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Abstract

Both theories, Maxwell source-free electromagnetism and vacuum Einstein theory of grav-
ity allow for solutions with a rich topological structure. In the dissertation, the author
generalizes original description of electromagnetism with the help of conformal Yano–
Killing tensors to the case of the Plebański–Demiański black hole. The proposed formal-
ism is used to describe electromagnetism and weak gravitational field with a non-trivial
topological structure in Minkowski space-time. These solutions, called Hopfions, are very
simply and effectively described in the proposed formalism. Topological structure of
electromagnetic fields is characterized by the concept of helicity. In the dissertation,
the author proposes an analogical quantity for linearized gravitational field. Quasi-local
(super-)energy densities are compared for gravitational Hopfion. The generating function
for Hopfions displays a close relationships with the so-called Magic Field. Magic Field is
obtained from the electromagnetic field of Kerr–Newman black hole in the m → 0 limit,
see section 4.1.1. The author has analyzed the relationships between Hopfions and Magic
Field.

Streszczenie

Obie teorie, bezźródłowa teoria elektromagnetyzmu Maxwella i próżniowa teoria gra-
witacji Einsteina pozwalają na istnienie rozwiązań o bogatej strukturze topologicznej.
W pracy uogólniono autorski opis elektromagnetyzmu z wykorzystaniem konforemnych
tensorów Yano-Killinga do czasoprzestrzeni uogólnionej czarnej dziury Plebańskiego –
Demiańskiego. Wykorzystano zaproponowany formalizm do opisu elektromagnetyzmu i
słabego pola grawitacyjnego o nietrywialnej strukturze topologicznej w czasoprzestrzeni
Minkowskiego. Rozwiązania te, nazywane Hopfionami, bardzo prosto i efektywnie są
opisywane w zaproponowanym formalizmie. Strukturę topologiczną rozwiązań elektro-
magnetycznych charakteryzuję wielkość nazywana skrętnością (z ang. helicity). W pracy
autor zaproponował analogiczną wielkość dla zlinearyzowanej grawitacji. Funkcja generu-
jąca dla Hopfionów wykazuje związki z tzw. elektromagnetycznym Polem Magicznym.
Pole Magiczne otrzymuje się z pola elektromagnetycznego czarnej dziury Kerra–Newmana
w granicy masy dążącej do zera, zobacz rozdział 4.1.1. Autor przeanalizował związki
pomiędzy Hopfionami i Polem Magicznym.
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Chapter 1

Introduction

Electric and magnetic fields were described by Faraday, Gauss, Maxwell and others in the
XIX century. It was a beginning of consistent approach to electromagnetism, nowadays
known as Maxwell theory. Topology has been, and still is, fundamental in the development
of electromagnetism. Oriented field lines and field fluxes are, up to today, basic concepts
to understand electromagnetic system. In 1833 Gauss [24] considered two linked circuits
and established the relation between the magnetic field induced by the currents along
the circuits and a topological invariant known as the linking number. An extension of
this concept led to the definition of magnetic helicity. Moreover, Maxwell equations admit
curious solutions with rich topological structure. For example, Hopfion (see section 3.1) is
one of the physical realization of Hopf fibration (see section 3.1.1) which can be obtained
experimentally [30]. Chapter 3 of the thesis is a detailed study of such concepts.
In XX century, theoretical astrophysics has been dominated by Theory of Relativity.

During that time, Maxwell theory has been generalized for the case of curved spacetime.
One of the crucial issues has been, and still is, a precise description of propagation of
electromagnetic wave around a black hole. In particular, the electrodynamics around
Kerr background has been examined in 1970s using Newman–Penrose formalism [13, 14].
Chapter 2 is devoted for that aspects and their generalization.

1.1 Content

The thesis consists of introduction and three main chapters. Each of main chapters has
a structure of separate project which is weakly related to the others. To clarify the expo-
sition, a full explanation of a complex, scalar framework for electromagnetism/linearized
gravity has been placed in the appendix. The appendices contains also some technical
results and proofs. The work is organized as follows:
Chapter 1 contains overview of the thesis, used notation and conventions. Index of

symbols is given in the end of the thesis, see appendix E.
In chapter 2, we propose a geometric construction of Klein–Gordon like equation for

reduced electromagnetic data on Plebański–Demiański generalized black hole. Our con-
struction is based on conformal Yano–Killing (CYK) two-form. CYK tensors were often
investigated as a tool to study symmetries and construct conserved quantities (see [38]
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and references therein). In electrodynamics there are two kinds of conserved quantities
which are defined with the help of CYK tensors. The first one corresponds to electric
or magnetic charge and is linear with respect to the Maxwell field. The second kind is
quadratic and expresses energy, linear momentum or angular momentum of the electro-
magnetic tensor.
The chapter 2 begins with a brief introduction to CYK two-forms, section 2.1. In particu-
lar, we present properties of CYK two-forms which are useful in electrodynamics, section
2.2. The next section 2.3.1 is focused on properties of Plebański–Demiański spacetime.
We analyze non-standard properties of CYK tensor in Plebański–Demiański background
(paragraph 2.3.3) which enable one to reduce Maxwell’s equation to a single generalized
Klein–Gordon equation for a complex scalar.
In chapter 3, we analyze topological aspects of electromagnetism and linearized Ein-

stein theory. The chapter is started with a short presentation of Hopf fibration (section
3.1.1). The Hopf fibration is one of the simplest non-trivial fibration of three-dimensional
sphere. We will study electromagnetic and gravitational solutions based on the Hopf
projection which is a surjective map sending circles on S3 to points on S2. These circles
weave nested toroidal surfaces and each is linked with every other circle exactly once,
creating the characteristic Hopf fibration.
Hopfion or Hopf soliton (paragraph 3.1.2) is a ‘solitonary’ solution of spin-N field which
has rich topological structure related to Hopf fibration. The characteristic structure of
hopfion can be easily seen on the integration curves of the vector field (see figures 3.2 and
3.3). The structure of closed, linked field lines of hopfions propagates without intersec-
tions along the light cone. Relation with Hopf index is discussed (section 3.1.3).
In 1977 Trautman [66] proposed the first electromagnetic solutions which were derived
from the Hopf fibration. Rañada developed them to propagating solutions in refs [51, 52].
Last years, these little known solutions become more interesting because hopfions have
successful applications in many areas of physics including electromagnetism [53, 30], mag-
netohydrodynamics [40], hadronic physics [57] and Bose–Einstein condensate [41]. The
definition of hopfion was extended in [65]. It includes a class of spin N-fields and uses this
to classify the electromagnetic and gravitational hopfions by algebraic type.
Next, we generalize electromagnetic Hopfions (section 3.3) with the help of original frame-
work which is proposed by Prof. Jezierski [32]. The advantages of used description is
given in introduction to section 3.2. In particular, properties of topological charge – he-
licity (paragraph 3.3.3) has been investigated in the framework. Most interesting results
in this chapter has been obtained for gravitational Hopfions (section 3.4). Quasi-local
(super-)energy densities are compared for gravitational Hopfion (paragraph 3.4.2). The
analog of helicity for weak gravitational field is proposed in section 3.4.5.
In chapter 4, we try to obtain a new electromagnetic solution by generalization of

the idea of imaginary shift in time for fundamental solution of wave equation (section
4.2). It turns out that Magic Field electromagnetic solution, described in section 4.1.2
(see potential (4.16)), can be obtained, analogically to Hopfions, by an imaginary shift in
spatial direction z → z − ıa, applied to Columb field potential. The imaginary shift has
been successfully used many times in different contexts. One of the most significant result
obtained in this way is the Kerr–Newman metric. Kerr–Newman black hole is generated
from Reissner–Nordström metric with the help of Newman–Janis algorithm [21].
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The chapter 4 begins with a brief introduction to Magic Field (section 4.1.1). Magic Field
is obtained as a limit of Kerr–Newman potential when mass tends to zero. Next, descrip-
tion of electromagnetism in Newman–Penrose formalism is given (paragraph 4.1.3). In
this case, Newman–Penrose formalism enables one to recover Maxwell two-form from a
reduced data which is adapted to spheroidal foliation. A new reduced data for electro-
magnetism, called Magic Hopfion, is obtained by an arbitrary complex shift in spacetime
direction (section 4.2.1) which is applied to the fundamental solution (4.48). Next, Magic
Hopfion solution is given explicitly as Maxwell two-form (4.107). Properties of Magic
Hopfions are presented in paragraph 4.3.

1.2 Overview of presented results

In this section we give a brief description of presented material in the thesis. In particular,
we highlight the own results obtained by the author.

In chapter 2, the survey on conformal Yano–Killing (CYK) two forms 2.1 is based on
the author’s supervisor results. In particular, we followed [38] and the references within.
The section 2.2 is based on joint work of the author and his supervisor [37]. The con-
struction is original. The description of Plebański–Demiański spacetime in 2.3.1 is build
on the Plebański–Demiański original paper [50] and further analysis done by Griffiths and
Podolský [27]. The most general solutions of CYK two forms for Plebański–Demiański
generalized black hole, presented in 2.3.2, are obtained by Kubizňák and Krtouš [43].
However, the analysis of Weyl endomorphism in the space of two-forms for Plebański–
Demiański black hole 2.3.2 has been done by the author. Fackerell and Ipser reduced
Maxwell’s equations on Kerr background to a single second order partial differential equa-
tion for a middle Newman–Penrose electromagnetic scalar1 ϕ0, see [22]. In [37], we have
given an alternative proof of Fackerell–Ipser equation, which has been further generalized
on Plebański–Demiański background. Generalized wave equation for electromagnetism
2.3.3 is one of the author’s key result.

In chapter 3, introduction to Hopf fibration and description of Hopfion (sections 3.1.1-
3.1.3) are based on classical papers, see review paper [4] and references within. The
analysis of electromagnetic and gravitational Hopfions in terms of reduced data (para-
graphs 3.2-3.5) is based on the joint paper of the author and his supervisor [58]. In
particular, the gravitational analog of helicity, proposed in paragraph 3.4.5, has been ob-
tained independently. The result has been further generalized to Helicity array for spin-2
field with the help of duality symmetry by Andersson’s group [2].

The sections about Magic Field in chapter 4, 4.1.1 and 4.1.2, follow Lynden–Bell’s
papers [44, 45]. Description of Newman–Penrose formalism is based on Chandrasekhar
book [14]. Non-mentioned content of the chapter 4 has been obtained by the author.

1Definition of ϕ0 is given in section 4.1.3.
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1.3 Notation and conventions

Our starting point will be a four-dimensional (except section 2.1) spacetime manifold M ,
equipped with a metric tensor of Lorentzian signature gµν . In section 2.1, an arbitrary
metric with a signature (− + ++) is assumed. In section 2.3, we use various forms
of Plebański–Demiański metric which are described directly in the text. In chapter 3,
Minkowski spacetime is the background with the metric g = −dt2+δkldx

kdxl. The three-
dimensional spatial metric is denoted by δab. In chapter 4, Minkowski metric in oblate
spheroidal coordinates is used (4.6). Together with t = const surfaces with induced
Euclidean metric in cylindrical coordinates δkldxkdxl = dz2 + dR̂2 + R̂2dφ2.
We will denote by T...(µν)... the symmetric part and by T...[µν]... the antisymmetric part

of tensor T...µν... with respect to indices µ and ν (analogous symbols will be used for more
indices). In the thesis we use geometric units c = G = 1.
We assume existence of two nested levels of foliation in our spacetime manifold, a

1+1+2 dimensional splitting. We work in an adapted set of coordinates — each foliation
consist of level sets of an appropriate coordinate. This simplify the structure of equations
and facilitate the distinction between objects belonging to different geometries. The first
foliation will be the splitting of M into a family of spatial hypersurfaces, on which the
temporal coordinate x0 (interchangeably denoted as t) is constant. The hypersurface of
constant t is denoted by Σt. Bold letters means three-dimensional spatial vectors on Σt

and ‘·’ is a three-dimensional scalar product. For example, E · C = EkC lδkl. On these
“slices of constant time” Σt, we distinguish the second foliation which splits each Σt into
a collection of two-dimensional (2D) submanifolds, labelled by coordinate x3. Its leaves
will be topological spheres. x3 is interchangeably denoted by R. In chapter 3, we consider
only spherical foliations, where R parametrizes standard spheres of radius R.
For convenience we use index notation with Einstein summation convention. The

range of indices for tensor objects is denoted through an indexing convention:

� Full spacetime dimension is denoted by small Greek indices (α, β, γ, · · · ), except θ
and φ, which run over all coordinates on M — (0, 1, 2, 3).

� Coordinates on Σ are denoted by small Latin indices (a, b, c, · · · ), except t and r,
which run over (1, 2, 3).

� Coordinates on the leaves of two-dimensional foliation (spheres) are denoted by big
Latin indices (A,B,C, · · · ), except R, and take values (1, 2).

This choice of coordinates means that projecting an object with only covariant indices to
a lower dimension is performed simply by restricting the range of indices. In chapter 4,
Newman–Penrose tetrad is introduced. We denote

e{a}µ∂µ (a = 1, 2, 3, 4) ,

enclosure in curly brackets distinguishes the tetrad indices from the tensor indices.
In chapters 3 and 4, we use diagonal metrics only which do not require to distinguish

between the inverse metric tensors on foliations. The covariant derivatives in dimensions
four, three and two will be denoted by: “;”, “|”, and “||” respectively. Interchangeably,
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the symbol ∇ is used for the four-dimensional covariant derivative. All the covariant
derivatives used in the manuscript are those coming from the appropriate Levi–Civita
connection. When discussing linearized gravity (mainly in section 3.4) those will be
derived from the background metric. ‘,’ denotes the partial derivative ∂. We use the
symbol □ for the d’Alembert operator □F = ∇µ∇µF = F;µ

;µ. By △, we denote a
three-dimensional Laplace operator △F = F|k

|k. The 2D Laplace–Beltrami operator
on a unit sphere is denoted by ∆. Let us note that for a sphere of radius R we have

gABF||AB = 1/R2∆F . The two-dimensional trace is denoted by
(2)

X= gCDXCD , except
(2)

Φ ,

and the two-dimensional traceless part is given by
◦
X AB = XAB − 1

2
gAB

(2)

X .

Spherical harmonics on a unit sphere

Spherical harmonics are eigenfunctions of the Laplace–Beltrami operator on a unit 2D-sphere:

∆ Yl(θ, ϕ) = −l(l + 1)Yl(θ, ϕ). (1.1)

This equation, for a given integer l ≥ 0, possesses a (2l + 1)-dimensional space of solu-
tions. However, the distinction between different solutions for the same eigenvalue will
not be important in our considerations and “Yl(θ, ϕ)” will be treated simply as a symbolic
representation of the whole space of solutions for l. See (3.35) and the comments below
for details.
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Chapter 2

Conformal Yano–Killing two-form
and its application in
electrodynamics on generalized black
hole

2.1 Survey on Conformal Yano–Killing
two-forms

We present a review of classical results about CYK two-forms. The section is based on
[38] and classical references within.

2.1.1 Fundamental properties

In this section, we assume M be an n-dimensional (n > 1) manifold.
Let Qµν be a skew-symmetric tensor field (two-form) on M . By Qλκσ we denote a

(three-index) tensor which is defined as follows:

Qλκσ(Q, g) := Qλκ;σ +Qσκ;λ −
2

n− 1

(
gσλQ

ν
κ;ν + gκ(λQσ)

µ
;µ

)
. (2.1)

Q has the following algebraic properties:

Qλκµg
λµ = 0 = Qλκµg

λκ , Qλκµ = Qµκλ , (2.2)

i.e. it is traceless and partially symmetric.

Definition 2.1.1. A skew-symmetric tensor Qµν is a conformal Yano–Killing tensor (or
simply CYK tensor) for the metric g iff Qλκσ(Q, g) = 0.

In other words, Qµν is a conformal Yano–Killing tensor if it fulfils the following equa-
tion:

Qλκ;σ +Qσκ;λ =
2

n− 1

(
gσλQ

ν
κ;ν + gκ(λQσ)

µ
;µ

)
, (2.3)
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(first proposed by Tachibana and Kashiwada, cf. [63, 64]).
A more abstract way of describing a CYK two-form with the help of twistor theory

can be found in [6], [47], [56] or [59]. CYK two-form is defined as the element of a kernel
of a twistor operator Q→ TwistQ defined1 as follows:

∀X TwistQ(X) := ∇XQ− 1

p+ 1
X⌟dQ+

1

n− p+ 1
g(X) ∧ d∗Q .

However, to simplify the exposition, we prefer abstract index notation which also seems
to be more popular.
Equation (2.3) may be transformed into the following equivalent form:

Qλ(κ;σ) −Qκ(λ;σ) +
3

n− 1
gσ[λQκ]

δ
;δ = 0 , (2.4)

and this is a generalization of the equation

Qλ(κ;σ) −Qκ(λ;σ) + ησ[λQκ]
δ
;δ = 0 , (2.5)

which appeared in Penrose and Rindler book [49, p. 396] as the equation for skew-
symmetric tensor field Qµν in Minkowski spacetime with the metric ηµν .
Using the following symbol:

ξµ := Qν
µ;ν , (2.6)

we can rewrite equation (2.3) in the form:

Qλκ;σ +Qσκ;λ =
2

n− 1

(
gσλξκ − gκ(λξσ)

)
. (2.7)

Let us notice that if ξµ = 0, then Qµν fulfils the equation:

Qλκ;σ +Qσκ;λ = 0 . (2.8)

Skew-symmetric tensors fulfiling equation (2.8) are called in the literature Yano tensors
(or Yano–Killing tensors; see [25], [42], [70]). It is obvious that a two-form Qµν is a
Yano tensor iff Qµν;λ is totally skew-symmetric in all indices. So, if Qµν fulfils (2.8), then
ξµ = gκλQκµ;λ = 0 (because gκλ is symmetric in its indices). That means that each Yano
tensor is a conformal Yano–Killing tensor, but not the other way around. The necessary
and sufficient condition for a CYK tensor to be a Yano tensor is the vanishing of ξµ.
CYK tensors are the conformal generalization of Yano tensors. More precisely, for any

positive function Ω on M the tensor Q transforms with respect to the conformal rescaling
as follows:

Qλκσ(Q, g) = Ω−3Qλκσ(Ω
3Q,Ω2g) , (2.9)

which implies the following
1Obviously TwistQ corresponds to tensor Q(Q, g) (in abstract index notation). Here X is a vector

field, Q is a p-form, g : TM → T ∗M is a Riemannian metric, d∗ denotes coderivative etc. Conformal
Killing p-forms are defined with the help of natural differential operators on Riemannian manifolds. We
know from the representation theory of the orthogonal group, that the space of p-form valued one-forms
(T ∗M

⊗∧p
T ∗M) decomposes into the orthogonal and irreducible sum of forms of degree p+ 1 (which

gives the exterior differential d), the forms of degree p − 1 (defined by the coderivative d∗) and the
trace-free part of the partial symmetrization (the corresponding first order operator is denoted by Twist).
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Theorem 2.1.1. If Qµν is a CYK tensor for the metric gµν, then Ω3Qµν is a CYK tensor
for the conformally rescaled metric Ω2gµν.

Proof of the formula (2.9) is given in [38, Appendix A]. The form of equation (2.8)
does not remain unchanged under conformal rescaling. But that equation is a particular
case of equation (2.3) whose form remains unchanged under such a transformation. That
means that if Q is a Yano tensor of the metric g, then although in general Ω3Q is not
a Yano tensor of the metric Ω2g, it is a CYK tensor. In this sense equation (2.3) is a
conformal generalization of equation (2.8).

Wave equation satisfied by CYK tensor

By a direct calculation, one can prove the following equality. If Qλσ, Rσ
λνµ, and Rµν are a

CYK tensor, a Riemann tensor and a Ricci tensor respectively then the following equality
holds:

∇µ∇µQλκ = Rσ
κλνQσ

ν −Rσ[κQλ]
σ , (2.10)

The above equality was proved in [38].

2.1.2 The connection between CYK tensors and Killing tensors

It is a known fact that the “square” of a Yano tensor is a Killing tensor. It turns out
that in the same way CYK tensors are connected with conformal Killing tensors. In the
following definitions we will restrict ourselves to the Killing tensors and conformal Killing
tensors of rank 2, although one can consider tensors of any rank ([17], [42]).

Definition 2.1.2. A symmetric tensor Aµν is a Killing tensor iff it fulfils the equation:

A(µν;κ) = 0. (2.11)

Definition 2.1.3. A symmetric tensor Aµν is a conformal Killing tensor iff it fulfils the
equation:

A(µν;κ) = g(µνAκ) , (2.12)

for a certain covector Aκ.

It is obvious that equation (2.11) is a particular case of (2.12). It is easy to see that
the covector Aκ is unambiguously determined by equation (2.12) (it can be shown e.g. by
contracting the equation with gµν). To be more precise:

Aκ =
1

n+ 2
(2Aµ

κ;µ + Aµ
µ;κ).

