
Uniwersytet Warszawski
Wydział Fizyki

Instytut Fizyki Doświadczalnej
Zakład Cząstek i Oddziaływań Fundamentalnych

Michał Drągowski

Polarization Effects in Scattering
of Relativistic Electrons

ROZPRAWA DOKTORSKA

Promotor:
prof. dr hab. Aleksander Filip Żarnecki

Uniwersytet Warszawski

Promotor pomocniczy:
dr Marek Adamus

Narodowe Centrum Badań Jądrowych

Warszawa, 2022





Streszczenie

Przedmiotem badań były efekty polaryzacyjne w rozpraszaniu Møllera, to jest w elasty-
cznym rozpraszaniu dwóch elektronów. Celem pracy była weryfikacja przewidywań re-
latywistycznej mechaniki kwantowej w odniesieniu do przekazu polaryzacji (zależności
między polaryzacją wiązki i polaryzacją elektronów po rozproszeniu) oraz korelacji
spinowych pomiędzy dwoma cząstkami w stanie końcowym. Motywacją przeprowad-
zonych badań był fakt, iż w eksperymentach korelacyjnych przeprowadzonych doty-
chczas nie było możliwe zaobserwowanie efektów relatywistycznych, z powodu zbyt
małej energii cząstek.

Złożony charakter pomiaru, polegającego na dwóch następujących po sobie oddzi-
aływaniach elektronu w dwóch różnych tarczach, wymagał zaprojektowania i zbudowa-
nia dedykowanego układu pomiarowego. Do przeprowadzenia eksperymentu wykorzys-
tana została wiązka elektronów z akceleratora Mainzer Mikrotron o energii 3 MeV. W
trakcie zderzenia spolaryzowany elektron wiązki przekazywał część swojej polaryzacji
niespolaryzowanemu elektronowi wybijanemu z tarczy wykonanej z berylu. Następnie
pomiar polaryzacji elektronów pochodzących z rozpraszania Møllera wykonywany był
metodą polarymetrii Motta, która polega na rozproszeniu elektronu na jądrze ciężkiego
pierwiastka, w tym przypadku złota. Dodatkowo, do optymalizacji układu doświad-
czalnego, a także do wyznaczenia końcowego wyniku, konieczne było przeprowadzenie
symulacji komputerowej, w tym stworzenie dedykowanego modelu rozpraszania Motta.

Analiza danych zebranych w roku 2020 pozwoliła po raz pierwszy wyznaczyć przekaz
polaryzacji w rozpraszaniu Møllera. Wyniki eksperymentu zostały porównane z przewi-
dywaniami relatywistycznej mechaniki kwantowej. Zmierzony stosunek polaryzacji
elektronów przed i po rozproszeniu okazał się zgodny z przewidywaniami teorety-
cznymi. Średnia polaryzacja elektronów w stanie końcowym rozpraszania Møllera
została wykorzystana do obliczenia eksperymentalnych ograniczeń wartości funkcji ko-
relacji. Przewidywania oparte o rachunki nierelatywistyczne zostały wykluczone przez
wynik doświadczalny na wysokim poziomie znaczoności.



Abstract

Considered in the presented study were polarization effects in Møller (elastic electron–
electron) scattering. The primary aim of this work was to verify the predictions of rela-
tivistic quantum mechanics regarding polarization transfer (relation between primary-
beam polarization and electron polarization after the scattering) and spin correlations
between two particles in the final state. This study was motivated by the fact that in
all of the spin-correlation experiments performed until now the energy of the particles
was too low to observe relativistic effects.

Taking into account the complex nature of the measurement, which consisted of
subsequent electron interactions in two different targets, a dedicated experimental
setup had to be designed and constructed. A 3 MeV electron beam from the Mainzer
Mikrotron accelerator was used in the experiment. In the scattering off a target made
of beryllium, a polarized beam electron transferred part of its polarization to an un-
polarized target electron. Subsequently, the polarization of the electron originating
from Møller scattering was measured using the Mott polarimetry method, by elec-
tron scattering off gold nuclei. The use of computer simulation methods, including
implementation of a dedicated Mott scattering model, was necessary to optimize the
experimental setup and to determine the final result.

Analysis of the data collected in 2020 resulted in the first determination of the po-
larization transfer in Møller scattering. The results of the experiment were compared
to the predictions of relativistic quantum mechanics. The ratio of electron polariza-
tions before and after the scattering was found to be in agreement with the theoretical
predictions. The average polarization of electrons in the final state was used to calcu-
late the experimental limits on the correlation function. Results of the nonrelativistic
calculations were excluded by the experimental result with high significance.



Acknowledgements

I would like to express my deepest gratitude to my supervisors, Prof. A. F. Żarnecki
and Dr. M. Adamus. I am indebted to all colleagues, who participated in this project,
and shared their knowledge and expertise with me. I would also like to acknowledge
the work of the mechanical and electronics workshops. I am convinced, I would not
have undertaken this journey without the inspiration from my teachers, in particular
Ms. J. Ratyńska and Ms. B. Parciak. Finally, I would like to thank my family, especially
my wife, for their constant support.



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1. Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Relativistic quantum spin correlations . . . . . . . . . . . . . . . . . . . 9
1.3. Møller scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4. Aims of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5. Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Theoretical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1. Møller scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Mott scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1. Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. Polarization transfer experiment . . . . . . . . . . . . . . . . . . . . . . 30

4. Electronics and data acquisition . . . . . . . . . . . . . . . . . . . . . . 36
4.1. Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2. Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Simulation of the analyzing power . . . . . . . . . . . . . . . . . . . . . 55
5.1. Mott scattering model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2. Validation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3. Optimization of the experiment . . . . . . . . . . . . . . . . . . . . . . 72

6. Simulation of the experimental setup . . . . . . . . . . . . . . . . . . . 77
6.1. Geant4 model of the experimental setup . . . . . . . . . . . . . . . . . 77
6.2. Background energy spectrum . . . . . . . . . . . . . . . . . . . . . . . 78
6.3. Passage through the beryllium target . . . . . . . . . . . . . . . . . . . 80
6.4. Scattering off the collimators . . . . . . . . . . . . . . . . . . . . . . . . 83

7. Polarization transfer measurement . . . . . . . . . . . . . . . . . . . . . 87
7.1. File preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2. Dead time correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3. Pile–up removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4. Event analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5. Calculation of the asymmetry . . . . . . . . . . . . . . . . . . . . . . . 110

6



8. Analysis of uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.1. Statistical uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2. Analyzing power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3. Dependence on applied cuts . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4. Target-related background . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5. Beam current stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.6. Finite aperture of the collimators . . . . . . . . . . . . . . . . . . . . . 134
8.7. Finite thickness of the Møller target . . . . . . . . . . . . . . . . . . . . 134
8.8. Beam position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.9. Scattering off the collimators . . . . . . . . . . . . . . . . . . . . . . . . 137
8.10. Alignment of the experimental setup . . . . . . . . . . . . . . . . . . . 138
8.11. False asymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.12. Radiative corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9. Final results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 141
9.1. Determination of the final result . . . . . . . . . . . . . . . . . . . . . . 141
9.2. Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A. Measurement of spin correlations . . . . . . . . . . . . . . . . . . . . . 151
A.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2. Predictions for correlation experiments . . . . . . . . . . . . . . . . . . 155
A.3. Violation of Bell-type inequalities . . . . . . . . . . . . . . . . . . . . . 163

B. Drawings of the experimental setup . . . . . . . . . . . . . . . . . . . . 166

7



Chapter 1

Introduction

1.1. Historical background

In 1924, W. Pauli formulated a requirement that there needs to be an additional quan-
tum number, allowing to double the number of electrons occupying a given energy
level in an atom. The interpretation assuming the existence of another form of angular
momentum, in addition to the orbital angular momentum, was proposed by G. Uhlen-
beck and S. Goudsmit, as well as slightly earlier by R. Kronig, who did not, however,
decide to publish his idea. This quantity, spin, was found to be fundamental for the de-
scription of elementary particles, in particular in the framework of relativistic quantum
mechanics, derived soon afterwards.

At the same time, the correctness of quantum mechanics was frequently questioned,
due to the fact that some of its predictions, such as the nonlocality of entangled systems,
were considered counter-intuitive. These concerns were formalized by A. Einstein,
B. Podolsky and N. Rosen (EPR) in their 1935 paper [1]. Subsequently, the general
argument of EPR was illustrated by D. Bohm [2] with a thought experiment, referring
to the spin-projection correlations of two particles in an entangled state.

J. Bell, in order to prove that quantum mechanics is a nonlocal theory, proposed
an inequality involving correlation functions, defined as the average product of the re-
sults of spin-projection measurements performed on two particles, which must hold for
any theory preserving local realism [3]. It turns out that, according to the predictions
of quantum mechanics, the Bell inequality is violated. This fact was experimentally
verified at the turn of the 70s and 80s (some less conclusive experiments were also
performed earlier). A. Aspect et al. conducted experiments, which showed that Bell
inequalities are, without any doubt, violated [4, 5]. The 2022 Nobel Prize in Physics
was awarded to A. Aspect, J. F. Clauser, and A. Zeilinger, for experiments with en-
tangled photons, establishing the violation of Bell inequalities and pioneering quantum
information science.

Even though the original example of Bohm referred to a pair of spin-1/2 particles,
photons in singlet state were used in the experiments – for technical reasons it is
easier to perform such measurement with photons rather than massive particles. The
relativistic effects in EPR correlations of massive particles were also investigated in
several theoretical works (e.g., [6–15]); selected results are described in the next section.
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1.2. Relativistic quantum spin correlations
Quantum correlation was defined by Bell as the average value of the product of two
observables. The quantum correlation function C can be written, in general, as

C(A, B) =
∑
αβ

αβPαβ, (1.1)

where Pαβ denotes the probability of obtaining α and β as a result of measurement of
observables A and B, respectively.

Usually, observables A and B are chosen to be the spin projections on some particu-
lar directions (denoted a⃗ and b⃗), measured by two observers. For spin-1/2 particles the
possible outcomes of each measurement are ±ℏ/2. Let us assume for simplicity that
spin projections are measured in units of ℏ/2. Then the corresponding spin correlation
function C (⃗a, b⃗) yields

C (⃗a, b⃗) = P++(⃗a, b⃗) − P+−(⃗a, b⃗) − P−+(⃗a, b⃗) + P−−(⃗a, b⃗), (1.2)

where P with proper indices denote the probability of obtaining a positive (+) or
negative (−) spin projection on direction a⃗ and b⃗, for the first and second particle,
respectively (e.g., P+− represents the probability of obtaining positive spin projection
for the first particle and negative for the second particle).

In the relativistic case, relativistic corrections to the correlation function, dependent
on particle momenta, are to be expected. As an example, a pair of massive spin-1/2
fermions in singlet state may be considered. It is straightforward to show that the cor-
relation function of this system, calculated within nonrelativistic quantum mechanics,
has the following form

C (⃗a, b⃗) = −a⃗ · b⃗. (1.3)
Caban et al. calculated the relativistic correlation function for a pair of spin-1/2
fermions in singlet and triplet state [6, 7]. The relativistic correlation function corre-
sponding to the singlet state is

C (⃗a, b⃗) = −a⃗ · b⃗ + k⃗1 × k⃗2

m2 + k1k2

a⃗ × b⃗ + (⃗a · k⃗1)(⃗b × k⃗2) − (⃗b · k⃗2)(⃗a × k⃗1)
(k0

1 + m)(k0
2 + m)

 , (1.4)

where k1 and k2 denote particle four momenta, and m their mass. The function con-
sists of a nonrelativistic part identical with equation (1.3) and a relativistic correction
dependent on momenta.

Further analysis of the relativistic correlation functions by Caban et al. [8] revealed
their unexpected behavior — for certain configurations, the correlation function de-
pendence on particle momenta may be non-monotonic. They later found local extrema
of the correlation functions in many systems, including a pair of spin-1/2 and spin-1
particles [9, 10], a hybrid system of a photon and a spin-1/2 fermion [11], and helicity
correlations of relativistic bosons [12].

The authors of some earlier works [13–15] predicted that the degree of Bell-type
inequalities violation should be a decreasing function of momentum. It was, however,
shown [8,9] that in some cases it is a non-monotonic function of the momentum. There
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Figure 1.1: Leading order QED Feynman diagrams representing Møller scattering.

exist configurations for which the degree of the inequality violation increases with the
particle momenta and reaches its maximal value in the ultrarelativistic limit.

A few experiments were also carried out with massive particles. The quantum
spin correlations and the violation of Bell–type inequalities were measured for spin-1/2
particles with mass by Lamehi–Rachti and Mittig [16] in 1976, as well as more recently
by Hamieh et al. [17] and Sakai et al. [18], in 2004 and 2006, respectively. In all three
cases protons originating from low-energy nuclear reactions were used for this purpose.
In all of the experiments [16–18] the particle energies were insufficient to observe the
relativistic correction – their results turned out to be in agreement with the predictions
of nonrelativistic quantum mechanics.

Experiments with massive particles in the relativistic regime offer a promising op-
portunity to observe quantum entanglement in the range of relativistic energies and
to test the relativistic spin observables [19]. No experimental studies of this kind have
been performed until now. Due to the experimental difficulties with preparing a maxi-
mally entangle state in the range of relativistic energies, the measurement of quantum
spin correlations in relativistic electron–electron scattering was considered [20, 21] as
an alternative approach.

1.3. Møller scattering
The first relativistic description of elastic electron–electron scattering, e−e− → e−e−,
has been given by Møller [22]. The leading order quantum electrodynamics (QED)
Feynman diagrams representing Møller scattering are shown in Fig. 1.1.

Møller scattering has been extensively studied in several experiments. This in-
cluded, in particular, precise studies of electroweak interactions. Parity violation can
be tested by measuring the cross section asymmetry in Møller scattering of longitudi-
nally polarized electron beams [23]. The resulting precision of the weak mixing angle
measurement is comparable to the best results from colliders. Such measurement was
performed by E158 Collaboration at SLAC [24], and further work in this field is ongo-
ing, in particular, by the MOLLER Collaboration at JLab [25].

Another application is the Møller polarimetry method, which has become the stan-
dard tool for beam polarization measurement in high-energy spin physics [26–28].
The application of Mott polarimetry [29], based on spin–orbit interaction in electron–
nucleus scattering, is impractical for energies exceeding about 10 MeV due to quickly
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decreasing cross section and analyzing power, while Møller polarimetry is successfully
applied in the GeV energy range.

Even though Møller scattering has been studied in great detail over its almost 100
year history, it still offers unexplored research opportunities. Given the availability
of polarized electron beams and the good understanding of electron polarimetry, it
was found to be a suitable process for the study of polarization transfer effects from
a polarized electron to electrons in the final state of Møller scattering, including the
creation of entanglement between both particles, manifesting itself through quantum
spin correlations. The quantum spin correlation function and the corresponding proba-
bilities for electrons in the final state of Møller scattering have recently been calculated
in a special case of polarized electron beam scattering off an unpolarized target [20], as
well as the scattering of two polarized electrons [21], assuming the Mott polarimetry
technique for spin projection measurement. These calculations show that the studies
of the final spin state in Møller scattering of polarized electron beams open new re-
search perspectives and become a unique tool for testing relativistic spin observables
and quantum entanglement in the range of relativistic energies. A measurement of this
kind was first proposed in [30].

1.4. Aims of this work
Described in this thesis is the study aimed at the measurement of polarization transfer
in Møller scattering. The average polarization of the electrons in the final state of near-
symmetric Møller scattering was measured [31] using the Mott polarimetry method [29].
The measurements were performed with a 3 MeV polarized electron beam from the
injector linac of Mainzer Mikrotron (MAMI) [32]. The result (ratio of the transverse
polarization in the final state to the incoming-beam polarization) was compared to the
predictions of relativistic quantum mechanics [21]. It was, to our knowledge, the first
such measurement.

The main experimental challenge of this measurement was related to the low inter-
action probability leading to a signal-to-background ratio many orders of magnitude
lower than in the case of a standard polarization measurement performed on a beam.
The signal events are rare due to the low combined probability of coincident Møller
and Mott scattering processes, of the order of 10−11 per incident beam electron with
kinetic energy of 3 MeV. Additionally, the Mott polarimeter has to operate, in contrast
to the conventional applications, on a divergent stream of secondary Møller electrons,
which further increases the background contribution.

The theoretical aim was to find the relation between quantum spin correlations
and the average polarization of the particles in the final state. We showed that the
range of allowed values of the correlation function might be strongly limited, if the
average polarization of the particles in the final state is large. In the case of Møller
scattering, the non-monotonic dependence of the correlation function on energy can be
partly explained by the limits calculated from the average polarization.

Finally, the theoretical result combined with the experimental result regarding po-
larization transfer in Møller scattering, were used to derive the experimental limits on
the correlation function. This allowed us to observe, for the first time, the relativistic
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contribution to the final spin state, as the measured values of average polarization in
the final state of Møller scattering exclude the nonrelativistic predictions.

The additional aims of this work were to test a standard Mott polarimeter as a
tool for the measurement of quantum spin correlations in Møller scattering, based on
a simultaneous determination of the spin projections for both electrons in the final
state, and to obtain guidelines for the design of a two-polarimeter device for such an
experiment. The polarization transfer measurement is a prerequisite for measuring
spin correlations, as it demonstrates the feasibility of the measurement of the spin
projection for one final-state Møller electron. Our results demonstrate that a standard
Mott polarimeter is a suitable tool for measuring polarization with a divergent stream
of Møller electrons despite the high-background environment.

1.5. Outline of the dissertation
The dissertation consists of nine chapters (including this introduction) and two appen-
dices.

In Chapter 2, Theoretical predictions, the main interactions of electrons in the MeV
energy range, Mott scattering (electron – nucleus) and Møller scattering (electron –
electron), are described. The theoretical predictions for the polarization transfer and
spin correlations in Møller scattering are reviewed based on literature [20, 21]. New
results, regarding the relation between the average polarization in the final state and
the allowed range of the spin correlation function values, are also shown.

