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Abstract

Quantum many-body physics poses a substantial computational
challenge resulting from the exponential growth of the wave function
complexity and many non-trivial correlations encoded in it. Studying
many-body systems is thus a demanding quest that is being tackled
via various methods. The research described within this thesis con-
cerns two parallel approaches that are gaining the attention of the
scientific community: quantum simulations with ultracold molecules
and interpretable machine learning.

The first research path is a detailed analysis of the ultracold system
of two interacting molecules in a one-dimensional trap. By comparing
with the two-atom system in a harmonic trap, we identify differences
in spectra and reactions to the external fields introduced by the molec-
ular character of the system, i.e., rotational levels, anisotropic short-
range interactions, and stronger dipolar interactions. Exactly these
richer properties of molecules could allow for discovering new exotic
phases of matter and simulating phenomena that are inaccessible for
the physics of ultracold atoms. Inspired by materials with both electric
and magnetic orders, in the next step, we focus on the interplay of the
electric and magnetic properties of the two-body molecular system,
analyze magnetization diagrams, and study the quench dynamics.

Alternatively, quantum many-body problems can be solved via nu-
merical methods. Among them, machine learning algorithms are gain-
ing significant momentum. However, so far, they have mostly enabled
only the recovery of known results (but at much lower computational
cost). Moreover, we usually lack the understanding of how the machine
solves the problem at hand. Therefore, we propose a way to combine
the efficiency of neural networks with Hessian-based interpretability
and reliability methods like influence functions. In principle, these uni-
versal and model-independent tools allow to unravel the logic hidden in
the machine and thus increase the chance to understand the physics of
the problem. We show their power on the fundamental one-dimensional
Fermi-Hubbard model and on the experimental data obtained from the
Floquet realization of the topological two-dimensional Haldane model.
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Streszczenie

Fizyka kwantowa wielu ciał stanowi duże wyzwanie obliczeniowe
wynikające z wykładniczego wzrostu złożoności funkcji falowej i za-
kodowanych w niej wielu nietrywialnych korelacji. Na badania pro-
wadzone w ramach tej rozprawy doktorskiej składa się eksploracja
dwóch podejść do rozwiązywania problemów kwantowej fizyki wielu
ciał. Pierwszym z nich są symulacje kwantowe z użyciem ultrazim-
nych cząsteczek, a drugim - uczenie maszynowe.

Pierwsza ścieżka badawcza to szczegółowa analiza ultrazimnego
układu dwóch oddziałujących ze sobą cząsteczek w jednowymiarowej
pułapce. Porównując wyniki z dwuatomowym układem w pułapce har-
monicznej, identyfikujemy różnice w widmach i reakcjach na pola ze-
wnętrzne wprowadzone przez molekularny charakter układu, tj. obec-
ność poziomów rotacyjnych, anizotropowego oddziaływania krótkoza-
sięgowego i silniejszych oddziaływań dipolarnych. Właśnie te bogatsze
właściwości molekuł mogą pozwolić na odkrywanie nowych egzotycz-
nych faz materii i symulowanie zjawisk niedostępnych dla fizyki ultra-
zimnych atomów. Zainspirowani materiałami o porządkach elektrycz-
nych i magnetycznych, w kolejnym kroku skupiamy się na wzajemnym
oddziaływaniu właściwości elektrycznych i magnetycznych dwuciało-
wego układu molekularnego, analizujemy diagramy magnetyzacji i ba-
damy dynamikę po quenchu.

Alternatywnie, kwantowe problemy wielociałowe można rozwiązy-
wać metodami numerycznymi. Wśród nich coraz większym zaintere-
sowaniem cieszą się algorytmy uczenia maszynowego. Jednak do tej
pory umożliwiały one głównie odtworzenie znanych wyników (ale przy
znacznie niższych kosztach obliczeniowych). Co więcej, zwykle nie ro-
zumiemy, w jaki sposób maszyna rozwiązuje dany problem. Dlatego
proponujemy sposób na połączenie wydajności sieci neuronowych z ba-
zującymi na Hesjanie metodami interpretacji i wiarygodności, takimi
jak funkcje wpływu. Te uniwersalne i niezależne od modelu narzędzia
pozwalają rozwikłać logikę ukrytą w maszynie i tym samym zwięk-
szyć szansę na zrozumienie fizyki problemu. Pokazujemy ich moc na
fundamentalnym jednowymiarowym modelu Fermi-Hubbarda oraz na
danych eksperymentalnych uzyskanych z topologicznego dwuwymia-
rowego modelu Haldane’a w realizacji Floqueta.
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Resumen

La física cuántica de muchos cuerpos plantea un desafío compu-
tacional sustancial debido al crecimiento exponencial de la complejidad
de la función de onda y las múltiples correlaciones no triviales repre-
sentadas en ella. Así pues, estudiar sistemas de muchos cuerpos supone
una ardua tarea que se está abordando mediante varios métodos. La
investigación descrita en esta tesis concierne dos enfoques paralelos
que están ganando atención en la comunidad científica: las simulacio-
nes cuánticas con moléculas ultra-frías y el aprendizaje automático
interpretable.

La primera línea de investigación es un análisis detallado de un
sistema ultra-frío de dos moléculas que interactúan en una trampa uni-
dimensional. Al comparar con un sistema de dos átomos en una tram-
pa armónica, identificamos diferencias en los espectros y reacciones a
los campos externos inducidas por el carácter molecular del sistema.
Es decir, aparecen niveles rotacionales, interacciones anisotrópicas de
corto alcance, e interacciones dipolares más fuertes. Precisamente, es-
tas propiedades más ricas de las moléculas podrían permitir descubrir
nuevas fases exóticas de la materia y simular fenómenos inaccesibles
para la física de átomos ultra-fríos. Inspirándonos en materiales con
órdenes eléctricos y magnéticos, en el siguiente paso, nos centramos en
la interacción de las propiedades eléctricas y magnéticas de sistemas
de dos moléculas, analizamos diagramas de magnetización, y estudia-
mos la dinámica después de un cambio abrupto de los parámetros del
sistema.

Alternativamente, los problemas cuánticos de muchos cuerpos se
pueden resolver mediante métodos numéricos. Entre ellos, destacan
los algoritmos de aprendizaje automático, que están ganando cada vez
más importancia. Aún así, por el momento, solo han permitido recu-
perar resultados conocidos (aunque a un coste computacional mucho
más bajo). Además, normalmente no entendemos cómo la máquina re-
suelve el problema en cuestión. Por tanto, proponemos una forma de
combinar la eficiencia de las redes neuronales con métodos de inter-
pretación basados en la matriz Hessiana y métodos de fiabilidad como
la función de influencia. En principio, estas herramientas universales
e independientes del modelo permiten desentrañar la lógica oculta en
la máquina y, así, aumentar la probabilidad de entender la física del
problema. Mostramos su poder en el fundamental modelo de Fermi-
Hubbard en una dimensión y sobre datos experimentales obtenidos
en realizaciones de Floquet del modelo topológico de Haldane en dos
dimensiones.
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1

Introduction

The Hilbert space is a space of possibilities.
~Wolfgang Ketterle

1.1 Quantum many-body problems are difficult

Quantum many-body physics poses a substantial computational chal-
lenge for modern science for two reasons. Firstly, the complexity of the
quantum many-body system description grows exponentially with the num-
ber of its constituents. It is an example of the so-called curse of dimen-
sionality which is a phrase used across many scientific fields describing
in general the apparent intractability of systematically searching through
a high-dimensional space, the apparent intractability of accurately approx-
imating a general high-dimensional function, or the apparent intractability
of integrating a high-dimensional function [1].1

The second reason is of a much more fundamental nature. The behavior
of large and complex aggregates of known particles rarely is a simple ex-
trapolation of the properties of single bodies. In particular, the ground state
of a many-body system may exhibit different symmetry than its governing
Hamiltonian due to the spontaneous symmetry breaking [2]. This emergent
behavior of many-body systems has been already noted by P. W. Anderson
in 1972 [3]:

1Interestingly, there are also phenomena known as “blessings of dimensionality”. For
example, asymptotic methods widely used in statistical physics are so successful because
the high-dimensional setting enables making some statements that largely simplify calcu-
lations [1].
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1. Introduction

The reductionist hypothesis may still be a topic for controversy
among philosophers, but among the great majority of active sci-
entists I think it is accepted without question. The workings of
our minds and bodies, and of all the animate or inanimate mat-
ter of which we have any detailed knowledge, are assumed to
be controlled by the same set of fundamental laws, which ex-
cept under certain extreme conditions we feel we know pretty
well [...] the reductionist hypothesis does not by any means im-
ply a "constructionist" one: The ability to reduce everything to
simple fundamental laws does not imply the ability to start from
those laws and reconstruct the universe.

As a result, studying quantum many-body physics is a challenging quest
that can be solved either by direct mathematical and numerical analysis or
with devices that simulate its behavior, so-called quantum simulators.

This thesis explores both such directions. The first part of this intro-
ductory chapter (section 1.2) discusses the concept of quantum simulations
and presents successes of ultracold atoms in optical lattices as simulators
of many-body phenomena. Then, we explore the idea of replacing atoms
with more complex particles like molecules and the promises it brings to
the field of quantum simulations. In parallel, the quantum community has
been harnessing the power of machine learning (ML) to solve conundrums of
quantum many-body physics. We discuss this approach, its breakthroughs
and challenges in section 1.3.

1.2 Quantum simulations at ultralow
temperatures

A simulator is a well-founded concept in science. Prominent examples
are astronomical clocks built in Asia and Europe in the period between 1000
and 1500 AD. They were used to predict the positions of the planets and the
constellations as well as phases of the moon and its eclipses. On the other
hand, a history of quantum simulators has only begun with the speech of
Richard Feynman in 1981 [4] and his vision of “a quantum machine that
could imitate any quantum system, including the physical world”, known
also as a universal (or digital) quantum simulator. This idea was further
extended by Seth Lloyd in 1996 [5] and now is better known as a quantum
computer. However, we are still at infancy of its experimental realization,
i.e., in the so-called noisy intermediate-scale quantum (NISQ) era [6].

In turn, if instead of a machine solving any quantum problem, we go
for more modest machines solving a selected class of quantum problems,

2



1.2. Quantum simulations at ultralow temperatures

we enter the field of analog quantum simulations. This concept is about
addressing an interesting, yet difficult or unsolvable quantum problem by
building a simpler physical system that is described by the same Hamil-
tonian and performing measurements on it. Such simulators operate by
individually manipulating its constituting quantum particles and their in-
teractions. Therefore, those machines are inherently quantum which lifts
the need of classically tracking all possible configurations that scale expo-
nentially with the system size. Moreover, if we focus on certain physical
properties, e.g., densities, magnetization per lattice site, or few-body cor-
relations, instead of the full wave function, then results obtained with such
simulators are to some degree robust against imperfections [7].

Therefore, the construction of such a device starts with a proper map-
ping of the Hamiltonian of the system being interesting to science or tech-
nology, but difficult to study. Next, the simulator needs to be prepared in
a state relevant to the physical problem of interest, e.g., the ground state.
Also, measurements must be performed on the simulator with the highest
possible precision. Finally, Cirac & Zoller also indicated that there should
be a way of increasing the confidence in the result, like benchmarking it
first against the known solutions [7].

1.2.1 Ultracold atoms in lattices as quantum simulators

Quantum simulators need to be then highly controllable, well-isolated
from the environment, allow for precise state detection, and be able to
mimic interesting systems. All these conditions are met by trapped quan-
tum atomic systems at ultralow temperatures [8].2 As a result, ultracold
atoms in traps are especially useful for quantum simulation of various mod-
els of many-body physics, and a plethora of quantum phenomena have been
investigated and understood [13, 14].

Quantum simulations of strongly interacting systems with ultracold atoms
loaded in optical lattice3 have started [16] with experimental studies of the
quantum dynamics of phase transition [17] and collapse and revival of the
matter-wave field [18]. Soon after, Paredes at al. realized for the first time
the Tonks–Girardeau gas where repulsive interactions between bosonic par-
ticles confined to one dimension dominate the physics of the system [19].
Highly tunable lattice also allowed for creation and observation of nearest-

2Other promising and interesting platforms for quantum simulations include, e.g.,
trapped ultracold ions [9], superconducting qubits [10, 11], and cold hybrid ion-atom
systems [12].

3Of course, in parallel important research has been conducted with ultracold gases
in the continuum, e.g., realization of the Bose-Einstein condensation–Bardeen-Cooper-
Schrieffer crossover [15].

3



1. Introduction

neighbor magnetic spin correlations in a thermalized Fermi gas [20]. At
this point, the main source of the system tunability was provided by the
Feshbach resonances controlling interatomic interactions and the versatility
of optical lattices, schematically visualized in fig. 1.1(a). Experimentalists
are able to control their geometry, dimensionality, depth, and disorder [21].
Moreover, they can engineer lattices to carry effective magnetic fields which
are hundreds of times stronger than the strongest magnetic fields in solid-
state laboratories [22].

The next breakthrough was the development of the quantum gas mi-
croscopy for bosons [23, 24] and fermions [25, 26]. It has enabled the single
site-resolved detection of individual atoms (or more precisely, detection of
the local parity of the on-site atom number) in a two-dimensional lattice, as
presented in fig. 1.1(b). Finally, a simultaneous detection of two hyperfine
spin states has also been demonstrated [27] leading to the single-atom level
detection of spin and charge (density). Armed with such tools, Fukuhara et
al. observed magnons for the first time [28], and studied the quantum dy-
namics of the spin impurity [29]. In the absence of reliable theoretical pre-
dictions, Choi et al. observed the two-dimensional many-body localization
in the ultracold system [30]. Mazurenko et al. realized the antiferromagnetic
repulsive gas of cold fermions [31]. A recent experimental realization of the
two-dimensional Hubbard model with impurity showed that its accurate
theoretical description is provided by geometric strings [32].

The last experimental breakthrough is the combination of the single-
atom-level detection techniques with optical tweezers that enables construc-
tion of atomic systems without defects and with arbitrary geometries [33–35]
as one can see in fig. 1.1(c). Since then, a fully controllable atomic quantum
simulators only grow in size while preserving their fidelity. An impressive
experimental progress can be presented also in terms of sizes of trapped
atomic simulators. In 2017, Bernien et al. realized the programmable quan-
tum spin model with tunable interactions and size up to 51 qubits [36]. In
2021, programmable quantum simulators had 219 and 256 atoms [37, 38].
In 2022, the ultracold arrays are made out of two atomic species [39, 40]!
In this way the production of fully controllable synthetic quantum matter
can be achieved using both top-down and bottom-up approaches.

With an increasing size of experimental ultracold toolbox, various regimes
have been explored. For example, one-dimensional systems have attracted
significant attention [19, 41–43], due to the important role played by quan-
tum fluctuations [44]. Ultracold highly magnetic atoms were used to sim-
ulate the extended Bose-Hubbard models [45], the formation of self-bound
micro droplets of a dilute magnetic quantum liquid [46–48], and the Fermi
surface deformation in a dipolar quantum gas [49]. Another fascinating di-
rection is study of topological systems that can be created by adding ar-
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1.2. Quantum simulations at ultralow temperatures

(a)

(c)

(b)

Figure 1.1: Selected tools from the ultracold toolbox. Next to the advances in
cooling, there were breakthroughs regarding the control and detection of ultracold
systems. (a) In 2000s, the main versatility of ultracold systems came from the con-
trol over the optical lattices and Feshbach resonances. (b) Quantum gas microscopy
allowed for a single-site detection of ultracold systems. (c) When combined with
optical tweezers, defect-free arrays of any geometry became possible. Taken (a-b)
or adapted (c) with permission from Refs. [23, 54, 55], respectively.

tificial gauge fields [50, 51] using periodic driving, i.e., so-called Floquet
engineering [52, 53].

Moreover, next to many-body studies, the deterministic preparation of
a tunable few-fermion systems with complete control over the number of
particles, and their quantum state has become possible [56], opening the
way towards quantum simulation of strongly correlated few-body systems.
The fermionization of two distinguishable fermions [57], formation of a Fermi
sea [58], pairing in few-fermion systems [59], antiferromagnetic Heisenberg
spin chain [60], and two fermions [61] or bosons [62, 63] in a double well
have been experimentally investigated in one dimension. Such experimental
possibilities have motivated also intensive theoretical studies of few-body
atomic systems. The analytical solution is known for the general case of
two atoms in a harmonic trap interacting via contact [64] or finite-range
soft-core [65] potential. Energy spectra of harmonically trapped two-atom
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1. Introduction

systems with spin-orbit coupling have been investigated in one [66] and three
dimensions [67, 68]. Low energy states of two atoms with a dipole moment
in a three-dimensional harmonic trap have also been investigated [69–71].
Systems of several fermions [72–79], or several bosons [80–84] in a one-
dimensional harmonic trap have been studied using various analytical and
numerical approaches.

1.2.2 Replacing atoms with molecules

All these successes have been achieved, even though most atomic gases
have a simple isotropic and short-range interaction that is well approxi-
mated by the contact interaction. Tackling more complex interactions be-
comes possible when working with magnetic [45] or Rydberg atoms [85]
but, e.g., atoms with simultaneous significant electric and magnetic dipolar
interactions are probably out of reach. In general, there is a limit to how
complex physical phenomena we can simulate with such systems. We can
push this limit further by replacing atoms with molecules.

Molecules have inherently more complex structure than atoms [86]. This
includes rotational and vibrational levels together with possible permanent
electric dipole moment. The energy scales connected to their degrees of
freedom span several orders of magnitude as schematically presented in
fig. 1.2. They also have more complex short-range interactions, and stronger
dipole-dipole interactions of both magnetic and electric nature, being both
long-range and anisotropic [87, 88].

The richer structure of the molecules is the reason for using them in
the measurements of fundamental constants, i.e., in search for the upper
limit for the electric dipole moment value of the electron [89–92] and the
time dependence of fundamental constants such as the hyperfine structure
constant [93, 94] and the mass ratio of the electron and proton [95, 96].
This search is necessary to eliminate potentially wrong theories aiming at
unifying gravity with other interactions [97].

Ultracold molecules have also been employed in the ground-breaking ex-
periments on quantum-controlled chemistry [98–104] enabled by the exten-
sive control of internal states and relative motion of molecules with external
electromagnetic fields [87, 105–113]. The intermolecular dipolar interactions
promise exciting applications in quantum information processing [114–119].

Finally, higher complexity of molecules offers new possibilities in quan-
tum simulations. Micheli et al. in 2006 were one of the first to propose
a molecular simulator [120]. Their simplified system of molecules in the two-
dimensional optical lattice showed topologically protected states. Molecular
rotational states (in which pseudo-spins can be encoded with microwave-
field dressing) combined with the dipolar interaction have allowed for several
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1.2. Quantum simulations at ultralow temperatures

Figure 1.2: Characteristic energy scales of various degrees of freedom of
a diatomic molecule. They are expressed in equivalent temperature values (T ),
according to E = kBT , where kB is the Boltzmann constant. The energy scale for
a given degree of freedom can span several orders of magnitude due to the wide
range of masses, intramolecular bindings, and intermolecular interactions between
different molecules. Cold temperatures (T . 10 K) can be achieved in molecular
beams, but reaching the ultracold regime (T . 1 mK) requires techniques such
as laser cooling and evaporative cooling. Abbreviations: CMB, cosmic microwave
background; ISM, interstellar medium. Taken with permission from Ref. [142].

proposals to realize various models of quantum magnetism [121, 122, 122–
126] or implement controllable spin-orbit coupling [127] being a key to un-
derstanding a variety of spin-transport and topological phenomena. Other
suggestions proved the usefulness of ultracold molecules in modeling the
extended Hubbard model for polarons [128, 129], magnetic Frenkel exci-
tons [130], and exotic phases [131, 132] such as supersolid [133, 134] or
topological ones [135–138]. Another notable example of quantum simu-
lations are structures formed by molecules in a quantum atomic liquid,
e.g., superfluid helium. They form angulons, i.e., quantum rotors dressed
in field of many-body excitations (rotational analogs of polarons), which
may be useful, among others, in simulations of problems of quantum field
theory [139–141].

1.2.3 Molecules - experimental challenges

A more complex internal structure of molecules, as compared to atoms,
is responsible for greater experimental challenges in molecular formation,
cooling, and trapping. In particular, while laser cooling has been the indis-
pensable first step of ultracold atomic experiments, in general it does not
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1. Introduction

work for molecules [142]. Effective laser cooling requires rapid and repeated
scattering of photons between two levels without decaying to states not in-
volved in the cooling scheme. Such photon cycles can be found in many
atomic species, most notably alkali and alkaline earth atoms but not in
molecules. An important exception is a class of molecules with a strongly di-
agonal Franck-Codon factors. While they are still more challenging to laser-
cool than alkali atoms, those difficulties have been overcome for molecules
like SrF [143], YO [144], and CaF [145], and recently even extended to poly-
atomics [146, 147]. On the other hand, evaporative and sympathetic cooling
schemes remain important direct approaches also for molecules.

Due to direct laser cooling being limited to molecules with certain prop-
erties, in parallel indirect methods have been developed, consisting of first
cooling atoms down to ultralow temperatures and then associating them
into molecules. An example of such indirect cooling is using magnetoasso-
ciation via a Feshbach resonance [148] in combination with STIRAP [149].
This approach was pioneered in 2008 for Cs2 [150] and fermionic 40K87Rb
molecules [151], and it was later extended to bosonic 87Rb133Cs [152, 153],
fermionic 23Na40K [154], and bosonic 23Na87Rb [155] molecules. While ob-
taining ground-state 40K87Rb molecules reaches 2000s, only recently a de-
generate Fermi gas of those molecules was produced [156].

An unprecedented control over ultracold molecular collisions has been
achieved by selecting molecules’ internal state and by tuning dipolar colli-
sions with an external electric field in a reduced dimensionality [101, 157–
162]. Ultracold ground-state molecules have also been loaded into optical lat-
tices [163], and dipolar spin-exchange interactions between lattice-confined
polar molecules have been observed [164], opening the way towards quan-
tum simulations with molecules. On the other hand, the methods of full
quantum control, deterministic preparation, and detection at the single-
particle level, developed for ultracold atoms in optical tweezers [33, 35], can
readily be employed to molecules [165, 166], further extending the range
of applications of ultracold molecules [167]. Recently, the first step towards
atom-by-atom assembled few-body molecular systems has been taken [168]
and optical tweezers have been used to assemble and control molecules at
the single particle level [165, 169–171]. The defect-free molecular arrays are
on the way [172].

There is still one challenge of both experimental and theoretical nature
that stands in the way of obtaining dense ultracold samples of molecules as
well as molecular quantum simulators with more than one molecule per site.
Imagine cooling non-reactive molecules and loading them in a trap. Despite
the lack of a chemical reaction, the universal two-body losses (i.e., taking
place always once the colliding pair reaches the short range) are measured,
including set-ups like RbCs [152, 173], NaK [154], and NaRb [155, 174].
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Figure 1.3: Long-lived intermediate complexes. Endothermic ultracold colli-
sion on the example of RbCs + RbCs. The intermediate complex with lifetime τc

can either revive back into two molecules, undergo photoexcitation, or collide with
the third molecule causing inelastic losses. Inspired by Ref. [142].

Mayle et al. [175, 176] hypothesized that the reason is so-called sticky colli-
sions. In such a scenario, the colliding pair of molecules forms a long-lived
four-atom intermediate complex as presented in fig. 1.3 with 1 . When
such complex meets the third molecule, the inelastic collision takes place,
and molecules are lost as shown with 2 . The longer lifetime of the com-
plex, τc, the higher chance for the reaction and losses to occur. The Rice-
Ramsperger-Kassel-Marcus (RRKM) statistical theory indicates that τc is
proportional to the density of states of the complex at the incident energy
and inversely proportional to the number of exit channels, i.e., quantum
states available for the complex to dissociate [142]. For Rb2Cs2∗, τc was
estimated to 45 ms [176].

Recently, however, Christiansen et al. [177] recalculated the lifetimes of
such complexes, and they turned out to be two to three orders of magni-
tude shorter than in [176]. Therefore, three-body inelastic collisions cannot
cause losses as rapid as ones observed in experiments. Instead, Christiansen
et al. [178] proposed an alternative explanation: the losses are caused by
excitations of the intermediate four-atom complexes caused by the trapping
light as presented in fig. 1.3 with 3 . This excitation is possible even if
the trapping laser is detuned from all transitions in a molecule due to the
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presence of plethora of possible transitions in a four-atom complex. This hy-
pothesis got confirmed by the consequent experiments with RbCs [173, 179]
where revival of Rb2Cs2∗ complexes back into RbCs was observed when the
trapping light was off, as presented with arrow 4 in fig. 1.3.

However, the riddle is not yet fully solved. While the photoexcitation
hypothesis from Ref. [178] and corrected lifetimes of complexes predicted
from the RRKM theory from Ref. [177] agree with measurements performed
for RbCs [173, 179], no evidence of revival in the absence of trapping light
was found for other species. Moreover, the estimates for complexes’ lifetimes
resulting from measured losses are in a deep disagreement with RRKM
theory for bosonic 23Na87Rb [180] and 23Na39K [181] molecules (by one-two
orders of magnitude) as well as for a fermionic 23Na40K molecule [181] (by at
least two orders of magnitude) and especially for collisions between 40K87Rb
molecules and 87Rb (five orders of magnitude difference!) [182]. There is an
undergoing research addressing these discrepancies [183, 184]. In particular,
Jachymski et al. [183] indicate that when hyperfine structure is taken into
account, the RRKM theory recovers most of the experimentally measured
lifetimes.4

Next to the efforts to understand the molecular losses, shielding mecha-
nisms using electric [185–187] or microwave fields [188] have been developed.
They aim at creating avoided crossings in the system to keep molecules at
the distance, preventing them from short-range interactions and collisions,
reducing the two-body losses by an order of magnitude. Another way of
avoiding losses associated with the trap light is to study molecules with
a magnetic dipole moment (such as fermionic 23Na6Li in their triplet ground
state [189]) and use magnetic (rather than optical) traps.

These advancements pave the way towards so far unexplored regime
of two and more molecules in a trap which constitute a missing build-
ing block of a molecular Hubbard model. Moreover, as we have explained
in section 1.2.2, systems with magnetic and electric orders (like multifer-
roics [190]) are probably out of reach for atomic simulators, while being
a natural system to mimic for highly magnetic and polar molecules. Guided
by these motivations, within this thesis, we study the system of two ul-
tracold molecules in a trap and focus on the interplay of their electric and
magnetic properties. We devote to this research part I of the thesis, starting
with chapter 2.

While quantum simulators may be the future of the quantum many-body
physics, they cannot do without theory and numerics. They are needed both

4This correction explains especially the large difference for KRb + Rb as Rb has
a strong hyperfine coupling. However, including hyperfine structure to the RRKM theory
causes the discrepancy between the prediction of a Rb2Cs2∗ lifetime and the measured one.
Ref. [183] argues that it is due the light absorption timescales used in those experiments.
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to check the results obtained from quantum simulations in some regimes and
to fully understand those results. Until now, the density-matrix renormal-
ization group (DMRG) and tensor networks [191–193] have proved to be the
most effective numerical methods for solving many-body problems. Besides,
the quantum physics community has begun to explore a new approach -
machine learning (ML).

1.3 Machine learning quantum many-body
physics

Computers have been aiding in scientific discovery since 1950s. In 1955
a numerical simulation gave one of the first qualitative novel insights into
a physical problem, namely into the famous Fermi–Pasta–Ulam–Tsingou
problem [194].5 It is considered as the first ever numerical experiment which
is central in the solitons and chaos theories. Moreover, it was also one of
the first out-of-equilibrium studies of the statistical mechanics. Since then,
the role of computers in science has only grown, especially in the fields of
many-particle dynamics, nonlinear dynamics, statistical physics, cosmology,
climate science, quantum chemistry, and material science.

In parallel with increasing impact of numerical simulations, computer
science has been developing entirely new data-driven paradigm of program-
ming: machine learning (ML) [195, 196]. Nowadays, ML influences everyday
life in multiple ways with applications like text and voice recognition soft-
ware, fingerprint identification, self-driving cars, robotics, and many others.
These versatile algorithms, dealing with big and high-dimensional data, are
familiar with the curse of dimensionality and have an only growing influ-
ence on science. ML algorithms have already been encompassed by quan-
tum chemistry, especially as an effective representation of potential energy
surfaces [197–199] whose accuracy is a key element of efficient molecular
dynamics or Monte Carlo simulations. ML has also significantly improved
sampling for molecular dynamics [200] and promises generation of novel
molecules with desired properties [201]. The material science uses ML to
search huge databases for hidden relations between atomic and molecular
structures and properties of interest [202] or to design new materials [203].
In medicine, ML was used, e.g., to analyze brain samples [204] and to clas-
sify tumors of the nervous system [205]. An example of ML groundbreaking
impact on science is AlphaFold which continuously beats other numerical
approaches in predicting the protein folding [206]. Another inspiring appli-
cation of ML in science is the prediction of research trends [207].

5If a reader wonders why “Fermi–Pasta–Ulam–Tsingou problem”, I highly recommend
reading Ref. [194].
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Figure 1.4: Machine learning (ML) and quantum many-body physics.
While ML revolutionizes quantum many-body physics, there is also a less known
reverse influence that includes physics-informed and quantum-inspired models as
well as using statistical physics to solve riddles of ML.

ML methods are also becoming important numerical tools in quantum
many-body physics [208, 209]. It is not surprising if one thinks about similar
goals of physics and learning algorithms, i.e., collecting and analyzing data
to find a model that predicts the behavior of a complex system. Interestingly,
physics and ML seemingly use entirely different strategies for achieving the
same objective. The driving force of physicists is an understanding of the
mechanisms governing models created through knowledge, intelligence, and
intuition. On the other hand, the logic building ML models is largely out of
our reach, and “intelligence” is extracted from data. What is surprising in
all this - this incomprehensible logic often achieves excellent results.

Neural networks (NNs), one of the ML models, are celebrating successes
as representations of quantum states. It started with Carleo & Troyer who
found the ground states of the Ising transverse model and the Heisenberg
antiferromagnetic model with the variational method and simple NN as
a wave function ansatz. In both one and two dimensions, this approach
effectively overcame all known numerical methods [210]. Deng et al. also
showed that the NN is an effective way of representing states with huge
entanglement [211], and its deep version is even more effective [212]. Nowa-
days, one of the most efficient ansätze of many-electron wave functions is
the PauliNet [213].

Another fruitful direction is the combination of ML and quantum state
tomography, which aims to reconstruct the density matrix of an unknown
quantum state by using experimentally available data [214–217].

ML techniques have also been encompassed by quantum experiments.
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Here, ML can unfold its full potential by identifying the relevant informa-
tion despite noise and other imperfections such as finite temperature or re-
stricted access to relevant observables. ML methods have already been used
to optimize preparation of experiments [218–222] and proposed to avoid the
need for tedious human work in laboratories [223, 224]. An especially inter-
esting direction is to use ML as a verification tool for preparation of quan-
tum simulators via Hamiltonian learning [225]. Another fascinating idea is
the comparison of experimental data to competing theory descriptions in
an unbiased way [226] or generation of new snapshots of the experimental
set-up at unobserved conditions using generative models [227]. Finally, ML
methods have been proposed to design new quantum experiments [228, 229].

ML has also found its application in quantum information [230–232],
astrophysics [233], and high-energy physics [234, 235]. ML techniques were
also used to accelerate Monte Carlo simulations [236–238].

While the impact of ML on physical sciences is already well-known,
there is also a fascinating reverse influence coming from physics to ML
as presented schematically in fig. 1.4. Examples are the physics-informed
ML [239, 240] and quantum-inspired ML [241]. Moreover, methods of sta-
tistical physics are used to solve conundrums of the ML theory including
generalization abilities of overparametrized models [242].

1.3.1 Machine learning phases of matter

At the same time, especially abundant is the use of ML in phase classifi-
cation. It is not surprising if one considers that determining the proper order
parameters for unknown transitions is no trivial task, on the verge of being
an art. It includes the search in the exponentially large Hilbert space and the
examination of symmetries existing in the system, guided by the intuition
and educated guess. The alternative route was shown, when NNs located
the phase transitions for known models without a priori physical knowl-
edge [243, 244]. Since then, deep fully-connected and convolutional neural
networks (CNNs) have been applied to detect phase transitions in a variety
of physical models, for classical [243, 245–249], quantum [244, 250–259], and
topological [260–269] phase transitions with supervised [243, 246, 248, 256–
259, 262, 270] and unsupervised [244, 247, 249–255, 266, 271, 272] ap-
proaches as well as for experimental data. In the last case, NNs were ap-
plied to scanning tunneling microscopy images of condensed matter sys-
tems [273, 274], neutron scattering data from spin ice systems [275] as well
as real and momentum-space images of ultracold atom systems [226, 276–
278]. Finally, NNs are not the only ML models used in phase classification
problems [279, 280].
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Next to all these successful applications, there are open problems, for
instance, ones concerning topological models and many-body localization.
They include the need for pre-engineered features [260, 264, 281], disagree-
ment of predicted critical exponents [253], and high sensitivity to hyperpa-
rameters describing the training process [257]. Moreover, even in the models
described by Landau’s theory, so far, the ML approaches have mostly en-
abled only the recovery of known phase diagrams or the location of phase
transitions in qualitative agreement with more conventional methods based,
for instance, on order parameters or theory of finite-size scaling. Nonethe-
less, ML achieved this at a much lower computational cost, e.g., using fewer
samples or smaller system sizes [253, 257].

Most importantly, however, the resulting models are mostly black boxes,
i.e., systems with internal logic that is hidden from a user [282]. The reason
is that in complex models, the relevant information is spread over multiple
layers each containing a large number of neurons. Because of that, it is
difficult to understand, e.g., which data features are the most important or
what are reasons for a specific model prediction. As such, we can gain only
limited new information from the ML model when applying it to unknown
physical systems, as much as limited is our understanding of ML problems
with capturing the topological or many-body localization signatures.

1.3.2 Understanding what machines learn

In general, the development of tools to build ML systems has out-
paced [283] the growth and adoption of tools to understand what they learn
(interpretability methods) and whether we can trust their predictions (reli-
ability methods).6 Given the ML presence in everyday life, it is no surprise
that the European Parliament has already taken legal measures to assure
that any individual can obtain meaningful explanations of the logic involved
when automated decision-making takes place [285]. Besides the law, there
is ethics. Songul et al. revealed that learning machines inherit biases from
humans preparing data [286]. Also, deep NNs were shown to perfectly fit
random labels [287], and that a group of local features can be their good
approximation [288]. These studies prove that the learning process some-
times goes against our intuition, and indicate that the predictions should
be accompanied by a justification understandable by humans to be trusted.

Interpretability. The lack of interpretability is now a widely recognized
challenge in the computer science community [284, 289–292] especially when
ML is applied to real-world problems like medical diagnosis, insurance cost

6Note, that the formal definitions of these terms are not agreed upon in either physics
or computer science community [284]. Instead, in next paragraphs we provide intuitions
behind these terms.

14



1.3. Machine learning quantum many-body physics

estimation, etc. In science, the lack of interpretability can be disturbing
because the black-box behavior of the models prevents us from learning
anything about novel physics.

Reliability. Another desired feature of ML models, which is intertwined
with interpretability, is their reliability. A reliable ML model informs a user
if its decisions are uncertain or result from pure extrapolation [293]. In
computer science, the reliability is especially important in the context of
safety-critical problems or adversarial attacks, i.e., careful perturbations of
input samples that aims to mislead the ML model on the test set [294]. While
data sets of physical interest are not endangered by such intentional attacks,
adversarial ML tells us that tiny noise in the input may completely derail
the model prediction. Moreover, while the reliability of ML in everyday
problems can often be controlled by humans checking the predictions, it is
improbable for, e.g., unknown phase diagrams. Nevertheless, the reliability
of ML is not yet properly addressed in physics. While Bayesian ML, i.e., the
most popular approach providing the uncertainty of predictions, proved to
be a promising direction in molecular dynamics [295], it is generally difficult
and needs a specific model architecture. Therefore, there is a great need for
more model-agnostic tools to estimate the uncertainty of ML predictions.

1.3.3 Interpreting machines learning physics

While ML reliability and estimation of uncertainty have not yet been
widely explored in physics, the need for interpretation of ML models and
extraction of learned quantities has been noticed almost immediately in the
community. In particular, Wetzel et al. [250, 296] in 2017 have introduced
physicists to a new way of understanding ML models that can be viewed as
interpreting bottlenecks.

The idea behind this approach is to identify possible bottlenecks in the
information flow through the ML model and focus our attention there. While
the entire NN architecture can be large and have many trainable param-
eters, the bottleneck itself is described only by few parameters. Because
all the relevant information for the predictions of the NN must eventually
flow through the bottleneck, we can limit our analysis to the small number
of trainable parameters of the bottleneck as opposed to the entire NN. In
particular, we can perform a regression on the output of such bottleneck
neurons and extract the mapping between the input features and the ac-
tivations of the bottleneck neurons. Such an approach was applied to the
bottlenecks in autoencoders (AEs) [250, 297, 298] as well as shallow convolu-
tional neural networks (CNNs) [296] and Siamese NNs [299]. It succeeded in
extracting order parameters learned by ML models in the two-dimensional
Ising model [250, 296] and the SU(2) lattice gauge theory [296] but also in
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detecting learned symmetry invariants and conserved quantities in various
physical problems [297–299]. While extremely successful, this approach has
an obvious limitation of requiring bottlenecks that are absent in a majority
of modern NNs.

Another fruitful direction has been analysis of patterns present in filters
(or kernels) of shallow CNNs trained in phase classification problems [277,
300, 301]. When the CNN was trained on snapshots of ultracold atomic
simulators, various patterns could be decoded from the filters of the CNN
indicating various relevant correlations and therefore phases. In parallel,
other studies took advantage of inherent higher interpretability of kernel
methods and decision trees (as compared to NNs) [248, 249, 279, 302–306].

Therefore, physicists have already stressed the need for interpretation
of ML models, and there has been a significant progress in application and
development of such approaches. However, proposed methods are predomi-
nantly restricted to particular architectures of ML models. When it comes
to the most modern and flexible models such as NNs, solutions developed
so far are limited to AEs and shallow CNNs.

Within this thesis, we therefore address the lack of universality of known
interpretability and reliability tools for machines learning physics. In part II
of this thesis, we introduce an interpretability and reliability toolbox that
is agnostic of a model architecture and any training details. We describe it
in detail in chapter 4 and present its power on the example of NNs trained
on quantum phase classification problems in chapter 5. In particular, in
section 5.5 we show how this toolbox lead to the fully unsupervised discovery
of the phase diagram from experimental topological data.
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Part I

Two ultracold molecules
in a trap
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2

Description of the ultracold
molecular system

Sometimes the smallest things
take up the most space in your heart.
~Alan Alexander Milne

In section 1.2.2 we have already introduced promises that are brought by
ultracold molecules to the field of quantum simulations. Especially interest-
ing and unexplored is the regime of ultracold molecules with both magnetic
and electric dipole moments. In the same section, we have also discussed
that the few-body atomic limit brings fascinating questions and challenges.
These main motivations have guided us in studying an ultracold system
of two interacting molecules in a one-dimensional harmonic trap. Before
we describe our results in chapter 3, we devote this chapter to a detailed
theoretical description of the system.

