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A B S T R A C T

The doctoral dissertation presents the results of research on the physics
of ultracold collisions in systems involving atoms, ions and molecules.
The work starts with a historical outline and main results obtained in
this field. Then the assumptions of the experiments are presented,
which were part of the research work carried out at the stage of
preparing the dissertation. In particular, the experiment concerning
the first cooling of the mixture of ytterbium ion with lithium atoms
to the quantum regime performed in Amsterdam and the results of
theoretical research, which guided and confirmed experimental mea-
surement and allowed for the correct interpretation. Moreover, the
dissertation presents the path that led to the confirmation of the fact
of obtaining ion-tom collisions at a temperature corresponding to
the observation of quantum effects, including determination of pre-
viously unknown scattering lengths. The second part presents the
experiment concerning the first observation of Feshbach resonances
in the barium ion system with lithium atoms performed in Freiburg
along with the process of estimation the position of resonances, deter-
mination of the correct combination of scattering lengths, the number
and nature of the observed resonances. Both projects were crucial for
the development of the hybrid ion-atom quantum systems and, like in
the past, the first cooling of atoms to quantum temperatures opened
up a new field of research. The last part presents the analytical calcu-
lations of atom-molecule scattering carried out using an anisotropic
pseudopotential. The method of an effective potential preserving the
mathematical properties of the original interaction was commonly
used in the past to the interactions of atoms and allows to gain in-
sight into the nature of the atom-molecule interaction and creates a
prerequisite for testing systems with the rotating impurity.
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Part I

U LT R A C O L D AT O M S A N D I O N S

The physics of systems composed of cold atoms, molecules
and ions has become a fashionable subject of research in
the last twenty years. The field was established at the in-
tersection of atomic physics, solid state physics, quantum
optics and quantum information. Modern research is de-
voted to building solutions and models that can play the
role of future quantum technologies. The first part of the
doctorate will be an overview of achievements in the field.





1
I N T R O D U C T I O N

This thesis covers the topic of the impurity immersed in the gas
of cold atoms. In general, the impurity may be an additional atom,
molecule, or ion. However, in our case, we will limit ourselves to ions
and molecules. The following two types of systems were the subject
of the research and will be discussed in this work:

• a single ion immersed in a cloud of ultracold atoms (Yb+/Li
and Ba+/Li mixtures)

• a molecule interacting with an atom

The first of the discussed systems was the subject of research to-
gether with experimental groups at the University of Amsterdam
and the University of Freiburg. The theoretical research was aimed
at guiding, explaining and confirming the effects observed in the ex-
periments and conducted in close theoretical-experimental collabora-
tion. The project carried out with the group from Amsterdam (Prof.
Rene Gerritsma) concerned the first ever observation of ion-atom col-
lisions in a quantum regime. It was the first time that an ion could be
cooled to such low temperatures. The independent project in cooper-
ation with the group from Freiburg (Prof. Tobias Schaetz) was related
to the first ever observation of Feshbach resonances in ion-atom sys-
tems. From a theoretical point of view, it involved finding resonance
positions and exploring additional effects such as spin-orbit coupling.

The second of the considered systems: single atom and molecule
was the subject of research from the point of view of potential ap-
plication to rotating impurities, as a prerequisite for the study of the
few-body physics.

This work is divided into chapters. The first, ultracold atoms and
ions, describes the overall context in which the work is embedded
and the most important achievements in the field. The second chap-
ter: ion-atom interaction and scattering theory explains the theoretical
methods used in the research. The third chapter: experiments with ion-
atom systems describes the details of the experimental systems that
were built in Amsterdam and Freiburg, along with a description of
the techniques that are used in the field. Chapter four: results con-
tains a theoretical analysis of the studied systems together with an
explanation of the processes taking place in them.

3



4 introduction

1.1 ultracold atoms

The emergence of the field of research called ultracold atom physics
was the result of many years of development of atomic physics, solid
state physics, quantum optics and experimental methods, in particu-
lar cooling techniques [1–5]. The development of this field of research
was a spectacular event in the 90s, it was met with Nobel prizes
for cooling techniques (1997 - Steven Chu, Claude Cohen-Tannoudji,
William D. Phillips) or obtaining Bose-Einstein condensate (2001 -
Eric Cornell, Carl Wieman, Wolfgang Ketterle). For the first time, it
has become possible to think seriously about quantum technologies,
quantum simulators and quantum engineering. Over the years, many
different arrangements of atoms, ions and molecules have been stud-
ied. New experimental configurations were investigated as well as
the fundamental laws of quantum mechanics and quantum optics.
The physics of cold atoms became a kind of laboratory where it was
possible to test ideas from both solid state physics and field theory
or the theory of relativity. In this context, optical lattices were par-
ticularly important, periodic structures created by laser light, where
high tunability allowed with the help of cold atoms to test various
theories, including gauge theories. Thus, the key aspect was achiev-
ing low enough temperatures to observe quantum effects and a high
ability to control systems, including interactions through Feshbach
resonances. In this sense, the results concerning the cooling and con-
trol of ion-atom systems presented in the work constitute a significant
enhancement of the quantum toolbox that scientists have nowadays.

1.2 low-energy collisions

The physics of cold atoms is played in systems that are cooled to suit-
ably low temperatures, at least in the microkelvin range, depending
on the system. Low temperature allows to achieve relatively low col-
lision energies, which in the language of quantum mechanics trans-
lates into scattering in a few lowest partial waves, ultimately in the
s-wave. Then the strictly quantum nature of the interacting atoms or
molecules can be directly observed in the experiments. The scatter-
ing of two atoms in their relative motion can be described by a wave
function consisting of a plane wave and a scattered wave

ψ = eikz +ψsc(r). (1)

We assume that the interaction is spherically symmetric, so the scat-
tering amplitude depends only on the scattering angle. Hence the
wave function for long range has the form:

ψ = eikz + f(θ)
eikr

r
. (2)
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At the limit of low energies amplitude f(θ) is constant and related to
−a (scattering lenght). We consider only the so-called s-wave scatter-
ing and then the above equation can be approximated:

ψ = 1−
a

r
. (3)

In the general case, the wave function can be decomposed into so-
called partial waves through Lagendre polynomials[6]:

ψ =

∞∑
l=0

AlPl(cosθ)Rkl(r), (4)

with radial wave function satisfying the equation:

R ′′kl(r) +
2

r
R ′kl(r) +

[
k2
l(l+ 1)

r2
−
2m
 h2
U(r)

]
Rkl(r) = 0, (5)

where U(r) denotes potential and for large r:

Rkl(r) ≈
1

kr
sin(kr−

π

2
l+ δl) (6)

is given in terms of phase shifts δl and using relations between equa-
tions above we obtain amplitude:

f(θ) =
1

2ik

∞∑
l=0

(2l+ 1)(ei2δl − 1)Pl(cos θ). (7)

Using properties of the Legendre polynomials we can calculate total
cross section in terms of the phase shifts:

σ =
4π

k2

∞∑
l=0

(2l+ 1) sin2 δl. (8)

The standard Hamiltonian describing the contact interaction of N
particles (which is a good approximation at low temperature) in the
external potential takes the form[6]:

H =

N∑
i=1

[
p2i
2m

+ V(ri)

]
+U0

∑
i<j

δ(ri − rj), (9)

where V (r) is the external potential. By minimizing the energy of
such a system, we obtain the famous Gross–Pitaevskii equation:

−
 h2

2m
∇2ψ(r) + V(r)ψ(r) +U0|ψ(r)|2ψ(r) = µψ(r), (10)

where µ denotes chemical potential. The Gross–Pitaevskii equation,
which is a nonlinear equation, has numerous solutions in the form of
solitons, and in the regime of weakly interacting bosons it also mod-
els the wave function of the Bose-Einstein condensate which is the
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Figure 1: Bose-Einstein condensate 2d velocity distribution: from the left be-
fore condesation, in the center when BEC appeared, on the right
after further evaporation nearly pure condensate. Picture from
NIST/JILA/CU-Boulder materials.

macroscopic state of occupation by bosons their ground state (Fig.1).
In the regime of low-energy collisions in the s-wave, an effective con-
tact potential, which reproduces the physical properties of the real
potential and provides mathematical corectness is often used. The in-
troduced pseudopotential[7] takes the form commonly used in the
field:

U(r)ψ =
4π h2a0
m

δ(r)
∂

∂r
(rψ). (11)

1.3 ultracold gases in optical lattices

Ultracold atoms placed in optical lattices have become an fundamen-
tal tool in research conducted in the field[3, 5, 8, 9]. Optical lattices are
a periodic structure formed by the interference of laser light beams
(Fig.2). Periodicity is a well-known phenomenon in solid state physics,
however, it is a description of specific materials. For the sake of il-
lustration, we can assume the following form of the optical lattice
potential in 3D:

V =
∑

l=x,y,z

= V0l sin2(πl/a), (12)

where a is a lattice constant equal half of the laser wavelength in the
standing wave configuration.

In the case of optical lattice, we deal with very high tunability
and the possibility of precise system control. This means that, in a
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Figure 2: Optical lattice example: a. 2d example, array of tightly confining
1d potential tubes, b. 3d example, optical lattice presented as cu-
bic array of tightly confining harmonic oscillator potentials, figure
from Ref.[8]

sense, we can design systems consisting of a selected type of atoms,
molecules and control the distance between them. Ultracold, weakly
interacting gases placed in an optical lattice can therefore simulate
models describing solid state physics systems, such as Hubbard for
fermions or Bose-Hubbard model for bosons. These systems exhibit
the same characteristics as solid-state systems, for example: band
structure and Bloch oscillations. Standard Bose-Hubbard Hamilto-
nian describes hoping between adjacent sites and the interaction be-
tween bosons at ith site

H = −J
∑
<i,j>

b̂
†
ib̂j +

U

2

∑
i

n̂i(n̂i − 1) − µ
∑
i

n̂i. (13)

The interaction between atoms can be controlled by experimental
techniques such as Feschbach resonances[4], which will be discussed
in detail in the following chapters. Nevertheless, it is important that
they allow to change the interactions from attractive to repulsive and,
consequently, to implement many states of the model. The standard
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interactions between atoms are low-energy contact δ interactions in
the s-wave like in the previous paragraph. Likewise, we can imple-
ment a similar model for fermions, keeping in mind the Pauli exclu-
sion principle. In the case of fermions, the interaction in the lattice
site takes place between fermions with opposite spin

H = −J
∑

<i,j>,σ

f̂
†
iσf̂jσ +

U

2

∑
i

f̂
†
i↑f̂
†
i↓f̂i↓f̂i↑ − µ

∑
i,σ

f̂
†
i,σf̂i,σ. (14)

Hubbard model for both fermions and bosons can be extended with
additional effects such as pair tunneling, density dependent tunnel-
ing or nearest-neighbours interaction.

The realization of optical lattices and the ability to control them
also played an important role in the study of the disorder. Beginning
with the theoretical foundations of the Anderson localization[10], con-
sisting in the disappearance of diffusion in a system with some forms
of disorder and later implementations of this concept in experiments
with Bose-Einstein condensate[11, 12]. Coming to the many-body lo-
calization [13–15], the state of interacting particles subjected to the
disorder, which causes the lack of thermalization in the system, and
thus the system will remain in a non-equilibrium initial state[16]. Fi-
nally, the phenomenon of the many-body localization was observed
in the experiment with ultracold fermions in the optical lattice[17],
there were also concepts of models in the optical lattices with ran-
dom interactions[18], or in other geometries[19, 20].

1.4 few-body physics

The physics of few-body systems itself, as well as the crossover be-
tween few and many bodies[21], is one of the important topics of
research in the field of cold atoms. Beginning with the famous theoret-
ical work on two cold atoms in a harmonic trap[22], there have been
many subsequent studies extending this research to more particles:
bosons and fermions or molecules[23, 24]. At the same time, great
experimental progress in the possibilities of controlling cold atomic
gases as well as individual few-body systems took place[25–28]. In
this context, the use of optical tweezers[29] is also worth mention-
ing, especially the experiment of creating a single molecule from two
atoms[30].

The systems of few bodies are theoretically described by Hamilto-
nians, which in terms of the second quantization have the form:

H =
∑
σ

∫
dxψ†σ(x)

(
−

 h2

2m

∂2

∂dx2
+
1

2
mω2x2

)
ψσ(x)+

g

∫
dxψ

†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x).

(15)
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Figure 3: A single impurity (blue) interacting with one, few, and many
fermions (green) in a harmonic trapping potential. In the many-
body case, the majority component can be described as a Fermi
sea with a Fermi energy. From Ref.[31].

In the above equation, we assume that the system is in a harmonic
trap and that the particles interact in contact, which is a common
assumption. We allow the occurrence of particles of different types:
bosons, fermions or fermions with different spin, remembering that
for fermions of the same type, the Pauli exclusion principle applies.
Consequently, fermions of the same type fill successive levels in the
trap, which is related to features of the system such as Fermi energy.
The situation is graphically presented in Fig.3, we can see that parti-
cles of many types and different number can be present in the trap. In
particular, we can imagine the situation that we have one additional
particle of a different type called "impurity" in the presence of cloud
of other particles.

As mentioned, few-body systems have been studied in many con-
figurations and variants, but a typical example consists of two types
of spin 1/2 fermions. Such physical systems are studied using numer-
ical methods like exact diagonalization and various semi-analytical
methods. Calculations even for such small systems very quickly be-
come very complex, due to the rapid increase in the size of Hilbert
spaces. Fig.4 shows the energy of such fermions as a function of the
strength of contact interactions. It is one of the basic numerical solu-
tions to the few-body problem in a harmonic trap.

