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Introduction

In the past half-century there has been a tendency towards unification in theoretical physics.
Among the existing approaches, string theory provides a hypothetical framework for quantum
gravity, filling the gap between Einstein’s general relativity and the Standard Model of particle
physics. Mathematically, better understood are the two-dimensional models of quantum gravity,
given by ensembles of random matrices [1, 2, 3, 4, 5]. Another important player is the conformal
field theory (CFT): on the one hand, it describes the embedding of a string in spacetime (string
worldsheet, which is a surface with the conformal invariance), on the other hand – it governs
the symmetries in 2d quantum gravity [6, 7, 8].

Nahm sums are central in this thesis. They were introduced by Werner Nahm [9, 10] as a
generalization of character functions for rational conformal field theories in two dimensions [11,
12, 13, 14]. Correlations in such theories are described by a finite sum of holomorphic times
anti-holomorphic functions of the moduli of surfaces with marked points. Character functions
are the q-hypergeometric series which count states of a given conformal weight. Remarkably,
they often have modularity properties, which allows to efficiently compute the fusion rules for
observables. Nahm found the universal formula for such characters for (2, k + 2) minimal CFTs
and conjectured the general form for all rational CFTs. The essential ingredient in Nahm’s
formula is a symmetric matrix C over rational numbers, which is unique for a given theory. He
soon realized that the object might get more attention from both mathematical and physical
communities.

Indeed, Nahm sums appeared many times outside the original context of CFTs. At first, as
the generating series of Betti numbers of the moduli spaces of quiver representations [15, 16,
17], where C plays role of the adjacency matrix of a symmetric quiver. Later it was discovered
that generating series of colored HOMFLY-PT polynomials for a knot [18, 19, 20] take form
of a quiver series for some quivers [21, 22, 23, 24, 25, 26, 27]. This was rather exciting, since
HOMFLY-PT polynomials, as shown by Edward Witten [28], are expectation values of Wilson
loops in the Chern-Simons gauge theory on a 3-manifold. On the other hand, quivers are known
to characterize a rather different kind of supersymmetric gauge theories: super-Yang-Mills the-
ories, Argyres-Douglas models, etc. [29, 30, 31, 32, 33], and the knots-quivers correspondence
connects topology of a knot to a three dimensional gauge theory represented by a quiver. This
phenomenon captures a class of theories involved in the 3d-3d correspondence, which was con-
jectured even before the knots-quivers correspondence [34, 35, 36, 37]. Besides, Chern-Simons
theory on a 3-sphere is known to be dual to open topological string theory on the resolved
conifold [38, 39]. It turns out that from the M-theory point of view [40], the Nahm sums from
quivers are partition functions which describe dynamics of M5 branes wrapping the knot conor-
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mal inside the resolved conifold [24]. The duality between a knot and a gauge theory can be
viewed as a choice of compactification for the corresponding M5 brane. In this picture quiver
nodes correspond to basic Bogomol’nyi–Prasad–Sommerfield (BPS) states and the linking num-
bers correspond to their interactions, creating the infinite spectrum of bound states which are
equal to motivic DT invariants of the corresponding quiver and are captured by the Nahm sum.
Another interesting scenario concerns the asymptotic expansion of Jones polynomials for a hy-
perbolic knot [41, 42]. The Nahm data is given in terms of gluing matrices for ideal tetrahedra
forming the complement of a hyperbolic knot. This approach is, however, different from the
previous one. In this case the partition function for the Chern-Simons theory defined on a knot
complement itself can be expressed as a Nahm sum.

Now we explain what are the “recursive structures”, which are of main interest in this thesis.
The early developments in 2d quantum gravity clarified the significance of matrix models. For
them, there was a long-standing problem of finding the exact formula to compute correlation
functions up to an arbitrary order. The ultimate answer was given by the topological recursion
[3, 43, 44, 45]. Discovered within hermitian one-matrix model and soon taken into a much
broader setting, topological recursion is the universal formula to compute correlation functions,
given a spectral curve of a model. A determinant correlation function can be though of as a
wave function, annihilated by the quantized spectral curve analogous to Schrödinger operator.
For example, in the Chern-Simons theory such curves are knot A-polynomials [46], which are
properly quantizable as Lagrangian submanifolds [47, 48]. It is conjectured that topological re-
cursion applied to a deformed knot A-polynomial, computes colored HOMFLY-PT polynomials
for this knot [49]. The associated quantum A-polynomials for knots were systematically studied
in [50, 51]. From our perspective a particularly interesting class of spectral curves (a.k.a. quiver
A-polynomials) comes from the Nahm sums for quivers, for which we explore both quantization
properties and topological recursion. Besides, quantum A-polynomials themselves produce an-
other type of recurrence relations [48], to which the Nahm sum is a distinguished solution. In
order to match this recurrence with the topological recursion, we verify the consistency of the
two partition functions obtained from the same quiver by using the Wentzel–Kramers–Brillouin
(WKB) approximation.

A few years ago topological recursion was generalized to quantum Airy structures [52, 53, 54],
i.e. a collection of differential operators which form Virasoro orW-algebra. The main property of
every quantum Airy structure is the existence of a unique partition function which is annihilated
by the corresponding operators, and is tightly related to the topological recursion. This setup is
closer to orbifold CFTs, because spectral curves are ramified, and it gives an automorphism of
the corresponding W-algebra. In this thesis we study the simplest case of r-Airy curve, related
to the generalized Witten-Kontsevich matrix model [55, 56].

Summing up, the purpose of this thesis is to study the recursive structures (topological recur-
sion, WKB analysis for quantum curve equations) for Nahm sums as well as local equivalences
arising in the knots-quivers correspondence. Quantum Airy structures are the only exception,
for which the relation to Nahm sums is not known to date. The results of this work are presented
in the following papers1

1During my master studies I was working also on topics beyond the scope of this thesis. Results are summarised
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The thesis consists of the following chapters:

• Chapter 1. We begin by defining Nahm sums for 2d rational CFTs and then proceed to
quiver representations. After that we explain in brief the Chern-Simons theory, quantum
knot invariants and the knots-quivers correspondence, which relates the generaing series
of colored HOMFLY-PT polynomials of a knot to Nahm sums for some types of quivers.
We give the M-theory setup in which the knots-quivers correspondence can be naturally
considered. Finally we compute the semi-classical limit of the Nahm sums and define
Nahm equations and quiver A-polynomial, both classical and quantum.

• Chapter 2. We study whether quiver A-polynomials are tempered. This property holds
for all knot A-polynomials [46] and is closely related to quantization [48]. We focus on
combinatorial structures of Newton polytopes for the Nahm sums, and give the positive
answer for certain type of quivers. This is a preliminary step before the topological recur-
sion, since if quiver A-polynomials are quantizable, it is expected that topological recursion
gives a meaningful result. This chapter is based on [59].

• Chapter 3. We explain how the topological recursion arises from the matrix model
formalism and provide its axiomatic definition in terms of an arbitrary spectral curve.
We also relate the WKB expansion for a Schrödinger-like operator (quantum curve) to
correlation functions computed by the topological recursion for the semi-classical limit of
this operator. We apply the topological recursion to quiver A-polynomials and verify its
consistency with the WKB method for a selection of quivers. This part is based on [58].
Next, we define quantum Airy structure as a collection of differential operators in relation
to topological recursion. We focus on spectral curve x = 1

r y
r and especially on the case

r = 3, whose symmetry algebra coincides with W(sl3) algebra arising in conformal field
theory. This part is based on [57].

in:
• Il’in, I., Noshchenko, D., & Perezhogin, A. (2015a). On classification of high-order integrable nonlinear

partial differential equations. Chaos, Solitons & Fractals, 76 (100), 278–281. arXiv: 1611.09292.
• Noshchenko, D., & Perezhogin, A. (2016). On the Painleve property of a hydrodynamic system. In E. W.

of Conferences (Ed.), (Vol. 11). doi:10.1051/e3sconf/20161100017
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• Chapter 4. We switch our attention to the knots-quivers correspondence and study the
local equivalence relation for Nahm sums connected to multi-cover skeins on quivers [25]. It
helps to understand how quivers corresponding to the same knot are organized, moreover,
it translates to identities between the corresponding Nahm sums. This chapter is based
on [60].
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Chapter 1

Nahm sums, knots and quivers

Nahm sum is the main player in this thesis; remarkably, it appears in many contexts such as
quiver representations, conformal field theories, knots and topological strings. We begin with
the main definition and then proceed to various incarnations of Nahm sums, essential for our
study. Recall that the q-Pochhammer symbol (x, q)n for integer n is defined as

(x, q)n :=

n−1∏
k=0

(1− xqk). (1.1)

Definition 1.0.1. Nahm sum is the following q-hypergeometric series:

fA,B,C(q) =
∑

d1,...,dm≥0

qQ(d)

(q; q)d1 . . . (q; q)dm
(1.2)

where d = (d1, . . . , dm) and

Q(d) =
1

2
dTCd+Bd+A,

is a quadratic function determined by a symmetric m × m matrix C with rational entries, a
column vector B of length m and a scalar A.

Example 1.0.1. The simplest example is the Nahm sum which counts partitions of natural
numbers into d distinct summands:

∑
d≥0

q(d2+d)/2

(q)d
=

∞∏
n=1

(1 + q)n (1.3)

with C11 = 1, B = 2, A = 0.

The original consideration of Werner Nahm comes from rational conformal field theories,
which is our starting point here.
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Figure 1.1: Conformal transformation in the plane.

1.1 Nahm sums from 2d rational CFTs

A two-dimensional conformal field theory (2d CFT) is a quantum field theory on a two-dimensional
manifold, invariant under conformal transformations, figure 1.1. Historically important applica-
tion of CFTs concerns various statistical systems at a critical point, where conformal invariance
arises when the correlation distance tends to infinity [61, 62, 63]. Later it was realized that 2d
CFT is a necessary framework for understanding string theory and quantum gravity [64, 14,
65, 66, 67]. Several notable examples of conformally invariant theories include minimal models,
Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models [4].

1.1.1 Conformal field theories in two dimensions

Consider the manifold M = Rd with flat metric gµν . Let ξ = (ξ1, . . . , ξd), ξ′ = (ξ′1, . . . , ξ′d) be
the two coordinate charts on M . The elements of the conformal group can be presented as the
functions

f : ξ 7→ ξ′(ξ), (1.4)

which change the metric in such way that

gµν(ξ) 7→ g′µν(ξ′) =
∂ξα

∂ξ′µ
∂ξβ

∂ξ′ν
gαβ(ξ), (1.5)

where g′µν(ξ′) = Ω(ξ) gµν(ξ) for some Ω > 0. Therefore, they may distort the distance, but
always preserve the angles between any two tangent vectors µ, ν.

We focus on the two dimensional theories, i.e. d = 2 and gµν = δµν . It is helpful to
introduce complex coordinates z = ξ1 + iξ2, z = ξ1− iξ2. In this case conformal transformations
f(z), f(z) are analytic reparametrizations and their local algebra is infinite-dimensional. To
define a quantum field theory, we need to introduce the fields Φ(z, z) which are called primary,
as they transform nicely under conformal transformations:

Φ(z, z) =

(
∂f

∂z

)h(∂f
∂z

)h
Φ(f(z), f(z)) (1.6)

(here both h and h are real numbers, called the weights of Φ(z, z)). The stress-energy tensor Tab
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can be diagonalized to have the non-vanishing holomorphic and anti-holomorphic components

T (z) = T11 + iT12, T (z) = T11 − iT12. (1.7)

We can expand any of them as a series in z:

T (z) =

∞∑
n=−∞

Lnz
−n−2 (1.8)

In this expression the operators Ln are the generators of the analytic part of the conformal
group. They form Virasoro algebra, which is a complex Lie algebra with the bracket

[Li, Lj ] = (i− j)Li+j +
c

12
(i3 − i)δi+j,0 (1.9)

The constant c is one of the key characteristics of a CFT and is called the central charge. On
another hand, T (z) gives rise to a similar set of operators, denoted by Li. Notice that the
operators L−1, L0 and L1 generate the SL(2,R)-subgroup of the conformal group consisting of
translation, dilatation and special conformal transformation. The Hilbert space H for a CFT
consists of the states, and each state is in bijection with some local operator (including Virasoro
operators). Among all operators, primary fields play special role and correspond to the highest
weight states of the Virasoro representations. They are usually denoted by hi, hi.

A rational CFT can be described by a pair of vertex operator algebras: one is holomorphic
and another one is anti-holomorphic. A vertex operator algebra (VOA) consists of states, fields
and the state-field correspondence which satisfies certain set of axioms [68]. The space of states
V = ⊕iVi is a Z-graded vector space. We may represent the space of states by the Fock space
which is the polynomial ring of infinitely many variables: F = C[b−1, b−2, . . . ]. It is also a graded
vector space, i.e. each variable b−i has degree i, which gives F = ⊕iFi, where Fi is the span
of all homogeneous polynomials in b−1, b−2, . . . of degree i. Then Li as differential operators
acting on the Fock space involve differentiation: bi = ∂

∂b−i
for i > 0, and multiplication by b−i:

Lk =
1

2

∑
m∈Z

: bmbk−m : ∀k ∈ Z (1.10)

where “: :” denotes the normal ordering:

: bkbl : =

blbk if k = −l, l ≤ 0

bkbl otherwise
(1.11)

Remarkably, Lk defined above, satisfy the same algebra relation as in (1.9), and form the free-
field representation of the Virasoro algebra.

Recall that the trace of exponential operator A is the summation over its spectrum Λ(A)

with multiplicities mλ:
Tr(eA) =

∑
λ∈Λ(A)

mλe
λ (1.12)
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Define the character function at the level i as

χi(q) = TrFi

(
qL0− c

24

)
= qhi−

c
24

∞∑
n=0

ainq
n, ain ∈ Z≥0, (1.13)

where the trace is taken over the i-th component of the Fock space. Analogously, χi is defined by
the spectrum of L0. In general, character functions are formal q-series. However, any rational
CFT has the finite sets of characters χi, χi, which are holomorphic (resp. anti-holomorphic)
functions (not just formal series) which sometimes have nice modular properties. The partition
function for such a theory is defined as

ZCFT =
∑
i,j

nijχiχj (1.14)

where n00 = 1 and all nij are positive integers (can be equal to zero).

1.1.2 Nahm’s definition

Our main references are [9, 10]. Among other things, it was shown that the character functions
χi(q) for two-dimensional rational conformal field theories with an integrable perturbation [69,
70], for example all minimal models, have a canonical sum presentation. The (r, s) minimal
model (or Virasoro minimal model) is a two-dimensional rational CFT whose space of states is
built from finitely many irreducible representations of the Virasoro algebra, and whose central
charge is determined by a pair of integers (r, s)

c(r, s) = 1− 6
(r − s)2

rs
. (1.15)

For example:

• (r, s) = (2, 3): Trivial CFT

• (r, s) = (2, 5): Yang-Lee edge singularity [71, 72, 73, 74]

• (r, s) = (3, 4): Critial Ising model [75, 74]

Consider the non-unitary (2, k + 2) minimal model with central charge

c(2, k + 2) = 1− 3
k2

k + 2
(1.16)

and primary fields of conformal dimension

hj = − j(k − j)
2(k + 2)

, j ∈ {0, . . . , bk
2
c} (1.17)

As mentioned above, these CFTs are notable for having integrable deformations. Most impor-
tantly, their character functions are completely determined by a unique symmetricm×m matrix
C, a column vector B of size m and a scalar A, all taking values in Q. This formula reads

16



χi(q) =
∑

d1,...,dbk/2c≥0

qQi(d)

(q; q)d1 . . . (q; q)dbk/2c
, (1.18)

where
Qi(d) =

1

2
dTCd+Bid+ hi −

c

24
. (1.19)

Note that the matrix C is the same for all characters χi of a given CFT This was the original
motivation of Nahm, and later he generalized (1.18) to generic data A,B,C and m and studied
its modular properties.

Example 1.1.1. A class of examples is related to Cartan matrices, or equivalently to Dynkin
diagrams with the ADE classification [10]. The (2, r + 2) minimal model corresponds to the
tadpole graph Tr. Recall that Cartan matrices for type A are C(Ar)ij = −1 for |i − j| = 1

and C(Ar)ij = 0 for |i − j| > 1. The tadpole diagram Tr (figure 1.2) is obtained by folding
A2r diagrams, so that C(Tr)rr = 1 and for all other entries C(Tr)ij = C(Ar)ij . In this case the
corresponding Nahm sum is characterized by C(2,k+2) = C−1(Tk), so that C(2,k+2)

ij = min(i, j).
For example,

C(2,3) = [ 1 ], C(2,4) =

[
1 1

1 2

]
, C(2,5) =

1 1 1

1 2 2

1 2 3

 , . . . (1.20)

1 2 3 r − 1 r

Figure 1.2: The tadpole Dynkin diagram Tr consists of r connected vertices and a loop.

Example 1.1.2. Quite recently [76] it was shown that the (3, 4) minimal model (critical Ising
model) also has the character function taking form of the Nahm sum for the matrix

C(3,4) =

[
8 3

3 2

]
. (1.21)

The character function takes form:

χ(3,4)(q) =
∑

d1,d2≥0

q4d21+3d1d2+d22

(q; q)d1(q; q)d2
(1− qd1 + qd1+d2) (1.22)

1.2 Nahm sums for symmetric quivers

Although Nahm sums originated from 2d rational CFTs, we are primarily interested in a dif-
ferent appearance of this object. Namely, as a generating series of motivic Donaldson-Thomas
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invariants for a symmetric quiver, or simply quiver series. They are known to encode some
properties of the moduli space of quiver representations. We therefore review the basic quiver
representation theory and explain the appearance of Nahm sums in this context [16, 77, 78, 79].

21
C12

C21

C11 C22

Figure 1.3: Symmetric quiver with Cij = 1, i, j = 1, 2 (the “uniform” quiver).

A quiver Q is a directed graph
Q = (Q0, Q1, h, t),

where Q0, Q1 are the sets of vertices and arrows, and h, t are the functions from Q1 to Q0, which
for a given arrow give a “head” and a “tail” vertex. For example, if there are two vertices 1, 2

connected by an arrow a from 1 to 2, then ta = 1, ha = 2 (figure 1.2). The arrow from a vertex
to itself is called a loop; the number of loops for the i-th vertex is equal to Cii.

A quiver representation of dimension vector d = (d1, . . . , dm) ∈ Zm is the following data
associated to Q:

• To every vertex i ∈ Q0 one associates a finite-dimensional vector space V (i) over a field
F , such that di = dimV (i)

• to every arrow a ∈ Q1, a linear map V (a) : V (ta)→ V (ha).

Without loss of generality assume that V (i) = F di , ∀i ∈ Q0 and denote Matm,n the set of all
m by n matrices over F . We are not interested in particular representations, but rather in the
representation space with a fixed dimension vector d:

RepdQ :=
∏
a∈Q1

Matdim(V (ha)),dim(V (ta)) (1.23)

Since any such matrix corresponds to V (a) for some V , each point of (1.23) defines a represen-
tation. The group of automorphisms Aut(V ) is defined as the orbit of

G :=
m∏
i=1

GLdi(F )

The latter acts on RepdQ via conjugation:

(g)(V (a)) := (gjV (a)g−1
i )(a:i→j), ∀ a ∈ Q1, g ∈ G (1.24)

By definition, the orbits of G in RepdQ are precisely the isomorphism classes of quiver represen-
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tations of Q of dimension vector d (two representations are isomorphic if they are related by a
change of bases of F di , i = 1, . . . ,m).

Take F = Fq (representations over a finite field), where q = pr and p is prime:

V (i) = Fdiq , ∀i ∈ Q0

These are non-negative integers modulo q, i.e. Fq = {0, 1, 2, . . . , q − 1} with modular multipli-
cation. For a fixed d, denote

sd :=
∑

[V ], dimV=d

1

|Aut(V )|
, (1.25)

where the summation is over all isomorphism classes [V ] of representations with dimension vector
d, and |Aut(V )| is the size of the corresponding automorphism group (it is also finite). Because
of this, the total number of representations of dimension vector d is

q
∑
a∈Q1

didj = q
∑m
i,j=1 Cijdidj

On another hand, the number of points in the orbit of V is |G|
|Aut(V )| . Therefore,

q
∑m
i,j=1 Cijdidj =

∑
[V ], dimV=d

|G|
|Aut(V )|

, (1.26)

which gives

sd =
q
∑m
i,j=1 Cijdidj∏m

i=1 |GLdi(Fq)|
, (1.27)

where C is the adjacency matrix of Q, and

|GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1) = (−q)
n(n−1)

2 (q; q)n

The latter equality comes from counting of all admissible columns of a matrix in GLn(Fq). The
first row can be anything but zero vector, hence the factor (qn − 1), the second row can be
anything but the multiple of the first one, hence (qn− q), and so on. The last step is assembling
the generating series: ∑

d1,...,dm≥0

sd x
d1
1 . . . xdmm (1.28)

where xi are the formal generating parameters. In order to match (1.28) with (1.29), we apply
rescaling

xdii 7→ (−q)
di(di−1)

2 xdii

In what follows, we allow q to be an arbitrary complex number.

Definition 1.2.1. Nahm sums for a quiver Q are the infinite q-series

PC(x1, . . . , xm) =
∑

d1,...,dm≥0

(−q1/2)
∑m
i,j=1 Cijdidj

(q; q)d1 · · · (q; q)dm
xd11 · · ·x

dm
m , (1.29)

where Cij is the number of arrows from i to j in Q.
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We also denote Pd1,...,dm q-coefficients of these series, so that

PC(x1, . . . , xm) =
∑

d1,...,dm≥0

Pd1,...,dmx
d1
1 · · ·x

dm
m . (1.30)

In order to make a connection to (1.2), we can set A = 0 and define xi := qBi . We therefore
refer to (1.29) as the Nahm sum for a quiver, or simply quiver series. Remarkably, it can be
written as an infinite product:

PC(x1, . . . , xm) =
∏

d1,...,dm 6=0

∏
j∈Z

∏
k≥0

(1− qk+(j−1)/2xd11 . . . xdmm )Ωd1,...,dm;j (1.31)

The exponents Ωd1,...,dm;j are called the motivic Donaldson-Thomas (DT) invariants [15, 16,
17], which were shown to be integer when C is symmetric [80]. From the physical perspective
they correspond to BPS states of a supersymmetric gauge theory depending on a quiver and
are related to the wall-crossing phenomenon [16, 81, 82, 83]. So far it is not clear what is the
underlying theory, but the next section will shed some light on it.

1.3 Knots-quivers correspondence

Figure 1.4: Planar diagrams of prime knots up to 7 crossings. Source: Wikipedia

A knot is a smooth embedding of a circle into a three-dimensional space; if several knots are
tied together they form a link. Knots and links play an important role in theoretical high energy
physics; this direction started from the groundbreaking paper by EdwardWitten [28] who showed
that quantum knot invariants arise from the Chern-Simons theory on a three-sphere S3. We are
interested in the knots-quivers correspondence, which relates the gauge theoretic invariants of
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a knot to the representation theory of a quiver Q[K] depending on a knot. Therefore, Nahm
sums, quivers and knots share a common physical background which we discuss in this section.

Figure 1.4 shows planar diagrams of prime knots up to 7 crossings, labeled with Alexan-
der–Briggs notation. The notation organizes knots by their crossing number: one writes the
crossing number in a subscript to denote its order amongst all knots with that crossing number.
The simplest ones are torus knots, which can be drawn on a surface of a two-dimensional torus
(figure 1.5). They are characterized by a pair of integers (p, q), counting how many times the
knot winds around a meridian and longitude cycles, respectively. Torus knots are special from
several reasons: for example, they are related to matrix models [4]. Another two kinds are hy-
perbolic and satellite knots. In order to study knots, it is useful to introduce their invariants, i.e.

Figure 1.5: Trefoil knot is the (2, 3) torus knot, also denoted as T2,3.

quantities which are unchanged under smooth deformations of a knot. In practice polynomial
invariants, although not being able to distinguish all possible knots, turn out to be efficient tools
to work with, and, most importantly, connect knots to high energy physics.

1.3.1 Quantum knot polynomials via Chern-Simons theory

A gauge theory in 3 dimensions depends on a compact Lie group G. The fields are connections
of the form

A = A1(ξ) dξ1 +A2(ξ) dξ2 +A3(ξ) dξ3, (1.32)

where Ai(ξ) denote the elements of the Lie algebra of G.
Chern-Simons theory is the topological quantum field theory, meaning that its observables

are invariant under continuous deformations of the underlying three-dimensional manifold. The
theory is fixed by a choice of a 3-manifold M , a compact gauge group G, a gauge field A and a
constant k ∈ Z (the “level”), which plays the role of a coupling constant. Its action is defined as

SCS =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(1.33)

The partition function is a Feynman path integral over the space of connections on M :

ZCS =

∫
eiSCS DA (1.34)

Following Witten [28], let K be a knot or a link in M . For a given gauge field A, consider the
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parallel transport (holonomy) around K which defines an element of the Lie group G. To define
observables, imagine that we have a charged particle moving in a loop inM . Fix a representation
R of G and define the Wilson loop:

WR(K) = TrR(P exp

∮
K
A) (1.35)

Remarkably, its expectation value turns out to be a topological invariant of K in M , called a
quantum knot invariant :

〈WR(K)〉 =

∫
eiSCS WK(A)DA (1.36)

Choosing G = U(N) and expressing the above formula in terms of

q = exp

(
iπ

k +N

)
, a = exp

(
iπN

k +N

)
, (1.37)

we obtain the (unreduced) HOMFLY-PT polynomial PKR (a, q) colored by R. Note that the
expectation value (1.36) also depends on a framing, which is characterized by an integer f [19].
The framing affects the tangent “ribbon” to a knot by twisting it f times, so that f = 0 is the
canonical choice which corresponds to the absence of such twists. The polynomials PKR (a, q) are
computed in the canonical framing, but could be easily framed by the formula

PKR (a, q) 7→ al(R)fqκ(R)f PKR (a, q), (1.38)

where l(R) is the total number of boxes in a Young diagram corresponding to R, and κ(R) =

l(R) +
∑

j∈rows(R)(|j|2 − 2j|j|).
We are interested in symmetric (r+1)-dimensional representations, labelled by a ribbon-like

Young diagram λ = Sr:
Sr = ︸ ︷︷ ︸

r boxes

(1.39)

and we simply use the label r instead of Sr. E.g. r = 1 corresponds to the fundamental
representation.

Note that uncolored (r = 1) HOMFLY-PT polynomials were first defined via skein relations
for the planar diagram of a knot. They also allow to compute them by hand for a few simple
knots. For example, P1(a, q) can be defined by the initial condition for the unknot:

P01
1 (a, q) =

a− a−1

q − q−1
, (1.40)

and for more complicated knots

aPL+

1 (a, q)− a−1PL−1 (a, q) = (q − q−1)PL01
1 (a, q), (1.41)

where L+, L−, L◦ correspond to the three types of crossings in figure 1.6. For the trefoil knot 31

we get

P31
1 (a, q) =

(
a2

q2
+ a2q2 − a4

)
P01

1 (a, q). (1.42)
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L+ L− L◦

Figure 1.6: The three types of crossings on the plane

For us it is convenient to consider the reduced normalization for HOMFLY-PT polynomials
which we denote as Pr(a, q), obtained after dividing by the unknot value, for example

P01
1 (a, q) = 1,

P31
1 (a, q) =

a2

q2
+ a2q2 − a4,

(1.43)

and similarly for other knots. Therefore, for a given knot K one can associate the sequence of
the reduced Sr-colored HOMFLY-PT polynomials:

PK1 (a, q), PK2 (a, q), PK3 (a, q), . . . (1.44)

(the index K will be often dropped, when fixed by the context). To finish this exposition, let
us say that a = qr specialization for HOMFLY-PT polynomials gives quantum slr invariants, in
particular r = 2 corresponds to the Jones polynomial J(q) [84].

1.3.2 HOMFLY-PT homologies

It has been conjectured and verified in numerous examples that quantum polynomials for a knot
can be lifted to more powerful invariants called knot homologies. The procedure is called cate-
gorification. The inverse identification is based on the fact that such polynomials are Poincaré
polynomials for the corresponding homology theory. Moreover, such homology theories con-
jecturally correspond to the algebras of BPS states for some gauge theories arising in 3d-3d
correspondence. The pioneering paper on knot homologies by M. Khovanov [85] categorifies the
Jones polynomial of a knot. Khovanov’s construction is purely combinatorial, but the advan-
tages are its well-definiteness and computability (e.g., the corresponding module is implemented
in Mathematica package Knot theory). It opened many doors to physicists, and a new type
of homology theory was soon conjectured for the uncolored HOMFLY-PT polynomial of a knot
[86]. The next step was the precise construction of Khovanov-Rozansky homology [87, 88], which
corresponds to SL(N) invariants at arbitrary N . Lastly, but most importantly for us, entered
the colored HOMFLY-PT homology [89] and its quadruply-graded version [90].

HOMFLY-PT homologies are generated by abelian groups HRijk(K). We will deal with the
reduced homology, corresponding to the reduced HOMFLY-PT polynomials. Denote the set of
generators of the Sr-colored homology as

Gr(K) = {HSrijk(K)}. (1.45)
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Categorification then replaces the sequence (1.44) by its homological version:

G1(K), G2(K), G3(K), . . . (1.46)

Going from top to bottom, we can define colored superpolynomials, which generalize the colored
HOMFLY-PT polynomials:

Pr(a, q, t) =
∑
i,j,k

aiqjtkdimHSrijk(K) ≡
∑

i∈Gr(K)

aa
(r)
i qq

(r)
i tt

(r)
i . (1.47)

Here the variables a and q are the same as in the HOMFLY-PT case (1.37), t is the Poincaré pa-
rameter, and we denote homological degrees of the generator i ∈ Gr(K) as triples (a

(r)
i , q

(r)
i , t

(r)
i ).

For r = 1 we will omit the upper indices and write (ai, qi, ti) ≡ (a
(1)
i , q

(1)
i , t

(1)
i ). If ti−ai− qi/2 is

constant for each i ∈ G1(K) for some knot, such knot is called homologically thin [86] (all knots
we consider in this thesis are homologically thin).

We can present the Sr-colored HOMFLY-PT homology as a diagram, so that every generator
i ∈ Gr(K) is drawn as a dot with coordinates (q

(r)
i , a

(r)
i ), sometimes decorated by t(r)i . Moreover,

there are differentials (represented by arrows) acting on the homology. Their structure implies
that all generators are aligned into two types of patterns – a zig-zag (consistsing of an odd
number of generators) and a diamond (consisting of four generators). For example, homological
diagrams for (2, 2p+ 1) torus knots consist of only one zig-zag made of 2p+ 1 generators.

Example 1.3.1. Consider the trefoil knot T2,3. Its reduced, uncolored HOMFLY-PT homology

a
q −2 0 2

2

4

Figure 1.7: Reduced HOMFLY-PT homology of the trefoil knot consists of three generators and
a pair of differentials.

can be read-off from the (uncolored) superpolynomial:

P31
1 (a, q, t) =

a2

q2
t0 + a2q2t2 − a4q0t3, (1.48)

There are three monomials, each corresponding to a black dot in figure 1.3.1. The dots are
drawn in the (a, q) plane encoding the degrees of the corresponding generators. Additionally,
there is the t-grading (homological grading) which assigns an integer to each dot. The arrows are
homology differentials, which can be guessed from some properties such as reflection symmetry
q ↔ 1

q [91].

For t = −1 colored superpolynomials reduce to colored HOMFLY-PT polynomials that take

24



form of the Euler characteristic

Pr(a, q) = Pr(a, q,−1) =
∑
i,j,k

aiqj(−1)kdimHSrijk(K). (1.49)

We stress that by Pr(a, q, t) and Pr(a, q) we denote reduced polynomials (equal to 1 for the un-
knot). We also consider generating functions of colored superpolynomials and colored HOMFLY-
PT polynomials defined by

PK(x, a, q, t) =
∞∑
r=0

xr

(q2; q2)r
Pr(a, q, t), PK(x, a, q) =

∞∑
r=0

xr

(q2; q2)r
Pr(a, q). (1.50)

Including q-Pochhammer symbols (q2; q2)r =
∏r
i=1(1 − q2i) in denominators provides a proper

normalization as defined in [21, 22].

1.3.3 The statement of the knots-quivers correspondence

The knots-quivers correspondence begins from the observation that generating series of colored
HOMFLY-PT polynomials (1.50) can be written in the form of a Nahm sum (1.29) for appro-
priate specialization of generating parameters xi and a choice of the matrix C depending on
a knot. Shown in various examples in [21], for two-bridge knots in [23], and for arborescent
knots in [26], the knots-quivers correspondence has several important consequences. One such
consequence is that Ooguri-Vafa invariants of a knot [40] obtain an interpretation in terms of
motivic Donaldson-Thomas invariants for a symmetric quiver and are therefore integer numbers
(recall the formula (1.31)), as has been conjectured before. On the other hand, the form (1.29)
for colored superpolynomials for a knot implies that all of them are encoded in a finite data:
the matrix C and additional parameters in the specialization of xi. We are now ready to for-
mulate the knots-quivers correspondence.

Definition 1.3.1. We say that the symmetric quiver Q corresponds to the knot K if the gen-
erating function for superpolynomials (in reduced or unreduced normalization) takes form of the
Nahm sum for Q:

PQ(x, q)|(−q)Ciixi=xaaiqqi tti = PK(x, a, q, t). (1.51)

The substitution (−q)Ciixi = xaaiqqitti is called the knots-quivers change of variables. Note
that the quiver matrix for the unreduced case can be obtained by doubling the reduced quiver
matrix and adding some additional arrows [21], which follows from

Pr(a, q) = a−rqr
(a2; q2)r
(q2; q2)r

Pr(a, q) (1.52)

where the factor in front of Pr(a, q) is the full r-colored HOMFLY-PT polynomial for an unknot.
In this thesis, however, we will mostly focus on the reduced case. Denoting aaiqqi−Cii(−t)Cii as
λi, we can write it shortly as

xi = xλi or x = xλ. (1.53)

The above correspondence can be also translated to the level of HOMFLY-PT polynomials,
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simply by putting t = −1 in the knots-quivers change of variables.

Example 1.3.2. The generating series of the colored HOMFLY-PT polynomials for the f -
framed unknot in the reduced normalization is

∞∑
r=0

xr
qf(r2−r)

(q2; q2)r
, (1.54)

which means that the corresponding quiver is just one vertex with f loops, i.e. C01 = [ f ].

Example 1.3.3. For the trefoil knot in framing f = 0, the generating function in the reduced
normalization takes form

∞∑
r=0

Pr(a, q)
(q2; q2)r

xr =
∑

d1,d2,d3≥0

q
∑
i,j C

T2,3
i,j didj−2d1−3d3(−1)d3a2d1+2d2+4d3

(q2; q2)d1(q2; q2)d2(q2; q2)d3
xd1+d2+d3 , (1.55)

where

CT2,3 =

 0 1 1

1 2 2

1 2 3

 . (1.56)

The knots-quivers specialization in this case reads

λ = (a2q−2, a2, a4q−3t). (1.57)

Notice that t = −1 in the formula (1.55), which is the proper specialization to the HOMFLY-PT
polynomials. In principle, one can keep t to obtain the generating series for colored superpoly-
nomials.

1.3.4 String theory interpretation

It is known that Chern-Simons theory admits a string theory interpretation via a chain of
dualities (a nice exposition is presented in [4]). As a consequence, invariants of knots and links
from expectation values of Wilson loops obtain a “stringy” description. We need a particular
kind of strings, namely topological strings (both open and closed), whose topological invariance
comes from the so-called topological twist. The strings are compactified inside a Calabi-Yau
threefold X (six real dimensions). There are two kinds of topological string theories considered
in this thesis, which give rise to mirror symmetry between Calabi-Yau’s X and X̃ [92, 93, 94],
meaning that their correlation functions coincide:

1. The A-model defined on X = T ∗M for some three (real) dimensional manifold M .
Additionally, there areN topological D-branes wrappingM . In the case of open topological
strings it is dual to the Chern-Simons theory onM , where N is the size of the gauge group
[95].

2. The B-model on a mirror Calabi-Yau threefold X̃ (relative to X) is defined by a spectral
curve with a singularity, such that its resolution gives the defining equation for X̃. Such
a curve does often correspond to an explicit matrix model [96].
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Here we are focusing on the A-model (the B-model will appear next in relation to the topological
recursion) and take M = S3. As already noted, the Chern-Simons theory on S3 is a topological
open string theory on T ∗S3. Remarkably, T ∗S3 can be viewed as one of the two resolutions
for the singular conifold (figure 1.8). In the neighbourhood of its singular point, the singular
conifold looks like a cone with the base S3 × S2. We can stretch the singularity in either S2 or
S3 direction, to obtain the two different Calabi-Yau three-folds. The one in the bottom-right of
figure 1.8 is called the resolved conifold, and the transition between the two resolutions is called
the geometric transition. This corresponds to the large N duality, which is also the open/closed
string duality [38].

S2 S3

S2

resolved conifoldT ∗S3

S3

Figure 1.8: The two resolutions of the conifold singularity.

Figure 1.9: A knot (unknot) inside the resolved conifold.