Therefore, section 2.1 presents an overview of the studied system and
lists our assumptions put on the problem. In section 2.2 we describe the in-
ternal structure of our molecular model including rotation and spin-rotation
coupling. Section 2.3 discusses the intermolecular interactions and their ef-
fective form under the one-dimensional trapping. Finally, in section 2.4,
we sum up the theoretical description by providing a full Hamiltonian of
a system.

Results presented in chapter 3 have been obtained using exact diagonal-
ization. Therefore, in section 2.5, we discuss details of the exact diagonal-
ization technique and describe the basis set used to build the Hamiltonian
matrix. Apart from the spectrum, we also analyze properties like magnetiza-
tion and quench dynamics of the system. We describe them in section 2.6. In
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section 2.7 we briefly mention the convergence of our results with the basis
set size. We conclude this chapter by discussing the experimental feasibility
of the studied system in section 2.8.

2.1 Overview

Within this thesis, we consider two interacting distinguishable ultracold
molecules bound to move along one dimension, chosen to be a z axis, due to
the presence of a strong transverse confinement, as schematically shown in
fig. 2.1. Along the axial direction (which is the z-direction), the molecules
are further confined by a harmonic potential of frequency ω. The molecules
are described within the rigid rotor approximation, and they interact by
means of a multi-channel two-body potential. We approximate the inter-
action between molecules with the intermolecular isotropic and anisotropic
contact potential. The molecules have the same mass m, magnetic spin s,
and electric dipole moment d, and are in the same vibrational state.

We make a series of assumptions allowing to model this system. We
assume that the strong transverse confinement does not affect the inter-
nal rotation of molecules. This is valid when the size of molecules Re is
much smaller than the transverse harmonic oscillator characteristic length
a⊥ =

√
~/(mω⊥), where m is the mass of molecules and ω⊥ is the trans-

verse harmonic confinement frequency. At the same time, we assume that
the transverse harmonic confinement is much stronger that the axial one
(ω⊥ � ω), and no excitation of transverse motion is energetically allowed.
Moreover, we assume that the trapping frequency does not depend on the
rotational states of molecules. We also assume that the confinement does
not affect the short-range intermolecular interaction and dynamics. This
is valid when the range of chemical intermolecular interactions RvdW is
much smaller than the harmonic oscillator characteristic lengths a⊥ and
aho =

√
~/(mω). For atomic systems, the effective one-dimensional behav-

ior is observed for elongated harmonic traps with ω⊥/ω ≥ 10 [56, 307]. We
neglect possible losses due to inelastic collisions (vibrational relaxation), or
chemical reactions, but they can potentially be incorporated in our model
within the complex contact interaction potential formalism [308, 309]. We
also discuss such losses in more detail in section 2.8.

2.2 Internal structure

We consider molecules whose rotational behavior is approximated with
a rigid quantum rotor model. Next to the rotation, molecules possess mag-
netic spin (and dipole moments which we discuss in section 2.4). Together
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Figure 2.1: Schematic representation of the investigated system. Two ro-
tating diatomic polar and magnetic molecules are trapped in a one-dimensional
potential. They interact via the short-range isotropic and anisotropic interaction
with strengths g0 and g±1 or via an effective one-dimensional electric dipolar in-
teraction of strength d (we neglect the magnetic one). Their internal rotational
and magnetic momenta are coupled with the spin-rotation coupling of strength γ.
Finally, external electric E and magnetic B fields act on the system with an angle
θ with the x direction of the system.

they form the internal structure of the studied molecular model. Its Hamil-
tonian is

Ĥmol = Ĥrot + Ĥspin−rot , (2.1)
where

Ĥrot =
2∑
i=1

B ĵ2
i ,

Ĥspin−rot =
2∑
i=1

γ ŝi · ĵi .
(2.2)

Ĥrot stands for the rotational structure and Ĥspin−rot stands for the spin-
rotation coupling. ĵi is the i-th molecule’s rotational angular momentum
operator, B is the rotational constant, and ŝi is the i-th molecule’s elec-
tronic spin angular momentum operator. The molecular spin-rotation inter-
action with the coupling constant γ is responsible for coupling the molecu-
lar intrinsic electric and magnetic dipole moments, because the permanent
electric dipole moment is associated with the molecular rotation. We as-
sume the same rotational constants and the same electric and magnetic
dipole moments for both molecules. We also assume that the rotational and
spin-rotation coupling constants do not depend on the rotational states of
molecules. We neglect the nuclear spin in our description, although it can
be used to control distinguishability of molecules.
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2. Description of the ultracold molecular system

The size of the ratio between the rotational constant, B, and harmonic
trapping strength, ω, is an important choice determining how much molec-
ular features dominate the system. Figure 2.2(a) shows the spectrum of the
system for increasing ratio between B and ω. In the regime of small B/ω, the
trapping levels are separated by a number of rotational levels as presented
schematically in panel (b). In such a scenario, the molecular features of the
system are exceedingly pronounced, especially when it comes to the inter-
action anisotropy and reaction to external electric field. Therefore, it poses
an informative toy model for analyzing differences between atomic [64] and
molecular ultracold trapped two-body systems. We focus on this regime in
section 3.1 by choosing B/ω = 0.3. We mark this dense part of the spectrum
with a dashed line in fig. 2.2(a).

While the regime of small B/ω is fascinating, we note that typical ultra-
cold molecular experimental set-ups [151, 153, 154] use three-dimensional
trap frequencies ranging from around 1 kHz to at most 1 MHz [310], while
studied ground-state molecules have rotational constants reaching hundreds
of MHz or more [311]. This combination amounts to the ratio of B/ω � 1
and results in the rotational levels separated by many harmonic trap states.
In such a scenario, the spectra approach atomic solutions and molecular fea-
tures related to the molecular rotational structure are less important (unless
coupled by, e.g., microwave fields).

Therefore, in section 3.2 we turn to the intermediate regime which is
closer to the experimental conditions while retaining the predominantly
molecular character of the system. We therefore choose the regime of B/ω ≈
3, which amounts to rotational levels separated by a few harmonic levels as
presented in fig. 2.2(c). We devote a separate section to discuss the experi-
mental feasibility of this system (see section 2.8).

2.3 Interactions

The Hamiltonian describing the interaction between molecules is

Ĥint = Ĥiso + Ĥaniso , (2.3)

where we distinguish two parts: the isotropic one Ĥiso and anisotropic one
Ĥaniso. The isotropic part of the interaction potential is of the same na-
ture as the spherically symmetric interaction potential between alkali-metal
atoms in the electronic ground state. The anisotropic part of the interaction
potential results from the existence of molecular internal structure and ori-
entation dependence of intermolecular interactions [160, 161]. It is respon-
sible for the transfer of the internal rotational angular momenta between
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Figure 2.2: Importance of the rotational constant that determines the molec-
ular character of the system. (a) Spectrum of a discussed system of two trapped
molecules vs the ratio between the rotational constant, B, and the harmonic trap-
ping frequency, ω. Within this thesis, we explore B/ω = 0.3 and B/ω = π. Cor-
responding rotational and trapping levels are plotted schematically in (b) and (c),
respectively.

interacting molecules. Neglecting the anisotropic part of the interaction po-
tential restores results known for two interacting atoms in a harmonic trap
(apart from the additional states coming from the rotational structure of
molecules).

The intermolecular interaction potential may in general depend on all
the internal degrees of freedom and the relative orientation of interacting
molecules. This dependence is responsible for effective mixing and exchang-
ing different angular momenta present in interacting molecules and the rela-
tive motion during molecular collisions [160, 161, 312]. Within this thesis we
propose and employ a model multichannel two-body contact interaction po-
tential to account effectively for the coupling of molecular rotational angular
momenta during ultracold molecular collisions. The contact interaction po-
tential is commonly used in ultracold physics as a successful approximation
to describe atom-atom interactions of the short-range van der Waals charac-
ter [313]. Similar performance of this approximation can be expected while
applied to anisotropic intermolecular interactions of the short-range van
der Waals nature. Additionally, in reduced dimensionality, even long-range
interactions can be approximated effectively by short-range ones [314].
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2. Description of the ultracold molecular system

The isotropic part of the intermolecular interaction potential is

Ĥiso =
∑
α

gαδ(z1 − z2)P̂α , (2.4)

where gα is the strength of the isotropic interaction for channel α, δ(z) is
the Dirac delta function imposing assumed contact-type interaction, and P̂α
is the projection operator

P̂α = |α〉〈α| , (2.5)

where |α〉 is a basis set function (channel) describing all degrees of freedom
of the system except for the intermolecular distance.

The anisotropic part of the intermolecular interaction potential is

Ĥaniso =
∑
α 6=α′

gαα′δ(z1 − z2)P̂αα′ , (2.6)

where gαα′ is the strength of the anisotropic interaction between channels
α and α′, and P̂αα′ is of the form

P̂αα′ = |α〉〈α′|+ |α′〉〈α| . (2.7)

Different models of intermolecular interactions can be represented by im-
posing different forms of gα and gαα′ .

The isotropic and anisotropic interaction strengths gα and gαα′ result
from specific values of scattering lengths and chemical short-range inter-
molecular interaction potentials. In principle, they can be controlled by
means of magnetic or optical Feshbach resonances, as well as by changing
chemical composition or vibrational states of molecules.

The general form of the interaction potential of eq. (2.3) can capture all
types of intermolecular interactions. Nevertheless, due to the special impor-
tance of the intermolecular dipole-dipole interaction in ultracold physics,
we consider this interaction separately. In three dimensions, it is described
by the following Hamiltonian

Ĥ3D
dip = d̂1 · d̂2 − 3(d̂1 · er)(d̂2 · er)

r3 , (2.8)

where r and er are the distance and versor connecting two molecules, respec-
tively. By restricting the motion to one dimension, er = ez, and assuming
the contact form of the interaction, 1/z3 → δ(z), which is the exact result
for polarized dipoles in one dimension [315, 316], we arrive at the effective
Hamiltonian, which we use in the thesis

Ĥdip = −δ(z1 − z2)
(
2d̂1,0d̂2,0 + d̂1,1d̂2,−1 + d̂1,−1d̂2,1

)
, (2.9)
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where d̂i,q ≡ eq · d̂i are the spherical components of the projection of the
dipole operator of the i-th molecule onto the space-fixed frame eq in spher-
ical coordinates. We approximate the long-range character of the dipole-
dipole interaction by the contact potential to simplify our model and anal-
ysis. This interaction limited to one dimension does not conserve the total
rotational angular momentum.

2.4 Hamiltonians
We here provide the Hamiltonian describing the studied system as well as

remind some of the assumptions listed in section 2.1. The generic Hamilto-
nian describing two interacting polar and paramagnetic molecules in a one-
dimensional trap is of the form

Ĥ = Ĥtrap + Ĥmol + Ĥfield + Ĥint , (2.10)

where Ĥtrap describes the motion of molecules in a trap, Ĥmol describes the
internal (rotational and spin) structure of molecules discussed in section 2.2,
Ĥfield describes the interaction of molecules with external fields, and Ĥint
describes the interaction between molecules discussed in section 2.3.

The Hamiltonian describing two structureless particles in a one-dimen-
sional harmonic trap is

Ĥtrap =
2∑
i=1

p̂2
i

2m +
2∑
i=1

1
2mωz

2
i , (2.11)

where p̂i and zi are the linear momentum and position of the i-th particle,
respectively, m is their mass, and ω is the trapping frequency. We assume
that two molecules have the same mass (consisting of the same atoms)
and are in the same vibrational state. We also assume that the trapping
frequency does not depend on the rotational states of molecules.

We have already discussed the Hamiltonian describing the internal struc-
ture of two studied molecules in section 2.2 but for the sake of completeness
we put the Hamiltonian here again:

Ĥmol = Ĥrot + Ĥspin−rot , (2.12)

where

Ĥrot =
2∑
i=1

B ĵ2
i ,

Ĥspin−rot =
2∑
i=1

γ ŝi · ĵi .
(2.13)
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2. Description of the ultracold molecular system

Finally, the Hamiltonian describing the interaction with external electric
and magnetic fields is

Ĥfield = ĤStark + ĤZeeman , (2.14)

where

ĤStark =−
2∑
i=1

d̂i · E ,

ĤZeeman =2µB
2∑
i=1

ŝi · B .
(2.15)

d̂i is the i-th molecule’s electric dipole moment operator and E and B are
the electric and magnetic fields, which couple with the molecules’ electric
and magnetic dipole moments, respectively. ĤStark results in the Stark effect
and ĤZeeman results in the Zeeman effect. We assume that the electric and
magnetic fields are parallel to each other and parallel or perpendicular to
the motion of molecules in the trap.

2.5 Exact diagonalization and the basis states

It is possible to separate the center-of-mass and relative motions in the
Hamiltonian of eq. (2.10) by introducing new coordinates Z = 1√

2(z1 + z2)
and z = 1√

2(z1 − z2), and related momenta P̂ and p̂. Thanks to uncon-
ventional factors of

√
2, the effective masses for both types of motion are

the same (M = µ = m). The total wave function in new coordinates
|Φ(Z, z)〉 = |ϕCM(Z)〉|Ψrel(z)〉 is a product of the wave function for the
center-of-mass motion |ϕCM(Z)〉, which is an eigenstate of the quantum
harmonic oscillator Hamiltonian

ĤCM = P̂ 2

2m + 1
2mωZ

2 , (2.16)

and the wave function for the relative motion |Ψrel(z)〉, which is a solution
of the Schrödinger equation with the following Hamiltonian

Ĥrel = p̂2

2m + 1
2mωz

2 + Ĥmol + Ĥfield + 1√
2
Ĥint . (2.17)

In the rest of this thesis we focus on finding eigenstates of the above Hamilto-
nian, therefore whenever we refer to spectra or wave functions of the system
we mean properties related to the relative motion. For convenience, we use
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2.5. Exact diagonalization and the basis states

units of energy and interaction strength that correspond to ω = m = ~ = 1.
This amounts to measuring energies E in units of ~ω, lengths in units of
the harmonic oscillator characteristic length aho =

√
~/(mω), and the in-

teraction strengths gα and gαα′ in units of ~ωaho.
For two polar molecules without spin, we represent the relative mo-

tion part of the total wave function in the basis of eigenstates of the one-
dimensional harmonic oscillator |n〉 with known behavior when acted upon
with Ĥtrap:

( p̂
2

2m + 1
2mωz

2)|n〉 = (n+ 1
2)~ω|n〉 , (2.18)

The basis set also contains eigenstates of the total rotational angular mo-
mentum operator |J,M, j1, j2〉, which fulfil the following conditions:

Ĵ2|J,M, j1, j2〉 = J(J + 1)|J,M, j1, j2〉 ,
Ĵz|J,M, j1, j2〉 = M |J,M, j1, j2〉 , Ĵ = ĵ1 + ĵ2 .

(2.19)

Therefore, the full wave function is:

|Ψk〉 =
∑

n,J,M,j1,j2

Ckn,J,M,j1,j2 |n〉|J,M, j1, j2〉 , (2.20)

where

|J,M, j1, j2〉 =
∑

m1,m2

〈j1,m1, j2,m2|J,M〉|j1,m1〉|j2,m2〉 , (2.21)

where 〈j1,m1, j2,m2|J,M〉 are Clebsch-Gordan coefficients and |ji,mi〉 are
eigenstates of ĵi. The symmetries of the Hamiltonian of eq. (2.17) resulting
in the conservation of J or M quantum numbers are used to restrict prop-
erly the size of the employed basis set. All possible combinations of basis
functions with n ≤ nmax, j1 ≤ jmax, and j2 ≤ jmax are employed in calcula-
tions. Numerical coefficients Ckn,J,M,j1,j2

for the k-th state are calculated by
means of the exact diagonalization method.

Having the basis set discussed, we can look in more detail into the multi-
channel interaction model. In the computational basis set (channels) intro-
duced in eqs. (2.20) and (2.21), the projection operator P̂α in the isotropic
part of the intermolecular interaction potential of eq. (2.4) takes the form

P̂α = |J,M, j1, j2〉〈J,M, j1, j2| . (2.22)

We assume that the corresponding strengths of the isotropic interaction are
independent of molecular internal states and the same for all channels

gα = g0 . (2.23)
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2. Description of the ultracold molecular system

The coupling operator P̂αα′ in the anisotropic part of the intermolecular
interaction potential of eq. (2.5) is of the form

P̂αα′ = |J,M, j1, j2〉〈J,M, j′1, j
′
2|+ H.c. , (2.24)

where we assume that the anisotropic part of the intermolecular interac-
tion potential does conserve the total rotational angular momentum of two
molecules J,M . The corresponding strength of the anisotropic interaction
can be written as

gαα′ ≡ gJMj1j2,JMj′1j
′
2
. (2.25)

We assume that the anisotropic interaction strengths do not depend on the
total rotational angular momentum J,M

gJMj1j2,JMj′1j
′
2

= gj1j2,j′1j′2 , (2.26)

and consider two types of the anisotropic interaction. The first one couples
molecular states which differ by k quanta of molecular rotational angular
momentum

g±kj1j2,j′1j′2
= δj1,j′1±kδj2,j′2∓k g±k . (2.27)

In this notation, the dipole-dipole interaction has non-zero terms only re-
lated to g0 and g±2. The second, simplified type allows us only to exchange
the rotational angular momenta between two interacting molecules if they
differ by k = |j1 − j2|

g±k,exj1j2,j′1j
′
2

= δj1,j′2δj2,j′1δj1±k,j2 g
ex
±k . (2.28)

The coefficients g±k and gex±k can depend on k. In our model calculations we
assume that these coefficients are the largest for k = 1 and we neglect them
for k > 1 or assume geometric decay with k, g±k = g±1/A

k−1.
When we consider molecules with spin, the basis set used in eq. (2.20)

is augmented by eigenstates of the total electronic spin angular momentum
operator Ŝ denoted as |S,MS , s1, s2〉 resulting in the final computational
basis of the form

|n〉|J,MJ , j1, j2〉|S,MS , s1, s2〉 . (2.29)

All spin configurations allowed by the symmetry are included in the basis
set. We assume that the intermolecular interaction potential of eq. (2.3)
does not depend on the electronic spin.

The mentioned throughout this section total angular momenta are the
sums of the angular momenta of individual molecules, Ĵ = ĵ1 + ĵ2 and
Ŝ = ŝ1 + ŝ2. The total angular momentum of the system is then the sum of
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the total rotational and spin angular momenta Ĵtot = Ĵ + Ŝ, and its projec-
tionMtot = MJ +MS is a sum of projections of the total rotationalMJ and
spin MS angular momenta. Matrix elements of the system’s Hamiltonian in
the employed basis set are provided in appendix A. We discuss the conver-
gence of results with the basis set size in section 2.7. The diagonalization of
molecular Hamiltonian matrices has been performed within this thesis with
Intel Math Kernel Library and supported by PL-Grid Infrastructure.

2.6 Magnetization and quench dynamics
In section 3.2, instead of spectrum, we focus on the system magnetization

and its quench dynamics. The magnetization 〈Ŝz〉 is an expectation value
of the z-component of the total electronic spin operator. We calculate it for
the several lowest eigenstates. We also analyze the nonequilibrium dynamics
of the system after the quench.

The quench dynamics experiments [317–319] may allow to probe the
internal parameters of the Hamiltonian governing the analyzed system.
The quench dynamics has been thoroughly studied for two [320–323] and
three [317] ultracold atoms in a trap. Quantum quenches also allow one to
study nonequilibrium dynamics [324–326]. In a quench scenario, the system
prepared initially in the chosen state |Ψ〉 (e.g. the ground state) of a Hamil-
tonian Ĥini, evolves unitarily in time following the sudden change (quench)
of the parameters to a final Hamiltonian Ĥfin [327]. This dynamics can be
expressed in terms of overlaps of the initial eigenstate |Ψ〉 of Ĥini with the
eigenstates

∣∣∣Ψ̃j

〉
of Ĥfin:

|Ψ(t)〉 = e−iĤfint |Ψ(0)〉 =
∑
j

〈
Ψ̃j

∣∣∣Ψ(0)
〉
e−iEjt

∣∣∣Ψ̃j

〉
. (2.30)

The time evolution of any observable Ô can be then described as:

〈Ψ(t)| Ô |Ψ(t)〉 =

=
∑
j,j′

〈
Ψ̃j

∣∣∣Ψ(0)
〉〈

Ψ̃′j
∣∣∣Ψ(0)

〉
e−i(Ej−Ej′ )t

〈
Ψ̃j′

∣∣∣ Ô ∣∣∣Ψ̃j

〉
=

=
∑
j

∣∣∣〈Ψ̃j

∣∣∣Ψ(0)
〉∣∣∣2 〈Ψ̃j

∣∣∣ Ô ∣∣∣Ψ̃j

〉
+

+2
∑
j<j′

〈
Ψ̃j

∣∣∣Ψ(0)
〉〈

Ψ̃j′

∣∣∣Ψ(0)
〉

cos [(Ej − Ej′)t]
〈

Ψ̃j′

∣∣∣ Ô ∣∣∣Ψ̃j

〉
.

We choose to study the evolution of two observables: magnetization 〈Ŝz〉
of the system and the cloud size 〈r̂2〉. The formula for the cloud size is pro-
vided in appendix B. The dynamics is calculated till time t = 10 0002π

ω with
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2. Description of the ultracold molecular system

a time step of 0.12π
ω . Elongating the dynamics calculations provides no addi-

tional frequency peaks of amplitudes larger than 10−4 in the corresponding
discrete Fourier transforms (DFT). We perform the Fourier transform of
the observables’ evolution using SciPy package [328].

2.7 Convergance with the basis set size

In chapter 3 we focus on three main properties of the described sys-
tem. In section 3.1 we analyze spectra as functions of various internal or
external Hamiltonian parameters. There, in a majority of calculations, we
calculate spectra using the exact diagonalization method with the basis set
composed of quantum harmonic oscillator eigenfunctions up to nmax = 30,
and quantum rigid rotor eigenfunctions up to jmax = 8. The exceptions is
diagonalization of those Hamiltonians that include the spin momenta of the
molecules. Such spectra are studied in section 3.1.4. There the basis set is
nmax = 30 and jmax = 5. Without using mentioned symmetries resulting
in momenta conservation, the size of the Hamiltonian matrices would be
105 − 106. If symmetries are employed, the size of the Hamiltonian matri-
ces to be diagonalized is between around 103 and 2 · 104, depending on the
angular momentum and the presence of external fields and spin structure.
Grining et al. [75, 76] showed that the convergence of correlated energy cal-
culations for interacting particles in one dimension with the number of used
single-particle harmonic oscillator functions is relatively slow and asymp-
totically proportional to 1√

nmax
Nevertheless, for the range of weak and

intermediate interaction strengths, physically meaningful results can be ob-
tained with used nmax. Additionally, in the present case, we have checked
that the convergence of energy calculations with the size of the rotational
basis set is much faster and obtained results are close to converged with
respect to jmax [329].

In section 3.2 we focus on the system magnetization and its quench dy-
namics. Following the results from chapter 3, we limit the basis set size for
efficient calculations of the system’s dynamics to nmax = 20 and jmax = 4.
Again, we acknowledge the slow convergence with nmax but in the analyzed
system nmax = 20 provides a satisfying convergence of the lowest-energy
states, which are the main focus of section 3.2. The convergence of the
cloud-size time-evolution calculations with nmax, however, is problematic.
On the one hand, the mean value of the cloud size, 〈n| r̂2 |n′〉, calculated for
two harmonic oscillator eigenfunctions, increases rapidly with the harmonic
oscillator levels, n, becoming divergent for large n (see appendix B). In the
quench dynamics, this divergence is faster than the decrease of the over-
lap between the ground state and the highly excited states leading to the
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divergence of the cloud-size excitation. However, this nonphysical behavior
can be neglected by restricting the basis sets size, knowing that all realistic
traps have a finite size, and all realistic quenches have a finite time. On the
other hand, the highest-energy eigenstates in a finite basis set are not con-
verged [64, 76] and a nonphysically larger occupation of the highest-energy
eigenstate can be observed. We solve this problem by neglecting uncon-
verged part of spectrum from the quench dynamics calculations, namely by
removing eigenfunctions

∣∣∣Ψ̃j

〉
of Ĥfin with the contribution from any basis

state with |nmax〉 larger than 10%. The removed part of eigenfunctions is
up to a few percent of the whole spectrum.

According to our previous convergence analysis [329], selected jmax al-
ready enables convergence for the significant part of the spectrum as well
as good convergence of the quench dynamics.

2.8 Experimental feasibility

We have already discussed in section 2.2 that the smaller the ratio of the
molecular rotational constants to the harmonic trap frequency, B/ω, the
more pronounced the analyzed system’s molecular character [330]. How-
ever, typical ultracold molecular experimental set-ups [151, 153, 154] use
three-dimensional trap frequencies ranging from around 1 kHz to at most
1 MHz [310], while studied ground-state molecules have rotational constants
reaching hundreds of MHz or more [311]. This combination amounts to the
ratio of B/ω � 1 and results in the rotational levels separated by many
harmonic trap states. In such a scenario, the molecular features related to
the molecular rotational structure are less important.

Within this thesis, we study two regimes of B/ω equal to 0.3 and ≈ 3.
While the first regime has been chosen to deliberately enhance molecular
features in the system and can be treated as an informative toy model, the
regime of B/ω ≈ 3 can be reached with tight traps (e.g., a nanoplasmonic
one [332]) and weakly-bound molecules (e.g., Feshbach molecules [148])
which have rotational constants up to few MHz.

Such a proposed realization needs an additional discussion. Within this
work, we also assume that the studied molecules possess electric dipole
moment, while electric dipole moments of Feshbach molecules may be van-
ishingly small, as they scale asymptotically as R−7 with the internuclear
separation R [333]. Figure 2.3 presents the dependence of the rotational
constant and permanent electric dipole moment on the mean distance be-
tween atoms in the 87Rb133Cs molecule in the lowest electronic state with
non-zero spin, i.e., a3Σ. The choice of this species is just exemplary as
we expect other classes of weakly-bound molecules to have similar charac-
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Figure 2.3: Scaling of molecular properties with the interatomic distance.
The rotational constant, B, and estimated electric dipole moment, d, of the ex-
emplary 87Rb133Cs molecule in the lowest triplet state, as functions of the mean
distance between atoms 〈r〉, corresponding to different vibrational levels. Similar
behavior may be expected for other weakly-bound molecules. From Ref. [331].

teristics. One of the highest vibrational levels of a3Σ 87Rb133Cs, v = 39,
corresponds to the mean distance between atoms equal to 51 bohr. We es-
timate the corresponding electric dipole moment of 10−4 D and rotational
constant of 13.5MHz. To reach the B/ω ratio of the order of the selected
one, the trap frequency needs to be at least around 0.5MHz. Note that the
upper limit for ω is set also by the size of two molecules, which increases
for weakly-bound states. The choice of the trap frequency determines the
time scale used within this work. For example, the time evolution plotted
in figs. 3.18 and 3.19 takes 200 (2π/ω) ≈ 2.5ms for ω = 0.5MHz. Finally,
to reach the effective one-dimensional behavior, elongated harmonic traps
with ω⊥/ω ≥ 10 could be used [56, 307].

Within our work, we also analyze the time evolution of the cloud size
after the quench of the intermolecular interaction. The sudden change of
the intermolecular interaction strength can be achieved via the change of
the magnetic field strength and related Feshbach resonances, the change of
the molecular vibrational state, or the change of the trapping frequency.
However, the selective quench of intermolecular interaction is impossible to
achieve, as, in reality, all molecular characteristics are intimately connected
that leads to emergent behavior and challenging description. For example,
changing the vibrational state impacts the interaction but also the polar-
ization of molecules that modifies their response to external fields. The
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quench of the trapping frequency should correspond to the most uncorre-
lated change of the intermolecular interaction [317]. Regarding the observ-
ables whose time evolution we study, the internal state of molecules can be
probed with quantum gas microscopy [23, 24, 27], and the cloud size can be
measured via destructive time-of-flight experiments as realized for ultracold
atoms [334–336]. We describe the time-of-flight imaging in more detail in
section 5.4.2.

Non-reactive trapped alkali dimers in the lowest rovibrational states
have been recently shown to form four-atom complexes that are long-lived
in the dark but are prone to decay under the trapping field that results in
losses [179, 337, 338] as we have discussed in more detail in section 1.2.3.
The lifetime of such complexes is proportional to the density of states at the
collision threshold. The density of states of weakly-bound molecules, com-
pared to deeply-bound, can be up to eight orders of magnitude smaller [177].
Therefore, the weakly-bound molecules may be less prone to such losses. Ad-
ditionally, vibrationally-excited molecules may undergo reactive collisions
and other decoherence or loss processes may occur, whose detailed charac-
terization is, however, out of the scope of the present study. Search for the
molecules which exhibit low losses in a trap is a challenging and impact-
ful task. They probably should be lighter and have a less dense spectrum
of electronic states such as AlF [339]. Regarding the non-zero or large elec-
tronic spin, it may be realized with alkaline-earth-metal fluoride molecules in
the doublet 2Σ+ electronic state [340], alkali-metal molecules in the triplet
3Σ+ electronic state [189, 341], or molecules containing highly-magnetic
atom [342, 343], respectively. Thus, the considered system may potentially
be realized in state-of-the-art experiments on ultracold molecules trapped
in optical tweezers [165, 166]. However, exact experimental conditions have
to be yet carefully researched and designed.

We have already mentioned that weakly-bound molecules may be less
prone to the inelastic losses. Additionally, there are shielding mechanisms
that may be employed to prevent such losses which we have described in
section 1.2.3. They result in keeping molecules at the safe distance prevent-
ing complex formation. With regards to our work we note that while this
shielding is extremely promising in terms of creating dense ultracold polar
molecular gases, as it keeps long-distance interactions mainly intact, the
shielding prevents interactions at the short-range distance which are the
main focus of our one-dimensional study.

Finally, the studied system of two molecules in a trap has recently
found its close experimental realization in Ref. [188] which probed three-
dimensional collisions by merging two optical tweezers, each containing
a single molecule CaF. Moreover, the same experiment involved the mi-
crowave shielding that suppresses the inelastic loss rate by a factor of six.
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More ground-breaking experimental tools and realizations are surely on the
way!
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3

Molecular path - results

The yellow Lego was brick-shaped again.
Pretending innocence.
~William Gibson

While ultracold atoms in lattices has already proven to be powerful and
highly-tunable quantum simulators, we expect much richer physics if we
replace atoms with molecules. This motivation guides us in choosing the
theoretical system of interest that we study in this chapter: two ultracold
interacting molecules in a one-dimensional harmonic trap. In particular,
we consider it as a building block of a molecular Hubbard Hamiltonian.
The studied system is also interesting as a toy model highlighting features
introduced by molecules to ultracold systems, therefore we often compare
our results against the seminal work of Busch et al. [64] regarding two
ultracold atoms in a harmonic trap. Another motivation, guiding the second
part of our work, has been the unexplored regime of highly magnetic and
polar ultracold molecules like DyK or ErLi. Finally, we have already seen
in section 1.2 that few-body limits is full of interesting phenomena on its
own.

Therefore, in this chapter, we present a detailed analysis of the properties
of two interacting ultracold polar molecules in a one-dimensional trap. In
particular, section 3.1 contains a thorough study of the molecular spectra as
functions of various internal and external parameters. We study the system
in the regime of small B/ω ratio, resulting in an exaggerated impact of
molecular features on the system. On the other hand, in section 3.2, we
focus on magnetic properties and quench dynamics of the system. Here, we
study a B/ω ratio that preserves pronounced molecular character of the

35



3. Molecular path - results

system while being experimentally realizable.

3.1 Two ultracold molecules in a one-dimensional
harmonic trap

This section is based on our work presented in Ref. [330], where
the Ph.D. candidate was responsible for: writing down the Hamil-
tonian, full numeric implementation (construction of Hamiltonian
matrices and exact diagonalization), analysis and proposal of re-
sult interpretation, preparation of plots, participation in writing the
manuscript. We present here the unexplored so far regime of two
trapped molecules with chemically-inspired short-range interactions
and compare it against atomic results to highlight what features can
we expect in molecular quantum simulators. The code and data that
enable the recovery of results in this section are provided in Ref. [344].

Here we investigate a fundamental building block of a molecular quan-
tum simulator, that is, two interacting polar molecules effectively trapped
in a one-dimensional harmonic potential. We have described our model in
detail in chapter 2. We only remind the reader that in this section we study
the regime of small B/ω ratio, resulting in an exaggerated impact of molec-
ular features on the system as presented schematically in fig. 3.1.

We analyze in detail the properties of such a system including the in-
terplay of the molecular rotational structure, anisotropic interactions, spin-
rotation coupling, external electric and magnetic fields, and harmonic trap-
ping potential. Energy spectra and eigenstates are calculated by means of
the exact diagonalization. Our calculations may be considered as a micro-
scopic model for the on-site interaction of the molecular multichannel Hub-
bard Hamiltonian [345–347] and may provide underlying parameters for
effective molecular many-body Hamiltonians.

We show that the anisotropic intermolecular interaction brings states
with higher total rotational angular momenta to lower energies such that
the absolute ground state of the molecular system can have total angu-
lar momentum larger than zero and be degenerate. Such systems may po-
tentially be useful for realizing quantum simulators of exotic spin models.
A strong anisotropic intermolecular interaction can induce the emergence of
the molecular equivalent of the atomic super-Tonks-Girardeau limit but, at
the same time, the importance of the anisotropic intermolecular interaction
is reduced in the limit of a very strong isotropic interaction. Magnetic and
electric fields induce a high density of states and a large number of avoided
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Figure 3.1: Small rotational constant as compared to the trapping frequency,
B/ω = 0.3, results in trapping levels being separated by several rotational levels
and the enhanced impact of molecular features on the system.

crossings, which can be used to control a system’s properties. No signatures
of quantum chaotic behavior in energy spectra are, however, found.

We begin in section 3.1.1 by studying the impact of short-range isotropic
and anisotropic interaction on spectra. Next, in section 3.1.2, we study the
impact of external electric field and its interplay with the anisotropic short-
range interaction. Section 3.1.3 discusses molecular spectra as functions of
effective one-dimensional electric dipole-dipole interaction strength. Finally,
in section 3.1.4 we discuss the interplay of the spin-rotation coupling and
external magnetic field. We summarize our results and discuss the outlook
in section 3.1.5.

3.1.1 Short-range anisotropy of intermolecular interaction

Before we focus on systems with small rotational constants B ≤ ω, which
are the main subject of this section, we analyze the impact of the anisotropic
interaction on systems with B � ω, where the effect of the anisotropic in-
teraction is relatively smaller, but easier to interpret. Figure 3.2 presents
energy spectra of the relative motion for two interacting molecules with the
rotational constant B = 10 ~ω in a one-dimensional harmonic trap. Results
for three total angular momenta J = 1, 2, and 3 are presented as a func-
tion of the isotropic interaction strength g0 with the anisotropic interaction
strength g±1 = 2 in panel (a) and as a function of the anisotropic inter-
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3. Molecular path - results

Figure 3.2: Rotational splitting of the molecular spectra compared to
atoms. Energy spectra of the relative motion for two interacting molecules with
the rotational constant B = 10 ~ω in a one-dimensional harmonic trap: (a) as
a function of the isotropic interaction strength g0 with the anisotropic interaction
strength g±1 = 2 and (b) as a function of the anisotropic interaction strength
g±1 with the isotropic interaction strength g0 = 2. The spectra for different total
angular momentum J are shifted by the energy of non-interacting systems with
this total angular momentum. Solid and dashed lines are for states of even and
odd spatial symmetries, respectively. Dotted lines in panel (a) are the result for
two interacting atoms. From Ref. [330].

action strength g±1 with the isotropic interaction strength g0 = 2 in panel
(b). Energy spectra are compared with the known result for two interact-
ing atoms [64], that is equivalent to the energy spectrum for interacting
molecules with g±1 = 0 or with J = 0. In panel (a), energies of states with
J = 2 are only slightly shifted as compared with the atomic case due to
the coupling by the anisotropic interaction with higher-energy states. In-
stead, there are two energy states for each branch for J = 1 and 3. They
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3.1. Two ultracold molecules in a one-dimensional harmonic trap

Figure 3.3: Rotational constant vs spectrum. Energy spectrum of the rela-
tive motion for two interacting molecules in a one-dimensional harmonic trap as
a function of their rotational constant B. The isotropic and anisotropic interaction
strengths are set at g0 = g±1 = 4. From Ref. [330].

originate from the fact that, in the presented energy range, those total an-
gular momenta can be constructed from two rotational configurations with
j1 = 1, j2 = 0 and j1 = 0, j2 = 1 for J = 1, and j1 = 2, j2 = 1 and
j1 = 1, j2 = 2 for J = 3, which are coupled by the anisotropic interaction,
whereas the lowest state with J = 2 originates from a single rotational
configuration with j1 = 1, j2 = 1. The emergence of the splitting between
two states for J = 1 and 3, and the shift for J = 2 as a function of the
anisotropic interaction strength, are presented in panel (b). The energy spec-
tra for J = 1 and 3 are very similar to each other, because in our model the
anisotropy of the intermolecular interaction is assumed to be independent
of the total rotational angular momentum.

To choose a rotational constant for further investigations, fig. 3.3 presents
the energy spectrum of the relative motion for two interacting molecules in
a one-dimensional harmonic trap as a function of the molecules’ rotational
constant B with the isotropic and anisotropic interaction strengths set at
g0 = g±1 = 4. For the unphysical regime of a tiny B/ω ratio, the energy
spectrum becomes very dense. In the rest of the present section 3.1 we
assume a value of the rotational constant B = 0.3 ~ω.

Figure 3.4 shows the dependence of the energy spectra of the relative mo-
tion for two interacting molecules with the rotational constant B = 0.3 ~ω in
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3. Molecular path - results

Figure 3.4: Intermolecular interaction vs spectrum. Energy spectra of the
relative motion for two interacting molecules with the rotational constant B =
0.3 ~ω in a one-dimensional harmonic trap as a function of the isotropic interaction
strength g0 for different models of the short-range anisotropy of intermolecular
interaction: (a) g±k = 0, (b) g±1 = g0, (c) g±1 = 4, (d) gex±1 = 4, (e) g±1 = 10, and
(f) g±k = g0/1.5k. Solid and dashed lines are for states of even and odd spatial
symmetries. Different colors represent states with different total rotational angular
momenta. Dotted lines are for the result for two interacting atoms. From Ref. [330].

a one-dimensional harmonic trap on the isotropic interaction strength g0 for
different models of the anisotropic interaction. The states with the even and
odd spatial symmetries are denoted by solid and dashed lines, respectively,
and they are compared with the known result for two atoms denoted by the
dotted lines. Because of the assumed contact-type interaction potential, the
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3.1. Two ultracold molecules in a one-dimensional harmonic trap

energy of states with odd symmetry does not depend on the intermolecular
interactions, similarly as in the atomic case [64]. Additionally, for systems
without any rotational angular momentum, J = 0, j1 = 0, and j2 = 0, the
assumed form of the anisotropic intermolecular interaction does not affect
the system, and energies reduce to the atomic spectrum, in agreement with
collisional results obtained with a complete description of intermolecular
interactions [312]. As a reference, fig. 3.4(a) presents the energy spectrum
for the molecular system without any anisotropic interaction, thus it cor-
responds to the atomic result multiplied and shifted by rotational energies
only and it reveals a complex nature of investigated systems resulting from
the richer internal structure of molecules as compared to atoms.

