2 =

√
t
q in the left diagram in Figure 4.24, and obtain

Zopen-closed
t-brane (F2

0) =
∑

ν1,ν2,ν3

(−1)|ν3|q
||ν3||

T

2
+||νT2 ||2t

||ν3||
2

2
+||νT1 ||2×

×Q|ν3|
3 Q

|ν1|+|ν2|
B ||Zν1(q, t)||2||Zν2(t, q)||2||Zν3(t, q)||2×

×
Nhalf,−
νT3

(
1
q

√
t
q

)
Nhalf,+
ν1 (Q2QF )Nhalf,+

νT2
(Q2)Nν1,νT3

(
Q1

√
t
q

)
NνT2 ,ν

T
3

(
Q1QF

√
t
q

)

Nhalf,+

νT3

(
Q1Q2QF

√
t
q

)
NνT2 ,ν1

(QF )NνT2 ,ν1

(
QF

t
q

) ,

(4.82)

where Nµ,ν(Q) is a shorthand notation for Nµ,ν(Q, t−1, q−1), and Q3 represents the open

Kähler parameter. Note that the partition function (4.82) contains also closed string contri-

butions

Zclosed(F2
0) =

∑

ν1,ν2

q||ν
T
2 ||2t||ν

T
1 ||2Q

|ν1|+|ν2|
B ||Zν1(q, t)||2||Zν2(t, q)||2×

×
Nhalf,−
ν1 (Q1)Nhalf,−

νT2
(Q1QF )Nhalf,+

ν1 (Q2QF )Nhalf,+

νT2
(Q2)

NνT2 ,ν1
(QF )NνT2 ,ν1

(
QF

t
q

) .

(4.83)

The t-brane open partition function of our interest therefore should be

Zt-brane(F2
0) =

Zopen-closed
t-brane (F2

0)

Zclosed(F2
0)

. (4.84)

We show the associated open refined BPS invariants in Table A.4. They are indeed non-

negative integers, as expected.

||
QF

Q1

QB QB
||
QF

Qm2
Qm1

Figure 4.25: Geometric transitions at Qm1 and Qm2 (in the left diagram) produce the Hirze-
bruch surface F2 with a Lagrangian brane (right).

The second example we consider is the Hirzebruch surface F2 with a Lagrangian brane,

illustrated in Figure 4.25 (right). This diagram can be obtained by Higgsing the left diagram

in Figure 4.25, upon fixing Kähler parameters Qm1 = t
√

t
q and Qm2 =

√
t
q . In this way we
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obtain the open-closed partition function

Zopen-closed
t-brane (F2) =

∑

ν1,ν2,ν3

q−||ν3||2t||ν2||2+2||νT3 ||2Q
2|ν3|
B Q

|ν2|+|ν3|
F ||Zν2(t, q)||2||Zν3(q, t)||2×

×
Nhalf,+

νT2

(
Q1t

√
t
q

)
Nhalf,+
ν3

(
Q1QBt

√
t
q

)

Nhalf,+
ν3

(
Q1QB

√
t
q

)
Nhalf,+

νT2

(
Q1

√
t
q

)
NνT2 ,ν3

(QBt)NνT2 ,ν3

(
QB

t
q

) ,

(4.85)

which also contains closed string contributions

Zclosed(F2) =
∑

ν2,ν3

q−||ν3||2t||ν3||2+2||νT3 ||2Q
2|ν3|
B ||Zν2(t, q)||2||Zν3(q, t)||2

NνT2 ,ν3
(QBt)NνT2 ,ν3

(
QB

t
q

) . (4.86)

In this case Q1 is the open Kähler parameter, which also appears in the prefactor (2.131)

ZM (F2) =
M(Q1t, q, t)M(Q1QBt, q, t)

M(Q1, q, t)M(Q1QB, q, t)
. (4.87)

Therefore, the t-brane partition function of our interest should be

Zt-brane(F2) =
ZM (F2) · Zopen-closed

t-brane (F2)

Zclosed(F2)
. (4.88)

We show some refined open BPS invariants, in particular the curves wrapping the compact

divisor, in Table A.5. They are non-negative integers, as expected.
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Chapter 5

3d mirror symmetry and mixed

Chern-Simons levels

We have discussed 3d mirror symmetry in section 3.1.4. The 3d mirror symmetry can be

interpreted as a functional Fourier transformation on the path integral of partition functions

[65]. A basic example is the duality between U(1)+1F and a free chiral multiplet. This mirror

pair can be used to construct other mirror dual pairs such as SQED-XYZ model. Recently,

using mirror dual pairs to construct mirror dual theories has been implemented in [67]. In

this chapter, we are going to use this basic mirror pair as the building block to find the

mirror dual theories of 3d abelian theories with a gauge group U(1) and some fundamental or

antifundamental chiral multiplets, denoted by U(1)k+NFF+NAFAF. These abelian theories

are interesting, as they are geometrically engineered by strip Calabi-Yau threefolds in the

presence of a Lagrangian brane. For more details on 3dN = 2 theories, see e.g.[102, 6, 57, 103].

In order to perform mirror transformations on U(1)k + NFF + NAFAF, we use a spe-

cial type of theory denoted as TA,N which consists of a bunch of building blocks U(1) + 1F

coupled together by mixed Chern-Simons levels (3.19). The abelian theories with mixed

Chern-Simons levels has been discussed in [53]. We further discuss abelian theories with

mixed Chern-Simons levels and their mirror symmetry transformations in this chapter.

Another motivation is to find a quiver representation. For a generic strip Calabi-Yau

threefold, there is a corresponding quiver which is the same in both refined and unrefined

cases; see chapter 4. These quivers are not very well understood and we need to physi-

cally understand it. It is conjectured in [93] that such quivers encoded in knot polynomials

in Ooguri-Vafa construction [14] are mixed Chern-Simons levels for abelian 3d N = 2 the-

ories. We find this conjecture is correct in another configuration, namely the 3d N = 2

theories engineered by strip Calabi-Yau threefolds, in which case the knot is trivial but the

background geometry is much more complicated than the resolved conifold. By using mir-

ror transformations, we find the quivers are actually the effective mixed Chern-Simons levels

for mirror dual TA,N theories. The interesting point is that mirror transformations can be

implemented more than one time, and form a very nice group called mirror transformation

group H(TA,N ). In particular, mirror transformations sometimes may not give rise to inte-

ger mixed Chern-Simons levels, which implies parity anomaly, hence we should throw away
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these non-integer mixed Chern-Simons levels. We note that the mirror transformation group

gives rise to several different effective mixed Chern-Simons levels, which are related by mirror

transformations. We find that these integer mixed Chern-Simons levels are related by flipping

the sign of effective FI parameters ξi → −ξi which can be interpreted as mirror maps. This

flip has remarkable implication, as it changes positions of D5-branes as we discuss in the next

chapter. In this chapter we focus on mirror transformations and mixed Chern-Simons levels.

In the next chapter, we will discuss the influence of mirror symmetry on 3d brane webs.

This chapter is based on [11]. In section 5.1, we discuss partition functions and mirror

transformations for TA,N theories. In section 5.2, we perform mirror symmetry on abelian

theories engineered by strip Calabi-Yau threefolds, and find mirror dual theories are TA,N
theories. The quivers are therefore interpreted as effective mixed Chern-Simons levels. In

section 5.3, we discuss the application of mirror transformations on knot polynomials.

5.1 3d mirror symmetry and TA,N theory

In order to implement mirror symmetry on 3d gauge theories, it is convenient to work with

sphere partition functions. As we have discussed in subsection 3.1.4, mirror symmetry acts

as functional Fourier transformations on the path integrals of partition functions. Hence we

also refer to mirror symmetry as a mirror transformation. In this section, we first define

TA,N theories and then write down their sphere partition functions from which one can read

off effective superpotentials encoding mixed Chern-Simons levels. In the second part of this

section, we discuss that there is a mirror transformation group for the TA,N theory.

5.1.1 TA,N theory

We define the abelian quiver theories as follows:

TA,N : (U(1) + 1F)⊗Nkij , ξi . (5.1)

They consist of N copies of U(1) + 1F theory with real symmetric bare Chern-Simons levels

kij which couple gauge groups U(1) × U(1) × · · · × U(1). In (5.1), ξi are Fayet-Iliopoulos

parameters and ui are real mass parameters for chiral multiplets. Note that there is no 3d

superpotential for TA,N theories. For other properties of this theory, see e.g. [104]. The sphere

partition function for TA,N theory reads

Z
TA,N
S3
b

=

∫ N∏

i=1

dxi e

N∑
i,j=1

−i π kijxixj+2 i π ξixi
N∏

i=1

sb

( iQ
2

+ xi +
ui
2

)
, (5.2)

where Q = b+ 1/b. By shifting xi, one can define shifted Fayet-Iliopoulos parameters ξ̃i:

xi → −xi −
ui
2
, ξi = −ξ̃i −

1

2

N∑

j=1

kijuj , (5.3)
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which turn TA,N theories into massless theories with sphere partition functions

Z
TA,N
S3
b

=

∫ N∏

i=1

dxi e

N∑
i,j=1

−i π kijxixj+2 i π ξ̃ixi
N∏

i=1

sb

( iQ
2
− xi

)
, (5.4)

where real mass parameters ui have been absorbed into ξ̃i. We identify (5.4) as sphere partition

functions of TA,N theories. In this thesis we only consider symmetric Chern-Simons levels

kij = kji. In addition, if we redefine parameters for each gauge node U(1)i

xi =:
log
(
− yi√

q

)

−2πb
, (5.5)

then the associated twisted effective superpotentials obtained by taking the semi-classical limit

~→ 0 and using (A.37), yield

W̃eff
TA,N (kij , ξ,y) =

Nf∑

i=1

Li2(yi) + ξeff
i log yi +

Nf∑

i,j=1

keff
ij

2
log yi log yj , (5.6)

where each polylogarithm functions Li2(yi) is contributed by a chiral multiplets F, keff
ij are

effective Chern-Simons (CS) level matrices, and ξeff
i are effective Fayet-Iliopoulos (FI) param-

eters. More explicitly, these parameters are given by

keff
ij = kij +

1

2
δij ∈ Z , (5.7)

ξeff
i = 2πb ξ̃i + i π(1− bQ)

Nf∑

j=1

kij +
iπ

2
. (5.8)

We remind that for symmetric Chern-Simons terms

∑

i,j

keff
ij

2
log yi log yj =

∑

i

keff
ii

2
(log yi)

2 +
∑

i<j

keff
ij log yi log yj . (5.9)

The effective superpotential plays a significant role. The vacua of 3d effective theories are

given by the F-term [20, 63] as follows

MC : e
yi
d W̃eff

d yi = 1 , for ∀ i = 1, · · · , N . (5.10)

More explicitly,

MC : e ξ
eff
i ·

N∏

j=1

y
keff
ij

j + yi − 1 = 0 , ∀ i = 1, · · · , N . (5.11)
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By comparing (5.6) with superpotentials in [85], we conjecture that vortex partition functions

for TA,N theories take form

Zvortex
TA,N (xi) =

∞∑

d1,...,dN=0

(−√q)
N∑

i,j=1
keff
ij didj xd1

1 · · ·xdNN
(q, q)d1 · · · (q, q)dN

, (5.12)

where xi := (−1)k
eff
ii eξ

eff
i , and di are magnetic flux numbers (vortex numbers) discussed in

section 3.1.1. Vortex partition functions can also be obtained by the factorization property of

sphere partition functions [80, 105].

5.1.2 Mirror transformations

Recall that 3d mirror symmetry can be interpreted as a functional Fourier transformation on

partition functions [65], which is therefore called mirror transformation in this thesis. Here

we discuss how it acts on TA,N theories. We start from the most basic example, namely the

dual pair between U(1)1/2 + 1F mirrors and a chiral singlet with Chern-Simons level −1/2:

U(1)1/2 + 1F
mirror symmetry←−−−−−−−−−→ 1F− 1

2
. (5.13)

Their partition functions are equivalent

∫
dy e−

i π
2
y2
e2π i ( i Q4 −z)ysb

( iQ
2
− y
)

= e
i π
2 ( i Q2 −z)

2

sb
( iQ

2
− z
)
. (5.14)

This is a mathematical identity discussed in [106, 107], which implies that any double-sine

function sb(· · · ) can be replaced by an integral:

sb
( iQ

2
− z
) mirror transformation−−−−−−−−−−−−−→ e−

i π
2 ( i Q2 −z)

2
∫
dy e−

i π
2
y2
e2π i ( i Q4 −z)sb

( iQ
2
− y
)
. (5.15)

Hence the double since function is the basic unit for mirror transformations.

On the other hand, mirror symmetry is interpreted as the ST operation in the SL(2,Z)

symmetry that acts on the Lagrangian of 3d Chern-Simons theory [66], so one can also use

ST to denote the mirror transformation. We find an interesting property associated to mirror

transformation. If we perform mirror symmetry on U(1)k+1F only once, we get a new theory

U(1)′k′ + 1F:

ST : U(1)k + 1F
ST−−→ U(1) +

(
U(1)′k + 1F

) integrate out U(1)k−−−−−−−−−−−−→ U(1)′k′ + 1F , (5.16)

where the old gauge group U(1)k was integrated out to get a new theory with Chern-Simons

level k′ and new FI parameters ξ′. Note that this transformation does not change sphere

94



CHAPTER 5. 3D MIRROR SYMMETRY AND MIXED CHERN-SIMONS LEVELS

partition functions. If we perform mirror symmetry twice we get another quiver U(1)′′k′′ + 1F:

(ST )2 : U(1)k + 1F
ST−−→ U(1) +

(
U(1)′ + 1F

) ST−−→ U(1) +
(
U(1)′ +

(
U(1)′′ + F

) )

integrate out U(1) and U(1)′−−−−−−−−−−−−−−−−−→ U(1)′′k′′ + 1F . (5.17)

The corresponding partition functions are also equal. However, if we perform mirror transfor-

mation third time, we go back to the original theory

(ST )3 : U(1)k + 1F
ST−−→ U(1)′k′ + 1F

ST−−→ U(1)′′k′′ + 1F
ST−−→ U(1)k + 1F , (5.18)

which is consistent with a property of ST operator (ST )3 = 1.

Analogously we can perform mirror transformations on each building block of TA,N theo-

ries. For instance,




U(1) + 1F

U(1) + 1F

· · ·
U(1) + 1F




kij , ξi

(ST,ST,··· ,0)−−−−−−−−→




U(1) + (U(1)′ + 1F)

U(1) + (U(1)′ + 1F)

· · ·
U(1) + 1F




integrate out U(1)−−−−−−−−−−−→




U(1)′ + 1F

U(1)′ + 1F

· · ·
U(1) + 1F




k′ij , ξ
′
i

,

(5.19)

where we perform mirror transformations on the first two gauge nodes. After integrating out

old gauge parameters, we get a seemingly different T ′A,N theory with Chern-Simons levels k′i,j
and FI parameters ξ′i. In addition, we find that mirror transformations are independent of

each other, which implies the relation for each component

(n1,n2, · · ·ni, · · ·nN ) ∼ (n1,n2, · · ·ni + 3, · · ·nN ), ∀ i = 1, · · · , N (5.20)

where we use a shorthand notation

(n1,n2, · · ·ni, · · ·nN ) :=
(

(ST )n1 , (ST )n2 , · · · , (ST )nN
)
. (5.21)

Since kij is symmetric, one can exchange its rows and columns

kil ↔ kjl , kli ↔ klj , for ∀ l = 1, · · · , N (5.22)

by exchanging parameters xi ↔ xj for gauge nodes U(1)i and U(1)j . This yields another

equivalence relation

ni ↔ nj . (5.23)

Considering both equivalence relations (5.20) and (5.23), we find that mirror transformations
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form a finite group

H(TA,N ) := {(n1,n2, · · · ,nN ) | ni ∈ {0, 1, 2}, ni ≥ nj if i ≤ j , ∀ i, j = 1, 2, · · · , N}
= {(0,0, · · · ,0), (1,0, · · · ,0), · · · , (2,2, · · · ,2)} . (5.24)

The group addition is given by

(i1, i2, · · · , iN ) + (n1,n2, · · ·ni, · · ·nN ) = (n1 + i1,n2 + i2, · · · ,nN + iN ) . (5.25)

Note that each element (i1, · · · , iN ) can be regarded as a permutation on the finite group

H(TA,N ). We comment that although mirror transformations produce many mirror dual the-

ories with different Chern-Simons levels and FI parameters, the partition functions for these

mirror dual theories are equivalent up to some irrelevant factors. In addition, mirror trans-

formations often give rise to effective mixed Chern-Simons levels keff
ij that contains fractional

(non-integer) numbers. In this case, the associated theories have parity anomaly and should

be thrown away, and only keff
ij ∈ Z make sense [102, 45].

