On “Recursive structures for Nahm sums’

The doctoral dissertation under review draws its motivation from a number of topics in
mathematical physics. Its central objects are Nahm sums: a remarkable set of generalised
g-hypergeometric series, which originally arose as CFT characters in work of Nahm and have
appeared ubiquitously in several inter-related problems in mathematics and physics:

e in SU(N) Chern—Simons topological gauge theory, they encode the generating func-
tion of vevs of symmetric traces of Wilson loops coloured in symmetric representations
along a 1-dimensional connected defect;

e equivalently, their coefficients express the HOMFLY-PT polynomial of the corre-
sponding knot in symmetric representations;

e furthermore, they correspond in certain cases to determinantal insertions in a random
matrix model with a suitable g-deformed measure (such as the Stieltjes—Wiegert, or
Rogers—Szabo matrix model);

e at large N, they have a topological string theory interpretation as an open partition
function of a Lagrangian brane in the A-model (or a holomorphic one-dimensional
brane in the B-model);

e and under the knots—quivers correspondence, they are suitable specialisations of a

motivic Donaldson-Thomas partition function of a symmetric quiver.

All of these questions have received an enormous amount of attention in recent years from
what’s increasingly referred to as the “Physical Mathematics” community. After a broad
introduction on the appeareance of Nahm sums in the above mentioned contexts in Chap-
ter 1, the dissertation turns to an in-depth study of some of their structural properties, and
provides a slew of probing tests of some open speculations in the literature. I will describe
these below, along with an appraisal of each of them.

Chapter 1 gives a rather systematic introduction to Nahm sums, motivating them as char-
acters of Virasoro representations, and then proceeding to a description of their appearance
in the Donaldson—Thomas theory of symmetric quivers after work of Reineke et al.. The dual
picture of these motivic DT invariants as Ooguri—Vafa invariants, predicted by the knots-
quivers correspondence, is then presented as well as with its large N string interpretation in
terms of open BPS invariants of certain special Lagrangians in the resolved conifold. The
chapter is concluded by deducing the classical A-polynomial of knots from the semi-classical
(saddle-point) limit of the Nahm series, and its quantum version from a canonical non-
commutative deformation given by a g-difference operator annihlating the quiver partition
function/Ooguri-Vafa wavefunction. The exposition, while a bit dry at parts, is exhaustive
and reasonably self-contained.



Chapter 2 switches gear towards the treatment of original material. It deals with a highly
suggestive conjecture of Gukov—Sutkowski from 2011: the conjecture states, in rough terms,
that a topological B-model background is only non-pertubatively consistent if the periods of
the holomorphic top form on the target are rational multiples of v/—1. This is striking for
a variety of reasons: in particular, perturbation theory is completely blind to this condition
— any B-model vacuum, picked by an arbitrary choice of complex deformation of the target
(leaving it smooth), is good enough from the vantage point of special Kdhler geometry and
its higher genus deformation by the perturbative expansion of the Kodaira—Spencer theory
of gravity: it’s therefore remarkable that such a condition can be already detected at string
tree level (by computing periods). A natural question is then what spectral curves satisfy
this condition — and in particular, whether that’s true for the B-model geometries defined
by classical quiver A-polynomials. Now, in this case — and in general for mirrors of local
Calabi—Yau threefolds which admit a description in terms of family of plane curves — the
condition has an algebraic avatar in the fact that the defining polynomial should be tempered:
the face polynomial associated to the Newton polygon of the defining polynomial should be
cyclotomic. This equivalence turns testing the quantisation condition of Gukov—Sulkowski —
a difficult number-theoretic condition on periods of certain meromorphic differentials — into
an algebraic (and in fact combinatorial) statement about Nahm series. The latter is much
more manageable, but still requires a surprisingly vast toolkit from computational algebra.
The author displays an impressive amount of technical prowess in tackling this problem using
methods from the combinatorics of mixed resultants, leading him to a complete solution of
the case of the case of diagonal quivers. I think this is a neat and interesting result, which
has led to a solo publication from the author: the question being tackled fits in the grander
scheme of fundamental problems any mathematical physicist ask themselves (‘when does a
classical system admit a consistent quantisation of which it is the limit?’), and while this is
a somewhat basic toy model even within the restricted context of topological strings, and
in particular of large N duals to knots in Chern—Simons theory, (the vertices, which in the
open string correspond to ‘basic disks’, do not interact with each other), the level of techni-
cal complexity required is quite formidable indeed. I view this as a welcome and interesting

result.