1.5 trapped ions

At this stage, it seems necessary to mention briefly the rapidly de-
veloping field of trapped ions. In the context of the work, it is cru-
cial, because we want to draw attention to the importance of our
results for cold hybrid ion-atom systems, but they would not be pos-
sible without the development of both cold atoms and ion trapping
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Figure 4: The energy E− EF as a function of the dimensionless interaction
strength g for different combinations of spin-up and spin-down
particles. From Ref.[23].

independently[32]. In this sense, the reader should be aware that in-
dependent ion trapping is currently an advanced and well-developed
field of science and does not present much of a challenge in good
experimental groups. It is particularly interesting to note the trapped
ions in the context of quantum simulations and potential quantum
computers[33] whose qubits are physically represented by the elec-
tronic and hyperfine states of the ions. Qubits act as the quantum
equivalent of a bit, but are more general because they can exist in
states that are quantum superpositions of two base (logical) states, al-
lowing a wider variety of algorithms that are predicted to be orders
of magnitude more efficient than the classical ones. In connection
with the subject of quantum computers, it is necessary to mention
the achievements of the group of Prof. Rainer Blatt and his collabora-
tors who are involved in international projects: An ion-trap quantum
computer for Europe (AQTION), Quantum Information Systems Be-
yond Classical Capabilities: Special Research Programme (SFB) and
Industrial ion traps (Piedmons). Their groundbreaking work in the
past concerned, among others: Entangled states of trapped atomic
ions[34], Universal Digital Quantum Simulation with Trapped Ions[35],
Realization of a Quantum Walk with One and Two Trapped Ions[36],
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Quantum Simulation of Quantum Field Theories in Trapped Ions[37],
Quantum simulation of the Dirac equation[38], 14-Qubit Entangle-
ment: Creation and Coherence[39] and Quantum simulations with
trapped ions[40].

1.6 impurity physics

1.6.1 Polaron and rotating impurity

There is a special class of quantum systems which contains so-called
”impurity”. The history of impurity physics started with introduc-
tion of the polaron [41–44] which effectively describes deformation
of a crystal because of electric interactions with moving electron (see
Fig.5). Another examples of the importance of the impurities

Figure 5: A conduction electron in
an ionic crystal or a po-
lar semiconductor repels
the negative ions and at-
tracts the positive ions.
Figure from Ref.[45].

are Kondo effect[46] - suppres-
sion of electron transport due
to magnetic impurities in met-
als or the Anderson orthogonal-
ity catastrophe[47]. Further research
has gone beyond traditional solid
state physics and became inter-
esting also for experimentalists
in ultracold quantum gases[48].
A lot of effort has been made
to investigate the polaron problem
which is limited to coupling be-
tween translational degrees of free-
dom of the quasiparticle and the
bath. New ideas in this field are still
under consideration and they are
part of active research both in the-
ory and experiments[49–51]. Let us
mention: field-theoretical study of
the Bose polaron[52], the dynamics
of Bose polarons in the vicinity of a
Feshbach resonance between the im-
purity and host atoms[53] or nonperturbative renormalization group
approach to the Bose polaron strongly interacting with BEC[54]. In
the last years the new idea of rotating molecular impurities has
started to be considered[55, 56]. The conception of the rotating im-
purity is characterized by a quasiparticle called ”angulon” which is a
collective object consisting of a quantum rotor (molecule) immersed
in an atomic gas and characterized by the total angular momentum
of the system, of which it is an eigenstate. The main feature of this
quasiparticle is a coupling between rotational angular momentum of
the molecule and bath’s rotational degrees of freedom so the angular
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momentum is shared within the many-particle system. This phenom-
ena allows for redistribution of the angular momentum between the
impurity and the bath.

Figure 6: A rotating impurity im-
mersed in ultracold atomic
gas.

Despite the fact that angular
momentum belongs to the most
fundamental quantities in quan-
tum physics, a consistent theory
of the redistribution of the angu-
lar momentum has not been es-
tablished yet. The theory of an-
gulon introduced quasiparticle-
based approach to the redistri-
bution of the angular momen-
tum between the rotating impu-
rity and the bosonic bath. Fur-
thermore Dr. R. Schmidt and
Prof. M. Lemeshko in their work
discovered completely new phe-
nomenon without direct analog
in isolated systems, namely the rotational Lamb shift and many-body-
induced fine structure emerging due to the transfer of the angular mo-
mentum. The molecular impurity was immersed in a homogeneous
Bose-Einstein condensate and the hamiltonian was expanded in fluc-
tuations around a homogenous BEC of density n. The effective Hamil-
tonian is realized by the first term corresponding to the kinematics of
the impurity and the second to the bath and the last term accounting
for the absorption and emission of field quanta by the quantum rotor:

H = BĴ2+
∑
kλµ

ωkb̂
†
kλµb̂kλµ+

∑
kλµ

Uλ(k)[Y
∗
λµ(θ̂, φ̂)b̂†kλµ+Yλµ(θ̂, φ̂)b̂kλµ],

(16)

where k = |k|, and λ and µ define, respectively, the phonon angular
momentum and its projection onto the z axis and:

Uλ(k) = uλ[8nk
2εk/(ωk(2λ+ 1))]

1/2

∫
drr2fλ(r)jλ(kr) (17)

with jλ(kr) the sphetical Bessel function and fλ(r) represent the strength
and the shape of the potential in the respective angular momentum
channel λ. In Ref.[55] a variational anzatz for the many-body wave-
function was formulated as an expansion in the bath excitations.

|ψ〉 = Z1/2LM |0〉 |LM〉+
∑
kλµjm

βLMkλjC
LM
jmλµb̂

†
kλµ |0〉 |jm〉 , (18)

where ZLM = 1−
∑
kλ |β

LM
kλj |

2 and |0〉 is the the vacuum of bath excita-
tions. Furthermore L2 |ψ〉 = L(L+1) |ψ〉 and Lz |ψ〉 =M |ψ〉. The prop-
erties of the angulon were studied[55, 56] using the spectral function
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defined by the the retarded Green’s function: AL = =[GretL (E)]. Re-
sults are presented in Fig. 2.2. Due to anisotropic molecule-boson in-
tereaction we observe specific for the angulon additional shift whose
magnutude depends on L. This effect was called "Rotational Lamb
shift" and presented in Fig.7 as ∆̃RLSL = (EL − E0)/B− L(L+ 1).

Figure 7: Characteristic of the angulon taken from Ref.[55] (a) The angulon
spectral function, AL(Ẽ) as a function of the dimensionless density,
ñ = n(mB)−3/2 and energy Ẽ = E/B. (b) Differential rotational
Lamb shift for the lowest nonzero-L states. (c) Zoom in illustrating
the many-body-induced fine structure (MBIFS) of the first kind,
LL,0 → {L−L,0,L+L,0}, and of the second kind, L−L,0 → L−L−1,1. (d)
Spectroscopic signatures of the MBIFS for the L = 1 state. The
numbers indicate the corresponding values of ln(ñ).

Additionally with increase of the interaction another feature of
the angulon called many-body-induced fine structure (MBIFS) of the
first and the second kind appears which are respectively related to
the isotropic and the anisotropic part of the interaction. The angu-
lon theory has already had many further application for example:
study of the rotational spectrum of a cyanide molecular ion immersed
into Bose-Einstein condensates of rubidium and strontium[57], un-
derstanding the behavior of molecules interacting with superfluid
helium[58, 59], approach to the angulon based on the path-integral
formalism, which sets the ground for a systematic, perturbative treat-
ment of the angulon problem[60], diagrammatic Monte Carlo ap-
proach to angular momentum properties of quantum many-particle
systems possessing a macroscopic number of degrees of freedom[61],
approach to rotating impurities based on the notion of quantum
groups[62] and recently quantum impurity possessing both transla-
tional and internal rotational degrees of freedom interacting with a
bosonic bath[63]. All mentioned results are related to the interaction
between the impurity and the bosonic bath.
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1.6.2 Ion immersed in the atomic bath

There is a separate class of systems containing ionic impurity and
usually immersed in a cloud of cold atoms forming the Bose-Einstein
condensate[64–67]. It is worth emphasizing that for a long time such
hybrid ion-atom systems were not possible in the experimental im-
plementation in the quantum regime. Due to the difficulty of obtain-
ing sufficiently low temperatures[68], the researchers searched for the
best ion-atom mixture which, due to its physical and chemical proper-
ties, could be cooled down most easily. Schematically it is presented
in Fig.8. We can see that one of the candidates was a mixture of yt-
terbium ion with lithium[69, 70], which was later used in the first
experiment of ion-atom collisions in the quantum regime. Before this

Figure 8: S-wave scattering limits for different ion-atom mixtures. From
Ref.[71].

experiment, it was also considered to initiate ultracold ion-atom col-
lisions through the use of Rydberg molecules[71]. In this case, the
ion-atom collision was supposed to take place between the Rydberg
ionic core and the ground-state atom. Meanwhile, other chemical pro-
cesses such as ion-atom charge transfer [72] or the properties of the
ionic polaron in the BEC[66] were also considered.

Ion-atom collision processes are currently considered as two-body
processes. Three-body computations that could better explain the lat-
est experiments are still underdeveloped. The Fig.9 below shows the
results of the scattering calculations[73] performed 2 years before ob-
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taining the quantum regime in the mixture of ytterbium ion with
lithium atoms. The figure shows the spin exchange process for vari-
ous channels depending on the collision energy, at that time still for
arbitrarily selected scattering lengths. In later work, it was precisely
the matching of the appropriate scattering lengths that turned out to
be crucial for the explanation of the experimental results.

Figure 9: Spin-exchange rates: total and decomposed into different channels
for Yb/Li mixture. Coupled-channel scattering calculations, from
Ref.[73].





Part II

I O N - AT O M I N T E R A C T I O N A N D S C AT T E R I N G
T H E O RY

The ion-atom interaction is studied using interaction po-
tentials calculated with the electronic structure theory. The
interaction curves are calculated for singlet and triplet
electronic states. Using multichannel quantum scattering
and analysis of bound states, we calculate interesting prop-
erties of systems. This chapter describes the methods used.





2
I O N - AT O M I N T E R A C T I O N

This chapter summarizes the basic theoretical methods used in the
calculations and describes the phenomena studied.

2.1 introduction

In nature, there are many types of atoms, molecules, and ions with
complex interactions between them. Some of them are described by
standard electromagnetism, others require quantum mechanics, quan-
tum chemistry or quantum field theory. The methods discussed in
this chapter are relatively standardized, but it is interesting to ap-
ply them to new ion-atomic mixtures in conjunction with the experi-
ments performed. It is an effective tool in predicting new effects and
explaining the observed phenomena. The following will be discussed:
the calculation of potential energy curves, quantum scattering theory
and its properties in ion-atom interactions, asymptotic bound state
model and Feschbach resonances.

2.2 potential energy curves

Effective performance of scattering calculations requires prior knowl-
edge of the interaction curves with the best possible precision. Ob-
taining curves for various types of mixtures, for example, atomic
ion with an atom or molecular ion with an atom, requires the use
of sophisticated quantum chemistry techniques such as calculations
of the electronic structure, Hartree-Fock theory, multiconfigurational
self-consistent field or coupled-cluster method[74]. These methods
have been used many times[75–79] also in the context of ion-atom
systems[69, 80]. The ion-atom interaction potential within the Born-
Oppenheimer approximation can be calculated as the difference be-
tween the energies of the complex and the separated components[1]

VA++B = EA++B − EA+ − EB. (19)

This section will characterize the ion-atom interactions and discuss
the main assumptions of the coupled-cluster method.

2.2.1 Long-range part of the interaction

Ion-atom interactions due to the presence of an electric charge are
dominated by the induction term. This type of interactions is charac-

19
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terized by the dependence 1/R4, which is much stronger than typical
van der Waals interactions 1/R6. In the simplest situation, i.e. the
interaction of an ion in the S-state and an atom in the electronic
ground state, the potential can be approximated by the following
expression[1]:

V(R) ≈ −
Cind4
R4

−
Cind6
R6

−
C
disp
6

R6
, (20)

where the leading coefficient has a value related to the static electric
dipole polarizability of the atom, αatom and the charge of the ion q:

Cind4 =
1

2
q2αatom. (21)

It is responsible for the interaction of the ion’s charge with the in-
duced dipole moment of the atom. The next term which is related to
the quadrupole polarizability of the atom is understood as the inter-
action of the charge with the induced quadrupole moment,

Cind6 =
1

2
q2βatom. (22)

And the last term describing dispersions, which is the interaction be-
tween instantaneous dipole-induced dipole moments of the ion and
atom:

C
disp
6 =

3

π

∫∞
0

αion(iω)αatom(iω)dω. (23)

2.2.2 Molecular electronic structure theory

Large-scale electronic structure calculations are performed using the
coupled-cluster method or multireference methods. The coupled-cluster
method and its various variants are a key tool in calculating the inter-
action potentials in many very complex atomic, ionic and molecular
systems[74]. The starting point of the method is the wave function
written in the form:

|CC〉 = exp(T) |HF〉 (24)

with |HF〉 the Hartree-Fock reference state. The cluster operator takes
the following form:

T =
∑
µ

tµτµ, (25)

where operators:

[τµ, τν] = 0 (26)
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These operators, acting on the |HF〉 state, generate an excited elec-
tronic state:

τµ |HF〉 = |µ〉 . (27)

The cluster operator is divided into:

T = T1 + T2 + T3 + ..., (28)

where single excitations:

T1 =
∑
A,I

tAI a
†
AaI, (29)

double excitations:

T2 =
∑
A>B

∑
I>J

tABIJ a
†
AaIa

†
BaJ, (30)

and so on, finally the coupled-cluster energy is given by:

ECC = 〈HF| exp(−T)H0 exp(T) |HF〉 (31)

The calculations of the electronic structure of the considered Ba+/Li
and Yb+/Li mixtures were not the subject of a doctoral dissertation.
The data comes from previous publications by Michał Tomza.

2.3 quantum scattering theory

The theory of scattering in both the classical[81] and quantum world[1,
82–84] plays an important role in the description of phenomena and
interactions between bodies. Many physical quantities, such as cross
sections or scattering lengths, have their classical and quantum coun-
terparts, but the quantum description of collisions contains much
more information, such as the wave function, phase shift, and partial
wave expansion. In particular, the presence of higher partial waves in
collisions, understood as a non-zero cross section in a given wave, de-
fines the nature of the collision on the energy scale. In collisions that
are really low energy in the so-called ultracold regime we deal with
collisions in the lowest s-wave, i.e. with zero angular momentum in
relative rotational motion.

We start our discussion of collisions between a pair of particles with
the general Hamiltonian[82], which can later be specified for the case
under study

H = −
 h2

2µ
∇2 + Ĥint(τ) + V(r, τ). (32)

In the equation above, τ relates to internal degrees of freedom other
than the distance between the particles. Meanwhile, the first term is
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kinetic energy the next terms in the equation correspond to the inter-
nal Hamiltonian of the particles and the interaction potential. The in-
teraction potential between particles in specific spin states is indepen-
dently calculated using the quantum chemical methods mentioned
in the previous section. In general, to perform the scattering calcu-
lations and the analysis of the experimental results, we first need to
calculate the interaction potential for each considered mixture. At the
same time, there is still the freedom to multiply the potential by the
constant, which translates into the possibility of setting the desired
scattering length, which is essentially unknown. We use this feature
to explain the experimental results by treating the scattering lengths
as parameters.