Let us denote the original theory by T [(0, · · · ,0)]. Mirror transformation (i1, · · · , iN )

acting on it leads to a mirror dual theory T [(i1, · · · , iN )] with superpotential W̃eff, (i1,··· ,iN ).

Hence, this is a correspondence

(i1, · · · , iN )
one to one←−−−−−→ T [(i1, · · · , iN )] . (5.26)

Furthermore, based on (5.25), (i1, · · · , iN ) gives rise to a map between T [(n1, · · · ,nN)] and

T [(n1 + i1, · · · ,nN + iN )]:

(i1, · · · , iN ) : T [(n1, · · · ,nN )]→ T [(n1 + i1, · · · ,nN + iN )] . (5.27)

Hence (i1, · · · , iN ) can be viewed as the mirror map between two mirror dual theories. Since

the mirror transformation group is finite, each (i1, · · · , iN ) can be regarded as a permutation,

and any T [(n1, · · · ,nN)] can be viewed as the original theory. By acting on the original theory

with the whole group H(TA,N ), one can obtain a chain of mirror dual theories. Moreover the

parity anomaly imposes constraints keff
ij ∈ Z, hence only a subset of mirror dual theories are

consistent. We denote these consistent subset as a class

Class(TA,N ) := {T [(n1 + i1, · · · ,nN + iN )] with keff
ij ∈ Z , ∀ (i1, · · · , iN ) ∈ H(TA,N ) } .

(5.28)

To summarize, we argue that there are the following correspondences for any (i1, · · · , iN ):

(i1, · · · , iN )
one to one←−−−−−→ T [(i1, · · · , iN )]

one to one←−−−−−→ permutations
one to one←−−−−−→ miror maps .

(5.29)

Each mirror dual theory T [(n1, · · · ,nN )] can be identified by its effective mixed Chern-Simons levels.
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Example

We consider mirror transformations for the theory TA,2 : (U(1)+1F)⊗2
kij
, whose sphere partition

function is given by

Z
TA,2
S3
b

=

∫
dx1dx2 e

2π i (ξ̃1x1+ξ̃2x2)−i π(k1,1x2
1+2k1,2x1x2+k2,2x2

2)sb(
iQ

2
− x1)sb(

iQ

2
− x2) . (5.30)

According to (5.7), TA,2 theory has effective Chern-Simons levels and FI parameters

keff
ij = kij +

1

2
δij , i, j = 1, 2 , (5.31)

ξeff
i = 2πb ξ̃i + i π(1− bQ)

2∑

j=1

kij +
iπ

2
. (5.32)

We think of (5.30) as the sphere partition function for the original theory T [(0,0)]. Following

(5.24), we write down its mirror transformation group:

H(TA,2) = {(0,0), (1,0), (1,1), (2,0), (2,1), (2,2)} , (5.33)

which corresponds to mirror dual theories { T [0,0], T [1,0], T [2,0], T [1,1], T [2,1], T [2,2] }.
These theories are related by basic mirror transformations (1,0) and (0,1):

(0,1) (0,1)

(0,1) (0,1)

(0,1) (0,1)

(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

(1,0)

T [(2,0)] T [(2,1)] T [(2,2)]

T [(1,0)] T [(1,1)] T [(1,2)]

T [(0,0)] T [(0,1)] T [(0,2)] . (5.34)
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Each mirror dual theory has an associated effective twisted superpotential W̃eff, (n1,n2). We

show effective mixed Chern-Simons levels for these theories in the following

T [(0,0)] :

[
k1,1 + 1

2 k1,2

k1,2 k2,2 + 1
2

]
,

T [(1,0)] :




2k1,1−1
2k1,1+1 − 2k1,2

2k1,1+1

− 2k1,2

2k1,1+1

−4k2
1,2+2k2,2+k1,1(4k2,2+2)+1

4k1,1+2


 ,

T [(0,1) :



−4k2

1,2+2k2,2+k1,1(4k2,2+2)+1

4k2,2+2 − 2k1,2

2k2,2+1

− 2k1,2

2k2,2+1
2k2,2−1
2k2,2+1


 ,

T [(2,0) :




2
1−2k1,1

2k1,2

2k1,1−1

2k1,2

2k1,1−1

−4k2
1,2−2k2,2+k1,1(4k2,2+2)−1

4k1,1−2


 ,

T [(0,2) :



−4k2

1,2+2k2,2+k1,1(4k2,2−2)−1

4k2,2−2
2k1,2

2k2,2−1
2k1,2

2k2,2−1
2

1−2k2,2


 ,

T [(1,1) :




2(−4k2
1,2−2k2,2+k1,1(4k2,2+2)−1)

−8k2
1,2+4k2,2+k1,1(8k2,2+4)+2

4k1,2

−4k2
1,2+2k2,2+k1,1(4k2,2+2)+1

4k1,2

−4k2
1,2+2k2,2+k1,1(4k2,2+2)+1

2(−4k2
1,2+2k2,2+k1,1(4k2,2−2)−1)

−8k2
1,2+4k2,2+k1,1(8k2,2+4)+2


 ,

T [(2,1) :




2(2k2,2+1)

4k2
1,2+2k2,2−2k1,1(2k2,2+1)+1

4k1,2

4k2
1,2+2k2,2−2k1,1(2k2,2+1)+1

4k1,2

4k2
1,2+2k2,2−2k1,1(2k2,2+1)+1

4k2
1,2+k1,1(2−4k2,2)+2k2,2−1

4k2
1,2+2k2,2−2k1,1(2k2,2+1)+1


 ,

T [(1,2) :




4k2
1,2+k1,1(2−4k2,2)+2k2,2−1

4k2
1,2+k1,1(2−4k2,2)−2k2,2+1

4k1,2

4k2
1,2+k1,1(2−4k2,2)−2k2,2+1

4k1,2

4k2
1,2+k1,1(2−4k2,2)−2k2,2+1

2(2k1,1+1)

4k2
1,2+k1,1(2−4k2,2)−2k2,2+1


 ,

T [(2,2) :




2−4k2,2

−4k2
1,2−2k2,2+k1,1(4k2,2−2)+1

4k1,2

−4k2
1,2−2k2,2+k1,1(4k2,2−2)+1

4k1,2

−4k2
1,2−2k2,2+k1,1(4k2,2−2)+1

2−4k1,1

−4k2
1,2−2k2,2+k1,1(4k2,2−2)+1


 .

(5.35)

One can see that equivalence relations (5.20) and (5.23) are satisfied, and parity anomaly puts

strong constraints on the kij in (5.35).

Quiver reduction

Giving some specific values to Chern-Simons levels, keff
ij may be problematic. This is case

when effective Chern-Simons levels have poles or vanishing determinant for some mirror dual

TA,N theories

keff
ij =



∗ ∗ · · · ∗
∗ a

0 · · · c
0

∗ b
0 · · · d

0


 or det kij = 0 . (5.36)

We call this phenomenon quiver reduction. For example, in (5.35), if we set k1,1 = ±1/2,

k2,2 = ±1/2, etc., then the effective mixed Chern-Simons levels are problematic. It turns
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out that when quiver reductions appear, the Gaussian formula (A.41) cannot be used as

det A = 0. In this case the contour integrals of sphere partition functions contain some Dirac

delta functions that reduce the rank (dimensions of the contour integral) of gauge groups.

Therefore some gauge nodes are redundant and should be integrated out.

Chern-Simons level decomposition and charge vectors

In this section, we discuss the relations between Chern-Simons levels and charge vectors. We

consider theories with chiral multiplets of arbitrary representations that are specified by their

charges under gauge groups. We note that charge vectors and Chern-Simons level matrices

are exchangeable.

The generic theories with gauge groups U(1)1×U(1)2×· · ·×U(1)N and N chiral multiplets

have partition functions

ZS3
b
(K,P) =

∫
dx e−i π xTK x+2 i π ξ̃Tx

N∏

i=1

sb

( iQ
2
−PT

i · x
)
, (5.37)

where x = (x1;x2; · · · ;xN ) is a N × 1 matrix, and PT
i are charge vectors for chiral multiples.

We define

P := (p1,p2, · · · ,pN ) , (5.38)

where Pi = pi and y := PT x .

We can change variables, ignore the Jacobian constant, and absorb charge vectors into a

new mixed CS level and FI parameters. Then (5.37) is transformed into

ZS3
b
(K′,1) =

∫
dy e−i π yTK′y+2 i π ξ̃′Ty

N∏

i=1

sb

( iQ
2
− yi

)
, (5.39)

K′ = (P−1) ·K · (P−1)T , (5.40)

ξ̃′ = (P−1) · ξ̃ . (5.41)

If K is symmetric, then K′ is also symmetric. Both K and K′ can be decomposed in the

orthogonal basis and have the same eigenvalues Λ

K = Q−1Λ (Q−1)T = QTΛ Q , (5.42)

K′ = (P−1) ·K · (P−1)T = Q′
−1

Λ (Q′
−1

)T , (5.43)

Q′ = Q P . (5.44)

Moreover, using (5.42), one can transform (5.37) into theories with diagonal Chern-Simons levels

but complicated charge vectors

ZS3
b
(Λ,Q P) =

∫
d z e−i π zTΛ z+2 i π

(
Q ξ̃
)T

z
N∏

i=1

sb

( iQ
2
− (Q P)Ti · z

)
, (5.45)
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where x = QT z. We call it charge vector form.

To summarize, one can either transform generic theories (5.37) into TA,N theories (5.39)

with mixed CS level K′ and simple charge vectors 1, or into the charge vector form (5.45)

with diagonal CS level Λ and complicated charge vectors Q P

(K,P)→ (K′,1) or (Λ,Q P) . (5.46)

The associated effective superpotentials for these three forms are equivalent. Hence these

partition functions are supposed to describe the same mirror theory. In addition, we note

that if K is real positive definite, then using Cholesky decomposition K = LTL, (5.37) takes

another form

ZS3
b
(1, (L−1)TP) =

∫
dx′ e−i π x′Tx′+2 i π ((L−1)Tξ̃)

T
x′

N∏

i=1

sb

( iQ
2
−
(
(L−1)TP

)T
i
· x′
)
, (5.47)

where x′ = L x.

5.2 Mirror transformations on chiral multiplets

In this section, we show that U(1)k + NFF + NAFAF can be transformed into certain TA,N
theory after implementing mirror transformation (1,1, · · · ,1) and integrating out the original

gauge node U(1)k:

U(1)k +NFF +NAFAF
(1,1,··· ,1)−−−−−−→ TA,NF+NAF . (5.48)

This gives rise to an indirect way to perform mirror transformations on chiral multiplets in

U(1)k +NFF +NAFAF.

We take U(1) + NF as an example. Applying mirror transformations on each chiral

multiplet NF, one can get a TA,N theory. This process is illustrated in the following

1 N
mirror

1 1

1 1

...

1 1
.

(5.49)

This is particularly interesting, as it implies that mixed Chern-Simons levels emerge from mir-

ror transformations. In addition, if we act the mirror transformation group on this TA,N theory,

we get many others TA,N theories with the same rank but different mixed Chern-Simons levels.

In this section, we analyze sphere partition functions of U(1) + NFF + NAFAF and dis-

cuss the consequence of mirror transformations on FI parameters. It turns out that mirror

transformations on chiral multiplets only flip the signs of real mass parameters. We verify this
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conclusion by analyzing both sphere partition functions and vortex partition functions. We

find that the vortex partition function of U(1) + NF can be written as the vortex partition

function of TA,N theory, from which effective Chern-Simons level matrices of the latter can be

obtained by taking semi-classical limit ~→ 1. These mixed Chern-Simons levels are the same

as what we obtain from analyzing sphere partition functions associated to various mirror dual

TA,N theories.

Sphere partition functions

We take U(1)k +NF theory as an example. Its sphere partition function can be transformed

into that of TA,N theory

Z
U(1)k+NF

S3
b

(1,1,··· ,1)−−−−−−→ Z
TA,N
S3
b

. (5.50)

The associated sphere partition function for U(1)k +NF is

Z
U(1)k+NF

S3
b

=

∫
dx e−i π kx

2+2 i πξx
N∏

i=1

sb

( iQ
2

+ x+
ui
2

)
, (5.51)

which in the semi-classical limit (5.51) gives the effective superpotential

W̃eff
U(1)k+NF =

N∑

i=1

Li2(XYi) + ξeff logX +
keff

2

(
logX

)2
, (5.52)

keff = k +
N

2
, ξeff =

1

2

(
i πN − 4bπξ + log

N∏

i=1

Yi
)
, (5.53)

X : = e2bπx , Yi := −√q ebπui . (5.54)

The above superpotential is consistent with the fact that the one-loop contribution of each fun-

damental chiral multiplet F to keff is 1/2, and anti-fundamental AF to keff is −1/2. Moreover,

parity anomaly constrains effective Chern-Simons levels keff ∈ Z. The mirror transformation

(1,1, · · · ,1) replaces each double sine function sb(· · · ) given by chiral multiplets into a con-

tour integral via (5.15). Hence we get the sphere partition function for the dual TA,N theory

on the right hand side of (5.50):

Z
TA,N
S3
b

=

∫ N∏

i=1

d yi e

N∑
i,j=1

−π i k̃ij yiyj+2π i ξ̃iyi
N∏

i=1

sb
( iQ

2
− yi

)
, (5.55)

k̃ij =
1

2
δij −

2

2k +N
, ξ̃i =

iQ

4
+
ui
2
− 2

2k +N

(
ξ −

N∑

i=1

( iQ
4

+
ui
4

))
,

where mass parameters ui can also be absorbed into new FI parameters ξ̃i. When k = −N/2,

(5.55) is ill defined because there is a pole in ξ̃i. We will show in examples in section 5.2.1

that when k = −N/2, this pole can be bypassed and we end up with a mirror pair found by
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Dorey and Tong in [53, 108].

Once a particular TA,N theory with mixed Chern-Simons levels in (5.55) is constructed, one

can get many equivalent mirror dual theories by implementing mirror transformations. After

ruling out the theories with parity anomaly, many integer effective mixed Chern-Simons levels

can be obtained, and each of them corresponds to a mirror dual TA,N theory.

Vortex partition functions

As we have discussed in section 4.2, the open topological string partition function (3.109) can

be written in a quiver generating series (quiver form); see e.g. [81, 85, 10]:

Zvortex
U(1)k+NFF+NAFAF = Z0 · PCij (x1, · · · , xm) , (5.56)

with

Z0 =
(α1, q)∞ (α2, q)∞ · · · (αNAF , q)∞
(β1, q)∞ (β2, q)∞ · · · (βNF−1, q)∞

. (5.57)

Here we show one particular quiver by choosing variables xi as follows

PCij (x0, x1 , · · · , xm) = PCij

(
q−

f+1
2 z, α1 , · · · , αNAF ,

β1√
q
, · · · , βNF−1√

q

)
, (5.58)

where the quiver matrix Cij is

Cij((5.56)) =




f + 1 1 . . . 1 1 . . . 1

1 1 . . . 0 0 . . . 0
...

. . .
. . .

1 0 . . . 1 0 . . . 0

1 0 . . . 0 0 . . . 0
...

. . .
. . .

1 0 . . . 0 0 . . . 0




, (5.59)

which has size (NF + NAF ) × (NF + NAF ). Based on various examples in section 4.2, it

can be summarized that the framing number f in open topological strings is related to the

Chern-Simons level

f + 1 = keff = k +
NF −NAF

2
. (5.60)

Note that there are several ways to write vortex partition functions in term of quiver generating

series, since there are two equivalent ways to choose variables in (3.123) and (3.124). We have

the freedom of flipping any variable xi → √
q x−1

i ; this leads to another matrix C ′ij . All

variables xi can be flipped one after another, and finally one can get a chain of {Cij}.
Invoking the mirror symmetry, we find a physical interpretation for the quiver structure

(3.115) and Cij . Recall that (3.115) implies that the vortex partition functions of U(1)k +

102



CHAPTER 5. 3D MIRROR SYMMETRY AND MIXED CHERN-SIMONS LEVELS

NFF + NAFAF theories can be rewritten in the quiver form PCij (xi). We note that Z0 is

actually related to the one-loop part Z1-loop = Z−1
0 on the Higgs branch

Z1-loop
U(1)k+NFF+NAF

=

∏NF
j=1 (βj , q)∞∏NAF
i=1 (αi, q)∞

, (5.61)

and then (3.115) reads

Z1-loop
U(1)k+NFF+NAFAF · Z

vortex
U(1)k+NFF+NAFAF(z, αi, βj) = PCij (xi) . (5.62)

Moreover, vortex partition functions (5.12) of TA,N theories also take a quiver form

Zvortex
TA,NF+NAF

(keff
ij , xi) = PCij (xi) , (5.63)

hence we conjecture that Cij = keff
ij and U(1)k + NF F + NAF AF can be regarded as cer-

tain TA,N theories. Then vortex partition functions of U(1)k + NFF + NAFAF theories are

conjectured to be vortex partition functions of corresponding TA,N theories

Z1-loop
U(1)k+NFF+NAFAF(αi, βj) · Zvortex

U(1)k+NFF+NAFAF(z, αi, βj) = ZTA,NF+NAF
(xi). (5.64)

This is verified to be correct in various examples of the following section. We stress that

the one-loop part of TA,N theory on the Higgs branch is trivial, hence the vortex partition

function involves the holomorphic block for TA,N theories, see e.g. [105]. Note that by now

the correspondence between U(1)k +NFF +NAFAF and TA,N theories is a conjecture, based

on the equivalence of vortex partition functions; we can prove this conjecture using sphere

partition functions and mirror transformations (5.50).