Figure 3.4(b)-(f) present the energy spectra with non-zero anisotropic
intermolecular interactions in different scenarios. In fig. 3.4(b) we assume
that the anisotropic interaction strength is the same as the isotropic one,
g±1 = g0. Interestingly, in such a case, some energy levels for higher total ro-
tational angular momenta diverge to minus infinity with increasing g0. This
indicates that molecules form clusters deeply bound by a strong anisotropic
interaction, while other levels, which converge to constant energies, can be
interpreted as metastable gas-like super-Tonks states [42, 348, 349]. Thus,
a strong anisotropic intermolecular interaction can induce the existence of
the molecular equivalent of the atomic super-Tonks-Girardeau limit in in-
vestigated systems. Specifically, in our numerical tests, we have observed
such a behavior for interaction models with g±1/g0 ≥ 1.

Figure 3.4(c) and fig. 3.4(e) present the energy spectra for the system
with the anisotropic interaction strength set at g±1 = 4 and 10, respectively.
A larger anisotropy leads to a larger distortion of the spectrum as compared
to the atomic case and brings states with higher total rotational angular
momentum to lower energies. Figure 3.4(d) presents the energy spectrum
for the simplified version of the anisotropic interaction gex±1 = 4 allowing
for exchanging angular momentum only. As expected, the spectrum in this
case is distorted only for total angular momenta for which the assumed
form of the intermolecular anisotropic interaction affects the system. Finally,
fig. 3.4(f) presents the energy spectrum for the anisotropic interaction, which
is proportional to the isotropic interaction strength, is non-zero for higher
k, but decays geometrically with k, g±k = g0/1.5k. Since the anisotropic
interaction strength in this model is always smaller than the isotropic one,
the molecular features in the spectrum are less pronounced, despite the
presence of couplings for higher k. In general, the anisotropic interactions
related to larger k in our model are less important than the leading coupling
term g±1, because they couple states with increasing energy differences.

Figure 3.5 shows the dependence of the energy spectra of the relative mo-
tion for two interacting molecules with the rotational constant B = 0.3 ~ω
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3. Molecular path - results

Figure 3.5:Anisotropic interaction vs spectrum. Energy spectra of the relative
motion for two interacting molecules with the rotational constant B = 0.3 ~ω
in a one-dimensional harmonic trap as a function of the anisotropic interaction
strength g±1 for different isotropic interaction strengths: (a) g0 = 0, (b) g0 = 4,
and (c) g0 = 17.3 (geff0 =∞ for a calculation in a finite basis set). Solid and dashed
lines are for states of even and odd spatial symmetries. Different colors represent
states with different total rotational angular momenta. From Ref. [330].
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3.1. Two ultracold molecules in a one-dimensional harmonic trap

in a one-dimensional harmonic trap on the anisotropic interaction strength
g±k for different values of the isotropic interaction strength g0. Panels (a),
(b), and (c) present results for very small (g0 = 0), intermediate (g0 = 4),
and very large (g0 → ∞) isotropic interaction strengths, respectively. The
impact of the anisotropic intermolecular interaction decreases with increas-
ing the isotropic interaction strength. Especially, in the limit of a very
large isotropic interaction strength (g0 →∞), corresponding to the Tonks-
Girardeau limit in atomic systems, the strength of the anisotropic inter-
molecular interaction has to be tuned to very large values to induce observ-
able effects. It is not surprising, since for large positive (repulsive) values
of the isotropic interaction, that is, in the Tonks-Girardeau limit, the inter-
acting particles avoid each other, decreasing their wave functions’ overlap
and thus decreasing the effect of the short-range anisotropic interaction.
For a negative strength of the isotropic interaction interaction, g0 < 0, the
anisotropic interaction affects systems more easily because molecules are
attracted to each other. The energy spectra for simplified versions of the
anisotropic interaction allowing for exchanging angular momentum only are
distorted only for total angular momenta for which the assumed form of the
intermolecular anisotropic interaction affects the system.

A common and interesting feature for all investigated models of inter-
molecular interactions analyzed in figs. 3.4 and 3.5 is that, in the presence
of the anisotropic interaction, the absolute ground state of the system can
have total angular momentum larger than zero, J > 0. Such a ground state
has a (2J + 1) degeneracy that can allow for the realization of interest-
ing many-body Hamiltonians in the limit of many optical lattice sites each
occupied by two molecules. The ground state and its degeneracy in such
a scenario can be controlled by tuning the anisotropy of the intermolecular
interaction.

Figure 3.6 presents the dependence of the total rotational angular mo-
mentum J of the ground state for two interacting molecules with the ro-
tational constant B = 0.3 ~ω in a one-dimensional harmonic trap on the
isotropic g0 and anisotropic g±1 interaction strengths. This plot clearly
shows the interplay of the isotropic and anisotropic intermolecular inter-
actions observed already in figs. 3.4 and 3.5. In the absence of anisotropy
or for weak anisotropic interactions, the ground state has J = 0. With
increasing strength of the anisotropic interaction, the ground state has in-
creasingly higher total rotational angular momentum. For small isotropic
interaction strengths it is easier to induce incrementally higher total rota-
tional angular momentum in the ground state. For large isotropic interac-
tion strengths, much larger anisotropic interaction strengths are needed to
induce the ground state with higher J , and ground states with higher J
neighbor one with J = 0.
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Figure 3.6:Ground states with non-zero J . Total rotational angular momentum
J of the ground state for two interacting molecules with the rotational constant
B = 0.3 ~ω in a one-dimensional harmonic trap as a function of the isotropic g0
and anisotropic g±1 interaction strengths. From Ref. [330].

In the absence of external electric or magnetic fields, the total rota-
tional angular momentum is a conserved quantity (J is a good quantum
number). Therefore, it is not possible to drive the system between ground
states with different total rotational angular momenta by simply tuning
systems’ parameters. However, transitions involving photon absorption or
emission can potentially be used to reach the ground state with higher total
rotational angular momentum after changing the system’s parameters. Adi-
abatic evolution between different ground states can, however, be possible
if an external electric field is applied to couple states with different J .

3.1.2 Impact of external electric field

If considered molecules are heteronuclear and posses a permanent elec-
tric dipole moment, then a static electric field can be used as a knob to
control their interactions and dynamics in a trap via Stark effect [87]. An
electric field couples and mixes states with different total rotational angular
momenta J and removes the degeneracy of states with different |M |.

Figure 3.7 presents energy spectra of the relative motion for two interact-
ing molecules with the rotational constant B = 0.3 ~ω in a one-dimensional
harmonic trap in an external static electric field as a function of the isotropic
interaction strength g0 with the anisotropic interaction strength g±1 = 4 and
electric field strength dE = 0.5 ~ω and 2.5 ~ω. These spectra result from the
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3.1. Two ultracold molecules in a one-dimensional harmonic trap

Figure 3.7: Interplay of electric field and interaction. Energy spectra of the
relative motion for two interacting molecules with the rotational constant B =
0.3 ~ω in a one-dimensional harmonic trap in an external static electric field as
a function of the isotropic interaction strength g0 with the anisotropic interaction
strength g±1 = 4 and the electric field strengths. (a) dE = 0.5 ~ω and (b) dE =
2.5 ~ω. Solid and dashed lines are for states of even and odd spatial symmetries.
Different colors represent states with different projections |M | of the total rotational
angular momentum along the field. Dotted lines are for the result for two interacting
atoms shifted by the energy of two non-interacting polar molecules. From Ref. [330].

field-free spectrum shown in fig. 3.4(c). The assumed model of intermolec-
ular interactions affects all states in the presence of a static electric field,
because all eigenstates in this field are mixtures of field-free states with dif-
ferent total rotational angular momenta. For this reason, in fig. 3.7, there
is no state overlapping with the atomic result and the deviation from the

45
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Figure 3.8: Interaction- and electric field-induced avoided crossings. Mean
values of the square of the total rotational angular momentum operator Ĵ2 for
selected eigenstates of two interacting molecules with the rotational constant
B = 0.3 ~ω in a one-dimensional harmonic trap in an external static electric field as
a function of the isotropic interaction strength g0 with the anisotropic interaction
strength g±1 = 4 and electric field strength dE = 2.5 ~ω. Solid, dashed, and dotted
lines represent states with different projections |M | of the total rotational angu-
lar momentum along the field. The inset shows the energy spectrum of analyzed
eigenstates using the same color code. From Ref. [330].

atomic case is increasing with increasing the electric field strength. The elec-
tric field splits previously degenerate states into a larger number of states
leading to a high density of states, especially in the strong electric field as
plotted in fig. 3.7(b). The coupling between states originating from different
total angular momenta results in the emergence of a large number of avoided
crossings between these states when the electric field is applied. They are
visible for all projections of the total rotational angular momentum along
the field presented in fig. 3.7 and they are more pronounced for the larger
electric field strength.

Following adiabatically eigenstates across an avoided crossing can lead
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to a drastic (ex)change of eigenstates’ properties. Figure 3.8 shows mean
values of the square of the total rotational angular momentum operator Ĵ2

for selected eigenstates presented in fig. 3.7(b). Selected eigenstates origi-
nate from states with J = 0 − 4. It is apparent that each avoided crossing
is associated with the exchange of the total rotational angular momenta
between eigenstates. The widths of the avoided crossings depend on param-
eters of original states and the coupling strengths between them, but all
observed transitions are smooth. Interestingly, such avoided crossing can be
used to control and pump the total rotational angular momentum of the
system by tuning intermolecular interactions or external electric field. Such
a control with an electric field would be a loose electric equivalent of using
a magnetic field to pump the rotational angular momentum in the quantum
variant of the Einstein–de Haas effect [350].

Figure 3.9 shows energy spectra of the relative motion for two interact-
ing molecules with the rotational constant B = 0.3 ~ω in a one-dimensional
harmonic trap in an external static electric field as a function of the elec-
tric field strength dE for different models of the isotropic and anisotropic
short-range interactions. As a reference, panel (a) presents the spectrum of
the non-interacting molecules, thus it corresponds to the doubled result for
a single polar molecule multiplied and shifted by trap vibrational energies
only. Panels (b)-(d) show the spectra for the systems with the anisotropic
interaction strength fixed at an intermediate value of g±1 = 4, whereas the
isotropic interaction strength is zero in panel (b), intermediate in panel (c),
and effectively infinite in panel (d). The electric field removes the degeneracy
of states with different |M | for a given J , leading to a high density of states
especially when both the isotropic and anisotropic interaction strengths
have intermediate values. Interestingly, for the system dominated by the
anisotropic interaction presented in panel (b), the lowest states have high
total rotational angular momentum, low energies, and relatively low density
of states. This is in agreement with fig. 3.5(a). As a result, tthe effect of
the electric field is weaker. In the limit of a very large isotropic interaction
strength (g0 →∞), corresponding to the molecular Tonks-Girardeau limit,
presented in panel (d), the importance of the anisotropic intermolecular
interaction is reduced and the energy spectrum of the systems in the elec-
tric field simplifies to the spectrum of a single polar molecule in the field
combed with the trap vibrational energies (spectra for odd and even spatial
symmetries are the same).

The complex spectra with numerous avoided crossings that are presented
in figs. 3.7 to 3.9 raise a question whether investigated systems show a quan-
tum chaotic behavior [351]. To verify this hypothesis we have calculated
the nearest-neighbor spacing distributions of energy levels for investigated
systems in a broad range of the intermolecular interactions and external
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Figure 3.9: Electric field vs spectrum. Energy spectra of the relative motion
for two interacting molecules with the rotational constant B = 0.3 ~ω in a one-
dimensional harmonic trap in an external static electric field as a function of the
electric field strength dE for different models of the isotropic and anisotropic short-
range interactions: (a) g0 = 0, g±1 = 0; (b) g0 = 0, g±1 = 4; (c) g0 = 4, g±1 = 4;
and (d) g0 = 17.3 (geff0 = ∞ for a calculation in a finite basis set), g±1 = 4.
Solid and dashed lines are for states of even and odd spatial symmetries. Different
colors represent states with different projections |M | of the total rotational angular
momentum along the field. From Ref. [330].

fields strengths. In all calculations we have found level spacing distribu-
tions in much better agreement with the Poisson distribution than with the
Wigner-Dyson one. This observation strongly suggests that the statistical
properties of calculated energy spectra do not follow the predictions of the
Gaussian orthogonal ensemble of random matrices, and neither quantum
chaotic behavior nor level repulsion is observed. The investigated systems
of two interacting molecules with short-range intermolecular interactions in
the electric field behave thus rather like quantum integrable systems.

3.1.3 Dipole-dipole interaction

The dipole-dipole interaction plays an important role in physics of ul-
tracold molecules because heteronuclear molecules can possess a permanent
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Figure 3.10: Effective dipole interaction vs spectrum. Energy spectra of the
relative motion for two interacting molecules with the rotational constant B =
0.3 ~ω in a one-dimensional harmonic trap in an external transverse or axial electric
field as a function of the dipole-dipole interaction strength d2: (a) E = 0, g0 =
0, g±1 = 0, (b) Ez = 2.5, g0 = 0, g±1 = 0, (c) Ez = 0.5, g0 = 0, g±1 = 4.
Solid and dashed lines are for states of even and odd spatial symmetries. Different
colors represent states with different projections |M | of the total rotational angular
momentum along the field. From Ref. [330].
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electric dipole moment. At the same time, this interaction is of the long-
range nature and can be controlled with external electric field [87]. In the
present work, we neglect its long-range character and focus on its impact on
coupling and mixing molecular rotational angular momenta and interplay
with an external static electric field.

Figure 3.10 presents the dependence of energy spectra of the relative mo-
tion for two interacting molecules with the rotational constant B = 0.3 ~ω
in a one-dimensional harmonic trap in an external electric field as a function
of the dipole-dipole interaction strength. Here, we define the dipole-dipole
interaction strength as a square of the molecules’ permanent electric dipole
moment d2. Panel (a) shows the energy spectrum for the field-free case
with the dipole-dipole interaction only. Panel (b) presents the energy spec-
trum with the dipole-dipole interaction in a strong external electric field
parallel to the trap axis. Panel (c) presents the energy spectrum with the
dipole-dipole interaction and additionally with the anisotropic interaction of
intermediate strength also in an intermediate external electric field parallel
to the trap axis.

Numerous avoided crossings and high density of states are visible for all
cases. The dipole-dipole interaction combines effects of the isotropic g0 and
anisotropic g±2 intermolecular interactions, thus it both shifts and splits en-
ergy levels. The dipole-dipole interaction restricted to one dimension does
not conserve the total rotational angular momentum J , but its projection
M onto the trap axis is conserved, also in the presence of an electric field
parallel to the trap axis. If an electric field is not parallel to the trap axis,
then M is not a good quantum number anymore. If the electric field is
perpendicular to the trap axis, then it tends to align molecules perpendicu-
larly to the trap axis leading to repulsive interaction between molecules and
increasing their energy. No signature of quantum chaos is found in these
spectra.

3.1.4 Spin-rotation interaction and external magnetic field

If considered molecules posses a non-zero electronic spin angular mo-
mentum, then a static magnetic field can be used as a knob to control their
interactions and dynamics in a trap via Zeeman effect [87]. In the present
model, we assume that the intermolecular interaction potential does not de-
pend on the electronic spin. Therefore, the magnetic field can couple with
intermolecular dynamics through the molecular spin-rotation coupling only.

Panel (a) in fig. 3.11 presents the dependence of the energy spectrum
of the relative motion for two interacting spin-1/2 molecules with the ro-
tational constant B = 0.3 ~ω in a one-dimensional harmonic trap on the
spin-rotation coupling constant γ. Intermediate strengths of the isotropic
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Figure 3.11: Interplay of the spin-rotation coupling and magnetic field.
Energy spectra of the relative motion for two interacting spin-1/2 molecules with
the rotational constant B = 0.3 ~ω in a one-dimensional harmonic trap: (a) as
a function of the spin-rotation coupling strength γ with g0 = 4, g±1 = 4, B =
0.15 ~ω/µB and (b) as a function of the magnetic field strength B with g0 = 4,
g±1 = 4, γ = 0.3 ~ω. Basis set: nmax = 30, jmax = 5. Solid and dashed lines are for
states of even and odd spatial symmetries. Different colors represent states with
different projections M of the total rotational angular momentum along the field.
From Ref. [330].

and anisotropic interactions are assumed, g0 = g±1 = 4 together with the
magnetic field of intermediate value B = 0.15 ~ω/µB. Without magnetic
field the total angular momentum Jtot,Mtot is conserved and real crossings
between states with different Jtot,Mtot are expected. The energy spectrum
gets more complex with increasing the spin-rotation coupling strength be-
cause the degeneracy of states related to the spin configuration is removed
by this coupling. The magnetic field couples and splits states with differ-
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ent Jtot, while its projection Mtot is conserved. Additionally, some crossings
from the field-free case become avoided crossings in the magnetic field.

Panel (b) in fig. 3.11 shows the dependence of the energy spectrum of the
relative motion for two interacting spin-1/2 molecules in a one-dimensional
harmonic trap on the magnetic field strength B. The intermolecular in-
teractions are the same as in panel (a) and an intermediate value of the
spin-rotation coupling constant γ = 0.3 ~ω is assumed. If there is no spin-
rotation coupling present in the system, then the magnetic field only simply
splits and shifts states with different projections of the total electronic spin
angular momentum on the magnetic field MS = ms1 +ms2 , but the energy
spectra for given MS look the same. However, when the rotational and spin
angular momenta are coupled and mixed by the molecular spin-rotation
coupling, then the magnetic field affects the system’s dynamics and can be
used to control it. The magnetic field induces numerous avoided crossings
similarly as the electric field in previous sections. No signature of quantum
chaos is found for spectra in the magnetic field, either.

3.1.5 Conclusions

Motivated by experimental possibilities and ongoing efforts aiming at
the production and application of fully controllable systems of few ultra-
cold molecules trapped in optical tweezers or optical lattices, we have de-
veloped the model description of two interacting ultracold polar molecules
effectively trapped in a one-dimensional harmonic potential. Molecules are
described as distinguishable quantum rigid rotors interacting via multichan-
nel two-body contact potential incorporating the short-range anisotropy of
intermolecular interactions including dipole-dipole interaction. The form of
the employed multichannel potential is motivated by the known nature of
short-range chemical intermolecular interactions. We have also included in-
teractions with external electric and magnetic fields via Stark and Zeeman
effects, respectively.

We have carefully applied several approximations needed to simplify cal-
culations, and to separate the impact and importance of different features
of the molecular structure and intermolecular interactions on the system’s
dynamics. Thus, we have attempted to understand two interacting ultra-
cold polar molecules trapped in a one-dimensional harmonic potential in
a step-by-step manner. We have investigated the properties of such a sys-
tem in a broad range of system parameters and external field strengths. We
have analyzed in detail the interplay of the molecular rotational structure,
anisotropic interactions, spin-rotation coupling, electric and magnetic fields,
and harmonic trapping potential.

Our most important findings can be summarized as follows.
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1. The anisotropic intermolecular interaction brings states with higher
total rotational angular momenta to lower energies such that the ab-
solute ground state of the molecular system can have the total angular
momentum larger than zero and be degenerate.

2. If the anisotropic interaction strength is larger than the isotropic one,
then some energy levels for higher total rotational angular momenta
diverge to minus infinity with increasing the intermolecular interaction
strength. This indicates the emergence of the molecular equivalent of
the atomic super-Tonks-Girardeau limit with clustered ground state
and excited gas-like super-Tonks states.

3. In the limit of a very large isotropic interaction strength, correspond-
ing to the Tonks-Girardeau limit in the atomic system, the molec-
ular character of the system is less pronounced and impact of the
anisotropic interaction and electric field is smaller.

4. The electric and magnetic fields efficiently couple and mix states with
different total angular momenta and result in complex energy spectra
with a high density of states.

5. The electric and magnetic fields as well as dipole-dipole interaction
induce a large number of avoided crossings.

6. Driving adiabatically the system across above avoided crossings can be
used to control its properties. Especially, the total rotational angular
momentum can be pumped to the system in a loose electric equivalent
of the quantum Einstein–de Haas effect.

7. We have not found signatures of quantum chaotic behavior in energy
spectra of investigated systems which suggests their quantum integra-
bility.

Replacing atoms with molecules in ultracold quantum few- and many-
body systems opens up new possibilities stemming from molecules’ rich in-
ternal structure and anisotropic intermolecular interactions, including long-
range ones. Therefore, the present model and results may provide under-
standing and microscopic parameters for effective molecular many-body
Hamiltonians. For example, our calculations may be considered as a mi-
croscopic model for the on-site interaction of the molecular multichannel
Hubbard Hamiltonian. Thus, our results may be useful for the development
of bottom-up molecule-by-molecule assembled molecular quantum simula-
tors.
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The results presented here may be followed by many applications of the
proposed model and numerical approach to investigate interesting physics in
different molecular systems, geometries, and dimensions. There are several
possible extensions of the present work. The most straightforward direc-
tion is moving to two- or three-dimensional arrangements. In contrast to
the atomic case, no direct correspondence between energy spectra in one
dimension and three dimensions is expected for the molecular system. The
bosonic or fermionic nature of interacting molecules can also be addressed.
On the other hand, the long-range character of the dipole-dipole interaction
can be included and its interplay with isotropic and anisotropic short-range
van der Waals interactions can be investigated. Polar and paramagnetic
molecules possessing at the same time both permanent electric dipole mo-
ment and spin structure can be studied together with their control with
external electric and magnetic fields. Such systems may show an interesting
interplay of magnetic and electric properties coupled by the molecular inter-
nal structure. Hyperfine structure of molecules and chemical reactivity can
also be included. Molecules possessing different masses, rotational constants,
and trapping frequencies, and resulting coupling between the center-of-mass
and relative motions, can be considered. Emergence of quantum chaotic
properties with increasing complexity of the system is another intriguing
question. Time-dependent dynamics in few-body molecular systems, espe-
cially after a quench of system parameters, is another not explored but po-
tentially interesting direction of research. Finally, two interacting molecules
can be trapped in two sites of an optical lattice or optical tweezer and such
a double-well configuration can be investigated as a fundamental building
block for the implementation of quantum gates and quantum computation
with molecular systems.

3.2 Magnetic properties and quench dynamics

This section is based on our work presented in Ref. [331], where the
Ph.D. candidate was responsible for: full numeric implementation
(construction of Hamiltonian matrices, exact diagonalization, and
quench dynamics), analysis and interpretation of results, prepara-
tion of plots, writing the manuscript. To our knowledge, this work
is the first step towards the incorporation of highly magnetic and
polar molecules into the field of ultracold quantum simulators. The
code and data that enable the recovery of results in this section are
provided in Ref. [344].
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In this section, we theoretically investigate the magnetic properties and
nonequilibrium dynamics of two interacting ultracold polar and paramag-
netic molecules in a one-dimensional harmonic trap in external electric and
magnetic fields (see fig. 3.12). Intriguing features of the system arise from
the interplay of the molecular electronic spins, dipole moments, rotational
structures, external electric and magnetic fields, and spin-rotation coupling.
We present rich diagrams of the system’s magnetization and explain the
mechanisms allowing its control on the example of molecules with spins 1/2
and 3/2. We identify the anisotropic part of the intermolecular interaction
and the spin-rotation coupling as crucial for observing the system’s non-
trivial magnetic behavior. We propose the quench dynamics experiments
to probe and reconstruct the system’s molecular characteristics from ob-
serving its time evolution. We show that the strong anisotropic interaction
leaves a clear mark on the system’s time evolution after the quench of the
interaction strength. On the other hand, the time evolution of the system’s
magnetization, after the electric field quench, depends significantly on the
spin-rotation coupling strength. The results show an intimate coupling be-
tween the electric and magnetic properties of the system and indicate the
possibility of controlling the molecular few-body magnetization with the
external electric field. In this way, we complement the previous studies on
the coupling between the molecular electronic spins and external electric
field in the free-space collisions [107–109]. The investigated model system
paves the way towards studying the controlled magnetization of ultracold
molecules trapped in optical tweezers or optical lattices and their application
in quantum simulation of molecular multichannel many-body Hamiltonians
and quantum information storing.

The rotational constant B in this study is set to π ~ω as presented in
fig. 3.13. It corresponds to a less pronounced molecular character of the sys-
tem as compared to Ref. [330], where tiny rotational constants were selected
to enhance the impact of molecular features. Now, trap levels are more dense
than rotational ones, which is a regime closer to experimental conditions (in
which molecular rotational constants are usually much larger than a trap
frequency). Still, we select the relatively small rotational constant to reveal
an important role played by the rotational degree of freedom. With a choice
of an irrational value, we additionally avoid accidental degeneracies of en-
ergy levels. We also limit the set of |n〉 to even functions due to the trivial
behavior of odd states as showed in the previous section and Ref. [330].

We begin by studying in section 3.2.1 the magnetic properties of two
interacting ultracold molecules in a one-dimensional harmonic trap. We
focus on the system’s magnetization. We analyze how it depends on the
intermolecular interaction between molecules and the coupling between the
electronic spins and the molecular rotational momenta. We present how the
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Figure 3.12: Schematic representation of the investigated system and its
features. (a) Two interacting molecules is a one-dimensional harmonic trap under
the influence of the electric and magnetic fields can be described by a magnetization
diagram depending on the field strengths. The fields are parallel to each other and
to the direction of molecular motion. (b) Time evolution of the system’s observable
after the quench can reveal information on the underlying molecular characteristics
by using the Fourier transform. From Ref. [331].

system’s magnetization can be controlled and how this control depends on
the molecular properties. Next, in section 3.2.2, we study the quench dynam-
ics designed to extract the strengths of the spin-rotation coupling as well as
the isotropic and anisotropic interaction strengths between the molecules.
We summarize our results and discuss the outlook in section 3.2.3.

3.2.1 Magnetic properties and its control

Mechanisms that allow control over the system’s magnetization can be
observed from the energy spectra. Figure 3.14 shows calculated energy spec-
tra as functions of the isotropic interaction strength g0. We select a set of
internal and external Hamiltonian parameters to present the interplay be-
tween the system’s magnetic properties and the external fields.

Figure 3.14(a) presents the energy spectrum of two molecules in a one-
dimensional harmonic trap with a strongly anisotropic intermolecular in-
teraction g±1 = 10 without external fields or spin-rotation coupling. The
comparison with the neighboring panel (b) shows the impact of the exter-
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Figure 3.13: Larger ratio between the rotational constant and trapping
frequency. B/ω ≈ 3 preserves the importance of molecular features and is realiz-
able with weakly-bound Feshbach molecules in a tight trap. The rotational levels
are separated by several trap levels.

nal electric field on the system. The electric field moves the energy levels
by a Stark shift and removes their degeneracy with respect to the total ro-
tational angular momentum, J . The electric field splits states with J = 1
and J = 2 into two and three states, respectively, according to the different
number of possible projections of total rotational angular momentum, MJ .
Shifted states then often anticross due to the coupling between different
total rotational momentum states.

A comparison of panels (a) and (c) in fig. 3.14 shows the impact of
the medium magnetic field on the spectrum of two molecules with a small
spin-rotation coupling (γ = 0.3 ~ω). The only conserved quantum number
is Mtot, i.e., the sum of projections of total rotational, MJ , and spin, MS ,
angular momenta. States split accordingly to the Zeeman shift. States with
the positive projection of the total spin angular momentum MS are high-
field seekers, while energies of states with negative MS decrease with the
magnetic field strength. Shifted states then often anticross due to a non-zero
spin-rotation coupling, which mixes states with different J, S,MJ , and MS

(see the corresponding Hamiltonian elements in appendix A). The impact
of the spin-rotation coupling on the system increases with the absolute
values of states’ total rotational and spin angular momenta’ projections,
MJ and MS . The larger |MJ | and |MS |, the more numerous are possible
combinations of the projections of individual rotational and spin angular
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Figure 3.14: Spectrum vs molecular properties and external fields. Energy
spectra of the relative motion for two interacting molecules with the spin s = 1/2
and rotational constant B = π ~ω in a one-dimensional harmonic trap as a function
of the isotropic interaction strength g0 with the anisotropic interaction strength
g±1 = 10 and (a) no external fields, (b) electric field strength dE = 5 ~ω, and
(c) the magnetic field strength B = 0.5 ~ω/µB and spin-rotation coupling constant
γ = 0.3 ~ω. Solid and dashed lines are for states of even and odd spatial symmetries,
respectively. From Ref. [331].

momenta, mi,msi , which are mixed by the spin-rotation coupling.
Figure 3.15 presents rich magnetization diagrams of the studied system

in the ground state as functions of the magnetic and electric fields. The
upper row shows results for two molecules with electronic spins 1/2 and
Mtot = 0, while the bottom one - with spins 3/2 and Mtot = 2. The pri-
mary observation is that the number of possible magnetization values of the
ground state is limited by the total electronic spin momenta of molecules
and the selected Mtot value. This restriction results from the definition of
Mtot = MJ + MS , but also because low-energy states are characterized
by small values of rotational angular momenta, j1 and j2, resulting in MJ

values, which are close to zero.
The main reason for all magnetization changes in fig. 3.15 is the interplay

between the Zeeman and Stark effects. The magnetic field linearly brings
down energies of the states with negative MS , with speed depending on
the MS value. The Stark effect lowers the ground state’s energy, composed
mostly of the basis state with J = M = j1 = j2 = 0, faster than the lowest
state with negative magnetization, composed mostly of the basis state with
J = M = 1. Therefore, larger external electric field strengths effectively
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Figure 3.15: Magnetization vs molecular properties and external fields.
Ground-state magnetization diagrams as functions of the electric dE and magnetic
µBB field strengths for two interacting molecules with the rotational constants B =
π ~ω in a one-dimensional harmonic trap for medium isotropic interaction strength
g0 = 4. Panels (a)-(d) and (e)-(h) present results for spins s = 1/2 (Mtot = 0) and
3/2 (Mtot = 2), respectively. The first two and last two columns show results for
medium g±1 = 4 and large g±1 = 10 anisotropic interaction strengths, respectively.
Moreover, the first and third columns present results for a medium spin-rotation
coupling γ = 1 ~ω, and the second and the fourth columns - for strong spin-rotation
coupling γ = 3 ~ω, respectively. From Ref. [331].

force larger magnetic field strengths for the magnetization change to happen,
when the lowest states exchange their order. Such underlying interplay is
visible in all panels of fig. 3.15.

Magnetization for spins 1/2

Panels (a)-(d) of fig. 3.15 present the ground-state magnetization dia-
grams for the system composed of two interacting molecules with spins 1/2
and Mtot = 0. The choice of Mtot limits the number of possible 〈Ŝz〉 val-
ues. In this case, two states are mainly responsible for the magnetization
change, namely the ground state dominated by the J = MJ = j1 = j2 = 0
andMS = 0 basis state and the excited state dominated by the J = MJ = 1
and MS = −1 basis state.

Panels (a)-(b) of fig. 3.15 show the magnetization diagrams for medium
strength of the anisotropic interaction (g±1 = 4). In the absence of the spin-
rotation coupling, the magnetization change results simply from the Zeeman
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Figure 3.16: Magnetic field and magnetization exchange of spin−1/2
molecules. (a) Ground-state magnetization of two interacting molecules with the
rotational constants B = π ~ω, spins s = 1/2, and Mtot = 0 in a one-dimensional
harmonic trap with medium isotropic and strong anisotropic intermolecular inter-
action strengths (g0 = 4 and g±1 = 10) as a function of the magnetic field strength
µBB for different electric field strengths dE and spin-rotation coupling constants γ.
(b)-(c) Energies of the analyzed ground states and coupled lowest-energy excited
states as functions of the magnetic field strength µBB. Color code indicates the
strengths of the electric field dE and the spin-rotation coupling γ. From Ref. [331].

and Stark effects’ interplay. Figure 3.16(b) depicts in black the energies of
states taking part in such a change. The black line in the panel (a) of the
same figure presents the resulting 〈Ŝz〉 of the ground state. The electric field
can control the magnetic field’s strength at which the change takes place.

The sharply crossing states are not coupled either by the electric field
(which conservesMJ) or the spin-rotation coupling (which conserves j1 and
j2). However, if both couplings are present, the intermediate state domi-
nated by the J = 1,MJ = 0 basis state, provides the second-order coupling
between the discussed states, which results in their anticrossing visible in red
in fig. 3.16(a)-(b). The repulsion between states grows with the spin-rotation
coupling strength, as seen when comparing the magnetization diagrams in
panels (a) and (b) of fig. 3.15. The spin-rotation coupling also lowers the
energy of states with the largest absolute values of MJ and MS , allowing
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3.2. Magnetic properties and quench dynamics

for the magnetization change in the weaker magnetic field.
The importance of the intermolecular interaction anisotropy is visible

when comparing the first two columns (g±1 = 4) with the last two ones
(g±1 = 10) of fig. 3.15, i.e., panels (a)-(b) with (c)-(d). Firstly, the sys-
tems with the larger anisotropic interaction strength require smaller exter-
nal fields for the ground-state magnetization change related to the crossing
of the lowest-energy states. For electric field strengths larger than a few
~ω, the 〈Ŝz〉 change takes place within the same two mechanisms described
above. States with different magnetization either cross in the absence of
the spin-rotation coupling or anticross when both the electric field and
spin-rotation coupling are present. However, the intermolecular interac-
tion’s large anisotropy allows an additional mechanism for small electric
field strengths. It brings down the states with higher total rotational mo-
menta, including J = 1 (as seen in fig. 3.14 (b)), and non-zero MJ and MS .
So when the magnetic field, through the Zeeman effect, lifts the degeneracy
of MS , the two states strongly repel each other thanks to the spin-rotation
coupling, as seen in blue in fig. 3.16(a),(c). The larger the spin-rotation cou-
pling strength, the larger electric field strength is needed to push down the
state with J = 0 and reproduce the mechanisms described for smaller g±1.

Magnetization for spins 3/2

Panels (e)-(h) of fig. 3.15 show the ground-state magnetization diagrams
of two interacting molecules with spins 3/2 andMtot = 2. This choice results
in a larger number of possible 〈Ŝz〉 values, ranging from -3 to 3. Also, the
states taking part in the magnetization changes have much higher rotational
angular momenta than ones in the previous section.

In the case of the medium anisotropic interaction strength, the choice
of Mtot = 2 in the absence of external fields results in a ground state with
MJ = 0,MS = 2. In the absence of the electric field or the spin-rotation cou-
pling, the lowest states cross each other due to the Zeeman effect, resulting
in abrupt ground-state magnetization changes. Blue lines in fig. 3.17(a)-
(b) present an example of the magnetization and energies of such states as
a function of the magnetic field strength.

When the spin-rotation coupling is present, the spectra become dense
and exhibit multiple anticrossings, due to mixing of J , S, and projections of
individual molecular rotational and spin angular momentam1,m2,ms1 ,ms2 .
The anticrossing strength depends on two factors. The strongest anticross-
ings occur between states belonging to the same harmonic level, as both the
spin-rotation coupling and electric field conserve n. Another factor is the
anticrossing states’ composition of individual rotational angular momenta,
j1 and j2. The larger difference between them, the smaller is the coupling
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Figure 3.17: Magnetic field and magnetization exchange of spin−3/2
molecules. (a) Ground-state magnetization of two interacting molecules with the
rotational constants B = π ~ω, spins s = 3/2, and Mtot = 2 in a one-dimensional
harmonic trap with medium isotropic and anisotropic intermolecular interaction
strengths (g0 = g±1 = 4) as a function of the magnetic field strength µBB for the
electric field strength dE = 15 ~ω and different spin-rotation coupling constants γ.
(b)-(c) Energies of the analyzed ground states and coupled lowest-energy excited
states as functions of the magnetic field strength µBB. Color code indicates the
spin-rotation coupling constants γ. From Ref. [331].

induced by the electric field. This is why the anticrossing strength decreases
with the difference of states’ magnetization, as presented in fig. 3.17, where
states depicted in red change the magnetization from 2 to 0 and 0 to -3.
Due to conserved Mtot, the change of MS is compensated by the increase
of MJ . Larger MJ forces higher rotational momenta, j1 and j2. Therefore,
the larger magnetization change, the larger difference between the states’
rotational momenta, and the smaller coupling between anticrossing states.

The spin-rotation coupling’s stronger impact on states with large abso-
lute values of MS and MJ is more prominent for spins 3/2 than for spins
1/2. A comparison between panels (e) and (f) as well as (g) and (h) of
fig. 3.15 shows that the larger spin-rotation coupling can not only bring the
magnetization change to lower magnetic field strengths, but also effectively
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limits the number of accessible magnetization values, as in the case of panels
(f) and (h).

The same dependencies determine the magnetization diagrams for the
systems with large anisotropy of the intermolecular interaction (g±1 = 10),
as seen in panels (g) and (h) of fig. 3.15. The main difference comes from
an additional 〈Ŝz〉 value accessible for weaker electric fields due to bringing
down the state with higher rotational angular momentum with 〈Ŝz〉 = 3 by
the anisotropy of the intermolecular interaction.

3.2.2 Quench dynamics

The analyzed system’s magnetic properties depend strongly on the aniso-
tropic part of the intermolecular interaction and the spin-rotation coupling.
These molecular properties are challenging to calculate or measure. How-
ever, they can be extracted through the analysis of the quench dynamics of
observables that they influence.

Therefore, first, we study the nonequilibrium dynamics of the cloud
size, 〈r̂2〉, after the quench of the intermolecular interaction which can be
achieved via the change of the trapping frequency [317] (see the discussion
in section 2.8). We aim at identifying dynamical signatures of isotropic
and anisotropic part of the interaction between the molecules. Next, we
analyze the time evolution of the magnetization, 〈Ŝz〉, after the quench of
the external electric or magnetic field. It provides insight into the strength
of the spin-rotation coupling present in the molecular system.

To reconstruct couplings governing the dynamics, we perform the discrete
Fourier transform (DFT) of the corresponding time evolution. The result-
ing function indicates the frequencies dictating the time evolution. These
frequencies can then be transformed into energy differences between states
whose coupling causes the system’s nontrivial dynamics. The strength of the
coupling is related to the peak’s amplitude at the corresponding frequency.

The isotropic and anisotropic interactions

Figure 3.18 presents the nonequilibrium dynamics of the analyzed molec-
ular system with total rotational angular momentum, J = 1, after the
quench of the interaction, starting from the noninteracting case, with the
initial state |Ψ0〉 = |n = 0, J = 1, j1 = 0, j2 = 1〉.