In general, the wave function of colliding particles has the follow-
ing form:

Ψ(r, τ) = r−1
∑
i

φi(τ)ψi(r). (33)

{φi(τ)} are the base functions in the τ coordinates. Total wave func-
tion has components in each channel i. Since the wavefunction must
be regular at the origin, short range boundary conditions are super-
imposed

ψi(r)→ 0 as r→ 0. (34)

Using expansion from Eq.(33) in the Schrodinger equation and pro-
jecting onto a single channel functions, we obtain a set of coupled
scattering equations[82][

−
 h2

2µ

d2

dr2
− E

]
ψj(r) = −

∑
i

Wjiψi(r). (35)

The i, j indices contain all quantum numbers describing a given chan-
nel. Based on the above procedure, we can define the coupling matrix
W

Wji(r) =

∫
φ∗j (τ)

[
Hint(τ) + V(r, τ) +

L̂2

2µr2

]
φi(τ)dτ. (36)

Additionally, long-range boundary conditions are imposed in the form
of:

Ψ(r) =
r→∞ J(r) + N(r)K, (37)

where J(r) and N(r) are diagonal matrices which are defined by spher-
ical Bessel functions and K is symmetric matrix which is related do
the S-matrix

S = (1+ iK)−1(1− iK). (38)

If the S-matrix has been computed, we can obtain energy-dependent
quantities such as:



2.3 quantum scattering theory 23

• scattering length:

an(E) =
1

ikn

1− Snn
1+ Snn

, (39)

• partial elastic cross section:

σnel(E) =
π

k2n
|1− Snn|

2, (40)

• partial inelastic cross section:

σnel(E) =
π

k2n
(1− |Snn|)

2, (41)

where the channel wave vector is defined: kn =
√
2µ(E− E∞n / h2).

The calculations made for the experiment actually correspond to the
thermally averaged collision rate coefficients defined as: K = 〈  hkµ σ〉T .
The Hamiltonian describing the collisions of an atomic ion with an
atom is commonly used in the literature[1, 69, 85–87] as follows:

Ĥ = −
 h2

2µ

1

R

d2

dR2
R+

l2

2µR2
+ V̂(R)+ V̂ss(R)+ V̂so(R)+ ĤA+ ĤB (42)

The Hamiltonian includes the following terms:

• the interaction potential with dependence on spin S and MS:

V̂(R)
∑
S,MS

VS(R) |S,MS〉 〈S,MS| , (43)

• the spin dipole-dipole interaction:

Vss(R) = −

√
44π

5

α2

R3

∑
q

Y
q
2 (R̂)[ŝa ⊗ ŝb]

(2)
q , (44)

• the second-order spin-orbit term:

Vso(R) =

√
44π

5
λSO(R)

∑
q

Y
q
2 (R̂)[ŝa ⊗ ŝb]

(2)
q , (45)

• the atomic Hamiltonian with hyperfine and Zeeman terms:

Ĥj = ζjî · ŝj + geµBŝj ·B+ gjµNîj ·B. (46)

Moreover, in ion-atom interactions we can introduce the interaction
lenght scale R∗4 related to the C4 coefficient responsible for the leading
contribution to the ion-atom interaction (V(R) ≈ −C4

R4
). The coefficient

R4 will be useful as a size scale in determining, for example, the ion-
atom scattering length. Similarly, we can define the energy scale E∗

in the system. In the following equations, µ is the reduced mass.

R∗4 =

√
2µC4
 h2

and E∗ =
 h2

2µ(R∗4)
2

(47)
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2.4 feschbach resonaces

Controlling the scattering length using a magnetic field is a technique
called Feshbach resonance[88–90] and has been used many times in
experiments with cold atoms[91], molecules[92] and more recently
ion-atom systems[93]. This is a very important technique that under-
pins most research in modern ultracold physics. In this section, we
will provide a general idea of the formation of Feschbach resonances
and how to identify them.

We consider a simple model as shown in the Fig.10 which includes
two molecular potentials: Vbg(R) - open channel for collisions with
small energy E, asymptotically represents two free atoms and Vc(R) -
relates to the closed channel.

Figure 10: Two-channel Feshbach resonance model. In the figure, the open
and closed channels and the coupling between them are marked.
From Ref.[4].

The essence of the Feshbach resonance is the ability to control the
energy difference if the respective magnetic moments in the channels
are different. In such a situation, even a small coupling can lead to
resonance and mixing between the channels, this is when the bound
molecular state in the closed channel begins to approach the scatter-
ing state in the open channel. The Feshbach resonance as a function
of the magnetic field is often described by a simple model[4] that
expresses the value of the scattering length

a(B) = abg

(
1−

∆

B−B0

)
. (48)
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In the above equation, the parameters mean: abg - background scat-
tering length, ∆ - resonance width and B0 - position of the resonance.
The resonance parameters are visualized on the Fig.11.

Figure 11: (a) Scattering length as a function of the magnetic field. (b) The
binding energy in the molecular state with energy E close to the
Feshbach resonance. From Ref.[4]

Moreover, the fact that we can influence the value of the scatter-
ing length by means of the magnetic field results in the possibility of
controlling and changing the interactions between atoms. This situa-
tion also allows for the emergence of molecular bound states and the
formation of so-called Feshbach molecules[94–98] both fermionic and
bosonic, which have been successfully implemented in experiments
with cold atoms and Bose-Einstein condensate. Fig.11b shows the en-
ergy of a weakly bound molecular state. Such a state exists in the
region of strong coupling on the resonance side, where the scattering
length is positive. Binding energy close to the resonance is stated as
follows (defined to be positive Eb = −E):

Eb =
 h2

2µa2
, (49)

where: µ - the reduced mass and a - the scattering lenght.
The observation of Feshbach resonances in an experiment is often

associated with a sharp decrease in the number of atoms at the po-
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sition of the resonance, which is explained as three-body losses. It
is this scenario that was presented in the famous work, where Fes-
hbach resonances were observed in the Bose-Einstein condensate of
sodium atoms[89]. The Fig.12 shows that the losses occur exactly at
the Feshbach resonance.

Figure 12: Observation of the Feshbach resonance in BEC, from Ref.[89]. The
number of atoms clearly decreases at the resonance point, where
the scattering length tends to infinity.

Another particular consequence of the control with Feshbach reso-
nances was the measurement of Efimov states that are associated with
the three-body attraction through short-range resonant interactions[99–
102]. In order to better understand the importance of Feshbach res-
onances, it is worth recalling the example of the realization of the
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Bose-Einstein condensate of cesium atoms. Due to the very fast two-
body inelastic losses, it was impossible to efficiently cool the atoms
and, consequently, to obtain condensate, despite having previously re-
ceived other condensates: rubidium-87[103], lithium-7[104], potassium-
41[105], rubidium-85[106], sodium-23[107], hydrogen[108] and metastable
helium-4[109]. The condensate of cesium atoms was obtained only by
applying the Feshbach resonance technique that allows for re-tuning
the scattering length using a magnetic field[110]. Our research, in
which we obtained Feshbach resonances for the ion-atom system for
the first time, is also motivated by a complementary picture of quan-
tum tools and systems in which such phenomena can be measured.
Especially when the resonances in the ion-molecule system[92] and
between alkali and closed-shell atoms[111] were measured.

2.4.1 Asymptotic bound state model

Estimating the position of the Feshbach resonances can be very com-
putationally complex if we do not know parameters such as the scat-
tering lengths, the collision energy or the expected resonance struc-
ture. In particular, the appearance of resonances in higher partial
waves or the displacement or splitting of resonances related to the
spin-orbit coupling. Scattering calculations can answer this problem,
however, it requires a lot of computer resources and time. For this rea-
son, the asymptotic bound state model will first be presented that pro-
vides an estimate of the resonance positions using less computer re-
sources. This model[112] allows for the calculation of coupled bound
states in a two-body system. By analyzing the intersections of the
bound states, it is possible to estimate the position of the resonances.
In ABM model we devide hamiltonian into relative and internal parts:

H = Hrel +Hint. (50)

Relative Hamiltonian describes relative motion in the center of mass
system: kinetic energy, effective interaction and internal Hamiltonian:
internal energies of colliding atoms. The atomic Hamiltonian consists
of hyperfine and Zeeman terms:

HA = Hhf +HZ =
ahf
 h2
i · s+ (γes− γii) ·B, (51)

where: s,i - electron and nuclear spins, γe, γi - corresponding gyro-
magnetic ratios and Hint = HAα + HAβ . The colliding atoms are la-
beled with α and β and spin states of the colliding pair are described:
|αβ〉 = |fαmfαfβmfβ〉 Ultimately, the relative Hamiltonian for the sin-
glet or triplet interaction S, the vibrational state ν, and the rotational
state l, can be written:(

−
 h2

2µ

d2

dr2
+ VlS(r)

)
ψSlν (r) = εSlν ψ

Sl
ν (r), (52)
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where VlS(r) = VS(r) +
l(l+1) h2

2µr2
. In the ABM model, we solve the

Schrodinger equation using a limited set of eigenstates: |ψSlν 〉 |Ylml
〉

of Hrel and binding energies εSlν . Diagonalization of the full Hamil-
tonian is equivalent to solving following equation with restricted set
of bound states {|ψSlν 〉 |σ〉}, where |σ〉 = |SMSIMI〉 with I - the total
nuclear spin and MI - the corresponding magnetic quantum number.

det|(εSlν − Eb)δνlσ,ν ′l ′σ ′ + 〈ψSlν |ψS
′l
ν ′ 〉 〈σ|Hint|σ ′〉 | = 0, (53)

where Eb are eigenvalues of the full Hamiltonian. These eigenstates
define bound states in the system of coupled channels.

2.4.2 Scattering calculations

The scattering calculation is a computer demanding task and very of-
ten requires the use of large computing clusters. In such calculations,
we are interested in obtaining the quantities defined in the subsec-
tion 2.3, such as scattering lengths, elastic and inelastic cross sections.
They can be interpreted physically as spin-exchange processes or Fes-
hbach resonances. We use the Numerov method[113] to propagate
the Schrodinger equation, implemented in our own Python code and
in the form of QDYN and Molscat software. We solve a numerical
problem in the form:

d2Φ(R)

dR2
+ k2(R)Φ(R) = 0, (54)

where:

k2(R) =
2µ
 h
(E−W(R)), (55)

and the matrix W contains all the couplings present in the Hamilto-
nian. The scattering wavefunction is constructed in a fully uncoupled
basis set:

|iion,mi,ion〉 |sion,ms,ion〉 |iatom,mi,atom〉 |satom,ms,atom〉 |l,ml〉 ,
(56)

where: s,i refers to spin and nuclear spin for an atom and an ion.
Whereas l refers to the relative rotation. Propagating the Fn = Φn+1Φ

−1
n

ratio provides better numerical stability, so we use it instead of Φ:

Fn =

(
1+

h2

12
k2n+1

)−1(
2(1−

5h2

12
k2n) − (1+

h2

12
k2n−1)F

−1
n−1

)
(57)

Propagation starts from the classically forbidden area R0 and ends at
a sufficiently long distance Rmax with variable step h, where Rn =

R0 +nh. Knowing the long-range boundary conditions for Φ:

Φ(R) =
r→∞ J(r) + N(r)K, (58)
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we can calculate the matrices K and S from Fn propagation. Hence
the appropriate cross-sections and scattering lengths in selected chan-
nels. In multi-channel quantum scattering calculations, we include
all available channels and spin states in which collisions and other
processes may occur.

2.4.3 Influence of the spin-orbit coupling

In calculations for certain systems with a significant spin-orbit cou-
pling, we observe additional effects such as shifting or splitting Fes-
hbach resonances in higher partial waves[114, 115]. We identified a
very large spin-orbit coupling in the studied system: Ba+/Li, which
will be described in more detail in the following paragraphs. It was
typical that despite observing Fesbhach resonances dozens of times
in various atomic configurations and arrangements, in most cases
the resonances were measured in the s-wave, with some exceptions
where the coupling of the s-wave with higher waves was measured.
In the article [115] they measured for the first time direct coupling be-
tween an open channel d-wave and a closed channel d-wave. The mea-
surement performed on the ultracold mixture of 85Rb-87Rb atoms
showed clearly the splitting of the d-wave resonances, closely related
to the spin-orbit coupling. This example served us as an important

Figure 13: The d-wave Feshbach resonance. The splitting of the bound states
causes the splitting of the observed d-wave resonances corre-
sponding to the absolute value of the magnetic number. From
Ref.[115].

premise for the correct explanation of the nature of the resonances
in the barium ion with lithium atoms system. It can be seen that de-
spite the widespread use of the Feshbach resonance technique, the
coupling in higher partial waves, in particular for large spin-orbit
couplings, still remains a fresh research topic.





Part III

E X P E R I M E N T S W I T H I O N - AT O M S Y S T E M S

No theoretical effort is possible without the development
of experiments and vice versa. This chapter details the
great experiments carried out in Amsterdam and Freiburg.
The systems built there allowed to observe, measure and
later confirm theoretically the first ever ion-atom collisions
in the quantum regime and Feschbach resonances in the
ion-atom system.





3
E X P E R I M E N TA L T E C H N I Q U E S F O R I O N - AT O M
S Y S T E M S

The cooling techniques used in the field of cold atoms have a long
tradition[116–120] and their culmination was the first observation
of a Bose-Einstein condensate in 1995[103]. Later, various techniques
for cooling atoms[121–123] were refined and successively applied in
other experiments[124]. The basic methods of achieving the quan-
tum regime in the effective interactions of atoms include: the use of
Zeeman slower, Dopler cooling, laser cooling and evaporating cool-
ing. Typically, the atoms are placed in a magneto-optical trap (MOT).
These cooling methods will be briefly discussed in this chapter. For
ions, Paul or Penning traps are used[125, 126] , and for ion-atom sys-
tems, hybrid traps consisting of an ion trap and an atomic trap[1].
However, for ion-atom systems, cooling to temperatures low enough
to be considered a quantum regime requires much more effort. It is
related to the specificity of an electrically charged ion placed in a
trap with an alternating electric field, it causes additional effects that
hinder cooling, such as the so-called micromotion. This will also be
discussed in this chapter.