From the above definitions one can easily see that a (conformal) Killing tensor is a gen-
eralization of a (conformal) Killing vector (cf. [12], [29], [54], [67], [69]).
Obviously, if Qµν is a skew-symmetric tensor, then Aµν defined by the formula

Aµν = QµλQ
λ
ν , (2.13)
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is a symmetric tensor. It turns out that if a skew-symmetric tensor Qµν fulfils equa-
tion (2.3) (it is a CYK tensor), then Aµν defined by (2.13) fulfils equation (2.12) with

Aκ =
2

n− 1
Qκ

λQλ
δ
;δ , (2.14)

(therefore – since Aµν is symmetric – it is a conformal Killing tensor). If Qµν is a Yano
tensor, then Aκ defined by formula (2.14) vanishes, thus Aµν (defined by (2.13)) is a
Killing tensor. That enables one to formulate the following (cf. Prop. 5.1. in [25] or
35.44 in [42])

Theorem 2.1.2. If Qµν and Pµν are (conformal) Yano–Killing tensors, then the sym-
metrized product Aµν := Qλ(µPν)

λ is a (conformal) Killing tensor.

Proof. Let Qµν and Pµν be conformal Yano-Killing tensors. We have then

Qκλ;σ +Qσλ;κ =
2

n− 1

(
gσκξλ − gλ(κξσ)

)
,

and

Pκλ;σ + Pσλ;κ =
2

n− 1

(
gσκζλ − gλ(κζσ)

)
,

where ξµ = Qν
µ;ν and ζµ = P ν

µ;ν . Contracting the first of the above equations with Pν
λ,

we get

Qκλ;σPν
λ +Qσλ;κPν

λ =
2

n− 1

(
gσκξλPν

λ − 1

2
Pνκξσ −

1

2
Pνσξκ

)
.

Symmetrizing this equation in κ, σ and ν, we get (since P is skew-symmetric)

Qλ(κ;σPν)
λ = − 1

n− 1
g(κσPν)

λξλ .

Analogously we get

Qλ(κPν
λ
;σ) = − 1

n− 1
g(κσQν)

λζλ .

Finally, if Aκν := Qλ(κPν)
λ, then

A(κν;σ) =
(
Qλ(κPν

λ
)
;σ) = Qλ(κ;σPν)

λ +Qλ(κPν
λ
;σ)

= − 1

n− 1

(
g(κσPν)

λξλ + g(κσQν)
λζλ
)
= g(κνAσ) ,

where

Aν :=
1

n− 1

(
P λ

νξλ +Qλ
νζλ
)
.

This means that Aκν is a conformal Killing tensor. If now Q and P are Yano tensors,
then ξµ = ζµ = 0, which implies Aµ = 0. In that case Aκν is a Killing tensor.
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2.1.3 The connection between CYK tensors and Killing vectors

Let us denote by Rσ
κλµ the Riemann tensor describing the curvature of the manifold

(M, g). We use now an integrability condition

2Qλκ;νµ =
2

n− 1

(
gλµξκ;ν + gνλξκ;µ − gµνξκ;λ − gκ(λξµ);ν + gκ(µξν);λ − gκ(νξλ);µ

)
+QσλR

σ
κµν +QσµR

σ
κλν +QσνR

σ
κλµ + 2QσκR

σ
µνλ , (2.15)

which is proven [38, Appendix B].
A contraction in indices κ and ν gives us:

gµλξ
σ
;σ + (n− 2)ξ(µ;λ) = (n− 1)Rσ(µQλ)

σ , (2.16)

where by Rµν we denote the Ricci tensor of the metric gµν . Taking the trace of (2.16) we
obtain:

(2n− 2)ξσ ;σ = (n− 1)RσµQ
µσ = 0 ,

where the last equality results from the fact that Rσµ is a symmetric tensor and Qµσ is a
skew-symmetric one. Therefore, we have ξσ ;σ = 0 which, for n > 2, implies

ξ(µ;λ) =
n− 1

n− 2
Rσ(µQλ)

σ . (2.17)

If M is an Einstein manifold, i.e. its Ricci tensor Rµν is proportional to its metric gµν ,
then using equation (2.17) we obtain

ξ(µ;ν) = −n− 1

n− 2
Λgσ(µQν)

σ = −n− 1

n− 2
ΛQ(νµ) = 0 .

Here Rµν = −Λgµν and by Λ we denote a cosmological constant. The condition ξ(µ;λ) = 0
means that ξµ is a Killing vector field of the metric gµν . That enables one to formulate
the following

Theorem 2.1.3. If gµν is a solution of the vacuum Einstein equations with cosmological
constant and Qµν is its CYK tensor, then ξµ = ∇νQ

νµ is a Killing vector field of the
metric gµν.

Let us notice that this fact reduces the number of Einstein metrics possessing a non-
trivial CYK tensor. The existence of a solution of equation (2.3) which is not a Yano
tensor implies that our manifold M has at least one symmetry. In the case of a Yano
tensor that does not have to be true.

Hodge duality

In the space of differential forms on an oriented manifold one can define a mapping called
the Hodge duality (Hodge star). It assigns to every p-form an (n − p)-form (where n is
the dimension of the manifold). We consider the case of n = 4 and p = 2. The Hodge star
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then becomes a mapping which assigns to a two-form ω a two-form ∗ω. We can express
this mapping in the following way:

∗ωαβ =
1

2
εαβ

µνωµν , (2.18)

where εαβγδ is the antisymmetric Levi-Civita tensor2 determining orientation of the man-
ifold ( 1

4!
εαβγδdx

α ∧ dxβ ∧ dxγ ∧ dxδ is the volume form of the manifold M). For the
Lorentzian metric we have ∗ ∗ ω = −ω. Due to CYK tensor being a two-form, it is rea-
sonable to ask what are the properties of its dual. Let Q be a CYK tensor and ∗Q its
dual. Moreover, let us introduce the following covector χµ := ∇ν ∗Qνµ. It was proved in
[38], that

∗Qλµ;ν + ∗Qνµ;λ =
2

3

(
gνλχµ + gµ(λχν)

)
. (2.19)

It is not hard to recognize that this is Eq. (2.3) for the tensor ∗Q. It proves the following
theorem:

Theorem 2.1.4. Let gµν be a metric tensor on a four-dimensional differential manifold
M . An antisymmetric tensor Qµν is a CYK tensor of the metric gµν if and only if its
dual ∗Qµν is also a CYK tensor of this metric.

The above theorem implies that for every four-dimensional manifold, solutions of Eq.
(2.3) exist in pairs – to each solution we can assign the dual solution (in the Hodge duality
sense).

2.2 Description of electrodynamics with the help of
CYK two-form

We use vacuum Maxwell equation in terms of Maxwell field. Maxwell field Fµν is a two-
form (antisymmetric tensor) field. The vacuum Maxwell equation in terms of Maxwell
field takes the form {

dF = 0 ,

d ∗F = 0 ,
⇐⇒

{
F[µν;λ] = 0 ,

Fµν
;µ = 0 ,

(2.20)

where ∗ denotes Hodge duality (2.18). We consider real Maxwell fields. Taking a di-
vergence of the first Maxwell equation (2.20) and combining with (2.22), we can easily
transform the d’Alembertian of Maxwell field:

□Fµν = Fµν;λ
;λ

= Fλν;µ
;λ − Fλµ;ν

;λ

2It can be defined by the formula εαβγδ =
√

−det gµνϵαβγδ, where

ϵαβγδ =

 +1 if αβγδ is an even permutation of 0, 1, 2, 3
−1 if αβγδ is an odd permutation of 0, 1, 2, 3
0 in any other case
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= Fλν
;λ
µ︸ ︷︷ ︸

0

−gρλ(Rα
λρµFαν +Rα

νρµFλα)

−Fλµ
;λ
ν︸ ︷︷ ︸

0

+gρλ(Rα
λρνFαµ +Rα

µρνFλα)

= gρλ [(Rα
λρνFαµ −Rα

λρµFαν) + (Rα
µρνFλα −Rα

νρµFλα)]

= (Rλ
αλνFµ

α −Rλ
αλµFν

α) + (Rα
νµλF

λ
α −Rα

µνλF
λ
α) ,

and we obtain
□Fµν = −2Rλ

αλ[µFν]
α − 2Rα

[µν]λF
λ
α , (2.21)

where, according to our conventions, the commutator of covariant derivatives for any
tensor field Tµν on M reads:

Tλκ;νµ − Tλκ;µν = TσκR
σ
λνµ + TλσR

σ
κνµ . (2.22)

The above identity follows directly from the Riemann tensor definition.
Combining Maxwell equation (2.20) with CYK equation (2.3), we can check that the

term ∇λFµν∇λQ
µν is vanishing. More precisely,

0 =

0︷ ︸︸ ︷
F[µν;λ]Q

µν;λ

= Fµν;λQ
µν;λ + 2Fλµ;νQ

µν;λ

= 3Fµν;λQ
µν;λ + 2Fλµ;ν(Q

µν;λ +Qµλ;ν)

= 2Fλµ;ν

[
Qµν;λ +Qµλ;ν +

2

3
(gνλQρµ

;ρ + gµ(λQν)ρ
;ρ)

]
︸ ︷︷ ︸

Qµνλ=0

+3Fµν;λQ
µν;λ − 2F λ

µ;λ︸ ︷︷ ︸
0

Qρµ
;ρ

= 3Fµν;λQ
µν;λ . (2.23)

Finally, the d’Alembertian of Maxwell–CYK contraction takes the following form:

□(FµνQ
µν) = Qµν□Fµν + F µν□Qµν + 2Fµν;λQ

µν;λ

= Qµν□Fµν + F µν□Qµν . (2.24)

The last equality is implied by (2.23). The above considerations lead to the following

Theorem 2.2.1. Let Fµν, Qµν and Rσ
λνµ be respectively a Maxwell field, a CYK tensor

and the Riemann tensor corresponding to the metric gµν. Then

□(FµνQ
µν) +

1

2
F σλRσλµνQ

µν +QµνRσµFν
σ = 0 . (2.25)

Proof. Making use of equations (2.10), (2.21) and (2.24), we can transform Maxwell–CYK
contraction in the following way:

□(FµνQ
µν) = −2Qµν

(
Rλ

σλµFν
σ +Rσ

µνλF
λ
σ

)
+ F µν

(
Rσ

νµλQσ
λ +RσµQν

σ
)
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= −QµνRσµFν
σ +Rσµνλ(2Q

µνF σλ − F µνQσλ)

= −1

2
F σλRσλµνQ

µν −QµνRσµFν
σ ,

(the last equality uses Bianchi identity Rσ
[µνλ] = 0).

It is convenient to split the Riemann tensor into Weyl tensor Cσλµν , Ricci tensor Rµν

and curvature scalar R, and rewrite Eq. (2.25) in the equivalent form(
□− 1

6
R

)
(FµνQ

µν) +
1

2
F σλCσλµνQ

µν = 0 . (2.26)

We may note here that the above equation (2.26) is crucial for our further investigation.
For flat spacetime Eq. (2.26) reduces to the wave equation□ϕ = 0, where ϕ := FµνQ

µν is a
scalar function. We will show in the next section that for Plebański–Demiański generalized
black hole (2.45) we can reduce Eq. (2.26) to wave equation with potential. Let us remind:
a Weyl tensor Cσ

λµν remain unchanged under a conformal rescaling gµν → Ω2gµν for any
positive function Ω on M . Obviously, Fµ.ν does not depend on g. Hence, it is conformally
invariant. Moreover, tensor Qλµν (see (2.1)) transforms under the conformal rescaling in
the following way:

Qλµν(Q, g) = Ω−3Qλµν(Ω
3Q,Ω2g) ,

which implies

Proposition 2.2.1. If Qµν is a CYK tensor for the metric gµν, then Ω3Qµν is a CYK
tensor for the conformally rescaled metric Ω2gµν.

Moreover, the (upper index) tensor Qαβ = gαµgβνQµν rescales by Ω−1. In addition
to this, let ϕ be a scalar function on n-dimensional manifold. If ϕ rescales conformally
ϕ̃→ Ωkϕ, where k = 2−n

2
, then the operator presented below transforms under conformal

change of a metric (g̃µν = Ω2gµν) in the following way:(
□̃− 1

4

n− 2

n− 1
R̃

)
ϕ̃ = Ωk−2

(
□− 1

4

n− 2

n− 1
R

)
ϕ , (2.27)

where R is a curvature scalar.
The above facts lead to a proposition presented below.

Proposition 2.2.2. The equation (2.26) remains unchanged under conformal transfor-
mation of the metric: g → g̃ = Ω2g .

2.3 Electrodynamics on the Plebański–Demiański gen-
eralized black hole

2.3.1 Plebański–Demiański generalized black hole

Plebański–Demiański original metric

The complete family of type D spacetimes in four dimensions, including the black hole
spacetimes like the Kerr metric, the metrics describing the accelerating sources as the
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C-metric, or the nonexpanding Kundt’s class type D solutions, can be represented by
the general seven-parameter metric discovered by Plebański and Demiański [50]. Grif-
fiths and Podolský [27] put this metric into a new form which enabled a better physical
interpretation of parameters and simplified a procedure how to derive all special cases.
The original form of the Plebański–Demiański metric [50] is given by

g =Ω
2

[
P (dτ + r2dσ)

2

r2 + p2
− Q (dτ − p2dσ)

2

r2 + p2
+
r2 + p2

P
dp2 +

r2 + p2

Q
dr2

]
. (2.28)

This metric fulfills the Einstein-Maxwell equations with the electric and magnetic charges
e and g and the cosmological constant Λ when functions P = P (p) and Q = Q(r) take
the particular form

Q = k + e2 + g2 − 2mr + ϵr2 − 2nr3 − (k + Λ/3)r4 ,

P = k + 2np− ϵp2 + 2mp3 −
(
k + e2 + g2 + Λ/3

)
p4.

(2.29)

The conformal factor is
Ω

−1
= 1− pr , (2.30)

and the vector potential reads

Aµdx
µ = − 1

r2 + p2
[
er
(
dτ − p2dσ

)
+ gp

(
dτ + r2dσ

)]
. (2.31)

One can perform the transformations of coordinates and parameters to obtain the com-
plete family of type D spacetimes. Following [27] we introduce two new continuous pa-
rameters α (the acceleration) and ω (the ”twist”) by the rescaling

p→
√
αωp, r →

√
α

ω
r, σ →

√
ω

α3
σ, τ →

√
ω

α
τ , (2.32)

and relabel the other parameters as

m→
(
α
ω

)3/2
m, n→

(
α
ω

)3/2
n, e→ α

ω
e,

g → α
ω
g, ϵ→ α

ω
ϵ, k → α2k .

(2.33)

Then the metric (2.28) and the vector potential 2.31 take the form

g = Ω̂2

[
P̂ (ωdτ + r2dσ)

2

r2 + ω2p2
− Q̂ (dτ − ωp2dσ)

2

r2 + ω2p2

+
r2 + ω2p2

P̂
dp2 +

r2 + ω2p2

Q̂
dr2
]
, (2.34)

Âµdx
µ = − 1

r2 + ω2p2
[
er
(
dτ − ωp2dσ

)
+ gp

(
ωdτ + r2dσ

)]
, (2.35)

with
Ω̂−1 = 1− αpr , (2.36)
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and

Q̂ = ω2k + e2 + g2 − 2mr + ϵr2 − 2αn

ω
r3 −

(
α2k +

Λ

3

)
r4 , (2.37)

P̂ = k +
2n

ω
p− ϵp2 + 2αmp3 −

(
α2
(
ω2k + e2 + g2

)
+ ω2Λ

3

)
p4 . (2.38)

When Λ = 0, the line element (2.34) already contains the Kerr–Newman solution for a
charged rotating black hole. It also contains the charged C-metric for accelerating black
holes. However, it does not include the type D non-singular NUT solution [48]. To cover
all these cases and their generalizations, it is necessary to introduce a specific shift in
the coordinate p. In fact, this procedure is essential to obtain the correct metric for
accelerating and rotating black holes. We therefore start with the metric (2.34) with
(2.37)-(2.38), and perform the coordinate transformation

p =
l

ω
+
a

ω
p̃ , τ = t− (l + a)2

a
φ , σ = −ω

a
φ , (2.39)

where a and l are new arbitrary parameters. By this procedure, we obtain the metric

g =
1

Ω2

{
Q

ρ2
[
dt−

(
a(1− p̃2) + 2l(1− p̃)

)
dφ
]2 − ρ2

Q
dr2

− P̃

ρ2

[
adt−

(
r2 + (l + a)2

)
dφ
]2

− ρ2

P̃
dp̃2

}
, (2.40)

where
Ω = 1− α

ω
(l + ap̃)r ,

ρ2 = r2 + (l + ap̃)2 ,

P̃ = a0 + a1p̃+ a2p̃
2 + a3p̃

3 + a4p̃
4 ,

Q = (ω2k + e2 + g2)− 2mr + ϵr2 − 2α
n

ω
r3 −

(
α2k +

Λ

3

)
r4 ,

and we have put

a0 =
1

a2

(
ω2k + 2nl − ϵl2 + 2α

l3

ω
m−

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
l4
)
,

a1 =
2

a

(
n− ϵl + 3α

l2

ω
m− 2

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
l3
)
,

a2 = −ϵ+ 6α
l

ω
m− 6

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
l2 ,

a3 = 2α
a

ω
m− 4

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
al ,

a4 = −
[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
a2 .

These solutions generally have seven essential parameters m, n, e, g, α, ω and Λ.
They also have two parameters k and ϵ which can be scaled to any convenient values.
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In addition, we have the further parameters a and l which can be chosen arbitrarily. In
practice, it is convenient to choose a and l to satisfy certain conditions which simplify the
form of the metric, and then to re-express n and ω in terms of these parameters.
Let us highlight that the properties of the solutions in this family depend significantly

on the character of the function P̃ (p̃). In fact, as an arbitrary quartic, P̃ can have up
to four distinct roots, and Lorentzian space-times only occur for ranges of p̃ for which
P̃ > 0. When more than one such range exists, the different possibilities correspond to
distinct space-times which have different physical interpretations.
When P̃ has no roots, this function can only be positive and p̃ ∈ (−∞,∞).
For the cases in which P̃ has at least one root, without loss of generality we can

choose the parameters a and l so that such a root occurs at p̃ = 1. The metric (2.40) is
then regular at p̃ = 1 which corresponds to a coordinate pole on an axis, and it is then
appropriate to take φ as a periodic coordinate.
When another distinct root of P̃ exists, it is always possible to exhaust the freedom in

a and l to set the second root at p̃ = −1. The metric component a(1− p̃2) is then regular
at this second pole while the component 2l(1 − p̃) is not. Thus, the metric is regular at
p̃ = 1, but a singularity of some kind occurs at p̃ = −1. (In fact, unless l = 0, the region
near p̃ = −1 contains closed timelike lines.)

Plebański–Demiański generalized black hole

Next, we will concentrate on the physically most relevant particular case of the line
element (2.40) for which P̃ has at least two distinct roots and a0 > 0, so that we can set
a0 = 1. In this case, the surfaces spanned by p̃ and φ have positive curvature. With this
choice, and for the positive curvature case, both poles are located on a continuous axis.
We have now introduced through (2.39) a shift and scaling of p such that, if P̃ has at
least two roots, then it admits the two factors (1− p̃) and (1 + p̃). Thus

P̃ = (1− p̃2)(1− a3p̃− a4p̃
2) ,

which implies that the above coefficients must satisfy the conditions

a1 + a3 = 0 , a0 + a2 + a4 = 0 . (2.41)

These conditions provide two linear equations which specify the two parameters ϵ and n
in terms of a and l. Moreover, the condition a0 = 1 enable one to give a condition for the
parameter k. We have

ϵ =
ω2k

a2 − l2
+ 4α

l

ω
m− (a2 + 3l2)

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
, (2.42)

n =
ω2k l

a2 − l2
− α

(a2 − l2)

ω
m+ (a2 − l2)l

[
α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
, (2.43)(

ω2

a2 − l2
+ 3α2l2

)
k = a0 + 2α

l

ω
m− 3α2 l

2

ω2
(e2 + g2)− l2Λ . (2.44)
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If we additionally assume that p̃ is taken to cover the range between the roots p̃ = ±1
and it is natural to put p̃ = cos θ, where θ ∈ [0, π]. In this case, the metric (2.40) becomes

ds2 =
1

Ω2

{
Q

Σ

[
dt−

(
a sin2 θ + 4l sin2 θ

2

)
dφ
]2 − Σ

Q
dr2

− P̃
Σ

[
adt−

(
r2 + (a+ l)2

)
dφ
]2

− Σ

P̃
sin2 θ dθ2

}
,

(2.45)

where
Ω = 1− α

ω
(l + a cos θ) r ,

Σ = r2 + (l + a cos θ)2 ,

P̃ = sin2 θ (1− a3 cos θ − a4 cos
2 θ) ,

Q = (ω2k + e2 + g2)− 2mr + ϵr2 − 2α
n

ω
r3 −

(
α2k +

Λ

3

)
r4 ,

(2.46)

and
a3 = 2α

a

ω
m− 4α2 al

ω2
(ω2k + e2 + g2)− 4

Λ

3
al ,

a4 = −α2 a
2

ω2
(ω2k + e2 + g2)− Λ

3
a2 ,

(2.47)

with ϵ, n and k given by (2.42)–(2.44), setting a0 = 1. It is also assumed that |a3| and |a4|
are sufficiently small that P̃ has no additional roots with θ ∈ [0, π]. This solution contains
eight arbitrary parameters m, e, g, a, l, α, Λ and ω. Of these, the first seven can be varied
independently, and ω can be set to any convenient value if a or l are not both zero. We
present below a common physical interpretation of the parameters. Simultaneously, let us
note there are some subtleties related with the freedom of choice of ω. The interpretation
is blured when a few parameters are interfering. A common physical interpretation of the
parameters reads

m – mass of the black hole,

a – Kerr rotation parameter,

Λ – cosmological constant,

l – NUT parameter,

e – electric charge of the black hole,

g – magnetic charge of the black hole,

α – uniform acceleration of the black hole.