There is still one problem left: what are the relations between these equivalent quivers?

The answer is that each Cij is the keff
ij of a mirror dual theory, and mirror transformations

relate different quivers. Firstly, mirror transformations relate mirror dual theories

T [(n1, · · · ,nNF+NAF )]
(i1,··· ,iNF+NAF

)
−−−−−−−−−−−→ T [(n1 + i1, · · · ,nNF+NAF + iNF+NAF )] , (5.65)

which relates effective mixed Chern-Simons levels

k
eff, (n1,··· ,nNF+NAF

)

ij

flipping some xi → x−1
i−−−−−−−−−−−−−−→ k

eff,(n1+i1 ,··· ,nNF+NAF
+iNF+NAF

)

ij , (5.66)

where xi = αi or βi. We will show in examples that these equivalent keff
ij can be obtained by

performing mirror transformations on sphere partition functions. In terms of vortex partition

function of corresponding TA,NF+NAF theories, mirror symmetry acts as flipping closed Kähler

parameters αi → α−1
i or βj → β−1

j (or in other words, changing the sign of real mass parameters

ui → −ui, since the closed Kähler parameters equal to mass parameters and FI parameters

αi , βi ∼ eπb ui , z ∼ e2bπξ).
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5.2.1 Examples

U(1)k + 1 F

Tk,1 : (1)k− [1] theory is a basic example. Its sphere partition function is given by (3.73). We

shift x and absorb the mass parameter in ξ̃ and obtain

ZTk,1 =

∫
dx e2π i ξ̃x−i πkx2

sb
( iQ

2
− x
)
. (5.67)

The mirror transformation group H(TA,1) in this case is

H(TA,1) = {(0), (1), (2)} , (5.68)

which leads to mirror dual theories

{ T [(0)] , T [(1)] , T [(2)] } . (5.69)

Mirror transformation (1) relates them as follows

T [(0)]
(1)−−→ T [(1)]

(1)−−→ T [(2)] , (5.70)

namely,

U(1) + 1F
(1)−−→ U(1) + (U(1)′ + 1F)

(1)−−→ U(1) + (U(1)′ + (U(1)′ + 1F)) , (5.71)

which are the following quivers after integrating out old gauge nodes

U(1)k + 1F
(1)−−→ U(1)′k′ + 1F

(1)−−→ U(1)′′k′′ + 1F . (5.72)

Their sphere partition functions are

Z
T [0]

S3
b

=

∫
dx e2π i ξ̃x−kπ i x2

sb
( iQ

2
− x
)
,

Z
T [1]

S3
b

=

∫
dx e

π(Q−2kQ−8iξ̃)x+i(3−2k)πx2

2+4k sb
( iQ

2
− x
)
,

Z
T [2]

S3
b

=

∫
dx e

π(Q+2kQ+8iξ̃)x+i(3+2k)πx2

−2+4k sb
( iQ

2
− x
)
.

(5.73)

It is obvious that mirror transformations change Chern-Simons levels and FI parameters signif-

icantly. By taking semi-classical limit and using formula (5.6), one can read off Chern-Simons levels
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and FI parameters

T [0] :
(
k

eff,(0)
ij =

1

2
+ k , ξeff,(0) = 2bπξ̃ + iπ(1− bQ)k +

iπ

2

)
,

T [1] :
(
k

eff,(1)
ij =

2k − 1

2k + 1
, ξeff,(1) = − 4bπξ̃

1 + 2k
+
iπ(2k − 1 + bQ)

1 + 2k

)
,

T [2] :
(
k

eff,(2)
ij =

2

1− 2k
, ξeff,(2) =

i(−2π + bπQ− 4ibπξ̃)

2k − 1

)
.

(5.74)

As we discussed before, mirror transformations permute mirror dual theories. The permutation

T [(0)]→ T [(1)], T [(1)]→ T [(2)], T [(2)]→ T [(0)] (5.75)

is given by mirror transformation (1), and the mirror map is

(k, ξ̃)→ (k′, ξ̃′) : k′ =
3 + 2k

2− 4k
, ξ̃′ =

i(Q+ 2kQ+ 8iξ̃)

4− 8k
. (5.76)

The permutation given by mirror transformation (2) is

T [(0)]→ T [(2)], T [(2)]→ T [(1)], T [(1)]→ T [(0)] , (5.77)

whose corresponding mirror map is the reverse of (5.76)

(k, ξ̃)→ (k′′, ξ̃′′) : k′′ =
−3 + 2k

2 + 4k
, ξ̃′′ =

i(−1 + 2k)Q− 8ξ̃

4 + 8k
. (5.78)

Similarly, one can analyze generic TA,N theories.

z

Figure 5.1: Calabi-Yau threefold C3 with a Lagrangian brane.

The toric diagram for the theory U1)k + 1F is shown in Figure 5.1. By (3.109), the open

Kähler parameter for the Lagrangian brane on Calabi-Yau threefold C3 is q(f+1)/2z where f

is the framing number. To match it with the FI parameter in the vortex partition function

(5.12), we identify

eξ
eff,(0)

= i (−1)kq−
k
2 e2bπξ̃ = (−1)f+1q−

f+1
2 z , (5.79)

which implies that the framing number f relates to the CS level k, and the open Kähler

parameter relates to the FI parameter

f = k − 1/2 , z = q1/4 e2bπξ̃ . (5.80)
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U(1)k + 2 F

We turn this theory into a TA,N theory

Z
(1)k+2F

S3
b

(1,1)−−−→ Z
TA,2
S3
b

, (5.81)

where Z
TA,2
S3
b

is given by (5.55) with N = 2. We perform mirror transformations (n1,n2) ∈
H(TA,2) and take the semi-classical limit to read off effective superpotentials. For simplicity,

we denote mirror dual theories by T [(n1,n2)] : (k
eff,(n1,n2)
ij , ξ

eff,(n1,n2)
i ) and find the following

results

T [(0,0)] :

([
k

1+k − 1
1+k

− 1
1+k

k
1+k

]
,

[
π(2i(k−1+bQ−2ibξ)+(b+2bk)u1−bu2)

2(1+k)
π(2i(k−1+bQ−2ibξ)−bu1+(b+2bk)u2

2(1+k)

])
,

T [(0,1)] :

([
k−1
k

1
k

1
k − 1

k

]
,

[
π(2ik+4bξ+b(2k−1)u1+bu2)

2k

− bπ(4ξ−u1+(1+2k)u2)
2k

])
,

T [(0,2)] :

([
1 1

1 1 + k

]
,

[
π(2i− ibQ+ bu1 − bu2)

1
2π (−2i(bkQ− 2ibξ + bQ− k − 2)− u2(2bk + b) + bu1)

])
,

T [(1,0)] :

([
− 1
k

1
k

1
k

k−1
k

]
,

[
−πb((2k+1)u1+4ξ−u2)

2k
π(b(2k−1)u2+4bξ+bu1+2ik)

2k

])
,

T [(1,1)] :

([
1

1−k
1

1−k
1

1−k
1

1−k

]
,

[
π(u1(b−2bk)−4bξ+2ibQ−bu2−4i)

2(k−1)

−π(b(2k−1)u2+4bξ−2ibQ+bu1+4i)
2(k−1)

])
,

T [(1,2)] :

([
0 −1

−1 k

]
,

[
π (i(bQ− 1)− bu1 + bu2)

1
2π (−2i(k(bQ− 1)− b(Q+ 2iξ) + 1) + u2(b− 2bk)− bu1)

])
,

T [(2,0)] :

([
k + 1 1

1 1

]
,

[
1
2π (−2i(bkQ− 2ibξ + bQ− k − 2)− u1(2bk + b) + bu2)

π (−ibQ− bu1 + bu2 + 2i)

])
,

T [(2,1)] :

([
k −1

−1 0

]
,

[
1
2π (−2i(k(bQ− 1)− b(Q+ 2iξ) + 1) + u1(b− 2bk)− bu2)

π (ibQ+ bu1 − bu2 − i)

])
.

(5.82)

Because of the exchange equivalence ni ↔ nj , there are only two independent theories. We

choose { T [(2,0)] , T [(2,1)] }, which are related by the transformation (0,1)

T [(2,0)]
(0,1)−−−→ T [(2,1) . (5.83)

The toric diagram for U(1)k + 2F is shown in Figure 5.2. It follows from (3.109) that the

vortex partition function takes form

Zvortex
U(1)k+2 F =

∞∑

n=0

(−√q)(f+1)n2
(q−

f+1
2 z)n

(q, q)n

1

(β, q)n
, (5.84)

which along with the one-loop part, takes form of the vortex partition function of a TA,2
theory. However, there are two equivalent forms of (5.84), as we discussed in section 5.2, and
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β

z

Figure 5.2: The toric Calabi-Yau threefold with a Lagrangian brane, which engineers U(1)k +
2F theory.

each form corresponds to the vortex partition function of a particular TA,2 theory

Zvortex
TA,2 = Z1-loop

U(1)k+2 F · Z
vortex
U(1)k+2 F (5.85)

=
∞∑

d1,d2=0

(−√q)
2∑

i,j=1
k

eff,(2,0)
ij didj zd1 (β/

√
q)d2

(q, q)d1(q, q)d2

(5.86)

=
∞∑

d1,d2=0

(−√q)
2∑

i,j=1
k

eff,(2,1)
ij didj zd1 (qβ−1)d2

(q, q)d1(q, q)d2

, (5.87)

where we have absorbed the framing number and some factors caused by flipping β into z. It

can be noticed that (5.86) is the vortex partition function for theory T [(2,0)], and (5.87) is

the vortex partition functions for theory T [(2,1)], and flipping mass parameter β/
√
q → qβ−1

relates effective Chern-Simons levels

k
eff,(2,0)
ij k

eff,(2,1)
ij

flip β
. (5.88)

This flipping is interpreted as mirror transformation (0,1), as (2,0) + (0,1) = (2,1).

The relations between Kähler parameters z , αi , βj and gauge theory parameters ui, ξ

can be obtained by comparing with (5.12) where the variables xi are defined to be xi :=

(−1)k
eff
ii eξ

eff
i . For T [(2,0)], the relations between Kähler parameters and gauge theory param-

eters are given by

(
q−

f+1
2 z, β/

√
q
)

=
(

(−1)2k+1q−
k+1

2 e−bπu1( 1
2

+k)ebπu2/2e−2bπξ ,−ebπ(u2−u1)/
√
q
)
, (5.89)

while for T [(2,1)] the relations become

(
q−

f+1
2 z , qβ−1

)
=
(

(−1)k+1q−
k−1

2 ebπu1( 1
2
−k)e−bπu2/2e−2bπξ ,−√q ebπ(u1−u2)

)
. (5.90)

If u1 = 0, the relations between z, β and ui, ξ simplify to z ∼ e2bπξ , β ∼ ebπu2 .

U(1)k + 1 F + 1 AF

The sphere partition function for this theory is

Z
(1)k+1F+1AS

S3
b

=

∫
dx e2πξx−iπkx2

sb
( iQ

2
+ x+

u1

2

)
sb
( iQ

2
− x+

u2

2

)
, (5.91)
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which after the mirror transformation (1,1) becomes that of TA,2 theories

Z
(1)k+1F+1AS

S3
b

(1,1)−−−→ Z
TA,2
S3
b

, (5.92)

where

Z
TA,2
S3
b

=

∫
dy1dy2 e

−iπ k−1
k+1 (y2

1+y2
2)− iπ(−ikQ−(2k+1)u1−4ξ−iQ−u2)

2(k+1)
y1− iπ(−ikQ−(2k+1)u2+4ξ−iQ−u1)

2(k+1)
y2

× sb
( iQ

2
− y1

)
sb
( iQ

2
− y2

)
. (5.93)

Implementing mirror transformations in H(TA,2), we obtain mirror dual theories as follows

T [(0,0)] :

([
k

1+k
1

1+k
1

1+k
k

1+k

]
,

[
π(u1(2bk+b)+4bξ+bu2+2ik+2i)

2(k+1)
π(2i(2ibξ+k+1)+u2(2bk+b)+bu1)

2(k+1)

])
,

T [(0,1)] :

([
k−1
k − 1

k

− 1
k − 1

k

]
,

[
π(2i(−2ibξ+bQ+k−2)+b(2k−1)u1−bu2)

2k

−π(u2(2bk+b)−4bξ−2ibQ+bu1+4i)
2k

])
,

T [(0,2)] :

([
1 −1

−1 1 + k

]
,

[
πb (iQ+ u1 + u2)

1
2π (−2ibkQ− u2(2bk + b) + 4bξ − bu1 + 2ik)

])
,

T [(1,0)] :

([
− 1
k − 1

k

− 1
k

k−1
k

]
,

[
π(u1(2bk+b)+4bξ−2ibQ+bu2+4i)

2k
π(2i(2ibξ+bQ+k−2)+b(2k−1)u2−bu1)

2k

])
,

T [(1,1)] :

([
1

1−k
1

k−1
1

k−1
1

1−k

]
,

[
−πb((2k−1)u1+4ξ−u2)

2(k−1)
πb((1−2k)u2+4ξ+u1)

2(k−1)

])
,

T [(1,2)] :

([
0 1

1 k

]
,

[
π (−ibQ− bu1 − bu2 + i)

1
2π (−2ibkQ+ u2(b− 2bk) + 4bξ + bu1 + 2ik + 2i)

])
,

T [(2,0)] :

([
k + 1 −1

−1 1

]
,

[
−1

2 iπ (2bkQ− iu1(2bk + b)− 4ibξ − ibu2 − 2k)

πb (iQ+ u1 + u2)

])
,

T [(2,1)] :

([
k 1

1 0

]
,

[
1
2π (−2ibkQ+ u1(b− 2bk)− 4bξ + bu2 + 2ik + 2i)

π (−ibQ− bu1 − bu2 + i)

])
. (5.94)

Because of the exchange relation ni ↔ nj , there are only two independent mirror theories with

integer effective Chern-Simons level matrices. We identify these theories as { T [(2,1)] , T [(2,0)] },
which are related by the mirror transformation (0,2)

T [(2,1)]
(0,2)−−−→ T [(2,0) . (5.95)

The corresponding toric diagram for U(1)k + 1 F + 1 AF is shown in Figure 5.3. Following

(3.109), its vortex partition function reads

Zvortex
U(1)k+1 F+1 AF =

∞∑

n=0

(−√q)(f+1)n2
zn (α, q)n

(q, q)n
, (5.96)

108



CHAPTER 5. 3D MIRROR SYMMETRY AND MIXED CHERN-SIMONS LEVELS

z α

Figure 5.3: The toric diagram for the Calabi-Yau threefold engineering U(1)k + 1F + 1AF.

which in combination with the one-loop part equals to the vortex partition functions of

T [(2,1)] and T [(2,0)] theories

ZTA,2 = Z1-loop
U(1)k+1 F+1 AF · Z

vortex
U(1)k+1 F+1 AF

=
∞∑

d1,d2=0

(−√q)
2∑

i,j=1
k

eff,(2,1)
ij didj zd1 αd2

(q, q)d1(q, q)d2

(5.97)

=

∞∑

d1,d2=0

(−√q)
2∑

i,j=1
k

eff,(2,0)
ij didj zd1 (

√
qα−1)d2

(q, q)d1(q, q)d2

, (5.98)

where the second line is for T [(2,1)] theory and the third line is for T [(2,0)]. One can see that

flipping the expansion parameter α→ √q α−1 relates two effective mixed Chern-Simons levels

k
eff,(2,1)
ij k

eff,(2,0)
ij

flip α
, (5.99)

and this flipping is caused by the mirror transformation (0,2).