In Chapter 3, Experimental setup, the principle of the measurement is explained.
The design of a dedicated Mott polarimeter for the study of polarization transfer in
Møller scattering is discussed.

In Chapter 4, Electronics and data acquisition, the complete data acquisition system
is presented. Results of the detector (SiPM sensors with dedicated front-end) tests
are discussed. Trigger and readout electronics prepared for the experiment are also
described.

In Chapter 5, Simulation of the analyzing power, a dedicated Monte Carlo simula-
tion of polarized-electron interaction with matter [33], taking into account polarization
transfer in Mott scattering, is presented. The simulation results, used to optimize the
polarimeter design with regard to the effective Sherman function dependence on en-
ergy, target thickness and scattering angle [34], are discussed. Finally, predictions for
the effective analyzing power of the Mott polarimeter are shown.

In Chapter 6, Simulation of the experimental setup, the results of the simulations of
the complete detector, performed with the Geant4 toolkit, are presented. The first aim
of the simulation was to identify the main sources of background. Results concerning
beam dispersion and depolarization during the passage through target material are
also discussed. The simulation results are then used to estimate some of the systematic
uncertainties.

In Chapter 7, Polarization transfer measurement, all steps of the complete data
analysis procedure used in the polarization transfer experiment are presented.

In Chapter 8, Analysis of uncertainties, the measurement uncertainties are esti-
mated using the experimental and simulated data.
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In Chapter 9, Final results and conclusions, the main experimental results [31],
regarding the polarization transfer in Møller scattering, obtained in two experimental
configurations, are presented. The experimental results are compared to the theoretical
predictions. Finally, the conclusions of the thesis are summarized.

In Appendix A, Measurement of spin correlations, guidelines for future spin corre-
lation experiments are discussed. The theoretical predictions are reviewed with the fo-
cus on a possible measurement of the relativistic correction to the correlation function.
The design of the experimental setup, using two Mott polarimeters for spin correlation
measurement, is presented. The feasibility of such experiment is discussed. Predictions
for the signal and background rates are shown, and methods of improving the signal
to background ratio are proposed. Finally, the possibility to observe the violation of
Bell-type inequalities in scattering of two polarized electrons is demonstrated.

In Appending B, more detailed drawings of the experimental setup designed as part
of this work are appended.
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Chapter 2

Theoretical predictions

Reviewed in the chapter are the theoretical predictions for the cross section and po-
larization transfer in Møller and Mott scattering of relativistic electrons, and quantum
spin correlations in Møller scattering. A new result, regarding the relation between the
average polarization in the final state and spin correlations, is shown.

2.1. Møller scattering

2.1.1. Cross section
Let p1, p2 and k1, k2 represent four-momenta in the two-electron initial and final
state, respectively. The cross section is conveniently expressed in terms of Mandelstam
variables s, t, u:

s = (p1 + p2)2 = (k1 + k2)2 , (2.1a)
t = (p1 − k1)2 = (p2 − k2)2 , (2.1b)
u = (p1 − k2)2 = (p2 − k1)2 . (2.1c)

The differential cross section for e−e− → e−e− scattering is given by [20]

dσMøller = 4πe4m4

s(s − 4m2) |F |2 dt
dϕ

2π
, (2.2)

where e is the elementary charge and |F |2 is defined (for scattering off an unpolarized
target) by the following relation:

|F |2 = 1
4m4

 1
t2

(
s2 + u2

2 + 4m2(t − m2)
)

+ 1
u2

(
s2 + t2

2 + 4m2(u − m2)
)

+ 4
tu

(
s

2 − m2
)(

s

2 − 3m2
) .

(2.3)
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Figure 2.1: Total cross sections for electron–electron scattering in a stationary target
made of beryllium, plotted as a function of beam kinetic energy. Dashed line: ionization
cross section for the K-shell, calculated using [36]. Solid line: Møller scattering cross
section for the L-shell (neglecting binding energy) integrated with a low-energy cutoff
of 9 eV.

The differential cross section is divergent in the limit of 0◦ or 90◦ scattering angle (in the
target reference frame, corresponding to t → 0 and u → 0, respectively). Nevertheless,
if scattering off atomic electrons is considered, the binding energy of electrons in an
atom can be used as a natural cutoff.

The total cross section for scattering off atomic electrons in a beryllium foil is shown
in Fig. 2.1. Two different cases can be distinguished, since four electrons occupy two
electron shells with different binding energies. The K-shell binding energy is approx.
112 eV [35]. The code of Bote et al. [36] was used to calculate the total ionization cross
sections corresponding to scattering off K-shell electrons. The L-shell binding energy is
much lower, approx. 9 eV [37], and the aforementioned code does not provide data for
this case. It is, however, clear that given the low binding energy these electrons can be
considered free to a good approximation. Therefore, in this case the theoretical Møller
scattering cross section was integrated using the binding energy as an energy-transfer
cutoff. For the probability of Møller scattering in the angular range corresponding to
the polarization transfer experiment, see Section 6.3.2.

2.1.2. Polarization transfer
The initial state of two electrons (before the interaction) can be described by a density
matrix ρ̂in, which is a product of density matrices of individual particles, as the states
of colliding electrons are prepared separately. The elements of ρ̂in can be written as

ρin
(τ1,τ2),(τ ′

1,τ ′
2)(q1, q2, q′

1, q′
2) = ρ1 in

τ1τ ′
1
(q1, q′

1) ρ2 in
τ2,τ ′

2
(q2, q′

2), (2.4)
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where τi, τ ′
i , i = 1, 2, are the indices related to the spin part of the matrix and can

take values ±1/2, while qi, q′
i denote the four-momenta of the interacting electrons. If

scattering of particles with well determined momenta is considered, matrix elements
ρi in take the following form:

ρi in
τiτ ′

i
(qi, q′

i) = 2p0
i

δ3(⃗0)
δ3(q⃗i − p⃗i) δ3(q⃗′

i − p⃗i)
1
2(1 + P⃗i · σ⃗)τiτ

′
i
, (2.5)

where P⃗i and pi denote the polarization vector and the four-momentum of the i-th
electron, respectively; σ⃗ = (σ1, σ2, σ3) and σk are the Pauli matrices.

The density matrix of the final state (after the interaction) of two electrons origi-
nating from Møller scattering, ρ̂out, is obtained from

ρ̂out = M̂ρ̂inM̂ †

Tr(M̂ρ̂inM̂ †)
, (2.6)

where M̂ is the scattering amplitude. The scattering amplitude matrix element can be
found in literature [38] and the explicit form of ρ̂out in the paper by Caban et al. [20].

The outgoing electrons may be entangled in consequence of the scattering, so neither
of them is found in a well-defined polarization state separately. Therefore, it is, in
general, impossible to assign polarization vectors to the electrons after the scattering,
because only their joint polarization state is well defined by the density matrix ρ̂out.
Nevertheless, one can use the reduced density matrices of the final state electrons to
assign mean polarization vectors to both of them [21].

In order to calculate the mean polarization vector of the i-th secondary electron,
a partial trace operation over the other one, j-th, was performed, yielding a reduced
density matrix

ρ̂out
i = Trj

(
ρ̂out

)
. (2.7)

Next, the mean polarization vector of the i-th electron, P⃗i, was calculated as

P⃗i = Tr
(
ρ̂out

i · σ⃗
)

. (2.8)

When a 100% polarized beam is scattered off an unpolarized stationary electron,
both electrons in the final state are partially polarized, which is illustrated in Fig. 2.2
for a transversely polarized 3 MeV beam. Shown is the polarization transfer defined
as the length of the transverse polarization vector component of the scattered electron
divided by the initial beam polarization. In the symmetric scattering configuration (90◦

scattering angle in the center-of-mass frame, corresponding to the laboratory scattering
angle θ = 26.75◦ for an incident electron with kinetic energy of 3 MeV), both outgoing
electrons have the same polarization due to the indistinguishability of the particles.
The transverse polarization is equal to approx. 0.399 of the beam polarization, if the
beam polarization vector lies in the Møller scattering plane, and approx. 0.382, if
the beam polarization is perpendicular to the Møller scattering plane. However, in an
asymmetric configuration, in particular, for very small scattering angles, the electron
with higher energy inherits the majority of the incoming electron polarization.
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Figure 2.2: Polarization transfer from a transversely polarized 3 MeV beam electron to
the secondary Møller electrons, (a) beam polarization in the Møller scattering plane,
(b) beam polarization perpendicular to the Møller scattering plane. The polarization
transfer (length of the transverse polarization vector component divided by the initial
beam polarization) dependence on the scattering angle θ (measured in the laboratory
frame of reference) is plotted with the solid line. The corresponding polarization of
the second electron is plotted with a dashed line. Equal polarization sharing occurs for
the symmetric scattering configuration (θ = 26.75◦ for incident electrons with 3 MeV
kinetic energy, which corresponds to scattering at 90◦ in the center-of-mass frame).

In Fig. 2.3 one can also see that the joint polarization vector (the sum of the mean
polarization vectors of both electrons) is not a unit vector, which indicates a certain de-
gree of entanglement. The maximum of entanglement (minimum of joint polarization)
corresponds to the symmetric scattering. It has been shown in [20] that negativity,
which is a proper entanglement measure, reaches its maximum for the symmetric scat-
tering angle independent of the beam energy. On the other hand, in case of symmetric
scattering, the degree of entanglement increases with the decrease of the beam kinetic
energy. In the zero-energy limit, the final state becomes a pure singlet state, which is
demonstrated in the next section.

2.1.3. Spin correlations

While the measurement of the mean polarization allows the average spin state of in-
dividual electrons to be investigated, the measurement of spin correlations can give
insight into the phenomenon of entanglement in relativistic Møller scattering.

For a state described by a density matrix ρ̂out, the correlation function can be
calculated according to

C(A, B) = Tr
(
Â ⊗ B̂ ρ̂out

)
, (2.9)
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and the Pαβ probabilities can be calculated according to

Pαβ = Tr
(
Π̂α ⊗ Π̂β ρ̂out

)
, (2.10)

where Π̂α and Π̂β are the projectors from the spectral decomposition of the Â and B̂
operators, corresponding to the eigenvalues α and β, respectively.

The spin-projection operators 2a⃗Ŝ and 2⃗bŜ have to be substituted for Â and B̂ in
Eq. (2.9), in order to calculate the spin correlation function C (⃗a, b⃗) = C(2a⃗Ŝ, 2⃗bŜ). The
Newton–Wigner form of the relativistic spin operator Ŝ is most commonly used. In
one-particle subspace, in the special case when the Mott polarimetry method, sensitive
only to the spin-projection on the direction perpendicular to the Mott scattering plane,
is used for spin-projection measurement (cf. Section 2.2), the projection of the Newton-
Wigner operator on a direction n⃗ takes the following form

S⃗(k, n⃗) = 1
2m

[
mn⃗ · γ⃗γ5 + i((n⃗ × k⃗)γ⃗)γ0−k0n⃗ ·γ⃗γ0γ5

]
, (2.11)

where m is the mass and k is the four momentum of the particle, γ = (γ0, γ⃗) are the
Dirac matrices and γ5 = iγ0γ1γ2γ3.

The correlation function in case of Møller scattering of an electron beam off an
unpolarized target(assuming the Mott polariemetry method for spin-projection mea-
surement) is given by [20]

C (⃗a, b⃗) =
[
k0

1 − m

][
k0

1 − p0
1

]
[
2
(

a⃗ · b⃗

)(
k0

1
2 − k0

1

(
m + p0

1

)
− m

(
m − 3p0

1

))
+
(

a⃗ · p⃗1

)(⃗
b · p⃗1

)]
[
2
(

k0
1

(
m3 − 3m2p0

1 − 6mp0
1

2 − 2p0
1

3)− 2k0
1

3 (
m + p0

1

)
+

+ 3k0
1

2
p0

1

(
2m + p0

1

)
+ k0

1
4 + p0

1

(
−m3 + 4m2p0

1 + p0
1

3))]−1

,

(2.12)

where p1 denotes the four momentum of the beam electron, k1 and k2 are the four
momenta of particles in the final state, m is the electron mass. The nonrelativisitic
limit, obtained by expanding (2.12) around zero-energy, is

C (⃗a, b⃗) =
(

3 − p0
1 − m

k0
1 − m

p0
1 − m

p0
1 − k0

1

)−1

a⃗ · b⃗. (2.13)

In the symmetric scattering configuration, (k0
1 − m) = (p0

1 − m)/2, it reduces to

C (⃗a, b⃗) = −a⃗ · b⃗, (2.14)

which depends only on the spin projection directions, and shows that in the zero-energy
limit the electrons are in a pure singlet state.

The correlation function in case of Møller scattering of an electron beam off an
unpolarized target, which is the simplest sufficient case that can be realized experi-
mentally, is shown in Fig. 2.4 as a function of beam energy in the symmetric scattering
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Figure 2.3: Polarization transfer from a transversely polarized 3 MeV beam electron to
the secondary Møller electrons, with beam polarization in the Møller scattering plane.
The length of the joint polarization vector of both electrons in the final state is shown
as a function of the scattering angle θ. The minimum is observed for the symmetric
scattering configuration (θ = 26.75◦ for incident electrons with 3 MeV kinetic energy).

configuration. The proposed experimental setup (to be discussed it details in Chapter
3) allows to perform the measurement for two different configurations of the a⃗ and b⃗
vectors: (A) both in the Møller scattering plane, and (B) at angles equal to 45◦ to the
Møller scattering plane. The angle to the Møller scattering plane is sufficient to describe
the orientations of the a⃗ and b⃗ vectors, since in both configurations they are assumed to
be perpendicular to particle momenta due to the use of the Mott polarimetry method.
In configuration A (both a⃗ and b⃗ vectors, on which the spins are projected, lie in the
Møller scattering plane, and Møller scattering is symmetric with respect to the beam
direction), the correlation function exhibits a strongly non–monotonic dependence on
beam energy.

There are no experimental data on the spin correlations for relativistic particles
with mass. The studies of the final spin state in Møller scattering of polarized elec-
trons could allow for the first observation of the relativistic correction to the quantum
spin correlation function, and for the verification of the unexpected, non–monotonic
dependence on energy.

Even though the correlation function itself does not depend on beam polarization,
the P±± probabilities do. The correlation probabilities in configuration A are shown in
Fig. 2.5 as a function of beam energy. It can be seen that without primary beam polar-
ization, the probabilities of obtaining the same spin projection results for both electrons
(P++ and P−−) are equal. Beam polarization in the Møller scattering plane (with a
nonzero component in the direction of the spin projection measurement) distinguishes
between the two cases. The P++ probability with 85% beam polarization reaches ap-
prox. 0.43 compared to approx. 0.26 without beam polarization. The probabilities
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Figure 2.4: Dependence of the correlation function on beam energy for a pair of elec-
trons originating from Møller scattering (theoretical predictions [20]) with (a) the a⃗

and b⃗ vectors (on which the spins are projected) in the Møller scattering plane, (b) a⃗

and b⃗ vectors at angles equal to 45◦ to the Møller scattering plane. The scattering is
symmetric with respect to the beam direction.

of obtaining opposite spin projection results for both electrons (P+− and P−+) remain
equal in both considered scenarios (they can be distinguished with a longitudinally
polarized beam).

The same effects are observed in configuration B, which can be seen in Fig. 2.6.
Without primary beam polarization, the same pairs of probabilities are equal. Beam
polarization perpendicular to the Møller scattering plane (with a nonzero component
in the direction of the spin projection measurement) distinguishes between P++ and
P−−. The P++ probability with 85% beam polarization reaches approx. 0.36 compared
to approx. 0.25 without beam polarization.

2.1.4. Relation between polarization transfer and spin correla-
tions

The dependence of correlation probabilities on beam polarization is closely related to
the polarization transfer discussed in Section 2.1.2.

The average spin projection of a single electron (polarization in the direction of
the a⃗ or b⃗ vector) can be calculated from the probabilities by summing over the other
electron,

P1(⃗a) =
(
P++(⃗a, b⃗) + P+−(⃗a, b⃗)

)
−
(
P−+(⃗a, b⃗) + P−−(⃗a, b⃗)

)
, (2.15a)

P2(⃗b) =
(
P++(⃗a, b⃗) + P−+(⃗a, b⃗)

)
−
(
P+−(⃗a, b⃗) + P−−(⃗a, b⃗)

)
. (2.15b)

This method gives identical results to the direct polarization transfer calculation, which
confirms the consistency of the calculations.
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Figure 2.5: Dependence of the correlation probabilities on beam energy for a pair
of electrons originating from Møller scattering (theoretical predictions [20]) with (a)
unpolarized beam, (b) beam transversely polarized in 85% in the Møller scattering
plane. Configuration A: the scattering is symmetric with respect to the beam direction,
and the a⃗ and b⃗ vectors (on which the spins are projected) in the Møller scattering plane.
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Figure 2.6: Dependence of the correlation probabilities on beam energy for a pair
of electrons originating from Møller scattering (theoretical predictions [20]) with (a)
unpolarized beam, (b) beam polarized in 85% perpendicular to the Møller scattering
plane. Configuration B: the scattering is symmetric with respect to the beam direction,
and the a⃗ and b⃗ vectors (on which the spins are projected) at angles equal to 45◦ to
the Møller scattering plane.
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The above equations, together with the correlation function definition (1.2) and the
normalization condition (sum of probabilities must be equal to 1), form a set of four
linear equations, which can be inverted to express the correlation probabilities in terms
of the correlation function and polarization transfer,

P++(⃗a, b⃗) = 1
4
(
C (⃗a, b⃗) + P1(⃗a) + P2(⃗b) + 1

)
, (2.16a)

P+−(⃗a, b⃗) = 1
4
(
−C (⃗a, b⃗) + P1(⃗a) − P2(⃗b) + 1

)
, (2.16b)

P−+(⃗a, b⃗) = 1
4
(
−C (⃗a, b⃗) − P1(⃗a) + P2(⃗b) + 1

)
, (2.16c)

P−−(⃗a, b⃗) = 1
4
(
C (⃗a, b⃗) − P1(⃗a) − P2(⃗b) + 1

)
. (2.16d)

The correlation probabilities depend both on the spin correlation function and the
average polarization. If only one probability is measured, the contributions from both
effects cannot be distinguished.