One may ask the question: is it possible to provide an M-theory interpretation for the knots-
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quivers correspondence? The answer hides in the Ooguri-Vafa setup, where there is an ambient
manifold (spacetime) and certain types of branes arising as a solution to the equations of motion
of 10-dimensional supergravity [40]:

Spacetime Resolved conifold × R1,4

M5 brane Lagrangian submanifold LK × R1,2
(1.58)

A knot K (the unknot in figure 1.9) sits inside the resolved conifold. The knot conormal consists
of planes orthogonal to tangent planes of the knot tubular neighbourhood. We can define the
Lagrangian submanifold LK as the M5 brane wrapping around the conormal of K. Additionally,
there is an M2 brane which wraps holomorphic disks with the boundary on LK ; see, for example,
[97] for the explicit description of these kinds of branes. For the unknot there are two basic
holomorphic curves (basic disks, since they do not have handles, i.e. are homeomorphic to a
hemisphere). The generating series of unreduced HOMFLY-PT polynomials has the following
interpretation: it counts M2-branes wrapping holomorphic curves with boundary on an M5-
brane wrapping the knot conormal [24]. Therefore, there should be a two-vertex quiver such
that its Nahm sum coincides with the generating series for the unreduced colored HOMFLY-PT
polynomials for the unknot. Such quiver is shown in figure 1.10. (the self-linking nubmer C22

21 1

Figure 1.10: The two-vertex quiver for the unknot in the resolved conifold.

turns out to be non-zero, as shown in [24]). A similar picture is conjectured for any knot, given
the following identifications:

• quiver nodes ∼ basic disks

• Cij ∼ the linking number between the two basic disks

Moreover, in [24] the existence of low energy theory T [LK ] ≡ T [Q] was proposed, which is a 3d
N = 2 theory of Chern-Simons type, such that its partition function coincides with the Nahm
sum for the quiver Q = Q[K], as predicted by the 3d-3d correspondence [34]. The BPS spectrum
for such theory agrees with the motivic Donaldson-Thomas invariants for a symmetric quiver.
The quiver nodes correspond to “basic” BPS states, while arrows encode their interactions and
create the bound states, encoded in the infinite product form (1.31). To summarize, we have
the following diagram which relates knots, topological strings, quivers and gauge theories:

knot K ←−−−−−−−→ quiver Qxy xy
M5 brane wrapping LK inside X ←−−−−−−−→ 3d N = 2 theory T [Q] ≡ T [LK ]

(1.59)
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1.4 Nahm equations and quiver A-polynomials

Another interesting invariant for a knot is the A-polynomial, arising as the eigenvalue locus
for a representation π1(S3 \ K) 7→ SL(2,C), where π1(S3 \ K) is the fundamental group of
the knot complement [46]. Denoted as AK(l,m), this polynomial is parametrized by a pair of
coordinates (l,m) – the longitude and meridian along the torus boundary of a knot complement.
The A-polynomial is interesting for many reasons, particularly because it defines a Lagrangian
submanifold in the Chern-Simons theory and therefore can be meaningfully quantized [47, 48].
Besides, quantum A-polynomial annihilates colored HOMFLY-PT polynomials, therefore can be
considered within the dualities (1.59). Our goal is to define a similar object, but for an arbitrary
symmetric quiver, not necessarily related to a knot, which we would call quiver A-polynomial
AQ(x1, . . . , xm), where m is the quiver size [24, 58]. It turns out that it is quantizable as well,
but the explicit form of quantum A-polynomial is usually hard to find.

We proceed to the semi-classical approximation of the series (1.29):

PC(x1, . . . , xn) '
∫
dz1 · · · dzm
z̄1 · · · z̄m

exp
(1

~
S0 + S1 + ~S2 + . . .

)
, (1.60)

where ~ = log q, Sk = Sk(x1, . . . , xm, z̄1, . . . , z̄m) and z̄i = e~di . The leading term is

S0(x, z) =
1

2

m∑
i,j=1

Ci,j log zi log zj +

m∑
i=1

(
log zi log(−1)ciixi + Li2(zi)−

π2

6

)
. (1.61)

In ~ → 0 limit we can evaluate integrals in (1.60) using the saddle point method, by finding
stationary point of the leading term ∂ziS0(x, z)|z=z̄ = 0

1

z̄i

− log(1− z̄i) + log((−1)Ciixi) +

m∑
j=1

Ci,j log(z̄j)

 = 0.

Taking the exponent of the right and left hand sides and multiplying by 1 − z̄i we obtain the
algebraic Nahm equations, which are somewhat similar to gluing equations of m simplices for a
3-dimensional manifold [42]:

1− zi = (−1)Ciixi

m∏
j=1

z
Cij
j , i = 1 . . .m (1.62)

where (z1, . . . , zm) is a solution to the saddle point equations

∂

∂zi
S0(x1, . . . , xm, z̄1, . . . , z̄m) = 0. (1.63)

We also introduce

y(x1, . . . , xm) = e
∑m
i=1 ∂xiS0(x,z) =

m∏
i=1

yi(x1, . . . , xm) =
m∏
i=1

zi. (1.64)
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1.4.1 Classical quiver A-polynomial

We can eliminate the variables zi from the Nahm equations (1.62) to obtain a single polynomial,
which we call quiver A-polynomial and denote as AC(x1, . . . , xm, y). Note that it defines a
Lagrangian submanifold in the symplectic space with coordinates

(x1, . . . , xm, z1, . . . , zm) ∈ (C∗)m × (C∗)m (1.65)

and the symplectic form ω =
∑ dxi

xi
∧ dyi

yi
. We can also take its principal specialization, which is

a two-variable polynomial A(a1x, . . . , amx, y) where ai are complex numbers.

Example 1.4.1. Recall the polylogarithm function

Lim(z) :=
∞∑
n=1

zn

nm
, |z| < 1, m = 1, 2, . . . , (1.66)

which satisfy
d

dz
Lim(z) =

1

z
Lim−1(z), Li1(z) = − log(1− z). (1.67)

In the case of a quiver with one vertex and no loops we have

P[ 1 ](x) =
∑
d≥0

xd

(q; q)d
(1.68)

Using xd = exp (d log(x)) = exp
(

1
~ log(z) log(x)

)
and rewriting the leading term in the expansion

(q; q)d ' γ exp

(
1

~

(
−Li2(z) +

π2

6

)
+ . . .

)
, (1.69)

we get

S0(x, z) = Li2(z)− π2

6
+ log(z) log(x). (1.70)

The saddle-point equation (1.63) takes form

z
∂

∂z
S0(x, z) = − log(1− z) + log(x) = 0, (1.71)

and after exponentiation it gives the Nahm equation for 1-vertex quiver without loops:

1− z = x (1.72)

If we set the number of loops to f , the Nahm sum takes form

P[ f ](x) =
∑
d≥0

(−q1/2)fd
2
xd

(q; q)d
, (1.73)

resulting in two extra summands from (−q1/2)fd
2 in S0(x, z): f

2 (log(z))2 + iπf log(z). We
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therefore obtain classical quiver A-polynomial for a one vertex quiver with f loops

A[ f ](x, y) = 1− y − (−1)fxyf . (1.74)

1.4.2 Quantum quiver A-polynomial

Since classical quiver A-polynomial for an m-vertiex quiver can be thought of as a Lagrangian in
the symplectic space of dimension 2m, it is natural to ask whether it is quantizable. The existence
of quantum quiver A-polynomials is also predicted by the knots-quivers correspondence: it is
known that quantum knot A-polynomials are quantizable [47] and can be also lifted to their t-
deformed (homological) versions [48, 50, 51]. After a suitable change of variables, they annihilate
the generating series for colored superpolynomials [98]. This, in principle, should extend to an
arbitrary symmetric quiver, not necessarily related to a knot. Besides, the product form (1.31)
encodes the motivic Donaldson-Thomas invaraints of a quiver and conjecturally corresponds
to BPS invariants in the Ooguri-Vafa brane system considered in section 1.3.4. For example,
such brane systems and their quiver descriptions include knots [21, 22, 23, 26, 24, 25] and strip
geometries for topological strings [99]. It is natural to expect that for any symmetric quiver there
is a brane system, which also implies that Nahm sums encode all information about such system.
Therefore these invariants should be also recovered from a quantum quiver A-polynomial, and
it must be well-defined, meaning that classical quiver A-polynomials must be quantizable. We
discuss it more formally in the next chapter; here we show how the classical Nahm equations
can be quantized, which leads to one definition of quantum quiver A-polynomial.

One can show [25, 58] that the promotion of zi to operators ẑi acting on xj as ẑixj = qδi,jxj

leads to the quantized version of the Nahm equations (1.62):

(1− ẑi)PC =

(−1)Ci,ixi

m∏
j=1

ẑ
Ci,j
j

PC . (1.75)

To see this explicitly, we shift one index dk 7→ dk + 1 in Pd1,...,dm (1.30), so that

Pd1,...,dk+1,...,dm =
(−q1/2)

∑m
i,j=1 Cij(di+δik)(dj+δjk)

(q; q)d1 · · · (q; q)dk+1 · · · (q; q)dm
=

(−q1/2)Ckk+2
∑m
i Ckidi

1− qdk+1
Pd1,...,dm , (1.76)

which implies

∑
d1,...,dm≥0

Pd1,...,dk+1,...,dm

m∏
i=1

xdi+δkii =

(1− ẑk)−1(−q1/2)Ckk x̂k

m∏
j=1

ẑ
Ckj
j

 · PC(x1, . . . , xm) ,

(1.77)
and multiplying both sides by (1− ẑk) leads to the equations (1.75). Much like in the classical
case, we can reduce the quantum Nahm equations (1.75) to a single non-commutative polyno-
mial, to which we refer as a quantum quiver A-polynomial. It is done by the non-commutative
elimination from (1.75) with respect to ẑ1, . . . , ẑm:

ÂC(x1, . . . , xm, ŷ)PC = 0, ŷ := ẑ1 . . . ẑm. (1.78)
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Example 1.4.2. As an example consider the “uniform” quiver which is parametrized by a
constant f ≥ 0,

C =


f f . . . f

f f . . . f
...

...
. . .

...
f f . . . f


m×m

(1.79)

and whose quantum Nahm equations take form

ẑkPC(x1, . . . , xm) =
(

1− xk(−q1/2ŷ)f
)
PC(x1, . . . , xm), k = 1, . . . ,m. (1.80)

By eliminating ẑk from the above equations, we obtain quantum quiver A-polynomial

ÂC(x1, . . . , xm, ŷ)=
m∏
k=1

(
1− xk(−q1/2ŷ)f

)
− ŷ (1.81)

=

m∑
k=0

(−1)k(f+1)qk
2f/2Ek(x1, . . . , xm)ŷkf − ŷ (1.82)

where Ek(x1, . . . , xm) are the elementary symmetric polynomials. Taking the semi-classical
limit, we obtain

AC(x1, . . . , xm, y) =
m∏
k=1

(
1− xk(−y)f

)
− y (1.83)

By setting xi = x, we obtain a two-variable polynomial whose locus of zeroes defines a genus
zero curve

(1− (−1)fxyf )m − y = 0, x(t) =
1− t

(−tm)f
, y(t) = tm. (1.84)

1.4.3 Quiver A-polynomial and topological string B-model

In section 1.3.4 we have mentioned a duality between topological gauge theory and (open)
topological strings, which involves Nahm sums for symmetric quivers.

• Topological gauge theory (Chern-Simons theory on a real 3-manifold M): computes quan-
tum (gauge theoretic) invariants of M , in particular knot invariants when M = S3 \K.

• Topological string theory: counts various kinds of branes wrapping around objects in
complex Calabi-Yau threefolds, such as the resolved conifold.

The Nahm sum for a quiver corresponding to a knot, generates colored HOMFLY-PT poly-
nomials and at the same time can be interpreted as the A-model. Since the brane configuration
is quite complicated (and involves the geometry of the knot conormal), we expect that the B-
model is non-trivial and should capture a very interesting information. Moreover, we conjecture
that it exists for every symmetric quiver, not necessarily related to a knot. The main ingredient
for a B-model is the spectral curve, whose resolution gives an equation for the mirror Calabi-Yau
(possibly with some brane configuration). In various theories there are different kinds of spectral
curves:
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• In N = 2 supersymmetric gauge theory the complex curve is the Seiberg-Witten curve,
and is related to the Ω-deformation [100, 101].

• In SL(2,C) Chern-Simons theory with a Wilson loop, A(x, y) is the knot A-polynomial.
The parameter ~ is the coupling constant of Chern-Simons theory [46, 47].

• In matrix models, the B-model curve is the matrix model spectral curve, and ~ = 1/N

controls the expansion in the inverse of matrix size [102].

• In topological string theory every curve H(eu, ev) defines a (non-compact) Calabi-Yau
threefold geometry [103, 4, 104], namely a hypersurface in (C∗)2 × C.

Topological recursion associates certain invariants to a spectral curve [3, 5, 105, 106]. These
invariants can be then reinterpreted as open topological string invariants in the A-model, as
stated in the remodelling conjecture [107], proved for smooth toric Calabi-Yau threefolds [108]
and for orbifolds [109]. Therefore, the topological recursion builds the bridge between the two
models. This motivates us to make the following consideration for an arbitrary symmetric quiver:

quiver A-polynomial ≡ B-model spectral curve

Example 1.4.3. The simplest non-compact Calabi-Yau threefold is C3, also called the topo-
logical vertex [48] and is our A-model in this example. The related B-model spectral curve is
given by

H(x, y) = 1 + y + xyf . (1.85)

It coincides with the quiver A-polynomial (1.74) after a change of sign of y. It also encodes the
HOMFLY-PT polynomials for the framed unknot in the unreduced normalization [21].

Example 1.4.4. The second example is the ordinary conifold in framing f = 2 [48, 99]. Its
B-model curve is

H(x, y) = 1 + y + xy2 +Qxy (1.86)

where Q ∈ C is the complex moduli called the Kahler parameter (the limit Q → 0 shrinks the
geometry to a single topological vertex in the same framing). The corresponding quiver encodes
the HOMFLY-PT polynomials for the unknot in framing f = 2 and the unreduced normalization
(see also section 1.3.4):

C =

[
2 1

1 1

]
. (1.87)
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Chapter 2

Quantization of quiver A-polynomials

The aim of this chapter is to investigate whether quiver A-polynomials are quantizable by
means of the K-theoretic condition stated in [48]. This check is independent from the existence
of quantum Nahm equations from section 1.4.2, and serves as a preliminary step before the
topological recursion calculation done in the next chapter. If this step fails, it is unlikely that
topological recursion would give a meaningful answer, since the quantum theory will be ill-
defined and there would be no proper physical description of quantum quiver A-polynomial.
The quantization condition requires the only knowledge of a classical A-polynomial, and the
condition states that it is quantizable if and only if its face polynomials (obtained from the faces
of the Newton polytope) are all cyclotomic. If the answer is positive, it would be possible that
quantum quiver A-polynomial can be recovered (independently from the quantization steps in
section 1.4.2) from the classical quiver A-polynomial by means of topological recursion. We use
the machinery of initial forms and mixed polyhedral decompositions to investigate the edges
of the Newton polytope, and find that the face polynomials obey a remarkable combinatorial
pattern. The result of this chapter are presented in [59].

2.1 Quantization problem in general

In classical mechanics the phase space of a physical system is a symplectic manifold (M,σ) of
dimension 2m, equipped with a closed non-degenerate 2-form ω, called symplectic. For example,
in Newtonian mechanics M = T ∗R3, where R3 is a configuration space. For our purpose we
take M to be an open manifold with a complex structure. Using the local coordinates (the
generalized positions and momenta), one can write

ω =
m∑
i=1

dpi ∧ dqi (2.1)

Another important object is the Liouville form θ, which exterior derivative gives the symplectic
form:

dθ = ω (2.2)
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In local coordinates

θ =
m∑
i=1

pidqi (2.3)

Recall that a submanifold L of (M,σ) is called Lagrangian if the two conditions are satisfied:
dimL = m, and ω|L = 0. The cohomology class in the first homology group H1(L,R) induced
by the 1-form θ is called the Liouville class of L. It is trivial if all periods of θ|L vanish.

We want to quantize our physical system, i.e. to replace the classical phase space by a Hilbert
space H of non-commutative operators p̂i, q̂i. Moreover, we require a consistent quantization of
(M,ω) with a selected L, which give rise to the wave-function Z supported on L. This requires
L to satisfy some conditions [47, 48], which we are going to reveal. Define a phase function
(action integral) S, such that dS = θ|L. The wave-function then takes form

Z ' eiS/~ +O(~0) (2.4)

(for simplicity we have assumed that L has a single component, otherwise one has to sum over
all such components). Therefore,

• if θ|L is exact, S is well-defined

• if the Liouville class of L is non-trivial, S depends on the choice of integration path in L,
and a difference between two such choices S, S′ is measured by a period of θ: S−S′ =

∮
θ

In order for the leading term in (2.4) to be well-defined, all periods of θ must be integer multiples
of 2π~. Taking into account the complex structure of M , we split

θ = αθα + iβθβ (2.5)

for some real constants α, β, where θα, θβ are real 1-forms. Since θ is complex-valued, the
necessary conditions for L to be quantizable implies two independent sets of constraints:∮

γ
θβ = 0 and

1

π

∮
γ
θα ∈ Q , for any closed path γ in M (2.6)

Example 2.1.1. (See [47] for the details.) Recall knot A-polynomial, whose zero locus parame-
terizes the space of all representations of the fundamental group for a knot [46]. It is parametrized
by two complex non-zero numbers l,m, corresponding to the longitude and meridian along the
torus boundary of the knot complement. We introduce the phase space M = C∗ × C∗ with
coordinates x = eu, y = ev, u, v ∈ C× C, and the symplectic form

ω =
dx

x
∧ dy
y

(2.7)

The role of Lagrangian submanifold is played by zero locus of an A-polynomial. The necessary
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conditions for quantizability (2.6) are expressed in terms of x, y as follows:∮
γ

(
log |x|d(arg y)− log |y|d(arg x)

)
= 0 ,

1

π2

∮
γ

(
log |x|d log |y|+ (arg y)d(arg x)

)
∈ Q

(2.8)

They are satisfied for all knots [46], giving a well-defined quantum operator (aka quantum curve,
or non-commutative A-polynomial)

A(x, y)  Â(x̂, ŷ), (2.9)

where x̂, ŷ obey the non-commutativity relation

ŷx̂ = qx̂ŷ (2.10)

and such that
lim
q→1

A(x̂, ŷ) = A(x, y). (2.11)

2.2 The K-theory criterion for quantization

2.2.1 Formulation

Suppose we have a polynomial P (x, y) in two commutative variables. Its face polynomial in
a single variable τ is obtained from monomials corresponding to a face (edge) of its Newton
polygon. Starting from any endpoint of a face (decorating it by τ0) and going consequently the
opposite endpoint, we label each monomial by a power of τ . This gives a function γ : (i, j) 7→
k | xiyj 7→ τk. A face polynomial is defined for every face of the Newton polygon of P (x, y):

P |face(τ) =
∑

(i,j)∈face

coeffxiyjP (x, y) · τγ(i,j). (2.12)

Polynomial is called tempered if all its face polynomials are products of cyclotomic polyno-
mials (in other words, all their roots are roots of unity). For example, P (x, y) = x2−2xy+y2−
2x− y + 1 has 3 face polynomials (figure 2.1):

x2 − 2x+ 1 7→ (τ − 1)2, y2 − y + 1 7→ τ2 − τ + 1, x2 − 2xy + y2 7→ (τ − 1)2. (2.13)

They are obviously cyclotomic, which means that P (x, y) is tempered.
The following conjecture was stated in [48]:

Conjecture 2.2.1 (Quantization criterion). The curve in C∗ × C∗ is quantizable ⇐⇒ its
defining polynomial is tempered.

In [46] it was proven that A-polynomial is tempered for any knot K. Quiver A-polynomials
are by far more general, and it is of our interest to investigate whether they are tempered or
not which might yield interesting properties. However, we still have to fill the gap between
conjecture 2.2.1 and the set of conditions (2.8).
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Figure 2.1: Newton polygon and face polynomials for P (x, y).

2.2.2 Relation to algebraic K-theory

The exposition here is borrowed mostly from Milnor’s classical book [110]. Informally speak-
ing, the K-theory was invented to produce nice invariants of topological spaces – the so-called
K-groups . . . ,K−1,K0,K1,K2, . . . (they are generally considered to be more powerful than
(co)homology groups but harder to compute); in case of algebraic K-theory topological space is
replaced by a field or a ring. Our main player is the group K2(F ) of a field, which is a group
of non-trivial relations satisfied by elementary matrices of any size with entries in F . Recall
that elementary matrix eλij ∈ GLn(F ), i, j = 1 . . . n, differs from the identity matrix of size n
by a single element λ in the (i, j)-th position, or a matrix obtained from such by elementary
row/column operations. In other words, eλij generate the subgroup of elementary matrices in
GLn(F ). They obey the commutation relations:

[eλij , e
µ
kl] =


1; j 6= k, i 6= l

eλµil ; j = k, i 6= l

e−µλkj ; j 6= k, i = l

(2.14)

One can consider an abstract group generated by the same relations, called Steinberg group
St(n, F ), n ≥ 3 (for n < 3 the relations degenerate):

xλijx
µ
ij = xλ+µ

ij

[xλij , x
µ
jl] = xλµil ; i 6= l

[xλij , x
µ
kl] = 1; j 6= k, i 6= l

(2.15)

There exists a homomorphism of groups:

ψ : St(n, F )→ GLn(F ), ψ(xλij) = eλij (2.16)

which associates an elementary matrix of size n to each element of St(n, F ). Consider the n→∞
limit of the sequence

GL1(F ) ⊂ GL2(F ) ⊂ GL3(F ) ⊂ . . . , (2.17)
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where GLi(F ) is injected into GLi+1(F ) by the map

∗ 7→

(
∗ 0

0 1

)
, ∀∗ ∈ GLi(F ) (2.18)

This defines the group GL(F ) as the union of all groups in the infinite sequence (2.17). Analo-
gously, one can define St(F ). Now we can define

K2(F ) := kerψ : St(F )→ Id(F ), (2.19)

where the kernel consists of those elements, which are mapped by ψ to an identity matrix in
GL(F ). For example, a 90◦ rotation matrix is elementary and can be written as a monomial in
eλij :

e1
12e
−1
21 e

1
12 =

(
0 1

−1 0

)
(2.20)

Its period is equal to 4, i.e.

(e1
12e
−1
21 e

1
12)4 =

(
1 0

0 1

)
(2.21)

The relation (2.21) is non-trivial among the elementary matrices, thus producing an element in
K2(R):

(x1
12x
−1
21 x

1
12)4 ∈ kerψ, ψ

(
(x1

12x
−1
21 x

1
12)4

)
= (e1

12e
−1
21 e

1
12)4 = Id , (2.22)

manifesting that “the relation holds”. In general, such identities are of the form:

eλ1i1j1e
λ2
i2j2

. . . eλrirjr = Id ←→ xλ1i1j1x
λ2
i2j2

. . . xλrirjr (2.23)

Following [111], we focus on the field Q(C) of rational functions x, y on a compact Riemann
surface C. Since C is compact, there exists a minimal irreducible polynomial P (x, y) which
vanishes on C. E.g. if its genus is equal to 0, x(t) and y(t) provide a rational parametrization.

For any two elements x, y and a pair of elementary matrices

Dx =

x 0 0

0 x−1 0

0 0 1

 , D′y =

y 0 0

0 1 0

0 0 y−1

 , (2.24)

define
{x, y} := uvu−1v−1 (2.25)

with u = ψ−1(Dx), v = ψ−1(D′y). This bracket is called the universal symbol of (x, y). The
commutator evaluates to an identity matrix, therefore {x, y} ∈ K2(Q(C)). It turns out that for
any field F , K2(F ) is generated by the symbols {x, y} [110]. The following theorem [111, 112,
48] is important for us:

Theorem 2.2.1.

{x, y}N ∈ K2,∅ for some N ∈ N⇐⇒ P (x, y) is tempered (2.26)
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where K2,∅ is the set of trivial elements in K2(Q(C)):

K2,∅ :=
⋂
w

kerλw ⊂ K2(Q(C)), (2.27)

w ∈ C, and λw : K2 → C∗ corresponds to the tame symbol:

(x, y)w := (−1)w(x)w(y)x
w(y)

yw(x)

∣∣∣∣
w

(2.28)

Here w(x) (or w(y)) equals to the degree of the leading term in x(t) (or y(t)) around t = w.
The tame symbol is a map F ∗ × F ∗ → C∗, where F ∗ := F \ {0, 1}. In fact every symbol on F ,
i.e. a map

F ∗ × F ∗ → A, (2.29)

where A is any abelian group, gives rise to a unique homomorphism K2(F ) → A (proven by
Matsumoto [111]). In the case of the tame symbol we simply denote this homomorphism by
λw. Its kernel consists of all elements in K2(F ), which are mapped to identity. Rephrasing, we
can say that all tame symbols for any w ∈ C are roots of unity. Comparing to the quantization
conditions (2.8), we see that

1

2π

∮
log |x|d(arg y)− log |y|d(arg x) = log |(x, y)p| (2.30)

where the integral is over a small circle centered at p. This means that the quantization condition
is closely related to algebraic K-theory. It turns out that the quantization criterion has many
exciting implications: relation to modular forms and special values of Zeta function [111], Chern-
Simons theory [48], knot theory [46], modularity properties of the Mahler measure and quantum
dilogarithm [111, 112]. The proof of (2.26) is due to the fact that for each slope p

q of N(P ), there

is a valuation v such that p
q = −v(x)

v(y) . Moreover, the value of the tame symbol (x, y)v equals to
the root of the corresponding face polynomial with this slope (details in [46]). In other words,
by choosing (x, y), we have to evaluate tame symbols (x, y)w for each w ∈ S, where S is the set
of zeroes and poles of x and y on C, and thus must be sure to get the roots of unity. It holds if
and only if the polynomial P (x, y) is tempered, i.e. quantizable.

Returning to the example in figure 2.1

P (x, y) = x2 − 2xy + y2 − 2x− y + 1, (2.31)

Notice that P (x, y) is not self-reciprocal, since

P (x−1, y−1) 6= ±xpyqP (x, y), for some integers p, q (2.32)

which means it cannot be realized as an A-polynomial for some knot [46]. The slopes are
0,∞,−1. The face polynomials are (τ − 1)2, (τ − 1)2, τ2 − τ + 1. All of them are obviously
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cyclotomic. Choose the rational parametrization, e.g.:

x(t) =
t2 + t+ 1

(t− 1)2
, y(t) =

3t2

(t− 1)2
(2.33)

Now compute the tame symbols at w ∈ S for this parametrization. In our case the set of zeroes
and poles S of x(t) and y(t) is

S = {0, 1, ζ(1)
3 , ζ

(2)
3 }, (2.34)

where ζ(1)
3 , ζ

(2)
3 are two complex-conjugated cubic roots of unity. We get:

horizontal : (x, y)0 = 1, slope “−1”: (x, y)1 = 1, vertical: (x, y)
ζ
(i)
3

= ζ
(i)
3 . (2.35)

For instance,

(x, y)0 = (−1)0·2x(t)2

y(t)0

∣∣∣∣
t=0

= 1, (2.36)

since x(t) = 1 + 3t+ 6t2 +O(t3), and y(t) = 3t2 +O(t3) around w = 0, this gives w(x) = 0 and
w(y) = 2. As we see, each of the values (x, y)0, (x, y)1, (x, y)ζ∗3 corresponds to a root of some
face polynomial. All of them are roots of unity, which shows that P (x, y) (2.31) is tempered, i.e.
the K-theoretic property holds for the underlying curve. Also, by computing the tame symbols
we indeed see the surjection, but not the bijection between valuations and slopes (of course in
this example one of the face polynomials has degree two and is irreducible, thus giving the two
distinct roots with the same slope).

2.3 Are quiver A-polynomials tempered?

It is known from the preceding work on the knots-quivers correspondence [24, 25] that a sym-
metric quiver Q defines a 3d N = 2 gauge theory T [Q], see section 1.3.4. By analogy with the
Chern-Simons case (2.7), the role of Lagrangian submanifold is played by multi-variable quiver
A-polynomial A(x1, . . . , xm, y) with respect to symplectic form

ω =

m∑
i=1

dxi
xi
∧ dyi
yi

(2.37)

where m is the number of nodes, xi are summation variables in the quiver series and yi are
associated to the Nahm equations. Furthermore, the quiver series count holomorphic curves
inside Calabi-Yau manifold (resolved conifold) with boundary on a Lagrangian, and is a subject
of 3d-3d correspondence. This setup predicts the existence of quantum quiver A-polynomial,
which has been studied in [58]. Therefore it is natural to ask whether quiver A-polynomials are
tempered. Luckily, in many examples we can compute the face polynomials and confirm that
they are cyclotomic. Our main conjecture is

Conjecture 2.3.1. Quiver A-polynomials are tempered, for any symmetric quiver.

In the remaining part of this chapter we confirm the conjecture for quivers consisting of m
disjoint vertices with α1, . . . , αm self-loops. Since the adjacency matrix takes the diagonal form,
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we refer to such quivers as diagonal. The choice is dictated by the combinatorial properties of the
resultant polytope, which in this case has the structure of a zonotope (projection of a hypercube
onto a space of lower dimension). It greatly simplifies calculation of the face polynomials,
expressing them recursively in terms of mixed decompositions of the corresponding Minkowski
sums.

2.4 Combinatorics of quiver resultants

We therefore start from explaining the combinatorial machinery of mixed resultants and initial
forms. The exposition is based on [113] and [114]. Fix a non-negative integer m and a collection
A = {A0, . . . , Am} of finite subsets Ai ⊂ Zm, ni = |Ai|. Their convex hulls Qi = conv(Ai) ⊂ Rm

are integral polytopes of dimension at most m. Take a generic (m + 1)-tuple (f0, . . . , fm) of
Laurent polynomials supported on A:

fi(z1, . . . , zm) =
∑
a∈Ai

ci,az
a, i = 0, . . . ,m. (2.38)

Since fi are generic, ci,a 6= 0 simultaneously for all a ∈ Ai, i = 0, . . . ,m. Therefore we may
present the system {fi = 0}mi=0 geometrically as a point

(c0,A0 , . . . , cm,Am) ∈ Pn0−1 × · · · × Pnm−1, (2.39)

where ci,Ai is the ni-tuple of coefficients of fi. Consider now all tuples (2.38) having a common
root z′ ∈ (C \ {0})m : {fi(z′) = 0}mi=0. Taken simultaneously, they define a set of projective
points, which closure we denote by Z. In general Z is an irreducible hypersurface in Pn0−1 ×
· · · × Pnm−1. However, for some bad choices of A, Z may have codimension bigger than one.

Definition 2.4.1. Given a set A, the sparse mixed resultant RA is the unique irreducible poly-
nomial with integral coefficients ci,a, which vanishes on Z if codim(Z) = 1, and RA := 1 if
codim(Z) ≥ 2. Additionally, the sub-resultant RA′ is defined as the sparse mixed resultant for
a proper subset A′ ⊂ A.

Example 2.4.1. Since m = 0 implies conv(A) = A, the fist non-trivial case is m = 1. The
choice A0 = {0, 1}, A1 = {0, 1, 2} gives

f0 = c0,0 + c0,1z

f1 = c1,0 + c1,1z + c1,2z
2

(2.40)

with the two intervals Q0 = [0 : 1] and Q1 = [0 : 2]. The system {f1 = 0, f2 = 0} corresponds
to a point ((c0,0 : c0,1), (c1,0 : c1,1 : c1,2)). We get by eliminating the variable z:

R{0,1},{0,1,2} = c1,0c
2
0,1 − c1,1c0,0c0,1 + c1,2c

2
0,0 (2.41)

which agrees with the classical resultant. The polytope N(R{0,1},{0,1,2}) is a triangle in R5, and
R{0,1},{0,1,2} = 0 is the defining equation for the hypersurface Z in P1 × P2. Indeed, in (2.41)
there are 5 parameters (only 3 of them are independent), but equating it to zero drops the
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dimension by 1, so dimZ = 2. E.g., if we remove a monomial from f0

f̃0 =��c0,0 + c0,1z

f1 = c1,0 + c1,1z + c1,2z
2

(2.42)

this gives R{1},{0,1,2} = c0,1.

The next ingredient, necessary for our study, is defined below.

Definition 2.4.2. Given a polynomial P (x1, . . . , xm) and an integer vector ω = (ω1, . . . , ωm),
the initial form initω of P with respect to ω is a sum of all monomials in P which weight is
maximal with respect to ω:

initω(P ) := vkP (v−ω1x1, . . . , v
−ωmxm)|v=0 (2.43)

(the exponent k is chosen such that v = 0 gives no infinities).

E.g. in example 2.4.1 the choice ω = (0, 1, 1, 0, 2) gives the initial form

initω = v3 R{0,1},{0,1,2}(c0,0, v
−1c0,1, v

−1c1,0, c1,1, v
−2c1,2)

∣∣
v=0

= c1,0c
2
0,1. (2.44)

It is important to mention that for any face of the Newton polytope N(P ) one can associate an
initial form. Namely, if ω is the normal vector to some face, then initω is the restriction of P to
this face, meaning that we are left only with monomials belonging to the face. We will use this
fact when dealing with the resultant polytope N(RA).

It’s time to get back to Nahm equations (1.62). We would like to treat them from the
perspective of (2.38) by writing

0 = F0 = a0 + a1z1 . . . zm

0 = F1 = b1,0 + b1,1z1 + b1,2
∏m
j=1 z

C1,j

j
...

0 = Fm = bm,0 + bm,1zm + bm,2
∏m
j=1 z

Cm,j
j

(2.45)

We also define the Nahm supports AC = {supp(Fi)}i=0...m, b = {bi,j}, i = 0 . . .m, j = 1, 2.

Definition 2.4.3. Quiver resultant is the sparse mixed resultant for the Nahm supports:

RC := RAC
(a0, a1,b). (2.46)

Therefore, we have the chain of specializations – quiver resultant produces quiver A-polynomial,
which gives the two-variable polynomial after the principal specialization:

AC(x1, . . . , xm, y) = RC
(
y,−1 | 1,−1, (−1)C1,1x1 | . . . | 1,−1, (−1)Cm,mxm

)
,

AC(x, y) = AC(a1x, . . . , amx, y).
(2.47)

Next, recall that the Minkowski sum Q =
∑m

i=0Qi of subsets Q0, . . . , Qm ⊂ Rn is simply the
vector sum of all their elements. For example, the system (2.45) with m = 2 and C = diag(α, β)
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gives three segments Qi = conv(Fi), i = 0 . . . 2. Their Minkowski sum is a hexagon, shown
in figure 2.2. This is also an example of a zonotope (a projection of a hypercube onto a lower

Q1

Q2

Q0 +Q1 +Q2

z1

z2

(0, 0)

(0, β)

(α, 0)

(α+ 1, β + 1)

(1, 0)

(0, 1)

Q0

Figure 2.2: The Minkowski sum Q = Q0 + Q1 + Q2 for the system (2.45) with m = 2 and
C = diag(α, β).

dimensional space: in this case 3-cube onto the plane). Its boundary zones are purple, red and
blue edges, corresponding respectively to Q0, Q1 and Q2. For an arbitrary diagonal quiver,
its Minkowski sum inherits a similar structure (such quivers with larger number of vertices
correspond to higher dimensional zonotopes).

Note that for any quiver with m vertices dimN(RC) = m. In order to unify calculations
for higher dimensional polytopes, we use the diagrammatic convention. Each diagram consists
of several rows corresponding to an equation and dots representing the non-zero monomials, for
example we can remove some monomials from the system (2.45) by crossing them out, and get

a0 + a1z1 . . . zm

b0 + b1z1 +
���

���
��

b2z
C1,1

1 . . . z
C1,m
m

c0 +���c1z2 + c2z
C2,1

1 . . . z
C2,m
m

d0 +��
�d1z3 + d2z

C3,1

1 . . . z
C3,m
m

'
• •
• •
• •
• •

(2.48)

Recall that mixed decomposition of Q coming from a polynomial system, is a partition by cells,
each of them being a Minkwoski sum corresponding to a sub-resultant for some proper subsets
A′0 ⊂ A0, . . . , A

′
m ⊂ Am.

Example 2.4.2. Figure 2.3 shows a mixed decomposition for the configuration in figure 2.2.
Let us determine the corresponding cells:

(a)

(b)

(c)

(d)

α

β

Figure 2.3: An example of mixed decomposition for the system (2.45) with m = 2 and C =
diag(α, β).
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(a)

a0 + a1z1z2

b1,0 + b1,1z1 +��
�b1,2z
2
1

�
�b2,0 + b2,1z2 + b2,2z

2
2

'
• •
• •
• •

(b)

a0 + a1z1z2

�
�b1,0 + b1,1z1 + b1,2z

2
1

b2,0 + b2,1z2 +��
�b2,2z
2
2

'
• •
• •

• •

(c)

a0 +���
�a1z1z2

b1,0 + b1,1z1 +��
�b1,2z
2
1

b2,0 + b2,1z2 +��
�b2,2z
2
2

'
•
• •
• •

(d)

��a0 + a1z1z2

�
�b1,0 + b1,1z1 + b1,2z

2
1

�
�b2,0 + b2,1z2 + b2,2z

2
2

'
•
• •
• •

(2.49)

Now we see that the Minkowski sums of these two collections of sub-supports indeed produce
the two hexagons (a) and (b). E.g., (a) gives Q̃0 = [(0, 0) : (1, 1)], Q̃1 = [(0, 0) : (1, 0)], Q̃2 =

[(0, 1) : (0, 2)]. Analogously, the two rectangular cells correspond to the sub-resultants (c) and
(d).

In what follows, we associate an initial form to a mixed decomposition, so that each hexagonal
cell contributes as a binomial, while each rectangular cell gives a monomial factor. Namely, given
the data

• a collection A = {A0, . . . , Am} of subsets in Zm

• a mixed decompositionMD(Q), where Q =
∑m

i=1 conv(Ai)

we define
initMD(Q)(c0,0, c0,1, . . . ) :=

∏
“rectangles”

×
∏

“hexagons”

= µ
∏

ι∈MD(Q)

R̃kιι , (2.50)

where µ =
∏
ι′ µ

(kι′ )
ι′ is a monomial in variables µι′ for a rectangle ι′ in MD(Q). On another

hand, each R̃ι is a sub-resultant, which diagram gives a hexagonal cell ι. The latter product is
taken over all hexagonal cells inMD(Q), and the exponents kι and kι′ are chosen uniquely such
that the volume of ι equals to the total degree of R̃kιι , for every cell ι, and for ι′ the volume of
a rectangular cell ι′ simply equals to kι′ .

