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Abstract
Antenna-reactor complexes contain optical antennas, which are able to focus light
into nanoscale volumes, and transition metal nanoparticles, which interact weakly
with light, but exhibit high catalytic activity. Electromagnetic coupling in this
system leads to enhanced optical absorption in transition metal nanoparticles,
which facilitate prospect applications such as optical monitoring of phenomena
accompanying catalysis and plasmon mediated photocatalysis.

In this thesis we provide a comprehensive theoretical study of electromagnetic
coupling in antenna-reactor complexes occuring at three length scales present in
this system: at the macroscopic level, the single antenna level and at the atomic
scale. At the macroscopic scale the optical response of antennas is determined by
coupling between them via multiple scattering. In experimental samples nanoan-
tennas are distributed randomly on a dielectric substrate. Thus, we propose a
T-matrix method based approach to describe the effective optical properties of
such a layer. We show that in addition to antenna properties their minimal center-
to-center distance is a key parameter determining electromagnetic coupling. The
proposed approach enables formulating simple analytical expressions that may
be used to optimize future devices based on amorphous arrays of nanoantennas.

At the single antenna level, we provide accurate models of both the nanoan-
tenna and transition metal nanoparticle layer either by explicit modelling or using
a gradient effective medium model developed by the author. This enables us to
study absorption enhancement in transition metal nanoparticles and find useful
guidelines for maximizing this effect in experimental samples. Also, the results
tie changes of the properties of either the nanoantenna or transition metal nano-
particles to changes of the optical response of the system, which might be used
to optically monitor the evolution of the system during catalysis.

Realistic modelling of phenomena occuring at atomic scales requires us to use
time-dependent density functional theory. At this scale it is possible to credibly
model plasmon formation and its subsequent dephasing that results in hot elec-
tron generation. We show that the presence of a nanoantenna leads to enhanced
hot electron generation in the system compared to an isolated transition metal
nanocluster and study the system parameters that determine this enhancement.

The study shows that antenna-reactor complexes form a promising platform
for photonic enhancement of interaction of light with transition metal nanopar-
ticles, which might lead to intersting applications in sensing and photocatalysis.
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Streszczenie
Układ antena-reaktor zawiera antenę optyczną zdolną do skupiania światła w
nanoskali oraz nanocząstki metali przejściowych, które słabo oddziałują ze świa-
tłem, ale wykazują się wydajną aktywnością katalityczną. Sprzężenie elektro-
magnetyczne w tym układzie prowadzi do zwiększenia absorpcji światła w nano-
cząstkach metali przejściowych, co umożliwia zastosowania takich układów op-
tycznych do monitorowania zjawisk związanych z katalizą oraz przeprowadzenie
fotokatalizy wspomaganej plazmonami.

W niniejszej pracy doktorskiej przedstawiono teoretyczne badania nad elek-
tromagnetycznym sprzężeniem w układzie antena-reaktor zachodzącym w trzech
skalach długości obecnych w tym układzie: w skali makroskopowej, na poziomie
pojedynczej anteny i w skali atomowej. W skali makroskopowej sprzężenie elek-
tromagnetyczne wpływa na odpowiedź optyczną przez wielokrotne rozpraszanie.
W eksperymentalnych realizacjach układu, nanoanteny są rozmieszczone losowo.
Z tego względu, opracowano model oparty na metodzie macierzy T aby opisać
ich efektywne właściwości optyczne. Wykazano, że oprócz właściwości samych
nanoanten, kluczowym parametrem określającym sprzężenie elektromagnetyczne
jest minimalna odległość między środkami anten. Zaproponowane rozwiązanie
umożliwia sformułowanie analitycznych równań opisujących ich własności opty-
czne, które można zastosować do optymalizacji przyszłych urządzeń opartych o
amorficzne macierze nanoanten.

W celu modelowania własności pojedynczej struktury typu antena-reaktor
zaproponowano realistyczny model zarówno samej nanoanteny jak i warstwy
nanocząstek metali przejściowych. Model pozwala na modelowanie wprost, tj.
przy użyciu metod numerycznych, albo za pomocą gradientowego modelu ośrodka
efektywnego opracowanego przez autora rozprawy. Umożliwia to badanie wzmoc-
nienia absorpcji i przedstawienie użytecznych metod maksymalizacji tego efektu
w próbkach eksperymentalnych. Ponadto, wyniki wskazują na to, że zmiana
właściwości zarówno anteny jak i nanocząstek metali przejściowych prowadzi do
zmiany odpowiedzi optycznej, co można zastosować do optycznego monitorowa-
nia zmian układu podczas katalizy.

Realistyczne modelowanie zjawisk zachodzących w badanym układzie w skali
atomowej wymaga zastosowania czasowozależnej teorii funkcjonału gęstości. W
tej skali możliwe jest realistyczne modelowanie procesu powstawania i zaniku
plazmonu, które prowadzi do generacji tzw. gorących nośników. W niniejszej
rozprawie wykazano, że obecność nanoanteny wzmacnia generację gorących no-
śników w układzie antena-reaktor w porównaniu do nanoklastrów metali przejś-
ciowych i zbadano czynniki wpływające na obserwowane wzmocnienie.

Przedstawione badania wskazują na to, że układ antena-reaktor wykazuje po-
tencjał do wzmacniania oddziaływania między światłem a nanocząstkami metali
przejściowych, prowadząc do zastosowań czujnikowych oraz w fotokatalizie.
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Chapter 1

Introduction to
antenna-reactor complexes

Optical antennas, which are capable of concentrating the electromagnetic field in
nanoscale volumes, enable substantial enhancement of interaction between light
and matter located in the vicinity of the optical antenna. An archetypal example
of such an antenna is a nanoparticle of a noble metal or a semiconductor with
typical lateral dimensions between 1–100 nm. Herein, the role of the material,
whose interaction with light is amplified by the antenna, is played by transition
metal nanoparticles known for their ability to catalyze chemical reactions at their
surface. In order for catalysis to take place efficiently, nanoparticles should have
a large surface to volume ratio, what is achieved for sizes on the order of single
nanometers. Such a system composed of a nanoantenna capable of concentrat-
ing the electromagnetic field and a nanoparticle or group of nanoparticles with
catalytic properties is called an antenna-reactor system.

One expected result of enhanced interaction of light with catalytic nanoparti-
cles through an optical antenna is amplification of the transition metal plasmonic
activity. A surface plasmon is a collective excitation of electrons in the conduction
band of a metal. It is typically observed in noble metals and enables localiza-
tion of the electromagnetic field. It is also characterized by sensitivity to local
surroundings, for example molecules adsorbed on the surface of the antenna or
presence of other nanoparticles. As a consequence of the decay of a plasmon, light
is scattered or absorbed. The latter process is a source of losses in plasmonic de-
vices such as waveguides, but in the analyzed case of a catalytic nanoparticle, it
is desirable. This is due to the fact that absorption of plasmons is accompanied
by the generation of electron-hole pairs with energies much greater than those
resulting from ambient temperature. These high energy carriers can be used, e.g.,

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic representation of antenna-reactor system. The plasmonic
nanoantenna is decorated with smaller catalytic nanoparticles. The catalyst and
antenna are separated by a thin layer of a dielectric. The system is supported by
a dielectric substrate.

to increase the efficiency of reactions carried out on the surface of nanoparticles.
The scientific goal of the research presented in this doctoral dissertation is

to understand the basic optical properties and electronic structure of antenna-
reactor complexes composed of reactor nanoparticles made of non-noble catalytic
metals and an optical antenna capable of increasing the density of optical states
available for catalytic nanoparticles. Such a complex structure allows, on the one
hand, to increase the efficiency of catalytic processes carried out on a catalytic
nanoparticle, and, on the other hand, to detect various physical processes taking
place during catalysis by means of an optical signal.

In the doctoral dissertation, the properties of the antenna-reactor system are
studied theoretically and numerically using the methods of classical electrody-
namics and quantum mechanics on many length scales that occur in experimental
implementations of the system. This allows for the determination of rules and
mechanisms governing the collective optical response, light absorption by indi-
vidual components of the system, plasmon formation, electron transport and the
generation of hot carriers. Solving the problem of describing the above-mentioned
phenomena extends the basic knowledge of plasmon enhanced catalysis and plas-
monic sensors of processes accompanying catalysis, and facilitates the design of
nanostructures for these purposes.

1.1 Plasmon enhanced photocatalysis
Heterogenous catalysis is among the most important processes in the chemical
industry. Catalysis increases reaction rate by adding a chemical, the so-called
catalyst, that alters the reaction pathway and thus lowers its activation energy.
In heterogeneous catalysis, the catalyst and reaction substrates are in different
phase. Most typically, the catalyst is a solid, while the reagents are gases. It
is estimated that around 90% of all chemicals are fabricated with heterogeneous
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catalysis.1

Most heterogeneously catalyzed chemical reactions require overcoming a high
activation energy, which is typically provided by high temperature. The disad-
vantage of this approach is a reduction of catalyst durability and the need to
provide a large amount of energy. For instance, the Haber-Bosch process, critical
in production of ammonia - an important nitrogen fertilizer, consumes around
1% of world’s industrial energy budget.2 Thus, in the age of climate change,
new, greener ways are sought for heterogeneous catalysis, that would require less
extreme conditions and energy. Among such greener routes is photocatalysis, a
process in which the reaction occurs in the presence of a catalyst and it is stim-
ulated by light. Photocatalysis may use sunlight to lower energy consumption
in a wide range of important reactions including hydrogen fuel production and
organic synthesis. An example of photocatalysis inspiring this doctoral disserta-
tion is one employing surface plasmons generated by plasmonic nanoparticles.3,4

Reactions catalyzed by such nanoparticles in the presence of light can be carried
out at reduced temperature. In some situations, the use of photocatalysis also
leads to reaction pathways inaccessible by thermal activation, e.g. hydrogen dis-
sociation on the surface of a gold nanoparticle.5,6 Induction of chemical reactions
on the surface of nanoparticles with light can also be used to synthesize plasmonic
nanoparticles of a desired shape.7

The concept of plasmon-assisted catalysis usually involves the use of a noble
metal nanoparticle as a catalyst. The limitation of this solution is the fact that,
although they interact well with light, they are able to catalyze a relatively small
number of important industrial processes. On the other hand, transition metals
known for their good catalytic properties interact poorly with light.6 This justi-
fies the use of antenna-reactor systems in photocatalysis. As mentioned above,
mutual coupling of nanoparticles composed of different materials allows obtain-
ing both good optical and catalytic properties. The first experimental example of
photocatalysis using such a system was the hydrogen photodissociation reaction
on the surface of a dimer consisting of aluminum and palladium nanodisks.8 It
was demonstrated that the reaction occurred much more efficiently in the pres-
ence of an aluminum nanodisk and light. In particular, performance enhancement
was present for one polarization direction, while for the orthogonal one this en-
hancement was absent. As the choice of polarization determined electromagnetic
coupling magnitude between the antenna and catalytic particles, this confirmed
the important role of coupling for catalytic activity enhancement. In another
work,9 the authors also showed that the efficiency of the reaction depends on the
presence of a palladium nanoparticle and is the highest when the wavelength of
the exciting light coincides with the wavelength corresponding to the plasmonic
resonance of the dimer. They also demonstrated an increase in the selectivity for
acetylene hydrogenation compared to conventional high temperature catalysis.
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One of the observations made in the first work on antenna-reactor systems6

was that the enhancement of catalyst activity depends on an increase of absorp-
tion of light in palladium. Its amplification is due to the presence of a concen-
trated electric field around the antenna. Therefore, it is important to design
the system such that the reactor nanoparticles are located in areas of maximum
electric field enhancement, so-called hot-spots. For a disk-shaped antenna placed
on a substrate, they are located on the top of the disk and at the substrate-
antenna border.10 The size of the nanoparticle constituting the antenna is also
important.11 If too large an antenna is used, scattering will cause a large amount
of energy to be radiated out into the far-field. In turn, a small antenna will be
characterized by high absorption and coupling of light to nearby catalytic par-
ticles will be minimal. The scattering to absorption ratio of optical antennas
can also be affected by their spatial distribution on a substrate.12 Depending on
the type of distribution (periodic or random) and the density of antennas, the
scattered fields from the antennas interfere with each other and the incident field
in different ways (with different phase relations). This affects mutual coupling
and, as a result, is important for the optical properties of the system.13,14 The
geometry and material of the catalytic nanoparticle can also be complementarily
manipulated, but it should be kept in mind that from the point of view of cat-
alytic properties, it is important to maximize the surface, and therefore minimize
the size of such a nanoparticle.15

The decisive effect of increasing the efficiency of a reaction using surface plas-
mon resonances is the formation of hot electron–hole pairs, which follows ab-
sorption of a plasmon. Experimental studies of carrier dynamics on the metal
surface showed the existence of such hot carriers and established characteristic
times associated with their formation and disappearance, but they are difficult to
implement for nanoparticles.16 While modeling using classical electrodynamics
allows for effective determination of quantities such as electric field amplification
or light absorbed in the photocatalyst, the prediction of effects associated with
hot electrons is based on quantum mechanics.

1.2 Refractometric sensing with optical antennas
A key application of antenna–reactor systems discussed in this thesis is optical
sensing. The idea behind optical sensing with resonant nanostructures is that
the resonance energy is dependent on the distribution of refractive index of the
surrounding environment.17–19 Consequently, this sensing scheme is often called
refractometric. The nanostructures are sensitive to bulk refractive index changes,
but more importantly, they are also sensitive to minuscule local changes in their
close vicinity that may occur due to various microscopic physical or chemical
processes including e.g. molecule adsorption, presence of another nanoparticle
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Figure 1.2: (a) Optical extinction cross section spectra for spherical silver na-
noparticles with 10 nm radius calculated in quasi-static approximation. The
refractive index of the environment ranges from 1.0 to 1.5. The peak wavelength
increases with increasing environment refractive index. (b) Resonance wavelength
depends almost linearly on the environment refractive index.

or a chemical reaction. Sensitivity towards nanoscale processes, which can be
measured optically in the far field, makes nanostructures a promising platform for
biosensing and material investigation. The quality of a refractometric sensor can
be defined as the derivative of the resonance wavelength (λres) over the refractive
index of the environment (nenv)

B = ∂λres

∂nenv
, (1.1)

with B being the sensitivity. Simulated optical spectra of silver nanoparticles are
shown in Fig. 1.2a. With increasing refractive index of the environment nenv,
the resonance wavelength increases. As presented in Fig. 1.2b, the dependence
of the resonance wavelength on nenv is close to linear. Therefore, the sensitivity
is calculated simply as the slope of the plotted dependence.

It is worth noting that in this work we deal only with factors that can be
modified by changing the sensor material and topology, omitting several other
significant factors such as functionalization towards a specific analyte, resolution
of optical characterization etc.

An antenna reactor system, in which the reactor part of the system consists of
one or more palladium nanoparticles can be extremely useful for studying and the
detection of processes associated with catalysis. In the work by Larsson et al.20

it was demonstrated that the location of the plasmon resonance depends on the
coverage of the catalyst surface (platinum nanoparticles), allowing the kinetics
of selected model chemical reactions to be studied. The main advantage of this
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approach is the ability to measure a simple optical signal (e.g. reflected or trans-
mitted light) in real time while the catalytic process is occurring. Processes which
can be monitored using such a plasmonic sensor include the so-called sintering of
nanoparticles.21 This is an adverse effect which shortens the life of the catalyst
by gradual aggregation of nanoparticles into larger ones, reducing the efficiency
of catalysis. After prior calibration consisting of measuring the spectral location
of the plasmon resonance as a function of the size of catalytic nanoparticles, it
is possible to study the sintering kinetics for varying ambient atmosphere and
initial size distribution of nanoparticles.22 A particularly sophisticated example
of monitoring processes accompanying catalysis using the antenna-reactor system
is an experiment conducted at the level of single catalytic particles. Specifically,
a system consisting of a gold nanoparticle and a single palladium one enabled
the study of the thermodynamics of palladium hydride formation in individual
palladium nanoparticles of various shapes and sizes.23

Recently, dielectric nanostructures emerged as a lossless alternative for plas-
monic ones and they are used as a novel platform for biosensing.24 Dielectric
materials are characterized by decreased optical losses leading to reduced heat-
ing. High-index dielectrics such as silicon and germanium are CMOS-compatible,
making them a favorable choice for integrated devices and lab-on-chip systems.25

Furthermore, a considerable advantage of dielectric nanostructures is also that
they feature both magnetic and electric resonances providing more flexibility
in terms engineering the optical response of the sensors. At the same time,
the sensitivity of dielectric sensors is generally lower than for their plasmonic
counterparts.26 The key to improving these all-important properties for sensing
applications is to exploit radiative coupling.27

1.3 Multi-scale light-matter coupling in antenna-
reactor systems

The difficulty in modeling antenna-reactor system is the fact that it consists of
many stochastically arranged elements of various sizes, whose properties are cou-
pled together at different distance scales. Basic effects arising from near–field
enhancement can be qualitatively described by models comprising a single an-
tenna surrounded by a layer of catalytic nanoparticles separated from the antenna
by a dielectric spacer layer. The presence of many antennas in the sample affects
the measured spectral response of the system, as well as the ratio of scattering to
absorption leading to discrepancies between a single antenna model and exper-
imental results.12–14 The shift of the resonance energy, width and amplitude is
crucial when adapting the system to a specific light source (e.g. sunlight). The
modified scattering to absorption ratio affects absorption of light in the layer
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of catalytic material, which justifies the study of multiple scattering in antenna
arrays. In addition, we expect that coupling between the antennas also affects
the sensitivity of the optical response to the processes around them.

The typical distance between antennas in a sample is on the order of sev-
eral hundred nanometers. In contrast, the size of a catalytic nanoparticle and
its distance from the antenna is on the order of single nanometers. This is the
size at which quantum-mechanical effects associated with the atomic scale should
be considered, which motivates the analysis of how these effects affect the opti-
cal properties of catalytic nanoparticles. The process of generating hot carriers
should also be modeled at this scale, which is possible thanks to quantum me-
chanics calculation tools based on time-dependent density functional theory. This
gives us a chance to understand the impact of small distance between particles
on transport, optical properties, and the process of plasmon formation in this
system.

The multi-scale approach to the problem of antenna-reactor modeling and
close cooperation with international experimental and theoretical groups dealing
with plasmonically assisted catalysis, sensors based on optical antennas and mod-
eling of these systems, forms the basis of the innovative nature of the project. In
the context of applications of the system in the detection of processes associated
with catalysis, it is innovative to study the impact of nanoparticle size dispersion
on the evolution of sensor signal evolution due to sintering of nanoparticles. The
catalytic nanoparticle layer is modeled using an effective model, which avoids the
need for simulations for many system configurations.

The principles of maximizing absorption presented in this dissertation are also
innovative. For the first time, the material influence, thickness of the dielectric
layer, as well as the size of catalytic nanoparticles on the distribution of absorption
in the system between the antenna and reactors are considered in a systematic
way. In comparison to earlier work by Antosiewicz and Apell,15 a significant
difference in the process of modeling the system is the inclusion of experimental
data on distribution and sizes (based on electron microscopy images). In this case,
the analysis is conducted with spatial resolution and split into different particle
sizes, so many spatial configurations of the nanoparticle layer are simulated,
and the absorption is calculated at the level of each nanoparticle. This is the
most accurate absorption model of the antenna-reactor system using classical
electrodynamics, but it describes only a single antenna covered with a layer of
nanoparticles.

The collective response of many randomly distributed antennas is significantly
different from a single particle response as discussed by Antosiewicz et al.12–14

These works offer a description of the impact of radiation coupling on the spec-
tral position and width of the resonance and the scattering to absorption ratio.
Herein, we introduce significant extensions to the applicability of the effective
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model proposed earlier.12–14 The first is to take into account higher-order and
magnetic resonances, thereby allowing a description of dielectric structures. This
is important in the context of the use of such structures as sensors for which
the sensitivity mechanism is discussed in the scientific community. Modeling the
sensitivity of the antenna-reactor system at the level of the collective response of
many antennas has not been considered in previous works and the conclusions
drawn from the extended model can also be related to the use of the antenna-
reactor system as a sensor of catalytic processes. The second extension is the
analysis of the scattering-to-absorption ratio for single- and multi-component an-
tenna systems using an effective model, which is important for photocatalytic
applications of the antenna-reactor system.

The antenna-reactor system has not yet been considered in the context of
quantum mechanical effects. While the generation of hot carriers is mentioned as
a mechanism of photocatalysis, a systematic analysis of this process in terms of
quantum mechanics was not conducted. Therefore, quantum mechanical calcula-
tions for the Ag-Pd system are the first description of this type of antenna-reactor
system. The use of a model that takes into account the atomic structure of the
system and the effects of correlation and exchange can be considered particu-
larly innovative. The system studied in this work is an example of generation
of hot carriers in a non-noble metal, as well as a model system for studying the
mechanism of the formation of hot carriers as a result of plasmon decay in a het-
erometallic system (i.e. consisting of various metals). These are supplemented by
a study of the optical properties of catalytic and plasmonic nanoparticles using
quantum mechanical methods.

The importance of the herein presented results for the development of the
research field is primarily the development of basic knowledge regarding the op-
tical properties of the antenna-reactor system and providing practical rules for
designing these systems in terms of maximizing absorption and generation of hot
electrons in transition metal nanoparticles with good catalytic properties. Study
of transport of carriers and the mechanism of the formation of hot electrons in
antenna-reactor systems with particular emphasis on quantum effects provides
new methods of effective modeling as well as of analyzing the results of quantum
mechanical calculations for the needs of multi-scale modeling of heterometallic
systems.

1.4 Theses
The following theses are discussed and proven in this doctoral dissertation:

1. Nanoparticle density is an important parameter enabling tailoring of the
optical response of amorphous arrays of nanoantennas for prospective ap-
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plications.

2. Antenna-reactor complexes, including plasmonic core-shell nanoantennas,
enable significant light absorption enhancement in transition metal nano-
particles; this enhancement can be maximized by manipulating material
and geometric properties of the system.

3. Electromagnetic modeling enables relating the optical signal from sensors
based on antenna-reactor complexes to physical and chemical phenomena
occurring during catalysis.

4. Hot electron generation in antenna-reactor dimers is enhanced with respect
to an isolated transition metal particle due to excitation and subsequent
dephasing of localized surface plasmon resonance.

1.5 Publications included in the thesis
The main part of the thesis are four chapters devoted to the original results of the
author, summarized in five publications, in which the author of the dissertation
is the first author:

I Krzysztof M. Czajkowski, Tomasz J. Antosiewicz, “Electromagnetic Cou-
pling in Optical Devices Based on Random Arrays of Dielectric Nanores-
onators,” Journal of Physical Chemistry C 124, (1), 896–905 (2020).

II Krzysztof M. Czajkowski and Tomasz J. Antosiewicz, “Effective dipolar po-
larizability of amorphous arrays of size-dispersed nanoparticles,” Optics Let-
ters 45, 12, 3220–3223 (2020).

III Krzysztof M. Czajkowski, Maria Bancerek, Tomasz J. Antosiewicz, “Multi-
pole analysis of substrate-supported dielectric nanoresonator metasurfaces
via the T-matrix method,” Physical Review B 102, 085431 (2020).

IV Arturo Susarrey-Arce,∗ Krzysztof M. Czajkowski,∗ Iwan Darmadi, Sara Nils-
son, Irem Tanyeli, Svetlana Alekseeva, Tomasz J. Antosiewicz, Christoph
Langhammer, “A nanofabricated plasmonic core–shell-nanoparticle library,”
Nanoscale 11, 21207–21217 (2019). ∗equal contribution

V Krzysztof M. Czajkowski, Dominika Świtlik, Christoph Langhammer, and
Tomasz J. Antosiewicz, “Effective Optical Properties of Inhomogeneously
Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sen-
sors,” Plasmonics 13(6), 2423–2434 (2018).
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1.6 Publications not included in the thesis
I M. Kuisma, B. Rousseaux, K.M. Czajkowski, T.P. Rossi, T. Shegai, P. Er-

hart, T.J. Antosiewicz, “Ultra-strong coupling of a single molecule to a plas-
monic nanocavity: A first-principles study,” ACS Photonics, Article ASAP,
doi:10.1021/acsphotonics.2c00066, (2022)

II K. M. Czajkowski et al., “Polarization-dependent mode coupling in hyper-
bolic nanospheres,” Nanophotonics 10(10), 2021, 2737–2751 (2021).

III A. Egel, K. M. Czajkowski et al., “SMUTHI: A python package for the
simulation of light scattering by multiple particles near or between planar
interfaces,” Journal of Quantitative Spectroscopy and Radiative Transfer
273, 107846 (2021).

IV M. Bancerek, K. M. Czajkowski, R. Kotyński “Far-field signature of sub-
wavelength microscopic objects,” Optics Express 28(24), 36206–36218 (2020)

V J. Kierdaszuk, M. Tokarczyk, K. M. Czajkowski et al., “Surface-enhanced
Raman scattering in graphene deposited on AlxGa1–xN/GaN axial het-
erostructure nanowires,” Applied Surface Science 475, 559–564 (2019).

VI K. M. Czajkowski, A. Pastuszczak, R. Kotyński, “Single-pixel imaging with
sampling distributed over simplex vertices,” Optics Letters 44(5), 1241–1244
(2019).

VII K. M. Czajkowski, A. Pastuszczak, R . Kotyński “Real-time single-pixel video
imaging with Fourier domain regularization,” Optics Express 26(16), 20009–
20022 (2018).

VIII K. M. Czajkowski, A. Pastuszczak, R. Kotyński, “Single-pixel imaging with
Morlet wavelet correlated random patterns,” Scientific Reports 8(1), 1–8
(2018).

IX K. M. Czajkowski, M. Schmid, “Durable and cost-effective neutral density
filters utilizing multiple reflections in glass slide stacks,” IEEE Photonics
Journal 9 (6), 1-11 (2017).

1.7 Thesis structure
The doctoral dissertation is divided into nine chapters. The first four chapters
form a review of the literature related to the subject of the dissertation and the
next four concern the author’s original results. The final chapter contains a sum-
mary and conclusions. The first chapter is an introduction to antenna-reactor
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complexes. The chapter presents the aim of the work, potential applications
of the studied system and introduces the main research issues addressed in the
thesis. The second chapter introduces the theoretical and numerical methods of
describing optical properties and electronic structure of nanoparticles including
classical electrodynamics and time-dependent density functional theory. The next
chapter describes the state of the art of optical antennas. The purpose of this
chapter is not only to present the antennas and their properties, but also to sum-
marize various methods for describing the properties of plasmonic and dielectric
nanoparticles including multipole expansion as a tool to interpret the properties
of optical antennas. The last chapter of the literature review, Chapter 4, is de-
voted to multiple scattering in optical antenna systems. It presents the problem
of describing the optical properties of antenna arrays and the phenomenon of
multiple scattering, which makes the optical properties of nanoparticles in an
array distinct from those of isolated nanoparticles. In this chapter three methods
of describing these properties are presented: the T matrix method, the coupled
dipoles/multipoles method and the effective dielectric permittivity method, which
account for the phenomenon of multiple scattering in various ways. In addition,
the current knowledge on the use of optical antenna arrays in flat optical devices,
so-called meta-surfaces is presented.

Chapter 5 deals with the effective optical properties of amorphous arrays of
optical antennas. The author proposed a method of describing the effective opti-
cal properties of amorphous matrices taking into account higher order multipole
moments of both electrical and magnetic nature. The significant simplification
resulting from this model enables analysis of influence of the multiple scattering
on the optical properties of amorphous arrays. Numerous factors are taken into
account, such as the presence of magnetic moments in dielectric antennas, disper-
sion of the antenna size or additional scattering channels related to the presence
of the substrate. The chapter also describes shaping the optical properties by
controlling the minimal distance between antennas. The analysis is discussed in
the context of potential applications including sensitivity of the optical response
to the external environment, as well as the ratio of scattering to absorption, which
determines the possibility of generating hot carriers as a result of plasmon decay
in the antenna-reactor system.

The next chapter, Chapter 6, containing the author’s original results, concerns
the absorption of light in the antenna-reactor system. It details a model of optical
properties of the antenna-reactor system, taking into account the features of the
experimental implementation of the system. Factors that can be controlled in
the experiment, such as the material of the antenna as well as the thickness and
material of the dielectric separator separating the antenna from the catalytic
nanoparticles, are studied as a method of shaping the spectrum of the absorption
enhancement.
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Optical monitoring of physical and chemical changes during catalysis with the
antenna-reactor complexes is the subject of Chapter 7 of this dissertation. In this
dissertation, a novel model of effective permittivity has been proposed, making
it possible to find the relationship between the optical signal from the sensor and
phenomena occurring during catalysis without the need to simulate many real-
izations of the system. Various possible scenarios are studied including changes
of the size distribution of transition metal nanoparticles due to sintering and
changes in refractive indices and layer thicknesses of the core-shell nanoantenna
due to adsorption of chemical species during catalysis.

Chapter 8, the final one containing author’s results, is devoted to the study of
the electronic structure of antenna-reactor complexes. While Chapter 6 provides
understanding of the factors determining absorption of light in the complex, here
the accompanying process of hot carrier generation is studied. It is this process
that is the main part of the underlying mechanism behind the light-induced en-
hancement of catalytic activity of antenna-reactor complexes. In order to address
the problem of finding the spatial and energy distribution of the carriers resulting
from plasmon decay, time-dependent density functional theory based approach is
used.

The final chapter of the dissertation presents the summary and discusses the
conclusions obtained from the presented study of antenna-reactor complexes. The
thesis is accompanied by two appendices. In Appendix A we present special func-
tions used in this work and expressions for multipole coupling matrix coefficients
used in the T-matrix method. In Appendix B we briefly describe the Python
code that is available publicly and that implements the effective model describ-
ing the optical properties of amorphous arrays of nanoparticles that is presented
in Chapter 5.



Chapter 2

Theory

In this chapter we are going to summarize two fundamental theories that de-
scribe light-matter interactions. Light is a form of electromagnetic radiation and
it is treated as a classical electromagnetic field in this thesis. Matter, on the
other hand, is described in a two-fold manner: using dielectric permittivity, a
purely classical way of tackling the material description and using an ab-initio
approach based upon time-dependent density functional theory. Both approaches
are described in this chapter. The first part of the chapter is devoted to classi-
cal electrodynamics and the scattering problem that arises in the description of
optical properties of nanoparticles with this theory. Special focus is devoted to
multipole decomposition and numerical techniques of solving scattering problem.
The second part introduces density functional theory and its extension towards
the time-dependent hamiltonian, which is necessary to describe interaction of
light with atomictically described matter.

2.1 Fundamentals of classical electrodynamics
Electromagnetic fields in classical physics are governed by the set of four Maxwell
equations:

∇ · D⃗ = ρ, (2.1a)

∇ · B⃗ = 0, (2.1b)

∇ × E⃗ = −∂B⃗

∂t
, (2.1c)

∇ × H⃗ = ∂D⃗

∂t
+ j⃗(r⃗, t), (2.1d)

13
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where E⃗ is the electric field, H⃗ is the magnetic field, D⃗ is the electric displacement,
B⃗ is the magnetic induction, ρ is the total charge density and j⃗ is the current
density. The current density j⃗ can be split into an induced conduction current
density j⃗c and a source current density j⃗s,

j⃗ = j⃗c + j⃗s. (2.2)

In macroscopic electrodynamics, the materials are described using three quan-
tities: polarization (P⃗ ), magnetization (M⃗) and conductivity (κ)

D⃗(r⃗, t) = ε0E⃗(r⃗, t) + P⃗ (r⃗, t), (2.3)

H⃗(r⃗, t) = µ−1
0 B⃗(r⃗, t) − M⃗(r⃗, t), (2.4)

j⃗c(r⃗, t) = κ(r⃗, t)E⃗(r⃗, t). (2.5)

The total current density may be introduced

j⃗t = j⃗c + j⃗s + ∂P⃗

∂t
+ ∇ × M⃗, (2.6)

where the first two terms are the current density itself, while the remaining two
correspond to the polarization current density and the magnetization current
density, respectively.

Both polarization and magnetization are typically expanded in powers of the
corresponding fields. In this thesis, only linear materials are considered, hence,
polarization and magnetization are linearly proportional to the fields E⃗ and H⃗.
It is, therefore, useful to define electric (χe) and magnetic (χm) susceptability

P⃗ = ε0χeE⃗, (2.7)

M⃗ = χmH⃗. (2.8)

Oftenmost, time harmonic fields with a frequency ω and a time dependence
E⃗(r⃗, t⃗) = Re(E⃗(r⃗)e−iωt) are considered. The set of Maxwell equations provided
above can be then used in the frequency domain.

∇ × E⃗ = iωB⃗, (2.9)

∇ · D⃗ = ρ, (2.10)

∇ × H⃗ = −iωD⃗ + j⃗, (2.11)

∇ · B⃗ = 0. (2.12)
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In the presence of inhomogeneities boundary conditions have to applied in
order to obtain a solution at the material boundary. The tangential fields must
satisfy

n⃗×
(
E⃗i − E⃗j

)
= 0⃗,

n⃗×
(
H⃗i − H⃗j

)
= j⃗surf ,

(2.13)

at the material boundary with j⃗surf being the surface current density and n⃗ being
the surface normal vector, while the normal ones should satisfy

n⃗ ·
(
D⃗i − D⃗j

)
= κ,

n⃗ ·
(
B⃗i − B⃗j

)
= 0.

(2.14)

2.2 Material properties
2.2.1 Dielectric permittivity and refractive index
Polarization P⃗ in eq. 2.7 describes the response of matter to the applied electric
field as shown in the previous section. By inserting eq. 2.7 to eq. 2.3 we obtain

D⃗ = ε0(1 + χe)E⃗. (2.15)

It is possible to substitute the current j⃗c in eq. 2.11 by including it as part of
the displacement

D⃗t = ε0(1 + χe)E⃗ + i

ω
j⃗c. (2.16)

Using eq. 2.5 one can obtain
D⃗t = ε0εE⃗ (2.17)

with ε = 1 + χe + iκ
ε0ω . ε is called relative permittivity and it characterizes the

material. Per analogy, the magnetic permeability is defined as µ = 1 + χm and
from eq. 2.4 and eq. 2.8

B⃗ = µ0µH⃗. (2.18)

Note that, the total current is closely related to the total displacement as

j⃗t = −iωD⃗t. (2.19)

Using Maxwell equations in the frequency domain and material equations the
following general wave equation can be derived

∇ × µ−1∇ × E⃗ − ω2

c2 εE⃗ = iωµ0j⃗s. (2.20)
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It is also useful to define a quantity called refractive index:

n = √
εµ, (2.21)

which expresses the ratio between the velocity of an electromagnetic wave in a
material and in vacuum. In this work we consider nonmagnetic materials only,
hence µ = 1 and

n =
√
ε. (2.22)

Notably, under these assumptions the wave equation 2.20 takes on the form of
the vector Helmholtz equation

∇2E⃗(r⃗) − k2E⃗(r⃗) = iωµ0µ⃗j(r⃗), (2.23)

with k2 = ϵω2

c2 .
The material properties depend upon many factors such as position, direction

of the applied field, as well as time dependence of the incident field. The last
phenomenon is called dispersion and leads to the time dependent permittivity

D⃗(r⃗, t) = ε0

∫∫
ε̃ (r⃗ − r⃗′, t− t′) E⃗ (r⃗′, t′) dr⃗′dt′. (2.24)

Because of the fact that eq. 2.24 expresses a convolution, it is conveniently
expressed in the Fourier domain as D⃗(ω) = ε(ω)E⃗(ω), which makes dispersion
much easier to treat in the frequency domain and enables each frequency to
be considered independently simply by accounting for the frequency dependent
permittivity. Material anisotropy (dependence on direction of the applied field)
and non-locality (dependence on the position) are not considered in this thesis.

2.2.2 Plane wave at a material interface
One of the fundamental solutions to Maxwell equations is a plane wave. It is
obtained in the absence of sources (charges and currents) in a homogeneous or
planar structure. Omitting the harmonic time dependence, the plane wave solu-
tion is

E⃗ = E0Ψ⃗, (2.25)

with
Ψ⃗ = e⃗pole

ik⃗·r⃗ (2.26)

being the PVWF (plane vector wave function). k⃗ is a wavevector defined as

k⃗ = nω

c
k̂, (2.27)
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Figure 2.1: Schematic representation of reflection and transmission of a plane
wave at an air-material interface.

where k̂ determines the propagation direction, while e⃗pol is a polarization vector
that determines the plane of field oscillation. Plane waves fulfill the condition

e⃗pol · k⃗ = 0. (2.28)

The magnetic field of a plane wave can be calculated as

H⃗ =
√
ε0ε

µµ0
(k̂ × E⃗), (2.29)

indicating that the magnetic field is perpendicular to the electric field as well as
the propagation direction.