U(1)k + 3 F

This theory can be turned into a particular TA,3 theory

Z
(1)k+3F

S3
b

(1,1,1)−−−−→ Z
TA,3
S3
b

. (5.100)

Following (5.55), we get the sphere partition function of the corresponding TA,3 theory

Z
TA,3
S3
b

=

∫ 3∏

i,j=1

dyi e
2πξ′iyi−iπkijyiyjsb

( iQ
2
− yi

)
, (5.101)

kij =



− i(2k−1)

6+4k
2iπ

3+2k
2iπ

3+2k
2iπ

3+2k − i(2k−1)
6+4k

2iπ
3+2k

2iπ
3+2k

2iπ
3+2k − i(2k−1)

6+4k


 , ξ′i =



−π(2kQ−4i(k+1)u1−8iξ−3Q+2iu2+2iu3)

4k+6

−π(2kQ−4i(k+1)u2−8iξ−3Q+2iu1+2iu3)
4k+6

−π(2kQ−4i(k+1)u3−8iξ−3Q+2iu1+2iu3)
4k+6


 .

(5.102)
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By acting with mirror transformations on the sphere partition function, we get many mirror

dual theories with integer effective Chern-Simons level matrices k
eff,(n1,n2,n3)
ij

T [(0,0,2)] :




1 0 1

0 1 1

1 1 k + 3
2


 , T [(0,1,2)] :




1 0 1

0 0 −1

1 −1 k + 1
2


 , T [(0,2,0)] :




1 1 0

1 k + 3
2 1

0 1 1


 ,

T [(0,2,1)] :




1 1 0

1 k + 1
2 −1

0 −1 1


 , T [(2,0,0)] :



k + 3

2 1 1

1 1 0

1 0 1


 , T [(2,0,1)] :



k + 1

2 1 −1

1 1 0

−1 0 0


 ,

T [(1,0,2)] :




0 0 −1

0 1 1

−1 1 k + 1
2


 , T [(1,1,2)] :




0 0 −1

0 0 −1

−1 −1 k − 1
2


 , T [(1,2,0)] :




0 −1 0

−1 k + 1
2 1

0 1 1


 ,

T [(1,2,1)] :




0 −1 0

−1 k − 1
2 −1

0 −1 0


 , T [(2,1,0)] :



k + 1

2 −1 1

−1 0 0

1 0 1


 , T [(2,1,1)] :



k − 1

2 −1 −1

−1 0 0

−1 0 0


 .

(5.103)

Because of the exchange relation ni ↔ nj , there are only four independent theories. We choose

{T [(2,0,0)] , T [(2,0,1)] , T [(2,1,0)] , T [(2,1,1)]}. Their effective Chern-Simons levels matri-

ces and effective FI parameters are

T [(2,0,0)] :






k + 3

2 1 1

1 1 0

1 0 1


 ,




1
2π (−2ibkQ− 2b(k + 1)u1 − 4bξ − 4ibQ+ bu2 + bu3 + 2ik + 7i)

π (−ibQ− bu1 + bu2 + 2i)

π (−ibQ− bu1 + bu3 + 2i)





 ,

T [(2,0,1)] :






k + 1

2 1 −1

1 1 0

−1 0 0


 ,




1
2π (−2ibkQ− 2bku1 − 4bξ + bu2 − bu3 + 2ik + i)

π (−ibQ− bu1 + bu2 + 2i)

π (ibQ+ bu1 − bu3 − i)





 ,

T [(2,1,0)] :






k + 1

2 −1 1

−1 0 0

1 0 1


 ,




1
2π (−2ibkQ− 2bku1 − 4bξ − bu2 + bu3 + 2ik + i)

π (ibQ+ bu1 − bu2 − i)
π (−ibQ− bu1 + bu3 + 2i)





 ,

T [(2,1,1)] :






k − 1

2 −1 −1

−1 0 0

−1 0 0


 ,




1
2π (−2ibkQ− 2b(k − 1)u1 − 4bξ + 4ibQ− bu2 − bu3 + 2ik − 5i)

π (ibQ+ bu1 − bu2 − i)
π (ibQ+ bu1 − bu3 − i)





 .

(5.104)

These four mirror dual theories are related by

T [(2,0,0)] T [(2,1,0)]

T [(2,0,1)] T [(2,1,1)] .

(0,0,1)

(0,1,0)

(0,0,1)

(0,1,0)

(5.105)

The toric diagram for U(1)k + 3 F is shown in Figure 5.4. Using (3.109), its vortex partition
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�1

�2/�1

z

Figure 5.4: The toric diagram of the Calabi-Yau threefold engineering U(1)k + 3 F in the
presence of a Lagrangian brane.

function is given by

Zvortex
U(1)k+3 F =

∞∑

n=0

(−√q)(f+1)n2
zn

(q, q)n

1

(β1, q)n (β2, q)n
, (5.106)

which can be written in terms of vortex partitions of the four dual theories in (5.105):

ZTA,3 = Z1-loop
U(1)k+3 F · Z

vortex
U(1)k+3 F (5.107)

=
∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,0,0)
ij didj zd1(β1/

√
q)d2(β2/

√
q)d3

(q, q)d1(q, q)d2(q, q)d3

(5.108)

=
∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,1,0)
ij didj zd1(q β−1

1 )d2(β2/
√
q)d3

(q, q)d1(q, q)d2(q, q)d3

(5.109)

=
∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,0,1)
ij didj zd1(β1/

√
q)d2(q β−1

2 )d3

(q, q)d1(q, q)d2(q, q)d3

(5.110)

=
∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,1,1)
ij didj zd1(q β−1

1 )d2(q β−1
2 )d3

(q, q)d1(q, q)d2(q, q)d3

. (5.111)

It is obvious that mixed Chern-Simons level matrices for these mirror dual theories are related

by flipping closed Kähler parameters βi

k
eff,(2,0,0)
ij k

eff,(2,1,0)
ij

k
eff,(2,0,1)
ij k

eff,(2,1,1)
ij .

flip β2

flip β1

flip β2

flip β1

(5.112)

Therefore, to match with (5.105) the flipping β1 should correspond to mirror transformation

(0,1,0), and flipping β2 corresponds to (0,0,1). This confirms the fact that mirror transfor-

mations are interpreted as flipping Kähler parameter xi of vortex partition functions of TA,N
theories.
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Tong’s mirror pair

When k = −3/2, the dual TA,3 theory given by (5.55) is problematic as there are poles in k̃ij .

Nevertheless, it is possible to bypass these poles and end up with a well defined TA,3 theory.

The procedure of addressing this problem is as follows: firstly we do not give values to k and

act with (2,0,0) on the partition function, and in the end we set k = −3/2. This leads to

a well defined partition function that can be viewed as that of the original theory. This new

original theory T ′A,3 is given by mirror transformation (1,1,1) + (2,0,0) = (0,1,1). More

explicitly, its sphere partition function is obtained in two steps

Z
U(1)−3/2+3F

S3
b

(1,1,1)−−−−→ • (2,0,0)−−−−→ Z
T ′A,3
S3
b

, (5.113)

where

Z
T ′A,3
S3
b

=

∫
dx1dx2dx3 e

termsb
( iQ

2
− x1

)
sb
( iQ

2
− x2

)
sb
( iQ

2
− x3

)
, (5.114)

term :=
1

2
πi (x2

1 − x2
2 − x2

3)− π
(
Q

2
+ iu1 − iu2

)
x2 − π

(
Q

2
+ iu1 − iu3

)

− π
(
Q+ 2iξ − i

2
(u1 + u2 + u3)

)
− 2πi (x2 + x3)x1 . (5.115)

Furthermore, when acting with the mirror transformation (1,0,0) on this new original theory

T ′A,3, one gets T ′A,3[(1,0,0)]

Z
U(1)−3/2+3F

S3
b

(1,1,1)−−−−→ • (2,0,0)−−−−→ • (1,0,0)−−−−→ Z
T ′A,3[(1,0,0)]

S3
b

. (5.116)

Here, we encounter quiver reduction for T ′A,3[(1,0,0)] that turns out to have a reduced quiver.

Its sphere partition function, after shifting x2 → −x2, u2 → −3iQ+ 4ξ − u1 − u3, is

Z
T ′A,3[(1,0,0)]

S3
b

=

∫
dx2dx3 e

CS termssb
( iQ

2
+ x2)sb

( iQ
2
− x3)sb

( iQ
2
− x2 + x3) , (5.117)

CS terms = −iπ(x2
2 + x2

3 − x2x3)− iπ(u1 − u3)x3 − π(3Q+ 4i ξ − 2iu2 − iu3)x2 .

The integral dimension for this theory is two and hence the gauge group is U(1) × U(1).

Since (2,0,0) + (1,0,0) = (0,0,0), (5.117) is equivalent to the problematic sphere partition

function given in (5.55) with k = −3/2. The associated bare CS level matrix for (5.117) is

kij =

[
1 −1

2

−1
2 1

]
, (5.118)

and the associated chiral multiplets have charges (−1, 0), (1,−1), (0, 1) respectively. It is

easy to draw its quiver diagram

1F− U(1)− U(1)− 1F . (5.119)
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Interestingly, we obtain a mirror pair found by Dorey and Tong in [53]

U(1)−3/2 + 3F ,

with k = −3/2 ,

and keff = 0

(1,1,1)←−−−−→
1F− U(1)− U(1)− 1F with kij =

[
1 −1

2

−1
2 1

]
.

and keff
ij =

[
2 −1

−1 2

]

(5.120)

In this case the mirror transformation is (1,1,1). This example illustrates that mirror trans-

formations can be used to derive mirror dual pairs with the help of TA,N theories.

U(1)k + 2 F + 1 AF

The sphere partition function for this theory is

Z
U(1)k+2 F+1 AF

S3
b

=

∫
dx e2πξx−iπkx2

sb
( iQ

2
+ x+

u1

2

)
sb
( iQ

2
− x+

u2

2

)
sb
( iQ

2
+ x+

u3

2

)
.

(5.121)

Due to parity anomaly, the bare CS level k ∈ Z + 1/2. Mirror transformation (1,1,1) turns

this theory into a TA,3

Z
(1)k+2F+1AF

S3
b

(1,1,1)−−−−→ Z
TA,3
S3
b

. (5.122)

The open partition function for TA,3 is

Z
TA,3
S3
b

=

∫ 3∏

i,j=1

dyi e
2πξ′iyi−iπkijyiyjsb

( iQ
2
− yi

)
, (5.123)

kij =



− i(2k−1)

6+4k − 2iπ
3+2k

2iπ
3+2k

− 2iπ
3+2k − i(2k−1)

6+4k − 2iπ
3+2k

2iπ
3+2k − 2iπ

3+2k − i(2k−1)
6+4k


 , ξ′i =



−π((1+2k)Q−8iξ−4i(1+k)u1−2iu2+2iu3)

6+4k

− iπ(−i(5+2k)Q+8ξ−2u1−4(1+k)u2−2u3)
6+4k

− iπ(−i(1+2k)Q−8ξ+2u1−2u2−4(1+k)u3)
6+4k


 .

(5.124)
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We list all integer effective CS level matrices obtained by mirror transformations in the fol-

lowing

T [(0,0,2)] :




1 0 1

0 1 −1

1 −1 k + 3
2


 , T [(0,1,2)] :




1 0 1

0 0 1

1 1 k + 1
2


 , T [(0,2,0)] :




1 −1 0

−1 k + 3
2 −1

0 −1 1


 ,

T [(0,2,1)] :




1 −1 0

−1 k + 1
2 1

0 1 0


 , T [(1,0,2)] :




0 0 −1

0 1 −1

−1 −1 k + 1
2


 , T [(1,1,2)] :




0 0 −1

0 0 1

−1 1 k − 1
2


 ,

T [(1,2,0)] :




0 1 0

1 k + 1
2 −1

0 −1 1


 , T [(1,2,1)] :




0 1 0

1 k − 1
2 1

0 1 0


 , T [(2,0,0)] :



k + 3

2 −1 1

−1 1 0

1 0 1


 ,

T [(2,0,1)] :



k + 1

2 −1 −1

−1 1 0

−1 0 0


 , T [(2,1,0)] :



k + 1

2 1 1

1 0 0

1 0 1


 , T [(2,1,1)] :



k − 1

2 1 −1

1 0 0

−1 0 0


 .

(5.125)

They satisfy exchange equivalence ni ↔ nj , so there are only four independent theories

{T [(2,0,0)], T [(2,0,1)], T [(2,1,0)], T [(2,1,1)] } . (5.126)

The associated effective Chern-Simons levels and effective FI parameters are

T [(2,1,0)] :







1
2 + k 1 1

1 0 0

1 0 1


 ,




1
2π (−2ibkQ− 2bku1 − 4bξ − 2ibQ+ bu2 + bu3 + 2ik + 5i)

π (−ibQ− bu1 − bu2 + i)

π (−ibQ− bu1 + bu3 + 2i)





 ,

(5.127)

T [(2,0,0)] :






k + 3

2 −1 1

−1 1 0

1 0 1


 ,




1
2π (−2ibkQ− 2b(k + 1)u1 − 4bξ − 2ibQ− bu2 + bu3 + 2ik + 3i)

πb (iQ+ u1 + u2)

π (−ibQ− bu1 + bu3 + 2i)





 ,

(5.128)

T [(2,0,1)] :






k + 1

2 −1 −1

−1 1 0

−1 0 0


 ,



− 1

2 iπ (2bkQ− 2ibku1 − 4ibξ − 2bQ− ibu2 − ibu3 − 2k + 3)

πb (iQ+ u1 + u2)

π (ibQ+ bu1 − bu3 − i)





 ,

(5.129)

T [(2,1,1)] :






k − 1

2 1 −1

1 0 0

−1 0 0


 ,




1
2π (−2ibkQ− 2b(k − 1)u1 − 4bξ + 2ibQ+ bu2 − bu3 + 2ik − i)

π (−ibQ− bu1 − bu2 + i)

π (ibQ+ bu1 − bu3 − i)





 .

(5.130)

These four mirror dual theories are related by mirror transformations

T [(2,1,0)] T [(2,0,0)]

T [(2,1,1)] T [(2,0,1)] .

(0,0,1)

(0,2,0)

(0,0,1)

(0,2,0)

(5.131)
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The toric diagram for this example is shown in Figure 5.5 and its vortex partition function is

↵

�/↵

z

Figure 5.5: The toric diagram for U(1)k + 2F + 1AF. Note that vortex partition function is
invariant under the flop transition on the Kähler parameter α.

Zvortex
U(1)k+2 F+1 AF =

∞∑

n=0

(−√q)(f+1)n2
zn

(q, q)n

(α, q)n
(β, q)n

, (5.132)

which along with one-loop part is equivalent to vortex partition functions of mirror dual

theories mentioned in (5.126)

ZTA,3 = Z1-loop
U(1)k+2 F+1 AF · Z

vortex
U(1)k+2 F+1 AF (5.133)

=

∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,1,0)
ij didj zd1αd2(β/

√
q)d3

(q, q)d1(q, q)d2(q, q)d3

(5.134)

=

∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,0,0)
ij didj zd1(

√
qα−1)d2(β/

√
q)d3

(q, q)d1(q, q)d2(q, q)d3

(5.135)

=

∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,0,1)
ij didj zd1(

√
qα−1)d2(q β−1)d3

(q, q)d1(q, q)d2(q, q)d3

(5.136)

=

∞∑

d1,d2,d3=0

(−√q)
3∑

i,j=1
k

eff,(2,1,1)
ij didj zd1αd2(q β−1)d3

(q, q)d1(q, q)d2(q, q)d3

. (5.137)

It is obvious that flipping α→ √qα−1 and β → √qβ−1 relates their effective Chern-Simons levels

k
eff,(2,1,0)
ij k

eff,(2,0,0)
ij

k
eff,(2,1,1)
ij k

eff,(2,0,1)
ij .

flip β

flip α

flip β

flip α

(5.138)

Once again, this confirms that mirror symmetry can be interpreted as flipping closed Kähler

parameters in vortex partition functions.
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1F− U(1)k1 − U(1)k2 − 1F

This quiver theory has three chiral multiplets with charges (1, 0), (p1, p2), (0, 1) respectively.

The associated sphere partition function is given by

Z
1F−U(1)k1

−U(1)k2
−1F

S3
b

=

∫
dx1dx2 e

−ik1πx2
1−ik2πx2

2+2πi(ξ1x1+ξ2x2)×

sb
( iQ

2
+ x1 +

u1

2
)sb
( iQ

2
+ x2 +

u2

2
)sb
( iQ

2
+ p1x1 + p2x2 +

u1

2
) .

(5.139)

After redefining parameters

u1 :=
logY1

bπ
, u2 :=

logY2

bπ
, u3 :=

log(−q(p1+p2−1)/2 Y3 − iπ(p1 + p2))

bπ
, (5.140)

we get the associated effective superpotential in the semi-classical limit

W̃eff
1F−U(1)k1

−U(1)k2
−1F = Li2(X1Y1) + Li2(X2Y2) + Li2(Xp1

1 Xp2
2 Y3)+

1

2

(
k1 +

1 + p2
1

2

)
logX2

1 +
1

2

(
k2 +

1 + p2
2

2

)
logX2

2 +
p1p2

2
logX1logX2+

2∑

l=1

(
(1 + pl)πi+ logY1 + pllogY3 + 2πi k1 − kllogq − 4bπξl

)
logXl .