Panel (a) shows the time evolution of the cloud size after quenching
the isotropic part of the intermolecular interaction from zero to medium
strength g0 = 4, which couples states composed of different harmonic trap
levels. The inset of panel (a) presents the DFT of the studied time evo-
lution, which can be used to unravel couplings between states governing
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the quench dynamics. The molecular system’s dynamics in these conditions
is almost identical to two ultracold atoms in a one-dimensional harmonic
trap, even though the rotational structure is present, and J is nonzero. The
reason is the lack of the anisotropic part of the intermolecular interaction
and the absence of couplings between the rotational states. As a result, the
multiple peaks visible in the DFT correspond to the couplings with different
harmonic states only, which are almost exactly evenly separated by 2ω (we
ignore odd states in this work). The divergence from the single ladder of
frequencies comes from the slightly different influence that the isotropic in-
teraction has on the system’s ground state, as compared to excited ones, as
known for both atomic [64] and molecular [330] cases. The additional ladder
of frequencies slightly below 2ω comes from the couplings of higher-energy
harmonic states to the ground state. If the isotropic intermolecular inter-
action is quenched to negative strengths, the multiple peaks would become
more detached. In the case of the quench to the strongly repulsive interac-
tion, entering the Tonks-Girardeau regime, the DFT would show a single
ladder of peaks evenly separated by 2ω. The analysis above is independent
of the total rotational angular momentum value, J as long as the anisotropic
part of the interaction is zero.

Panel (b) of fig. 3.18 presents the dynamics after the quench of the
anisotropic part of the intermolecular interaction from zero to medium
strength g±1 = 4, keeping the isotropic part equal to zero. The anisotropic
interaction couples not only different harmonic trap states but also rota-
tional ones, preserving J . It impacts the spectrum in two ways. Firstly, as
showed in Ref. [330], the anisotropic interaction splits each harmonic trap
state with J = 1 into two states, the antisymmetric and symmetric one.
The splitting depends slightly on the harmonic level and is largely similar
across the spectrum, except for the lowest-energy state. The antisymmet-
ric ground state, resulting from the splitting of the lowest-energy harmonic
state, is brought down rapidly by the anisotropic part of the interaction.
Both effects can be seen in the DFT of the time evolution of the cloud size
in fig. 3.18(b) as well as in the system’s spectrum presented in fig. 3.14(a).
The described splitting results in two close ladders of excited symmetric
and antisymmetric eigenstates with frequencies close to 2ω. The ladder
of frequencies separated by ≈ 1.9ω comes from the couplings between the
symmetric states, while the neighboring ladder starting from ≈ 2.1ω results
from the couplings between the antisymmetric states. The couplings with
the separated ground state cause an additional ladder starting for a fre-
quency equal to the energy difference between the ground energy and the
nearest excited antisymmetric state (here around 4.4ω). The ground state’s
sensitivity to the anisotropic interaction strength allows for using this fre-
quency as a quite precise signature of this molecular property. Invisible for
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Figure 3.18: Quench of interaction strength. The time evolution of the cloud
size, 〈r̂2〉, after the quench of the intermolecular interaction strength between two
interacting molecules without spin and with the rotational constants B = π~ω
in a one-dimensional harmonic trap with the total rotational angular momentum
J = 1. The isotropic and anisotropic interaction is quenched from zero g0 = g±1 = 0
to (a) g0 = 4, g±1 = 0, (b) g0 = 0, g±1 = 4, and (c) g0 = 4, g±1 = 10. Insets present
the discrete Fourier transforms of the studied time evolutions. From Ref. [331].
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the quench dynamics are states with j1 = j2, as nothing couples them to the
system’s initial state. If the initial state, |Ψ0〉, is antisymmetric, instead of
composed solely by |n = 0, J = 1, j1 = 0, j2 = 1〉, the only couplings gov-
erning the system are the ones between antisymmetric states. The time
evolution of 〈r̂2〉 is then simpler, and the DFT contains no splittings of the
main frequency ladder. If |Ψ0〉 is chosen to be symmetric, the couplings to
the antisymmetric ground state disappear, rendering this quench scenario
less sensitive to the anisotropic interaction strength.

Panel (c) of fig. 3.18 shows the time evolution of the cloud size after
quenching both parts of the intermolecular interaction, i.e., the isotropic
part from zero to medium strength g0 = 4 and anisotropic part from 0 to
large strength g±1 = 10. In this case, the DFT shows a frequency ladder sim-
ilar to the one observed in panel (a) and the additional ladder starting from
the frequency around 6.5ω analogous to the panel (b). However, the result
is not a simple sum of two interaction parts’ effects, but it rather comes from
the competition between them. Firstly, the ground state, detached from the
rest of the spectrum by the anisotropic part of the interaction, is pushed
back up by the isotropic part, as seen in fig. 3.14(a). For a molecular system
with the dominantly isotropic interactions or with an anisotropic part equal
to isotropic, the separated ground state is gone and the additional ladder in
the corresponding DFTs. On the other hand, the larger frequency at which
the additional ladder starts, the larger is the dominance of the anisotropy
over the isotropy of the intermolecular interaction. The splittings between
ladders starting around 2ω are another signature of the intermolecular in-
teraction. They get negligible small, resulting in a single ladder, in two
cases. The first case is entering the Tonks-Girardeau regime with a very
strong isotropic part of the interaction. Second, when the anisotropic part
of the interaction’s strength is equal to the isotropic one. This regime cor-
responds to the metastable gas-like super-Tonks states [42, 330, 348, 349],
being a molecular equivalent of the Tonks-Girardeau regime.

The results showed in fig. 3.18 and discussed above concern the sys-
tem with the total rotational angular momentum J = 1. They present the
possibility of extracting the relative strength of the anisotropic part of the
intermolecular interaction, g±1, compared to the isotropic part, g0. On the
other hand, the quench analysis of the system with a zero total rotational
angular momentum allows determining g0. The reason is the lack of the
dependence of eigenstates with J = 0 on the anisotropic part of the in-
termolecular interaction. Therefore, to extract the full information about
intermolecular interactions, one should start with the interaction quench
performed in the system with J = 0, interpreted as in fig. 3.18(a), followed
by the investigation of the quench dynamics of the system with J = 1 or
higher.
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The spin-rotation coupling

Figure 3.19 presents the nonequilibrium dynamics of the magnetization,
〈Ŝz〉, of the analyzed molecular system with molecular electric spins 1/2
with zero projection of the total angular momentum, Mtot = 0, after the
quench of external electric or magnetic field with different spin-rotation cou-
pling strengths, γ. To see a nontrivial time evolution of 〈Ŝz〉, i.e., its value
changing in time with a significant amplitude, the initial state, |Ψ0〉, must be
coupled to a subset of the final eigenfunctions,

∣∣∣Ψ̃j

〉
, with

〈
Ψ̃j

∣∣∣ Ŝz ∣∣∣Ψ̃j′

〉
6= 0.

These conditions are not met in the system without the spin-rotation cou-
pling, as it is the only part of the Hamiltonian, which mixes states with
different projections of the total spin angular momentum, MS . Therefore,
in general, the smaller γ, the smaller amplitude of 〈Ŝz(t)〉 after a quench
of any external field. However, the presence of the spin-rotation coupling
is not a sufficient condition for the nontrivial dynamics. The quench of the
external fields must also be performed in the vicinity of the magnetiza-
tion change, discussed in section 3.2.1, otherwise the value of

〈
Ψ̃j

∣∣∣ Ŝz ∣∣∣Ψ̃j′

〉
becomes negligibly small.

Panels (a) and (b) of fig. 3.19 present the time evolution of the mag-
netization, 〈Ŝz〉, for the system under the constant impact of the external
magnetic field of 3 ~ω, after the quench of the electric field from 0 to 7.5
~ω, for the medium (γ = 1 ~ω) and large (γ = 3 ~ω) spin-rotation coupling
strengths, respectively. The corresponding magnetization diagrams are pre-
sented in panels (a) and (b) of fig. 3.15. The initial state of the system,
|Ψ0〉, is antisymmetric with J = 1, MJ = 1, and MS = −1. It is composed
predominantly of the |0〉 harmonic trap state. Firstly, we see that the am-
plitude of 〈Ŝz(t)〉 variation increases with the spin-rotation strength. For
a medium γ, the 〈Ŝz〉 changes by around 20% of its value, while for a large
γ – by 100%. As already stated, the 〈Ŝz〉 value would be constant without
the spin-rotation coupling.

Secondly, the DFT in insets of panels (a) and (b) of fig. 3.19 indicates
that the dynamics is governed by a manifold of couplings. They result from
the intermolecular interaction mixing the harmonic levels, the magnetic field
lifting the degeneracy with respect to the projection of the total spin an-
gular momentum, MS , the electric field mixing the rotational states, and
finally the spin-rotation coupling, which mixes states with different J, S,MJ ,
and MS . The quench aims to assess the spin-rotation coupling strength, γ.
Therefore we compare results from panels (a) and (b). While the num-
ber of present couplings is vast, most of them are negligible, especially
in panel (a). Their impact on the dynamics grows with the spin-rotation
coupling strength. Therefore, while just two couplings dominate the time
evolution of 〈Ŝz〉 for a medium γ, they are joined by many new ones for
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Figure 3.19:Quench of external fields. The time evolution of the magnetization,
〈Ŝz〉, of the system of two interacting molecules with the spins 1/2 and rotational
constants B = π~ω in a one-dimensional harmonic trap, described by the medium
isotropic and anisotropic interaction strengths, g0 = g±1 = 4, and with zero projec-
tion of the total angular momentum, Mtot = 0, after the quench of (a) the electric
field from 0 to dE = 7.5 ~ω for a system with spin-rotation coupling γ = 1 ~ω
and with the constant magnetic field, µBB = 3 ~ω, (b) the electric field from 0 to
dE = 7.5 ~ω for a system with γ = 3 ~ω and constant magnetic field, µBB = 3 ~ω,
and (c) the magnetic field from 0 to µBB = 4 ~ω with γ = 1 ~ω and the constant
electric field dE = 5 ~ω. Insets present the discrete Fourier transforms of the studied
time evolutions. From Ref. [331].
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3.2. Magnetic properties and quench dynamics

a large γ. In both cases, the dominant coupling is between the states taking
part in the magnetization change, described in section 3.2.1. The strength
of this coupling grows with the spin-rotation coupling strength γ.

Summing up, in the case of the quench of the electric field, there are two
signatures of the spin-rotation coupling strength in the time evolution of the
magnetization, 〈Ŝz〉. First is the size of 〈Ŝz(t)〉 amplitude, which increases
with γ. Second is the number of couplings present in the system and the
amplitude of the dominant coupling, increasing with γ.

Instead of quenching the electric field strength, the magnetic field can
also be suddenly turned on. Panel (c) of fig. 3.19 shows the time evolution
of 〈Ŝz〉 of the studied molecular system under the influence of the constant
electric field of 5 ~ω, after the quench of the magnetic field from 0 to 4 ~ω.
The initial state, |Ψ0〉, is already impacted by the constant electric field.
It is predominantly |Ψ0〉 = |n = 0, J = 0, j1 = j2 = 0, S = 0, MS = 0〉, but
mixed with the symmetric rotational state with j1 and j2 equal to 0 and
1. It also has a significant contribution from the higher harmonic states
(n = 2, 4) due to the intermolecular interaction. The selected quench of the
magnetic field does not modify the initial state significantly, so in the end we
probe only couplings between

∣∣∣Ψ̃〉 ≈ |Ψ0〉 and other eigenstates of the final
Hamiltonian. This significantly limits the number of couplings influencing
the dynamics, what is visible when comparing the corresponding DFTs
in fig. 3.19. Moreover, the initial state has 〈Ŝz〉 = 0, therefore the only
significant couplings are between

∣∣∣Ψ̃〉 and the eigenstates with 〈Ŝz〉 6= 0,
which further limits the number of visible peaks in the DFT. However, the
remaining peaks are related to the spin-rotation coupling as it is the only
part of the Hamiltonian mixing states with different MS .

In the magnetic field’s quench, the initial state |Ψ0〉 has the largest
overlap with the fourth excited state of the final Hamiltonian, instead of
the ground state, as it is in the electric field’s quench. This means that the
couplings governing the dynamics are not between the states taking part
in the system’s magnetization change. Moreover, the amplitude of 〈Ŝz(t)〉
variation is not anymore linearly dependent on the spin-rotation coupling
strength. It grows with the spin-rotation coupling strength till γ reaches
medium values, and then remains almost constant. Different sets of cou-
plings govern these two regimes. The first regime (small γ, 〈Ŝz(t)〉 ampli-
tude ∝ γ) is dominated by a single coupling between

∣∣∣Ψ̃〉 ≈ |Ψ0〉 and the
nearest antisymmetric eigenstate with J = M = 1, MS = −1, and n = 2.
This coupling strength grows with γ till γ reaches medium values. In the
second regime (larger γ, constant 〈Ŝz(t)〉 amplitude), the mentioned cou-
pling strength decreases when γ grows and a new coupling, with the ground
state of the quenched system, grows. Competition between two couplings re-
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sults in the 〈Ŝz(t)〉 amplitude being nearly independent of the spin-rotation
strength. This quench scenario is thus less straightforward to determine
the spin-rotation coupling strength value than the quench of the electric
field. It still allows us to determine γ by fitting the theoretical model to the
experimental data.

The quench of the magnetic field strength proves useful also in determin-
ing whether the anisotropic part of the intermolecular interaction dominates
the system’s properties. As discussed in section 3.2.1, in the system with
medium interaction anisotropy, the main source of coupling between states
with different MS values is the combination of the electric field and the
spin-rotation coupling. When the electric field is missing, the main source
of such a coupling is the large anisotropic part of the intermolecular in-
teraction which brings states with higher rotational angular momenta to
lower energies (see fig. 3.16(c)). It means that if the quench scenario from
fig. 3.19(c) is performed without the constant electric field, the nontrivial
time evolution of 〈Ŝz〉 indicates that the anisotropic part dominates the
intermolecular interaction.

3.2.3 Conclusions

Within this work, we have studied the magnetic properties of two in-
teracting ultracold polar and paramagnetic molecules in a one-dimensional
harmonic trap. We have focused on the interplay of the molecular electronic
spins, electric dipole moments, rotational structures, external electric and
magnetic fields, and spin-rotation coupling. We have shown that control over
the molecular system’s magnetization could be achieved using an external
electric field. This result is a complementary extension of the analogous
studies focused on the free-space collisions. We have also presented the re-
sulting magnetization diagrams depending strongly on two molecular prop-
erties of the system, namely the spin-rotation coupling and the anisotropic
part of the intermolecular interaction. Motivated by the theoretical and
experimental challenges in determining such molecular properties of few-
body systems, we have employed the quench dynamics to find signatures of
the anisotropic intermolecular interaction strength and the electronic spin-
rotation coupling.

Our findings can be summarized as follows:

• The magnetization of the system can be controlled via external fields.
The main underlying mechanism is the competition between the Zee-
man and Stark effects. The spin-rotation coupling strength affects the
smoothness of the transition between possible magnetization values.
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3.2. Magnetic properties and quench dynamics

• The number of accessible magnetization values depends on selected
Mtot of the system, the electronic spins of the molecules, and the
strength of the anisotropic part of the intermolecular interaction as
it brings the states with higher total rotational momenta to lower
energies.

• The time evolution of the system’s cloud size after the quench of the
intermolecular interaction has clear signatures of the ratio between
the anisotropic, g±1, and isotropic, g0, part of the interaction. In the
regime of large g0 or g0 = g±1, the dynamics is governed by couplings
between evenly separated harmonic states of the system. For g±1 > g0,
the ladder of additional couplings becomes visible in the Fourier trans-
form of the time evolution, coming from the antisymmetric ground
state of the system. This ground state is highly sensitive to g±1 and
may be used to determine its strength compared to g0.

• The time evolution of the magnetization after the electric field’s quench
depends strongly on the spin-rotation coupling strength. The larger
spin-rotation coupling, the larger is the amplitude of the magnetiza-
tion variation and the larger number of couplings governing the dy-
namics. It can thus be used to assess the strength of the spin-rotation
coupling in the molecular system.

• The time evolution of the magnetization after the magnetic field’s
quench is governed by a smaller number of couplings than after the
electric field’s quench. In the studied example, it is caused by a large
similarity of the initial state to one of the eigenstates of the system
after the quench. The dynamics probes then only couplings to this
single eigenstate. While it may allow to assess the spin-rotation cou-
pling strength, this scenario serves better for probing the anisotropic
part of the intermolecular interaction.

The presented intrinsic coupling between the electric and magnetic prop-
erties of the studied model system paves the way towards studying the
controlled magnetization of the ultracold many-body molecular systems
trapped in optical tweezers or optical lattices. The results provide also the
first step in studying dynamical magnetic properties of a few-body molec-
ular systems with varied geometries. The potential applications range from
quantum simulations of molecular multichannel many-body Hamiltonians
to quantum information storing.

The studied model can be extended by including the fermionic or bosonic
statistics of indistinguishable molecules or allowing dimers to be different.
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Another direction is to incorporate the state dependence of molecular char-
acteristics and trapping potential. The interaction potential with more re-
alistic dependence on the relative distance between molecules may capture
the physics of four-atom complexes that are now of central interest for ultra-
cold molecular experiments. Another extension is the more realistic quench
dynamics taking into account all correlations and dependencies between
molecular characteristics. A natural extension to the many-body limit is
the double molecular Mott insulator in an optical lattice with two molecules
per site. The present system constitutes exotic monomers for such a system
with large total rotational angular momenta in the ground state and mag-
netization controllable with the electric field.
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4

Machine learning methods

Artificial intelligence is the new electricity.
~Andrew Ng

In section 1.3 we have already hinted that ML methods are powerful
numerical tools that soon can join the physicists’ toolbox for scientific dis-
covery. Before it can happen, we need to develop ways to interpret and
increase the reliability of ML models and incorporate them into our ev-
eryday work. Within this thesis, we present the first steps towards this
ambitious goal. In particular, in chapter 5, we show how we can enhance
phase-detection schemes by applying interpretability and reliability tools
based on the Hessian of the training loss.

Before we dive into the results, we devote this chapter to familiarize
the reader with the ML concepts and methods that we then apply to tackle
phase classification problems in chapter 5. Therefore, we do not provide here
a thorough and deep introduction to ML or deep learning (DL). For this, we
refer the reader to excellent textbooks [352–354] or tailored for physicists
Refs. [195, 196].

Here, we start by listing the ingredients of the ML problem (task, data,
model) in section 4.1. We discuss briefly types of ML tasks in section 4.2
with a special focus on those addressed within this thesis. In section 4.3
we introduce the supervised and unsupervised learning that are most com-
monly used for phase classification and detection. In sections 4.4 to 4.6,
we describe the learning process in general and used optimization methods
in particular. Then, in section 4.7 we discuss the selected ML models that
we have employed in our work, namely neural networks (NNs), with a fo-
cus on convolutional neural networks (CNNs) and autoencoders (AEs). In
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particular, we explicitly present NN architectures used in chapter 5.
In section 4.8 we discuss the loss landscape of DL models and how

a usual minimum reached within the optimization looks like. Finally, in
section 4.9 we dive into the Hessian-based toolbox of interpretability and
reliability methods, namely influence functions (Is) in section 4.9.1, relative
influence functions (Relat-Is) in section 4.9.2, resampling uncertainty esti-
mation (RUE) in section 4.9.3, and local ensembles (LEs) in section 4.9.4.

4.1 How to make computers learn

Making machines think is a long-lived dream of human civilization. Ar-
tificial creations becoming alive have been a part of our mythology since
ancient times. The more we know about intelligence, the more challenging
it seems. But on the way to true artificial intelligence (AI), humans have de-
veloped impressive machinery which is already revolutionizing our everyday
life, industry, and science.

We want to make computers think so they solve problems that are out of
our reach. A broad definition of AI is a problem-solving computer. In gen-
eral, we want machines to solve any problem, but we noticed quite early that
humans and computers have a disjoint set of tasks in which they naturally
excel. This observation was made in the 1980s and called Moravec’s para-
dox. As Moravec wrote in 1988, “it is comparatively easy to make computers
exhibit adult level performance on intelligence tests or playing checkers, and
difficult or impossible to give them the skills of a one-year-old when it comes
to perception and mobility” [355].

There are tasks that are easy for computers but difficult for humans.
These are problems that can be described by a list of formal, mathematical
rules. Therefore, computers excel at solving logic problems, algebra, geom-
etry, and finding an ideal move in chess. To solve these kinds of problems,
we can use a knowledge-based AI with hard-coded solutions.

But we also want a computer to tackle problems that are not easy to
present in a formal mathematical way (such as face recognition) or whose
exact mathematical formulation is not known (detection of new quantum
phases). The solution is to allow a computer to learn from experience (or
data). This data-based idea gave birth to machine learning (ML). There-
fore, the extraction of patterns from data is at the core of ML. This field
can be thought of as the applied statistics with increased emphasis on the
use of computers to estimate complicated functions and decreased empha-
sis on proving confidence intervals around these functions [353]. If these
patterns are extracted by detecting easier patterns first and then building
more complex ones via the hierarchy of concepts, we enter the deep learn-
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Machine Learning

Deep Learning

Artificial Intelligence

PCA

k-means

AEs
CNNs

knowledge-

based

Figure 4.1: Sketch of the relation between AI, ML, and DL with examples
from each field including k-means, principal component analysis (PCA), autoen-
coders (AEs), and convolutional neural networks (CNNs).

ing (DL) regime. The relation between these three fields (AI, ML, and DL)
is presented schematically in fig. 4.1.

To make a computer learn, we need three main ingredients:

1. a task to solve (section 4.2),

2. data which gives an equivalent of experience and allows for solving the
task (section 4.3),

3. a model which learns how to solve the task (section 4.7).

To check whether a computer successfully learned how to solve a task, we
need also to define a performance measure, e.g., an error. Effectively, the
learning process can be described as minimizing an error of a data-guided
model performing a task.

4.2 Types of tasks
Let us look at the first learning ingredient which is the task. The first

large type of tasks is regression. In this setting, we typically assume an
immediate relation between the two variables of interest. Thus, we seek to
express one of the real-valued variables y (which we call the output, also
known as target) in terms of the other one x (the input or sometimes also
referred to as features). The regression objective is to find the function f
that ideally yields the mapping y = f(x) for all possible tuples of (x,y).
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The example of a regression task within this thesis is the anomaly detection
scheme described in section 4.7.3 and applied to topological experimental
data in section 5.3.2. Other examples from quantum sciences include the
prediction of potential energy surfaces in quantum chemistry [356, 357] or
parameter estimation of Hamiltonians given measurement data [225].

The second large common ML task is classification. Its general idea is
to use an algorithm to assign (discrete) class labels to examples. In contrast
to regression, we are optimizing a model to find a mapping from an input
vector x to a target y which now is a string of binary bits instead of real
numbers. Each bit of the vector y corresponds to a specific pre-defined class.
This encoding of the output vector is called one-hot encoding and can be
used for an arbitrary number of classes. The values of the output vector are
0 except for one element that corresponds to a respective class which has
the value 1. For example, in a K-class problem, instead of having a label
with K possible values such as yi = 1, 2, . . . ,K, each label is encoded as
a K-element vector with all-zero elements except for one at the index cor-
responding to the class. For example, yi = [0, 0, 1, . . . , 0], means a sample
i belongs to the third class as only yi,3 is non-zero. The easiest example
of classification is the binary classification where the algorithm has to dis-
tinguish between two classes, e.g., true or false. If the task includes more
than two classes, we enter the multi-class classification, e.g., distinguishing
between different species of iris of the Iris [358] data set or handwritten num-
bers of the famous MNIST [359] data set. A popular example from physics
is the classification of classical and quantum phases of matter, including
also those of a topological nature, discussed already in section 1.3.1. Other
examples are classification subroutines in the automatization of quantum
experiments [223].

Another common example of an ML task is clustering. It consists of
grouping examples based on their similarity in the input space. In other
words, clustering algorithms aim at grouping data points in such a way
that examples in the same groups are more similar to other data points in
the same group than those in other groups. Such groups are called clusters.
We perform such clustering in section 5.5.4. Clustering can be thought of
as an example of dimensionality reduction that aims at finding a simpler
representation of input data that preserves maximum information contained
in the data.

Finally, ML is also used for anomaly detection. In this type of task, the
algorithm goes through examples and flags some of them as being unusual
or atypical. A real-life example of an anomaly detection task is credit card
fraud detection. In the case of quantum sciences, it can be the detection of
anomalous or especially noisy quantum measurements. Within this thesis,
we have two instances of anomaly detections. One is performed with influ-
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ence functions (Is) in section 5.5.6, the other with autoencoders (AEs) in
section 4.7.3. The latter anomaly detection scheme with AEs is also briefly
described in section 4.7.3.

4.3 Types of learning

So far, we have discussed examples of ML tasks. The second learning in-
gredient is the data whose accessibility also determines the type of learning
we have to consider. These two ingredients (task and data) are intertwined:
certain tasks can only be solved if sufficient data is available and, in turn,
a richer data set allows to tackle different tasks. We refer to data in terms
of a data set D containing a finite amount of (tuples of) data instances, i.e.,
D = {zi}ni=0, where zi is either xi or (xi,yi) and n is a training data set
size. The input data is coming from some input space xi ∈ X . While the
notation is clear, there is much less convention on how the data should be
represented. We refer to every element in each xi as a feature. The central
question in ML is how to represent the data and its features? This is the
core of the representation learning on which we touch upon by means of
autoencoders (AEs) in section 4.7.2 and especially by using experimental
data pre-processing in section 5.5.2. Lastly, data can be identified with ex-
perience and a model can have various access to it. This access defines the
type of learning. Within this thesis, we discuss only two of three main ML
paradigms: supervised learning in section 4.3.1 and unsupervised learning
in section 4.3.2. However, we acknowledge a powerful and successful ap-
proach that is reinforcement learning, applied, e.g., to gaming [360, 361],
quantum control [362–364], quantum circuit optimization [365], or quantum
error correction [366].

4.3.1 Supervised learning

Supervised learning can be performed when an ML model has access to
labeled data, i.e., D = {zi}ni=0, where zi = (xi,yi). The input data comes
from some input space xi ∈ X , and the labels - from an output space,
yi ∈ Y. This type of learning has an obvious drawback that is its need for
data labeling which is usually done by a human. On the other hand, as we
show in section 5.5 it is also a more informed type of learning.

Both regression and classification are tackled with supervised approaches.
Anomaly detection can also be performed in a supervised way. The super-
vised learning is especially straightforward in phase classification [243, 246,
248, 256–259, 262, 270, 276], where the inputs xi are some representations
of states of a given physical system, and yi are the corresponding phase
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labels. In our set-ups in sections 5.2 and 5.3, the inputs xi are the ground-
state wave functions of the one-dimensional spinless Fermi-Hubbard model
at half-filling, obtained with an exact diagonalization of 12-site or 14-site
Hamiltonian and expressed in the Fock basis. On the other hand, in sec-
tion 5.5, the input data are time-of-flight images of ultracold atoms.

4.3.2 Unsupervised learning

When we do not have labeled data, we can turn to unsupervised learning.
In this case, we have unlabeled training data D = {zi}ni=0, with zi = (xi).
The unsupervised approach is especially tempting in case of unknown phase
diagrams and so far has been widely used for known phase classification
problems. Unsupervised learning of phase transitions can roughly be divided
in two categories: clustering-based methods [250, 252, 265, 279, 367–371] and
learning-success-based methods [244, 254, 266, 271, 372]. Moreover, if ML
is to guide the scientific discovery, it needs to have unsupervised elements.

What underlies the unsupervised learning is finding the “best” represen-
tation of the data, where “best” can mean different things. In general, the
best representation of data preserves as much information about x as pos-
sible while obeying constraints aimed at keeping the representation simpler
than original x. Typical tasks tackled in an unsupervised way are dimen-
sionality reduction such as clustering and anomaly detection.

Clustering aims at finding a sparse simple representation of the data
set, where each data point belongs to a single group or cluster based on
their similarity. We can therefore think of this method as searching for op-
timal one-hot encoding representation of x. A popular clustering algorithm
is the (naive) k-means that groups examples into k clusters whose number
is pre-defined by a user. It starts by random placement of k centroids in the
input space. The centroids are centers of to-be-formed clusters. Then, the
algorithm assigns each data point to its nearest centroid (in an Euclidean
sense) forming k clusters. Then, the centroids are moved to the center of
mass of their respective cluster. Now, the examples may have another cen-
troid that is the nearest to them, so they get reassigned to their closest
centroids again. The procedure gets repeated until the position of centroids
converges as presented in fig. 4.2. We apply k-means in section 5.5.4.

Another way of reducing the dimensionality of data is the principal
component analysis (PCA). PCA identifies mutually orthogonal directions
in the data space along which the linear correlation in the data vanishes,
called principal components. Each principal component can be then ranked
based on the variance of the data in the corresponding direction. To reduce
the dimensionality of the space and preserve maximum information, we
can discard the principal components along which the data shows the least
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(a) (b)

(c) (d)

Figure 4.2: Scheme of the k-means algorithm. (a) Random initialization of
centroids. (b) Assigning data points to the nearest centroid. (c) Moving centroids to
the centers of their respective clusters. (d) Repeating the procedure till convergence
of centroids’ positions.
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Figure 4.3: Scheme of the principal component analysis (PCA). (a) Find-
ing orthogonal principal components along which data variance is different. (b)
Projecting three-dimensional data onto two-dimensional space following their sim-
pler representation which includes only two principal components with the largest
variance.
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variance. As such, in PCA, directions along which the data exhibits the
largest variance are considered to contain the most important information.
After reducing the dimensionality, in the new representation space, data
may cluster which may be further analyzed with clustering methods. We
apply PCA in section 5.5.5.

4.4 Learning is an optimization problem

We have already discussed that ML solves various tasks (e.g., classifica-
tion or regression) and that the learning process can be either supervised or
unsupervised. The final ingredient is a model which learns how to solve the
task. In general, it is a function of the input data, f(x), whose output is
interpreted as a prediction made for the input data. The form of the output
(prediction) depends on the task. It can be, e.g., a discrete-valued class in
the classification task or a real-valued output in the regression task. Finding
the function which provides the best mapping between data and the desired
outcome for a specific task is at the heart of ML. We start with declar-
ing a certain parametrization of a model (function), e.g., f(x) = ∑m

i θixi.
Then, all possible parametrizations of this function form the set of func-
tions, i.e., the hypothesis class. Section 4.7 presents specific examples of the
hypothesis classes (or spaces), namely neural networks (NNs), but for now,
we focus on the learning process itself.

The underlying process of learning consists in finding an optimal model
f̂ = fθ̃ in the hypothesis space with optimal parameters, θ̃, that minimizes
the target loss function.1 The training starts with randomly initialized pa-
rameters.2 Then, machines “learn” by varying parameters in such a way to
minimize the loss function of the training data, i.e., all the data accessible
to the ML model during the learning process. The loss function formula
varies between tasks and there is a certain freedom of how it can be cho-
sen. In general, the loss function compares model predictions or a developed
solution against reality or expectations. Therefore, learning becomes an op-
timization problem. We show the learning process schematically in fig. 4.4
on the example of the supervised paradigm (so with labeled training data).

1In this thesis, we use terms of loss, error, and cost functions interchangeably follow-
ing Ref. [353]. Their definitions are not strict. Following Goodfellow: “The function we
want to minimize or maximize is called the objective function, or criterion. When we are
minimizing it, we may also call it the cost function, loss function, or error function. (...)
some machine learning publications assign special meaning to some of these terms”. For
example, a loss function may be defined for a single data point, and a cost/error function
may be a sum of loss functions.

2It is not entirely random. They are initialized with zero mean and constant variance
across layers, otherwise we may face problems with vanishing or exploding gradients [373].
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TRAINING ERROR
or

training loss function
ℒ(𝒟train, 𝛉)

INPUT
training data

(include labels)

𝒟train

OUTPUT
Prediction

Calculated by model

𝑦 = 𝑓(𝒙, 𝜽)

MODEL (𝛉)

OPTIMIZATION METHOD

Label Prediction

Figure 4.4: Supervised training of an ML model. The training starts with ran-
domly initialized model parameters, θ. Such a model makes predictions at training
points, and its predictions are compared against the ground-truth labels within the
training loss function. Then, the optimizer varies θ → θ′ to minimize the train-
ing error. The model with θ′ makes predictions again, and the training procedure
repeats till the training error converges.

Popular examples of loss functions include mean-squared error (MSE)
and categorical cross-entropy (CCE), used for real-valued and classification
problems, respectively:

LMSE = 1
n

n∑
i=1

(yi − f (xi))2 , (4.1)

LCCE = − 1
n

n∑
i=1

K∑
c=1

yi,c · log (f (xi)) , (4.2)

where K is the number of classes. Note that eq. (4.2) requires one-hot en-
coding of labels. Values of every loss function depend on the model (which
enters into formulas via predictions) and the data set. They are also normal-
ized by the number of data points to compare their values between problems
with different data set sizes.

Once we choose a loss function, we can minimize it by varying the param-
eters of the ML model using any optimization method. In general, we can
divide optimization methods into analytical (rarely useful in DL), gradient-
based, and gradient-free approaches. A popular example of a gradient-based
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method used also within this thesis is gradient descent. The optimization
starts usually in a random place within the loss landscape (meaning with
a model with randomly initialized parameters, θ = θ0). Using the model
with θ0, one can compute the loss function on training data. The next step
is to compute gradients of the loss function with respect to each model pa-
rameter, θ. The final step is to update the parameters by subtracting the
respective gradients multiplied by a learning rate, η, i.e., θj := θj − η ∂

∂θj
L.

These steps need to be repeated till the minimum is reached, and each rep-
etition is called an epoch. The intuition is that the gradient descent updates
model parameters by making steps towards the minimum of the function
(so in the opposite direction than the gradient which indicates where the
function value grows).

The learning rate controls the size of these steps. Figure 4.5 presents
in a simplified way the importance of the η choice. Both too large and too
small η’s make optimization more challenging, and only optimal η promises
efficient convergence to a minimum. There is rarely an obvious way of choos-
ing η which, therefore, has to be found, e.g., by trial and error. As such, the
learning rate is one of the so-called hyperparameters of the learning process.
Hyperparameters are parameters whose values control the learning process
(especially speed and quality) and are chosen by a user (in contrast to model
parameters, which are derived via training). The number of epochs or the
choice of the loss function are hyperparameters too. We encounter more
examples of hyperparameters in this introductory section. To find optimal
hyperparameters, a good practice is to form (next to the training data set)
a separate validation data set. Then, we can set various hyperparameters
and choose them in such a way as to minimize the error on the validation
set. You can even use optimization methods to find optimal hyperparame-
ters which minimize the validation error as we do in section 5.5.2 with the
optuna library [374] but the choice of hyperparameters guided by a proper
intuition may prove to be a faster and cheaper approach.

The optimization picture that we drew in the previous paragraph along
with fig. 4.5 may suggest that the loss landscape in ML problems is convex.
Especially for DL, it cannot be further from the truth. The loss landscapes in
DL are highly non-convex to the degree that makes the scientific community
wonder how can we even find minima in this hyperspace? Two immediate
problems arise from the non-convexity. How not get stuck in local min-
ima corresponding to large loss function values or in saddle points of such
landscapes? Secondly, are some minima better than others? The learning
dynamics is a still ongoing research direction. For now, we can make a pop-
ular modification to the gradient descent algorithm and discuss so-called
mini-batch stochastic gradient descent (SGD). This optimization method
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(a) too small (b) just right
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θ θ θ

Figure 4.5: Choosing a learning rate has an impact on convergence to the
minimum. (a) If η is too small, the training needs many epochs. (b) The right η
allows for fast convergence to a minimum and needs to be found. (c) If η is too
large, optimization can take you away from the minimum (you “overshoot”). This
figure suggests that the loss function is convex which is rarely true.

consists in computing the loss function at each epoch on randomly selected
mini-batches of training data. It means that at each epoch the gradients may
point in (slightly) different directions. The resulting stochasticity helps in
escaping saddle points and narrow local minima.3 Moreover, computing loss
function and gradients only for a mini-batch of data instead for the whole
data set provides a nice computational speed-up for large data sets. Finally,
we can add so-called momentum to the mini-batch SGD. The idea is closely
related to momentum in physics, and it consists in remembering the up-
date of parameters at each iteration and determining the next update as
a linear combination of the gradient and the previous update [376, 377].
As a result, SGD with momentum is less prone to getting stuck in narrow
minima and has less noisy estimates of parameter updates. Within this the-
sis, when performing supervised learning of CNNs, we use mini-batch SGD
with momentum as an optimization method.

So far the only gradient-based optimization method we have described
is mini-batch SGD with momentum. Other popular examples include Adam
[378, 379] or L-BFGS algorithm [380]. There are also gradient-free optimiza-
tion approaches that are used especially when the gradients or loss function
itself are expensive or impossible to compute, e.g., when optimizing exper-
iments. Examples include genetic algorithms, particle swarm optimization,
random search and simulated annealing [381].

3In practice, stochasticity is helpful in avoiding saddle points but there are theoretical
works showing it is not a necessary condition for a proper convergence [375].
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4.5 Generalization and regularization

So far, ML may seem like a cleverly named function fitting. However, the
heart of ML lies in the generalization which is the ability to make correct
predictions on new data, i.e., those not seen during the training. Checking
whether your model generalizes well requires an additional data set which
is the test set composed of data points which are used neither for optimiza-
tion of model parameters nor for searching for the best hyperparameters
describing the learning process. Therefore, the original full data set needs
to be separated into the training, validation, and test sets (a usual ratio is
around 8:1:1).

Lower model performance on the test set compared to the training set
(so higher test error than training error - the difference is called the gen-
eralization error) is a common problem in ML, even when all data points
are generated by an identical probability distribution.4 The main reason is
the large capacity of ML models.5 The capacity can be loosely understood
as the ability of a model to fit a variety of functions. When the model ca-
pacity is much higher than one needed to solve the task, the model tends
to overfit, i.e., memorize all possible properties of the training set which
may not be true for the general distribution (and in particular, the test
set). In particular, the model can even fit the noise in the training data. As
a result, overfitting increases the test error while keeping training error low
(or even decreasing it). Optimal capacity allows for the lowest gap between
the test and training error, so the lowest generalization error. However, the
capacity which is too low results in an overly constrained model which can
underfit, i.e., have a high training error. The intuition behind the under-
and overfitting is schematically shown in fig. 4.6.

Therefore, we can improve the generalization of the model by controlling
its capacity. Every modification of the model aiming to improve the gener-
alization of a model (possibly at the cost of the increased training error) is
called a regularization technique. A straightforward way of restricting the
model capacity is to limit the magnitude of its trainable parameters which
effectively limits the hypothesis space of a parametrized model. It can be
done by adding a penalizing term to the training loss function which in-
creases with the parameters’ values. Such an approach is used within the
two popular regularization techniques, i.e., L1 and L2 regularization [353].
We use L2 regularization on ML models used within this thesis.