The correspondence between mixed decompositions and initial forms of the sparse mixed
resultant is due to the fact that initMD(Q) is in fact the initial form for RA [114, 115]. This
allows to associate a mixed decomposition to each face of the resultant polytope, and then study
their initial forms. Let us illustrate how it works using the example in figure 2.3. We claim that
it gives the initial form:

a0a
(α−1)(β−1)
1 (aα−1

0 b2c
α−1
1 + aα−1

1 b1c
α−1
0 )(aβ−1

0 c2b
β−1
1 + aβ−1

1 c1b
β−1
0 ) (2.51)

We can take ω = [ (0, 0), (0, 1, 1), (1, 1, 1) ] + const, where const is an arbitrary constant vector.
Here, hexagons are the two distinct binomial factors, while rectangles contribute to the monomial
in (2.51). This gives the following picture (Figure 2.4). Indeed, the sparse mixed resultants
from (a) and (b) are R̃(a) = aβ−1

0 c2b
β−1
1 + aβ−1

1 c1b
β−1
0 , R̃(b) = aα−1

0 b2c
α−1
1 + aα−1

1 b1c
α−1
0 . The

exponents k(a) and k(b) are equal to 1, since the total degrees of R̃(b) and R̃(a) are equal to
2(α− 1) + 1 and 2(β− 1) + 1, correspondingly, which agrees with the areas of the two hexagons
(a) and (b). On the monomial side, we have the two degeneracies: in the first one, a0 survives,
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1

(α− 1)2 + 1

(α− 1)(β − 1)

(β − 1)2 + 1 R̃1
(a)

a10

a
(α−1)(β−1)
1

R̃1
(b)

Figure 2.4: This mixed decomposition gives rise to the initial form (2.51), computed as the
product over all its cells

and the area of (c) is equal to k(c) = 1, so a1
0. In the second one, a1 survives and the area is

k(d) = (α− 1)(β − 1). Making a product of them gives the expression (2.51).
Additionally, we will call a diagram (respectively, its initial form) simple, if it does not have

the middle monomials in F1, . . . , Fm, e.g.
• •
• •
• •

is simple, whereas
• •
• • •
• •

is not.

2.5 Case studies: quivers with C = Cdiag(α1,...,αm)

2.5.1 Two-vertex quivers

In the case of quivers with two vertices, without loss of generality we consider

Cdiag(α,β) =

[
α 0

0 β

]
, α, β ≥ 2. (2.52)

Note that the non-diagonal case can be obtained by transformation

A(x1, . . . , xm, y) 7→ A(x1y
f , . . . , xmy

f , y), (2.53)

which only dilates the polytopes but does not alter their face polynomials (except for the two
degenerate cases f = 0 and f = 1, which we exclude). It affect the quiver matrix in a simple
way: [

α 0

0 β

]
7→

[
α+ f f

f β + f

]
. (2.54)

Therefore, we consider the polynomial system (2.45) which in this case takes form
0 = F0 = a0 + a1z1z2

0 = F1 = b0 + b1z1 + b2z
α
1

0 = F2 = c0 + c1z2 + c2z
β
2

(2.55)

For generic α, β the resultant polytope N(RA) coincides with the Gelfand-Kapranov-Zelevinsky
(GKZ) polytope N2,2, depicted in figure 2.5 [113, 116]. By definition, GKZ polytope is the
Newton polytope of a classical resultant of two polynomials:{

f0 = ã0 + ã1z + . . . ãm′z
m′

f1 = b̃0 + b̃1z + . . . b̃n′z
n′

−→ Nm′,n′ := N (resz(f0, f1)) . (2.56)
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When (m′, n′) = (2, 2), this system is equivalent to (2.55) with (α, β) = (2, 2). It implies that
N(RA) = N2,2 for (α, β) = (2, 2). However, varying α, β ≥ 2 in (2.55) does not change the
polytope, since it corresponds to dilation of the lattice of A, which is an affine transformation.
Therefore, N(RA) = N2,2 for any α, β ≥ 2.

Example 2.5.1. Take C = diag(2, 2). Eliminating z1, z2 from (2.55), we obtain quiver resultant
and quiver A-polynomial:

Rdiag(2,2)(a0, a1,b) = (a2
0b2c2 − a2

1b0c0)2 + a0a1 (a0b2c1 + a1b1c0)(a0b1c2 + a1b0c1),

Adiag(2,2)(x1, x2, y) = R(y,−1,−1, 1, x1,−1, 1, x2)

= (x1x2y
2 − 1)2 − y (x1y + 1)(x2y + 1)

= x2
1x

2
2y

4 + x1x2y
3 − 2x1x2y

2 + x1y
2 + x2y

2 + y + 1.

(2.57)

The resultant polytope encodes the powers of monomials shown as blue nodes in figure 2.5. For

Figure 2.5: The resultant polytope N2,2 for a two-vertex quiver.

example, the convex hull of (x1x2y
2 − 1)2 gives the edge (a), while −y (x1y + 1)(x2y + 1) gives

the 2-dimensional face (b). The latter belongs to the plane

1 + x1 + x2 − y = 0 (2.58)

with normal vector ω = (1, 1,−1). We can rescale the variables x1, x2, y with respect to ω:

Adiag(2,2)(c
1x1, c

1x2, c
−1y) = (x1x2y

2 − 1)2 − c−1y (x1y + 1)(x2y + 1) (2.59)

for some c 6= 0, separating the faces of the polytope. As the result, we get the two distinguished
initial forms:

inita = (x1x2y
2 − 1)2, initb = y (x1y + 1)(x2y + 1). (2.60)

Let us move to the unspecialized case (2.57). The first initial form corresponds to binomial
(a2

0b2c2 − a2
1b0c0)2. The overall square comes from the areal factor of the largest hexagon in

figure 2.6, left. The total degree is equal to the volume of the corresponding cell. The binomial
a2

0b2c2 − a2
1b0c0 is also the sub-resultant for b1 = c1 = 0.

The second initial form corresponds to a0a1 (a0b2c1 + a1b1c0)(a0b1c2 + a1b0c1). It splits
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into the product of four distinct sub-resultants, representing the four distinct cells of the mixed
decomposition in figure 2.6, right:

b0 = c2 = 0, a0b2c1 + a1b1c0

b2 = c0 = 0, a0b1c2 + a1b0c1

a1 = b2 = c2 = 0, a0

a0 = b0 = c0 = 0, a1

(2.61)

(0, 0) (2, 0)

(0, 2)

Figure 2.6: Mixed decompositions in (z1, z2)-plane: for inita (left) and initb (right).

Moving to the general case α, β ≥ 2, we have to introduce an operator which implements the
rule for computing the exponents kι in (2.50).

Definition 2.5.1. Given a binomial ηp + θq,p = (p1, . . . , pk),q = (q1, . . . , qk), define

GCD (ηp + θq) :=
(
η

p
GCD(p,q) + θ

q
GCD(p,q)

)GCD(p,q)
, (2.62)

where GCD(p,q) acts on the two vectors component-wise. Also, for any integer s ≥ 1

GCD

( ∏
i=1...s

(ηpi + θqi)

)
=
∏
i=1...s

GCD(ηpi + θqi) (2.63)

For example:
GCD

(
a2

0b
2
2c2 + a2

1b
2
0c0

)
= a2

0b
2
2c2 + a2

1b
2
0c0,

GCD
(
a4

0b
2
2c

2
2 + a4

1b
2
0c

2
0

)
= (a2

0b2c2 + a2
1b0c0)2.

(2.64)

Proposition 2.5.1. The Newton polytope N(R) for the system (2.55) supports the following
simple initial forms:

48



inita =
• •
• •
• •

= GCD
(
aαβ0 bβ2 c

α
2 + (−1)αβ+α+βaαβ1 bβ0 c

α
0

)
,

initb =
• •
• •
• •
×

• •
• •

• •
= a0a

(α−1)(β−1)
1 (aα−1

0 b2c
α−1
1 + aα−1

1 b1c
α−1
0 )(aβ−1

0 c2b
β−1
1 + aβ−1

1 c1b
β−1
0 ),

initc =
• •
• •
• •

= a
α(β−1)
1 bβ−1

0 (aα0 b2c
α
1 + aα1 b0c

α
2 ),

initd =
• •
• •
• •

= a
(α−1)β
1 cα−1

0 (aβ0 b
β
1 c2 + aβ1 b

β
2 c0),

inite =
• •
• •

• •
= aβ0 c2 ·GCD

(
a

(α−1)β
0 bβ2 c

α−1
2 + (−1)(α−1)β+(α−1)+βa

(α−1)β
1 bβ1 c

α−1
0

)
,

initf =
• •
• •
• •

= aα0 b2 ·GCD
(
a
α(β−1)
0 bβ−1

2 cα2 + (−1)(α−1)β+(α−1)+βa
α(β−1)
1 bβ−1

0 cα1

)
,

initg =
• •
• •
• •

= aα+β−1
0 b2c2 ·GCD

(
a

(α−1)(β−1)
0 bβ−1

2 cα−1
2 +

(−1)(α−1)(β−1)+(α−1)+(β−1))a
(α−1)(β−1)
1 bβ−1

1 cα−1
1

)
,

inith =
• •
• •
• •

= aαβ−1
1 bβ−1

0 cα−1
0 (a0b1c1 + a1b0c0),

where a, b, c, d, e, f, g, h are the faces of N(R) (Figure 2.7), and diagrams on the right correspond
to distinct binomial factors.

Figure 2.7: The Newton polytope N2,2 with the initial forms (2.55), as viewed from the top
(left) and bottom (right). Blue faces do not have other points rather than the vertices

Proof. Every binomial factor in inita, initb, . . . correspond to a sub-resultant, whose diagram is
given on the right side of each expression in Proposition 2.5.1. Let’s associate mixed decom-
positions to these initial forms, as shown in figure 2.8. This provides a desired combinatorial
interpretation of the faces. Each hexagon in a mixed decomposition gives the distinct binomial
factor in the corresponding initial form, and all rectangles together determine the monomial
prefactor. The GCD operator has the following interpretation: each kι ≥ 1 in (2.50) is uniquely
fixed when (α, β) are fixed, so that the total degree of R̃kiι equals to the area of the ι-th cell of
a mixed decomposition.

E.g., for inita there is only a single hexagon (the top-left in Figure 2.8), which is Q itself
– so there is no monomial prefactor. This hexagon gives the sub-resultant R̃ = aαβ0 bβ2 c

α
2 +
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a b c d

e f g h

Figure 2.8: mixed decompositions of Q, associated to the faces of N2,2

(−1)αβ+α+βaαβ1 bβ0 c
α
0 . We see that the area of Q is αβ + α + β, so if α and β are not co-prime,

it would give k > 1, hence

inita = GCD
(
aαβ0 bβ2 c

α
2 + (−1)αβ+α+βaαβ1 bβ0 c

α
0

)
.

In the case of initb we have two hexagons (giving the two distinct binomial factors) and two
quadrangles for the monomial: the bottom square is a0, and the top quadrangle is a(α−1)(β−1)

1

(compare with Figure 2.3). To sum up, by using the mixed decompositions a, b, c, d, e, f, g, h we
completely described the bijection between the faces and simple initial forms, which completes
the proof.

Having the above said, we conclude that quiver A-polynomial for any two-vertex quiver is
tempered, with its face polynomials all being binomials. It follows directly from factorization
formulas for the initial forms a, b, c, d, e, f, g, h. The polytope N(R) projects onto N(A) in such
a way that the faces of N(R) do not overlap each other (colliding the axes x1 and x2 in figure
2.5). Binomiality of the initial forms of Proposition 2.5.1 translates to the corresponding face
polynomials, which shows that A(x, y) is tempered for every quiver of the form (2.52).

2.5.2 Three-vertex quivers

In the case of quivers with three vertices it is not sufficient to consider only diagonal quivers to
cover all possible cases. However, for us this scenario is important because it is still tractable
from the same perspective as the two-vertex case. We therefore consider for α, β, γ ≥

Cdiag(α,β,γ) =

α 0 0

0 β 0

0 0 γ

 ,


F0 = a0 + a1z1z2z3

F1 = b0 + b1z1 + b2z
α
1

F2 = c0 + c1z2 + c2z
β
2

F3 = d0 + d1z3 + d2z
γ
3

(2.65)
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and introduce the initial forms initφp,q (which we will shortly write as φp,q, at the same time
referring to the corresponding face of N(R)), labelled by p, q ≥ 0. They are given by products
over all permutations of diagrams with p rows of the form [•• ] and q rows of the form [ ••],
such that p+ q = m (the red color is just for a better visual distinction between the two cases).
The only exception is φ0,0, which rows are of the form [• •]. For m = 3, there are five such
forms:

φ0,0 =
• •
• •
• •
• •

φ3,0 =
• •
• •
• •
• •

φ0,3 =
• •
• •
• •
• •

φ2,1 =
• •
• •

• •
• •

×
• •
• •
• •

• •

×
• •
• •
• •
• •

φ1,2 =
• •
• •
• •
• •

×
• •
• •

• •
• •

×
• •
• •
• •

• •

(2.66)

For example, let us illustrate how φ0,3 is calculated. From the corresponding diagram in (2.66)
we get

a0 = −a1z1z2z3, z
α−1
1 = −b1

b2
, zβ−1

2 = −c1

c2
, zγ−1

3 = −d1

d2
(2.67)

To find the binomial factor, we compute the mixed resultant for this system. Raising the first
equation to the power (α− 1) immediately eliminates z1:

a
(α−1)
0 = (−a1z2z3)(α−1)

(
−b1
b2

)
(2.68)

Consequently, we raise it to (β − 1) and (γ − 1) and getting rid of numerators, to obtain(
a

(α−1)(β−1)(γ−1)
0 b

(β−1)(γ−1)
2 c

(α−1)(γ−1)
2 d

(α−1)(β−1)
2 +

(−1)(α−1)+(β−1)+(γ−1)+1a
(α−1)(β−1)(γ−1)
1 b

(β−1)(γ−1)
1 c

(α−1)(γ−1)
1 d

(α−1)(β−1)
1

) (2.69)

The binomial part of φ0,3 is equal to the GCD applied to (2.69). A genuine guess of the ar-
rangement of three-dimensional blocks (figure 2.9) gives the monomial expression. We therefore
obtain (analogously for other diagrams):

Figure 2.9: The mixed decomposition induced by φ0,3: the red cells correspond to three binomials
in (2.70), while the union of blue cells uniquely determines the monomial µ0,3.
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φ0,0 = GCD
(
a0
αβ γb2

β γc2
αγd2

αβ + (−1)σ+1 a1
αβ γb0

β γc0
αγd0

αβ
)
,

φ3,0 = µ3,0 · (a0b1c1d1 − a1b0c0d0),

φ2,1 = µ2,1 ·GCD
((
a0
α−1b2c1

α−1d1
α−1 + (−1)α+1 a1

α−1b1c0
α−1d0

α−1
)
×(

a0
β−1c2b1

β−1d1
β−1 + (−1)β+1 a1

β−1c1b0
β−1d0

β−1
)
×(

a0
γ−1d2b1

γ−1c1
γ−1 + (−1)γ+1 a1

γ−1d1b0
γ−1c0

γ−1
))

,

φ1,2 = µ1,2 ·GCD
((
a0

(β−1)(γ−1)b1
(β−1)(γ−1)c2

γ−1d2
β−1+

(−1)β+γ+1 a1
(β−1)(γ−1)b0

(β−1)(γ−1)c1
γ−1d1

β−1
)
×(

a0
(α−1)(γ−1)c1

(α−1)(γ−1)b2
γ−1d2

α−1+

(−1)α+γ+1 a1
(α−1)(γ−1)c0

(α−1)(γ−1)b1
γ−1d1

α−1
)
×(

a0
(α−1)(β−1)d1

(α−1)(β−1)b2
β−1c2

α−1+

(−1)α+β+1 a1
(α−1)(β−1)d0

(α−1)(β−1)b1
β−1c1

α−1
))

,

φ0,3 = µ0,3 ·GCD
(
a

(α−1)(β−1)(γ−1)
0 b

(β−1)(γ−1)
2 c

(α−1)(γ−1)
2 d

(α−1)(β−1)
2 +

(−1)(α−1)+(β−1)+(γ−1)+1a
(α−1)(β−1)(γ−1)
1 b

(β−1)(γ−1)
1 c

(α−1)(γ−1)
1 d

(α−1)(β−1)
1

)
,

(2.70)

where σ = αβ γ + αβ + αγ + β γ, and the monomials are:

µ3,0 = aαβγ−1
1 bβγ−1

0 cαγ−1
0 dαβ−1

0 ,

µ2,1 = a0a1
αβ γ−α−β−γ+2b0

(β−1)(γ−1)c0
(α−1)(γ−1)d0

(α−1)(β−1),

µ1,2 = a0
α+β+γ−2a1

(α−1)(β−1)(γ−1)b2c2d2,

µ0,3 = aαβ+αγ+βγ−α−β−γ+1
0 bβ+γ−1

2 cα+γ−1
2 dα+β−1

2 .

(2.71)

Our next step is to show that the initial forms {φp,q}p+q=m completely determine the re-
sultant polytope and compute the corresponding face polynomials for a diagonal quiver of an
arbitrary size.

2.5.3 Arbitrary number of vertices

Consider the quiver C = diag(α1, . . . , αm), αi ≥ 2, m ≥ 2 and initial forms {φp,q}, where we
indicate the [•• ]-type rows by I = {i1, . . . , ip}, and [ ••]-type rows by K = {k1, . . . , kq}.

Proposition 2.5.2. Let I = {i1, . . . , ip}, K = {k1, . . . , kq}, p+ q = m. Define

ϕI,K :=

(
a0

∏
i∈I

bi,1

)∏
k∈K(αk−1) ∏

k∈K
b

∏′
k′∈K
k′ 6=k

(αk′−1)

k,2 +

(−1)

1+
∑
k∈K

∏
k′∈K
k′ 6=k

(αk′−1)
(
a1

∏
i∈I

bi,0

)∏
k∈K(αk−1) ∏

k∈K
b

∏′
k′∈K
k′ 6=k

(αk′−1)

k,1

(2.72)
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where the product
∏′ equals to 1 if q = 1. Then

φp,q := µp,q ·
∏

I,K⊂{1,...,m}
|I|=p,|K|=q

GCD(ϕI,K) (2.73)

are well-defined initial forms, where the product is taken over all m!
p!q! choices of the subsets I,K,

and the monomial µp,q is given by

µp,q =a
1+
∑
|K′|=1...q−1

∏
k′∈K′ (αk′−1)

0 a

∑
|K′|=q+1...m

∏
k′∈K′ (αk′−1)

1 ×

∏
i=1...m

b

∑
|K′|=q−2...m−1

i/∈K′

∏
k′∈K′ (αk′−1)

i,0 b

δ(q)+
∑
|K′|=1...q−2

i/∈K′

∏
k′∈K′ (αk′−1)

i,2

(2.74)

where δ(q) = 0 if q ≤ m− 1, and δ(q) = 1 otherwise.

Proof. To get the expression for ϕI,K , we write the first equation in (2.45)

a0 = −a1z1 . . . zm, (2.75)

and then raise the right and left hand sides consequently to powers (αk − 1), where k ∈ K

corresponds to [ ••]-type rows, and plug zαk−1
k = − bk,1

bk,2
in order to eliminate the variables

z1, . . . , zm. To compute the monomials, we denote by (π) the set of all permutations of rows in
a diagram which are not marked as blue, e.g.

m+1
rows


•
• •

• •
• •
• •
...

...
...

• • (π)

:=

•
• •

• •
• •
• •
...

...
...

• •

×

•
• •
• •

• •
• •
...

...
...

• •

×

•
• •
• •
• •

• •
...

...
...

• •

× · · · ×

•
• •
• •
• •
• •
...

...
...

• •

•
• •
• •

• •
• •
...

...
...

• • (π)

:=

•
• •
• •

• •
• •
...

...
...

• •

×

•
• •

• •
• •

• •
...

...
...

• •

×

•
• •
• •
• •

• •
...

...
...

• •

× · · · ×

•
• •
• •
• •
...

...
...

• •
• •

(2.76)

The number of such permutations is equal to

m!

(#black rows)! · (#red rows)!
(2.77)

Note that the operation “×” is commutative, since it corresponds to a union of the corre-
sponding cells in the mixed decomposition. The blue dot indicate the equation fixed under
permutation. For example, in (2.76) it corresponds to F̃0 = a0 +((((

((a1z1 . . . zm. Therefore, this
diagram contributes to a0 in the expression (2.74). On another hand, all diagrams contributing
to a1 correspond to F̃0 =��a0 + a1z1 . . . zm, and so on. Our claim is that the following diagrams
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completely determine (2.74)

a0 :

•
• •
• •
• •
• •
...

...
...

• •

×

•
• •

• •
• •
• •
...

...
...

• • (π)

×

•
• •
• •

• •
• •
...

...
...

• • (π)

× · · · ×

•
• •

...
...

...
• •

• •
...

...
...

• • (π)

, unless #red rows ≤ q − 1 (2.78)

a1 :

•
• •
• •
• •
• •

...
...

...
• •

×

•
• •
• •
• •
• •

...
...

...
• • (π)

×

•
• •
• •
• •
• •

...
...

...
• • (π)

× · · · ×

•
• •
...

...
...

• •
• •

...
...

...
• • (π)

, unless #red rows ≥ q + 1 (2.79)

bi,0 :

• •
•
• •
• •
• •
• •

...
...

...
• •

×

• •
•
• •
• •
• •
• •

...
...

...
• • (π)

×

• •
•
• •
• •
• •
• •

...
...

...
• • (π)

× · · · ×

• •
•
• •
...

...
...

• •
• •

...
...

...
• • (π)

, unless #red rows ≥ q + 1 (2.80)

bi,2 :

• •
•

• •
• •
• •
• •
...

...
...

• •

×

• •
•

• •
• •
• •
• •
...

...
...

• • (π)

×

• •
•

• •
• •

• •
• •
...

...
...

• • (π)

× · · · ×

• •
•

• •
...

...
...

• •
• •
...

...
...

• • (π)

, unless #red rows ≤ q − 1 (2.81)

where the number of red rows is equal to |K ′| in (2.74). For example, the exponent of a0 in
(2.74) is equal to 1 +

∑
|K′|=1...q−1

∏
k′∈K′(αk′ − 1), which is obtained by summing the volumes

of cells (2.78)

•
• •
• •
• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=1

,

•
• •

• •
• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=α1−1

,

•
• •
• •

• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=(α1−1)(α2−1)

, . . . (2.82)

In the first case we are left with F̃0 = a0 and F̃i = bi,0 + bi,2z, i = 1 . . .m, which corresponds to
Q̃ being a m-cube with Vol(Q̃) = 1. Similarly, each j-th row highlighted by red, gives the factor
(αj − 1) to the volume of Q̃. Calculating the volumes for each diagram for a0, a1, b∗,0, b∗,2 and
summing them up in each case, we obtain the exponents (2.74). Besides, one can verify that the
total degree of φp,q is equal to the total volume Vol(Q). We have

Vol(Q) = α1 . . . αm +

m∑
j=1

α1 . . .��αj . . . αm. (2.83)

TakeMD(Q) = Q, which corresponds to the bottom edge of N(RC) and gives

φ0,0 := GCD
(
a
∏
αj

0

∏
b
∏
j′ 6=j αj′

j,2 + (−1)
∏
αj+

∑∏
αj′a

∏
αj

1

∏
b
∏
j′ 6=j αj′

j,0

)
'

• •
• •
• •
...

...
...

• •

(2.84)
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The GCD operator does not change the total degree of a polynomial, therefore the degree of φ0,0

is equal to the right hand side of (2.83). On another hand, since the cell is unique and equals
to Q itself, its total degree is equal to the volume of Q. For m = 2 we have the complete set

{φp,q} = {φ0,0} ∪ {φ2,0, φ0,2, φ1,1}. (2.85)

E.g.,

φ1,1 = a0a
(α1−1)(α2−1)
1 (aα1−1

0 b2c
α1−1
1 + aα1−1

1 b1c
α1−1
0 )(aα2−1

0 c2b
α2−1
1 + aα2−1

1 c1b
α2−1
0 ) (2.86)

(recall (2.51)). The volume Vol(Q) = α1α2 + α1 + α2. We see that the condition deg(φ1,1) =

Vol(Q) is satisfied. Analogously, for m = 3 it can be checked from the formulas (2.70). For
arbitrary m it then follows by induction. Indeed, increasing m by one amounts to adding one
extra row to all diagrams we have, and also introducing some new diagrams. Since the volume
of a cell given by a diagram is the product over all its rows, the individual volumes are modified
as

α̃1 . . . α̃m 7→ α̃1 . . . α̃mα̃m+1

α̃1 . . .��̃αj . . . α̃m 7→ α̃1 . . .��̃αj . . . α̃mα̃m+1, j 6= m+ 1

α̃1 . . .���
�α̃j , α̃j′ . . . α̃m 7→ α̃1 . . .���

�α̃j , α̃j′ . . . α̃mα̃m+1, j, j
′ 6= m+ 1

...

(2.87)

where α̃i := αi − 1. But this picture is not yet symmetric, since α̃m+1 is never crossed out. To
make it fully symmetric, we have to take the permutation classes (π) in both binomial (2.72)
and monomial (2.74) parts. When we sum up the volumes of all cells in φp,q with p + q = m,
some cancellations occur (i.e. in the total volume all monomials αi1 . . . αik with k < m− 1 are
cancelled), which results in (2.83). The same type of cancellation happens if we add one extra
dimension, since the formula is symmetrized (thanks to the permutations involved), and only
the number of factors is increased by one. Therefore, {φp,q} are well-defined initial forms for
any m ≥ 2.

The following result implies that for any m-vertex quiver with C = diag(α, . . . , α) its quiver
A-polynomial is tempered, and therefore quantizable.

Theorem 2.5.1. The initial forms {φp,q}p+q=m are in bijection with face polynomials for a
diagonal quiver if and only if (α1, . . . , αm) = (α, . . . , α), as shown in figure 2.10.

Proof. We have

φmin
0,0 = (−1)

∏
αj+

∑∏
αj′a

∏
αj

1

∏
b
∏
j′ 6=j αj′

j,0 , φmax
0,0 = a

∏
αj

0

∏
b
∏
j′ 6=j αj′

j,2 . (2.88)

These monomials produce the highest powers of y in the quiver A-polynomial and correspond to
the marked vertices of N(A) in figure 2.10, where we denote φ0 := φ0,0. Let us write explicitly
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Figure 2.10: The Newton polygon for quiver A-polynomial with C = diag(α, . . . , α).

the extremal monomials for φp,q:

φmin
p,q = µp,q ·

∏
π(I,K)

(−1)

1+
∑
k∈K

∏
k′∈K
k′ 6=k

(αk′−1)
(
a1

∏
i∈I

bi,0

)∏
k∈K(αk−1) ∏

k∈K
b

∏
k′∈K
k′ 6=k

(αk′−1)

k,1

φmax
p,q = µp,q ·

∏
π(I,K)

(
a0

∏
i∈I

bi,1

)∏
k∈K(αk−1) ∏

k∈K
b

∏
k′∈K
k′ 6=k

(αk′−1)

k,2

(2.89)

For example, the first few monomials project onto (x, y) plane as

φmin
m,0 : (0, 0), φmax

m,0 : (0, 1),

φmin
m−1,1 : (0, 1), φmax

m−1,1 :

(
m, 1 +

∑
i=1...m

(αi − 1)

)
(2.90)

where (xi, yi) = (deg(φ
min/max
∗ , x), deg(φ

min/max
∗ , y)). The vertical edge given by φm,0 is always

presented in A(x, y), since it encodes the analytic branch of y(x).
Now we discuss how a mixed decomposition can be further partitioned by dividing each cell

into even smaller cells. This implements a map sending a face to its sub-face. We can think of
it acting on the two mutually dual levels: 1) the level of mixed decompositions, and 2) the level
of diagrams. If we have a simple initial form supported on a face, we can apply this map to each
of its diagrams as follows. Take a diagram which corresponds to some ϕI,K in (2.72):

ϕI,K =

• •
• •

...
...

...
• •

• •
...

...
...

• •

(2.91)

and perform the following steps:

1. in the first equation F0, highlight the leftmost (rightmost) dot, by putting it into the “box”
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2. in the rest of equations F1, . . . , Fm, do the same for the rightmost (leftmost) dots: either

• •
• •

...
...

...
• •

• •
...

...
...

• •

or

• •
• •

...
...

...
• •

• •
...

...
...

• •

(2.92)

3. copy this diagram as many times as the number of its rows, every time removing one of
the dots which are not in the box:

• •
• •

...
...

...
• •

• •
...

...
...

• •

−→


•
• •

...
...

...
• •

• •
...

...
...

• •

• •
•

...
...

...
• •

• •
...

...
...

• •

• •
• •

...
...

...
•

• •
...

...
...

• •

• •
• •

...
...

...
• •

•
...

...
...

• •

• •
• •

...
...

...
• •

• •
...

...
...

•


(2.93)

which corresponds to the map

edge −→ vertex

4. the resulting diagrams correspond to a vertex of N(R): a tail or a head of an edge given
by ϕI,K (if the leftmost or rightmost configuration is chosen, respectively)

Therefore, if we have just a single diagram (remember that it always corresponds to an edge),
there are only two options: detalization gives either its head or tail vertex, since we assume that
the head is always above the tail). On another hand, if the face has a bigger dimension, we can
apply detalization to each of its diagrams independently, each time choosing either a head or a
tail. In this way, all possible choices generate the complete set of sub-faces (figure 2.11 shows
an example of such partition).

This shows how the aforementioned steps apply. For example, the underlined diagrams in
figure 2.11 form the pattern (2.93). The choice of either rightmost or leftmost boxes implements
the cubical flip inside each hexagon. In figure 2.7 the middle mixed decomposition corresponds
to the 2-dimensional face b, whereas each of the four subdivisions give one of its edges.

Let’s prove an important intermediate statement, which clarifies the incidence relations for
{φp,q}.

Proposition 2.5.3. φmax
m−i,i = φmin

m−i−1,i+1, ∀i = 0 . . .m; m ≥ 2.

Proof. We check whether φmax
2,1 = φmin

1,2 for C = diag(α1, α2, α3). Firstly, we subdivide φ2,1 =
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Figure 2.11: Four distinct subdivisions of φ1,1, which are related by cubical flips.

• •
• •

• •
• •

×
• •
• •

• •
• •

×
• •
• •
• •

• •

as follows

•
• •

• •
• •

×
•
• •

• •
• •

×
•
• •
• •

• •

• •
•

• •
• •

×
• •

•
• •

• •

×
• •

•
• •

• •

• •
• •
•

• •

×
• •
• •

•
• •

×
• •
• •

•
• •

• •
• •

• •
•

×
• •
• •

• •
•

×
• •
• •
• •

•

(2.94)

The boxed monomials remain non-zero and we do not cross them out. This results in the
decomposition of each diagram in φ2,1 into four copies forming a column in (2.94), all of which
define φmax

2,1 . The monomial µ2,1:

(a0) :
•
• •
• •
• •

(a1) :
•
• •
• •
• •

•
• •
• •
• • (π)

(b∗,0) :
• •
•
• •
• • (π)

(2.95)
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Now we do the same thing for φ1,2 =
• •
• •

• •
• •

×
• •

• •
• •

• •

×
• •

• •
• •

• •

.

•
• •

• •
• •

×
•
• •

• •
• •

×
•
• •
• •

• •

• •
•

• •
• •

×
• •

•
• •

• •

×
• •

•
• •

• •

• •
• •

•
• •

×
• •

• •
•

• •

×
• •

• •
•

• •

• •
• •

• •
•

×
• •

• •
• •

•

×
• •

• •
• •

•

(2.96)

The monomial µ1,2:

(a0) :
•
• •
• •
• •

•
• •

• •
• • (π)

(a1) :
•
• •
• •
• •

(b∗,2) :
• •

•
• •
• • (π)

(2.97)

We see that the binomial counterparts of both φmax
1,2 and φmin

2,1 have the identical collections of b∗,1-
diagrams. Moreover, it immediately extends to any φp,q, since detalizing any of b∗,1 corresponds
to taking a row of the form [•• ] or [ ••]. So, in order to get the maximum (minimum), we
remove the left (right) neighbouring “•”, which results in the same diagram. Next, comparing
the a0- and a1-diagrams, we see that those ones, which are in the binomial part of φmin

2,1 , coincide
with the µ-part in φmax

2,1 , and vice versa. This is also true for b∗,2 counterpart (follows from
Proposition 2.5.2). Therefore, the two extremal monomials are equal. This rule extends to any
p, q (the only difference is that we have to consider larger permutations), hence the claim.

Returning to theorem 2.5.1, it is left to show that after the principal specialization (2.47)
the x- and y-degrees of each monomial in φp,q grow linearly. In other words they project onto
the same segment and φp,q gives a face polynomial of AC(x, y).

H(1)
p,q H(2)

p,q H(3)
p,q

min min min
min min max
min max min
min max max
max min min
max min max
max max min
max max max

{min,min,min}

{max,max,max}

{min,min,max}

{min,max,max}

φmin
2,1

φmax
2,1 = φmin

1,2

Figure 2.12: The principal specialization of φ2,1 (analogously for φ1,2).

Compare φ2,1 and φ1,2. Each of them contains three distinct binomial factors H(i)
p,q and

monomials given by the triples min/max, figure 2.5.3. We perform the following steps: make
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the a1 (a0) dot frozen: • , along with all the leftmost (rightmost) b-type dots, as in (2.94).
Then duplicate the diagram by removing each non-frozen dot, to obtain a collection of diagrams
corresponding to a single coefficient in a non-negative power (to define extremal monomial).

Recall that the binomial counterpart of φmin
2,1 does not depend on neither a0 nor bi,2, which

means that the (x, y)-coordinates of the minimal monomial are completely fixed by µ2,1. Moving
to the next order gives an increment to both x- and y- degrees of µ2,1 (which we denote as µ̃x
and µ̃y). For the fist increment, we replace a single “min” by “max”, say, in Hs := H(s)

p,q for
s ∈ {1, 2, 3}. This amounts to changing the frozen configuration, so that the a0-degree gets the
increment +

∏
j∈K′s(αj − 1), where K ′s is attached to Hs. If we do that again, we modify yet

another factor Hs′ , getting the increment: a0 7→ a0 +
∏
j∈K′

s′
(αj − 1), and so on, until we reach

φmax
2,1 ' (max,max,max).
Therefore, each time by switching min to max, we get the increments for the (x, y)-coordinates

of a monomial on the edge of N(A):

x 7→ x+
∑

r=1...m

∏
j∈K′s\{r}

(αj − 1), y 7→ y +
∏
j∈K′s

(αj − 1), (2.98)

We see that the increment, being a function of (α1, . . . , αm), is non-linear. Now it becomes clear
by looking at (2.98) that it is linear only when αi are all equal. Of course the (x, y)-degree of
the monomial does not depend on permutation (i.e. (min,min,max) and (max,min,min) are
indistinguishable after the (x, y)-projection). Therefore, eight monomials of φ2,1 (or φ1,2) are
mapped onto four points on the edge ofN(A). The endpoints of an edge in figure 2.5.3 correspond
to minimal and maximal powers of a0 and the corresponding diagram has an identity permutation
only, which shows that such extremal monomial is unique. On another hand, intermediate points
on a face always correspond to several permutations and therefore produce several monomials.
If αi = α for i = 1, . . . ,m, then all monomials of φp,q lie on the same edge of the Newton polygon
and therefore completely describe the face polynomial, which completes the proof of theorem
2.5.1.

Summing up, we have confirmed that quiver A-polynomial for C = diag(α, . . . , α) is tem-
pered. Although we were not able to prove it for an arbitrary quiver, there is a lot of evidence for
the statement to be true. In the next chapter we proceed to topological recursion for the Nahm
sums and use the advantage that quiver A-polynomial is quantizable in a class of examples.
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Chapter 3

Topological recursion for Nahm sums
and quantum Airy structures

In this chapter we verify whether Nahm sums can be reconstructed by means of the topological
recursion. We select several two-vertex quivers with genus zero quiver A-polynomials (in the
principal specialization) and apply to them the topological recursion. If the results are positive,
then topological recursion can in principle compute all invariants encoded in a quiver, such
as quantum knot polynomials, counts of topological strings, lattice paths, and other related
objects. In general the A-model for a quiver is not known, but we know that its partition
function takes form of the Nahm sum. Besides, there is a good amount of evidence that such
A-model exists [24] (as in the case of the knots-quivers correspondence), and one way to confirm
the existence of the A-model, is to postulate the B-model and apply the topological recursion.
If the latter is functorial, the A-model should be well-defined. Therefore our main focus is on
the topological recursion wave functions constructed from classical quiver A-polynomials and
verification whether the ~-expansions of Nahm sums agree with the perturbative result given by
the topological recursion, order by order in ~. The results of section 3.5 are presented in [58].

Another interesting class of examples comes from quantum Airy structures, which generalize
the topological recursion and take form of an algebra of differential operators. They are closely
related to vertex operator algebras and orbifold CFTs. To a date, such structures are not known
for Nahm sums. However, there is an evidence suggesting such a relation, for example in the
context of the refined volume conjecture [117]. We investigate one version of such structure,
related to a spectral curve with non-simple ramification point. The results of section 3.6.2 are
presented in [57].