The essential application of plane waves is to study planar structures i.e.
structures in which permittivity changes along a specified direction. As an ex-
ample, we consider a case in which there is only a single material interface. The
specific configuration is shown in Fig. 2.1.

An arbitrary incident plane wave can be decomposed into two polarizations:
s (perpendicular, TE) and p (parallel, TM), which are treated separately. The
incident field undergoes reflection and transmission. The amplitude of the re-
flected field is expressed as Er = E0rs/p, while the amplitude of the transmitted
field is Et = E0ts/p.

It is convenient to express the wavevectors as

kz1,2 =
√
k1,2 − k||, (2.30)

k||1,2 = k1,2 sin θ1,2, (2.31)

where indices 1,2 number the media, while θ1 and θ2 are the angle of incidence
and the angle of the transmitted wave, respectively. By imposing the boundary
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conditions (eq. 2.13 and eq. 2.14), it is found out that the parallel components
of the wave vectors are convserved, hence,

k1 sin θ1 = k2 sin θ2. (2.32)

The angle of the reflected wave remains unchanged, but its kz is of opposite
sign with respect to the incident wave wavevector. Also, the amplitudes of the
reflected and transmitted plane waves are found for each polarization:

rs = µ2kz1 − µ1kz2

µ2kz1 + µ1kz2

, (2.33)

rp = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2

, (2.34)

ts = 2ε2kz1

ε2kz1 + ε1kz2

, (2.35)

tp = 2ε2kz1

ε2kz1 + ε1kz2

√
µ2ε1

µ1ε2
. (2.36)

A useful spectroscopic quantity is reflectance defined as a ratio between re-
flected and incident intensities. For normal incidence,

R =
∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2 . (2.37)

More complex planar media are beyond the scope of this thesis, but they
can be treated with transfer matrix or scattering matrix formalisms.28 It is also
worth noting that due to orthogonality of PVWFs, an arbitrary field can be
propagated through a planar structure using the proposed formalism via PVWF
decomposition.

Figure 2.1 assumes that under these conditions the wave is incident from the
medium with a lower refractive index (e.g. air) onto a higher refractive index
material. Light bends towards the interface normal upon transmission. How-
ever, if light is incident from the optically denser medium, the opposite happens.
Consequently, if the incidence angle in the dense medium is sufficiently large, it
can happen that the transmitted beam cannot bend outwards any further and
the wavevector becomes complex. This leads to a decay of the transmitted field.
Such a field is called evanescent.

2.2.3 Dielectrics
Dielectrics are materials whose (valence) electrons are bound by a potential cre-
ated by positively charged atomic cores limiting their mobility. A simple model
of permittivity has been proposed by Lorentz and here we outline its basic ideas.
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We assume that polarization arises from displacement of electrons from their
equilibrium positions, provided that electrons are uncorrelated and thus can be
treated independently,

P⃗ = −Nex⃗, (2.38)

where we assume N electrons of charge −e. Based on this assumption, the polar-
ization can be found using the following Newton equation for electron motion in
the electric field,

d2P

dt2
+ γ

dP

dt
+ ω2

0P = ε0ω
2
pE, (2.39)

where ωp is the plasma frequency defined as

ω2
p = Nq2

m
, (2.40)

and γ represents the material losses, while ω0 is the resonant frequency of a
particular electron. It is worth noting that the mass here is the effective mass of
the electron in a given material.

The solution to the eq. 2.39 is

P =
ε0ω

2
p

(ω2
0 − ω2) − iγω

E0. (2.41)

This leads to the following expression of the frequency-dependent permittivity

εLorentz = 1 +
ω2

p

(ω2
0 − ω2) − iγω

. (2.42)

This permittivity can be decomposed into real and imaginary parts as

ϵr(ω) − 1 =
ω2

p

(
ω2

0 − ω2)
(ω2

0 − ω2)2 + ω2γ2
, (2.43)

ϵi(ω) =
ω2

pγω

(ω2
0 − ω2)2 + ω2γ2

. (2.44)

These are plotted in Fig. 2.2a. If the frequency is lower than the resonance
frequency, both the real and imaginary part of permittivity decrease with de-
creasing energy. This tendency applies also to the refractive index and is called
normal dispersion. When the frequency is slightly larger than the resonance
frequency ω0, the tendency is reversed and the real and imaginary parts of per-
mittivity decrease with increasing excitation energy. This phenomenon is called
the anomalous dispersion. When the energy further increases, the tendency is
reverted yet again and normal dispersion occurs.
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Figure 2.2: a) Real and imaginary parts of Lorentzian permittivity. b) Re-
flectance spectrum of Lorentzian dielectric.

Using eq. 2.37 reflectance spectra can be calculated for an air-Lorentzian
dielectric interface (see Fig. 2.2b). At low frequencies dielectrics transmit light.
With increasing frequency, reflectance increases, as do material losses (Fig. 2.2a).
Above the resonance frequency ω0, there is a purely reflective area of the spectrum
with Re(ε) < 0 called the reststrahlen band, but for sufficiently large frequencies
the material is transmitting again.

2.2.4 Drude permittivity of metals
Metals differ from dielectrics due to the fact that there is no restoring force and
electrons are free to move around the metal surface. In the absence of a restoring
force ω2

0 = 0. Therefore, in metals the Lorentz model reduces to

εDrude = 1 −
ω2

p

ω2 + iΓω . (2.45)

An additional parameter ε∞ is introduced into Drude model to correct for ω ≫ ωp

εDrude = ε∞ −
ω2

p

ω2 + iΓω . (2.46)

This equation defines the Drude model of metal permittivity. The model is an
idealization since in real metals interband transitions modify the material permit-
tivity, εmetal = εDrude + εinterband. Exemplary parameters of a Drude model used
in this work to mimic silver in the IR-VIS range are ε∞ = 3 with h̄ωp = 9.15 eV
and h̄γ = 0.133 eV. A comparison with experimental data obtained by Johnson
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Figure 2.3: a) Real and imaginary parts of Drude permittivity. b) Reflectance
spectrum of a Drude metal.

and Christy29 is presented in Fig. 2.3. The deviation from Drude model is espe-
cially visible for high energies, where contribution from the interband transition
cannot be modeled well by ε∞.

2.3 Scattering problem
The problem of light-matter interaction at the nanoscale can be described as an
electromagnetic scattering problem. The space is split into a bounded domain,
which is the scatterer, and the external area, namely the host medium. The
electromagnetic field is split into the external incident field that excites the system
and the scattered field that is the result of light-matter interaction. The first one
is a given while the other one is obtained using Maxwell equations, boundary
conditions on the surface of the scatter and the far field condition called the
Silver-Muller radiation condition.

We follow the general formulation of the scattering problem (transmission
boundary-value problem) provided by Doicu et al.30 Given incident fields E⃗inc,
H⃗inc as an entire solution to the Maxwell equations representing the external
excitation, we find the scattered vector fields E⃗scat, H⃗scat and internal E⃗int, H⃗int

satisfying the Maxwell equations and two transmission conditions at the scatterer
boundary:

n⃗× E⃗int − n⃗× E⃗scat = n⃗× E⃗inc, (2.47)

n⃗× H⃗int − n⃗× H⃗scat = n⃗× H⃗inc. (2.48)

Additionally, the Silver-Muller radiation condition must be satisfied uniformly
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for all directions as r → ∞. This condition can be formulated as

r⃗

r
× √

µH⃗scat +
√
εE⃗scat = O(1/r), (2.49)

with ε being the permittivity of the scattering object and µ being its magnetic
susceptibility.

2.3.1 Energy budget of a light scattering system
One of the key properties of a system is its energy budget. In fact, a typical
measurement performed is a measurement of the far-field intensity as a function
of wavelength and/or scattering angle. The far-field intensity is proportional to
the power radiated by the system, rendering the energy budget an all-important
aspect of light scattering in classical electrodynamics. Here, we show how to
describe the energy budget and introduce meaningful quantities such as cross
sections and efficiencies that are common observables obtained from the far field
measurement.31

As a starting point, we use the fact that an electromagnetic field exerts a
force on charged particles, which is called the Lorentz force,

F⃗ = q(E⃗ + v⃗ × B⃗). (2.50)

This phenomenon leads to work being done in the system. The rate of this work
is defined in classical mechanics as

dW

dt
= F⃗ · dx⃗

dt
. (2.51)

The magnetic term vanishes, because the vector product yields a force that is
perpendicular to velocity. Then the rate of work can be expressed as

dW

dt
= qv⃗ · E⃗ =

∫
j⃗ · E⃗dV. (2.52)

Using Maxwell equations and vector algebra identities this equation can be
converted to

−dW

dt
=
∫ (

∇ ·
(
E⃗ × H⃗

)
+ E⃗ · ∂D⃗

∂t
+ H⃗ · ∂B⃗

∂t

)
dV. (2.53)

The first term is the divergence of the Poynting vector defined as

S⃗ = E⃗ × H⃗. (2.54)
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The second term determines the time derivative of the energy density (u) change
rate

∂u

∂t
= E⃗ · ∂D⃗

∂t
+ H⃗ · ∂B⃗

∂t
. (2.55)

Based on these definitions the following conservation law arises from eq. 2.53,

−dW

dt
= ∇ · S⃗ + ∂u

∂t
. (2.56)

This expression simplifies assuming that the fields are harmonic in time and the
media are linear. Then ∂u

∂t = 0 and using eq. 2.52 it can be shown that the
energy conservation (eq. 2.56) takes form∫

∂V

⟨S⃗⟩ · n⃗dA = −1
2

∫
V

Re
(⃗
j∗ · E⃗

)
dV ′, (2.57)

with the time averaged Poynting vector ⟨S⃗⟩ being

⟨S⃗⟩ = 1
2Re

(
E⃗ × H⃗∗

)
. (2.58)

Eq. 2.57 indicates that ⟨S⃗⟩ integrated over a suitably selected surface ∂V is equal
to the average power dissipated within volume V . This is a powerful statement
that enables us to consider surface instead of volume integrals and manipulate
the surface ∂V almost arbitrarily.

Now we can proceed to the analysis of the energy budget of a scattering system
interacting with an electromagnetic field. Outside the scatterer the electric field
can be represented as

E⃗ = E⃗scat + E⃗inc (2.59)
and an analogous decomposition can be performed for the magnetic field. The
Poynting vector can be then decomposed into

S⃗ = S⃗inc + S⃗scat + S⃗ext, (2.60)

where
S⃗inc = 1

2Re
(
E⃗inc × H⃗∗

inc

)
, (2.61)

S⃗scat = 1
2Re

(
E⃗scat × H⃗∗

scat

)
, (2.62)

S⃗ext = 1
2Re

(
E⃗scat × H⃗∗

inc

)
+ 1

2Re
(
E⃗inc × H⃗∗

scat

)
. (2.63)

Assuming that the medium in which the scattering object is embedded is non-
absorbing, we have S⃗inc = 0. Then eq. 2.60 can be rewritten as

S⃗ext = −S⃗scat + S⃗. (2.64)
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Consequently, Wext =
∫

∂V
S⃗ext · n⃗dA can be interpreted as power that is deter-

mined by the sum of Wscat = −
∫

∂V
S⃗scat · n⃗dA, being the power scattered by

the scatterer (the minus is added to make the quantity positive), and Wabs =∫
∂V

S⃗ · n⃗dA, which is the power absorbed by the scatterer. Because any of these
quantities (in a non-absorbing host medium) do not depend on the shape of the
integration surface as long as it is outside the scatterer, we can choose the integra-
tion surface arbitrarily. A convenient choice is to use a sphere situated at infinity.
The electric field calculated at a distance from the scattering object approaching
infinity is called the far-field. The far-field is approximately transverse,

r̂ · E⃗scat = 0, (2.65)

while the magnetic field is given by

H⃗scat = k

ωµ
r̂ × E⃗scat. (2.66)

This indicates that the rate of scattered power is proportional to the total radiated
intensity

Wscat =
√
ε

µ

∫
|Escat|2 dΩ, (2.67)

because
r̂ ·
(
E⃗scat × H⃗∗

scat

)
= k

ωµ
|Escat|2 . (2.68)

Now that we have treated scattering, we focus on extinction. Because of
the fact that extinction power depends on the incident field, a suitable far field
representation is necessary. The incident field expanded into spherical waves in
the far-field is equal to:32

E⃗inc(r⃗) = 2πi
k

[
δ(k̂ + r̂)e

−ikr

r
− δ(k̂ − r̂)eikr

r

]
e⃗pol, (2.69)

H⃗inc(r⃗) = 2πi
k

[
δ(k̂ + r̂)e

−ikr

r
− δ(k̂ − r̂)eikr

r

]√
ε1

µ0
k̂ × e⃗pol. (2.70)

Here, r̂ is a unit vector in direction of r⃗. Using the second Green theorem Wext

can be expressed as

Wext = −1
2

∫
S

n⃗ · Re
{
E⃗s × H⃗∗

e + E⃗∗
e × H⃗s

}
dS. (2.71)

Assuming that the incident field is a plane wave in free space, after a considerable
amount of algebraic manipulation

Wext = 1
2 Re

{√
ε

µ

4π
ik
e⃗pol · E⃗s∞(k̂)

}
. (2.72)
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This result is among the key results of this section and it is the called the ex-
tinction theorem. It indicates that extinction is a consequence of incident and
scattered fields interfering in the forward direction. Moreover, the extinction the-
orem shows that Wext quantifies the amount of energy removed from the incident
beam.

Finally, it is worth pointing out that in some numerical methods absorption
is may be conveniently calculated by a volume integral over the scatterer volume
rather than the surface located in the far field (eq. 2.19)

Wabs = −
∫

V

1
2Re(⃗j∗ · E⃗)dV ′ =

∫
V

ω

2 Im(D⃗∗ · E⃗)dV ′. (2.73)

For plane wave scattering it is useful to define a cross section as

Cv = Wv

Iinc
(2.74)

and its corresponding efficiency

Qv = Cv

g
, (2.75)

where g is the geometrical cross-section of the particle (g = πR2 for axisymmet-
ric particles) and Iinc is the intensity of the incident field, while v stands for
absorption, extinction or scattering.

The scattering cross section definition can be obtained by combining eq. 2.74
with eq. 2.67

Cscat = 1
|E⃗0|2

∫
Ω

∣∣∣E⃗s∞

∣∣∣2 dΩ. (2.76)

It is also convenient to define the angle resolved scattering cross section called
the differential scattering cross section

Cscat (θ, ϕ) = 1
|E⃗0|2

∣∣∣E⃗s∞(θ, ϕ)
∣∣∣2 . (2.77)

The extinction cross section is conveniently defined using the optical theorem
(eq. 2.72)

Cext = 4π
ks|E⃗0|2

Im
{
E⃗∗

0 · E⃗s∞(k̂)
}
. (2.78)

2.3.2 Multipole expansion
Multipole decomposition is a key tool used in electromagnetic scattering. In this
thesis it is used to decompose the scattered field into physically meaningful terms
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and to facilitate the description of systems of light scattering nanoparticles. It
is also an exceptionally useful tool to formulate the scattering problems includ-
ing multiple scatterers or complex environments such as e.g. planar media. At
the same time, there are several misconceptions about multipole decomposition
that have been clarified only recently. In this work, we use almost exclusively
multipoles in the spherical basis as they lead to more compact expressions and
they are rigorously established. In contrast, the Cartesian multipole formulation
is far more intimidating mathematically (see e.g. Ref. 33), their interpretation
is often oversimplified (even in classic textbooks such as Ref. 34) and may lead
to ambiguity.35 Nevertheless, for low multipolar orders Cartesian multipoles are
used more often and hence they are also shown briefly in this subsection.

The multipole decomposition can be applied either to field or current density.
The field expansion is defined as

E⃗(r⃗) =
∞∑

l=1

l∑
m=−l

bE
l,mM⃗

3
l,m(r⃗) + bM

l,mN⃗
3
l,m(r⃗), (2.79)

where bE
l,m and bM

l,m are the electric and magnetic multipole moments, respec-
tively, while M⃗3

l,m(r⃗) and N⃗3
l,m(r⃗) are vector spherical wave functions defined in

Appendix A.
The induced current density and total electric field are related by

j⃗ = ε0(ϵ− ϵs)E⃗. (2.80)

It is therefore valid to pose the problem of how multipolar fields arise from corre-
sponding current distributions and how the multipole moments of the fields are
related to those of the current multipole decomposition.

We are going to perform the multipole decomposition in the Fourier domain
(F denotes Fourier transform) following Alaee et al.,36

F [⃗j](p⃗) =
∫
j⃗(r⃗) exp(ip⃗ · r⃗)dr⃗. (2.81)

Then, the exact multipole decomposition of the induced current can be performed

F [⃗j](p⃗) =
∑
l,m

bE,j
l,mm⃗l,m(p̂) + ibM,j

l,m n⃗l,m(p̂), (2.82)

where subscript j indicates the current decomposition expansion coefficients and
m⃗l,m and n⃗l,m denote vector spherical harmonics. Expansion coefficients are
determined by

4π3qj
lm =

∫
dp⃗
∑
l′,m′

Q⃗†
l,mYl′,m′(p⃗)

∫
dr⃗j⃗(r⃗)Y ∗

l′,m′j′
l(kr), (2.83)
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where jl(kr) is the spherical Bessel function. qj
lm stands either for bE,j

lm or bM,j
lm ,

while Ql,m corresponds to m⃗lm(r̂) or in⃗lm(r̂), respectively. Here, the induced
current density is expressed as a spherical tensor,

j⃗(r⃗) =

j−1

j0

j1

 =

 jx + ijy
√

2jz

−jx + ijy

 , (2.84)

and can be rewritten in Cartesian coordinates.
As shown by Alaee et al., the current and field multipole moments are re-

lated,37

al,m = − (i)l√
(2π)3

Zk2

2 aj
l,m, bl,m = − (i)l√

(2π)3

Zk2

2 bj
l,m (2.85)

with Z =
√

µ
ε being the impedance of the embedding medium. Clearly, both

expansions are analogous and differ only by a system independent factor.
After tackling the multipole decomposition in the spherical basis, let us briefly

review the Cartesian multipole formulation. Although one might argue that
Cartesian multipoles are more physically meaningful and intuitive, spherical mul-
tipoles have plenty of useful properties and they carry the same physical informa-
tion, albeit in a different basis. The current expansion in Cartesian coordinates
in the high frequency approximation is given by

j⃗(r⃗) = −iωp⃗δ(r⃗) + iω

6 Q
′∇δ(r⃗) + [∇ × m⃗δ(r⃗)]

− iω

6 O
′[∇∇δ(r⃗)] − 1

2 [∇ ×M ′∇δ(r⃗)] , (2.86)

with p⃗ being the electric dipole moment, m⃗ being the magnetic dipole moment, Q
being the electric quadrupole moment, M being the magnetic quadrupole moment
and O being the electric octupole moment.

The corresponding field is a sum of terms based on current multipole moments

E⃗scat(n⃗) = k2
0

4πε0

(
[n⃗× [p⃗× n⃗]] + 1

c
[m⃗× n⃗] + ikd

6 [n⃗× [n⃗×Qn⃗]]

+ ikd

2c [n⃗× (Mn⃗)] +k2
d

6 [n⃗× [n⃗×O(n⃗n)]]
)
. (2.87)

The extinction cross section (assuming x-polarized field) and scattering cross
section can be expanded into contributions from individual multipoles as

Cext = kd

ε0εd |E0x|2
Im
{
E∗

0x

(
px − ikd

6 Qxz + 1
c
my − ikd

2c Myz − k2
d

6 Oxzz

)}
,

(2.88)
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Cscat = k4
0

6πε2
0

∣∣∣E⃗inc

∣∣∣2 |p⃗|2 + k4
0εdµ0

6πε0

∣∣∣E⃗inc

∣∣∣2 |m⃗|2 + k6
0εd

720πε2
0

∣∣∣E⃗inc

∣∣∣2
∑
αβ

|Qαβ |2

+ k6
0ε

2
dµ0

80πε0

∣∣∣E⃗inc

∣∣∣2
∑
αβ

|Mαβ |2 + k8
0ε

2
d

1890πε2
0

∣∣∣E⃗inc

∣∣∣2
∑
αβγ

|Oαβγ |2 . (2.89)

In this thesis we use Cartesian dipoles to describe scattered fields by small
particles. Thus, it is useful to provide a transformation between spherical and
Cartesian dipoles,  px

py

pz

 = cEM

 bE
−1,1
bE

0,1
bE

1,1

 , (2.90)

with M defined as

M =

 1 0 −1
i 0 i

0 −
√

2 0

 (2.91)

and
cE =

√
6πiε0

k3 . (2.92)

The magnetic dipole obeys the same transformation rule mx

my

mz

 = cMM

 bM
−1,1
bM

0,1
bM

1,1

 , (2.93)

with
cM = cE

ε0
. (2.94)

A derivation of this equation and general procedure is outlined in the literature.36

In scattering problems, the dipole moment p⃗ is proportional to the incident
field

p⃗ = αeE⃗inc, (2.95)

where αe is the polarizability and is, in general, a 3x3 tensor. Using polarizability,
the scattering and extinction cross-sections of a dipole are expressed as

Cext = k0

ε0
Im(αe) (2.96)

and
Cscat = k4

0
6πε2

0
|αe|2 , (2.97)
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respectively. Analogously, the magnetic polarizability αm is defined as

m⃗ = αM H⃗inc. (2.98)

The extinction cross-section of a magnetic dipole is given by

Cext = k0 Im(αm). (2.99)

2.3.3 Green function approach to scattering problem
As the first approach of solving the scattering problem, we would like to show
the so-called volume integral equation. In order to derive this method it is first
necessary to understand the concept of the Green function. The Green function
is a solution to an inhomogeneous linear or differential equation with a delta
function inhomogeneity that can be used to construct a solution of the equation
with an arbitrary inhomogeneity by superposition. For example, given dyadic
Green function for eq. 2.23 and current density j⃗ the electric field is

E⃗(r⃗) = E⃗0(r⃗) + iωµµ0

∫
V

G(r⃗, r⃗′)⃗j(r⃗′)dV ′ (2.100)

Then, using Maxwell equations, the magnetic field can be determined as well,

H⃗(r⃗) = H⃗0(r⃗) + iωµµ0

∫
V

∇ ×G(r⃗, r⃗′)⃗j(r⃗′)dV ′. (2.101)

The dyadic Green function for eq. 2.23 is

G =
[
1 + 1

k2 ∇∇
]
G0(r⃗, r⃗′), (2.102)

where

G0(r⃗, r⃗′) = exp(ik|r⃗ − r⃗′|)
4π|r⃗ − r⃗′|

(2.103)

is the Green function for the scalar Helmholtz equation.
By inserting eq. 2.103 into eq. 2.102, it is possible to obtain the explicit

expression for the dyadic Green function,

G(r⃗, r⃗′) = exp(ikR)
4πR

[(
1 + ikR− 1

k2R2

)
1 + 3 − 3ikR− k2R2

k2R2
R⃗R⃗

R2

]
, (2.104)

where R = |r⃗ − r⃗′|.
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Now that we have established the general framework, it is useful to find prop-
agators for selected multipoles. This will lead to a set of useful conclusions. The
simplest example is the one for electric dipole, for which the current density is

j⃗(r⃗) = −iωp⃗δ(r⃗). (2.105)

Substiuting this current density into eq. 2.100, one can find that electric dipole
propagator GEE is

GEE(r⃗, r⃗′) = exp(ikR)
4πR

[(
1 + ikR− 1

k2R2

)
1 + 3 − 3ikR− k2R2

k2R2
R⃗R⃗

R2

]
(2.106)

and
E⃗p (r⃗) = k2

0
ε0
GEE (r⃗, r⃗ ′) p⃗. (2.107)

In a similar manner propagators of the other multipoles can be found. Here, we
consider the magnetic dipole propagator

GEM = i

ck0
∇ ×GEE . (2.108)

It is useful to introduce vector g⃗ such that

g⃗ = ikceikR

4πε0R

(
ik

R
− 1
R2

ij

)
(r⃗ − r⃗ ′). (2.109)

Then, GEM can be evaluated as

GEM
ij =

3∑
s=x,y,z

(g⃗ × ⃗̂s) ⊗ ŝ. (2.110)

The electric field of amagnetic dipole is given by

E⃗m(r⃗) = k2
0
ε0
GEM (r⃗, r⃗ ′)m⃗, (2.111)

while its magnetic field is

H⃗m(r⃗) = k2
0G

EE(r⃗, r⃗ ′)m⃗. (2.112)

The magnetic dipole propagator GEM can be also used to obtain the magnetic
field from the electric dipole

H⃗p(r⃗) = −k2
0G

EM (r⃗, r⃗ ′)p⃗. (2.113)
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2.4 Numerical methods in classical electrodynam-
ics

2.4.1 Short note on FDTD/FEM method
The other class of methods that can be used to solve the scattering problem
are those that use the differential representation of the Maxwell equations. In
this work the finite-difference time-domain method (FDTD) and finite element
method (FEM) are used to model light scattering by isolated antennas and an-
tennas decorated with catalytic nanoparticles.

FDTD is the only method in this thesis that uses the time-domain formula-
tion of the Maxwell equations (eqs. 2.1a-2.1d), albeit FEM can also be possibly
formulated in the time domain. In order to discretize the Maxwell equations in
the time domain, the central finite difference approximation is used. An impor-
tant aspect of FDTD is a fact that that electric and magnetic fields are stored
at different points in time and space providing additional stability and accuracy.
This discretization is called the Yee lattice. Distinguishing between total and
scattered fields in FDTD requires using the so-called total-field/scattered-field
(TFSF) source. This leads to splitting the simulation space into two subdo-
mains. In the first one in which the scatterer resides contains both the scattered
and incident field. Thus, it is called the total field region. The second one is
outside the first one and in this region only the scattered field is present. This
approach makes it possible to find the amount of absorbed power using volume
integral (eq. 2.73) as well as the scattered power using surface integral over a
surface of a box spanning outside the source region (eq. 2.62). Absorption can
equally be calculated using a surface integral that encloses the integral volume. In
this thesis a commercial FDTD solver called Lumerical FDTD Solutions (Ansys)
is used.

The very general and simple formulation of FDTD stands behind many strengths
as well as weaknesses of the method. Some of the strengths of FDTD are:

• a broad spectral response can be obtained from one simulation using the
Fourier transform;

• it is a versatile method with permittivity specified individually at each
point of the simulation grid (linear, nonlinear and anisotropic materials are
possible);

• high accuracy (unless dispersive materials are used);

• more degrees of freedom can be solved for than in FEM, because matrix
inversion is not required;
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• the method works well in parallel computing schemes (MPI, CUDA etc.).

Weaknesses of FDTD:

• dispersive materials need special treatment as they are defined in the time
domain;

• the field is computed only in the grid points – other points are difficult to
access (the far-field can be computed but it increases the cost substantially,
it is very difficult in a non-homogeneous environment e.g. if scatterer is
placed on a substrate).

In the finite element method (FEM) partial differential equations are con-
verted into a system of linear equations by dividing the space into elements by
constructing a mesh of the simulated object. At each element the solution is ap-
proximated by a piecewise function (e.g. linear), reducing the problem to finding
the values of the solution at nodes of the mesh. Conversion to a linear sys-
tem is typically performed by finding the weighted residual integral in the weak
form and then by applying the piecewise function approximation. The solution
is then obtained by direct (e.g. LU) or iterative (e.g. GMRES) linear equation
solvers. In this work COMSOL with the Wave Optics module is used to solve
the Helmholtz equation (eq. 2.23) in the frequency domain.

Strengths of FEM:

• the most accurate and versatile method;

• dispersion is treated in the frequency domain;

• the simulation grid can be highly non-uniform.

Weaknesses of FEM:

• meshing of the simulation domain requires expertise;

• solution takes a significant amount of time;

• iterative solvers tend to diverge around resonant frequencies of the system.

Since space is discretized in the FDTD method and FEM the spatial extent
of the simulation must be specified, requiring careful truncation of the simulation
volume. In some problems periodic boundary conditions can be applied. Other
times, when the field decays sufficiently fast, hard wall boundaries can be used.
Most often in scattering problems, however, these conditions do not apply and
using hard wall boundaries is impractical and leads to artifacts. Therefore, there
is a need for absorbing boundary conditions (ABC) that would not lead to ar-
tificial reflection from the simulation edge. The idea is realized in practice by a
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Figure 2.4: a) Schematic representation of an FDTD simulation of optical scat-
tering. b) Example of an FEM mesh for a scatterer on a plane substrate.

using an absorbing perfectly matched layer (PML), which is engineered so that
the wave is not reflected off the nonabsorbing-PML material boundary.38 The
modern approach to PMLs generally resolves around the idea of complex coordi-
nate stretching. As a consequence of complex coordinate stretching all the field
derivatives in the PML region are transformed so that the non-evanescent waves
are turned into evanescent waves. At the same time, outside the PML region,
the wave equation remains unchanged, hence, reflections are not present. This
simple approach yields problems when the evanescent waves are to be absorbed
by the PML as well. Then, additional coordinate stretching is used to increase
the decay rate of evanescent waves.

2.4.2 T-matrix framework

In this thesis we also rely on the T-matrix method to solve a broad range of
scattering problems. The T-matrix is a surface integral method which is used to
solve the scattering problem by expanding the fields into vector spherical wave
functions. A detailed derivation of the T-matrix method is outside the scope
of this thesis and it can be found e.g. in Ref. 39. Most modern null-field
methods support a variety of basis functions, but here we stick to the typical
choice of VSWF. The incident field is expanded into regular vector spherical
wave functions M⃗1

lm(r⃗) and N⃗1
lm(r⃗),

E⃗ext(r) =
∞∑

l=1

l∑
m=−l

aE
lmM⃗

1
lm(r⃗) + aM

lmN⃗
1
lm(r⃗) (2.114)
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while the scattered field is expanded into radiating vector spherical wave func-
tions,

E⃗scat(r) =
∞∑

l=1

l∑
m=−l

bE
lmM⃗

3
lm(r⃗) + bM

lmN⃗
3
lm(r⃗). (2.115)

The transition matrix (T-matrix) relates the expansion coefficients of the incident
(a) and scattered fields (b) in terms of radiating vector spherical wave functions30(

bE

bM

)
=
(
TEE TEM

TME TMM

)(
aE

aM

)
. (2.116)

If the incident field is a plane wave with wavevector k⃗, the VSWF coefficients are

alm = 4ine⃗pol · m⃗∗
lm(k̂), (2.117)

blm = −4in+1e⃗pol · n⃗∗
lm(k̂). (2.118)

The calculation of the T-matrix can be formulated as a matrix inversion
problem,

T⃗ = −Q⃗11 (ks, ki)
[
Q⃗31 (ks, ki)

]−1
, (2.119)

where the Q-matrices are defined as

Qpq (k1, k2) =
[

(Qpq)11
νµ (Qpq)12

νµ

(Qpq)21
νµ (Qpq)22

νµ

]
(2.120)

with

(Qpq)11
νµ = ik2

1
π

∫
S

[
n⃗ (r⃗ ′) × M⃗q

µ (k2r⃗
′)
]

· N⃗p
ν
ν

(k1r⃗
′)

+
√
ε2

ε1

[
n⃗ (r⃗ ′) × N⃗q

µ (k2r⃗
′)
]

· M⃗p
ν̄ (k1r⃗

′) dS (r⃗ ′) , (2.121)

(Qpq)12
νµ = ik2

1
π

∫
S

[
n⃗ (r⃗ ′) × N⃗q

µ (k2r⃗
′)
]

· N⃗p
ν̄ (k1r⃗

′)

+
√
ε2

ε1

[
n⃗ (r⃗ ′) × M⃗q

µ (k2r⃗
′)
]

· M⃗p
ν̄ (k1r⃗

′) dS (r⃗ ′) , (2.122)

(Qpq)21
νµ = ik2

1
π

∫
S

[
n⃗ (r⃗ ′) × M⃗q

µ (k2r⃗
′)
]

·Mp
ν̄ (k 1r⃗

′)

+
√
ε2

ε1

[
n⃗ (r⃗ ′) × N⃗q

µ (k2r⃗
′)
]

· N⃗ p

ν
(k1r⃗

′) dS (r⃗ ′) (2.123)
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and

(Qpq)22
νµ = ik2

1
π

∫
S

[
n⃗ (r⃗ ′) × N⃗q

µ (k2r⃗
′)
]

· M⃗ p

ν
(k1r⃗

′)

+
√
ε2

ε1

[
n⃗ (r⃗ ′) × M⃗q

µ (k2r⃗
′)
]

· N⃗p
ν̄ (k1r⃗

′) dS (r⃗ ′) , (2.124)

where ε1 and ε2 are the permittivity of the host medium and the scatterer,
respectively. In the equations presented above, ν and µ are (l,m) gathered into a
single index. ν̄ is equal to ν with m replaced by −m. We calculate the T-matrices
using the null-field method with discrete sources which is an efficient method of
evaluating single particle scattering properties.

The strengths of the T-matrix approach are:

• possibility to exploit symmetries of the scatterer reduces computation time
by orders of magnitude with respect to FDTD/FEM calculations;

• multipole decomposition is built inherently into the method and thus can
be obtained without additional workload;

• it is a physically meaningful methodology for including multiple scattering
between particles that scales up to over 1000 particles.

For these reasons the T-matrix method is used herein to describe of nanoantenna
arrays.

The weaknesses of T-matrix method are:

• it is not as universal as other methods – arbitrary material anisotropy,
structural inhomogeneity are difficult to attain;

• stability issues for particles that deviate significantly from spherical shape
(e.g. elongated rods, structures with sharp features);

• the scattered field is valid only outside the smallest circumscribing sphere
of the scatterer.

This last limitation is the most relevant for this work. There are two par-
ticular cases in which the scattered field validity is important. The first one is
multiple scattering between two closely spaced nanoparticles. If their circum-
scribing spheres overlap the validity may be compromised. The other case is if
the particle is embedded in a planar medium and its circumscribing sphere crosses
one of the interfaces. Both cases are schematically represented in Fig. 2.5. At
the same time, the use of the T-matrix approach is studied extensively as both
are ubiquitous in nanophotonics. It has been shown that to some extent one
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a) b)

Figure 2.5: Examples of cases in which T-matrix method is not directly applica-
ble: a) two closely spaced nanoparticles, b) flat particle on a plane substrate.

can anticipate that the fields will be valid inside the circumbscribing sphere of a
particle given that the multipole truncation order is high and extended numerical
precision should be used in such cases.40

In the T-matrix approach, the extinction cross section is given by

Cext = − π

k2
s

∞∑
l=1

l∑
m=−l

Re
{
bE

l,ma
E∗

l,m + bM
l,ma

M ∗
l,m

}
, (2.125)

while the scattering cross section is

Cscat = π

k2
s

∞∑
l=1

l∑
m=−l

∣∣bE
l,m

∣∣2 + |gl,m|2 . (2.126)

A useful quantity to describe the scattering process is the scattering-to-absorption
ratio

SAR = Cscat(λres)
Cabs(λres)

(2.127)

2.5 Quantum description of matter interacting
with classical light

The classical electrodynamics approach to light-matter interaction treats mate-
rials as continuous characterizing them by a position independent function ε(ω).
However, it is possible to go beyond the treatment presented in the previous
sections and consider the motion of electrons around the nuclei directly utilizing
quantum mechanics. In this section the state-of-the-art approach to the electron
dynamics in an electromagnetic field is presented.

2.5.1 Ground state of the electronic system
As a first step it is necessary to find the ground state of the electronic system
under consideration. All the properties of the system in its ground state can be
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calculated from its wavefunction Ψ⃗(r⃗, t), which is the solution of the Schroedinger
equation,

H(r⃗, t)Ψ⃗(r⃗, t) = −ih̄Ψ⃗(r⃗, t). (2.128)

If the hamiltonian H is time-independent, then the Schroedinger equation takes
form of an eigenvalue problem.