(5.141)

The associated effective CS level matrix is

keff
ij =

[
k1 +

1+p2
1

2
p1p2

2
p1p2

2 k2 +
1+p2

2
2

]
. (5.142)

Similarly as before, mirror transformation (1,1,1) turn this quiver theory into a particular

TA,3 theory:

Z
1F−U(1)k1

−U(1)k2
−1F

S3
b

(1,1,1)−−−−→ Z
TA,3
S3
b

. (5.143)
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We list some effective CS level matrices given by mirror transformations

T [(0,2,2)] :




1 1
p1

−p2

p1

1
p1

2k1+p2
1+1

2p2
1

−2k1p2+p2

2p2
1

−p2

p1
−2k1p2+p2

2p2
1

k1p2
2

p2
1

+ k2 + 1
2

(
p2

2

p2
1

+ 1
)


 , (5.144)

T [(1,2,2)] :




0 − 1
p1

p2

p1

− 1
p1

2k1+p2
1−1

2p2
1

p2−2k1p2

2p2
1

p2

p1

p2−2k1p2

2p2
1

k1p2
2

p2
1

+ k2 − p2
2

2p2
1

+ 1
2


 , (5.145)

T [(2,0,2)] :




1
2

(
2k1 + p2

1 + 1
)

p1
p1p2

2

p2 1 p2
p1p2

2 p2
1
2

(
2k2 + p2

2 + 1
)


 , (5.146)

T [(2,1,2)] :



k1 − p2

1
2 + 1

2 −p1 −1
2p1p2

−p1 0 −p2

−1
2p1p2 −p2 k2 − p2

2
2 + 1

2


 , (5.147)

T [(2,2,0)] :




2k2p2
1+p2

1+p2
2

2p2
2

+ k1 −2k2p1+p1

2p2
2

−p1

p2

−2k2p1+p1

2p2
2

2k2+p2
2+1

2p2
2

1
p2

−p1

p2

1
p2

1


 , (5.148)

T [(2,2,1)] :




2k2p2
1−p2

1+p2
2

2p2
2

+ k1
p1−2k2p1

2p2
2

p1

p2

p1−2k2p1

2p2
2

2k2+p2
2−1

2p2
2

− 1
p2

p1

p2
− 1
p2

0


 . (5.149)

It is obvious that if the charges p1 and p2 of the bifundamental multiplet are chosen properly,

there could be many mirror dual theories with integer effective mixed Chern-Simons levels.

5.3 Knot polynomials

We can also apply 3d N = 2 mirror symmetry to knot theory. It is found in [83, 84] that the

HOMFLY-PT polynomials of various knots K can be lifted to the form

PK(a, x, q)
lift−−→ PQK (x, q) :=

∞∑

d1,...,dN=0

(−√q)
N∑

i,j=1
Cijdidj xd1

1 · · ·xdNN
(q, q)d1 · · · (q, q)dN

, (5.150)

which implies that knots correspond to quivers encoded in matrices Cij . This correspondence

is called knots-quivers correspondence (KQ) in [84]. In addition, some relations need to be

imposed on variables xi, such that

PK(a, x, q) = PQK
(
xi = x aaiq

qi−Cii
2 (−t)

Cii
2 , q

)
, (5.151)

where the parameter −t = 1 in the unrefined limit q = t. On the other hand, 3d/3d cor-

respondence conjectures that colored HOMFLY-PT polynomials are equivalent to the vortex
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partition functions of some 3d N = 2 theories [6, 57]. Inspired by this and the quiver gener-

ating series (3.112), the authors in [93] conjecture that the lifted knot polynomial PQK (x, t)

is also associated to certain 3d N = 2 theory T [QK ] with vortex partition functions, which in

the semi-classical limit takes form

PQK (x, q)
~→0−−−→

∫ ∏

i

dyi
yi

exp
1

~

(
W̃T [QK ](x,y) +O(~)

)
, (5.152)

W̃T [QK ](x,y) =
∑

i

Li2(yi) + log ((−1)Ciixi) log yi +
∑

i,j

Cij
2

log yi log yj . (5.153)

By comparing (5.153) with (5.6), we note that the lifted HOMFLY-PT polynomials PQK (x, q)

should be vortex partition functions of TA,N theories denoted as

TA,N : (U(1) + 1F)⊗Nkij , ξi . (5.154)

Therefore Cij play the role of effective Chern-Simons levels keff
ij and log ((−1)Ciixi) play the

role of effective FI parameters ξeff
i . The mirror transformations of TA,N theories enable us to

obtain a chain of equivalent integer matrices {Cij}.

Trefoil.

We take trefoil as an example, since it is one typical example in the knots-quivers correspon-

dence [84, 93]. The associated knot-quiver matrix Cij is

Cij =




0 0 1 1 2 2

0 1 1 1 2 2

1 1 2 2 2 3

1 1 2 3 2 3

2 2 2 2 3 3

2 2 3 3 3 4




+ f




1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1




, (5.155)

where f is the framing number for trefoil. We assume the original theory T [(0,0,0,0,0,0)]

for trefoil has effective Chern-Simons levels

Cij = k
eff, (0,··· ,0)
ij = kij +

1

2
δij , (5.156)

and real mass parameters have been absorbed into shifted FI parameters ξ̃i. Implementing

mirror transformations H(TA,6) on its sphere partition function, one can get many integer

effective CS level matrices.

Quiver reduction appears in this example as well. We find there is at least one gauge node

left, and it cannot be integrated out. More explicitly, mirror transformation (0,1,1,1,1,1)
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leads to the sphere partition function

Z
T [(0,1,1,1,1,1)]

S3
b

=
∫
dx e−

1
2

(9+14f+5f2)πi x2+πi x
(
− i(6+5f)

4
Q+(2ξ̃1+fξ̃2+(1+f)ξ̃3+(1+f)ξ̃4+(2+f)ξ̃5+(2+f)ξ̃6)

)
×

sb
( iQ

2
− x
)
sb
( iQ

4
+ f x− ξ̃2

)
sb
( iQ

4
+ (1 + f)x− ξ̃3

)
sb
( iQ

4
+ (1 + f)x− ξ̃4

)
×

sb
( iQ

4
+ (2 + f)x− ξ̃5

)
sb
( iQ

4
+ (2 + f)x− ξ̃6

)
. (5.157)

The corresponding theory has a star shape quiver shown in Figure 5.6, which has one gauge

node U(1) and six chiral multiplets with charges {−1, f, 1 + f, 1 + f, 2 + f, 2 + f}. The FI

parameters ξ̃2,3,4,5,6 have been turned into mass parameters while ξ̃1 is still a FI parameter.

When f = 0,−1,−2, some double sine functions from chiral multiplets can be moved out of

1 11

1

11

1

Figure 5.6: The star shape quiver for a 3d N = 2 theory given by trefoil.

integral, so framing f plays a subtle role here. Moreover, mirror transformation (1,1,1,1,0,1)

also leads to a star shape quiver with one gauge node U(1) and six chiral multiplets with

charges {2 + f, 2 + f, 2 + f, 2 + f,−1, 3 + f}. The corresponding sphere partition function is

Z
T [(1,1,1,1,0,1)]

S3
b

=
∫
dx e−

1
2

(30+24f+5f2)πi x2+πi x
(
− 11+5f

4
iQ+(2ξ̃1+2ξ̃2+2ξ̃3+2ξ̃4+2ξ̃5+3ξ̃6)+f(ξ̃1+ξ̃2+ξ̃3+ξ̃4+ξ̃6)

)
×

sb
( iQ

4
+ (2 + f)x− ξ̃1

)
sb
( iQ

4
+ (2 + f)x− ξ̃2

)
sb
( iQ

4
+ (2 + f)x− ξ̃3

)
×

sb
( iQ

4
+ (2 + f)x− ξ̃4

)
sb
( iQ

2
− x− ξ̃5

)
sb
( iQ

4
+ (3 + f)x− ξ̃6

)
. (5.158)

In this case, all FI parameters ξ̃1,2,3,4,5,6 are turned into real mass parameters.
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Chapter 6

3d brane webs and quivers

As we have discussed in chapter 4, some 3d N = 2 theories have brane constructions that

are given by Higgsing 5d theories, see e.g. [6, 48]. These 5d theories can be engineered in

M-theory by Calabi-Yau three-manifolds that are dual to brane webs in type IIB string theory

[27, 29, 49, 50, 51, 52]. In this chapter, we mainly discuss this Higgsing construction and 3d

brane webs. This chapter is based on [12].

3d N = 2 theories can be identified by some physical quantities, such as gauge groups,

matter content, Chern-Simons levels, real mass parameters, etc. These physical quantities

should be encoded in brane webs. For instance, the relative angle θ between NS5-brane and

NS5’-brane is related to the Chern-Simons level [109, 110]. Turning on real mass parame-

ters should separate overlapped D5-branes in 3d brane webs, and decoupling chiral multiplets

should change effective Chern-Simons levels. Analogous to 5d N = 1 theories discussed in

e.g. [52], one can identify these physical quantities from 3d brane webs. In order to verify

conclusions, we compute vortex partition functions using topological string vertex method.

By computing various 3d brane webs and reading off Chern-Simons levels and real mass pa-

rameters from effective superpotentials, one can know how the brane webs encode data.

We show that there are many equivalent brane webs by turning on real mass parameters,

namely, separating the overlapped D5-branes in 3d brane webs. These equivalent brane webs

compose phases of 3d brane webs. A subset of these phases composes Higgs branch MH .

These equivalent 3d brane webs are related by flipping the sign of real mass parameters.

Moreover, flipping the sign of real mass parameters is equivalent to flipping the positions of

D5-branes. The flipping of D5-branes can be interpreted in terms of 3d mirror symmetry for

the mirror dual TA,N theories, as we have discussed in chapter 5. Since each 3d brane web has

associated mixed Chern-Simons levels, we conjecture that there is a correspondence between

3d brane webs and quiver matrices. Besides, we can also move flavor D5-branes in brane

systems of 3d N = 2 theories, which also leads to some equivalent brane webs.

In this chapter, we also discuss the nonabelian theories with a gauge group U(Nc). By com-

paring with the vortex partition functions of nonabelian theories in [111, 112], we conjecture

that 3d brane webs for nonabelian theories on Higgs branch also have quiver structure.

The organization of this chapter is as follows: in section 6.1, we discuss the relations

between effective Chern-Simons levels and the relative angle between NS5-brane and NS5’-
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brane. In section 6.2, we discus real mass deformations that lead to equivalent 3d brane webs.

We also discuss the movement of D5-branes in this section. In section 6.3 we discuss 3d brane

webs and quivers for nonabelian theories.

6.1 Effective Chern-Simons levels

In [109, 110], it is found that the relative angle θ between NS5-brane and NS5’-brane is related

to Chern-Simons level

k = −p
q

= − tan θ . (6.1)

We note that this angle θ should relate to effective Chern-Simons levels, since there are one-loop

corrections from chiral multiplets. In this chapter, we mainly discuss effective Chern-Simons

levels for abelian theory, while the conclusion is also applicable to nonabelian theories.

(0, 1)
A

B

C

(NF , 1)

Figure 6.1: In this diagram, all possible locations of D3-branes are denoted by blue nodes. A
D3-brane can be located on any fundamental D5-branes. Hence discrete points {A ,B ,C , . . . }
compose the Higgs branch MH . Note that each intersection point can be viewed as a local
conifold singularity on the dual toric diagrams in M-duality [2].

For abelian theory U(1)k + NFF + NAFAF, the Chern-Simons level receives quantum

corrections from one-loop contributions, see e.g. [44, 45]:

keff = k +
NF

2
− NAF

2
. (6.2)

In particular, the effective Chern-Simons level is zero keff = 0 when the D3-brane is located on

any point {A ,B ,C , · · · } on the brane web shown in Figure 6.1, since in this case the angle

θ = 0.

The range of the relative angle is important. If the angle is too large, there will be an

intersection between NS5-brane and NS5’-brane, which often cause complications. We consider

two cases NF > NAF and NF < NAF in the following.

NF > NAF

The 3d brane webs in this case are illustrated in Figure 6.2. Since NF is larger than NAF , the

NS5-brane bends to the right. The range of the relative angle is shown in this figure. We get
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(0, 1)

(NF �NAF , 1)✓

Figure 6.2: The range of the angle θ is shown in the web. In this web, the blue node stands
for the D3-brane.

a bound

keff = tan θ ∈ [ 0 , NF −NAF ] , (6.3)

which along with (6.2) leads to

k = tan θ +
NAF −NF

2
∈
[
− NF −NAF

2
,
NF −NAF

2

]
. (6.4)

In particular, if NF = NAF , then keff = k = 0.

According to (6.4), the bare CS level can be k = ±1
2 for the theory U(1)k + 1 F. In Figure

6.3, we illustrate the values of Chern-Simons levels for the theory U(1)k + 2 F, which has

different relative angles. There are only three choices k = ±1 , 0 in this case.

<latexit sha1_base64="S9htbky3lqvQWUxy4e4LmRANi8M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9SIUvHisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKD6Mbr1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvEuK+f3F+VaNY+jAMdwAmfgwRXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AwfWNaQ==</latexit>

k = 1
<latexit sha1_base64="Vqf3uTyk46pzHkUXpZxwCmq1yBo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9SIUvHisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8NOME/YgOJA85o8ZKD6Mbt1cquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvEuK+f3F+VaNY+jAMdwAmfgwRXU4A7q0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AwHGNaA==</latexit>

k = 0
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k = �1

Figure 6.3: Note that the SL(2,Z) symmetry of type IIB string theory is preserved in 3d
brane webs, and hence only the relative angle matters.

NF < NAF and decoupling

In this case, the NS5-brane bends to the left and always intersects with NS5’-brane. Note that

intersections are allowed in 3d brane webs, as this kind of intersection can be also regarded

as a local conifold singularity that can be resolved by a blow-up. Intersections can also be

avoided by introducing additional fundamental D5-branes. Finally, one can decouple these

additional fundamental multiplets by sending the associated real mass parameters to infinity.

For the case NF < NAF , we prefer to firstly introduce some fundamental multiplets F

and finally decouple them. For simplicity, we add a particular number of fundamental chiral

multiplets F such that the new effective Chern-Simons level vanishes. We note that there are

two different cases, as illustrated in Figure 6.5. The first case (a) is that we introduce nF above

the original line, while in the second case (b) we introduce nF below it, where n = NAF −NF .
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(0, 1)
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✓

Figure 6.4: When NF < NAF , there is always an intersection between NS5’-brane and
NS5-brane.

(a) (b)

Figure 6.5: The original lines are denoted by dashed brown lines. In the left brane web (a),
we add (NAF −NF )F to avoid an intersection above the original line, and in the right brane
web (b), we add the same number of F below the original line to avoid intersection.

In both cases the new effective Chern-Simons level vanishes.

In this first case decoupling nF does not change the effective Chern-Simons level, because

if we decouple a fundamental multiplet F by sending the real mass parameter β → 0, its

contribution becomes trivial
(
β
√

t
q , t
)−1

n
→ 1. The corresponding 3d brane web in this case

is shown in diagram (a) in Figure 6.4 with the Chern-Simons level keff = 0.

In order to decouple a fundamental multiplet in the second case we need to flip Kähler

parameter β, namely (
β
t

q
, t

)−1

n

'
(
β−1 q

t
, t−1

)−1

n
(−
√
t)−n

2
, (6.5)

and then send β−1 → 0. This operation leaves a factor (−
√
t)−n

2
that reduces the effective

Chern-Simons level by one. In this case, we can at most decouple NAF − NF number of F

and get a effective CS level

keff ≥ 0− (NAF −NF ) = NF −NAF . (6.6)

This Chern-Simons level corresponds to the diagram (b) in Figure 6.4. Therefore, when NAF >

NF , the range of keff is

keff ∈ [NF −NAF , 0] , (6.7)

and the associated bare Chern-Simons level

k = tan θ +
NAF −NF

2
∈
[
− NAF −NF

2
,
NAF −NF

2

]
. (6.8)
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We summarize that for both cases NF > NAF and NF < NAF , the Chern-Simons level

falls in the bound

k = tan θ − NF −NAF

2
∈
[
− |NF −NAF |

2
,
|NF −NAF |

2

]
, (6.9)

which agrees with the bound found by localization methods [112, 113]. This bound is also the

constraint on Chern-Simons levels for Aharony duality [46].