3.1 cooling techniques

3.1.1 Zeeman slower

The standard first stage of cooling the atoms is to use the Zeeman
slower[116]. This method of cooling makes it possible to cope with
the atoms that leave the oven at a temperature of several hundred
Kelvin, so even greater than room temperature. Finally, it is possi-
ble to reach temperatures even close to 1 K and trap atoms in the
magneto-optical trap. By using a laser beam that is opposite to the
direction of the atoms’ movement, we can cause the absorption of
photons in a selected atomic transition and then spontaneous emis-
sion without a specific direction, which will effectively slow down the
movement of atoms. The situation is unfortunately more complicated
due to the Doppler effect. Therefore, when the atoms decrease their
velocity, the frequency of the laser beam is seen differently, which
causes the laser beam to no longer match the atomic transition in
which we were absorbing the photons. The solution to this problem
is the use of spatially inhomogeneous magnetic field that changes
along the axis of the cylinder formed by the solenoids. By appropri-
ately adjusting the magnetic field, we can use the Zeeman effect to
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shift the atomic levels, in this way we obtain the matching of atomic
transitions to the laser frequency, eliminating the difficulties caused
by the Doppler effect. This is why the technique is called Zeeman
slower.

Figure 14: Typical protocol for pre-cooling atoms with Zeeman slower and
placing them in a magneto-optical trap. Figure from Ref.[6].

3.1.2 Doppler laser cooling

The basic idea behind Doppler cooling[119, 120] is the use of counter-
propagating laser beams of the same frequencyω. The laser frequency
is chosen slightly below the atomic transition frequency that we use
in the cooling process, sometimes in such a situation it is said that the
laser is red-detuned. This configuration causes atoms to "more read-
ily" absorb photons from beams that are directed opposite to their
motion. The effect is related to the shift of the frequency seen by the
atoms in the direction appropriate to the occurrence of the atomic
transition. The Doppler effect is responsible for this, hence it is often
referred to as Doppler cooling. Schematically it is shown in the Fig.15,
where we can see the rate of absorption depending on the direction

Figure 15: Ilustration of the Doppler cooling. Figure from Ref.[118].
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Figure 16: Ilustration of the Doppler cooling. Figure from Ref.[6]

of the velocity of the atom. Since photon absorption is related to the
momentum transfer to the atom in the direction of beam propagation,
the absorption process from two laser beams can be equated with the
frictional force slowing down the movement of atoms.

The final temperature is a product of the equilibrium that forms
between the cooling process and the randomness of heating atoms
related to the absorption and emission processes. It has been shown
that the minimum temperature that we are able to achieve in Doppler
cooling is limited by[118, 127]:

TD =  hΓ/2kB, (59)

where  h is the reduced Planck constant and kB the Boltzmann con-
stant. The parameter Γ is the rate of spontaneous emission of the ex-
cited state (and Γ−1 is the excited state lifetime). As can be seen from
the above equation, the minimum temperature that can be achieved
depends on the choice of the atomic transition, usually around tens
to a few hundred microkelvins depending on the atom and transition
selected.

3.1.3 Evaporating cooling

Evaporative cooling[128, 129] is used to achieve even lower tempera-
tures than laser cooling allows. Historically, this has been an impor-
tant contribution to the Bose-Einstein Condensate experiments. Evap-
orative cooling is based on the fact that if the particles leaving the
system have an energy greater than the average energy in the sys-
tem, the remaining particles in the trap are cooled down. The reason
why such a technique is effective lies in the fact that there are always
high-energy particles in the tail of the Maxwell-Boltzman distribution
that may exit the trap and allow the system to cool down. Energetic
atoms with energy above the threshold can evaporate from the trap,
lowering the temperature of the remaining atoms. It can be shown
very easily that the evaporation of the most energetic atoms leads
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to the cooling of the remaining atoms. Assuming that the energy of
the particle leaving the trap is:(1+ β)ε̄ [6], we can use the fact that
the total energy of all particles should be conserved. We denote the
change in the number of particles as dN (negative). The total energy
of the particles remaining in the trap is: E+ (1+β)ε̄dN with number
of particles: N+ dN. Hence the average energy per atom:

ε̄+ dε̄ =
E+ (1+β)ε̄dN

N+ dN
, (60)

what can be transformed into:

ε̄

ε̄(0)
=

(
N

N(0)

)β
. (61)

Now we can see directly that the energy of the particles in the trap
decreases as the number of particles decreases, taking into account
the β exponent.

Figure 17: Evaporative cooling scheme, εev is the evaporation threshold. Fig-
ure from Ref.[6]

3.2 hybrid ion-atom traps

In this section ion-atom traps will be announced, without going into
technical details, the principles of operation of the basic traps for
atoms and ions, and then the hybrid trap. The basic tool used in the
physics of cold atoms in almost every experiment at some stage in
the preparation of the system for measurements is a magneto-optical
trap (schematically presented on Fig.18). The magneto-optical trap
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Figure 18: Schematic energy diagram of an atom in a magnetic field affected
by counter-rotating laser beams. Illustration of the operation of
the magneto-optical trap. Figure from Ref.[130]

uses laser cooling and a spatially-varying magnetic field to keep the
neutral atoms inside. The trap is formed by 6 circularly polarized
laser beams crossing a quadrupole magnetic field. The principle of
operation of the trap is based on the use of the Zeeman effect, non-
homogeneous in space, which causes energy levels in atoms to shift.
Laser beams moving from opposite sides tuned below the resonance
frequency cause the atoms to absorb more photons from the beam σ−

on the z > 0 side and more photons from the beam σ+ on the z < 0
side (Fig.18). This creates an effective force in the z = 0 direction that
keeps the atoms at the center of the trap.

3.2.1 Optical dipole trap

Another important element of the systems used to study cold atoms
are optical dipole traps[131]. This type of trap, used e.g. in the Freiburg
experiment as an alternative to the radio frequency trap for ions, is
based on the interaction of laser light with an induced dipole mo-
ment. Without going into technical details, we will only show the
main feature of this trap. The induced dipole moment of atoms is re-
lated to the amplitude of the electric field by the factor α, i.e. complex
polarizability, dependent on the driving frequency

p = αE. (62)

The potential of the induced dipole moment in the driving field is as
follows[131]:

Udip = −
1

2
〈pE〉 = −

1

2ε0c
Re(α)I, (63)
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where the field intensity: I = 2ε0c|E|2. Hence, we obtain a dipole force
that is proportional to the field intensity gradient:

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r), (64)

which explains in a very simple picture the essence of the operation
of the ODT.

3.2.2 Paul trap

In experiments with hybrid ion-atom systems, the trap that was used
as a component to trap the ions was a quadrupole ion trap called the
Paul trap. It is well known that it is not possible to trap charged ions
in a static electric potential, and the use of optical traps also presents
some difficulties. This is the reason why time-varying potentials are
used. A typical configuration of a Paul linear trap (also known as a
radio-frequency trap) is shown in Fig.19. Schematically in Fig.19: com-

Figure 19: The linear Paul trap for charged ions. Figure from Ref.[32]

mon rf potential U = U0 cos(ωrft) is connected to the dark electrodes.
Lower part of the figure shows x-y electric fields from the applied rf
potential when the rf potential is positive relative to the ground. Ad-
ditionally, a static electric potential is created in the z direction.
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Figure 20: The hybrid ion-atom trap consists of an overlapping Paul ion trap
and an optical dipole trap. Figure from Ref.[132]

3.2.3 Hybrid trap

Finally, we come to the scheme of the hybrid ion-atomic trap. This
type of trap is a skilful combination of an optical dipole trap for
atoms and a radio-frequeancy trap for ions. Atoms are prepared inde-
pendently: cooled to ultra-cold temperatures and trapped. The same
thing happens with ions, they are prepared in the Paul trap. Only
later are two traps experimentally superimposed. The collision pro-
cess when the traps are crossed is the target of measurement.

3.3 micromotion in ion-atom systems

One of the side effects of holding an ion in a radio-frequency trap
is the appearance of a so-called micromotion, which is associated
with the movement of an electric charge in an alternating electric
field[1, 133]. Mathematical details aside, the main problem with mi-
cromotion is that when an ion-atom collides, additional energy may
be released. This issue has long caused a problem with the cooling of
ion-atom systems to the quantum regime, because in this case, addi-
tionally, the quantum regime requires a lower temperature than for
atoms. There are various sophisticated experimental techniques to
compensate micromotion, but the best solution was to use a mixture
with a very large mass ratio, such as ytterbium and lithium. This was
proposed well before the experiment[68].





4
Y T T E R B I U M I O N A N D L I T H I U M AT O M S I N
A M S T E R D A M

4.1 idea of the experiment

An experiment built at the University of Amsterdam by the Hybrid
atom-ion quantum systems group under the supervision of Prof. Rene
Gerritsma was crucial in the fundamental research of ion-atom sys-
tems. The experimental work on the ytterbium ion immersed in a
cloud of ultracold lithium atoms conducted by the group finally led
to the first ever observation of ion-atom collisions in the quantum
regime, i.e. s-wave collisions. In the context of our collaboration with
the Amsterdam group and our theoretical contribution to this achieve-
ment, it is reasonable to explain the details of the experimental setup
that was built there. In the following sections, information on the idea
of the experiment and technical details of its construction will be pre-
sented. Moreover, the results obtained in the experiment concerning
the cooling process of the ion-atom system and their interpretation
will be shown.

Figure 21: Experimental setup in Yb+/Li experiment in Amsterdam. From
Ref.[134]

4.2 experimental setup

Both cold atom and trapped ion systems have been successfully stud-
ied independently for a long time. Carrying out measurements simul-
taneously with cold atoms and ions is problematic and, as indicated
earlier, it is currently only possible for mixtures with a large mass
ratio. This is due to the fact that the charged ion in the Paul trap with
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an alternating electric field experiences additional movement, which
may cause the release of additional energy during collisions with an
atom. For this reason, the ion cannot reach a temperature that is low
enough to talk about the quantum nature of the collisions. However,
in the case of the Yb+/Li mixture, these problems were overcome
and the quantum regime was successfully achieved in an experiment
performed in Amsterdam. Fig.21 shows sketch of the experiment. Li
atoms are heated from an oven and slowed down in a Zeeman slower
towards the main chamber. Later they are combined with ytterbium
ion trapped in the Paul trap. The trap can operate at frequencies in
the range of: a typical radial potentialωrad = 2π× 100− 350KHz and
an axial potential up to ωax = 2π× 120kHz. The ion is cooled using
the Doppler technique, while the cloud of 5× 103 to 2× 104 lithium
atoms per spin in a mixture of states |1/2,±1/2〉 and temperature of
Ta = 2 − 10µK prepared in an optical dipole trap 50µm below the
ion Fig.22. Finally the atoms are transported up by repositioning the
dipole trap using piezo-controlled mirrors[135].

Figure 22: a. A cloud of ultracold 6Li atoms is prepared in an optical trap
50µm below a single ion in a Paul trap. The ion is then immersed
in the atomic cloud by transporting the atom trap up using piezo-
controlled mirrors. [134, 135] b. Diagram of ytterbium atomic
transitions used in cooling and detection. From Ref.[135].

4.3 cooling process

The experiment used Doppler cooling through the 369-nm atomic
transition between states S1/2 and P1/2. The ion cooling process pre-
sented in the Fig.23 begins around 600 µK, which is roughly the
Doppler cooling limit for this system. The ion is then immersed in
a cloud of ultracold atoms and buffer gas cooling is performed. Af-
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Measured energy budget in terms of kinetic energy and collision energy

type of motion Ekin/kB(µK) Ecol/kB(µK)

Radial secular ion 2× 21(±9)) 1.4(±0.6)
Intrinsic micromotion 2× 21(±9) 1.4(±0.6)
Axial secular ion 65(±18) 2.2(±0.4)
Excess micromotion 44(±13) 1.5(±0.4)
Total ion energy 193(±42) 6.6(±1.4)
Atom temperature 3/2× 2.3(±0.4) 3.3(±0.6)
Total collision energy - 9.9(±2.0)

Table 1: Measured energy budget in terms of kinetic energy and collision
energy in the Yb+/Li system. Data from Ref.[135].

ter a variable interaction time, the dipole optical trap is turned off,
while the ion is transferred from the ground S1/2 state to the long-
lived D5/2 state using the 411 nm atomic transition. Average kinetic
energy is obtained by studying laser excitations as a function of pulse
width. In particular, the occupation of thermally excited states causes
mixing of the frequency components and thus damping of Rabi os-
cillations. Hence, information about temperature can be obtained by
relating the observed excitations to a model assuming thermal distri-
bution. Finally assuming ion’s energy: Ei = Esec + EiMM + EeMM,
that is, the secular energy plus the energy due to the intrinsic (iMM)
and excess micromotion (eMM) and collision energy given by: Ecol =
µ
mi
Ei+

µ
ma
Ea with Ea = 3kBTa/2, large mass ratio: µ ≈ ma � mi we

obtain relative collision energy in the quantum regime (see in Tab.1).

Figure 23: Ion cooling process: a. Ion temperature as a function of atom–ion
interaction time, b,c, Measurement of radial ( T⊥sec = 42(±19)µK)
(b) and axial ( Taxsec = 130(±35)µK) (c) temperatures after 1s of
interaction time with an atomic cloud with Ta = 2.3(±0.4)µK
and after adiabatic decompression of the radial ion trap potential.
From Ref.[135].
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B A R I U M I O N A N D L I T H I U M AT O M S I N F R E I B U R G

5.1 idea of the experiment

The experimental setup built in Freiburg allowed for the first ever
observation of Feshbach ion-atom resonances using barium ion with
lithium atoms. In this chapter, the concept of this experiment will
be presented and the differences from the system built in Amster-
dam will be indicated. We have seen before that in ion-atom sys-

Figure 24: The experimental setup in Freiburg: bichromatic dipole traps (a)
and the experimental protocol (b), details in text. Figure from
Ref.[136].
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tems, a significant obstacle in achieving the quantum regime is the
so-called micromotion related to the presence of the radio-frequency
trap. In Freiburg, even before measuring resonances, they tried a dif-
ferent approach based on the use of optical traps for both the ion
and atoms. This approach has already been demonstrated in an ex-
periment with the sympathetic cooling of barium ion in a rubid-
ium atomic cloud[136], which was built on the basis of their previ-
ous experiments[137, 138]. The experimental setup is schematically
shown in Fig.24. The experimental process consists of four successive
stages: preparation, precooling, overlapping and bichromatic phase.
They use two lasers VIS and NIR to simultaneously trap the bar-
ium ion and the rubidium atomic cloud. Initially, the barium ion is
trapped in the linear Paul trap where the Doppler cooling process
is carried out. Later the ion is transported to a bichromatic optical
dipole trap, where the radio-frequency trap is turned off. They use
∆Ez and ∆Ey electric offset fields in the z and y directions. Finally,
they measure the survival of the ion by transport back to the radio-
frequency trap and fluorescence imaging on charge-coupled device.
This experiment, in which the Freiburg group prepared a mixture of
barium ion with a cloud of rubidium atoms at 370µK after Doppler
cooling and then demonstrated 100µK cooling after one collision, was
a prerequisite for the resonance measurement.