It is now clear from Eqs. (2.16) why the P+− and P−+ probabilities are equal in both
considered experimental configurations. Due to the symmetry of the arrangement of
the a⃗ and b⃗ vectors, and electron polarizations, the difference of average polarizations
cancels out in both probabilities.

Let us analyze the limit of zero scattering angle in case when the beam electron
is 100% transversely polarized. It was shown in Fig. 2.2 that one of the electrons in
the final state remains 100% transversely polarized and the other one is unpolarized.
In such case, setting the a⃗ vector along the primary-beam polarization, only the P++
and P+− probabilities take nonzero values and the correlation function is equal to zero,
since there is no possibility for correlations if at least one polarization is known with
certainty. This simple example demonstrates that some predictions regarding spin
correlations can be made with just the knowledge of the polarization transfer itself.

The above reasoning can be easily generalized to the case of arbitrary polariza-
tions. Taking into account the normalization conditions (the probabilities take values
between 0 and 1), one finds by simple algebraic transformations of Eqs. (2.16) that the
correlation function must fulfill the relation

− 1 +
∣∣∣P1(⃗a) + P2(⃗b)

∣∣∣ ≤ C (⃗a, b⃗) ≤ 1 −
∣∣∣P1(⃗a) − P2(⃗b)

∣∣∣ . (2.17)

The polarization sum and difference dependence on the scattering angle is shown
in Fig. 2.7(a) in the configuration corresponding to Fig. 2.2(a) (transverse beam po-
larization, a⃗ and b⃗ vectors in the Møller scattering plane). The corresponding limits
on the correlation function, calculated from Eq. (2.17), are shown in Fig. 2.7(b). It
can be seen that the range of allowed correlation function values is strongly restricted
when the scattering angle approaches 0 or π/2, due to the large mean polarization.
The symmetric scattering angle corresponds to a minimum of the polarization sum,
which results in the weakest constraints on the correlation function.

The correlation function [20] exhibits a strongly nonmonotonic dependence on the
scattering angle, which is shown in Fig. 2.8 for beam kinetic energy T = 2m (cor-
responding to the minimum of the correlation function for symmetric scattering, cf.
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Figure 2.7: Dependence of the sum and difference of mean polarizations (a), correlation
function (theoretical predictions [20]) and limits from polarization transfer, Eq. (2.17),
(b) on scattering angle for a pair of electrons originating from Møller scattering of a
3 MeV beam, 100% transversely polarized in the Møller scattering plane. The a⃗ and b⃗
vectors (on which the spins are projected) lie in the Møller scattering plane.
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Figure 2.8: Dependence of the correlation function (theoretical predictions [20]) and
limits from polarization transfer, Eq. (2.17), on scattering angle for a pair of electrons
originating from Møller scattering, with a 100% transverse primary-beam polarization
in the Møller scattering plane and beam kinetic energy T = 2m. The a⃗ and b⃗ vectors
(on which the spins are projected) lie in the Møller scattering plane. Shown in the
right panel is the same dependence with the extended vertical scale.
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Figure 2.9: Dependence of the sum and difference of mean polarizations on beam
energy for a pair of electrons originating from Møller scattering with (a) 100% trans-
verse primary-beam polarization in the Møller scattering plane, (b) 100% longitudinal
primary-beam polarization. Configuration A: the scattering is symmetric with respect
to the beam direction, and the a⃗ and b⃗ vectors (on which the spins are projected) in
the Møller scattering plane.

Fig. 2.4(a)) and the same arrangement of polarization and spin projection directions as
in the previous example. The value for 0 and π/2 scattering angle is zero, as discussed
above. It can be seen that the correlation function has a maximum in the symmetric
scattering angle (approx. 35◦) and two minima for intermediate angles. The limits
calculated according to Eq. (2.17) show that the correlation function must decrease
below zero for scattering angles above 0 and below π/2 due to the large difference of
polarizations |P1(⃗a) − P2(⃗b)|.

A similar analysis can be performed to explain the non-monotonic dependence of
the correlation function on energy, which has a local minimum in configuration A for
beam kinetic energy T = 2m. It is interesting to note that, since the correlation
function does not depend on beam polarization, the limits established with all possible
polarizations must be fulfilled simultaneously.

The polarization transfer dependence on beam energy is shown in Fig. 2.9 for two
primary-beam polarizations, longitudinal and transverse in the Møller scattering plane,
and the a⃗ and b⃗ vectors in the Møller scattering plane. The sum and difference of
polarizations reaches the largest values for the former and the latter beam polarization,
respectively. Therefore, it is sufficient to analyze these two scenarios.

The correlation function dependence on beam energy is shown in Fig. 2.10 together
with the upper limit calculated according to Eq. (2.17). It can be seen that the decrease
of the correlation function in configuration A for energies around approx. 800 keV is
related to the low upper limit due to the large difference of polarizations |P1(⃗a)−P2(⃗b)|
(see expanded view in Fig. 2.10(c)).
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Figure 2.10: Dependence of the correlation function (theoretical predictions [20]) and
limits from polarization transfer, Eq. (2.17), on beam energy for a pair of electrons
originating from Møller scattering with (a) the a⃗ and b⃗ vectors (on which the spins are
projected) in the Møller scattering plane, (b) a⃗ and b⃗ vectors at angles equal to 45◦

to the Møller scattering plane; (c) is an enlarged fragment of panel (a). Predictions
for the singlet state (nonrelativistic limit) are shown for comparison. The scattering is
symmetric with respect to the beam direction.
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The predictions corresponding to the singlet state (nonrelativistic limit), which also
depend on energy due to the different configuration of the a⃗ and b⃗ vectors (perpen-
dicular to particle momenta), are also shown for comparison in Fig. 2.10. It can be
seen that the singlet state is excluded by the lower limit on correlation function for
energies above approx. 1 MeV. It should also be noted that the beam energy of 3 MeV,
used in the proposed experiment, is appropriate to distinguish between the classical
and relativistic approaches.

In conclusion, even though the full measurement of the correlation function is neces-
sary to ultimately confirm the theoretical predictions, the measurement of the average
polarization of electrons in the final state can as well give valuable insight in the cor-
relation phenomena by constraining the range of allowed correlation-function values.

2.2. Mott scattering

2.2.1. Cross section
The study of the polarization transfer in Møller scattering of a polarized electron beam
comes down to the measurement of the electron spin projection on a given direction in
space. As already mentioned above, Mott polarimetry is the standard method in the
MeV energy range. It is based on measuring the azimuthal asymmetry, arising from
the spin–orbit interaction, in scattering of a polarized electron beam off thin targets
made of heavy elements [39]. An exhaustive overview of the theoretical formalism can
be found in the work of Kessler [40]. The differential cross section for Mott scattering
off a single nucleus is given by(

dσ

dΩ

)
Mott

=
(

dσ

dΩ

)
0

(
1 + S(E, θ)P⃗ · n⃗

)
, (2.18)

where the cross section (dσ/dΩ)0 corresponds to the scattering of unpolarized electrons,
S(E, θ) is the Sherman function describing the analyzing power of Mott scattering, E

is the kinetic energy of the incoming electron, θ is the polar scattering angle, P⃗ is the
incident-electron polarization vector and n⃗ is the unit vector normal to the scattering
plane,

n⃗ = p⃗ × p⃗ ′

|p⃗ × p⃗ ′|
, (2.19)

where p⃗ and p⃗ ′ denote the momenta of the incoming and scattered electron, respectively.
The unpolarized cross section is determined by two scattering amplitudes f and g,(

dσMott

dΩ

)
0

= |f(E, θ)|2 + |g(E, θ)|2, (2.20)

where f(E, θ) is the spin–conserving amplitude and g(E, θ) is the spin–flip amplitude.
They can be calculated theoretically under assumptions regarding details of atomic
and nuclear structure; the formalism was first given by Sherman [41].
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2.2.2. Polarization transfer
The change of the electron polarization in a single Mott scattering event is described
by a relatively simple equation,

P⃗ ′ = (P⃗ · n⃗ + S(E, θ))n⃗ + T (E, θ)n⃗ × (n⃗ × P⃗ ) + U(E, θ)(n⃗ × P⃗ )
1 + S(E, θ)P⃗ · n⃗

, (2.21)

where P⃗ ′ is the polarization vector after the scattering. It can be expressed in terms
of the same scattering amplitudes, according to the following relations [40]:

S(E, θ) = i
fg∗ − f ∗g

|f |2 + |g|2
, (2.22a)

T (E, θ) = |f |2 − |g|2

|f |2 + |g|2
, (2.22b)

U(E, θ) = fg∗ + f ∗g

|f |2 + |g|2
. (2.22c)

Note that the quantities S, T and U are not independent (S2 + T 2 + U2 = 1).

2.2.3. Computation of the scattering amplitudes
As has been shown in the previous sections, the two scattering amplitudes are the only
quantities necessary to calculate the final state of the electron after Mott scattering,
since they determine the Sherman function (azimuthal asymmetry) and the change of
the polarization vector, as well as the cross section for unpolarized electron–nucleus
scattering. They are obtained from the Dirac equation with the appropriate nuclear
potential.

In this work the ELSEPA package [42] – a numerical implementation of the for-
malism originally proposed by Sherman [41] – that is also a source of data for a NIST
reference database [43], was used to calculate the scattering amplitudes. The numerical
solution is obtained by a relativistic (Dirac) partial–wave analysis in a central potential,
according to the following formulae [44]:

f(θ) = 1
2ik

∞∑
l=0

((l + 1) (exp(2iδκ=−l−1) − 1) + l (exp(2iδκ=l) − 1)) Pl(cos θ), (2.23a)

g(θ) = 1
2ik

∞∑
l=0

(exp(2iδκ=l) − exp(2iδκ=−l−1)) P 1
l (cos θ), (2.23b)

where k is the wave number corresponding to a given momentum, Pl and P 1
l are

Legendre polynomials and associated Legendre functions, respectively, and δκ are phase
shifts representing the large–r behavior of the Dirac spherical waves.

The potential assumed by default in the calculations corresponds to the Fermi
distribution of nuclear charge density [45]. The nuclear potential is modified by the
presence of atomic electrons, which shield the nucleus. The atomic-electron density is
obtained from numerical results of relativistic Dirac–Fock calculations [46]. Another
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contribution comes from approximate exchange correction. The effect is commonly
known from non–relativistic bound state calculations; here it represents the case when
the scattered electron exchanges places with an atomic electron, which gives a minor
contribution to the potential. The last correction arises from the presence of neigh-
boring atoms in a macroscopic target material, which modifies the scattering potential
with respect to the value for a single atom (in particular for large impact parameters).
In ELSEPA this effect is described according to the muffin–tin model [47], which can
be switched on if desired (for details of the implementation see [42]). In this model
the electron cloud is assumed to be confined in a sphere of a diameter equal to the
average distance between atoms, and the presence of the nearest neighboring atom is
taken into account in the potential. This way the potential is continuous in the whole
target volume.

Details on the simulation of the Mott polarimeter analyzing power, based on the
scattering amplitudes calculated with the ELSEPA package [42], are given in Chapter 5.
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Chapter 3

Experimental setup

The general concept of the polarization transfer measurement, using the Mott po-
larimetry method, is presented in this chapter. The design of the experimental setup
is discussed.

3.1. Experimental method
Using the Mott polarimetry method, the polarization measurement can be performed
with two detectors, denoted L and R, placed symmetrically at an angle θ with respect
to the beam axis (i.e., with opposite directions of the n⃗ vector in Eq. (2.18)). The
count-rate asymmetry A is defined as

A = NL − NR

NL + NR

, (3.1)

where NL and NR are the count rates of electrons Mott-scattered off the target, recorded
in the L and R detectors.

Alternatively, the measurement can be done with a single detector by reversing the
beam polarization direction; the asymmetry A is then defined as

A = N↑ − N↓

N↑ + N↓ , (3.2)

where N↑ and N↓ are the count rates for opposite beam polarizations.
If the measurement is performed using two detectors, placed symmetrically with

respect to the beam axis, and the beam polarization direction is being reversed, the
combined asymmetry can be calculated using the formula [48]

A = 1 −
√

Q

1 +
√

Q
, (3.3a)

with

Q = N↑
LN↓

R

N↓
LN↑

R

. (3.3b)

29



The advantage of this approach is that, when the polarization direction is reversed
periodically, the detector efficiencies do not contribute to the uncertainty, since they
cancel out in Eqs. (3.2) and (3.3).

The polarization-vector component perpendicular to the scattering plane can be
related to the count-rate asymmetry A, arising from the polarization-dependent term
in Eq. (2.18), as follows:

P⃗ · n⃗ = A

Seff(E, θ) , (3.4)

where the theoretical value of the Sherman function S, cf. Eq. (2.18), appropriate for
scattering off a single atom, was replaced with its effective value Seff , in which multiple
interactions of the electron in the target material are taken into account.

While the theoretical Sherman function can be calculated numerically, for exam-
ple, with the ELSEPA package [42], the calculation of the effective Sherman function
requires a full Monte Carlo simulation with particle tracking and polarization transfer
calculations. Large differences between the theoretical and effective Sherman function
are to be expected, in particular, when thick targets are used, resulting in a large
contribution of multiple scattering. For the results presented in this thesis, the ef-
fective Sherman function was obtained with a simulation performed with the Geant4
toolkit [49] supplied with a dedicated Mott scattering model [33] (cf. Chapter 5).

3.2. Polarization transfer experiment
The experimental setup used in the presented study is shown schematically in Fig. 3.1
in the single-polarimeter configuration of the polarization transfer experiment. Møller
scattering was realized by scattering a polarized electron beam off atomic electrons in
a target made of beryllium, 100 µm thick. The Møller target thickness was chosen
based on the Monte Carlo simulation results, which is discussed in Section 6.3.2.

In order to eliminate scattering off air atoms, a vacuum of approx. 10−7 mbar was
maintained inside the setup. The beryllium foil was provided by the manufacturer
as a vacuum-tight assembly in form of a standard CF40 flange. The target thickness
was sufficient to withstand the pressure difference between accelerator vacuum and
atmospheric pressure, so that the accelerator would not be affected even in case of a
vacuum failure in the experiment.

The electrons scattered off the beryllium target passed through two pipes (below
called legs), positioned at an angle of 26.75◦ with respect to the primary beam direction,
corresponding to the symmetric Møller scattering at 3 MeV beam energy. One leg
was equipped with a Mott polarimeter, see Fig. 3.1, 336 mm downstream from the
beryllium target (for more details refer to Fig. B.1). The other leg was terminated with
a detector pointing directly at the beryllium target, below referred to as the tagging
counter. Copper collimators placed in the legs accepted Møller scattering events close
to the symmetric configuration only (in the range 26.75◦ ± 1.5◦, corresponding to a
solid angle of 8.6 × 10−3 sr, cf. Fig. B.2).

The scattering angle range of Møller scattering and the distance between the Møller
and Mott targets are not independent of each other. Both the increase of the angular
range, and of the distance between the targets, lead to an increase of the diameter
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Figure 3.1: Drawing of the experimental setup in configuration A (vertical Mott scat-
tering plane, see text for details); a – Møller (Be) target, b – Møller scattering chamber,
c – Mott scattering chamber, T – tagging counter, L and R – detectors in the Mott
polarimeter. The shielding and the full length of the dump pipes are not shown.

of the secondary beam spot on the Mott target. The smallest distance between the
targets providing sufficient space for the Mott scattering chamber was used. The gold
targets at our disposal were of 30 mm diameter. The largest scattering angle range
providing that all electrons passing through the collimators fit on the Mott target was
chosen.

Beam electrons passing through the beryllium target (scattered at small angles)
were absorbed in a beam-dump material (graphite and aluminum) approx. 2 m down-
stream. The diameter of the pipe leading to the beam dump was 66 mm. The largest
possible value (taking into account geometrical limitations) was chosen intentionally,
to minimize background due to electron scattering off the beam pipe. The divergence
of the electron beam after passing through the beryllium target was modeled with a
Monte Carlo simulation (cf. Section 6.3.1).

The polarization of one of the electrons in the final state of Møller scattering, as well
as the polarization of beam electrons (Mott-scattered off the beryllium target), could
be measured in the Mott polarimeter (for technical details refer to Figs. B.3 and B.4
in Appendix B). Collimators in the Mott polarimeter restricted the measurement to
electrons backscattered off a 9.9 µm thick gold target at an angle of 120◦ ± 5◦ (corre-
sponding to the solid angle of 9.5 × 10−2 sr). The target thickness, scattering angle,
and angular range of Mott scattering was optimized using a dedicated Monte Carlo
simulation taking into account polarization transfer, which is discussed in Section 5.3.

An aluminum frame holding the gold target was mounted in one slot of an aluminum
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Figure 3.2: Photograph of the beam spot image on the beryllium oxide window.

ladder, which could be moved remotely between two positions (cf. Fig. B.5). The
other slot contained an empty target frame identical to that holding the gold foil. The
position of the ladder was changed periodically, allowing us to measure the empty-target
background, which was then subtracted from the data acquired with the gold foil. The
target ladder was controlled using compressed air. The target ladder mechanism was
provided by TU Darmstadt (used previously in another experiment).

The same mechanism was used to move the target ladder holding the beam viewer
screen, placed upstream from the beryllium target. The beam viewer screen was made
of beryllium oxide, which produces light when hit by electrons. The screen was observed
with a camera through a glass window; an example image is shown in Fig. 3.2. The
marks on the screen were used to move the beam spot to the geometrical center at the
beginning of the experiment, and to periodically monitor the beam position. The false
asymmetry arising when the beam spot is not placed in the geometrical center of the
beryllium target was modeled with a Monte Carlo simulation (cf. Section 6.4.3).

When the electrovalve was disconnected, or when there was no air pressure in the
system, springs held the target ladders in the positions corresponding to the gold
target in place and beam viewer out of the beamline (this way, the experiment could
be, in principle, continued in case of a failure). When the valve was powered on, the
compressed air moved the target ladder (compressing the spring), allowing us to replace
the gold target with an empty target frame, or to move the beam viewer in.