It was shown in [26] that, when Λ = 0, the metric (2.45) represents an accelerating and
rotating charged black hole with a generally non-zero NUT parameter. However, an arbi-
trary cosmological constant is now included so that the background is either Minkowski,
de Sitter or anti-de Sitter space-time. The special cases are generally well-known and
will not be discussed here. In the next parts of the thesis, we will restrict ourselves to the
generalized black hole spacetime with the particular choice of the parameter

ω = a . (2.48)
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2.3.2 CYK tensors for Plebański–Demiański spacetime

Known solutions

In four dimensions the integrability conditions for the existence of nondegenerate Killing-
Yano tensor restricts the Petrov type of spacetime to type D (see [20]). Demiański and
Francaviglia [18] demonstrated that from the known type D solutions only spacetimes
without acceleration of sources actually admit this tensor. Further generalization and
corrections done by Kubizňák and Krtouš [43] explicitly demonstrated that for the general
Plebański–Demiański metric exist a pair of CYK two-forms.
In [43], Kubizňák and Krtouš claimed that the general Plebański-Demiański metric

(2.28) admits two linearly independent CYK tensor solutions. The first one reads

Kµνdx
µ ∧ dxν = Ω

3 [
pdr ∧

(
dτ − p2dσ

)
+ rdp ∧

(
dτ + r2dσ

)]
. (2.49)

One can check that it fulfills the CYK equation (2.3). The second solution can be easily
obtained from the theorem 2.1.4

H = ∗K , (2.50)

or explicitly
H = Ω

3 [
rdr ∧

(
p2dσ − dτ

)
+ pdp ∧

(
r2dσ + dτ

)]
. (2.51)

Additionally, it turns out that
H = Ω

3
dB , (2.52)

where
2B =

(
p2 − r2

)
dτ + p2r2dσ . (2.53)

From the perspective of the next sections, CYK solutions for the generalized black hole
metric (2.45), with additional condition (2.48), are especially useful. The pair of solutions
of CYK equation has a form

Y =
1

Ω3

{
(l + a cos θ) dr∧

{
dt+ dφ

[
2l(cos θ−1)− a sin2 θ

]}
− r sin θ dθ ∧

{
adt− dφ

[
(l + a)2 + r2

]}}
, (2.54)

the theorem 2.1.4 assures the dual companion of Y is also CYK

∗Y =
1

Ω3

{
rdr ∧

{
dφ
[
2l(1− cos θ) + a sin2 θ

]
− dt

}
+

sin θ(l + a cos θ)dθ ∧
{
[r2 + (l + a)2]dφ− adt

}}
. (2.55)

Weyl endomorphism in the space of two-forms

Weyl curvature tensor has two pairs of antisymmetric indices. The algebraic structure
of the Weyl tensor Cµν

λκ allows it to be treated as an endomorphism in the space of
two-forms at each point p ∈M :

C :
2∧
T∗

pM →
2∧
T∗

pM .
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In the six-dimensional space
2∧
T∗

pM we can distinguish a two-dimensional subspace V
which is spanned by Y and ∗Y . V turns out to be an invariant subspace of the endomor-
phism C. More precisely,

Cµν
λκ (Yλκ + ı ∗ Yλκ) = 2V (Yµν + ı ∗Yµν) , (2.56)

where Cµν
λκ is the Weyl tensor for the generalized black hole metric (2.45), with additional

condition (2.48). The eigenfunction is

V = Vel(e, g) +
2Ω3a2

(a2 + 3α2a2l2 − 3α2l4)[r + ı(l + a cos θ)]3

{
4

3
ılΛ(a2 − 4l2) (2.57)

+

(
1 +

ıαl2

a
− ıαa

)[
m

(
1 +

ıαl2

a
+ ıαa

)(
1 +

ıαl2

a
− ıαl

)
+ ıl

(
1 +

ıαl2

a
− ıαa

)]}
,

Vel(e, g) has the form (e2+ g2) ·G. G is a complicated rational function of the Plebański–
Demiański parameters {m, a,Λ, l, α}.

2.3.3 Generalized wave equation for Plebański–Demiański black
hole

Now we return to the equation (2.26) and rewrite it for Yµν and its dual ∗Yµν multiplied
by ı: { (

□− 1
6
R
)
(FµνY

µν) + 1
2
F σλCσλµνY

µν = 0 ,(
□− 1

6
R
)
(ıFµν(∗Y µν)) + ı

2
F σλCσλµν(∗Y µν) = 0 .

(2.58)

Adding both sides and using (2.56), we obtain:

□ [Fµν (Y
µν + ı(∗Y µν))] + V F µν (Yµν + ı(∗Yµν)) = 0 . (2.59)

Introducing Φ =
ı

2
F µν [Yµν + ı(∗Yµν)], we obtain a scalar electromagnetic wave equation:

□Φ +

(
V − 1

6
R

)
Φ = 0 . (2.60)

The above calculations prove the following

Theorem 2.3.1. Dynamics of a Maxwell field in the Plebański–Demiański spacetime can
be reduced to the scalar wave equation:

□Φ +

(
V − 1

6
R

)
Φ = 0 , (2.61)

where Φ =
ı

2
F µν [Yµν + ı(∗Yµν)], R is a 4-dimensional curvature scalar and V is given by

(2.57).

The equation (2.61) has a complex potential, so it can not be treated as a two indepen-
dent real equations. The equation (2.61) does not obviously arise as the Euler-Lagrange
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equation for any real-valued Lagrangian, which means that we cannot use Noether’s the-
orem to construct conserved quantities from a symmetries for the solutions of (2.61).
If we restrict ourselves to the Kerr spacetime, the equation (2.61) reduces to the one

which was discovered for the first time by Fackerell and Ipser [22] in 1972. For this reason
we call it Fackerell–Ipser (F–I) equation. With the help of F–I equation, Andersson and
Blue [3] have proven the boundedness of a positive definite energy of electromagnetic field
on each hypersurface of constant time for a slowly rotated Kerr black hole.

2.3.4 Relations with a null tetrad

We introduce a null tetrad below as a convenient tool for some aspects of analysis of
algebraically special solutions of electromagnetism on Plebański–Demiański background.
However, the full description of electromagnetisms in Newman–Penrose formalism is given
in the section 4.1.3. The tetrad is build with two real and two complex vector fields: the
first two vector fields, Lµ∂µ and Nµ∂µ are a pair of real null vectors. The complex vector
fields in tetrad are given by a complex vector fieldMµ∂µ and its complex conjugate M̄µ∂µ.
We use the following conventions

LµNµ = −1 , M̄µMµ = 1 . (2.62)

with the all other scalar products being zero.
For Plebański–Demiański generalized black hole, we use symmetric tetrad for the

metric (2.45) with the condition (2.48). It has the form

Lµ∂µ =
Ω√
2Σ

{
1√
Q

[
r2 + (a+ l)2

]
∂t +

√
Q∂r +

a√
Q
∂φ

}
,

Nµ∂µ =
Ω√
2Σ

{
1√
Q

[
r2 + (a+ l)2

]
∂t −

√
Q∂r +

a√
Q
∂φ

}
, (2.63)

Mµ∂µ =
Ω√
2Σ

{
ı sin2 θ√

P̃

(
a+

2l

1 + cos θ

)
∂t +

√
P̃

sin θ
∂θ +

ı√
P̃
∂φ

}
,

and the corresponding cotetrad

Lµdx
µ =

1

Ω
√
2Σ

{√
Qdt− Σ√

Q
dr −

√
Q
[
2l(1− cos θ) + a sin2 θ

]
dφ

}
,

Nµdx
µ =

1

Ω
√
2Σ

{√
Qdt+

Σ√
Q
dr −

√
Q
[
2l(1− cos θ) + a sin2 θ

]
dφ

}
, (2.64)

Mµdx
µ =

1

Ω
√
2Σ

{
ıa
√

P̃dt− Σsin θ√
P̃

dθ − ı
[
r2 + (a+ l)2

]√
P̃dφ

}
.

The above tetrad in the Kerr limit become symmetric Carter tetrad.
The following relation between null cotetrad (2.64) and CYK two-forms (2.54)-(2.55) holds

ı (Y − ı ∗ Y ) = 2
r − ı(l + a cos θ)

Ω

[
N ∧ L+ M̄ ∧M

]
. (2.65)
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2.3.5 Special solutions of Maxwell equations

In this section we present a singular family of complex Maxwell fields on Kerr background.
The solution Φ of generalized F–I equation (2.60) constructed from any representant of
this family is equal to zero.
All the information about an electromagnetic field can be encoded in a single, complex

two-form
F = F + ı ∗ F . (2.66)

Recall that the Hodge star operator Eq. (2.18) for Kerr metric satisfies ∗2 = −id. A
two-form p is anti-self dual in Hodge sense if

∗p = −ıp . (2.67)

Note that F is anti-self dual. Maxwell equations in terms of F take a simple form

dF = 0 . (2.68)

We will call a two-form q algebraically special if it fulfils

q ∧ q = 0 . (2.69)

Robinson and Trautman have constructed a singular, anti-self dual and algebraically spe-
cial Maxwell field for optical geometry metrics (see [55]). We have constructed such
Maxwell field on Plebański–Demiański generalized black hole background. We will de-
noted it by F. F is built from two principal null covectors (2.64) and it takes the following
form:

F =
f(ξ, η)√
Q sin θ

N ∧ M̄ , (2.70)

where

dξ = dt+
a2 + 2al + l2 + r2

Q
dr +

ı sin θ(1− cos θ)(a cos θ + a+ 2l)

P̃
dθ , (2.71)

and
dη = dφ+

a

Q
dr +

ı sin θ

P̃
dθ . (2.72)

The functions Q = Q(r) and P̃ = P̃ (θ) are defined by the equations (2.46). We have also
found another family of solutions which satisfies conditions (2.67)–(2.69). We denote it
by H

H =
h(κ, σ)√
Q sin θ

L ∧M , (2.73)

where

dκ = dt− a2 + 2al + l2 + r2

Q
dr − ı sin θ(1− cos θ)(a cos θ + a+ 2l)

P̃
dθ , (2.74)

and
dσ = dφ− a

Q
dr − ı sin θ

P̃
dθ . (2.75)
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Chapter 3

Hopfions

3.1 Introduction and historical review

In this section we restrict our considerations to electrodynamics and linearized gravitation
separately on the Minkowski background. We analyze fields with non-trivial topological
structure. The concept of field lines whose tangents are the electric or magnetic field is
typically used to visualize static solutions of Maxwell’s equations. Propagating solutions
often have simple field-line structures and so are not usually described in terms of field
lines. In the present chapter, we study a propagating fields whose defining and most
striking property is the topological structure of its electric and magnetic field lines. Part
of the analysis can be further generalized for weak gravitational field.
Hopfion or Hopf soliton is a ‘solitonary’ solution of spin-N field which has rich topological
structure related to Hopf fibration. The Hopf fibration is the simplest non-trivial fibration
of three-dimensional sphere. We will study electromagnetic and gravitational solutions
based on the Hopf projection which is a surjective map sending great circles on S3 to points
on S2. These circles weave nested toroidal surfaces and each is linked with every other
circle exactly once, creating the characteristic Hopf fibration. The characteristic structure
of Hopfion can be easily seen on the integration curves of the vector field (see [30]). The
structure of closed, linked field lines of Hopfions propagates without intersections along
the light cone. We begin discussion about Hopfion with brief survey about Hopf fibration.
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3.1.1 Hopf fibration

Figure 3.1: The structure of Hopf fibration of
S3. A torus can be constructed out of circles
(fibres) in such a way that no two circles cross
and each circle is linked to every other one. In
the left picture in the second row, each circle
in such a configuration wraps once around each
circumference of the torus. The last picture in
the left column contains parts of nesting such
tori into one another, the whole of three di-
mensional space, including the point at R = ∞(
R3 ∪∞ ∼ S3

)
can be filled with linked circles.

The right column contains corresponding images
of fibres from left column under Hopf projection.

The Hopf fibration (also known as the Hopf
bundle or Hopf map) is non-trivial1 fibra-
tion of three-dimensional sphere S3 over
two-dimensional sphere S2. The Hopf bun-
dle has been discovered by Heinz Hopf [28]
in 1931, it is an influential early example
of a fiber bundle. In this case, S3 is com-
posed of fibers, where each fiber is a circle.
The projection map (many-to-one continu-
ous function) of Hopf bundle we denote by
h. The structure of Hopf fibration of S3 is
given on the figure 3.1. The inverse image
of any point in S2 under h is a circle in S3.
Each such circle is linked with any other
fiber exactly once. There are no crossings
between fibers. The pre-image of a ’circle
of latitude’ forms a tori from linked circles.
Each ’circle of latitude’ has a correspond-
ing tori in S3. The toruses are nested each
other — the last picture in the left column
contains fibres from toruses of three various
sizes. As the torus grows in size, the hole
in its center becomes smaller and smaller.
There are two ’special’ toruses: the circle
of unit radius that corresponds to the in-
finitely thin torus, and the straight line, or
circle of infinite radius, that corresponds
to an infinitely large torus. That infinitely
large torus is a so called horn torus — torus
without hole in the center.
We wish to define precisely the Hopf pro-
jection h as a map

h : S3 ∼ R3 ∪ {∞} → S2 ∼ C ∪ {∞} .
(3.1)

Let us introduce locally on S3 a Cartesian
coordinate system (x, y, z). With the help of stereographic projection, two dimensional
sphere can be parametrized (without one point) by a complex variable. The Hopf pro-
jection can in turn be expressed explicitly as a complex function in R3 whose lines of
constant amplitude and phase are circles, and surfaces of constant amplitude are nested

1By non-trivial fibration we mean a fibration which is not globally a Cartesian product of two topo-
logical spaces. Classical example of trivial fibration is a foliation of S3 by a one-parameter family of
two-dimensional spheres.
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tori

h(x, y, z) =
x+ ız

−y + ı
(
Ã− 1

) , (3.2)

where ı2 = −1 and Ã = 1
2
(x2 + y2 + z2 + 1).

There are numerous generalizations of the Hopf fibration. The unit sphere in complex
coordinate space Cn+1 fibers naturally over the complex projective space CPn with circles
as fibers, and there are also real, quaternionic, and octonionic versions of these fibrations.
In particular, the Hopf fibration belongs to a family of four fiber bundles in which the
total space, base space, and fiber space are all spheres. However, we do not discuss such
generalizations in the thesis.

3.1.2 Classical electromagnetic Hopfion

Let us consider a classical electromagnetic hopfions obtained by Rañada [51] in 1989.
The construction was cast in terms of differential forms, which provide a natural way to
map fields between spaces of differing dimensions. To highlight a direct relation between
electromagnetic fields and Hopf projection we use Euler potentials (see appendix C.1). In
terms of Euler potentials the resulting electric and magnetic fields have simple expressions:

B =
κ

2πi

∇η ×∇η̄
(1 + η̄η)2

, E =
κ

2πi

∇ζ ×∇ζ̄
(1 + ζ̄ζ)2

, (3.3)

with

ζ(x, y, z, t) =
(Ax+ ty) + i(Az + t(A− 1))

(tx− Ay) + i(A(A− 1)− tz)
, (3.4)

η(x, y, z, t) =
(Az + t(A− 1)) + i(tx− Ay)

(Ax+ ty) + i(A(A− 1)− tz)
, (3.5)

where A = 1
2
(x2 + y2 + z2 − t2 + 1). κ is a constant introduced so that the magnetic

and electric fields have correct dimensions. The electromagnetic fields fulfills vacuum
Maxwell equations (B.1)-(B.5). Since both ∇η and ∇η̄ are perpendicular to lines of
constant η, the magnetic field is tangential to lines of constant η. A similar argument
holds for the electric field and ζ. We have a direct relation between Euler potentials
(3.4)-(3.5) at t = 0 and Hopf projection (3.2)

ζ(x, y, z, 0) = h(x, y, z) , (3.6)
η(x, y, z, 0) = h(z, x,−y) . (3.7)

The field lines evolves in time without intersections. In the figures 3.2 and 3.3 we present
integral curves of magnetic field (3.3) for t = 0 and for t = 1 respectively. To investigate
topological properties of electromagnetic field lines we need to define appropriate charges,
like helicity, which are introduced in the next section.
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Figure 3.2: Integral curves of magnetic field
at t = 0.

Figure 3.3: Integral curves of magnetic field
at t = 1.

3.1.3 Topological charges

An intriguing configuration for field lines is to be linked and/or knotted. One of topological
charges – helicity – is strictly related with the number of linkedness and knotness of closed
integral curves of electromagnetic fields. Intuitively, two curves are linked if one curve
winds around the other at least once. A curve is knotted if it can not be transformed by
continuous deformation (without cutting) into a circle. Mathematically, such two curves
belongs to a different homotopy classes. In other words, knottedness can be treated as a
self-linkedness of a curve. An analytic description of linkedness and knotness arises from
Gauss linking integral.

Gauss linking integral

Let γ1, γ2 be two smooth, disjoint, closed, oriented curves in S3, and r1 (t1) , r2 (t2) their
parametrizations, with {t1, t2} ∈ [0, 2π]. To each pair (Q1, Q2) ∈ γ1×γ2 there corresponds
a point (t1, t2) on the torus T. The Gauss map ψ : T → S2 ⊂ S3 , associates to each point
(t1, t2) the unit vector

n (t1, t2) =
r1 (t1)− r2 (t2)

|r1 (t1)− r2 (t2)|
. (3.8)

The original formula of Gauss gives the following definition of linking integral:

Definition 3.1.1. The linking number L (γ1, γ2) of γ1 and γ2 is defined by

L (γ1, γ2) :=
1

4π

∫ 2π

0

∫ 2π

0

det

(
n,
∂n

∂t1
,
∂n

∂t2

)
dt1dt2 . (3.9)
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For a single field line c(τ) the self-linking number, L(c, c), is a measure of knottedness.
The linking integral L can also be computed visually by projecting the field lines onto
a plane and subsequently counting the crossings in an oriented way. Any two unlinked
curves have linking number zero. However, two curves with linking number zero may
still be linked (e.g. the Whitehead link). The linking number depends on orientations
of curves – reversing the orientation of either of the curves negates the linking number,
while reversing the orientation of both curves leaves it unchanged.
Gauss linking integral is a basis for one of the most important quantity in algebraic
topology — Hopf index. In the next sections we wish to discuss Hopf index and its
physical analog.