5.2 experimental setup

The experimental setup designed to observe the Feshbach resonances[93]
(Fig.25) is based on the previously discussed scheme. The lithium-
6 atomic cloud is initially prepared in a magneto-optical trap and
then transferred to the crossed optical dipole trap (xODT). Using op-
tical pumping, the atoms are prepared in the lowest hyperfine states:
|1〉 = |fLi = 1/2,mLif = 1/2〉 and |2〉 = |fLi = 1/2,mLif = −1/2〉. Using
evaporative cooling, we get 40× 103 6Li atoms at a temperature of
(1− 3)µK. The lithium atomic cloud is finally prepared in the |2〉 state
by using spin-selective absorption imaging of the state |1〉. A single
barium-138 ion is loaded into the radio-frequency trap (Ωrf = 2π×
1.433MHz, and secular frequencies ωBa

+

x,y,z = 2π× {123, 122, 7.6}kHz).
The ion is cooled down to the Doppler limit (about 365µK) using
the 6S1/2 → 6P1/2 transition (493nm). Finally, the ion is prepared in
an incoherent mixture of states: |6S1/2; sBa

+
= 1/2,mBa

+

s ± 1/2〉. The
barium ion is efficiently polarized into state: |sBa

+
= 1/2,mBa

+

s − 1/2〉
during first few collisions. The ion and atoms can interact with each
other for a time in the range of [100,300] ms.
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Figure 25: Observation of Feshbach resonances between a single ion and
ultracold atoms: experimental setup (a), barium ion stored in rf-
trap or optical dipole trap and atomic cloud in the crossed optical
dipole trap (xODT), a homogeneous magnetic field generated by
set of Helmholtz-coils. By tuning magnetic field, interaction time
or atomic density we observe different processes like two-body
elastic collision or inelastic three-body recombination (b). Figure
from Ref.[93]

5.3 detection of atom-ion feshbach resonances

Feshbach resonances are identified by barium ion loss spectroscopy.
In order to find the position of the resonances, the magnetic field
values are searched for step by step every 400 mG. For each localized
resonance, the interaction time is selected so as to obtain a survival
probability of the ion less than 50%. During the experimental process,
the range of the magnetic field [70,330] G was investigated and 11

resonances were found. The survival probability of the ion in a radio-
frequency trap is measured using a fluorescence detection, another
possibility is to transfer the ion to the optical dipole trap (ODT). The
relatively shallow ODT causes a limit on kinetic energy, resulting in
a finite optical trapping probability, which allows the efficiency of
sympathetic cooling to be tested. Details on identifying the nature of
individual resonances are presented in the following chapters.
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B U F F E R G A S C O O L I N G O F A T R A P P E D I O N T O
T H E Q U A N T U M R E G I M E

In this chapter we will present the results of the performed calcula-
tions and the details of the simulations made for the experiment with
cooling the mixture of ytterbium ion and lithium atoms to the quan-
tum regime. The results presented here were the basis for the work
with the experimental group from Amsterdam[135]. Not all calcula-
tions presented here were included in the publication, but they were
necessary because in fact guiding and confirmation of the experimen-
tal results was a longer way.

6.1 introduction

The starting point for calculating the ion-atom collision properties is
to identify the appropriate electronic states and to have interaction
potentials.

Figure 26: Nonrelativistic potential energy for (LiYb)+. From Ref.[69].
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The interaction potentials have already been calculated by Michał
Tomza and applied in the work on the cooling perspectives of the
ytterb-lithium mixture[69] and in the theoretical work predicting cer-
tain collision properties[73]. In our case, we are interested in the in-
teraction between the ground state ytterbium ion with the ground
state lithium atom (Fig.26). The result is an interaction in two elec-
tronic states: singlet (A1Σ+) and triplet (a3Σ+). The binding energies
of both states differ significantly[69], the singlet state is weakly bound,
having the binding energy: 358cm−1. In the case of the triplet state,
the binding energy is: 4609 cm−1, what can be justified on the basis
of molecular orbitals analysis.

6.2 hyperfine structure of the yb
+/li mixture

In order to simulate ion-atom collisions, we need knowledge about
the structure of the energy levels of the colliding components and
the mixture. This is necessary because we want to choose the proper
parameters corresponding to the experimental situation. In experi-
mental conditions, collisions take place in a magnetic field, so the
energy states we are interested in are the appropriate configurations
of electron and nuclear spins, in effect creating hyperfine states. We
diagonalize the following Hamiltonian in the basis of electron and
nuclear spins: |ψ〉 = |S,mS〉 |I,mI〉

Ĥ = geµBB0Ŝz − gnµNB0Îz + hAÎ · Ŝ, (65)

where: ge,gN - electron and nucler g-factor, µB,µN - Bohr and nu-
clear magneton, B0 - magnetic field and A - hyperfine coupling. We
take advantage of the fact that the hyperfine-coupling part of the
Hamiltonian can be written using the ladder operators:

Ĥhf = hA

(
Îz · Ŝz +

1

2

(
Î+ · Ŝ− + Î− · Ŝ+

))
. (66)

Since the Zeeman terms are diagonal in the chosen basis, this form of
hyperfine coupling results in a convenient form of the Hamiltonian
matrix from which we easily get hyperfine states for Lithium, Iter-
bium, Lithium-Iterbium mixture, and Barium in the next chapter. On
the following pages we present the hyperfine structure of Lithium-6,
Lithium-7, Ytterbium-171 and Ytterbium-174, and then mixtures of
Lithium-6 with Ytterbium-171 and 174, which were considered in the
experiment in Amsterdam. The presented results are divided depend-
ing on the total spin projection of the mixture, which is conserved in
this type of collision. The knowledge of hyperfine states of mixtures
is necessary in guiding and analysis of spin exchange processes ob-
served in the experiment.
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Figure 27: Hyperfine states of the Lithium-6 with labels |f,mf〉.
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Figure 28: Hyperfine states of the Lithium-7 with labels |f,mf〉.
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Figure 29: Hyperfine states of the Ytterbium-171 with labels |f,mf〉.
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Figure 30: Hyperfine states of the Ytterbium-174 with labels |f,mf〉.
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Figure 31: Hyperfine states of the Ytterbium-Lithium mixture with total
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Figure 33: Hyperfine states of the Ytterbium-Lithium mixture with total
MF = 1/2.

0 200 400 600 800 1000
Magnetic Field [G]

500

400

300

200

100

0

100

200

300

En
er

gy
 in

 m
K

171Yb + 6Li mixture with MF(Yb + Li) = 3/2

|1, 1>+|3/2, 1/2>
|1, 0>+|3/2, 3/2>
|1, 1>+|1/2, 1/2>
|0, 0>+|3/2, 3/2>

Figure 34: Hyperfine states of the Ytterbium-Lithium mixture with total
MF = 3/2.
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Figure 35: Hyperfine states of the Ytterbium-Lithium mixture with total
MF = −1.
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Figure 36: Hyperfine states of the Ytterbium-Lithium mixture with total
MF = 0.
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MF = 1.

6.3 multichannnel quantum scattering calculations

In this section, we present the quantum scattering calculations made
for a mixture of Lithium-6 with Ytterbium-171. This mixture, due
to its very large mass ratio, was proposed as one of the promising
candidates for cooling an ion-atom system to a quantum regime. It
is this feature that allows to minimize the micromotion in the ion
trap turned out to be the key in the experiment.The calculations that
were made for the experiment were initially burdened with inaccu-
racies related to the lack of knowledge of the scattering lengths and
the number of Langevin collisions. This is due to the fact that the
interaction potentials are not precise enough to calculate the theoret-
ical value of the singlet and triplet scattering lengths. Instead, the
scattering length can be set to a specific value by scaling the poten-
tial. Then, with such a selected potential, we solve the Schrodinger
equation in the full spin base by its propagation using the Numerov
method as described in the previous chapters. In this way, we can
create a grid representing the scattering length values for which we
have calculated values of the spin exchange probability correspond-
ing to the successive collision energies. The third parameter remains
the unknown number of Langevin collisions, which must also be cal-
culated. It is not possible without the use of experimental data, they
are included in the analysis by applying the χ2 function to test the
consistency of the spin-exchange probability prediction for a given
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Figure 38: Uniform scaling of the Yb+/Li interaction potential.

collision energy with respect to the experimental observation. The χ2

function was calculated in the space of the three parameters by the
interpolation techniques used, it allowed to locate the global mini-
mum that corresponds to the theoretical parameters describing the
experimental observation. Then, for the minimum found in this way,
a number of tests were carried out, including direct simulation with
the parameters found to exclude errors related to interpolation. The
found minimum clearly indicates one possible set of parameters. The
curve of the dependence of the spin-exchange probability versus the
collision energy fits very well with the experimental data and con-
firms their quantum character. In the classical theory of ion-atom col-
lisions, the above dependence should remain constant, here we see a
clear dependence on the collision energy.

6.3.1 Uniform scaling of the potential

As mentioned earlier, the interaction potentials are not precise enough
to calculate the scattering lengths. Instead, we use uniform potential
scaling to set a given scattering length

VS(r)→ λSVS(r). (67)

The scattering lengths for uniform singlet and triplet potential scal-
ing are shown above (Fig.38). The scattering lengths are given in
atomic units, in further analyzes we will use the scattering lengths
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expressed by the characteristic length scale for the Yb+/Li system:

R4 =
√
2µC4

 h2
= 1319.2a.u. .

6.3.2 Spin-exchange rates

As we know from the description of the experiment, the cloud of
cold lithium atoms is prepared in a 50/50 ratio in the two lowest spin
states: |1/2, 1/2〉 and |1/2,−1/2〉. At the same time, we start the mea-
surement with the ytterbium ion in the state: |1,−1〉. Therefore, we
consider the spin-exchange processes that change the initial state of
the ytterbium ion to the state: |0, 0〉, including the transition through
state |1, 0〉 and a much faster decay to |0, 0〉. Taking into account the
above conclusions and corresponding atomic states, we finally op-
erate in two subspaces of the total angular momentum projection:
MF = −1/2 nad MF = −3/2. Fig.39 shows schematically how mul-

Figure 39: Structure of energy levels studied in the spin-exchange processes
observed in Amsterdam.

tichannel quantum scattering calculations were performed. Namely,
we start with the input state marked in red in the middle, then we ex-
amine the transitions both directly to |0, 0〉 and transitions through
|1, 0〉. Since we have a mixture of lithium atoms with equal spin
state proportions, we add both spin exchange rate paths with equal
weights. Theoretical calculations are made for a collision energy rang-
ing from a few microkelvins to over a thousand microkelvins, includ-
ing 20 partial waves. As mentioned earlier, the scattering lengths were
used as parameters in the calculations. Then the calculated values
were convoluted with the energy distribution of the ion associated
with the applied external electric field

K̄(Ē,aS,aT ) =
∫E0+EeMM
E0

PEeMM(E− E0)K(E,aS,aT )dE. (68)

And finally, the probability of detecting the ion in the |0, 0〉 spin state
after preparing it in the |1,−1〉 state:

S(Ē,aS,aT ,nL) = 1− exp(−nLK̄(Ē,aS,aT )/KL), (69)
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Figure 40: Spin exchange rate in Yb+/Li experiment in Amsterdam. Experi-
mental points and theoretical curve. From Ref.[135].

where nL is the number of Langevin collisions and KL = 2π
√
C4/µ

is the Langevin collision rate coefficient.
Final spin-exchange probabilities optimized for the best parame-

ter configuration are shown together with the experimental data in
Fig.40. We see the direct dependence of spin exchange on the colli-
sion energy, which is a feature of quantum scattering. According to
Langevin’s theory[139], a similar behaviour is not observed in clas-
sical ion-atom collisions. This gives us together with observation of
shape resonances a significant confirmation on the theoretical and ex-
perimental level that we are dealing with collisions in the quantum
regime. The figure above additionally shows the height of the cen-
trifugal barrier for partial waves with l = 1,2,3,4 which is defined[1]:

Emaxl =
l2(l+ 1)2

4
E4 (70)

where: E4 =
 h2

2µR24
. Hence it can be seen that we are indeed in a

regime of few partial waves. However, as mentioned earlier, the red
curve in the figure corresponds to the optimal parameters, in order
to find it, calculations had to be made for the full set of possible pa-
rameters. For each set of parameters, convolutions were performed
with the experimental ion energy distribution, and then the spin ex-
change probability was calculated. On the basis of these results, using
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Figure 41: χ2 as a function of the singlet aS and triplet aT scattering lengths
with the number of Langevin collisions optimized for each set of
scattering lengths. From Ref.[135].

χ2 analysis, a map was obtained indicating the most optimal region
in the parameter space

χ2(aS,aT ,nL) =
Nexp∑
i=1

(
Sexp(Ēi) − S(Ēi,aS,aT ,nL)

σi

)2
. (71)

These results are shown in Fig41, where they clearly indicate the area
(χ2 minimum) around scattering lengths: aS = 1.2(±0.3)R4, aT =

−1.5(±0.7)R4 and number of Langevin collisions: nL = 1.2(±0.4). The
uncertainties of the predicted values were obtained by imposing that
χ2 gives a P value equal to or better than 0.05.

To better illustrate the fact that the above parameters were the only
optimal ones, we present Fig.42 and Fig.43 of the spin exchange prob-
ability depending on the scattering lengths and the number of colli-
sions in comparison to the optimal value and experimental data.