H(r⃗)ψ⃗(r⃗) = Eψ(r⃗), (2.129)

where E is the energy of the system. The time dependence can be restored using

Ψ⃗(r⃗, t) = ψ⃗(r⃗)e i
h̄ tH . (2.130)

The hamiltonian for the electronic system can be written as

H = Te + VNN + Vee + VeN , (2.131)

where Te is the kinetic energy of electrons, VNN is the nucleus-nucleus interaction
potential, Vee is the electron-electron interaction potential, VeN is the electron-
nucleus interaction potential. Within the Born-Oppenheimer approximation used
here, the positions of nuclei are treated as a parameter assuming that movement of
the nuclei is much slower than that of electrons. While this hamiltonian is simple
to write down, it is tremendously difficult to solve the corresponding Schroedinger
equation.

2.5.2 Density functional theory
Solving the many-body Schroedinger equation in form of eq. 2.129 with the elec-
tronic hamiltonian (eq. 2.131) is a formidable task. With 3N dimensional wave-
functions its storage would require B = q3N bits, where q is number of bits per
degree of freedom. A similar scaling is observed for the computational complex-
ity of calculating wavefunctions with reasonable accuracy. This has been called
the exponential wall by Walter Kohn41 and it prevents solving the many-body
problem for practical systems. It is, however, worth noting that certain methods
such as configuration interaction and quantum Monte Carlo exist that enable
wavefunction calculations for the many-body problem. Setting the capability of
calculating wavefunctions aside, it is questionable whether the wavefunction is
even needed. In fact, in a typical calculation we are interested in finding cer-
tain observables rather than the probabilities in position space and, as argued by
Kohn, the wavefunction contains far more information than can be reasonably
processed. This leads to the following question: is there a quantity that uniquely
determines the system state which depends upon a smaller set of variables than a
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wavefunction? It turns out that a suitable quantity is the electron density given
by

ρ(r⃗) = N

∫
d3r⃗2 · · ·

∫
d3r⃗N Ψ∗ (r⃗, r⃗2, . . . , r⃗N ) Ψ (r⃗, r⃗2, . . . , r⃗N ) . (2.132)

The foundations of density functional theory (DFT) are based upon two theorems
provided by Hohenberg and Kohn.42 The first one states that there is a one-to-
one correspondence between the density and external potential. This means that
just like the wavefunction, the electron density determines uniquely all the system
properties. One special property is energy. Based upon this it is possible to write
an expression of energy as a density functional

E[ρ] = Te[ρ] + Eint[ρ] +
∫

dr⃗ vext(r⃗)ρ(r⃗), (2.133)

where Eint is the electron-electron interaction energy and vext is the sum of
the potential generated by the nuclei and any other external potential e.g. the
electric field. The second Hohenberg and Kohn (HK) theorem states that the
exact density of an interacting system can be found by minimization of energy.
This theorem in principle provides a method of finding the density itself. At the
same time, the functionals T [ρ] and Eint[ρ] in eq. 2.133 are unknown and therefore
cannot be used for practical calculations. One particular system for which the
kinetic energy functional can be calculated is a system of noninteracting electrons,

Te[ρ] =
N∑

i=1

∫
dr⃗φ∗

i (r⃗)
(

− h̄2

2m∇2
)
φi(r⃗). (2.134)

The most common and practical implementation of DFT is the Kohn-Sham
method.43 In this method the many-body problem is solved for a fictitious sys-
tem of noninteracting electrons moving in an effective potential (veff ). For this
system eq. 2.133 reads

E[ρ] = Te[ρ] + EH[ρ] + Exc[ρ] +
∫

dr⃗ vext(r⃗)ρ(r⃗), (2.135)

where EH[ρ] is Hartree energy defined as

EH[ρ] = e2

2

∫
dr⃗

∫
dr⃗prime ρ(r⃗)ρ (r⃗ ′)

|r⃗ − r⃗ ′|
. (2.136)

The Hartree energy constitutes the majority of the interaction energy. How-
ever, a small part called the exchange-correlation energy remains undetermined.
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There are several ways of approximating the exchange-correlation term, with the
common ones being LDA and GGA.44

To sum up, in the Kohn-Sham method the following set of equations is solved
self-consistently to find the ground state density, effective wavefunction and eigen-
values. (

h̄2

2m∇2 + veff [ρ]
)
ϕi = εiϕi, (2.137a)

E[ρ] = Ts[ρ] +
∫
drvext(r)ρ(r) + EHXC [ρ], (2.137b)

ρ(r⃗) =
N∑

i=1
|ψi(r⃗)|2 =

∑
i

fi |ψi(r⃗)|2 , (2.137c)

where veff = vext + vH + vXC and EHXC = EH + Exc.
The remaining difficulty, i.e. solving the Kohn-Sham equations, requires fur-

ther approximations. The SIESTA code is used in this thesis to calculate the
ground state Kohn-Sham equation solution.45 The code uses the pseudopoten-
tial approximation. This approximation relies on the fact that the core electrons
(those lying on the inner atomic shells) are chemically inert, have low correspond-
ing eigenenergies and they lie close to the nuclei screening the nuclear potential.
At the same time, they substantially increase the calculation cost. Therefore, it
is justified to treat them effectively as a part of the potential and solve only for
the electronic density of the remaining (typically valence) electrons. The choice
of the pseudopotential should result in the following44

• for a given configuration all electron and pseudo valence eigenvalues should
be equal;

• the wavefunctions should be the same above a chosen cutoff radius, while
the logarithmic derivatives should agree at the cutoff radius;

• the total charge should be the same in the core region, leading to norm
conservation.

The pseudopotentials fulfilling these rules (especially the last one) are called
norm-conserving pseudopotentials.

In order to solve the differential equation, it is necessary to discretize it using
a set of basis functions. While explicit spatial discretization is the most accurate,
it leads to high computational cost rendering the method impractical for large
systems. One choice that leads to a particularly compact basis are numerical
atomic orbitals (NAOs). They are obtained by solving the Kohn-Sham hamilto-
nian for an isolated pseudoatom within the same approximations as for the full
system under consideration. On top of vastly improved numerical convergence



40 CHAPTER 2. THEORY

and computational cost, NAOs are also known for giving physical insight due to
their locality.45

2.5.3 Time-dependent density functional theory
Density functional theory and the Kohn-Sham method can be applied to deter-
mine the ground state properties of a system. However, it is not applicable to
finding the excited states and their dynamics upon time dependent stimuli such
as laser pulses or electron beams. In such cases, a modified DFT version called
time-dependent density functional theory (TDDFT) is necessary. TDDFT ad-
dresses the many-body problem with a time-dependent external potential and
hence the time-dependent Schroedinger equation – eq. 2.128 in an analogous
manner to ground state DFT. Analogously to the Hohenberg-Kohn theorems, the
Runge-Gross theorems prove that there is a one-to-one correspondence between
the time-dependent electron density and the time-dependent external potential.46

The time-dependent Kohn-Sham equation reads

i
∂

∂t
ψi(r⃗, t) = hKohn−Sham(t)ψi(r⃗, t) (2.138)

with the time-dependent Hamiltonian

hKohn−Sham(t) = −1
2∇2 +

∫
dr⃗′ ρ (r⃗′, t)

|r⃗ − r⃗′|
+ vxc[ρ](r⃗, t) + vext(r⃗, t). (2.139)

While it is possible to solve the time-dependent Kohn-Sham equation using
explicit time propagation schemes such as the Crank-Nicolson algorithm, for the
purpose of this work it is more useful to utilize the linear response (LR) approach
in the frequency domain. This method is particularly useful when spectroscopic
quantities are of interest. In linear response TDDFT, the assumption is that
the time-dependent exciting potential is a weak perturbation of the ground state
potential

vext(r⃗, t) = vext(r⃗) + δvext(r⃗, t)θ(t), (2.140)

where θ(t) is the Heavyside theta function. Consequently, the induced density
scales linearly with the external potential. Then

ρ(r⃗, t) =
∫
dt′
∫
d3r⃗ ′χ(r⃗, t, r⃗ ′, t′)vext(r⃗ ′, t′), (2.141)

where χ(r⃗, t, r⃗ ′, t′) is the response function of the interacting system. We drop
spatial variables and move to frequency domain

δρ(ω) = χ(ω)δvext(ω). (2.142)
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We define the effective potential as

δveff = δvext + δvHXC . (2.143)

Then, we can reduce eq. 2.142 to

δρ(ω) = χ0(ω)δveff (ω). (2.144)

The clear advantage of eq. 2.144 with respect to eq. 2.142 is that for the system
of noninteracting electrons the response function χ0(ω) is given by

χ0(ω) =
∑
n,m

(fn − fm)ϕ
∗
n(r⃗)ϕm(r⃗)ϕ∗

m(r⃗ ′)ϕρ(r⃗ ′)
ω − (Em − En) + iε

. (2.145)

By combining eqs. 2.142-2.144 it can be shown that

(1 −Kχ0)δVeff = δVext, (2.146)

where K = δvHXC

δn is called the exchange-correlation kernel. This equation is
called the Petersilka-Gossman-Gross equation and it is the fundamental equation
of LR-TDDFT.

The ground state Kohn-Sham wavefunctions are produced as a linear combi-
nation of atomic orbitals (LCAO):

ϕn(r⃗) =
∑

a

Xa
nf

a(r⃗ − r⃗a), (2.147)

where Xa
n is the expansion coefficient, fa is the atomic orbital function, r⃗a is the

position of the atom corresponding to the atomic orbital fa. In eq. 2.145 products
of wavefunctions appear. Thus, in order to obtain a compact representation of
χ0 it is essential to express orbital products compactly. This is achieved by using
the product vertex ansatz following47

fafb = V a,b
µ Fµ, (2.148)

where V a,b
µ are the so-called vertex coefficients and Fµ are the dominant products.

Such product basis can be formed in many ways. Here, we use the procedure
outlined by Koval et al.47 that enables reducing the dimensionality of the product
basis by finding the dominant orbital products that contribute the most to the
completeness of the product basis and re-expressing them using atom-centered
product functions.

Thus, χ0 can be expressed using the product vertex ansatz as

χ0(r⃗, r⃗ ′, ω) =
∑
µ,ν

Fµ(r⃗)χ0
µ,ν(ω)F ν(r⃗ ′), (2.149)
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where
χ0

µ,ν(ω) = (fn − fm)
(Xn

a V
a,b

µ Xm
b )(Xm

c V
c,d

ν Xn
d )

ω − (Em − En) + iε
. (2.150)

This enables to rephrase eq. 2.146 as a linear equation system for the effective
potential coefficients that can be solved numerically[

δµν −Kµµ′

Hxcχ
0
µ′ν(ω)

]
δV ν

eff(ω) = δV µ
ext(ω). (2.151)

The key observable studied in this work is the polarizability. The xx compo-
nent of α is defined as

αxx =
∫
d3r⃗d3r⃗′xχ(r⃗, r⃗′, ω)x′. (2.152)

We also study the linear response density matrix ρ(1), which is basically the
Kohn-Sham representation of the charge density,

δρ(r, ω) =
∑
i,j

ψi(r)ψ∗
j (r)δρ(1)

ij (ω). (2.153)

In this work we use PyNAO as an implementation of TDDFT. The details of
the method can be found in.47



Chapter 3

Nanoantennas

The term nanoantennas was coined by Novotny to emphasize the analogy between
interaction of light with small (subwavelength) objects and radio antennas. At the
same time, the concept dates back to Edward Synge who wrote to Einstein about
how a tiny particle could be able to convert propagating waves to a localized field
interacting with surrounding matter.48 In a similar manner to a classical antenna,
a nanoantenna is able to directionally scatterer light from nearby and distant light
sources. The key difference between the two is the relevant length scale.

Radio antennas utilize radio waves with wavelength on the order of meters,
which correspond to frequencies at which metals can be approximated as perfect
electric conductors. In contrast, nanoantennas are used for wavelengths rang-
ing from UV to near infrared, approximately 300 - 2000 nm, where metals tend
to have non-negligible dispersion. When shaped into nanoscale objects certain
metals such as silver, gold and aluminium support localized surface plasmon res-
onances leading to deeply subwavelength localization of light and a set of unique
physical properties. For exceptionally small nanoparticles, quantum effects can
also be of interest. The localized surface plasmon resonance is shaped to a large
extent by the nanoantenna size and geometry.49 This aspect can be tailored
almost arbitrarily due to substantial progress in fabrication techniques over re-
cent decades. Freedom of designing optical properties with plasmonic resonances
has led to a plethora of plasmonic devices. Recently, high-index dielectrics have
been proposed as an alternative material platform for nanoantennas.50 Especially
semiconductor nanoantennas are considered in this thesis due to the fact they ex-
hibit a rich amount of various multipolar resonances leading to interesting effects
related to multiple scattering.

This chapter is structured as follows. First, the classical notion of resonance is
revisited in the context of nanoantennas. Then, plasmonic and high-index dielec-

43
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tric nanoantennas are reviewed as material platforms for nanophotonics including
their basic optical properties and selected applications. In the case of plasmonic
nanoparticles, quantum effects and hot electron generation are emphasized. Fi-
nally, core-shell particles are discussed along with selected numerical aspects of
theoretical investigation of nanoantennas.

3.1 Plasmonic nanoantennas
Plasmonic nanoantennas gained interest due to strongly enhanced electromag-
netic fields and high scattering and absorption efficiencies resulting from local-
ized surface plasmon resonances. Applications of plasmonic nanoparticles include,
among many, refractometric sensing and plasmon enhanced catalysis described
in more detail in the Introduction. Here, we briefly summarize other applications
specific to plasmonic nanoparticles. The enhanced near fields may be used to
enhance light-matter interactions in a variety of spectroscopic techniques includ-
ing surface enhanced Raman spectroscopy, fluorescence and absorption spectro-
scopies.51 Recent progress in sculpting the near-field of plasmonic nanoparticles
enabled reaching the strong light-matter coupling regime.52

Plasmonic nanoparticles have found applications in photovoltaic devices en-
abling light management and sculpting of optical absorption in the active medium
of a solar cell. Consequently, a reduced amount of active material may be used,
reducing material costs, facilitating deposition of solar cells onto flexible sub-
strates and integration into smart windows.53 Examples of nanoparticle inte-
gration into solar cells can be found in all types of thin film devices including:
chalcopyrate,54 perovskite55 and organic solar cells.56 Miscellaneous applications
of plasonic nanoantennas include structural colors,57 thermoplasmonics (includ-
ing radiative cooling),58 superresolution imaging59 among others. It is worth
noting, that while in this work we focus on highly symmetric plasmonic nanoan-
tennas (spheres, spheroids, disks, etc.), advanced light manipulation is possible
by using complex antenna shapes including e.g. V-shaped antennas, split-ring
resonators, or even more complex ones (dimers, trimers etc.).

The remaining part of this section is dedicated to a theoretical description
of basic properties of plasmonic nanoantennas. Also, a brief review of concepts
related to hot electron generation in plasmonic nanoantennas and quantum plas-
monics is provided.

3.1.1 Polarizability of plasmonic spheres
Having outlined the general properties of nanoresonators we would like to study
the electrodynamics of an optically small sphere, which is assume to be a model
nanoresonator. In the limiting case of the sphere radius approaching zero one
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can treat the incident field as static. At the same time, to account for material
dispersion, permittivity for a finite frequency will be used. Such an approximation
is called quasi-static. In the limiting case of a static electric field there is no
magnetic response, however the oscillating electric field induces a magnetic field
and so for sufficiently large spheres a magnetic response should also be observed.
For a static electric field, the wave equation reduces to the Poisson equation. It
has the following analytical solution34 which relates the internal field (E⃗int) to
the external one (E⃗ext)

E⃗int = 3
ϵ+ 2 E⃗ext, (3.1)

where ϵ is the relative permittivity of the material of the sphere.
In the quasi-static approximation the internal field is spatially uniform, while

the field outside is equal to that of an induced dipole. The equation for the
external field (E⃗out) is given by

E⃗out = E⃗ext + 3n⃗(n⃗ · p⃗) − p⃗

4πε0

1
r3 . (3.2)

The induced dipole moment is proportional to the polarizability (see eq. 2.95),
which in the limit of a vanishingly small particle radius is equal to31

αQS = 3ε0V
(ε− 1)
(ε+ 2) . (3.3)

The quasi-static polarizability approaches infinity if ε + 2 = 0, which is called
Froelich condition. This implies that for small spheres the resonance can be
observed only if the signs of the permittivities of the host and sphere media
differ. This happens typically for metallic nanoparticles. For a Drude metal this
equation can be written as

αQS

4πε0R3 =
(ε∞−1)
(ε∞+2) (ω2 + iγω) − ω̃2

p

(ω2 − ω̃2
p) + iγω

(3.4)

with
ω̃p = ωp√

ε∞ + 2
, (3.5)

which for an electron gas (ε∞ = 1) reduces to ω̃p = ωp√
3 . Furthermore, eq. 3.4

stipulates that neither the resonance wavelength nor the width depend on size.
This is characteristic for a material resonance, whose amplitude is proportional
to the sphere volume.

As an example we show the intensity distribution for a 5 nm sphere made out
of a Drude material mimicking silver in Fig. 3.1. The incident field propagates
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Figure 3.1: a) Electric field distribution in the vicinity of a 5 nm Drude sphere
b) far-field distribution for the same sphere in x-z plane (0◦ corresponds to z
direction).

along the z-axis, it is polarized in the x-direction and its wavelength matches the
localized plasmon resonance condition eq. 3.5. The near field close to the sphere
is enhanced mostly along the x-axis. The maximal enhancement is approximately
20. The far field calculated in the x−z plane resembles a typical dipolar pattern.
Its maximum is perpendicular to the polarization axis. In contrast, for the near
field the maximum electric field is obtained along the polarization axis.

For increasingly larger spheres the resonance wavelength shifts towards the
red and to describe this observation a different approximation is required. The
polarization of a sphere can be approximately determined by a self-consistent
calculation in which the depolarization field is determined by assigning an ele-
mentary dipole moment to a volume element inside the particle and integration
of the generated field over the particle volume.60 The resulting polarizability is
then

1/αmlwa = 1/αQS − k2

4πε0r
− 2

3 i
k3

4πε0
. (3.6)

The two terms which expand the result beyond the quasi-static approximation
can be understood as follows. The first term corresponds to dynamic depolar-
ization resulting from the fact that the field generated by elementary dipoles
depends on the wavenumber in contrast to eq. 3.1. The second term is called
radiative reaction. It is required in order to ensure energy conservation. The
power dissipation via scattering requires work to be exerted on the oscillating
charges. This intuitive result is called the modified long wavelength approxima-
tion (MLWA). It is worth noting that in order for MLWA to be valid the field
inside the sphere has to be uniform.61

By substituting Eq. 3.3 into Eq. 3.6 the MLWA for spherical particles can be
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Figure 3.2: a) Extinction cross-section spectrum of a Drude sphere with 20 nm
radius. Various approximate results are presented for comparison. b) Extinction
efficiency spectra of Drude spheres with varying radii calculated with Mie theory.

obtained
αmlwa = 4πε0r

3 (ε− 1)
(ε+ 2 − (ε− 1)x2 − i 2x3

3 (ε− 1))
, (3.7)

with x = kr being the size parameter. The resonance condition is now modified
and it is observed at increasingly larger wavelengths as the size of the particle
increases.

3.1.2 Mie theory
While the preceding approximations give physical insight into the properties of
nanoresonators, they tend to be inaccurate for large particles. However, for spher-
ical particles one can resort to use of Mie theory, which is an analytical solution for
the scattering properties of a spherical particle. There are several routes towards
Mie theory, but one that is especially convenient in the context of this thesis is by
using the T-matrix approach. By invoking the orthogonality of vector spherical
wavefunctions it is possible to perform the integrals analytically to obtain the
elements of the Q matrices. Because the matrices are diagonal, the calculation
of the T-matrix is simple and leads to analytical results. It is worth noting that
while expressions cannot be explicitly evaluated without using numerical tools,
they can be accurately approximated using e.g. Pade approximations. For the
electric dipole, the approximate Mie coefficient is

aP
1 ≈ −2

3 i
ε1 − 1
ε1 + 2

x3(
1 − 3

5
ε1−2
ε1+2x

2 − 2
3 i

ε1−1
ε1+2x

3
) . (3.8)
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Figure 3.3: a) Resonance wavelength and scattering-to-absorption ratio of Drude
spheres. b) Comparison of scattering, absorption and extinction spectra for
Drude sphere with 70 nm radius.

The electric dipole polarizability of a sphere is proportional to the Mie coefficient
and is equal to

αe = i
6πϵ0
k3

0
a1. (3.9)

A comparison of various approximations is presented in Fig. 3.2. Even at
a relatively small size (20 nm radius) both the quasi-static approximation and
the MLWA fail to exactly match the result from Mie theory, but the MLWA
is a considerable improvement over the quasi-static approximation. The Pade
approximation for this size matches the Mie theory result, but also fails if the
size parameter is sufficiently large.

An example of scattering, absorption and extinction spectra for a Drude
sphere with 70 nm radius are presented in Fig. 3.3. The electric dipole res-
onance for this sphere is relatively broad and predominantly scattering. The
electric quadrupole is also present in the spectrum with a resonance at a shorter
wavelength than that of the electric dipole. In contrast to the electric dipole res-
onance, the quadrupolar mode is mostly absorptive, which is typical for higher
order resonances in nanostructures.

3.1.3 Shape related effects

In the quasistatic approximation, a spheroidal deviation of the shape from spher-
ical can be accounted for by including a geometry-dependent dyadic L, which



3.1. PLASMONIC NANOANTENNAS 49

0.0 0.5 1.0
Eccentricity

a) b)

0.1

0.2

0.3

0.4

0.5
G

e
o
m

e
tr

ic
 f

a
ct

o
r

prolate

oblate

400 600 800
Wavelength (nm)

0

20000

40000

60000

80000

100000

E
x
ti

n
ct

io
n
 c

ro
ss

-s
e
ct

io
n
 (

n
m

2
)

10.0

25.0

50.0

75.0

100.0
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leads to the following expression for the polarizability,62

α(ω) = 4πa2c

3 ε0
ε(ω) − 1

1 + L[ε(ω) − 1] , (3.10)

where a is the semi-axis in the x − y plane and c is the distance from center to
pole along z-axis. L is diagonal for spheroids with Lx + Ly + Lz = 1.

Typical shapes considered with this approach is are prolate and oblate spheroids.
They differ by the symmetry axis, which is aligned with the major axis for prolate
spheroids, while for oblate ones it is aligned with the minor axis. We assume that
the symmetry axis is aligned with z, while the polarization of incident light is
along x-axis. The geometric factor for a prolate spheroid is31

Lx = 2e2 − 1
2e2

(
−1 + 1

2e ln 1 + e

1 − e

)
e2 = 1 − a2

c2 , (3.11)

while for oblate spheroid it is

Lx = g(e)
2e2

[π
2 − tan−1 g(e)

]
− g2(e)

2 , (3.12)

with

g(e) =
(

1 − e2

e2

)1/2

(3.13)

and eccentricity e defined as

e2 = 1 − c2

a2 . (3.14)
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The geometric factor as a function of eccentricity is plotted in Fig. 3.4a. Eccen-
tricity varies from zero to one and it determines the deviation of the spheroid
shape from spherical (for e = 0 the spheroid reduces to a sphere). Because the
internal field of a spheroid in the quasi-static limit is uniform, similarly to that
of a quasi-static sphere, MLWA can be obtained in a similar manner to the case
of a spherical particle61 (see eq. 3.6). Extinction spectra obtained using MLWA
for Drude spheroids with a fixed value of the a semiaxis at 50 nm and a varying
b semiaxis are shown in Fig. 3.4b. With increasing elongation of the spheroid,
the amplitude of the extinction cross section increases due to increasing volume,
while the resonance wavelength is red shifted due to varying L.

An important shape related effect is generation of exceptionally large electric
field enhancements in the vicinity of sharp features of plasmonic nanoparticles.
These so-called hot-spots are sought after in many applications of plasmonics.
Using chemical methods it is possible to synthesize a variety of nanoparticle
shapes that support such hot-spots including star-shaped and prism-shaped na-
noparticles.63 A different route towards hot-spots is offered by placing a nano-
particle in a complex environment such as a metallic mirror forming the so-called
nanoparticle-on-mirror system or another particle forming a nanoparticle dimer.
Small gaps in these systems are where the hot spot is typically located. It is
worth noting that when such gaps are atomically small they require quantum
treatment, as a singular response may be obtained in a classical calculation in
the limit of near-zero gap size.64

Finally, it is worth mentioning that for certain applications of nanoantennas
symmetry breaking is required that may not be attainable with simple shapes
such as sphere or a disk. The first class of shapes are V and L shapes that
break symmetry in the x− y plane making such antennas useful for polarization
conversion. Hence such structures are representative for a large clase of so-called
metasurfaces.65 The second type are split ring resonators. Their shape enables
obtaining a strong magnetic dipole moment in a plasmonic nanostructure that
otherwise tends to support electric resonances only.66 This feature is essential
for tailoring the response of the magnetic part of the electromagnetic field.

3.1.4 Quantum aspects of plasmonics

The original motivation to analyze the plasmonic properties of metal nanoparti-
cles using quantum mechanical calculations was the inconsistency of theoretical
predictions with experimental results for nanoparticles smaller than 10 nm. In
the classical quasi-static approximation the resonance position of a plasmonic
nanoparticle does not depend on its size, while the intensity of the absorbed light
is proportional to the volume. However, experiments have shown for sufficiently
small nanoparticles a shift of the resonance toward higher energies with respect
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to the classical quasi-static result.67 This effect was initially taken into account
by adding a phenomenological term in the classical metal permittivity model as-
sociated with electron density extending beyond the metal surface (the so-called
spill-out effect). Currently, many models have been proposed that include the
results of quantum mechanical calculations in permittivity of the metal, often
of a non-local nature.68 It is also possible to determine light absorption spectra
of nanoparticles directly from quantum mechanical calculations. In the case of
plasmonic metal clusters with the number of atoms below 600 (sizes below 5 nm),
one observes additional features in the optical spectra, the source of which are
discrete electronic transitions.69

Another case, for which quantum mechanical effects are important in plas-
monic nanostructures, occurs when the nanoparticles forming a system are at dis-
tances at which transport of charges is allowed by tunneling. A dimer composed
of identical nanoparticles can be considered the simplest example. In the classical
description of this system, as the gap shrinks and mutual coupling increases, its
dipole resonance shifts towards lower energies, and in the case of very small dis-
tances higher-order modes appear. An important feature is also amplification of
the electric field inside the cavity formed in this way, which classically can achieve
unexpectedly high values when the nanoparticles are closer than 1 nm. This is
the distance at which tunneling occurs, but it is not captured by the classical
model.70 Recent achievements related to the development of quantum mechanics
computational methods now allow the determination of the optical properties of
dimers in the tunneling regime. It turns out that the atomic structure of the
studied nanoparticles is significant on this scale.71 Advanced quantum mechani-
cal calculations allow the tracking of nanojunction and nanocavity formation and
the impact of the charge transport (including tunnel tranpsort) on the optical
properties of nanostructures.72 In the regime in which the tunnel transport does
not occur, the effects associated with atomic structure can be partially taken into
account by classical electrodynamics while maintaining a realistic atomic scale
shape of nanoparticles.73

3.1.5 Hot electrons

Hot electrons are electrons with energies larger than that of thermally excited ones
at given ambient temperature.16 Such electrons may be generated in metals and
semiconductors due to electron excitation by absorbed light. Metallic surfaces
and nanoparticles typically reflect light efficiently without significant absorption.
However, for plasmonic nanoparticles the scattering-to-absorption ratio decreases
with nanoparticle size and if a nanoparticle’s size is sufficiently small, absorption
dominates over scattering. As we will show in the reminder of this thesis, non-
radiative decay of plasmons in small nanoparticles leads to hot carrier generation.
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The main applications of hot electrons generated in plasmonic nanoparticles are
photocatalysis74 and photodetectors.75 In both cases, hot electrons increase the
process efficiency and thus their generation is a subject of substantial research.
Generation of hot carriers has been attributed as the mechanism behind several
examples of plasmon mediated catalysis including hydrogen dissociation on Au
nanoparticles,5 photocatalytic water splitting on Au/TiO2 films,76 and CO oxi-
dation.77 Here, we outline the main results and concepts related to modelling of
hot electron generation in plasmonic nanoparticles.

An early theoretical study of hot electron generation in plasmonic nanoparti-
cles has been presented by Manjavacas et al.78 In this work a free electron model
has been used in which the incident electric field and the scattered electric field by
a plasmonic nanoparticle are treated as classical fields. The electron dynamics in
this model are obtained using Fermi’s golden rule with initial and final (excited)
states being determined by solving the Schroedinger equation for a spherical
potential well. In order to include various plasmon decay mechanisms, a phe-
nomenological decay time constant of 10 fs is introduced. Using this model, the
authors calculate the number of generated hot carriers as a function of various
system parameters including, among others, excitation frequency, nanoparticle
diameter and carrier lifetime. They conclude that the optimal illumination wave-
length is that matching the LSPR wavelength. Also, increasing nanoparticle size
results in a larger number of generated carriers, but with lower energy. The same
tendency is observed for increasing carrier lifetime.

Besteiro et al. have studied the impact of permittivity and particle shape on
hot electron generation.79 In his approach, the generation of hot electrons is a
consequence of plasmon dephasing resulting from intra- (Drude) and interband
transitions, as well as surface scattering (including hot spot regions). The re-
sults indicate that the latter dephasing mechanism enables quantum transitions
of electrons to high energy states. The hot electron generation rate requires
a combination of an enhancemed near field (a classical phenomenon) and effi-
cient surface scattering described in a quantum mechanical manner. Similarily
to Manjavacas et al., the authors observed that smaller nanoparticles tend to be
more suitable for efficient hot electron generation. Also, nanoparticles with sharp
features are favorable as they feature prominent plasmonic hot spots.80

Due to the fact that efficient hot electron generation necessiates small nan-
oclusters exhibiting quantum size effects, quantum approaches such as TDDFT81,82

and GW83 methods have been used to study plasmon dephasing leading to hot
electron generation. The first approach to plasmon dephasing that describes the
electronic system in a full quantum manner has been proposed by Jie Ma et al.82

Using TDDFT with propagation in real time (RT-TDDFT), they have studied
the evolution of electrons in small silver clusters (typically composed of 55 silver
atoms) excited by a Gaussian pulse with a central frequency matching that of
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the plasmon resonance. In order to differentiate the electronic transitions corre-
sponding to the plasmon resonance from single particle excitations characteristic
of hot electron generation, the authors show that transition coefficients corre-
sponding to single particle excitations vary slowly, so that the oscillation of the
charge density matches the excitation frequency. At the same time, the plasmon
is composed of rapidly oscillating transitions that are off-resonant and exhibit a
collective behavior that cannot be described by a single particle excitation ap-
proximation. The results indicate that the electronic structure of the ground state
is of critical importance when it comes to hot electron generation. In silver clus-
ters, hot electrons are generated due to transitions to the LUMO from a plethora
of states below the Fermi energy which are resonant excitations. When these
states are artificially detuned from the plasmon frequency, the dipole amplitude
exhibits Rabi oscillations between the collective mode and the plasmon, while
the energy stored in each transition type does not change significantly in time.
Interestingly, the authors have also shown that electron-phonon interactions do
not influence significantly the plasmon dephasing process.

In a more recent work, Rossi et al.81 analysed the linear response density
matrix obtained using RT-TDDFT to study the impact of atomic structure on
the process of hot electron generation. Using Voronoi decomposition of the in-
duced charge density, they have been able to obtain spatially resolved energy
distributions of occupation probability. The results indicate that the carrier en-
ergy distributions are dependent on both the shape and size of the atomic cluster.
More importantly, they are also dependent on the presence of sharp features such
as corners and edges that are regions of the most efficient hot carrier generation.
Correct modeling of these kind of effects necessitates a quantum approach.

Here, we focus on the theoretical framework that was presented in the re-
cent work by Rossi et al.,81 because it provides useful information on plasmon
formation and its subsequent dephasing. Furthermore, it gives the resulting hot
electron generation from the linear response density matrix, which can be calcu-
lated using linear response TDDFT in frequency domain employing codes such
as PyNAO described in the previous chapter. In the article 81, a dimensionless
time-depedent density matrix is defined as

qia(t) = 2ℜδρ(1)
ia (t)√

2 (fi − fa)
, pia(t) = − 2ℑδρ(1)

ia (t)√
2 (fi − fa)

. (3.15)

Decomposition of stored energy into contributions from resonant and non-resonant
transitions is an indicator of plasmon formation and dephasing. The contribution
from a particular ia Kohn-Sham transition to the stored energy is given by

Eia(t) = 1
2 [pia(t)q̇ia(t) − qia(t)ṗia(t) − via(t)qia(t)] , (3.16)
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where via is the pulse potential represented in the Kohn-Sham orbital basis.
In order to find the hot electron distribution, occupation probabilities for

electrons are necessary. It is defined as

P e
a(t) =

fi>fa∑
i

Pia(t), (3.17)

where Pia is the transition probability determined using the density matrix,

Pia(t) =

∣∣∣∣∣ δρ(1)
ia (t)√
fi − fa

∣∣∣∣∣
2

. (3.18)

This gives the electron energy distribution as

Pe(ϵ) =
∑

a

P e
a δ (ϵ− ϵa) = 1

2

fi>fa∑
ia

(
q2

ia + p2
ia

)
δ (ϵ− ϵa) . (3.19)

3.2 Dielectric nanoparticles
Plasmonics as a material platform for nanoantennas is hindered by certain limi-
tations. The most important one is material losses, which are substantial even for
noble metals in the visible range. Although these losses may be used for certain
applications such as plasmonic heating or hot electron generation for catalysis,
they are generally unwanted, causing Ohmic losses and reducing overall device ef-
ficiency. Another notable disadvantage is lack of a magnetic response for particles
with simple geometries such as spheres or disks. Consequently, if manipulating
the magnetic component of light is of interest, nanoantennas with complex shapes
such as split ring resonators are necessary, increasing fabrication complexity. One
promising alternative to plasmonics is the application of high index dielectrics or
semiconductors such as silicon, germanium or gallium arsenide. In the near in-
frared range those materials are almost absorption free. Also, semiconductors are
typically used in electronics facilitating the compatibility of nanoantennas with
electronic devices. Lastly, high index dielectric nanoantennas support a plethora
of multipolar resonances making them a valid platform for near arbitrary manip-
ulation of light.

3.2.1 Magnetic response of a dielectric sphere
The key difference between dielectric and plasmonic nanoparticles is the presence
of a strong magnetic response from high-index dielectric particles even in simple
shapes such as spheres. In contrast, and as mentioned before, formation of a
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magnetic resonance in a plasmonic structure requires complex shapes. Although
other approaches are possible (see e.g. a quasi-static description with radiative
correction84), a simple description of the magnetic dipole can be obtained using
a Pade approximant to the corresponding Mie coefficient,

bP
1 ≈ −iε1 − 1

45
x5(

1 + 1
21 (5 − 2ε1)x2 + [x4] − i 1

45 (ε1 − 1)x5
) , (3.20)

with the truncated term being[
x4] = −ε2

1 + 100ε1 − 125
2205 x4. (3.21)

Interestingly, eq. 3.20 leads to the following condition for magnetic dipole reso-
nance

ε1 = −2.07 + 10.02
x2 + 1.42x2 − 2ix

(
1.06 − 0.77x2) . (3.22)

The polarizability of the magnetic dipole is calculated in a similar manner to that
of electric dipole

αm = i
6π
k3 b1. (3.23)

Observation of magnetic dipole resonances requires high refractive index or large
size due to the x5 proportionality of the corresponding Mie coefficient.