6.2 Real mass deformations

3d N = 2 theories without superpotentials have two kinds of free parameters: real mass

parameters and FI parameters. In this section, we discuss the 3d brane webs obtained by

turning on real mass parameters.

Phases of brane webs

· · ·
· · ·

· · ·
· · ·

�!
�m̃1

m̃NAF

m2

mNF �1

�m1

0

Figure 6.6: The real mass deformation for U(1)k +NFF+NAFAF is illustrated in this figure.
We have assigned the real mass parameters to each D5-brane on the right brane web. The
D3-brane can be located on any fundamental D5-brane.

The procedure of turning on real mass parameters is illustrated in Figure 6.6. Firstly, we

need to pick up a fundamental D5-brane and locate the D3-brane on it. Then we separate

all D5-branes by turning on the real masses. These are various configurations to separate

D5-branes, since some mass parameters are larger than others. We could get many equiva-

lent 3d brane webs. In particular, possible locations of D3-brane compose the Higgs branch

MH defined by {σ + mi = 0 ,∀i}. The real mass deformations for AF do not belong to

the Higgs branch. These equivalent brane webs obtained by real mass deformations can be

considered as the phases of 3d abelian theories. Since these phases are physically equivalent,

the corresponding vortex partition functions should be equivalent.

Based on computations, we note that the assignment rule for real mass parameters is

the following: D5-branes below the original line should be assigned with negative masses,

and D5-brane above the original line should be assigned with positive masses. The mass

parameter for the original line where D3-brane is located, is zero. If we locate the D3-brane

on other fundamental D5-branes or change the positions of antifundamental D5-branes, then

the assignment of mass parameters will be changed but will still follow the same assignment

rule.
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Note that different phases correspond to the same theory and hence have the same effective

CS level, and the relative angle θ between NS5-brane and NS5’-brane is independent of the

real mass deformations. Generically, different phases of 3d brane webs cannot be related by

Hanany-Witten transitions or flop transitions. In the following part of this chapter, we com-

pute the vortex partition functions associated to some brane webs and verify the assignment

rule for real mass parameters 1.

Examples

In this section, we compute vortex partition functions for U(1)k+2 F and U(1)k+2 F+1 AF.

We use the refined topological vertex and the Higgsing method (geometric transitions) that we

have discussed in chapter 4 to produce D3-branes, see also e.g. [6, 10, 81, 80, 11, 90, 91, 34, 92].

U(1)k + 2 F

The Higgs branch of this theory contains two discrete points A and B as shown in the brane

web in Figure 6.7. If we introduce one D3-brane (denoted by the blue node) at phase point

k = 0

t
Q

Q1

A

B

Figure 6.7: The bare Chern-Simons level for this web is zero. The assignment of refined
parameter t is shown in the web. The short double line || is a notation in topological vertex
method, denoting that the preferred direction.

A, the corresponding vortex partition function obtained by Higgsing (geometric transition)

method is

ZAq̄-brane =
∞∑

n=0

(−
√
t)n

2
(√

t
q Q
)n

(t, t)n(Q1
t
q , t)n

. (6.10)

Here we only show its q̄-brane partition function for simplicity. Similarly, we can introduce

D3-brane at phase point B and obtain the vortex partition function

ZBq̄-brane =

∞∑

n=0

(−
√
t)n

2 (√
tQ−1

1 Q
)n

(t, t)n

(
Q−1

1
t
q , t
)
n

, (6.11)

where we can absorb Kähler parameter Q−1
1 to Q which plays the role of FI parameter.

We note that these two partition functions are equal upon the identification of the mass

1The one-loop contribution (5.61) can also be added.
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parameter

ZAq̄-brane
Q→Q−1

======= ZBq̄-brane . (6.12)

For ZAq̄-brane, the real mass parameter is Q1, while for ZBq̄-brane, mass parameter is Q−1
1 . This

verifies the argument rule that the real mass parameter above the original line is positive, and

the real mass parameter below the original line is negative. Note that the effective CS levels

for both phase A and phase B are the same keff = 0 + 2
2 = 1, using the formula discussed in

section 6.1.

U(1)k + 2 F + 1 AF

Qm1

Qm2

t

Q1

Q2

Q⇠1

Q⇠2
t

Q1

Q2

Q⇠1

L1

t

Q1

Q2

L2
Q⇠2

↵1

↵�1
1

��1
1�1

Figure 6.8: We denote the D3-brane introduced by Higgsing Qm1 as L1, and the one given by
Higgsing Qm2 as L2. The Kähler parameters for mass parameters have been denoted on the
brane webs.

We draw brane webs for this theory in Figure 6.8, where the D3-brane is introduced by

Higgsing Qm1 and Qm2 . We first introduce a D3-brane at Qm1 by setting Qm1 = 1
q

√
t
q and

Qm2 =
√

t
q . This is a q̄-brane whose vortex partition function is

ZL1
q̄-brane(Qi) =

∞∑

n=0

(
Qξ1

√
t
q

)n (
Q1

√
t
q , t
)
n

(t, t)n

(
Q1Q2

t
q , t
)
n

. (6.13)

The relations between gauge theory parameters and Kähler parameters are α1 = Q1 , β1 =

Q1Q2 , z = Qξ1 . Then this partition function can be written as

ZL1
q̄-brane(z, α, β) =

∞∑

n=0

(
z
√

t
q

)n (
α1

√
t
q , t
)
n

(t, t)n

(
β1

t
q , t
)
n

. (6.14)

The D3-brane L2 is introduced by Higgsing Qm1 =
√

t
q and Qm2 = 1

q

√
t
q , whose partition

function is

ZL2
q̄-brane(Qi) =

∞∑

n=0

(
Qξ2

√
t
q

)n (
Q2

√
q
t ,

1
t

)
n

(t, t)n
(
Q1Q2

q
t ,

1
t

)
n

=
∞∑

n=0

(
Qξ2
Q1

t
q

)n (
Q−1

2

√
t
q , t
)
n

(t, t)n

(
Q−1

1 Q−1
2

t
q , t
)
n

. (6.15)
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The relations between gauge theory parameters and Kähler parameters are given by α1 =

Q−1
2 , β1 = Q−1

1 Q−1
2 , z =

Qξ2
Q1

√
t
q . Then the partition function can be written as

ZL2
q̄-brane(z, α, β) =

∞∑

n=0

(
z
√

t
q

)n (
α1

√
t
q , t
)
n

(t, t)n

(
β1

t
q , t
)
n

. (6.16)

Therefore, upon the redefinition of parameters α1 and β1, these two partition functions take

the same form

ZL1
q̄-brane(z, α, β) = ZL2

q̄-brane(z, α, β) , (6.17)

which implies that these two brane web configurations L1 and L2 in Figure 6.8 are equivalent.

We remind that the effective CS level keff for these two brane webs is zero, which is known by

comparing (6.14) with the generic form (3.109). We confirm again that mass parameters mi

and m̃i below the original line are negative and above the original line are positive.

6.2.1 Flipping D5-branes

Recall that in 5d N = 1 theories, there are many equivalent 5d brane webs that can be re-

lated by Hanany-Witten transitions and flop transitions. For example, the 5d theory with

gauge group SU(2) and two fundamental hypermultiplets has some equivalent 5d brane webs

as illustrated in Figure 6.9. These 5d brane webs can be related by Hanany-Witten transi-

tions, which could move the flavor D5-branes up and down. One would expect that there

<latexit sha1_base64="gYpPzWJjNTFlQbOrW0H+yH/OeOc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRa1GPBi8cK9gOaUDabTbt0sxt2J0Ip/RtePCji1T/jzX/jts1Bqw9meLw3w86+KBPcoOd9OaW19Y3NrfJ2ZWd3b/+genjUMSrXlLWpEkr3ImKY4JK1kaNgvUwzkkaCdaPx7dzvPjJtuJIPOMlYmJKh5AmnBK0UBDRWaJZ9UK15dW8B9y/xC1KDAq1B9TOIFc1TJpEKYkzf9zIMp0Qjp4LNKkFuWEbomAxZ31JJUmbC6eLmmXtmldhNlLYl0V2oPzemJDVmkkZ2MiU4MqveXPzP6+eY3IRTLrMcmaTLh5JcuKjceQBuzDWjKCaWEKq5vdWlI6IJRRtTxYbgr375L+lc1P2r+uV9o9ZsFHGU4QRO4Rx8uIYm3EEL2kAhgyd4gVcnd56dN+d9OVpyip1j+AXn4xteypHe</latexit>· · · · · ·

Figure 6.9: Some 5d brane webs for the 5d N = 1 theory with a gauge group SU(2) and two
fundamental hypermultiplets.

may also be certain physical operations to relate equivalent 3d brane webs given by various

real mass deformations. However, it turns out that Hanany-Witten transitions cannot relate

these equivalent 3d brane webs, even for very simple theory U(1) + 2F shown in Figure 6.10.

Moreover, we cannot directly Hanany-Witten move the D5-branes in 3d brane webs without

causing problems. We should return to their mother 5d brane webs which are the brane

webs before the Higgsing, and then perform Hanany-Witten transition then. However, this

operation makes the brane webs more complicated, and seems difficult to relate equivalent

3d brane webs given by real mass deformations. Fortunately, there is a particular type of

Hanany-Witten transition that can be implemented without complication, which is discussed

in section 4.3; see also [91, 10].

By looking at the vortex partition functions for 3d U(1) + NFF + NAFAF theories, one
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could find that equivalent 3d brane webs differ only by the assignment of real mass parameters.

For example, the partition functions for the 3d brane webs shown in Figure 6.8 are related by

the operation

ZL1
q̄-brane(Qi)

Q1→Q−1
1 , Q1Q2→Q−1

1 Q−1
2−−−−−−−−−−−−−−−−−→ ZL2

q̄-brane(Qi) , (6.18)

The operation

{Q1 → Q−1
1 , Q1Q2 → Q−1

1 Q−1
2 } (6.19)

relates 3d brane webs L1 and L2. We can express (6.19) in terms of real mass parameters

{m̃1 → −m̃1 , m1 → −m1} . (6.20)

This implies that flipping the sign of real mass parameters relate two equivalent 3d brane

webs. This can be verified in more examples.

Then, what is a physical interpretation of this flipping from gauge theory perspective? The

answer is that this flipping is caused by mirror symmetry transformation discussed in chapter

5; see also [11]. The mirror symmetry is a duality between theories, which does not change

their partition functions. One can perform mirror symmetry several times and get a chain of

mirror dual theories. We have discussed in chapter 5 that 3d mirror transformations only flip

the sign of some mass parameters for the mirror dual TA,N theories.

For a generic abelian theory U(1) + NFF + NAFAF, there are many mass parameters,

and one can flip the sign of any mass parameter. This on the side of brane webs acts as

reflecting the positions of D5-branes up and down the original line, since the positions of

D5-branes correspond to real mass parameters. By flipping mass parameters in a sequence,

one can obtain all equivalent 3d brane webs. Moreover, flipping parameters α → α−1 and

β → β−1 changes the quiver matrix Cij in the quiver generating series (3.112). Hence there

is the correspondence

3d brane webs↔ quiver matrices . (6.21)

Let us look at brane webs for some simple theories and show their quiver matrices to verify

this correspondence. U(1)k + 1F is a trivial theory since it only has one brane web. The first

m1

A
−m1

B

Figure 6.10: Flipping the D5-brane relates equivalent brane webs.

example we discuss is U(1) + 2F, which has two equivalent brane webs as illustrated in Figure

6.10, corresponding to discrete points on Higgs branch. The corresponding quiver matrices
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(effective mixed Chern-Simons levels) are

CAij = keff
A =

[
k + 1 1

1 1

]
, CBij = keff

B =

[
k −1

−1 0

]
. (6.22)

The next example is U(1)k + 3F, whose brane webs are shown in Figure 6.11. There are in

m1

m2 m2

�m1

m1

�m2

�m2

�m1

Figure 6.11: The brane webs for the theory U(1) + 3F are associated with the same effective
CS level keff = 1.

total four brane webs, which are given by flips:

flip 0: {m1,m2} , flip 1: {−m1,m2} , {m1,−m2} , flip 2: {−m1,−m2} . (6.23)

The corresponding quivers are the following:



k + 3

2 1 1

1 1 0

1 0 1


 ,



k + 1

2 −1 1

−1 0 0

1 0 1


 ,



k + 1

2 1 −1

1 1 0

−1 0 0


 ,



k − 1

2 −1 −1

−1 0 0

−1 0 0


 .

(6.24)

The first element C0,0 is the effective Chern-Simons level for the fundamental D5-brane

where D3-brane is located; each row or column corresponds to a different D5-brane. We sum-

marize the quiver components associated to D5-branes and classified by their mass parameters

as follows:

mi > 0 , Cij(βi) =

[
0 1

1 0

]
, mi < 0 , Cij(βi) =

[
1 −1

−1 1

]
, (6.25)

m̃i > 0 , Cij(αi) =

[
0 1

1 1

]
, m̃i < 0 , Cij(αi) =

[
−1 −1

−1 0

]
, (6.26)

which are obtained from q-Pochhammer products (3.123) and (3.124).

The last example is U(1)0 + 2F + 2AF. There are eight equivalent brane denoted by flips:

flip 0: {m1, m̃1, m̃2} ,
flip 1: {−m1, m̃1, m̃2} , {m1,−m̃1, m̃2} , {m1, m̃1,−m̃2} ,
flip 2: {−m1,−m̃1, m̃2} , {m1,−m̃1,−m̃2} , {−m1, m̃1,−m̃2} ,
flip 3: {−m1,−m̃1,−m̃2} .

(6.27)
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We show a few of them in Figure 6.12.

�! �! �! · · · · · ·
m1

�m1

m̃1

m̃2

m̃1

m̃2

�m1

m̃2

�m̃1

Figure 6.12: Flipping D5-branes leads to a chain of equivalent 3d brane webs.

6.2.2 Moving D5-branes

D3

NS5 NS5’

D3

NS5 NS5’

D3

NS5 NS5’

D3

NS5 NS5’

(a) (b)
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D5

Figure 6.13: There is some freedom in moving flavor D5-branes. In the brane configuration
(a), we move two D5-branes in opposite directions and attach them to NS5-brane and NS5’-
brane separately, while in the brane configuration (b), we attach both flavor D5-branes to the
NS5’-brane.

Moving D5-branes also gives rise to equivalent 3d brane webs. For details about this

movement, see e.g. [47]. In brane construction of 3d N = 2 theories, the matter arises from

D5-branes located between NS5-brane and NS5’-brane. Each D5-brane gives rise to one F

and one AF. These flavor D5-branes can move to either left or right, leading to different

brane webs. We illustrate this by considering brane systems in Figure 6.13. If we move one

D5-brane to the left and another D5-brane to the right, then we get a theory represented by

1 + 1 − 1 − 1 + 1 2. On the other hand, if we move both D5-branes to the right, then

we get a theory denoted by 1 − 2 + 2 . Since these two diagrams describe the same theory

U(1) + 2F + 2AF, we have

1 + 1 − 1 − 1 + 1 = 1 − 2 + 2 . (6.28)

The corresponding brane systems are actually brane web (a) and web (b) respectively in Figure

6.13, which can be drawn more precisely as brane web (d) and web (e) in Figure 6.14. The

2Here we use circle and box diagrams to denote gauge theories, which are well known as quiver diagrams
in literature. In this notation, the circle with a number N denotes the gauge group U(N), and the box with
number NF +NAF denotes NFF and NAFAF.

130



CHAPTER 6. 3D BRANE WEBS AND QUIVERS
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(e)

Figure 6.14: Some equivalent brane webs for U(2) + 2F + 2AF.

vortex partition functions of these brane webs are the same

Zvortex
q̄-brane =

∞∑

n=0

(
Qξ
√

t
q

)n (
Q1

√
t
q , t
)
n

(
Q3

√
t
q , t
)
n

(t, t)n

(
Q1Q2

t
q , t
)
n

, (6.29)

where the effective Chern-Simons level is zero. The open strings connecting D3-brane and

D5-branes can be identified from q-Pochhammer products following (3.111). Similarly, we can

flop a Kähler parameter and perform the Hanany-Witten transition to get the brane web (the

diagram (f) in Figure 6.14) for 1 + 0 − 1 − 1 + 2 .

6.3 Nonabelian theories and quivers

· · ·

· · ·

· · ·

· · ·

�!
· · ·· · ·

Figure 6.15: We illustrate the real mass deformations of the nonabelian theory U(2) +NF +
NAFAF in this figure. The mass deformations for higher rank U(N) theories are similar.