We can see that a small change in the parameters causes a signif-
icant deviation of the curve from the experimental data. When we
change the number of collisions, having the scattering lengths opti-
mal, the curve moves up or down. On the other hand, in the case of
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Figure 42: Spin exchange rate in Yb+/Li experiment in Amsterdam: depen-
dence on number of collisions.

as=R4 , aT=-1.5R4

as=1.5R4 , aT=-2R4

as=1.5R4 , aT=-0.5R4

as=1.2R4 , aT=-1.5R4

0 200 400 600 800 1000

0.40

0.45

0.50

0.55

0.60

0.65

Ecol/kB(μK)

S
p
in
fl
ip
p
ro
b
a
b
ili
ty

Figure 43: Spin exchange rate in Yb+/Li experiment in Amsterdam: depen-
dence on scattering length.
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changing the scattering length while maintaining the optimal number
of collisions, the curve both shifts and changes its shape completely.
The behavior of the spin exchange curve is fully consistent with the
image that emerges from the χ2 map. We have only one optimal set
of parameters, moving in each direction causes a drastic increase in
χ2, thus completely departing from the explanation of the experimen-
tal results. Thus, we justified the actual first observation of ion-atom
collisions in the quantum regime and first-ever shape resonances in
such a system.

6.3.3 Feshbach resonances

In this paragraph, the last one about the ytterbium-lithium mixture,
we will provide an estimate of the position of the Feshbach reso-
nances. Using the universal properties of the ion-atom interactions
and the quantum-defect theory, a universal spectrum of bound states
can be obtained[140]. Based on the above publication, we can estimate
the limitation for the least-bound vibrational states in the ion-atom
system. Then the intersection of bound states corresponding to the
Feshbach resonance should take place between these energies. For
the few of the least-bound states, we have the following estimate:

B−1 = −105.81 ∗ E4,

B−2 = −1179.9 ∗ E4,

B−3 = −5207.5 ∗ E4,

B−4 = −15308 ∗ E4.

(72)

This approach was selected for the initial phase of identifying areas
where Feshbach resonances may be present in an experimental con-
text. The results are shown in Figs.44-49, which relates to the com-
bination of Ytterbium-171 and Ytterbium-174 with lithium-6, all spin
projections are included. The analysis of the Feshbach resonances car-
ried out in this way had some value when we did not know the scat-
tering lengths. This gave us an overall estimate of potentially inter-
esting ranges of magnetic fields. Once we had theoretical scattering
lengths values, we were able to perform more accurate calculations,
results were presented in Figs.50-51 for Ytterbium-171 and MF = 1/2

or MF = −1/2. The elastic collision rate was calculated as a function
of the magnetic field, these are two-body processes, but they provide
information on the occurrence of resonance, also associated with the
scattering length explosion, for a specific value of the magnetic field.
Ultimately, the Feshbach resonances were not measured in Amster-
dam in the system of Ytterbium-Lithium mixture yet. For technical
and other reasons, the group focused on other project than the Fes-
hbach resonances project. At the same time, our collaboration with
the Freiburg group resulted in the first measurement of resonances
in Ba+/Li mixture, what will be the subject of the next chapter.
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Figure 44: Hyperfine states of the Ytterbium-Lithium mixture with MF =

−3/2 and four the least-bound states: full range and zoom.
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Figure 45: Hyperfine states of the Ytterbium-Lithium mixture with MF =

−1/2 and four the least-bound states: full range and zoom.
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Figure 46: Hyperfine states of the Ytterbium-Lithiumm mixture with MF =

1/2 and four the least-bound states: full range and zoom.
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Figure 47: Hyperfine states of the Ytterbium-Lithium mixture with MF =

3/2 and four the least-bound states: full range and zoom.
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Figure 48: Hyperfine states of the Ytterbium-Lithium mixture with MF =

−1 and four the least-bound states: full range and zoom.
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Figure 49: Hyperfine states of the Ytterbium-Lithium mixture with MF = 0

and four the least-bound states: full range and zoom.
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Figure 50: Hyperfine states of the Ytterbium-Lithium mixture with MF = 1

and four the least-bound states: full range and zoom.
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Figure 51: Feshbach resonances in Ytterbium-Lithium mixture for optimal
set of scattering lengths for MF = 1/2 and MF = −1/2.
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O B S E RVAT I O N O F F E S H B A C H R E S O N A N C E S
B E T W E E N A S I N G L E I O N A N D U LT R A C O L D
AT O M S

7.1 introduction

Obtaining the quantum regime in ion-atom collisions in the exper-
iment in Amsterdam with the ytterbium ion immersed in a cloud
of lithium atoms was a great achievement. As in the case of neutral
systems of cold atoms in the 1990s, when it opened a new field of
research, now it also brings further perspectives. Hence, the most nat-
ural and desirable step was to show the possibility of observing Fesh-
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Figure 52: Nonrelativistic potential energy for (LiBa)+.
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bach resonances in the ion-atom system. In the past, the Feshbach res-
onance technique was an essential tool for controlling the neutral in-
teraction of atoms, so also now it is one of the key tools for hybrid sys-
tems. In the experimental field, several leading research groups were
interested in observing resonances, including: Amsterdam, Freiburg,
Florence. Finally, the group from Freiburg working with a barium
ion immersed in a cloud of lithium atoms, supported by our theo-
retical calculations, was the first. The mixture of barium and lithium
was, next to ytterbium, indicated as one of the most promising in
the context of cooling to low temperatures and the observation of
resonances. This was mainly due to the large ion-atom mass ratio.
In the calculations, we use potentials in the singlet and triplet states,
which are the molecular ground state for this mixture (Fig.52). Un-
fortunately, due to the intersection of these states with excited states
and the large spin-orbit coupling, the real physical mechanism of res-
onances turned out to be more complex than originally expected. The
role of spin-orbit coupling in this system is still under investigation.

7.2 hyperfine structure of the ba
+/li mixture

As in the case of the Lithium-Ytterbium system, the starting point is
to investigate the structure of hyperfine levels. In the basis of electron
and nuclear spin states we diagonalize the Hamiltonian describing
the Zeeman effect and hyperfine coupling (eq.66). First, we present
the results for Barium-138 (Fig.53) and Barium-137 (Fig.54), in the
case of the first, the situation is extremely simple due to the lack
of a nuclear spin. The results for lithium are not repeated as they
were already shown in the previous section (Figs.27-28). In the next
step, the hyperfine states for all the considered isotopes of the mix-
ture of barium and lithium were presented. Starting with the ion-
atom mixture used in the experiment, i.e. Barium-138 with Lithium-6
(Figs.55-57). Before the experiment was performed, however, we also
considered other potential possibilities for ion-atom mixtures of these
isotopes. Hence, for the purpose of having complete documentation
of the tested systems and looking towards future calculations, the hy-
perfine states for the remaining mixtures of Barium-137, Lithium-6
and Lithium-7 isotopes are presented further in the section. Namely,
Figs.58-63 show a mixture of Barium-137 and Lithium-6 for differ-
ent total spin projections. Similarly Figs.64-67 correspond to barium-
138 and lithium-7 mixture. Finally, Fig.68-74 describe a mixture of
Barium-137 and Lithium-7 isotopes. The above-mentioned hyperfine
states were first used to estimate the position of resonances, when
their mechanism was not known yet, and the scattering lengths re-
mained unknown.
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Figure 53: Zeeman states of the Barium-138 with labels |f,mf〉.
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Figure 57: Hyperfine states of the Barium-Lithium mixture with total MF =

1.
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Figure 59: Hyperfine states of the Barium-Lithium mixture with total MF =

−3/2.
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Figure 61: Hyperfine states of the Barium-Lithium mixture with total MF =

1/2.
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Figure 63: Hyperfine states of the Barium-Lithium mixture with total MF =

5/2.
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Figure 65: Hyperfine states of the Barium-Lithium mixture with total MF =

−1/2.
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Figure 66: Hyperfine states of the Barium-Lithium mixture with total MF =
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Figure 67: Hyperfine states of the Barium-Lithium mixture with total MF =

3/2.
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Figure 69: Hyperfine states of the Barium-Lithium mixture with total MF =

−2.
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Figure 70: Hyperfine states of the Barium-Lithium mixture with total MF =

−1.
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Figure 71: Hyperfine states of the Barium-Lithium mixture with total MF =

0.
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Figure 72: Hyperfine states of the Barium-Lithium mixture with total MF =
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Figure 73: Hyperfine states of the Barium-Lithium mixture with total MF =

2.
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Figure 75: Nonrelativistic potential energy curves for the (BaLi)+ molecular
ion and spin-orbit coupling between the a3Σ+ and b3Π+ elec-
tronic states.

7.3 spin-orbit coupling

In a typical situation in alkaline gases, we observe collisions in which
MF is conserved, thus we deal with Feshbach resonances between
states with the same MF. However, anisotropic interactions like dipo-
lar spin-spin or second order spin-orbit coupling can mix internal
spins with rotational motion. In this case, only the total projection
MF +ml is conserved. This mechanism significantly increases the
number of resonances, but in the case of alkali atoms, this type of
resonance is usually very narrow. The second order spin-orbit cou-
pling for the Ba+/Li system is predicted to be very large, however
its strength is not obvious to estimate because the positions of the
molecular levels (related to scattering lengths) are unknown. The
crossing of the a3Σ+ and b3Π molecular levels is expected below the
collision energy threshold (Fig.75), for a distance of about 6a0, this
is the mechanism responsible for the large spin-orbit coupling. The
spin-orbit coupling coefficient in the second order can be calculated
from the perturbation theory with the non-relativistic electronic states
and matrix elements of the spin-orbit coupling Hamiltonian, where:
〈a3Σ+|HSO |(n)3Π〉 is the matrix element of the spin-orbit coupling
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between the a3Σ+ and (n)3Π electronic states. It is well approximated
by the first term

λSO(R) =
∑
n

2

3

| 〈a3Σ+|HSO |(n)3Π〉 |2

V(n)3Π(R) − Va3Σ+(R)
≈ 2
3

| 〈a3Σ+|HSO |b3Π〉 |2

Vb3Π(R) − Va3Σ+(R)
.

(73)

This term decays exponentially with R for large distances, hence the
following relationship can be obtained, the fit to the ab initio point at
large distances:

λSO(R) = A exp(−B(R− R0)). (74)

Finally, the effective dipolar-like spin-spin interaction resulting from
the magnetic dipolar spin-spin and second-order spin-orbit couplings
have form:

Hss =

(
−
α2

R3
+ λSO(R)

)√
6

2∑
q=−2

(−1)qC2−q(φ, θ)[ŝ1⊗ ŝ2]2q, (75)

where C2q(φ, θ) is the reduced spherical harmonic defined as Ckq(φ, θ) =√
4π/(2k+ 1)Ykq(φ, θ). and [ŝ1⊗ ŝ2]

(2)
q is the second-rank tensor formed

from the spin operators of atom 1 and ion 2. The action of this opera-
tor on the states can be summarized as follows:

• q = 0 term of Ĥss couples atomic and molecular states with
the same MF = M ′F , ml = m ′l and different l = l ′ ± 2. It also
couples states with the same MF = M ′F and l = l ′ for l > 0

and is then responsible for splittings of higher partial waves
resonances in the first order of perturbation.

• q = ±1 term of Ĥss couples atomic and molecular states having
MF = M ′F ± 1 and ml = m ′l ∓ 1 and l = l ′ ± 2 or l = l ′ ± 2, l ′
for l > 0.

• q = ±2 term of Ĥss couples atomic and molecular states having
MF =M ′F ± 2 and ml = m ′l ∓ 2 and and l = l ′ ± 2 or l = l ′ ± 2,
l ′ for l > 1.

The second order spin-orbit coupling is very large in the studied
system. This not only makes mF changing resonances observable, but
also splits higher partial wave resonances into multiple components.
Perturbation theory can be employed to estimate energy splittings
∆Eml of molecular levels:

∆Eml ∼ 〈l,ml|C20 |l,ml〉 〈φlmol| λSO(R)[ŝ1 ⊗ ŝ2]
(2)
0 |φlmol〉 , (76)

which translate to splittings of resonance positions via difference of
atomic and molecular magnetic susceptibilities δµ:

∆Bml =
∆Eml
δµ

. (77)



88 observation of feshbach resonances

7.4 interaction potentials in molscat

The Molscat program is a bit old-fashioned but very efficient software
for quantum scattering calculations, including spin-orbit coupling. In
order to use Molscat, it was necessary to modify the module respon-
sible for loading the interaction potential. The original module inter-
polated the potential using the RKHS method. Unfortunately, with
such a deep potential, wanting to additionally use scaling to set the
selected scattering length, the method turned out to be unstable. Even
the addition of higher terms in the method expansion turned out to
be ineffective. The solution was to completely change this module to a
different potential loading method. This method was to use the Morse
– long-range potential-energy functions[141]. The singlet and triplet
potentials were fitted to the formula below, and then implemented
with the most optimal parameters as a module for the Molscat pro-
gram

VS(R) = De

[
1−

uLR(R)

uLR(Re)
exp (−φ(R)yp(R))

]2
−De, (78)

where: De and Re are the potential depth and equilibrium distance.
The long-range part of the potential has following form:

uLR = −
C4
R4

−
C6
R4

, (79)

and other used functions:

yp(R) =
Rp − Rpe
Rp + Rpe

, (80)

φ(R) = ϕ∞yp(R) + (1− yp(R))

4∑
i=0

ϕiy
i
q(R), (81)

where: ϕ∞ = ln
(

−2De
uLR(Re)

)
. The interaction potentials were tested

with different p, q parameters, the best fits are summarized in the
Tab.2 below. In addition, we used the following coefficients: C4 =

1.41125 · 106 and C6 = 2.07908 · 107 in units that take into account that
the measure of length is angstrom and the potential is expressed in
inversed centimeters. After such an introduction of the potential to
the calculations in the Molscat program, we achieved full compati-
bility of the results for the same scaling parameters with the earlier
scattering calculations.
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List of the optimal parameters

parameters singlet triplet

p 2 3

q 2 3

De[cm
−1] 11851.02546 5190.833438

Re[Å] 3.54041 3.96856

ϕ0 -2.69216 -1.4696

ϕ1 -1.39898 -0.396147

ϕ2 -3.72279 -1.34978

ϕ3 -2.87921 -0.724098

ϕ4 7.52448 2.30637

ϕ5 15.4607 3.34419

Table 2: List of the optimal parameters of the Morse – long-range potential-
energy functions in the Molscat

7.5 position of the feshbach resonances

7.5.1 First estimation

The first estimation of the position of the Feshbah resonances in
the mixture consisting of barium ion and lithium atoms was made
long before the experimental measurements began. As in the case
of the ytterbium ion system (paragraph 6.3.3), we use the univer-
sal properties[140] of the ion-atom interaction and estimate the least-
bound vibrational states. According to this approach, the resonance
should be above the lower limit where the states intersect. The results
were presented only for the mixture used in the experiment: Barium-
138 with Lithium-6 (Figs.76-78). Of course, this type of estimation is
not very precise, especially considering the mechanism of Feshbach
resonances caused by the spin-orbit coupling.