3.1 A bird’s-eye view on topological recursion

Topological recursion originated from Hermitian one-matrix model [3]. Shortly after it was
found that this recursion admits a diagrammatic description in terms of punctured surfaces
[118, 119]. The next step was its generalization to the case of an arbitrary spectral curve [120].
Subsequently it was realized that the recursion has numerous applications, which go beyond the
matrix models formalism (see, for example, [121] for a brief survey).
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An essential ingredient for the topological recursion (at least in its original formulation) is
a spectral curve. In the next section we will derive spectral curves for matrix models and then
proceed to the general definition. In short, topological recursion spectral curve is a pair of
complex-valued meromorphic functions (one of them has to be a ramified cover) on a Riemann
surface which obey some polynomial equation. In practice we start from a defining polynomial
and find its parametrization to obtain the initial data for the recursion (different choice of
parametrization leads to different result of the recursion computation). There are two kinds of
curves that we consider:

P (x, y) = 0, (x, y) ∈ C× C usual variables

A(eu, ev) = 0, (u, v) ∈ C× C exponential variables
(3.1)

For example, all hermitian matrix models with polynomial potential lead to spectral curves in
usual variables (where the the topological recursion was first detected). On another hand, knot
A-polynomials, topological strings and quivers correspond to exponential variables.

So what kind of invariants does the topological recursion compute? By definition, it assigns
an infinite tower of correlation differentials to a given spectral curve. Such differentials are
denoted as ωg,n and represented as punctured surfaces (figure 3.1) of genus g and n marked
points (boundaries). The condition 2g − 2 + n > 0 manifests that ω0,1 and ω0,2 are the initial

Figure 3.1: Pictorial presentation of ωg,n.

data for the recursion, which then runs over the Euler characteristic of such differentials. From
the bird’s-eye view, the topological recursion consists of the two main steps:

1. solving the problem for the simplest topologies: ω0,1 (a disk), ω0,2 (a cylinder), ω0,3 (a pair
of pants)

2. understanding the behaviour when the topologies are glued (like a pair of pants), or, in
another direction, degenerated (one removes a pair of pants or degenerates the surface)

3.2 Topological recursion from matrix models

We start by reviewing matrix models, spectral curves, loop equations, and from these derive
the topological recursion. Most of the material is nicely exposed in the lectures [122]. We are
focusing on the one-matrix integral, which is an instance of closed partition function (3.56):

Z = 〈1〉 :=

∫
dM exp {−N TrV (M)} (3.2)

63



where M is a N × N complex matrix, and V (M) is the potential, which we assume to be
polynomial in M . Additionally, we take M to be hermitian. In this case the integral (3.2) is
also called hermitian. Integration measure is

dM =
N∏
i<j

d (Re Mij) d (Im Mij)
N∏
i=1

dMii (3.3)

The matrix integral (3.2) admits 1
N -expansion in only even powers of 1

N (with ~ = 1
N2 ):

Z = eF̃ , F̃ = N2F̃0 + F̃1 +
1

N2
F̃2 +O(

1

N3
). (3.4)

The simplest non-trivial case of cubic potential would be:

Z =

∫
dM exp

{
−N Tr

(
t2
M2

2
+ t3

M3

3

)}
, (3.5)

where t2 and t3 are continuous parameters (“times”). To warm up, let us show that such inte-
gral already knows something about the topology of Riemann surfaces. Denote the Gaussian
counterpart

Z0 :=

∫
dM exp

{
−N Tr

(
t2
M2

2

)}
(3.6)

and expand Z
Z0

in powers of N :

1

Z0

∫
dMe−N Tr(M2)

(
1−N t3

3
Tr(M3) +

N2

2!

(
t3

3
(Tr(M3))2

)
− N3

3!

(
t3

3
(Tr(M3))3

)
+ . . .

)
(3.7)

The powers of traces can be written as

Tr(M3) =
∑
i,j,k

MijMjkMki,

Tr(M4) =
∑
i,j,k,l

MijMjkMklMli,

(
Tr(M3)

)2
=

∑
i1,j1,k1
i2,j2,k2

Mi1j1Mj1k1Mk1i1Mi2j2Mj2k2Mk2i2 ,

(3.8)

and so on. Using Wick’s theorem which states that

1

Z0

∫
DMe−N Tr(M2)Mi1,j1Mi2,j2 . . .Mi2n,j2n =

∑
complete pairings

︷ ︸︸ ︷
M (1)M (2)

︷ ︸︸ ︷
M (3)M (4) . . . (3.9)

(for odd number of M ’s it is always zero), where each pairing is given by a simple formula:

︷ ︸︸ ︷
M M =

1

Nt2
δi1j2δj2i1 , (3.10)

we can rewrite the expansion (3.7) as a sum over graphs (Feynman diagrams). Figure 3.2
shows how it works for Tr(M4) =

∑
i,j,k,lMijMjkMklMli: we connect pairs of indices to make
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a directed graph, and then perform all possible identifications according to (3.9), which results
into “fattened” graphs, also called ribbon graphs. They can be drawn on Riemann surfaces of
various genera. Therefore, 1

N -expansion of matrix integral can be re-written as an infinite sum
over such graphs. It appears that the graphs can be re-collected according to the genus of the
corresponding surfaces, and we obtain the genus expansion of our closed partition function Z.
The closed free energy would then have an expansion:

F̃ =

∞∑
g=0

N2g−2F̃g (3.11)

which terms are represented by graphs.

i j

i

l

l k

k

j

Figure 3.2: Applying Wick’s theorem to Tr(M4) leads to the following three ribbon graphs, two
of them being planar; corresponding powers of 1

N are Euler characteristics χ(G) = #vertices−
#edges + #faces

Using the fact thatM is hermitian, and the measure (3.3) is invariant upon conjugationM 7→
UMU †, where U is a unitary matrix, we can diagonalizeM = UΛU † with Λ = diag(λ1, . . . , λN ),
and re-write (3.2) as an integral over eigenvalues:

Z =

∫ N∏
i=1

dλi∆
2(λ) exp

{
−N

N∑
i=1

V (λi)

}
(3.12)

where ∆ =
∏

1≤i<j≤N (λj − λi) is Vandermonde determinant. We can put the Vandermonde
further into the exponential:

Z =

∫ N∏
i=1

dλi exp

−N
N∑
i=1

V (λi) +
∑
i 6=j

log |λi − λj |

 (3.13)

This integral encodes distribution of eigenvalues. It resembles the Coulomb gas of particles.
Therefore, for large N we can apply saddle-point approximation to the integral to obtain spectral
curve, which determines universal properties of our matrix integral. Denote

S(λ1, . . . , λN ) = −N
N∑
i=1

V (λi) +
∑
i 6=j

log |λi − λj | (3.14)

the action; and assume polynomiality of V . The saddle points are given by the critical points
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of the action: ∂S
∂λi

= 0, which gives

V ′(λi) =
2

N

∑
æ6=i

1

λi − λj
, i = 1 . . . N (3.15)

where V ′(x) := dV
dx . Since V is polynomial, we are guaranteed to have finitely many solutions

to (3.15). Let’s pick any such solution (λ1, . . . , λN ) and define the resolvent:

W (x) :=
1

N

N∑
i=1

1

x− λi
(3.16)

where x is a continuous parameter. It can be shown to satisfy Riccati equation:

W (x)2 +
1

N
W ′(x) = V ′(x)W (x)− P (x) . (3.17)

Define W := limN→∞W . The equation (3.17) in the large N limit transforms into the algebraic
equation for W :

W
2 − VW + P = 0 (3.18)

This shows that W is a multi-valued function on the complex plane. Alternatively, we can think
of it as a single valued function, but living on a two-sheet covering of the complex plane (the
two sheets correspond to branches of 3.18). This picture gives geometry of a Riemann surface,
which we denote by Σ. We get:

W (x(t)) = y(t), (3.19)

where y : Σ → C is single-valued and meromorphic fucntion on Σ. Therefore, from the matrix
model we naturally obtain a triple

(Σ, x(t), y(t)) (3.20)

where x(t) and y(t) are two meromorphic functions on Σ. These two functions satisfy the
equation:

y2 − V ′(x)y + P (x) = 0 (3.21)

which defines the spectral curve for our matrix model, where P (x) := V ′(x)W (x)−W (x)2. For
example, gaussian integral Z0 (3.6) gives:

W =
1

2
(x−

√
x2 − 4) (3.22)

We are interested in correlation functions for our model, e.g., the moments:〈
TrMk

〉
=

1

Z0

∫
dM(TrMk) exp{−N TrV (M)} (3.23)

And we also define matrix model wave function as the following integral:

ψ(x) :=

〈
Tr

1

x−M

〉
(3.24)
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Its expansion has form:

ψ(x) ' exp

(
1

~
S0(x) + S1(x) + ~S2(x) +O(~2)

)
, (3.25)

i.e. all powers of ~ are involved, starting from 1
~ (compare with the closed partition function

(3.2), where we had only even powers of ~). One can use the following identity

∑
i,j

∫
Γ
dM

∂

∂Mij

((
Mk
)
ij
e−N TrV (M)

)
= 0 . (3.26)

to compute the first loop equation:

k−1∑
l=0

〈
TrM l TrMk−l−1

〉
−N

〈
TrMkV ′(M)

〉
= 0 . (3.27)

More generally, we may use

∑
i,j

∫
Γ
dM

∂

∂Mij

(
(Mµ1)ij TrMµ2 · · ·TrMµn e−N TrV (M)

)
= 0 . (3.28)

Which then results into more general loop equation for moments:

µ1−1∑
l=0

〈
TrM l TrMµ1−l−1

n∏
i=2

TrMµi
〉

+
n∑
j=2

µj

〈
TrMµ1+µj−1

n∏
i=2
i 6=j

TrMµi
〉

=

N
〈

TrV ′(M)Mµ1

n∏
i=2

TrMµi
〉
.

(3.29)

Now our aim is to re-write the loop equation for general correlation functions, not only moments.
Recall that we had the resolvent (3.16), for which we now put the index “one”:

W1(x) =

〈
N∑
i=1

1

x− λi

〉
=

〈
Tr

1

x−M

〉
=
∞∑
µ=0

x−µ−1 〈TrMµ〉 . (3.30)

We define higher (connected) correlation functions as follows:

Wn(x1, · · ·xn) =

(
β

2

)n
2
〈

Tr
1

x1 −M
· · ·Tr

1

xn −M

〉
c
, (3.31)

where the cumulant 〈 〉c is defined from the summation formula:

〈pµ1,...,µl〉 =
l∑

k=1

∑
tIj={µ1,...,µl}

k∏
j=1

〈
pIj
〉
c , (3.32)
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meaning that the expectation values of pµ =
∏`
j=1 TrMµj , are the sums over partitions:

〈p(µ1)〉 = 〈p(µ1)〉c , (3.33)

〈p(µ1,µ2)〉 = 〈p(µ1,µ2)〉c + 〈p(µ1)〉〈p(µ2)〉 , (3.34)

〈p(µ1,µ2,µ3)〉 = 〈p(µ1,µ2,µ3)〉c + 〈p(µ1)〉〈p(µ2,µ3)〉c + 〈p(µ2)〉〈p(µ1,µ3)〉c + 〈p(µ3)〉〈p(µ1,µ2)〉c
+ 〈p(µ1)〉〈p(µ2)〉〈p(µ3)〉 . (3.35)

For instance,

〈p(µ1,µ2,µ3)〉c = 〈p(µ1,µ2,µ3)〉 − 〈p(µ1)〉〈p(µ2,µ3)〉 − 〈p(µ2)〉〈p(µ1,µ3)〉 − 〈p(µ3)〉〈p(µ1,µ2)〉

+ 2〈p(µ1)〉〈p(µ2)〉〈p(µ3)〉 . (3.36)

One can show (as a consequence of (3.29)) that the following recursion holds for Wn:

Wn+2(x, x, I) +
∑
J⊂I

W1+|J |(x, J)W1+n−|J |(x, I\J)

+
n∑
i=1

∂

∂xi

Wn(x, I\{xi})−Wn(I)

x− xi
= N

(
V ′(x)Wn+1(x, I)− Pn(x; I)

)
, (3.37)

where I = {x1, . . . , xn}, and

Pn(x;x1, . . . , xn) :=

(
β

2

)n+1
2

〈
Tr

V ′(x)− V ′(M)

x−M

n∏
i=1

Tr
1

xi −M

〉
c

(3.38)

We are already very close to topological recursion. In fact, it would be a re-formulation of the
equation (3.37).

We need to define recursion on two parameters: g (genus) and n (the number of marked
points). For this purpose, we use the topological expansion of a (connected) correlation function
as the formal asymptotic expansion:

Wn =
∞∑
g=0

N2−2g−nWg,n . (3.39)

Now plugging this into (3.37) and determining the first few orders, we get:

W0,1 =
1

2

(
V ′ −M

√
σ
)

where (V ′)2 − 4P0,0 = M2σ , (3.40)
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Next, for W0,2:

W0,2(x, x′) =

∂

∂x′
W0,1(x)−W0,1(x′)

x− x′
+ P0,1(x;x′)

V ′(x)− 2W0,1(x)
, (3.41)

= − 1

2(x− x′)2
+

∂

∂x′
M(x′)

√
σ(x′)

2(x− x′)
+

∂

∂x′
V ′(x)− V ′(x′)

2(x− x′)
+ P0,1(x;x′)

M(x)
√
σ(x)

. (3.42)

It is useful to rewrite correlation functions as differential forms on the Riemann sphere:

ωg,n(z1, . . . , zn) = Wg,n(x1, . . . , xn)dx1 . . . dxn + δg,0δn,2
dx1dx2

(x1 − x2)2
, (3.43)

where xi = x(zi). For example,

ω0,2 = B
(
z, z′

)
=

dz dz′

(z − z′)2
. (3.44)

which is the fundamental 2nd kind differential on the Riemann sphere. Introducing the recursion
kernel

K(z, z′) =
1

2w(z′)dx(z′)

∫ z′

1
z′

B(z, ·) =
1

2w(z′)dx(z′)

(
1

z − z′
− 1

z − 1
z′

)
dz , (3.45)

we finally obtain for 2g − 2 + n > 0:

ωg,n(z1, · · · zn) =
∑
η=±1

Res
z=η

K(z1, z)

[
ωg−1,n+1(z, 1

z , z2, · · · zn)

+
′∑

h+h′=g
ItI′={z2,···zn}

ωh,1+|I|(z, I)ωh′,1+|I′|(
1
z , I
′)

]
,

(3.46)

where the modified summation
∑′ excludes the terms (h, I) = (0, ∅) and (h, I) = (g, {z2, · · · zn}).

The formula (3.46) is the topological recursion for matrix model of the type (3.2). ωg,n possess
the following properties:

• ωg,n(z1, . . . , zn) is a rational, symmetric function of z1, . . . , zn,

• they have poles at zi = ±1 only,

• the antisymmetry property

2g − 2 + n > 0 =⇒ ωg,n( 1
z1
, . . . , zn) = −ωg,n(z1, . . . , zn) . (3.47)

The punchline is that the correlation functions are completely determined by the loop equa-
tions (here considered for the one-cut case, but it also holds in a much greater generality). Also,
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ωg,0 need to be defined separately from (3.46):

g ≥ 2 : ωg,0 :=
1

2− 2g

∑
a

Resq→a ωg,1(q) Φ(q) (3.48)

where dΦ = ω0,1. Notice that if the potential V does not depend on “times”, ωg,0 are simply
scalars. If the times are switched on, they become rational functions of times.

3.3 Topological recursion: axiomatic definition

In the previous section we have showed how the topological recursion follows from the matrix
model loop equations. On another hand, instead of proving it as a theorem, we may take it as
a definition. This would open new perspectives for an enormous number of problems, for which
the matrix model is not known, but there is a suitable spectral curve.

Definition 3.3.1. Topological recursion spectral curve is the data

{Σ0, x(t), y(t), ω0,2(t1, t2)} (3.49)

where Σ0 is a Riemann surface of a non-negative genus, x(t) and y(t) are meromorphic functions
on Σ0, and ω0,2(t1, t2) is a fundamental bi-differential (Bergman kernel), which is symmetric and
has a double pole on diagonal. Moreover, there are values of t such that dx(t) = 0.

We also define meromorphic differential ω0,1 = ydx. Note that if Σ0 is of genus zero, then
ω0,2 has a canonical form

ω0,2(t1, t2) =
dt1dt2

(t1 − t2)2
+ holomorphic terms. (3.50)

Denote Ram the set of ramification points of x(t), that is, the set of zeroes of dx together with

Figure 3.3: Topological recursion spectral curve.

the set of poles of x of order ≥ 2. For each a ∈ Ram, denote σa a local Galois involution, s.t.
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u(σa(t)) = u(t), and σa(a) = a. Also, introduce the recursion kernel:

K(t1, t2, t3) =

1
2

∫ t2
ξ=t3

ω0,2(t1, ξ)

ω0,1(t2)− ω0,1(t3)
(3.51)

Definition 3.3.2. Topological recursion is the assignment of an infinite tower of correlation
differentials ωg,n(t1, . . . , tn) to a spectral curve, such that for for 2g − 2 + n ≥ 0

ωg,n(t1, . . . , tn) =
∑

a∈Ram
Rest→aK(t1, t, σa(t))[ωg−1,n+1(t, σa(t), t2, . . . , tn)+

′∑
g1+g2=g

I1∪I2={t2,...,tn}

ωg1,1+|I1|(t, I1)ωg2,1+|I2|(σa(t), I2)],
(3.52)

where
∑′ excludes ω0,1 and ω0,2 from the summation.

Note that in this definition all ramification point are assumed to be simple, i.e. all zeroes
of dx are of degree one. For higher order ramification points, there is a straightforward gener-
alization [123]. Correlation differentials ωg,n enjoy many nice properties, in particular, they are
meromorphic and fully symmetric under permutation of its variables. The only poles of ωg,n are
at ramification points of S.

Example 3.3.1. According to the remodelling theorem [107, 124, 108, 109], topological recur-
sion computes open and closed topological string invariants from a spectral curve as the B-model
curve. Consider an open topological string partition function [4], such that its logarithm has a
perturbative expansion:

Zopen = expF, F =

∞∑
g=0

~g−1Fg, (3.53)

where F is called the (open) free energy. The perturbation coefficients Fi encode enumerative
invariants of moduli spaces for topological strings (Gromov-Witten invariants). The free energy
can be written as:

Fg =
∑
n≥1

1

n!

∑
i1,...,in∈I

Fg,n(i1, . . . , in)xi1 · · · · · xin (3.54)

By means of the topological recursion, the coefficients Fg,n(i1, . . . , in) are defined from ωg,n:∑
i1,...,in

Fg,n(i1, . . . , in) ≡ ωg,n (2g − 2 + n > 0) (3.55)

On another hand, closed partition function Zclosed would have an expansion only in even powers
of ~:

Zclosed = exp F̃ , F̃ =
∞∑
g=0

~2g−2F̃g, (3.56)

where F̃ is the (closed) free energy. It is related to the topological recursion in a different way:

F̃g ≡ ωg,0 (3.57)
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3.4 Reconstructing WKB from the topological recursion

Having defined the topological recursion, we proceed to the next step. Our goal is to analyse
quiver A-polynomials, and we need quantum curves which annihilate the Nahm sums and the
semi-classical limit of whose gives classical quiver A-polynomials, suitable for the topological
recursion. On the other hand, quantum quiver A-polynomials produce their own recursions
which allow to compute the corresponding Nahm sum. Therefore we return to the quantization
problem, considered earlier in the second chapter, in order to define these recursions, and then
make a connection to the topological recursion. If the quiver correspons to a knot, then the
recursion also encodes HOMFLY-PT polynomials for this knot; however, in the next section
we will consider general quivers and their quantum A-polynomials in relation to topological
recursion.

3.4.1 Quantum curves as the recursion relations

We focus on the case of exponential variables necessary for the case of knots, quivers and
topological strings [47, 4, 48]1

x = eu, y = ev, (3.58)

where (u, v) ∈ (C∗)2 describe the classical phase space. To quantize it, one has to promote the
variables x, y to their non-commutative versions x̂, ŷ subject to relation

ŷx̂ = qx̂ŷ. (3.59)

If a classical curve (Lagrangian in (C∗)2) given by equation P (x, y) = 0 is quantizable, it means
that there exists a well-defined Schrödinger-like operator (“quantum curve”), given by the non-
commutative (or quantum) polynomial

P̂ (x̂, ŷ) =
∑
i,j

ci,j(q)x̂
iŷj , (3.60)

which enjoys the following properties:

• ci,j(q) are rational in q,

• limq→1 P̂ (x̂, ŷ) = P (x, y),

• there exist a unique solution ψ(x) to the quantum curve equation

P̂ (x̂, ŷ)ψ(x) = 0. (3.61)

Quantum A-polynomials for quivers produce their own type of recursion. Since ÂC annihilates
the Nahm sum, it can be translated to a linear q-difference equation dual to ÂC , encoding the
recursion for the q-coefficients of PC [127, 128] (this applies to any q-holonomic sequence). For
example, if some generating function G(x, q) =

∑∞
k=0Gk(q)x

k is annihilated by Â(x̂, ŷ), then
1The case of usual variables is worked out in [125], see also [126] for an overview.
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Gk(q) for every k satisfies the n-term linear recursion

Â
∗

(l̂, m̂)Gk(q) = 0 (3.62)

such that

l̂G(x, q) =

∞∑
k=0

Gk+1(q)xk =
1

x
(G(q, x)−G0(q)) ,

m̂G(x, q) =

∞∑
k=0

Gk(q)(qx)k = G(qx, q).

(3.63)

The two quantum polynomials (after a suitable choice of the initial condition) are related by

Â
∗

(x̂, ŷ) ≡ Â(x̂−1, ŷ). (3.64)

Let us note that in the case of quivers corresponding to a knot we have the normalized generating
series of HOMFLY-PT polynomials

PK(x, a, q) =
∞∑
r=0

xr

(q2; q2)r
Pr(a, q). (3.65)

The presence of the q-Pochhammer in the denominator modifies the formula (3.64) as follows:

Â
∗

(x̂, ŷ) ≡ Â(x̂−1(1− ŷ2), ŷ), (3.66)

from which we obtain the relation between knot and quiver A-polynomials when C corresponds
to a knot:

ÂK(x̂, ŷ) ≡ ÂC[K] (x̂1, . . . , x̂m, ŷ)
∣∣∣
xi=x̂

−1(1−ŷ2)
i=1...m

(3.67)

Example 3.4.1. Consider the sequence of r-coloured Jones polynomials for a knot K:

JK1 (q), JK2 (q), JK3 (q), . . . (3.68)

They satisfy a linear q-difference equation [129]

ÂK (l̂, m̂)JKr (q) = 0, (3.69)

where ÂK is a polynomial in l̂, m̂ such that

l̂JKr (q) = JKr+1(q), m̂JKr (q) = qrJKr (q) (3.70)

E.g., for the trefoil knot the polynomial ÂK can be written as the three-term recursion

J31
r (q) =

q−1m̂+ q4m̂−4 − m̂−1 − q1m̂−2

q1/2(q−1m̂− q2m̂−1)
l̂−1J31

r (q) +
q4m̂−4 − q3m̂−2

q2m̂−1 − q−1m̂
l̂−2J31

r (q) (3.71)

with the initial condition J31
0 (q) = 0, J31

1 (q) = 1. The AJ conjecture [47] relates it to the knot
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A-polynomial by evaluating q = 1 in (3.71), which gives (up to a normalizing monomial)

AT2,3(l,m) = (l − 1)(lm3 + 1) (3.72)

To adopt it for our notation, we change the variables l 7→ y,m 7→ 1
x and write

AT2,3(x, y) = (y − 1)(x3 + y) (3.73)

(this can be matched with the database [130]). We can also reconstruct the generating series
for Jones polynomials by converting Â

∗
to Â. The latter can be lifted to the quantum (super)

A-polynomial for r-coloured HOMFLY-PT superpolynomials and takes form [50, 51]

Â(x̂, ŷ) = a0 + a1ŷ + a2ŷ
2 , (3.74)

where

a0 =
a2t4(x̂− 1)x̂3(1 + aqt3x̂2)

q(1 + at3x̂)(1 + at3q−1x̂2)

a1 = −
a(1 + at3x̂2)

(
q − q2t2x̂+ t2(q2 + q3 + at+ aq2t)x̂2 + aq2t5x̂3 + a2qt6x̂4

)
q2(1 + at3x̂)(1 + at3q−1x̂2)

a2 = 1

and, to relate it to (3.71), one has to take a = qr, t = −1 and apply the transformation (3.64).
Finally, it can be related to a quiver A-polynomial for the corresponding quiver (1.56) via a
chain of knots-quiver specializations [21]. The quiver A-polynomial can be computed as the
resultant from the Nahm equations (1.62):

AC[T2,3](x1, x2,
√
y) = y4x1

2 + y3x3x2
2 − y3x1x2 − 2 y2x1x3 + 2 y2x2x3 − y2x1−

yx2x3 + yx1 + yx3 + x3
2 − x3.

(3.75)

Taking specialization xi = x−1(1− y2) we obtain:(
y2 − 1

)3
(x− 1)

(
y6 + x

)
x3

(3.76)

which agrees up to a factor with the knot A-polynomial after exchanging x and y. To this end,
we can also include a and t dependence to obtain (3.74) from (3.75).

Analogous recursion relations can be obtained for an arbitrary quiver, given its quantum
quiver A-polynomial (1.78). However, we are not guaranteed that such quantum polynomial is
unique. In fact we want to check whether the topological recursion reconstructs the same quan-
tum polynomial, annihilating the corresponding Nahm sum. The relation between topological
recursion and quantum polynomials is established from the form of topological recursion wave
function, which we consider in the next section.
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3.4.2 WKB method and topological recursion wave function

The quantum curve equation (3.61) can be solved recursively by the ansatz

ψ(x) = exp

(
1

~
S0(x) + S1(x) + ~S2(x) + . . .

)
, (3.77)

where the leading term is determined from the classical curve (solving y = y(x) from P (x, y) =

0):

S0(x) =

∫
log y(x)

dx

x
(3.78)

Such procedure is known as the WKB method, and ψ(x) is called the WKB solution, which we
denote as ψWKB.

On another hand, we can apply the topological recursion to P (x, y) to find ωg,n’s which can
be integrated and re-assembled into the topological recursion wave function, much like in the
matrix model case:

ψTR(t) = exp

(
1

~
STR0 (t) + STR1 (t) + ~STR2 (t) + . . .

)
(3.79)

where
STR0 :=

∫
ω0,1, STR1 := −1

2
log(

du

dt
), (3.80)

and for k > 1:

STRk :=
∑

2g−2+n=k−1

1

n!

∫ t

t0

· · ·
∫ t

t0

ωg,n(t1, . . . , tn), (3.81)

where all integration is (typically) from t0 ∈ R to t, and t0 shall coincide with one of the zeroes
of x(t). For example,

STR2 =
1

3!

∫∫∫
ω0,3 +

∫
ω1,1

STR3 =
1

4!

∫∫∫∫
ω0,4 +

1

2!

∫∫
ω1,2

STR4 =
1

5!

∫
· · ·
∫

︸ ︷︷ ︸
5 times

ω0,5 +
1

3!

∫∫∫
ω1,3 +

1

5!

∫
ω2,1

(3.82)

Note that this wave function is annihilated by the topological recursion quantum curve, which
we denote as ÂTR (we will conduct the explicit calculations in the case of quivers). In many cases
(e.g. Hermitean one-matrix model) the topological recursion wave function (3.79) defined purely
from spectral curve data agrees with the matrix model wave function (3.24). In particular, we
will test this conjecture for quiver partition functions in the next chapter. By rewriting it as
a function of x and using the “hierarchy of equations” technique we can recover the candidate
quantum curve order by order of ~, starting only from the classical data:

P̂ (x̂, ŷ) = P̂0(x̂, ŷ) + ~P̂1(x̂, ŷ) + . . . (3.83)

with P̂0(x̂, ŷ) = P (x, y). The natural problem is to match the two approaches to quantization,
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i.e. to establish the relation between (3.60) and (3.83). It is a highly non-trivial check, because
the quantum curves are usually constructed independently from TR (e.g. knots or topological
strings). In case when ψTR ≡ ψWKB, one says that WKB is reconstructed from the topological
recursion. It is conjectured that this holds for a large class of spectral curves. The conjecture
has been proven for a class of genus 0 curves in the usual variables [125], but remains open
in general. In the next section we will study the consistency problem for a class of two-vertex
quivers and their A-polynomials.

3.5 Nahm sums and quiver A-polynomials from topological re-
cursion

In this section we present the original results [58] and investigate whether the Nahm sums
(1.29) can be realized as the wave-functions (3.79) associated to the underlying classical quiver
A-polynomial. If true, then the ~ → 0 expansion of the Nahm sum and the quantum quiver
A-polynomial (1.78) can be determined, order by order in ~, by the topological recursion. More
precisely, we make the following

Conjecture 3.5.1. The Nahm sums from quivers are reconstructed by the topological recursion,
so that

ψTR(x) ≡ xα0PC(qα1x, . . . , qαmx). (3.84)

where α0, . . . , αm are rational numbers, which depend on the choice of the quiver.

The monomial xα0 appears as the normalization prefactor (on the level of quantum quiver A-
polynomial it corresponds to rescaling of ŷ by some power of q) – the topological recursion wave
function does not incorporate this feature, and we have to take into account and also find the
proper exponents α1, . . . , αm. Therefore, we have to compare the two expansions in ~:

• ψTR given by (3.79) on the topological recursion side,

• the WKB expansion ψWKB (3.77) of the quiver generating series, where P̂ (x̂, ŷ) = Â(x̂, ŷ).

We verify whether the conjecture 3.5.1 holds in various simple examples. Our choice of quivers
relies on the following criterion: the corresponding A-polynomials have genus 0 and are admis-
sible (i.e. they are irreducible and have maximal number of ramification points); to this end
we appropriately identify generating parameters x1 = ±x2 = x (so that the A-polynomial is
irreducible), and introduce framing if necessary (so that the number of ramification points is
maximal). In what follows, we analyze our statement and provide topological recursion calcula-
tions for the following quivers:

• 1-vertex quiver in arbitrary framing f , encoded in the matrix C = [f ]; this quiver captures
topological string amplitudes for C3 geometry, as well as extremal colored HOMFLY-PT
polynomials of the framed unknot,

• uniform quivers Cij = const, of size 2 and independently of arbitrary size, with identifica-
tion xi = x,
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• a quiver C =

[
2 1

1 1

]
with identification x1 = −x2 = x; this quiver captures full colored

HOMFLY-PT polynomials for the unknot,

• a quiver C =

[
3 1

1 1

]
with identification x1 = x2 = x; this quiver encodes extremal colored

invariants of the left-handed trefoil knot,

• a quiver C =

[
2 0

0 −1

]
with identification x1 = −x2 = x,

• a quiver C =

[
2 2

2 1

]
with identification x1 = x2 = x,

• a quiver C =

[
3 2

2 1

]
with identification x1 = x2 = x; this quiver encodes extremal colored

invariants of the right-handed trefoil knot,

• a quiver C =

[
2 0

0 2

]
with identification −x1 = x2 = x,

We find agreement between Nahm sums and topological recursion calculations in all cases, apart
from one subtlety for diagonal quivers (the last example). Namely, in this case one term in the
quantum A-polynomial determined from the topological recursion appears to have a different
ordering than the operator that annihilates the Nahm sum. It would be important to explain
this discrepancy.

3.5.1 One-vertex quiver, m = 1

We start from the case m = 1, associated to a single vertex quiver with f loops. Note that it
was also analyzed in [131, 48] from the viewpoint of topological strings. Besides it encodes the
reduced HOMFLY-PT polynomials of the unknot [21]. At first we analyze f = 2 case, and then
arbitrary framing f .

Framing f = 2

We begin with the smallest framing value f = 2 for which the quiver A-polynomial has maximal
number of ramification points and therefore is admissible for the topological recursion. The
quantum and classical quiver A-polynomials are

Â(x̂, ŷ) = qx̂ŷ2 + ŷ − 1, A(x, y) = xy2 + y − 1. (3.85)

The Newton polygon N(A) is shown in figure 3.4. It has no interior points which implies that
the curve has genus zero, besides all face polynomials are simply binomials, which are cyclotomic
and therefore this A-polynomial is quantizable (this also holds for an arbitrary framing which
we will consider next). Note that the Nahm sum is recovered as the solution to this quantum
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Figure 3.4: The Newton polygon N(A) for the quiver A-polynomial (3.85).

A-polynomial. The leading terms in the WKB solution for the Nahm sum take form:

S0 = −Li2(1− y)− (log y)2,

S1 = −1

2
log

(1− y)y

x
− 1

2
log

(
−dx
dy

)
= −3

2
log y − 1

2
log

(
−dx
dy

)
.

(3.86)

We consider the following rational parametrization

x(t) =
1− t
t2

, y(t) = t, (3.87)

with t ∈ [0, 2]. This corresponds to the choice of branch of y(x):

y(x) =
−1 +

√
1 + 4x

2x
. (3.88)

Next, we conduct the topological recursion calculations (3.80) in the parametrization (3.87) and
find

STR0 =

∫
log y

dx

x
= −Li2(1− y)− (log y)2 = S0,

STR1 = −1

2
log

1

x

dx

dt
= −1

2
log
−2 + y

xy3
.

(3.89)

As a result, the leading term exactly gives S0 in (3.86), however for the second one with S1 in
(3.86) we get

STR1 = S1 +
1

2
log(−x) +

3

2
log y. (3.90)

Therefore we propose the following relation between PC(x) and ψTR(x)

PC(q3/2x) = ix−1/2ψTR(x). (3.91)
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Furthermore, from the quantum Nahm equations (1.75) we obtain the following quantum quiver
A-polynomial annihilating ψ(x)TR (which agrees with the result in [48])

ÂTR(x̂, ŷ) = Â(q3/2x̂, q−1/2ŷ) = q3/2x̂ŷ2 + q−1/2y − 1. (3.92)

The next step is to confirm that STRk with k > 1 can be consistently computed from the above
relations and the result matches with the corresponding coefficient in the Nahm sum expansion.
Analysing the ramification points, we obtain the first point d log x(t)

dt |t=t∗ = 0 arising for t∗ = 2.
Another (conjugate) point, defined from x(t) = x(t̄) for t̄ in the neighbourhood of t∗, takes form
t̄ = t

t−1 . This allows to write the differential 1-form

ω(t, t̄) = (log y(t)− log y(t̄))
dx(t)

x(t)
= log(t− 1)

−2 + t

t(1− t)
dt. (3.93)

The Bergman kernel for genus 0 curves and the associated recursion kernel read

dEt,t̄(t
′) =

1

2

∫ t

ξ=t̄
B(ξ, t′) = − t

2

2− t
(t′(t− 1)− t)(t′ − t)

dt′,

K(t′, t, t̄) =
dEt,t̄(t

′)

ω(t, t̄)
=
t2

2

1− t
(t′(t− 1)− t)(t′ − t)

1

log(t− 1)

dt′

dt
.

(3.94)

Knowing them, we can compute

ω0,2(q̄, t1) =
dq̄dt

(q̄ − t)2
= − 1

1− q2

dqdt

(q̄ − t)2
, (3.95)

to get from (3.52)

ω1,1(t) = −16− 16t+ t2

24(2− t)4
dt,

ω0,3(t1, t2, t3) =
4dt1dt2dt3

(t1 − 2)2(t2 − 2)2(t3 − 2)2
.

(3.96)

Finally we can compute STR2 as in (3.82), and for t = −∞ we find

STR2 (t) =
−4− 10t+ t2

24(t− 2)3
. (3.97)

In order to compare this expression with the corresponding coefficient S2(x) from the Nahm
sum, we need to express STR2 as a function of x. However, we find that there are two branches:

t±(x) =
−1±

√
1 + 4x

2x
, (3.98)

and we choose the one with y(x = 0) = 1, since this corresponds to t+(x) and reflects the
property of the Nahm sum which is equal to one when x = 0. Therefore we obtain

STR2 (x) =
−4− 10y(x) + y(x)2

24(y(x)− 2)3
, (3.99)
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which confirms the consistency with the WKB expansion of the corresponding Nahm sum.
As a double-check, we can compute STR2 with another base point t0 = 1:

STR2 (t) = −−4 + 22t− 31t2 + 13t3

24(t− 2)3
, (3.100)

and this time to plug the different branch t−(x) (the two are related by the Galois involution
t−(x) = t+(x)/(1− t+(x))) and we end up with the exact same answer:

STR2 (x) = −
−4 + 22t−(x)− 31t2−(x) + 13t3−(x)

24(t−(x)− 2)3
= −−4− 10y(x) + y(x)2

24(y(x)− 2)3
. (3.101)

Arbitrary framing f

Our next case is one-vertex quiver in arbitrary framing f . The quiver A-polynomials are

Â(x̂, ŷ) = qx̂ŷf + ŷ − 1, A(x, y) = xyf + y − 1. (3.102)

We choose the rational parametrization

x(t) =
1− t
tf

, y(t) = t. (3.103)

Since we know that STR0 (x) reproduces the leading term automatically, we continue to STR1 from
(3.80) and we match the two expressions: S1(x) in WKB expansion and the result by topological
recursion

STR1 (x) = S1(x) +
1

2
log x+

f + 1

2
log y +

1

2
log(−1)f+1. (3.104)

The presence of extra terms in the right hand side of the above formula can be compensated
by rescaling the variables and multiplying the wave function by the overall factor x1/2, and we
conjecture that in this case

ψTR(x) = (−1)(f+1)/2x1/2PC(q(f+1)/2x), (3.105)

which gives the full agreement of the leading terms S1(x) and S2(x) with the topological recur-
sion. Next, the quantum A-polynomial annihilating ψTR(x) can be determined from the leading
terms and is given by

ÂTR(x̂, ŷ) = Â(q(f+1)/2x̂, q−1/2ŷ) = (−1)fq(f+1)/2x̂ŷf + q−1/2ŷ − 1. (3.106)

What is left is to compute STRk for several k > 1 and verify the formula (3.105). The ramification
point for (3.103) is t∗ = f/(f − 1). The conjugate point, however, does not admit a closed form
expression, but for our calculations it is sufficient to write

t̄ = t∗ − (t− t∗) +
2(f2 − 1)

3f
(t− t∗)2 − 4(f2 − 1)2

9f2
(t− t∗)3+

+
2(f − 1)3(22f3 + 57f2 + 57f + 22)

135f3
(t− t∗)4 +O((t− t∗)5).