Electrons passing through the gold target (scattered at small angles) were absorbed
in a Møller dump material (plastic). The diameter of the pipe leading to the Møller
dump was 100 mm. Again, the large diameter was chosen due to the divergence of the
electron beam after passing through two targets (a similar effect was also discussed
in [50]).

The inside walls of the Mott scattering chamber, as well as the pipes leading to the
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Figure 3.3: A photograph of the experiment installed in the beamline of the Mainzer
Mikrotron accelerator.

dumps, were covered with graphite in order to reduce backscattering. For practical
reasons, the scattering chambers were made of PA6 (AW-2017A) aluminum alloy. It is
well suited for machining, but contains, among other elements, 0.6%−0.8% Fe, 3.5%−
4.5% Cu, 0.4%−1.0% Mn. In the standard Mott polarimeter operating at MAMI [50],
the Mott scattering chamber made of very pure aluminum was compared to one made
of a standard aluminum alloy containing a few per cent of heavier elements (copper,
lead, iron). It was found that the use of the latter material substantially increased
background [V. Tioukine, private communication]. The background conditions could
be improved in the future with the use of an alloy with a reduced content of heavy
elements.

The surroundings of the Mott polarimeter, the whole space between the detectors
and the beam pipe in particular, were packed with lead bricks to shield against the
external background. Some of the bricks were machined to match the shapes of po-
larimeter elements (cf. Figs. B.1, B.6, and B.7). The shielding was made of approx. 40
standard lead bricks (50 mm × 100 mm × 200 mm). The total weight was of the order
of 450 kg. The experimental setup and the shielding were placed on two aluminum
plates, 10 mm thick, attached to the aluminum profiles of the main beamline support
of the accelerator. A photograph of the experimental setup with the shielding, installed
on beam, is shown in Fig. 3.3.

The measurements were performed in two configurations of the Mott polarimeter,
corresponding to different beam polarization orientations: (A) horizontal beam polar-
ization (in the Møller scattering plane) and vertical Mott scattering plane and (B)
vertical beam polarization (perpendicular to the Møller scattering plane) and Mott
scattering plane at an angle of 45◦ to the Møller scattering plane. Both configurations
are shown schematically in Fig. 3.4. The asymmetry reaches its maximum when the
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Figure 3.4: Schematic illustration of both experimental configurations (cross section in
the gold-target plane, perpendicular to the direction of the Møller-electrons stream);
L and R denote the locations of the detectors in the Mott polarimeter.

polarization vector is perpendicular to the Mott scattering plane, cf. Eq. (3.4). Thus,
the best resolution in configuration B would be achieved with a horizontal Mott scat-
tering plane, but this was not possible in the present polarimeter design for geometrical
reasons (one of the detectors would coincide with the beam pipe).

In configuration B, owing to the 45◦ angle between the Mott and Møller scattering
planes, and the symmetry with respect to the polarization vector direction, there are
four equivalent directions of measurement in the Mott polarimeter. The background
originating from electrons scattered off the beryllium target towards the beam pipe
and other parts of the setup resulted in significantly different background conditions
in detectors placed close to and far from the beam axis, despite thick shielding. The
additional symmetry allowed us to place the detectors in the pair of locations subject
to the lowest level of background, more distant from the beam pipe.

The scattered electrons were detected using scintillation counters. The light from
the scintillator (Nuclear Enterprises NE200) was collected with a plexiglass lightguide.
A silicon photomultiplier (SiPM) sensor was used to detect the scintillation light. In
case of standard photomultiplier tubes (PMT), whose entrance window (and photo-
cathode) is typically round, a simple conical lightguide could be used. In case of
the SiPMs, which was of a square shape, a dedicated lightguide, which provided a
smooth transition between the round shape of the scintillator and the square shape
of the detector, was designed (cf. Fig. B.8). The lightguide assembly was placed in
an aluminum housing, matching its complicated shape, to which the PCB holding the
SiPM sensor was attached. A CF40 flange with a glass window (commercially available
from LewVac) was placed between the scintillator and the lightguide, thus the vacuum
was closed at that point, allowing us to replace the SiMP in case of a failure without
breaking the vacuum.

Short response time and pulse width ensured precise timing required for a coinci-
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dence trigger of one of the polarimeter detectors and the tagging counter, used to record
Møller scattering events. The pulse height analysis allowed for an approximate energy
calibration, sufficient to distinguish the electrons originating from Møller scattering
from scattered beam electrons, whose energy is on average twice as high.
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Chapter 4

Electronics and data acquisition

The detectors, trigger and readout electronics, as well as the data acquisition concept,
are described in this chapter. Results of detector tests are also shown.

4.1. Detectors

4.1.1. Preliminary research

Photomultiplier tubes (PMT) have been widely used to convert light (for example
generated in a scintillation process) into an electric signal. The principle of operation
is based on the photoelectric effect, by means of which electrons are ejected from
the photocathode hit by photons. Subsequently, electrons are multiplied thanks to
secondary emissions from several electrodes (dynodes), between which the electrons
are accelerated.

Initially, the polarimeter was tested on beam with ET Enterprises 9108B PMTs
(with HV3020AN base). However, the PMTs exhibited a serious degradation effects
after a few days of beam time, resulting in the drift of the signals towards lower
amplitudes and a cutoff of the low-energy part of the spectrum. The tagging counter
signal amplitude spectrum is shown in Fig. 4.1 for the first and last test run, separated
by approx. 60 hours of data acquisition with the detector exposed to the flux of particles
scattered off the beryllium target at approx. 27 nA beam current. The positions of
both peaks (1.5 MeV Møller electrons and 3 MeV electrons from Mott scattering of
beam electrons in the beryllium target, called beam peak in the following), obtained
from the fits to the signal amplitude spectra, are plotted as a function of time in
Fig. 4.2. It can be seen that the Møller peak position decreased by approx. 20% over
a relatively short period of time, below 60 hours.

In conclusion, it was found that the initially considered detector technology is not
suitable for regular data acquisition in the experiment. Due to the rapid degradation
of the PMTs, a decision was made to investigate the suitability of available SiPM
dectectors for a replacement. An additional benefit would be much reduced detector
size, which would allow for experimental configurations impossible with PMTs due to
geometrical reasons.
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Figure 4.1: Signal amplitude spectrum in the tagging counter equipped with a PMT,
from the first (left) and last (right) run of a 2.5-day test period. The smaller peak at
lower amplitudes corresponds to Møller electrons of 1.5 MeV energy on average, and
the larger peak corresponds to Mott-scattered beam electrons of 3 MeV energy.
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Figure 4.2: Dependence of the peak position on time in the tagging counter equipped
with a PMT. Yellow – Møller peak (1.5 MeV). Magenta – beam peak (3 MeV, values
are shifted by the average distance between peaks for comparison). The lines represent
exponential fits.
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Figure 4.3: Application circuit of the SiPM sensor. Sout denotes the standard output
from the biasing circuit and Fout denotes the fast signal output. If the slow output is
not used, the sensing resistor RS can be removed. Source: [51].

4.1.2. SiPM detectors

With the advance of semiconductor technology a new detector type, silicon photomul-
tiplier (SiPM), appeared on the market as an alternative to the vacuum tubes. In
this case, the principle of operation is based on the creation of electron–hole pairs in
silicon by incident photons. In order to achieve a multiplication of charge carriers, a
photodiode needs to be reversely biased at a voltage sufficiently high that the acceler-
ated charge carriers can cause secondary ionization (a diode operated in this regime is
referred to as a single photon avalanche diode). A single SiPM detector consists of a
large number (order of 10k) of avalanche photodiodes, implemented in a single silicon
structure. The photocurrents from all diodes are combined together to form a common
signal, so the detector response is to a good approximation proportional to the number
of incident photons.

The detector chosen for evaluation was a J-Series SiPM sensor manufactured by ON
Semiconductor (ARRAYJ–30035–16P–PCB). The main reason for this choice was an
exceptionally good timing performance. In a typical SiPM, the current signal through
the biasing circuit of the sensor is integrated to obtain a measure of the number of
detected photons. The time width of this signal is of the order of the recharge time
of the sensor, which is significantly longer than the pulse from the PMT. Whereas, in
the chosen SiPM model the photodiodes are additionally equipped with a fast output
capacitively coupled to the biasing terminal. The fast signals from all of the diodes are
summed together to form a voltage pulse with amplitude proportional to the number
of detected photons, as shown in Fig. 4.3. The width of this pulse claimed by the
manufacturer is of 1.5 ns, which would be a significant improvement over the previous
detector, resulting in a reduced number of false coincidences recorded in the experiment.
Additionally, if only the fast output is used, the sensing resistor in the biasing circuit
can be removed, resulting in an improved recharge time of the sensor.
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Table 4.1: Selected characteristics of the PMT and SiPM detectors used in this work.
PMT SiPM

ET Enterprises 9108B ARRAYJ–30035–16P–PCB
photosensitive area 4.9 cm2 (ϕ 25 mm) 1.4 cm2 (12 mm x 12 mm)
pulse width (fwhm) 5 ns 1.5 ns

recharge time constant — 45 ns
gain 2 × 106 6.3 × 106 (slow output)

Figure 4.4: Layout of a SiPM array. The divisions between 16 individual pixels are
visible. Source: [52].

The key parameters of both detectors are compared in Table 4.1.

4.1.3. Single pixel tests
For the initial tests, the SiPM array was mounted on a test board provided by the
manufacturer of the sensor (ARRAYJ–BOB3–16P). The array surface is divided into 16
independent pixels, which can be read out separately in position-sensitive applications,
or summed together if detection position is not relevant (cf. Fig. 4.4). The test board
allows to connect one of the pixels of an array to SMA connectors for the connection
to the bias source and readout.

In the first test, scintillation light created by the passage of cosmic radiation was
observed with a scintillator crystal placed directly above the sensor. One of such events
(slow and fast signal), observed with one of the pixels in the center of the array, can be
seen in an oscilloscope shot in Fig. 4.5. Note that in order to observe the slow signal,
a 50 Ω sensing resistor was placed in the biasing circuit, so the timing is worse than
optimal.

A significant amount of signal distortion is visible especially in the fast output. Its
origin is not related to signal reflections (the line was correctly terminated, and anyway
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Figure 4.5: Scintillation signal from cosmic radiation recorded with a SiPM sensor
connected to an evaluation board available from the manufacturer. Yellow – slow
signal. Blue – fast signal.

the anticipated distance between subsequent pulses, assuming a delay of around 5 ns
per 1 m of cable, would be much shorter than observed). This result demonstrates
that the design of the test board is not suitable for the readout of such fast signals,
in particular due to the fact that the ground of the sensor, power supply and readout
had to be connected by means of jumper wires connected on top of the board.

The test board was modified by adding fixed connections to the ground plane, which
to some extent improved the performance as can be seen in further plots. Additionally,
the fast output signal was amplified with an external preamplifier with a gain of 20 dB,
since the raw pulse amplitudes were of the order of a few mV only. A typical fast pulse
after these modifications is compared to a typical signal from the PMT in Fig. 4.6.
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Figure 4.6: Scintillation signal from Sr-90/Y-90 β source recorded with a SiPM sensor
(fast signal, left), and a PMT (right).
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Figure 4.7: Positions of the pixels with indicated channel numbers within an array.
Pixels belonging to different groups according to the distance from the center (center,
side and corner) are marked with different colors.

The Sr-90/Y-90 β source spectra taken with each pixel within an SiPM array were
compared in order to investigate any correlation with the position of the pixel in the
array, see Fig. 4.7. A comparison of the signal-amplitude distributions recorded with
a few selected pixels is shown in Fig. 4.8.

A comparison between pixels placed at the same distance to the center of the
matrix allows to estimate the random differences between the pixels within one array.
Additionally, the measurements were performed with two arrays, in order to investigate
possible differences between two detectors of the same type, which might appear due to
random differences in the manufacturing process. The signal-amplitude distributions
are shown in Fig. 4.9 and a good agreement is found, with no significant differences
between pixels in the two arrays.

It is worth noting that the differences between pixels placed at different positions
within an array, shown in Fig. 4.8, are larger than the differences between different
pixels placed at similar positions with respect to the center of the array (including
pixels of two different arrays), shown in Fig. 4.9. This supports the hypothesis that
the amount of light reaching a particular pixel depends weakly on the position within
the array. An additional anisotropy might arise due to the imperfect positioning of the
source with respect to the geometrical center of the detector or the asymmetry of the
source itself.

In summary, a satisfactory uniformity of the pixels within a matrix was observed
and no significant differences between two matrices of the same type were found. The
observed differences between pixels placed at different positions are small and should
not affect the experiment significantly.

4.1.4. Complete detector tests
Since the SiPM sensor is sold without a power supply and signal readout, a custom
frontend board had to be developed. A dedicated readout board, equipped with a
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Figure 4.8: Normalized Sr-90/Y-90 β source spectra recorded with 4 pixels of an SiPM
array placed at different positions: CH10 – center, CH12 – right side, CH14 – bottom
side, CH16 – corner (fast signals, +20 dB).
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Figure 4.9: Normalized Sr-90/Y-90 β source spectra recorded with pixels of two SiPM
arrays placed at the same distances from the center: left – central pixels, right – side
pixels (fast signals, +20 dB).
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Figure 4.10: Front end board of the SiPM detector. Left: connector side. Right: sensor
side.

summed fast output from all 16 pixels within an array, as well as an integrated am-
plifier, was manufactured. The custom design of the readout board, thanks to much
shorter signal lines between the sensor and the preamplifier, allowed to reduce the noise
observed in the fast signal. Additionally, the new readout board allowed for a fixed
mechanical connection between the light guide and the sensor, which was not possible
with the test board, removing the uncertainty regarding the light guide positioning on
the array.

The cathodes of all pixels were connected to ground, and the anodes of all pixels
were connected to a common power supply channel, via decoupling capacitors to sta-
bilize bias. The fast outputs of all channels were summed together to form one output
signal per array, via Schottky diodes to reduce noise. The summed signal was amplified
by a factor of 10. A LEMO connector for the fast signal output, and a ribbon cable
for power supply, were provided. The board is shown in Fig. 4.10.

The summed signals from entire arrays were compared by measuring cosmic ray
spectra with six different sensors. The signal amplitude spectra are shown in Fig. 4.11.
It can be seen that only one array deviates significantly from the other spectra; it was
rejected from the measurements, since only three detectors at a time were needed for
the polarization transfer experiment.

The dependence between the output pulse amplitude and the bias voltage is one of
the key characteristics of the sensor. According to the manufacturer, the sensor has to
be operated at an overvoltage (i.e., above the breakdown voltage of the diode) between
1 and 6 V, in order to achieve the charge multiplication. This corresponds to the
operating voltage range from −25.5 to −30.5 V. Both the photon detection efficiency
and gain are approximately linearly proportional to the bias voltage (see Fig. 4.12), at
a price of increased number of dark counts and crosstalk. The signal amplitude spectra
in the tagging counter, recorded with bias voltages of −29 and −29.5 V are compared
in Fig. 4.13. During the experiment, the detectors were operated at −29 V, which
is sufficient to record the entire Møller electrons peak. Nevertheless, one should note
that the level of low-energy noise is similar also at −29.5 V, since the small dark count
signals are not detected in applications involving a large flux of light. The difference

43



0.05 0.1 0.15 0.2 0.25 0.3
Signal amplitude [V]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
310×

N
u

m
b

er
 o

f 
ev

en
ts

array 1 0.167
array 2 0.184
array 3 0.173
array 4 0.170
array 5 0.058
array 6 0.160

Figure 4.11: Cosmic spectra recorded with six arrays over the same data acquisition
time. The single particle peak positions from the fits are shown for comparison in the
plot legend.

Figure 4.12: Performance of the SiPM detector claimed by the manufacturer. Left:
photon detection efficiency dependence on overvoltage. Right: gain dependence on
overvoltage. Source: [53].
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Figure 4.13: Signal amplitude spectrum in the tagging counter with a SiPM operated
at (a) −29 V and (b) −29.5 V bias voltage. The smaller peak at lower amplitudes
corresponds to Møller electrons of 1.5 MeV average energy (Møller peak), and the
larger peak corresponds to beam energy of 3 MeV (beam peak).

between various overvoltage settings would become much more apparent in photon
counting applications, which require exceptionally low noise.

4.2. Readout

4.2.1. Signal digitization
The signals from the SiPMs were digitized with a DRS4 Evaluation Board equipped
with a DRS4 switched capacitor array chip [54]. The board can sample four input
channels at 5 GHz rate, and 1024 samples can be stored from each input channel.
The signals stored in the DRS4 chip are digitized with an ADC. The board is also
equipped with a FPGA (Xilinx Spartan 3) for the readout of the ADC output and
data acquisition control, including trigger logic. A microcontroller allows to read the
data out via USB 2.0 interface. The schematic block diagram of the digitizer board is
shown in Fig. 4.14.

4.2.2. Trigger
The board contains a built-in trigger logic. Each of the input channels is connected
to a comparator, whose output is read out by the FPGA. A basic trigger logic similar
to that available in digital oscilloscopes was implemented in the firmware provided by
the manufacturer. The fact that the operation of the board is controlled by a FPGA
allowed us to implement certain modification to the basic functionality.

In case of the polarization transfer experiment it was necessary to take into account
the information about beam polarization. The beam polarization was controlled with
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Figure 4.14: Schematic block diagram of the DRS4 Evaluation Board. Source: [55].

