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W ciągu ostatniego półwiecza idea unifikacji stała się jednym z przewodnich zagadnień w fizyce teo-
retycznej. Kluczowym celem tego programu jest sformułowanie kwantowej teorii grawitacji uogól-
niającej ogólną teorię względności Einsteina oraz jej unifikacja z Modelem Standardowym fizyki
cząstek elementarnych. Istotną propozycją, w ramach której ten program mógłby być zrealizowany,
jest teoria strun. Niezależnie od samej unifikacji i związków z Modelem Standardowym, teoria ta
łączy się także z wieloma zagadnieniami kwantowej teorii pola oraz topologii niskowymiarowej.
Właśnie takim związkom poświęcona jest niniejsza rozprawa.

Rozprawa ta poświęcona jest m.in. ważnej rodzinie funkcji q-hipergeometrycznych, zwanych sze-
regami Nahma, które mają zastosowanie w wielu obszarach fizyki i matematyki. Po raz pierwszy
szeregi takie pojawiły się w kontekście dwuwymiarowych wymiernych konforemnych teorii pola
[NRT93]. Niezależnie, szeregi takie charakteryzują przestrzenie moduli reprezentacji kołczanów
[KS08] (kołczan jest grafem skierowanym, a jego reprezentacja przypisuje przestrzenie wektorowe do
jego wierzchołków oraz odwzorowania liniowe do krawędzi). W tym kontekście szeregi Nahma zawie-
rają informację o pewnych liczbowych niezmiennikach – uogólnionych niezmiennikach Dolandsona-
Thomasa – które z fizycznego punktu widzenia charakteryzują stany BPS (Bogomol’nyi-Prasad-
Sommerfield) supersymetrycznych teorii cechowania odpowiadających takim kołczanom [KS08;
GMN10]. Ponadto, dla pewnych szczególnych kołczanów odpowiadających węzłom w ramach kore-
spondencji odkrytej w pracach [Kuc+17; Kuc+19], szeregi Nahma generują niezmienniki tych wę-
złów, takie jak kolorowe wielomiany HOMFLY-PT (Hoste-Ocneanu-Millet-Freyd-Lickorish-Yetter-
Przytycki-Traczyk). Związek kołczanów z węzłami może być wyjaśniony poprzez teorię strun, której
amplitudy z jednej strony zawierają informację o wspomnianych wyżej stanach BPS [OV00], a z
drugiej związane są z teorią Cherna-Simonsa, w której wartości oczekiwane pętli Wilsona odtwa-
rzają niezmienniki węzłów takie jak wielomiany HOMLFLY-PT [Wit89].

Głównym celem niniejszej rozprawy jest zbadanie struktur rekurencyjnych - rekurencji topologicz-
nych, rozwinięć WKB (Wentzel-Kramers-Brillouin), rekurencji zadawanych przez krzywe kwantowe
- dla szeregów Nahma dla ogólnych kołczanów, a także zrozumienie pewnych aspektów korespon-
dencji pomiędzy węzłami i (w tym wypadku pewnymi szczególnymi) kołczanami. Wyniki otrzymane
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w ramach rozprawy są także przedstawione w publikacjach [Bor+19; Lar+20; Nos21; Jan+21]. Poza
tym na studiach magisterskich zajmowałem się tematami wykraczającymi poza zakres tej pracy;
wyniki są prezentowane w [INP15] i [NP16]. Pracę można podzielić na trzy główne części.

W pierwszej części rozprawy, której wyniki są przedstawione również w pracy [Nos21], definiujemy
pojęcie wielomianów A dla kołczanów, oraz pokazujemy, że takie wielomiany A zadają klasyczną
granicę szeregów Nahma dla kołczanów oraz spełniają wynikające z K-teorii kryterium kwantyzacji
[GS12]. Oznacza to, iż ich kwantowe uogólnienie istnieje. Ponadto znajdujemy ciekawą kombinato-
ryczną strukturę wielomianów A dla kołczanów oraz jawne formuły na ich „ekstremalne” wersje.

Druga część rozprawy, której wyniki są przedstawione również w publikacji [Lar+20], poświęcona
jest zastosowaniu rekurencji topologicznych dla szeregów Nahma. Rekurencje te pozwalają obliczać
funkcje korelacji dowolnego rzędu dla danej krzywej spektralnej [Eyn14] (określenie “krzywa spek-
tralna” pochodzi z teorii modeli macierzowych, w ramach których rekurencje topologiczne zostały
sformułowane po raz pierwszy). Rekurencje te określane są jako „topologiczne”, numerowane są
one charakterystykami Eulera funkcji korelacji, odpowiadających powierzchniom Riemanna z na-
kłuciami. W naszych badaniach krzywe spektralne identyfikujemy z wielomianami A dla kołczanów
i dla nich stosujemy rekurencje topologiczne, pokazując, że rekonstruują one odpowiadające tym
wielomianom A szeregi Nahma. Rekurencja topologiczna umożliwia zatem kwantyzację wielomia-
nów A i pozwala wyznaczyć ich kwantowe odpowiedniki. Problem ten jest interesujący, ponieważ w
pracy [EO15] wykazano, iż amplitudy wyznaczane przez topologiczne rekurencje w modelu B mogą
być reinterpretowane jako amplitudy strun topologicznych w modelu A. Rozważając topologiczne
rekurencje dla wielomianu A dla kołczanu wyznaczamy zatem amplitudy odpowiadającego mu mo-
delu A topologicznej teorii strun. Ponadto, w tej części rozprawy badamy też kwantowe struktury
Airy i podajemy ogólną definicję struktury r-Airy’ego (wyniki te przedstawioną są również w pracy
[Bor+19]). Chociaż struktury Airy nie są bezpośrednio związane z sumami Nahma, to kwantowe
struktury Airy uogólniają rekurencje topologiczne i mają bezpośredni związek ze strukturami al-
gebraicznymi pochodzącymi z konforemnych teorii pola.

Wykazawszy, iż wielomiany A spełniają warunki kwantyzacji, oraz wyznaczywszy ich kwantowe
odpowiedniki przy użyciu topologicznych rekurencji, w ostatniej części rozprawy rozważamy kwan-
towe obiekty, czyli szeregi Nahma odpowiadające różnym węzłom. W szczególności badamy relację
lokalnej równoważności dla takich kołczanów, co pozwala na lepsze zrozumienie zależności mię-
dzy węzłami i kołczanami. Z relacji tej wynika, że temu samemu węzłowi może odpowiadać więcej
niż jeden kołczan; badana przez nas relacja pozwala znaleźć rekurencyjnie wszystkie równoważne
kołczany dla danego węzła. Wyniki tej części są również przedstawione w [Jan+21].

Podsumowując, w niniejszej rozprawie otrzymujemy kilka interesujących wyników dotyczących sze-
regów Nahma. W szczególności pokazujemy, że wielomiany A dla kołczanów spełniają warunki
kwantyzacji, a związany z danym kołczanem szereg Nahma może być zrekonstruowany przy uży-
ciu rekurencji topologicznych. Wyznaczamy także różne równoważne kołczany dla danego węzła,
zadające te same sumy Nahma. Wyniki te otwierają również pole do przyszłych badań.
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