(3.107)
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We further find ω(t1, t2), one-form dE and the recursion kernel

ω(t, t̄) = (log t− log t̄)
f(t− 1)− t
t(1− t)

dt,

dEt,t̄(t
′) =

1

2

t− t̄
(t′ − t)(t′ − t̄)

dt′,

K(t′, t, t̄) =
dEt,t̄(t

′)

ω(t, t̄)
=

1

2

t̄− t
(t′ − t)(t′ − t̄)

t(1− t)
f(t− 1)− t

1

log t̄/t

dt′

dt
.

(3.108)

which gives

ω1,1(t) =
1

24(f − 1)4

−t2(f − 1)4 + 2tf(f3 − 2f2 + 3f − 2)− f4

(t− t∗)4
,

ω0,3(t1, t2, t3) =
f2

(f − 1)4

1

(t1 − t∗)2(t2 − t∗)2(t3 − t∗)2
,

(3.109)

and also some higher differentials (we will omit their full expression but rather present the final
result). Given that, we can compute STR2 (t) and STR3 (t) from (3.82). Fixing the base point
t0 = −∞, we get

STR2 (t) = − 1

(f − 1)4

−(f − 1)4t2 + f(f − 1)(3− 3f + 2f2)t+ f2(−f2 + f + 3)

24(t− t∗)3
,

STR3 (t) = −
ft(t− 1)

[
2f4(t− 1)2 − 8f2 − (9f2 − 14f + 9)ft(t− 1) + 2t2

]
48(f(1− t) + t)6

.

(3.110)

In order to express everything in terms of x, we use the regular branch and find

t(x) = 1 + (−1)f+1x+ fx2 +
1

2
(−1)f (f − 3f2)x3 +

1

3
f(1− 6f + 8f2)x4 + . . . (3.111)

Finally, from the computer program we find that STR2 (x) and STR3 (x) re-expressed in terms
x fully agree with those from the Nahm sum, therefore reproducing the WKB expansion as
proposed in the conjecture (3.105).

3.5.2 Uniform two-vertex quivers, m = 2

The next example is the uniform quiver with m = 2 and f = 1, which adjacency matrix is

C =

[
1 1

1 1

]
(3.112)

The quantum and classical quiver A-polynomials read

Â(x̂, x̂, ŷ) = q2x̂2ŷ2 + 2
√
qx̂ŷ − ŷ + 1, (3.113)

A(x1, x2; y) = y2x1x2 + (x1 + x2 − 1) y + 1, (3.114)

A(x, x, y) = (xy + 1)2 − y = 0. (3.115)

The Newton polygon N(A) is shown in figure 3.5. It has no interior points which implies that
the curve has genus zero, besides the only face polynomial which contains three monomials is
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factorized into binomial, which means that the quantization condition holds in this case. Notice

Figure 3.5: The Newton polygon N(A) for the quiver A-polynomial (3.115).

that we use specialization x1 = x, x2 = x, and the following rational parametrization

x(t) =
t− 1

t2
, y(t) = t2. (3.116)

Note that t(x) = 1−
√

1−4x
2x is regular at x = 0. Our aim is to check whether the related Nahm sum

with the above specialization of xi can be reconstructed by means of the topological recursion.
In other words, we need to match the two quantum polynomials (one is the quantum quiver
A-polynomial, another one annihilates the topological recursion wave function) by finding the
exponents α1, α2, β such that

Â(qα1x, qα2x; qβ ŷ)ψTR(x) = 0. (3.117)

In order to find these exponents we solve this equation perturbatively using the ansatz (3.79).
From the parametrization (3.116) we find

STR0 =

∫
1

x
ln

(X − 1)2

4x2
dx,

STR1 =− 1

2

(
ln(2) + ln

( (X + 4x− 1)x

(X + 2x− 1)(X − 1)

))
,

(3.118)

where we denote X :=
√

1− 4x. The ~0 term in (3.117) vanishes automatically, however van-

ishing of the ~ term imposes the constants for α1, α2 and we get

α1 = α2 = 1, β = −1

2
. (3.119)

Remarkably, it fixes the topological recursion quantum curve

ÂTR(x̂, ŷ) = Â(qα1x, qα2x; qβ ŷ) = q3x̂2ŷ2 + 2 qx̂ŷ − ŷ
√
q

+ 1. (3.120)
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The last check is that higher coefficients STRK of the topological recursion wave function also
reproduce the solution to this quantum curve equation. We consider

ÂTR(x̂, ŷ) exp
(1

~
STR0 + STR1 +

∞∑
k=1

~kSk
)

= 0, (3.121)

keeping in mind (3.118) and (3.120), and compute

S2 =
12x2 + 3X − 14x+ 4

24X3
,

S3 =

(
4x2 − 2x− 1

)
x (2Xx−X + 4x− 1)

8X7
.

(3.122)

In order to verify that these terms can be obtained as well from the topological recursion, we
return again to the classical curve (3.115) and its rational parametrization (3.116). The two
ramification point are t∗ = 2 and t∗ = 0. The second point corresponds to x = ∞, which also
must be taken into account when computing the topological recursion correlation functions.

Having said the above, we compute

ω1,1 =
t1

4 (t1 − 2)4 −
1

4
(t1 − 2)−4 − 1

48
(t1 − 2)−2 − 1

16
t1
−2,

ω0,3 =
2

(t1 − 2)2 (−2 + t2)2 (t3 − 2)2 ,

(3.123)

Now we can compute STR2 by the formula (3.81)

STR2 =− t3 − 7 t2 + 12 t− 6

12t (t− 2)3 +
t0

3 − 7 t0
2 + 12 t0 − 6

12t0 (t0 − 2)3 +

+
(t− t0)2

3 (t− 2)3 (t0 − 2)2 −
(t− t0)2

3 (t− 2)2 (t0 − 2)3 .

(3.124)

By setting the integration limit t0 = 1 (x(t0) = 0, y(t0) = 1), we obtain the same result as in
(3.122) up to a constant (which is always irrelevant in our considerations, as it can be absorbed
into a normalization prefactor of the wave function)

STR2 =
4 t4 − 13 t3 + 19 t2 − 16 t+ 6

12t (t− 2)3 = S2 +
1

24
. (3.125)

Analogously, using the integration limit t0 = 1, we get

STR3 =
(t− 1)3 (t4 + 2 t3 − 6 t2 + 8 t− 4

)
4t2 (t− 2)6 , (3.126)

which also agrees with (3.122).
Let us also consider the second choice of the integration limit, which is t0 = −∞. In this
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case we find

STR2 = −−6 + 8t− 7t2 + t3

12t(t− 2)3
= S2 +

1

24
, STR3 =

4− 12t+ 14t2 − 8t3 + t4 + t5

4t2(t− 2)6
= S3,

(3.127)
which again can be successfully matched with (3.122).

Summing up, the topological recursion indeed reconstructs the Nahm sum for the quiver
(3.112), up to the shifts (3.119) in (3.117), and with carefully chosen integration limit either
t0 = 1 or t0 = −∞.

3.5.3 Uniform quivers of arbitrary size m

The next class of examples are now quivers of size m×m with all entries equal to f . The explicit
form of classical quiver A-polynomial for generic m is not known, but we know that it can be
parametized by

x(t) =
1− t

(−tm)f
, y(t) = tm, (3.128)

which implies

STR0 = −mLi2(1− t)− m

2
fm(log t)2, STR1 = −1

2
log

t− fm(t− 1)

t(t− 1)
. (3.129)

From the form of STR1 we conjecture

ψTR(x) = x1/2PC(q(f+1)/2x). (3.130)

In this case the associated Nahm sum is annihilated by the operator Â(x̂, ŷ) (1.81). If we consider
the same rescalings as in (3.130), we can predict the form of the topological recursion quantum
operator:

ÂTR(x̂, ŷ) = Â(q(f+1)/2x̂, q−1/2ŷ) =
(

1− (−1)fq(f+1)/2x̂ŷf
)m
− q−1/2ŷ. (3.131)

To check the consistency, we may take m = 2 and f = 1 which gives (3.120).
Our aim is therefore to confirm the proposal (3.130) with the help of the topological recursion.

The ramification points are t∗1 = mf/(mf − 1) and t∗2 = 0. We can decompose

STRk = S
TR,t∗1
k + S

TR,t∗2
k , (3.132)

where the first term on the right hand side encodes contribution from the first ramification point
and is the same as for the one-vertex quiver (section 3.5.1):

S
TR,t∗1
k ≡ STR,(m,f)

k (t) = m1−kS
TR,(1,mf)
k , (3.133)

where STR,(m,f)
k denotes the term for a uniform quiver, coming from the topological recursion.

In particular, STR,(1,n)
k have been already computed in section 3.5.1. Introducing n = mf and

84



t∗ = n/(n− 1), we find

S
TR,(m,f)
2 = − 1

m(n− 1)4

−(n− 1)4t2 + n(n− 1)(3− 3n+ 2n2)t+ n2(−n2 + n+ 3)

24(t− t∗)3
, (3.134)

S
TR,(m,f)
3 = − nt(t− 1)

m2(n− 1)6

2n4(t− 1)2 − 8n2 − (9n2 − 14n+ 9)nt(t− 1) + 2t2

48m2(n(1− t) + t)6
. (3.135)

The next step is to analyse contributions from the second ramification point t∗2 = 0. Its
conjugate point is given by 1−t

tn = 1−t̄(t)
t̄(t)n (for n = mf). We thus write t̄(t) = atp(t) where a

is a constant and p(t) is a polynomial in t such that p(0) = 1, satisfying the equation (1 −
t)anp(t)n = (1 − ap(t)). We denote solutions of this equation by (ak, pk(t)) for k = 1, . . . , n,
with ak = exp

(
2πik
n

)
, so that (an = 1, pn(t) = 1), and all other solutions implement Galois

involutions t̄k(t) = aktpk(t). Furthermore,

ω(k)(t, t̄) = (log y(t)− log y(t̄k))
n(t− 1)− t
t(1− t)

dt = (log amk +m log pk(t))
t− n(t− 1)

t(1− t)
dt, (3.136)

leading to the recursion kernel

K(k)(t′, t, t̄) =
1

2

t̄k − t
(t′ − t)(t′ − t̄k)

t(1− t)
mf(t− 1)− t

1

log amk +m log pk(t)

dt′

dt
. (3.137)

Having said the above, we compute the topological recursion differentials

ω
(k)
1,1 (t) =

 1
2m

ak
(1−ak)2t2

, amk = 1,

0, amk 6= 1.
, ω

(k)
0,3 (t1, t2, t3) = 0, (3.138)

This allows to express the contribution from t∗2 in (3.132) as the sum over integers k divisible by
f

S
TR,t∗2
2 = − 1

2mt

m−1∑
k=1
k|f

ak
(1− ak)2

, (3.139)

For the one-vertex quiver there are no such contributions, since n = f . However, they are always
present for uniform quivers of size m ≥ 2. Denoting

Am :=
n−1∑
k=1

bk

(1− bk)2
, b := e2πi/m, (3.140)

we can write the complete expression

STR2 (t) =
1

m
S
TR,(1,mf)
2 (t)− Am

2mt
, (3.141)

which agrees with the S2 term in the WKB expansion of the generating series for the uniform
quiver, taken (3.130) into account.

To this end, let us also confirm the agreement for the term S3. For the first ramification
point the extra contributions appear only for ω1,1 and therefore ω0,4 is not changed comparing
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with the one vertex quiver. But ω1,2 undergoes the change by adding the correction term

Am
m

Res
q→t∗

q−2K(k)(t1, q, q̄)ω0,2(q̄, t2). (3.142)

We obtain the relation

− Am
m(t∗)2(t2 − t∗)2

Res
q→t∗

K(k)(t1, q, q̄) = − t∗(1− t∗)
2m2n(t1 − t∗)2(t2 − t∗)2

ak
(1− ak)2

. (3.143)

Consider now the second ramification point t∗2 = 0. We conclude that there are no extra
contributions to ω0,4 and the potential contribution to ω1,2 comes only from the second term

2Res
q→0

K(k)(t1, q, q̄)ω1,1(q)ω0,2(q̄, t2) =
Amak

2m2t21t
2
2

. (3.144)

Taken together, (3.143) and (3.144) contribute to ω(t1, t2) as

Am
2m2

(
− t∗(1− t∗)
n(t1 − t∗)2(t2 − t∗)2

+
n−1∑
k=1
k|f

ak
t21t

2
2

)
(3.145)

which gives the correct form of STR3 . Summing over the roots of unity we obtain

STR3 =
1

m2
S
TR,(1,mf)
3 − Am

4m2

t∗(1− t∗)
n(t− t∗)2

, (3.146)

which is indeed consistent with (3.130).

3.5.4 Quiver
[

2 1
1 1

]
Another interesting example is a quiver encoded in a matrix

C =

[
2 1

1 1

]
(3.147)

In particular, we know that this quiver encodes colored HOMFLY-PT polynomials of the unknot
in framing f = 1 and the unreduced normalization (section 1.3.4). This value of f is the minimal
framing such that the quiver A-polynomial in its principal specialization has maximal number
of ramification points. Quite importantly, it allows to check whether the topological recursion
reconstructs colored HOMFLY-PT polynomials for a knot.

The quiver A-polynomial for (3.147) takes form

A(x1, x2; y) = x1y
2 − x2y + y − 1. (3.148)

We consider specialization x1 = x, x2 = −x, which leads to an irreducible curve2

A(x,−x, y) = xy2 + (x+ 1) y − 1 = 0 (3.149)
2The choice x1 = x2 = x leads to a reducible curve A(x, x; y) = (y − 1)(xy + 1).
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which Newton polygon N(A) is shown in figure 3.6. It has no interior points which implies
that the curve has genus zero, besides all face polynomials are simply binomials, which are
cyclotomic and therefore this A-polynomial is quantizable. We choose the following rational

Figure 3.6: The Newton polygon N(A) for the quiver A-polynomial (3.149).

parametrization

x(t) = − t− 1

t (t+ 1)
, y(t) = t, (3.150)

and the inverse function, regular at x = 0

t(x) =
−x− 1 +

√
x2 + 6x+ 1

2x
. (3.151)

The corresponding quantum quiver A-polynomial for x1 = −x2 = x is of the form

Â(x,−x, ŷ) = qxŷ2 +
√
qxŷ + ŷ − 1. (3.152)

In order to verify that the Nahm sum and the quantum quiver A-polynomial with the above
identification of variables can be reconstructed by the topological recursion, we employ the
strategy used in the previous cases. We begin with the conjectural relation between the quantum
quiver A-polynomial and the topological recursion wave function

Â(qα1x,−qα2x, qβ ŷ)ψTR(x) = 0. (3.153)

By analysing it order by order in ~ and matching STR1 with S1, we find that

α1 =
3

2
, α2 = 1, β = −1

2
. (3.154)

This implies

ÂTR(x̂, ŷ) = Â(q3/2x,−qx, q−1/2ŷ) = q3/2xŷ2 + xŷ + q−1/2ŷ − 1. (3.155)

Next we confirm that higher order terms also agree with the topological recursion. We can use
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the same ansatz as before

ÂTR(x̂, ŷ) exp
(1

~
STR0 + STR1 +

∞∑
k=1

Sk

)
= 0, (3.156)

to find

S2 =
(8x2X + 3x3 + 13xX + 21x2 + 3X + 21x+ 3)X2

12(x+ 3− 2
√

2)3(x+ 3 + 2
√

2)3
,

S3 =− (x2 − 4x+ 11)(3x+X + 1)x(x+ 1)X2

16(x+ 3− 2
√

2)4(x+ 3 + 2
√

2)4
,

(3.157)

where X :=
√
x2 + 6x+ 1.

We now show that the topological recursion correctly reproduces the above terms Sk. In this
case the ramification points for the parametrization (3.150) are just zeros of dx

1 +
√

2, 1−
√

2. (3.158)

The conjugate point is given by t = t+1
t−1 . In order to simplify calculations, we present the

recursion kernel as a product of a rational function in t and t1 and a logarithmic function

K(t, t, t1) =
t− t3

2 ((t1 − 1) t− t1 − 1) (t1 − t)
× 1

ln t− ln t+1
t−1

, (3.159)

Taking the product of their Laurent expansions, we obtain

ω0,3(t1, t2, t3) =
P0,3

Q0,3
, ω1,1(t1) =

P1,1

Q1,1
, (3.160)

where

P0,3 = ((10 t3
2 + 8 t3 + 2)t2

2 + (8 t3
2 + 8 t3)t2 + 2 t3

2 + 2)t1
2+

+ 8 (t3t2 + 1)((t3 + 1)t2 + t3 − 1)t1 + (2 t3
2 + 2)t2

2+

+ (8 t3 − 8)t2 + 2 t3
2 − 8 t3 + 10,

Q0,3 = (−2 + (t1 − 1)
√

2)(t1 − 1 +
√

2)(−1−
√

2 + t2)2(2 + (t1 − 1)
√

2)×

× (−1−
√

2 + t3)2(t1 − 1−
√

2)(−1 +
√

2 + t2)2(−1 +
√

2 + t3)2,

P1,1 = 2 (t1
2 + 1)(t1

4 − 16 t1
3 + 2 t1

2 + 16 t1 + 1)(t1
2 − 2 t1 − 1)2,

Q1,1 = − 3 (−2 + (t1 − 1)
√

2)3(2 + (t1 − 1)
√

2)3(t1 − 1 +
√

2)3(t1 − 1−
√

2)3.

(3.161)

We continue with STR2 (3.81), keeping t0 as a parameter, to get

STR2 =
(t0 − t)(tt0 + 1)

12(t02 − 2t0 − 1)3(t2 − 2t− 1)3
P (t, t0), (3.162)
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where

P (t, t0) = t4t0
4 − 10 t4t0

3 − 10 t3t0
4 − 14 t4t0

2 + 96 t3t0
3 − 14 t2t0

4 − 14 t4t0+

+ 4 t3t0
2 + 4 t2t0

3 − 14 tt0
4 − 11 t4 − 48 t3t0 − 4 t2t0

2 − 48 tt0
3 − 11 t0

4+

+ 14 t3 − 4 t2t0 − 4 tt0
2 + 14 t0

3 − 14 t2 + 96 tt0 − 14 t0
2 + 10 t+ 10 t0 + 1.

(3.163)

Finally, we confirm that that S2 in (3.157) agrees with (3.162) if we take t0 = 1 (note that the
property x(t0) = 0, y(t0) = 1 holds for this value of t0). Analogously, we find STR3 , and with the
same value of t0 = 1 it is given by

STR3 =
(11 t4 + 26 t3 + 12 t2 − 6 t+ 1)(t2 − 2 t− 1)6(t2 + 1)(t− 1)3(t+ 1)t

8(t− 1−
√

2)12(t− 1 +
√

2)12
, (3.164)

which agrees with S3 in (3.157).
Summing up, we have confirmed that the topological recursion determines the Nahm sum

for the quiver (3.147), as well as the corresponding quantum quiver A-polynomial (3.152), order
by order in ~.

3.5.5 Quiver
[

3 1
1 1

]
The next representative quiver in our sequence is given by

C =

[
3 1

1 1

]
(3.165)

This case is also interesting because it relates to extremal colored HOMFLY-PT polynomials
of the left-handed trefoil knot in framing f = 1, and also (in a different framing) counting
of Duchon paths [132]. As a result, we would be able (at least in principle) to verify that the
topological recursion reconstructs colored knot polynomials [133, 49, 48] and lattice path counts.

The quantum and classical quiver A-polynomials are of the form

Â(x1, x2, ŷ) = q
3
2x1ŷ

3 + (q3x2
2 − q

3
2x2)ŷ2 + ((q + 1)

√
qx2 − 1)ŷ + 1, (3.166)

A(x, x, y) = xy3 + (x2 − x)y2 + (2x− 1)y + 1. (3.167)

The Newton polygon N(A) is shown in figure 3.7. Despite the fact that it has one interior
point, we find the explicit rational parametrization which implies that the curve has genus zero,
besides all face polynomials can be factorized to binomials, which are cyclotomic and therefore
this A-polynomial is quantizable. We also use the following parametrization

x(t) =
t+ 1

t(t2 − t− 1)
, y(t) =

t2(t− 1)

t2 − t− 1
. (3.168)

Similarly as in earlier examples we compare the subleading term S1 from the saddle point
expansion of the corresponding Nahm sum with the topological recursion result, and find the
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Figure 3.7: The Newton polygon N(A) for the quiver A-polynomial (3.167).

quantum polynomial which annihilate the topological recursion wave function

ÂTR(x̂, ŷ) = Â(q2x, qx, q−
1
2 ŷ)

= q2x1ŷ
3 + (q4x2

2 − q
3
2x2)ŷ2 + ((q + 1)qx2 − q−

1
2 )ŷ + 1.

(3.169)

Unfortunately, in this case we were not able to write analytically higher order terms. Still, the
above result confirms that the topological recursion formalism reconstructs the Nahm sum at
the subleading order (up to ~1 term), and since the quantum operator (3.169) is defined uniquely
from this subleading order, we conjecture that it consistently recovers all the coefficients of the
Nahm sum to an arbitrary order.

3.5.6 Quiver
[

2 0
0−1

]
Now we consider the quiver

C =

[
2 0

0 −1

]
(3.170)

The quantum and classical quiver A-polynomials are of the form

Â(x1, x2, ŷ) = q3x2
1ŷ

4 + x1ŷ
3 −

(
q3/2(q + 1)x1x2 + x1 +

√
qx2

)
ŷ2 +

√
qx2ŷ + qx2

2, (3.171)

A(x,−x, y) = x(xy4 + y3 + 2xy2 − y + x) = 0. (3.172)

Notice that here we use the specialization x1 = x and x2 = −x, which leads to the irreducible
classical spectral curve given by 1

xA(x,−x, y) (we simply get rid of the x prefactor since it does
not contribute to the topological recursion). The corresponding Newton polygon N(A) is shown
in figure 3.8. It has no interior points which implies that the curve has genus zero, besides
all face polynomials can be factorized into binomials, which are cyclotomic and therefore this
A-polynomial is quantizable. Our choice of parametrization for this curve is

x(t) = −(t− 1)(t+ 1)t

(t2 + 1)2
, y(t) = t. (3.173)
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Figure 3.8: The Newton polygon N(A) for the quiver A-polynomial (3.172).

Proceeding as in previous sections, we compute STR0 and STR1 by the formula (3.80) and find
the quantum polynomial annihilating the topological recursion wave function up to a subleading
order

ÂTR = q3x2ŷ4 + q−1xŷ3 + q3/2 (q + 1)x2ŷ2 − xŷ + qx2. (3.174)

Next, we analyse the equation

ÂTR(x̂, ŷ) exp
(1

~
STR0 + STR1 +

∞∑
k=1

Sk

)
= 0, (3.175)

order by order in ~, to find

S2 =− (x− 1)(144x3 + 144x2 + 11x+ 11)

60(16x2 − 1)2
− x(368x2 + 77)X

48(16x2 − 1)2
+

+
(448x4 − 540x2 + 7)X2

48(16x2 − 1)2
− (432x2 − 7)xX3

48(16x2 − 1)2
,

(3.176)

where X denotes any solution of the equation xX4 +X3 + 2xX2 −X + x = 0.
The next step is to confirm that the same form of S2 is computed by the topological recursion.

From the parametrization (3.173) we find the four ramification points

√
2− 1,−1−

√
2, 1−

√
2, 1 +

√
2, (3.177)

and the two recursion kernels which are associated to pairs of ramification points

K−1±
√

2 =− t(t− 1)(t+ 1)(t2 + 1)

2(t2 − 2t− 1)(t1 − t)(p1t+ t1 + t− 1)
× 1

ln t− ln(−t+ 1) + ln(t+ 1)
,

K1±
√

2 =− t(t− 1)(t+ 1)(t2 + 1)

2(t2 + 2t− 1)(t1 − t)(p1t− t1 − t− 1)
× 1

ln t− ln(t+ 1) + ln(t− 1)
.

(3.178)

In the present case, poles of x (residues at infinity) do not contribute, since they cannot be
canceled by zeros of y. We therefore find that the integration limit is t0 = 1, so that x(t0) = 0
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and y(t0) = 1, and we obtain

STR2 =
(t− 1)2

48(t− 1 +
√

2)3(−t+
√

2− 1)3(−t+ 1 +
√

2)3(t+ 1 +
√

2)3
×

× (17t10 + 132t9 + 181t8 + 144t7 − 118t6 − 232t5 − 118t4 + 144t3 + 181t2 + 132t+ 17)

(3.179)

which agrees with (3.176). We conclude that the Nahm sum is reconstructed by the topological
recursion in this case too.

3.5.7 Quiver
[

2 2
2 1

]
Another quiver that we consider is

C =

[
2 2

2 1

]
(3.180)

The quantum and classical quiver A-polynomials are of the form

Â(x1, x2, ŷ) = q15/2x2
1x2ŷ

5 − 2q5/2x1x2ŷ
3 − qx1ŷ

2 + (q1/2x2 − 1)ŷ + 1, (3.181)

A(x1, x2, y) = x2
1x2y

5 − 2x1x2y
3 − x1y

2 + (x2 − 1)y + 1. (3.182)

We choose specialization x1 = x2 = x, for which we obtain3

Â(x, x, y) = q15/2x3ŷ5 − (q + 1)q5/2x2ŷ3 − qxŷ2 +
√
qxŷ − ŷ + 1, (3.183)

A(x, x, y) = x3y5 − 2x2y3 − xy2 + (x− 1)y + 1 = 0. (3.184)

for which the the Newton polygon N(A) is shown in figure 3.9. Despite the fact that it has one
interior point, we find the explicit rational parametrization which implies that the curve has
genus zero, besides all face polynomials can be factorized to binomials, which are cyclotomic
and therefore this A-polynomial is quantizable. The classical polynomial can be parametrized
by

x(t) =
t4

(t+ 1)(t2 − t− 1)2
, y(t) =

(t+ 1)(t2 − t− 1)

t3
. (3.185)

Unfortunately, due to a high order of the A-polynomial we were not able to write down
explicitly the exact expressions in topological recursion calculation. Nonetheless, we can still
confirm the consistency up to the subleading order. Namely, computing STR1 as in (3.80), using
the parametrization (3.185) and substituting the result to

Â(qα1x, qα2x, qβ ŷ)ψTR(x) = 0, (3.186)

we find that
α1 = −1

2
, α2 = 0, β =

1

2
, (3.187)

3Notice that specialization x1 = −x2 = x gives a reducible curve

A(x,−x, y) = (xy2 − 1)
(
(xy(xy2 − 1) + 1) + y

)
.
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Figure 3.9: The Newton polygon N(A) for the quiver A-polynomial (3.184).

confirms the agreement at the subleading order. This solution implies the form of the topological
recursion quantum polynomial

ÂTR = q9x3ŷ5 − (q + 1) q7/2x2ŷ3 − q3/2xŷ2 + qxŷ − q1/2ŷ + 1, (3.188)

and we expect that the terms STRk for higher k also agree with it.

3.5.8 Quiver
[

3 2
2 1

]
Our next example is

C =

[
3 2

2 1

]
(3.189)

The Nahm sum for this remarkable quiver encodes extremal colored HOMFLY-PT polynomials
of the right-handed trefoil knot and also counts certain Duchon paths [132]. Again, we have
a possibility to confirm that topological recursion computes quantum knot invariants [133, 49,
48], and to discover novel links between the recursion and path counting problems.

In this case the quantum and classical quiver A-polynomial take form

Â(x1, x2; ŷ) = q4x1
2ŷ5 − (q + 1)

√
qx1ŷ

3 +
√
qx1ŷ

2 +
(
−√qx2 + 1

)
ŷ − 1, (3.190)

A(x, x; y) = y(xy2 − 1)2 + xy(y − 1)− 1, (3.191)

with identification x1 = x2 = x for the classical A-polynomial, for which the The Newton
polygon N(A) is shown in figure 3.10. Despite the fact that it has one interior point, we find the
explicit rational parametrization which implies that the curve has genus zero, besides all face
polynomials can be factorized to binomials, which are cyclotomic and therefore this A-polynomial
is quantizable. We use the following parametrization

x(t) = −
(
t2 + t− 1

)2
t4 (t− 1)

, y(t) =
t (t− 1)

t2 + t− 1
. (3.192)
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Figure 3.10: The Newton polygon N(A) for the quiver A-polynomial (3.191).

Unfortunately, in this case we were not able to write down the exact results for higher order
terms for the wave function (3.79). However the subleading term can still be matched with the
topological recursion. This comparison gives

Â(qα1x, qα2x, qβ ŷ)ψTR(x) = 0 (3.193)

with
α1 = −1, α2 = 0, β =

1

2
, (3.194)

and the topological recursion quantum curve takes form

ÂTR = q9/2x2ŷ5 − (q + 1) qxŷ3 +
√
qxŷ2 + (−qx+

√
q) ŷ − 1 (3.195)

which confirms our conjecture at the subleading order.

3.5.9 Quiver
[

2 0
0 2

]
To finish the exposition we consider the diagonal quiver with

C =

[
2 0

0 2

]
, (3.196)

examined earlier in relation to the quantization condition (section 2.5.1). To our amusement,
we obtain an unexpected result – namely, the quantum curve determined by the topological
recursion appears to be slightly different from the quantum quiver A-polynomial that annihilates
the corresponding Nahm sum. But unlike in all previous examples, this difference cannot be
absorbed by rescaling the variables of the quantum polynomial. Taking into account the fact that
this quiver has passed the K-theoretic criterion for quantization, we believe that this phenomenon
deserves further analysis. Here we are interested in the specialization x1 = −x, x2 = x (although
we have verified that the anomaly described above, also appears for different specializations)
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which gives the specialized quantum and classical quiver A-polynomials4

Â(−x, x, ŷ) = q9x4ŷ4 + q3x2ŷ3 + (q + 1) q2x2ŷ2 − ŷ + 1, (3.197)

A(−x, x, y) = x4y4 + x2y3 + 2x2y2 − y + 1 = 0. (3.198)

The classical polynomial has the Newton polygon shown in figure 3.11, and is a two-dimensional
projection of the polytope in figure 2.5. The quiver A-polynomial in this case has four branches

Figure 3.11: The Newton polygon N(A) for the quiver A-polynomial (3.198).

and four parametrizations. For x = (t−1)(t+1)t
(t2+1)2

, the y coordinate for those different branches is
parametrized by

y1 =

(
t2 + 1

)2
t2 (t− 1) (t+ 1)

, y2 = −
(
t2 + 1

)2
(t− 1) (t+ 1)

, y3 =

(
t2 + 1

)2
(t+ 1)2 t

, y4 = −
(
t2 + 1

)2
(t− 1)2 t

.

(3.199)
Computing now STR1 as in (3.80), and taking into account the structure of STR2 we find the four
candidate quantum curves for the topological recursion wave function:

Â
(1)
TR(x̂, ŷ) = q10x4ŷ4 + q7/2x2ŷ3 + (q + 1) q5/2x2ŷ2 + 1−√qŷ,

Â
(2)
TR(x̂, ŷ) = q10x4ŷ4 + q5/2x2ŷ3 + (q + 1) q5/2x2ŷ2 + 1− ŷ

√
q
,

Â
(3)
TR(x̂, ŷ) = q10x4ŷ4 + q7/2x2ŷ3 + (q + 1) q5/2x2ŷ2 − ŷ

√
q

+ q1/2 (q − 1)xŷ2 + 1,

Â
(4)
TR(x̂, ŷ) = q10x4ŷ4 + q7/2x2ŷ3 + (q + 1) q5/2x2ŷ2 − ŷ

√
q

+ q3/2
(
q−1 − 1

)
xŷ2 + 1.

(3.200)

The underlined monomial coefficients are defined uniquely by matching the S2 term (if they are
not included, then some unwanted logarithmic additional terms appear in higher Sk’s). The two
parametrizations (x, y1) and (x, y2) are related by t 7→ 1

t , while (x, y3) and (x, y4) are related
by t 7→ −1

t . Note that for (x, y3) and (x, y4), the underlined term (q±1 − 1)xy2 vanishes when
q → 1, which means that it is non-trivially generated by quantum effects.

4The specialization x1 = x2 = x leads to reducible polynomial A(x, x, y) =
(
x2y2 − 2xy − y + 1

)
(xy + 1)2.
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To this end, we need to match either of the quantum polynomials in (3.200) with the operator
(3.197). The closest solution we can get is

Â
(1)
TR(q1/4x, q−1/2ŷ) = Â

(2)
TR(q−3/4x, q1/2ŷ) = q9x4ŷ4 + q5/2x2ŷ3 + (q + 1) q2x2ŷ2− ŷ+ 1. (3.201)

Comparing it with the quantum quiver A-polynomial (3.197), we see that the difference appears
only in one monomial: instead its prefactor q5/2 we would expect the prefactor q3. Note that
the missing q1/2 can be taken care of by changing the ordering of operators, and writing this
monomial as q5/2x2ŷ3 = q3x(ŷ−1/2xŷ1/2)ŷ3.

Summing up, we have verified that topological recursion applied to classical quiver A-
polynomials of genus zero indeed reproduces the corresponding Nahm sums and quantum quiver
A-polynomials for a class of two-vertex quivers. However, one counter-example (the case C =[
2 0
0 2

]
) suggests that the relation between topological recursion wave function and quantum quiver

A-polynomial must be more involved than (3.84) and deserves a further study.

3.6 Quantum Airy structures

In the remaining part of this chapter we take a turn from the previously chosen direction and
consider quantum Airy structures [52, 53, 54, 134, 135, 136] which generalize the topological
recursion and are possibly related to orbifold CFTs [137] and their character functions.

One of the notable properties of the topological recursion is the symmetry of ωg,n(t1, . . . , tn)

under permutation of its arguments. This allows to reformulate the recursion as a system
of differential operators, called quantum Airy structure. The name is after the Airy spectral
curve [138] x = y2, which is the simplest spectral curve with an infinite-dimensional algebra of
symmetries – Virasoro algebra (1.9). On one hand, it can be shown that topological recursion
formula (3.52) arises from a particular form of these differential operators. On the other hand,
such operators provide a representation of Virasoro orW-algebras [6, 139], so that many physical
systems with the underlying symmetry algebra (but when the spectral curve is not known or
even does not exist) can be still explored by means of the topological recursion.

3.6.1 Quadratic order

We start by reviewing the case of (infinite-dimensional) quadratic quantum Airy structures [52,
53] which can be associated to spectral curves with simple ramification.

Definition 3.6.1. Quadratic quantum Airy structure is an infinite family {Li}i≥0 of differential
operators with scalar coefficients Aia,b, B

i
a,b, C

i
a,b, D

i, of the form

Li = ~∂xi −
∑
a,b∈I

(
1
2 A

i
a,bxaxb + ~Bi

a,bxa∂xb + ~2
2 C

i
a,b∂xa∂xb

)
− ~Di , (3.202)

which span a Lie algebra with structure constants fai,j

[Li, Lj ] =
∑
a

~ fai,j La , (3.203)
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Therefore, a quantum Airy structure (3.202) is completely determined by its numerical coeffi-
cients (note that they are not related to the Nahm data A,B,C, and C does not denote the
symmetric matrix in this context). Essentially the two conditions (3.202) and (3.203) guaran-
tee the existence and uniqueness of a partition function (which is sometimes referred as the
topological recursion partition function) for every quantum Airy structure:

Z = exp

∑
g≥0

~g−1Fg

 , Fg =
∑
n≥1

1

n!

∑
i1,...,in∈I

Fg,n(i1, . . . , in)xi1 . . . xin , (3.204)

which satisfies the constraints
Li · Z = 0, ∀i ≥ 0 (3.205)

From the equation Li ·Z = 0 we deduce that F0,3(i, j, k) = Aij,k, F1,1(i) = Di, and for 2g−2+n ≥
2 and J = {i2, . . . , in} we obtain the recursion for the free energy coefficients:

Fg,n(i1, J) =

n∑
m=2

Bi1
im,a

Fg,n−1(a, J \ {im})

+ 1
2C

i1
a,b

(
Fg−1,n+1(a, b, J) +

∑
J ′tJ ′′=I
h′+h′′=g

Fh′,1+|J ′|(a, J
′)Fh′′,1+|J ′′|(b, J

′′)

)
.

(3.206)

This is completely equivalent the topological recursion formula (3.52). The symmetry of Fg,n(i1, . . . , in)

under permutations of the indices follows directly from the Lie algebra condition (3.203). Notice
that we do not use a spectral curve in the definition of quantum Airy structure. On another
hand, we have claimed that the latter is a reformulation of the topological recursion. In order to
see this relation, write the local parametrization in the neighbourhood of the ramification point
t = a

x(t) =
z(t)2

2
+ x(a), (3.207)

and introduce

ξa,k(t) :=
(2k + 1)dz(t)

z(t)2k+2
, ξ∗a,k(t) :=

z(t)2k+1

(2k + 1)
, θa(t) := (y(t− y(ι(t))dx(t))−1dz(t)|t=a.