Figure 4.15: Illustration of the external trigger signals dependence on time (not to
scale). Beam denotes the Pockels cell switching signal (2 s square wave), EXT1 is the
trigger signal corresponding to high voltage state of the beam signal (start delayed by
200 µs), and EXT2 is the trigger signal corresponding to low voltage state of the beam
signal (also delayed by 200 µs).

a multi-channel signal generator. Three synchronized outputs of the generator were
used. One of them was connected to the Pockels cell in the laser system of the polarized
electron source. Due to the finite switching times and possible signal delays, the data
acquisition should be stopped for a short period of time around the switching moment.
Therefore, two additional trigger signals, delayed with respect to the cell control signal,
were generated, as shown in Fig. 4.15. The trigger condition in the polarization transfer
experiment reads

(L ∨ R) ∧ T ∧ (EXT1 ∨ EXT2), (4.1)

where L and R denote the polarimeter detectors, T is the tagging counter, EXT1 and
EXT2 are the external trigger signals from the generator, corresponding to opposite
beam polarization orientations. There were two digitizer boards at our disposal, there-
fore, the L and R detectors were read out with separate boards, allowing us to reduce
the dead time. Thus in reality each digitizer board realized the trigger condition (4.1)
with one of the detectors from the first alternative.

It can be seen in Fig. 4.14 that the board has two auxiliary inputs, described in
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Figure 4.16: Calibration curves of the trigger thresholds of all input channels of the
DRS evaluation boards (trigger threshold correction defined as the difference between
the trigger threshold of a given channel and the reference threshold of channel 1, DRS
board 1).

the schematics as external trigger input and reference clock input. Further analysis of
schematics reveals that the electronic paths of both signals are identical, their names
reflect only the difference in the use of both signals in the standard firmware. Therefore,
the firmware was modified in such a way that an alternative of both inputs was included
in the trigger logic, in coincidence with the input signals from the detectors. This way,
the data acquisition was stopped when the beam polarization was uncertain.

In order to be able to assign the beam polarization to the recorded events, it was
necessary to save the information on which of the two external trigger signals was
active. Two additional latches were implemented, in order to store the external trigger
input states when the trigger condition was met. In order to be able to use the data
acquisition software provided by the board manufacturer, the readout format was left
unchanged. Instead, the information on the external trigger was encoded in the last
bins of the digitized waveforms. 1024 points of each waveform are read out, which is
much more than the typical duration of a signal from a PMT or SiPM, thus the loss
of a few last data points is not a problem.

In case of the spin correlation experiment, a more complex trigger condition has to
be implemented, namely a coincidence of any detectors from two polarimeters and the
external trigger signal,

(L1 ∨ R1) ∧ (L2 ∨ R2) ∧ (EXT1 ∨ EXT2), (4.2)

where the subscripts 1 and 2 denote the first and second polarimeter, respectively.
Thanks to the use of an FPGA, it is straightforward to implement such trigger condi-
tion, therefore, the evaluation board is also suitable for the use in a future correlation
experiment.
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Figure 4.17: Maximum rate of events that can be saved to the file plotted as a function
of the number of readout channels. Magenta: PC with Intel Core i7-3770, yellow: SBC
with Samsung Exynos 5422.

While the DRS evaluation board has built in circuits for timing and voltage cal-
ibration of the signal digitizer, there is no automatic trigger calibration. A test was
performed with a signal generator connected to each signal input of both boards. The
measured trigger threshold corrections are shown in Fig. 4.16, with one of the channels
used as a reference (trigger levels of all channels were compared to the trigger level of
channel 1 of DRS board 1 corresponding to the same input voltage). It can be seen
that there is a significant difference between two boards, but the channels within one
board are also not identical. A table with data from Fig. 4.16 was used during the
experiment to achieve similar trigger thresholds for all detectors.

4.2.3. Dead time
When the trigger condition is met, input signal sampling is stopped to allow the samples
already stored in the DRS board memory to be readout by the data acquisition control
program running on the connected computer. This results in a considerable dead time,
which needs to be taken into account when analysing data. In order to experimentally
determine the dead time of the readout electronics, the DRS software was modified
to record the event time stamp with a microsecond precision (instead of the standard
millisecond accuracy).

The test was performed with a large event rate saturating the readout (the time
between consecutive pulses was negligible compared to the dead time). The maximum
event rate that can be written to the disk is shown as a function of the number of
channels in Fig. 4.17. It was found that the dead time depends not only on the
DRS digitizer board, but also on the configuration of the readout computer. The
effective (average) dead time values (inverse of the maximum event rate) are listed in
Table 4.2. For single channel readout, the maximum event rate of 500 Hz corresponds
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Table 4.2: Average dead time values of the DRS board corresponding to the maximum
event rate. The results were determined in a test with a signal generator, with different
numbers of active channels in the digitizer board and two different readout computers
(see text for details).

CPU 1 channel 2 channels 3 channels
Samsung 2.3 ms 2.9 ms

Intel 2.0 ms 2.2 ms 2.4 ms
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Figure 4.18: Histogram of the time between consecutive events from the test with pulse
generator; (a) data not written to file, (b) data written to file. The event rate from
the generator was about 165 Hz (6 ms time between pulses).

to the average dead time value of 2 ms. It can be seen that the effective dead time is
about 0.3 ms longer for the single board computer (SBC) with Samsung Exynos 5422
processor (2 GHz clock) than for the PC with Intel Core i7-3770 (3.4 GHz).

These observations were also confirmed in a subsequent test with a lower event
rate from the pulse generator. The distributions of time between consecutive events
with and without writing the data to the file can be compared in Fig. 4.18. It can
be seen that, when the data are not stored, the distribution consists of a single peak
corresponding to the constant time distance between the pulses from the generator (in
this case the dead time is shorter than this time). However, when the data are written
to the disk, additional peaks, corresponding to different delay times, appear in the
spectrum due to the latency of the computer and hard drive. It shows that the dead
time might be larger than 6 ms (time between test pulses) at least for some events.

The procedure of the experimental-data correction for the presence of dead time is
described in Section 7.2.
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4.2.4. Data acquisition
The general scheme of the data acquisition setup, which was used in the polarization
transfer experiment, is shown in Fig. 4.19. The readout of the spin correlation experi-
ment could be very similar, except that instead of the tagging counter there would be
additional polarimeter detectors.

In order to avoid signal attenuation in exceptionally long cables, it was desirable to
place the digitizer boards as close to the detectors as possible. Since the DRS boards
are read out via USB connection, also the readout computers had to be placed nearby.
Therefore, small single board computers (SBC) were used instead of standard PCs.
Both the SBCs and the DRS boards were placed in a lead house located directly under
the polarimeter. An additional SBC was used to control the power supply of the SiPMs
and a relay board.

The SiPM power supply board was equipped with a microcontroller, which com-
municated with the SBC via a serial interface. The remotely controlled power supply
allowed us to change the bias voltage (only for testing) and to switch individual de-
tectors on and off (the tagging counter was switched off during the beam polarization
measurement).

The relay board was used to switch two compressed air electrovalves controlling the
target ladders. The relay board was connected directly to the digital output pins of
the third SBC. The relay controlling the gold target was switched by an application
receiving commands from the main data acquisition program, which automatically
moved the gold target in and out between runs. The relay controlling the beam monitor
had to be switched from the operator’s console.

The coordination between the four computers involved in the data acquisition was
achieved using socket programming. Socket programming offers a convenient way of
establishing data transmission between programs running on two computers in the
same network (the connection is made using the IP addresses and port numbers). The
remote computers sent the received commands back to the control computer. If the
sent and received messages were different, an error would be displayed.

The PC placed in the counting room was used only to control the process, while the
data acquisition itself took place on the computers placed in the experimental hall. Raw
data were stored on fast SSD drives connected directly to the SBCs in the experimental
hall, thus the data were not transmitted over the ethernet. The main control program
ran in terminal on the control PC, a sample output is shown in Fig. 4.20. The output
visible in the terminal was stored to a file for future reference.

The data from the program were also automatically stored in a more user-friendly
form in the electronic logbook of the experiment, based on the ELOG software. A new
logbook entry was created automatically at the end of each run and when the operator
changed. A sample logbook page is shown in Fig. 4.21. Manual logbook entries could
also be added in case of non-standard events.

At the beginning of a new run, the control PC issued commands to the software
running on SBCs, first to change the target position, and then to start the data acqui-
sition. When the run duration time requested by the operator elapsed, commands to
stop the data acquisition, and to provide the number of recorded events, were sent. The
remote computers replied with the number of recorded events, saved signal-amplitude
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Figure 4.19: Schematic illustration of the data acquisition and slow control system in
the polarization transfer experiment. PC is the main control computer, LAN is the
ethernet switch, SBC are the single board computers, DRS denote the digitizer boards.
L and R are the SiPMs in the Mott polarimeter, and T is the SiPM of the tagging
counter.
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Figure 4.20: Terminal window with the data acquisition software running.

histograms, which were appended to the electronic logbook, and created a backup of
the data on spare hard drives. The control program analyzed the average event rates
during the experiment and displayed warnings in case they differed significantly from
previous values. This way, large changes of the beam current could be detected.

Since all the data acquisition software was controlled from the PC located in the
counting room, it was possible to control the experiment remotely by logging in to
that computer over ssh. This way, some of the shifts at the experiment during the
coronavirus epidemic were done remotely from Warsaw.

The software running on the SBCs controlling the DRS boards was modified from
the DRS Oscilloscope program provided by the board manufacturer. As the name
suggests, the original program resembled the interface of a digital oscilloscope, with
the main window showing the acquired waveforms. Additionally, the software could
measure several parameters of the waveform and histogram the results. The signal
amplitude was found useful for the experiment, as it allowed to quickly preview the
approximate spectrum in the tagging counter, which allowed the operator to check if
the data is acquired correctly (the spectrum in the polarimeter detectors was not useful
without further offline analysis due to the high rate of low-energy background).

The interactive controls of the graphical interface were disabled (the operator ob-
served a static display instead of an interactive interface). Instead, the setting were
either fixed or controlled automatically according to the instructions from the main
control program. A typical window is shown in Fig. 4.22. The waveforms are shown
in the top half of the window, and the signal amplitude histograms are shown in the
bottom. Two channels are read out, the data from a polarimeter detector are shown
in yellow, and from the tagging counter in red.
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Figure 4.21: Electronic logbook window with two entries made automatically by the
data acquisition software.
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Figure 4.22: Graphical interface of the DRS Oscilloscope application. During the
automatic data acquisition the buttons visible on the right hand side were displayed,
but inactive (controlled remotely by the main data acquisition program).
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Chapter 5

Simulation of the analyzing power

For the simulation of Mott scattering of polarized electrons, a dedicated model for
the Geant4 toolkit was created. The results of the validation of the model, and the
predictions for the polarization transfer experiment, are presented in this chapter.
Parts of this chapter related to the model were published in [33] and its predictions for
electron polarimetry in the MeV energy range in [34].

5.1. Mott scattering model
The simulation taking into account polarization effects in Mott scattering is beyond
the scope of general purpose Monte Carlo codes, such as the commonly used Geant4
toolkit [49]. The Geant4 package includes models of Møller scattering (ionization) and
bremsstrahlung, that take into account electron polarization. However, polarization
effects are not accounted for in the description of Mott scattering. There are multiple
implementations of electron–nucleus scattering in Geant4 (for a comparison of different
models see, e.g., [56]), but neither of these takes into account polarization effects in this
interaction. Thus, Geant4 is unsuitable for simulation of processes involving electron
polarization in the MeV and sub–MeV energy range, due to the large cross section for
Mott scattering in the discussed case. There were dedicated simulations written for the
study of polarized electron elastic scattering (e.g., [57, 58]), however, we do not know
of any such code available to the public.

A custom description of a given interaction process in Geant4 can be achieved by
implementing a so–called interaction model, to be used instead of the standard ones
available in the toolkit. The implementation details of a custom interaction are left to
the user, the only requirement is to use the common interface recognized by Geant4.
The Geant4 core takes care of propagating the particle through the simulation in the
same way regardless if standard or custom interaction models are used. Therefore,
a new model of Mott scattering for electrons, that can be used with Geant4 instead
of the default electron Coulomb scattering model, has been created. The scattering
amplitudes determining the cross section and polarization transfer have to be provided
as an input; as already mentioned in Section 2.2, they can be reliably calculated for
instance with the ELSEPA package [42].

The implementation is based on our earlier standalone simulation code PEBSI
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Figure 5.1: Block diagram illustrating the implementation strategy of the new interac-
tion model in Geant4; dσ/dΩ is the cross section, S, T , U are the functions determining
the polarization transfer, k is the momentum, P is the polarization.

(Polarised Electron Bremsstrahlung SImulator) [59, 60] written in FORTRAN. The
applications of the original code extended much beyond its original aims, but were
limited because of its lack of flexibility. It was decided that in order to overcome
this issue it would be favorable to merge the Mott scattering model from PEBSI with
Geant4.

The main advantage of the new implementation is that it can be easily used in any
Geant4 simulation by replacing the standard Coulomb scattering model. Compared
to PEBSI, the extremely wide capabilities of the Geant4 framework offer many ad-
ditional improvements, such as the possibility to describe more complex geometries,
multi–threaded computation, and many others. It has also been observed that the
computation time is shorter in Geant4.

The modular (object oriented) architecture of the Geant4 toolkit allows for adding
new interaction models without any changes to the core simulation code, which can
be seen in the diagram illustrating the implementation idea, shown in Figure 5.1. The
theoretical data, obtained from the ELSEPA code, are then used in the Mott scattering
model (based on the PEBSI simulation), which is interfaced to Geant4.

A custom interaction model has to overwrite predefined functions, inherited from a
base interaction class, responsible for calculating cross sections, sampling the scattering
parameters (momentum and polarization after the scattering) and producing secondary
particles (also with appropriate momentum and polarization vectors). This way, only
the part of the code responsible for performing the Mott scattering in PEBSI had to be
rewritten from FORTRAN to C++. After adapting the implementation to the Geant4
interface, the new polarized electron Mott scattering model, used in place of the default
Coulomb scattering model, works out of the box as a part of the simulation.

For simplicity, the cross section generator is used as a standalone program. The
differential cross section (and S, T , U functions) tables are generated with ELSEPA
and stored in data files. These data are then imported to our Mott scattering model at
the initialization of the simulation. The cross section generator could be, in principle,
compiled together with the simulation code, but in most cases the data tables need to
be generated only once and there is no need to repeat this calculation each time the
simulation is started.

We provide a sample program running the ELSEPA code to generate the data tables
in the appropriate format. For certain conditions (energies) the ELSEPA code issues a
warning that the calculation might not have converged successfully, and indeed it has
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Figure 5.2: Dependence of the theoretical Sherman function S on electron energy E for
electron scattering off gold atoms, generated with ELSEPA [42], before (a) and after
corrections (b).
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Figure 5.3: Dependence of the theoretical Sherman function S on the scattering angle
θ for electron scattering off gold atoms, generated with ELSEPA [42], before (a) and
after corrections (b).

been noticed that some data points are incorrect (by inspecting the cross section and
Sherman function dependence on energy one can observe that some data points do not
fit the general dependence). A simple data correction algorithm, which interpolates
the value from the neighboring points if an inconsistency is found in the ELSEPA
output, has been included in the generator and can be switched on if desired. If the
interpolation is unsuccessful in a few iterations, then extrapolation from previous points
is performed. The control plots corresponding to uncorrected and corrected data are
shown in Figs. 5.2 and 5.3. The errors in uncorrected data are clearly visible. After
correction there are no inconsistencies noticeable in the plots. In any case it is advisable
to always verify the consistency of the input data by means of, for example, control
plots similar to those in Figs. 5.2 and 5.3.

The implementation of the Geant4 extension has been divided in two classes.
The first one, MottScatteringModel, inheriting from a native Geant4 virtual class
G4VEmModel, provides an interface to Geant4 and follows the structure of the cor-
responding classes of other Geant4 interaction models. This way, the Geant4 core
functions responsible for managing the simulation and calling the interaction processes
are able to interact with the custom model. The actual extension can be found in
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the MottCrossSection class, containing functions practically identical to those found
in the original PEBSI code, whose methods are called by the MottScatteringModel.
This part of the code is responsible for providing the total cross section (for a given
beam energy and target material) and performing the scattering (i.e., calculating the
energy, momentum and polarization change for a particle of a given primary energy,
momentum and polarization, scattered off a target atom). The cross section and S,
T , U values for intermediate energies and scattering angles are interpolated from the
data tables imported during initialization.

5.2. Validation of the model
Reliability of the simulation has been proven by comparison with experimental data
regarding the azimuthal asymmetry (effective Sherman function) in Mott scattering of
polarized electron beams. The comparison has been performed for 100 keV, in the 1 –
3.5 MeV range, and for 14 MeV, which is the highest energy for which applicability of
the Mott polarimetry method has so far been demonstrated.

5.2.1. Parametrization of the effective Sherman function

Dependence on target thickness

The parametrization of the asymmetry dependence on target thickness is commonly
used for the calibration of Mott polarimeters (i.e., determining the effective Sherman
function for targets of finite thicknesses). In our earlier work [60] we have shown that
at lower energies (100 keV) different parametrizations are more appropriate, depending
on the scattering angle. The Monte Carlo simulation can be useful to determine which
parametrization should be used under given experimental conditions.

It is difficult to predict the effective Sherman function dependence on target thick-
ness, as the scattering probability differs with the position in the target due to multiple
scattering and energy loss, which in general cannot be modeled analytically. This prob-
lem can be illustrated with the distributions of the target penetration depth (i.e., the
largest value of the electron-track coordinate along the primary beam direction), which
are shown in Fig. 5.4 for 1.5 MeV electrons scattered off a 40 µm thick gold target.
It can be seen that the shape of the distribution depends on the scattering angle. In
general, the backscattering probability increases with target thickness, however, when
energy selection is applied, a maximum of the distribution is observed around a few
µm, as the passage through the target is associated with energy loss. This result also
demonstrates that a nonzero value of the effective Sherman function can be expected
even for an infinitely thick target, since most of the electrons recorded in the detectors
are scattered at a relatively small depth.

The effective Sherman function dependence on target thickness is typically parametrized
either with an exponential [61]

Seff(d) = S∞ + (S0 − S∞) exp(−α d), (5.1)
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Figure 5.4: Distributions of the target penetration depth for 1.5 MeV electrons scat-
tered off a 40 µm thick gold target, for detectors placed at two angles, 120◦ and 164◦,
with respect to the beam axis, without energy selection (a) and with a 1.4 MeV low-
energy cut (cf. Section 5.2.3) (b).

or hyperbolic
Seff(d) = S∞ + S0 − S∞

1 + α d
(5.2)

function. In this convention the S0 and S∞ parameters denote the effective Sherman
function value for zero and infinite target thickness, respectively, and α describes the
attenuation of the effective Sherman function with increasing target thickness.