Hopf index

Consider a map f : S3 → S2. According to the Hopf theorem [28], if the map f is smooth,
the inverse image of any two distinct points ζ1 and ζ2 of S2, f−1 (ζ1) and f−1 (ζ2), are
two disjoint closed curves in S3 (or R3 ∪ {∞}). The linking number (3.9) of the curves
f−1 (ζ1) and f−1 (ζ2) does not depend on the particular pair of points, since by moving
continuously from (ζ1, ζ2) to (ζ ′1, ζ

′
2) the inverse images can neither untie nor tie any further

to one another2. That means the linking number (3.9) specifies a topological invariant for
any smooth mapping f : S3 → S2

H(f) = L
(
f−1 (ζ1) , f

−1 (ζ2)
)
,∀ζ1 ̸= ζ2 ∈ S2 , (3.10)

which is called the Hopf index. The Hopf index remains unchanged for a continuous
evolution (in any continuous parameter, e. g. time) of the map f . Thus the Hopf index
enables one to introduce equivalence relation between maps. It means that the class of
all smooth maps S3 → S2 can be classified in homotopy classes, each one labeled by an
integer number H(f), called the Hopf index.
An equivalent definition of the Hopf index is the following. Let us take the inverse

images of two distinct points ζ1 and ζ2 of S2. According to Hopf theorem [28], they are
two disjoint closed curves, their linking number (the Hopf index) is equal to the number
of times that one of them, say f−1 (ζ2), cuts a surface S1 spanned by the closed curve
f−1 (ζ1). This allowed Whitehead [68] to write the Hopf index as an integral in S3. We
discuss it briefly below.
Let us denote the area two-form in S2 by σ, so that it is normalized to unity,∫

S2
σ = 1 . (3.11)

Let us consider the pull-back of the area two-form by the map f : S3 → S2, denoted by
f ∗σ. The pull-back of the area two-form in S2 is closed, since

d (f ∗σ) = f ∗(dσ) = 0 , (3.12)

2Since, for this to happen, they should have at a certain moment a common point with two different
images by f .
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area two-form is a form of maximal degree, so dσ = 0. The cohomological properties of
S3 imply then that f ∗σ is also an exact form (Poincaré lemma), what means that there
is a one-form g in S3 such that

f ∗σ = dg . (3.13)

Whitehead showed [68] that the Hopf index H(f) can be written as the integral

H(f) =

∫
S3
g ∧ f ∗σ . (3.14)

In terms of vector fields the Hopf index can be defined with the help of Whitehead
vector and its vector potential. Whitehead vector is defined as follows

BW =
1

2
εijk
(
f ∗σ
)
jk
∂i . (3.15)

f ∗σ is an exact form means that there exist a vectorial potential for Whitehead vector

BW = ∇×AW , (3.16)

where AW is a vector field in R3 related to the one-form g in (3.13). The Hopf index as
the Whitehead integral (3.14) can be reformulated as

H(f) =

∫
S3
d3rAW ·BW . (3.17)

The vector potential AW is not defined uniquely, nevertheless the above integral is well-
defined. The above formula for Hopf index is very similar to magnetic helicity (3.21) —
physical analogue of topological charge.
Let us discuss (3.17) for a particular choice of coordinates. S2 via stereograpic projection
can be parametrized by a complex variable z. The area two-form is given by

σ =
1

2πi

dz ∧ dz̄
(1 + z̄z)2

. (3.18)

The pull-back f ∗σ reads

f ∗σ =
1

2πi

df ∧ df̄
(1 + f̄f)2

. (3.19)

The Whitehead integral (3.17) can be finally represent as

H(f) =
1

4πi

∫
S3
d3r

giε
ijk∂jf∂kf̄

(1 + f̄f)2
, (3.20)

where g = gidx
i is one-form defined by (3.13).
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Electromagnetic helicities

In the case of magnetic or electric fields, averaging the linking integral over all field-line
pairs together with the self-linking number over all field lines gives rise to the magnetic
and electric helicities:

hm =

∫
d3rA ·B , (3.21)

he =

∫
d3rC · E , (3.22)

where B and E are magnetic and electric fields respectively. Moreover, A is a vector
potential for magnetic field B = ∇×A. Analogically, iff the electric field is sourceless we
can introduce vector potential for electric field E := ∇×C.
We wish to discuss relations between Hopf index and electromagnetic helicities. We begin
by considering two complex scalar fields: ζ given by (3.4) and η defined by (3.5). Both
complex scalar functions can be interpreted, at each moment of time, as maps S3 → S2.
ζ(x, y, z, t) is a smooth function, so according to Hopf theorem (section 3.1.3), the linking
number of two inverse images ζ−1(ζ0) and ζ−1(ζ1) is the same for all the pairs of points
ζ0, ζ1 ∈ S2. This linking number is equal to the Hopf index H(ζ) of the map ζ. H(ζ) is
equal to H(ζ) at t = 0

H(ζ) = H(ζt=0) = H(h) = 1 . (3.23)

where we have used (3.2), (3.6) and (3.20). The result agrees with the number of linkedness
for Hopf fibration (see figure 3.1). Let us now analyze corresponding electric helicity he
for the electric field (3.3). Using (3.22) and (3.3), we have

he =

∫
S3
d3rC · E

=
κ

4πi

∫
S3
d3r

Ciε
ijk∂jζ∂kζ̄

(1 + ζ̄ζ)2
. (3.24)

We can evaluate electric helicity at t = 0, so (3.6) hold. The vector potential C at

t = 0,called
0

C can be chosen so that

0

C= κG−1(gh) , (3.25)

where G−1 : T ∗S3 → TS3 is the inverse metric isomorphism on S3 and gh is the potential
form defined by (3.13) for Hopf projection (f := h). Comparing (3.3), (3.6) and E = ∇×C
with (3.13) and (3.19) for Hopf projection (f := h) one can check that (3.25) is justified.
Continuing (3.24), electric helicity for classical Hopfion at t = 0 reads

he =
κ

4πi

∫
S3
d3r

0

Ci ε
ijk∂jh∂kh̄

(1 + h̄h)2

=
κ2

4πi

∫
S3
d3r

[G−1(gh)]iε
ijk∂jh∂kh̄

(1 + h̄h)2
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= κ2H(h)

= κ2 . (3.26)

The above relation clearly shows correspondence between electric helicity and Hopf index.
Similar considerations can be done for magnetic helicity.

3.2 Reduced data for electromagnetism and linerized
gravity

In [32] Professor Jezierski proposed a kind of reduced data for weak gravitational field.
Such reduced data which are represented as complex scalar field Ψ enables one to obtain
quasi-locally a full gravito-electric (magnetic) tensor for linearized gravity. Similar con-
struction can be obtained also for electromagnetic field. We would like to highlight two
advantages of the presented approach:

� Considerations (recovery procedure of full gravito-electromagnetic field, investiga-
tion of integral quantities, gauge-invariance, etc.) in our framework simplify signifi-
cantly when the reduced data Ψ for linearized gravity have one multipole structure.
That happens in the case of hopfions. It holds also in electromagnetic case. See the
comments nearby the equations (3.33) and (3.40) for electromagnetic case. Analog-
ically, (3.66) for linearized gravity.

� Presented approach is consistent with non-local nature of gravitational field. Non
local physical quantities, like energy (see section 3.4.2) or topological charge (see
section 3.4.5), can be easily represented in terms of our reduced data and its deriva-
tives.

Our framework can be easily generalized to curved spacetimes which possess spherical
symmetry. According to chapter 2, Conformal Yano–Kiling tensors enables one togener-
alize the approach for type D spacetimes.
The section has two main parts: the first is related to electromagnetic generalization of
hopfion, the second one presents the linearized gravity case.
In the first part, we briefly present a description of electromagnetic hopfion-like so-

lution with the help of a complex scalar field3 Φ. Its particular application to hopfions
drastically simplifies the description and enables one to generalize this notion easily. We
demonstrate a simple parametrization of such class of generalized hopfions by scalar wave
function Φ.
The constructed scalar represents true degrees of freedom of the field which carries a
gauge independent information of the field. The description of E-M field in terms of Φ
is presented in the appendix B. The reconstruction of electromagnetic field from such
function is presented. Next, we show the condition for conservation of topological charge
– electric (magnetic) helicity in time in terms of Φ.

3The E-M field can be equivalently represented by the complex scalar field Φ = (E + ıB) · r, where
E – electric vector field, B – magnetic vector field, r – position vector field and ı2 = −1. Cf. equation
(3.27) and the appendix B.
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In the second part, the description of linearized gravity hopfions in terms of the com-
plex scalar field Ψ is presented. This approach is also an original idea introduced by one of
us. Ψ plays analogical role to Φ in electromagnetism. The constructed scalar represents
true degrees of freedom of the weak gravitational field which carries a gauge indepen-
dent information of the field. Gravitational hopfions in terms of Ψ have a simple form
and they can be easily generalized to a class of solutions (3.66). The reconstruction of a
gravitational hopfion from such complex, scalar function is performed. We propose a new
definition of a topological charge for spin-2 field in analogy to the electromagnetic case.
Hamiltonian energy for linearized gravity is discussed. To indicate the difference between
the super-energy of spin-2 field and the Hamiltonian energy which is a physical energy
of gravitational field we present a few quasi-local (super-)energy densities in terms of the
complex scalar Ψ. We compare such quasi-local (super-)energy densities for gravitational
hopfion.
To clarify the exposition, a full explanation of a complex, scalar framework for elec-

tromagnetism/linearized gravity has been placed in the appendix.

3.3 Generalized hopfions in electrodynamics

3.3.1 Class of generalized hopfions

Consider a class of complex functions on the Minkowski background which are harmonic:

□Φ = 0 , (3.27)

where □ is the d’Alembert operator in Minkowski spacetime.
There exists a bijection between electromagnetic solutions and such complex scalar fields.
For a given Riemann-Silberstein vector Z := E + ıB, complex combination of electric
vector field E and magnetic vector field B, we simply define Φ := Z · r i.e. Φ is the
scalar product of Riemann–Silberstein vector and position vector (c.f. equation (B.7) and
comments nearby). Let us note that (3.27) covers with (2.61) in the Minkowski spacetime
limit. Hodge duality enables one to have

Φ =
ı

2
F µν [Yµν + ı(∗Yµν)] = [F µν + ı(∗F µν)] Ỹµν , (3.28)

where we we have used CYK two-form solution for Minkowski space Ỹ = Rdt ∧ dR, to
obtain Φ = Z · r.
To check the inverse mapping we need to show the reconstruction of the full EM data Z
from a wave function Φ.
From now, we restrict ourselves to use (t,Θ, φ,R) coordinates4. On each t = const. slice
we have a metric δabdxadxb = dR2 + R2

(
dΘ2 + sin2Θdφ2

)
. The procedure presented

below describes how to recover Riemann–Silberstein vector field Z from Φ. We would like
to stress that the presented procedure can be used for any smooth solution of (3.27).

4t and R denote respectively time and radial coordinate. Θ and φ parametrizes the two-sphere.
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The definition of Φ and some of the vacuum Maxwell equations (B.9) and (B.10) in terms
of scalar Φ (in index notation) take the form

∂R (RΦ) = −R2ZA
||A , (3.29)

∂tΦ = ıεABZA||B , (3.30)
Φ = RZR , (3.31)

where εAB is a Levi-Civita tensor5 on a sphere t =const., R =const. Hence, quasi-locally
the above formulae enable one to reconstruct Z. More precisely, according to Hodge–
Kodaira theory applied to differential forms on a sphere6, ZAdx

A can be decomposed into
a gradient and co-gradient of some functions α and β

ZA = α,A + εA
Bβ,B . (3.32)

The equations (3.29)-(3.32) allow to obtain ∆α and ∆β. The two-dimensional Laplace
operator ∆ on the unit sphere can be quasi-locally inverted with the help of methods
which are presented in appendix A. From now, we restrict ourselves to the function Φ
which is a l-pole like in the formula (3.40). For convenience, we define the time-radius
part ϕ of Φ:

Φ = ϕ(t, R)Yl(Θ, φ) , (3.33)

where Yl is the l-th spherical harmonics – eigenfunction of the two-dimensional Laplace
operator on the unit sphere, i.e.

∆Yl = −l(l + 1)Yl , (3.34)

where Yl is a spherical harmonic of l-th degree. The construction presented in the thesis,
except section 3.4.4, requires only two properties of spherical harmonics:

� Spherical harmonics are eigenfunctions of the two-dimensional Laplace operator:

∆Yl = −l(l + 1)Yl . (3.35)

� There are two distinguished cases with specified order m of spherical harmonic:
axially symmetrical harmonic (order of multipole m = 0) and a harmonic with a
maximal order m = ±l .

For convenience of the reader, we choose the following representation of spherical har-
monics:

Ylm = Plm(cosΘ)eımφ , (3.36)

5It can be defined by the formula εαβγδ = R2 sinΘϵαβγδ, where

ϵαβγδ =

 +1 if αβγδ is an even permutation of {t,Θ, φ,R}
−1 if αβγδ is an odd permutation of {t,Θ, φ,R}
0 in any other case

For lower dimensional case, we have εabc = εtabc and εAB = εRAB .
6See appendix A.3. There are no harmonic one-forms on a two-sphere.
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where Plm are the associated Legendre polynomials. Often the order m of a spherical
harmonic does not have to be specified. In that case, Yl denotes a linear combination of
spherical harmonics with distinguished degree l and any order m.
We can split α and β into multipoles. We highlight that the multipole decomposition is
convenient to use in the examined case but the reconstruction procedure does not require
multipole splitting in general. (3.33) suggests that only one l-pole will be non-vanishing
in the expansion

ZA = a(t, R)(Yl)
,A + b(t, R)εAB(Yl),B . (3.37)

Combining (3.29) with (3.37), the direct formula for complex scalar function a(t, r) is
obtained:

a(t, R) =
∂R (Rϕ(t, R))

l(l + 1)
. (3.38)

Analogically, using (3.30) and (3.37), we obtain the function b(t, R):

b(t, R) = −ı R

l(l + 1)
∂tϕ(t, R) . (3.39)

We reconstruct the two-dimensional part of Z. The radial component of Z is algebraically
related with Φ = ZRR. We recover the full form of Z in that way.
In the context of hopfions, the interesting set of solutions of (3.27) is

ΦH =
RlYl

[R2 − (t− ı)2]l+1
. (3.40)

The dipole solution from (3.40) is related to Hopfion solution from [65], so we call (3.40)
generalized hopfions. The properties of solutions (3.40) are discussed in the sequel at the
end of section 3.3.

3.3.2 Chandrasekhar–Kendall vector potential

A vector potential is defined up to a gradient of some function by the formula Z = curlV
– cf. appendix B, equation (B.11). The field Z for presented class of generalized hopfions
(3.40) has simple multipole structure. It leads to a similar form of V. We propose for V
following ansatz :

V R = s(t, R)Yl , (3.41)
V A = p(t, R)(Yl)

,A + q(t, R)εAB(Yl),B . (3.42)

The above formulae and the Maxwell equation (B.11) imply

Rϕ(t, R) = l(l + 1)q(t, R) , (3.43)
a(t, R) = ∂R[q(t, R)] , (3.44)
b(t, R) = s(t, R)− ∂R[p(t, R)] . (3.45)
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For solutions (3.40), freedom of choice of V enables one to construct vector potential
in Chandrasekhar–Kendall (C–K) form7. C–K potential is an eigenvector of the curl
operator

Z = λ(t, R)V , (3.46)

where λ(t, R) is a complex, scalar function. It leads to an overdetermined system of
equations

ϕ(t, R) = λs(t, R) , (3.47)
a(t, R) = λp(t, R) , (3.48)
b(t, R) = λq(t, R) . (3.49)

It turns out that the equations (3.43-3.45) and (3.47-3.49) for solutions (3.40) are self-
consistent. For (3.40), we introduce the time-radius part (3.33) denoted by ϕH(t, r). The
solutions are the following functions

s(t, R) =
ıϕH(t, R)

2

∂tϕH(t, R)
, (3.50)

p(t, R) =
ıϕH(t, R)∂R(RϕH(t, R))

l(l + 1)∂tϕH(t, R)
, (3.51)

q(t, R) =
RϕH(t, R)

l(l + 1)
, (3.52)

which represent eigenvector of (3.46) with the following eigenvalue:

λ(t, R) = −ı∂t ln(ϕH(t, R)) . (3.53)

3.3.3 Conservation of topological charge in time

For electric and magnetic field fulfilling constraints one can introduce vector potentials:

E = curlC , B = curlA , V := C+ ıA , Z = curlV .

See appendix B for details. Helicity integrals measure topological properties of field lines.
For electromagnetic field, electric helicity

hE =

∫
Σ

C · E , (3.54)

and magnetic helicity

hM =

∫
Σ

A ·B , (3.55)

are quantities which are related to a number of linkedness and knotness of the integral
curves of the electric E (magnetic B) vector field. C and A are vector potentials for E
and B respectively (see appendix B for details). Σ means the whole spatial space on a

7Chandrasekhar–Kendall potential is part of a family of fields known as force-free fields and is of broad
importance in plasma physics and fluid dynamics. See [30] and the citations within.
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slice {t = const.} and · is a scalar product.
Helicities quantifies various aspects of field structure. Examples of fields which poses non-
vanishing helicity include twisted, linked, knotted or kinked flux tubes, sheared layers of
flux, and force-free fields.The origins of helicity integrals are related with Gauss linking
integral. See [7] for detailed review.
It is convenient to present the helicities in terms of Riemann-Silberstein vector field Z
and its vector potential V:

hE + hM =

∫
Σ

ℜ
(
Z · V̄

)
= ℜ

∫
Σ

ZaV̄ bδab d
3x , (3.56)

hE − hM =

∫
Σ

ℜ (Z ·V) = ℜ
∫
Σ

ZaV bδab d
3x , (3.57)

where V̄ is the complex conjugate of V and ℜ denotes the real part. Using the scalar
description of E-M fields (appendix B) we can express total helicity (3.56) in terms of Φ:

hE + hM =

∫
Σ

ℜ
[
ı
(
Φ∆−1∂tΦ̄− Φ̄∆−1∂tΦ

)]
, (3.58)

where ı2 = −1 and ∆−1 is an inverse operator to the two-dimensional Laplace operator
on the unit sphere (see appendix A).
The equations (3.58) and (3.27) imply conservation law for total helicity:

∂t (hE + hM) = lim
R→∞

∫
B(0,R)

ℜ
[
ı
(
Φ∆−1∂2t Φ̄− Φ̄∆−1∂2tΦ

)]
= lim

R→∞

∫
∂B(0,R)

ℜ
[
ı
(
Φ∆−1R2∂RΦ̄−R2∂rΦ∆

−1Φ̄
)]
, (3.59)

where B(0, R) = {x ∈ Σ : ||x|| ≤ R}. We assume the E-M fields are localized,8 hence the
boundary terms at infinity can be neglected. In general, for the quantity hE − hM (3.57)
we have no time dependence. However, in terms of Φ we have

hE − hM = −2

∫
Σ

ℜ
(
ıΦ∆−1∂tΦ

)
, (3.60)

and
∂t (hE − hM) = −2

∫
Σ

ℜ∂t
(
ıΦ∆−1∂tΦ

)
, (3.61)

which lead to the following

Proposition 3.3.1. For localized fields, the helicities (3.54) and (3.55) are preserved in
time if and only if ∫

Σ

ℜ∂t
(
ıΦ∆−1∂tΦ

)
= 0 . (3.62)

8By localized we mean compactly supported or with fall off sufficiently fast which enables one to
neglect boundary terms.
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The following quasi-local equality∫
∂B(0,R)

Z · Z =

∫
∂B(0,R)

∂t
(
Φ∆−1∂tΦ

)
, (3.63)

gives equivalence to the Rañada result in [51]. We highlight that · denotes scalar product
without complex conjugate.

3.3.4 Discussion

The conservation of topological charge imposes an additional condition (3.62) for solutions
(3.40). The integral in (3.62) for solutions (3.40) contains an integral of a square of a
single multipole Yl over a two-dimensional sphere.

∫ π

0
dΘ
∫ 2π

0
dφ(Yl)

2 is equal to zero for
non-zero order m of multipole. We denote Yl = Ylm where l and m are respectively a
degree and an order9 of multipole. Hence these values of m for each l lead to an E-M field
which preserves the topological charge. Such E-M solution is a generalization of the null
hopfion. For l = 1 our solutions with the maximal order are equal (up to a constant) to
the null hopfion described in [65]. The case l = 1,m = 0 corresponds to non-null hopfion
from [65].

3.4 Spin-2 field and generalized gravitational hop-
fions

Consider a weak gravitational field on the Minkowski background. The used complex
scalar framework is related to the linearized Weyl tensor splitted into a tidal (gravito-
electric) part Ekl and frame-dragging (gravito-magnetic) part Bkl (see appendix D.2).
Both Ekl and Bkl are symmetric and traceless. With the help of the constraint equations,

Ekl
|l = 0 , (3.64)

Bkl
|l = 0 , (3.65)

we can quasi-locally describe the field in the terms of complex scalar field Ψ. See the
appendix D.3 for precise formulation and details. The used notation and denotings are
presented in appendix D.

3.4.1 Reconstruction for linearized gravity field

The reconstruction for linearized gravity field is a generalization of the procedure for
electromagnetic field described in the section 3.3.1. Constraint equations and the Hodge–
Kodaira decomposition for two-dimensional tensors on a sphere (see appendices A.4 and
D.3) enable one to encode quasi-locally a spin-2 field into a complex scalar field. For

9Physicists usually use the naming convention which is associated with quantum mechanics. The
degree of multipole is related to spin number and the order of multipole corresponds to magnetic spin
number.
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a given l-pole field the reconstruction is simplified because the inverse operator to the
two-dimensional Laplacian has a simple form. In the context of hopfions, we consider a
class of complex scalar fields in the following form

ΨH =
RlYl

[R2 − (t− ı)2]l+1
, (3.66)

for l ≥ 2. For convenience, we define

ψH =
Rl

[R2 − (t− ı)2]l+1
. (3.67)

ΨH = ψHYl is the same function as ΦH (3.40) for the set of generalized electromagnetic
hopfions. For l = 2, the solution (3.66) is related to gravitational hopfion10, so we call the
set of solutions (3.40) generalized gravitational hopfions. ΨH fulfills wave equation□ΨH =
0 and represents gauge-invariant reduced data for linearized vacuum Einstein equation.
For given l-pole field (3.66) the structure of reconstructed gravito-electromagnetic tensor
Zkl is as follows:

ZRR = ag(t, R)Yl , (3.68)
ZRA = bg(t, R)(Yl)

||A + cg(t, R)ε
RAB(Yl)||B , (3.69)

(2)

Z = −ag(t, R)Yl , (3.70)
◦
ZAB = dg(t, R)

(
(Yl)||AB − 1

2

gAB

R2

)
+ eg(t, R)(Yl)||C(AεB)

C , (3.71)

where

ag(t, R) =
ψH

R2
, (3.72)

bg(t, R) =
∂R(RψH)

l(l + 1)R
, (3.73)

cg(t, R) =
∂tψH

l(l + 1)
, (3.74)

dg(t, R) =
∂R (R∂R (RψH))− 1

2
l(l + 1)ψH

l (l + 1) [l (l + 1)− 2]
, (3.75)

eg(t, R) =
∂R (R2∂tψH)

l (l + 1) [l (l + 1)− 2]
, (3.76)

which are similar to (3.38)-(3.39) for electromagnetic case.