The presence of an additional resonance in the spectrum, especially of mag-
netic character, gives a much larger freedom to tailor the scattered field patterns
of dielectric nanostructures. The scattering directionality has been extensively
studied in recent years. It has been shown that scattering suppression in the
forward or the backward direction, called the Kerker effect, can be obtained by
multipolar interference. While, it is possible to achieve this effect by interference
of higher order multipoles, here we focus on dipolar modes as they are dominant
in the studied structures. The total scattered field in the far field approximation
produced by the two (magnetic and electric) dipoles is85

E⃗s∞ = E⃗p
s∞ + E⃗m

s∞ = k2

4πϵ0

[
r̂ × (p⃗× r̂) + 1

c
m⃗× r̂

]
. (3.24)

In spherical coordinates this equation can be reduced to

E⃗s∞(θ, ϕ) = k2

4πϵ0

[(mi

c
+ pi cos θ

)
cosϕθ̂ −

(
pi + mi

c
cos θ

)
sinϕϕ̂

]
. (3.25)

Using equations 3.9 and 3.23, the scattered far field can be expressed in terms of
Mie coefficients,

E⃗s∞(θ, ϕ) = 3i
2kE0

[
(b1 + a1 cos θ) cosϕθ̂ − (a1 + b1 cos θ) sinϕϕ̂

]
. (3.26)
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Figure 3.5: a) Multipole decomposed extinction spectrum of a high-index dielec-
tric (n = 4) sphere with 75 nm. b) Differential scattering cross-section at 687 nm
wavelength corresponding to Kerker condition.

In order to obtain the Kerker conditions for suppressing scattering, eq. 3.26 has
to be analyzed in the forward and the backward scattering directions. In the
forward direction (θ = 0) this expression reduces to

E⃗s∞(θ, ϕ) = 3i
2kE0

[
(b1 + a1) cosϕθ̂ − (a1 + b1) sinϕϕ̂

]
, (3.27)

while in the backward direction (θ = π) reduces to

E⃗s∞(θ, ϕ) = 3i
2kE0

[
(b1 − a1) cosϕθ̂ − (a1 − b1) sinϕϕ̂

]
. (3.28)

Consequently, by tailoring the relative amplitude of the electric and magnetic
dipole it is possible to suppress forward or backward scattering when

a1 + b1 = 0 (3.29)

or
a1 − b1 = 0 (3.30)

is fulfilled, respectively. These conditions, called the Kerker conditions,85 can be
fulfilled by a high-index dielectric sphere as shown in Fig. 3.5a. The correspond-
ing scattering patterns are also presented Fig. 3.5b.

3.2.2 Silicon nanodisks
The useful aspect of dielectric photonics is manipulation of the multipolar reso-
nances by simple tailoring of the geometrical parameters of the nanoresonator.
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Figure 3.6: Extinction spectra of high-index dielectric (n = 3.5) nanodisks for
a fixed height of 220 nm and varying radius immersed in a low-index dielectric
(n = 1.33). Multipole resonance wavelength are marked with solid lines.

One particularly important example is the aspect ratio of nanodisks that en-
ables the modification of the relative position of electric and magnetic dipole
resonances.86 When the aspect ratio (AR = H/D with height H and diameter
D) is close to unity, a spectrum reminiscent of that of a sphere is observed. As
shown in Fig. 3.6 for very flat disks, the electric dipole resonance is observed
for a larger wavelength than the one of the magnetic dipole resonance. The two
resonances overlap once the aspect ratio approaches 0.76. This results in simul-
taneous fulfilling of the Kerker condition leading to suppressed backscattering
and a strong resonant optical response.86 Note, that other multipoles are also
affected by aspect ratio modification.

Semiconductor nanodisks feature several traits making them a favorable nanoan-
tennas for a variety of applications and observation of certain physical phenom-
ena. Typically, they are used in the near infrared, a spectral region in which
silicon exhibits simulatneously low losses and high refractive index. A broken
crystalline structure symmetry of III-V semiconductors such as gallium arsenide
enables highly efficient second harmonic generation that can be manipulated by
forming nanoantennas out of these materials.87 Other nonlinear processes e.g.
third harmonic generation have also been realized and shaped using dielectric
nanoantennas.88,89 Similarly to plasmonic antennas, all dielectric nanoresonators
can be also used to control emission from various light sources such as quantum
dots or 2D materials.90 Metasurfaces based on silicon nanodisks are excellent for
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enhancement of molecular circular dichroism due to the possibility of electric and
magnetic dipole resonance overlap leading to preservation of light helicity upon
scattering, while maintaining a strong optical response, which are the two factors
essential for large enhancements.91

3.3 Core-shell particles
Core-shell nanoparticles are structures whose core, made of one material (in
essence a single material nanoparticle), is coated by a layer of another mate-
rial, the shell.92 It is a subclass of heterogeneous nanoparticles that also includes
alloy nanoparticles and Janus nanoparticles. The initial goal of obtaining core-
shell nanoparticles was to physically separate the core nanoparticle from the
environment or to chemically passivate the nanoparticle surface. Notable exam-
ples include a PMMA coating that is an effective gas barrier, but is permeable to
hydrogen and hence can be used to form core-shell nanoparticles for catalytic or
hydrogen storage applications.93 For battery applications because, ZnO2/TiO2
particles have found use, because TiO2 is a passivating layer that disables zinc
ion migration to the solution.94 At the same time, TiO2 is a highly conductive
layer that is simultaneously resistant to corrosion.

Core-shell nanoparticles combine the functionalities of the core and shell lead-
ing to enhanced tunability by adding more degrees of freedom or can even provide
functionalities that cannot be achieved by homogeneous nanoparticles. For ex-
ample, semiconductor core-shell nanoparticles enable bandgap engineering for
tailored fluorescence. Magneto-plasmonic core-shell nanoparticles provide both
magnetic and plasmonic properties.95 At the same, the optical spectra of such
nanoparticles are substantially affected by the fact that magnetic cores have very
high dielectric permittivities.

The optical properties of core-shell particles are different with respect to those
of particles discussed in previous sections. The properties of spherical core-shell
particles can be evaluated analytically using extended Mie theory.31 Theoret-
ical analysis of optical properties of core-shell spheres has been provided by
Tzarouchis et al.96 with a rich numerical analysis in a follow-up paper.97 The
authors observe that the presence of an absorbing semiconductor shell around a
plasmonic nanoparticle extends its absorption range. Both magnetic and electric
resonances can be observed leading to the Kerker effect, but it is not possible
to easily assign the resonances either to the core or the shell. The Kerker effect
in core-shell nanoparticles can be much broader than in homogeneous spheres.98

Large tunability of the relative spectral positions of multipoles in Ag-Si nanodisks
has lead to efficient realization of electromagnetic anapoles.99 It has been also
observed that eccentricity of the core part can lead to even further tunability.100

Notably, in addition to core-shell particles with dielectric shells, nanoparticles
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Figure 3.7: Comparison of cross-section spectra between T-matrix method
(SMUTHI) and FDTD (Lumerical) for selected nanoparticle shapes with con-
stant refractive index. a) sphere with radius of 75 nm, b) disk with radius of 75
nm and height of 120 nm, c) cube with edge length of 140 nm.

with plasmonic shells have also been realized. They are especially promising for
nonlinear optical properties.101,102 Finally, homogenization of multilayer hetero-
geneous nanoparticles leads to radial anisotropy that results in enhanced spectral
and scattering tailoring.103 A core-shell like system can also take form of silicon
disks with air hole, with the resulting system being good for local enhancement of
electromagnetic chirality.104 In the case of eccentric holes these disks can be used
for exciting anapoles or quasi-bound states in the continuum (quasi-BIC)105 and
act as efficient light trapping systems. Similarly, traditional core-shell particles
have been considered as light trapping nanoparticles for photovolatic systems.106

3.4 Modeling of nanoantennas
In this section we briefly compare the results obtained with different methods
described in the previous chapters. For dielectric particles FDTD and T-matrix
methods are compared. For plasmonic nanoparticles further comparison is per-
formed with FEM implemented in COMSOL Multiphysics. The T-matrix of
an isolated particles is calculated using the null-field method implemented in
SMUTHI code.107 A key new feature in SMUTHI v1.0 is the NFMDS F2Py
module developed by the author, which now enables simulation of arbitrarily
shaped particles. The method is accurate, especially for dielectric nanoparticles.
The main parameter that controls the numerical accuracy of the method is lmax,
which is the multipole truncation order. The other two parameters (available
for aspherical particles) that can be modified are nint (number of integration
points) and nrank (NFMDS internal multipole truncation order).
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Figure 3.8: Comparison of cross-section spectra between T-matrix method
(SMUTHI) and FDTD (Lumerical) for selected nanoparticle shapes with refrac-
tive index based upon Drude model with parameters mimicking silver. a) sphere
with radius of 30 nm, b) disk with radius of 73.5 nm and height of 25 nm, c)
cube with edge lenegth of 75 nm

Here we compare the results for three particles with varying shapes (sphere,
disk, cube) for a constant refractive index of 4 and a Drude material mimicking
silver presented in Figs 3.7 and 3.8, respectively. For dielectric particles, the
comparison between the T-matrix result and spectra obtained with Lumerical
FDTD Solutions shows very high accuracy of the T-matrix method. Even for a
complicated geometry such as a cube, the agreement is excellent. Also, conserva-
tion of energy is satisfied accurately and therefore there is no difference between
extinction and scattering cross-sections for non-absorptive material.

Simulations of plasmonic particles are, in general, more difficult to perform
accurately due to regions of extraordinarily large field enhancement (hot-spots).
To assure a fair comparison, we perform additional simulations with Comsol. For
spheres, T-matrix reduces to an analytical solution based upon Mie theory. The
results shown in Fig. 3.8a indicate that Comsol reproduces the analytical result
better than FDTD. When we change the particle shape to a disk with radius of
73.5 nm and height of 25 nm, we can observe an excellent agreement between all
of the tested methods. Notably, in this case NFMDS required a relatively large
number of multipoles for the result to converge (on the order of 10). Finally,
the comparison for cube-shaped particles indicates that numerical simulations of
scatterers with sharp features are exceptionally difficult for plasmonic metals.



Chapter 4

Multiple scattering in
optical antenna arrays

In the previous chapter we have focused on the properties of single nanoparticles
due to the fact that, from a theoretical standpoint, they are much easier to
describe. However, in practical situations nanoparticles are fabricated almost
exclusively in the form of arrays or colloids. Also, when an optical experiment is
being performed, the number of nanoparticles illuminated by a laser spot is on
the order of hundreds of thousands. Therefore, this part of the thesis is dedicated
to a literature review of particle arrays with a special focus on two dimensional
ones.

4.1 Formulation of the multiple scattering prob-
lem

In this section we formulate the scattering problem for multiple particles following
works by Egel et al. and Mackowski and Mischenko.108,109 We assume that
the system consists of N particles with positions (r1, ..., rN ) excited by external
illumination E⃗inc. A further condition that the circumscribing spheres of all
particles do not overlap. For now, we also assume that the environment is free
space. We will deal with the case of system of nanoparticles embedded in a
layered medium later as a generalization of the results provided presently.

The total electric field is a sum of the incident field and the total scattered
field

E⃗(r⃗) = E⃗inc(r⃗) +
∑

i

E⃗scat,i(r⃗). (4.1)

61
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The field scattered by each particle E⃗scat,i(r⃗) is expanded into VSWFs with their
respective origin being the particle position r⃗i

E⃗scat,i(r⃗) =
∞∑

l=1

l∑
m=−l

bE
lmM⃗

3
lm(r⃗ − r⃗i) + bM

lmN⃗
3
lm(r⃗ − r⃗i). (4.2)

In the multiple particle formulation, particles are no longer excited only by the
external illumination. Instead, the exciting field (E⃗exc) consists of the external
illumination and the scattered field generated by all the other particles

E⃗exc(r⃗i) = E⃗inc(r⃗i) +
∑
j ̸=i

E⃗scat,j(r⃗i). (4.3)

Each of these contributions can be expanded into regular VSWFs about the origin
of the ith particle following eq. 2.114. The resulting expansions are related

a⃗i = a⃗i
inc +

∑
j ̸=i

a⃗i
scat,j . (4.4)

Here, a⃗ is a vector of the expansion coefficients of the exciting field, a⃗inc is a vector
of the expansion coefficients of the incident field, and a⃗i

scat,j are the regular VSWF
expansion coefficients of the scattered field from the jth particle around the
position of the ith particle. Finding a⃗i

scat,j requires translation of the expansion
origin to the ith particle and conversion of the radiating VSWF expansion to
the regular VSWF expansion. This is performed by using the particle coupling
operator W derived by Mackowski and Mishchenko109

a⃗i
scat,j = W i,j b⃗j . (4.5)

The formula for this operator is provided in Appendix A. The scattered field
coefficients b⃗i are related to the exciting field expansion coefficients via the single
particle T-matrix

b⃗i = T ia⃗i. (4.6)

In light of eq. 4.6, the fields scattered by a system of particles are determined by
an interplay of the incident field, the properties of individual particles and their
spatial distribution.

By inserting eq. 4.5 into eq. 4.6 we obtain the self consistent equation for
the scattered field coefficients bi including multiple scattering via the particle
coupling operator W

b⃗i = T i(⃗ai
inc +

∑
j ̸=i

W i,j b⃗j). (4.7)
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For optically small particles the dominant contribution to the optical response
of the system comes from dipolar resonances. Then, it is useful to use the Carte-
sian multipole formulation. Eq. 4.3 is used as a starting point for the self-
consistent system of equations for electric and magnetic dipole moments, but
instead of a VSWF expansion, a Cartesian multipole expansion (eq. 2.86) is used
in tandem with electric and magnetic dipole propagators (eqs 2.106 and 2.110).
This way, we obtain the coupled electric and magnetic dipole model in a form
proposed by Bendana et al.:110(

p⃗
m⃗

)
= 1
α−1 −A

(
E⃗ext

H⃗ext

)
, (4.8)

where A is a block matrix

A =
(
AEE AEM

AME AMM

)
, (4.9)

with AEE
ij = k2

0
ε0
GEE(r⃗i, r⃗j), AEM = k2

0
ε0
GEM (r⃗i, r⃗j), AMM = k2

0G
EE(r⃗i, r⃗j),

AME = −k2
0G

EM (r⃗i, r⃗j) and α is a block-diagonal matrix

α =
(
αe 0
0 αm

)
. (4.10)

The coupled electric-magnetic dipole equation (eq. 4.8) can be further simplified
by omitting magnetic response. Then, in the so-caled coupled electric dipole
approximation, eq. 4.8 reduces to

p⃗i = αe(E⃗inc +
N∑

i ̸=j

AEE
ij p⃗j). (4.11)

4.2 Introduction to metasurfaces
A metasurface is a two dimensional array of optical antennas designed to achieve
a desired optical functionality by an abrupt change of the optical properties at
the air-metasurface interface. In comparison to their three-dimensional analogues
(called metamaterials), metasurfaces require a lesser fabrication effort, comprise
of a smaller amount of material, thus limiting the cost and, perhaps most impor-
tantly, decrease propagation in the array, which limits losses.111 Most typically,
metasurfaces are used to introduce a phase gradient at the interface, which oc-
curs by using either the generalized reflection law111 or the Pancharatnam-Berry
phase approach.112 Phase gradients can be tailored in a way reminiscent of tradi-
tional diffractive elements to achieve flat counterparts of traditional bulk optical
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elements such as lenses113 or holograms.114 In contrast to traditional diffractive
elements, metasurfaces enable much smaller resolution of phase gradients and
provide control over polarization of light.115 Here, we focus on effects related to
multiple scattering in metasurfaces composed of resonant nanoantennas. Electro-
magnetic coupling that emerges as a consequence of multiple scattering leads to
directional scattering effects, additional spectral features or substantial modifica-
tions of those existing in noninteracting system. Hence, electromagnetic coupling
constitutes a substantial, but often neglected part of metasurface physics. Its
state-of-the-art is summarized in this section and extended in the following chap-
ter.

4.2.1 Electromagnetic coupling in periodic metasurfaces

In the first part of this chapter we will focus on periodic arrays, because this is
the case which is most feasible for a theoretical analysis and significant literature
is available. Also, metasurfaces are most typically arrays of antennas forming
a rectangular grid. At the same time, many of the theoretical developments
for periodic metasurfaces are applicable to random ones, which are then further
developed in the latter chapters of the thesis.

A simple description of the optical properties of periodic nanoparticle arrays
has been proposed in Jackson’s textbook.34 He assumed that multiple scattering
is negligible and the particles forming the array are identical. Then, one can cal-
culate the scattering spectrum by multiplying a single particle’s angular spectrum
by the so-called structure factor which depends only on the spatial distribution
of the particles. The periodicity of the structure leads to narrow features in the
angular spectrum of the array called Bragg peaks. This fact is often applied for
analysis of X-ray scattering by crystals.

In arrays of resonant nanoantennas, multiple scattering leads to electromag-
netic coupling, which cannot be neglected. Then, the electromagnetic response
of the array comes from an interplay between the single particle response and
the electromagnetic coupling determined by the spatial arrangement of antennas
and the properties of incident illumination. In order to fully describe the optical
properties of periodic arrays of small plasmonic nanoparticles, one can consider a
dipole approach in which the particles are electromagnetically coupled (eq. 4.11).
Assuming that the array is infinite, the polarization of each nanoparticle is identi-
cal and for normal incidence, the following equation for the effective polarizability
is obtained116

(α∗)−1 = 1
α

− S, (4.12)
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where

S = 1
4πε0

∑
dipoles

eikr

[
(1 − ikr)

(
3 cos2 θ − 1

)
r3 + k2 sin2 θ

r

]
. (4.13)

Here, the effective polarizability α∗
e is defined via relation

⟨p⃗⟩ = α∗
eE⃗inc. (4.14)

The S term accounts for the electromagnetic coupling between nanoparticles.
This term depends only on the spatial distribution of nanoparticles and the wave-
length of incident light in the host medium.

As a consequence of radiative coupling the LSPR is modified. Namely, the
spectral position of the resonance as well as, its width and amplitude change due
to coupling. If the condition nh > λ0, where n is environment refractive index,
h is array pitch and λ0 is the noninteracting LSPR wavelength, is fulfilled, then
additional spectral features in the electromagnetic response of periodic meta-
surface can be observed.116 Such features are called surface lattice resonances
(SLR). They tend to be very narrowband compared to single-particle LSPR and
come from an interplay between the resonant response of the antenna and diffrac-
tion on the periodic array. Due to their narrowband character, they have found
applications in light-matter coupling117 and sensing.118

The initial model has been only correct for small particles which can be ad-
dressed using the electric dipole model. Dielectric or large particles require in-
cluding more multipoles. The first such attempt has been proposed by Evlyukin
and others.119,120 They have proposed to include the magnetic dipole into the
analysis as it is an important resonance of high index nanoantennas. They have
shown that there is no electric-magnetic dipole coupling hence the electric and
magnetic response can be analyzed separately and the corresponding lattice sums
are identical. Consequently, SLRs of electric or magnetic character can occur.
These resonances as well as the modified single particle resonances can be tailored
independently by adjusting the lattice period in horizontal and vertical direction
due to the fact that each dipole type couples to a different orthogonal polarization
of light.

By combining Mie theory with the multiple scattering equation using the
multipole expansion (eq. 2.79), one can calculate the optical properties of periodic
nanoparticle arrays including arbitrarily high multipole orders.121 Notably, the
general rules of multiple coupling in periodic arrays are provided.121 Here, we
summarize the results of this analysis.

Let us consider the associated Legendre polynomial part of the direct coupling
matrix elements (eq. 10.10),

P |m1−m2|
p (cos θ), (4.15)
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where p ∈ [|l1 − l2|, l1 + l2] and θ is the azimuthal angle. As a consequence of
symmetry, interparticle coupling vanishes unless m1 = m2 and one can use the
recurrence relation

Pn+1(cos θ) = α cos θPn(cos θ) − βPn−1(cos θ), (4.16)

with P0 =
√

2
2 and P1 =

√
3/2 cos θ to evaluate these polynomials. As a con-

sequence of the fact that we are analyzing a planar array, we set cos θ to zero.
Then only even values of p contribute to the overall result.

The other factor governing the occurrence of coupling between multipoles of
given degrees are Wigner-3j symbols which enter W via a5 (eq. 10.13) and b5
(eq. 10.14) coefficients,

wa(l1, l2, p) =
(
l1 l2 p
0 0 0

)
, (4.17)

which contribute to coupling between multipoles of the same type (i.e. electric
and electric or magnetic and magnetic) and

wb(l1, l2, p) =
(
l1 l2 p− 1
0 0 0

)
, (4.18)

which contributes to coupling between electric and magnetic multipoles.
Such Wigner-3j symbols vanish unless the sum of its top row is an even integer.

Because the condition that stems from the Legendre polynomial part limits p to
even numbers if l1 + l2 is even, then wa ̸= 0 and wb = 0. Otherwise, if l1 + l2 is
odd, wa = 0 and wb ̸= 0.

This leads to the following conclusion: coupling between electric and magnetic
multipoles can happen only if one of their orders is even and the other is odd. For
such orders, no coupling between multipoles of the same types occur. Otherwise,
only coupling between the same multipole types occurs. This is a generalization
of previously known examples of multipole coupling selection rules.

4.2.2 Coupling related phenomena in periodic metasurfaces
Here, we briefly review coupling related phenomena in periodic metasurfaces:
directional scattering and suppresion of reflection or transmission of light. As a
starting point, we consider effective dipole polarizabilities (electric or magnetic)
obtained using eq. 4.12. Light transmission is suppressed at each dipole resonance
in a periodic metasurface if light absorption is neglible and the resonances are
spectrally separated so that the contribution from the multipoles other than
the one at resonance can be omitted.122 Suppression of reflection by periodic
metasurfaces is closely related to the Kerker effect. As shown by Evlyukhin



4.3. RANDOM HETEROGENEOUS METASURFACES 67

et al.,120 reflection of light for specular incidence does not occur if the electric
and magnetic dipole polarizabilities are equal. This effect is called the lattice
Kerker effect.123 It can be generalized to higher order multipoles, but this case
requires more complicated multipolar interference. The interference of dipole and
quadrupoles in arrays of silicon cubes can lead to simultaneous suppression of
both forward and backward scattering leading to the so-called lattice invisibility
effect.124

4.3 Random heterogeneous metasurfaces
Random metasurfaces are relatively simple to fabricate and hence they have found
several applications. Such metasurfaces can be formed, for instance, by self-
assembly of colloidal nanoparticles on a substrate or laser ablation for dielectric
nanoparticles.84 One notable example is hole colloidal lithography (HCL),125 a
technique which uses electrostatic self-assembly of surface-charged particles (typ-
ically polystyrene nanospheres) in a refined way to gain control over the process.
The minimal center-to-center distance can be controlled by experimental condi-
tions of the process, e.g. electrolyte concentration, particle density or exposure
time. Applications of random metasurfaces include photovoltaics,126 heat man-
agement,127 sensors128 and lenses.129 In this section we show how to numerically
generate and characterize random arrays in terms of their spatial arrangement
and optical properties.

In order to generate the positions of nanoparticles we simulate a process of
random sequential adsorption (RSA).130 It is especially useful due to the fact
that the problem of finding the characteristics of random 2D arrays cannot be
found analytically even by utilizing common approximations such as the Perckus
Yevick approximation. Also, the method is suitable for finding densely packed
distributions. In RSA, positions of the nanoparticles are sequentially drawn from
a uniform random distribution. After each step, the newly drawn position is
tested. If the new particle overlaps with any other nanoparticle, the particle
is not accepted. Otherwise, it is appended to the particle list. This process
physically corresponds to irreversible adsorption of particles on a surface.

While the basic algorithm itself is very simple, there are certain specific crite-
ria to consider when forming an array using an RSA simulation. First of all, we
aim to obtain the maximal surface coverage. In other words, we want to achieve
an array for which it is not possible to adsorb another nanoparticle due to posi-
tion overlap. At the same time, this is at odds with the fact that probability of
successful adsorption rapidly decreases with the number of deposited particles.

To achieve saturation, it is prudent to cease adsorbing particles at random if
the number of necessary trials to find a particle position that meets the acceptance
conditions exceeds a predetermined value, here we typically used 100 000 as
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Figure 4.1: a) Pair correlation of an amorphous array. b) Schematic representa-
tion of an amorphous array of nanoparticles placed on a glass substrate.

the limit. We stop the RSA process and scan the adsorption area (space) for
any possible remaining empty space which can be still occupied by particles. A
particle is adsorbed whenever such empty space is found. The second aspect are
boundary conditions. Here, we use periodic boundary conditions and modify the
acceptance condition accordingly.

The pair correlation function is used as a way of characterizing the spatial
distribution of nanoparticles in this work. It is proportional to the local density of
nanoparticles measured at a certain distance from an arbitrarily selected reference
particle. The pair correlation function can be found based upon the histogram
of interparticle distance (η(r)), which is then adequately normalized130

g(r) = η(r)
σNvshell(r)

, (4.19)

with

vshell (r) = πr2
[

(r + ∆r/2)2 − (r − ∆r/2)2

r2

]
. (4.20)

4.3.1 Amorphous metasurfaces
Publications I-III focus on the optical properties of a subclass of random nano-
particle arrays called amorphous arrays. The spatial distribution of particles in
this type of random arrays is constrained by the fact that the center-to-center
distance cannot be smaller than a certain threshold value lcc, i.e. the minimal
center-to-center distance. Herein, we parametrize lcc by a dimensionless param-
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Table 4.1: Values of fitted parameters of the pair correlation function, Equa-
tion 4.19, of the amorphous arrays generated using RSA.

a a0 a1 b b0 b1 d1 e1
1.016 1.054 17.53 0.7718 0.8675 1.624 0.7888 1.223

eter CC, which is lcc normalized by the particle diameter,

lcc = CC D. (4.21)

An amorphous array with CC = 1 is equivalent to the so-called dense random
packing, which is numerically generated by RSA as described in the previous
section. In practice, larger values of CC are also considered, which in a simulation
are obtained by scaling the positions of particles by the new CC value. Such
arrays can be fabricated using e.g. HCL, in which CC may be controlled by
experimental parameters such as concentration of the electrolyte used during the
HCL process, particle density, adsorption time or surface charge.

We have generated a set of approx. 10 000 particles using RSA and calculated
its PCF using eq. 4.19. The resulting PCF is presented in Figure 4.1 and is
consistent with state-of-the-art results. The acceptance condition introduces a
cut-off of the pair correlation function at the minimal center-to-center distance.
At the minimal center-to-center distance the local density of particles is high,
which is a consequence of short-range ordering. Then, the PCF quickly diminishes
with a tendency to fluctuate. At sufficiently large distances from a reference
particle, the array appears to be completely disordered. Thus, the local density
is equal to the global (one particle) density and the pair correlation function at
large distances is equal to one. This leads to a useful approximation of the PCF
as a Heavyside theta function:

g(x) = θ(x− 1), (4.22)

where x = r/lcc with lcc being the minimal center-to-center distance. In order to
obtain an accurate, but analytical representation of the PCF of an amorphous
array we have fitted the following function to the numerical data

g(x) = {[a exp(−a1(x− a0)) + b exp(−b1(x− b0))] ×
sin(2π(x− d1)/e1) + 1} θ(x− 1), (4.23)

the fitting parameters are given in Table 4.1.14 In theoretical calculations it
is useful to use an exponential representation of sine. Then the result can be
represented as

g(x) =

∑
j

vje
njx + 1

 θ(x− 1). (4.24)
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In the following subsections we deal with the optical properties of random
metasurfaces. The first relevant works are those by Schwind131 and Conley.132 In
these works the single scattering approximation is used. Angular scattering pat-
terns obtained by the authors are distinct from the corresponding single particle
patterns. Several maxima appear in the angular scattering patterns amorphous
array, which are reminiscent of Bragg peaks for periodic arrays, but these features
are substantially broader than Bragg peaks due to disorder. The presence of these
maxima is a consequence of short range ordering. They appear at angles close
to those obtained by scattering patterns generated by two particles separated by
lcc. A characteristic of short range ordering is also the lack of forward scattering
for a broad range of frequencies and simultaneous strong backward scattering. In
contrast, uncorrelated systems tend to scatter light in the forward direction.

Here, we focus on accounting for multiple scattering in order to describe res-
onant phenomena arising in amorphous arrays. While RSA among with other
methods enables drawing large ensembles of nanoparticles, solving the multiple
scattering equation (eq. 4.7) for such a system is a formidable task. Modern tech-
niques such as the fast multipole method133 or the GPU accelerated T-matrix107

method enable studying arrays containing several thousands of particles, but due
to large computation times they remain rather impractical for gaining intuition
about physical phenomena in random metasurfaces. In this work they serve the
purpose of a benchmark tool. Instead, for physical insight, we resort to two
approximate methods: an effective medium theory and a film of dipole approxi-
mation, which are outlined here. Their extensions form a major contribution of
the author and are presented in subsequent chapters of this thesis.

4.3.2 Effective medium theory

Effective medium theory describes a random ensemble of nanoparticles by re-
placing a heterogeneous distribution of permittivity that contains separate con-
tributions from the particles and the background medium with a homogeneous
and thus effective permittivity. While there are many various methods to obtain
the effective permittivity, here we present the most common one, which is the
Maxwell-Garnett approximation.

The considerations here follow those presented by Vadim Markel in his tu-
torial on the Maxwell-Garnett approximation.134 First, we find the field from a
dipole at the dipole position. The Green function approach cannot be applied
directly, because as the position of the observation point approaches that of the
dipole itself, the Green function becomes singular. This singularity, however,
is integrable.134 Here, we use a somewhat simpler mathematical argument. A
model of the dipole will be a small sphere that scatters the electric field. The
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internal field is given by eq. 3.1

E⃗int = 3
ε+ 2 E⃗ext. (4.25)

The depolarization field of the sphere corresponding to the dipole itself is Edep =
Eint − Eext. Hence,

E⃗dep = −ε+ 1
ε+ 2 E⃗ext. (4.26)

Using the quasi-static expression for polarizability, E⃗dep is expressed as

E⃗dep = − 1
4πε0r3 p⃗. (4.27)

When integrated over the sphere’s volume, the field is given by∫
sphere

E⃗depdV = − 1
3ε0

p⃗. (4.28)

Finally, due to the point-like nature of the dipole, the internal field is given by

E⃗d = − 1
3ε0

p⃗δ(r⃗ − r⃗0). (4.29)

The effective medium permittivity can be related to polarization as (see eq.
2.7)

P⃗ = ε0(εeff − 1)E⃗. (4.30)
The polarization can be defined using the dipole approximation as

P⃗ =
∑

i

p⃗iδ(r⃗ − r⃗i). (4.31)

We approximate p⃗i as
p⃗i = αeE⃗inc, (4.32)

which is valid for sparse isotropic particle ensembles. Next, we find volume aver-
ages of expressions eqs. 4.30 and 4.31 and use the condition that both averages
must be equal to obtain the relation

NαeE⃗inc = ε0V (ε− 1)⟨E⃗⟩, (4.33)

where N is the number of particles and V is the examined volume. In order to
find the effective permittivity the average electric field ⟨E⃗⟩ must be calculated.
This field is expressed as

⟨E⃗⟩ = E⃗inc + ⟨
∑

i

E⃗scat⟩. (4.34)
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In the quasi-static approximation the regular part of E⃗scat vanishes upon aver-
aging and only the singular part (see eq. 4.29) is retained, which yields

⟨E⃗⟩ = E⃗inc − σ

3ε0
p⃗ =

(
1 − σαe

3ε0

)
E⃗inc, (4.35)

where σ = N/V is the number density. After inserting the average field described
by eq. 4.35 into eq. 4.33 and algebraic manipulation, the Clausius-Mosotti
relation is obtained

αe = σ

3ε0

εeff − 1
εeff + 2 . (4.36)

The most typical effective medium theory, the Maxwell-Garnett permittivity
stems from the Clausius-Mosotti relation and it is obtained by substituting eq.
3.3 into eq. 4.36

εeff − 1
εeff + 2 = f

ε− 1
ε+ 2 (4.37)

where f = Vincl/V and is the volume fraction of inclusions.
The effective medium approach has been widely used to calculate the optical

properties of nanoparticles in solar cells, nano- and microparticles in natural and
artificial heterogeneous materials such as ice or ceramics. Also various effects can
be accounted for in effective medium theory, such as electromagnetic chirality
or nonlinearity. At the same time, we find this approach to be inadequate to
describe complex electromagnetic coupling in amorphous arrays and thus use a
different, more direct approach which is the film of dipoles model.

4.3.3 Optical properties of amorphous arrays
A starting point for the derivation of the film of dipoles model is a common
approach to solving the coupled dipole equation (eq. 4.11) called the scattering
series expansion. This series expansion is obtained by iterating eq. 4.11. The
result is

p⃗i = αe,i

(
E⃗inc,i +

∑
j ̸=i

AEE
ij αe,jE⃗inc,j +

∑
j ̸=i

AEE
ij αe,j

∑
k ̸=j

AEE
jk αe,kE⃗inc,k + ...

)
.

(4.38)
The series can be interpreted as follows. Each term AEE

ij αe,j corresponds to a
scattering event off particle j resulting with field generation at particle i. Then,
subsequent terms contain increasing number of scattering events. First, there is
just the incident field, then a single scattering enters the series, double scattering
and so on. The scattering series expresses the idea of multiple scattering, but
it has to be noted that it is more of a mathematical concept than a physical
one. Also, while truncating the scattering series is often used (which is called the
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Born approximation), the series may not be convergent if the particle coupling is
sufficiently strong.

In order to perform statistical averaging of the scattering series, we resort to
approximations. In triple scattering and other higher order terms of the scat-
tering series, the same particle can be included more than once. As shown by
Twersky135 in the limit of an infinite number of particles, such terms do not
contribute significantly to the series. Here, we utilize the Twersky approximation
that removes scattering paths that include the same particle more than once

p⃗i = αe,i

(
E⃗inc,i +

∑
j ̸=i

AEE
ij αe,jE⃗inc,j +

∑
j ̸=i

AEE
ij αe,j

∑
k ̸=j
k ̸=i

AEE
jk αe,kE⃗inc,k + ...

)
.

(4.39)
The equation for the total polarization density can be now written as∑

i

p⃗iδ(r⃗ − r⃗i) = αe,i(E⃗inc,iδ(r⃗ − r⃗i) +
∑
j ̸=i

AEE
ij αe,jE⃗inc,jδ(r⃗′ − r⃗j)+

∑
j ̸=i

AEE
ij αe,j

∑
k ̸=j
k ̸=i

AEE
jk αe,kE⃗inc,kδ(r⃗ − r⃗i) + ...). (4.40)

Now we find the ensemble average of the exciting field in the limit of an infi-
nite number of particles. We account only for pair correlations. Assuming that
particles are identical and using the fact the spatial distribution of particles is
isotropic, the exciting field can be expanded (within the self-avoiding approxima-
tion) as:

⟨E⃗exc⟩ = E⃗inc + αeσ

∫
dr′AEE(r⃗ − r⃗ ′)g(r⃗ − r⃗ ′)E⃗inc(r⃗ ′)+

α2
eσ

2
∫
dr′
∫
dr′′ϕ(r⃗ − r⃗ ′)g(r⃗ − r⃗ ′)AEE(r⃗ ′ − r⃗ ′′)g(r⃗ − r⃗ ′)E⃗inc(r⃗ ′′) + ... (4.41)

We introduce the incident field of the form

E⃗inc(r⃗) = lim
q→0

E⃗0e
iqr. (4.42)

Then, we observe that each of the integrals is a Fourier transform (denoted as
F ) of a convolution and then,

⟨E⃗exc⟩ =
∞∑

l=0
lim
q→0

(αeσF [gAEE ](q⃗))lE⃗0 (4.43)
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The sum in this equation can be evaluated as

⟨E⃗exc⟩ =
(

1 − αeσ lim
q→0

F [gAEE ](q⃗)
)−1

E⃗0 (4.44)

The effective polarizability, α∗
e is defined via the relation with the average polar-

ization (eq. 4.14), while the exciting field is related to polarization by

⟨p⃗⟩ = αe⟨E⃗exc⟩. (4.45)

Using eqs 4.14, 4.44 and 4.45, it is shown that

α∗
e = αe (1 − αeSEE)−1

, (4.46)

with
SEE = σ lim

q→0
F [g 1

2Tr(A
EE)](q⃗). (4.47)

Note that the full AEE operator is replaced by half of its trace due to spatial
isotropy of the array. The result is reminiscent of that obtained for periodic
nanoparticle arrays, but now the coupling term S is different

SEE = 1
4πε0

σ

∫ ∞

lCC

∫ 2π

0
g(r)eikr

[
(3 cos2 θ − 1)(1 − ikr)

r3 + k2 sin2 θ

r

]
rdrdθ,

(4.48)
where σ = 0.69/l2cc is the number density of particles in the array.