The hyperbolic dependence of the effective Sherman function on target thickness
can be derived analytically under certain approximations, namely neglecting the ex-
istence of trajectories with three or more scattering events. The double-scattering
approximation was originally studied by Wegener [62], and later was used by several
authors to obtain predictions for the effective Sherman function decrease with target
thickness [63–66].

The assumption that, in the case of thin targets, which are typically used in Mott
polarimetry, one can restrict the description of multiple scattering to double scattering
only, can be easily verified with a Monte Carlo simulation. This way the validity
range of Wegener’s approximation can be defined, in order to assess the usefulness
of analytical calculations for the computation of the effective Sherman function. The
distributions of the number of scattering events at an angle larger than 10◦ along each
electron track are shown in Fig. 5.5 for 1.5 MeV electrons scattered off gold foils of
various thicknesses. The first observation is that there is no substantial difference
between the two scattering angles, the average number of scattering events being no
more than a few per cent larger at 164◦ than at 120◦. In case of thin targets, of the
order of 1 µm, the double-scattering approximation seems to be reasonable, given that
the majority of events consist of a single scattering at an angle larger than 10◦ and
that the mean number of scattering events is approx. 1.5. Nevertheless, even for thin
targets there is a noticeable number of triple-scattered electrons. Most importantly,
the double-scattering approximation is not adequate for thicker targets, of the order of
10 µm, for which the maximum of the distribution is observed at much higher values.

Some authors [65,66] included higher order terms in order to account for the multiple
scattering. Let us expand the number of detected electrons to the third power in target
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Figure 5.5: Distributions of the number of scattering events at an angle larger than 10◦

during the passage of a 1.5 MeV electron through gold targets of various thicknesses
d (1, 9.9 and 15 µm), for detectors placed at two angles, 120◦ and 164◦, with respect
to the beam axis, without energy selection and with a 1.4 MeV low-energy cut (cf.
Section 5.2.3).
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Figure 5.6: Dependence of the simulated effective Sherman function Seff (points) on
the target thickness d for detectors placed at two angles, 120◦ and 164◦, with respect to
the beam axis (scattering angle ranges 115◦ < θ < 125◦ and 163.5◦ < θ < 164.5◦), and
two beam energies: 1.0 MeV (a) and 1.5 MeV (b). The lines represent three different
fits to the data: hyperbolic (solid lines), polynomial (dotted lines) and exponential
(dashed lines), defined with Eqs. (5.2), (5.8) and (5.1), respectively.

thickness d (corresponding to triple scattering)

NL
R

= N0
[
(1 ± S0)d + α(1 ± S0)d2 + βd2 + γ(1 ± S0)d3 + δd3

]
, (5.3)

where the upper and lower signs correspond to NL and NR, respectively. Coefficients
α and γ describe the double and triple scattering with analyzing power. Coefficients
β and δ describe the double and triple scattering without analyzing power. For the
difference and sum one gets

NL − NR = 2N0
[
S0d + αS0d

2 + γS0d
3
]

, (5.4)

NL + NR = 2N0
[
d + αd2 + βd2 + γd3 + δd3

]
. (5.5)

The polynomial parametrization can be obtained from the asymmetry

Seff(d) = NL − NR

NL + NR

= S0 + αS0d + γS0d
2

1 + (α + β)d + (γ + δ)d2 . (5.6)

If β is the only parameter different from 0, one gets the standard hyperbolic dependence

Seff(d) = S0

1 + βd
. (5.7)

Eq. (5.6) can be rewritten in the form

Seff(d) = S0 + β1 d + β2 d2

1 + α1 d + α2 d2 , (5.8)

where the fitted constants β1, β2, and α1, α2 describe the scattering with and without
analyzing power, respectively.

A comparison of the three proposed parametrizations is shown in Fig. 5.6 for two
energies. It can be seen that the exponential parametrization does not describe the data
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Table 5.1: Comparison of the theoretical Sherman function S, corresponding to the
scattering off a single atom, obtained with the ELSEPA [42] code to the extrapolated
zero-thickness values S0 obtained from fitting the hyperbolic (5.2) and polynomial (5.8)
target-thickness parametrizations to the simulated data for detectors placed at an angle
of 164◦ with respect to the beam axis (scattering angle range 163.5◦ < θ < 164.5◦).

beam energy ELSEPA HYP POL
1.0 MeV −0.454 −0.468 ± 0.005 −0.454 ± 0.007
1.5 MeV −0.505 −0.501 ± 0.007 −0.502 ± 0.005

Table 5.2: Comparison of the reduced χ2 values obtained with the hyperbolic (5.2) and
polynomial (5.8) target-thickness parametrizations of the simulated effective Sherman
function data for detectors placed at an angle of 164◦ with respect to the beam axis
(scattering angle range 163.5◦ < θ < 164.5◦).

beam energy HYP POL
1.0 MeV 7.83 0.56
1.5 MeV 0.40 0.46

well. In general a good fit to the experimental data was achieved with the hyperbolic
parametrization, in agreement with the analysis done at 14 MeV [33]. However, for the
lowest energy of 1.0 MeV there is a noticeable difference between the polynomial and
hyperbolic parametrization.

In order to determine which of the parametrizations is more adequate, the extrapo-
lated zero-target-thickness value S0 can be compared to the theoretical predictions for
scattering off a single atom. The extrapolation results are compared to the values ob-
tained with ELSEPA in Table 5.1. A better agreement at 1.0 MeV is achieved with the
polynomial extrapolation. At higher energies both parametrizations are in agreement
within the uncertainties.

The χ2 test results, listed in Table 5.2, confirm that a much better description
of 1.0 MeV data is obtained with the polynomial fit, while the results at 1.5 MeV are
similar for both parametrizations. In all tested cases except hyperbolic parametrization
at 1.0 MeV, values in agreement with the χ2 distribution were obtained (results of the
order of 0.5 have a relatively large probability for a low number of degrees of freedom,
due to the asymmetry of the χ2 distribution).

Dependence on energy

The Monte Carlo simulation is performed in the full range of scattering angles, but at
a fixed beam energy. The parametrization of the effective Sherman function depen-
dence on energy can thus be used to interpolate the data for intermediate energies.
Additionally, it will be used in the polarization transfer experiment, which requires the
measurements to be performed at two different energies.

Our results (cf. Section 5.2.3) indicate that in the case of thick targets, the effective
Sherman function dependence on energy is approximately linear. However, the theo-

62



retical Sherman function typically exhibits a minimum around a few MeV (for a fixed
scattering angle), which is reflected in the data for thin targets. A satisfactory descrip-
tion of the data can be achieved with a linear function modified with an exponential
term,

Seff(E) = a + bE exp (cE), (5.9)

where a, b, and c are fitted constants. For thin targets the value of the c parameter is
negative and approaches zero with increasing target thickness.

5.2.2. Comparison to the experimental data at 100 keV
The reliability of the original PEBSI simulation code was verified by comparing the
simulated effective Sherman function with experimental data for 100 keV electrons
scattered off gold targets of varying thicknesses measured by Kohashi et al. [67] in the
full range of scattering angles. The results from Geant4 are in perfect agreement with
the former code and reproduce the experimental data reasonably well, as shown in
Figure 5.7. A detailed discussion of the simulation results and a possible explanation
of the discrepancies between the simulations and the measurements can be found in
the original paper [60].

5.2.3. Comparison to the experimental data at 1 – 3.5 MeV
The simulation results were compared to the measurements performed with the Mott
polarimeter at the Mainzer Mikrotron (MAMI) electron accelerator, at the scattering
angle of 164◦, with several beam energies and target thicknesses [50].

The MAMI Mott polarimeter is shown schematically in Fig. 5.8. It consists of a
vacuum scattering chamber made of very pure aluminum, containing the gold targets
of various thicknesses, which can be changed on demand. It is operated with the beam
polarization vector in the horizontal plane, therefore, electrons Mott-scattered in the
vertical plane at an angle of 164◦ with respect to the beam axis are detected in two
identical counters. The angular acceptance of approx. ±0.5◦ (corresponding to the
solid angle of 0.21 msr) is defined by cylindrical collimators made of aluminum. The
electrons passing through the collimators are deflected at an angle of approx. 90◦

in double focusing spectrometer magnets imaging the beam spot from the target to
the scintillator surface. This arrangement reduces the gamma-ray background origi-
nating from electron scattering off the collimators, chamber walls, and beam dump.
The vacuum is closed with aluminum windows, 0.5 mm thick, placed in front of the
scintillators and the scintillation light is detected with photomultipliers. The beam
polarization orientation is reversed periodically, which reduces the systematic errors.

The asymmetry was determined from the count rates measured in two detectors
at five energies (1.0, 2.0, 2.5, 3.0, and 3.5 MeV) with five gold targets (0.1, 0.25, 0.5,
1, and 15 µm thick) [50]. The experimental data were analyzed in the following way:
(i) the measured dependence of the count rate asymmetry on the target thickness was
extrapolated to zero target thickness, (ii) the beam polarization was calculated from
the extrapolated zero-thickness asymmetry and the theoretical value of the Sherman
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Figure 5.7: Dependence of the effective Sherman function on the scattering angle θ for
100 keV beam and 6 gold target thicknesses: (a – f) 2, 10, 50, 100, 200, 500 nm (50 keV
low–energy cut on simulation and experimental data). Full points – simulation: yellow
triangle down – Geant4, dark blue triangle up – PEBSI. Solid line (a) – theoretical
value for a single atom from ELSEPA [42]. Open points (b – f) – measurements of
Kohashi et al. [67].
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Figure 5.8: Schematic illustration of the Mott polarimeter at MAMI. Electrons
backscattered at 164◦ in the vertical plane, after passing through collimators, are de-
flected in a magnetic field and detected in scintillation counters. Source: [50].
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Figure 5.9: Dependence of the simulated effective Sherman function Seff on the scat-
tering angle θ, for a 3.0 MeV beam scattered off a 9.9 µm Au target.

function for a single atom, (iii) the effective Sherman function for finite target thick-
nesses was calculated from the measured asymmetry values and the beam polarization
according to Eq. (3.4).

Impact of data selection

Scattering angle

The effective Sherman function depends significantly on the scattering angle; an exam-
ple is shown in Fig. 5.9. It is, therefore, necessary to understand how the simulation
and extrapolation results are sensitive to the accepted scattering angle range (aperture
of the collimators).

The dependence of the theoretical Sherman function on beam energy is shown in
Fig. 5.10 for three scattering angles around 120◦ and five scattering angles around 164◦.
Around 120◦, there is a good agreement between the nominal ELSEPA predictions and
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Figure 5.11: Distributions of the scattering angle θ for 1.5 MeV and 3.0 MeV electron
beams backscattered off a 5 µm thick gold target.

the zero-thickness extrapolation of the simulation results. However, around 164◦, ex-
tending the scattering angle range (increasing the collimator aperture) increases the
extrapolated value in comparison to the theoretical predictions for energies above ap-
prox. 1.5 MeV.

Monte Carlo simulations may be useful to explain this effect. The angular distribu-
tion of electrons scattered off a 5 µm thick gold foil is shown in Fig. 5.11. It can be seen
that locally, both around 120◦ and 164◦, the number of scattered electrons decreases
with the scattering angle. Therefore, an event sample recorded with a finite collimator
aperture will contain more events scattered at the lower end of the accepted angular
range, which is reflected in the extrapolation results shown in Fig. 5.10. Around 120◦,
the Sherman function decreases approximately linearly with the scattering angle. As a
result, the extrapolation result converges to the central value even for wide collimators
accepting electron tracks in the range 115◦ — 125◦. Meanwhile, at 2.0 MeV there is
a local minimum of the Sherman function around 164◦, which explains the increase of
the extrapolated Sherman function obtained in the range 159◦ — 169◦ with respect to
the theoretical value at 164◦. A similar increase is also observed at higher energies due
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Figure 5.12: Dependence of the measured asymmetry and count rate on the bending
magnet current in the MAMI polarimeter. The black vertical line corresponds to the
magnet current of 907 mA used at 3.5 MeV. Source: V. Tioukine, private communica-
tion.

to the nonlinear dependence on the scattering angle.

Energy

The MAMI polarimeter design using a magnetic spectrometer introduces an implicit
energy selection due to the finite collimator and scintillator sizes. The trajectory radius
R is

R =
√

T 2 + 2mT

eB
, (5.10)

where B is the magnetic field, m and e are the electron mass and charge, and T is the
kinetic energy. Therefore, the maximum energy loss of electrons passing through the
collimators in the MAMI spectrometer is expected to change with beam energy due to
the different bending of electron tracks in the magnetic field.

The low-energy limit of recorded electrons was estimated by performing measure-
ments with various magnet currents, as shown in Fig. 5.12. The count rate maximum
at 3.5 MeV is observed for the current of approx. 895 mA and the count rate maximum
at 3.65 MeV is observed for the current of approx. 935 mA. These two values allow
for the calibration of the relation between central energy and magnet current. The
magnet current of 907 mA used at 3.5 MeV corresponds to a slightly higher energy
than 3.5 MeV. The central energy calculated from the linear interpolation is approx.
3.55 MeV.

From the intersection of the 907 mA line with the count rate dependences at 3.5 and
3.65 MeV, one can tell that the count rate decreases by approx. 50% with the energy
change of 0.15 MeV. Therefore, the low-energy cut corresponding to 50% count rate
decrease is equal to approx. 3.4 MeV. Alternatively, the same result can be obtained
from the 3.5 MeV count rate dependence. The count rate decreases by 50% for the
magnet current of approx. 870 mA. Using the linear extrapolation, one obtains again
3.4 MeV. Since such measurements were performed only at 3.5 MeV, we assumed, to
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Figure 5.13: Dependence of the effective Sherman function Seff on the target thickness
d, for a 3.5 MeV beam with detectors placed at an angle of 164◦ with respect to the
beam axis. The measurements of Tioukine et al. [50] (square magenta points) are
compared to the simulation results (scattering angle range 162◦ < θ < 166◦) with two
low-energy cuts: 1.75 MeV (orange triangles down) and 3.4 MeV (yellow triangles up);
the latter cut corresponds to the approximate low-energy cut in the experiment (see
text for details). The lines represent the polynomial fit to the simulated data.

a first approximation, the same upper limit on energy loss of 0.1 MeV for all beam
energies.

The difference between the simulated effective Sherman function with the measured
low-energy cut and with a much lower cut of half the beam energy is shown in Fig. 5.13.
It can be seen that the difference is negligible for targets thinner than a few µm, due
to the low energy loss, but significant in case of thicker targets.

Comparison to the experimental data

The experimental and simulated data are compared in Fig. 5.14 for 5 target thicknesses
and 5 energies. It can be seen that the simulated and measured data agree reasonably
well.

The simulation was also performed for the intermediate energy of 1.5 MeV, which
was not used during the measurements with the MAMI Mott polarimeter, but is used in
the polarization transfer experiment [31]. The predictions for the polarization transfer
experiment, performed at the 120◦ scattering angle, are also shown in the figures.

The dependence of the effective Sherman function on energy is shown in Fig. 5.15.
Comparison of the fits to the experimental and simulated data confirms that in general
the results are in good agreement, although for the thick target the fitted curves depart
from each other below approx. 2 MeV, due to the discrepancy observed at the lowest
beam energy of 1.0 MeV.

5.2.4. Comparison to the experimental data at 14 MeV
The use of the Geant4 toolkit vastly improved the computation performance, allowing
for the simulation of electron beams of higher energy, which was impractical with the
PEBSI code due to the long computation time. One of the main reasons is a faster
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Figure 5.14: Dependence of the effective Sherman function Seff on the target thickness
d for detectors placed at two angles, 120◦ and 164◦, with respect to the beam axis (scat-
tering angle ranges 115◦ < θ < 125◦ and 163.5◦ < θ < 164.5◦), and six beam energies
(a – f): 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 MeV. Triangular points – simulation, square points –
measurements of Tioukine et al. [50] at 164◦. The lines represent the polynomial fit to
the simulated data.
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Figure 5.15: Dependence of the effective Sherman function Seff on beam energy E for
detectors placed at two angles, 120◦ and 164◦, with respect to the beam axis (scattering
angle ranges 115◦ < θ < 125◦ and 163.5◦ < θ < 164.5◦), and two target thicknesses:
1 µm (a) and 15 µm (b). Triangular points – simulation, square points – measurements
of Tioukine et al. [50] at 164◦. The lines represent the fits to the data, Eq. (5.9).

random number generator, and probably also a better optimization achieved in the
Geant4 code, which has been broadly used and continuously developed over many
years. An important practical improvement is also the automation of multi–threaded
computations. Generation of 109 events of a 100 keV beam scattered off a 500 nm gold
foil takes around 4 hours on a decent computer1. Simulations at 14 MeV are much
more time consuming and can be effectively performed only on a cluster.

In Figure 5.16 one can see the comparison of the simulated effective Sherman func-
tion and the experimental data for 14 MeV electrons scattered off lead foils of varying
thicknesses measured by Sromicki et al. [64]2. The availability of experimental data in
this energy range is very limited; the advantages of the measurements of Sromicki et
al. are both the high energy and the fact that they were performed for a few different
scattering angles.

One can see that a good agreement is found for the lowest scattering angle. For
higher scattering angles, the agreement is promising for target thicknesses up to about
135 µm, but decreases with target thickness. Despite this fact, the simulation can be
useful also in this energy range, since the thickest targets under consideration do not
seem practically applicable in Mott polarimetry due to the low value of the effective
analyzing power, below 5%, and a large amount of background.