4To mathematically study the relation between training error and test error, you
usually need to start by making so-called i.i.d. assumptions, i.e., that the examples in
each data set are independent of each other, and that the train set and test set are
identically distributed, drawn from the same probability distribution as each other [353]

5DL models are able to fit large datasets with random labels [287]!
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(a) underfitting (b) appropriate fitting (c) overfitting

𝑥1𝑥1𝑥1

𝑥2

Figure 4.6: Schematical picture of under- and overfitting. (a) When the
model capacity is too low, the model cannot fit the training data properly. (b) With
the model capacity corresponding to the task complexity, the fitting is optimal.
(c) When the model capacity exceeds the task complexity, the model tends to
overfit and the generalization error increases.

4.6 Test loss

We have already encountered a concept of the training loss function. Fi-
nally, we can introduce the test loss. An ML model, f , is determined by the
set of d parameters θ = {θ0, . . . , θd−1}. For a given input x, the model out-
puts a real-valued K-dimensional vector, fx = f(x;θ). The output encodes
the prediction of the model, y′ = argmax(fx). For example, for a two-class
problem, fx could be [0.1, 0.9] which would correspond to predicting a la-
bel y′ = 1. In a supervised scheme, the loss function, L = (x,θ), compares
a model’s output, fx with a ground-truth label y of the corresponding input
x. L is small when the predicted label y′ is the same as the ground-truth
label y. Moreover, L gets smaller, the larger are differences between the
value of the element corresponding to y and other elements’ values in the
model’s output, fx. For example, the L would be smaller for fx = [0.1, 0.9]
than for [0.45, 0.55], even though the predicted label is the same in both
cases. For this reason, the elements of the output vector fx tend to be con-
nected to probabilities of the input belonging to the corresponding classes.
However, this interpretation can be misleading in the presence of data set
shift [382, 383] or non-uniformity of errors [384]. Training ends when a min-
imum of L is found, and parameters at this minimum are θ̃.

After training, the model can make a prediction at an unseen test point
y′test = argmax(ftest), where ftest = f(xtest, θ̃) with a test loss function
L(xtest, θ̃) as presented in fig. 4.7. Within this work, we use two versions of
the test loss. The “ground-truth” version is the standard test loss defined
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Test loss function
ℒ(𝒙test, ෩𝜽)

INPUT
test point

(with or without label)

𝒙test

OUTPUT
Prediction

Calculated by model

𝑦 = 𝑓(𝒙test, ෩𝜽)

MODEL (෩𝜽)

Label Prediction

Figure 4.7: Testing of an ML model. A trained ML model determined by θ̃
makes a prediction at a test point, xtest, which has not been seen during train-
ing. The prediction is compared against the ground-truth label (resp. against the
predicted label) via the ground-truth (resp. minimal) test loss function.

in supervised problems and compares the output of the model, ftest with
the ground-truth label ytest of xtest. When the ground-truth label of a test
point is unavailable, one can use a “minimal” version of the test loss. It
compares the model’s output ftest to the model’s predicted label y′test. We
stress we use it only during the test stage to imitate the real-life situation
when we ask an ML model for predictions at test points we do not know
ground-truth labels for.

4.7 Neural networks

The loss function L(D,θ) is deeply connected to the problem type and
the chosen learning approach. The choice of a model f(θ) however is more
of a methodological nature, and different models can be combined with
different types of learning. One of the most popular and flexibe models are
NNs. A basic unit of an NN is a neuron taking inputs being features of
a single data point x = (x1, x2, . . . , xm) with some weights w and modified
by neuron-specified bias b and producing a scalar output y(x,w, b). Such
a neuron is presented in fig. 4.8. The exact value of the output y depends
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Figure 4.8: Scheme of an artificial neuron composed of inputs, their weights,
a corresponding sum, an activation function, and an output against the simplified
sketch of a biological nerve cell.

also on a chosen non-linear activation function φ:

y(x,w, b) = φ

(
m∑
i

wixi + b

)
. (4.3)

In the past, common choices of activation functions included step functions
(like in perceptron) and sigmoids. However, the discontinuous behavior of
the step-functions derivative in perceptrons makes it impossible to train
them using gradient descent, and the sigmoid functions saturate quickly for
big input values. To avoid these drawbacks, rectified linear units (ReLUs)
are often used, where φ(x) = max(0, x).

The basic idea of all NNs is to layer neurons in a hierarchical way.
The first layer in an NN is called the input layer, the middle layers are
often called hidden layers, and the final layer is called the output layer [195].
The outputs of the input layer are then treated as the inputs to the next
hidden layer. Deep NNs have multiple hidden layers, and this procedure is
repeated then several times until the top or output layer is reached. The
whole NN can be thus thought of as a complicated non-linear transformation
of the inputs x into an output y that depends on the weights and biases of
all the neurons in the input, hidden, and output layers. Learning consists
in minimizing the loss function by varying the parameters θ of the model,
here the weights w and biases b. If every output of one layer is connected to
every input of the following layer, as presented in fig. 4.9, the NN is called
to be fully connected (or dense).
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Figure 4.9: Illustration of a typical fully-connected NN. Basic components of
NN are neurons consisting of a linear transformation that weights the importance of
various inputs, followed by a non-linear activation function. Neurons are arranged
into layers with the output of one layer serving as the input to the next layer.

The use of hidden layers greatly expands the representational power of
NNs. As the universal approximation theorem states, an NN with a single
hidden layer and arbitrary activation functions can approximate any contin-
uous, multi-input/multi-output function with arbitrary accuracy [385] lim-
ited by the number of hidden units. The basic idea behind the proof is that
hidden neurons allow NNs to generate step functions with arbitrary offsets
and heights. These can then be added together to approximate arbitrary
functions. In physics, a good analogy is matrix product states, which can
approximate any quantum many-body state to arbitrary accuracy, provided
the bond dimension can be increased arbitrarily. While it is understandable
why the larger number of hidden units in a single layer may be preferable,
it is still not clear why the larger number of hidden layers is favorable for
learning [195], however, it is thought to allow NNs to learn more complex
features from data.

NNs are just one out of many schemes used in ML, however, thanks to
their hierarchical nature, they are believed to be one of the most power-
ful and flexible architectures. Other architectures include linear classifiers
(e.g., logistic regression), support vector machines, random forest, nearest
neighbors, and decision trees [302, 386]. Within this thesis, we use a type
of NNs, namely CNNs.
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Figure 4.10: Convolutional neural network (CNN). (a) CNN scheme with
convolutional, pooling, and fully-connected layers for an RGB image of 36x36 pix-
els. (b) Kernel (or filter) in a convolutional layer makes a convolution out of the
scanned image. The convolved image is fed to next convolutional layers.

4.7.1 Convolutional neural networks

Fully-connected NNs, as presented in fig. 4.9, are powerful models, but
the number of weights and biases (parameters), that during learning has
to be varied in order to minimize the loss function, grows quickly with
the size of the input. It is a problem especially in computer vision, as even
an ordinary grey-scale image of a handwritten digit, being an element of
MNIST dataset - analog of “Hello, world!” for the ML community, is en-
coded in 28x28 pixels, resulting in the input size of 784. If a colored image
of 256x256 pixels is considered, the network needs to have an input layer
containing 196 608 values!

Convolutional neural networks (CNNs), presented in fig. 4.10, are mod-
els used primarily in the image recognition, and their characteristics are
convolutional and pooling layers that noticeably reduce the number of pa-
rameters, at the same time taking advantage of a hierarchical composi-
tion of the network as well as the recognition of the spatial relation of
the data. In a convolutional layer, a small matrix (called kernel or filter) is
passed over the input matrix (image) to create a feature map for the next
layer [387]. The dimensions of the kernel are hyperparameters that have
to be set before the training. The values of the feature map are computed
either by taking the sum of the result of an element-wise multiplication of
the kernel and an appropriately sized section of the input matrix or more
often, the element-wise multiplication is replaced by a dot product. In con-
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volutional layers, parameters that are be varied during the training, are
the filters’ values, and kernels found in such a way may extract meaningful
information from images. One of the techniques to improve CNNs consists
in using multiple kernels in a given convolutional layer and concatenating
results to create the feature map.

Next to the convolutions, so-called pooling layers are used. They re-
duce the number of parameters in each layer. The most common pooling
procedure, Max pooling, consists simply in taking the largest number from
a chosen region of data, and the shape and size of this region are also the hy-
perparameters. Another pooling technique that we use within this thesis is
global average pooling (GAP) consisting in taking only an average over the
whole feature map. CNNs usually have also at least one fully-connected
layer, as described in the previous section, that performs a traditional clas-
sification (or regression) based on the features extracted by the previous
layers. It is important to note, that even with the described methods de-
signed to reduce the parameters number, modern CNNs can have millions
of them, ranging from 7 millions for GoogLeNet (Inception v1) [388] to 138
millions for VGGNet [389].

Within this thesis, we use three CNN architectures. Figure 4.11 shows
them all schematically. Panel (a) presents a CNN consisting of three one-
dimensional convolutional layers with five filters on the input vector, eight
filters on the first hidden layer, and ten filters for the last convolution layer.
After the first two convolutions, we apply a max-pooling layer to reduce the
dimension, and the last convolutional layer is followed by an average pooling
layer. Finally, we have one fully connected layer with two output neurons
that predict the labels. When designing the architecture, we make sure that
the convolutional part contains a large part of the NN’s parameters. We use
the architecture presented in panel (a) of fig. 4.11 for phase classification
in the one-dimensional spinless 12-site Fermi-Hubbard model in section 5.2
of this thesis as well as in sections 5.3.2 and 5.3.3. Thanks to its relatively
small size (only 720 parameters), its Hessian-based analysis is quick and
efficient. However, it is designed for inputs of size 924, which is the size of
eigenvectors of the 12-site Fermi-Hubbard model. To have an ML model
which is invariant to the input size, we design a CNN architecture with
a global average pooling (GAP) layer, which reduces the size of each input
filter to one. In fig. 4.11(b), we list the sizes of convoluted data passing
through the model for two input sizes, 924 and 3432, corresponding to 12-
and 14-site eigenfunctions of the Fermi-Hubbard model. After the GAP
layer, the sizes of convoluted data are the same, which shows how the size-
invariance is reached. We use this model in sections 5.3.1 and 5.3.4. Finally,
to analyze two-dimensional time-of-flight images in sections 5.5.3 and 5.5.7,
we employ a two-dimensional CNN as presented in fig. 4.11(c).
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Figure 4.11: Architectures of CNNs used in this work. (a) A one-
dimensional CNN has been applied to the classification of eigenstates of the 12-
site one-dimensional Fermi-Hubbard model. CNN has 720 parameters. (b) A one-
dimensional CNN with global average pooling (GAP) is largely invariant to the
input size and has been applied to the classification of eigenstates of the 12-site and
14-site one-dimensional Fermi-Hubbard model. CNN with GAP has 1675 parame-
ters, regardless of the input size. (c) A two-dimensional CNN has been employed
to study time-of-flight images of 56x56 pixels.
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4.7.2 Autoencoders

Autoencoders (AEs) are NNs with special architecture containing a bot-
tleneck in the middle [390, 391] that are trained to reconstruct the input at
the output. The architecture of such an AE is depicted in fig. 4.12. This bot-
tleneck architecture is based on two NNs called encoder and decoder. Such
a NN is trained by minimizing the so-called error reconstruction loss. As
such, the optimal setup for such encoder-decoder pair is the one for which
the output xrec is reconstructed as similar as possible to the original input
data x. The possible loss function here is MSE. Due to the bottleneck, the
information passing through the network needs to get compressed at the
bottleneck, and then decompressed to recover the input. As a consequence
of the compression, some information is lost. However, the retained infor-
mation in the bottleneck should ideally contain everything relevant for the
reconstruction of the input. Therefore, the bottleneck forms a latent space6
which contains a compressed representation of the input data. We can think
of it in terms of dimensionality reduction schemes that preserve the most
important features for the reconstruction. As a result, we can analyze the
latent representation of the input data in a similar unsupervised way as
the lower-dimensional representation of input data obtained by a PCA in
section 4.3.2. We do it in sections 5.5.1 and 5.5.4 with a convolutional AE,
i.e., where next to fully-connected layers as shown in fig. 4.12, there are also
convolutional layers described in the previous section.

However, an AE can also be trained in a supervised way given a series of
inputs associated with the corresponding output. Such a supervised method
has applications in image denoising or colorization [392–394].

4.7.3 Anomaly detection with autoencoders

Analysis of the AE latent representation of the input data is not the only
way of an AE-based unsupervised phase classification. Another successful
and more robust scheme called anomaly detection has been presented in
Ref. [254]. The idea is based on the following intuition. Imagine training an
AE to reconstruct states coming from one phase. Then ask it to reconstruct
states coming from the rest of the phase diagram. Such a task is difficult
as the training data is limited only to one phase, and the AE is bound to
make reconstruction errors on other phases. Moreover, we expect that the
error is lower for phases that are similar to the “training” phase and higher
for different phases. Finally, the transition regimes are usually distinctive
in the phase diagram in terms of how quantum states look like. Altogether,

6A latent variable is a random variable that we cannot observe directly. In this case,
we call variables latent because we do not observe them in the data.

94



4.7. Neural networks

latent

space

input

data
reconstructed

data

decoderencoder

encoded

data

(a) (b)

training
region

Figure 4.12: Autoencoder (AE) and AE-based anomaly detection scheme.
(a) Scheme of an AE architecture with a two-neuron bottleneck. (b) A phase di-
agram with a color-coded similarity between phases. Imagine training an AE to
reconstruct the states from the orange phase (dashed box). Then ask the trained
AE to reconstruct all other states. Its error will be small in the same orange phase,
a little higher in the light orange and yellow phases, and highest in the blue phase.

the reconstruction error across the phase diagram, made by an AE trained
to reproduce states from one phase, is expected to vary according to the
phases in the system. This scheme leads to the discovery of phases in a fully
unsupervised way. The authors of Ref. [254] used the anomaly detection
approach to recover a full phase diagram of the extended Bose Hubbard
model in one dimension at exact integer filling. Interestingly, their work also
revealed a phase-separated region (between supersolid and superfluid parts)
with unexpected properties which may be one of the first fully unsupervised
discoveries in the ML-guided phase classification.

A similar approach was proposed to detect anomalous events within
data produced by the Large Hadron Collider [235]. We use the AE-based
anomaly detection scheme in section 5.5.6.

4.7.4 Variational autoencoders and a question neuron

The architecture of an AE presented in section 4.7.2 can be further
modified. One of the approaches is to make probabilistic observations on
the latent space. Therefore, rather than building an encoder that for an
input x outputs single latent features zi(x), the encoder can output a prob-
ability distribution for each latent attribute, p(zi|x). Then, the decoder
starts the reconstruction by sampling zi from the latent probability distri-
butions. Such AEs are called variational autoencoders (VAEs) [395, 396].
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Figure 4.13: Variational autoencoder (VAE) and an AE with a question
neuron. (a) Scheme of a VAE architecture with a bottleneck encoding two proba-
bility distributions of two latent variables. (b) A question neuron can be added to
an AE.

Their architecture is presented in fig. 4.13(a). Change of the encoding re-
sults also in a modified loss function. In the case of regular AEs, the training
consists in minimizing the reconstruction loss which may be formulated as
the mean-squared error (MSE). In VAEs, next to the reconstruction loss,
training aims to minimize also the difference between the latent probability
distribution (which we usually assume is Gaussian) and the true probability
distribution (which can have any form).

Such a modification to the architecture introduces three main advan-
tages. Firstly, the data reconstruction is usually more stable. Secondly, the
feature space is regularized such that neuron activations at the bottleneck
are more interpretable [397]. Finally, this way we can generate new data
after training by sampling at the bottleneck. Therefore, in VAEs, the de-
coder part is sometimes called a generative model, while the encoder part
is a recognition model.

Another modification that can be done to an AE architecture is adding
a question neuron, which is an extra input neuron feeding directly into the
bottleneck as presented in fig. 4.13(b). The information provided by the
question neuron can be, e.g., a physical parameter corresponding to the
image we provide. In section 5.5.2, we use VAEs with a question neuron to
post-process the data to a fixed micromotion phase.
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4.8 Hessian and curvature
As described in section 4.4, the training loss landscape of deep NNs is

highly non-convex. This renders the optimization problem difficult, e.g., due
to the presence of many local minima as presented in fig. 4.14(b). Moreover,
these minima may not have equally good generalization properties which
can be connected to the curvature around a minimum. For example, there
is a general consensus that wide, flat minima generalize better than sharp
minima [398–401]. Keep in mind that flatness is not a well-developed concept
in non-convex landscapes of deep models [402]. An analysis of how the
generalization ability depends on the local curvature is an example of a case
where the shape of the reached minimum can tell us something useful about
trained ML models.

Let us look into the minimum reached during the optimization of DL
models with more detail. To do that and to describe the curvature around
such a minimum, we use a Hessian of the training loss function, Hθ̃, i.e.,
a matrix of second derivatives of L with respect to the model parameters,
calculated at the minimum, θ = θ̃:

Hθ̃,ij = ∂2

∂θiθj
Ltrain|θ=θ̃ . (4.4)

The eigenvectors of Hθ̃ corresponding to the largest positive eigenvalues in-
dicate directions with the steepest ascent around the minimum as presented
in fig. 4.14(a).

In contrary perhaps to the common intuition, the training of an ML
model leads to a local minimum or a saddle point [403–405]: the vast major-
ity of the eigenvalues is close to zero, indicating various flat directions and
some small negative eigenvalues are also present, indicating directions with
negative curvature. One can wonder why we should trust a model which
does not land in the global minimum. A series of empirical results as well
as applying spin-glass theory to DL [406] indicate, among others, that for
large-size networks, most local minima are equivalent and yield similar per-
formance on a test set. Also, the probability of finding a “bad” (high value)
local minimum is non-zero for small-size networks and decreases quickly
with network size. Finally, struggling to find the global minimum on the
training set (as opposed to one of the many good local ones) is not useful in
practice and may lead to overfitting, i.e., much better performance on the
training set than the test set, which is equivalent to bad generalization.

The directions with high curvature, i.e., those aligned with eigenvectors
corresponding to large eigenvalues, are the directions along which the train-
ing data strongly determines the model parameters. In other words, if the
model parameters are varied in directions of the steepest ascent around the

97



4. Machine learning methods

(a) (b) parameter θ
space𝜆𝑖 > 0

𝜆𝑖 < 0

Figure 4.14: Hessian, curvature, and loss landscape. (a) Saddle point with
directions of positive (ascending) and negative (descending) curvature. The cor-
responding Hessian eigenvalues, λi, are positive or negative. (b) Low-dimensional
visualization of a non-convex loss landscape of a deep NN called VGG-56 trained
on CIFAR-10 [410].

minimum, i.e., along the eigenvectors corresponding to the largest positive
eigenvalues of the Hessian, the value of the training loss function changes
the most. It means that these directions are bounded the most by the train-
ing data. There are also two empirical observations supporting this claim.
Firstly, numerical simulations on the example of a one-dimensional nonlin-
ear regression problem show that gradients of training examples lie in the
directions of the highest curvature [407]. Secondly, the analysis of the Hes-
sian spectrum shows that in DL problems the number of directions with
a significant ascent around the minimum is equal roughly to the number of
classes in the problem minus one [404, 408, 409].

Therefore, there are intimate relations between curvature around the
minimum, model generalization, and training data. The knowledge of the
curvature around the minimum also allows us to approximate how our ML
model (and as a result, its predictions) would change upon some action.
Possible actions could be the removal of a single training point or a slight
modification of θ̃ → θ∗, resulting in a shift to an adjacent minimum with
identical training error. The study of how a model reacts to such actions is at
the heart of the Hessian-based toolbox, which contains influence functions
(Is) [411], the resampling uncertainty estimation (RUE) [407], and local
ensembles (LEs) [412] whose conceptual ideas we introduce in the following.

Finally, note that a non-positive curvature around the minimum, while
it does not affect the quality of the model predictions in general, may cause
numerical problems when working with the Hessian. We discuss these chal-
lenges in section 4.9.5.
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4.9 Hessian-based toolbox

The four interpretability and reliability methods discussed in this thesis
are all based on local perturbations of the loss function. They study how
a particular action, e.g., removal of a training point, changes the model
parameters. This change, in turn, impacts the prediction of the model at
a test point, y′test. The change of the model parameters caused by some
action can be approximated using the Hessian matrix of the empirical risk
(training loss) calculated at the minimum of the loss landscape at θ̃, namely
(Hθ̃)ij = ∂2

θiθj
L(D,θ)|θ=θ̃.

All the methods we study in this work approximate how the change of
parameters impacts the model predictions, but the reason for the change of
parameters is different for each method. Influence functions (Is) and relative
influence functions (Relat-Is) study the removal of a single training point
from a training data set, resampling uncertainty estimation (RUE) analyzes
training on various samples of the training data set, while local ensembles
(LEs) modify model parameters in the flat directions of the Hessian. These
methods are presented schematically in fig. 4.15 and aim to answer different
questions regarding the reliability and interpretability of the model. We
discuss them in detail in the following sections.

4.9.1 Influence functions and similarity

Leave-one-out (LOO) training. Let us consider a model trained on
n training points and making a prediction at a test point. Now, we remove
a single training point zr from the training set D, D → D\zr , retrain the
model, and check the influence of this removal on the test loss. If the pre-
diction is now worse (resp. better), i.e., the test loss is higher (resp. lower),
then zr is a helpful (resp. harmful) training example for this specific test
point. If the prediction stays the same, zr is not influential to this prediction.
With such an analysis, called leave-one-out (LOO) training, we can there-
fore judge how influential a certain training point is for a test prediction.
Figure 4.16 presents schematically this procedure.

Influence functions (Is). Retraining the model is, however, expen-
sive, and an approximation of the LOO training was proposed and named
influence functions (Is) [415–417]. It was then ported to ML applications
by Koh & Liang [411, 418]. The I reads

I(zr, ztest) = 1
n
∇θL(ztest, θ̃)TH−1

θ̃
∇θL(zr, θ̃) ≡ 1

n
∇LTtestH

−1
θ̃
∇Lr , (4.5)

and it estimates the change of the test loss for a chosen test point ztest after
the removal of a chosen training point zr. ∇θL(ztest, θ̃) is the gradient of
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∇ℒtest,1
∇ℒtest,2

𝐻෩𝜃
−1∇ℒoutlier

𝐻෩𝜃
−1∇ℒtypical training samples

Figure 4.15: Hessian-based toolbox. The scheme of this study’s scope. The ML
problem starts with a model depending on parameters θ. Training a model consists
in finding optimal parameters θ̃ which minimize a training loss function, L(D),
calculated for the training data set, D. The Hessian of the training loss at the
minimum, Hθ̃, describes the curvature around the minimum and is a basis for four
methods which provide the notion of similarity, i.e., influence functions (Is) and
relative influence functions (Relat-Is); estimation of uncertainty, i.e., resampling
uncertainty estimation (RUE); and extrapolation score, i.e., local ensembles (LEs),
of the model prediction. They give insight into the reliability and interpretability
of the model after its training. From Ref. [413].

the loss function of the single test point, and ∇θL(zr, θ̃) is the gradient
of the loss function of the single training point whose removal’s impact is
being approximated. Both are calculated at the minimum θ̃ of the training
loss landscape.

Geometrical interpretation. The I in eq. (4.5) can be written as the
inner product of −∇Ltest and −H−1

θ̃
∇Lr [419], where the term −H−1

θ̃
∇Lr

describes an approximated change in parameters θ̃ → θ′ due to the removal
of the training point zr (for a derivation, see appendix D). This formulation
emphasizes the geometric interpretation of Is, which is a projection of the
approximated change in parameters due to the removal of a training point
onto the test sample’s negative loss gradient, see fig. 4.18(b). The term
−H−1

θ̃
∇Lr can also be understood as a Newton step [353] towards a new

minimum resulting from the removal of zr. Note that the same term involves
scaling by the inverse of eigenvalues of H−1

θ̃
. In other words, we see that the
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test point

removal of one

training point

n training points

n-1 training points
Taylor

approximation

Δℒ

Δℒ
helpful

harmful

Figure 4.16: Leave-one-out (LOO) training. The scheme of LOO training whose
approximation are influence functions illustrated using sketches of the trained loss
function versus test samples. Consider removing a single training example from
the training set and retraining the model. If the loss of the test point, Xtest, in-
creases (decreases), the removed training example is helpful (harmful) for making
a prediction on Xtest. Adapted from Ref. [414].

I is a scalar product of the gradients ∇Ltest and ∇Lr accounting for a local
curvature of the loss landscape described by Hθ̃. The resulting value of Is
depends on two factors: how similar are the test and the removed training
point and how representative they are in the data set.

Similarity measure. Firstly, the more similar the test point and the
removed training point are, the larger is the value of the I between them.
More specifically, the largest influence is for the change in parameters which
is in the direction of ∇Ltest. It happens when the gradients ∇Ltest and ∇Lr
are aligned in the parameter space, corrected for the local curvature of
the loss landscape, so when the test point, ztest, is similar to the removed
training point, zr. Note that by similarity here we understand the distance
in the model’s internal representation, so in the model’s parameter space,
corrected by the local curvature described by the Hessian. This similarity
is different than, e.g., similarity as a distance of input vectors zr and ztest
in the input space X or the similarity in the Euclidean parameter space.
In particular, the predictive model and especially neural networks can be
highly nonlinear and may use an internal representation in which similar
(close) points are far away in both the input and the Euclidean parameter
space. We can then define a model’s similarity measure between data points
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(a) (b)

Figure 4.17: Gains from the model-viewed data similarity. (a) Detection of
non-uniformity within the data. (b) Detection of anomalies and outliers.

zi and zj equal to [407]

S(zi, zj) = [∇θL(zi, θ̃)TH−1
θ̃
∇θL(zj , θ̃)]2

≡ [∇LTi H−1
θ̃
∇Lj ]2 ∝ I(zi, zj)2 .

(4.6)

Note that when having access to such a similarity concept, we can use it to
our advantage (see fig. 4.17). For example, a study of similarity between data
can indicate non-uniformity within classes or even plateaus of similarities.
Finally, we can detect outliers and anomalies within both the training and
test set.

Representative data and outliers. The second factor impacting the
value of the I (and therefore the similarity measure) is the direction in
which ∇Ltest or ∇Li lie. For example, the gradient may be aligned with the
eigenvectors of Hθ̃ corresponding to the largest eigenvalues, which are the
directions where the training data strongly determines the model param-
eters. Such an alignment happens for the most common or representative
data points. The gradient also can point in the direction of one of many
eigenvectors with almost zero eigenvalues, which may happen for distinct
or unrepresentative data points called outliers. Due to projection onto the
inverse of Hθ̃ and scaling by the inverse of corresponding eigenvalues, the
I is larger for gradients pointing in the flat curvature of Hθ̃ than for gra-
dients pointing to the high curvature. Therefore, the values of Is between
two data points are determined by how similar the two data points are from
the model’s perspective and how representative these data points are in the
data set.
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∇ℒtest,1
∇ℒtest,2

𝐻෩𝜃
−1∇ℒoutlier

𝐻෩𝜃
−1∇ℒtypical training samples

Figure 4.18: Similarity and gradients of training and test losses. All four
methods address the change in the model’s predictions due to various actions. This
change can be approximated by analyzing the projection of the gradient of the test
loss (black arrows) and the gradients of training points (green arrows) corrected
for the local curvature described by the Hessian. An outlier (blue arrow) is here
a training point being exceedingly different from an average one in a data set. Blue
dashed lines are large projections of the outlier gradient corrected by the local
curvature onto the gradients of the test points. From Ref. [413].

Sensitivity to outliers. A careful reader can notice that Is as well as
the similarity measure S(zi, zj) may then be sensitive to outliers, i.e., data
points with extreme values that significantly deviate from the majority of
data points [420]. The removal of such an outlier can cause a large change in
parameters. Therefore, the outlier is likely to have a large influence on a wide
range of test samples, having a global effect on the test set. This global
effect is visualized in fig. 4.18(b), where the blue gradient of the outlier
projected onto the inverted Hessian space has large projection lengths with
the gradients of two distinct test points. Conversely, the removal of a typical
training example zi whose gradient points towards high curvature of the
Hessian, e.g., any of the green arrows in fig. 4.18(b), causes a small change
in parameters and has a significant influence only for similar test points
(circled in red in the figure). For more intuition on a simple example of
Gaussian mixtures, we refer to fig. 5.3 in Ref. [421].
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4.9.2 Relative influence functions

Barshan et al. [419] proposed a variant of Is that takes advantage of
the similarity measure but eradicates the influence of unrepresentative data
points and outliers. The method is called Relat-I and restricts the pool of
influential points to the most similar ones - see the gradients circled in red
in fig. 4.18(b). Mathematically, it amounts to introducing a normalization
to the I’s formula

IRelat(zr, ztest) = I(zr, ztest)
||H−1

θ̃
∇θL(zr, θ̃)||

=
1
n∇L

T
testH

−1
θ̃
∇Lr

||H−1
θ̃
∇Lr||

. (4.7)

Both tools increase the interpretability of the ML model by indicating what
the model regards as similar. The fact that Is focus on the unrepresentative
data points also allows one to judge the model’s reliability by finding outliers
in the training data set. The model’s reliability is the central issue addressed
by two other methods discussed in this work, namely resampling uncertainty
estimation (RUE) and local ensembles (LEs).

4.9.3 Resampling uncertainty estimation

The resampling uncertainty estimation (RUE) [407] aims at assessing
the uncertainty of predictions of the ML model. It can be applied to the al-
ready trained model and requires no specific architecture or learning scheme
in contrast to, e.g., Bayesian methods, which are the most common approach
in ML for assessing uncertainty [422, 423]. The RUE method makes use of
two important criteria to judge whether a prediction is reliable: the density
criterion and local fit criterion [407]. The density criterion states that a pre-
diction at the input ztest is reliable if there are samples in the training data
that are similar to ztest. The local fit criterion states that a prediction at the
ztest is reliable if the model has a small error on samples in the training data
similar to ztest. Both criteria hinge upon a measure of similarity defined in
eq. (4.6) and can be addressed with bootstrap sampling.

To quantify uncertainty, the RUE algorithm makes b ’bootstrap’ samples
created by sampling with replacement from the uniform distribution over
the original training data set. Let us start from the original data set D
containing each training data point once, indicated with the short-hand
notation byD[1, 1, . . . , 1]. We can then create a bootstrap sample by drawing
the same point more than once and omitting others, e.g., Db[2, 0, 3 . . . , 1, 0],
which stands for taking twice the first training example, omitting the second
training example, etc. If an ML model trained on D[1, 1, . . . , 1] converges
to parameters θ̃, b ML models trained on b different bootstrap samples
converge to similar model parameters θ′b. Now we can make b predictions at
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the same test point ztest with bML models and calculate the variance of the
test loss across these b models. Small variance means that a prediction of
the original model can be trusted, while large variance means that it is not
reliable. Intuitively, this variance estimates how much the model prediction
would change if we fitted the model on different data sets drawn from the
same distribution as the original training data. This intuition is connected
to the idea of the classical bootstrap [424].

As for the LOO training, such a retraining procedure is prohibitively
expensive. Therefore, one can make a similar approximation of the change
of the model parameters due to the removal of some training examples and
adding copies of others to the training set within a bootstrap sample. We
can approximate the new parameters via

θ′b ≈ θ̃ −H−1
θ̃
· L · w∆b

, (4.8)

where w∆b
is a vector of differences between the composition of the original

D[1, 1, . . . , 1] and Db. For example, for Db[2, 0, 3, . . . , 1, 0], the vector of dif-
ferences w∆b

is [1,−1, 2, . . . , 0, 1]. L is a matrix of all the n single training
loss gradients w.r.t. every model parameter, so it has the size d x n, and it
takes the form

L = [∇θL(z0, θ̃), . . . ,∇θL(zn−1, θ̃)]T . (4.9)

In the next step, one generates predictions at a test point with b models
with approximated parameters θ̃b, obtaining b test losses based on fb =
f(θ̃b, xtest). Finally, we calculate the variance of b test losses, i.e., the average
of the squared deviations from the original test loss.

4.9.4 Extrapolation score with local ensembles

We say the prediction at a test point is underdetermined if many dif-
ferent predictions are equally consistent with the constraints posed by the
training data and the learning problem specification (i.e., the model archi-
tecture and the loss function). An example of such behavior is when a model
trained on the same training data arrives at different predictions depending
on the choice of a random seed and, therefore, relies on arbitrary choices
outside the learning problem specification. Intuitively, underdetermination
can be understood as the model converging during the optimization process
to various distinct points in a flat basin forming a minimum. As discussed in
section 4.8, the training data puts limited constraints on the flat directions
around the minimum. However, changing the model parameters in these
directions still can impact predictions at test points drawn from a different
distribution than the training set, i.e., so-called out-of-distribution (OOD)
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test points [425]. A reliable model should warn the user when making a pre-
diction at such a test point.

Local ensembles (LEs) are a method to detect the underdetermination at
test time in a pre-trained model [412]. LE consists of local perturbations of
the parameters of the trained model that fit the training data equally well,
i.e., have the same value of training loss. In other words, we perturb the
parameters of the model only in the directions of the Hessian eigenvectors
corresponding to close to zero eigenvalues, meaning we explore only flat
basins around the minimum. Analogously to RUE, the next step is to make
predictions at the same test point ztest with LE models and calculate the
variance of the test loss within the LE. Madras et al. [412] found an even
simpler approximation of this variance for a test point, ztest, and named it
a LE extrapolation score

Em(ztest) = ||U>m∇θL(ztest, θ̃)||2 = ||U>m∇Ltest||2 . (4.10)

Um is a matrix of (d − m) Hessian eigenvectors spanning a subspace of
low curvature, i.e., after removing m eigenvectors corresponding to largest
eigenvalues and, therefore, to directions with the highest curvature, which
are well-constrained by training data. The authors of the method admit that
choosingm is not a trivial task, with the danger of omitting under-constraint
directions if m is set too high or including well-constraint directions if m is
set too low. In this work, we choose the smallest possible m for which Em
starts to converge for all test points (m = 12 in fig. 5.9).

4.9.5 Practical aspects of the Hessian computation

A careful reader could have noticed two numerical challenges resulting
from eqs. (4.5) to (4.10). Firstly, the calculation of Is, Relat-I, and RUE
requires inverting the Hessian of a training loss which in DL is known to be
highly non-convex [406]. As we have pointed out in section 4.8, optimiza-
tion usually leads to a critical point with a majority of flat or almost flat
directions (corresponding to eigenvectors with zero or close to zero eigenval-
ues) and a small number of directions of negative curvature (corresponding
to eigenvectors with negative eigenvalues). The inverse of a matrix exists
only if it is positive-definite (has only positive eigenvalues). Therefore, Koh
& Liang proposed to add a damping term to the Hessian [411], λ I, with
I being the identity matrix and λ being larger than the absolute value of
the largest negative Hessian eigenvalue, |E0|. It is equivalent to L2 regu-
larization [419] and amounts to shifting all eigenvalues by λ, guaranteeing
the existence of the Hessian inverse. Regardless of the exact value of the
damping, the Hessian-based toolbox keeps giving meaningful results [411].
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We usually choose λ ≈ |E0| + 0.01, except for RUE where the authors ex-
plicitly state that the smallest eigenvalue of the damped Hessian needs to
be around one, rendering λRUE = λ+ 1.

Secondly, the calculation of the Hessian matrix for a model with a large
number of parameters can be highly demanding. Fortunately, we do not need
to calculate the full Hessian, only Hessian-vector products [e.g., H−1

θ̃
∇Lr

in eqs. (4.5) and (4.7)] or the top part of the Hessian spectrum, which sig-
nificantly reduces the computational complexity of the problem [426]. The
inverse of the Hessian for Is, RUE, and Relat-I can be approximated with
so-called stochastic approximation with LiSSA [426]. Additionally, the au-
thors of Relat-I approximated the normalization factor in eq. (4.7) with
a method related to K-FAC [427]. On the other hand, LE needs no inverse
but an ensemble subspace of eigenvectors with zero or close to zero eigenval-
ues. The authors of LE proposed to use the Lanczos iteration [428] to cal-
culate m eigenvectors with the largest eigenvalues, build an m-dimensional
subspace (of highest curvatures), and create its orthogonal complement,
namely the ensemble subspace (of flat directions). There is also a Python li-
brary called PYHESSIAN designed to tackle Hessian-based problems [429].
Within this paper, however, we calculate the Hessian explicitly, due to the
limited size of our neural network.
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5

Machine learning path - results

My advice is to go for the messes —
that’s where the action is.
~Steven Weinberg

In sections 1.3.3 and 4.9, we have already shown that while DL models
are usually black boxes, there are methods that can peek inside. In particu-
lar, interpretation methods may extract additional information acquired by
the model. Additionally, reliability methods can estimate the uncertainty of
ML model predictions, which is highly desired when applying ML to novel
and unknown physical problems. This chapter aims to show the power of
these approaches in phase classification problems. In particular, we use the
techniques contained in the Hessian-based toolbox described in detail in
section 4.9.

We apply the interpretability and reliability methods to CNNs trained
on data coming from two physical models. Firstly, we show a series of results
for the numerically simulated data, namely quantum states of the extended
one-dimensional half-filled spinless Fermi-Hubbard model. We describe this
model and preparation of data in section 5.1. Then, in section 5.2 we present
how influence functions (Is) interpret what an NN learns in such a phase
classification problem, particularly how Is can detect unknown phases in the
data [414]. To complete the picture, in section 5.3, we use Is, relative influ-
ence functions (Relat-Is), resampling uncertainty estimations (RUEs), and
local ensembles (LEs) to CNNs trained on the same physical model [413].
We show how Is detect anomalies in the data, how RUE sees the width of
the transition, and gains from detecting extrapolation by LEs.

The results in sections 5.2 to 5.3 can be thought of as the proofs of
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concept. Finally, we present results of the ultimate test for the influence
functions (Is): applying them to NNs trained on experimental topological
data [278]. We start by discussing the experimental Floquet realization of
the two-dimensional Haldane model and features of the time-of-flight images
in section 5.4. Then, in section 5.5 we show how Is proved crucial in the
fully unsupervised discovery of the topological phase diagram based on the
experimental time-of-flight images.

5.1 Numerically simulated data: Fermi-Hubbard
model

In sections 5.2 to 5.3, we interpret and study CNNs trained on numer-
ically simulated data that is quantum states coming from various phases
of the extended one-dimensional spinless half-filled Fermi-Hubbard model.
The Hubbard models are of fundamental importance to condensed-matter
physics, with the two-dimensional Fermi-Hubbard model believed to de-
scribe the high-temperature superconductivity of cuprates [430]. The se-
lected one-dimensional system has the advantage of being within the power
of efficient numerical simulations. As a result, it has a rich and well-studied
phase diagram [431, 432] and is a promising candidate to be simulated in
a quantum simulator [430]. Therefore, it is suitable to benchmark the Is
(or any interpretability method) in phase classification problems. In this
model, fermions hop between neighboring sites with amplitudes J and in-
teract with nearest neighbors with strength V1 and next-nearest neighbors
with strength V2:

Ĥ = −J
∑
〈i,j〉

c†icj + V1
∑
〈i,j〉

ninj + V2
∑
〈〈i,j〉〉

ninj , (5.1)

where c†i and ci are fermionic creation and annihilation operators at site i,
respectively, and ni = c†ici is the number operator.