If we assume a Heavyside theta representation of the PCF, the coupling term
is of a simple form

SEE = 1
4πε0

πσ
eiklCC

lCC
(1 + iklCC), (4.49)

with Figure 4.2 illustrating an oscillatory nature of the interaction term. By
substituting Equation 4.49 into Equation 3.4, one can show that the effective
polarizability is Lorentzian with

α∗
e

4πϵ0R3 =
1 − ω̄2 (1 + s2)− qf + i

(
ω̄
(
γ̄ + 2

3s
3ω̄2)+ qg

)
(1 − ω̄2 (1 + s2) − qf)2 +

(
ω̄
(
γ̄ + 2

3s
3ω̄2
)

+ qg
)2 , (4.50)

where ω̄ = ω
ω0
, γ̄ = γ

ω0
, s = ω0R

c with ω2
0 = ω2

p

3 , a coupling strength q =
πσ0 (R/ℓcc)3, f(x) = cosx − x sin x, g(x) = sin x + x cosx, and c is the speed
of light. Functions f(x) and g(x) correspond to real and imaginary parts of
4πε0S, respectively.
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Figure 4.2: a) Real and b) imaginary part of dipolar coupling term for amor-
phous array of nanoparticles assuming that PCF may be approximated by Heav-
iside theta function. The real part is responsible for the modification of dipole
resonance condition, while the imaginary part leads to modification of resonance
width.

Based on this representation of the effective polarizability, it is possible to
extract the resonant frequency of the interacting system (Ω̄I) with respect to the
noninteracting system resonant frequency (Ω̄N)

Ω̄I/Ω̄N =
√

1 − qf(kNlcc). (4.51)

This indicates that Re(S) > 0 results in the decrease of resonant frequency,
while Re(S) < 0 leads to a shift of the resonance frequency towards the blue.
The corresponding resonance linewidth (Γ̄I) normalized to its counterpart for the
non-interacting system (Γ̄N) is

Γ̄I/Γ̄N = 1 + 2
(
1 + s2)QNg(kNlcc), (4.52)

where QN is the quality factor of the individual particle. A positive value of
Im(S) leads to increased linewidth with respect to the non-interacting, while the
converse happens if Im(S) is negative. Figure 4.2 plots the values of the real and
imaginary parts of S for a PCF that is given by the Heaviside theta function.
This is presented in Fig. 4.3 in which Ω̄I/Ω̄N and Γ̄I/Γ̄N are plotted as a function
of the minimal center-to-center distance normalized by the resonance wavelength
of the non-interacting system.

In a similar fashion to resonance wavelength and linewidth, the resonance
amplitude is modified as well. This modification affects scattering and absorption
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Figure 4.3: Resonance wavelength and linewidth of an amorphous array composed
of metallic nanoparticles. We assume that the quality factor of the noninteract-
ing system is 0.5, particle radius is 60 nm, while the non-interacting resonance
wavelength is 350 nm.

cross sections at the resonance wavelength in differently, which in turn leads to
a scattering-to-absorption ratio modification. Due to an oscillatory behaviour
of the effective polarizability as a function of the center-to-center distance, the
scattering-to-absorption ratio can be tailored for a specific application by tuning
the amorphous array density.12

4.4 Substrate mediated multipole coupling

4.4.1 Substrate mediated coupling in isolated nanoanten-
nas

Nanoantennas are typically fabricated using a deposition processes onto a dielec-
tric substrate. Unless the structure is covered by an index matching superstrate,
the substrate substantially affects the optical response of the system and therefore
substrate mediated effects cannot be omitted in the analysis of light scattering
by nanoantennas. One of the important effects related to the presence of a sub-
strate is the so-called substrate induced bianisotropy.136 The effect stems from
the fact that otherwise uncoupled electric and magnetic dipole resonances of an
antenna are coupled when placed on a planar substrate. This leads to a strong
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Figure 4.4: Multipole decomposed extinction spectra of high-index dielectric
sphere (n = 4) with 100 nm radius a) in free space b) on a substrate.

magnetic response at the electric dipole resonance.137 The sign and the strength
of this response depends on the relative particle-substrate position as well as
the substrate refractive index. In order to visualize this effect we plot multi-
pole decompositions of extinction spectra for a high-index nanoparticle in free
space and on a substrate in Fig. 4.4. A signature of substrate indcuded bian-
sotropy is a significant increase of the electric dipole amplitude in the vicinity
of magnetic dipole resonance. Notably, higher order multipoles can also couple
via off-substrate reflection. One such example is a modified amplitude of the
magnetic dipole near the magnetic quadrupole resonance. The general coupling
rules are described later in the thesis. The effect resulting from substrate induced
bianisotropy is a strong dependence of the magnetic and electric dipole spectral
features on the polarization of incident light under oblique incidence.138 Such a
polarization-dependent effect can be used to manipulate chiral properties of light
scattered by a nanostructure.139

The presence of the substrate modifies the fields generated by multipoles due
to the fact that there is an additional off-substrate reflection and transmission of
these fields, which does not occur during propagation in free space. Kerker con-
ditions derived for free-space propagation are no longer valid when the structure
is substrate-supported, yet it is still possible to suppress backward scattering and
achieve highly unidirectional light scattering under modified conditions that ac-
count for the reflection of the scattered field off the substrate.140 The near-field
modification by the substrate is especially important for plasmonic nanostruc-
tures. The electromagnetic hot-spots are generally pushed into the substrate. As
shown by Antosiewicz et al.,141 this effect can be used to additionally enhance
light-matter interactions in the vicinity of the substrate. We exemplify this by
studying the case of a Drude disk placed on a substrate with a varying refractive
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Figure 4.5: Extinction spectra of Drude disk (diameter of 150 nm, height of 25
nm) placed on a substrate with varying refractive index.
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Figure 4.6: Electric field enhancement of Drude disk (diameter of 150 nm, height
of 25 nm) placed a) in free space b) on glass substrate c) on a dielectric substrate
with refractive index of 2.

index. The presence of the substrate redshifts the localized surface plasmon res-
onance as shown in Fig. 4.5. The effect of the substrate on the near field of the
disk is presented in Fig. 4.6. With an increasing refractive index of the substrate,
there is an increasing asymmetry between the top and bottom of the disk. The
hot spots placed close to the substrate tend to be enhanced by its presence.

Nanostructures separated by a thin spacer from a metallic mirror have re-
cently found application as an efficient platform for enhancing light-matter inter-
actions. The system can be described as a one of two coupled dipoles: the first
corresponding to the particle itself and the second being an image dipole which
arises from multiple reflection of light off the substrate. Similarly, to the case of
the gap in a plasmonic dimer, the field in the spacer is extremely confined. Even
further enhancement is observed due to the formation of atomic scale features
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Figure 4.7: Extinction spectra of high-index dielectric sphere (n = 4) with 100
nm radius placed on a substrate with varying refractive index denoted in the plot
legend.

on the particle surface, resulting in a so-called picocavity that has been used
e.g. for extremely precise measurements of molecule position using Raman spec-
troscopy.142 It is worth noting that while the case of a plasmonic nanoparticle
on a mirror is more popular, systems comprised of dielectric nanoparticles have
also been studied in the literature.143

As a consequence of light reflection off the substrate, multiple scattering of
light between the substrate and the antenna occurs. From a theoretical stand-
point this leads to a modification of the scattering coefficients of the system. The
system’s response becomes

b⃗ = (T−1 −Wr)−1a⃗ (4.53)

where Wr is the coupling matrix describing the multiple scattering process (see
Appendix A). More details on the calculation of Wr and other properties are
shown in the next section.

The most basic optical effect of placing a nanostructure on a substrate is
the shape and position modification of the multipolar resonances in the optical
spectra. As shown in Fig. 4.7, in case of a high-index dielectric nanoparticle,
it is mostly the amplitudes of the peaks that are changed, while their positions
remain almost identical to the free space case.

As shown in the second chapter, extra care must be taken when performing
simulations with the T-matrix method for particles placed on a substrate. The
calculation of the fields reflected off the substrate can be considered as a following
process:
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Multiplying each plane
wave amplitude by
Fresnel coefficient

Conversion of
scattered spherical

waves to plane waves

Conversion of reflected
plane waves to
spherical waves

The equation for the coupling matrix element describing multiple scattering
between particle and the substrate is given Appendix A (eq. 10.17). One of the
main difficulties when evaluating the coupling matrix is an adequate choice of the
integration contour for Sommerfeld integrals which convert spherical waves into
plane ones. In SMUTHI, the T-matrix code used in this thesis, it is controlled
by three parameters: neff_res, neff_max, neff_imag. There are two main
issues to consider when choosing the parameter values. The first one is the
convergence of the self-interaction term (where the in-plane distance between the
particle and its image is zero). For spherical or tall particles (height larger than
width) selecting the Sommerfeld integral truncation wavenumber (neff_max)
somewhere above the highest refractive index in the simulation should result in
accurate integration. For flat particles the truncation wavenumber should be
selected with extra care and there are multiple articles on this issue.144–147 Here,
we adopt the method proposed by Egel et al.146 and the adequate neff_max value
can be obtained using the jqsrt_contour function in the simobjects module.
To test the method we calculate the spectra of a single nanodisk with refractive
index of 4, radius of 75 nm and height of 120 nm placed on a substrate with
refractive index of 2. We vary the multipole truncation order lmax and nmax

eff to
investigate their effect on the relative error with respect to a corresponding FDTD
simulation result. Even for relatively low lmax of 3 and the default SMUTHI
nmax

eff it is possible to observe qualitative agreement with FDTD (see Fig. 4.8a).
However, to observe quantitative agreement similar to the one that was attainable
when the substrate is not present one has to select the nmax

eff carefully. As shown
in Fig. 4.8b, only choosing nmax

eff to follow the dependence proposed by Egel et al.
one can see substantial improvement in accuracy by increasing lmax. In our work
we have typically used lmax = 5 as it was a good balance between computation
time and simulation accuracy.146

4.4.2 Multiple scattering in substrate supported nanopar-
ticle arrays

The general many-particle scattering problem for flat particle layers is formulated
in the T-matrix framework as follows108

b⃗S = TS
(
a⃗S +

[
WS,S

r +
∑

S′ ̸=S

(
W (ρS,S′ , ϕS,S′) +Wr(ρS,S′ , ϕS,S′)

)]
b⃗S′
)
, (4.54)
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Figure 4.8: Comparison between SMUTHI and FDTD for a single nanodisk with
radius of 75 nm and height of 120 placed on a substrate with refractive index of 2.
a) Extinction spectra, b) mean relative error as a function of multipole truncation
order lmax for two choices of plane wave truncation wavenumber. Only truncation
at wavenumber proposed by Egel et al.146 provides a decreasing simulation error
with increasing lmax.

where b⃗ is the vector of scattering coefficients, a⃗ is the vector of the incident
field expansion coefficients, Wr is the coupling matrix for substrate-mediated
coupling, W is the coupling for direct interaction between particles and T is
the T-matrix of the particle. Here, S indexes the particles, while the sum runs
over all the particles other than the one with index S. Finally, ρ and ϕ denote
polar coordinates of the particles. The resulting equation can be viewed as an
extension of eq. 4.7. Equation 4.54 accounts for multiple scattering mediated
by the layered system by including Wr which is defined for substrate-supported
nanoparticle arrays in Appendix A (see eq. 10.15).
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Chapter 5

Effective optical properties
of amorphous arrays of
optical antennas

5.1 Introduction

The aim of this chapter is to present a method of describing the optical properties
of amorphous metasurfaces within the T-matrix framework and the mean-field
approximation. In general, light scattering by random systems is difficult to
tackle numerically because of the necessity to solve a problem with two distinct
length scales: one related to the size of a single particle, which is on the order
of λ/4 and one related to the size of the illumination spot which is at least on
the order of a few microns. The idea behind the proposed method is that while
each of the particles has a unique surrounding, which leads to a unique mul-
tiple light scattering process between the particle and its neighbours, selected
macroscopic optical properties (e.g. extinction cross-section) are characterized
only by the average of the scattering coefficients. To find the average scatter-
ing coefficients we use the mean-field approximation i.e. we map a many-body
scattering problem to a one-body problem by replacing the scattered field from a
given particle’s neighbourhood with the average scattered field. This enables us
to solve the scattering problem including almost arbitrarily high multipole orders
and substrate-mediated interparticle coupling.

83
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5.2 Film of multipoles model for amorphous ar-
rays

5.2.1 General model
In order to derive the film of multipoles (FOM) model for amorphous arrays
we start from a general multiple scattering equation for nanoparticles placed on
a substrate (eq. 4.54). We separate coupling between different particles (S ̸=
S′, interparticle coupling) from substrate mediated self-interaction, because only
interparticle coupling requires statistical averaging

b⃗S = TS

(
a⃗S +

(
WS,RS +

∑
S′

(
WS(ρS′ , θS′) +WRS(ρS′ , θS′)

))
b⃗S

)
. (5.1)

The procedure outlined in the previous chapter is applied to the dipolar analogue
(eq. 4.40) of the formula presented above to obtain an effective polarizability (eq.
4.46). The discrete particle positions are replaced by a continuous distribution
with a density described using the PCF,

b⃗S = TS
(
a⃗S +

(
WS,RS

+
∫ ∞

0
ρdρ

∫ 2π

0
dθΓ(ρ/rcc, θ)(WS(ρ, θ) +WRS(ρ, θ))σ exp(−ερ)

)⃗
bS
)
. (5.2)

Here, we multiply the integral function by an exponential decay with a small con-
stant ε to obtain zero when the limit of the integral function as the interparticle
distance approaches infinity is taken.

The equation can be further simplified by analyzing the angular integral. The
coupling matrix can be factorized into radial and angular terms,

W (r, θ) = W (r) exp(i(m2 −m1)θ). (5.3)

Thus, the angular integral can be easily performed, leading to the following result:

b⃗S = TS
(
a⃗S +

(
WS,RS + W̃S + W̃RS

)⃗
bS
)
, (5.4)

for m1 = m2 and zero elsewhere. W̃S is defined as

W̃S = 2π
∫ ∞

0
ρdρΓ(ρ/rcc)WS(ρ)σ exp(−ερ) (5.5)

and W̃RS is defined as

W̃RS = 2π
∫ ∞

0
ρdρΓ(ρ/rcc)WRS(ρ)σ exp(−ερ). (5.6)
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Evaluation of the integrals in the definitions of W̃RS and W̃S is discussed in
the following subsection. Eq. 5.4 can be solved for scattering coefficients bs by
matrix inversion

bS = aS
(

(TS)−1 −
(
WS,RS + W̃S + W̃RS

))−1
. (5.7)

5.2.2 Evaluation of the direct coupling integral
The efficiency of the semianalytical film of multipoles (FOM) outlined above
stems from the reduced number of unknowns in the inverse problem by a factor
equal to the number of particles. However, the FOM requires spatial integration
to evaluate W̃RS and W̃S . While the substrate-mediated coupling term contains
Sommerfeld integrals and cannot be integrated analytically, it is possible to rep-
resent the direct coupling term using the incomplete gamma function and thus
obtain an analytical result for this term, which can be easily evaluated numeri-
cally. The direct coupling term prior to statistical averaging is given by eq. 10.10
and the pair correlation function takes the form of eq. 4.24. Then, the direct
part integral can be represented as

W̃S,S′

n,n′ = 2πσ
∫ ∞

0
ρdρ

1 +
∑

j

e−bjρ/lcc

 l+l′∑
χ=|l−l|′

dS,S′

χ,n

χ∑
Λ=0

cχ,Λ
eikρ

(kρ)Λ+1 , (5.8)

where

dχ,n = ei(m−m′)ϕ
l+l′∑

χ=|l−l′|

x5 (l,m |l′,m′|λ)P |m−m′|
χ (cos θ) . (5.9)

The order of summation and integration is exchanged to obtain

W̃S,S′

n,n′ = 2πσ
l+l′∑

χ=|l−l|′

dS,S′

χ,n

χ∑
Λ=0

cχ,Λ

kΛ+1

(∫ ∞

0
dρ
eikρ

ρΛ +
∑

j

∫ ∞

0
dρ
eikρ−bjρ/lcc

ρΛ

)
.

(5.10)
The resulting integral is of the form∫ ∞

a

e−kxx−ndx = kn−1Γ(1 − n, ak), (5.11)

where Γ(1 − n, ak) is the incomplete gamma function. Thus, the result is

W̃S
n,n′ = 2πσ

l+l′∑
χ=|l−l|′

dS,S′

χ,n

χ∑
Λ=0

cχ,Λ

kΛ+1

(
(−ik)Λ−1Γ(1 − Λ,−iklcc)+

∑
j

(−ik + bj/lcc)Λ−1Γ(1 − Λ, bj − iklcc)
)
. (5.12)
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Finally, to calculate these sums we make use of the following properties of Γ

Γ(1, x) = e−x, (5.13)

Γ(s+ 1, x) = sΓ(s, x) + xse−x. (5.14)

5.2.3 Electric and magnetic dipoles

The dipolar approximation of eq. 5.7 combined with a transformation to Carte-
sian multipoles enables us to obtain the mean-field analogue of the coupled elec-
tric and magnetic dipole method formulated in eq. 4.8 for amorphous arrays in
free space. This model has been proposed by the author in Publication I. In
this article we have used units such that 4πε0 = 1 and c = 1. We adopt these
units here (and whenever the model outlined here is used) as well. The reason
behind this is that then the electric and magnetic polarizabilities have the same
units (units of volume). Also, the electric and magnetic fields and coupling terms
have the same units. This substantially facilitates the analysis of the effective
magnetic and electric dipole moments and their comparison. Because of the fact
that an amorphous array is approximately statistically isotropic (especially at
long distance), the coupling terms for electric and magnetic dipoles are identical

SEE = SMM = σ

∫ ∞

lcc

∫ 2π

0
Γ(r)eikr

[
(3 cos2 θ − 1)(1 − ikr)

r3 + k2 sin2 θ

r

]
rdrdθ.

(5.15)
Due to this isotropy, the same multipole coupling rules apply to amorphous arrays
in free space as in the case of periodic arrays. Thus, it can be shown that cou-
pling between electric and magnetic dipoles vanishes by performing the angular
integration of the following term

SEM = σ

∫ ∞

lcc

∫ 2π

0
Γ(r)k

2eikr

r

(
ik

r
− 1
r2

)
cos θrdrdθ = 0. (5.16)

Consequently, each of the multipole moments can be solved for independently
(in the dipole approximation) using an isolated nanoparticles magnetic/electric
polarizability and the coupling term. Thus the following solution

αeff
m,e = 1

α−1
m,e − SEE

(5.17)

constitutes the film of dipoles (FOD) model.
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5.3 Multipole coupling in amorphous arrays

5.3.1 Multipole coupling in amorphous arrays – rules

The selection rules presented in Chapter 3 for periodic arrays of nanoparticles are
also valid for amorphous arrays treated using FOM if the particles are embedded
in a homogenous environment. This is due to the fact that we assume in our
model that the spatial distribution of nanoparticles is planar and isotropic. Also,
we consider only the mean values of multipole moments. Consequently, two
multipoles couple only if m1 = m2 and, as discussed earlier, coupling between
electric and magnetic multipoles requires one of their orders (l) to be even and
the other to be odd. For such orders, coupling between multipoles of the same
types does not occur. Otherwise, only coupling between the same multipole types
occurs. This is illustrated by an exemplary coupling matrix presented in Fig. 5.1a.
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Figure 5.1: (a) Coupling matrices for different coupling channels: direct inter-
particle coupling (left), substrate-mediated interparticle coupling (center), and
substrate-mediated self-coupling (right) calculated for CC = 3.5, λ = 700 nm
with D = 160 nm and H = 160 nm. (b) Coupling matrix elements (real and
imaginary parts) for l = 1 (dipole) at λ = 700 nm as a function of CC for
direct coupling (direct), substrate-mediated interparticle coupling between the
same dipole type (refl), and self-coupling. −c in the label denotes cross coupling
between electric and magnetic dipoles. (c) The magnitude of each coupling ma-
trix element from (b) as a function of wavelength for CC fixed at 3.5D.
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The presence of a substrate introduces additional channels of electromag-
netic coupling via multiple scattering. Multipole coupling can occur between
each particle and the substrate due to multiple reflection of scattered light by
the substrate. We call this coupling type self-coupling. The other interaction
type introduced by the substrate is substrate-mediated interparticle coupling.
In this type of process part of the light scattered by a particle is reflected by
the substrate and then becomes part of the exciting field for another particle.
Substrate-mediated coupling obeys different multipole coupling selection rules
than direct coupling as shown in Fig. 5.1a. In this case, the multipoles with
the same order m can couple regardless of their type and degree. The minimal
requirement that the spatial arrangement of particles needs to obey in order for
these rules to apply is invariance of the spatial distribution with respect to the
θ → −θ transformation.

Consequently, in the dipole approximation there are three possible multipole
coupling scenarios: electric dipole – electric dipole, magnetic dipole – magnetic
dipole and cross coupling between the two, which is manifested as substrate in-
duced bianisotropy. We therefore study each coupling type for each multipole
pair as a function of CC and wavelength for an amorphous array on a substrate
(nsub = 2) at λ = 700 nm in Fig. 5.1b,c. In general, substrate-mediated self-
coupling constitutes the largest part of electromagnetic coupling, but with direct
coupling being a comparable contribution. Substrate-mediated interparticle cou-
pling is also an important contribution, but mostly for larger CC values. Each
interparticle coupling type exhibits an oscillatory behavior as a function of CC,
but reflected and direct contributions are phase shifted and have different mag-
nitudes. Notably, cross coupling terms have a similar magnitude to coupling
between identical multipole types, which means that if the electric dipole (ED)
and the magnetic dipole (MD) are of similar magnitude, the two coupling types
can both lead to substantial modifications of the optical properties or cancel each
other out if the corresponding coupling terms have opposite signs.

5.3.2 Coupling in arrays embedded in homogeneous media

Forming an amorphous array out of high index dielectric nanoresonators leads
to modification of nanoparticle multipole moments, which in the dipolar approx-
imation is given by eq. 5.17. The interparticle coupling term, shown in Fig.
4.2 behaves in an oscillatory manner making the scaling parameter CC a useful
handle for tailoring the optical response of the array. In Figs. 5.2 and 5.3 we
present a comparison of sphere-based amorphous arrays modeled with the effec-
tive model and the exact solution of multiple scattering equation obtained using
the MSTM code. Multiple scattering clearly affects the optical properties of the
arrays. The effective model predicts accurately the impact of multiple scattering
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Figure 5.2: Comparison of exctinction efficiency spectra of amorphous arrays
composed of D=100 nm Si nanospheres for FOD model (solid lines) and T-
matrix method (circles). Each subsequent spectrum is shifted with respect to
the previous one by four for enhanced readability. b) Extinction amplitude ratio
and wavelength separation of electric and magnetic dipole resonances extracted
from a) and normalized to their single particle counterparts. These properties
are influenced by CC due to the fact that coupling term S is distinct at each
resonance wavelength.

on both resonances. Due to the fact that the coupling term S is distinct at each
resonance wavelength, each resonance is modified differently in comparison with
the single particle counterparts. This results in an oscillatory behavior of the
extinction amplitude ratio and wavelength separation of electric and magnetic
dipole resonances.

In a typical experimental scenario, Si nanodisks are used to form amorphous
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Figure 5.3: Extinction amplitude ratio of ED and MD resonances for amorphous
arrays of Si nanospheres (D=100 nm) with varying diameter and CC.
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Figure 5.4: Multipole decomposition of extinction spectrum for a silicon nanodisk
with D = 150 nm and H = 225 nm and comparison between sum of dipolar
contributions and a total extinction efficiency.

arrays. The benchmark results for amorphous arrays of nanodisks and electric
and magnetic polarizabilities of individual nanodisks used here are obtained using
the T-matrix approach implemented with SMUTHI. The properties of a individ-
ual nanodisk with D = 150 nm and H = 225 nm are presented in Fig. 5.4. The
aspect ratio is selected so that electric and magnetic dipole resonances overlap,
while higher order multipoles do not contribute significantly.

In the case of an amorphous array of nanodisks with overlapping magnetic
and electric resonances presented in Fig. 5.5, an oscillatory behavior of both
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resonance amplitude and wavelength properties is observed, similar to the one
observed earlier for plasmonic particles (see Fig. 4.3), which is a consequence
of the fact that the interaction is governed by the same term as in the case of
the electric dipole mode in plasmonic particles. Good agreement between the
effective model and explicit SMUTHI calculations is observed.

When the magnetic and electric resonance wavelengths are not equal, the
interaction term for each moment separately is evaluated at a different wavelength
for each resonance and hence electromagnetic coupling affects the resonances in
a distinct manner. This enables manipulation of the array spectrum in terms
of wavelength shift and amplitude ratio between the resonances not only using
the particle geometry, but also by modifying the lcc of the array. We show two
examples of this kind of process in Fig 5.6. When the initial response separation
is large, the properties can be manipulated to a larger extent as exemplified in
nanodisk arrays. While the changes in spectral separation of the resonances are
not large, they should still be accounted for when designing the array for a specific
application, especially because the positions of individual resonances may change
by tens of nanometers. At the same time, the change in the amplitude ratio is
substantial and can be on the order of 30% with respect to the single particle
value.

5.3.3 Coupling in substrate supported arrays
Substrate-mediated coupling is influenced by two factors. The first one is the
substrate refractive index which enters the substrate mediated coupling term via
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Figure 5.7: (a) Real and (b) imaginary parts of sum the of direct and substrate-
mediated interparticle dipolar coupling matrix elements as a function of center-
to-center distance and substrate-particle distance for amorphous array on a sub-
strate (nsub = 2) at λ = 500 nm. The colorbar indicates effects related to each
part of this sum assuming that no other interparticle coupling occurs (higher or-
der multipole coupling or dipolar cross-coupling). (c) Real and imaginary parts
of the corresponding dipolar substrate mediated self-coupling term. (d) Compar-
ison of interparticle and self-coupling in terms of dipolar coupling matrix element
magnitude for varying refractive index of substrate as a function of lcc.

the Fresnel reflection coefficients (see eq. 10.15). Here, we focus on the second
factor which is the array-substrate distance. It contributes to the phase factor in
eq. 10.15. Changing this distance determines (along with the wavelength of light
in embedding the medium) the phase shift between the direct and the reflected
scattered fields and thus changes interparticle coupling. We analyze this effect
for magnetic dipole coupling terms calculated at free space resonance wavelength
for a silicon nanodisk with height 100 nm and diameter 100 nm, which equals 500
nm (see Fig. 5.7). For dense arrays, the interparticle coupling can be modified to
a large extent by manipulating the array-substrate distance. For instance, it is
possible to change the sign of the real part of the dipolar coupling term or even
to cancel it out. The imaginary part can also be modified substantially, but to
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Figure 5.8: Extinction spectra of amorphous arrays of Si nanodisks embedded
in varying environments: (a) in air, (b) on a substrate for three different CC
values. (c,d) Multipole decomposition of extinction spectra presented in (a,b).
The results indicate that while qualitatively the extinction spectra are similar, the
unique multipole coupling effects in each environment affect how this extinction
is split into multipoles.

a lesser degree. In contrast, the dipolar interparticle coupling in sparse arrays is
not considerably influenced by the array-substrate distance. At the same time,
it is also significantly smaller in comparison with the one obtained for dense
arrays. It should be, however, noted, that the overall interparticle coupling in
the array is determined not only by the dipolar term, but also by cross-coupling
and higher-order terms, which are most often non-negligible.

Finally, we exemplify multipole coupling by considering an amorphous array
of nanodisks of c-Si cylinders with D = 150 nm and H = 225 nm embedded
in three different environments: in free space, on a substrate with a refractive
index of 1.45 to mimic glass (see Fig. 5.8). The spectra for particles on a
substrate are qualitatively similar to those obtained in free space with the largest
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Figure 5.9: Extinction spectra of amorphous arrays of Si nanodisks embedded in
varying environments: (a) in an index matched medium for three different CC
values. (b) Multipole decomposition of extinction spectra presented in (a). The
results indicate that while qualitatively the extinction spectra are similar, the
unique multipole coupling effects in each environment affect how this extinction
is split into multipoles.

difference being observed for CC = 4. For comparison, results for amorphous
array embedded in an index matched medium with a refractive index of 1.28
are presented in Fig. 5.9. In this case, the dependence of the spectrum on
the minimal center-to-center distance is distinct from the other two. Also, an
increased extinction cross-section is observed when the particles are embedded
in the indexed matched medium. Because of the fact that instead of accounting
for off-substrate reflection, a simple phase shift has been applied, the multiple
scattering effect on the array response is approximated poorly by using the index-
matched medium.

Studying multipole decomposition of extinction spectra for each environment
elucidates further differences between the impact that multiple scattering has on
the optical response in each case. The two most prominent features typically
correspond to magnetic and electric dipoles. Also, higher order multipoles with
smaller amplitudes are observed. In each case, magnetic and electric quadrupole
resonances overlap with the main dipolar peaks. The most prominent effect of
the coupling between the electric and magnetic dipole is observed when the par-
ticles are placed on a substrate. It is not present in any of the other two cases
without a substrate. A significant increase of the electric dipole contribution
around the magnetic dipole resonance for a substrate-supported array is a clear
indicator of this effect. A similar effect is observed at the electric dipole resonance
wavelength. In this case the effect is more complex, because the resonance ac-



5.4. DENSITY AS A HANDLE FOR APPLICATIONS 95

tually contains a considerable contribution from the magnetic quadrupole and a
non-zero contribution from the electric quadrupole, which is due to a larger than
unity H/D ratio. Consequently, all four multipoles couple together as indicated
by an enhanced magnetic dipole and electric quadrupole response.

5.4 Density as a handle for applications
The capability to modify the optical response by manipulating the scaling param-
eter CC is useful to adjust the optical response to make it suitable for a specific
application/optical device. In this section we look at three standout cases of
devices based on amorphous arrays of dielectric nanoresonators: directional scat-
terers, refractometric sensors and solar energy harvesting devices.

5.4.1 Directional scattering
We start by investigating how to obtain directional scattering by amorphous
arrays of high index dielectric nanoparticles featuring an electric and magnetic
dipole response. As shown earlier in this thesis, directional scattering effects have
been observed for isolated particles, as well as nanoparticles forming a periodic
nanoparticle array. Here, we show using our FOD model that similar effects may
be observed in random arrays. The backward to forward scattering cross-section
ratio is given by

Cb

Cf
=
∣∣∣∣α∗

e − α∗
m

α∗
e + α∗

m

∣∣∣∣2 , (5.18)

where α∗
e and α∗

m are obtained using eq. 5.17. Minimizing the numerator and
denominator will lead to minimal backward and forward scattering, respectively,
and thus to the lattice Kerker effects in the corresponding directions.

Using eq. 5.18, the lattice Kerker effects conditions are found for forward,

(αe + αm) − 2αeαmSEE

(1 − αmS)(1 − αeSEE) = 0, (5.19)

and backward scattering cross-sections,

αe − αm

(1 − αmS)(1 − αeSEE) = 0. (5.20)

Then, the backward to forward scattering cross-section ratio is given by

Cb

Cf
=
∣∣∣∣ αe − αm

(αe + αm) − 2αeαmSEE

∣∣∣∣2 . (5.21)
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Figure 5.10: Analysis of forward and backward scattering of amorphous arrays
of silicon nanodisks (left column: D = 260 nm, H = 300 nm; right: D = 360
nm, H = 480 nm) a), c) Forward and backward scattering efficiency spectra. b),
d) Backward to forward scattering cross-section ratio. Additionally, this ratio
multiplied by the total scattering cross section Casym is plotted in d), which is
a figure of merit used to maximize directionality towards backscattering, while
maintaining high scattering efficiency. e), g) Backward and forward scattering
efficiencies at 1245 nm in e) and 1480 nm in g) as a function of CC. f) Wavelength
at which zero backward scattering occurs does not depend on CC value. h) In
contrast, wavelength corresponding to maximum of Casym varies as a function of
CC.
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In order to illustrate directional scattering effects we have selected two ex-
amples: Si nanodisks 260 nm in diameter and 300 nm in height, used to observe
backward scattering suppression, and Si disks 360 nm in diameter and 480 nm in
height to observe maximal backward scattering with a simultaneous significant
suppression of forward scattering. The Cf and Cb spectra for amorphous ar-
rays formed by those particles are presented in Fig. 5.10a,c, while corresponding
backward to forward scattering cross-section ratios are presented in Fig. 5.10b,d.
For the smaller disk, a lattice Kerker effect in the backward direction is observed
at 1245 nm, while for the larger one forward scattering is near zero at approx.
1175 nm leading to a large backward to forward scattering cross-section ratio of
about 3. At the same time, we find the second effect not to be important for
practical applications, because despite forward scattering is indeed suppressed,
the total scattering cross-section is also small, which means that the device would
not be efficient. Therefore, we devise a different figure of merit for maximizing
backscattering at suppressed forward scattering which is

Casym = Cscat
Cb

Cf
. (5.22)

This figure of merit is maximized at 1480 nm, where forward scattering efficiency
is about 2, but backward scattering is over 5, which results in a large contrast in
forward and backward scattering at a large overall scattering cross-section.

The lattice Kerker conditions given by eq. 5.20 and 5.19 lead to interesting
consequences regarding directional scattering effects. The ZBS condition (eq.
5.20) does not depend on the interparticle coupling term. Instead, it only requires
for single-particle electric and magnetic dipole polarizabilities to be equal. This
is indeed confirmed in Fig. 5.10f. Simultaneously, the forward scattering cross-
section at the wavelength fulfilling the ZBS lattice Kerker condition depends
on the interparticle coupling term and in turn on CC as shown in Fig. 5.10e.
In contrast, maximizing our figure of merit for maximal backscattering requires
balancing both single particle polarizabilities, as well as, interparticle coupling.
As shown in Fig. 5.10g observing a high figure of merit requires a dense array
and the observed value depends significantly on CC. For CC of about 3, equal
values of back- and forward scattering are observed. Also, the wavelength that
corresponds to the maximum figure of merit depends on CC by virtue of eq. 5.19.
This dependence is presented in Fig. 5.10h.

5.4.2 Sensing
We consider that the pinnacle of the applications presented here is refractometric
sensing with high-index dielectric nanoparticles, which, in contrast to plasmonic
counterparts, are not characterized by large intrinsic sensitivities. Instead, as



98 CHAPTER 5. EFFECTIVE OPTICAL PROPERTIES

Resonance wavelength
λr = 2πc√

ω2
0−α0Re(SΘ)

.

Lorentzian
polarizability

α = α0
ω2−ω2

0+iγω
.

Bulk sensitivity
B = πα0

c2k3
0

dRe(SΘ)
dnenv

.

Figure 5.11: Schematic representation of the theoretical procedure used to obtain
the bulk sensitivity of amorphous arrays of dielectric nanoparticles

we show here, the mechanism responsible for refractometric sensing of a bulk
environment of the nanoparticles is in fact multiple scattering that may be in-
troduced either by placing nanoparticles in an array or on a dielectric substrate.
The theoretical procedure is outlined in Fig. 5.11.

As a starting point we use eq. 5.17, which has direct implications for refractive
index sensing with an amorphous array of dielectric nanoparticles. We consider a
dipole with polarizability α that can be modeled as a Lorentzian oscillator with
amplitude α0, resonance at λ0 and damping 2γ,

α = α0

ω2 − ω2
0 + iγω

. (5.23)

We assume that these parameters do not depend on the refractive index of the
nanoparticle environment (nenv) to show that even if the resonance of an individ-
ual nanoparticle is insensitive to change in the nanoparticle’s environment, the
sensitivity of an amorphous array to the refractive index can still be considerable.
The effective polarizability of the array can be presented in the Lorentzian form
using eqs 5.17 and 5.23,

α∗ = α0

ω2 − ω2
0 + iγω + α0SΘ

EE

. (5.24)

Here we use the Heaviside approximation for the PCF to obtain the coupling
factor SΘ

EE . Consequently, the polarizability of the amorphous array depends on
the refractive index of the environment regardless of sensitivity of the individ-
ual particle due to the dependence of SΘ

EE on the refractive index. From the
denominator of eq. (5.24) we find that the resonance of the array appears at

λr = 2πc√
ω2

0 − α0Re(SΘ
EE)

. (5.25)

We define bulk refractive index sensitivity, B = dλr

dnenv
, and evaluate the derivative

for the resonance of amorphous array by utilizing eq. 4.49 to obtain the analytical
formula

B = −
2π2cα0σl

−1
cc

(
k2

0l
2
ccn cos(k0lccnenv) + 2k0lcc sin(k0lccnenv)

)
2(ω2

0 − πα0σl
−1
cc (cos(k0lccnenv) − k0lccnenv sin(k0lccnenv))3/2 . (5.26)



5.4. DENSITY AS A HANDLE FOR APPLICATIONS 99

1.35

su
rr

ou
nd

in
g 

re
fr

a
ct

iv
e 

in
de

x 
n s

u
rr

-10

-5

5

pe
ak

 s
h

ift
 (

nm
)

(b)(a)

3
center-to-center distance CC (D)

4 5 6

0

3
center-to-center distance CC (D)

4 5 6

1.40

1.45

1.50

-80

bu
lk

 s
en

si
tiv

ity
 (

nm
/R

IU
)

-60

-40

-20

0

20

40

60

single particle
full model

 - PCF ϴ
full PCFa

rr
a

ys

simple
permittivity

Figure 5.12: Refractometric sensing with amorphous arrays of n = 4 nanospheres
with D=160 nm. (a) Resonance wavelength as a function of nenv and minimal-
center-to-center distance CC. (b) Comparison of bulk sensitivity between isolated
nanosphere and amorphous arrays. For amorphous arrays full FOD model is
compared to approximations using Lorentzian polarizability and either complete
or Heaviside theta part of PCF.