Chapter 3 deals with a cognate problem, namely the relation between quantisation of
quiver A-polynomials and the higher genus reconstruction offered by the topological recur-
sion of Chekhov-Eynard-Orantin. Quantisation is well-known to be plagued by ambiguities:
in particular it is a priori unclear that the quantisation of classical A-polynomials by the
corresponding Nahm sum — essentially a process of ¢g-deformation — is compatible with the
perturbative reconstruction of B-model open wavefunctions using the topological recursion

prescription, not even for the case in which the corresponding spectral curve has genus zero.
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This chapter performs a series of tests in this context, in a ‘l.h.s.=r.h.s.” kind of fashion: a
good sample of quiver A-polynomials are picked for low number of vertices, the correspond-
ing recursion relations are deduced for the WKB expansion of the Nahm sum, and these
are then matched with the higher genus reconstruction of the open partition function from
the CEO recursion up to some genus. Agreement is found in all cases but one (a diago-
nal quiver), where some extra tweaking is required. All calculations are carried out with
plenty of detail, and are interesting — the relation between topological recursion for genus
zero spectral curves and WKB has still a number of open questions, despite some systematic
study by Bouchard-Eynard for curves in C x C: the C* x C* setting is very interesting and
largely untouched, save for the case of mirrors of toric Calabi-Yau threefolds (where the
compatibility follows from combining the topological vertex and the proof of the remodel-
ing conjecture), therefore the verifications carried out for A-polynomials are both nice and
interesting. The Chapter concludes with a discussion of quantum Airy structure beyond
the quadratic setting — from a logical point of view this part is only weakly connected to
the rest of the chapter (mostly by sharing the key-phrase ‘topological recursion’) and con-
tains a summary of work with the author with Borot, Bouchard, Chidambaram and Creutzig.

Chapter 4 finally deals with a study of the knots-quivers correspondence proper. It is
known that the correspondence is very highly non-injective — multiple quivers were found
to experimentally correspond to the same knot, and the chapter analyses the question of
equivalence of quivers in this sense in more detail. A notion of local equivalence of quivers
if formulated in terms of sequences of disjoint transpositions, and it is in turn applied to
generate equivalent quivers to a given one. For low number of crossings (in particular for
the trefoil and figure-8 knot), the presented classification of quivers up to local equivalence
is complete. The results of this section are of a slightly technical nature, but of interest to

experts in the topic.

My assessment is that the quantity and quality of material presented in this dissertation is
broadly at the appropriate level for the award of a PhD. The form is on the whole appropriate,
the problems tackle energetically a corner of some important questions in the field, and the
technical level is generally strong. I was particularly pleased with the content of Chapter 2,
which I understand is based wholly on solo work by the author. The three main conceptual
units of the thesis have all been published into standard good quality peer-reviewed journals
in theoretical physics (two on J. High Energy Phys., and one on Phys. Rev. D), and the
tangential work on quantum Airy structures has appeared on Mem. Amer. Math. Soc. — a
well-regarded journal in pure mathematics. I have minor corrections to suggest, which are
listed at the end of this document.



Based on the above, my concluding recommendation is positive.

Sincerely,

L ="

Andrea Brini
Senior Lecturer, The University of Sheffield, Sheffield, United Kingdom
Chargé de recherches, Centre National de la Recherche Scientifique, Montpellier, France

List of recommended changes.

(1) Equation (1.3): the denominator of the sum should presumably be the g-Pochhammer

symbol (¢; q)a.

(2) Unnumbered equation below (1.25): the summation index should be Q1 > a:i — j

(there are indices (4, 7) in the summand, but no index a).

(3) Just above equation (1.34): “the space of connections” should be “a suitable space
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of connections modulo gauge transformations”.

Equation (1.36): in view of the text that follows, you probably want to normalise by
the partition function at this point, otherwise it is not true that the vev is a rational
function of ¢*/? and a'/? (in particular for R = 0 the trivial representation you want
to get 1, not the partition function). Also on the r.h.s.: Wi (A) should really be
Wgr(K).

Middle of page 24: “consistsing” should be “consisting”.

Last sentence before 1.3.1: it is stated in no uncertain terms that there are no poly-
nomial invariants that can classify knots up to isotopy. I am not aware if it is known
whether that’s true or not. E.g. it’s true that the HOMFLY doesn’t detect mutants,
but if I remember correctly the coloured HOMFLY does for sufficient number of boxes
(at least for the the first pairs that have been checked at low numbers of crossings).
First line at page 29, the “eigenvalue locus”: please define/explain.

Equation (1.61), “the leading term is”: please justify.

Page 33, last bullet point: “(C*)? x C” should be (C*)? x C2.

(10) “a Hilbert space H of...” should be “a Hilbert space H carrying a representation
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(11) Page 37, “in other words, all their roots” should be “in particular, all their roots”

(e.g. x — e*™/3 has only zeroes at roots of unity without being cyclotomic)

(12) Figure 3.2: this looks like a screen capture from Eynard’s lecture notes — this is fine,

however please cite source.
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