We can turn on the real mass parameters for nonabelian theories. As illustrated in Figure

6.15, the overlapped flavor D5-branes for U(2) +NFF +NAFAF are separated by real mass

deformations. Two D3-branes are located on a pair of D5-branes, corresponding to a vacuum

on the Higgs branch.
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Vortex partition function and brane webs

In [111, 112], vortex partition functions of U(N)k+NFF+NAFAF have been computed using

the factorization property of superconformal indices, taking the form

Zvortex(σ(t)) =
∞∑

~n=0

(−ω)|n|Z{nj}(q, σ(t), t̃, τ, k) , (6.30)

Z{nj}(q, σ(t), t̃, τ, k) = (−1)

(
k+

NF−NAF
2

)
(
∑N
i=1 ni) e

ik
N∑
j=1

(Mjnj+µnj+iγn
2
j)

(6.31)

·

NAF∏
a=1

N∏
j=1

nj−1∏
k=0

2sinh
−iM̃a−iMj−2iµ+2γk

2

N∏
i=1

N∏
j=1

nj−1∏
k=0

2sinh
iMi−iMj+2γ(k−ni)

2 ·
NF∏

a=N+1

N∏
j=1

nj−1∏
k=0

2sinh
iMa−iMj+2γ(k+1)

2

,

(6.32)

where we did not sum up all vortex partition functions on the Higgs branch moduli space,

and (6.30) is just the vortex partition function on a particular vacuum σ(t). According to the

discussion before, the vortex partition functions for all vacua are equivalent upon redefinitions

of real mass parameters. If we define q = e−2γ , t = eiM , t̃ = eiM̃ , τ = eiµ, then the partition

function takes form

Z{nj}(q, σ(t), t̃, τ, κ) =(−√q)||n||2keff
q
−

N∑
i,j=1

ninj
· τ |n|(k−NAF )(

√
q)
|n|(NAF+NF−2N)

2

·

( N∏
j=1

t
nj
j

)keff

( NF∏
i=1

ti
NAF∏
a=1

t̃a

) |n|
2

·

NAF∏
a=1

N∏
j=1

(τtj t̃a, q)nj

N∏
i,j=1

( tj
ti
q−ni , q

)
nj
·

NF∏
a=N+1

N∏
j=1

( tj
ta
q, q

)
nj

, (6.33)

where we use the shorthand notation |n| =
∑N

i=1 ni and ||n||2 =
∑N

i=1 n
2
i . Here keff =

k + NF−NAF
2 is the effective CS level for non-abelian theories, and ti, t̃i are associated to real

mass parameters.

We note that the vortex partition functions for non-abelian theories are themselves abelian-

ized as (6.33) can be expressed in terms of q-Pochhammer products. Therefore, there should

be corresponding quiver structure. We verify this in the following subsection.

U(2) + 2F + 2AF

We firstly consider U(2) + 2F + 2AF. We implement refined topological vertex and Higgsing

(geometric transition) method discussed in chapter 4 to obtain vortex partition function. The

brane web for this theory is shown in Figure 6.16. We note that in order to agree with

(6.33), the internal line associated to NS5’-brane should be cut, or in other words, the Young

diagrams on these internal lines should be empty. This implies that the we should introduce

two NS5’-branes rather than one. Its 3d brane web is illustrated in Figure 6.17. Since we

consider vortex partition functions on the Higgs branch, the gauge group is broken to U(1)2.
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Qm1

Qm2

t

Q1

Q2

Q⇠1

Q⇠2

Q1

Q2

Q⇠1

L1

L2
Q3

t

Q3
Q⇠2

Figure 6.16: We introduce two D3-branes L1 and L2 by Higgsing. In topological vertex
method, cutting lines means the associated Young diagrams on internal lines are empty.
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NS5’

Figure 6.17: The new brane web has a partition function matching with (6.33).

The new brane web that we get also confirms this point.

Using refined topological vertex method, we compute the refined open topological string

amplitude for the toric diagram in Figure 6.16; the more precise web is shown in Figure

6.17. We implement geometric transitions by setting Qm1 = 1
q

√
t
q , Qm2 = 1

q

√
t
q to obtain the

(q̄, q̄)-brane amplitude. In this case, Young diagrams on the open topological brane L1 and

L2 are antisymmetric, denoted by {n1}V and {n2}V respectively3. By using (A.20) and other

identities in Appendix, we find

Z(q̄,q̄)-brane(Q1, Q2)

=

∞∑

n1,n2=0

(
Qξ1

√
t
q

)n1
(
Qξ2

√
t
q

)n2

(t, t)n1(t, t)n2

·
(Q1

√
t
q , t)n1(Q2

√
q
t , t
−1)n2(Q3

√
t
q , t)n2(Q1Q2Q3

√
t
q , t)n1

(Q1Q2tn1 , t−1)n2(Q1Q2
t
q · t−n2 , t)n1

=
∞∑

n1,n2=0

(−
√
t)−2n1n2

(
Qξ1

√
t
q

)n1 (
Q−1

1 Qξ2
)n2

(t, t)n1(t, t)n2

·
(Q1

√
t
q , t)n1(Q1Q2Q3

√
t
q , t)n1(Q−1

2

√
t
q , t)n2(Q3

√
t
q , t)n2

(Q1Q2
t
q · t−n2 , t)n1(Q−1

1 Q−1
2 t−n1 , t)n2

,

(6.34)

3Here we draw the arrows for Young diagrams towards Lagrangian branes (D3-branes). If we reverse the
directions of arrows, then Young diagrams are transposed.
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which in the unrefined limit q = t takes form

Z(q̄,q̄)-brane(Q1, Q2)|q=t =
∞∑

n1,n2=0

q−n1n2Qn1
ξ1

(Q−1
1 Qξ2)n2(Q1, q)n1(Q1Q2Q3, q)n1(Q−1

2 , q)n2(Q3, q)n2

(q, q)n1(q, q)n2(Q1Q2q−n2 , q)n1(Q−1
1 Q−1

2 q−n1 , q)n2

,

(6.35)

which is consistent with (6.33). We note that the Kähler parameters above the original lines

have positive powers of QiQj · · · associated with positive masses, and the Kähler parameters

below the corresponding original lines are given by negative power Q−1
i Q−1

j · · · with negative

masses. Therefore, the assignment rule found in abelian theories discussed in section 6.2 is

also applicable to nonabelian theories. For nonabelian theories, we need to draw more original

lines.

The strings connecting two separate D3-branes give rise to the term

N{nj}A,{ni}A

(
β
t

q
, t−1, q−1

)
=

(
βtni ,

1

t

)

nj

(
β
t

q
q−nj , t

)

ni

, (6.36)

which in our context comes from W±-bosons in 3d N = 2 nonabelian theories. Using the

identity

(αq−m, q)n =





(α, q)n−m(αq−1, q−1)n if n > m

(αq−1, q−1)n(αq−1, q−1)−1
m−n if n < m

, (6.37)

we can split W± contributions into two parts

(αq−m, q)n(α−1q−n, q)m (6.38)

=





(α−1q−1, q−1)m(αq−1, q−1)n · (α−1, q)m−n(αq−1, q−1)−1
m−n if m > n

(α−1q−1, q−1)m(αq−1, q−1)n · (α, q)n−m(α−1q−1, q−1)n−m if n > m
(6.39)

=





(α−1q−1, q−1)m(αq−1, q−1)n · (−√q)(m−n)2 (
√
qα)n−m(1−α)

1−αqn−m if m > n

(α−1q−1, q−1)m(αq−1, q−1)n · (−√q)(m−n)2 (
√
qα−1)m−n(1−α−1)

1−α−1qm−n if n > m
. (6.40)

We can also set Qm1 = t
√

t
q , Qm2 = t

√
t
q to obtain (t, t)-multiple brane amplitude, which

is equivalent to the (q̄, q̄)-brane amplitude through discrete symmetry q → 1/t , t → 1/q

preserved in open topological strings. Therefore,

Z(q̄,q̄)-brane(Q1, Q2)
q→1/t , t→1/q←−−−−−−−−→ Z(t,t)-brane(Q1, Q2) . (6.41)

This discrete symmetry transposes the Young diagrams on open topological branes, hence we

have symmetric Young tableaux {n1}S and {n2}S for (t, t)-brane. In (A.22), we show Young

diagrams in this notation.

Now, we go to the quiver structure of this nonabelian theory. The terms from W±-boson
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can be expressed as follows in a shorthand notation

1

(βq−n1 , q)n2

→
( n1

n2

di

dj

n1 n2 di dj


−1 −1

1

−1 1 1

−1




,

(
β√
q
, β

))
, (6.42)

which enables us to write (6.35) in a quiver form

Z(q̄,q̄)-brane(Q1, Q2)|q=t ' PCij
(
Qξ1 , Q

−1
1 Qξ2 ,

Q1Q2√
q
,Q1Q2,

Q−1
1 Q−1

2√
q

,Q−1
1 Q−1

2 , Q1, Q1Q2Q3, Q
−1
2 , Q3

)
,

(6.43)

where quiver matrix Cij reads

n1 n2 d1 d2 d3 d4 d5 d6 d7 d8 (6.44)

Cij =

n1

n2

d1

d2

d3

d4

d5

d6

d7

d8




−1 −1 −1 1 1 1

−1 1 −1 −1 1 1

−1 1 1

−1

1 −1 1

−1

1

1

1

1




. (6.45)

The missing elements in Cij are zero.

U(2) + 3F + 2AF

We illustrate the brane web of this theory in Figure 6.18. This web has three fundamental D5-

branes, two antifundamental D5-branes and two D3-branes. These D3-branes can be located

at any pair of fundamental D5-branes.

We locate D3-branes on the first and the third fundamental D5-branes as an example. The

corresponding 3d brane web is shown in Figure 6.18. Note that in the 3d brane web, there is

the freedom of flipping D5-branes up and down the original lines; which relates other phases of

3d brane webs. The effective CS level keff for the 3d brane web in Figure 6.18 is zero. We set
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Figure 6.18: There are two original lines for two D3-branes. On the Higgs branch MH , we
need to cut some internal lines in the 5d brane web. The effective Chern-Simons level for this
brane web vanishes keff = 0, since the relative angle between NS5-brane and NS5’-brane is
zero.

Qm1 = 1
q

√
t
q , Qm2 =

√
t
q , Qm3 = 1

q

√
t
q to obtain the (q̄, ∅, q̄)-multiple brane open amplitude

Z(q̄ ,∅ ,q̄)-brane =
∞∑
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(−
√
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·
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√
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√
t
q , t
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4
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q , t
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n3(

Q1Q2
t
q , t

)
n1

(
Q−1

3 Q−1
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t
q , t
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n3

(
Q1Q2Q3Q4

t
q · t−n3 , t

)
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(
Q−1

1 Q−1
2 Q−1

3 Q−1
4 t−n1 , t

)
n3
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(6.46)

It is more convenient to extract the corresponding quiver from its unrefined version by setting

q = t

Z(q̄ ,∅ ,q̄)-brane|q=t =
∞∑

n1,n3=0

(−√q)−2n1n3

(
Qξ1
Q1

)n1
(
Qξ3
Q3

)n3

(q, q)n1(q, q)n3

·
(Q1, q)n1

(Q1Q2Q3, q)n1

(
Q−1

4 , q
)
n3

(
Q−1

2 Q−1
3 Q−1

4 , q
)
n3

(Q1Q2 , q)n1

(
Q−1

3 Q−1
4 , q

)
n3

(Q1Q2Q3Q4 · q−n3 , q)n1

(
Q−1

1 Q−1
2 Q−1

3 Q−1
4 t−n1 , q

)
n3

.

(6.47)

We can see there is already a mixed effective Chern-Simons level −δ1,3. Once again, one can

see that the assignment rule for real mass parameters in section 6.2 also works in this example.

This partition function can be written in the form

Z(q̄ ,∅ ,q̄)-brane|q=t ' PCij

(
Qξ1
Q1

,
Qξ3
Q3

,
Q1,2,3√

q
,Q1,2,3,

Q−1
1,2,3,4√
q

,Q−1
1,2,3,4, Q1, Q1,2,3, Q

−1
4 , Q−1

2,3,4, Q1,2, Q
−1
3,4

)
,

(6.48)
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where we use shorthand notation Q1,2,3,... = Q1Q2Q3 · · · , and the quiver matrix Cij is

n1 n3 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 (6.49)

Cij =

n1

n3

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10




−1 −1 −1 1 1 1 1

−1 1 −1 −1 1 1 1

−1 1 1

−1

1 −1 1

−1

1

1

1

1

1 1

1 1




. (6.50)

Here n1, n3, d1, · · · d10 are degrees for variables xdii in the quiver form PCij (xi).

Ooguri-Vafa invariants

Recall that vortex partition functions for the abelian theory U(1)k + NFF + NAFAF can

be written in terms of quiver generating series, and refined Ooguri-Vafa (OV) invariants are

actually Donaldson-Thomas (DT) invariants

N
(j,r)
Qβ

= Ω
(j,r)
d1,...,dm

, (6.51)

where Qβ = xd1
1 · · ·xdmm , and (d1, . . . , dm) is unique for each Qβ. However, for nonabelian

theories the expansion variables in the quiver generating series (3.112) are not independent,

for instance (6.43) and (6.48). In this case, Ooguri-Vafa invariants are linear combinations of

DT-invariants

N
(j,r)
Qβ

=
∑

{(d1,...,dm)}

Ω
(j′,r′)
d1,...,dm

, (6.52)

where Qβ = xd1
1 · · ·xdmm , and (d1, . . . , dm) is not unique for each Qβ. One can use the refined

formula (4.17) to extract refined DT invariants Ω
(j,r)
d1,...,dm

encoded in PCij (xi) and then impose

the relations between variables xi to obtain refined OV invariants N
(j,r)
Qβ

.
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Identities

A.1 Various identities

Refined MacMahon function can be written as

M(Q, t, q) =
∞∏

i,j=1

(1−Q qitj−1) = exp

(
−
∞∑

n=1

Qn
( q
t

)n
2

n(q
n
2 − q−n2 )(t

n
2 − t−n2 )

)
(A.1)

and satisfies relations

M(Q, q, t) = M(Q−1, t, q) = M
(
Q, t−1, q−1

)
= M

(
Qtq−1, t, q

)
. (A.2)

The plethystic exponent is very useful to extract BPS invariants through Gopakumar-Vafa

formula and Ooguri-Vafa formula. It is defined as

PE
[
f(a)

]
= exp

[ ∞∑

n=1

f(an)

n

]
(A.3)

and satisfies PE[f(a)] · PE[f(b)] = PE[f(a) + f(b)].

Schur function has some useful properties:

sµ(qρ) = q
||µ||2−||µT ||2

2 sµT (qρ) , sν/λ(z) =




z|ν|−|λ| ν > λ

0 others .
(A.4)

Besides, there is a factor Z̃ν(t, q) in topological partition functions, defined as follows

Z̃ν(t, q) :=
∏

(i,j)∈ν

(
1− qνi−jtνTj −i+1

)−1
, (A.5)

||Z̃µ(t, q)||2 = ||Z̃µT (q, t)||2 , ||Z̃µ(t, q)||2 := Z̃µT (t, q)Z̃µ(q, t) . (A.6)

Nekrasov factors often appear in topological string partition functions. We summarize their
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definitions and some formulas below

Nµν(Q; t, q) :=
∞∏

i,j=1

1−Q qνi−j tµ
T
j −i+1

1−Q q−j t−i+1
(A.7)

Nµν(Q; t, q) =
∏

(i,j)∈ν

(
1−Q qνi−j tµ

T
j −i+1

) ∏

(i,j)∈µ

(
1−Q q−µi+j−1 t−ν

T
j +i
)
, (A.8)

Nhalf,+
ν (Q; t, q) := N∅ν(Q

√
q

t
, t, q) , (A.9)

Nhalf,−
ν (Q; t, q) := Nν∅(Q

√
q

t
, t, q) , (A.10)

Nhalf,+
ν

(
Q; t−1, q−1

)
= Nhalf,−

νT

(
Q; q−1, t−1

)
, (A.11)

Nhalf,+
ν

(
Q; t−1, q−1

)
= N∅ν

(
Q

√
t

q
, t−1, q−1

)
, (A.12)

Nhalf,−
ν

(
Q; t−1, q−1

)
= Nν∅

(
Q

√
t

q
, t−1, q−1

)
, (A.13)

Nhalf,+
ν (Q, t−1, q−1) = (−Q)|ν|t

||νT ||2
2 q

−||ν||2
2 Nhalf,−

ν (Q−1, t−1, q−1) (A.14)

Nµν (Q; t, q) = NνTµT

(
Q
t

q
; q, t

)
, (A.15)

Nµν

(
Q; t−1, q−1

)
= NνTµT

(
Q
q

t
; q−1, t−1

)
, (A.16)

Nµν

(
Q

√
t

q
; t−1, q−1

)
= NνTµT

(
Q

√
q

t
; q−1, t−1

)
, (A.17)

Nµν

(
Q−1

√
t

q
;
1

t
,
1

q

)
= (−Q)−|µ|−|ν|t−

||µT ||2
2

+
||νT ||2

2 q
||µ||2

2
− ||ν||

2

2 NνTµT

(
Q

√
t

q
;
1

t
,
1

q

)
.