Phase diagram. The model exhibits four different phases, two of which
co-exist in a limited range of parameters. Without the next-nearest-neighbor
interaction, V2, the system can follow only patterns of the gapless Luttinger
liquid (LL) phase or the charge-density wave (CDW) of type I with the
degenerated density pattern 101010. The CDW-I order parameter describing
this transition reads OCDW-I = 1

L

∑
〈i,j〉 |ni−nj |, where 〈〉 symbolizes nearest

neighbors. The next-nearest-neighbor interaction, V2 competes with V1, so
for non-zero V2 but still smaller than V1 the transition between LL and
CDW-I shifts towards larger V1. For sufficiently strong V2 the bond-order
(BO) phase emerges with the order parameter OBO = 1

L

∑
i(−1)iBi, where
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V2 /J

V1 /J

LL

BO

CDW-I

CDW-II
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1
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Figure 5.1: Phase diagram of the extended one-dimensional spinless
Fermi-Hubbard model at half-filling. The phase diagram contains schemes of
the corresponding states: Luttinger liquid (LL), bond-order (BO), charge-density
wave (CDW) type I and II. The arrows indicate the transitions studied in this
thesis. Adapted from Ref. [414].

Bi =
〈
c†ici+1 + c†i+1ci

〉
. It turns into the charge-density wave (CDW) of type

II with the degenerated density pattern 11001100 for large V2 values, with
OCDW-II = 1

L

∑
〈〈i,j〉〉 |ni−nj |, where 〈〈〉〉 symbolizes next-nearest neighbors.

Figure 5.1 presents the scheme of the described phase diagram.
Exact diagonalization. CNNs within this thesis are fed with ground

states of the described Fermi-Hubbard model, expressed in the Fock basis,
and labeled with their appropriate phases. To calculate the ground states
and order parameters of the model, we use the QuSpin package [433] to write
the Hamiltonian in the Fock basis. In the majority of cases, we consider a 12-
site system with periodic boundary conditions. Such a size results in 924
basis states, and therefore input vectors of 924 elements. We perform the
exact diagonalization with the SciPy package [328]. The hopping amplitude,
J , is set to 1 throughout the thesis.

Three transition lines. Within this thesis, in various set-ups, instead
of working on the whole phase diagram, we train the CNNs on three selected
transition lines indicated with arrows (1)-(3) in fig. 5.1. The first transition
line leads from the LL to the CDW-I phase. We calculate it for a constant
V2 = 0 and V1/J = 〈0, 40〉. It is a source of training data for both figs. 5.3
and 5.4, and test data for fig. 5.3. It is also the main source of data for
numerical studies in section 5.3. It is symbolized in fig. 5.1 with the arrow
(1), and the values of corresponding order parameter OCDW-I are plotted in
fig. 5.2(a). The transition, defined as above, occurs for V1/J = 1. The second
transition line is calculated for V2 = 0.25V1 and V1/J = 〈0, 80〉. Indicated
with the arrow (2), it is the source of test data for fig. 5.4. We plot the
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Figure 5.2: Corresponding order parameters’ values for three transition
lines studied within this work, indicated with arrows (1)-(3) in fig. 5.1. (a)-(b)
CDW-I order parameter for the transition line between the LL and the CDW-I
phase for V2 = 0 and 0.25V1, respectively. (c) CDW-II and BO order parameters
for the transition line between LL, BO, and CDW-II for V1 = 1/J . Note the
logarithmic scale of y-axis, and the symmetric log scale of x-axis with threshold
points selected to be 3, 3, and 2, respectively. Cusps in the lines are artificial and
result from the symmetric log scale of x-axis. From Ref. [414].

corresponding order parameter CDW-I in fig. 5.2(b), and the transition
takes place for V1/J = 1.85. The final transition line cuts three phases:
LL, BO, and CDW-II. It is marked with the arrow (3) and provides both
training and test data for fig. 5.6. It is calculated for constant V1/J = 1 and
V2 = 〈0, 8〉V1. The transition between LL and BO occurs for V2 = 0.51V1,
and between BO and CDW-II for V2 = 1.7V1. It is important to notice that
for the selected range of parameters V2 = 〈1.7, 8〉V1, two phases co-exist
which can be seen in fig. 5.2(c).

Degeneracy of ground states and finite-size effect. Lastly, before
diving into results, let us note that the ground states belonging to BO,
CDW-I, and II phases are degenerate. To lift the degeneracy of the ground
state, we apply symmetry breaking (guiding) fields favoring one of the pat-
terns. This approach results in the order parameters in the LL being not
exactly constant and equal to zero. Instead, their values are growing very
slowly when approaching the transition points. Therefore, there is no ex-
act transition point, so we define it as such parameters of the system that
correspond to the order parameter being ten times larger than the corre-
sponding symmetry breaking fields. Due to the guiding fields of values 10−7,
10−5, and 10−4 for 101010 and 11001100 density patterns and 1010 hopping
pattern, respectively, the order parameters of values 10−6, 10−4, and 10−3

signal the transition to the CDW-I, CDW-II, and BO phase, respectively.
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5.2. Phase detection with neural networks and influence functions

5.2 Phase detection with neural networks and
influence functions

This section is based on our work presented in Ref. [414], where the
Ph.D. candidate was responsible for: study and implementation of
influence functions (Is), testing the method on simpler examples (Iris
and MNIST database), interpretation of results, drawing conclusions,
preparation of figures, and writing the manuscript. To our knowledge,
this work is the first application of the universal and fully agnostic
interpretation method to NNs trained to solve a physical problem.
The code and data that enable the recovery of results in this section
are provided in Ref. [434].

NNs usually hinder any insight into the reasoning behind their predic-
tions. In this section, we demonstrate how Is can unravel the black box of
NNs when trained to predict the phases of the one-dimensional extended
spinless Fermi-Hubbard model at half-filling. Results provide strong evi-
dence that the NN correctly learns an order parameter describing the quan-
tum transition in this model. We demonstrate that Is allow to check that
the network, trained to recognize known quantum phases, can predict new
unknown ones within the data set. Moreover, we show they can guide physi-
cists in understanding patterns responsible for the phase transition. We fol-
low a paradigm without relying on the a priori knowledge on the order
parameter or the system itself, with an approach that is straightforwardly
applicable to any physical model or experimental data with no dependence
on the architecture of the ML model.

5.2.1 From Luttinger liquid to charge-density wave-I

In this section, we use a CNN with an architecture shown in fig. 4.11(a).
We train this CNN to classify ground states of the one-dimensional Fermi-
Hubbard model into two phases: LL and CDW-I based on the transition
line marked with the arrow (1) in fig. 5.1 for V2 = 0. We plot the Is of
all training examples for a selected test point (marked with orange line) in
fig. 5.3. The order parameter describing the transition here is the average
difference between nearest-site densities, which is zero in the LL phase and
non-zero (growing to one) in the CDW-I phase.

Influence of training points on the test point in the Luttinger
liquid (LL) phase. The panels (a)-(b) of fig. 5.3 present how influential
training points are for test points from the LL phase. The test state (a) is
the ground state located deeply in the LL phase, while (b) is closer to the
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transition. If the CNN learns an order parameter, all training points, i.e.,
ground states from the LL phase exhibiting a zero order parameter, should
be similarly positively influential, and that is precisely what we observe.
They form an almost flat line in panels (a) and (b). For both test points (a)-
(b) from the LL phase, the most harmful training points are the ones closest
to the transition, but on the CDW-I side. These states are the most similar
(with the smallest order parameter value), but already labeled differently.

A slight divergence from the expected behavior. A careful reader
can notice that if the CNN learns an order parameter, the training points
from the LL phase, all exhibiting a zero order parameter, should be similarly
influential and form a flat line in all the panels (a)-(d). However, we see that
in reality, their influence changes linearly, which panel (c) shows especially
well. This divergence from expected behavior is because, in our exact diag-
onalization calculations, the order parameter in the LL phase is not exactly
constant and equal to zero. Instead, it is growing very slowly, that is why
finally the most helpful points are the ones near the transition - they are
also the most unique from the training points labeled as LL, and the infor-
mation they provide is the most valuable. The nonzero order parameter is
caused by three phenomena: the finite-size effect, use of the guiding fields,
and the numerical arbitrariness of choosing the transition point. In the per-
fect scenario (observed, for example, for training on states obtained from
mean-field calculations), the five most influential points should be randomly
distributed over the whole LL phase. It is interesting to note that the results
presented in this work stay the same without the symmetry-breaking fields
and do not depend on the size of the system.

Influence of training points on the test point in the charge-
density wave (CDW)-I phase. On the side of the CDW-I phase, the
influence pattern is significantly different. The curvature of influential points
corresponds to the growth of the order parameter, and the most influential
helpful points are the ones closest to the test point in the order parameter
space, slightly shifted towards the transition point, as they provide more
information. Panel (c) shows the Is of training points for the test states
on the CDW-I side, close to the transition. The most harmful examples
are, as in the previous test points, the ones closest to the transition, but
on its other side. However, panel (d) presents a distinct behavior of the
most harmful examples being in the same phase. All the training points are
similarly influential with small values of Is resulting in the almost flat line.
It is a signature of the CNN’s high certainty regarding the prediction made
in panel (d) manifesting with a small test loss function L(ztest, θ̂). Also,
the analyzed test point is deeply in the CDW-I phase, with all neighboring
states being almost identical with the order parameter close to 1. The most
harmful examples are the ones we label as the CDW-I phase, but very
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Figure 5.3: Transition line between LL and CDW-I presented with an arrow
in the phase diagram. (a)-(d) Influence functions (Is) of training examples for
selected test points marked with an orange line. Blue (purple) dots are I for training
states from the LL (CDW-I) phase. Larger green (red) dots are five the most
influential helpful (harmful) examples. Different background shades indicate two
phases. (a)-(b) Blue training points from the LL phase are similarly influential to
the classification of the test point from the same phase. They all are characterized
by a zero order parameter. (c)-(d) The most helpful training examples for the
classification of the test points from the CDW-I phase are the ones with the most
similar order parameter. Note the use of symmetric log scale both in x and y axis
with 3 and |10−3| selected as threshold points, respectively. From Ref. [414].
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different, so the ones closest to the transition.
While analyzing the figures, it is vital to keep in mind that we do not ex-

plicitly provide any information on the nearest-neighbor interaction, V1 /J ,
present on the x-axis (or any physical parameters, in general). We provide
the input states in random order. Therefore, the smooth patterns created
by the Is and resulting ordering of training points, especially on the CDW-I
phase’s side, is the sole consequence of the internal analysis of the states by
the machine.

5.2.2 Testing the model on another transition line

With a similar approach, we validate the model performance on another
transition line. We take the trained CNN from fig. 5.3, and in fig. 5.4 we
apply it to test states coming from the transition line for V2 = 0.25V1, where
the next-nearest-neighbor interaction shifts phase transition to higher values
of V1/J . Therefore the training and test states come from different transition
lines, V2 = 0 and 0.25V1, marked in fig. 5.1 with the arrows (1) and (2),
respectively. Notice the shift of the panels’ backgrounds as compared to
fig. 5.3. They mark two phases of the test transition line, having a different
transition point (V1/J = 1.85) than the training transition line (V1/J = 1).

Panels (a) and (b) of fig. 5.4 show the I values of training data for
test states from the LL phase, while (c) and (d) - from the CDW-I phase.
Panel (a) is identical to panel (a) of fig. 5.3, but already panel (b) shows
an interesting divergence from fig. 5.3(b), which is a result of a shifted
transition point of the test line compared to the training line. No longer
the same value of V1/J , for which test and training states were calculated,
yields the same order parameter for both of them. For example, the test state
being in the LL phase, close to the transition point for V2 = 0.25V1 should
be the most similar to the training points from the LL phase, close to the
transition point V2 = 0, and have the most similar order parameter. The ML
algorithm follows this similarity with regards to the order parameter, which
implies a successful generalization of the model. We see similar behavior in
panel (c), where the most helpful points are also shifted as compared to
fig. 5.3(c).

5.2.3 Inferring the existence of the third phase

This time we analyze the transition line crossing three phases, LL, BO,
and CDW-II, which is indicated by the arrow (3) in fig. 5.1. Two order
parameters describe this transition. One is the average difference of the
next-nearest neighbor density, which equals zero in the LL and BO phases,
and grows to 1 in the CDW-II phase. The other is the staggering of effective
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Figure 5.4:Testing a model on a different transition line. The model has been
trained on training data coming from the arrow (1) at V2 = 0. The test points come
from the arrow (2) at V2 = 0.25V1. (a)-(d) Influence functions (Is) of all training
examples, marked with dots, for selected test states marked with an orange line.
Blue (purple) dots are I values for training examples from the LL (CDW-I) phase
for V2 = 0. Larger green (red) dots are five the most influential helpful (harmful)
training examples. Different background shades indicate the phase transition for
V2 = 0.25V1 line, from which test states come from. Panels (a)-(d) show very similar
patterns to the ones in fig. 5.3, but shifted. It indicates that the similarity of test
and training points is connected to their order parameters, as the order parameter
of test points is shifted towards larger V1/ J values, compared to training points,
due to coming from the V2 = 0.25V1 transition line. Note the use of symmetric
log scale both in x and y axis with 3 and |10−3| selected as threshold points,
respectively. From Ref. [414].

117



5. Machine learning path - results

LL

non-LL

LL

BO

CDW-II

Figure 5.5: Similarity and detection of additional phases. We mimic the
situation when we have incomplete knowledge of the phase diagram and incorrectly
label the data. We label states as either belonging to LL or not when in fact they
belong to three distinct phases: LL, BO, and CDW-I. I-based similarity detects
the additional phase!

nearest-neighbor hoppings, being 0 in the LL phase, non-zero in the BO
phase, and slowly decaying to 0 in the CDW-II phase. In the studied range
of parameters, two phases (BO and CDW-II) co-exist (see section 5.1 for the
details). It is crucial to note that in this section, we train on the mentioned
transition line crossing three phases, but we label ground states only as
belonging to one out of two phases.

The first set-up for clarity is presented in fig. 5.5. We show the results
for this set-up in the panels (a)-(b) of fig. 5.6. We label ground states as be-
longing to the LL (blue dots, label 0) or the BO and CDW-II phases (purple
dots, label 1). Independently on the test point location, notice two similar-
ity regions within purple training points. Apparently, the NN learns two
different patterns (order parameters) to classify the data correctly. There-
fore, it notices the existence of the third phase within the incorrectly labeled
data. Inferring the third phase would be impossible without interpretabil-
ity methods, which in this sense pave the way towards unknown phases
detection.

The second set-up consists of labeling the same data as belonging to
the LL and BO phases (blue dots, label 0) or the CDW-II phase (purple
dots, label 1). The Is’ values, resulting from this classification, are in panels
(c)-(d) of fig. 5.6. The pattern they form is starkly different. First of all,
there is no additional similarity region within training points from the LL
and BO. The behavior is then more similar to the one seen in fig. 5.3 with
the transition between LL and CDW-I. It is not identical, though, as in
the phase LL+BO the most helpful training points are always distributed

118



5.2. Phase detection with neural networks and influence functions

V2 /J

V1 /J

LL

BO

CDW-I

CDW-II

1

1

Figure 5.6: Transition between LL, BO, and CDW-II. Data comes from the
arrow at V1/J = 1. (a)-(d) Influence functions (Is) of all training examples for
selected test points marked with an orange line. Training examples are marked with
dots and labeled differently within two rows, i.e., as (a)-(b) LL - not LL and (c)-(d)
CDWII - not CDWII. Blue dots are I values for training examples from (a)-(b) the
LL phase, (c)-(d) the LL and BO phases, while purple ones (a)-(b) from the BO
and CDW-II phases, (c)-(d) from the CDW-II phase. Larger green (red) dots are
five the most influential helpful (harmful) training examples. Different background
shades indicate phase transitions. (a)-(b) CNN classifies states as belonging to
the LL phase or not and detects two similarity regions in the ’not-LL phase’. It
effectively indicates the existence of an additional phase. (c)-(d) The model exhibits
overfitting. Note the use of a symmetric log scale, except for the linear y axis in
panels (c)-(d). In all subplots, a symmetric log scale is used in x axis with 2 selected
as a threshold point. A symmetric log scale with |10−4| as a threshold is used in y
axis in panels (a)-(b), while in panels (c)-(d) the scale is linear. From Ref. [414].
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randomly, but deep in the LL phase, avoiding the BO phase. The most
helpful points on the CDW-II side are deep in the CDW-II phase in contrast
to fig. 5.3, where they mostly follow the test point. Consider, that the deeper
the CDW-II phase, the smaller the BO order parameter, which makes CDW-
II predictions easier. The observed pattern is the example of NN not learning
correctly the order parameter and potentially overfitting.

Finally, we trained a CNN on the same data, but with three labels
correctly corresponding to all three phases. The influence patterns resemble
those seen in fig. 5.3 and panels (c)-(d) of fig. 5.6, indicating that CNN
correctly learns both appropriate order parameters.

5.2.4 Conclusions

We used the interpretability method called Is on the CNN trained in
a supervised way to classify ground states of the extended one-dimensional
half-filled spinless Fermi-Hubbard model. We provided strong evidence that
the ML algorithm learned a relevant order parameter describing the quan-
tum phase transition. If no knowledge on the actual order parameter were
available, Is’ values would guide the search for patterns responsible for
phase transition and help extract a relevant order parameter, however not
providing it explicitly. We have shown that the Is, applied to the trained
NN, are able to detect an unknown phase. Two aspects have impacted which
training points are the most important for a given test point: how similar
they are to the test state and how unique within the training data set. To-
gether they have given a notion of distance or similarity used by the CNN
in the phase classification problem and indicated that the patterns relevant
for the predictions coincided with the order parameters.

Our approach may be used to address open problems of topological mod-
els and many-body localization with NNs, whose logic can be finally discov-
ered by Is. They may be easily applied to any physical model in general. Is
should be very successful at distinguishing between types of phase transi-
tions. In particular, the curvature of the line drawn by Is’ values should be
different for the transitions characterized by continuous and discontinuous
change of the order parameter. Moreover, this tool proved to be very sensi-
tive to outliers existing in the data set and may serve for anomaly detection
which we present in section 5.3.2. Finally, along with unsupervised learning
techniques, it can serve as the first search for unknown phases and order
parameters in experimental data which we show in practice in section 5.5.7.

120



5.3. Hessian-based toolbox for reliable and interpretable machines

5.3 Hessian-based toolbox for reliable and
interpretable machines

This section is based on our work in Ref. [413], where the Ph.D. can-
didate was responsible for: proposing a problem, finding and develop-
ing all necessary numerical methods, implementation of all methods,
interpretation of results, drawing conclusions, preparation of charts,
writing the manuscript. To our knowledge, this work introduces for
the first time universal and fully agnostic ML reliability methods to
physics. It also discusses the meaning of feature invariance of an ML
model. The code and data that enable the recovery of results in this
section are provided in Ref. [435].

ML techniques applied to quantum many-body physics have emerged as
a new research field. While the numerical power of this approach is undeni-
able, the most expressive ML algorithms, such as neural networks, are black
boxes: The user does neither know the logic behind the model predictions
nor the uncertainty of the model predictions. In this section, we present
a toolbox for interpretability and reliability, agnostic of the model architec-
ture. To better understand what an ML model learns, we extract the concept
of similarity between input data from a machine. As a result, we can find out
what is the relation between data according to the ML model and deduce
what features are important for the classification. To this end, we employ
and compare Is [411, 418] and relative Is (RelatIFs) [419]. Moreover, we
address the need for model-agnostic assessment of the uncertainty of model
predictions. We present resampling uncertainty estimation (RUE) [407],
which allows for generating analogues of error bars for ML model predic-
tions. Finally, we apply a tool called local ensembles (LEs) [412], which
warns a user if an ML model makes predictions with a high level of ex-
trapolation. The four methods require a single calculation of the Hessian of
the training loss. Together, they form a Hessian-based toolbox that can be
applied to any ML model and any learning scheme that relies on the calcu-
lation of the test and training loss functions and therefore finds application
outside of physics and the detection of phase transitions. We believe this
work opens the road to the systematic use of interpretability and reliability
methods in ML applied to physics and, more generally, science.

We present these methods on the CNN trained to detect the quantum
phase transition in the one-dimensional spinless Fermi-Hubbard model de-
scribed in section 5.1. We focus on a single transition line marked with an
arrow (1) in fig. 5.1, resulting from a competition between hopping and
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nearest-neighbor interaction. It starts in the gapless LL phase, and the in-
crease of V1 leads to a phase transition to a gapped CDW-I with density
patterns 1010 [431, 432]. The order parameter describing the transition,
OCDW−I, is the average difference between the nearest-neighbor densities.
It is zero in the LL phase and grows to 1 in the CDW-I phase.

Similarity learned by an ML model. We feed the CNN with ground
states expressed in the Fock basis, labeled with their appropriate phases,
calculated for a 12-site or 14-site system. The architectures of the used CNNs
are presented in section 4.7.1. Intuitively, we could expect that the most
similar quantum states, according to the ML model, are those generated for
the most similar V1. Instead, as we have shown in the previous section and
in Ref. [414], the similarity learned by the ML model is based on the order
parameter (or something related to it), as it is a much better discriminator
between the phases. Therefore, a well-trained model sees all LL data points
as very similar (as they all have a zero order parameter), while the similarity
of CDW-I data points depends on V1 (on this side, the order parameter
continuously goes up from 0 to 1).

5.3.1 Influence and relative influence functions

While in the previous section and in Ref. [414] we have studied in detail
the potential of Is for interpretability, we here focus on the differences
between Is and relative Is (RelatIFs). To this end, we train a CNN on
the eigenvectors of the 12-site one-dimensional Fermi-Hubbard model with
the labels indicating phases they belong to, i.e., LL or CDW-I. Note that
this time we use CNNs with an architecture drawn in fig. 4.11(b), so with
a global average pooling (GAP) layer. The reason becomes apparent below.

We then analyze the trained model with Is [eq. (4.5)] and Relat-Is
[eq. (4.7)] and present results in fig. 5.7. Each column of fig. 5.7 presents
both methods calculated for the same test points, indicated by the orange
vertical lines. In the case of Is (first row of fig. 5.7), the most helpful training
points are the most similar to the test point and the most unrepresentative
in the data set. Relat-Is, presented in the second row of fig. 5.7, are expected
instead to ignore how representative data is and to indicate the most similar
training points to the test point, paying less attention to outliers.

Behavior in the CDW-I phase. The usefulness of Relat-I can be seen
in the last column of fig. 5.7 when comparing Is and Relat-Is calculated
for the whole training set and the test point located deeply in the CDW-I
phase [panels (c) and (f), respectively]. According to Is, the location of the
most helpful points balances between those being the most unrepresentative
(close to the phase transition) and most similar (with the most similar order
parameter). As a result, the most helpful points do not follow the test point
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Figure 5.7: Influence functions (I) vs. relative influence functions (IR).
(a)-(c) Is and (d)-(f) Relat-Is between the training set and the single test point
indicated by the orange vertical line. Every column analyzes the same test point.
We mark the five most helpful (harmful) training points with green (red) color. Blue
(purple) training points belong to the LL (CDW-I) phase. We mark the transition
point with the change of the background color. From Ref. [413].

into the deep region of the CDW-I phase but get stuck instead. Relat-I
ignores how representative data is, and the five most helpful training points
follow the test point much deeper to the CDW-I phase because they have
the most similar order parameter. Let us now compare the results for the
test point in the transition regime in panels (b) and (e). Is and Relat-Is
yield here nearly the same results. The test point is in the unrepresentative
regime, so the Relat-I’s correction is not needed to observe which data is,
in reality, most similar. Still, values of Relat-Is for CDW-I points are much
closer to each other than values of Is due to a smaller focus on distinctive
points close to the phase transition.

Model-agnostic Relat-Is. A careful reader may notice that in the pre-
vious section, in fig. 5.3(d) Is for test points located deeply in the CDW-I
phase have a different pattern than in fig. 5.7(c). The reason has been fore-
shadowed three paragraphs before. This time we use a CNN with a different
architecture that underwent also a different training. Therefore, we see that
the similarity measure learned by ML models may depend on their archi-
tecture and the hyperparameters determining their training. In particular,
models may differ in the magnitude to which they regard the transition
points as outliers. In our case, both models (correctly) see them as unrep-
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resentative in the data set, and the influence of the transition points con-
sistently varies from LL and CDW-I points deep in the phases. However,
the CNN with GAP (see fig. 4.11(b)) treats transition points as less repre-
sentative than the smaller ML model without GAP (see fig. 4.11(a)). This
is the interpretation of the mathematical fact that the Hessian of the CNN
with GAP has larger eigenvalues, i.e., describes a more curved minimum
of a GAP model. As a result, representativeness dominates influence, and
the normalization brought by Relat-I (see eq. (4.7)) is necessary to over-
come this effect and focus on the similarity. In this sense, Relat-Is, which
apply a correction for the model’s focus on unrepresentative data, are more
model-agnostic. We have chosen to show this feature on the example of the
CNN with GAP simply because when we attempted to do it for the CNN
from fig. 4.11(a), values of Is and Relat-Is are very similar. In particular,
as seen in fig. 5.3(d), most influential points, according to the Is, follow the
test point much further into the CDW-I phase, in the same way as Relat-Is.
Only the analysis for the CNN with GAP rendered differences between Is
and Relat-Is described in section 5.3.1.

Behavior in the LL phase. Finally, let us compare panels (a) and
(d) of fig. 5.7 with the test point located deeply in the LL phase. RelatIFs’
values of the LL training points in panel (d) form a more flat line (are less
varied) than corresponding influence values in panel (a). In other words,
Relat-Is indicate that the LL points are more similar to each other, which
agrees with the zero order parameter of the LL. Now let us compare the
most influential training points between the methods. The five most helpful
training points (marked in green), according to Is in panel (a), are LL data
points closest to the transition, while the five most harmful training points
(marked in red) are CDW-I data points closest to the transition. They are
the most similar to the test point but labeled oppositely, so they confuse the
model. Relat-Is indicate the same training points as the most harmful, as
the logic behind it is independent of the data representativeness. However,
the most helpful points in panel (d) are shifted deeper towards the LL
phase than in panel (a). With unrepresentative data being less important,
this is the desired direction, i.e., taking the most helpful points further away
from the unrepresentative transition regime. The persistent non-zero slope
of the LL points may result from the imperfect removal of the impact of
unrepresentative data by the Relat-I normalizer and the finite-size effect
present in the 12-site Fermi-Hubbard model.

Therefore, we can study the similarity with Is unless the model focuses
predominantly on outliers. However, as we present in the next section, we
can use Is’ property to focus on outliers to our advantage for anomaly
detection. When we need to study similarity, Relat-Is provide a needed
correction to ignore how representative data points are.

124



5.3. Hessian-based toolbox for reliable and interpretable machines

5.3.2 Influence functions for anomaly detection

We come back to the CNN architecture without GAP as presented in
fig. 4.11(a) and used in section 5.2. We continue working with the data
set of the eigenvectors of the 12-site one-dimensional Fermi-Hubbard model
with labels. The global sign of such an eigenvector is not a physical ob-
servable, and therefore a well-generalizing model may ignore this property.
To challenge this intuition, we prepare two data sets differing only in the
distribution of the global sign. The first data set is composed of a large ma-
jority of positive-sign eigenvectors and several negative-sign eigenvectors.
In the second, half of the eigenvectors have a positive global sign and the
other half - a negative global sign. We call them the ’sign-imbalanced’ and
’sign-balanced’ data sets, respectively.

Detection of outliers. The CNN trained on the sign-imbalanced data
set has high accuracy on positive-sign test points. Regarding negative-sign
test points, the CNN correctly classifies them on the CDW-I side but has
lower accuracy on the LL side. This suggests that the ML model grasped
the global-sign invariance only to a limited level. Figure 5.8(a) presents
the Is between the training data and the single positive-sign test point
near the transition (marked with the orange vertical line). The pattern
is dominated by two smooth lines on both sides of the phase transition,
formed by positive-sign training points, as in fig. 5.7(b) in the previous
section. However, there are several single training points that are outside
the continuous patterns. These ’outsiders’ are negative-sign training points
that the model regards as distinct from positive training points, in the sense
of the similarity as described in section 4.9.1. Is then immediately pinpoint
anomalies in the training data and improve the reliability of the model. The
non-zero influence of the outliers and the decent test accuracy on negative-
sign points indicate that the model gains some information from a minority
of negative-sign training points. However, a model can develop different
similarity measures depending on the training process and its architecture.
For example, all anomalies (or outliers) can have zero influence regardless
of the test point. It shows that the model ignores them during the training
(which may be encouraged by large regularization), and we could further
use such knowledge to improve the model.

Global sign (in)variance of the ML model. We also train a CNN
on the sign-balanced data set. The model achieves high accuracy on both
positive- and negative-sign test data, suggesting that it learns the global-
sign invariance and ignores this property in the decision-making process.
This would mean the model is genuinely invariant to the global sign. We
check this interpretation with Is plotted in fig. 5.8(b) and calculated for
the whole sign-balanced training set and the single negative-sign test point
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Figure 5.8: Anomaly detection with influence functions. Influence functions
(Is) between the training set and the single test point indicated by the orange
vertical line. We mark the five most helpful (harmful) training points with green
(red) color. Blue (purple) training points belong to the LL (CDW-I) phase. We
indicate the transition point by the change of the background color. (a) Is show
anomalies in the training data. Here, in the sign-imbalanced data set, training
points diverging from the smooth lines are negative-sign points. (b) In the sign-
balanced data set, Is form two subgroups. The first one is created by the training
points with the same global sign as the negative-sign test point, the other - with the
opposite sign. The ML model is not truly invariant with respect to this property,
even if the classification accuracy is high. Note the use of the symmetric-log scale.
From Ref. [413].

marked again with the orange line. If a model is sign-invariant, we should
reproduce the smooth patterns of fig. 5.7(a)-(c). Surprisingly, the training
points form two subgroups of influence, following their global sign. The sub-
set of training points with the same global sign as the test point reproduces
the smooth shape of fig. 5.7(a)-(c), while the subgroup with opposite sign
separates. The separation is the strongest near the transition. In the end,
the most influential training points are always the ones with the same global
sign. Thus, if a feature, to the best of our knowledge, is irrelevant for the
classification, the model may still note the property. Again, this behavior
and developed concept of similarity depend on the architecture and training
process. Still, in our numerical experiments, we always arrived at a model
that recognized the training points’ global sign.

Strategies to make an ML model invariant. Therefore, we see
that having an ML model that is truly invariant to some properties may be
a challenging, yet highly rewarding task. A convincing example is provided
in section 5.5 and Ref. [278], where we have been studying experimental
Floquet data, where a property called micromotion has had no impact on
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5.3. Hessian-based toolbox for reliable and interpretable machines

physical phases in the system but has been consistently recognized by an ML
model, rendering unsupervised phase classification ineffective. In the end,
we have processed the experimental data with a VAE, effectively removing
this property. Another approach would be using domain adaptation neural
networks, which could be trained towards ignoring a selected property [436].

The results presented so far concern two methods: Is and Relat-Is.
Both analyze the relation between a test point and training point and are
especially useful for analyzing the training data or the similarity learned
by a model. When assessing the reliability of ML model predictions, more
appropriate tools are LEs and RUE.

5.3.3 Local ensembles for out-of-distribution test points

We now challenge the concept of a test loss as a reliability measure. As
we will show, the extrapolation score with local ensembles (LEs) highlights
better out-of-distribution (OOD) test points. To do so, we introduce in
our test set a percentage of test elements whose components are randomly
permuted. A well-trained ML model, combined with a reliability method,
should be able to inform us of the OOD test points.

Minimal test loss. Let us start by looking at the loss function for every
test point, plotted in fig. 5.9 with a purple line. We here use the minimal
version of the loss function (i.e., assuming all predicted labels are correct,
more details in section 4.6) to mimic a real-life scenario: we ask a trained
ML model to make predictions at test points whose labels we do not know.
However, here we have access to the ground-truth labels, and we know the
model misclassifies the test points generated for V1/ J ∈ [1, 2.1]. The model
wrongly predicts that the points in this interval belong to the LL phase. We
see that the minimum test loss in fig. 5.9 is primarily smooth and reaches
a maximum around V1/ J = 2.1. This is the predicted transition point of
the model, i.e., for this test point, the model outputs values corresponding
to the LL and CDW-I class, which are very close to each other.

LE-based extrapolation score. We then calculate the extrapolation
score of the CNN’s predictions at the same test set. We plot the LE-based
extrapolation score values as blue triangles in fig. 5.9. Let us start with the
analysis of the extrapolation score for the regular test points, ignoring the
OOD test points. A first observation is that the extrapolation score mostly
follows the test loss, which we expect as by its definition the score is pro-
portional to the gradient of the test loss. Secondly, the extrapolation score
approaches zero for the predictions at the test points deep in the LL and
CDW-I phases. These examples are well-constrained by the typical training
examples, and the model needs no extrapolation to make its predictions.
Thirdly, we also see that, while the extrapolation score is close to zero for
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Figure 5.9:Detection of the CNN extrapolation.We plot the minimal test loss
(i.e., assuming all predicted labels are correct) with a purple line. We mark the LE-
based extrapolation score (LEES) with blue triangles. Red vertical lines symbolize
OOD test points. All OOD test points have a higher extrapolation score, but not
always they are detected by a minimal test loss. We mark the transition point with
the change of the background color. Note the symmetric log scale in the x-axis.
From Ref. [413].

all the LL test points, it is not for the CDW-I side. This lack of symmetry
is contrary to the test loss, which is non-zero close to the transition, regard-
less of the phase. Strictly speaking, it means that the gradients of all LL
test points are parallel to the gradients of the most typical LL training ex-
amples, corrected for the local curvature of the loss landscape, i.e., parallel
to some of the Hessian eigenvectors with the largest eigenvalues, which we
removed to build a flat LE. The ML model sees them as very similar, needs
no extrapolation to make predictions at them, and changes of parameters
within the LE make no difference. CDW-I test points, on the other hand,
exhibit larger diversity, and the model reaches the same low extrapolation
level of its predictions as in the LL only deeply in the phase. This makes
perfect sense if we assume that two typical training examples representing
two classes are ones with OCDW−I = 0 and 1, respectively. Then we can ex-
plain the extrapolation score’s large values by combining two facts: firstly,
it approximately follows the test loss; secondly, it is larger for test points
being far from the representative training example from the appropriate
class.

The fate of the OOD test points. We now focus on the OOD test
points, marked in fig. 5.9 with red vertical lines. On the one hand, if one
interprets the test loss as the uncertainty, the test loss should be enough
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to highlight the OOD test points as the corresponding predictions should
be less confident than those of the neighboring test points. Partially, this
intuition holds as we see significant jumps in test loss for some of the OOD
test points, especially for those deep in the CDW-I phase. However, the
jumps corresponding to the OOD points are much less prominent on the
LL side and disappear completely when getting closer to the transition
regime. In particular, prediction at the OOD test point at V1/ J = 2 is
recognized as more confident than on the neighbors, which further challenges
the concept of the test loss as the uncertainty measure. On the other hand,
the extrapolation score based on LE perfectly highlights each of them, being
significantly larger for all OOD test points than its neighbors. The CNN
needs to extrapolate on these unseen, atypical test points that the LEs
is detecting. With this method, we can then have a neural network built
and trained without any constraints, which informs us of predictions made
with a high extrapolation level. It is crucial for the predictions at OOD
test points, which are not detected at all by the test loss, here, e.g., those
between V1/ J = 0.75 and 2.

5.3.4 Uncertainty estimation and transition width

We finally use the resampling uncertainty estimation (RUE) method
to analyze the uncertainty of predictions of the ML model and therefore
identify phase transitions regions. In particular, it is known that finite size
effects play a great role in the analysis of phases and should be taken into
account when predicting phase transitions. We, therefore, train two copies
of the same CNN architecture on two data sets, so on the eigenvectors of
the 12-site and 14-site one-dimensional Fermi-Hubbard model with labels
corresponding to the LL or CDW-I phase. We choose a CNN architecture
that is invariant to the input size (see section 4.7.1).

Visualization of RUE. To detect the quantum phase transition re-
gion, we calculate RUE for the whole test set uniformly spread across the
transition line. Panels fig. 5.10(a)-(b) show the results for the CNNs trained
on the 12- and 14-site systems, respectively. We represent RUE as error bars
as they are the variance of the test loss’ change under the different sampling
of the original training data1. It is important to note that we calculate RUE
using the minimal version of the test loss (see the discussion in section 4.6),
assuming that predicted labels are the correct ones.

1We could plot RUE as the error bars of the test loss along with the values of the
test loss. However, in our case, various sampling of training data set leads to the test loss’
change of the order of |0.001|, so around 0.1% of the test loss value, and plotting them
together would be infeasible. Secondly, we focus on the width of the regime where the
error bars are non-zero, which is better visualized without plotting the test loss values.
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Figure 5.10: Resampling uncertainty estimation (RUE) vs the quantum
phase transition width. (a)-(b) RUE plotted as error bars of predictions of two
CNNs with the same architecture trained on the 12- and 14-site systems. The
uncertainty regime is narrower for the 14-site system than for the 12-site one. (c)
Order parameters across the same transition for the 12- and 14-site systems. Due
to the finite-size effect, the transition is sharper in the 14-site system than the
12-site. From Ref. [413].

Transition regime and error bars. By construction, we know that
the RUE indicates uncertainty caused by the limited number of training
examples being similar to the test point or due to the ML model making
mistakes on training examples that are similar to the test point. As a result,
non-zero error bars cover the whole transition regime where the model has
troubles with classification. Note we use here a minimal loss function, so
RUE has no information on the ground-truth labels. Nevertheless, the error
bars are the largest for the incorrect model predictions (i.e., for V1/J in the
interval [1, 1.6] for 12 sites and [1, 1.45] for 14 sites). RUE then manages
to detect misclassification of test points. Error bars are non-zero also for
correct predictions (i.e., in the interval [1.6, 3.6] for 12 sites and [1.45, 2.8]
for 14 sites), but here RUE warns a user that the ML model made these
decisions based on the limited number of training data. Moreover, note that
our choice of the phase transition point (set to V1 /J = 1) is to some level
arbitrary for numerical reasons discussed in appendix A of Ref. [414].