3.4.2 Hamiltonian energy for linearized gravity

Energy of a gravitational field is an issue which is problematic in various contexts. The
ambiguity of energy of gravitational system can be observed even in Newtonian theory.
10The type N hopfion from [65] covers (up to a constant) with the solution from class (3.66) for l = 2
and for the spherical harmonic with maximum spin number (m = l = 2).
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Consider Newtonian gravitational potential ϕ on the flat three-dimensional space with a
gravitational force given by one-form dϕ = ϕ|kdx

k. According to Galileo–Eötvös exper-
iment, i.e., the principle of equivalence, there is an ambiguity in the gravitational force:
It is determined only up to an additive constant covector field ωk, and hence by an ap-
propriate transformation ϕ|k → ϕ|k +ωk the gravitational force ϕ|k at a given point p ∈ Σ
can be made zero. Thus, at this point both the gravitational energy density and the
spatial stress have been made vanishing. On the other hand, they can be made vanishing
on an open subset O ⊂ Σ only if the tidal force, ϕ|kl, is vanishing on O. Therefore, the
gravitational energy and the spatial stress cannot be localized to a point, i.e., they suffer
from the ambiguity in the gravitational force above. For a more detailed discussion of the
energy in the (relativistically corrected) Newtonian theory, see [23].
In the case of General Relativity theory the issue is more complicated and well-known.
Brill and Deser have published a series of classical papers [10, 9, 11] in which the issue of
ambiguity and positivity of energy is discussed.
Sections 3.4.2–3.4.4 have been written to point out that the real (Hamiltonian) energy of
weak gravitational field can not be localized. We compare such quasi-local Hamiltonian
energy density with chosen well-known (super-) energy densities using hopfions as an ex-
ample.

In [35] (see also [31] and [32]) Professor Jezierski proposed energy functional H which
takes the following form in Minkowski spacetime:

H =
1

32π

∫
Σ

[
(Rẋ)∆−1(∆+ 2)−1(Rẋ) + (Rẏ)∆−1(∆+ 2)−1(Rẏ)

+ (Rx),R∆
−1(∆+ 2)−1(Rx),R − x(∆+ 2)−1x (3.77)

+ (Ry),R∆
−1(∆+ 2)−1(Ry),R − y(∆+ 2)−1y

]
dR sinΘdΘdφ ,

where x and y are defined by relation Ψ = x+ ıy. H have simpler form in terms of Ψ:

H =
1

32π

∫
Σ

[
(R∂tΨ)∆−1(∆+ 2)−1(R∂tΨ̄) (3.78)

+ (RΨ),R∆
−1(∆+ 2)−1(RΨ̄),R −Ψ(∆+ 2)−1Ψ̄

]
dR sinΘdΘdφ .

The formula has its origins in the canonical (Hamiltonian) formulation of the linearized
theory of gravity. In this sense it describes a true energy of linearized gravitational field.
In section 3.4.4 we remind another two super-energy functionals11 Θ0 (3.86) (see also
[33]) and super-energy (3.93) which arises for spin-2 field in a natural way. In particular,
the integrals (3.86) and (3.78) differ by the operator (∆+ 2)−1, hence for each spherical
mode (i.e. after spherical harmonics decomposition) they are proportional to each other.
Hamiltonians for whom functions in multipole expansions differ by a constant multiplica-
tive factor lead to the same dynamics. We will discuss in a separate paper [36] how the
functional H is related to the following expression:

16πH =

∫
Σ

(
Eab(−△)−1Eab +Bab(−△)−1Bab

)
11We remind a quasi-local densities of such energy functionals. The diffrence is only to integrate over
the radial coordinate i.e. Θ0 =

∫∞
0

UΘ0dr
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=

∫∫
Σ×Σ

[
Eab (r′)Eab (r

′′)

4π∥r′ − r′′∥
+
Bab (r′)Bab (r

′′)

4π∥r′ − r′′∥

]
dr′dr′′ (3.79)

=

∫
Σ

(
Zab(−△)−1Z̄ab

)
=

∫∫
Σ×Σ

[
Zab (r′) Z̄ab (r

′′)

4π∥r′ − r′′∥

]
dr′dr′′ , (3.80)

which is proposed by I. Bialynicki-Birula [8] and has a nice property – it is manifestly
covariant with respect to the Euclidean group. In the future we also plan to incorporate
boundary terms because we want to generalize the above formulae to finite region with
boundary.
Let us consider localized initial data on Σ, i.e. compactly supported or with fall off

sufficiently fast which enables one to neglect boundary terms. The following theorem (to
be presented in detail in [36])

Theorem 3.4.1. For localized data H = H.

can be checked as follows:

Proof. Let us observe that x = 2xkxlEkl, y = 2xkxlBkl. If we introduce transverse–
traceless potentials12 e and h:

−△ekl = Ekl , −△hkl = Bkl ,

where △ is the three-dimensional Laplacian13, then for a := 2xkxlekl, b := 2xkxlhkl we
get

−△a = x , −△b = y ,

Moreover, for finite region V ⊂ Σ

16πHV :=

∫
V

(
eklE

kl + hklB
kl
)
d3x (3.81)

=
1

2

∫
V

1

R2

(
(Rȧ)(−∆)−1(Rẋ) + ∂R(Ra)(−∆)−1∂R(Rx) +

1

2
ax

+(Rḃ)(−∆)−1(Rẏ) + ∂R(Rb)(−∆)−1∂R(Ry) +
1

2
by
)
dR sinΘdΘdφ

+
1

2

∫
V

1

R2

[
∂R(R

2ȧ)∆−1(∆+ 2)−1∂R(R
2ẋ) +

1

4
ax (3.82)

+
(
∂R[R∂R(Ra)] +

1

2
∆a
)
∆−1(∆+ 2)−1

(
∂R[R∂R(Rx)] +

1

2
∆x
)

+
(
∂R[R∂R(Rb)] +

1

2
∆b
)
∆−1(∆+ 2)−1

(
∂R[R∂R(Ry)] +

1

2
∆y
)

+∂R(R
2ḃ)∆−1(∆+ 2)−1∂R(R

2ẏ) +
1

4
by
]
dR sinΘdΘdφ .

12Transverse–traceless symmetric tensor-field hkl means hklδ
kl = 0 and hkl

|l = 0.

13In Cartesian coordinates it is simply △ =

3∑
i=1

(
∂

∂xi

)2

.
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Now, we have to integrate by parts many times and finally we obtain energy (3.78) up to
boundary terms

16πHV =
1

2

∫
V

[
(−R2△ȧ)∆−1(∆+ 2)−1ẋ+ ∂R(−R△a)∆−1(∆+ 2)−1∂R(Rx)

+△a(∆+ 2)−1x+ ∂R(−R△b)∆−1(∆+ 2)−1∂R(Ry)

+(−R2△ḃ)∆−1(∆+ 2)−1ẏ +△b(∆+ 2)−1y
]
dR sinΘdΘdφ

+
1

2

∫
∂V

[
∂R(R

2ȧ)∆−1(∆+ 2)−1ẋ− 1

2R2
∂R(R

2a)(∆+ 2)−1x (3.83)

+
(
R△a+ 1

R
∂R(Ra)−

1

2R
∆a
)
∆−1(∆+ 2)−1∂R(Rx)

+∂R(R
2ḃ)∆−1(∆+ 2)−1ẏ − 1

2R2
∂R(R

2b)(∆+ 2)−1y

+
(
R△b+ 1

R
∂R(Rb)−

1

2R
∆b
)
∆−1(∆+ 2)−1∂R(Ry)

]
sinΘdΘdφ .

More precisely, the volume term in the above formula equals 16πH given by (3.78).

3.4.3 Quasi-local (super-)energy density for spin-2 field

We present quasi-local (q-l) energy and super-energy densities for spin-2 field and lin-
earized gravity. By q-l density we mean a functional which is an integral over a two-
dimensional topological sphere. In this section, we calculate q-l densities over {t =
const., R = const.} surface. A few of analyzed energies (for example H (3.78)) are defined
with the help of q-l integral operator. They do not have density which can be calculated
locally at point. The q-l (super-)energy densities listed below are presented in general
form – they are valid for every localized weak gravitational field represented as a complex
harmonic function Ψ. The compared q-l (super-)energy densities can be organized as
follows:

1. Related to the canonical (Hamiltonian) theory:

(a) The q-l energy density of hamiltonian energy H (3.78) derived from the canon-
ical formulation of linearized theory of gravity.

UH =
1

32π

∫
S(t,R)

sinΘ
[
(R∂tΨ)∆−1(∆+ 2)−1(R∂tΨ̄) (3.84)

+ (RΨ),R∆
−1(∆+ 2)−1(RΨ̄),R −Ψ(∆+ 2)−1Ψ̄

]
,

where S(t, R) denotes {t = const., R = const.} surface.
(b) Θ0 functional is obtained with the help of Conformal Yano–Killing (CYK)
tensors. The contraction of CYK tensor Qµν with Weyl tensor Wµναβ is a
two-form F

(Q)
αβ = QµνWµναβ, where Qµν∂xµ ∧ ∂xν = D ∧ ∂t is a CYK tensor for

Minkowski spacetime and D = xν∂ν is a generator of dilatations in Minkowski
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spacetime. F (Q)
αβ fulfills vacuum Maxwell equations. Θ0 is an electromagnetic

energy calculated for F (Q)
αβ from stress-energy tensor

T EM

µν (F ) :=
1

2
(FµσFν

σ + F ∗
µσF

∗
ν
σ) , (3.85)

where F ∗µλ = 1
2
εµλρσFρσ. See [33] for details. The q-l density of Θ0 is

4πUΘ0 =

∫
S(t,R)

T EM
(
∂t, ∂t, F (W,D ∧ Tt)

)
R2 sinΘdΘdφ

=
1

2

∫
S(t,R)

R2
(
EkRE

kR +BkRB
kR
)
R2 sinΘdΘdφ

=
1

4

∫
S(t,R)

[
∂t(RΨ)(−∆)−1∂t(RΨ̄)

+∂R(RΨ)(−∆)−1∂R(RΨ̄) + ΨΨ̄
]
sinΘdΘdφ . (3.86)

(c) We compare q-l energy densities for linearized gravity with q-l electromagnetic
energy densities for the corresponding electromagnetic solution (compare (3.99)
and (3.100) ). Let us define

F1(Φ) :=
[
(R∂tΦ)(−∆−1)(R∂tΦ̄)

+(RΦ),R(−∆−1)(RΦ̄),R + ΦΦ̄
]
sinΘ , (3.87)

F2(Φ) :=
[
∂R(RΦ)∆

−1R∂tΦ̄ + ∂R(RΦ̄)∆
−1R∂tΦ

]
sinΘ . (3.88)

The electromagnetic q-l energy density in terms of electromagnetic scalar Φ is
equal to

4πUEM =

∫
S(t,R)

T EM
(
∂t, ∂t,Φ

)
R2 sinΘdΘdφ

=
1

4

∫
S(t,R)

F1(Φ)dΘdφ . (3.89)

The electromagnetic q-l energy density for the conformal field

K = 2Rt∂R +
(
t2 +R2

)
∂t , (3.90)

is the following

4πUCEM =

∫
S(t,R)

TEM(K, ∂t,Φ)R
2 sinΘdΘdφ

=
1

4

∫
S(t,R)

[(
R2 + t2

)
F1(Φ) + 2RtF2(Φ)

]
dΘdφ . (3.91)

2. Associated to Bel–Robinson tensor. The Bel–Robinson tensor has the structure

TBR

µνκλ := WµρκσWν
ρ
λ
σ +W ∗

µρκσW
∗
ν
ρ
λ
σ , (3.92)
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where (W ∗)αβγδ = 1
2
Wαβ

µνεµνγδ. The spin-2 field equations (D.16) and (D.17) re-
main invariant under the global U(1) transformation Zkl → eiαZkl. The duality
invariance14 is a property of Bel–Robinson tensor. The q-l density of super-energy
fulfills

4πUS =

∫
S(t,R)

1

2
TBR(∂t, ∂t, ∂t, ∂t,Ψ)R2 sinΘdΘdφ

=

∫
S(t,R)

uSR
2 sinΘdΘdφ

=
1

4

∫
S(t,R)

F3(Ψ) , (3.93)

where F3(Ψ) is given by (3.94). Let us introduce

F3(Ψ) :=
1

R2

{
(R∂tΨ)(−∆)−1(R∂tΨ̄) + ∂R(RΨ)(−∆)−1∂R(RΨ̄) +

1

2
ΨΨ̄

+
(
∂R[R∂R(RΨ)] +

1

2
∆Ψ

)
∆−1(∆+ 2)−1

(
∂R[R∂R(RΨ̄)] +

1

2
∆Ψ̄

)
+∂R(R

2∂tΨ)∆−1(∆+ 2)−1∂R(R
2∂tΨ̄) +

1

4
ΨΨ̄

}
sinΘ , (3.94)

F4(Ψ) :=

{
1

2

[
∂R(RΨ)(−∆)−1(R∂tΨ̄) + ∂R(RΨ̄)(−∆)−1(R∂tΨ)

]
(3.95)

+
(
∂R[R∂R(RΨ)] +

1

2
∆Ψ

)
∆−1(∆+ 2)−1∂R(R

2∂tΨ̄)

+
(
∂R[R∂R(RΨ̄)]

)
∆−1(∆+ 2)−1∂R(R

2∂tΨ)
}
sinΘ . (3.96)

The Bel–Robinson charge for a conformal field is as follows

4πUCS =

∫
S(t,R)

1

2
TBR(K, ∂t, ∂t, ∂t,Ψ)R2 sinΘdΘdφ

=
1

4

∫
S(t,R)

[(
t2 +R2

)
F3(Ψ) + 2RtF4(Ψ)

]
dΘdφ , (3.97)

where conformal field K is defined by (3.90).

3.4.4 Comparison of the energies for hopfions

In [65], the following super-energy density

uS =
EabE

ab +BabB
ab

2
, (3.98)

14Introducing Wαβγδ = Wαβγδ + ı∗Wαβγδ, Bell-Robinson tensor (3.92) has the form TBR

µνκλ :=

WµρκσW̄ν
ρ
λ
σ. All components of Wµρκσ depends of Zkl without complex conjugate Z̄kl. It means that

the components of Bell-Robinson tensor are proportional to “ZZ̄” which are invariant under Zkl → eiαZkl

transformation.
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has been calculated for gravitational type N hopfion. We highlight that type N hopfion
overlap (up to a constant) with the solution from our class (3.66) for l = 2 and for the
spherical harmonic with maximal order (m = l = 2). For such quadrupole solution

Ψq :=
R2Y22

[R2 − (t− ı)2]3
, (3.99)

where Y22 is given by (3.36). We analyze q-l (super-)energy densities for linearized gravity
(3.84), (3.86), (3.93) and (3.97) which are presented in the previous section. We compare
them with the electromagnetic q-l energy densities (3.89) and (3.91) for the corresponding
to Ψq (3.99) electromagnetic quadrupole solution

Φq :=
R2Y22

[R2 − (t− ı)2]3
. (3.100)

Let us define

ξ(t, R) :=
R4

((R + t)2 + 1)4 ((R− t)2 + 1)4

[
t4 + (

14

5
R2 + 2)t2 + (R2 + 1)2

]
, (3.101)

κ(t, R) :=
R5t

((R + t)2 + 1)4 ((R− t)2 + 1)4
[
R2 + t2 + 1

]
, (3.102)

η(t, R) :=
R2

((R + t)2 + 1)5 ((R− t)2 + 1)5
[
R8 + (12t2 + 4)R6 (3.103)

+

(
126

5
t4 + 28t2 + 6

)
R4 + (12t6 + 28t4 + 20t2 + 4)R2 + (t2 + 1)4

]
,

τ(t, R) :=
tR3 (R2 + t2 + 1)

((R + t)2 + 1)5 ((R− t)2 + 1)5

[
t4 +

(
22

5
R2 + 2

)
t2 + (R2 + 1)2

]
. (3.104)

The results for quadrupole hopfion are the following:

UH(Ψq) =
1

24
ξ(t, R) , (3.105)

UΘ0(Ψq) =
1

3
ξ(t, R) , (3.106)

UEM(Φq) =
1

3
ξ(t, R) , (3.107)

US(Ψq) =
1

2
η(t, R) , (3.108)

UCEM(Φq) =
4

15

[
5

4

(
t2 +R2

)
ξ(t, R)− 6Rtκ(t, R)

]
, (3.109)

UCS(Ψq) =
1

2

[(
t2 +R2

)
η(t, R) + 2Rtτ(t, R)

]
. (3.110)

One can observe the following:

1. The q-l energy densities can be divided into two sets:

X1 = {UH, UΘ0 , UEM ;US} , (3.111)
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X2 = {UCEM , UCS} . (3.112)

Functions in each set have similar properties. It means:

(a) In the set X1 we can distinguish a subset {UH, UΘ0 , UEM}. Q-l (super-) en-
ergy densities in the subset differ by a multiplicative constant. Simple, single-
multipole structure of the solutions (3.99) and (3.100) is responsible for pro-
portionality of q-l (super-)energy densities in the subset. For solutions with the
richer multipole structure relations between the densities will be more compli-
cated.

(b) The set X2 contains q-l energy densities for the conformal field K (3.90). For
t = 0, the conformal q-l densities are proportional to theirs counterparts for ∂t
field. R2 is the proportional factor

UCEM(Φq, t = 0) = R2UEM(Φq, t = 0) ,

UCS(Ψq, t = 0) = R2UEM(Ψq, t = 0) .

2. All the above presented q-l (super-)energy densities are localized on light cones for
large t and r.

3.4.5 Topological charge

Consider the following non-local objects:

hGE =

∫
Σ

Eab(−△−1)Sab =

∫∫
Σ×Σ

Eab (r′)Sab (r
′′)

4π∥r′ − r′′∥
dr′dr′′ , (3.113)

hGB =

∫
Σ

Bab(−△−1)Pab =

∫∫
Σ×Σ

Bab (r′)Pab (r
′′)

4π∥r′ − r′′∥
dr′dr′′ , (3.114)

where △−1 is an inverse operator to the three-dimensional Laplacian △ (details in ap-
pendix A). Pab and Sab are respectively ADM momentum and its dual counterpart dis-
cussed nearby (D.10) and (D.11). For convenience we work with complex objects15

hG = hGE − hGB = ℜ
∫
Σ

Zab(−△−1)Vab , (3.115)

h̃G = hGE + hGB = ℜ
∫
Σ

Zab(−△−1)V̄ab . (3.116)

We list properties of the above quantities (3.113) and (3.114):

� (3.113) and (3.114) are well-defined and gauge invariant16.

� Similarities with the electromagnetic case:

15We use Zab = Eab + ıBab and V ab = Sab + ıP ab. See appendices D.2 and D.3 for more details.
16Gauge invariance of hGE and hGB can be easily deduced from equations (3.117)-(3.118). hGE and

hGB in terms of hG and h̃G can be expressed by gauge invariant Ψ and its derivatives.
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– Analogy to the electromagnetic helicity – the quantity (3.115) in terms of
complex scalar field (3.117) is similar to (3.60).

– Analogy to the conservation law – (3.115) is conserved in time if (3.121) is
fulfilled. It is analogous to (3.62).

� (3.115) is conserved in time for an example of gravitational type N hopfion described
in [65].

� Structure comparable to other quantities defined for linearized gravity field, for
example the energy (3.80).

� Further results obtained by Aghapour et al. [1, 2] shows that both topological
charges (helicities) for electromagnetism and linearized gravity are associated with
duality symmetry.

To highlight the analogy with electromagnetic field we express equation (3.115) in terms
of complex scalar field. Using the reduction presented in appendices A.4 and D.3 the
result is as follows:

hG = −ℜ
∫
Σ

ıΨ∆−1 (∆+ 2)−1 ∂tΨ , (3.117)

h̃G =
1

2

∫
Σ

ℜ
[
ı
(
Ψ∆−1 (∆+ 2)−1 ∂tΨ̄− Ψ̄∆−1 (∆+ 2)−1 ∂tΨ

)]
. (3.118)

If we compare ∂thG and the real part of
∫
Σ
Zkl△−1Zkl in terms of the scalar Ψ then turns

out that they are equal up to the factor 2

∂thG = −2ℜ
∫
Σ

ıZkl(−△−1)Zkl = −ℜ
∫
Σ

ı∂t
(
Ψ∆−1 (∆+ 2)−1 ∂tΨ

)
. (3.119)

The gravitational helicity h̃G is preserved in time for all Ψ which fulfill wave equation

∂th̃G =
1

2
lim
R→∞

∫
∂B(0,R)

ℜ
[
ı
(
Ψ∆−1 (∆+ 2)−1R2∂RΨ̄−R2∂RΨ∆−1 (∆+ 2)−1 Ψ̄

)]
,

(3.120)
where B(0, R) = {x ∈ Σ : ||x|| ≤ R}. We assume the linearized gravity fields are local-
ized17. It implies that (3.120) vanishes. Only (3.119) leads to a condition for conservancy
of topological charges. The results (3.119) and (3.120) give

Proposition 3.4.1. For localized fields, the objects hGE (3.113) and hGB (3.114) are
preserved in time if and only if

2ℜ
∫
Σ

Zkl(−△−1)Zkl = ℜ
∫
Σ

∂t
(
Ψ∆−1 (∆+ 2)−1 ∂tΨ

)
= 0 . (3.121)

17By localized we mean compactly supported or with fall off sufficiently fast which enables one to
neglect boundary terms.
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The above theorem corresponds to proposition 3.3.1 in electrodynamics. Analyzing the
results obtained by Aghapour et al. [1, 2], we have realized that the gravitational helicities
(3.113) and (3.114) have been previously obtained by Barnett [5]. Barnett’s approach is
based on duality symmetric formulation, where the analog of helicity for linearized gravity
was derived as the Noether current for the action of duality symmetry. It is worth men-
tioning at this point that helicity and duality symmetry for Maxwell theory and linearized
gravity have previously been studied in terms of the standard formulation, and from a
Hamiltonian point of view by Deser and Teitelboim [19]. In [1], the duality symmetric
formulation of linearized gravity is used to derive generalizations of the helicity, spin,
and infra-zilch conservation laws, and a generalization of the helicity array for linearized
gravity on Minkowski space.