7.5.2 Multichannel quantum scattering calculations without Spin-Orbit
coupling

In order to reliably describe the processes taking place in the experi-
ment, more accurate methods are needed. Our first approach was to
use multichannel quantum scattering without spin-orbit coupling. At
that time, we underestimated the importance of spin-orbit resonances.
We thought that the experimental observations could be explained
under the standard approach. We tested two spin configurations that
were presented to us by the experimental group: MF = −1 and MF =

0, assuming lithium atoms in the state: |fLi = 1/2,mf,Li = −1/2〉. The
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Figure 76: Hyperfine states of the Barium-Lithium mixture with MF = −1

and four the least-bound states: full range and zoom.
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Figure 77: Hyperfine states of the Barium-Lithium mixture with MF = 0

and four the least-bound states: full range and zoom.
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Figure 78: Hyperfine states of the Barium-Lithium mixture with MF = 1

and four the least-bound states: full range and zoom.
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calculation of the Feshbach resonances by the multichannel quantum
scattering method is much more difficult than the calculation of the
collisions in the quantum regime and the spin exchange in the ytter-
bium experiment. This is due to the fact that we do not know the
singlet and triplet scattering lengths as before, but also the configura-
tion of resonances and their number. we do not know how to scale the
potential and what scattering length should be set, so it is necessary
to test a reasonable scattering length grid. In the case of resonance
configurations, the matter is more complicated, we know basically
nothing at the starting point. We can expect resonances in s, p and
d waves in the considered collision energy range. We do not know
which of them correspond to which resonance in the observations
and how many should be observed. Therefore, apart from the scat-
tering length, we had to assume all possible variants of resonances
and check how they influence the measure defined as the sum of the
squares of the distance from the measured position.

χ2(aS,aT ) =
Nexp∑
i=1

(
B
expt
i −Btheoi (aS,aT )

)2
. (82)

Fig.79-80 show the resonances for several scattering length configu-
rations both MF = 0 and MF = −1. The resonances have been di-
vided into the three lowest partial waves: s, p, d. We can observe a
large level of variability in the behavior of resonances depending on
the change in scattering parameters. Both the number of resonances
and the partial wave in which they occur changes. Fig.81 also shows
the expected disappearance of resonances for the same singlet and
triple scattering lengths. This confirms that the calibration of both po-
tentials is correct and the propagation methods are properly conver-
gent. Despite carrying out massive calculations for a large scattering
length grid and numerical testing of all possible partial wave con-
figurations, the multi-channel quantum scattering approach without
spin-orbit coupling did not give fully satisfactory results. Even the
best fit of the resonance positions was not good enough. There were
discrepancies in the number of resonances and the acceptable accu-
racy with respect to the experiment. There were also doubts as to
whether all resonances had been measured. At the same time, tests
were performed using the asymptotic bound state model, which is
much less demanding in terms of computer resources. It allows to
determine the bound states in the system at a lower cost and thus
to estimate the positions of resonances. Bound states determined by
the Molscat module were compatible with those obtained from the
asymptotic bound state model, but the preparation and obtaining of
results were definitely less convenient and impractical. Therefore, the
final estimation of resonances was based on the asymptotic bound
state model.
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Figure 79: Feshbach resonances of the Barium-Lithium mixture with projec-
tion MF = 0.
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Figure 80: Feshbach resonances of the Barium-Lithium mixture with projec-
tion MF = −1.
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Figure 81: Feshbach resonances of the Barium-Lithium mixture for identical
scattering lengths.

7.5.3 Thermal distribution

So far, when analyzing the ion-atom Feshbach resonances, we have
completely ignored the role of thermal distribution of the ion in the
radio-frequency trap. Considering that the ion is immersed in the
buffer gas and is also subject to micromotion in the trap, we can ex-
pect that we need a more general energy distribution. Indeed, this
scenario is confirmed by experimental observations and theoretical
work. Its consequence is that the mean energy of the ion may in fact
be several times greater than the energy of the buffer gas than would
result from the thermodynamic equilibrium, moreover, the energy of
the ion does not belong to thermal distribution. Experimental obser-
vations are often modeled by the Tsallis distribution[142–146]:

f(E) =

(
nT
〈β〉

)−k−1
Γ(k+nT + 1)

Γ(k+ 1)Γ(nT )

Ek(
〈β〉E
nT

+ 1
)k+nT+1 (83)

where: E - the ion’s energy, Ek - corresponds to the density of states
(k=2 for a 3D harmonic oscillator), 〈β〉 represents the mean value of
the β = 1/(kBT) and the Tsallis exponent nT measures "distance"
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from the thermal equilibrium, with nT → ∞ for the thermal equi-
librium. Therefore, our goal was to check how the Tsallis distribution
affects the visibility of resonances, their width and position, including
the identification of the correct value of the magnetic field. After car-
rying out the scattering calculations for the collision energy from 1 to
500 microkelvins and convolution with the Tsallis statistic, it turned
out that the thermal effect introduces some corrections, but does not
fundamentally affect the identification of resonances.

7.5.4 Bound states

As mentioned earlier, determining the correct set of resonances and
scattering lengths was a process consisting of a combination of: hy-
perfine state analysis, multichannel quantum scattering without spin-
orbit coupling in QDYN and Molscat, analysis of bound states using
the asymptotic bound state model and the Molscat program and tri-
als taking into account the spin-orbit coupling in the ABM model
and the Molscat program. Each of these steps was important at some
stage, because even if it was inefficient, it confirmed the effective-
ness and correctness of another method. In this case, the asymptotic
bound state model, due to its lightness, turned out to be much more
effective in determining the position of resonances. In particular, the
search for the right set of scattering lengths, potential scaling and
the determination of bound states on this basis is much faster than
in the case of quantum scattering calculations. Then the positions
of the resonances are determined by the intersections of the bound
states, which can be easily identified. Figs.82-83 show the states with
four vibrational levels included related to the situation with optimal
scattering lengths without spin-orbit coupling. Bound states are pre-
sented for mF = -1,0,1 in relation to atomic states -1,0,1 for partial
waves l = 0 or l = 1.2. Details on how the identification of the optimal
scattering lengths was achieved will be provided in the next section.
At this point, it should be noted that in the general situation, for dif-
ferent sets of scattering lengths, the diagram of bound states is not
clearly legible to the naked eye. Numerical analysis is required in or-
der to extract relevant information and compare the diagrams with
each other, so we only show the optimal set. As we know, the occur-
rence of spin-orbit coupling can cause mF changing resonances and
splitting in higher partial waves. Undoubtedly, splitting resonances
could appear in experimental observations, but at the moment there
is no effective theoretical model that takes into account all these ef-
fects together. Finally, only the mF changing resonances in the s-wave
were included in the model. This proved important enough to explain
the resonances and assign the scattering lengths in a situation where
standard resonances for physical reasons were not observed.
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Figure 82: Binding energies without spin-orbit coupling for Ba+/Li mixture
for aS = 0.236R4 and aT = −0.053R4 (R4=69nm) - mF = 0
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Figure 83: Binding energies without spin-orbit coupling for Ba+/Li mixture
for aS = 0.236R4 and aT = −0.053R4 (R4=69nm) - mF = 1 and
mF = −1

7.6 final conclusion on the experimental results .

After a long process of analyzing a very complex structure of all possi-
ble resonance configurations, we have reached the final stage, where
we have managed to assign a reasonable theoretical explanation to
the experimental observation. The full model including higher par-
tial waves was still not well developed, so we limited ourselves only
to s-wave resonances to avoid unwanted errors. The original theoreti-
cal best estimate, derived from multichannel quantum scattering, was
to identify 5(1) resonances in the area under study. Unfortunately,
this explanation assumed the possibility of only a spin-projection-
conserving interaction (δmF = 0), which turned out to be insuffi-
cient. Finally, in the experiment in the magnetic field in the range
of B ∈ [70, 330]G: 11 resonances were observed (Fig.85). We know
from the theoretical part that the spin-orbit coupling significantly in-
fluences the mixing of internal spins mF with rotational spins (l,ml),
especially in the barium-lithium system, this coupling is very large.
This means more observed resonances and mF changing couplings
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can also split or shift resonances in higher partial waves. At the same
time, it has no effect on s-wave resonances up to the first order. In
the context of this project, we used the term "l-wave resonance" to
denote the situation in which the entrance channel is coupled to the
l-wave molecular level. In the published work, resonances which cou-
ple the mF = −1 entrance channel to the s-wave were located. Reso-
nances were localized by minimizing the χ2 (Eq.82) function depend-
ing on the singlet and triplet scattering lengths. Initially, 9 resonances
were measured: 80.47G, 93.59G, 143.29G, 157.42G, 270.86G, 272.59G,
296.31G, 307.41G, 316.31G, far too many to describe them as s-wave
resonances.

Figure 84: Binding energies of molecular mF = -1 and mF = 0 levels, that is
relative energies of molecular levels vs atomic threshold for the
optimal set of scattering lenghts. Internal data from unpublished
preprint (A.Wojciechowska et al.)

The solution to this situation was the calculation of all possible com-
binations of subsets, where the 2-element subsets were too small to
assign scattering lengths, while 4 and more-element subsets could not
be described by the theoretical model used. One of the 3-element sub-
sets required additional s-wave resonance for a 172 G magnetic field,
which was later measured in the experiment. This allowed to find the
best fit of the 4 s-wave resonances in the measured positions: 80.47G,
143.29G, 173.0G, 316.31 G for the scattering length: aS = 0.236R4
and aT = −0.053R4. The χ2 for other configurations was significantly
larger, the model completely omits the explanation of resonances in
higher partial waves. The Fig.84 shows the bound states for the op-
timal set of scattering lengths, from which the identified resonances
can be recognized (where colors code triplet admixture). A summary
of the measured Feshbach resonances is finally shown graphically in
Fig.85 and in the table 3.
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Figure 85: Experimental ion survival probability in the function of mag-
netic field for single 138Ba+ ion embedded into 20(2)× 103 spin-
polarized 6Li atoms. The theoretical positions of the s-wave reso-
nances are indicated by red dashed lines. From Ref.[93]

List of the measured resonances

Bexp[G] ∆exp[G] Btheos [G] tint[ms]

80.47(21) 4.2(1.1) 81.2 300

93.59(9) 1.6(4) 100

143.29(31) 5.3(1.3) 143.3 300

157.42(19) 2.2(7) 300

165.4(4) 4.0(1.1) 300

173.0(2) 2.5(5) 172.5 300

270.86(5) 0.76(24) 300

272.59(3) 0.4(1) 300

296.31(19) 3.4(7) 300

307.38(14) 1.6(5) 200

316.31(11) 1.3(5) 316.4 200

Table 3: List of the measured resonances for the entrance channel:
|sBa

+
= 1/2,mBa

+

s = −1/2〉+|fLi = 1/2,mLif = −1/2〉 with system-
atic errors including daily drifts and calibration uncertainties and
theorethical prediction for s-wave resonances. Data from Ref.[93].
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AT O M - M O L E C U L E I N T E R A C T I O N

8.1 introduction

In physics, the problem of an impurity is a well-known issue. As men-
tioned in the introduction, it can be an impurity having translational
degrees of freedom as well as rotational degrees of freedom. Here we
would like to focus on the analytical approach to a rotating impurity,
but only in the two-body description. This approach is more precisely
a description of the effective atom-molecule interaction. Such an effec-
tive description of the atom-molecule interaction can be introduced
mathematically with the aid of a pseudo-potential, which represents
the properties of the system with mathematical simplicity, and also
ensures the self-adjointness of the Hamiltonian. This approach to the
problem has been used many times, starting with the famous work
on the interaction of two cold atoms, where the regularized contact
potential in the form of the Dirac delta was used[22]. In this case,
the pseudopotential will be a bit more general, as it will contain the
anisotropic character of the atom-molecule interactions and take into
account the rotational structure of the molecule. To begin with, we in-
troduce the general Hamiltonian representing the atom and molecule,
specifically the kinetic terms, the isotropic harmonic potential, and
the rotational structure

Ĥ0 = −
1

2m1
∇21 −

1

2m2
∇22 +

1

2
m1r

2
1 +

1

2
m2r

2
2 +Bĵ

2. (84)

By introducing the following notations, we can divide the Hamilto-
nian into the motion of the center of mass and the relative motion

R =
m1r1 +m2r2
m1 +m2

and r = r1 − r2

µ =
m1m2
m1 +m2

and M = m1 +m2

(85)

After transforming the coordinates, we get:

Ĥ0 = −
1

2M
∇2R −

1

2µ
∇2r +Bĵ2 +

1

2
MR2 +

1

2
µr2. (86)

We assume that atom and molecule interact with each other via anisotropic
potential:

Ĥ = Ĥ0 + V̂(r, θ), (87)

where the general form of the anisotropic potential can be divided
into isotropic and anisotropic parts:

V̂(r, θ) = V̂sph(r) + V̂anis(r, θ). (88)

103
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Having the initial information on the physical system and the nota-
tion used, we move on to the introduction of the anisotropic potential
in the next section.