Error bars for 12- and 14-site systems. More importantly, we see
that these uncertainty regimes have different widths for two different system
sizes (see panels (a) and (b) of fig. 5.10). If we set a threshold for RUE’s
value to 5 × 10−5, the uncertainty regime spans between 1 and 3.6V1/ J
for 12 sites and 1 and 2.8V1/ J for 14 sites. It is a direct consequence
of the finite-size effect because of which the transition is sharper for the
14-site system than for the 12-site one. Figure 5.10(c) depicts the order
parameter OCDW−I for both system sizes, and one can clearly see a sharper
phase transition for a larger system size. Due to the sharper transition and
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smaller number of test data with low representation in the training data,
the non-zero RUE regime is always narrower in the 14-site case, regardless
of the selected threshold for the RUE’s value.

Therefore, RUE is a way of providing similarity-based confidence in the
ML model predictions.

5.3.5 Conclusions

In this section, we have presented four interpretability and reliability
methods that are independent of the architecture and the training procedure
of the ML models. They rely on the computation of the Hessian of the
training loss describing the curvature around the local minimum. We have
shown how these methods could be applied to ML models that classify
many-body physics phase diagrams, here the phase classification of the one-
dimensional spinless Fermi-Hubbard model. Our findings are summarized
in the following:

• We have compared Is and Relat-Is. According to Is, the most in-
fluential training points are the most similar to the test point and
the most unrepresentative in the data set. Relat-I has ignored the
second aspect and focused on similarity. Here, we mean the similar-
ity as a distance in the model’s learned internal representation space.
The analysis of this learned similarity, enabled by Is and Relat-Is,
increases the interpretability of the ML model.

• Thanks to the focus on unrepresentative data, Is have immediately
pinpointed anomalies in the training set and improved the model’s
reliability. The model can be better understood when the influence of
the training outliers is known. For example, an outlier training point
can have zero influence on all the test points. This shows that the
model ignores such outliers during the training. In phase-detection
tasks, in general, the model should be prone against outliers, and
therefore, one can further use such knowledge to improve the model
and its training.

• With the help of Is, we have also shown that, even if a feature is irrele-
vant for the phase classification (like a global sign of the wavefunction),
the model may still note such features. This finding is consistent with
the results found in section 5.5 and Ref. [278]. These findings challenge
our intuition about what really is a feature-invariant model.

• The test loss calculated by comparing the output of the ML model
and the ground-truth label tends to be interpreted as an uncertainty
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of the ML model. This interpretation is tempting due to the simplicity
of the test loss calculation but has limited use and can fail miserably
on OOD test points. Therefore, we need other tools to increase our
trust in the ML model.

• We have shown how LEs are able to identify predictions that are made
by an ML model with a high level of extrapolation. In other words, it
shows how sensitive the prediction is to the arbitrary choices outside
the learning problem, e.g., the random seed. Thanks to this property,
the extrapolation score based on LEs has perfectly highlighted all
out-of-distribution (OOD) points in our test set.

• We have shown that RUE provided error bars for the ML model’s
predictions. RUE is large when the training set lacks data similar to
the test point or when the ML model makes mistakes on training data
similar to the test point. Analysis of RUE values across the test set
allowed to assess the phase transition region, which is smaller in the
case of the CNN trained on the 14-site system’s data than for the
12-site, accordingly with the finite-size effect.

The presented functionalities of the four methods do not exhaust the
possible applications. For example, Is and Relat-Is may be used for building
more physics-informed ML models. If we know a proper similarity measure,
e.g., based on the order parameter in some solvable regime, we can select
an ML model which learned the desired similarity and apply the model
later to unknown regimes. Moreover, LEs are helpful for active learning
in which the model informs the user which additional data points would
be the most informative for the training [412]. This approach can prove
extremely useful for ML based on expensive experimental measurements.
LEs and RUE also can be used to detect additional phases in the data by
informing the user about the part of test data on which predictions are
highly extrapolated or uncertain. The idea is analogous to the use of Is
in Ref. [278] and to the anomaly detection scheme in Ref. [254]. Finally, it
would be interesting to apply the same toolbox in the context of quantum
ML with variational quantum circuits, where the Hessian of the loss function
can also be computed [437, 438].

5.4 Experimental topological data: Haldane
model

In sections 5.2 to 5.3, we have interpreted and studied CNNs trained
on numerically simulated data that is quantum states coming from various
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phases of the extended one-dimensional spinless half-filled Fermi-Hubbard
model. In particular, we have shown that interpretation of NNs may lead to
the detection of additional phases. We have also shown that we can identify
influential properties of the data.

While numerical data has provided a clean environment to present the
power of interpretability methods, the final test is their performance when
applied to ML models trained on experimental data which may be much
noisier and have many natural outliers. We do exactly such a test in sec-
tion 5.5. Before that, this section aims at describing the studied experi-
mental data. In section 5.4.1 we present theoretical foundations of the two-
dimensional Haldane model and we describe its topological invariant - the
Chern number. In section 5.4.2, we describe briefly the Floquet realization
of the two-dimensional Haldane model that was performed with ultracold
atoms by the experimental team at the University of Hamburg and pre-
sented in Refs. [276, 439–442]. In section 5.4.3 we discuss a feature of the
data, called a micromotion, and its connection to the center-of-mass motion,
foreshadowing its importance in section 5.5. Once we discuss the numerical
preparation of the experimental images in section 5.4.4, in the next section
we present how to extract from such data the full topological phase diagram
in a completely unsupervised way.

5.4.1 Two-dimensional Haldane model

The Haldane model has been proposed as a toy model for a quantum Hall
effect with no net magnetic flux through the unit cell [443]. In an archety-
pal scenario, in a two-dimensional electronic system, a strong magnetic field
leads to the quantization of the allowed energies of the electrons into dis-
crete Landau levels. As the field strength increases, the spacing between
these levels also increases, resulting in a smaller number of filled levels. The
number of filled Landau levels determines the Hall resistance which forms
plateaus with the value h/le2, where l is an integer depending on the number
of filled levels. Moreover, each filled Landau level gives rise to a chiral edge
mode. This can be understood semiclassically in terms of the skipping orbit
of the cyclotron motion around the edge of the sample [51] as presented in
fig. 5.11(a).

Interestingly, the quantization of Hall conductance can be understood in
more general terms and takes place for two-dimensional systems with a bro-
ken time-reversal symmetry that host edge states. In such systems, only
such conducting edge states contribute to the Hall conductivity, whereas
the bulk is insulating. Moreover, these edge states turn out to be connected
to a topological invariant called the Chern number (eq. (5.6)) and there-
fore are topologically protected. As a result, the conductance has nearly
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Figure 5.11: Quantum Hall effect and Haldane model. (a) Semiclassical pic-
ture of edge states arising from cyclotron orbits. (b) Spinless fermions on a hexag-
onal lattice and (c) its band structure with six Dirac cones touching at Dirac
points. (d) Haldane model with chiral next-nearest-neighbor hoppings and stag-
gered potential breaking time-reversal and inversion symmetries resulting in (e)
gap opening between Dirac cones. This gives rise to topologically-protected edge
states. Adapted from Ref. [444].

no dissipation even in the presence of disorder, which renders these sys-
tems highly interesting for various applications, e.g., metrology or quantum
computing [51].

The Haldane model describes, therefore, the so-called anomalous quan-
tum Hall effect where the time-reversal symmetry is broken by means other
than external magnetic field. It is realizable with ultracold atomic simula-
tors and creates a playground for studying topological phases. The Haldane
model describes a tight-binding Hamiltonian of spinless fermions on a two-
dimensional hexagonal lattice with a real nearest-neighbor hopping t1, an
on-site staggering potential ∆AB, and a complex next-to-nearest-neighbor
hopping t′2 = t2e

iφ.
Let us construct this Hamiltonian, starting only with nearest-neighbor

hoppings across the hexagonal lattice (so with a model of the graphene).
Taking a simple tight-binding model where electrons can hop between neigh-
boring sites with hopping strength t1 and introducing Pauli matrices σ, one
obtains the Bloch Hamiltonian:

H0(k) =
(

0 h(k)
h†(k) 0

)
= t1

∑
i

[σx cos (k · ai)− σy sin (k · ai)] . (5.2)
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Here ai are the three vectors in fig. 5.11(b), connecting nearest neighbors
of the lattice (whose spacing we set to one). If we stop at that, the en-
ergy spectrum E(k) = ±|h(k)| gives rise to the famous band structure of
graphene, with the two bands touching at the six corners of the Brillouin
zone as presented in fig. 5.11(c). These six cones are called the Dirac cones,
and they touch at the so-called Dirac points.

To generate edge states in the system we need to create a gap between
these cones. The Dirac points are protected, however, by both inversion
and time-reversal symmetry (note that the inversion centers are between
sites A and B and in the plaquette centre). We need to break them. To
this end, we introduce imaginary next-nearest-neighbor hoppings as well as
a staggering potential as shown in fig. 5.11(d). The imaginary hopping is
chiral, meaning we broke time-reversal symmetry. The staggering potential
on the other hand breaks the inversion symmetry. We arrive to the Haldane
Hamiltonian:

H(k) = H0(k) + ∆ABσz + 2t′2
∑
i

σz sin (k · bi) . (5.3)

Here bi are the three vectors in fig. 5.11(d), connecting next-nearest neigh-
bors within the lattice. With appropriate t2, φ, and ∆AB, Dirac cones
become gapped. This gives rise to edge states which, as we have already
discussed, are connected to the Chern number and therefore topologically
protected.

To understand the source of this protection, let us look more closely
at the Chern number. The Chern number is intimately connected to the
Berry curvature that can be regarded as a magnetic field in the momentum
space [444]. See the following argument: when an electron moves on a closed
loop enclosing a magnetic field, it acquires a phase shift which is known as
the Aharonov-Bohm phase [445]. It is an example of a geometric phase
(or Berry phase) that can in general be acquired by a quantum system
when transported adiabatically on a closed loop in its parameter space [51].
Imagine now making an adiabatic evolution of the wave function ψ(k) of
Hamiltonian in eq. (5.3) on a closed loop L in the momentum space. This
wave function also acquires a Berry phase:

γ(L) =
∮
L

A(k) · dk (5.4)

Here, A(k) = i 〈ψ(k) | ∇kψ(k)〉 is a vector called the Berry connection and
has two complex entries being the derivatives of |ψ(k)〉 with respect to kx
and ky and then taking the inner product with 〈ψ(k)|. The Berry connection
suffers from the same gauge dependence as the magnetic vector potential.
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As the magnetic field is the curl of magnetic vector potential, the Berry
curvature is the curl of the Berry connection:

Ω(k) = ∇k ×A(k) = i

[〈
∂ψ(k)
∂kx

| ∂ψ(k)
∂ky

〉
−
〈
∂ψ(k)
∂ky

| ∂ψ(k)
∂kx

〉]
. (5.5)

Finally, using the Stokes theorem, we can calculate what is the phase ac-
quired by ψ(k), in particular, after going around the entire Brillouin zone.
In the Haldane model, the Brillouin zone has a hexagonal shape, so the
curve needs to go along its six borders encompassing its surface. Therefore,
the acquired phase is

2πC =
∫∫

BZ
Ω(k) · dS . (5.6)

This way we recover the definition of the Chern number, C. It is the phase
acquired when going adiabatically around the entire Brillouin zone. In other
words, it is the area integral of the Berry curvature over the whole Brillouin
zone. Now the protection of edge states becomes apparent. They are con-
nected to the Chern number and the Chern number is protected by the
topology of the Brillouin zone surface that requires significant perturba-
tions to be modified.

5.4.2 Experimental set-up

Challenges of topological models. The Chern number has an inter-
pretation only in the momentum space and is therefore a global quantity.
In real space, it becomes apparent, e.g., in the system’s linear response,
like the quantization of Hall conductance. Because of this global nature,
topological invariants are highly non-trivial to detect [51]. Therefore, the
classification of topological phases receives particular attention with ML
techniques [260–269]. With cold atoms, many detection methods have been
demonstrated including the transverse Hall drift [446–449], Berry phase
measurements [450], quantized circular dichroism [442, 451] as well as Bloch
state tomography [440, 441, 452–454]. The latter is based on momentum-
space images after quench dynamics, which also form the basis of the ML
analysis in this thesis.

Experimental realization. The data, which is a subject of the unsu-
pervised ML study in section 5.5, has been taken in experiments performed
with ultracold atoms in optical lattices [13], which are established as a well-
controllable system for studying solid-state physics in general and topolog-
ical phases in particular [50, 51]. The topological Haldane model [443] is
realized by Floquet-driving of a honeycomb lattice [440, 448, 455, 456]. In
this specific configuration, the experiments start with a hexagonal lattice
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with a large offset ∆AB = 2π · 6.1 kHz between the two sublattices, realized
by a suitable polarization of the three interfering laser beams that form the
optical lattice [440] as presented in fig. 5.12(a). The lattice is then acceler-
ated on elliptical trajectories by phase modulation of the lattice beams char-
acterized by the shaking phase ϕ between the modulation along the x and
y-direction. The resulting effective Floquet Hamiltonian features non-trivial
Chern numbers and gives rise to a topological phase diagram closely related
to the original Haldane model and presented in fig. 5.12(d) [276, 441]. The
control parameters are the shaking phase ϕ, which gives rise to the time-
reversal-symmetry-breaking, and the shaking frequency fsh, which gives rise
to non-trivial Chern numbers C = ±1 for near-resonant shaking with the
sublattice offset fsh ≈ ∆AB/2π.

Theoretically obtained phase boundaries. The numerical predic-
tion for the phase boundary (see fig. 5.12[d]) results from a Floquet calcula-
tion for a tight-binding model of the hexagonal lattice based on the shaking
parameters and the calibrated parameters of the static lattice. These cal-
culations and predicted theoretical boundaries have been provided by the
collaborators in Hamburg. The prediction has been shown to agree well with
previous measurements of topological properties in the system [276, 440–
442], except for a slight shift of the topological region towards higher fre-
quencies for the experimental data. This shift might have two reasons. The
first is the heating introduced in this Floquet realization of the system
which leads to contributions of higher bands, which have been neglected
in the two-band tight-binding model. The second is the uncertainty in the
calibration of the static lattice. Note that the calibration uncertainty of
the polarization of the lattice beams of 0.2◦ leads to an uncertainty of the
expected phase transition points of around 200 Hz [276].

Experimental protocol. The experiments have been performed with
ultracold spin-polarized fermionic atoms of 40K with mass m = 40u pre-
pared in the lowest band of the optical lattice formed by laser beams with
a wavelength of λ = 1064nm as in the earlier work [276, 440]. In the trans-
verse direction, the cloud is weakly harmonically confined. In order to adia-
batically prepare the lowest band of the Floquet system, the Floquet drive
is gradually ramped up in two steps as presented in fig. 5.12(b):

1. The shaking amplitude is ramped up to 1 kHz within 5ms at the far
off-resonant shaking frequency of f ini

sh = 4.5 kHz,

2. The shaking frequency is ramped to the final values ffin
sh within tramp =

2ms at the fixed shaking amplitude.

This ramping protocol strategy aims to keep the band gaps as large as
possible and is well-established via earlier experimental and theoretical

137



5. Machine learning path - results

a b

dc

Shaking Phase (°)
0 45 90 135 180-180 -135 -90 -45

Sh
ak
in
g
Fr
eq
ue
nc
y
(k
H
z)

5.5

6.0

6.5

7.0

7.5

C= -1 C=1

C=0

C=0

ShakingFrequency (kHz)6.0

5.0
5.5

4.5

1.0

0.5

0.0

0.0

7.4

ShakingAmplitude (kHz)

Lattice Depth (Erec)

10ms 5ms 2ms thold 21ms
Time

Shaking Phase (°)

Sh
ak
in
g
Fr
eq
ue
nc
y
(k
H
z)

0 45 90

5.5

6.5

7.3

D
en
st
iy

(a
.u
.)

0.0

0.5

1.0

-90 -45

A

AA

BB

B

A

AA

BB

B
x

y

Figure 5.12: Experimental setup. (a) Three laser beams form a hexagonal opti-
cal lattice by interfering under 120◦ (left). The polarization and thus the geometry
can be tuned via the two waveplates indicated by the black lines. The hexagonal
lattice consists of A and B sites with an energy offset, ∆AB . We periodically drive
the lattice on an elliptical trajectory (center) in order to obtain an effective Flo-
quet Hamiltonian with Peierls phases on the nearest-neighbor tunneling elements
(right) giving rise to topological bands. (b) The atoms are adiabatically prepared in
the lowest Floquet band by ramping the lattice depth, the shaking amplitude, and
the shaking frequency to different final values. Different hold times allow sampling
different micromotion phases given by the grey area under the curve. The atoms
are imaged after a time-of-flight expansion of 21 ms. (c) Typical momentum-space
images for different shaking frequencies and shaking phases. The images are cen-
tered around zero momentum and have a width of one reciprocal lattice vector.
(d) The topological phase diagram for the lowest band as predicted by a numerical
Floquet calculation featuring the two lobes of non-trivial Chern number, C = ±1,
characteristic of the Haldane model. From Ref. [278].

work [440, 441, 454, 457]. Due to the Floquet heating, this procedure leads
to a population of the lowest band of typically 50-75%. Previous work on
supervised ML has shown that the Chern number of the lowest band can
be faithfully obtained despite the non-zero temperature [276].

Detection and time-of-flight images. For the detection of the state,
all potentials are switched off and atoms are allowed to fall due to gravitation
for a certain time, ttof (here, ttof = 21 ms). If we neglect interactions between
atoms (e.g., because the sample is not dense, and the system is far from
a Feshbach resonance), they can be considered to fall freely [13]. Therefore,
after ttof , the position of an atom is given by r(ttof) = ~ttofq

m , where q is the
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Figure 5.13: Dependence of the azimuthal coordinate θCoM of the center
of mass and the micromotion phase φ. The dependence can be explained by
the elliptical shaking. For the shaking phases ϕ = 0,±180 the shaking is linear,
thus the cloud can only be displaced in k-space along the direction of the shaking.
For a shaking phase of ϕ = ±90 the shaking is circular and thus the dependence
is linear. The sign of ϕ decides on the direction of shaking which is encoded in the
phase jump and the direction of the slope. From Ref. [278].

momentum of an atom in the trap and m is its mass. Thus, such a system
expansion maps the original momentum distribution onto the real-space
density, which is then imaged by absorption imaging leading to time-of-flight
images. In section 5.5 they are the data that is analyzed by ML models.

5.4.3 Micromotion

In the experimental protocol, the atoms in the Floquet system are
held for different hold times thold at the final shaking frequency in steps
smaller than the Floquet period, in order to sample different instances
of the Floquet micromotion φ. The micromotion phase is then given by
φ = ffin

sh (tramp/2+ thold)+f ini
sh tramp. This convention traces the micromotion

back to the start of the driving with a kick in a fixed direction and allow
relating the micromotion phases of data with different shaking frequencies.
The micromotion is an intrinsic property of Floquet systems and while it
can give rise to new physics [458, 459], it is often a nuisance when studying
the effective Floquet Hamiltonian [457, 460].

For a better intuition behind the micromotion, in fig. 5.13 we show
the dependence of the azimuthal coordinate of the center of mass on the
micromotion phase. For circular shaking, i.e., a shaking phase of ±90◦, the
center of mass moves in a circular fashion yielding a linear dependence
between the azimuthal coordinate of the center of mass and the micromotion
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phase. For linear shaking, i.e., a shaking phase of 0◦ and 180◦, the center of
mass moves along a diagonal line yielding a constant azimuthal coordinate
of the center of mass at ±45◦, with a phase jump of 180◦ due to small
disturbances in the experiment forcing an exchange of the long and short
axis in the fitting scheme of the ellipse. Other shaking phases interpolate
between these two behaviors.

5.4.4 Data preparation

For the analysis, we restrict the images to a square region of 56x56 pix-
els centered around zero momentum, k = 0, where 56 pixels correspond
to the length of a reciprocal lattice vector - see fig. 5.12(c). The images
are furthermore individually normalized to the interval [0,1]. In total, we
use 10,436 images with varying shaking phase, shaking frequency, and mi-
cromotion phase with just a few images per parameter. While supervised
learning often requires an additional large training data set at parameters
corresponding to known parts of the phase diagram, which allows labeling,
the unsupervised methods discussed below can identify the phase transitions
with the data homogeneously sampled across the parameter space alone.

5.5 Unsupervised learning of topological
experimental data

This section is based on our work in Ref. [278], where the Ph.D.
candidate was responsible for: analysis of the dominant features of
the experimental data, the discovery of the final full phase diagram,
participation in the analysis and interpretation of results, preparation
of figs. 5.15 and 5.22, participation in writing the manuscript. To
our knowledge, this work is the first fully unsupervised discovery
of a topological phase diagram from experimental data. The code
and data that enable the recovery of the results in this section are
provided in Ref. [461].

In this section, we apply unsupervised ML techniques to experimental
data from topological phases of a Haldane-like [443] model realized in an
ultracold-atom quantum simulator. Our aim is to obtain the full topological
phase diagram in a fully unsupervised way. It proves extremely challenging
with raw data (section 5.5.1), and the problematic feature turns out to be
the micromotion. Therefore, we address the problem of dealing with the
micromotion inherently arising in any Floquet system using ML for data
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post-processing, which allows fixing the micromotion phase of all data to the
desired value (section 5.5.2). We show that removal is successful by checking
the influence of this feature on ML model predictions (section 5.5.3). Fixing
the micromotion phase has proved vital for a successful application of un-
supervised ML methods, apparently dominated by a micromotion-induced
change of graphic patterns (sections 5.5.4 and 5.5.6). However, it has not
been enough to distinguish between topological phases present in the model.
The final ingredient has been influence functions (Is) used to gauge simi-
larity within the data preliminary labeled with previous unsupervised ap-
proaches (section 5.5.7). By carefully combining the information from these
techniques we can uncover the full phase diagram from noisy experimental
data in a completely unsupervised way. As expected, unsupervised ML is
more challenging than supervised ML, where the identification of the phase
transitions was successful even in the presence of micromotion [276]. Our
results provide an important benchmark for unsupervised ML of phases of
matter and evaluate methods that might be useful for revealing new exotic
order in complex systems.

We have implemented all ML techniques using NumPy, PyTorch, and
Tensorflow [462–464]. The specifics of the architectures with reproducible
code for all performed tasks can be found in our notebooks [461].

5.5.1 Latent-space interpretation of autoencoders

As a first step, we produce and analyze a low-dimensional representa-
tion of the time-of-flight images in the latent space of an AE formed by
the activations of the bottleneck neurons. We hope to see their clustering
corresponding to phases present in the system. AEs are important tools for
unsupervised learning [465], and we have described them in section 4.7.2.
The AE consists of several convolutional layers and a fully connected bot-
tleneck formed by two neurons visible in fig. 5.14(a). We have chosen a two-
dimensional latent space to create an easy-to-understand visual represen-
tation of the given samples. The complete implementation details can be
found in our notebooks [461]. We have checked that choosing more dimen-
sions in latent space does not lead to an improvement in separation between
phases. The AE here is trained on the complete data set.

Limited clustering. The two-dimensional latent-space representation
of all images yields a dense cloud of data points without an apparent clus-
tering in fig. 5.14(b). The picture becomes clearer, when we restrict the data
to fixed shaking phases, i.e., vertical cuts through the phase diagram (see
fig. 5.14[c-d]). The data then lies on elliptical structures with the radius
related to the shaking frequency. For further analysis, we fit an ellipse using
direct least square fitting [466] and perform a coordinate transformation to
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Figure 5.14: Bottleneck analysis. (a) Sketch of the AE with two bottleneck neu-
rons, which is trained to reproduce the entire data set. (b) Activations of the two
bottleneck neurons form the latent space, in which each point corresponds to one
image. In the scatter plot of all data, the Chern number is color coded according
to the numerics, illustrating that the data does not cluster according to the Chern
number in latent space. (c-d) The analysis of single cuts through the phase dia-
gram, i.e., of data with a fixed shaking phase of (c) ϕ = −90◦ and (d) ϕ = −45◦.
The data forms rings in latent space and is fitted by an ellipse (red line), which
forms a new coordinate system with the azimuthal angle θ measured relative to
the longer half axis and the radius r as sketched with the arrow. (e-f) Analysis of
latent space in elliptical coordinates. (e) The azimuthal angle θ is linearly related
to the micromotion phase for ϕ = 90◦ of the individual images independent of their
shaking frequency. (f) The mean radial coordinate for a given shaking frequency
traces out a monotonously decreasing curve with no clear signature of the phase
transition and indicates three plateaus in accordance with the phase boundaries.
The error bar is the standard deviation from averaging over the images with a given
shaking frequency. The plots for other shaking frequencies look similar. This as-
sociation with the micromotion means that latent space can be interpreted, but
also that micromotion is the dominant feature hiding possible signatures of the
topological phase transitions. From Ref. [278].
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5.5. Unsupervised learning of topological experimental data

extract the elliptical coordinates radius r and azimuthal angle θ measured
from the major axis of the fitted ellipse.

The model learns micromotion. The azimuthal angle can be clearly
connected to the micromotion phase showing a linear dependence as seen
in fig. 5.14(e) for a shaking phase of ϕ = 90◦. The same dependence can
also be seen with the azimuthal coordinate of the center of mass of the raw
images, which provides a direct connection between the time-of-flight images
and latent space as we have discussed in section 5.4.3. We furthermore
explore possible information hidden in the radial coordinate, presented in
fig. 5.14(f). The mean radius decreases with shaking frequency with some
signs of plateaus, but without a sufficiently clear separation with shaking
frequency for making a prediction of phase transitions. The latent space
representation can thus be physically interpreted via the micromotion, but
it cannot provide an identification of the topological phases. We attribute
this to the dominance of the micromotion, which we aim to eliminate in the
following section 5.5.2.

5.5.2 Data post-processing to the desired micromotion
phase

In Floquet systems, micromotion poses an additional challenge for iden-
tifying phase transitions. We have found that all attempts to apply unsu-
pervised ML methods failed for data with varying micromotion phases. In
contrast, as we show in this thesis, unsupervised ML is successful if all im-
ages have the same micromotion phase, i.e., the center-of-mass displacement
is in the same direction. Changes in the micromotion phase induce differ-
ent graphic patterns, including the moving center of mass, which seems
to dominate the models’ predictions. The studied experimental data has
been taken by sampling various micromotion phases. Therefore, we need to
post-process it to the desired single value of the micromotion phase.

A VAE with a question neuron. We show that this can be accom-
plished by ML techniques based on VAEs, which are powerful tools for
data transformation and generation [395, 396] and have been described in
section 4.7.4. Our architecture here uses an additional question neuron in
the bottleneck, which has also been introduced in section 4.7.4 and which
previously has been proven successful in identifying relevant physical prop-
erties [298]. Here we use the additional question neuron for the supervised
training of the VAE. The given challenge is related to tasks such as fringe re-
moval in absorption imaging [467] or removal of timing jitter in pump-probe
experiments [468], but we believe that our method based on VAE is very
broadly applicable to post-processing to the desired sampling in different
experimental scenarios.
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Figure 5.15: Post-processing data to the desired micromotion phase using
a VAE with an additional question neuron. (a) Example images at shaking
frequencies of 5.8 kHz and 7.4 kHz and shaking phase ϕ = 90◦ for different micro-
motion phases φ illustrating the motion of the center of mass with the micromotion
phase. (b) The same example images as in (a) rephased by the VAE to a micro-
motion phase of φ0 = 0.0 show a center of mass position only weakly dependent
on the original micromotion phase φ. (c) The azimuthal coordinate of the center
of mass of the original images as a function of the shaking phase shows a com-
plicated dependence. (d) The azimuthal coordinate of the center of mass (θCoM)
of all images forms a narrow band and is only dependent on the shaking phase,
but not the original micromotion phase. This dependence on the shaking phase is
similar to the dependence of the data for actual micromotion phase φ = 0.0 before
rephasing presented with dark blue points in panel (c). The comparison of the dis-
tribution of azimuthal coordinates of the center of mass in (c) and (d) illustrates
that the rephasing of the micromotion has been successful. The micromotion phase
of the processed data φ0 = 0.0 is controlled by an additional question neuron in
the bottleneck of the VAE presented as inset in (d). From Ref. [278].
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Used architecture and training details. The encoder of the VAE
consists of several convolutional stages and several layers of fully connected
neurons. The last layer of the encoder has 26 fully connected neurons thus
the latent space covers 13 uncorrelated Gaussians distributions, each de-
fined by its mean and log variance. The decoder has again several fully
connected layers followed by a few transposed convolutional stages. The
first fully connected layer is also attached to the input of the question neu-
ron. In total, the AE has over 3 million trainable parameters. The complete
implementation details can be found in our notebooks [461]. To optimize
the hyperparameters of our AE, we use the hyperparameter optimization
library optuna [374] and test over 60 000 different network architectures.
To identify the best working network we use the structural similarity in-
dex [469] as a measurement for performance. For each point in the phase
diagram with a fixed shaking frequency and shaking phase, several images
with different micromotion phases were taken by varying the hold time. As
a new data set, we select all combinations and permutations of images for
a fixed shaking frequency and shaking phase and calculated their micro-
motion phase difference ∆φ = φoutput − φinput. Thus the data set includes
63,050 image pairs with a given ∆φ. Thus in contrast to the other AEs we
employed in the context of this work, the input and output are different for
the VAE. We randomly choose 10% of the data set for validation purposes
and hide them from the network during training. We train with one image
as input, which we refer to as input image, and one image with the same
shaking frequency and shaking phase but a different micromotion phase
as output and the micromotion phase difference as input for the question
neuron. Samples of original images are given in fig. 5.15(a).

Postprocessing of time-of-flight images. After training, we use the
VAE to transform all original images in the data set to a micromotion phase
of φ0 = 0.0 by choosing their micromotion phase with an opposite sign as
input for the question neuron. The post-processed images with a single
micromotion phase are similar to the original data except for some noise
removal and a squeezing of the distribution of pixel values to a range of 0.3
to 0.7, which we attribute to the non-linear activations in the network - see
fig. 5.15(b).

Confirming successful fixing of the micromotion phase. Because
the micromotion is directly related to the center of mass of the images,
one can see the success of the post-processing in the example images in
fig. 5.15(b): after micromotion is set to a fixed value, the images with differ-
ent micromotion phases look very similar and have the same direction of the
displacement of the center of mass. This is further confirmed by a compar-
ison of the distributions of the azimuthal center of mass coordinates for all
images before and after rephasing in fig. 5.15(c)-(d). The highlighted blue
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Figure 5.16: Confirming the post-processing to the desired micromotion
phase with influence functions. (a) Phase diagram with theoretical boundaries
between phases and with the cut at a shaking phase of −90◦ marked with a black
line, which is analyzed on the right. Panels (b)-(c) show the color-coded influence
function (I) values for all training points marked with dots and for the same test
point (marked with a black cross) for a single cut at phase −90◦ across the shaking
frequency before and after the post-processing. The five most helpful (harmful)
training points are marked with red (blue) diamonds and they can overlap. (b)
The most influential (both helpful and harmful) training points are the points
with the shaking frequency and the micromotion phase closest to the test point.
(c) After fixing the micromotion phase, the most influential points are distributed
across various original micromotion phase values indicating the successful removal
of this property which now is ignored by the CNN. From Ref. [278].

data in in fig. 5.15(c) are the center of masses for the micromotion phase
φ = 0.0. The narrow distribution in fig. 5.15(d) shows that the rephasing
has been successful. In the next section, we further confirm the success of
rephasing with Is.

5.5.3 Confirming rephasing with influence functions

To get further evidence that the post-processing described in section 5.5.2
has been successful, we confirm it with Is introduced in section 4.9.1. Is
provide an interpretation of the ML model by indicating which training
points are influential for a selected prediction. Analysis of the most influen-
tial examples can reveal the characteristics which impact ML predictions.

Supervised training of a CNN. Firstly, we train a CNN in a super-
vised way to classify original images with the varied micromotion phase.
Instead of analyzing the whole two-dimensional diagram, we consider only
a single cut at the fixed shaking phase −90◦ which simplifies the visualiza-
tion of the results without changing them. Within this single cut, the Chern
number of the system changes from 0 to -1 and back to 0 with increasing
shaking frequency. The labeled training data contains then only two phases

146



5.5. Unsupervised learning of topological experimental data

(C = 0 and C = −1). To avoid influence from experimental imperfections,
we exclude data close to the theoretically-predicted phase transitions. With
the trained CNN, we calculate the Is determining how influential the whole
training data set is for the prediction selected to be in the transition region.
The results are presented in fig. 5.16(b-c) with the black cross indicating
the test point and dots representing the training data and their color-coded
I values. Colors vary from red for helpful training points, through green for
least influential (ignored), to blue for harmful.

Micromotion is influential in raw images. We see in panel (b)
that the most influential (both helpful and harmful) data for the selected
prediction are those with both the most similar shaking frequency and mi-
cromotion phase. Learning the shaking frequency is expected as it is the
parameter governing the phase transition. However, the CNN also regards
the micromotion phase as influential when making a prediction, while we
know that this property is physically irrelevant for the transition. The mi-
cromotion phase is an intrinsic property of the Floquet realization of the
topological Hamiltonian but does not change the topology of the effective
Floquet Hamiltonian.

The influence of micromotion is removed. We do the analogous
analysis for post-processed training data, i.e., with the removed micromotion
phase. Panel (c) in fig. 5.16 shows that the most influential points are now
randomly distributed along the original micromotion phase axis. It tells us
that the CNN no longer sees this parameter as influential and confirms that
the data has been successfully post-processed to a constant micromotion
phase.

Let us note that when training on data with or without the micromo-
tion, in both cases the validation and test accuracy of the trained CNN are
similar. It means, interestingly, that in this set-up the predictive power of
the network is not impacted by learning the quantity which is physically
irrelevant.

5.5.4 Clustering in latent space

In the following sections, we apply different unsupervised ML methods
to the post-processed data with a constant micromotion phase and compare
their performance. We start with a method of the clustering category, which
identifies clusters in some low-dimensional representation of the data as
different phases. Specifically, we employ the same convolutional AE as in
section 5.5.1 but now applied to the post-processed data.

Clustering in the AE latent space. The latent space representation
of the complete data set is shown in fig. 5.17(b). The data is color encoded
by the theoretical predictions for the Chern number. It appears that the dif-
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Figure 5.17: Bottleneck analysis of rephased data. The bottleneck analysis
with a simple AE, sketched in (a), for the data after rephasing to a fixed micro-
motion phase. (c)-(d) The analysis of single cuts through the phase diagram, i.e.,
of data with a fixed shaking phase of ϕ = −90◦ in (b) and ϕ = −45◦ in (d), shows
a significant clustering according to the shaking frequency (color coded). The dot-
ted lines guide the eye to separate the different clusters found by the k-means
algorithm. The arrows next to the color bar mark the theoretically expected phase
transitions. (e) The cluster analysis of latent space. k-means clustering analysis
for k = 3 clusters shows that the data is indeed clustered according to shaking
frequency. There are several values for each shaking frequency for the different
original micromotion phases, which mostly lie on top of each other in the plot. (f)
Naming the three clusters increasing with frequency and combining the data from
all cuts yields a topological phase diagram, which is reasonable agreement with the
numerical prediction (blue and red lines), but does not distinguish between C = 1
and C = −1. From Ref. [278].

ferent topological classes tend to form ring structures in the two-dimensional
latent space. As in section 5.5.1, we now restrict ourselves to single shaking
phase cuts. Figure 5.17(c) and (d) show the latent space for two such cuts
and we observe three main clusters related to three frequency regimes.

k-means clustering. Choosing k-means clustering, a standard method
to solve cluster problems described in section 4.3, it is possible to automate
the clustering process of the different latent space representations of the
observed image data. We use the k-means functionality of Scikit-learn [470]
and set the number of clusters to 3 and the maximal number of iterations
to 500. All other parameters are set to standard according to the documen-
tation. We tried different random seeds to prove stability. The results of the
cluster analysis are shown in fig. 5.17(e) and (f).

Indistinguishable topological phases. This allows one to predict
phase boundaries in good agreement with the theoretical predictions given
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Figure 5.18: Principal component analysis (PCA) of the time-of-flight images
rephased to a fixed micromotion phase. From left to right: principal components
1, 2, 6, and 8 that have been selected arbitrarily. For all other components, see the
notebooks in [461]. In the upper row, a cut along a shaking phase of 90◦ is plotted.
The error is the standard deviation of the different values for the component for the
given shaking frequency. The theoretical predictions for the phase transitions are
given by the dashed lines. In the lower row, the averaged components are plotted
in the Haldane phase diagram fashion. From Ref. [278].

by the dashed lines. The slight shift to higher frequencies is in accordance
with all other methods and has been explained in section 5.4.2. Evaluating
the data for all shaking phases allows reconstructing the complete two-
dimensional Haldane phase diagram shown in fig. 5.17(f). The procedure
of separately analyzing vertical cuts through the phase diagram can funda-
mentally not distinguish between the C = 1 and C = −1 phases at positive
and negative shaking phases. Furthermore, a similar analysis of horizontal
cuts along constant shaking frequencies through the phase diagram does not
produce clustering. Therefore further methods are required to fully identify
the topological phases.

5.5.5 Principal component analysis of rephased data

In addition to k-means applied to the AE latent representation of the
data, we also use principal component analysis (PCA) on the processed
data. We have described PCA in section 4.3.2 as an alternative way of
dimensionality reduction. In fig. 5.18, we select four components of this
analysis. The different principle components clearly show features that cor-
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respond well with the theoretical predictions, such as sharp local minima at
the expected phase transitions. However, the data also shows features that
are not related to phase transitions, such as strong dependence on the shak-
ing phase in the trivial regions. Therefore the data does not provide a clear
recipe for identifying the topological phase transitions in a completely un-
supervised way. This is true in particular for the choice of the components
to be analyzed.

5.5.6 Anomaly detection scheme

So far, we have analyzed the lower-dimensional representation of the
rephased data using an AE and PCA. Finally, we follow the approach
in [254] and perform an unsupervised learning scheme called anomaly de-
tection (described in section 4.7.3) to map out the phase diagram in a few
training iterations. We use a convolutional AE, similar to the network de-
scribed in section 5.5.2. The network consists of an encoder and decoder
made of two convolutional layers each, with a fully-connected bottleneck of
50 units. For full details about the model and process, we refer the inter-
ested reader to [461], where all steps described in this section can be exactly
reproduced.

Anomaly detection on rephased time-of-flight images. The idea
is the following: We started by defining a region of the phase diagram in
which we trained the AE to encode and decode the images with low mean-
squared error LMSE(xin,xout) between input and output images xin,xout ∈
R56×56. The network learns the characteristic features of the phase that the
images were taken from and fails to reproduce images from the other phases.
By looking at the loss for all images after training in only part of the phase
diagram, we distinguish between the phase it has been trained on and the
remaining phases via different plateaus of the loss function. Furthermore,
by fitting a sum of tanh functions to the loss curve as a function of shaking
frequency, we obtain a phase boundary. We then repeat this process by
training in the region of high loss from the previous training round until we
find all boundaries.