3.5 Comparison of structures

The electromagnetic hopfions are described in terms of the complex scalar Φ which con-
tains the full information about Maxwell field — two unconstrained degrees of freedom.
The scalar Φ formalism for electrodynamics is presented in appendix B. We generalize
the electromagnetic hopfions by the natural generalization18 of Φ to the higher multipole
solution (3.40). The physical quantities, like energy or helicity, are expressed in terms of
the scalar.
The electromagnetic case can be treated as a “toy-model” for the linearized gravity. Next,
the scalar Ψ description of gravito-electromagnetic formulation of linearized gravity is pre-
sented (appendix D.3). In analogy to electromagnetism, we generalize the gravitational
hopfion to higher multipole solution (3.66). We propose the notion of helicity for lin-
earized gravity hGE (3.113) and hGB (3.113). The properties of gravitational helicities
in terms of the scalar Ψ are similar to electromagnetic ones. We compare gravitational
quasi-local densities for quadrupole solution (3.99). The results are presented and dis-
cussed in section 3.4.4.
The structure of the theory for electromagnetism and linearized gravity can be illustrated
on the diagram 3.1:
We would like to point out the following:

1. Spin-2 field theory (see appendix C.2) starts with linearized Weyl tensor as a pri-
mary object and Bianchi identities play a role of evolution equations. Theory of
linearized gravity has a richer structure. It contains “potentials” for curvature ten-
sors: metric, momenta and their dual counterparts. See rhs of diagram 3.1. That
simple observation has consequences for (non-)locality of densities of energy and
helicity.

2. The energy functional for Maxwell theory is constructed from electromagnetic vector
fields E and B. The energy density is local at a point in terms of E and B. In the
case of linearized gravity the Hamiltonian energy density (see (3.80)) becomes local

18The scalar Φ for hopfions is equal to RY1

(R2−(t−ı)2)2
. The type of hopfion, namely null or non-null (see

[65]) is related to the order of the dipole.
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Electromagnetism: Linearized gravity:

potentials C

curl
��

A

curl
��

EM fields E B

hab

κ

��

kab

κ

��

metric

Sab

κ

��

Pab

κ

��

momenta

Eab Bab curvature

Diagram 3.1: Comparison of the structures of electromagnetism and linearized gravity.
Where hab and kab are respectively the linearized metric and its dual companion. κ is the
first order differential operator. For transverse-traceless gauge, κ is simply the symmetric
curl operator for symmetric tensors.

as a combination of the metric and curvature. However, in terms of spin-2 field,
the energy functional (3.80) contains non-local Zkl(−△)−1Zkl term. More precisely,
the object (−△)−1Zkl = (κ−1)

2
Zkl is locally related to a combination of metrics hab

and kab (see rhs of diagram 3.1). Another form of the energy functional ((κ−1Zkl)
2

– square of momenta) contains non-local integral operator κ−1 which is responsible
for the non-locality of energy density described by (3.80).

3. For helicity of linearized gravity the similar problems occur like for energy. The
natural objects for helicity functional to be local are metric and momenta.

The precise description of κ operator and the structure of linearized gravity is presented
in [36].
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Chapter 4

Magic Hopfions

4.1 Introduction and historical review

4.1.1 Origins of Magic Field: Kerr–Newman spacetime

Kerr–Newman spacetime is a solution of Einstein–Maxwell equations, sub-case of Plebański–
Demiański generalized black hole, see (2.45). It describes a spacetime region in the neigh-
borhood of massive, charged and rotating body. In Boyer–Lindquist coordinates, the
spacetime metric is given by

gKN = Σ

(
1

∆̃
dr2 + dθ2

)
+

sin2 θ

Σ

(
adt− (r2 + a2)dφ

)2
−∆̃

Σ

(
dt− a sin2 θ dφ

)2
, (4.1)

where

Σ = r2 + a2 cos2 θ , (4.2)

∆̃ = (r2 + a2)− 2mr + e2 , (4.3)

with t ∈ R, r ∈ R, and θ, φ being the standard coordinates parameterizing a two-
dimensional spheroid. We will keep away from zeros of Σ and ∆, and ignore the co-
ordinate singularities sin θ = 0. This metric describes a rotating object of mass m,
charge e and angular momentum J = ma. The advantage of the above coordinates
is that for r much grater than m and a the metric becomes asymptotically flat, i.e.
g ≈ −dt2 + dr2 + r2(dθ2 + sin2 θdφ2).

Electromagnetic four-potential associated with Kerr–Newman solution reads

AKN =
q r

Σ
(dt− a sin2 θ dφ) . (4.4)

Magic field is the limit of Kerr-Newman electromagnetic field with the mass parameter
M goes to zero. In this case the limit is trivial

AMF = AKN =
q r

Σ
(dt− a sin2 θ dφ) . (4.5)
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Simultaneously, we neglect the terms proportional to the square of electric charge in the
Kerr-Newman metric and then we pass to m→ 0 limit. In this way, Minkowski metric in
oblate spheroidal coordinates is obtained

S
g = −dt2 + Σ

∆
dr2 + Σdθ2 +∆sin2 θdφ2 , (4.6)

where

Σ = r2 + a2 cos2 θ , (4.7)

∆ = (r2 + a2) . (4.8)

A transformation between oblate
spheroidal coordinates (t, r, θ, φ)
and spherical ones (t, R,Θ, φ) is
two-dimensional between (r, θ) and
(R,Θ). t and φ remains unchanged.
The coordinate surfaces of constant
r, θ are surfaces of revolution (see
figure 4.1 ). For r-constant, we
receive oblate spheroids. Hyper-
boloids of one sheet are obtained
for θ-constant.

Figure 4.1: The oblate spheroidal coordinate
surfaces intersected with x = 0 plane. r-
const (blue) and θ-const (gray).

An explicit form of coordinate transformation is given in appendix A.5. From now, we
consider Minkowski spacetime only.

4.1.2 Properties of Magic Field

The electromagnetic potential 1-form for Magic Field (4.5)

AMF =
qr

Σ
(dt− a sin2 θdφ) ,

satisfies A0
,0 = Ak

,k = 0 gauge. Maxwell field two-form FMF = dAMF reads

FMF =
q

Σ2

[
(r2 − a2 cos2 θ) dt ∧ dr − a2r sin 2θ dt ∧ dθ

+a(r2 − a2 cos2 θ) sin2 θdr ∧ dφ −ar(r2 + a2) sin 2θdθ ∧ dφ
]
, (4.9)

and its Hodge dual 2-form

∗FMF = − q

Σ2

[
2a2r sin2 θ cos θdr ∧ dφ + a(r2 − a2 cos2 θ) sin θ dt ∧ dθ

+2ar cos θ dt ∧ dr +(r2 + a2)(r2 − a2 cos2 θ) sin θdθ ∧ dφ
]
. (4.10)
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These fields are, except disc at the origin, static solutions of vacuum Maxwell equations
dFMF = 0 , d ∗ FMF = 0 . Magic Field has a compact source1 on the disc {r = 0}. Apart
of that, we can introduce a potential one-form for ∗FMF , which fulfills ∗FMF = dCMF

CMF =
q

Σ
(−a cos θ dt+ (r2 + a2) cos θ dφ). (4.11)

The potential obeys C0
,0 = Ck

,k = 0 gauge.
Consider a foliation of {t = const} hypersurfaces. For each leaf, vector field nµ∂µ = ∂t

is normal to the spacial hypersurfaces and electric E and magnetic B fields are

EMF = n⌟F =
q

Σ2

(
(r2 − a2 cos2 θ) dr − a2r sin 2θ dθ

)
, (4.12)

BMF = n⌟(∗F ) = −q
Σ2

(
2ar cos θ dr + a(r2 − a2 cos2 θ) sin θ dθ

)
, (4.13)

where ⌟ is the interior product. The analysis below mainly follow Lynden-Bell [44, 45].
For convenience, we use a complex representation of electromagnetic field with the help
of Riemann–Silberstein vector

ZMF = EMF + ıBMF . (4.14)

Alternatively, both the electrostatic potential, κ, and the magnetostatic potential, χ, can
be introduced. A complex representation Ξ = Φ + ıχ for Magic Field fulfills

ZMF = −∇ΞMF . (4.15)

It is convenient to perform further analysis in cylindrical coordinates {R̂, φ, z}. Away
from charges and currents, the exact form of ΞMF reads

ΞMF =
q√

R̂2 + (z − ıa)2
, (4.16)

which is harmonic (except at singularities and branch points)

△Ξ = 0 . (4.17)

The singularities lie at R̂ = a and z = 0. The complex function (4.16) is multi-valued in
general. The cut on the disk z = 0, R̂ ≤ a make it well-defined. On the cut itself we have
for R̂ < a and z → 0+

ZMF |z→0+ = − q(
a2 − R̂2

)3/2 (a∂z + iR̂∂R̂

)
. (4.18)

Notice that E is orthogonal to the disk so the disk is an equipotential and indeed its
potential is zero (earthed) as may be seen by taking the real part of (4.16) on z = 0 with

1See (4.19) and the comments below. Precise, formal approach to the source in terms of Functional
Analysis (theory of distributions) is given in [39].
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R̂2 < a2. The magnetic field lies parallel to the radius below the disk and antiparallel
above as though the disk has a Meissner effect2. It does not cross the disk except at the
singular ring. For R̂ > a and z = 0,B points downwards everywhere. Thus every field
line returns to the upper hemisphere through the singular ring. From the discontinuous
change of electric field, one can obtain charge density on the symmetry plane

σMF = − qa

2π
(
a2 − R̂2

)3/2 for R̂ < a . (4.19)

This charge density gives a divergent total charge but that divergence is ”compensated”
by a ring singularity of opposite charge. The formal analysis of the source with the help
of Functional Analysis (theory of distributions) has been done by Gerald Kaiser in [39].
The total charge in a cylinder with a radius less than R̂ is

QMF (R̂) = −q

(
a−

√
a2 − R̂2√

a2 − R̂2

)
for R̂ < a . (4.20)

However, the Gauss law for closed two-dimensional surface which surrounds the disc gives

QTotal
MF = q . (4.21)

From the discontinuity in the B field across the cut we find that the φ-component of the
surface current is non-vanishing

Jφ
MF = − q

2π

R̂(
a2 − R̂2

)3/2 . (4.22)

This corresponds to the charge density given above rotating with angular velocity Ω = 1/a,
reaching the velocity of light at the singularity. The total current within R̂ < a is
Q(R̂)Ω/(2π). Again the magnetic effects of this current are overwhelmed by the current
around the singular ring which is of opposite sign. The fields are illustrated in Figures
4.2 and 4.3, generated together with Sajad Aghapour.
We now list other properties of this Magic electromagnetic field. (For proofs see

Lynden-Bell [44].)

1. Relativistic Invariants are

Z2MF = E2
MF −B2

MF + 2ıEMF ·BMF =
q2

R̂(R̂2 + (z − ıa)2)2
. (4.23)

2. E2 = B2 only on two spheres of radius
√
2a centered on z = ±a. They intersect on

the singular ring.

3. E ·B = 0 on the sphere R̂ = a and also on the plane z = 0 .
2The Meissner effect (or Meissner–Ochsenfeld effect) is the expulsion of a magnetic field from a body.

Usually observed in a superconductors.
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Figure 4.2: Electric field lines on x = 0
surface for q < 0, a > 0.

Figure 4.3: Magnetic field lines on x = 0
surface for q < 0, a > 0.

4. The field energy density reads

EMF =
1

8π
ZMF · Z̄MF =

q2

8π

R̂2 + a2[
R̂2 + (z − ıa)2

]3 . (4.24)

This diverges like (R̂− a)−3 when z = 0 near R̂ = a.

5. The Poynting vector is given as

PMF =
1

2ı
Z̄MF × ZMF =

q2a[
R̂2 + (z − ıa)2

]3∂z , (4.25)

likewise diverges.

6. The total field energy and the total angular momentum, both diverge due to their
divergence at the singular ring.

4.1.3 Description of electromagnetism in Newmann-Penrose for-
malism

Since the inception, in 1915, of Einstein equations for General Relativity, there has been
a variety of different (physically and mathematically equivalent) ways of describing them.
They include the standard coordinate-basis version using the metric tensor components
as the basic variable and the Christoffel symbols for the connection, the methods of
Cartan using differential forms, the space-time (orthonormal) tetrad version and the spin-
coefficient, Newman-Penrose version. See [14] and references therein. Though all versions
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have significant domains of useful applicability, one of the most significant is the tetrad
formalism proposed by Ezra Ted Newman and Roger Penrose. The Newman-Penrose
(N–P) formalism is a tetrad formalism with a special choice of the basis null-vectors.
The novelty of the formalism, when it was first proposed by Newman and Penrose in
1962, was precisely in their choice of a null basis: it was a departure from the choice of
an orthonormal basis which was customary till then. The underlying motivation for the
choice of a null basis was Penrose’s strong belief that the essential element of a space-time
is its light-cone structure which makes possible the introduction of a spinor basis. We
mainly follow the introduction to N–P formalism from Chandrasekhar book [14].

Properties of a null base The choice that is made is a tetrad of null vectors Lµ∂µ, N
µ∂µ,

Mµ∂µ, and M̄µ∂µ of which Lµ∂µ and Nµ∂µ are real and Mµ∂µ and M̄µ∂µ are complex
conjugates of one another. We use the following conventions

LµNµ = −1 , M̄µMµ = 1 . (4.26)

with the all other scalar products being zero. In other words, the metric can be written
as

g =
[
−2L(µNν) + 2M(µM̄ν)

]
dxµdxν . (4.27)

Connection coefficients in a non-holonomic basis Covariant derivative can be
defined by specifying how it acts on base vectors. In particular, Christoffel symbols of the
second kind are defined as the unique coefficients such that

∇µ∂ν = Γκ
µν∂κ . (4.28)

Analog of Christoffel symbols in non-holonomic basis are the Ricci rotation coefficients

ω{cab} = e{c}κ∇νe{a}µe{b}νgκµ (4.29)

where enclosure in curly brackets distinguishes the tetrad indices from the tensor indices.
We have also assumed that at each point of space-time a basis of four tetrad vectors is
given

e{a}µ∂µ (a = 1, 2, 3, 4) , (4.30)

and
gµνe{a}µe{b}ν = η{ab} (4.31)

where η{ab} is a symmetric matrix, defined by a particular choice of tetrad structure. In
the case of N–P tetrad, we have

[
η{ab}

]
=


0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

 . (4.32)
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For N–P formalism, Ricci rotation coefficients (4.29) are called spin coefficients
{κ, κ′, σ, σ′, τ, τ ′, ρ, ρ′, ϵ, ϵ′, β, β′} , defined by

Mν∇µLν = τLµ + κNµ − ρMµ − σM̄µ , (4.33)
1

2

(
N ν∇µLν − M̄ν∇µMν

)
= −ϵ′Lµ + ϵNµ + β′Mµ − βM̄µ , (4.34)

−M̄ν∇µNν = −κ′Lµ − τ ′Nµ + σ′Mµ + ρ′M̄µ . (4.35)

The intrinsic derivative of X = X{a}e{a} in the direction e{b} has the form

X{a‡b} = e
µ
{a}∇νXµeν{b} . (4.36)

Maxwell equations In the Newman-Penrose formalism, the antisymmetric Maxwell-
tensor, Fµν , is replaced by the three complex scalars

ϕ0 = FµνL
µMν , (4.37)

ϕ1 = =
1

2
Fµν

(
LµN ν + M̄µMν

)
, (4.38)

ϕ2 = FµνM̄
µNν (4.39)

Tensorial vacuum Maxwell equations (2.20) in terms of tetrad components and intrinsic
derivatives (4.36) read

F{ab‡c} + F{ca‡b} + F{bc‡a} = 0 , η{nm}F{an‡m} = 0 . (4.40)

The explicit forms of (4.40) in terms of N-P coefficients read

Dϕ1 − δ′ϕ0 = (κ+ 2β′)ϕ0 + 2ρϕ1 − κϕ2 , (4.41)
Dϕ2 − δ′ϕ1 = σ′ϕ0 − 2τ ′ϕ1 + (ρ− 2ε)ϕ2 , (4.42)
δϕ1 −D′ϕ0 = (2ϵ′ − ρ′)ϕ0 + 2τϕ1 − σϕ2 , (4.43)
δϕ2 −D′ϕ1 = κ′ϕ0 − 2ρ′ϕ1 + (τ − 2β)ϕ2 , (4.44)

where
D = Lµ∇µ , D′ = N ν∇ν , δ =Mµ∇µ , δ′ = M̄ν∇ν . (4.45)

4.2 Origins of Magic Hopfions: complex shift in space-
time direction

In this section, we generalize the idea of imaginary shift in time for fundamental solution
from Appendix B in our paper [58].
According to Theorem 2.3.1, see (2.61), electromagnetic field can be encoded with the

help of CYK tensors in a single scalar field Φ. As we analyzed in section 3.3.1, the reduced
data Φ in the case of Minkowski spacetime fulfills

□Φ = 0 . (4.46)
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We wish to present that the imaginary shift in time direction is essential to generate
Hopfions. Thus, let us consider four-dimensional Laplace equation in the four-dimensional
Euclidean space

(4)

△ f
( (4)
x
)
= −4π2δ

( (4)
x
)
, (4.47)

where δ(x) is the four-dimensional Dirac delta. We focus on the following solution of
(4.47) given in the Cartesian coordinates:

f
( (4)
x
)
=

1

(x0)2 + ||r||2
, (4.48)

where ||r|| = r =
√∑3

i=1 x
2
i . It is called the fundamental solution for four-dimensional

Laplacian. The solution (4.48) can be extended analytically on Minkowski spacetime by
the transformation

x0 = ıt . (4.49)

We receive

f̃(t, R) =
1

R2 − (t)2
, (4.50)

which fulfills wave equation on Minkowski background. The pre-Hopfion solution, called
Synge function, is a representative of Hopfion class of solutions ΦH (3.40) for l = 0,

Φ0 =
1

R2 − (t− ı)2
, (4.51)

is obtained by imaginary shift in time-like direction

t→ t− ı , (4.52)

applied for (4.50). The imaginary shift has been successfully used many times. One of the
most significant result obtained in this way is the Kerr–Newman metric. Kerr–Newman
black hole is generated from Reissner–Nordström metric with the help of Newman–Janis
algorithm [21]. Analogically, Magic Field solution, described in section 4.1.2 (see potential
(4.16)), can be obtained by an imaginary shift in spatial direction z → z − ıa, applied to
Columb field potential

Vc
( (3)
x
)
=

1∣∣∣∣ (3)x ∣∣∣∣ . (4.53)

Note that The Culomb field potential is the fundamental solution of three-dimensional
Laplace equation in Euclidean space

(3)

△ Vc
( (3)
x
)
= −4πδ

( (3)
x
)
, (4.54)

where δ(x) is the three-dimensional Dirac delta.
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Generation of Hopfions with the help of S operator

The aim of this section is to find the first order operator S which enables one to generate
Hopfion family of solutions from pre-Hopfion solution (4.51).
In section 3.3.1, equation (3.40), class of Hopfion solutions is given. For clarity of

exposition, we highlight l-pole Hopfion solution by the following denoting

H
Φl =

RlYl

[(R2 − (t+ ıα)2)]l+1
. (4.55)

where Y l is a multipole of l-th order and maximal degree m = ±l.
Moreover,

H
Φl has a separable structure, namely

H
Φl =

H
ϕl(t, r)Y l . (4.56)

It is trivial from the point of view of multipole decomposition on the sphere. Only one
l-pole remains in such decomposition. It leads to conclusions that the generating operator
S has the following properties

1. S maps a multipole of l-th order and maximal degree m = ±l into a multipole of
(l+1)-th order. In particular for Hopfion class of solutions, we have

S
H
Φl =

H
Φl+1 . (4.57)

2. S commutes with d’Alembert operator for any arbitrary smooth function F (t, R, θ, φ)

(□ S− S□)F (t, r, θ, φ) = 0 (4.58)

Let S□(M) is the space of solutions of wave equation (4.46) on Minkowski spacetime. The
second condition means that S is an endomorphism in S□(M). It guarantees that SΦ is
a good reduced data (SΦ ∈ S□(M)) of Maxwell field if Φ ∈ S□(M).
We have found a particular example of S with the help of the following observation.

Consider l-pole Hopfion solution with a particular choice of spherical harmonics represen-
tation in Cartesian coordinates

H
Φl =

(x+ ıy)l

(x2 + y2 + z2 − (t+ ıα)2)l+1
. (4.59)

Using (4.57) and (4.59), we have

S
(
ln

H
Φl
)
= H

Φl+1

H
Φl

=
(x+ ıy)

(x2 + y2 + z2 − (t+ ıα)2)
. (4.60)

Let us observe that

S
(
ln

H
Φl
)
= S

[
l
(
ln

H
Φ1 − ln

H
Φ0
)
+ ln

H
Φ0
]
= S ln

H
Φ0 , (4.61)
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and
(x+ ıy)

(x2 + y2 + z2 − (t+ ıα)2)
=

1

2
(∂x + ı∂y) ln

1

H
Φ0

. (4.62)

Comparing (4.60), (4.61) and (4.62), we find[
S+

1

2
(∂x + ı∂y)

]
ln

H
Φ0 = 0 . (4.63)

That means
S = −1

2
(∂x + ı∂y) . (4.64)

In spherical coordinates, it has a form

S = −1

2
eıφ
[
sinΘ∂R +

cosΘ

R
∂Θ +

ı

R sinΘ
∂φ

]
. (4.65)

In appendix A.5, S in oblate spheroidal coordinates is given. Acting S l-times on pre-
Hopfion (4.51), we have

H
Φl = Sl

H
Φ0 , (4.66)

where
H
Φl from the above equation agrees with (4.55).