The denominator of the equation can be approximated by ω3
0 . Introducing β =

π2α0C0c
−2 the formula can be rewritten as

B = − β

k2
0l

2
cc

(k0lccnenv cos(k0lccnenv) + 2 sin(k0lccnenv)) . (5.27)

This result, although approximate, indicates that while the optical response
of an isolated nanoparticle is not sensitive to the refractive index of the envi-
ronment, multiple scattering is influenced by the phase difference between the
incident and scattered fields and hence the entire system acts like an interferom-
eter. The optical response depends on the wavelength in the surrounding medium
and in turn on the refractive index of the environment. Indeed, as shown in Fig.
5.12a, the dependence of the magnetic dipole peak position as a function of the
center-to-center distance is distinct for each nenv value. Also, note how eq. 5.27
indicates that bulk sensitivity B is a nonlinear function of nenv. Consequently,
the parameters of the system have to be tuned to maximize sensitivity in a de-
sired n range. At the same time, the examples provided in this work show that
this nonlininearity is small enough to enable detecting changes that are observed
in a typical sensing scenario (∆n ≪ 1).

The concept of bulk sensitivity enhancement by forming the amorphous array
is exemplified by comparing sensitivity of an isolated Mie sphere with refractive
index of 4 and 160 nm diameter and an array of such spheres. An isolated
particle has near zero sensitivity towards the refractive index of the environment
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Figure 5.13: Refractometric sensing with amorphous arrays of n = 4 nanospheres
with D=160 nm. Local sensitivity of an amorphous array and isolated particle
obtained by considering nanospheres decorated with a thin layered of sensed
material.

in the selected range of nenv, because the sphere itself is nondispersive and the
magnetic dipole resonance is in general a geometric resonance i.e. it requires
matching both refractive index and particle size to observe a resonance even
for small particles. In turn, the magnetic dipole polarizability is suitable to be
approximately described using eq. 5.24. When an amorphous array is formed
out of Mie spheres, bulk sensitivity can be significant (despite the array being
constructed of dielectric particles), that is reaching up to 65 nm/RIU (see Fig.
5.12b). As in case of any other property related to the optical response, we
observe an oscillatory behavior of bulk sensitivity as a function of CC. The sign
of bulk sensitivity can be positive or negative depending on CC choice, meaning
that either a shift of the peak position towards red or blue will be observed,
respectively. Also, due to this dependence on CC, the CC choice can lead to
strong amplification, but when selected improperly to sensitivity suppression, as
well. In Fig. 5.12b we compare the bulk sensitivity of an isolated Mie sphere
with that of the amorphous array obtained using different approximations. While
eq. 5.27 is good for qualitative explanation of the bulk sensitivity mechanism,
it is insufficient to obtain quantitative agreement with the results obtaining by
direct numerical calculation using eq. 5.17 and PCF in form of eq. 4.23. The
agreement is vastly improved by considering the full PCF in eq. 5.27 instead of
Heaviside theta, further justifying our use of Lorentzian polarizability and the
proposed mechanism.

A different mechanism from which nanoresonator based sensors can benefit
by multiple scattering in amorphous array is the enhancement of local sensitivity.
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We model this case by considering core-shell particles in which the role of the
core is played by the nanoresonator itself, while the shell is a thin layer of sensed
material. As shown in Fig. 5.13 electromagnetic coupling in amorphous array
may enhance the local sensitivity of the thin layer by up to 40%.

In addition to spherical high-index dielectric nanoresonators, we have also
considered high-index dielectric nanodisks as suitable candidates for all-dielectric
refractometric sensors and the impact of the electromagnetic coupling on their
sensitivity. As shown earlier in this thesis, their optical response is far more
tunable by selecting the particle aspect ratio and hence even an isolated particle
can have non zero sensitivity. Thus, they have been considered as a candidate for
refractometric sensor prior to our work (see the introduction chapter). Here, we
have focused on understanding the bulk sensitivity mechanism. Despite, the fact
the disk sensitivity towards nenv is non-zero, the main mechanism responsible
for the observed sensitivity in amorphous arrays is also electromagnetic coupling.
This is indicated by a strong dependence of the sensitivity on CC regardless
of disk size as shown in Figs 5.14. Bulk sensitivity oscillates as a function of
the sensed refractive index with an oscillation frequency determined by a scaling
factor k0lccnenv, which can be rationalized by eq. 5.27. This means that geometry
of the nanodisk must be optimized to obtain maximal sensitivity and linear sensor
response for a given analyte.

The geometric parameters of a nanodisk influence the bulk refractive index
sensitivity of amorphous arrays formed with nanodisks by modifying the single
particle sensitivity, resonance amplitude and scaling factor k0lccnenv that deter-
mines the phase relationship between incident and scattered fields. The FOD
model enables efficient study of these effects. We choose the detected refractive
index to be close to 1.33, which is the refractive index of water and find CC
value maximizing bulk sensitivity as a function of aspect ratio and diameter of
the nanodisks. The results are presented in Fig. 5.15a. The optimal CC values
range from 2 to 5. This indicates that sufficiently dense arrays are required, so
the impact of multiple scattering is substantially large. The optimal CC values
tend to be especially low for nanodisks with small diameters and aspect ratios.
The converse is true for nanodisks with large diameters and high aspect ratio.
In Fig. 5.15b we show the maximal attainable bulk sensitivity for each nanodisk
geometrical parameters. In general, its value increases with increasing aspect
ratio and nanoparticle diameter.

As shown here, practical realization of refractometric sensors based on di-
electric nanoresonators requires multipole coupling by multiple scattering. In
publication I, this can be done by forming an amorphous array of nanoresonators
and thus introduce intraarray coupling. Another way of introducing multiple
scattering is to place a particle on a substrate and exploit self-coupling and
substrate-mediated interparticle coupling as well. In Fig. 5.16a we consider
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an isolated particle placed on a substrate and study the impact of the substrate
by modifying its refractive index. Indeed, the bulk sensitivity may be substan-
tially amplified or suppressed by choosing the refractive index of the substrate
adequately. Similarly, the sign of the bulk sensitivity is influenced by choice of
the substrate material.
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When a substrate-supported amorphous array is used as a refractometric sen-
sor, the sensitivity mechanism involves an interplay of all three coupling mecha-
nisms. Substrate-mediated coupling depends not only on the refractive index of
the antenna’s environment via the scaling parameter CC, but also via the Fres-
nel reflection coefficients (see eq. 10.15 in Appendix A). As an extreme example,
substrate-mediated coupling vanishes when the sensed medium has the same re-
fractive index as the substrate. Perhaps, the most profound effect of the substrate
is that it affects the limiting value when the array is diluted. Consequently, the
sensitivity is shifted by a constant substrate dependent value regardless of CC
choice. For substrate-supported arrays, the intraarray coupling leads to interfer-
ence between reflected and direct scattered fields with phase relationship that is
different than for an array in free space. This modified phase relationship mani-
fests itself in sensitivity curves shown in Fig. 5.16b and hence, sensitivity maxima
and minima as a function of CC depend on the choice of the substrate material.
The response of the sensor is nonlinear with respect to the sensed refractive index
in a similar manner to a free space array as shown in Fig. 5.17. While in general,
the obtained sensitivity values for each refractive index of the environment are
similar to the average one, the effect is especially pronounced with increasing CC
value.

In conclusion, when designing all-dielectric refractometric sensors for moni-
toring changes of the bulk refractive index of the environment, different aspects
of the system have to be accounted for. While it might seem that the most im-
portant factor is the nanoresonator geometry, in fact if simple shapes such as
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Figure 5.18: a) Scattering-to-absorption ratio (SAR) of isolated Si nanospheres.
b) SAR for amorphous arrays composed of 100 nm diameter Si nanospheres (solid
lines). Dashed lines indicated corresponding values for an isolated nanosphere.
c), d) SAR for amorphous arrays of Si nanospheres plotted against particle radius
and minimal center-to-center distance at magnetic and electric dipole resonance,
respectively. SAR for an array is normalized in c) and d) to the single-particle
counterpart.

spheres or disks are considered, the geometry is only important in determining
the resonant frequency (frequencies) of the system. The key factors that may be
manipulated to obtain an effective sensing device are the spatial arrangement of
the nanoresonators and the substrate refractive index. They determine electro-
magnetic coupling, which is the main bulk sensing mechanism. The parameters
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should be selected in tandem as the resulting sensitivity stems from an interplay
between various coupling channels.

5.4.3 Scattering to absorption ratio
The scattering to absorption ratio is an all important quantity for solar energy
harvesting applications that, as discussed in the previous chapter, can be sub-
stantially modified by manipulating CC for plasmonic nanoparticles. Here, we
focus on the case of high-index dielectrics, which exhibit both electric and mag-
netic resonance for which SAR may be manipulated. SAR for individual silicon
nanospheres is shown in Fig. 5.18a. In general, SAR is relatively high for this
type of nanoresonators and it rapidly increases with particle size, not only be-
cause that is the general tendency as shown by Antosiewicz et al.,12 but also
because with increasing particle size, the resonances are shifted towards larger
wavelengths in which the intrinsic absorption of silicon is smaller. In contrast to
the refractometric sensing example, here, the dominant factor determining SAR
is still the single particle, but electromagnetic coupling is a factor that can be
used to influence the SAR value. Multiple scattering in amorphous arrays embed-
ded in a homogeneous material can substantially influence its SAR as indicated
by the results presented in Fig. 5.18b. Specifically, SAR can be diminished by
a factor of approximately 50% by appropriate choice of CC enabling reaching
SAR below unity for small spheres. This minimum is almost independent on
particle size and always reached for CC between 2 and 4 as shown in Fig. 5.18c
for electric dipole resonance and Fig. 5.18d for magnetic dipole resonance. This
effect may be promising for solar harvesting using silicon nanoresonator arrays
as it enables maximizing absorption in the nanoparticles forming the arrays.

5.5 Optical properties of size dispersed amorphous
arrays

FOD and FOM models enable modelling of amorphous arrays assuming that an
array consists of identical particles. However, in practice, the arrays are often-
most composed of nonidentical particles, as a result of experimental fabrication
imperfections or a deliberate attempt to manipulate the optical response of the
system. In this section we study the optical properties of size-dispersed amor-
phous nanoparticle arrays. To that end, we modify the minimal nanoparticle
distance condition to lcc = CC(r1 + r2), where r1 and r2 are the nanoparticle
radii. In turn, the condition may be different for each nanoparticle pair depending
on nanoparticle sizes. The modified condition enables clustering of small particles
around larger ones, which alters the nanoparticle spatial distribution. Thus, size
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Figure 5.19: a) Schematic representation of amorphous array of size dispersed
nanoparticles. b) Pair correlation function of amorphous array of size dispersed
nanoparticles with mean diameter of 60 nm and varying diameter standard de-
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dispersion influences optical properties in a two-fold manner: via modification
of the average non-interacting nanoparticle polarizability and via modification of
multiple scattering due to altered nanoparticle spatial distribution. We address
both of these effects using a combined T-matrix and extended FOD model study.

5.5.1 Modified random sequential adsorption algorithm
The modified RSA algorithm is employed in order to generate amorphous random
patterns consisting of size dispersed nanoparticles. We assume that an experi-
mental nanoparticle diameter distribution is known and is a normal distribution
with a mean value ⟨D⟩ and a standard deviation σD. The interparticle center-
to-center distance of each nanoparticle pair with radii (r1,r2) is constrained by
the lcc = CC(r1 + r2), which replaces the standard acceptance condition. The
main difficulty that we tackle here is to assert that the constructed (modelled)
nanoparticle size distribution is identical to that of the experimental one.

Naively, one could simply sample the experimental size distribution in order to
obtain the nanoparticle sizes, which is a valid solution for sparse packings. How-
ever, as the number of adsorbed particles increases and the remaining space to be
occupied by particles decreases, there is an increasing skew of the particle size dis-
tribution towards small nanoparticles and deviations from a normal distribution
will be substantial. Instead of such a direct approach, we draw the nanoparticle
sizes from a uniform sampling distribution with size range [−3σD, 3σD]. In order
to obtain the target size distribution, we perform the following procedure. First,
we generate a histogram of the desired size distribution. The total number of
particles in the histogram is determined by N = N0⟨D⟩2(

∑
i D

2
i xi)−1, where xi
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is fraction of particles contained in ith histogram bin and Di is the corresponding
nanoparticle. Then, at each simulation step a particle size is drawn from a uni-
form distribution and its acceptance is determined by constraint lcc ≥ CC(r1+r2)
in a similar manner to standard RSA. Next, if the particle passes the spatial test,
we check the number of particles in the histogram bin corresponding to the parti-
cle size. If it is larger than zero, we accept the particle and decrease the number
of particles in the corresponding bin by one. Else, we reject the sample. Despite
the fact that the size in this algorithm is no longer truly random, its histogram
corresponds to the experimental one and it is randomly assigned to each particle.

Now we introduce the spatial characteristics of the arrays generated using the
modified RSA algorithm. We calculate the PCF using the procedure outlined in
Chapter 4. In Fig. 5.19 we present a pair correlation functions for amorphous
arrays with varying size dispersion σD and CC = 1. Increasing σD leads to a
decreased PCF in the vicinity of the mean particle diameter as a consequence of
modified minimal center-to-center distance, which is now distinct for each pair of
nanoparticle sizes. Also, the Heavyside theta is smoothed out, because particle
pairs may have distances smaller than ⟨D⟩ if their diameters are both smaller than
⟨D⟩. With increasing size dispersion, the number density of the array decreases,
which is required to maintain a Gaussian distribution of the particles.

5.5.2 Multiple scattering in size dispersed arrays
The description of an amorphous array of size dispersed nanoparticles can be
approached within a film of dipoles framework in which each nanoparticle is
described by an induced point dipole with polarizability α that depends on the
material, size and shape of the nanoparticle. We discretize the nanoparticle size
distribution and, consequently, their polarizability is determined by the average
particle of given size α∗

e , which consists of the corresponding single particle value
modified by interparticle coupling. In order to find α∗

e , we consider a set of
equations describing the polarization of an average sphere of a given size assuming
that the exciting field consists of the incident field E⃗inc and the scattered field
from all other dipoles E⃗scat (the sum in the brackets of the following equation)

p⃗i = α∗
e,iE⃗inc = αe,i

(
E⃗inc −

∑
dipole types

α∗
e,jSijE⃗inc

)
. (5.28)

Instead of summing over individual nanoparticles, we utilize the continuous
film approach in which the retarded dipole potential is multiplied by the PCF
and integrated over the entire 2D space:

Sij = 1
4πε0

σnj

∫ ∞

lCCij

∫ 2π

0
rdrdθeikr

[
(1 − ikr)(3 cos2 θ − 1)

r3 + k2 sin θ
r

]
gij(r),

(5.29)
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where σ is the nanoparticle number density, nj is concentration of nanoparticles
of j-th size, lccij is the minimal center-to-center distance between nanoparticles
of i-th and j-th size and gij(r) is radial distribution function for nanoparticles
of i-th and j-th size. We consider that each pair may have a different PCF,
since in closely packed arrays small nanoparticles may cluster around larger ones
resulting in a situation in which the average exciting field varies depending on
nanoparticle size. For each pair of sizes a fitting procedure is performed with
an analytical function that is integrable with the dipole potential in eq. 5.29, as
shown in the previous subsection.

The equation set for the polarizability defined by eq. 5.28 written in matrix
form is

α⃗∗
e = α⃗e −


αe,1S1,1 αe,1S1,2 · · · αe,1S1,N

αe,2S2,1 αe,2S2,2 · · · αe,2S2,N

...
...

. . .
...

αe,NSN,1 αe,NSN,2 · · · αe,NSN,N

 α⃗∗
e . (5.30)

The solution to the above equation is then obtained by matrix inversion:

α⃗∗
e =


1 + αe,1S1,1 αe,1S1,2 · · · αe,1S1,N

αe,2S2,1 1 + αe,2S2,2 · · · αe,2S2,N

...
...

. . .
...

αe,NSN,1 αe,NSN,2 · · · 1 + αe,NSN,N


−1

α⃗e. (5.31)

As it can be seen in case when only a single type of dipoles is used to describe
the nanoparticle properties this solution reduces down to the known solution for
the average dipole polarizability in an infinite dipole array. We evaluate the to-
tal extinction spectrum as Cext = k

ε0

∑
i=dipole types xiIm(α∗

e,i) with xi being the
number fraction of nanoparticles of i-th size. The benefit of using eq. 5.31 in-
stead of solving the coupled dipole equations with explicit nanoparticle positions
is that instead of a set of equations for each particle, we reduce the problem
dimensionality, which is given by the number of discretization bins.

In Fig. 5.20 we show the calculation results from our method and T-matrix
method for ⟨D⟩ = 60 nm and varying σD. Both methods are in good quantitative
agreement. Thus, our method enables studying the optical properties of size-
dispersed amorphous arrays of nanoparticles without the computational burden
of T-matrix simulations with an explicit nanoparticle distribution. In subsequent
paragraphs we describe main conclusions of this study.

Similarly to the case of mono-size-dispersed amorphous arrays, the size-dispersed
ones tend to exhibit an oscillatory behavior of the optical properties as a function
of the scaling parameter CC. Size dispersion modifies this behavior in a two-fold
manner: by introducing nonidentical nanoparticle polarizabilities and by modi-
fying the spatial arrangement of nanoparticles. As a representative example, in
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Figure 5.20: a) Localized plasmon resonance wavelength, b) width and c) am-
plitude as a function of CC parameter for size-dispersed amorphous nanoparticle
arrays with ⟨D⟩ = 60 nm and varying σD. Solid lines correspond to values
obtained with our effective model, while circles denote the results of T-matrix
calculations.

Fig. 5.20a we study the position of LSPR, which is known to be influenced by
CC (see eq. 4.51). For small CC values (CC < 3), the arrays are sufficiently
dense so that the interparticle coupling is contributes strongly to the optical re-
sponse and the impact of size dispersion is almost negligible. With increasing
CC the phase spread of the scattered field coming from particles of different sizes
increases and the impact of interparticle coupling decreases. This is indicated
by quicker damping of LSPR wavelength oscillations with CC in size-dispersed
arrays than mono-dispersed ones. In the case of mono-dispersed arrays the oscil-
lations are clearly visible up to CC ≈ 10, while no clear trends may be observed
for CC ≈ 6 for σD = 0.15. Size dispersion affects the asymptotic LSPR position
for sparsely distributed nanoparticles. The direction of this asymptotic LSPR
shift for increasing size variation is related to the mean nanoparticle size. While
for large nanoparticles (with mean diameter of 60 nm or more) increasing size
dispersion leads to a decrease of the resonance wavelength, the presence of size
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variation in nanoparticle arrays with small mean diameters causes a redshift of
the resonance wavelength. We relate this to the dependence of the extinction
efficiency on nanoparticle size. Its value decreases with increasing nanoparticle
diameters for diameters above 40 nm.

As expected, the extinction spectra are broadened by introducing size dis-
persion and above a diameter standard deviation of 10 nm the initial resonance
width for the case of diluted arrays with an uniform nanoparticle size can no
longer be retrieved by manipulating the array density (see Fig. 5.20b). The
positions of local extrema of FWHM depend on the standard deviation of the
nanoparticle diameter and they are shifted towards smaller CC values with in-
creasing nanoparticle size variation. Global minima of the FWHM are observed
for dense arrays with CC ranging from 2 to 4 depending on σD. This CC range
might be optimal for spectral control of resonances because in that range LSPR
wavelength changes rapidly with CC and the peak width is relatively small. The
FWHM reaches its maximal value for CC between 5 and 6. At CC of about 7,
the FWHM reaches its plateu that is determined by σD value.

The extinction amplitude is also affected by interparticle coupling as shown
in Fig. 5.20c. In general, the amplitude decreases with increasing size dispersion
and the magnitude of amplitude oscillations with CC becomes shallower with
increasing size dispersion. In turn, for size dispersed arrays their LSPR ampli-
tude is determined by the size distribution rather than the nanoparticle spatial
arrangement. The maxima of extinction amplitude coincide with FWHM minima
and vice versa.

5.5.3 Scattering-to-absorption ratio in size-dispersed ar-
rays

Among the properties affected by size dispersion and interparticle coupling is
the SAR at LSPR of the amorphous array. Size dispersion affects SAR even if
interparticle coupling is negligible due to the presence of particles with different
polarizabilities, as SAR of a nanoparticle is roughly proportional to the magni-
tude of the polarizability. At the same, interparticle coupling can modify SAR
significantly and in size dispersed arrays it is also influenced by the standard
deviation of the nanoparticle size. In Fig. 5.21 we present SAR as a function of
CC for a broad set of ⟨D⟩ and σD. With increasing ⟨D⟩ SAR quickly increases
which is a known effect shown previously.12 For sparse arrays, SAR increases as
size dispersion is increasingly pronounced. The impact of interparticle coupling
is especially large for the smallest particles for which SAR can be modified by
almost an order of magnitude and interparticle coupling influence decreases with
increasing ⟨D⟩. Introducing size dispersion diminishes the amplitude of SAR
oscillations and it shifts SAR maxima and minima towards denser arrays.
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Figure 5.21: Scattering-to-absorption ratio of amorphous arrays of size-dispersed
nanoparticles as a function of scaling parameter CC for selected values of mean
diameter ⟨D⟩ and diameter standard deviation σD. Dashed lines indicate SAR
for an isolated particle with ⟨D⟩ diameter.

The impact of interparticle coupling leads to an universal behavior of SAR
as a function of the parameter klcc in monodispersed amorphous arrays of plas-
monic nanoparticles. While the matrix equation eq. 5.31 does not allow for an
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Figure 5.22: Universal scaling of scattering-to-absorption ratio (SAR) of amor-
phous arrays of size-dispersed nanoparticles normalized to SAR for isolated parti-
cles averaged over nanoparticle size distribution as a function of universal scaling
parameter kCCDeff with Deff = ⟨D⟩ + σD.
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Figure 5.23: Dipole-dipole coupling matrix element as a function of interparticle
distance for selected values of substrate refractive index.

analytical solution that could enable finding an analogous parameter for size-
dispersed arrays, we have found out that SAR normalized to the SAR value for
isolated particles averaged over the nanoparticle size dispersion indeed behaves
universally with the scaling parameter kCCDeff with effective particle diameter
Deff = ⟨D⟩ + σD. This effective particle diameter compensates for the phase
shift introduced by size dispersion in SAR oscillations presented in Fig. 5.22.
The relation between the universal scaling parameter and normalized SAR may
be used to quickly estimate the resulting SAR for a specific application. It also
marks the attainable limits of modifying SAR by tailoring the array density using
the CC parameter.

5.6 Numerical aspects
In this section we summarize the numerical aspects of calculating the optical
response of the amorphous arrays of nanoresonators using the FOM approach
with a special focus on substrate supported arrays.

5.6.1 Sommerfeld integrals
Sommerfeld integrals appear both in the self-coupling as well as substrate-mediated
interparticle coupling. While a well-known issue of choosing a suitable integration
contour has been addressed in the previous chapter, the other issue, which is the
long-distance value of the coupling matrix entries in the substrate-supported case
is addressed here. In Fig. 5.23, we show how the absolute value of the dipole-
dipole coupling matrix element depends on the distance for various refractive
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Figure 5.24: Dipole-dipole coupling matrix element as a function of interparticle
distance for a substrate with refractive index of 2 for selected values of Sommerfeld
contour resolution nmax

eff and deflection of the contour into imaginary plane nimag
eff .

a) nmax
eff = 10−3, nimag

eff = 10−2, b) nmax
eff = 10−3, nimag

eff = 10−4, c) nmax
eff = 10−4,

nimag
eff = 10−4

.

indices of the substrate. In general, we anticipate that the coupling magnitude
will decrease with increasing distance. The asymptotic behavior of those terms is
driven by the two other parameters nimag

eff (deflection of the integration contour
into the imaginary axis), nres

eff (contour resolution).
Deflection into the imaginary axis is mainly necessary to address singulari-

ties of the coupling matrix that stem from the evanescent modes of the layered
medium. Because for a simple two-layer medium there are no such modes (ex-
cept for substrates made of noble metals, where SPPs are present) this can be
safely set to a very low value. The contour resolution increases as nres

eff decreases
(it is simply an neff step). The neff and distance form a Fourier pair meaning
that as the maximal interparticle under consideration increases the nres

eff should
decrease. On the other hand, decreasing nres

eff increases simulation time. To show
how the asymptotic values of the coupling matrix elements are affected by the
choice of the aforementioned parameters, we have plotted selected results in Fig.
5.24. By default nimag

eff is set to 10−2 and the resolution is set to 10−3. As shown
in Fig. 5.24a, in such a case after an initial decrease of coupling matrix element
with distance, a rapid increase occurs leading to irrationally large coupling matrix
magnitudes. This behavior is mitigated by setting nimag

eff to a lower value of 10−4.
Then the result no longer has a tendency to grow rapidly, however still it does
not behave monotonically (see Fig. 5.24b). To observe the expected behavior
one has to set both the resolution and the deflection into the imaginary plane
relatively low (see Fig. 5.24c).



5.6. NUMERICAL ASPECTS 115

250 500 750 1000
Interparticle distance (nm)

1.00

0.75

0.50

0.25

0.00

0.25

D
ip

o
le

-d
ip

o
le

 c
o
u
p
lin

g
 [

R
e
a
l(

S
)]

1e 6
a)

numerical

analytical

250 500 750 1000
Interparticle distance (nm)

4

2

0

2

D
ip

o
le

-d
ip

o
le

 c
o
u
p
lin

g
 [

Im
a
g
(W

)]

1e 7
b)

Figure 5.25: Comparison of dipole-dipole mean field integrals (for wavelength of
500 nm) obtained numerically and semi-analytically. a) real part, b) imaginary
part.

5.6.2 Mean-field integral
The integral in eq. 5.6 is calculated by integrating the radial part of the coupling
matrix calculated using the trapezoidal rule. There are three parameters related
to this integral: Nrho (number of radial distances), crit (maximal distance un-
der consideration), smalleps (value of ε in eq. 5.6). The main subtlety is the
highly oscillating integral function, especially as the distance approaches infinity.
In our previous work we have developed an analytical solution for the dipole-
dipole coupling part in a homogeneous environment. To assert that the default
choice of parameters (Nrho = 20000, crit = 140CC D, smalleps = 10−4) is
sufficiently accurate, we compare the analytical and numerical result of direct
coupling integration for a varying minimal center-to-center distance between the
nanoparticles at a fixed wavelength of 500 nm in Fig. 5.25. The results match
closely, which leads to the conclusion that the numerical integration method with
the selected parameters is indeed accurate.

5.6.3 Calculating scattered far-field
The simulation outcomes are average scattering coefficients of a particle in an
array. The main useful quantity that can be accurately calculated using the
FOD/FOM model is the extinction cross-section, which has been presented for
amorphous arrays in several figures of this thesis. However, this is not the only
quantity of interest when it comes to light scattering by amorphous arrays. Sev-
eral quantities such as absorption and scattering cross-sections or far field inten-
sity cannot be easily calculated using the model, because they are proportional
to (depend on) the absolute value of the scattered field. This poses two issues.
The first one is that we therefore need to consider the interference pattern formed
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Figure 5.26: Comparison between various methods of obtaining cross-section
spectra for amorphous arrays of plasmonic nanospheres of 30 nm radius with
varying center-to-center distance a) 3D b) 4D c) 5D, where D is the particle
diameter. Solid lines indicate scattering and extinction cross-sections obtained
with SMUTHI. Dashed lines indicate scattering cross-sections calculated using
the interference procedure outlined in the main text, while dots indicate scat-
tering cross-sections calculated using the FOM model without the interference
procedure. Extinction cross-section obtained with FOM is marked by dots.

by the scattered fields of the particles. The second issue is that the mean value
of any property that is proportional to the absolute value of the scattered field
depends on the variance of scattering coefficients. While the latter is beyond
the scope of this thesis, the first one can be addressed with the current model,
although in a simplified manner.

To obtain the far-field interference pattern within the mean-field approxima-
tion, one can find the average scattering coefficients and then interfere the effec-
tive scattered fields from several point sources whose locations obey the spatial
statistics of the simulated array. In case of an amorphous array, the simplest way
to do this is to simulate the particle positions using random sequential adsorption
algorithm.

To see how this works in practice, we propose three examples. The first one
is an array of plasmonic nanospheres (30 nm radius) embedded in air. The plas-
monic nanospheres tend to have large scattering cross-sections and therefore they
exhibit strong interparticle coupling in arrays, especially in air. The second case
is an array of dielectric nanodisks embedded in air, which is to be compared with
the final example, which is the same array, but placed on a dielectric substrate
with a refractive index of 2.

In Fig. 5.26 we present the results for three values of the minimal center-to-
center distance: CC = 3D, CC = 4D, CC = 5D, where D is the particle diam-
eter (60 nm). To test the accuracy we have calculated the result with SMUTHI
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Figure 5.27: Comparison between various methods of obtaining cross-section
spectra for amorphous arrays of dielectric nanodisks with radius of 75 nm and
height of 120 nm. The minimal center-to-center distance is fixed at 3D. a) no
substrate b) dielectric substrate with refractive index of 2.

without any averaging procedure. Regardless of the center-to-center distance,
the extinction spectrum calculated with the proposed method very accurately
reproduces the one obtained with SMUTHI. For the scattering cross-section, the
results obtained without considering the interference of the mean scattered fields
are not accurate except for the largest center-to-center distance. In contrast,
when the interference is accounted for, the accuracy is very high except for the
largest center-to-center distance, where it is the same as the result obtained with-
out taking the interference into account.

Lastly, we have performed similar tests for dielectric nanodisks at a fixed
minimal center-to-center distance of 3D for the case without a substrate and
with a substrate with refractive index of 2. The extinction spectrum is again
reproduced most accurately. For dielectric particles, the scattering cross-section
spectrum is far less accurately calculated than in plasmonic case. If interference
is omitted, the error is very large for the case without the substrate. However,
the spectra are very similar when the particles are placed on a substrate.

5.6.4 Outlook
The method proposed in this work can be efficiently used to predict the extinction
cross-section spectra of amorphous arrays of nanoresonators on dielectric sub-
strate. The agreement between the results obtained with the effective T-matrix
method in comparison with other methods is satisfying. At the same time, there
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are still certain aspects to be improved. The stationary phase method could
be used to mitigate the issue of far range substrate-mediated coupling. Also, it
could be a good step forward to enable far-field calculations without resorting to
numerically generated arrays, which is the limitation of the current code.



Chapter 6

Absorption of light in the
antenna-reactor system

Nanoscale antenna-reactor systems may be used to mitigate the limited applica-
bility of plasmonic metals such as silver or gold for plasmon mediated catalysis.
This is achieved by incorporating a (non-noble) transition metal catalyst into
the system and rational management of absorption enhancement. As shown in
previous experimental studies, such absorption enhancement is correlated with
the catalytic reaction rate.9 The mechanism responsible for the observed absorp-
tion enhancement is electromagnetic coupling between a plasmonic nanoantenna
and the adjacent palladium nanoparticles. In this chapter we discuss enhancing
absorption in catalytic nanoparticles. We perform an extensive numerical study
of the antenna-reactor system at the level of a single plasmonic nanoantenna
decorated with catalytic nanoparticles and investigate factors that impact the
absorption. In the publication IV this study has been complimented by experi-
mental realization of the antenna-reactor system and an optical study.

6.1 Methods
Finite-difference time-domain (FDTD) simulations have been performed with
Lumerical FDTD Solutions to study the role of shell and core properties in optical
absorption enhancement within catalytic nanoparticles. An exemplary nanodisk
with a diameter of 80 nm and height of 20 nm is chosen, while the shell thickness
(unless otherwise mentioned) is 5 nm. We include tapering and rounding of
the disk in our simulations with tapering angle of 20◦, bottom rounding radius
of 2 nm and top rounding radius of 5 nm, for consistency with experimental

119
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Figure 6.1: a) Schematic representation of antenna-reactor complex containing
a core-shell plasmonic nanoantenna placed on a substrate and decorated with
transition metal (palladium) particles. b) Optical absorption spectra of exem-
plary antenna-reactor complex including absorption in the entire system, in the
plasmonic nanodisk and absorption in palladium nanoparticles.

conditions. Catalytic Pd nanoparticles are modelled as spheres with two Gaussian
radius distributions depending on nanoparticle-disk center distance: 4.15 ± 2.7
nm diameter on top of the disk and away from the antenna and 2 ± 1.6 nm for
particles at disk side wall. The equivalent thickness of Pd nanoparticle layer is 1
nm. This data is obtained from SEM/TEM images of experimental samples. For
each core-shell antenna, we simulate several realizations of spatial distributions
of catalytic nanoparticles. Pd nanoparticles are distributed within a circle with
200 nm diameter centered at the core-shell nanoparticle center by simulating a
random sequential adsorption process assuming no overlap between palladium
nanoparticles. An exemplary simulated system is schematically presented in Fig.
6.1a. Four different metals have been used as nanoantenna core material - Al,
Ni, Au and Ag. The nanoantenna shell has refractive index of 1.68 (alumina).
All material data has been taken from Palik.148 The nanodisk and particles have
been meshed with minimum mesh size of 0.5 nm. As the Pd nanoparticles do not
have a plasmon resonance in the optical range for this size, this mesh size choice
is adequate.

Total absorption is calculated by integrating the Poynting vector over a box
containing both the core-shell and palladium nanoparticles. Absorption in the
core-shell nanodisk is calculated as a difference between total absorption and
absorption within the catalyst. In order to find the absorbed power in each
palladium particle, we monitor the electric field in each particle and use eq. 2.73
to evaluate absorption. Absorption enhancement is defined as the ratio between
absorption in palladium nanoparticles surrounding the core-shell nanodisk and
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Figure 6.2: a) Relation between absorption enhancement and wavelength for a set
of positions of nanoparticle in the system. b) The map of absorption enhancement
within Pd nanoparticles. The wavelength of incident light is 600 nm to match
the LSPR wavelength of the core-shell nanoantenna.

absorption in a layer with the same spatial distribution placed on a substrate
without the antenna. In our simulations, we used a total field/scattered field
source with 300x300 nm2 size.

6.2 Spatial distribution of absorption enhance-
ment

Calculation of absorption enhancement in individual Pd particles placed on a
nanodisk enables studying its spatial distribution. Since we have a stochastic
distribution of various sized particles, a large number of calculations is required
for high quality enhancement vs. position map (see Fig. 6.2). The result is
averaged azimuthally to obtain an unpolarized light radial distribution. It can
be clearly seen that the absorption enhancement depends on the distance between
the nanoparticle and disk center. The antenna can be split into zones with similar
absorption enhancement: top of the disk, disk side-walls, disk edge, bottom of the
disk (<80 nm from the disk center), rest of the simulation domain (>80 nm from
the disk center). This enables an analysis of the dependence of the enhancement
on the wavelength in each of the zones as presented in Fig. 6.2. Absorption
in Pd nanoparticles reaches the maximal value in nanoparticles placed at the
side-wall interface of the Ag core-shell particle and decreases with increasing
distance from that position. The reason behind this is that the field enhancement
distribution is maximized at the interface of the high refractive index support.
High absorption enhancement values are also attainable at the upper rim of the
nanoantenna, which is due to large field enhancement observed at sharp edges
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Figure 6.3: Absorption enhancement in Pd nanoparticles as a function of Pd na-
noparticle radius for varying positions on the core-shell disk. The incident light
wavelength is 600 nm to match the LSPR wavelength of the core-shell nanoan-
tenna.

of the nanoantenna. Notably, the resonance wavelength of absorption is shifted
from the value in Fig. 6.1b depending of the particle position.