(3.208)
(we can also write θa(t) =

∑
m≥−1 pm,r z

2m(t) (dz(t))−1). The above definitions allow us to
present the correlation functions in the following form:

ωg,n(t1, . . . , tn) =
∑
i1,...,in
j=1...m

Fg,n(i1, . . . , in) ξaj ,i1(ti1) . . . ξaj ,in(tin) (3.209)

Plugging this expansion into (3.52), we obtain the recursion (3.206), which shows that quantum
Airy structures are equivalent to topological recursion in case when the coefficients A,B,C,D
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arise from a spectral curve with simple ramification points, i.e. when

A
(k1,a)
(k2,r2),(k3,r3) = Rest→aξ

∗
k1,a

(t) dξ∗k2,r2(t) dξ∗k3,r3(t) θa(t), (3.210)

B
(k1,a)
(k2,r2),(k3,r3) = Rest→aξ

∗
k1,a

(t) dξ∗k2,r2(t) ξk3,r3(t) θa(t), (3.211)

C
(k1,a)
(k2,r2),(k3,r3) = Rest→aξ

∗
k1,a

(t) ξk2,r2(t) ξk3,r3(t) θa(t), (3.212)

D(k,r) = δk,0
(p−1,r

2 φ0,2 +
p0,r

8

)
+ δk,1

p−1,r

24 (3.213)

where φ0,2 is the constant term in the expansion of ω0,2 around (t1, t2) = (a, a) in local coor-
dinates. Since the index a corresponds to a ramification point, in general for a single spectral
curve there are several copies of quantum Airy structure at each ramification point.

The most important example is the 2-Airy quantum Airy structure, which operators are
usually denoted by Li := Li+1, and the first three of them are:

L−1 = ~∂x0 −
1

2
x2

0 −
∑
k≥0

~xk∂xk+1

L0 = ~∂x1 −
∑
k≥0

~
2k + 1

3
xk∂xk −

~
24

L1 = ~∂x2 −
∑
k≥0

~
(2k + 3)(2k + 1)

15
xk∂xk+1

− ~2

30
∂2
x0

(3.214)

The underlying spectral curve is the 2-Airy curve x = y2

2 , for which we have z(t) = t, x(t) = t2,
y(t) = t, θ(t) = (t2dt)−1 and a = 0. The operators Li span the positive part of Witt algebra:

[Li,Lj ] = (j − i)Li+j , ∀i, j ≥ 0. (3.215)

The partition function is the famous Witten-Kontsevich generating series [138]:

Z = exp

{∑
g≥0

∑
n≥1

∑
k1,...,kn≥0

~g−1

n!

(∫
Mg,n

ψk11 ∪ · · · ∪ ψ
kn
n

)
xk1 · · ·xkn

}
(3.216)

encoding the intersection classes ψi on the compactified moduli spaceMg,n of Riemann surfaces
of genus g with n marked points. Note that we can obtain the completion to Virasoro algebra
from the 2-Airy quantum Airy structure (3.214). Apply the transformation x 7→ x, y 7→ xky for
some fixed k > 1. Computation of the coefficients (3.210) and the correction term gives:

L−2 = x0 − x0x1 − ~
∑
k≥0

(2k + 1)xk+2∂k

L−3 = x1 − x0x2 − ~
∑
k≥0

(2k + 1)xk+3∂k −
1

2

...

L−n−1 = xn−1 −
∑
k+l=n

xkxl
2
− ~

∑
k≥0

(2k + 1)xk+l+1∂k, n ≥ 3

(3.217)
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Then the union of positive and negative parts will give the full Virasoro algebra with c = 2. In
order to match it with (3.215), we can set L−i := L−i+1, ∀i ≥ 1. Note that the correction term
−1

2~
0 in L−2 is fixed uniquely from the Lie bracket condition.

3.6.2 Higher order

We are ready to generalize quadratic quantum Airy structures from the previous section to
an arbitrary order and describe the original result of [57] in its simplest incarnation. The
main motivation comes from the fact that the topological recursion in the form (3.52) does
not allow for spectral curves with non-simple ramification points. However, such curves quite
often appear in physics. For example, the curve x = yr, which we consider in this section,
corresponds to the generalized Witten-Kontsevich matrix model [55, 56]. Some other curves
with higher ramification may correspond to general B-model toric geometries [140]. In order
to capture these types of models, the generalized topological recursion for higher ramification
has been introduced [141, 123]. We will not discuss this formalism explicitly, but rather as a
form of higher quantum Airy structure. This algebraic point of view has many advantages, in
particular it can be approached in at least two ways: 1) either starting from a particular local
data (local 1-forms) to compute the corresponding operators, or 2) from an ideal of differential
operators, translate them into the form of recursion. The two ways turn out to be completely
equivalent when the underlying symmetry algebra is an infinite dimensional conformal algebra of
type Ar (recall the ADE classification for semi-simple Lie algebras). Let us also note that by the
conformal algebra A2 we mean Virasoro algebra which corresponds to sl2, and more generally
for Ar we mean W(slr) algebra [6]. In this thesis we focus on the first approach which is closer
to the notion of spectral curve.

Let t ∈ C and x(t) be a ramified function of t. We also denote R the set of ramification
points (zeroes of dx), and

r : R→ {1, 2, . . .}

the order of the ramification points of x(t) (in the quadratic case we have r = 1 for all ramification
points). If a ∈ R, we introduce a local coordinate za(t) analogously to (3.207), such that

x(t) =
za(t)

ra

ra
+ x(a),

which is well-defined up to the choice of a rp-th root of unity.
We denote σa(t) the conjugate point in the neighborhood Ua of a such that za(σa(t)) =

uaza(t), i.e. there are several such points related by the Galois symmetry:

{
z, σa(t), . . . , σ

ra−1
a (t)

}
The most important ingredient is the linearly independent family of holomorphic (respectively
meromorphic) 1-forms ξ∗p,i(z) (respectively ξp,i(z)), indexed by p ∈ R and integers i ≥ 0. They
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generalize the 1-forms (3.208) for a simple ramification and are defined by

ξ∗p,i(z) =

{
(za(z))i+1

i+1 if z ∈ Up
0 otherwise

, ξp,i(z) = Res
z̃→p

(i+ 1)dza(z̃)

(za(z̃))i+2

(∫ z̃

a
ω0,2(·, z)

)

In particular we can write the local expansion of ω0,2 in terms of these 1-forms as

ω0,2(z1, z2) ≈
z1→p1
z2→p2

∑
i≥0

dξ∗p1,i(z1)ξp2,i(z2)

Let θ(z) =
∑

r∈Z trz
r(dz)−1, where tr are constants (they are fixed by a choice of spectral

curve). We use the double square bracket notation for symmetrization with respect to a root of
unity. For example,

[[f(z)g(z)]]r =
∑
a6=b

f(ϑraz)g(ϑrbz), ϑrk = e2iπ k
r ,

and we can continue by induction:

[[f(z)g(z)h(z)]] = [[f(z)[[g(z)h(z)]]]], . . .

We also fix a ramification point a, omitting the corresponding index in the 1-forms, and define
the scalars for 2 ≤ r′ ≤ r which generalize the coefficients (3.210) as

Ci[ | k1, k2, . . . , kr′ ] = Res
z→p

θ(z)ξ∗i (z)[[ξk1(z)ξk2(z) . . . ξkr′ (z)]]l

Ci[k1 | k2, . . . , kr′ ] = Res
z→p

θ(z)ξ∗i (z)[[dξ∗k1(z)ξk2(z) . . . ξkr′ (z)]]r′

...

Ci[k1, k2, . . . , kr′−1 | kr′ ] = Res
z→p

θ(z)ξ∗i (z)[[dξ∗k1(z) . . . dξ∗k2(z)ξkr′ (z)]]r′

Ci[k1, k2, . . . , kr′ | ] = Res
z→p

θ(z)ξ∗i (z)[[dξ∗k1(z)dξ∗k2(z) . . . dξ∗kr′ (z)]]r
′

(3.218)

For any g ≥ 0 and n ≥ 1 such that 2g − 2 + n > 0, there exists scalars Fg,n[ν] indexed by
ν ∈ Rn among which only finitely many are non-zero, and such that

ωg,n(z1, . . . , zn) =
∑
ν∈R

Fg,n[ν]
n∏
i=1

ξνi(zi) (3.219)

Besides, these scalars satisfy a recursion on 2g − 2 + n > 0, which generalize the topological
recursion formula (3.52) to the case of arbitrary ramification [141, 123].

We now define our main object of interest.

Definition 3.6.2. Quantum r-Airy structure is a collection of differential operators of degree
at most r, defined by coefficients (3.218)

Hi≥0 = −~(∂i −Di) +
r∑

m+n=1

~n

m!n!

∑
i1,...,im
j1,...,jn

Ci[i1, . . . , im | j1, . . . , jn]xi1 . . . xim∂j1 . . . ∂jn , (3.220)
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where Di are so-called quantum correction terms, fixed by the form of C.

According to [52], for every system of differential operators {Hi}i≥0 of the form (3.220) with
arbitrary C not necessarily equal to (3.218), which form a Lie ideal

[Hi, Hj ] =

∞∑
k=0

gki,jHk, (3.221)

where gki,j could be differential operators as well, there is a unique partition function

Z = exp

( ∑
2g−2+n>0

~g−1

n!

∑
ν1,...,νn∈R

Fg,n[ν1, . . . , νn]
n∏
i=1

xνi

)
(3.222)

annihilated by these operators
Hi · Z = 0, ∀i ≥ 0 (3.223)

In particular, for the r-Airy structure (3.220) the corresponding partition function Z is related to
generalized Witten-Kontsevich matrix integral [55, 56], and the spectral curve is x = 1

r y
r. For a

spectral curve with multiple ramification points, at each of them exists a copy of quantum r-Airy
structure given by (3.218), so that the values of C differ for various ramification points because
the local parametrization around these points is not universal. As an interesting consequence,
for such curves there is not just one, but several partition functions of the form (3.222). In the
remaining part we discuss the case of a spectral curve with double ramification point.

Example 3.6.1. Consider spectral curve x = 1
3 y

3 with double ramification point a = 0 and
choose local coordinate za(t) = t, so that y = t and x(z(t)) = t3

3 . Evaluating (3.218) and
plugging them into (3.220), we find the operators Li := H2i, Wi := H2i+1, i ≥ 0,

[Li, Lj ] =
∞∑
a=0

~faijLa, i, j, a ∈ ι1

[Wi, Lj ] =

∞∑
a=0

~gaijWa, i, a ∈ ι2, j ∈ ι1

(3.224)

such that deg(Li) = 2, deg(Wi) = 3, ι1 ∪ ι2 = Z, ι1 ∩ ι2 = ∅, and

faij = Cj [a | a]− Ci[j | a]

gaij = Cj [a | a]− Ci[j | a] +
~
2

∑
k,l≥0

(
Ci[ | k, l]Cj [k | l, a]− Cj [ | k, l]Ci[k | l, a]

) (3.225)

In order to identify the algebra structure we examine the form of commutators (3.224) in Math-
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ematica and confirm that they generate W(sl3) algebra with central charge c = 3 [142]

[Li, Lj ] = (i− j)Li+j +
c

12
i(i2 − 1)δi+j,0

[Li,Wj ] = (2i− j)Wi+j

[Wi,Wj ] = (i− j)( 1

15
(i+ j + 3)(i+ j + 2)− 1

6
(i+ 2)(j + 2))Li+j+

β(i− j)Λi+j +
c

360
i(i2 − 1)(i2 − 4)δi+j,0

(3.226)

where Λm =
∑
n≤−2

LnLn−m +
∑
n>−2

Lm−nLn − c
10(m+ 3)(m+ 2)Lm, i, j,m ∈ Z, c, β ∈ C.

The explicit form of the coefficients (3.218) is given below.

Ci[j, k | ] =
1

3
δdi+dj+dk,7

′∑
a,b∈{dj ,dk}

ζa−1
3,1 ζb−1

3,2 −
∑

a∈{dj ,dk}
c=1..2

ζa−1
3,c

(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[j | k] =
1

3
δdi+dj−dk,5

(dk − 1)

 ′∑
a,b∈{0,2−dj ,dk}

ζ1−a
3,1 ζ1−b

3,2 −
∑

a∈{2−dj ,dk}
c=1..2

ζ1−a
3,c


(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[ | j, k] =
1

3
δdi−dj−dk,3

(dk − 1)(dj − 1)

 ′∑
a,b∈{0,dj ,dk}

ζ1−a
3,1 ζ1−b

3,2 −
∑

a∈{dj ,dk}
c=1..2

ζ1−a
3,c


(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[j, k, l | ] =− 1

9
δdi+dj+dk+dl,12

′∑
a,b∈{dj ,dk,dl}

ζa−1
3,1 ζb−1

3,2

(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[j, k | l] =− 1

9
δdi+dj+dk−dl,10

(dl − 1)
′∑

a,b∈{dj ,dk,2−dl}
ζa−1

3,1 ζb−1
3,2

(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[j | k, l] =− 1

9
δdi+dj−dk−dl,8

(dl − 1)(dk − 1)
′∑

a,b∈{dj ,2−dk,2−dl}
ζa−1

3,1 ζb−1
3,2

(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

Ci[ | j, k, l] =− 1

9
δdi−dj−dk−dl,6

(dj − 1)(dk − 1)(dl − 1)
′∑

a,b∈{dj ,dk,dl}
ζ1−a

3,1 ζ1−b
3,2

(di − 1)(ζ3,1 − 1)(ζ3,2 − 1)

(3.227)

where
∑′ excludes a = b from summation. Note that Ci[j, k | ] is non-zero only for i ∈ {0, 1} and

(j, k) = (0, 1) and (0, 0), respectively. Also, j − k = 2− i for Ci[j | k], , i ≥ 0 and j + k = i− 3

for Ci[ | j, k], i ≥ 3.
Summing up, we have defined a quantum r-Airy structure which generalizes quadratic Airy

structure. This notion turns out to be equivalent to topological recursion applied to spectral
curve x = 1

r y
r, and in the case of higher ramification point (r > 2) such system of operators

is consistent with the generalized topological recursion. Besides, we have confirmed that the
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case of double ramification point (r = 3) corresponds to W(sl3) algebra arising in conformal
field theory. In fact, [57] studies much more general scenario with an arbitrary semi-simple Lie
algebra, by using the formalism of vertex operator algebras. It allows to conjecture that higher
Airy structures are related to orbifold CFTs, but this relation is still to be explored.
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Chapter 4

Local equivalences of quivers

In this chapter we define and study the local equivalence relation for quivers, which can be
applied recursively to a given quiver matrix in order to compute all equivalent matrices. The
results of section 4.5 are presented in [60]. Our motivation comes from the uniqueness problem
in the knots-quivers correspondence. Already in [21] it was noticed that there exist more than
one quiver corresponding to the same knot (the phenomenon we call a quiver degeneracy). For
example, in [25] the two quivers were identified for the figure eight knot:

C41 =


0 0 −1 0 −1

0 2 0 1 −1

−1 0 −1 0 −2

0 1 0 1 −1

−1 −1 −2 −1 −2

 , C̃41 =


0 0 −1 0 −1

0 2 0 1 0

−1 0 −1 −1 −2

0 1 −1 1 −1

−1 0 −2 −1 −2

 . (4.1)

The first one is the same as in [21], but the second differs only by a permutation of some
entries which cannot be obtained by a simple relabelling of the vertices. Both quivers, however,
produce the same generating functions of colored HOMFLY-PT polynomials after the knots-
quivers change of variables (1.53) for a suitable choice of ai, qi, li. Therefore in order to identify
all possible degeneracies, the necessary step is to determine the local transformation of the quiver
matrices which makes such identification. This is of course is justified by the identities between
the corresponding Nahm sums (because the two partition functions must be equal after such
specialization). Our plan is as follows:

• Firstly, we analyse directly what kind of constraints arise from a single degeneracy (when
the two quivers correspond to the same knot).

• Secondly, we recall the unlinking operation on quivers defined in [25], which generates
various identities between the Nahm sums.

• Thirdly, we formulate and prove the local equivalence theorem with the help of unlinking,
establishing the sufficient condition for the local equivalence of quivers.

• Finally, we find all equivalent quivers for knots which differ by a single transposition of
elements of their quiver matrices from the quivers in [21]. We cover the infinite families of
torus and twist knots, as well as knots 62, 63, 73.
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4.1 Preliminary analysis of a quiver degeneracy

We begin with introducing an equivalence relation which captures quiver degeneracies:

Definition 4.1.1. Assume that quiver Q corresponds to the knot K and quiver Q′ corresponds
to the knot K ′ in the sense of the definition 1.3.1. We define

Q ∼ Q′ ⇐⇒ PQ(x, q)|x=xλ ≡ PQ′(x, q)
∣∣
x=xλ′

, (4.2)

where
λi = λ′i = aaiqqi−Cii(−t)Cii , Cii = ti ∀i ∈ Q0 = Q′0. (4.3)

This is clearly an identity between the two Nahm sums corresponding to each quiver. It also
means that the two knots K,K ′ share the same HOMFLY-PT homology. In what follows, we
take K = K ′ which is sufficient for our case studies (we do not consider different knots which
share the same HOMFLY-PT homology, such as mutant knots [143]). The main question is:
what are the general conditions for two quivers to be equivalent? In order to answer this question
we compare the two Nahm sums involved in (4.2) order by order in x. The linear terms cancel
automatically, since Cii = ti are completely fixed by the knots-quivers specialization (4.3), which
is the same for both Q and Q′. Let us focus on terms proportional to x2:

P2(a, q, t)x2

(1− q2)(1− q4)
=
∑
i∈Q0

(−q)4Ciix2λ2
i

(1− q2)(1− q4)
+

∑
i,j∈Q0,i 6=j

(−q)Cii+2Cij+Cjjx2λiλj
(1− q2)(1− q2)

=
∑
i∈Q′0

(−q)4Ciix2λ2
i

(1− q2)(1− q4)
+

∑
i,j∈Q′0,i 6=j

(−q)Cii+2C′ij+Cjjx2λiλj
(1− q2)(1− q2)

,

(4.4)

where we used (4.3) to write λi = λ′i and Cii = C ′ii. From there we already see something
interesting: the only difference between Q and Q′ can appear in non-diagonal terms Cij and C ′ij .
Since equation (4.4) needs to hold for all a and t (which are independent from Cij and C ′ij), we
require the equality between coefficients of each monomial in these variables. The only possibility
of having Q 6= Q′ satisfying (4.2) comes from Cij 6= C ′ij . Let us focus on the requirement

λaλb = q2sλcλd (4.5)

for some s ∈ Z and λa, λb, λc, λd being pairwise different. It allows to re-write the quadratic
term (4.4) as

λaλb(−q)Caa+Cbb

(
q2Cab + q−2s+2Ccd

)
= λaλb(−q)Caa+Cbb

(
q2C′ab + q−2s+2C′cd

)
, (4.6)

where we used Caa + Cbb = Ccc + Cdd that comes from the comparison of t powers in λaλb =

q2sλcλd. There is only one non-trivial way to satisfy (4.4):

C ′ab = Ccd − s, C ′cd = Cab + s. (4.7)

For s = 0 it translates to the transposition of matrix entries Cab ↔ Ccd. Proceeding to the cubic
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order, we get

P3(a, q, t)x3

(1− q2)(1− q4)(1− q6)
=
∑
i∈Q0

(−q)9Ciix3λ3
i

(1− q2)(1− q4)(1− q6)

+
∑

i,j∈Q0,i 6=j

(−q)4Cii+4Cij+Cjjx3λ2
iλj

(1− q2)(1− q4)(1− q2)

+
∑

i,j,k∈Q0,i 6=j 6=k

(−q)Cii+2Cij+Cjj+2Cjk+Ckk+2Cikx3λiλjλk
(1− q2)(1− q2)(1− q2)

,

(4.8)

so we have to look for terms containing λaλb or λcλd. They are given by

x3λaλb
(1− q2)(1− q4)(1− q6)

[
(−q)4Caa+4C′ab+Cbbλa + (−q)4Cbb+4C′ab+Caaλb

+ (1 + q2)(−q)Caa+2C′ab+Cbb+2Cbc+Ccc+2Cacλc

+ (1 + q2)(−q)Caa+2C′ab+Cbb+2Cbd+Cdd+2Cadλd

+ (1 + q2)
∑

i∈Q0\{a,b,c,d}

(−q)Caa+2C′ab+Cbb+2Cbi+Cii+2Caiλi

] (4.9)

and

x3λcλd
(1− q2)(1− q4)(1− q6)

[
(−q)4Ccc+4C′cd+Cddλc + (−q)4Cdd+4C′cd+Cddλd

+ (1 + q2)(−q)Ccc+2C′cd+Cdd+2Cad+Caa+2Cacλa

+ (1 + q2)(−q)Ccc+2C′cd+Cdd+2Cbd+Cbb+2Cbcλb

+ (1 + q2)
∑

i∈Q0\{a,b,c,d}

(−q)Ccc+2C′cd+Cdd+2Cdi+Cii+2Cciλi

] (4.10)

for PQ′(x, q)
∣∣
x=xλ

and analogous terms without prime symbols for PQ(x, q)|x=xλ. Since λaλb =

q2sλcλd, imposing the equality between PQ′(x, q)
∣∣
x=xλ

and PQ(x, q)|x=xλ implies conditions for
sums of terms from both (4.9) and (4.10) for λa, λb, λc, λd and each λi, i ∈ Q0\{a, b, c, d}:

λa

[
(−q)4Caa+4C′ab+Cbb+2s + (1 + q2)(−q)Ccc+2C′cd+Cdd+2Cad+Caa+2Cac

]
= λa

[
(−q)4Caa+4Cab+Cbb+2s + (1 + q2)(−q)Ccc+2Ccd+Cdd+2Cad+Caa+2Cac

]
,

(4.11)

λb

[
(−q)4Cbb+4C′ab+Caa+2s + (1 + q2)(−q)Ccc+2C′cd+Cdd+2Cbd+Cbb+2Cbc

]
= λb

[
(−q)4Cbb+4Cab+Caa+2s + (1 + q2)(−q)Ccc+2Ccd+Cdd+2Cbd+Cbb+2Cbc

]
,

(4.12)

λc

[
(−q)4Ccc+4C′cd+Cdd + (1 + q2)(−q)Caa+2C′ab+Cbb+2Cbc+Ccc+2Cac+2s

]
= λc

[
(−q)4Ccc+4Ccd+Cdd + (1 + q2)(−q)Caa+2Cab+Cbb+2Cbc+Ccc+2Cac+2s

]
,

(4.13)

λd

[
(−q)4Cdd+4C′cd+Ccc + (1 + q2)(−q)Caa+2C′ab+Cbb+2Cbd+Cdd+2Cad+2s

]
= λd

[
(−q)4Cdd+4Ccd+Ccc + (1 + q2)(−q)Caa+2Cab+Cbb+2Cbd+Cdd+2Cad+2s

]
,

(4.14)
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λi

[
(−q)Caa+2C′ab+Cbb+2Cbi+Cii+2Cai+2s + (−q)Ccc+2C′cd+Cdd+2Cdi+Cii+2Cci

]
= λi

[
(−q)Caa+2Cab+Cbb+2Cbi+Cii+2Cai+2s + (−q)Ccc+2Ccd+Cdd+2Cdi+Cii+2Cci

]
.

(4.15)

In each equation we have to match three q-monomials on both sides in a non-trivial way. For
example, in (4.11) we must take

4Caa + 4C ′ab + Cbb + 2s = Ccc + 2Ccd + Cdd + 2Cad + Caa + 2Cac + 2,

Ccc + 2C ′cd + Cdd + 2Cad + Caa + 2Cac = 4Caa + 4Cab + Cbb + 2s, (4.16)

Ccc + 2C ′cd + Cdd + 2Cad + Caa + 2Cac + 2 = Ccc + 2Ccd + Cdd + 2Cad + Caa + 2Cac,

or

4Caa + 4C ′ab + Cbb + 2s = Ccc + 2Ccd + Cdd + 2Cad + Caa + 2Cac,

Ccc + 2C ′cd + Cdd + 2Cad + Caa + 2Cac = Ccc + 2Ccd + Cdd + 2Cad + Caa + 2Cac + 2,

Ccc + 2C ′cd + Cdd + 2Cad + Caa + 2Cac + 2 = 4Caa + 4Cab + Cbb + 2s. (4.17)

Analogous matching for equations for (4.12-4.14), combined with Caa + Cbb = Ccc + Cdd and
(4.7), leads to two possible ways for non-trivial pairwise cancellation:

Cab + s = Ccd − 1,

Caa + Ccd = Cad + Cac + s+ 1,

Cbb + Ccd = Cbd + Cbc + s+ 1,

Cab + Ccc + s = Cbc + Cac,

Cab + Cdd + s = Cbd + Cad

or

Cab + s = Ccd + 1,

Caa + Ccd = Cad + Cac + s,

Cbb + Ccd = Cbd + Cbc + s,

Cab + Ccc + s = Cbc + Cac + 1,

Cab + Cdd + s = Cbd + Cad + 1.

(4.18)

Combining (4.18) with Caa + Cbb = Ccc + Cdd, we deduce that s = 0. Putting it in equations
(4.11)-(4.15) and performing the analogous matching of terms, we learn that:

Ccd = Cab − 1, Cci + Cdi = Cai + Cbi − δai − δbi ∀i ∈ Q0 (4.19)

or Cab = Ccd − 1, Cai + Cbi = Cci + Cdi − δci − δdi ∀i ∈ Q0. (4.20)

These conditions are required for the transposition Cab ↔ Ccd to lead to an equivalent quiver.

4.2 Unlinking operation

The main topic in [25] is the multi-cover skein relation for symmetric quivers. It was motivated
by the invariance of the q-series counting generalized holomorphic curves under bifurcations
of basic disks (recall section 1.3.4). One can express such bifurcations as the two elementary
operations on quivers – linking and unlinking. As they reproduce the same kind of equality
between the corresponding Nahm sums, without loss of a generality we focus on the case of
unlinking (figure 4.1). Consider a symmetric quiver Q and fix a, b ∈ Q0. The unlinking of nodes
a, b is defined as a transformation of Q leading to a new quiver Q̃ such that:

• There is a new node n: Q̃0 = Q0 ∪ n.
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Figure 4.1: Unlinking of the two basic disks (top) and quiver description (bottom). Source: [25]

• The quiver matrix entries associated to this node are taken as follows

C̃ab = Cab − 1, C̃nn = Caa + 2Cab + Cbb − 1, (4.21)

C̃in = Cai + Cbi − δai − δbi, C̃ij = Cij for all other cases,

where δij is a Kronecker delta.

To illustrate this principle, we relate the two quivers in the bottom of figure 4.1 by unlinking,
corresponding respectively to

C =

[
Caa Cab

Cba Cbb

]
=

[
0 1

1 0

]
−→ C̃ =

 C̃aa C̃ab C̃an

C̃ba C̃bb C̃bn

C̃na C̃nb C̃nn

 =

 0 0 0

0 0 0

0 0 1

 .
(4.22)

Most importantly, as proved in [25], the unlinking accompanied by the substitution xn =

q−1xaxb preserves the Nahm sum for the quiver:

PQ(x, q) = P
Q̃

(x, q)
∣∣∣
xn=q−1xaxb

. (4.23)

4.3 Local equivalence theorem

Having said the above, we formulate the following

Theorem 4.3.1. Consider a quiver Q for the knot K with the adjacency matrix C and another
quiver Q′ with C ′ such that Q′0 = Q0 and λ′i = λi ∀i ∈ Q0 (λi comes from the knots-quivers
change of variables 1.53). If Q and Q′ are related by a sequence of disjoint transpositions

Cab ↔ Ccd, Cba ↔ Cdc (4.24)

for some pairwise different a, b, c, d,∈ Q0, such that

λaλb = λcλd, (4.25)

and either
Cab = Ccd − 1, Cai + Cbi = Cci + Cdi − δci − δdi, ∀i ∈ Q0 (4.26)
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or
Ccd = Cab − 1, Cci + Cdi = Cai + Cbi − δai − δbi, ∀i ∈ Q0, (4.27)

then Q is equivalent to Q′.

Proof. Assume that Q corresponds to K, Q′0 = Q0, λ′i = λi ∀i ∈ Q0, and C ′ij = Cij except one
transposition Cab ↔ Ccd for some pairwise different a, b, c, d ∈ Q0. We require

λaλb = λcλd, Ccd = Cab − 1, Cci + Cdi = Cai + Cbi − δai − δbi, i ∈ Q0 (4.28)

and analogously for C ′ (the case Cab = Ccd − 1 correspond to changing labels ab ↔ cd). In
order to show that Q′ also corresponds to K, we connect Q′ to Q by transformations preserving
the Nahm sums, namely unlinking nodes a, b in Q and nodes c, d in Q′:

C C ′

C̃ = C̃ ′

(a, b) (c, d)

∼

By definition, unlinking expresses C̃ and C̃ ′ in terms of C as follows

C̃ij = Cij ∀i, j ∈ Q0\{a, b} C̃ ′ij = C ′ij ∀i, j ∈ Q0\{c, d}

C̃ab = Cab − 1 C̃ ′cd = C ′cd − 1 (4.29)

C̃in = Cai + Cbi − δai − δbi, C̃ ′in = C ′ci + C ′di − δci − δdi,

C̃nn = Caa + 2Cab + Cbb − 1, C̃ ′nn = C ′cc + 2C ′cd + C ′dd − 1.

Therefore we can relate the entries of C̃ and C̃ ′:

C̃ ′ab = C ′ab = Ccd = Cab − 1 = C̃ab,

C̃ ′cd = C ′cd − 1 = Cab − 1 = Ccd = C̃cd,

C̃ ′an = C ′ac + C ′ad = Cac + Cad = Caa + Cab − 1 = C̃an,

C̃ ′bn = C ′bc + C ′bd = Cbc + Cbd = Cab + Cbb − 1 = C̃bn,

C̃ ′cn = C ′cc + C ′cd − 1 = C ′ac + C ′bc = Cac + Cbc = C̃cn, (4.30)

C̃ ′dn = C ′cd + C ′dd − 1 = C ′ad + C ′bd = Cad + Cbd = C̃dn,

C̃ ′in = C ′ci + C ′di = Cci + Cdi = Cai + Cbi = C̃in, ∀i ∈ Q0\{a, b, c, d},

C̃ ′nn = C ′cc + 2C ′cd + C ′dd − 1 = Ccc + 2Cab + Cdd − 1 = Ccc + 2Cab + Cdd − 1 = C̃nn,

C̃ ′ij = C ′ij = Cij = C̃ij for all other cases,

which shows that the two quivers agree: Q̃ ′ = Q̃. Since we have a freedom to choose the knots-
quivers change of variables for the new nodes created when unlinking (for the old ones we have
λ′i = λi), we can take

λ̃′n = q−1λcλd = q−1λaλb = λ̃n, (4.31)
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and use the property that unlinking preserves the corresponding Nahm sum, to get

PQ′(x, q)
∣∣
xi=xλ′i

= P
Q̃′(x, q)

∣∣∣
xi=xλ′i, xn=xλ̃′n

= P
Q̃

(x, q)
∣∣∣
xi=xλi, xn=xλ̃n

= PQ(x, q)|xi=xλi .

Therefore we conclude

PQ′(x, q)
∣∣
x=xλ′

= PQ(x, q)|x=xλ = PK(x, a, q, t), (4.32)

which means that Q′ also corresponds to K, as we wanted to show.

Recall that the knots-quivers change of variables (1.53) for Nahm sum when C corresponds
to a knot, introduces the parameters

λi = aaiqqi−Cii(−t)Cii , i = 1 . . .m, (4.33)

wherem is the size of quiver matrix and, in our case studies, also the number of generators of the
uncolored HOMFLY-PT homology for a knot. In practice, for various quivers corresponding to
knots we start from looking for quadruples λa, λb, λc, λd that satisfy the condition λaλb = λcλd.
We refer to such a quadruple a, b, c, d ∈ Q0 as a pairing. If all the conditions in theorem 4.3.1
hold, we call such pairing a symmetry. For example, the two quivers for 41 knot are related by
such transposition, therefore they are equivalent:

λ1

λ2

λ3

λ4

λ5


0 0 −1 0 −1

0 2 0 1 −1

−1 0 −1 0 −2

0 1 0 1 −1

−1 −1 −2 −1 −2


λ2λ5=λ3λ4←−−−−−→


0 0 −1 0 −1

0 2 0 1 0

−1 0 −1 −1 −2

0 1 −1 1 −1

−1 0 −2 −1 −2

 .

λ1 λ2 λ3 λ4 λ5

(4.34)

Moreover, there are no other pairings which satisfy this conditions, and some extra analysis
shows that this is the complete set of equivalent quivers for 41 knot. Besides, in the case of
31 knot and the reduced HOMFLY-PT homology the quiver (1.56) has only 3 nodes and does
not support this type of transformation, therefore is unique. Importantly, symmetries of quivers
are tightly related to homological diagrams for knots. After the change of variables (1.53), each
pairing λaλb = λcλd gives the vector identity ~va + ~vb = ~vc + ~vd, where ~vi = (qi, ai) encodes
the position of the homology generator corresponding to λi. This identity can be interpreted as
a requirement that the centers of mass for pairs of nodes {a, b} and {c, d} coincide (assuming
that masses of all nodes are equal). We draw it as a parallelogram with the diagonals ab and
cd, as shown in figure 4.2.
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λ3

λ2

λ4λ1

λ5

a
q −2 0 2

−1

0

1

Figure 4.2: Generators of the uncolored, reduced HOMFLY-PT homology for 41 knot. The par-
allelogram corresponds to pairing λ2λ5 = λ3λ4.

4.4 Quiver matrices and HOMFLY-PT homologies for torus and
twist knots

Here we describe quiver matrices for some torus and twist knots, found in [21]. This would be
our input data in the next section.

The first family we consider are the (2, 2p+1) (another notation is T2,2p+1) torus knots, with
the homology diagram consisting of one zig-zag made of 2p + 1 generators, figure 4.3. These
knots are 31 = (2, 3), 51 = (2, 5), 71 = (2, 7), and so on. It is convenient way to think of a
zig-zag as a several wedges (∧) joined one by one, for example 31 knot corresponds to just a
single wedge. Of course if there are two wedges connected at a node, this connecting node has
the same label for both wedges. The quiver matrix for T2,2p+1 knot is given by

· · ·

λ0

λ1

λ2

λ3

λ4

λ2p−1

λ2pλ2p−2

Figure 4.3: Generators of the uncolored, reduced HOMFLY-PT homology for T2,2p+1 knot.

CT2,2p+1 =



0 1 1 3 3 . . . 2p− 1 2p− 1

1 2 2 3 3 . . . 2p− 1 2p− 1

1 2 3 4 4 . . . 2p 2p

3 3 4 4 4 . . . 2p− 1 2p− 1

3 3 4 4 5 . . . 2p 2p
...

...
...

...
...

. . .
...

...
2p− 1 2p− 1 2p 2p− 1 2p . . . 2p 2p

2p− 1 2p− 1 2p 2p− 1 2p . . . 2p 2p+ 1


, (4.35)

so that λi corresponds to Cii = i− δ1,1. The homological degrees ti are encoded in the diagonal
of (4.35)

(ti) = (0, 2, 3, 4, 5, . . . , 2p, 2p+ 1). (4.36)

Moreover, the parameters ai and li (and so qi) in the knots-quivers change of variables (1.53)
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are determined by∑
i

aidi = 2pr + 2α1 = 2p(d1 + d2 + d4 + . . .+ d2p) + 2(p+ 1)(d3 + d5 + . . .+ d2p+1), (4.37)

∑
i

lidi = −2pd1 + 2(1− p)d2 +
(
2(1− p)− 3

)
d3+

+ 2(2− p)d4 +
(
2(2− p)− 3

)
d5+

... (4.38)

+ 2(p− 1− p)d2(p−1) +
(
2(p− 1− p)− 3

)
d2(p−1)+1+

+ 2(p− p)d2p +
(
2(p− p)− 3

)
d2p+1.

Example 4.4.1. In order to illustrate how the values of ti, ai, qi determine the homology diagram
in figure 4.3, take the T2,5 knot (p = 2). The quiver matrix is given by

CT2,5 =


0 1 1 3 3

1 2 2 3 3

1 2 3 4 4

3 3 4 4 4

3 3 4 4 5

 (4.39)

We can see that there are 5 homology generators, and from the main diagonal we can read-off
their homological degrees

(t1, t2, t3, t4, t5) = (0, 2, 3, 4, 5). (4.40)

To determine the positions of the generators, we use the formulas (4.37), (4.38) and qi = li + ti,
to get

(a1, a2, a3, a4, a5) = (4, 4, 6, 4, 6),

(l1, l2, l3, l4, l5) = (−4,−2,−5, 0,−3),

(q1, q2, q3, q4, q5) = (−4, 0,−2, 4, 2).

(4.41)

We can draw the corresponding points in the (a, q) plane (figure 4.4). A similar analysis shows

0

3

2

5

4

a
q −4 0−2 42

4

6

λ0 = λ1

λ3

λ2

λ5

λ4

Figure 4.4: Generators of the uncolored, reduced HOMFLY-PT homology for T2,5 knot.

the zig-zag shape (figure 4.3) for an arbitrary T2,2p+1 knot.

The second family of our interest includes the TK2|p|+2 twist knots, with the homology
consisting of several diamonds (figure 4.5, left). They include knots 41, 61, 81, and so on. For
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...

λ5

λ4λ3 λ1, λ9

λ2, λ13

...
...

λ1λ2 λ4

λ3, λ8

...

λ4p−2

λ4pλ4p−1

λ4p+1

λ4p+3

λ4p+1λ4p+2

λ4p

Figure 4.5: Generators of the uncolored, reduced HOMFLY-PT homologies for TK2|p|+2 (on the
left) and TK2p+1 (on the right) knots.

example, 41 knot corresponds just to a single diamond, shown in figure 4.2. The quiver matrix
is given by

CTK2|p|+2 =



F0 F F F · · · F F

F T D1 R1 R1 · · · R1 R1

F T RT1 D2 R2 · · · R2 R2

F T RT1 RT2 D3 · · · R3 R3

...
...

...
...

. . .
...