4.2.1 Pre-Magic Hopfion: fundamental solution with complex
spacetime shift

Hopfions can be generated from fundamental solution of wave equation (4.50) via complex
shift in time-like direction. We wish to generalize the construction by implementing a
complex shift in arbitrary spacetime direction.
Without loss of generality, we can set a coordinate system in such a way, that the

spatial part of the shift is performed in z direction. In oder words, an arbitrary complex
shift in spacetime direction is given in Cartesian coordinates as

t → t+ ıα (4.67)
z → z + ıa (4.68)

Applying the above transformation into fundamental solution of wave equation (4.50), in
Cartesian coordinates, we receive unified generalization of Magic Field and Hopfions

MH
Φ0 =

1

x2 + y2 + (z + ıa)2 − (t+ ıα)2
. (4.69)

It is convenient to analyze the shift in oblate spheroidal coordinates (t, r, θ, φ), see ap-
pendix A.5,

MH
Φ0 =

1

(r + ıa cos θ)2 − (t+ ıα)2
. (4.70)

We call it pre-Magic Hopfion solution. Acting generating operator S, see (A.16), l
times we find l-th order Magic Hopfion

MH
Φl =

(a2 + r2)
l
2 sinl θeılφ

((r + ıa cos θ)2 − (t+ ıα)2)l+1
. (4.71)

For a→ 0, one receives l-pole hopfion solution from (4.71).
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4.2.2 Reconstruction of Maxwell tensor from Magic Hopfion re-
duced data

Reconstruction method of electromagnetic field, described in section 3.3 together with ap-
pendices A and B, is effective for reduced data which has simple multipole structure. For
pre-Magic Hopfion reduced data (4.71), we use an alternative method of reconstruction
whic is based on N–P formalism. Φ is closely related with Newman- Penrose electromag-
netic scalar ϕ1, see (4.94).
Let us chose the following tetrad3 in oblate spheroidal coordinates:

Lµ∂µ =
[
1, 1, 0,

a

∆

]
, (4.72)

Nµ∂µ =
1

2Σ
[∆,−∆, 0, a] , (4.73)

Mµ∂µ =
1√
2ϱ̄

[
ıa sin θ, 0, 1,

i

sin θ

]
, (4.74)

where ϱ := r − ıa cos θ, ∆ = r2 + a2 and Σ = r2 + a2 cos2 θ. The nonzero N–P spin
coefficients are listed below

τ ′ = − i√
2

a sin θ

ϱ2
, (4.75)

ρ′ =
1

2

∆

Σϱ
, (4.76)

τ = − i√
2

a sin θ

Σ
, (4.77)

ρ = − 1

ϱ
, (4.78)

ϵ′ = ρ′ − 1

2

r

Σ
, (4.79)

β =
1

2
√
2

cot θ

ϱ̄
, (4.80)

β′ = τ ′ + β̄ . (4.81)

Maxwell equations in N–P formalism (4.41)-(4.44), appropriate for Magic Hopfion geom-
etry, in oblate spheroidal coordinates take the form

1

ϱ
√
2

(
L1 −

ia sin θ

ϱ

)
ϕ0 = +

(
D0 +

2

ϱ

)
ϕ1, (4.82)

1

ϱ
√
2

(
L0 +

2ia sin θ

ϱ

)
ϕ1 = +

(
D0 +

1

ϱ

)
ϕ2, (4.83)

1

ϱ̄
√
2

(
L †

1 +
ia sin θ

ϱ

)
ϕ2 = − ∆

2ρ2

(
D†

0 +
2

ϱ

)
ϕ1, (4.84)

1

ϱ̄
√
2

(
L †

0 +
2ia sin θ

ϱ

)
ϕ1 = − ∆

2ρ2

(
D†

1 −
1

ϱ

)
ϕ0 , (4.85)

where

Dn = ∂t + ∂r +
a

∆
∂φ + 2n

r

∆
, (4.86)

3This is the Kinnersley’s tetrad for Kerr spacetime in Boyer-Lindquist coordinates with the limit the
Kerr mass parameter m → 0.
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D†
n = −∂t + ∂r −

a

∆
∂φ + 2n

r

∆
, (4.87)

Ln = ∂θ − ıa sin θ∂t − ıa csc θ∂φ + n cot θ , (4.88)
L †

n = ∂θ + ıa sin θ∂t + ıa csc θ∂φ + n cot θ . (4.89)

For scalars, the relations between the above operators and tetrad directional derivatives
(4.45) are

D = Lµ∂µ = D0 , (4.90)

D′ = N ν∂ν = − ∆

2Σ
D†

0 , (4.91)

δ = Mµ∂µ =
1√
2ϱ̄

L †
0 , (4.92)

δ′ = M̄ν∂ν =
1√
2ϱ

L0 . (4.93)

The reduced data Φ, see the comment above (4.46), is proportional to the middle Newman-
Penrose electromagnetic scalar

Φ̄ =
√
2ϱϕ1 . (4.94)

For convenience, we use modified Newman-Penrose scalars

(0)

Φ= ϕ0,
(1)

Φ= Φ̄,
(2)

Φ= 2ϱ2ϕ2 . (4.95)

To avoid notational misunderstandings, we consequently use Φ instead of
(1)

Φ . Maxwell
equations in terms of modified N-P scalars take more symmetric form(

L1 −
ia sin θ

ϱ

)
(0)

Φ =

(
D0 +

1

ϱ

)
Φ̄ , (4.96)(

L0 +
ia sin θ

ϱ

)
Φ̄ =

(
D0 −

1

ϱ

)
(2)

Φ , (4.97)(
L †

1 − ia sin θ

ϱ

)
(2)

Φ = −∆

(
D†

0 +
1

ϱ

)
Φ̄ , (4.98)(

L †
0 +

ia sin θ

ϱ

)
Φ̄ = −∆

(
D†

1 −
1

ϱ

)
(0)

Φ . (4.99)

Finding a full of N-P scalars for Magic Hopfions is technically challenging. We restrict
ourselves to the case l = 1 in (4.71). For convenience, we introduce

ũ = r − ıa cos θ + t− ıα , (4.100)
ṽ = r − ıa cos θ − t+ ıα . (4.101)

The full set of N–P modified scalars reads

MH

(0)

Φ
1 =

(r − ıa)(1 + cos θ)e−ıφ

√
a2 + r2ũ3ṽ

+ c1K

(0)

Φ , (4.102)
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MH
Φ1 = Φ̄ =

√
a2 + r2 sin θe−ıφ

ũ2ṽ2
, (4.103)

MH

(2)

Φ
1 =

√
a2 + r2(r + ıa)(1− cos θ)e−ıφ

ũṽ3
+ c2K

(2)

Φ . (4.104)

It turns out that
MH

(0)

Φ1 and
MH

(2)

Φ1 are defined up to singular solutions
K

(0)

Φ ,
K

(2)

Φ respectively
(see appendix C.2). We set c1 = c2 = 0 to obtain clasical Hopfions for a = 0.
An unique form of Maxwell field is encoded in a triple of N–P electromagnetic scalars

(ϕ0, ϕ1, ϕ2)

Fµν = 2
(
ϕ1 + ϕ̄1

)
N[µLν] − 2ϕ2L[µMν] − 2ϕ̄2L[µM̄ν]

+2ϕ0M̄[µNν] + 2ϕ̄0M[µNν] + 2
(
ϕ1 − ϕ̄1

)
M[µM̄ν] . (4.105)

Using (4.105), we obtain Maxwell two-form associated with the N–P electromagnetic
scalars (4.102)-(4.104). Anti-self dual form of Maxwell two-form is defined as

F = F + ı ∗ F . (4.106)

Anti-self-dual Maxwell two form for Magic Hopfion reads

MH
F =

√
2
√
r2 + a2eıφ

¯̃u
3¯̃v

3

[(
− ζr + 2

(
a2 + r2

)
(r − (t− ı(a+ α)) cos θ)

)
×
(
ı sin2 θdθ ∧ dφ− sin θ

a2 + r2
dt ∧ dr

)
+
(
ζ cos θ − 2

(
(t− ı(a+ α))r + a2 cos θ

)
sin2 θ

)(
dt ∧ dθ + ı sin θdr ∧ dφ

)
+ζ
(
ı sin θdt ∧ dφ+

r2 + a2 cos2 θ

r2 + a2
dr ∧ dθ

)]
, (4.107)

where

ζ = r2 + t2 − a2 cos2 θ − 2rt cos θ − α2 − 2aα + 2ı(a+ α)(r cos θ − t) . (4.108)

4.2.3 3 + 1 decomposition of electromagnetism

Consider a one-parameter family of Cauchy surfaces Σt parametrized by time t embedded
in Minkowski spacetime. The unit normal vector to the surfaces is denoted by

n = ∂t , (4.109)

Magic Hopfions on each Σt is described by Riemann–Silberstein vector

MH
Z = G−1

(
n⌟
MH
F
)
, (4.110)

where G is a metric isomorphism related with three-dimensional metric on Σt. From
(4.107) one obtains

MH
Z =

√
2
√
r2 + a2eıφ

¯̃u
3¯̃v

3

[
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(
ζr − 2 (a2 + r2) (r − (t− ı(a+ α)) cos θ)

)
sin θ

r2 + a2 cos2 θ
∂r

+
ζ cos θ − 2 ((t− ı(a+ α))r + a2 cos θ) sin2 θ

r2 + a2 cos2 θ
∂θ

+
ıζ

(a2 + r2) sin θ
∂φ

]
. (4.111)

3-D vector potential in Chandrasekhar–Kendall form (curl eigenvector)

Vector potential
CK
V fulfills simultaneously the following two conditions

MH
Z = curl

CK
V , (4.112)

MH
Z =

CK
λ
CK
V . (4.113)

The above equations are an overdetermined system of conditions in general. We check
that

CK
V can be given in Chandrasekhar–Kendall form. Indeed, the system of six scalar

equations is linearly dependent. It can be reduced to three independent equations. We
obtain

1

CK
λ

= Ξ(t, r, θ)
[
ı(r cos θ + ıa+ ıα− t)

(
r2 + 2ı cos θar + ı cos θrα

− rt cos θ − a2 cos θ2 − ıat− aα
)
− µ(t)¯̃u

2¯̃v
2
]
, (4.114)

where a function Ξ is equal to

Ξ(t, r, θ) =
¯̃u ¯̃v

(r2 + t2 − α2 − a2 cos2 θ − 2rt cos θ − 2aα + 2ı(a+ α)(r cos θ − t))2
.

Part of the vector
MH
Z/

CK
λ, which is proportional to µ(t), see (4.114), belongs to a kernel

of curl operator. Setting

µ(t) =
1

4ıt+ 4α
, (4.115)

in (4.114) we finally obtain

CK
λ = −4ı(t− ıα)

¯̃u ¯̃v
. (4.116)

Let us note that (4.116) is related to (4.71) with l = 1 by

CK
λ = i∂t ln

(
MH
Φ̄1
)
. (4.117)

Potential in transverse gauge

We transform the three-dimensional vector potential, given by Equations (4.111), (4.113)
and (4.116), into potential in transverse (Coulomb) gauge

Q
V, defined as

div
Q
V = 0 . (4.118)
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The potentials are related by the gauge transformation

Q
V =

CK
V+ ξ|k∂k , (4.119)

where ξ is a gauge function. Chandrasekhar–Kendall potential fulfills

0 =
MH
Zk

|k

=
(
CK
Vk

CK
λ
)
|k

=
CK
λ
CK
Vk

|k + CK
Vk

CK
λ|k , (4.120)

where we have used Maxwell equations and (4.113). It leads to

CK
Vk

|k = MH
Zk
CK
λ−1
|k (4.121)

Equations (4.111) and (4.116) enables one to obtain from (4.121)

CK
Vk

|k = −
√
2ı

2(t+ ıα)MH
Φ̄1 (4.122)

Using (4.118), (4.119) and (4.122), the condition for gauge function (ξ) reads
√
2ı

2(t+ ıα)MH
Φ̄1 +△(ξ) = 0 (4.123)

where △ is a three-dimensional Laplace operator. Let us recall that
MH
Φ̄1 fulfills wave

equation, we have
−∂2t MHΦ̄

1 +△
MH
Φ̄1 = 0 (4.124)

we denote
MH
Φ̄1 =

MH
Φ̄1(t, xk). Integrating the above equation with respect to time pa-

rameter two times, we obtain up to integration constants

−
MH
Φ̄1 +△

∫ t

0

dτ

(∫ τ

0
MH
Φ̄1(s, xk) ds

)
= 0 (4.125)

Comparing the above equation with (4.123), one finds

ξ =

√
2ı

2(t+ ıα)

∫ t

0

dτ

(∫ τ

0
MH
Φ̄1(s, xk) ds

)
(4.126)

The explicit form of ξ reads

ξ = − ı
√
2
√
a2 + r2eıφ sin θ

8(t+ ıα)(r + ıa cos θ)3

[
(t− ıα) ln

(
t− ıα + r + ıa cos θ

t− ıα− r − ıa cos θ

)
− 2(r + ıa cos θ)

]
(4.127)

Gauge function ξ with (4.119), (4.111) and (4.116) enables one to obtain vector potential
in transverse (Coulomb) gauge.
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4.3 Basic properties of Magic Hopfions

Helicity

Helicity integrals measure topological properties of field lines. We wish to analyze helic-
ities as functions of parameters (t, α, a). We recall definitions given in section 3.3.3. In
particular, we have

hE + hM = ℜ
∫
Σ

(
MH
Z ·

CK
V̄
)
, (4.128)

hE − hM = ℜ
∫
Σ

(
MH
Z ·

CK
V
)
. (4.129)

The second integral contains an integrand e2ıφF (t, r, θ), which leads to

hE = hM . (4.130)

The first one, toghether with the above result, gives

hE = hM =
π2

8(α− a)3(a+ α)
. (4.131)

Both helicities do not depend on time which means field lines do not intersect each other
during time evolution. The helicities are not defined for α = ±a. Note that, if α, a are
non-zero, the rescaling in t and r enables one to rescale one of the parameters to ±14. In
other words, the topological structure of the Magic Hopfion solution depends on that the
parameters α, a are equal to zero or not and on theirs ratio α/a.

Electric charge

For Magic Hopfions Riemann-Silberstein vector has a form

MH
Zk∂k = eıφZk(t, r, θ)∂k , (4.132)

from which we immediately receive

Q(r) =

∫
Sr
MH
ZkdSk = 0 , (4.133)

for any r = const spheroid. We conclude the charge in the whole space is zero. Magic
Hopfion is a purely wave solution which propagates on the light cone.

Energy

Electromagnetic energy density of Magic Hopfion reads

E = E(t, r, θ, α, a) =
MH
Zk
MH
Z̄k , (4.134)

4The most convenient way for such analysis is to observe how rescaling is acting on the reduced data
(4.71).
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which is explicitly equal to

E =
4 (2a2 + 2aα + α2 + r2 + t2 − a2 cos2 θ − 2rt cos θ)

2

(a2 cos2 θ + 2aα cos θ + α2 + (r − t)2)3 (a2 cos2 θ − 2aα cos θ + α2 + (r + t)2)3
.

(4.135)
The energy density is finite at each point of spacetime for α > a. If we set E(t, r, θ, 1, 0),
we obtain the energy density for classical Hopfion (see energy density5 in [61], p. 3).

4.4 Epilogue

In this chapter, we have obtained an electromagnetic solution, called Magic Hopfion, by a
generalization of imaginary shift for any space-time direction, see (4.71), and investigate
its basic properties. Preliminary analysis of integral curves, see figures 4.4 and 4.5 do not

Figure 4.4: Magic Hopfion (a = 0.1, α =
1, t = 0)

Figure 4.5: Magic Hopfion (a = 0.5, α =
1, t = 0)

show significant qualitative differences, comparing to Hopfions, for a < α. The research
does not end with the end of this chapter. In the future, we plan to continue task from
the list below at the University of Warsaw and in friendly research groups abroad. The
interesting topics are:

1. Detailed analysis of Magic Hopfions for a ≥ α. In particular, the case α = ±a is
the most intriguing.

2. Magic Hopfion solution can be also generalized for spin 2 field — weak gravitational
wave. In particular, the results in the section 3.4 can be extended.

3. For further analysis of topological structures, the whole helicity array, see [2], for
the (Magic) Hopfions solutions may be investigated.

5In [61], the solution is rotated around x axis x → x, y → −z, z → y. The formulas are equal after
applying rotation operator.
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Appendix

A Mathematical supplement

A.1 Three-dimensional Laplace operator and its inverse

Consider Laplace equation
△G(r, r′) = −δ(3)(r− r′) , (A.1)

with a solution on an open set without boundary. δ(3)(r−r′) is a three-dimensional Dirac
delta. G(r, r′) is the following Green function of (A.1)

G(r, r′) =
1

4π||r− r′||
. (A.2)

The solution of Poisson equation

△u(r) = −f(r) , (A.3)

is the convolution of f(r) and Green function

u(r) =

∫
Σ

f(r′)G(r, r′)dr′ =

∫
Σ

f(r′)

4π||r− r′||
dr′ . (A.4)

A.2 Two-dimensional Laplace operator and its inverse

Consider two-dimensional unit sphere in R3, parameterized by a unit position vector n.
One of the main differences is that the domain of the solutions is the compact surface
without boundary. The conclusions of the Stokes theorem (

∫
S2 ∆u(n) = 0) require a mod-

ified problem to be examined than in the three-dimensional case. Consider the following
two-dimensional Laplace equation with an additional condition

∆G(n,n′) = 1− δ(2)(n− n′) , (A.5)∫
S2
σG(n,n′)dn′ = 0 , (A.6)

where σ is area element on S2. We have the solution

G(n,n′) = − 1

4π

(
ln

(
1− n · n′

2

)
+ 1

)
, (A.7)
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where ‘·’ is a scalar product of the position vectors6. The solution of the Poisson equation

∆s(n) = −f(n) , (A.8)∫
S2
σf(n)dn = 0 , (A.9)

is the convolution of f(n′) and the Green function

u(n) =

∫
S2
f(n′)G(n,n′)dn′ = −

∫
S2

1

4π

(
ln(

1− n · n′

2
) + 1

)
f(n′)dn′ , (A.10)

See [16] and [34] for detailed view, [62] is a specialized literature on the subject.

A.3 Operations on the sphere

Let us denote by ∆ the Laplace–Beltrami operator associated with the standard metric
hAB on S2. Let SH l denote the space of spherical harmonics of degree l (g ∈ SH l ⇐⇒
∆g = −l(l + 1)g). Consider the following sequence

V 0 ⊕ V 0 i01−→ V 1 i12−→ V 2 i21−→ V 1 i10−→ V 0 ⊕ V 0 .

Here V 0 is the space of, say, smooth functions on S2, V 1 – that of smooth covectors on
S2, and V 2 – that of symmetric traceless tensors on S2. The various mappings above are
defined as follows:

i01(f, g) = f||a + εa
bg||b ,

i12(v) = va||b + vb||a − habv
c
||c ,

i21(χ) = χa
b
||b ,

i10(v) =
(
va||a, ε

abva||b
)
,

where || is used to denote the covariant derivative with respect to the Levi–Civita con-
nection of the standard metric hAB on S2. For more details see appendix E in [34].

A.4 Identities on the sphere

We have used the following identities on a sphere

−
∫
S(r)

πAvA =

∫
S(r)

(rπA
||A)∆

−1(rvA||A) +

∫
S(r)

(rπA||BεAB)∆
−1(rvA||Bε

AB) , (A.11)

and similarly for the traceless tensors we have∫
S(r)

◦
πAB ◦

vAB = 2

∫
S(r)

(r2εAC ◦
πA

B
||BC)∆

−1(∆+ 2)−1(r2εAC ◦
vA

B
||BC)

+ 2

∫
S(r)

(r2
◦
πAB

||AB)∆
−1(∆+ 2)−1(r2

◦
vAB

||AB) . (A.12)

6For a given point (θ, φ) in spherical coordinates on the unit sphere, the three-dimensional position
vector in the Cartesian embedding is n = sin θ cosφ∂x+sin θ sinφ∂y+cos θ∂z. Then we use scalar product
with Euclidean metric.
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A.5 Minkowski in spheroidal coordinates

The spheroidal coordinates (t, r, θ, φ) (Kerr withM = 0) are related with standard spher-
ical coordinates (t, R,Θ, φ) by two-dimensional change of coordinates (t, φ remains un-
changed)

R =
√
r2 + a2 sin2 θ

sinΘ =
sin θ

√
1 + a2

r2√
1 + a2

r2
sin2 θ

(A.13)

cosΘ =
cos θ√

1 + a2

r2
sin2 θ

Inverse transformation

r =

√
2R2 − 2a2 + 2

√
−4a2R2 sin2Θ+R4 + 2a2R2 + a4

2
(A.14)

sin θ =

√
2R2 + 2a2 − 2

√
−4a2R2 sin2Θ+R4 + 2a2R2 + a4

2a
(A.15)

Using (A.13), we obtain S in spheroidal coordinates

S =
r
√
a2 + r2eıφ sin θ

r2 + a2 cos2 θ
∂r +

√
a2 + r2eıφ cos θ

r2 + a2 cos2 θ
∂θ +

ıeıφ√
a2 + r2 sin θ

∂φ . (A.16)

B Scalar representation of electromagnetic field

Let us consider an electromagnetic field on Minkowski background. We present how to
describe electromagnetism in terms of complex scalar function Φ. The section is organized
as follows: we start with a description of standard electric E and magnetic B fields with
help of complex Riemann–Silberstein vector Z = E+ ıB. Then, we decompose Z, in the
spherical coordinate system, into radial and angular part. We show that the radial part
is sufficient to recover quasi-locally the whole Z vector.
The vacuum Maxwell equations for electric field vector E, magnetic field B, and vector
potential A are

divE = 0 , (B.1)
divB = 0 , (B.2)

curlE = −∂B
∂t

, (B.3)

curlB =
∂E

∂t
, (B.4)

B = curlA . (B.5)
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If electric field E is sourceless then additional vector potential can be introduced7. It is
defined up to a gradient of a function in the following way

E = curlC . (B.6)

It is convenient to use one complex electromagnetic vector field Z, called Riemann–
Silberstein vector, instead of E and B. Z is defined as follows

Z = E+ ıB , (B.7)

where ı2 = −1. For sake of simplicity, we will use complex vector potential V instead of
C and A:

V = C+ ıA . (B.8)

The vacuum Maxwell equations (B.1–B.5) with vector potential C (B.6) can be written
in the form of three complex, differential equations for vector fields

divZ = 0 , (B.9)

curlZ = ı
∂Z

∂t
, (B.10)

Z = curlV . (B.11)

In the next part of the section, we will use spherical coordinate system. Each vector
w = (wR, wA) can be decomposed into its radial part wR and two-dimensional angular
part wA. The capital letter index runs angular coordinates.
We split two-dimensional vector into its longitudinal wA

||A and transversal part εRABw
A||B.