As a result of performing calculations for a broad variety of Pd nanoparticle
configurations, we can also analyze the dependence of the enhancement on par-
ticle radius as presented in Fig. 6.3. Regardless of the considered nanoparticle
position, no clear relation between the absorption enhancement and nanoparticle
radius has been observed within the examined nanoparticle radius range. Thus,
we conclude that the absorption enhancement depends on the position rather
than size for small Pd nanoparticles used in the simulation. This highlights the
importance of the spatial distribution of the nanoparticles with respect to the
nanoantenna core in the context of maximizing plasmon mediated catalysis ef-
fects and thus constitutes an important design rule for such systems.
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Figure 6.4: Absorption in the system as a function of wavelength for various
Al2O3 shell thicknesses: (a) total absorption (b) absorption enhancement within
the catalytic nanoparticles.

6.3 Absorption engineering
6.3.1 Influence of shell thickness
We have also analyzed how absorption within the catalyst and core-shell nanodisk
depends on the properties of the nanodisk, as well as on the thickness of the nan-
odisk shell. Total absorption normalized to absorption within the catalyst layer
without the nanodisk is presented in Fig. 6.4. The increase in shell thickness
results in a resonance redshift and an increase in total absorption. Both of these
effects occur due to increased antenna volume. This is accompanied by a decrease
of energy absorbed within Pd nanoparticles at the resonance wavelength. The
observed absorption enhancements range from the maximal value of 16 for a shell
thickness of 1 nm down to 4 for a 20 nm thick shell. With increasing shell thick-
ness, the distance between palladium nanoparticles and the antenna increases,
diminishing the field intensity at the reactor particles. This effect leads to the
observed decrease in absorption enhancement. As a consequence, a decrease of
the splitting factor with increasing shell thickness is observed (the relation is
plotted for 600 nm wavelength in Fig. 6.5). Tailoring the shell thickness is cru-
cial when designing the antenna-reactor system. On one hand, optimizing optical
absorption in catalytic nanoparticles promotes using thinner shells, while at the
same time maintaining structural stability calls for increasing shell thickness.

6.3.2 Influence of disk material
The experimental method proposed by prof. Langhammer’s group in publication
IV enables using various materials for core layer of the nanoantenna. Here, we
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Figure 6.5: Splitting factor of absorption between Pd nanoparticles and core-shell
nanodisk as a function of shell thickness.
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Figure 6.6: Comparison of (a) total absorption and (b) absorption enhancement
in Pd nanoparticles in the systems containing nanodisks with various metals.

use plasmonic metals including Ag, Au, Al, and a non-plasmonic metal, Ni.
Total absorption and absorption enhancement in nanoparticles for each tested
metal is presented in Fig. 6.6. Systems containing silver and gold share similar
properties, but absorption in the system with the Au disk is redshifted from the
corresponding response of the system with silver. While the total absorption in
system with the Au disk is increased with respect to silver disk, it is a consequence
of parasitic absorption in the Au disk itself rather than the desired absorption
enhancement in Pd nanoparticles.

Using other metals (Al and Ni) for the nanoantenna results in a substantial
decrease in absorption enhancement. For aluminum, enhancement is still present,
especially in the 400-450 nm wavelength range, where using silver or gold does
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Figure 6.7: Splitting factor of absorption between Pd nanoparticles and core-shell
nanodisk as a function of shell thickness.

not result in large enhancement factors. In contrast, barely any enhancement
can be observed when Ni is used. Two effects contribute to decreased absorption
enhancement. First, Al has larger losses than the other two (Au and Ag), which
decreases the field enhancement. The second effect is related to the fact that
the LSPR for Al disk occurs in UV range. In this range palladium nanoparticles
exhibit higher absorption compared to the visible range. Absorption enhancement
is a relative quantity and thus a larger amount of energy needs to be absorbed in
palladium nanoparticles for the same enhancement to be seen in the UV range
as in the visible.

For additional comparison, we examine the splitting factors for each disk
material (see Fig. 6.7) at its resonance wavelength. It can be clearly seen that
the silver disk enables obtaining the largest splitting factor. This is a direct
consequence of overall lowest intrinsic losses in silver out of all plasmonic metals.
Also note, that the splitting factor in Al is relatively large, despite the overall
smaller absorption. On the other hand, the wavelength dependence of absorption
in the system shown in Fig. 6.6, indicates that the metal choice shall depend on
the wavelength range at which the device will operate, of course, it can be further
tuned by changes in the antenna size.

6.3.3 Influence of antenna diameter
As shown in Chapter III, the nanoantenna size is an important factor determin-
ing the LSPR, influencing both the resonance wavelength as well as the electric
field enhancement and extinction amplitude resulting in modified absorption in
adjacent Pd nanoparticles in antenna-reactor complexes. In order to investigate
the impact of the plasmonic core radius on absorption enhancement, we model
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Figure 6.8: Comparison of (a) total absorption and (b) absorption enhancement
in Pd nanoparticles in antenna-reactor complexes with nanoantenna containing
silver core and varying core radius.

antennas with a varying core radius, while maintaining a fixed shell thickness of
5 nm. The results are presented in Fig. 6.8 for a silver core and in Fig. 6.9 for
an aluminum core. The dependence of absorption enhancement on core radius is
less pronounced when compared to other factors such as e.g. shell thickness. For
Ag, initially, field enhancement increases with increasing radius leading to larger
absorption in Pd. For large antenna sizes the depolarization field diminishes the
attainable field enhancement and in turn absorption enhancement decreases with
increasing radius. When an aluminum core is used, the intrinsic losses in the core
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Figure 6.9: Comparison of (a) total absorption and (b) absorption enhancement
in Pd nanoparticles in antenna-reactor complexes with nanoantenna containing
aluminum core and varying core radius.
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Figure 6.10: Splitting factor of absorption between Pd nanoparticles and core-
shell nanodisk as a function of nanoantenna core radius for aluminum and silver
core materials.

are substantially larger and they determine the response. Thus, large field and
absorption enhancement are not possible and the dependence on antenna size is
even weaker than for a silver core antenna. These trends are also observed in the
splitting factor results presented in Fig. 6.10. A silver core antenna promotes a
large splitting factor, which increases with nanoparticle radius, while a smaller,
almost size-independent, value is observed when an aluminum core antenna is
investigated.

6.4 Conclusions
We have studied the properties of plasmon mediated absorption and field inten-
sity enhancement in catalytic nanoparticles decorating a core-shell nanodisk with
a plasmonic metal core and alumina shell using FDTD simulations. The study en-
abled us to draw several conclusions regarding rational design of antenna-reactor
complexes for enhanced absorption in transition metal nanoparticles. We have
shown that the position of the nanoparticle with respect to the disk is an im-
portant factor for absorption enhancement in Pd nanoparticles. Additionally, the
choice of disk material is essential for achieving high splitting factors and enhance-
ment. The appropriate material should be chosen depending on the wavelength
range in which the device should operate. The optimal one should support a
strong LSPR, while minimizing the intrinsic losses. The optical response of the
system is also influenced by the thickness of the dielectric shell separating the
plasmonic disk from the catalytic nanoparticles. A smaller separation leads to
increased energy absorption in the nanoparticles. On the other hand, the choice
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of shell thickness is also dictated by the experimental method. No significant
dependence of the analyzed enhancements on catalyst nanoparticle size for na-
noparticles with radius <10 nm has been observed, but one has to bear in mind
that the absorption cross-section scales with nanoparticle volume. At the same
time, choice of plasmonic nanoantenna radius is of considerable importance as
it enables fine tuning of LSPR wavelength and at the same time influences both
the splitting factor and maximal absorption enhancement.



Chapter 7

Optical monitoring of
physical and chemical
changes during catalysis
with antenna-reactor
complexes

Antenna-reactor complexes containing plasmonic nanoantennas and catalytic na-
noparticles may not only be used as photocatalysts, but also as optical sensors
probing chemical and physical processes occurring during catalysis. The main
concepts of plasmonic sensing for material science, including catalysis, were re-
viewed in the Introduction Chapter of this thesis. In a typical sensing experiment,
the LSPR wavelength shifts as physical or chemical phenomena occur leading to
local modification of the refractive index in vicinity of the plasmonic sensor (or of
the sensor itself). Here, we apply electromagnetic modelling to predict the LSPR
wavelength shift of an antenna-reactor complex based sensor under modification
of various parameters that may result from processes accompanying catalysis.
Such a study provides valuable information on how to interpret experimentally
observed sensor signals.

129
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7.1 Sensing of core-shell nanoantenna physical
and chemical changes during catalysis

In our work aluminum oxide is typically used as a material forming the nano-
particle shell. This material is known for its capability to adsorb nitrogen oxides
(NOx), which is an important process for removing of nitrogen oxides from the
combustion engine exhaust gas using catalysts.149–151 During NOx uptake the
structure of aluminum oxide films changes, altering their thickness as well as
their chemical properties.152,153 Such modifications change the optical properties
of the shell which can be detected using a sensor based on an antenna-reactor
complex. Here, we model the shift of the LSPR wavelength using the FDTD
based approach outlined in Chapter 6. We assume that nitrogen uptake results
in the increase of the shell thickness and a change of its refractive index due to
chemical binding of NOx. We also consider the possibility of electron extraction
from or to the Au core of the nanoantenna, which we model as a change in the
electron density of Au that affects the Drude part of the dielectric function.

Here, as a model of an antenna-reactor complex we use an Au core 80 nm in
diameter and 20 nm in height and 2 nm Al2O3 layer (n = 1.768), as ditctated
by accompanying experiments. The equivalent thickness of the Pd nanoparticle
layer is 1 nm. The mean Pd nanoparticle diameter is 6 nm, while its standard
deviation is equal to 0.85 nm. The palladium nanoparticle layer is modeled
explicitly without homogenization. Statistical averaging of extracted quantities
is performed over 20 FDTD simulations with different realizations of random
drawing process are used for each considered system.
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Figure 7.1: Influence of shell thickness and refractive index on optical properties
of antenna-reactor complex containing silver core and palladium nanoparticle
layer. a) Extinction amplitude and b) LSPR wavelength of antenna-reactor com-
plex based sensor.
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Figure 7.2: a) Linear dependence of LSPR peak wavelength of antenna-reactor
complex based sensor on shell refractive index for varying shell thicknesses. b)
Sensitivity of the sensor towards change in shell refractive index as a function of
shell thickness.

In Fig. 7.1 we present the LSPR wavelength and extinction amplitude de-
pendence on shell thickness and its refractive index. Both parameters affect the
LSPR wavelength. Increase of shell thickness leads to a shift of the LSPR wave-
length towards red and increase in extinction amplitude at the LSPR wavelength.
Similar trends are observed for an increase of the refractive index of the shell,
namely with an increasing refractive index of the shell both the wavelength and
extinction amplitude increase. The impact of the modification of the refractive
index of the shell is larger for thicker shells and vice versa. This means that
based on either the LSPR wavelength or extinction amplitude alone one cannot
differentiate between a change of the shell thickness and the change of its re-
fractive index. Both quantities are correlated (i.e. they both grow with increase
of either shell thickness or shell refractive index change), but, at least in prin-
ciple, provided sufficient experimental accuracy, modification of shell thickness
and refractive index can be resolved by simultaneous measurement of the LSPR
wavelength and extinction amplitude.

The dependence of the LSPR peak wavelength on the refractive index of the
shell is approximately linear as shown in Fig. 7.2a. Thus, if the shell thickness
can be kept constant during a sensing process, the presented antenna-reactor
complex could be a suitable sensor for detecting chemical changes at the shell
surface that would lead to a modification of its refractive index. The sensitivity
of the optical response towards a change of the shell refractive index is presented
in Fig. 7.2b. Dependence of the LSPR wavelength on the refractive index of the
shell for thicker shells manifests itself by an increase of sensitivity with increasing
shell thickness. Sensitivity of up to 110 nm/RIU is attainable for a shell thickness
of 12 nm, while the lowest value of 30 nm/RIU is observed for the thinnest shell
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Figure 7.3: LSPR wavelength change upon modification of free electron concen-
tration in golden shell of antenna-reactor complex based sensor for shell thickness
of a) 12 nm b) 2 nm.

(2 nm thickness).
Adsorption of chemical species on the surface of the shell thickness may mod-

ify the electronic properties of the core due to electron extraction from or injection
to gold by the adsorbed species. We model this process by modifying the Drude
part of gold permittivity using the following procedure. We utilize experimen-
tal permittivity of gold from Palik148 and split it into a frequency dependent
interband and a Drude term. For small frequencies the interband term is small
compared to the Drude term. Therefore, we fit the Drude model to that part
of the permittivity function and use the fitted model to extract Drude model
parameters. We assume that modification of carrier concentration affects only
the Drude term and the interband remains unaffected. The interband term is
extracted by subtraction of the Drude model within the entire frequency range.
The modified gold permittivity is obtained as a sum of the interband term and the
Drude term with modified parameters. Here, we assume that electron mobility is
not affected by the presence of additional charge carriers or by carrier removal.
Thus, the only change that occurs is the modification of the plasma frequency of
gold, which is proportional to the square root of the carrier concentration. Thus,

ωp,mod. = ωp

√
1 + δN, (7.1)

where ωp,mod. and ωp are, respectively, the modified and unmodified plasmon
frequencies and δN is the fraction of added/removed electrons.

Modifying the carrier concentration in gold leads to an LSPR wavelength
change as shown in Fig. 7.3. Because the plasma frequency of gold is increased
by the presence of additional carriers, adding electrons to the gold core of the
nanoantenna leads to a decrease of the LSPR wavelength. The converse happens
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if electrons are removed from the core. The observed LSPR wavelength shifts
are larger when electrons are removed than when they are added, because the
wavelength is inversely proportional to frequency. Considering that free electron
concentration in gold is large, the change in carrier concentration required to
observe a substantial LSPR wavelength shift is large. Approximately, a 1 nm
shift is observed for a 4% change in carrier concentration. Due to an overall
stronger optical response, the effect of free electron concentration modification is
larger for nanoparticles with a thicker shell.

7.2 Gradient effective medium model
Antenna-reactor complexes contain randomly distributed small transition metal
nanoparticles whose sizes are characterized by some distribution which evolves
e.g. due to sintering during catalysis. Tackling such randomness requires signifi-
cant effort in both time and computational resources, as one typically performs
statistical averaging by explicit modeling of multiple different structural arrange-
ments of particles in these random processes. An example of such an approach
of studying antenna-reactor complexes is presented in the previous chapter. An
alternative route, which does not require multiple simulations, uses the Maxwell-
Garnett effective medium theory which was reviewed in Chapter 3. The effective
medium theory assumes that the incident field is uniform and that the parti-
cles are distributed uniformly within the host medium. This is, however, not
the case for nanoplasmonic sensors and antenna-reactor complexes that exhibit
LSPR. Specifically, the electromagnetic field of the surface plasmon polariton or
LSPR decays over distances which may be as small as tens of nanometers. Such
strong field gradients require a different approach than the Maxwell-Garnett ef-
fective medium theory. To mitigate this issue and extend the applicability of
the effective medium theory towards strong field gradients present in plasmonic
nanosensors, we propose a gradient effective medium (GEM) model that incor-
porates a permittivity gradient with a spatial dependence determined by the
inhomogeneous spatial distribution of nanoparticles.

7.2.1 Model derivation
The gradient effective medium model is based upon the Maxwell-Garnett effective
medium model in which permittivity of the homogenized heterostructure is given
by

εeff = εm
2δ(εi − εm) + εi + 2εm

2εm + εi + δ(εm − εi)
, (7.2)

where εeff is the effective permittivity, δ is the volume fraction of inclusions, εi

is permittivity of the inclusion and εm is the host permittivity.
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Figure 7.4: Schematic representation of the homogenization procedure in a gra-
dient effective medium model. An explicit nanoparticle distribution is dissected
into sublayers. Each sublayer contains a certain volume fraction of nanoparticle
material and once homogenized it yields a distinct permittivity. As a result, we
obtain a graded permittivity profile along the normal direction to the substrate
that represents accurately nanoparticle mass distribution and enables modeling
of nanoparticle layers in strong electric field gradients.

The GEM generalizes the MG model by homogenizing the nanoparticle layer
into a set of sublayers each with a distinct permittivity value calculated using a
generalized MG equation derived below. The homogenization procedure using the
GEM is presented in Fig. 7.4. Each sublayer is characterized by a volume fraction
δ just like in the MG model, but its evaluation requires accounting for the shape
and inhomogeneous size distribution of nanoparticle. The volume fraction in a
sublayer is calculated using the following parameters: number of parts, volume of
each spherical segment in the sublayer and number of particles per area unit. The
relation between the parameters and volume fraction stems from the fact that
the volume fraction is simply a ratio of the total volume of spherical segments
and the volume of the sublayer:

δl = Vl

Vsub
=
∑

i V
l

seg,iNi

sh
= Np

H

N

s

∑
i

V l
seg,ixi (7.3)

where Vl is the total volume of spherical segments in the l-th sublayer, Vsub is
the volume of a sublayer, H is the nanoparticle layer height, Np is the number of
sublayers, s is the layer area, V l

seg,i is the volume of a spherical segment of i-th
size in l-th sublayer, xi is the fraction of particles of i-th size and N is the total
number of spheres; i indexes nanoparticle sizes.

By inserting eq. 7.3 into eq. 7.2 we obtain the following for equation for the
permittvity of the sublayer

εeff,l = εh

2 Np

H
N
s

∑
i V

l
seg,ixi (εi − εh) + εi + 2εh

εi + 2εm + Np

H
N
s

∑
i V

l
seg,ixi (εi − εh)

. (7.4)



7.2. GRADIENT EFFECTIVE MEDIUM MODEL 135

To find the correct volume fraction of inclusions in each sublayer, it is neces-
sary to calculate the volume of each spherical segment, which is defined as

V l
seg,i = π

6 (3r2
1 + 3r2

2 + h2), (7.5)

where r1 is the radius of a circle created by an intersection of the segment with
the bottom of the sublayer, r2 is the radius of a circle created by an intersection
of the segment with the top of the sublayer and h is the height of the layer. The
i-th circle radius is given by

r2
i = R2 − (zi −R)2, (7.6)

where z1 is the distance between the substrate and the bottom of the sublayer
and z2 is equal to between the substrate and the top of the sublayer.

The numerical implementation enables finding the correct value of the volume
of a spherical segment in cases when both the top and the bottom of the sublayer
do not intersect with the segment:

1. if the bottom of the sublayer is above the sphere, the segment volume equals
zero

2. if the top of the sublayer is above the sphere, upper radius equals zero

7.2.2 Gaussian distribution of sphere quantity per surface
area

In the GEM model the size distribution of the particles is quantified by the
number of spheres per unit area (N

s ) and xi. While any distribution could be
used to obtain xi, here we use a Gaussian distribution of sphere radius. If sphere
radii are normally distributed, the probability of a particular radius following
between Ri and Ri+1 is

xi =
∫ Ri+1

Ri

1√
2πσ2

exp
(

− (R− µ)2

2σ2

)
dR. (7.7)

For a sufficiently large number of spheres it can be assumed that this probability
is equal to the fraction of spheres having their radius in the given range. The
equivalent thickness defined as

heq = Vsph

s
=
∑

i

nczi

s
Vsphi =

∑
i

N

s
xiVsphi (7.8)

and is used to quantify the volume fraction occupied by nanoparticles. It can be
used to calculate N

s present in eq. 7.4 as
N

s
= heq∑

i xiVsphi

. (7.9)
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Figure 7.5: a) Volume fraction of palladium in nanoparticle layers placed on a
substrate as a function of distance from substrate for selected radius distributions
and b) real and c) imaginary parts of corresponding effective permittivity of
nanoparticle layers obtained using GEM.

7.2.3 Numerical examples
Exemplary volume fraction distributions in the nanoparticle layer are shown in
Fig. 7.5a with a given mean and standard deviation. The shape of these distribu-
tions is reflected in the effective dielectric function in the corresponding effective
medium layers presented in Fig. 7.5b. The largest volume fraction corresponds
to the sublayer containing the middle part of the spheres with the average ra-
dius value and decreases with increasing distance from that sublayer. Above that
central sublayer, this decrease is slow due to the fact that those sublayers do not
contain small particles whose contribution to both δ and the effective permit-
tivity is confined to small distances (below the mean diameter). The effective
permittivity follows those trends both in terms of its real and imaginary parts.

We assess the accuracy of the basic properties of the proposed GEM by bench-
marking it against rigorous FDTD calculations with explicit nanoparticles for the
case of substrate-supported Pd nanoparticle layers with random spatial and size
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Figure 7.6: Comparison of light extinction by a flat layer of Pd nanoparticles
placed on a substrate with n=1.45 obtained using GEM, Maxwell-Garnett effec-
tive medium and FDTD with explicit nanoparticles. a) Extinction spectrum of
nanoparticle layer with r = 8 ± 3 nm. b) Extinction spectrum of nanoparticle
layers with selected radius distributions obtained with GEM and FDTD. c) Ex-
tinction at fixed illumination wavelength of 400 nm for varying mean nanoparticle
radius. d) Extinction spectra for nanoparticle layer with fixed mean nanoparticle
radius of 5 nm and varying radius standard deviation (σ). Extinction by bare
substrate is marked by a black dashed line in all plots.

distributions. The substrate refractive index is equal to 1.45 to mimic glass. Here,
no large field gradients are present, but still GEM could be useful to account for
size distribution of the particles in the two-dimensional layers. The exemplary
extinction spectra for Pd nanoparticle layers with r = 8 ± 3 nm obtained using
GEM, MG and FDTD are presented in Fig. 7.6a. In the studied wavelength
range, the largest contribution comes from the substrate due to a small nanopar-
ticle concentration and a low extinction efficiency of the nanoparticles. Reflection
by the bare substrate results in extinction of 3.36%. FDTD calculations indicate
that the nanoparticle layer increases extinction to about 3.8%. This modification
is underestimated by both GEM and MG, but GEM is a better model even in
this simple case.
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Figure 7.7: a) Schematic representation of the antenna-reactor complex based
sensor (top) and its GEM-based model with homogenized palladium nanoparticle
layer (bottom). b) LSPR peak wavelength of antenna-reactor complex based
sensor as a function of average palladium nanoparticle radius calculated using
various methods of treating palladium nanoparticle layer.

In Fig. 7.6b we show the impact of nanoparticle size on light extinction by the
layer. Here, we start with an initial distribution of r = 1.5 ± 0.3 nm and modify
simultaneously the mean and standard deviation of the nanoparticle to mimic
a hypothetical sintering process following Adibi et al.22 During sintering the
material (undergoing sintering) is redistributed from smaller to larger particles,
however, the total amount of material is constant. Hence, the volume fraction
of nanoparticles decreases as nanoparticles grow in size, due to an increase in
layer height. Therefore, as the nanoparticle mean radius increases (for e.g. due
to sintering during catalysis) the nanoparticle layer becomes more transparent
to incident light. This tendency is present in the simulation results regardless
of the approach. GEM underestimates the extinction regardless of the selected
size distribution but to a lesser extent than MG. This underestimation is likely
the result of neglecting interparticle coupling in simple effective medium models.
Fig. 7.6c presents extinction for varying mean nanoparticle radius at a fixed
wavelength of 400 nm. We observe that with increasing nanoparticle size (and
simultaneous decrease in overall volume fraction) GEM becomes more accurate.
This indicates that for a sparse sphere configuration multiple scattering is less
prominent, which increases the model accuracy.

In the presented results, based on experimentally observed sintering,21 the dis-
persion of nanoparticle size increases with increasing average size. Since the only
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parameter which depends on nanoparticle size and distribution in the Maxwell-
Garnett formula is the volume fraction, the effective dielectric function does not
depend on size dispersion. On the other hand, the gradient model takes size
dispersion into account. Extinction spectra for selected values of nanoparticle
size variance are shown in Fig. 7.6d. An increase of the standard deviation of
nanoparticle radius results in decreased extinction. We see that GEM despite
lacking the capability to match FDTD results quantitatively, reproduces the ex-
tinction decrease by introducing size dispersion. In gradient model, the layer
is homogenized into multiple layers, hence with increasing size dispersion the
bottom layers have a larger nanoparticle volume fraction in comparison with a
gradient model multilayer based on a nanoparticle layer without size dispersion.
Simultaneously, size dispersion results in increased layer height in a similar man-
ner to increasing the mean nanoparticle sizes, leading to an overall smaller volume
fraction of particles in the layer. This is the dominant effect which causes de-
creased extinction. Hence, the GEM offers an advantage to MG in describing an
inhomogeneous nanoparticle distribution even for a small electric field gradient
at substrate-nanoparticle layer interface. As we shall demonstrate subsequently,
for large electric field gradients, the advantages of GEM over MG are even more
apparent.

7.3 Sensing of Pd nanoparticle sintering
The gradient model can be used in FDTD simulations to model the effective
properties of nanoparticle layers placed on nanoplasmonic sensors. In such sen-
sors changes of the LSPR position with the distribution of nanoparticle size are
typically less than 0.5 nm per 1 nm change of the average particle radius. This
means that the simulations must be very precise to obtain correct and accu-
rate results. However, when modelling explicit particle distributions in FDTD
or FEM, several simulations are needed to find the average LSPR position for
a given average nanoparticle size, since differences between two configurations
(200x200 nm2 surface area) drawn from the same ensemble can be up to 8 nm.
Such repetition, especially with very fine meshes to capture the small sizes of
sub-10 nm nanoparticles, are time and resource consuming. The GEM is thus a
good alternative.

In Fig. 7.7a we present a schematic illustration of an antenna–reactor complex
used as a sensor to monitor changes of the distribution of the Pd nanoparticles
around the Ag sensing core. In the spirit of GEM, the Pd nanoparticle layer is
thus converted to graded layers with an effective permittivity that is spatially
dependent. The nanoantenna consists of a silver truncated cone with 25 nm in
height and 30 nm in radius and separated from the environment by a 10 nm
glass (n = 1.48) shell. In the GEM-based model, we homogenize the palladium
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Figure 7.8: LSPR peak wavelength for antenna-reactor complex based sensor
with Pd nanoparticle layer r = 4 ± 0.2 nm calculated using GEM with varying
number of sublayers. FDTD result is presented as a benchmark.

nanoparticle layer into 1 nm thick sublayers using our GEM approach. These
GEM calculations are compared to simulations with explicit nanoparticles, whose
results are averaged over 100 realizations of Pd nanoparticle size and position
random drawing.

The LSPR wavelength as a function of the mean Pd nanoparticle radius is
presented in Fig. 7.7b. The overall volume fraction in a nanoparticle layer is
constant and equal to the ratio of the equivalent thickness and layer height. Dur-
ing sintering the nanoparticle size increases while the amount of the material is
constant. Therefore, the height of the effective layer increases, while the equiva-
lent thickness remains the same. As a result, the overall volume fraction of metal
in the homogenized nanoparticle layer decreases during sintering. This in turn
decreases the LSPR wavelength, which is adequately modeled regardless of the
modeling approach (explicit, GEM or MG). However, MG substantially under-
estimates the LSPR wavelength, especially, for large mean nanoparticle radii. In
contrast, GEM underestimates the result only by a small fraction of a nanometer.
Thus, GEM can be used instead of explicit modeling of Pd nanoparticle layer to
quantitatively predict the dependence of the LSPR wavelength of the sensor on
the size distribution of the Pd nanoparticle layer.

In order to further discuss the accuracy of the GEM model, we present con-
vergence of the obtained LSPR wavelength for an antenna-reactor-complex-based
sensor with the number of layers used to homogenize the palladium nanoparticle
layer covering the sensor. The results are shown in Fig. 7.8. Indeed, with an
increasing number of layers the accuracy of GEM improves and is better than
0.1 nm when compared to the FDTD result with explicit nanoparticles when 22
effective sublayers with 1 nm thickness are used. Note, that for single sublayer
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Figure 7.9: LSPR peak wavelength for antenna-reactor complex based sensor
with Pd nanoparticle layer with varying nanoparticle size distribution obtained
using GEM model. The obtained resonance wavelength depends on both average
nanoparticle radius, as well as, its standard deviation.

the GEM and MG models are equivalent, but the observed error in the LSPR
wavelength is about 0.5 nm.

The basic study of LSPR wavelength dependence on mean palladium nano-
particle radius has been presented earlier by Adibi et al.22 Here, using the GEM
model enables us to perform an extended study that accounts not only for mean
radius, but also its standard deviation. Such an analysis would not only be im-
possible using MG, which cannot account for size dispersion, but also using an
FDTD based approach with explicit nanoparticles, which would require more
simulations than it is practically feasible. We calculate the LSPR wavelength for
our sensor within a broad range of mean (µR ∈ [1.5, 8] nm) and standard devia-
tion (σR ∈ [0.3, 3] nm) values of palladium nanoparticles. In Fig. 7.9 we present
the result of these calculations. A shift of the LSPR peak wavelength towards
the blue is observed if either the mean or standard deviation of the Pd nano-
particle radius increase. Contour lines shown in the figure indicate that a given
value of the LSPR wavelength corresponds to multiple (µR, σR) pairs. Thus, if
the LSPR wavelength is the only measured quantity one cannot uniquely iden-
tify both parameters characterizing the nanoparticle size distribution. To that
end, additional information must provided either based on prior knowledge of the
nanoparticle size evolution during sensing or from other measurements.
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Chapter 8

Electronic structure of
antenna-reactor complexes

As discussed in Chapter 3, a nanoparticle based system, including ones with
sizes or interparticle distances on the order of single nanometers, requires quan-
tum mechanical treatment when discussing their optical and electronic proper-
ties. Specifically, hot electron related effects cannot be correctly accounted for
in such system using classical electrodynamics. This is particularly relevant for
photocatalysis by antenna-reactor systems when the characteristic sizes become
sufficiently small. Therefore, in this chapter we address this issue by a time-
dependent density functional theory (TDDFT) study of optical and electronic
properties of antenna-reactor complexes, as well as isolated catalytic and plas-
monic nanoclusters containing up to several hundreds of atoms. As a model
antenna-reactor system, we have studied a nanocluster dimer comprised of silver
and palladium nanoclusters. A schematic representation of such a dimer is shown
in Fig. 8.1.

8.1 Methods
Icosahedral nanoclusters are modeled, because the icosahedron is the typically
considered shape for small clusters in this kind of studies.47,81 It has been also
shown experimentally that charged Ag55 clusters constitute icosehdra.154 The
initial lattice constants are set to 3.9 Å for palladium and 4.0 Å for silver and
ASE is used to generate the initial positions of atoms assuming an FCC crystalline
structure for Pd and Ag. The final geometries are obtained by relaxation with
molecular dynamics until forces acting on atoms are below 0.02 eV Å−1. As input
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Figure 8.1: Schematic representation of Ag-Pd dimer, where larger cluster of
atoms represents silver nanocluster, while smaller one represents palladium nan-
ocluster.

for TDDFT modeling, the DFT ground state calculated with SIESTA is used.45

The Wu-Cohen functional is employed for both Pd and Ag following Koval et
al.47 The optical response of nanoclusters to a δ-kick pulse is modeled using the
iterative linear response TDDFT implementation (PyNAO) by Koval et al.47

The LDA exchange correlation kernel is used in TDDFT calculations. We use
Gaussian pulse excitation with a time dependence of the electric field given by

E(t) = E0 cos (ω0 (t− t0)) exp
(

− (t− t0)2
/τ2

0

)
. (8.1)

We set E0 = 1 a.u., t0 = 10 fs, τ0 = 5 fs. ω0 is set to match the plasmon resonance
of the system found using the polarizability spectrum calculated with TDDFT,
unless mentioned otherwise.

We obtain the density matrix describing the optical response to a Gaussian
pulse by convolution of the linear response density matrix with the pulse elec-
tric field. Following Rossi et al.81 we utilize such a density matrix to study the
electron-hole contributions to electronic energy and temporal energetic distribu-
tions of the generated carriers. In PyNAO formalism the induced electron density
is defined as

δρ(ω, r⃗) =
∑
i,j

(fi − fj)
ψi(r⃗)ψ∗

j (r⃗)ψj(r⃗ ′)ψ∗
i (r⃗ ′)

ω − (Ej − Ei)
δVeff (ω, r⃗ ′). (8.2)

Hence,

δρ
(1)
i,j (ω) = (fi − fj) ψj(r⃗ ′)ψ∗

i (r⃗ ′)
ω − (Ej − Ei)

δVeff (ω, r⃗ ′). (8.3)
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Using the vertex product ansatz, the density matrix can be represented as

δρ(1)
n,m(ω) =

(fn − fm)(Xm
a V

ab
µ Xn

b )
ω − (Em − En) + iε

δV µ
eff (ω). (8.4)

Finding the time-domain counterpart of the density matrix requires knowl-
edge of its value at negative frequencies. In order to mitigate this difficulty, we
calculate the inverse Fourier transform of each part (real and imaginary) in time
individually using the properties of the Fourier transform

Re(δρ(1)
n,m(t)) = F−1

[
1
2(δρ(1)

n,m(ω) + δρ(1)
n,m

∗
(−ω))

]
, (8.5)

Im(δρ(1)
n,m(t)) = F−1

[
1
2i (δρ

(1)
n,m(ω) − δρ(1)

n,m

∗
(−ω))

]
. (8.6)

To evaluate δρ(1)∗
n,m(−ω) we utilize the property that the density matrix must

be hermitian with
δρ(1)

n,m

∗
(−ω) = δρ(1)

m,n(ω). (8.7)

After substituting eq. 8.4 into eqs 8.6 and 8.5 and algebraic manipulation, the
real and imaginary part of the density matrix are

Re(δρ(1)(t)) = F−1
[

∆E
a+ ib

∆f(Xm
a V

ab
µ Xn

b )δV µ
eff (ω)

]
, (8.8)

Im(δρ(1)(t)) = F−1
[
−i ω̃

a+ ib
∆f(Xm

a V
ab

µ Xn
b )δV µ

eff (ω)
]
, (8.9)

with a = ω2 − ε2 − ∆E, b = 2ωε, ∆E = Em − En. For real signals

F−1[f(ω)] = 2Re
(

1
2π

∫ ∞

0
f(ω)e−iωtdω

)
. (8.10)

Hence, calculations at negative frequencies are unnecessary.
The remaining subtlety is treating the convolution of the delta-kick density

matrix with a pulse to obtain the density matrix for a Gaussian pulse. This is
due to the fact that we add a small imaginary part (ϵ) to each frequency in order
to mimic dissipation of energy in the system, ω → ω̃ = ω+iϵ. In order to perform
the convolution, we use the following property

a ∗ b = edtF−1[F [ae−dt]F [be−dt]]. (8.11)

Then,
δρ(1)(t) = eϵtF−1[δρ(1)(ω)Epulse(ω̃)]. (8.12)
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The Fourier transform of the electric field of the pulse is given by

Epulse(ω) =
√
πτ2

2 E0 exp(it0ω)(exp(−1/4(ω0 − ω)2τ2)

+ exp(−1/4(ω0 + ω)2τ2)), (8.13)

where ω0 denotes central frequency of the pulse, τ determines the pulse duration,
t0 is the central time of the pulse and E0 is the pulse electric field amplitude.

This way we the obtain linear response density matrix, which is used to obtain
the diagonal elements of the second order density matrix that determines the
occupation change at each of the Kohn Sham states. In turn, these occupation
changes determine the energetic and spatial distributions of hot electrons.