8.2 pseudo-potential

As mentioned earlier, we are introducing the analytical effective po-
tential, called a pseudopotential[7]. The pseudopotential represents
the physical properties of the interaction and has correctly defined
operators in the mathematical context. This approach has been used
many times in various situations: anisotropic interactions[147–149],
for dipoles[150], or for spin-orbit interactions[151, 152]. In our case,
for the atom-molecule interaction, in particular, it contains the anisotropy
of the interaction and the possibility of angular momentum flow be-
tween the rotation of the molecule and the relative rotation. We start
with the general form of the expression with the reactance matrix
Kl
′m ′
lm parametrizing the multichannel scattering for the angular mo-

mentum of the relative rotation: l,m, l ′,m ′:

V̂
ps
JMΦ = −

 h2

2µ

∑
lm,l ′m ′

Kl
′m ′
lm

kl+l
′+1
V̂lm,l ′m ′
JM Φ, (89)

and the operator V̂lm,l ′m ′
JM for total angular momentum J, its action

on states has the following form:

V̂lm,l ′m ′
JM ψ(~r) =

(2l)!(2l+ 1)
2l+l

′
l!l ′!

∑
jmj

CJMlmljmj
Yjmj

(Ωj)Ylml
(Ωl)

1

r2
1

l!

( ←−
∂l

∂rl

)
δ(r)

×

 ∂

∂r2l
′+1

rl ′+1 ∫ dΩj ′ ∑
j ′mj ′

CJMl ′ml ′j
′mj ′

Y∗j ′mj ′
(Ωj ′)

∫
dΩl ′Y

∗
l ′ml ′

(Ωl ′)ψ(~r)


r=0

,

(90)

where: Yl,ml
- spherical harmonics, CJMlmljmj

- Clebsch-Gordan coef-
ficients and indices j,mj correspond to the rotational states of the
molecule. It can be shown that the scattering lengths for this type of
contact anisotropic interaction can be introduced as follows:

al,l ′ = − lim
k→0

Kl
′m ′
lm

kl+l
′+1

, (91)

We expand the wave function ψ into eigenfunctions of the isotropic
harmonic oscillator and spherical harmonics describing the relative
rotation and the molecule rotation:

ψ(~r) =
∑
n,l,jmj

anlmljmj
Rnl(r)Ylml

(Ωl)Yjmj
(Ωj), (92)
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where:

Rnl(r) =

√
2l+2

(2l+ 1)!!π1/2L(l+1/2)n (0)
e−r

2/2rlL
(l+1/2)
n (r2) (93)

and L(α)n - generalized Laguerre polynomials.
Using the introduced terminology, for selected values of the total

angular momentum J = 0,1,2, we can act the pseudo-potential opera-
tor on the wave function, and then carry out a projection on the basis
states. Then we will obtain equations, the solution of which will allow
us to obtain the relationship between energy and scattering lengths.

8.2.1 Solution for J = 0

We start our analysis with the case J = 0, then the pseudo-potential
has the following form:

V̂
ps
00ψ =

 h2

2µ

[
asV̂

00,00
00 + asp(V̂

10,00
00 + V̂00,10

00 ) + appV̂
10,10
00

]
ψ. (94)

8.2.1.1 s-p coupling

Using the general formula, we calculate the action of each term:

V̂00,00
00 ψ = Y00(Ωj)Y00(Ωl)

1

r2
δ(r)

∂

∂r

(
r
∑
n

an00Rn0(r)

)
(95)

V̂10,00
00 ψ = 3C0010,10Y10(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
∂r

(
r
∑
n

an00Rn0(r)

)
r=0

(96)

V̂00,10
00 ψ =

1

2
Y00(Ωj)Y00(Ωl)

1

r2

× δ(r) ∂
3

∂r3

(
r2C0010,10

∑
n

an11Rn1(r)

)
r=0

(97)

V̂10,10
00 ψ =

3

2
C0010,10Y10(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
3

∂r3

(
r2C0010,10

∑
n

an11Rn1(r)

)
r=0

(98)

Finally, we get two equations that we can solve in a standard way by
eliminating A and B, which are a shortened notation of the respective
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sums standing next to a given term. This is possible by inserting anlj
coefficients from the equations below into them

(εk00 − ε)ak00 + R
∗
k0(0)

(as
2
A+

asp

4
B
)
= 0, (99)

(εk11− ε)ak11+

(
∂

∂r ′
R∗k1(r

′)

)
r ′=0

(
3asp

2
A+

3app

4
B

)
C0010,10 = 0.

(100)

Then we get:

2

S00
− as −

a2sp

( 4
3S11C

00
10,10

− app)
= 0, (101)

where sums:

S00 = 4
Γ(−ε/2+ 3/4)

Γ(−ε/2+ 1/4)
, (102)

S11 = −
25

3
C0010,10

Γ(−ε/2+B+ 5/4)

Γ(−ε/2+B− 1/4)
, (103)

are calculated from the general rule shown in the appendix A.1.

Γ(−ε/2+ 1/4)

2Γ(−ε/2+ 3/4)
− as −

a2sp

(−
3Γ(−ε/2+B−1/4)
23Γ(−ε/2+B+5/4)

− app)
= 0. (104)

8.2.2 Solution for J = 1

The next case we take into account is J = 1, then the pseudo-potential
takes the form:

V̂
ps
10ψ =

 h2

2µ
[asV̂

00,00
10 + asp(V̂

10,00
10 + V̂00,10

10 )

+ asd(V̂
20,00
10 + V̂00,20

10 ) + appV̂
10,10
10 + addV̂

20,20
10 ]ψ.

(105)

8.2.2.1 s-p-d coupling

Using the same technique as before (details in the appendix A.2), we
get the equations:

(εk01−ε)ak01+R
∗
k0(0)

(as
2
C1000,10A+

asp

4
C1000,10B+

asd
16
C1000,10C

)
= 0,

(106)

(εk10−ε)ak10+

(
∂

∂r ′
R∗k1(r

′)

)
r ′=0

(
3asp

2
C1010,00A+

3app

4
C1010,00B

)
= 0,
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(107)

(εk21−ε)ak21+

(
1

2

∂2

∂r ′2
R∗k2(r

′)

)
r ′=0

(
15asd
2

C1020,10A+
15add
16

C1020,10C

)
= 0.

(108)

Here again, A, B, C are shorthand for the sums appearing in expres-
sions. After substituting the coefficients, they were changed to the
shorthand notation X, Y, Z.

−X+
as

2
S01X+

asp

4k
S10Y +

asd
16k2

S21Z = 0, (109)

−Y +
3asp

2k
S01X+

3app

4k2
S10Y = 0, (110)

−Z+
15asd
2k2

S01C
10
20,10X+

15add
16k4

S21C
10
20,10Z = 0. (111)

After solving the system of equations, we get:

−
2

S01
+ as +

a2sp

( 4
3S10

− app)
+

a2sd
( 16
15S21C

10
20,10

− add)
= 0, (112)

where:

S21 = −

√
2

5

29

15

Γ(−ε/2+B+ 7/4)

Γ(−ε/2+B− 3/4)
, (113)

S10 = −
25

3

Γ(−ε/2+ 5/4)

Γ(−ε/2− 1/4)
, (114)

S01 = 4
Γ(−ε/2+B+ 3/4)

Γ(−ε/2+B+ 1/4)
, (115)

which were calculated in appendix A.3 and finally:

Γ(−ε/2+B+ 1/4)

2Γ(−ε/2+B+ 3/4)
− as −

a2sp

(−
Γ(−ε/2−1/4)
23Γ(−ε/2+5/4)

− app)

−
a2sd

(
5Γ(−ε/2+B−3/4)
26Γ(−ε/2+B+7/4)

− add)
= 0.

(116)

8.2.3 Solution for J = 2

In the last analyzed case, J = 2, we consider only the p-d coupling,
because we assume that the molecule is in the rotational ground state
or only the first excited state

V̂
ps
20ψ =

 h2

2µ

[
appV̂

10,10
20 + apd(V̂

20,10
20 + V̂10,20

20 ) + addV̂
20,20
20

]
ψ. (117)
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8.2.3.1 p-d coupling

Similarly as before, we get the following equations (details in ap-
pendix A.4):

(εk11−ε)ak11+

(
∂

∂r ′
R∗k1(r

′)

)
r ′=0

(
3app

4
C2010,10A+

3apd

16
C2010,10B

)
= 0,

(118)

(εk20−ε)ak20+
1

2

(
∂2

∂r ′2
R∗k2(r

′)

)
r ′=0

(
15apd

4
C2020,10A+

15add
16

C2020,00B

)
= 0.

(119)

Substituting the coefficients and changing symbols we get:

−X+
3

4
appC

20
10,10S11X+

3

16
apdC

20
10,10S20Y = 0, (120)

−Y +
15

4
apdC

20
20,00S11X+

15

16
addC

20
20,00S20Y = 0, (121)

and hence the solution:

−4

3S11
+ appC

20
10,10 +

C2010,10a
2
pd

( 16
15S20C

20
20,00

− add)
= 0. (122)
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S U M M A RY

The results of experimental and theoretical research have shown cross-
sectional topics of contemporary research in the field of ultracold ion-
atom collisions. The first ever observation of ion-atom collisions in
the quantum regime was a spectacular experimental project, but also
a computational challenge. The final success and obtaining a reliable
confirmation of the measured data would not be possible without
theoretical and experimental cooperation. The same conclusion ap-
plies to the history of the experiment with the first-ever observation
of Feshbach resonances in the ion-atom system. A very important
experiment from the perspective of the further development of this
field. The ability to reach temperatures in the quantum regime and to
control interactions is an excellent starting point for further research
and development of methods for controlling ion-atom systems. Re-
gardless of this, there are still open questions about the properties of
the barium-lithium mixture itself, such as the very large spin-orbit
coupling, a full explanation of the processes generated by this cou-
pling and the description of resonances in higher partial waves. We
can certainly expect many more great results from this mixture. Also,
the results obtained by the anisotropic atom-molecule pseudopoten-
tial, if skillfully used, can be useful in describing rotating impurities
or simply used to the description of real atom-molecule collisions.
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A P P E N D I X





A
A P P E N D I X

a.1 calculation of the sum

ν = ε/2− l/2−Bj(j+ 1)/2− 3/4, (123)

∞∑
n=0

L
(l+1/2)
n (r2)

n− ν

=

∞∑
n=0

∫∞
0

dy

(1+ y)2

(
y

1+ y

)n−ν−1
L
(l+1/2)
n (r2)

=

∫∞
0

(y+ 1)l+3/2

(1+ y)2

(
y

1+ y

)−ν−1

e−r
2ydy

=

∫∞
0

(y+ 1)l+1/2+νy−ν−1e−r
2ydy = Γ(−ν)

×U(−ν, l+ 3/2, r2),

(124)

Γ(−ν)[U(−ν, l+ 3/2, r2)]r=0

=
π

sin(π(l+ 3/2))
Γ(−ν)

Γ(−ν− l− 1/2)Γ(l+ 3/2)
.

(125)

a.2 s-p-d coupling for J = 1

V̂00,00
10 ψ = C1000,10Y10(Ωj)Y00(Ωl)

1

r2

× δ(r) ∂
∂r

(
rC1000,10

∑
n

an01Rn0(r)

)
r=0

,
(126)

V̂10,00
10 ψ = 3C1010,00Y00(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
∂r

(
rC1000,10

∑
n

an01Rn0(r)

)
r=0

,

(127)

V̂00,10
10 ψ =

1

2
C1000,10Y10(Ωj)Y00(Ωl)

1

r2

× δ(r) ∂
3

∂r3

(
r2C1010,00

∑
n

an10Rn1(r)

)
r=0

,
(128)
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V̂10,10
10 ψ =

3

2
C1010,00Y00(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
3

∂r3

(
r2C1010,00

∑
n

an10Rn1(r)

)
r=0

,

(129)

V̂20,20
10 ψ =

15

8
C1020,10Y10(Ωj)Y20(Ωl)

1

2r2

( ←−
∂2

∂r2

)

× δ(r) ∂
5

∂r5

(
r3C1020,10

∑
n

an21Rn2(r)

)
r=0

,

(130)

V̂00,20
10 ψ =

1

8
C1000,10Y10(Ωj)Y00(Ωl)

1

r2

× δ(r) ∂
5

∂r5

(
r3C1020,10

∑
n

an21Rn2(r)

)
r=0

,
(131)

V̂20,00
10 ψ = 15C1020,10Y10(Ωj)Y20(Ωl)

1

2r2

( ←−
∂2

∂r2

)

× δ(r) ∂
∂r

(
rC1000,10

∑
n

an01Rn0(r)

)
r=0

.

(132)

a.3 calculation of the additional sums

S21 =
∂5

∂r5

(
r3C1020,10

∑
n

1
2(

∂2

∂r ′2
R∗n2(r

′))r ′=0Rn2(r)

ε− εn21

)
r=0

, (133)

ν = ε/2− l/2−Bj(j+ 1)/2− 3/4, (134)

S21 = −C1020,10
24

15π1/2
∂5

∂r5

(
r3

∑
n

e−r
2/2r2L

(5/2)
n (r2)

2(n− ν)

)
r=0

= −C1020,10
24

15π1/2
60

∑
n

L
(5/2)
n (0)

n− ν
,

(135)

S21 = −C1020,10
24

15π1/2
60

23

15π1/2
(−π)

Γ(−ν)

Γ(−ν− l− 1/2)

= −

√
2

5

29

15

Γ(−ε/2+B+ 7/4)

Γ(−ε/2+B− 3/4)
.

(136)
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a.4 p-d coupling for J = 2

V̂10,10
20 ψ =

3

2
C2010,10Y10(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
3

∂r3

(
r2C2010,10

∑
n

an11Rn1(r)

)
r=0

,

(137)

V̂20,10
20 ψ =

15

2
C2020,00Y00(Ωj)Y20(Ωl)

1

2r2

( ←−
∂2

∂r2

)

× δ(r) ∂
3

∂r3

(
r2C2010,10

∑
n

an11Rn1(r)

)
r=0

,

(138)

V̂10,20
20 ψ =

3

8
C2010,10Y10(Ωj)Y10(Ωl)

1

r2

(←−
∂

∂r

)

× δ(r) ∂
5

∂r5

(
r3C2020,00

∑
n

an20Rn2(r)

)
r=0

,

(139)

V̂20,20
20 ψ =

15

8
C2020,00Y00(Ωj)Y20(Ωl)

1

2r2

( ←−
∂2

∂r2

)

× δ(r) ∂
5

∂r5

(
r3C2020,00

∑
n

an20Rn2(r)

)
r=0

.
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[13] M. Serbyn, Z. Papić, and D. A. Abanin, “Local conservation
laws and the structure of the many-body localized states,” Phys.
Rev. Lett. 111, 127201 (2013).
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