...
F T RT1 RT2 RT3 · · · D|p|−1 R|p|−1

F T RT1 RT2 RT3 · · · RT|p|−1 D|p|


, (4.42)

where
F0 = [0] , F =

[
0 −1 0 −1

]
, (4.43)

Dk =


2k 2k − 2 2k − 1 2k − 3

2k − 2 2k − 3 2k − 2 2k − 4

2k − 1 2k − 2 2k − 1 2k − 3

2k − 3 2k − 4 2k − 3 2k − 4

 , Rk =


2k 2k − 2 2k − 1 2k − 3

2k − 1 2k − 3 2k − 2 2k − 4

2k 2k − 1 2k − 1 2k − 3

2k − 2 2k − 3 2k − 2 2k − 4

 .
(4.44)

The element F0 represents a zig-zag of length 1, i.e. a single homology generator, while the diag-
onal blocks Dk represent diamonds (up to a permutation of homology generators and an overall
shift). The identification with λi’s in Dk and Rk goes as follows:

λ4k−2 λ4k−1 λ4k λ4k+1

λ4k−2 2k 2k − 2 2k − 1 2k − 3

λ4k−1 2k − 2 2k − 3 2k − 2 2k − 4

λ4k 2k − 1 2k − 2 2k − 1 2k − 3

λ4k+1 2k − 3 2k − 4 2k − 3 2k − 4

λ4k−2 λ4k−1 λ4k λ4k+1

λ4k′−2 2k 2k − 1 2k 2k − 2

λ4k′−1 2k − 2 2k − 3 2k − 1 2k − 3

λ4k′ 2k − 1 2k − 2 2k − 1 2k − 2

λ4k′+1 2k − 3 2k − 4 2k − 3 2k − 4

(4.45)
This means that Dk encodes interactions of nodes nodes within one diamond, while Rk encodes
interactions of nodes from two diamonds labelled by r, r′.
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The knots-quivers change of variables (1.53) for the TK2|p|+2 knot can be read-off from

(−1)
∑
i pidi = (−1)(d3+d4)+(d7+d8)+...+(d4|p|−1+d4|p|)+2(d5+d9+...+d4|p|+1),∑

i

aidi = 2d2 + 0d3 + 0d4 − 2d5+

+ 4d6 + 2d7 + 2d8 + 0d9+ (4.46)
...

+ 2|p|d4|p|−2 + (2|p| − 2) d4|p|−1 + (2|p| − 2) d4|p| + (2|p| − 4) d4|p|+1,∑
i

lidi = −2d2 − d3 + d4 + 2d5+

− 4d6 − 3d7 − 1d8 + 0d9+

... (4.47)

− 2|p|d4|p|−2 + (1− 2|p|) d4|p|−1 + (3− 2|p|) d4|p| + (4− 2|p|) d4|p|+1.

The third family we consider are the TK2|p|+1 knots, with the homology consisting of p
diamonds and a zig-zag made of one generator, so altogether it has 4p + 1 generators. They
include 52, 72, 92 and other knots. Quiver matrices for TK2p+1 twist knots are

CTK2p+1 =



D1 R1 R1 R1 · · · R1 R1

RT1 D2 R2 R2 · · · R2 R2

RT1 RT2 D3 R3 · · · R3 R3

RT1 RT2 RT3 D4 · · · R4 R4

...
...

...
...

. . .
...

...
RT1 RT2 RT3 RT4 · · · Dp−1 Rp−1

RT1 RT2 RT3 RT4 · · · RTp−1 Dp


, (4.48)

where the block elements in the first row and column are

D1 =

 2 1 2

1 0 1

2 1 3

 , R1 =

 1 2 1 2

0 2 0 1

1 3 2 3

 , (4.49)

and all other elements, for k > 1, take the form

Dk =


2k − 3 2k − 2 2k − 3 2k − 2

2k − 2 2k 2k − 1 2k

2k − 3 2k − 1 2k − 2 2k − 1

2k − 2 2k 2k − 1 2k + 1

 , Rk =


2k − 3 2k − 2 2k − 3 2k − 2

2k − 1 2k 2k − 1 2k

2k − 2 2k 2k − 2 2k − 1

2k − 1 2k + 1 2k 2k + 1

 .
(4.50)

In this case D1 represents a zig-zag of the same form as for the trefoil knot, and Dk (for k > 1)
represent diamonds (up to a permutation of homology generators and an overall constant shift).

For this family of knots the change of variables (1.53) is given by
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(−1)
∑4p+1
i=3 tidi = (−1)(d3+d4)+(d7+d8)+...+(d4p−1+d4p)+2(d5+d9+...+d4p+1)

4p+1∑
i=3

aidi = 2(d3 + d4) + 4d5+

+ 2d6 + 4d7 + 4d8 + 6d9+ (4.51)

+ 4d10 + 6d11 + 6d12 + 8d13+

...

+ 2(p− 1)d4p−2 + 2pd4p−1 + 2pd4p + 2(p+ 1)d4p+1

4p∑
i=2

lidi = −2d4 − 3d5+

− d6 − 2d7 − 4d8 − 5d9+

− 3d10 − 4d11 − 6d12 − 7d13+

... (4.52)

+ (1− 2p)d4p−2 + (2− 2p)d4p−1 + (−2p)d4p + (−1− 2p)d4p+1.

4.5 Local equivalences for knots

Here we identify for quivers from section 4.4 all transpositions of arrows satisfying the conditions
of theorem 4.3.1. We call them local symmetries, because they give rise to equivalent quivers.
We study the three infinite families of knots mentioned before, and additionally 62, 63 and 73

knots. The ordering of homological generators is fixed consistently with the ordering of quiver
nodes in section 4.4 and allows to enumerate the wedges and diamonds in figures 4.3 and 4.5 by
an index r = 0, . . . , p. We also denote pairings by

λaλb = λcλd ⇐⇒

(
a b

c d

)
(4.53)

Proposition 4.5.1. Quiver matrices (4.35), (4.42) and (4.48) have the following local symme-
tries

T2,2p+1 :

(
2r 2r′ + 3

2r + 3 2r′

)
,

(
2r + 3 2r′ + 2

2r + 2 2r′ + 3

)

TK2|p|+2 :

(
4r − 1 4r′

4r 4r′ − 1

)
,

(
4r − 1 4r′ − 2

4r − 2 4r′ − 1

)
,

(
4r + 1 4r′

4r 4r′ + 1

)
,(

4r + 1 4r′′ − 2

4r′ + 1 4r′ − 2

)
,

(
4 4p− 1

5 4p− 2

)

TK2p+1 :

(
2 4r′ + 3

3 4r′ + 2

)
,

(
2 4r′ + 1

1 4r′ + 2

)
,

(
2 4p+ 1

3 4p

)
, ST2|p|+2

(4.54)
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such that r′ = r + 1, r′′ = r + 2, and

ST2|p|+2 :=

(
4r + 2 4r′ + 1

4r + 1 4r′ + 2

)
,

(
4r 4r′ + 1

4r + 1 4r′

)
,

(
4r + 2 4r′ + 3

4r + 3 4r′ + 2

)
,

(
4r 4r′′ + 3

4r′ 4r′ + 3

)
.

(4.55)

λ2r

λ2r+3

λ2r+2 = λ2r′

λ2r′+3

λ2r′+2 λ2r

λ2r+3

λ2r+2 = λ2r′

λ2r′+3

λ2r′+2

Figure 4.6: The two local symmetries for quiver matrix (4.35).

λ2

λ6 λ3

λ7

λ2

λ6 λ5

λ1
λ2

λ4p

λ4p+1

λ3

λ5

λ4

λ4p−2

λ4p−1

Figure 4.7: The five local symmetries for quiver matrices (4.42), top, and the three local symme-
tries for quiver matrices (4.48), bottom. The missing labels for the first four diagrams indicate
that these symmetries are shared between (4.42) and (4.48).

These symmetries can be drawn as parallelograms on the corresponding homological dia-
grams (figures 4.6 and 4.7). Below we give a comprehensive analysis of each of the three infinite
families of knots. It is followed by the analysis of 62, 63, 73 knots.

4.5.1 Torus knots T2,2p+1: 31, 51, 71, . . .

For this family of knots, the homology diagram is a chain of p consecutive wedges (figure 4.3),
and we label them by r = 0, . . . , p−1. Note that λ0 = λ1 corresponds to x1, while λi corresponds
to xi. This notation is convenient, since elsewhere in the formulas we can simply assign r = 0

to the leftmost wedge. Note that the quiver matrix (4.35) can be presented as

i, j both odd or even: Cij = j − 1, i = j : Cjj = j,

i odd, j even: Cij = j, j even: C1j = j − 1,

i even, j odd: Cij = j − 2 + δi+1,j , j odd: C1j = j − 2.

(4.56)
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λ2r

λ2r+3

λ2r+2

λ2r′+3

λ2r′ λ2r′+2 λ2r

λ2r+3

λ2r+2

λ2r′+3

λ2r′ λ2r′+2

Figure 4.8: The two kinds of pairings between wedges.

Suppose that a pairing is made of generators from only two wedges, not necessarily joined
together (figure 4.8). A direct check of conditions (table 4.1) shows that it is a local symmetry
if and only if r′ = r + 1, meaning that these wedges are actually connected. In order to
confirm that there are no other symmetries, we consider the four consecutive wedges labelled by
r < r′ < r′′ < r′′′. In consequence equation (4.56) leads to the four cases

1) Cab = 2r′′ + 1, Ccd = 2r′ + 1 2) Cab = 2r′′ + 2, Ccd = 2r′ + 1

3) Cab = 2r′′′ + 1, Ccd =

2r′ + 1, r′′ = r′ + 1

2r′′, r′′ > r′ + 1
4) Cab = 2r′′′ + 2, Ccd = 2r′′ + 1

It follows that the condition |Cab − Ccd| = 1 cannot be met, which shows that the only local
symmetries are indeed those in figure 4.6.

Pairing b = c+ 3, d = a+ 3

a = a

b = c+ 3

c = c

d = a+ 3


a b− 2 c− 1 d− 2

b− 2 b b− 2 b− 1

c− 1 b− 2 c c
d− 2 b− 1 c d


s < a, odd a + (b− 1) = c+ (d− 1)

s < a, even (a− 1) + (b− 2) =

(c− 1) + (d− 2)

s > b, odd (s− 2) + (s− 1) =

(s− 2) + (s− 1)

s > b, even (s− 1) + s = (s− 1) + s

d < s < c, odd (s− 2) + (b− 1) 6= c+ (s− 1)

d < s < c, even (s− 1) + (b− 2) 6= (c− 1) + d

s = a+ 2 (i+ 1) + (j − 2) 6=
(k − 1) + (l − 1)

s = c+ 1 (s− 2) + (j − 1) 6=
(s− 1) + (s− 1)

Pairing b = c+ 1, d = a+ 1

a = a

b = c+ 1

c = c

d = a+ 1


a b− 2 c− 1 d− 1

b− 2 b b− 1 b− 1
c− 1 b− 1 c c
d− 1 b− 1 c d


s < d, odd a + (b− 1) = c+ (d− 1)

s < d, even (a− 1) + (b− 2) =

(c− 1) + (d− 2)

s > c, odd (s− 2) + (s− 1) =

(s− 2) + (s− 1)

s > c, even (s− 1) + s = (s− 1) + s

a < s < b, odd (s− 2) + (b− 1) 6= c+ (s− 1)

a < s < b, even (s− 1) + (b− 2) 6= (c− 1) + d

Table 4.1: The local symmetries of quivers (4.35) for T2,2p+1 torus knots.

118



4.5.2 Twist knots TK2|p|+2: 41, 61, 81, . . .

For this family of knots, the homology diagram consists of p diamonds and an extra dot (figure
4.5). Table 4.2 shows all possible pairings which can occur between the homology diamonds for
this family of knots.

2 diamonds
a 4r − 1 4r − 1 4r + 1 4r + 1 4r + 1 4r 4r + 1 4r − 1 4r 4r + 1
b 4r′ 4r′ − 2 4r′ 4r′ − 2 4r′ − 2 4r′ − 2 4r′ − 1 4r′ 4r′ − 1 4r′ − 2
c 4r 4r − 2 4r 4r − 1 4r 4r − 2 4r − 1 4r − 2 4r − 2 4r − 2
d 4r′ − 1 4r′ − 1 4r′ + 1 4r′ 4r′ − 1 4r′ 4r′ + 1 4r′ + 1 4r′ + 1 4r′ + 1

3 diamonds, equally distant
4r − 2 4r − 2 4r − 1 4r − 1 4r 4r − 2 4r + 1 4r 4r − 2
4r′′ 4r′′ − 1 4r′′ + 1 4r′′ 4r′′ + 1 4r′′ + 1 4r′′ − 2 4r′′ − 1 4r′′ + 1

4r′ − 2 4r′ − 2 4r′ − 1 4r′ − 1 4r′ 4r′ − 1 4r′ − 1 4r′ + 1 4r′ + 1
4r′ 4r′ − 1 4r′ + 1 4r′ 4r′ + 1 4r′ 4r′ 4r′ − 2 4r′ − 2

4r − 1 4r 4r 4r − 1 4r + 1
4r′′ − 2 4r′′ − 1 4r′′ − 2 4r′′ 4r′′ − 2
4r′ − 1 4r′ 4r′ 4r′ + 1 4r′ + 1
4r′ − 2 4r′ − 1 4r′ − 2 4r′ − 2 4r′ − 2

3 diamonds, shifted up / down
4r + 1 4r + 1 4r − 1 4r 4r + 1 4r − 2 4r 4r − 2 4r − 2 4r − 1
4r′′ + 1 4r′′ 4r′′ + 1 4r′′ + 1 4r′′ − 1 4r′′ − 2 4r′′ − 2 4r′′ − 1 4r′′ 4r′′ − 2
4r′ − 1 4r′ 4r′ − 1 4r′ 4r′ − 1 4r′ − 1 4r′ + 1 4r′ + 1 4r′ + 1 4r′ − 1
4r′ 4r′ − 2 4r′ − 2 4r′ − 2 4r′ − 2 4r′ 4r′ 4r′ − 1 4r′ 4r′ + 1

4 diamonds, equally distant
4r − 1 4r − 1 4r 4r + 1 4r + 1 4r − 1 4r + 1 4r
4r′′′ 4r′′′ + 1 4r′′′ + 1 4r′′′ − 2 4r′′′ − 2. 4r′′′ 4r′′′ − 2 4r′′′

4r′ 4r′ + 1 4r′ + 1 4r′ 4r′ − 1 4r′ + 1 4r′ 4r′

4r′′ − 1 4r′′ − 1 4r′′ 4r′′ − 1 4r′′ 4r′′ − 2 4r′′ − 1 4r′′

4r − 1 4r 4r 4r + 1 4r + 1 4r 4r − 1
4r′′′ − 2 4r′′′ − 1 4r′′′ − 2 4r′′′ − 1 4r′′′ 4r′′′ − 1 4r′′′

4r′ − 2 4r′ − 1 4r′ − 2 4r′ − 1 4r′ 4r′ + 1 4r′ − 2
4r′′ − 1 4r′′ 4r′′ 4r′′ + 1 4r′′ + 1 4r′′ − 2 4r′′ + 1

4r − 2 4r − 2 4r − 2 4r − 2 4r + 1 4r + 1 4r − 1
4r′′′ − 1 4r′′′ 4r′′′ + 1 4r′′′ + 1 4r′′′ − 2 4r′′′ − 2 4r′′′ − 1
4r′ − 1 4r′ 4r′ − 1 4r′ 4r′ + 1 4r′ − 2 4r′ − 1
4r′′ − 2 4r′′ − 2 4r′′ 4r′′ − 1 4r′′ − 2 4r′′ + 1 4r′′ − 1

4 diamonds, shifted up / down
4r − 1
4r′′′

4r′ + 1
4r′′ + 1

4r − 2
4r′′′

4r′

4r′′ + 1

4r − 2
4r′′′

4r′ + 1
4r′′

4r − 2
4r′′′ − 2
4r′ − 1
4r′′

4r − 1
4r′′′ − 2
4r′ − 1
4r′′ + 1

4r
4r′′′ − 1
4r′ + 1
4r′′ + 1

4r + 1
4r′′′

4r′ − 2
4r′′

4r − 2
4r′′′ − 2

4r′

4r′′ − 1

4r − 2
4r′′′ − 1
4r′ + 1
4r′′ − 1

4r − 2
4r′′′ − 1
4r′ − 1
4r′′ + 1

4r
4r′′′ − 1
4r′ − 2
4r′′ − 2

4r
4r′′′ + 1
4r′ − 2
4r′′

4r
4r′′′ + 1

4r′

4r′′ − 2

4r + 1
4r′′′ + 1

4r′

4r′′ − 1

4r + 1
4r′′′ − 1
4r′ − 2
4r′′ − 1

4r
4r′′′ − 2

4r′

4r′′ + 1

4r − 1
4r′′′ + 1
4r′ − 1
4r′′ − 2

4r − 1
4r′′′ + 1
4r′ − 2
4r′′ − 1

4r − 1
4r′′′

4r′ − 2
4r′′ − 2

Table 4.2: All pairings between diamonds for knot TK2|p|+2. The five local symmetries are
underlined.
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(
4r − 1 4r′

4r 4r′ − 1

) (
4r − 1 4r′ − 2
4r − 2 4r′ − 1

) (
4r + 1 4r′

4r 4r′ + 1

) (
4r + 1 4r′ − 2
4r − 1 4r′

) (
4r + 1 4r′ − 2

4r 4r′ − 1

)

(
4r 4r′ − 2

4r − 2 4r′

) (
4r + 1 4r′ − 1
4r − 1 4r′ + 1

) (
4r − 1 4r′

4r − 2 4r′ + 1

) (
4r 4r′ − 1

4r − 2 4r′ + 1

) (
4r + 1 4r′ − 2
4r − 2 4r′ + 1

)

Figure 4.9: Pairings between two homology diamonds labelled by r and r′.

We now show that the five underlined pairings in table 4.2 are local symmetries. The detailed
analysis of four of them is given in table 4.3. The top-right pairing in this table is a particular
case of another pairing (

4r + 1 4r′′ − 2

4r′ + 1 4r′ − 2

)
(4.57)

From the sub-matrix

a = 4r + 1

b = 4r′ − 2

c = 4r + 5

d = 4r′ − 6


2r − 4 2r − 2 2r − 4 2r − 2− δr+1,r′

2r − 2 2r′ 2r 2r′ − 2

2r − 4 2r 2r − 2 2r − δr+2,r′

2r − 2− δr+1,r′ 2r′ − 2 2r − δr+2,r′ 2r′ − 2

 (4.58)

we see that r′ = r + 2 is the only candidate for a symmetry (otherwise |Cab − Ccd| = 1 is not
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a = 4r − 1

b = 4r′

c = 4r

d = 4r′ − 1


2r − 3 2r − 2 2r − 2 2r − 3
2r − 2 2r′ − 1 2r − 1 2r′ − 2

2r − 2 2r − 1 2r − 1 2r − 1

2r − 3 2r′ − 2 2r − 1 2r′ − 3


r < r′′ < r′ :

4r′′ − 2 2r − 1 + 2r′′ − 1 = 2r + 2r′′ − 2

4r′′ − 1 2r − 3 + 2r′′ − 2 6= 2r − 1 + 2r′′ − 3

4r′′ 2r − 2 + 2r′′ − 1 = 2r − 1 + 2r′′ − 2

4r′′ + 1 2r − 4 + 2r′′ − 2 = 2r − 3 + 2r′′ − 3

r < r′ < r′′ :

4r′′ − 2 2r − 1 + 2r′ = 2r + 2r′ − 1

4r′′ − 1 2r − 3 + 2r′ − 1 = 2r − 1 + 2r′ − 3

4r′′ 2r − 2 + 2r′ − 1 = 2r − 1 + 2r′ − 2

4r′′ + 1 2r − 4 + 2r′ − 3 = 2r − 3 + 2r′ − 4

r′′ < r < r′ :

4r′′ − 2 2r′′ − 4 + 2r′′ − 1 = 2r′′ − 1 + 2r′′ − 4

4r′′ − 1 2r′′ − 3 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 3

4r′′ 2r′′ − 1 + 2r′′ − 1 = 2r′′ − 1 + 2r′′ − 1

4r′′ + 1 2r′′ − 4 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 4

4r + 1

4r′ − 2

4r + 5

4r′ − 6


2r − 4 2r − 2 2r − 4 2r − 2
2r − 2 2r′ 2r 2r′ − 2

2r − 4 2r 2r − 2 2r − 1

2r − 2 2r′ − 2 2r − 1 2r′ − 2


The left vertical axis:

. . . , 4r − 9, 4r − 5 2r − 6 + 2r − 3 = 2r − 6 + 2r − 3

4r − 1 2r − 4 + 2r − 1 = 2r − 4 + 2r − 1

4r + 3 2r − 3 + 2r + 1 = 2r − 2 + 2r

4r + 7, 4r + 11, . . . 2r − 3 + 2r + 2 = 2r − 1 + 2r

The right vertical axis:

. . . , 4r − 8, 4r − 4 2r − 5 + 2r − 2 = 2r − 5 + 2r − 2

4r 2r − 3 + 2r = 2r − 3 + 2r

4r + 4 2r − 2 + 2r + 2 = 2r − 1 + 2r + 1

4r + 8, 4r + 12, . . . 2r − 2 + 2r + 3 = 2r + 2r + 1

The middle vertical axis:
4r′′ − 2, r′′ ≤ p 2r′′ − 3 + 2r′′ = 2r′′ − 3 + 2r′′

4r + 9, 4r + 13, . . . 2r − 4 + 2r + 1 = 2r − 2 + 2r − 1

4r − 1

4r′ − 2

4r − 2

4r′ − 1


2r − 3 2r − 1 2r − 2 2r − 3

2r − 1 2r′ 2r 2r′ − 2

2r − 2 2r 2r 2r − 2
2r − 3 2r′ − 2 2r − 2 2r′ − 3


r′′ < r < r′ :

4r′′ − 2 2r′′ − 4 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 4

4r′′ − 1 2r′′ − 3 + 2r′′ − 1 = 2r′′ − 1 + 2r′′ − 3

4r′′ 2r′′ − 1 + 2r′′ = 2r′′ + 2r′′ − 1

4r′′ + 1 2r′′ − 4 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 4

r < r′′ < r′ :

4r′′ − 2 2r − 1 + 2r′′ 6=2r + 2r′′ − 2

4r′′ − 1 2r − 3 + 2r′′ − 1 6=2r − 2 + 2r′′ − 3

4r′′ 2r − 2 + 2r′′ = 2r − 1 + 2r′′ − 1

4r′′ + 1 2r − 4 + 2r′′ − 2 6=2r − 1 + 2r′′ − 3

r < r′ < r′′ :

4r′′ − 2 2r − 1 + 2r′ = 2r + 2r′ − 1

4r′′ − 1 2r − 3 + 2r′ − 2 = 2r − 2 + 2r′ − 3

4r′′ 2r − 2 + 2r′ − 2 = 2r − 2 + 2r′ − 2

4r′′ + 1 2r − 4 + 2r′ − 3 = 2r − 3 + 2r′ − 4

4r + 1

4r′

4r

4r′ + 1


2r − 4 2r − 2 2r − 3 2r − 4

2r − 2 2r′ − 1 2r − 1 2r′ − 3

2r − 3 2r − 1 2r − 1 2r − 3
2r − 4 2r′ − 3 2r − 3 2r′ − 4


r′′ < r < r′ :

4r′′ − 2 2r′′ − 3 + 2r′′ − 1 = 2r′′ − 1 + 2r′′ − 3

4r′′ − 1 2r′′ − 4 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 4

4r′′ 2r′′ − 3 + 2r′′ − 1 = 2r′′ − 1 + 2r′′ − 3

4r′′ + 1 2r′′ − 4 + 2r′′ − 2 = 2r′′ − 2 + 2r′′ − 4

r < r′′ < r′ :

4r′′ − 2 2r − 2 + 2r′′ − 3 6= 2r + 2r′′ − 3

4r′′ − 1 2r − 3 + 2r′′ − 2 = 2r − 1 + 2r′′ − 4

4r′′ 2r − 2 + 2r′′ − 1 6= 2r − 1 + 2r′′ − 3

4r′′ + 1 2r − 4 + 2r′′ − 2 6= 2r − 3 + 2r′′ − 4

r < r′ < r′′ :

4r′′ − 2 2r − 2 + 2r′′ = 2r + 2r′′ − 2

4r′′ − 1 2r − 3 + 2r′′ − 1 = 2r − 1 + 2r′′ − 3

4r′′ 2r − 2 + 2r′′ − 1 = 2r − 1 + 2r′′ − 2

4r′′ + 1 2r − 4 + 2r′′ − 3 = 2r − 3 + 2r′′ − 4

Table 4.3: The four pairings which are local symmetries only when r′ = r + 1.

satisfied). The fifth case corresponds to

a = 4r + 1

b = 4r′ − 2

c = 4r

d = 4r′ − 1


2r − 4 2r − 2 2r − 3 2r − 3

2r − 2 2r′ 2r 2r′ − 2

2r − 3 2r 2r − 1 2r − 1

2r − 3 2r′ − 2 2r − 1 2r′ − 3

 (4.59)
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s = 4 (−1) + (2) 6= (1) + (1)

s = 5 (−2) + (0) 6= (0) + (−1)

r < r′′ < r′ :

s = 4r − 1 (2r − 4) + (2r − 1) = (2r − 2) + (2r − 3)

s = 4r − 2 (2r − 3) + (2r) = (2r − 1) + (2r − 2)

s = 4r′ (2r − 2) + (2r′ − 1) = (2r − 1) + (2r′ − 2)

s = 4r′ + 1 (2r − 4) + (2r′ − 3) = (2r − 3) + (2r′ − 4)

s = 4r′′ (2r − 2) + (2r′′) = (2r − 1) + (2r′′ − 1)

r < r′ < r′′ :

s = 4r′′ − 1 (2r − 3) + (2r′ − 2) 6= (2r − 1) + (2r′ − 3)

s = 4r′′ − 2 (2r − 2) + (2r′) 6= (2r) + (2r′ − 1)

We see here that some conditions fail and deduce that (4.59) is a symmetry if and only if r = 1

and r′ = p. For example, r = p = 1 corresponds to the unique symmetry for the figure eight
knot.

Summing up, all five cases in the top of figure 4.7 are indeed non-trivial local symmetries.
It turns out that all other pairings listed in table 4.2 fail to be a (non-trivial) symmetry. This
happens because of the two reasons: when Cab 6= Ccd, either the condition |Cab − Ccd| = 1 fails
in general (which we have verified using the Mathematica program), or it is satisfied only when
some diamonds collide and gives again the same five cases.

4.5.3 Twist knots TK2p+1: 31, 52, 72, 92, . . .

For this family of knots, some local symmetries agree (up to a relabelling of quiver nodes) with
those for TK2|p|+2 knots (we denote them by ST2|p|+2 in proposition 4.3.1). This is because
the main building blocks (diamonds) for their HOMFLY-PT homologies have essentially the
same structure. The difference comes from a zig-zag, which for TK2|p|+2 knots is degenerated
to a dot, while for TK2p+1 knot it takes form of a single wedge of length 3 (compare the two
homology diagrams in figure 4.5). In what follows, we only need to study the interaction between
this zig-zag and an arbitrary diamond. There are five potential cases:(

2 4r + 1

3 4r

)
,

(
1 4r + 2

3 4r

)
,

(
2 4r + 3

3 4r + 2

)
,

(
1 4r + 3

3 4r + 1

)
,

(
1 4r + 2

2 4r + 1

)
, (4.60)

where r = 1, . . . p− 1. It turns out that one such case is actually trivial

a = 1

b = 4r + 2

c = 3

d = 4r


2 1 2 1

1 2r − 2 2 2r − 3

2 2 3 1

1 2r − 3 1 2r − 3

 (4.61)

The other four pairings are analysed in table 4.4. In the top-left case the only possibility for
a symmetry is r = p−1, which proves the bottom-right symmetry in figure 4.7. Likewise, the top-
right case corresponds to the bottom-left symmetry in figure 4.7, and the rightmost pairing
in (4.60) is a symmetry as well, see figure 4.7 (bottom-middle). However, λ1λ4r+3 = λ3λ4r+1
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does not lead to a symmetry because of the spectator constraint for s = 2.

Pairing (2, 4r + 1, 3, 4r):

a = 2

b = 4r + 1

c = 3

d = 4r


0 2 1 0

2 2r 3 2r − 2
1 3 3 1
0 2r − 2 1 2r − 3


s = 1 1 + 2 =2 + 1

s = 4r + 2 0 + 2r + 1 =2 + 2r − 1

s = 4r + 3 1 + 2r + 2 =3 + 2r

1 < r′ < r :

s = 4r′ 0 + 2r′ − 2 =1 + 2r′ − 3

s = 4r′ + 1 2 + 2r′ =3 + 2r′ − 1

s = 4r′ + 2 0 + 2r′ =2 + 2r′ − 2

s = 4r′ + 3 1 + 2r′ + 1 =3 + 2r′ − 1

r < r′ :

s = 4r′ 0 + 2r − 16=1 + 2r − 3

Pairing (2, 4r + 3, 3, 4r + 2):

a = 2

b = 4r + 3

c = 3

d = 4r + 2


0 1 1 0
1 2r + 3 3 2r + 1

1 3 3 2

0 2r + 1 2 2r


s = 1 1 + 2 =2 + 1

s = 4r 0 + 2r =1 + 2r − 1

s = 4r + 1 2 + 2r + 2 =3 + 2r + 1

1 < r′ < r :

s = 4r′ 0 + 2r′ =1 + 2r′ − 1

s = 4r′ + 1 2 + 2r′ + 2 =3 + 2r′ + 1

s = 4r′ + 2 0 + 2r′ + 1 6=2 + 2r′

s = 4r′ + 3 1 + 2r′ + 3 6=3 + 2r′ + 2

r < r′ :

s = 4r′ 0 + 2r − 1 =1 + 2r − 2

s = 4r′ + 1 2 + 2r + 1 =3 + 2r

s = 4r′ + 2 0 + 2r =2 + 2r − 2

s = 4r′ + 3 1 + 2r + 1 =3 + 2r − 1

Pairing (2, 4r + 1, 1, 4r + 2):

a = 2

b = 4r + 1

c = 1

d = 4r + 2


0 2 1 0

2 2r + 2 2 2r + 1
1 2 2 1
0 2r + 1 1 2r


s = 3 1 + 3 =2 + 2

s = 4r 0 + 2r =1 + 2r − 1

s = 4r + 3 1 + 2r + 2 =2 + 2r + 1

1 < r′ < r :

s = 4r′ 0 + 2r′ − 2 =1 + 2r′ − 3

s = 4r′ + 1 2 + 2r′ 6=2 + 2r′ − 2

s = 4r′ + 2 0 + 2r′ 6=1 + 2r′ − 2

s = 4r′ + 3 1 + 3r′ + 1 =2 + 2r′

r < r′ :

s = 4r′ 0 + 2r − 1 =1 + 2r − 2

s = 4r′ + 1 2 + 2r =2 + 2r

s = 4r′ + 2 0 + 2r − 1 =1 + 2r − 2

s = 4r′ + 3 1 + 2r =2 + 2r − 1

Pairing (1, 4r + 3, 3, 4r + 1):

a = 1

b = 4r + 3

c = 3

d = 4r + 1


2 2 2 2
2 2r + 3 3 2r + 2

2 3 3 3

2 2r + 2 3 2r + 2


s = 2 1 + 1 6=1 + 2

Table 4.4: The non-trivial pairings between the wedge and a diamond.

4.5.4 62, 63, 73 knots

In the last part of this chapter we determine the local symmetries for knots 62, 63 and 73 and
their quiver matrices found in [21] and [23].
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62 knot Let us start from the knot 62. The quiver from [21] reads

C =



−2 −2 −1 −1 −1 −1 0 −1 1 1 1

−2 −1 −1 0 0 0 1 0 1 2 2

−1 −1 0 1 0 0 1 0 1 2 2

−1 0 1 0 0 0 1 0 2 1 1

−1 0 0 0 1 1 1 1 2 2 2

−1 0 0 0 1 1 1 1 2 2 2

0 1 1 1 1 1 2 1 2 2 2

−1 0 0 0 1 1 1 2 2 3 3

1 1 1 2 2 2 2 2 3 3 3

1 2 2 1 2 2 2 3 3 3 3

1 2 2 1 2 2 2 3 3 3 4



, λ =



q−2(−t)−2

a2q−4(−t)−1

a2q−2

q2

a2(−t)
a2(−t)

a2q2(−t)2

a4q−2(−t)2

a4(−t)3

a2q4(−t)3

a4q2(−t)4



.

(4.62)
There are eight local symmetries associated to (4.62) for the following pairings:

λ1λ7 = λ3λ4, λ1λ11 = λ4λ8, λ5λ11 = λ8λ10, λ6λ11 = λ8λ10,

λ1λ9 = λ3λ5, λ1λ9 = λ3λ6, λ2λ7 = λ3λ5, λ2λ7 = λ3λ6.

Their graphical representation, together with the homology diagram, is given in figure 4.10.

λ1

λ2 λ3 λ5, λ6 λ7 λ10

λ8 λ9 λ11

λ4

*

*

*

Figure 4.10: Homology diagram and local symmetries for 62 knot, each picture marked with *
corresponds to two symmetries, due to double-valued nodes λ5 and λ6.
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63 knot For 63 the quiver matrix from [21] is given by

C =



0 0 0 −1 −1 0 0 −1 −1 0 0 −1 −1
0 1 0 −1 −2 1 0 −1 −2 1 1 0 −1
0 0 0 −1 −2 1 0 0 −2 1 1 0 0

−1 −1 −1 −2 −3 0 −1 −2 −3 −1 0 −2 −2
−1 −2 −2 −3 −3 −1 −1 −2 −3 −1 −1 −2 −2
0 1 1 0 −1 2 1 0 −1 2 1 1 −1
0 0 0 −1 −1 1 1 0 −1 2 1 1 0

−1 −1 0 −2 −2 0 0 −1 −2 0 0 −1 −2
−1 −2 −2 −3 −3 −1 −1 −2 −2 0 −1 −1 −2
0 1 1 −1 −1 2 2 0 0 3 2 1 0

0 1 1 0 −1 1 1 0 −1 2 2 1 0

−1 0 0 −2 −2 1 1 −1 −1 1 1 0 −1
−1 −1 0 −2 −2 −1 0 −2 −2 0 0 −1 −1



, λ =



1

a2q−2(−t)
1

q−4(−t)−2

a−2q−2(−t)−3

a2(−t)2

q2(−t)
q−2(−t)−1

a−2(−t)−2

a2q2(−t)3

q4(−t)2

1

a−2q2(−t)−1



.

(4.63)

For (4.63) there are six local symmetries for the following pairings:

λ2λ8 = λ4λ6, λ2λ12 = λ4λ10, λ3λ8 = λ4λ7,

λ3λ9 = λ5λ7, λ3λ13 = λ5λ11, λ6λ13 = λ8λ11,

which graphical representation, together with the homology diagram, is given in figure 4.11.

λ5

λ4 λ8 λ1, λ3, λ12 λ7 λ11

λ2 λ6 λ10

λ13λ9

Figure 4.11: Homology diagram and local symmetries for 63 knot.

125



73 knot As the last isolated example we consider the 73 knot. The quiver from [23] reads

C =



2 0 3 2 1 5 4 3 3 2 5 4 3

0 0 1 1 0 3 3 2 1 1 3 3 2

3 1 4 2 2 5 4 4 4 2 5 4 4

2 1 2 2 1 3 3 3 3 2 3 3 3

1 0 2 1 1 3 2 2 2 1 3 2 2

5 3 5 3 3 6 4 4 6 4 6 4 4

4 3 4 3 2 4 4 3 5 4 5 4 3

3 2 4 3 2 4 3 3 4 3 5 4 3

3 1 4 3 2 6 5 4 5 3 6 5 4

2 1 2 2 1 4 4 3 3 3 4 4 3

5 3 5 3 3 6 5 5 6 4 7 5 5

4 3 4 3 2 4 4 4 5 4 5 5 4

3 2 4 3 2 4 3 3 4 3 5 4 4



, λ =



a6q−4(−t)2

a4q−4

a6(−t)4

a4(−t)2

a4q−2(−t)
a6q4(−t)6

a4q4(−t)4

a4q2(−t)3

a8q−2(−t)5

a6q−2(−t)3

a8q2(−t)7

a6q2(−t)5

a6(−t)4



. (4.64)

For (4.64) there are seven local symmetries for the following pairings, also shown in figure 4.12.

λ1λ10 = λ2λ9, λ2λ11 = λ3λ10, λ3λ10 = λ4λ9, λ3λ12 = λ4λ11,

λ4λ13 = λ5λ12, λ6λ12 = λ7λ11, λ7λ13 = λ8λ12.

λ5

λ1 λ10 λ3, λ13 λ12 λ6

λ9 λ11

λ8λ4λ2 λ7

Figure 4.12: Homology diagram and local symmetries for 73 knot.

To sum up, we analysed some examples of knots and computed their local symmetries for
quiver matrices from [21, 23]. Such symmetries are shown as parallelograms on the homology
diagram of a knot, and give rise to equivalent quivers which differ by a single transposition
of arrows. In this chapter we studied the local equivalence, and did not identify all possible
equivalent quivers for a given knot (except for the cases of 31 and 41 knots). However, this step
can be done by a successive application of theorem 4.3.1 to such pairs of equivalent quivers, as
shown in [60]. One of the most promising directions is to find the relation to colored homology
differentials which can be possibly obtained from the diagrams of symmetries.
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Summary

The main theme of this thesis revolves around Nahm sums, appearing in many areas of con-
temporary theoretical physics: two-dimensional conformal field theory, Chern-Simons theory,
certain class of supersymmetric gauge theories associated to three-manifolds, and others. Re-
markably, all these theories turn out to be related by dualities, and the occurrence of Nahm
sums in seemingly distant contexts suggests their common physical origin. We mainly focused
on the Nahm sums which encode motivic Donaldson-Thomas invariants for a symmetric quiver,
such that a suitable quiver also encodes quantum knot invariants, as stated by the knots-quivers
correspondence. We studied the recursive structures from these q-series, including quantum
A-polynomials, topological recursion, WKB expansions, and also local equivalence relation for
quivers.