Training in the low-frequency regime. We show this process in
fig. 5.19 where we have started by training in the low-frequency regime
(Training 1). We use all values of the shaking phase from [−180◦, 180◦] and
small shaking frequencies up to 5.5 kHz as indicated by the cyan rectangle.
We identify three different plateaus in the loss, from which we obtain two
boundaries. As seen in panel 1(b), where we take a single cut of the phase
diagram at −90◦, the different phases make up plateaus. Therefore, we fit
a tanh function in a relevant parameter region to estimate the boundaries
as indicated by the grey lines.
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Figure 5.19: Anomaly detection scheme. We start by training in the topologi-
cally trivial phase (Training 1). Due to the symmetry in the shaking phase we use
all angles from [−180◦, 180◦] and small frequencies up to 5.5 kHz as indicated by
the light blue box in a. Panel b shows a single cut at shaking phase −90◦ where we
can see two plateaus which we identify with the topological non-trivial and trivial
phases, respectively. Training 2: We continue by training in the region of highest
loss in the first iteration for high frequencies. From these two training iterations,
we can already narrow down the two boundaries in the phase diagram. Training 3
completes the overall picture and confirms the phases mapped in Training 1 and 2.
From Ref. [278].

Training in two other regimes. We continue the process and train in
the high-frequency regime, where the first iterations have yielded the high-
est loss. As seen in Training 2 (see fig. 5.19), we find the reverse picture
with a clear boundary slightly above the theoretically predicted transition.
This boundary from Training 2 nicely coincides with the second boundary
from Training 1. To complete the picture, we also train in the intermediate-
frequency regime that has yielded higher loss in the previous training iter-
ations. Here the training region is significantly smaller, yet the results still
match nicely with the previous training iterations. We stress that the three
training procedures are independent. Therefore, the good agreement of the
phase boundaries in fig. 5.19 is a strong indication of the method’s validity.

Topological phases remain indistinguishable. The images provide
sufficient information to separate the different phases and map out the phase
diagram with this method. We present the predicted diagram in fig. 5.20.
We notice that with this method, it is not possible to differentiate the non-
trivial topological phases with Chern numbers 1 and −1 because the trained
compression does not generalize well in the shaking phase parameter. For
further details, see appendix C in [278].
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Figure 5.20: Phase boundaries, concluded from four training iterations of
anomaly detection in fig. 5.19, separate three different phases, which we identify
with the topologically trivial and non-trivial phases. The obtained boundaries from
the different training iterations are consistent with each other. From Ref. [278].

In the following section, we overcome this shortcoming and complete the
phase diagram, i.e., separating the two topological regions, employing the
Is. We see that the transition between intermediate and high frequencies
for all three training rounds is slightly above the theoretically predicted
transition, which is due to a mismatch between theory and experiment as
discussed in section 5.4.2.

5.5.7 Analysis of similarity with influence functions

After obtaining the phase boundaries from the anomaly detection scheme,
as described in the previous section, we analyze how similar data are within
the three distinguished phases. Such an analysis not only can confirm the
predictions of unsupervised ML schemes but also reveal the existence of
additional phase transitions. Following the proof of concept presented in
fig. 5.6 on the example of the Fermi-Hubbard model, we train a CNN on the
post-processed experimental data, i.e., with the single micromotion phase,
with labels assigned by the anomaly detection scheme. Therefore, we have
three labels corresponding to the low-, intermediate-, and high-frequency
phases as presented schematically in fig. 5.21. We employ Is, described in
section 4.9.1, to analyze which training data are influential for a given pre-
diction. Similarly influential training data, {xtrain}, with a similar Is’ values,
I(xtrain,xtest), for a particular test point, xtest, can be then interpreted as
similar from the ML model’s point of view in a given problem.

Is for three test points from different phases. To analyze similar-
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low-frequency

intermediate-

frequency

C = 1 C = -1

high-frequency

Figure 5.21: Similarity and detection of topological phases. We label time-
of-flight images as belonging to low-, intermediate-, and high-frequency phases.
I-based similarity detects that there are two phases within the intermediate-
frequency phase!

ity of training data, we need to compare I(xtrain,xtest) and therefore fix the
test point for which I is calculated. In fig. 5.22, we plot three sets of Is cal-
culated for all training data and three different test points: one is located in
the low-frequency regime, the second in the intermediate-frequency regime,
and final in the high-frequency regime that is in panels (a), (b), and (c),
respectively. Each element of the phase diagrams in the upper row indicates
color-coded I value for a corresponding test point marked with a black cross.
If an element corresponds to more than one training point (if more mea-
surements were performed for a given frequency and shaking phase), then
we plot the mean of Is. Yellow (dark blue)2 color indicates the most helpful
(harmful) training points for a given prediction. White dots correspond to
the lack of available training data. The lower row of fig. 5.22 contains the
mean of Is for a single cut across the phase diagram for a fixed shaking fre-
quency, fsh. The error bars represent the standard deviation, being non-zero
for all shaking phases for which multiple measurements were taken.

Uniform low-frequency phase. In panel (a), we see that the low-
frequency training data are all quite similarly influential for the model
while predicting that the black-cross test point belongs to the same low-
frequency phase. The uniformity in question is also well visible in the cut
through the phase diagram in the lower panel of fig. 5.22. Apart from single
I(xtrain,xtest) with large variation indicating experimental outliers in the

2If a reader is familiar with our Ref. [278], they may note that fig. 5.22 features
a different colormap (viridis) as compared to the mentioned reference (where jet has been
used). The Ph.D. candidate has learned about the importance of perceptually uniform
maps [471] too late, and only now she is correcting her mistake (thank you, Patrick
Emonts!).
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Figure 5.22: Analysis of data similarity within three anomaly-detected
phases with influence functions (Is). The upper row shows the phase diagrams
with the color-coded I values for all training data and the prediction for the test
point marked with a black cross. The test point belongs to (a) low-frequency, (b)
intermediate-frequency, and (c) high-frequency phase. The lower row presents the
I values from the single cut through a corresponding phase diagram above at
the fixed shaking frequency, fsh. Panels (a) and (c) show quite uniform similarity
patterns, while (b) suggests the existence of an additional phase. Note the use of
a symmetric logarithmic scale. We mark theoretically-predicted boundaries with
continuous blue and green lines. White pixels correspond to the lack of available
training data. From Ref. [278].

training set, the formed similarity pattern is quite uniform. Notice, how-
ever, the symmetric logarithmic scale for Is. When ignoring the outliers, I
values span almost one order of magnitude. The lowest I values of around
5 · 10−6 are located in the negative shaking phase, and the largest I values
around 3 · 10−5 are for training points which have a positive shaking phase
similar to xtest. It tells us that the shaking phase is an influential factor in
the predictions in the low-frequency phase. However, it is not a determining
one. Otherwise, the largest I values would be much more localized in the
shaking phase axis. We also note that the I values always highlight the
boundaries between phases for two reasons. Firstly, data around the phase
transitions are usually the most confusing for the model. They are labeled as
belonging to either of the phases, being at the same time non-representative
of any phase. The second reason is of a purely numerical nature. Regardless
if boundaries are placed in accordance with physical ones, the data around
the boundaries plays a unique role in the training, containing the most im-
portant information for the model. In general, we expect that the confusing
phase transition regions, indicated by large I values, in experimental data
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should be broader as compared to numerical studies [414]. It is due to the
fact that the experimental system is finite and inhomogeneous and therefore
the phase transition is intrinsically broadened.

Uniform high-frequency phase. Panel (c) shows even more uniform
behavior. It contains I values for the test point localized in the high-
frequency regime. What may seem surprising is that almost all I values
are practically zero. It means that none of the training points is of signifi-
cant influence when making the selected prediction. The reason is that the
prediction on the test point from panel (c) has an extremely high certainty
and it has an impact on the I values. In fact, |I(xtrain,xtest)| values are
proportional to the uncertainty of the prediction made on xtest. When the
prediction’s uncertainty is very low, the I values are also very small.

Two plateaus of similarity in the intermediate-frequency regime.
Panel (b) is analogous to the previous panels, but this time the test point,
for which I values are computed, is localized in the intermediate-frequency
regime (which we know contains two topological phases). The striking fea-
ture of the panel (b) is the lack of uniformity in the intermediate-frequency
regime which is well visible in the lower plot of the panel (b), which contains
I values for the single cut through the phase diagram for the fixed frequency
of 6.6 kHz. In between two plateaus, i.e., around the shaking phase of 0 and
180◦, there are significant dips in the Is’ values reaching negative values.
They show that the training data in this part of the diagram is different
enough to be harmful for the analyzed prediction. They are misleading for
the model as they are labeled the same (as belonging to the topological
phase) while they are actually quite different. It is analogous to the rea-
son why Is always highlight boundaries between phases. This leads to the
conclusion that within the anomaly-detected intermediate-frequency regime
there is an additional boundary separating two more phases, which we know
to be the C = +1 and C = −1 phases. Another observation supporting this
conclusion is two similarity plateaus on the negative and positive sides of
the shaking phase, separated by the detected boundary. They are well vis-
ible in the lower plot of the panel (b). The average values of two plateaus
differ by almost order of magnitude, indicating two distinct patterns. Simul-
taneously, these patterns are more similar to each other than to the low-
or high-frequency phase, which suggests the similar character of two phases
detected in the intermediate-frequency regime.

The similarity analysis described above reveals the existence of two
phases within the anomaly-detected topological phase. We note that this
analysis is vastly simplified by removing the micromotion phase from the
time-of-flight images. Results from section 5.5.3 show that the micromotion
phase has been a very influential factor for the trained CNN before the
post-processing. Therefore, the analysis would need to include the impact
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of the micromotion phase on the CNN’s predictions.

5.5.8 Conclusions

In this section, we have applied different unsupervised ML methods
for identifying topological phase transitions in experimental data of the
Haldane-like model realized with ultracold atoms. The topological phase
diagram of the elliptically shaken hexagonal lattice hosts topologically non-
trivial phases at an intermediate shaking frequency and trivial phases both
for low and high shaking frequencies. Furthermore, the sign of the Chern
number changes with the sign of the shaking phase, i.e., the orientation of
shaking, giving rise to two distinct non-trivial phases.

A necessary step for successful unsupervised learning has been fixing
the micromotion phase inherent to the Floquet realization of the topologi-
cal phases via a VAE with a question neuron. This post-processing of the
experimental data to the desired sampling demonstrated here is an exciting
tool on its own. When generalizing such a post-processing procedure to data
sets, where known physical observables are invariant under the parameter
which is removed, it would be interesting to test if these observables stay
the same when evaluated on the pre- and post-processed images.

Both a clustering analysis in an appropriate low-dimensional represen-
tation of the data and anomaly detection in the loss function correctly
identified the three regions as a function of shaking frequency. The correct
identification of the two regions with the opposite sign of the Chern num-
ber has only been possible by combining this information with the insights
from an I on supervised training on the incomplete phase diagram. In total,
the full phase diagram, which can also be identified via supervised ML on
labeled data, have been obtained in a fully unsupervised way by combining
the different methods.

The successful identification of the phase diagram demonstrates that un-
supervised ML can correctly identify phases even for noisy data and despite
the finite temperature of the system. In the future, these methods can be
applied to strongly correlated systems to determine corrections to numerical
predictions or to exotic quantum many-body systems with unknown phase
diagrams or hidden order [277, 300] to support the interpretation of the
data and to guide the experimental exploration of the parameter space.
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6

Conclusions

Va’esse deireádh aep eigean, va’esse eigh faidh’ar.
~Andrzej Sapkowski

This chapter concludes the thesis and four years of our work. Our re-
sults belong to two parallel research paths. Here we summarize the findings
described in chapters 3 and 5 and present the outlook and planned research
directions for next stages of the scientific journey.

Molecular path

Within the molecular path, we have studied a building block of the ex-
tended molecular Hubbard model, i.e., two ultracold interacting molecules
in a one-dimensional harmonic trap. The system is presented schematically
in fig. 6.1. Two diatomic molecules rotate and interact via isotropic and
anisotropic short-range interaction. They also interact via electric dipolar
interaction. Within each molecule, there is a coupling between its rotational
and spin angular momenta. In the same figure, there is also a scheme of
mechanisms underlying results obtained within this thesis and discussed in
chapter 3. We have focused on the interplay of the rotational structure and
magnetization of the molecular system. They are intertwined via the spin-
rotation coupling. The rotational angular momentum can be controlled with
the external electric field and anisotropic short-range interaction strength.
The magnetization is controlled with the external magnetic field via the Zee-
man effect. This scheme clearly shows that electric and magnetic properties
of molecules are naturally coupled, and that external magnetic and electric
fields can control molecular electric and magnetic properties, respectively.
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Figure 6.1: Two interacting molecules in a trap. The upper row presents the
studied system. Iso- and anisotropic short-range interaction strengths are g0 and
g±1. γ is the spin-rotation coupling,

∑
i〈ŝi,z〉 is the system magnetization. The

bottom row shows the interplay between the molecular properties and external
fields.

The research within the molecular path has increased our knowledge
about the properties, interactions, dynamics, and control of ultracold molec-
ular systems. The results should be especially promising for quantum sim-
ulations. Successes of highly magnetic atoms in this field [45–49] promise
exciting results for ultracold molecular systems with large magnetic and
electric dipole moments. Hopefully, they can simulate new quantum phases,
spin models, and other problems of condensed-matter physics. Another in-
teresting example that could be addressed with molecular simulators is mul-
tiferroics. They are multifunctional materials that exhibit both electric and
magnetic long-range ordered phases. Such materials are candidates for key
components of future technology such as memories (fast hard disk drive
technologies) and logic devices.

This work will be followed by the analysis of a few highly magnetic and
polar molecules in optical tweezers with varied geometry as presented in
fig. 6.2. We will focus on the system’s potential magnetic frustration and
its control with external fields. We will also study the chain and the ladder
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Figure 6.2: Outlook for the molecular path. Few- and many-body ultracold
systems of interest composed of highly magnetic and polar molecules.

of ultracold molecules with large electric and magnetic dipole moments. We
expect the emergence of interesting quasi-particles and topological phases.

Machine learning path

The ML path has concerned the Hessian-based toolbox increasing inter-
pretability and reliability of any ML model. The toolbox requires a single
computation of the Hessian of the training loss function at the minimum
and provides a deeper understanding of the trained ML model. In particu-
lar, it gives a notion of data similarity developed by an ML model thanks
to influence functions. Moreover, it provides the estimation of uncertainty
of model predictions as well as the estimate of the extrapolation score. As
schematically presented in fig. 6.3, we have shown the usefulness of this tool-
box on two examples of quantum phase classification problems. Proofs of
concept have been presented with data obtained from the exact diagonaliza-
tion of the one-dimensional extended spinless Fermi-Hubbard Hamiltonian
at half-filling. In particular, we have shown how to detect additional phases,
anomalies, and out-of-distribution (OOD) points. We have also presented
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Figure 6.3: Hessian-based toolbox for phase classification. We have success-
fully applied interpretablity and reliability tools to CNNs trained to classify phases
of the Fermi-Hubbard and Haldane-like models. Adapted from Refs. [413, 414].

how to check the phase transition width. Finally, on the experimental data
obtained from the Floquet realization of the two-dimensional Haldane-like
model, we have shown how to obtain a complete topological phase diagram
in a fully unsupervised way. Influence functions have been an indispensable
element of this discovery.

One of the most fundamental conclusions that this path offers is the
following. ML models sometimes pick up additional signals from training
data. These signals are additional in a sense that for us (users, physicists,
humans) they do not seem relevant for the task at hand. This ability may be
connected to the overparametrization of NNs, so their exaggerated capacity
as compared to the problem. It can also come from the regularization of ML
models that explicitly forbids them from focusing on single data features and
forces them to develop parallel information flows. This crucial characteristics
of ML is a double-edged sword. For example, when we have trained a CNN to
classify three phases (LL, BO, and CDW-II) into two (LL, no-LL), the model
developed such a similarity notion that corresponded to reality and allowed
for detection of the third phase. But in another example, it may happen
that an ML model picks up irrelevant or harmful features which may destroy
generalization in some regime. Finally, what can happen is that ML models
notice physically irrelevant quantities (like global sign or micromotion) and
their predictive powers stay intact. It begs a question what it means for
an ML model to be invariant to some property. Fortunately, it seems that
learning “sensible” features is more likely than learning noise from the data
set, solely due to the nature of the learning process which promotes signals
leading in the common direction than random ones which usually cancel.

The ML path has already created various future research directions as
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Figure 6.4: Future research directions that will be addressed with the Hessian-
based toolbox and other interpretability methods.

presented in fig. 6.4. In particular, the Hessian-based toolbox and other in-
terpretability methods can shed a light onto difficulties of ML models with
detecting signatures of many-body localization and topological phases. Var-
ious interpretability and reliability methods along with different types of
learning could be combined for an automatic detection of order parameters
governing the data as well as for the complete discovery of unknown phase
diagrams. Finally, the anomaly detection schemes can be useful at the in-
tersection of quantum experiments and quantum tomography with ML or
Hamiltonian learning. Detection of the most noisy and spurious measure-
ments would allow for their removal from the training set that would im-
prove the ML model. Other ideas include understanding how the notion of
similarity evolves during the training of an ML model or how it varies with
the increasing overparametrization of a model.

Within this research path, we advocate the use of interpretable and reli-
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able ML in science. Without these properties, we cannot learn much from the
ML model when applying it to unknown physical systems, nor understand
its problems with capturing the topological or many-body localization sig-
natures. Moreover, interpretation and reliability methods indicate whether
the ML model has learned the problem accurately and can be trusted. We
hope that our work opens the road to the systematic use of interpretabil-
ity and reliability methods in ML applied to physics and, more generally,
science.
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Nomenclature

Physics quantities

δij Kronecker delta

Ĥ Hamiltonian

〈r̂2〉 cloud size

〈Ŝz〉 magnetization

H Hilbert space

kB Boltzmann constant

Machine learning quantities

b model biases

K number of classes in a classi-
fication problem

θ̃ converged θ

D data set

n size of D, number of training
examples

η learning rate

m dimensionality of data point
x, number of data features

f̂ model with converged θ

I influence function

L loss (or cost, or error) func-
tion

d size of θ, number of model pa-
rameters

θ model parameters or weights

H Hessian matrix
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List of acronyms

AE autoencoder

AI artificial intelligence

BO bond-order

CDW charge-density wave

CNN convolutional neural
network

DFT discrete Fourier
transform

DL deep learning

GAP global average pooling

I influence function

LE local ensemble

LL Luttinger liquid

LOO leave-one-out

ML machine learning

MSE mean-squared error

NISQ noisy
intermediate-scale
quantum

NN neural network

OOD out-of-distribution

PCA principal component
analysis

Relat-I relative influence
function

RRKM Rice-Ramsperger-
Kassel-Marcus

RUE resampling
uncertainty estimation

SGD stochastic gradient
descent

VAE variational
autoencoder
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Appendices

A Hamiltonian matrix elements of molecular
systems

Here, we provide matrix elements of the components of the Hamiltonian
given by eq. (2.17) defined in eqs. (2.2), (2.4), (2.5) and (2.9) in the computa-
tion basis of |n, J,MJ , j1, j2, S,MS , s1, s2〉 ≡ |n〉|J,MJ , j1, j2〉|S,MS , s1, s2〉
as described in section 2.5. For the remainder of this appendix, for concise-
ness by 〈ĤX〉 we mean:

〈n, J,MJ , j1, j2, S,MS , s1, s2|ĤX |n′, J ′,M ′, j′1, j′2, S′,M ′S , s′1, s′2〉. (1)

The elements of the Hamiltonian matrix, Ĥtrap = ∑2
i=1

p̂2
i

2m +∑2
i=1

1
2mωz

2
i

describing the motion of molecules in a trap, are:

〈Ĥtrap〉 = δnn′δJJ ′δMM ′δj1j′1δj2j′2δSS′δMSM
′
S
δs1s′1

δs2s′2
~ω
(
n+ 1

2

)
. (2)

The elements of the Hamiltonian matrix, Ĥrot = ∑2
i=1B ĵ2

i describing the
internal rotational structure of molecules (section 2.2), are:

〈Ĥrot〉 = δnn′δJJ ′δMM ′δj1j′1δj2j′2δSS′δMSM
′
S
δs1s′1

δs2s′2

×B (j1(j1 + 1) + j2(j2 + 1)) .
(3)
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The elements of the Hamiltonian matrix, Ĥspin–rot = ∑2
i=1 γ ŝi · ĵi describing

the spin-rotation coupling within molecules (section 2.2), are:

〈Ĥspin–rot〉 = δnn′δMtot,M ′tot
δj1j′1δj2j′2δs1s′1

δs2s′2

×
j1∑

m1=−j1

j2∑
m2=−j2

j1∑
m′1=−j1

j2∑
m′2=−j2

〈
j1m

′
1j2m

′
2
∣∣JMJ

〉 〈
j1m

′
1j2m

′
2
∣∣J ′M ′J〉

×
s1∑

ms1=−s1

s2∑
ms2=−s2

s1∑
m′s1=−s1

s2∑
m′s2=−s2

〈
s1m

′
s1j2m

′
2
∣∣SMS

〉 〈
s1m

′
s1s2m

′
s2

∣∣S′M ′S〉
×
(
δm1m′1

δm2m′2
δms1m

′
s1
δms2m

′
s2
γ(m1ms1 +m2ms2)

+γ

2
(
δms1+1,m′s1

δms2 ,m
′
s2
δm1−1,m′1δm2m′2

+δms1 ,m
′
s1
δms2+1,m′s2

δm1m′1
δm2−1,m′2

+δms1−1,m′s1
δms2 ,m

′
s2
δm1+1,m′1δm2,m′2

+δms1 ,m
′
s1
δms2−1,m′s2

δm1m′1
δm2+1,m′2

))
.

(4)
The elements of the Hamiltonian matrix, ĤStark = −∑2

i=1 d̂i · E describing
the Stark effect when the electric field is aligned with the system quantiza-
tion axis (Ez 6= 0) and when it is not (Ex 6= 0), (section 2.4), are:

〈ĤStark(Ez 6= 0)〉 = −dEzδnn′δSS′δMSM
′
S
δs1s′1

δs2s′2

×
j1∑

m1=−j1

j2∑
m2=−j2

j′1∑
m′1=−j′1

j′2∑
m′2=−j′2

〈j1m1j2m2|JM〉
〈
j′1m

′
1j
′
2m
′
2
∣∣J ′M ′〉

×δm1m′1
δm2m′2

(
δj1±1,j′1δj2j′2

√
2j1 + 1
2j′1 + 1

〈
j1010

∣∣j′10
〉 〈
j1m110

∣∣j′1m1
〉

+

+δj1j′1δj2±1,j′2

√
2j2 + 1
2j′2 + 1

〈
j2010

∣∣j′20
〉 〈
j2m210

∣∣j′2m2
〉)

(5)

〈ĤStark(Ex 6= 0)〉 = dEx√
2
δnn′δSS′δMSM

′
S
δs1s′1

δs2s′2

×
j1∑

m1=−j1

j2∑
m2=−j2

j′1∑
m′1=−j′1

j′2∑
m′2=−j′2

〈j1m1j2m2|JM〉
〈
j′1m

′
1j
′
2m
′
2
∣∣J ′M ′〉

×
(
δj1±1,j′1δj2j′2δm2m′2

√
2j1 + 1
2j′1 + 1

〈
j1010

∣∣j′10
〉

×
(
δm1+1,m′1

〈
j1m111

∣∣j′1m′1〉− δm1−1,m′1
〈
j1m11(−1)

∣∣j′1m′1〉)
(6)
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+δj1j′1δj2±1,j′2δm1m′1

√
2j2 + 1
2j′2 + 1

〈
j2010

∣∣j′20
〉

×
(
δm2+1,m′2

〈
j2m211

∣∣j′2m′2〉− δm2−1,m′2
〈
j2m21(−1)

∣∣j′2m′2〉)) ,
The elements of the Hamiltonian matrix, ĤZeeman = 2µB

∑2
i=1 ŝi ·B describ-

ing the Zeeman effect (section 2.4), are:

〈ĤZeeman〉 = δnn′δJJ ′δMM ′δj1j′1δj2j′2δSS′δMSM
′
S
δs1s′1

δs2s′2
2µBMSB , (7)

The elements of the Hamiltonian matrix, Ĥiso = ∑
α gαδ(z1−z2)|α〉〈α| mod-

eling the isotropic short-range interaction between molecules (section 2.3),
are:

〈Ĥiso〉 = δJJ ′δMM ′δj1j′1δj2j′2δSS′δMSM
′
S
δs1s′1

δs2s′2
g0ϕn(0)ϕn′(0) , (8)

The elements of the Hamiltonian matrix, Ĥaniso = ∑
α 6=α′ gαα′δ(z1 − z2)

(|α〉〈α′| + h.c) modeling the anisotropic short-range interaction between
molecules (section 2.3), are:

〈Ĥaniso〉 = δJJ ′δMM ′δj1±k,j′1δj2∓k,j′2δSS′δMSM
′
S
δs1s′1

δs2s′2

g±kϕn(0)ϕn′(0) ,
(9)

Finally, the elements of the Hamiltonian matrix, Ĥdip = −δ(z1−z2)
(
2d̂1,0d̂2,0

+d̂1,1d̂2,−1 + d̂1,−1d̂2,1
)
modeling the electric dipole-dipole interaction be-

tween molecules (section 2.3), are:

〈Ĥdip〉 = −d2ϕn(0)ϕn′(0)δSS′δMSM
′
S
δs1s′1

δs2s′2
δj1±1,j′1δj2±1,j′2

×
√(2j1 + 1

2j′1 + 1

)(2j2 + 1
2j′2 + 1

) 〈
j1010

∣∣j′10
〉 〈
j2010

∣∣j′20
〉

×
j1∑

m1=−j1

j2∑
m2=−j2

j′1∑
m′1=−j′1

j′2∑
m′2=−j′2(

δm1+1,m′1δm2−1,m′2
〈
j1m111

∣∣j′1m′1〉 〈j2m21(−1)
∣∣j′2m′2〉

+δm1−1,m′1δm2+1,m′2
〈
j1m11(−1)

∣∣j′1m′1〉 〈j2m211
∣∣j′2m′2〉+

+2δm1m′1
δm2m′2

〈
j1m110

∣∣j′1m1
〉 〈
j2m210

∣∣j′2m2
〉)

,

(10)

where δij is the Kronecker delta and ϕn(0) is a harmonic oscillator wave
function for state n at point z = 0.
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B Derivation of the molecular cloud size
The wave function of the studied molecular system is following:

|Ψk〉 =
∑

n,J,M,j1,j2,
S,MS ,s1,s2

Ckn,J,M,j1,j2,S,MS ,s1,s2 |n〉|J,M, j1, j2〉|S,MS , s1, s2〉 , (11)

where

|n〉 = 1√
2nn!

π−1/4 exp
{
−z2

2 Hn(z)
}
,

|J,M, j1, j2〉 =
∑

m1,m2

〈j1,m1, j2,m2|J,M〉|j1,m1〉|j2,m2〉 ,

|S,MS , s1, s2〉 =
∑

ms1 ,ms2

〈s1,ms1 , s2,ms2 |S,MS〉|s1,ms1〉|s2,ms2〉 .

(12)

where Hn are the Hermite polynomials, 〈j1,m1, j2,m2|J,M〉 and 〈s1,ms1 ,
s2,ms2 |S,MS〉 are the Clebsch-Gordan coefficients, while |ji,mi〉 and |si,msi〉
are the eigenfunctions of the rotational and spin angular momenta of the
molecule i. The size of the molecular cloud is then:

〈r̂2〉 = 〈Ψk| r̂2 |Ψk〉 =
∑
n,n′

〈n| r̂2 ∣∣n′〉 =

=
∑
n,n′

1√
2n+n′n!n′!

π−
1
2

∫ ∞
0

dr r2e−r
2
Hn(r)Hn′(r)

(13)

∫ ∞
0

dr r2e−r
2
Hn(r)Hn′(r)

1
=

= n!n′!
minn,n′∑
N=0

2N
(n−N)!(n′ −N)!N !

∫ ∞
0

dr r2e−r
2
Hn+n′−2N (r)

2
= n!n′!

minn,n′∑
N=0

2N (n+ n′ − 2N)!
(n−N)!(n′ −N)!N !

×
floor(n+n′

2 −N)∑
k=0

(−1)k2n+n′−2N−2k−1Γ(n+n′−2N+3
2 − k)

k!(n+ n′ − 2N − 2k)!

(14)

Hermite polynomials’ properties used in calculations:

1 Hm(z)Hn(z) = m!n!∑minm,n
N=0

2NHm+n−2N (z)
(m−N)!(n−N)!N ! [472],

2
∫∞

0 t2e−t
2
Hn(t)dt = n!∑floor(n2 )

k=0
(−1)k2n−2k−1Γ(n+3

2 −k)
k!(n−2k)! [473].
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C Leave-one-out training

Influence functions (Is) are an approximation of the leave-one-out (LOO)
training [415]. Hence, to understand the idea behind influence functions we
should first start with the concept of LOO.

Its name speaks for itself: for an LOO training one retrains an ML algo-
rithm (in our case a CNN) while leaving one training example zr = (xr, yr)
away. The aim of such a retraining is to find out how the loss L(ztest) for a
given test example ztest = (xtest, ytest) changes compared to the training on
the whole training set D = {zi}ni=1 which also contains zr. More concretely,
after training an NN on the full data set D, one obtains the parameters θ̃
that minimize the training error. When retraining the NN on the training
set without zr, i.e., D \ {zr} one obtains a new minimum of the training
error with the parameters θ̃D\{zr}.

Because of the highly non-convex nature of NNs, it is important that the
retraining does not start from a new random initialization of the parame-
ters, but from the minimum θ̃. Moreover, to make sure that the shift in the
minimum comes only (or at least mostly) from the removal of a single train-
ing poine, it is useful to remove all sources of stochasticity. For example,
disable all Dropout layers during LOO training. In particular, keep all ran-
dom seeds fixed. If possible, load all data in one batch. Also, before starting
the LOO training, do a sanity check with a selected (small!) learning rate
that you intend to use in the LOO. If you see any changes of the training
loss function at this point, think whether you have for sure converged yet to
the minimum or of stochasticity that you have not removed yet or rethink
the selection of the learning rate. Maybe take the average of these jumps
and treat it as a baseline for LOO results. Last but not least, remember to
use regularization. In our numerical experiments with an Iris data set, we
have seen limited correlation between LOO results and influence functions
when the NN had zero regularization.

After the LOO training, make a prediction with your new model on
given test point and check the change of the test loss, ∆L ≡ L(ztest, θ̃) −
L(ztest, θ̃D\{zr}) before and after the retraining. The influence of a training
point can be both helpful (∆L > 0) and harmful (∆L < 0). Why certain
training examples are harmful or helpful for the prediction of a test example
is mostly due to the similarity of features of zr and xtest. If the two examples
have very similar features and the same label, the NN can learn by example
and therefore will be able to predict the label reliably. If they have very
similar features but different labels it is likely that the NN gets confused by
the training example. In general training points being the closest in the ∆L
space can be understood as the most similar.

Once the most influential points are identified, we can analyze what
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characteristics and features are relevant to the NN to see them as most
similar and influential to each other. This can be especially useful in phase
classification problems where the analysis of ∆L enables the recovery of pat-
terns being crucial for distinguishing the phases. The use of this technique
to check the influence of every training point in D on a given test point is,
however, prohibitively expensive, as the model has to be retrained for each
removed z.

D Derivation of influence functions

This appendix mostly follows appendix A of Ref. [411]. The derivation of
influence functions (Is) starts with an observation that removal of a training
point z is mathematically the same as upweighting (or changing the weight)
a training point by ε = − 1

n , where n is the size of the training set:

θ̃−z = arg min
θ

1
n

∑
zi 6=z

L(zi, θ) ≡

≡ θ̃ε,z = arg min
θ

1
n

n∑
i=1

L(zi, θ) + εL(z, θ) |ε=− 1
n
.

(15)

Firstly, let us derive the change of the model parameters after upweight-
ing a training point.

How upweighting a training point changes model parameters

Iup, params(z)
def= dθ̃ε,z

dε

∣∣∣∣∣
ε=0

= ? (16)

θ̃ε,z = arg minθ{
1
n

n∑
i=1

L(zi,θ) + εL(z,θ)} =

= arg minθ{R(θ) + εL(z,θ)}
(17)

Since θ̃ε,z minimizes {R(θ)+ εL(z,θ)}, it meets the following condition:

∇R(θ̃ε,z) + ε∇L(z,θ) = 0

Now we can use Taylor expansion of {R(θ) + εL(z,θ)} and expand it
around θ̃, using the fact that with ε→ 0, θ̃ε,z → θ̃:
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{∇R(θ̃) + ε∇L(z, θ̃)}+
≡∆ε︷ ︸︸ ︷

(θ̃ε,z − θ̃){∇2R(θ̃) + ε∇2L(z, θ̃)} ≈ 0 (18)

∆ε ≈ −
∇R(θ̃) + ε∇L(z, θ̃)
∇2R(θ̃) + ε∇2L(z, θ̃)

(19)

We note that ∇R(θ̃) = 0 as θ̃ minimizes R (by definition provided
in eq. (17)). We keep only O(ε) terms. As ∇2L(z, θ̃) is proportional to
ε (probably you can check it rigorously using Schwartz norm), we ignore
ε∇2L(z, θ̃) as it is of order O(ε2), and we have:

∆ε ≈ −ε
∇L(z, θ̃)
∇2R(θ̃)

.

∇2R(θ̃) = − 1
n

∑n
i=1∇2L(zi, θ̃) is nothing else but a Hessian calculated at

the minimum/optimum model’s parameters. In eq. (18) we made a silent,
yet very non-trivial to meet, assumption, that R is twice-differentiable and
strictly convex in θ̃ what provides that Hessian exists, is positive definite
(PD), and therefore has an inverse. It means that it has only positive eigen-
values. Noting that d∆ε

dε = d(θ̃ε,z−θ̃)
dε = dθ̃ε,z

dε , as θ̃ does not depend on ε allows
us to write the final result:

Iup, params(z)
def= dθ̃ε,z

dε

∣∣∣∣∣
ε=0

= −H−1
θ̃
∇L(z, θ̃) . (20)

We made therefore two assumptions on the way.

1. Hessian is PD ⇔ the loss function is strictly convex. If it has
eigenvalues equal to zero, its inverse does not exist.

2. Small additional assumption: we assumed that the loss function deriva-
tives are continuous around the minimum, because then, from Schwartz
theorem, one can change the order of derivatives in Hessian without
consequences, and Hessian is equal to its transpose.

How removing a training point z impacts the test loss of ztest

In the previous section, we have obtained that the influence of upweight-
ing z on the model parameters θ̃ is:

Iup, params(z) = dθ̃ε,z
dε

∣∣∣
ε=0

= −H−1
θ̃
∇θL(z, θ̃) , (21)
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where Hθ̃ = 1
n

∑
i∇2

θL(zi, θ̃) is the Hessian of the empirical risk calculated
for parameters corresponding to the minimum, θ̃. In the last step we can
find how upweighting z affects the loss of a test point ztest by applying the
chain rule.

Iup, loss(z, ztest) = dL(ztest, θ̃ε,z)
dε

∣∣∣
ε=0

=

= −∇θL(ztest, θ̃)TH−1
θ̃
∇θL(z, θ̃)

(22)

Finally, since removing a point from the training set is the same as up-
weighting it by ε = −1/n we can linearly approximate:

I ≈ − 1
n
Iup,loss(z, ztest) = 1

n
∇θL(ztest, θ̃)TH−1

θ̃
∇θL(z, θ̃) . (23)

E Stochastic estimation of the Hessian’s inverse
The stochastic estimation of the inversed Hessian is based on the so-

called von Neumann series and was proposed by Ref. [426].

Matrix inversion with von Neumann series

Von Neumann series can be written for any squared matrix, T :

Sn =
n−1∑
k=0

T k = I + T + . . .+ Tn−1, S0 = I . (24)

Sn is called the geometric series generated by T .
Note the following relation (analogous to geometric series in R):

(I − T )Sn = (I − T )
n−1∑
k=0

T k = (I − T )(I + T + T 2 + . . .+ Tn−1 =

= I − T + T − T 2 + T 2 − T 3 + . . .+ Tn−1 − Tn =
= I − Tn

(25)

Series Sn = ∑n−1
k=0 T

k converges for n→∞ if and only if ||T || < 1⇔ |λi| < 1
for each eigenvalue λi of T . If this condition holds, then Tn with n→∞ is
vanishingly small, I − T is invertible, and we have:

∞∑
k=0

T k = (I − T )−1 (26)

After plugging M = I − T :

M−1 =
∞∑
k=0

(I −M)k (27)
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This gives an approximation for the matrix inversion by truncating eq. (27)
at finite k.

Stochastic estimation of the inversed Hessian

Following the derivation from the previous section, we use the expansion
from eq. (27) to recursively calculate the Hessian. We define the finite series
for H as

H−1
j :=

j∑
i=0

(I −H)i (28)

and can rewrite it recursively as

H−1
j := I + (I −H)H−1

j−1 (29)

It can be validated by replugging H−1
j−1 into the equation or simply by

expanding the sum and reindexing the elements. As long as the eigenvalues
of the Hessian are smaller than 1, the series converge, and in our calculations
we have needed up to 1000 iterations (the number of iterations is called in
Ref. [411] and in our code [434, 435] the recursion depth, t).

What to do if the eigenvalues of the Hessian are not smaller than 1? Then
before making an approximation, you need to scale down your Hessian (our
code [434, 435], the scale is called scale), and it should be a little larger
than the largest absolute eigenvalue. Usually, if not always, it is a positive
one, of course. Then, after getting an approximate inverse of the Hessian,
you need to scale it back.

We can make additional approximation to make computation even more
feasible. Instead of calculating the Hessian for the whole training set, we can
approximate it by calculating it only on a batch of training points sampled
from the whole set at every step. To reduce the variance of the results, the
series should be then calculated a few times (this number is called in in
Ref. [411] and in our code [434, 435]), and the results should be averaged.
Koh & Liang [411] showed that for tr < n, training set size, i.e. when not all
training points were taken into account, the approximation for the inverse
Hessian was already good enough to get close to 1:1 ratio between LOO
trainings and Is for a CNN trained on the MNIST database.

We substitute therefore the full Hessian H by an estimator E[H]. We
sample test points zi and calculate the estimators ∇2

θL(zi, θ). In Ref. [426],
they are referred to as samples Xi. Starting with the identity H−1

0 v = v
and using the recursion from before, we arrive to:

H̃−1
t v := v + (I −∇2

θL(zt, θ))H̃−1
t−1v (30)
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∣∣Appendices

This estimation is efficient due to two main reasons. Firstly, it takes
advantage of results by Pearlmutter (1994) [474] who rigorously proved that
the time complexity of calculating the so-called Hessian-vector product is
approximately same as time complexity of gradients computations which
is linear in number of parameters O(

[
∇2
θL
(
zi, θ̃

)]
v) ∼ O(∇θL

(
zi, θ̃

)
) ∼

O(d).
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