(A.18)

In particular, when Young diagrams are symmetric or antisymmetric, Nekrasov factors can be

written in terms of q-Pochhammer products as follows:

N{n1}A,{n2}A
(
Q; t−1, q−1

)
= (Q t−n1 , t)n2(Qqt−1 tn2 , t−1)n1 , (A.19)

N{n1}S ,{n2}S
(
Q; t−1, q−1

)
= (Qqt−1q−n2 , q)n1(Q qn1 , q−1)n2 , (A.20)

N{n}S ,{n}S (Q, t, q) = (Qt, q)n(Qq−n, q)n , (A.21)

where {n}S and and {n}A denote symmetric and anti-symmetric Young diagrams respectively

{n}S := · · · , {n}A :=
.
.
.

. (A.22)

For more details and notations, see e.g. [10, 36].
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The q-Pochhammer product is extensively used in deriving quivers. It is defined as

(Q, q)n :=

n−1∏

k=0

(1−Qqk) , (q, q)0 = 1 , (q, q)1 = 1− q . (A.23)

One can also define (Q, q)∞ =
∏∞
k=0(1−Qqk). We summarize some useful identities below

(Q−1, q)n = (Q, q−1)n (−√q)n2
(
√
qQ)−n , (A.24)

(Qq−n, q)n = (Qq−1, q−1)n , (A.25)

(Q, q)−n = (Q q−n, q)n
−1

= (Q q−1, q−1)n
−1

=
(−qQ−1)n(

√
q)n

2−n

(qQ−1, q)n
, (A.26)

(
t−1, q−1

)
n

= (−1)nt−nq
n−n2

2 (t; q)n ,
(
q−1, q−1

)
n

−1
=

(−1)n(
√
q)n

2+n

(q, q)n
, (A.27)

(
Qt−1, t−1

)
∞ = (Q, t)−1

∞ , (A.28)

1

(Q, q)∞
=
∞∑

n=0

Qn

(q, q)n
= exp

[ ∞∑

n=1

1

n

Qn

1− qn
]

=: PE
[ Q

1− q
]
, (A.29)

(Q, q)∞ =

∞∑

n=0

(−√q)n2
(
Q√
q

)n

(q, q)n
= exp

[
−
∞∑

n=1

1

n

Qn

1− qn
]

=: PE
[
− Q

1− q
]
, (A.30)

(α, q)n =
(α, q)∞

(αqn, q)∞
= (α, q)∞

∞∑

d=0

(−√q)2nd αd

(q, q)d
, (A.31)

1

(β, q)n
=

(βqn, q)∞
(β, q)∞

=
1

(β, q)∞

∞∑

d=0

(−√q)2nd+d2 βd

(q, q)d
, (A.32)

1

(βq−n1 , q)n2

=
(βqn2−n1 , q)∞
(βq−n1 , q)∞

=
∞∑

di,dj=0

(−√q)d2
i+2(n2−n1)di−2n1dj

(
β√
q

)di
βdj

(q, q)di(q, q)dj
, (A.33)

M(Q; t, q)

M(tQ; t, q)
=
∞∏

i=0

(1−Qq qi) = (Qq; q)∞ ,
M(Q; t, q)

M(qQ; t, q)
=
∞∏

i=0

(1−Qq ti) = (Qq; t)∞ . (A.34)

A.2 Double-sine function

The double-sine function is defined as

sb(x) =
∏

m,n≥0

mb+ n/b+Q/2− i x
m b+ n/b+Q/2 + i x

, Q = b+
1

b
, (A.35)

and it satisfies sb(x) sb(−x) = 1. The equivariant parameter q in localization is defined as

q = e~ = e2π i b2 = e2π i bQ , ~ = 2π i b2 = 2π i bQ . (A.36)
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In the asymptotic limit b→ 0 the double-sine function is

sb(z)→ e−i π z
2/2ei π(2−Q2)/24 exp

(
1

2π i b2
Li2(e2πbz)

)
, (A.37)

where Li2(z) is the polylogarithm function defined by a power series

Lis(z) :=
∞∑

k=1

zk

ks
. (A.38)

In the decompactification limit R → +∞, the effective superpotentials of 3d N = 2 gauge

theories on spacetime R2 × S1
R involve

lim
R→+∞

Li2
(
e−Rx

)

R2
=

〚x〛2

2
, 〚x〛2 := θ(−x) · x =

{
0 x > 0 ,

x x < 0 ,
(A.39)

where 〚x〛2 is defined in [64] and θ(x) is Heaviside step function. The derivative of Li2(y) is

exp
(
y
dLi2(y)

d y

)
=

1

1− y . (A.40)

A.3 Integral formula

When performing mirror transformations, we use the higher dimensional Gaussian integral

formula

∫
d x exp

(
− 1

2
x ·A · x + J · x

)
=

√
(2π)n

detA
exp

(1

2
J ·A−1 · J

)
, only if detA 6= 0 .

(A.41)

In addition, the Dirac delta function δ(k) = 1
2π

∫
dx ei kx is also useful.

A.4 Open BPS invariants

In this section, we show the refined Ooguri-Vafa invariants for several strip Calabi-Yau threefolds.
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d = 1, (d0, d1) 2r 2s = 1

(1, 0) 1 1

d = 2, (d0, d1) 2r 2s = 3

(1, 1) 3 1

d = 3, (d0, d1) 2r 2s = 5

(2, 1), (1, 2) 5 1

d = 4, (d0, d1) 2r 2s = 7 9

(3, 1), (1, 3) 7 1
(2, 2) 7 1 1

d = 5, (d0, d1) 2r 2s = 9 11 13

(4, 1), (1, 4) 9 1
(2, 3), (3, 2) 9 1 1 1

d = 6, (d0, d1) 2r 2s = 11 13 15 17 19

(5, 1), (1, 5) 11 1
(4, 2), (2, 4) 11 2 2 1 1
(3, 3) 11 3 3 3 1 1

d = 7, (d0, d1) 2r 2s = 13 15 17 19 21 23 25

(6, 1), (1, 6) 13 1
(5, 2), (2, 5) 13 2 2 1 1
(4, 3), (3, 4) 13 5 5 6 4 3 1 1

d = 8, (d0, d1) 2r 2s = 15 17 19 21 23 25 27 29 31 33

(7, 1), (1, 7) 15 1
(6, 2), (2, 6) 15 3 3 2 2 1 1
(5, 3), (3, 5) 15 7 8 10 8 7 4 3 1 1
(4, 4) 15 8 12 14 14 10 8 5 3 1 1

d = 9, (d0, d1) 2r 2s = 17 19 21 23 25 27 29 31 33 35 37 39 41

(8, 1), (1, 8) 17 1
(7, 2), (2, 7) 17 4 3 3 2 2 1 1
(6, 3), (3, 6) 17 9 12 15 13 13 9 7 4 3 1 1
(5, 4), (4, 5) 17 14 21 30 30 29 22 19 12 9 5 3 1 1

Table A.1: Refined open BPS invariants for the geometry C3/Z2 in Figure. 4.8 (b). (d0, d1)
are degrees for the term Qd0Qd1

1 .
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d = 1, (d0, d1, d2) 2r 2s = 0

(1, 0, 0) 0 1

d = 2, (d0, d1, d2) 2r 2s = 1

(1, 1, 0) 1 1

d = 3, (d0, d1, d2) 2r 2s = 2

(1, 1, 1) 2 1

d = 4, (d0, d1, d2) 2r 2s = 3

(1, 2, 1) 3 1

d = 5, (d0, d1, d2) 2r 2s = 4

(2, 2, 1), (1, 2, 2) 4 1

d = 6, (d0, d1, d2) 2r 2s = 5

(2, 3, 1), (2, 2, 2), (1, 3, 2) 5 1

d = 7, (d0, d1, d2) 2r 2s = 6 8

(3, 3, 1), (1, 3, 3) 6 1
(2, 3, 2) 6 2 1

d = 8, (d0, d1, d2) 2r 2s = 7 9

(3, 4, 1), (1, 4, 3) 7 1
(3, 3, 2), (2, 4, 2), (2, 3, 3) 7 1 1

d = 9, (d0, d1, d2) 2r 2s = 8 10 12

(4, 4, 1), (1, 4, 4) 8 1
(3, 3, 3) 8 1
(3, 4, 2), (2, 4, 3) 8 3 2 1

d = 10, (d0, d1, d2) 2r 2s = 9 11 13 15

(4, 5, 1), (1, 5, 4) 9 1
(4, 4, 2), (3, 5, 2), (2, 5, 3), (2, 4, 4) 9 2 1 1
(3, 4, 3) 9 3 4 2 1

d = 11, (d0, d1, d2) 2r 2s = 10 12 14 16 18

(5, 5, 1), (1, 5, 5) 10 1
(4, 4, 3), (3, 4, 4) 10 1 2 1 1
(4, 5, 2), (2, 5, 4) 10 4 3 2 1
(3, 5, 3) 10 6 6 5 2 1

d = 12, (d0, d1, d2) 2r 2s = 11 13 15 17 19 21

(5, 5, 1), (1, 5, 5) 11 1
(4, 4, 4) 11 1 1
(5, 5, 2), (4, 6, 2), (2, 6, 4), (2, 5, 5) 11 2 2 1 1
(3, 6, 3) 11 3 3 3 1 1
(4, 5, 3), (3, 5, 4) 11 6 9 7 5 2 1

Table A.2: Refined open BPS invariants for a double-P1 strip geometry in Figure. 4.10 (a).
(d0, d1, d2) are degrees corresponding to the term zd0Qd1

1 Q
d2
2 .
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d = 1, (d0, d1, d2, d3) 2r 2s = 0
(1, 0, 0, 0) 0 1

d = 2, (d0, d1, d2, d3) 2r 2s = 1
(1, 1, 0, 0) 1 1

d = 3, (d0, d1, d2, d3) 2r 2s = 2
(1, 1, 1, 0) 2 1

d = 4, (d0, d1, d2, d3) 2r 2s = 1 3
(1, 1, 1, 1) 1 1
(1, 2, 1, 0) 3 1

d = 5, (d0, d1, d2, d3) 2r 2s = 2 4
(1, 2, 1, 1) 2 1
(2, 2, 1, 0), (1, 2, 2, 0) 4 1

d = 6, (d0, d1, d2, d3) 2r 2s = 3 5
(2, 2, 1, 1), (1, 2, 2, 1) 1 1
(2, 3, 2, 0), (2, 2, 2, 0), (1, 3, 2, 0) 1 1

d = 7, (d0, d1, d2, d3) 2r 2s = 4 6 8
(2, 3, 1, 1), (2, 2, 2, 1), (1, 3, 2, 1) 4 1
(3, 3, 1, 0), (1, 3, 3, 0) 6 1
(2, 3, 2, 0) 6 1 1

d = 8, (d0, d1, d2, d3) 2r 2s = 5 7 9
(1, 3, 3, 1), (3, 3, 1, 1) 5 1
(2, 3, 2, 1) 5 3 1
(1, 4, 3, 0), (3, 4, 1, 0) 7 1
(2, 3, 3, 0), (2, 4, 2, 0), (3, 3, 2, 0) 7 1 1

d = 9, (d0, d1, d2, d3) 2r 2s = 4 6 8 10 12
(2, 3, 2, 2) 4 1
(1, 4, 3, 1), (3, 4, 1, 1) 6 1
(2, 3, 3, 1), (2, 4, 2, 1), (3, 3, 2, 1) 6 2 1
(1, 4, 4, 0), (4, 4, 1, 0) 8 1
(3, 3, 3, 0) 8 1
(2, 4, 3, 0), (3, 4, 2, 0) 8 3 2 1

d = 10, (d0, d1, d2, d3) 2r 2s = 5 7 9 11 13 15
(2, 3, 3, 2),(2, 4, 2, 2),(3, 3, 2, 2) 5 1
(1, 4, 4, 1), (4, 4, 1, 1) 7 1
(3, 3, 3, 1) 7 1 1
(2, 4, 3, 1), (3, 4, 2, 1) 7 5 3 1
(1, 5, 4, 0), (4, 5, 1, 0) 9 1
(2, 4, 4, 0), (2, 5, 3, 0), (3, 5, 2, 0), (4, 4, 2, 0) 9 2 1 1
(3, 4, 3, 0) 9 3 4 2 1

d = 11, (d0, d1, d2, d3) 2r 2s = 6 8 10 12 14 16 18
(3, 3, 3, 2) 6 1
(2, 4, 3, 2), (3, 4, 2, 2) 6 2 1
(1, 5, 4, 1), (4, 5, 1, 1) 8 1
(2, 4, 4, 1), (2, 5, 3, 1), (3, 5, 2, 1), (4, 4, 2, 1) 8 3 2 1
(3, 4, 3, 1) 8 7 7 3 1
(1, 5, 5, 0), (5, 5, 1, 0) 10 1
(3, 4, 4, 0), (4, 4, 3, 0) 10 1 2 1 1
(2, 5, 4, 0), (4, 5, 2, 0) 10 4 3 2 1
(3, 5, 2, 0) 10 6 6 5 2 1

Table A.3: Open refined BPS invariants for the triple-P1 strip geometry in Figure. 4.12.
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(d1, d3, dB , dF ) 2r \ 2s 0
(0, 1, 0, 0) 0 1

(d1, d3, dB , dF ) 2r \ 2s 1
(1, 1, 0, 0) 1 1

(d1, d3, dB , dF ) 2r \ 2s 1
(1, 1, 1, 0), (1, 1, 0, 1) 1 1

(d1, d2, d3, dB , dF ) 2r \ 2s -1 1 3
(2, 0, 1, 0, 1) 1 1
(1, 0, 1, 1, 1) -1 1

1 1
3 1

(d1, d2, d3, dB , dF ) 2r \ 2s -3 -1 0 1 3 5
(2, 0, 1, 1, 1) 0 1

1 1
(2, 1, 1, 0, 1), (2, 0, 2, 1, 0) 3 1
(1, 1, 1, 1, 1) 0 1

1 1
(1, 0, 1, 1, 2), (1, 0, 1, 2, 1) -3 1

-1 1
1 1
3 1
5 1

(d1, d2, d3, dB , dF ) 2r \ 2s -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
(2, 1, 1, 1, 1) 1 1
(2, 0, 2, 1, 1) 3 1
(2, 1, 1, 0, 2) 3 1
(3, 0, 2, 0, 1) 4 1
(2, 1, 2, 0, 1)
(2, 0, 1, 1, 2) -2 1
(2, 0, 1, 2, 1) 0 1
(1, 1, 1, 1, 2) 2 1
(1, 1, 1, 2, 1) 4 1
(1, 0, 1, 1, 3) -5 1
(1, 0, 1, 3, 1) -3 1

-1 1
1 1
3 1
5 1
7 1

(1, 0, 1, 2, 2) -7 1
-5 1 2 1
-3 1 3 1
-1 1 3 1
1 1 3 1
3 1 3 1
5 1 3 1
7 1 2 1
9 1

Table A.4: Refined open BPS invariants for Hirzebruch surface F2
0 with a Lagrangian brane.

d3 is the degree for open Kähler parameter Q3.
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(d1, dB , dF ) 2r\2s -7 -5 -3 -1 1 3 5 7 9
(1, 4, 2) -7 1

-5 1 2 1
-3 1 4 1
-1 1 4 1
1 1 4 1
3 1 4 1
5 1 4 1
7 1 3 1
9 1 1

(d1, dB , dF ) 2r\2s -5 -3 -1 1 3 5 7 9 11
(2, 4, 2) -5 1

-3 1 2 1
-1 5 2
1 6 2
3 6 2
5 6 2
7 5 2
9 3 1
11 1

(d1, dB , dF ) 2r\2s -5 -3 -1 1 3 5 7 9 11
(1, 4, 3) -5 1 1

-3 1 3 1
-1 1 5 1
1 1 5 1
3 1 5 1
5 1 5 1
7 1 5 1
9 1 3 1
11 1 1

(d1, dB , dF ) 2r\2s -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13
(1, 5, 2) -11 1

-9 1 2 1
-7 1 2 4 3 1
-5 1 3 7 3 1
-3 1 3 8 3 1
-1 1 3 8 3 1
1 1 3 8 3 1
3 1 3 8 3 1
5 1 3 8 3 1
7 1 3 7 3 1
9 1 3 5 2 1
11 1 2 2
13 1

Table A.5: Open BPS invariants for Hirzebruch surface F2, with Q1 playing the role of open
Kähler parameter. The open strings winding around the compact divisor(with the length
Q1Q

4
BQ

2
F ), have degrees at least (1, 4, 2).
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