A possible source of discrepancy between the simulated and measured data might
arise from applied event selection. A low–energy cut of 7 MeV (half of the beam energy)
was applied to the simulated data. A comparison of the results obtained with this cut
and with a much higher cut of 13 MeV is shown in Fig. 5.17. It can be seen that the
results for thick targets depend significantly on energy selection, contrary to the case
of thin targets. The events from the simulation were selected in the ±5◦ range of the
azimuthal angle. Unfortunately, no information about event selection applied to the
experimental data was provided in the work of Sromicki et al. [64].

Another possible explanation of the differences observed at the high energy of
1tested on 2 × Intel Xeon E5-2680 V3
2the experimental values were read out from the plots in the original paper
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Figure 5.16: Dependence of the effective Sherman function on the scattering angle θ
for 14 MeV beam and 6 lead target thicknesses: (a – f) 60, 75, 105, 135, 165, 210 µm.
Full points – simulation (7 MeV low–energy cut on simulation data). Open points –
measurements of Sromicki et al. [64].
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Figure 5.17: Dependence of the effective Sherman function on the scattering angle θ
for 14 MeV beam and 2 lead target thicknesses: 60 µm (a), and 210 µm (b). Triangles
oriented up and down correpond to the simulation results with 7 MeV and 13 MeV
low–energy cut on simulation data, respectively. Circles – measurements of Sromicki
et al. [64].

14 MeV might follow from a few effects relevant for the calculation of the Sherman
function, pointed out in [68], which were not accounted for in the simulations. We are
not aware of an exact calculation of the first-order radiative corrections to Mott scat-
tering. Nevertheless, their magnitude is expected to be increasing with energy and at
14 MeV might produce a significant contribution to the Sherman function with respect
to the value generated with ELSEPA.

Production of secondary particles in ionization and bremsstrahlung emission was
not taken into account in order to speed up the computations. According to the
simulations at 100 keV [60], Møller scattering does not significantly contribute to the
effective Sherman function, if an energy cut above half of the beam energy is applied.
This is also in agreement with the theoretical predictions for polarization transfer
in Møller scattering (cf. Fig. 2.2), according to which the polarization of electrons
scattered at angles up to more than half of the symmetric scattering angle (up to
about 15◦ at 3 MeV) remains practically unchanged. Thus to a first approximation
one may simulate only the change of polarization caused by Mott scattering.

We have not encountered any data for energies higher than 14 MeV. The compar-
isons presented above demonstrate the usefulness of our code in the whole range of the
practical applicability of Mott polarimetry.

5.3. Optimization of the experiment

5.3.1. Scattering angle and target thickness
The Monte Carlo simulation allowed us to make predictions for the new polarization
transfer experiment [31]. Here we report the results of the study performed before
the actual measurement, in order to optimize the design with regard to the effective
Sherman function dependence on energy, target thickness and scattering angle.

The aim of the experiment is to measure the ratio of the transverse polarization
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vector component length of the electrons in the final state of Møller scattering to
the incoming-beam polarization, using the Mott polarimetry method. In this case, the
interaction probability is many orders of magnitude lower than in the case of a standard
polarization measurement performed on a beam, due to the low combined probability
of coincident Møller and Mott scattering.

In order to reduce the background rate, Mott polarimetry measurements are typi-
cally performed with the thinnest possible target that provides acceptable event rates.
Additionally, the largest value of the Sherman function at MeV energies is achieved at
a large angle (almost complete backscattering). These experimental conditions are far
from those optimal from the statistics point of view, due to the rapid decrease of the
Mott-scattering cross section with the scattering angle. In this section we present the
method of statistical optimization of the polarimeter. We obtain the scattering angle
and target thickness ranges minimizing the measurement time under the assumption
of no background.

An optimal experimental configuration should minimize the statistical uncertainty
of the measured polarization value. The uncertainty of the asymmetry calculated from
Eq. (3.1) is

∆A =
√

4NLNR

(NL + NR)3 . (5.11)

At the same time, from Eqs. (3.1) and (3.4) one can find that

4NLNR

(NL + NR)2 = 1 − (P⃗ · n⃗)2S2
eff . (5.12)

Neglecting the uncertainty of the effective Sherman function, the uncertainty of the
measured polarization value is

∆P =

√√√√ 1
NL + NR

(
1

S2
eff

− (P⃗ · n⃗)2

)
. (5.13)

The effective Sherman function in the polarization transfer experiment is of the order
of 0.1, thus the term 1/S2

eff dominates and the uncertainty is to a good approximation

∆P ≈
√

1
S2

eff(NL + NR) . (5.14)

Therefore, minimizing the uncertainty is equivalent to maximizing the figure of merit,
defined as [40]

F = S2
eff(NL + NR) = S2

eff
N

N0
, (5.15)

where N is the number of electrons recorded in the detectors and N0 is the total number
of incoming beam electrons (NL and NR denoted the normalized count rates).

The figure-of-merit dependence on the scattering angle is shown in Fig. 5.18. It can
be seen that, regardless of target thickness, the maximum is attained for intermediate
scattering angles, much lower than those typically used. Both at 1.5 and 3.0 MeV the
optimal scattering angle values are between 110◦ and 125◦, with a slight increase with
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Figure 5.18: Dependence of the figure of merit F on the scattering angle θ for three
target thicknesses d (5, 9.9, 15 µm) and two beam energies: 1.5 MeV (a) and 3.0 MeV
(b).
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Figure 5.19: Dependence of the figure of merit F on the target thicknesses d for de-
tectors placed at two angles, 120◦ and 164◦, with respect to the beam axis (scattering
angle ranges 115◦ < θ < 125◦ and 159◦ < θ < 169◦), and two beam energies: 1.5 MeV
(a) and 3.0 MeV (b).
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Figure 5.20: Dependence of the effective Sherman function Seff on beam energy E, for
detectors placed at an angle of 120◦ with respect to the beam axis (scattering angle
range 115◦ < θ < 125◦) and 10 µm target thickness. Triangular points – simulation,
square point – value measured in the polarization transfer experiment [31]. The line
represents the fit to the simulated data, Eq. (5.9).

the target thickness. A similar angular range was found to be optimal also at 100 keV
energy [60].

By analyzing the figure-of-merit dependence on the target thickness one can find
the thickness value that is optimal from the statistics point of view. It can be seen in
Fig. 5.19 that the figure of merit at 1.5 MeV is rapidly increasing up to about 5 µm
(note the logarithmic scale in the plot). The change is much smaller when going to even
thicker targets; in particular for the 120◦ scattering angle there is very little difference
between the values at 10 and 15 µm (see also Fig. 5.18(a)). Since the use of thicker
targets is associated with a higher rate of target-related background events, one can
conclude that it is not desirable to use targets thicker than about 10 µm at 1.5 MeV.
The thickest targets at our disposal, 9.9 µm and 10.1 µm thick, were found to be quite
close to the optimal thickness.

5.3.2. Dependence on energy
The final result in the polarization transfer experiment is derived as the ratio of polar-
izations before and after Møller scattering. Under the experimental conditions assum-
ing symmetric Møller scattering, the two polarization values are measured at energies
different by a factor of 2. It is, therefore, useful to parametrize the effective Sherman
function dependence on the beam energy for a given target thickness and scattering
angle. Such a parametrization is convenient for determining the effective Sherman
function ratio at two energies, which can be used in the data analysis instead of the
absolute values.

The predictions for the dependence of the effective Sherman function on energy in
the polarization transfer experiment are shown in Fig. 5.20. The experimental result
obtained at 3.0 MeV, which is also shown for comparison, is found in good agreement
with the simulations. A very small dependence of the effective Sherman function on
beam energy is found under the proposed conditions of the experiment. This way the
effective Sherman function ratio at two energies, which is used for the determination
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of the measurement results, is less sensitive to the systematic uncertainty of the Monte
Carlo predictions, as long as the predicted dependence shape (near constant) is correct.

The effective Sherman function dependence on the low-energy cut has been dis-
cussed in Section 5.2.3 in case of the MAMI polarimeter (Fig. 5.13). A similar effect
can be important for the polarization transfer experiment, given the relatively large
thickness of the optimal targets chosen at the beginning of this section. Therefore, a
similar study was performed using the simulation results, which is discussed in Sec-
tion 8.3.
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Chapter 6

Simulation of the experimental
setup

A simulation of the complete experimental setup was performed with the Geant4
toolkit. It allowed us to study possible background processes and the influence of
finite target thickness on interaction probabilities.

6.1. Geant4 model of the experimental setup
During the simulation, the positions and momenta of particles entering the targets and
scintillators were saved. In case of the gold target, the target penetration depth and exit
position and momentum was stored as well. The real energy deposit in the scintillator,
which in general might be lower than particle energy, was recorded. Finally, all particle
trajectories were stored in form of a list of detector parts traversed by the particle
(e.g., the expected signal electron trajectory corresponds to the following sequence of
volumes: beryllium target, gold target, scintillator). The charge of particles was stored
as well, in order to distinguish between signals created by electrons and by gammas.
The model of the experimental setup, visualized with Geant4, is shown in Fig. 6.1.

Figure 6.1: Model of the experimental setup in configuration A visualized in Geant4.
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Figure 6.2: Simulated energy spectra in the polarimeter detectors (a) and tagging
counter (b). The magenta line in the left plot represents an exponential fit.

Table 6.1: Sources of background events (scattering elements of the background elec-
trons) with energy above 0.5 MeV recorded in polarimeter detectors.

source fraction of events
beam pipe 61.5%

Møller scattering chamber 24.6%
both 12.4%
other 1.5%

6.2. Background energy spectrum

The distributions of single-counter energy deposit are shown in Fig. 6.2. It can be seen
that they differ quite significantly between the polarimeter detector and the tagging
counter. In the latter case, a contribution of Mott-scattered beam electrons (3 MeV)
and Møller electrons (1.5 MeV) is clearly visible. In the polarimeter, the spectrum
consists mostly of low-energy background, which can be modeled as exponential.

The simulation allowed us to investigate the origin of background. Visualizations of
example signal and background events are shown in Figs. 6.3 and 6.4, respectively. In
order to quantitatively analyze the origins of background events, particle trajectories
were studied. As can be seen in Table 6.1, the majority of background events originated
from beam electrons scattered off the beryllium target at low angles, subsequently
hitting the beam pipe. This result demonstrated the importance of the shielding of
the polarimeter. On the other hand, the background created in the polarimeter itself,
produced a much lower contribution.
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Figure 6.3: Geant4 visualization of a signal event. Trajectories of two electrons in the
final state of Møller scattering are shown with red lines.

Figure 6.4: Geant4 visualization of 30 events with energy deposit in any of the po-
larimeter detectors above 0.5 MeV. Electron trajectories are shown in red and gamma
trajectories are shown in green.
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6.3. Passage through the beryllium target

6.3.1. Beam dispersion
When the beam passes through the beryllium target, electrons are Mott-scattered off
beryllium nuclei, making the beam divergent downstream from the target. Electrons
scattered at a sufficiently large angle hit the beam pipe, leading to the change of
their direction or production of secondary radiation, which might reach the detectors,
creating background events in the experiment. While it is not possible to eliminate
this effect completely, it might be reduced with the use of a sufficiently large diameter
of the beam pipe.

The beam profile after passing through a 100 µm thick beryllium target was modeled
with the Monte Carlo simulation. The initial beam spot (before entering the beryllium
target) was modeled as a symmetrical two-dimensional Gaussian distribution with a
standard deviation of 1 mm. The secondary beam spot (after passing through the
target), observed on a virtual plane 300 mm downstream from the target, which is
the position corresponding to the projection of the gold target position on the primary
beam direction, is shown in Fig. 6.5. A good description of the secondary beam profile
was achieved with a Gaussian fit and the standard deviation was found to be of approx.
12 mm.

Given the limited space between the Mott polarimeter and the beam pipe, the
choice of the beam pipe diameter has to balance the number of electrons scattered off
the pipe (increasing the background) and the thickness of the lead shielding around the
pipe (reducing the background). A standard CF63 flange matches a pipe with an inside
diameter of 61 mm, which corresponds to approx. 2.5 σ coverage of the beam spot. At
the same time, there was not enough space for a larger CF100 flange. Custom flanges,
which could be connected to a CF63 flange on the beam-dump side, but allowing us
to use a pipe of a slightly larger diameter, were manufactured. The inner diameter of
66 mm was finally achieved, which corresponds to approx. 2.7 σ coverage.

6.3.2. Interaction probability
In theory, the Møller scattering probability increases with beryllium target thickness.
However, electrons in the final state of Møller scattering (in the angular range corre-
sponding to the collimators acceptance), which are the candidates for signal events, are
also subject to Mott scattering off beryllium nuclei. As a result, not all of them reach
the Mott polarimeter (gold target) or the tagging counter. The simulation allowed us
to obtain the dependence of the expected number of signal events on beryllium target
thickness.

It can be seen in Fig. 6.6 that the single-scattering approximation (linear increase of
the scattering probability with target thickness) might be valid for targets up to at most
a few µm. For higher thicknesses the increase is not as fast, and for thicknesses above
approx. 50 µm the rate of signal events is practically constant, with a slight increase
in the background contribution. Given the fact that the 100 µm thick beryllium target
provides sufficient mechanical stability, there is no point in increasing the thickness
above this value.
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Figure 6.5: Simulated histogram of electron positions in a beam spot observed 300 mm
downstream from a 100 µm thick beryllium target. The magenta contours correspond
to the 1 σ and 2 σ levels of the one-dimensional projections. The histogram range
corresponds to the dimensions of the beam pipe used in the experiment (66 mm in
diameter).

With the 100 µm thick beryllium target used in the experiment, the probability of
recording a signal event (one electron scattered directly from the beryllium target to the
gold target in the polarimeter, and another electrons scattered directly to the tagging
counter) is approx. 1.4 × 10−7. The total probability including electrons subsequently
scattered off other elements of the experimental setup is approx. 1.6 × 10−7.

6.3.3. Beam depolarization
Møller polarization measurement

The simulation was also used to check whether the change of beam electrons and
Møller electrons polarization during the passage through the beryllium target might
affect the polarization measurement. Beam depolarization during the passage through
the beryllium target was modeled with the same polarized electron Mott scattering
model that was used to simulate the effective Sherman function. A 3 MeV electron
beam passing through a 100 µm thick beryllium foil was simulated. The primary beam
was assumed to be 100% transversely polarized.

The first analysis was restricted to electrons scattered at angles below 1.5◦ with
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Figure 6.6: Dependence of the Møller scattering probability, as obtained from the
Geant4 simulation of the experiment, on the beryllium target thickness. Total proba-
bility corresponds to all Møller electron pairs detected on the gold target and in the
tagging counter, including background electrons scattered off the collimators or other
parts of the experimental setup. Signal refers to the subsample of events, in which
both electrons were scattered directly from the beryllium target to the gold target and
the tagging counter.

respect to the primary beam direction, which corresponds to the angular acceptance
of the leg collimators (between the beryllium and gold targets). In an average signal
event, the beam electron passes through a half of the beryllium target thickness, then
Møller scattering takes place, and the Møller electron passes through the remaining
half. The maximum allowed deflection of Møller electrons is equal to the collimator
acceptance (even though the scattered electron moves at an angle of 26.75◦ with respect
to the primary beam direction, it is equivalent to analyze depolarization of electrons
deflected not more than 1.5◦ around the initial beam direction).

In the case of beam deflection before Møller scattering, a larger angular range might
be allowed (resulting in a broader energy distribution of Møller electrons). Therefore,
a second analysis was done for comparison, with a wider range of scattering angles, up
to 5◦ with respect to the primary beam direction.

The remaining polarization of the electrons exiting the foil was analyzed. The
histograms of the remaining polarization in the direction of primary beam polarization
are shown in Fig. 6.7. The depolarization effect is visible, since the average polarization
is below 1. Nevertheless, even with unrealistically-high deflection angles up to 5◦, the
degree of depolarization is below 0.5%, and is much lower in the majority of events
(note the logarithmic scale in the plot). It is, therefore, negligible in comparison to
the other effects decreasing the measured asymmetry, such as the scattering off the
collimators.
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Figure 6.7: Remaining polarization in the direction of primary-beam polarization after
scattering off a 100 µm thick beryllium target at 3 MeV at angles below 1.5◦ (a) and
5◦ (b).

Beam polarization measurement

The same simulation is also useful to check how the beam polarization is changed when
beam electrons are scattered off the beryllium target during the beam polarization
measurement. In this case, electrons scattered at a much larger angle are detected.

The histograms of polarization in the direction of polarization measurement in the
Mott polarimeter for electrons Mott-scattered at 26.75◦ are shown in Fig. 6.8 in both
experimental configurations. In configuration B (beam polarization perpendicular to
the Mott scattering plane in the beryllium target), the polarization remains almost
unchanged, similar to the scattering at small angles (Fig. 6.7). In configuration A,
however, the beam polarization lies in the Mott scattering plane in the beryllium target,
and the electron polarization direction is changed during the scattering. Except for the
small depolarization, the polarization vector after the scattering remains horizontal and
is perpendicular to the new momentum vector of the electron after the scattering. Even
though in this case the polarization does not reach as high values as in configuration
B, the depolarization is still below 0.3%. Therefore, the polarization measured with a
polarimeter placed at an angle of 26.75◦ with respect to the primary beam direction is
to a good approximation equal to the beam polarization (no correction is required).

6.4. Scattering off the collimators

6.4.1. Event generator
In order to speed up the computations, all other parts of the experimental setup except
of the collimators were removed from the simulation. The interactions in the Møller
target material were not simulated; the Møller event generator was used instead. An
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Figure 6.8: Remaining polarization after Mott scattering of a transversely polarized
3 MeV electron beam off a 100 µm thick beryllium target at an angle of 26.75◦; (a)
configuration A, beam polarization in the scattering plane (polarization measurement
direction at 26.75◦ with respect to primary-beam polarization), (b) configuration B,
beam polarization perpendicular to the scattering plane.

event generator simulated Møller electron pairs distributed according to the theoretical
cross section and with the mean polarization vectors assigned according to the theo-
retical predictions. The Møller electrons were generated in the ±5◦ range around the
symmetric scattering angle.

6.4.2. Beam spot diameter
A simulation using the Møller generator as an input and then performing particle
tracking with Geant4 can be used to determine the corrections to the theoretical energy
spectrum of Møller electrons due to the scattering off the collimators.