The Maxwell equations in terms of the decomposition have the form:

RZR = Φ , (B.12)
R2ZA

||A = −∂R(RΦ) , (B.13)

RεRABZ
A||B = −ı∂tΦ , (B.14)

∆VR − VC,R
||C = −ı∂tΦ , (B.15)

RεRABV
A||B = −Φ . (B.16)

C Alternative descriptions of electromagnetic field

C.1 Clebsch representation and Euler potentials of electromag-
netic fields

Clebsch representation is based on canonical form of two-form. If ω is a non-degenerate
two-form in a four-dimensional vector space, given in terms of a basis of one-forms fa(a =
1, . . . , 4) by

ω =
1

2
ωabf

a ∧ f b ,

7We remark that the description of electromagnetism with the help of complex scalar function holds
also without the additional potential.
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then there is symplectic basis of one-forms ga(a = 1, . . . , 4), such that ω can be written
as

ω = g1 ∧ g2 + g3 ∧ g4 . (C.1)

The symplectic basis is not defined uniquely. We wish to present an example of transfor-
mation for symplectic basis. Let us consider a Maxwell two-form in the following form

F =
1

2
Fµνdx

µ ∧ dxν = Eidx
0 ∧ dxi − εijkBidx

j ∧ dxk . (C.2)

Assuming8 E1 ̸= 0, one can write equivalently ,

F =
(
E1dx

0 +B3dx
2 −B2dx

3
)
∧
(
dx1 +

E2

E1

dx2 +
E3

E1

dx3
)
−
(
E ·B
E1

)
dx2 ∧ dx3 .

It means a good choice of basis one-forms to be

g0 = E1dx
0 +B3dx

2 −B2dx
3 , (C.3)

g1 = dx1 +
E2

E1

dx2 +
E3

E1

dx3 , (C.4)

g2 = −
(
E ·B
E1

)
dx2 , (C.5)

g3 = dx3 . (C.6)

Hence, F takes the form (C.1). Moreover, if the determinant of the matrix F

detFµν = (E ·B)2 , (C.7)

vanishes, then F is degenerate and becomes a decomposable two-form, i.e. there is a pair
of one-forms (a, b) such that

F = a ∧ b . (C.8)

For electromagnetic field, we have two Lorentz invariants

−1

4
FµvF

µν =
E2 −B2

2
, (C.9)

−1

4
Fµv ∗ F µν = E ·B . (C.10)

Decomposable two-form means obviously that the Lorentz invariant (C.10) is zero (g2 =
0). Moreover, ∗F is also decomposable. It turns out that a decomposable electromagnetic
field can be written locally in terms of canonical variables (q, p) and (v, u) as

F = dq ∧ dp , (C.11)
∗F = dv ∧ du . (C.12)

For details see [4], page 9 and references therein. Let us suppose that a decomposable
electromagnetic field is given globally by (C.11)-(C.12). Then the magnetic field B and

8If E1 = 0, one can choose any Ei ̸= 0.
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the electric field E can be expressed by the same functions (q, p) and (v, u) in all points
of space-time,

B = ∇p×∇q , (C.13)
E = ∇v ×∇u . (C.14)

We wish to analyze the magnetic helicity (electric helicity can be considered in analogous
way). If F = dq ∧ dp globally, then the magnetic field can be written as B = ∇p×∇q. If
we additionally assume that the functions p and q are single-valued, a well-defined vector
potential A is given

A = p∇q . (C.15)

Using (C.13) and (C.15), one can check easily that A · B = 0, so the magnetic helicity
is zero. We wish to highlight that contribution to non-zero helicity can be obtained only
from points where one of the vector fields, ∇p or ∇q, diverge.

Euler potentials

The Euler potentials [60] of the magnetic field are given by two real functions α1(r, t) ∈ R
and α2(r, t) ∈ R such that

B = ∇α1 ×∇α2 . (C.16)

By comparing these equations with (C.13), one can see that the Euler potentials are
canonical variables of the magnetic field. They provide a Clebsch representation of this
field.
Analogically, we can introduce real-valued Euler potentials β1(r, t) and β2(r, t) by the
equation

E = ∇β2 ×∇β1 . (C.17)

Euler potentials for electric field can be introduced only in vacuum — the condition
∇ · E = 0 is required.
For convenience, Euler potentials can be encoded in a single scalar function. Since ζ(r, t)
is a complex field, one can define Euler potential for magnetic field as

B(r, t) =
1

2πi

∇ζ ×∇ζ̄
(1 + ζ̄ζ)2

= ∇
(

1

1 + |ζ|2

)
×∇

(
arg(ζ)

2π

)
. (C.18)

where modulus of ζ and argument of ζ are given respectively by |ζ| =
√

(ℜ(ζ))2 + (ℑ(ζ))2 ,
and arg(ζ) = arctan(ℑ(ζ)/ℜ(ζ)) . By comparing with (C.16), we have

α1(r, t) =
1

1 + |ζ|2
, (C.19)

α2(r, t) =
arg(ζ)

2π
. (C.20)

Analogically, for sourceless electric field one can obtain

E(r, t) =
1

2πi

∇ξ̄ ×∇ξ
(1 + ξ̄ξ)2

= −∇
(

1

1 + |ξ|2

)
×∇

(
arg(ξ)

2π

)
. (C.21)
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The relations with real Euler potentials are

β1(r, t) =
1

1 + |ξ|2
, (C.22)

β2(r, t) =
arg(ξ)

2π
. (C.23)

Moreover, Euler potentials are convenient to describe electromagnetic field lines.
The magnetic lines are given by the equations α1 = k1 and α2 = k2. From (C.19)-

(C.20), these two real equations can be written as the complex equation

ζ(r, t) = ζ0 , (C.24)

so that the complex scalar field ζ gives all the magnetic lines. Analogously, the equation

ξ(r, t) = ξ0 ,

gives all the electric lines when the constant ξ0 is set to take values in the complex plane.
Consequently, if an electromagnetic field can be written as functions of the two complex
scalar fields ζ and ξ, it allows to study directly the magnetic and electric lines for every
time, and moreover define canonical variables and Euler potentials for the magnetic and
electric field.
We wish to highlight that the complex scalar fields η and ζ in the equations9 (3.3) de-
fines Euler potentials (and canonical variables) of the magnetic and the electric field for
Hopfions.

C.2 Ambiguities in reconstruction N–P electromagnetic scalars

from
(1)

Φ

For Maxwell equations (4.96)-(4.99), we investigate well-definiteness of
(0)

Φ and
(2)

Φ when
Φ is given. Let us consider a reformulated problem: Consider a solutions of Maxwell

equations,
(0)

Φ and
(2)

Φ , in the case when Φ ≡ 0 for all points of spacetime. In other words,
we solve Maxwell equations (4.96)-(4.99) for Φ ≡ 0. The equations reads(

L1 −
ia sin θ

ϱ

)
K

(0)

Φ = 0 , (C.25)(
D†

1 −
1

ϱ

)
K

(0)

Φ = 0 , (C.26)(
L †

1 − ia sin θ

ϱ

)
K

(2)

Φ = 0 , (C.27)(
D0 −

1

ϱ

)
K

(2)

Φ = 0 . (C.28)

9Compare with (C.18) and (C.18).
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Subsystems (C.25), (C.26) and (C.27), (C.28) can be analyzed separately. The family of
solutions for a subsystem (C.25), (C.26) is equal to

K

(0)

Φ =
ϱβ
(
t+ ϱ, φ+ atan

(
r
a

)
− ı atanh(cos θ)

)
(a2 + r2) sin θ

. (C.29)

where β(·, ·) is an arbitrary differentiable function of two variables. C1 is a constant.
Analogically, the solutions of (C.27), (C.28) read

K

(2)

Φ =
ϱγ
(
t− ϱ, φ− atan

(
r
a

)
+ ı atanh(cos θ)

)
sin θ

. (C.30)

where γ(·, ·) is an arbitrary differentiable function of two variables. C2 is a constant.

D Scalar description of linearized gravity

D.1 Equivalent definitions of spin-2 field

Let us start with the standard formulation of a spin-2 field Wµανβ in the Minkowski
spacetime equipped with a flat metric gµν and its inverse gµν . We consider vacuum case.
The field W can be also interpreted as a Weyl tensor for linearized gravity (see [15], [31],
[34]).
The following algebraic properties:

Wµανβ = Wνβµα = W[µα][νβ] , Wµ[ανβ] = 0 , gµνW µανβ = 0 , (D.1)

and Bianchi identities which play a role of field equations

(4)

∇[λ Wµν]αβ = 0 , (D.2)

can be used as a definition of spin-2 field W . The ∗–operation defined as

(∗W )αβγδ =
1

2
εαβµνW

µν
γδ , (W ∗)αβγδ =

1

2
Wαβ

µνεµνγδ ,

has the following properties:

(∗W ∗)αβγδ =
1

4
εαβµνW

µνρσερσγδ ,
∗W = W ∗ , ∗(∗W ) = ∗W ∗ = −W ,

where εµνγδ is a Levi–Civita skew-symmetric tensor10 and ∗W is called dual spin-2 field.
The above formulae are also valid for general Lorentzian metrics.

10Defined in footnote 5.
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D.2 Gravito-electric and gravito-magnetic formulation

Following Maartens [46], spin-2 field can be equivalently described in terms of gravito-
electric and gravito-magnetic tensors. We perform a (3 + 1)–decomposition of the Weyl
tensor. The ten independent components of W split into two three-dimensional symmet-
ric, traceless tensors: the electric part

E(X, Y ) := W (X, ∂t, ∂t, Y ) , (D.3)

and the magnetic part
B(X, Y ) := ∗W (X, ∂t, ∂t, Y ) . (D.4)

The following relations between W and the three-dimensional tensors hold:

W0kl0 = Ekl , W0kij = Bklε
l
ij , Wklmn = εiklε

j
mnEij . (D.5)

The classical formulation of gravito-electromagnetism uses the constraint equations

Ekl
|l = 0 , (D.6)

Bkl
|l = 0 , (D.7)

and the dynamical equations

∂tE
kl = εpq(kBl)

q|p , (D.8)

∂tB
kl = −εpq(kEl)

q|p , (D.9)

where [curlX]ab := εcd(aXb)
d|c , is the symmetric curl operator for tensors.

ADM momentum P and the dual counterpart S as “potentials” for Weyl
tensor. Analogically to electromagnetic case we introduce potentials for Weyl tensor in
gravito-electromagnetic formulation. The potential for gravito-magnetic part is the ADM
momentum P . It fulfills

Bab = εcd(aPb)
d|c . (D.10)

The second potential can be introduced for gravito-electrical part

Eab = εcd(aSb)
d|c . (D.11)

The potentials fulfill constraint equations

P kl
|l = 0 , (D.12)

Skl
|l = 0 . (D.13)

It is convenient to use a complex combination of Ekl and Bkl as follows

Zkl := Ekl + ıBkl , (D.14)

and its potentials Pkl and Skl

Vkl = Skl + ıPkl . (D.15)
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The equations (D.6)-(D.13) in terms of complex objects are

Zkl
|l = 0 , (D.16)

Żkl = −ıεpq(kZ l)
q|p , (D.17)

Zab = εcd(aVb)
d|c , (D.18)

V kl
|l = 0 . (D.19)

D.3 Scalar representation of spin-2 field

Spin-2 field can be represented as a complex, scalar function defined analogically to the
electromagnetic case11.
In the spherical coordinates it has the form

Ψ = 2Zklx
kxl = 2ZRRR

2 . (D.20)

A counterpart of gravito-electromagnetic equations (D.6)-(D.9) for Ψ is

□Ψ = 0 , (D.21)

where □ is a d’Alembert operator for Minkowski background. The recovery procedure
of the Zkl field from Ψ uses the constraint equations for linearized Weyl tensor and the
dynamical equations. The (2 + 1)–splitting of the constraint (D.16):

∂R(R
3ZRR) +R3ZRA

||A = 0 , (D.22)

∂R(R
4ZRA

||A) +R4
◦
Z

AB
||AB − 1

2
R2∆ZRR = 0 , (D.23)

∂R(R
4ZR

A||Bε
AB) +R4

◦
Z A

B
||BCε

AC = 0 , (D.24)

and the (2 + 1)–decomposition of the dynamical equations (D.17) :

∂tZ
RR = −R2εRABZRA||B , (D.25)

∂R(R
2∂tZ

RR) = −ıR4
◦
Z A

B

||BCε
RAC , (D.26)

enables one to express explicitly all electromagnetic components of the Weyl tensor in
terms of Ψ and ∂tΨ:

R2ZRR =
1

2
Ψ , (D.27)

R2ZRA||Bε
RAB = −1

2
ı∂tΨ , (D.28)

R3ZRA
||A = −1

2
∂R(RΨ) , (D.29)

R2
(2)

Z = −1

2
Ψ , (D.30)

11See the equation (3.27) and the comments below.
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R4
◦
Z

AB

||AB =
1

2
∂R (R∂R(RΨ)) +

1

4
∆Ψ , (D.31)

R4
◦
ZA

B
||BCε

RAC =
1

2
ı∂R(R

2∂tΨ) , (D.32)

where
(2)

Z= gABZ
AB , and

◦
ZAB= ZAB − 1

2
gAB

(2)

Z . The scalar is related to a gauge-
independent part of the potential Vab. The (2 + 1) – splitting of (D.18), (D.19) and use
of (D.27–D.32) gives

∆(∆+ 2)V R
R = −

(
2ı∂tΨ+ 2ı (RΠ),R + ı(∆+ 2)Π

)
, (D.33)

(∆+ 2)V RA
||A = ı

∂tΨ+ (RΠ),R
R

, (D.34)

2R2V RA||BεRAB = −Ψ , (D.35)

R2
(2)

V = Ψ , (D.36)

2R2
◦
V

AB
||AB = −ı (∂tΨ− Π) , (D.37)

2R4
◦
V

C
A||CBε

RAB =
(
R2Ψ

)
,R
, (D.38)

where Π = 2RV RA
||A +∆V R

R , is a gauge dependent part.
The presented formulation of linearized gravity also holds in the case of sources.
Presented decomposition of linearized Einstein equation can be repeated with non-vanishing
stress-energy tensor. Monopole and dipole part of reduced data Ψ are related to station-
ary12 fields in that case. See [32] for details.

12Precisely, monopole and dipole part of reduced data are related to fields which are stationary or
linear in time.
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E Index of symbols

The following list contains most of the notation used throughout the manuscript. Sym-
bols appearing only in a single instance, in the immediate vicinity of their definition, have
been generally omitted.
Symbol Meaning

M A 4-dimensional spacetime manifold, equipped with a metric gµν satis-
fying the Einstein equation.

Σt A hypersurface in M, defined by x0 = t. Generally assumed to be
spatial. The subscript t is usually omitted.

S2, S(R) Notations for a 2D sphere, used interchangeably.

B(x, r) Ball of radius r, with its center at point x.

(x0, x1, x2, x3) Coordinates in four-dimensional spacetime. Usually assumed to be
adapted to the foliation scheme: x0 is constant on hypersurfaces and x3

labels the 2D leaves of foliation within the hypersurfaces.

α, β, γ, · · · Indices running over all spacetime coordinates: (0, 1, 2, 3).

a, b, c, · · · Indices running over hypersurface coordinates: (1, 2, 3).

A,B,C, · · · Indices running over coordinates in 2D foliation leaves: (1, 2).

(x, y, z) Cartesian coordinates.

(R,Θ, φ) Spherical coordinates.

(R̂, φ, z) Cylindrical coordinates.

(t, r, θ, φ) In chapter 2, coordinate system for Plebański–Demiański black hole. In
chapter 4, oblate spheroidal coordinates.

gµν 4-dimensional metric of Lorentzian signature.

g Determinant of the four dimensional metric gµν .

εαβγδ, εklm, εAB Levi–Civita tensors associated with gµν . For lower dimensional case, we
have εklm = εtklm and εAB = εRAB.

δkl Three dimensional spatial metric on Σ.

; , | , || Covariant derivatives, associated with the metric, in dimensions 4, 3,
and 2, respectively. Note that in approximated theory the covariant
derivatives are calculated with respect to the background metric.

∇ Covariant derivative associated with the metric gµν .

curl Rotation operator, three dimensional differential operator which acts on
vectors.

□ D’Alembert operator.

∆ Laplace–Beltrami operator on a unit sphere.
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Symbol Meaning

Rµνρσ Riemann tensor.

Cµνρσ Weyl tensor.

Rµν Ricci tensor.

∂ Partial derivative.

£K Lie derivative with respect to the vector field K.

R The set of real numbers.

O(r−k) “Big O notation”. h(r) = O(r−k) means that, for r sufficiently large
and some positive constant M , |h(r)| ≤Mr−k.

||v|| Length of vector v.

⟨v1,v2, · · · ,vk⟩Vector space spanned by the vectors v1 to vk.

⟨A⟩ Averaged value of function A.

r Three-dimensional position vector.

Yl Spherical harmonic on a unit sphere, corresponding to the Laplace–
Beltrami operator eigenvalue of −l(l + 1).

(2)

X= gCDXCD The two-dimensional trace (except
(2)

Φ).
◦
X AB The two-dimensional traceless part

◦
X AB = XAB − 1

2
gAB

(2)

X .

ı imaginary unit ı2 = −1.

∗ Hodge dual mapping for forms, i.e. ∗F .
e{a}µ∂µ representative of tetrad basis. Enclosure in curly brackets distinguishes

the tetrad indices from the tensor indices, a ∈ (1, 2, 3, 4).

{L,N,M, M̄} Newman–Penrose tetrad.
F , ∗F Maxwell two-form and its dual.

Fµν Anti-Self dual Maxwell two-form F = F + ı ∗ F
Qµν conformal Yano-Killing two-form.

Y , ∗Y conformal Yano-Killing two-form solutions for Plebański–Demiański
metric (2.45).

Λ Cosmological constant.

m Mass parameter.

Φ Reduced electromagnetic data in terms of complex scalar field. On
Plebański–Demiański background, it is defined in section 2.3.3. For
Hopfions, see equation (3.27) and comments nearby. The paragraphs
nearby the equations (4.46) and (4.94) clarify the application of Φ for
Magic Hopfions.

h Hopf map, see section 3.1.1.
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Symbol Meaning

E ,B Electric (magnetic) vector field.

Z Riemann–Silberstein complex vector field Z = E+ ıB.

A Vector potential for magnetic field B = curlA.

C Vector potential for electric field E = curlC.

V Complex vector potential Z = curlV.

hE, hM Electric (magnetic) helicity.

Ψ Reduced data for spin-2 field, see appendix D.3.

Ekl, Bkl gravitoelectric (gravitomagnetic) symmetric, traceless tensor.

Zkl gravitoelectromagnetic tensor Zkl = Ekl + ıBkl.

P kl Linearized ADM momentum, potential for Bkl, see (D.10) and com-
ments nearby.

Skl Counterpart of linearized ADMmomentum, potential for Ekl, see (D.11)
and comments nearby.

V kl complex potential for gravitoelectromagnetic tensor Zkl, defined by
(D.15).

hGE , hGB Helicity analogs for spin-2 field

(ϕ0, ϕ1, ϕ2) Newman–Penrose electromagnetic scalars.

(
(0)

Φ ,
(1)

Φ ,
(2)

Φ) Modified Newman–Penrose electromagnetic scalars, defined by (4.95).

MH
F Anti-self dual Maxwell two-form for Magic Hopfion.

MH
Z Riemann-Silberstein vector for Magic Hopfion.

CK
V Complex vector potential for Magic Hopfion in Chandrasekhar–Kendall

form (curl eigenvector).
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