In the second chapter we have shown that quiver A-polynomial, defined as the semi-classical
limit of the corresponding Nahm sum, is quantizable for a class of quivers. Moreover, we have
found an interesting combinatorial formula which computes the Newton polytope for such quiv-
ers. As a consequence, we expect such quivers to have nice interpretation also in terms of
topological string A-model (and the B-model defined from the quiver A-polynomial).

In the third chapter we have used the fact that quiver A-polynomial is quantizable, and
applied the topological recursion in order to reconstruct the Nahm sum and quantum quiver
A-polynomial from classical quiver A-polynomials. The conjectural correspondence between the
topological recursion wave function and the Nahm sum was explicitly checked and confirmed
for several examples, with a single exception in which we expect more complicated relation to
take place. Besides, we also studied quantum Airy structures which generalize the topological
recursion, and defined the case which governs spectral curves with non-simple ramification points
of an arbitrary order. We studied the case of cubic operators in a greater detail and confirmed
that it corresponds to the algebra of extended conformal symmetries in 2d CFTs.

In the fourth chapter we studied the uniqueness aspect in the knots-quivers correspondence
and defined the local equivalence relation for symmetric quivers, allowing to find recursively
all equivalent quivers for a given knot. We also studied this conditions for several families of
knots, and determined quivers which differ by a single local transformation from those previously
known.

Summing up, these results help to understand the role of Nahm sums in physics, to relate
seemingly distant theories involving quantum knot invariants and knot homologies and shed some
light on the relation between knots, quivers, topological strings and other structures, leaving the
scope for further research.

128





Bibliography

[1] Gerard ’t Hooft. “A Planar Diagram Theory for Strong Interactions”. In: Nucl. Phys. B 72 (1974). Ed. by
J. C. Taylor, p. 461. doi: 10.1016/0550-3213(74)90154-0.

[2] P. Di Francesco, Paul H. Ginsparg, and Jean Zinn-Justin. “2-D Gravity and random matrices”. In: Phys.
Rept. 254 (1995), pp. 1–133. doi: 10.1016/0370-1573(94)00084-G. arXiv: hep-th/9306153.

[3] B. Eynard. “Topological expansion for the 1-Hermitian matrix model correlation functions”. In: JHEP 11
(2004), p. 031. doi: 10.1088/1126-6708/2004/11/031. arXiv: hep-th/0407261 [hep-th].

[4] Marcos Mariño. Chern-Simons Theory, Matrix Models, and Topological Strings. Oxford University Press,
2005.

[5] Bertrand Eynard, Taro Kimura, and Sylvain Ribault. “Counting surfaces”. In: Progress in Mathematical
Physics 70 (2016).

[6] A. A. Belavin, Alexander M. Polyakov, and A. B. Zamolodchikov. “Infinite Conformal Symmetry in two-
dimensional Quantum Field Theory”. In: Nucl. Phys. B241 (1984), pp. 333–380. doi: 10.1016/0550-
3213(84)90052-X.

[7] Jacques Distler and Hikaru Kawai. “Conformal Field Theory and 2D Quantum Gravity”. In: Nucl. Phys.
B 321 (1989), pp. 509–527. doi: 10.1016/0550-3213(89)90354-4.

[8] Ofer Aharony, Steven S. Gubser, Juan Martin Maldacena, Hirosi Ooguri, and Yaron Oz. “Large N field
theories, string theory and gravity”. In: Phys. Rept. 323 (2000), pp. 183–386. doi: 10.1016/S0370-
1573(99)00083-6. arXiv: hep-th/9905111.

[9] Werner Nahm, Andreas Recknagel, and Michael Terhoeven. “Dilogarith Identities in Conformal Field
Theory”. In: Mod. Phys. Lett. (1993). arXiv: hep-th/9211034.

[10] Werner Nahm. “Conformal field theory and torsion elements of the Bloch group”. In: Frontiers in number
theory, physics, and geometry 2: On random matrices, zeta functions and dynamical systems. Proceedings,
Meeting, Les Houches, France, March 9-21, 2003 (2007), pp. 67–132. doi: 10.1007/978-3-540-30308-
4_2. arXiv: hep-th/0404120 [hep-th].

[11] Gregory W. Moore and Nathan Seiberg. “Polynomial Equations for Rational Conformal Field Theories”.
In: Phys. Lett. B 212 (1988), pp. 451–460. doi: 10.1016/0370-2693(88)91796-0.

[12] Gregory W. Moore and Nathan Seiberg. “Taming the Conformal Zoo”. In: Phys. Lett. B 220 (1989),
pp. 422–430. doi: 10.1016/0370-2693(89)90897-6.

[13] Timothy J. Hollowood and Paul Mansfield. “Rational Conformal Field Theories At, and Away From,
Criticality as Toda Field Theories”. In: Phys. Lett. B 226 (1989), p. 73. doi: 10.1016/0370-2693(89)
90291-8.

[14] Erik Verlinde. “Conformal Field Theory and its Applications to Strings”. In: PhD thesis (1988). eprint:
https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/024/20024924.pdf?r=1&r=1.

[15] Sergey Mozgovoy and Markus Reineke. “On the number of stable quiver representations over finite fields”.
In: Journal of Pure and Applied Algebra 213.4 (2009), pp. 430–439. issn: 0022-4049. doi: https://doi.
org/10.1016/j.jpaa.2008.07.019.

130



[16] Maxim Kontsevich and Yan Soibelman. “Stability structures, motivic Donaldson-Thomas invariants and
cluster transformations”. In: arXiv preprint (2008). arXiv: 0811.2435 [math.AG].

[17] Markus Reineke. “Degenerate Cohomological Hall algebra and quantized Donaldson-Thomas invariants
for m-loop quivers”. In: Doc. Math. 17 (2012), p. 1. arXiv: 1102.3978 [math.RT].

[18] E. Guadagnini, M. Martellini, and M. Mintchev. “Wilson Lines in Chern-Simons Theory and Link Invari-
ants”. In: Nucl. Phys. B 330 (1990), pp. 575–607. doi: 10.1016/0550-3213(90)90124-V.

[19] Michael Francis Atiyah. The geometry and physics of knots. Cambridge University Press, 1990.

[20] Hirosi Ooguri and Cumrun Vafa. “Knot invariants and topological strings”. In: Nucl. Phys. B 577 (2000),
pp. 419–438. doi: 10.1016/S0550-3213(00)00118-8. arXiv: hep-th/9912123.

[21] Piotr Kucharski, Markus Reineke, Marko Stosic, and Piotr Sulkowski. “Knots-quivers correspondence”.
In: Adv. Theor. Math. Phys. 23.7 (2019), p. 1685. arXiv: 1707.04017 [hep-th].

[22] Piotr Kucharski, Markus Reineke, Marko Stosic, and Piotr Sulkowski. “BPS states, knots and quivers”.
In: Phys. Rev. D 96 (2017), p. 121902. doi: 10.1103/PhysRevD.96.121902. arXiv: 1707.02991 [hep-th].

[23] Marko Stosic and Paul Wedrich. “Rational Links and DT Invariants of Quivers”. In: International Math-
ematics Research Notices (Jan. 2019). rny289. issn: 1073-7928. doi: 10 . 1093 / imrn / rny289. arXiv:
1711.03333 [math.QA]. url: https://doi.org/10.1093/imrn/rny289.

[24] Tobias Ekholm, Piotr Kucharski, and Pietro Longhi. “Physics and geometry of knots-quivers correspon-
dence”. In: Commun. Math. Phys. 379.2 (2020), pp. 361–415. doi: 10.1007/s00220-020-03840-y. arXiv:
1811.03110 [hep-th].

[25] Tobias Ekholm, Piotr Kucharski, and Pietro Longhi. “Multi-cover skeins, quivers, and 3d N = 2 dualities”.
In: JHEP 02 (2020), p. 018. doi: 10.1007/JHEP02(2020)018. arXiv: 1910.06193 [hep-th].

[26] Marko Stosic and Paul Wedrich. “Tangle addition and the knots-quivers correspondence”. In: arXiv
preprint (Apr. 2020). arXiv: 2004.10837 [math.QA].

[27] Tobias Ekholm, Piotr Kucharski, and Pietro Longhi. “Knot homologies and generalized quiver partition
functions”. In: arXiv preprint (Aug. 2021). arXiv: 2108.12645 [hep-th].

[28] Edward Witten. “Quantum field theory and the Jones polynomial”. In: Comm. Math. Phys. 121.3 (1989),
pp. 351–399. issn: 0010-3616. url: http://projecteuclid.org/euclid.cmp/1104178138.

[29] E. Cremmer, S. Ferrara, L. Girardello, and Antoine Van Proeyen. “Yang-Mills Theories with Local Su-
persymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect”. In: Nucl. Phys. B 212 (1983).
Ed. by A. Salam and E. Sezgin, p. 413. doi: 10.1016/0550-3213(83)90679-X.

[30] N. Seiberg and Edward Witten. “Monopoles, duality and chiral symmetry breaking in N=2 supersym-
metric QCD”. In: Nucl. Phys. B 431 (1994), pp. 484–550. doi: 10.1016/0550-3213(94)90214-3. arXiv:
hep-th/9408099.

[31] Philip C. Argyres and Michael R. Douglas. “New phenomena in SU(3) supersymmetric gauge theory”. In:
Nucl. Phys. B 448 (1995), pp. 93–126. doi: 10.1016/0550-3213(95)00281-V. arXiv: hep-th/9505062.

[32] Michael R. Douglas and Gregory W. Moore. “D-branes, quivers, and ALE instantons”. In: arXiv preprint
(Mar. 1996). arXiv: hep-th/9603167.

[33] Edward Witten. “Solutions of four-dimensional field theories via M theory”. In: Nucl. Phys. B 500 (1997),
pp. 3–42. doi: 10.1016/S0550-3213(97)00416-1. arXiv: hep-th/9703166.

[34] Hee-Joong Chung, Tudor Dimofte, Sergei Gukov, and Piotr Sułkowski. “3d-3d Correspondence Revisited”.
In: JHEP 04 (2016), p. 140. doi: 10.1007/JHEP04(2016)140. arXiv: 1405.3663 [hep-th].

[35] Sergei Gukov, Satoshi Nawata, Ingmar Saberi, Marko Stosic, and Piotr Sulkowski. “Sequencing BPS
Spectra”. In: JHEP 03 (2016), p. 004. doi: 10.1007/JHEP03(2016)004. arXiv: 1512.07883 [hep-th].

[36] Sergei Gukov, Pavel Putrov, and Cumrun Vafa. “Fivebranes and 3-manifold homology”. In: JHEP 07
(2017), p. 071. doi: 10.1007/JHEP07(2017)071. arXiv: 1602.05302 [hep-th].

131



[37] Sungbong Chun, Sergei Gukov, Sunghyuk Park, and Nikita Sopenko. “3d-3d correspondence for mapping
tori”. In: JHEP 09 (2020), p. 152. doi: 10.1007/JHEP09(2020)152. arXiv: 1911.08456 [hep-th].

[38] Rajesh Gopakumar and Cumrun Vafa. “On the gauge theory/geometry correspondence”. In: Adv. Theor.
Math. Phys (1999), p. 1415.

[39] Marcos Marino. “Les Houches lectures on matrix models and topological strings”. In: 2004. arXiv: hep-
th/0410165 [hep-th]. url: http://weblib.cern.ch/abstract?CERN-PH-TH-2004-199.

[40] Hirosi Ooguri and Cumrun Vafa. “Knot invariants and topological strings”. In: Nucl.Phys. B577 (2000),
pp. 419–438. doi: 10.1016/S0550-3213(00)00118-8. arXiv: hep-th/9912123 [hep-th].

[41] Stavros Garoufalidis and Thang T. Q. Le. “Nahm sums, stability and the colored Jones polynomial”. In:
(Dec. 2011). arXiv: 1112.3905 [math.GT].

[42] Tudor Dimofte and Stavros Garoufalidis. “The quantum content of the gluing equations”. In: Geometry &
Topology 17.3 (2013), pp. 1253–1315. doi: 10.2140/gt.2013.17.1253. url: https://doi.org/10.2140/
gt.2013.17.1253.

[43] Bertrand Eynard. “All orders asymptotic expansion of large partitions”. In: J. Stat. Mech. 0807 (2008),
P07023. doi: 10.1088/1742-5468/2008/07/P07023. arXiv: 0804.0381 [math-ph].

[44] Bertrand Eynard and Olivier Marchal. “Topological expansion of the Bethe ansatz, and non-commutative
algebraic geometry”. In: JHEP 03 (2009), p. 094. doi: 10 . 1088 / 1126 - 6708 / 2009 / 03 / 094. arXiv:
0809.3367 [math-ph].

[45] L. Chekhov. “Genus one correlation to multicut matrix model solutions”. In: Theor. Math. Phys. 141
(2004). [Teor. Mat. Fiz.141,358(2004)], pp. 1640–1653. doi: 10.1023/B:TAMP.0000049759.01361.79.
arXiv: hep-th/0401089 [hep-th].

[46] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen. “Plane curves associated to character
varieties of 3-manifolds”. In: Invent. Math. 118.1 (1994), pp. 47–84. issn: 0020-9910. doi: 10.1007/
BF01231526.

[47] Sergei Gukov. “Three-dimensional quantum gravity, Chern-Simons theory, and the A polynomial”. In:
Commun. Math. Phys. 255 (2005), pp. 577–627. doi: 10.1007/s00220-005-1312-y. arXiv: hep-th/
0306165.

[48] Sergei Gukov and Piotr Sulkowski. “A-polynomial, B-model, and Quantization”. In: JHEP 1202 (2012),
p. 070. doi: 10.1007/JHEP02(2012)070. arXiv: 1108.0002 [hep-th].

[49] Gaëtan Borot and Bertrand Eynard. “All order asymptotics of hyperbolic knot invariants from non-
perturbative topological recursion of A-polynomials”. In: Quantum Topology 6.1 (2015), pp. 39–138.

[50] Hiroyuki Fuji, Sergei Gukov, and Piotr Sulkowski. “Super-A-polynomial for knots and BPS states”. In:
Nucl. Phys. B 867 (2013), pp. 506–546. doi: 10.1016/j.nuclphysb.2012.10.005. arXiv: 1205.1515
[hep-th].

[51] Hiroyuki Fuji and Piotr Sulkowski. “Super-A-polynomial”. In: Proc. Symp. Pure Math. 90 (2015). Ed. by
Ron Donagi, Sheldon Katz, Albrecht Klemm, and David R. Morrison, pp. 277–304. doi: 10.1090/pspum/
090. arXiv: 1303.3709 [math.AG].

[52] Maxim Kontsevich and Yan Soibelman. “Airy structures and symplectic geometry of topological recursion”.
In: arXiv e-prints, arXiv:1701.09137 (Jan. 2017), arXiv:1701.09137. arXiv: 1701.09137 [math.AG].

[53] Jorgen Ellegaard Andersen, Gaëtan Borot, Leonid O. Chekhov, and Nicolas Orantin. “The ABCD of
topological recursion”. In: arXiv e-prints, arXiv:1703.03307 (Mar. 2017), arXiv:1703.03307. arXiv: 1703.
03307 [math-ph].

[54] Vincent Bouchard, Paweł Ciosmak, Leszek Hadasz, Kento Osuga, Blazej Ruba, and Piotr Sułkowski.
“Super Quantum Airy Structures”. In: Commun. Math. Phys. 380.1 (2020), pp. 449–522. doi: 10.1007/
s00220-020-03876-0. arXiv: 1907.08913 [math-ph].

132



[55] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin. “Unification of all string models
with c < 1”. In: Physics Letters B 275.3 (1992), pp. 311–314. issn: 0370-2693. doi: https://doi.org/10.
1016/0370-2693(92)91595-Z.

[56] E. Brezin and S. Hikami. “The intersection numbers of the p-spin curves from random matrix theory”. In:
JHEP 02 (2013), p. 035. doi: 10.1007/JHEP02(2013)035. arXiv: 1212.6096 [math-ph].

[57] Gaëtan Borot, Vincent Bouchard, Nitin K. Chidambaram, Thomas Creutzig, and Dmitry Noshchenko.
“Higher Airy structures, W algebras and topological recursion”. In: (Dec. 2018). arXiv: 1812 . 08738
[math-ph].

[58] Helder Larraguivel, Dmitry Noshchenko, Miłosz Panfil, and Piotr Sułkowski. “Nahm sums, quiver A-
polynomials and topological recursion”. In: JHEP 07 (2020), p. 151. doi: 10.1007/JHEP07(2020)151.
arXiv: 2005.01776 [hep-th].

[59] Dmitry Noshchenko. “Combinatorics of Nahm sums, quiver resultants and the K-theoretic condition”. In:
JHEP 03 (2021), p. 236. doi: 10.1007/JHEP03(2021)236. arXiv: 2007.15398 [hep-th].

[60] Jakub Jankowski, Piotr Kucharski, Hélder Larraguível, Dmitry Noshchenko, and Piotr Sułkowski. “Per-
mutohedra for knots and quivers”. In: (May 2021). arXiv: 2105.11806 [hep-th].

[61] S. Dotsenko. “Lectures on Conformal Field Theory”. In: Conformal Field Theory and Solvable Lattice
Models. Ed. by M. Jimbo, T. Miwa, and A. Tsuchiya. Academic Press, 1988, pp. 123–170. isbn: 978-0-12-
385340-0. doi: https://doi.org/10.1016/B978-0-12-385340-0.50008-5.

[62] S. Dotsenko and A.M. Polyakov. “Fermion Representations for the 2D and 3D Ising Models”. In: Conformal
Field Theory and Solvable Lattice Models. Ed. by M. Jimbo, T. Miwa, and A. Tsuchiya. Academic Press,
1988, pp. 171–203. isbn: 978-0-12-385340-0. doi: https://doi.org/10.1016/B978- 0- 12- 385340-
0.50009-7.

[63] Francisco C. Alcaraz, Michael N. Barber, and Murray T. Batchelor. “Conformal Invariance, the Xxz Chain
and the Operator Content of Two-dimensional Critical Systems”. In: Annals Phys. 182 (1988), pp. 280–
343. doi: 10.1016/0003-4916(88)90015-2.

[64] A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. “Infinite conformal symmetry in two- dimensional
quantum field theory”. In: Nuclear Physics B 241.2 (1984), pp. 333–380. issn: 0550-3213. doi: https:
//doi.org/10.1016/0550-3213(84)90052-X.

[65] Paul Ginsparg. “Applied Conformal Field Theory (lecture notes)”. In: (1989). arXiv: hep-th/9108028.

[66] John Cardy. “Conformal Field Theory and Statistical Mechanics (lecture notes)”. In: (2008). arXiv: 0807.
3472.

[67] Ralph Blumenhagen and Erik Plauschinn. Introduction to conformal field theory: with applications to
string theory. Vol. 779. Springer Science & Business Media, 2009.

[68] R. E. Borcherds. “Vertex Algebras for Beginners”. In: Bulletin of the London Mathematical Society 30.2
(1998), pp. 196–223.

[69] A. B. Zamolodchikov. “Integrable field theory from conformal field theory”. In: Adv. Stud. Pure Math. 19
(1989). Ed. by M. Jimbo, T. Miwa, and A. Tsuchiya, pp. 641–674.

[70] Vladimir V. Bazhanov, Sergei L. Lukyanov, and Alexander B. Zamolodchikov. “Integrable structure of
conformal field theory. 2. Q operator and DDV equation”. In: Commun. Math. Phys. 190 (1997), pp. 247–
278. doi: 10.1007/s002200050240. arXiv: hep-th/9604044.

[71] M. E. Fisher. “Yang-Lee Edge Singularity and phi**3 Field Theory”. In: Phys. Rev. Lett. 40 (1978),
pp. 1610–1613. doi: 10.1103/PhysRevLett.40.1610.

[72] John L. Cardy. “Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions”. In: Phys.
Rev. Lett. 54 (1985), pp. 1354–1356. doi: 10.1103/PhysRevLett.54.1354.

[73] David J. Gross and Alexander A. Migdal. “Nonperturbative Solution of the Ising Model on a Random
Surface”. In: Phys. Rev. Lett. 64 (1990), p. 717. doi: 10.1103/PhysRevLett.64.717.

133



[74] Paul H. Ginsparg. “Applied Conformal Field Theory”. In: Les Houches Summer School in Theoretical
Physics: Fields, Strings, Critical Phenomena. Sept. 1988. arXiv: hep-th/9108028.

[75] John L. Cardy. “Operator Content of Two-Dimensional Conformally Invariant Theories”. In: Nucl. Phys.
B 270 (1986), pp. 186–204. doi: 10.1016/0550-3213(86)90552-3.

[76] George E. Andrews, Jethro van Ekeren, and Reimundo Heluani. “The singular support of the Ising model”.
In: (2020). arXiv: 2005.10769.

[77] Markus Reineke. “Cohomology of quiver moduli, functional equations, and integrality of Donaldson–
Thomas type invariants”. In: Compositio Mathematica 147 (03 May 2011), pp. 943–964. issn: 1570-5846.
doi: 10.1112/S0010437X1000521X. url: http://Journals.cambridge.org/article_S0010437X1000521X.

[78] Maxim Kontsevich and Yan Soibelman. “Cohomological Hall algebra, exponential Hodge structures and
motivic Donaldson-Thomas invariants”. In: Commun. Num. Theor. Phys. 5 (2011), pp. 231–352. doi:
10.4310/CNTP.2011.v5.n2.a1. arXiv: 1006.2706 [math.AG].

[79] Alexander Soibelman. “Lecture Notes On Quiver Representations And Moduli Problems In Algebraic
Geometry”. In: arXiv preprint (2019). arXiv: 1909.03509.

[80] Alexander I. Efimov. “Cohomological Hall algebra of a symmetric quiver”. In: Compositio Mathematica
148.4 (2012), pp. 1133–1146. doi: 10.1112/S0010437X12000152. arXiv: 1103.2736.

[81] Davide Gaiotto, Gregory W Moore, and Andrew Neitzke. “Wall-crossing, Hitchin systems, and the WKB
approximation”. In: Advances in Mathematics 234 (2013), pp. 239–403. arXiv: 0907.3987.

[82] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Four-dimensional wall-crossing via three-
dimensional field theory”. In: Commun. Math. Phys. 299 (2010), pp. 163–224. doi: 10.1007/s00220-010-
1071-2. arXiv: 0807.4723 [hep-th].

[83] Andrew Neitzke. “What is a BPS state?” In: Lecture notes (2016). url: https://web.ma.utexas.edu/
users/neitzke/expos/bps-expos.%20pdf.

[84] V. Jones. “Hecke algebra representations of braid groups and link polynomials”. In: Ann. of Math. 126
(1987), p. 335.

[85] Mikhail Khovanov. “A categorification of the Jones polynomial”. In: Duke Math. J. 101 (2000), pp. 359–
426. arXiv: math/9908171 [math].

[86] Nathan M. Dunfield, Sergei Gukov, and Jacob Rasmussen. “The superpolynomial for knot homologies”.
In: Experiment. Math. 15.2 (2006), pp. 129–159. issn: 1058-6458. arXiv: math/0505662 [math.GT]. url:
http://projecteuclid.org/euclid.em/1175789736.

[87] Mikhail Khovanov and Lev Rozansky. “Matrix factorizations and link homology”. In: Fund. Math. 199
(2008), pp. 1–91. arXiv: math/0401268 [math.QA].

[88] Mikhail Khovanov and Lev Rozansky. “Matrix factorizations and link homology II”. In: Geom. & Topol.
12 (2008), pp. 1387–1425. arXiv: math/0505056 [math.QA].

[89] Sergei Gukov and Marko Stosic. “Homological Algebra of Knots and BPS States”. In: Proc. Symp. Pure
Math. 85 (2012), pp. 125–172. doi: 10.1090/pspum/085/1377, 10.2140/gtm.2012.18.309. arXiv:
1112.0030 [hep-th].

[90] Eugene Gorsky, Sergei Gukov, and Marko Stosic. “Quadruply-graded colored homology of knots”. In:
Fundamenta Mathematicae 243 (Apr. 2013). doi: 10.4064/fm30-11-2017. arXiv: 1304.3481 [math.QA].

[91] Tudor Dimofte and Sergei Gukov. “Chern-Simons Theory and S-duality”. In: JHEP 05 (2013), p. 109.
doi: 10.1007/JHEP05(2013)109. arXiv: 1106.4550 [hep-th].

[92] Victor V. Batyrev. “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties”.
In: J. Alg. Geom. 3 (1994), pp. 493–545. arXiv: alg-geom/9310003.

[93] Naichung Conan Leung and Cumrun Vafa. “Branes and toric geometry”. In: Adv. Theor. Math. Phys. 2
(1998), pp. 91–118. doi: 10.4310/ATMP.1998.v2.n1.a4. arXiv: hep-th/9711013.

134



[94] Mina Aganagic, Albrecht Klemm, Marcos Marino, and Cumrun Vafa. “Matrix model as a mirror of
Chern-Simons theory”. In: JHEP 0402 (2004), p. 010. doi: 10.1088/1126-6708/2004/02/010. arXiv:
hep-th/0211098 [hep-th].

[95] Edward Witten. “Chern-Simons gauge theory as a string theory”. In: The Floer Memorial Volume. Ed.
by Helmut Hofer, Clifford H. Taubes, Alan Weinstein, and Eduard Zehnder. Basel: Birkhäuser Basel,
1995, pp. 637–678. isbn: 978-3-0348-9217-9. doi: 10 . 1007 / 978 - 3 - 0348 - 9217 - 9 _ 28. url: https :
//doi.org/10.1007/978-3-0348-9217-9_28.

[96] Robbert Dijkgraaf and Cumrun Vafa. “Matrix models, topological strings, and supersymmetric gauge
theories”. In: Nuclear Physics B 644.1 (2002), pp. 3–20. issn: 0550-3213. doi: https://doi.org/10.
1016/S0550-3213(02)00766-6.

[97] André Miemiec and Igor Schnakenburg. “Basics of M-theory”. In: Fortschritte der Physik: Progress of
Physics 54.1 (2006), pp. 5–72.

[98] Stavros Garoufalidis, Aaron D. Lauda, and Thang T. Q. Le. “The colored HOMFLYPT function is q-
holonomic”. In: (2016). arXiv: 1604.08502 [math.GT].

[99] Milosz Panfil and Piotr Sulkowski. “Topological strings, strips and quivers”. In: JHEP 01 (2019), p. 124.
doi: 10.1007/JHEP01(2019)124. arXiv: 1811.03556 [hep-th].

[100] N. Seiberg and Edward Witten. “Electric - magnetic duality, monopole condensation, and confinement
in N=2 supersymmetric Yang-Mills theory”. In: Nucl. Phys. B 426 (1994). [Erratum: Nucl.Phys.B 430,
485–486 (1994)], pp. 19–52. doi: 10.1016/0550-3213(94)90124-4. arXiv: hep-th/9407087.

[101] Nikita A. Nekrasov. “Seiberg-Witten prepotential from instanton counting”. In: ICM proceedings. June
2003. arXiv: hep-th/0306211.

[102] Bertrand Eynard and Nicolas Orantin. “Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion
and matrix models”. In: (2007). arXiv: 0705.3600.

[103] Mina Aganagic, Robbert Dijkgraaf, Albrecht Klemm, Marcos Marino, and Cumrun Vafa. “Topological
strings and integrable hierarchies”. In: Commun. Math. Phys. 261 (2006), pp. 451–516. doi: 10.1007/
s00220-005-1448-9. arXiv: hep-th/0312085.

[104] Robbert Dijkgraaf, Lotte Hollands, Piotr Sulkowski, and Cumrun Vafa. “Supersymmetric gauge theories,
intersecting branes and free fermions”. In: JHEP 02 (2008), p. 106. doi: 10.1088/1126-6708/2008/02/106.
arXiv: 0709.4446 [hep-th].

[105] Leonid Chekhov, Bertrand Eynard, and Nicolas Orantin. “Free energy topological expansion for the 2-
matrix model”. In: JHEP 12 (2006), p. 053. doi: 10.1088/1126- 6708/2006/12/053. arXiv: math-
ph/0603003.

[106] Bertrand Eynard and Nicolas Orantin. “Invariants of algebraic curves and topological expansion”. In:
Commun. Num. Theor. Phys. 1 (2007), pp. 347–452. doi: 10.4310/CNTP.2007.v1.n2.a4. arXiv: math-
ph/0702045.

[107] Vincent Bouchard, Albrecht Klemm, Marcos Marino, and Sara Pasquetti. “Remodeling the B-Model”. In:
Commun. Math. Phys. 287 (2009), pp. 117–178. doi: 10.1007/s00220-008-0620-4. eprint: 0709.1453.

[108] Bertrand Eynard and Nicolas Orantin. “Computation of Open Gromov–Witten Invariants for Toric
Calabi–Yau 3-Folds by Topological Recursion, a Proof of the BKMP Conjecture”. In: Commun. Math.
Phys. 337.2 (2015), pp. 483–567. doi: 10.1007/s00220-015-2361-5. arXiv: 1205.1103 [math-ph].

[109] Bohan Fang, Chiu-Chu Melissa Liu, and Zhengyu Zong. “On the Remodeling Conjecture for Toric Calabi-
Yau 3-Orbifolds”. In: J. Am. Math. Soc. 33.1 (2020), pp. 135–222. doi: 10 . 1090 / jams / 934. arXiv:
1604.07123 [math.AG].

[110] Jonh Milnor. Introduction to Algebraic K-theory. Princeton University Press & University of Tokyo Press,
1971.

[111] F. Rodriguez Villegas. “Modular Mahler measures I”. In: Topics in Number Theory. S.D. Ahlgren, G.E.
Andrews and K. Ono, ed. Dordrecht: Kluwer, 1999, pp. 17–48.

135



[112] David W. Boyd, Fernando Rodriguez-Villegas, and Nathan M. Dunfield. “Mahler’s measure and the
dilogarithm (II)”. In: Canadian Journal of Mathematics 54 (2002), pp. 468–492. arXiv: math/0308041v2.

[113] Israel Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, Resultants, and Multidimen-
sional Determinants. The Science of Microfabrication. Wiley, 1994.

[114] Bernd Sturmfels. “On the Newton Polytope of the Resultant”. In: Journal of Algebraic Combinatorics 3.3
(1994), pp. 207–236.

[115] Carlos D’Andrea, Gabriela Jeronimo, and Martin Sombra. “The Canny-Emiris conjecture for the sparse
resultant”. In: arXiv preprint (2020). arXiv: 2004.14622.

[116] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky. “Newton Polytopes of the Classical
Resultant and Discriminant”. In: Advances in Mathematics 84 (1990), pp. 237–254.

[117] Hidetoshi Awata, Sergei Gukov, Piotr Sulkowski, and Hiroyuki Fuji. “Volume Conjecture: Refined and
Categorified”. In: Adv. Theor. Math. Phys. 16.6 (2012), pp. 1669–1777. doi: 10.4310/ATMP.2012.v16.
n6.a3. arXiv: 1203.2182 [hep-th].

[118] L. Chekhov and B. Eynard. “Hermitean matrix model free energy: Feynman graph technique for all
genera”. In: JHEP 03 (2006), p. 014. doi: 10.1088/1126-6708/2006/03/014. arXiv: hep-th/0504116
[hep-th].

[119] Leonid Chekhov, Bertrand Eynard, and Nicolas Orantin. “Free energy topological expansion for the 2-
matrix model”. In: (2006). arXiv: math-ph/0603003.

[120] Bertrand Eynard and Nicolas Orantin. “Invariants of algebraic curves and topological expansion”. In:
Commun. Num. Theor. Phys. 1 (2007), pp. 347–452. doi: 10.4310/CNTP.2007.v1.n2.a4. arXiv: math-
ph/0702045 [math-ph].

[121] Bertrand Eynard. “A short overview of the “Topological recursion””. In: preprint arXiv:1412.3286 (2014).

[122] Bertrand Eynard, Taro Kimura, and Sylvain Ribault. “Random matrices”. In: (2015). arXiv: 1510.04430.

[123] Vincent Bouchard and Bertrand Eynard. “Think globally, compute locally”. In: JHEP 02 (2013), p. 143.
doi: 10.1007/JHEP02(2013)143. arXiv: 1211.2302 [math-ph].

[124] Vincent Bouchard and Piotr Sulkowski. “Topological recursion and mirror curves”. In: Adv. Theor. Math.
Phys. 16.5 (2012), pp. 1443–1483. doi: 10.4310/ATMP.2012.v16.n5.a3. arXiv: 1105.2052 [hep-th].

[125] Vincent Bouchard and Bertrand Eynard. “Reconstructing WKB from topological recursion”. In: (2016).
arXiv: 1606.04498 [math-ph].

[126] Paul Norbury. “Quantum curves and topological recursion”. In: String-Math 2014 93 (2014), pp. 41–65.

[127] Stavros Garoufalidis, Piotr Kucharski, and Piotr Sulkowski. “Knots, BPS states, and algebraic curves”. In:
Commun. Math. Phys. 346.1 (2016), pp. 75–113. doi: 10.1007/s00220-016-2682-z. arXiv: 1504.06327
[hep-th].

[128] Stavros Garoufalidis and Thang T. Q. Lê. “A survey of q-holonomic functions”. In: Enseign. Math. 62
(2016), pp. 501–525. doi: 10.4171/LEM/62-3/4-7. eprint: 1601.07487.

[129] Stavros Garoufalidis, Thang T Q Lê, and Zeilberger Meets Jones. “The colored Jones function is q-
holonomic”. In: Geometry and Topology (2005), pp. 1253–1293.

[130] Marc Culler. A-Polynomials-gluing Equations. Aug. 2021. url: https://knotinfo.math.indiana.edu/
descriptions/a_polys_table_glueing.html.

[131] Vincent Bouchard and Piotr Sulkowski. “Topological recursion and mirror curves”. In: Adv. Theor. Math.
Phys. 16 (2012), pp. 1443–1483. doi: 10.4310/ATMP.2012.v16.n5.a3. arXiv: 1105.2052 [hep-th].

[132] Milosz Panfil, Marko Stosic, and Piotr Sulkowski. “Donaldson-Thomas invariants, torus knots, and lattice
paths”. In: Phys. Rev. D98.2 (2018), p. 026022. doi: 10.1103/PhysRevD.98.026022. arXiv: 1802.04573
[hep-th].

136



[133] Robbert Dijkgraaf, Hiroyuki Fuji, and Masahide Manabe. “The volume conjecture, perturbative knot
invariants, and recursion relations for topological strings”. In: Nuclear Phys. B 849.1 (2011), pp. 166–211.
issn: 0550-3213. doi: 10.1016/j.nuclphysb.2011.03.014. url: http://dx.doi.org/10.1016/j.
nuclphysb.2011.03.014.

[134] B. łażej Ruba. “Analyticity of the free energy for quantum Airy structures”. In: J. Phys. A 53.8 (2020),
p. 085201. doi: 10.1088/1751-8121/ab69a4. arXiv: 1906.00043 [math-ph].

[135] Gaëtan Borot, Reinier Kramer, and Yannik Schüler. “Higher Airy Structures and Topological Recursion
for Singular Spectral Curves”. In: arXiv preprint (Oct. 2020). arXiv: 2010.03512 [math-ph].

[136] Vincent Bouchard and Kieran Mastel. “A New Class of Higher Quantum Airy Structures as Modules of
W(glr)-Algebras”. In: arXiv preprint (Sept. 2020). arXiv: 2009.13047 [math-ph].

[137] Robbert Dijkgraaf, Cumrun Vafa, Erik P. Verlinde, and Herman L. Verlinde. “The Operator Algebra of
Orbifold Models”. In: Commun. Math. Phys. 123 (1989), p. 485. doi: 10.1007/BF01238812.

[138] M. Kontsevich. “Intersection theory on the moduli space of curves and the matrix Airy function”. In:
Commun. Math. Phys. 147 (1992), pp. 1–23. doi: 10.1007/BF02099526.

[139] Peter Bouwknegt and Kareljan Schoutens. “W symmetry in conformal field theory”. In: Phys. Rept. 223
(1993), pp. 183–276. doi: 10.1016/0370-1573(93)90111-P. arXiv: hep-th/9210010.

[140] Mina Aganagic, Miranda C. N. Cheng, Robbert Dijkgraaf, Daniel Krefl, and Cumrun Vafa. “Quantum
Geometry of Refined Topological Strings”. In: JHEP 11 (2012), p. 019. arXiv: 1105.0630 [hep-th].

[141] Vincent Bouchard, Joel Hutchinson, Prachi Loliencar, Michael Meiers, and Matthew Rupert. “A general-
ized topological recursion for arbitrary ramification”. In: Annales Henri Poincare 15 (2014), pp. 143–169.
doi: 10.1007/s00023-013-0233-0. arXiv: 1208.6035 [math-ph].

[142] I. Bakas. “The structure of the W ∞ algebra”. In: Communications in Mathematical Physics 134.3 (Dec.
1990), pp. 487–508. doi: 10.1007/BF02098443.

[143] Satoshi Nawata, P. Ramadevi, and Vivek Kumar Singh. “Colored HOMFLY-PT polynomials that dis-
tinguish mutant knots”. In: J. Knot Theor. Ramifications 26.14 (2017), p. 1750096. doi: 10 . 1142 /
S0218216517500961. arXiv: 1504.00364 [math.GT].

137