8.2 Small monometallic clusters
8.2.1 Silver clusters
The optical properties of silver clusters, which are dominated by an LSPR, are
similar to those of larger plasmonic clusters that have been studied with classical
electrodynamics. At the same time, TDDFT reveals effects that are not observed
when using classical electrodynamics to describe such nanoparticles. Exemplary
polarizability spectra of small icosahedral silver clusters are presented in Fig.
8.2a. The imaginary part of the polarizability is normalized to the number of
atoms, as it is proportional to the absorption cross section (eq. 2.96). Because
TDDFT does not account for retardation, a scattering cross-section is not ex-
pected. The smallest cluster (with 13 atoms) does not exhibit a clear plasmon
peak. This stems from the fact that the number of atoms is too small to result in
a collective excitation such as plasmon. Spectra of other clusters feature promi-
nent plasmon peaks. The classical quasi-static polarizability (eq. 3.3) shows no
dependence of the resonance condition on nanoparticle size as indicated in Chap-
ter 3. The dependence of the LSPR wavelength on nanoparticle size captured by
classical electrodynamics stems from retardation and depolarization, but TDDFT
shows that other mechanisms are important once the nanoparticle is sufficiently
small. Specifically, this dependence of the plasmon resonance on nanoparticle
size stems from quantization of electronic states due to small nanoparticle size
and electronic density spill-out.155

To further study the nature of plasmonic excitation in small clusters we
present in Fig. 8.2b the Kohn-Sham decomposition of polarizability (its imag-
inary part) of Ag147 cluster at LSPR energy (3.36 eV) into contributions from
individual Kohn-Sham (KS) transitions using a method proposed by Rossi et
al.156 The Kohn-Sham map is complimented by the density of states (DOS) plot-
ted in Fig. 8.3. The results are in line with those obtained by Rossi et al.156
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Figure 8.2: a) Imaginary part of polarizability calculated per atom for Ag icosa-
hedral clusters with varying number of atoms (denoted in the legend). b) Kohn-
Sham decomposition polarizability (imaginary part) into contributions from each
electron-hole transition as a function of electron and hole energies for silver clus-
ter with 147 atoms. The solid line marks the LSPR energy (3.36 eV). The hole
and electron energies are given with respect to the Fermi level.

and indicate plasmon excitation in the system. The dominant KS transition
contribution to the plasmon energy comes from low energy sp transitions with
energies much lower than that of the plasmon. As these transitions tend to be
close in terms of energy and are all coupled by the exchange-correlation kernel in
a similar manner, they form a coherent collective excitation (plasmon).157 Inter-
action between these transitions leads to increased energy of the plasmon with
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Figure 8.3: Density of states of Ag147 cluster ground state decomposed into
contributions from s-,p-,d- and f states.
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Figure 8.4: Electric field profile of a Gaussian pulse exciting the system plotted
along with the dipole moment in Ag cluster with 147 atoms induced by this pulse.
The pulse frequency is selected to match LSPR frequency of the cluster.

respect to the non-interacting spectrum peak. The large positive contribution
from sp transitions is accompanied by significant negative contributions resulting
from transitions from occupied d states to partially occupied sp states lying very
close to the Fermi energy. The transition energy for these transitions is close to
the plasmon energy. We will see that it is the presence of these partially occu-
pied states and the transitions from d states to those states that determine hot
electron generation in plasmonic particles.

Next, we investigate how these properties calculated in the frequency domain
manifest themselves when the cluster is illuminated using a Gaussian pulse. The
electric field profile of the pulse and resulting dipole moment of the Ag147 cluster
are presented in Fig. 8.4. Both, the field profile and the induced dipole moment
oscillate as a function of time. The time dependence of the dipole moment is
similar to that of the pulse. However, the oscillation of the dipole moment is
phase-shifted with respect to the pulse field, so that the dipole moment maximum
is observed about 2 fs after maximal pulse field value. This phase lag is due to
the plasmon excitation in silver particle. After the dipole moment maximum is
reached its value decays due to plasmon dephasing until the oscillation amplitude
reaches a plateau at about 20–30 fs.

Further insight into plasmon formation and its subsequent dephasing is pro-
vided by analyzing the energy stored in the system as a function of time decom-
posed into the contributions of Kohn-Sham electron-hole transitions. In Fig. 8.5
we show the histograms of stored energy in terms of the transition energy. The
results for two time instances are presented: the initial one (at 0 fs) and after the
pulse has decayed (at 30 fs). The initial distribution closely resembles the one
obtained for the plasmon in the frequency domain. Most of the energy is stored
in sp transitions with energies much lower than that of the plasmon. There is also
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Figure 8.5: Histograms of stored energy in Ag147 cluster as a function of Kohn-
Sham transition energy for two time instances: t = 0 fs (top), t = 30 fs (bottom).

energy stored in transitions from d states with energies above that of the plas-
mon. After 30 fs of time evolution, the energy stored from the system is several
orders of magnitude larger than initially. The distribution of the stored energy is
vastly different than initially. The final distribution is concentrated around the
transition energy close to the one corresponding to the central frequency of the
pulse.

The evolution of how the stored energy is distributed over Kohn-Sham transi-
tions is a good indicator of plasmon dephasing. The stored energy as a function
of time is plotted in Fig. 8.6, including a split into resonant and non-resonant
parts. We obtain a result that is consistent with the literature.81 The total en-
ergy stored in the electronic system grows as a function of time and reaches a
plateau after the pulse decays. Non-resonant transitions (with energies outside
ω0 ±

√
(2)/τ range) that we attribute to the screened plasmon, contribute the

most to the stored energy for the time corresponding to the dipole moment max-
imum. Afterwards, this contribution begins to decrease and vanishes after the
pulse decays, at approx. 22 fs of propagation. A few femtoseconds later, a slight
increase of the non-resonant transition contribution is observed. This is an indi-
cator of plasmon revival that would occur after a long propagation due to a lack
of dissipation in TDDFT.

The time domain approach proposed by Rossi et al.81 enables us to calculate
the hot electron distribution. In Fig. 8.7 we present the initial and final (after 30
fs) energy distribution of the occupation of electronic states for a silver cluster
with 147 atoms. The initial occupations are small and are dominated by small
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Figure 8.6: Decomposition of stored energy evolution in Ag147 cluster into reso-
nant and non-resonant transitions. Total stored energy evolution is plotted for
comparison.

energies close to the Fermi energy. After 30 fs a major increase of electron
occupation is observed, and the energy distribution is also significantly modified.
The contribution of electrons with energies close to the Fermi energy (¡1 eV) is no
longer dominant. Instead, the most prominent contribution comes from electrons
with energy of over 1 eV, which we will call hot electrons following Rossi et al.81

In order to further show that hot electron generation is related to plasmon
decay and that it is caused by transitions resonant with the pulse, we compare the
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Figure 8.7: Initial (t = 0 fs) and final (t = 30 fs) occupation of electronic states
in Ag147 cluster as a function of electron energy.
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Figure 8.8: Integration of hot (E > 1 eV) electron occupation as a function of
time. For comparison, we plot the time evolution of energy stored in resonant
transitions, which is highly correlated with hot electron evolution.

evolution of occupation of electrons with energies of over 1 eV above the Fermi
energy with the evolution of energy stored in resonant transitions in Fig. 8.8.
Clearly, the two quantities are highly correlated and their evolution is very similar
except for oscillations that are present in hot electron occupation evolution and
are not present in stored energy evolution.

As a final part of this section devoted to the TDDFT study of silver clus-
ters, we study the influence of transitions to partially occupied states on the hot
electron generation process by comparing simulations of an Ag55 cluster with
and without accounting for these transitions. The impact of this modification
is clearly seen when comparing Kohn-Sham transition maps of stored energy in
both scenarios (see Fig. 8.9). Initially (for t = 0 fs), the maps are in qualitative
agreement except for the lack or presence of partially occupied states contri-
butions. This seemingly minor modification leads to an entirely different time
evolution when the system is excited with a Gaussian pulse. For the unmodified
simulation, the plasmon decays predominantly into transitions with energies in
resonance with the pulse and into partially occupied states. Due to removal of
these the transitions in the modified simulations, the plasmon does not decay in
the modified simulation and final Kohn-Sham transition map resembles qualita-
tively the initial map. This is in line with results observed in the literature,82

where a similar effect has been observed by modifying silver’s pseudopotential.
These observations are further confirmed by analyzing the evolution of the

decomposition of stored energy in an Ag55 cluster into resonant and non-resonant
transitions presented in Fig. 8.10. If the modification is not applied to the system,
the energy evolution is very similar to the one observed for the larger silver cluster.
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Figure 8.9: Kohn-Sham transition maps of stored energy in Ag55 cluster for two
time instances: t = 0 fs (top), t = 30 fs (bottom). We compare simulation with
(unmodified) and without transitions to partially occupied states.

Initially, non-resonant transitions that form the plasmon constitute a dominant
contribution to stored energy. Once the pulse decays, the plasmon dephases,
resonant transitions dominate and hot electrons are generated. In contrast, with
no partially occupied states under consideration, the plasmon does not decay and
resonant transitions never contribute more than non-resonant ones.

8.2.2 Palladium clusters
We study palladium clusters in a similar manner to that presented for silver
in the previous subsection. In Fig. 8.11a spectra of the imaginary part of the
polarizability are plotted for small icosahedral palladium clusters. In contrast to
silver clusters, we add a so-called ghost atom layer. This is necessary for TDDFT
simulations of isolated Pd clusters to converge. While silver clusters exhibited a
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Figure 8.10: Decomposition of stored energy evolution in Ag55 cluster into res-
onant and non-resonant transitions. Total stored energy evolution is plotted for
comparison. We compare simulation with (unmodified) and without transitions
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clear LSPR peak in their spectrum, palladium does not support a LSPR in the
studied excitation energy range. In general, the polarizability of small Pd clusters
increases with increasing energy and does not significantly depend on particle size.
The exception are small clusters such as Pd13. Its spectrum oscillates due to a
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Figure 8.11: a) Imaginary part of polarizability calculated per atom for Pd icosa-
hedral clusters with varying number of atoms (denoted in the legend). b) Kohn-
Sham decomposition polarizability (imaginary part) into contributions from each
electron-hole transition as a function of electron and hole energies for palladium
cluster with 55 atoms. The excitation energy is 3.36 eV, which corresponds to
LSPR energy of Ag147 cluster. Transitions with this energy are marked using a
solid line.
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Figure 8.12: Induced dipole moment in Pd55 icosahedral cluster plotted with
the electric field profile of a Gaussian pulse exciting the particle. The pulse
parameters are selected as in Fig. 8.4.

large impact of atomic excitations on the optical properties. These oscillations
diminish and eventually vanish with increasing number of atomic shells. For a
large number of atoms, the spectrum resembles qualitatively the one obtained
using FDTD (see Fig. 7.6 for comparison).

The Kohn-Sham decomposition map for the polarizability of Pd55 is presented
in Fig. 8.11b. Despite using the same excitation energy it differs from the one
obtained for the silver cluster (see Fig. 8.2b), due to lack of collective plasmon
behavior observed for the silver cluster. Instead, the dominant contribution to
polarizability comes predominantly from transitions that are close to the exci-
tation energy. Other transitions that contribute to the polarizability are several
transitions below the excitation energy, which do not posess their respective coun-
terparts at high excitation energies like in the case of the silver cluster.

The non-plasmonic character of optical excitations in the palladium cluster
is also represented in the dipole moment induced by a Gaussian pulse (see Fig.
8.12). The pulse parameters are chosen to be the same as in the case of the
silver cluster for an adequate comparison. In contrast to the silver cluster, the
induced dipole moment follows the Gaussian pulse field profile and no phase shift
of the resulting dipole moment oscillations are observed. This indicates that the
particle is excited with an energy different from its optical resonance (below the
resonance).

In Fig. 8.13 we present the evolution of energy stored in the electronic system,
as well as the resonant and non-resonant contributions to this energy for the Pd55
cluster. Qualitatively, it is similar to the evolution of stored energy obtained for
the silver cluster due to an increase of stored energy over time and decay of
the contribution of non-resonant transitions with the decay of the exciting pulse.
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Figure 8.13: Decomposition of stored energy evolution in the Pd55 cluster into
resonant and non-resonant transitions. Total stored energy evolution is plotted
for comparison.

However, a considerable difference distinguishing a plasmonic silver cluster from
a transition metal cluster such as Pd55 is the fact that for the latter resonant
transitions dominate over non-resonant transitions regardless of the time instance.
In contrast, for the silver cluster, initially it is the non-resonant transitions that
contribute the most to the stored energy, due to efficient plasmon excitation in
this system.
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Figure 8.14: Time evolution of integrated hot electron occupation per number of
atoms in Ag147 cluster and single Pd55 cluster.
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Despite the fact that palladium clusters do not support a LSPR like silver
clusters do, it is still possible to excite high energy electrons in Pd55. In Fig.
8.14 we compare the evolution of hot electron occupation for Ag147 and Pd55.
We normalize the results by the number of atoms to account for the fact that
occupation is proportional to number of atoms in the system. Clearly, hot electron
generation is more efficient for the plasmonic particle. The maximal occupation
per atom is over 10 times larger for the silver cluster than for the palladium
cluster.

8.3 Silver-palladium dimers
After establishing the basic properties of individual silver and palladium clusters
constituting antenna-reactor complexes studied in this work, we study the prop-
erties of dimers consisting of silver and palladium clusters. Four different dimer
configurations are considered: face-to-face, tip-to-tip, face-to-tip and tip-to-face.
The first part of the configuration name refers to silver, while the other one refers
to palladium. These configurations are visualized in Fig. 8.15. We define the
gap size as the distance between closest points of the clusters’ surfaces assuming
spherical atoms with covalent radii of silver (1.45 Å) and palladium (1.39 Å)
atoms taken from ASE.

An exemplary spectrum of such a dimer is presented in Fig. 8.16. The tip-to-
face configuration is used and the gap size is 0.7 Å. Spectra of isolated clusters are
plotted along with the sum of polarizabilities of isolated clusters. As a result of
coupling between the clusters, the polarizability is enhanced compared to a simple
sum of the individual polarizabilities. The enhancement is especially pronounced

Face-to-face

Face-to-tip Tip-to-face

Tip-to-tip

Figure 8.15: Schematic Ag147Pd55 dimer in various configurations analyzed in
this chapter.
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Figure 8.16: Spectrum of Ag147Pd55 dimer in tip-to-face configuration and with
gap size of 0.7 Å. Also plotted are the spectra of isolated silver and palladium
clusters and the sum of isolated clusters spectra.

for energies below the plasmon resonance energy.
Spectra of dimers in each of the four configurations and varying size of the

gap are presented in Fig. 8.17. Depending on the particular configuration, the
impact of gap size, and in turn intercluster coupling, on the optical properties
varies significantly. When a gap size of 3 Å is used, the spectra for each dimer
configuration are very similar. The main LSPR peak is observed at 3.45 eV
(compare to silver with 3.36 eV) and the corresponding polarizability value is
about 14000 a.u.

In contrast, for gap sizes below 3 Å the differences between cluster config-
urations manifest themselves in the optical spectra. The most notable changes
are observed for the face-to-face configuration. The plasmon peak is broadened
asymmetrically as the gap size decreases. The polarizability for energies below
the plasmon resonance is enhanced, while for higher energies the polarizability
remains almost unchanged. The energy corresponding to the LSPR is shifted
towards lower energies with decreasing gap size.

When the dimer is oriented in the tip-to-tip configuration, the modification
of the LSPR peak is the least prominent. The peak position and amplitude re-
main almost unmodified as the gap size is decreased. Asymmetric broadening is
observed, similar to the one for the face-to-face configuration, but the observed
enhancement of the polarizability below the LSPR energy is much smaller. Fur-
thermore, an additional spectral peak is present at low energies for dimers in the
tip-to-tip configuration.
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Figure 8.17: Spectra of Ag147Pd55 dimers with varying configurations and gap
sizes. Configuration is indicated by the sub-figure title, while gap size is given in
the legend.

The remaining dimers contain particles in opposing configurations. For both
the tip-to-face and face-to-tip configurations, the main LSPR peak is not sub-
stantially modified, except for the asymmetric broadening, which is larger than
that observed for the tip-to-tip configuration, especially for the face-to-tip con-
figuration. The additional low energy spectral feature observed for the tip-to-tip
configuration is also observed for dimers in the tip-to-face configuration, but its
peak amplitude is considerably smaller in this case.

In order to rationalize the observed optical response of the dimers with varying
configurations and gap sizes, we analyze the induced density for selected gap
sizes and face-to-face configuration. The results are presented in Fig. 8.18.
For gap sizes above 0.33Å each particle has its own plasmon represented as an
electron density of opposing sign at the opposite sides of each icosahedron. This
resembles a bonding dimer plasmon observed in dimers of identical particles.70

Also, dipoles located at atomic coordinates are visible, which are known to be
the result of d-electron screening of the plasmon.69 For the smallest selected gap
size (0.33Å), the electron density is also located in the gap indicating that in this
case charge transfer between both clusters occurs and the efficiency of coupling
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Gap size = 0.3 Å Gap size = 1.7 Å Gap size = 3.0 Å

Figure 8.18: Imaginary part of δρ(r, ω) for Ag-Pd dimer in face-to-face configu-
ration for selected excitation energies and intercluster distance. Electric field is
applied horizontally.

is large. Furthermore, screening appears to be more prominent for such a small
gap size. This type of tunneling and screening effect, when diminishing the gap
size, is known for dimers composed of identical particles.70

The optical study presented above is complimented by a time domain study,
which captures plasmon dephasing and hot electron generation in Ag147Pd55
dimers. The initial and final histograms of the decomposition of stored energy
into transitions with varying energy are presented for a dimer in the face-to-face
configuration and 0.3 Å gap size in Fig. 8.19. The results resemble closely the ones
obtained for the isolated silver cluster, which is a result of the plasmonic nature of
the observed excitations. The initial distribution contains mostly contributions
from transition energies that are outside the resonance energy of the coupled
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Figure 8.19: Histograms of stored energy in Ag147Pd55 dimer in face-to-face
configuration and gap size of 0.3 Å as a function of Kohn-Sham transition energy
for two time instances: t = 0 fs (top), t = 30 fs (bottom).
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Figure 8.20: Energy stored in the electrons of Ag147Pd55 in face-to-face con-
figuration and gap size of 0.3 Å decomposed into resonant and non-resonant
contributions.

system, while the final one peaks at the plasmon energy and is much narrower
than the initial one as a result of plasmon dephasing.

Plasmon formation and dephasing is further elucidated by analyzing the
stored energy split into resonant and non-resonant contributions (see Fig. 8.20).
In a similar manner to the case of a silver nanocluster, initially, as the pulse field
increases, the non-resonant contributions to the stored energy are larger than the
resonant ones, due to plasmon excitation. This excitation dephases and resonant
contributions, which can be attributed to hot electron generation, become dom-
inant. Due to the presence of the palladium cluster, the resonant transitions are
more prominent and constitute a larger part of the system’s energy than for an
isolated plasmonic nanocluster.

The observed plasmon dephasing leads to efficient hot electron generation in
our model antenna-reactor system. The observed hot electron occupations are
larger than the ones observed for transition metal clusters. Enhancement of hot
electron occupation, compared to an isolated Pd55 cluster, depends on the con-
figuration and gap size of the dimer as shown in Fig. 8.21. In the considered gap
size range, the observed enhancement does not change significantly within the
gap size range that we consider, with the exception of the face-to-face configu-
ration and the dimer configuration is the key factor. The observed hot electron
generation enhancement is the largest for the face-to-face configuration and the
smallest gap size. For this case, judging by the spectra and observed density
isosurfaces, the two clusters are coupled the most efficiently. Hot electron gener-
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Figure 8.21: Hot electron generation probability ratio between Ag147Pd55 and
individual Pd55 cluster. We account for the fact that dimer contains more atoms
than palladium cluster by scaling down the observed enhancement, accordingly.

ation efficiency decreases if the silver cluster is in the tip configuration and it is
the lowest for tip-to-tip configuration.
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Chapter 9

Conclusions

In this thesis we have provided a comprehensive study of the antenna-reactor
system using a multi-scale approach that treats the system at each physically rel-
evant length scale ranging from the macroscopic scale, at which multiple antennas
are electromagnetically coupled, through the single antenna level, at which tran-
sition metal particles are coupled to the optical antenna, down to the atomistic
scale, at which quantum phenomena enable hot electron generation in the cou-
pled antenna-reactor system. An antenna-reactor complex consists of an optical
nanoantenna and non-noble transition metal nanoparticles. The optical antenna
is used to focus visible light in nanoscale volumes typically smaller than the
nanoantenna which is possible due to their capability to support strong optical
resonances in this wavelength range. Transition metal nanoparticles are used
due to their strong catalytic activity. Such a coupled system provides substan-
tial enhancement of the optical response of transition metal nanoparticles. This
thesis studies the electromagnetic coupling between the antenna-reactor complex
components and has been motivated by several prospect applications of antenna-
reactor complexes for material science outlined in the Introduction. We have
focused on enhanced absorption and hot electron generation for photocatalysis,
senstivity of optical properties towards changes occurring in bulk and nanoscale
environments, and on the tunability of the optical response by manipulating the
system parameters at various scales.

Each length scale unravels different physical phenomena and thus requires
significantly different methodology, as outlined in Chapters 2-4 of this thesis. At
the macroscopic level, an accurate description of multiple scattering of the elec-
tromagnetic field between antennas and between antennas and their environment
must be provided. To that end, we have used the T-matrix approach – a state-
of-the art method for this kind of problem. The novel and extensive description
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of the effective optical properties of amorphous arrays of optical nanoantennas
within the T-matrix framework has been provided in Chapter 5. In amorphous
arrays, in contrast to periodic ones, the optical properties of each particle are
distinct, due to a unique spatial distribution of neighboring nanoparticles. At
the same time the macroscopic response is well-defined and can be calculated by
considering average multipole moments of nanoparticles in the array. Here, we
have proposed an effective method that enables calculating such average multi-
pole moments including multiple scattering effects. The method uses the pair
correlation function as a description of the nanoparticle spatial distribution and
multipole moments of isolated nanoparticles to characterize the single particle op-
tical response. This approach significantly reduces the necessary computational
effort as there is no need to solve self-consistently for multipole moments of each
nanoparticle, which is a formidable task requiring solution of a large-scale inverse
problem. Also, the semi-analytical nature of the proposed method has enabled
us to obtain substantial physical insight into the properties of amorphous arrays
of optical nanoantennas. We have emphasized the optical properties that are
relevant for the prospect applications of amorphous arrays such as directional
scattering, sensitivity of resonance wavelengths towards bulk and local refractive
index change and scattering-to-absorption ratio. For each of the aforementioned
properties we have proposed simple analytical formulas that provide useful guide-
lines for designing devices based on amorphous arrays of nanoparticles. The other
aspect, in which our effective approach to calculating the optical properties of
random/amorphous arrays of nanoantennas is superior to other methods of tack-
ling this kind of scattering problems, is its generality and flexibility. We have
shown that the presented formalism is able to account for various type of reso-
nances occurring in optical antennas of both electric and magnetic origin and of
high multipole order, in contrast to earlier approaches that relied on the electric
dipole approximation. Two substantial improvements of our initial method have
been also presented. The first one enables treating substrate mediated multiple
scattering that provides additional multiple scattering via off-substrate reflection.
In practical applications, amorphous arrays are fabriacted almost exclusively on
dielectric substrates and careful balancing of both direct and substrate-mediated
coupling channels is necessary. Such optimization is possible using the proposed
approach. The second extenstion of the initial model introduces size dispersion
of nanoparticles into consideration and treats it by introducing separate effective
polarizability for each nanoparticle size.

At the single antenna level, we have studied electromagnetic coupling between
the nanoantenna and transition metal nanoparticles using the finite-difference-
time-domain method. The main difficulty in modeling an antenna-reactor system
at this length scale is accurate description of the transition metal nanoparticle
layer, due to the fact that it is random in terms of spatial and size distribu-
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tion. We explore two different methods of tackling this issue. We model the
transition metal nanoparticle layer either by explicit modeling of nanoparticles
as nanospheres or by using a gradient effective medium model developed by the
author specifically to account for the size inhomogeneity of transition metal na-
noparticles and strong field gradients exhibited by plasmonic nanoparticle based
sensors. In each case, the size and position distributions were based on elec-
tron microscopy images of experimental samples. The gradient effective medium
model extends the Maxwell-Garnett model by introducing a spatially dependent
effective permittivity.

The smallest length scale modeled in this thesis is the atomic scale treated us-
ing frequency-domain linear response time-dependent density functional theory.
Except for polarizability spectra and their decomposition into Kohn-Sham tran-
sition contributions, which are a well-established analysis method for plasmonic
excitations with TDDFT, the author has developed a method to obtain the linear
response in time domain, which enables the implementation of hot carrier analy-
sis tools previously developed for real-time TDDFT. This method has been used
to study the optical response of isolated palladium and silver clusters, as well as,
palladium-silver dimers, which constitute a model antenna-reactor system. To
date, this is the first study of the optical properties of antenna-reactor complexes
using the quantum mechanical approach.

This complex methodology has enabled us to prove the theses presented in
the Introduction chapter. The first one has been formulated as follows.

• Nanoparticle density is a valuable parameter enabling tailoring the optical
response of amorphous array of nanoantennas for prospective applications.

In Chapter 5 we have shown an extensive study of the optical properties of
amorphous arrays of nanoantennas. The effective model proposed by the author
enables formulation of several analytical formulas describing the dependence of
figures of merit relevant for prospect applications on the spatial distribution of
nanoparticles and single particle properties. The minimal center-to-center dis-
tance, which is characterized in our models by a dimensionless length scaling
parameter CC, is a crucial parameter determining contribution of multiple scat-
tering to the optical response of the array. The CC parameter determines the
nanoparticle number density in amorphous arrays and can be controlled in ex-
perimental fabriaction processes. It enters all the proposed formulas making it
a useful handle for optimization of devices based on amorphous arrays of nano-
particles including sensors, directional antennas and light absorbers. Especially,
in the case of sensors made of dielectric nanoparticles, we have shown that sig-
nificant sensitivity may be observed by optimizing CC even if isolated dielectric
nanoparticles are not sensitve to bulk environment refractive index changes. If
the array is supported by a dielectric substrate, direct and substrate mediated
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interparticle coupling channels are affected by CC. Here, CC must be optimized
in tandem with substrate reflectivity for obtaining the optimal optical response
for any desired application. A generalization of the CC parameter towards size
dispersed nanoparticle arrays has been proposed and we have shown that the
optical response of an amorphous array of size-dispersed nanoparticles can be
manipulated by CC also in this case.

• Antena-reactor complexes, including plasmonic core-shell nanoantennas,
enable significant light absorption enhancement in transition metal nano-
particles; this enhancement can be maximized by manipulating material
and geometric properties of the system.

Using extensive FDTD based modeling we have studied the optical properties of
antenna-reactor complexes containing plasmonic core-shell nanoantennas deco-
rated by a layer of transition metal nanoparticles. The results of this study have
been presented in Chapter 6 and in Publication IV, which is complimented by
experimental results that have been obtained in the group of prof. Langhammer.
Our models predict that significant enhancement of light absorption in transition
metal nanoparticles can be obtained, which, however, requires a careful selection
of materials and geometric parameters of the nanoantenna. By studying the im-
pact of these parameters, we have determined several guidelines for maximizing
the observed absorption enhancement.

• Electromagnetic modelling enables relating the optical signal from sensors
based on antenna-reactor complexes to physical and chemical phenomena
occurring during catalysis.

One of the primary applications of antena-reactor complexes is sensing of physical
and chemical phenomena occurring during catalysis. In Chapter 7 we have mod-
elled the optical response to modification of various parameters of the system,
which might be altered during catalysis. We have shown that time evolution of
nanoparticle size distribution due to sintering can be related to the LSPR wave-
length shift of the sensor. At the same time, an additional signal is required to
distinguish changes of both the mean and standard deviation of the nanoparticle
radius. Modification of the plasmonic response of the system might be also due
to adsorption of chemical species at the antenna surface. We have studied various
effects related to this phenomenon and have concluded, that both modification
of the dielectric shell thickness and refractive index, which may occur due to
adsorption, can be monitored using an antena-reactor complex based sensor by
measuring the LSPR wavelength and amplitude.

• Hot electron generation in antenna-reactor dimers is enhanced with respect
to an isolated transition metal particle due to excitation and subsequent
dephasing of localized surface plasmon resonance.
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In Chapter 8 we have used TDDFT to study the optical response of clusters and
dimers of silver and palladium containing up to a few hundred atoms. Small plas-
monic clusters are known for hot electron generation upon light excitation, which
is governed by phenomena occuring at the atomic scale. Here, we have provided
a comparison of plasmonic (silver) and transition (palladium) metal clusters in
terms of plasmonic excitations and hot electron generation. We have shown that
both clusters support hot electron generation, which is however much more ef-
ficient in the plasmonic metal cluster. Plasmon dephasing that determines hot
electron generation in the plasmonic system is requires the presence of partially
occupied states to which the plasmon may decay to. When silver and palladium
clusters form a dimer, their optical properties depend strongly on their configu-
ration and distance. Hot electron generation is more efficient in the dimer than
in individual palladium clusters by a factor of about ten. The process is the most
effective if the clusters are in the face-to-face configuration and the gap size is
small.

The results constituting this thesis have provided substantial insight into
physical phenomena occurring in antenna-reactor complexes. These phenom-
ena have been always studied in the context of prospect applications. Also, the
study required implementing novel tools for studying multiple scattering of light
in disordered systems of nanoparticles and for studying plasmon exictiations with
frequency domain TDDFT. The developed methods might be useful for studying
various nanophotonic systems beyond antenna-reactor complexes which were the
subject of this thesis.



168 CHAPTER 9. CONCLUSIONS



Chapter 10

Appendix A: maths

In this Appendix we provide the definitions of mathematical functions and cou-
pling matrix elements. In literature there are various normalization and units
conventions. Here, we follow those provided by Wriedt and Doicu in their text-
book on light scattering by systems of particles30 and by Amos Egel in his recent
work about light scattering by nanoparticles embedded in layered media.108

10.1 Vector spherical wave functions
In the T-matrix method the electric and magnetic fields are expanded in regular
(with upper index 1) and radiating (with upper index 3) vector spherical wave
function defined as

M⃗1,3
l,m(kr⃗) = z1,3

l (kr)m⃗l,m(θ, φ) (10.1)

N⃗1,3
l,m(kr⃗) =

√
n(n+1)

2
z1,3

l
(kr)

kr Yl,m(θ, φ)e⃗r + [krz1,3
l

(kr)]′

kr n⃗l,m(θ, φ), (10.2)

where z1,3
l denotes spherical Bessel function for regular and spherical Hankel

function for radiating VSWF, Yl,m is scalar spherical harmonic, while n⃗l,m and
m⃗l,m are vector spherical harmonics (VSH). VSH are defined as

m⃗l,m(θ, ϕ) = cl,m√
2n(n+ 1)

[
im

P
|m|
l (cos θ)

sin θ θ̂ − d

dθ
P

|m|
l (cos θ)ϕ̂

]
eimϕ (10.3)

and

n⃗l,m(θ, ϕ) = cl,m√
2n(n+ 1)

[
d

dθ
P

|m|
l (cos θ)θ̂ + im

P
|m|
l (cos θ)

sin θ ϕ̂

]
eimϕ, (10.4)
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where cl,m is a normalization constant,

cl,m =

√
2l + 1

2 · (l −m)!
(l +m)! (10.5)

and Pm
l signifies the associated Legendre polynomial. Yl,m is defined as

Yl,m(θ, φ) = cl,mP
|m|
l (cos θ)eimϕ. (10.6)

Here, we recall certain useful properties of VSH and VSWF. N and M are
related by

N⃗1,3
l,m(kr⃗) = 1

k
∇ × M⃗1,3

l,m(kr⃗). (10.7)

VSH satisfy the following orthogonality relations∫ 2π

0

∫ π

0
m⃗l,m(θ, φ) · m⃗∗

m′l′(θ, φ) sin θdθdφ =

=
∫ 2π

0

∫ π

0
n⃗l,m(θ, φ) · n⃗∗

m′l′(θ, φ) sin θdθdφ = πδmm′δnn′ (10.8)

and ∫ 2π

0

∫ π

0
m⃗l,m(θ, φ) · n⃗∗

m′l′(θ, φ) sin θdθdφ = 0. (10.9)

10.2 Direct and substrate-mediated coupling ma-
trix elements

The direct coupling matrix element between multipoles n and n′ of S-th and
S′-th nanoparticle is

WS,S′

n,n′ = ei(m−m′)ϕ
l+l′∑

χ=|l−l′|

x5 (l,m |l′,m′|λ)h(1)
χ (kr)P |m−m′|

χ (cos θ) , (10.10)

where x5 represents a5 or b5 coefficient

x5 =
{
a5, for τ = τ ′

b5, for τ ̸= τ ′

}
(10.11)

and h(1)
l (x) is a spherical Hankel function

h
(1)
l (x) =

l∑
m=0

cl,m
eix

xm+1 . (10.12)
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a5 and b5 coefficients are defined as

a5 (l,m |l′,m′| p) =i|m−m′|−|m|−|m′|+l′−l+p(−1)m−m′

×
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(p+ l − l′) (p− l + l′) (2p+ 1)

×
(

l l′ p
m −m′ − (m−m′)

)(
l l′ p− 1
0 0 0

)
,

(10.14)
respectively.

Substrate mediated coupling term is given by the following equation

WS,S′

r,n,n′ = 2
π

∑
j

∫
d2k⃗||

kzk
ei(m′−m)ϕS,S′ eik⃗||·(r⃗S−r⃗S′ )

×rj(kz)B†
n,j(kz/k)Bn′,j(−kz/k)eikzS ,

(10.15)

where k∥is the in-plane wave vector and kz is the wave vector component perpen-
dicular to the substrate. j corresponds to summation over plane wave TE and
TM polarizations. B† is B with all explicit i substitued by −i. B is defined as

Bn,j(x) = 1
il+1

1√
2l(l + 1)

(iδj,1 + δj,2)
√

1 − x2×

×

(
δηj

∂P
|m|
l (x)
∂x

+ (1 − δηj)m
P

|m|
l (x)

1 − x2

)
.

(10.16)

Substrate mediated coupling reduces to

WS,S
r,n,n′ = 2

π

∑
j

∫
d2k⃗||

kzk
rj(kz)B†

n,j(kz/k)Bn′,j(−kz/k)eikzS , (10.17)

if S = S′. Such coupling term is called self-coupling term.
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Chapter 11

Appendix B: code

11.1 Code
The code is implemented on top of SMUTHI – light scattering by multiple parti-
cles in thin-film systems code. It also requires joblib and pycuda for CPU/GPU
parallel execution, respectively. The code along with SMUTHI v1.0 is stored at
https://gitlab.com/nanophotonics_fuw/amosmuthi. The version of the code
described in this thesis is v0.2.

11.1.1 Installation
There are two ways to use the code. One way is to create a singularity image
from recipe in recipes folder or use a pre-built image. The other way is to create a
virtual environment and install using pip. The installation using pip is a two-step
process. First install SMUTHI by going to smuthi folder and typing

pip install .

in the linux terminal. Note, you don’t have to install numpy, scipy etc. The
SMUTHI installer will install this for you. Then go to the main package folder
and type the same command. It installs the amosmuthi package and joblib for
you. The code is untested on GPU and hence, such usage is outside the report
scope, but it should be possible by using standard SMUTHI GPU functions.

11.1.2 Code usage
The code usage has changed a lot since initial version used for Ref. 158. There
are two reasons for those changes: first, the code is adopted API for v1.0 of
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Smuthi and second, to give the control about all the simulation details to the
user. The code now adopts the object-oriented and “we like typing” philoso-
phy. Consequently, it is developed assuming that it is more important to have
human-readable, expressive way of building simulations than it is to be concise.
The advantage of being compatible with v1.0 of SMUTHI is that the user can
simulate arbitrarily shaped particles and that the new API is more expressive.
The examples are discussed in the Appendix.

11.1.3 Code structure
The main part of the package is extendedsim module, which implements three
classes:

• EffectiveSimulation – a generic class for simulations of 2D nanoparticle
arrays within the mean-field approach;

• PeriodicArraySimulation – use for periodic arrays;

• AmorphousArraySimulation – use for amorphous arrays.

The advantage of the object oriented approach is that if any new array type
is to be implemented one just has to create a new class inheriting from the
EffectiveSimulation and implement adequate calculate_integrals method
that will calculate the effective interparticle coupling term. The second notable
module is a modified SMUTHI module called particle_coupling_amo, which
prepares the radial part of coupling matrix including Sommerfeld integrals. Three
remaining modules analysis, utils and materials implement features that are use-
ful, but currently are unavailable in the official SMUTHI release. Those include:
various material models (reading from CSV file, Drude model), multipole decom-
position of extinction cross-section, azimuthally averaged differential scattering
cross-section, finding resonant frequencies.
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