If the beam was perfectly focused in the geometrical center of the target, all electrons
outside the ±1.5◦ would be stopped on the front surface of the collimator. In reality
the energy range of recorded Møller electrons is wider than the collimator acceptance,
due to the electrons scattered off the collimator surface in the direction of the Mott
target. As a result of such scattering the electrons are at least partly depolarized and,
therefore, decrease the measured asymmetry value.

The first parameter to be considered is the diameter of the beam spot, depending
on how well the beam is focused. The beam position was sampled from a Gaussian
distribution with the mean value in the center of the target and standard deviation of
1 mm and 1.5 mm. The resulting energy spectra are shown in Fig. 6.9. The tails of the
distribution extend outside the theoretical energy range (between 1.4 and 1.6 MeV).
One can also see a decrease of the number of events recorded close to the boundaries of
the theoretical acceptance of the collimators. This again is the result of the beam being
off center, therefore, the effect is higher for the larger beam spot. The distribution is
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Table 6.2: Fraction of electrons scattered off the collimators reaching the polarimeter,
simulated assuming different parameters of the beam spot.

beam position beam diameter % collimator hits
0 0 0.1%
0 1 mm 2.4%
0 1.5 mm 3.4%

+1 mm 1.5 mm 4.2%
−1 mm 1.5 mm 3.8%

slightly asymmetric due to the energy loss in the collimator material.

6.4.3. Beam position
The second parameter to be considered is the position of the beam spot, depending on
how well the beam is positioned with respect to the geometrical center of the target.
The more the beam electron is off the center, the wider the energy range that gets into
the collimator. An additional asymmetry of the distribution is visible in the resulting
energy spectra shown in Fig. 6.10.

The main result of the simulation is the fraction of electrons reaching the Mott
target that were scattered off the collimators, which is listed in Table 6.2. The difference
between the results obtained with opposite directions of the beam shift, 4.2% and 3.8%,
is due to the different geometry of the scattering. At +1 mm shift, electrons scattered at
lower-than-nominal angles, with larger cross section and energy, enter the collimator.
At −1 mm shift, electrons scattered at larger angles, with lower cross section and
energy, are detected.

6.4.4. False asymmetry
The different fraction of electrons scattered off the collimators for opposite beam shift
directions might produce a false asymmetry in the number of counts, if the beam spot
position is different for opposite beam polarization orientations.

The asymmetry of the fractions of collimator hits listed in Table 6.2 is approx.
0.05. However, in order to calculate the asymmetry observed in the experiment, the
total numbers of counts have to be compared, as shown in Table 6.3. In case of the
±1 mm beam position asymmetry, the asymmetry calculated using all events recorded
in the polarimeter, is more than a factor of 4 lower than the asymmetry of the numbers
of electrons hitting the collimators. A similar result is obtained for a smaller, more
realistic, beam position difference of ±0.1 mm. In this case the difference is more than
a factor of 5.
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Figure 6.9: Simulated energy distribution of Møller electrons reaching the Mott target
for a 3 MeV incident beam, for two beam spot diameters: (a) 1 mm and (b) 1.5 mm.
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Figure 6.10: Simulated energy distribution of Møller electrons reaching the Mott target
for a 3 MeV incident beam, with 1.5 mm beam spot diameter, for two beam positions
off center in the horizontal plane: (a) +1 mm and (b) −1 mm.

Table 6.3: Asymmetry of the number of electrons reaching the polarimeter for opposite
beam shifts (1.5 mm in diameter).

beam positions collimator hits asymmetry all events asymmetry
±1 mm 0.057 0.013

±0.1 mm 0.0063 0.0012
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Chapter 7

Polarization transfer measurement

Described in this chapter are measurements of the polarization of the beam electrons
(Mott-scattered off the beryllium target), as well as the mean polarization of electrons
in the final state of Møller scattering. The measurements were performed with a one-
polarimeter setup, in two configurations corresponding to different beam polarization
orientations: (A) horizontal beam polarization (in the Møller scattering plane) and
vertical Mott scattering plane, (B) vertical beam polarization (perpendicular to the
Møller scattering plane) and Mott scattering plane at an angle of 45◦ to the Møller
scattering plane (cf. Chapter 3, Fig. 3.4).

Data from the polarimeter were collected with two different triggers: (i) Møller
trigger (coincidence of any of the polarimeter detectors with the tagging counter) and
(ii) beam trigger (detectors in the polarimeter read out without coincidence). Data in
configuration A were collected for 86 hours with Møller and 8 hours with beam trigger
and in configuration B for 114 hours with Møller and 14 hours with beam trigger.

The beam polarization measurement was repeated every day; this way the polariza-
tion obtained after combining data from all runs should correspond to the mean value
over the whole data taking period of the Møller scattering experiment. Additionally,
in half of the runs, the Mott target was replaced with an empty target frame in order
to record the background, which was then subtracted from the data collected with the
target.

Furthermore, half of the runs were taken with a half-wave plate in the laser sys-
tem of the polarized electron source yielding a 180◦ flip of the electron spin orien-
tation, allowing us to reduce part of the systematic errors arising from a possible
polarization-correlated asymmetry of electronics (such as unequal duration of opposite
beam-polarization periods or different delays of trigger-signal paths corresponding to
opposite beam-polarization orientations).

The analysis of experimental data consisted of the following steps, described in
detail in the following sections:

1. File preparation:

(a) Events from a previous run that were left in the buffer were removed from
the beginning of each data file.

(b) The first (incomplete) bunch of events was removed (until the first beam
polarization change).
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(c) The last bunches of events were removed (an even number of complete
bunches was used for analysis).

(d) For each pair of runs (with the Mott target and with an empty target frame)
the minimum number of bunches was found and the longer run was short-
ened.

(e) The length of one of the runs with the half-wave plate was adjusted to make
the total acquisition time with and without the half-wave plate equal.

2. Dead time correction: an effective correction was calculated from the distribution
of time between consecutive events for each run.

3. Pile–up removal: events containing signals with overlapping pulses were removed
from the analysis.

4. Event analysis:

(a) For each event in a data file the signal amplitudes were calculated.
(b) Signal amplitude dependence on energy was calibrated using the beam

(3 MeV) and Møller (1.5 MeV) peak positions in the amplitude spectra.
(c) Only with the Møller trigger: the time distance between the rising edge

positions of the tagging counter signal and the polarimeter-detector signal
was calculated.

(d) The selection criteria (signal amplitude and timing) were applied and events
passing the selections were counted.

5. Calculation of the asymmetry and generation of control plots:

(a) Dead time correction was applied to the histograms and the recorded num-
bers of events.

(b) The distributions obtained with an empty target frame were subtracted from
the distributions obtained with the gold foil.

(c) Histograms of signal amplitude and time difference from all data files were
merged.

(d) Only with the Møller trigger: the number of background events was es-
timated by interpolating the time difference distribution under the signal
peak. The interpolation result was subtracted from the number of recorded
events.

(e) The asymmetry was calculated using the data collected with two detectors
and opposite beam polarization orientations.

The uncertainties of the results were calculated using the experimental data and the
results of the Monte Carlo simulations, which is discussed in the next chapter. Finally,
the polarization values were calculated by dividing the measured asymmetry by the
simulated effective Sherman function and the polarization transfer was calculated by
dividing the average polarization of the electrons in the final state of Møller scattering
by the incoming-beam polarization.

Selected results of this chapter were included in publication [31].
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Figure 7.1: Typical time structure of a data file from a single run. The boxes illustrate
the bunches of events recorded between the polarization switching moments (not to
scale). The two colors correspond to two beam polarization orientations.

7.1. File preparation
A structure of a typical file containing data from one run is illustrated schematically in
Fig. 7.1. The beam polarization orientation was changed periodically at 1 s intervals
and the event bunches are separated by 20 µs gaps corresponding to the polarization
switching moment, when the polarization is uncertain and the data are not recorded.

The file can contain spill-over data remaining in the buffer from a previous run,
which are removed based on the time stamp. Then the first beam polarization flip
is found and the preceding data are removed, since they might form an incomplete
event bunch. An even number of bunches is used for the analysis to obtain an equal
data acquisition period with both polarization orientations, which is necessary for the
correct calculation of the count-rate asymmetry.

7.2. Dead time correction
The signals from the detectors were digitized with the DRS switched capacitor array
circuit [54]. When the trigger condition was met, the data acquisition was stopped
until the readout was finished. As a result, a dead time of about 2 ms was introduced,
when no events could be recorded, which was confirmed in laboratory tests (see Section
4.2.3).

The distributions of time between consecutive events recorded during the experi-
ment are shown in Fig. 7.2 for typical runs with the beam trigger. The shape of the
histogram for times up to about 20 ms agrees well with the exponential distribution.
The lack of events in the first bins is expected due to the standard dead time of the
electronics. However, for time differences larger than about 25 ms, distributions shown
in Fig. 7.2 deviate significantly from the extrapolation of the exponential distributions
fitted to the lower time differences. There also exists a separate fraction of events with
much larger delays, which suggests that there are two components with two different
dead time values. It can be explained by the fact, that the dead time observed in the
experiment also included the latency introduced by the computer which read the data
from the digitizer board and stored them to a hard drive.

We found during the data analysis that after a certain period of inactivity, of the
order of 40 ms, the CPU scheduler of the linux operating system suspended the threads
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responsible for storing the data, allocating the CPU resources to other processes. The
events at the end of the distribution (above 100 ms) were, therefore, delayed in the
process of storing the data to the hard drive. In Fig. 7.2, the plot on the left hand
side shows the distribution with the gold target (higher rate and less delayed events),
and the plot on the right hand side with an empty target frame (lower rate and, as a
result, more delayed events). Nevertheless, the number of events with large delays is
small, note the logarithmic scale in the plots.

The effective correction (ratio of the true and measured event rate), taking into
account both sources of dead time, was determined from the exponential fit to the
time distribution,

N(t) = C exp(−Rt), (7.1)

where t is the time between consecutive events, R is the true event rate (larger than the
measured event rate), and C is constant. The recorded number of events was multiplied
by the ratio of the fitted (dead time free) event rate to the event rate recorded in the
experiment. The fit was performed in the time range from 4 to 20 ms, where the
distribution is exponential. Since the dead time correction depends on the count rate,
which was different for the data acquired with opposite beam polarizations, as well
as for the data acquired with the gold target and with an empty target frame, it had
to be properly taken into account when calculating the asymmetry. The numbers of
recorded events were corrected, and the histograms were reweighed, on a run-by-run
basis.

The histograms of the dead time corrections determined from the fit are shown in
Fig. 7.3. In case of the runs with the Møller trigger, the event rate, determined mostly
by the low–energy background, was similar with and without target, leading to similar
dead time corrections determined from the time distribution. On the other hand, the
event rate in the empty–target runs with the beam trigger was much lower than with
the target, leading to significantly different dead time corrections with and without
target.

The dead time correction to the count rate was between 50% and 70% with the beam
trigger (count rate approx. 190 evt./s) and approx. 50% with the Møller trigger (count
rate approx. 150 evt./s). The dead time correction to the asymmetry was approx.
+10% of the measured asymmetry value with the beam trigger (cf. Section 7.5.1)
and approx. +2% with the Møller trigger. For the dead time contribution to the
uncertainty, see Section 8.1.

7.3. Pile–up removal
A typical signal recorded in the tagging counter, with an amplitude corresponding to
a 3 MeV beam electron, is shown in Fig. 7.4. There is only a single peak, beginning
around 40 ns, and the voltage before the peak is close to zero. The histograms of the
average voltage from the first and last 20 ns of the measured time window are shown in
Fig. 7.5 for a polarimeter detector. The distribution for the end of the signal is shifted
to negative values as a result of the negative signal reflection following the falling edge
(cf. Fig. 7.4).
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Figure 7.2: Example distributions of the time between consecutive events recorded with
the beam trigger, for runs with the gold target (left) and for runs with an empty target
frame (right). Histograms for opposite beam polarizations are plotted with different
colors. Distributions restricted to times below 40 ms are shown in the bottom panels,
with the exponential fit in the range from 4 to 20 ms shown with a solid line and its
extrapolation with a dotted line.
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Figure 7.3: Histograms of the dead time correction calculated from the exponential fit
for time differences between 4 and 20 ms, with (a) beam trigger, (b) Møller trigger.
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Figure 7.4: A typical signal recorded in the tagging counter, with an amplitude corre-
sponding to a 3 MeV beam electron.
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Figure 7.5: Histogram of the average signal voltage in a polarimeter detector from the
first and last 20 ns of the time window.

Since the average voltage before the peak is close to zero (in the range ±2 mV)
in case of single-peak events, the signal maximum value is a correct estimate of the
amplitude, which is assumed to be proportional to the energy deposited in the scin-
tillator. However, there exist events with two overlapping pulses, in particular in the
tagging counter. They can be found by, for example, searching for signals, for which
the voltage in the first 20 ns (i.e., before the signal that triggered the coincidence)
deviates significantly from zero.

As an example, pile-up signals with an additional falling edge in the first 20 ns in
the tagging counter are shown in Fig. 7.6. A clear similarity to the falling edge of the
coincidence signal, starting around 40 ns, is visible. No such events were found in the
polarimeter detectors, with a much smaller particle rate, which confirms that the the
additional signal at the beginning originates from another particle that hit the detector
slightly before.

It is clear that the signal maximum can no longer be regarded as a correct estimate
of the pulse amplitude in case of events with overlapping signals. Due to the large
number of events, an automatic selection of single-peak signals is necessary for the
analysis. The properties of variables suitable for such selection are analyzed in the
subsections below.

Number of peaks

The peaks in the signal were found automatically using the one–dimensional high–
resolution peak search function [70] from the ROOT package. The results of the al-
gorithm depend on several input parameters, in particular the expected width and
the minimum height of the peak. The latter variable balances the efficiency of the
algorithm (number of peaks correctly found) and the sensitivity to noise fluctuations
(number of false peaks found). Reasonably good results were achieved by setting it to
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Figure 7.6: Examples of pile-up signals (tagging counter) with a falling edge of an
earlier pulse in the first 20 ns.

5 mV, which is around the trigger threshold in the tagging counter, and slightly above
the random noise. With a lower peak-height threshold, the random noise might be
misinterpreted as a false peak.

The correct operation of the peak finding algorithm was tested by visual inspection
of selected events. As an example, tagging counter signals with the highest number of
peaks, i.e. 6, are shown in Fig. 7.7. By comparing the original curves and the points
corresponding to peaks, it can be seen that all peaks have been correctly identified.
The signal feature shown in Fig. 7.6, a falling edge at the beginning of the signal, is
also identified as a peak even though the maximum is not recorded.

The distributions of the number of peaks found in the polarimeter and tagging
counter signals are shown in Fig. 7.8. A clear difference due to the different rate
of interacting particles is visible. In case of the polarimeter detector the problem of
overlapping signals is practically non–existent (less than 0.2% events with more than
one peak). On the other hand, the problem is definitely not negligible in case of the
tagging counter, where around 30% of events contain more than one peak.

Further analysis reveals that the additional peaks are more likely to be found after
the peak that triggered the coincidence. It is reasonable to assume that the signals
which were produced later cannot affect the earlier signal that is used in the analysis.
Therefore, only the events containing an additional peak before the coincidence signal
maximum, which is used to determine amplitude (energy), cannot be analyzed as single-
peak signals. The maximum number of peaks found before the coincidence signal was
2. Around 5% of tagging counter signals have such additional peak at the beginning
and only these events were removed from analysis.

Signal minimum

Histograms of the minimum value of the signal from the first 20 ns of the time window
are shown in Fig. 7.9 for both the polarimeter and tagging counter. The observation
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Figure 7.7: Events with 6 peaks (the maximum number found) in the tagging counter.
Automatically found peaks are marked with a triangular symbol.

0 1 2 3 4 5 6 7 8 9 10
Number of peaks in polarimeter

1

10

210

310

410

510

N
u

m
b

er
 o

f 
ev

en
ts (a)

polarimeter

0 1 2 3 4 5 6 7 8 9 10
Number of peaks in tagging counter

1

10

210

310

410

510

N
u

m
b

er
 o

f 
ev

en
ts (b)

tagging counter

Figure 7.8: Histograms of the number of peaks found in the polarimeter (a) and tagging
counter signals (b). A difference due to the particle rate is clearly visible.
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Figure 7.9: Histograms of the signal minimum value in the polarimeter (a) and tagging
counter (b) from the first 20 ns of the time window.

that the overlapping signals practically do not occur in the polarimeter detector is
also confirmed in this analysis. The polarimeter-detector histogram contains a single
peak around −1.5 mV, which shall be interpreted as the average value of the random
noise minimum. On the other hand, the tagging counter distribution contains two
overlapping peaks, a larger one around −1 mV, in close agreement with the polarimeter-
detector spectrum, and a smaller one around −9 mV. Taking into account that the
tagging counter data contain a significant fraction of events with an additional peak at
the beginning of the time window, which is not observed in the polarimeter detector,
the additional peak around −9 mV seems to be resulting from the negative signal
reflection following the falling edge.

The histogram of the global signal minimum, which typically corresponds to the
negative signal reflection following the falling edge (cf. Fig. 7.4), is shown in Fig. 7.10
for comparison. A peak around −10 mV approximately agrees with the results from
Fig. 7.9. The other, smaller peak around −5 mV is not visible in Fig. 7.9, which might,
however, be explained by the fact that it is positioned in the overlap region of the two
larger peaks.

Signal maximum

In analogy to signal minimum, the maximum voltage at the beginning of the signal
could be used to eliminate pile-up events with additional peaks extending above the
random noise range. Examples of events with the largest maximum value in the first
20 ns are shown in Fig. 7.11. One has to conclude that the signal maximum is not a
suitable variable for selection of single–peak events. Restricting its value to the random
noise range corresponding to typical single-peak events (i.e., with a rising edge around
40 ns) would reject also valid single–peak events such as those shown in Fig. 7.11. This
way, an implicit timing selection would be introduced instead of only removing the
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Figure 7.10: Histogram of the global signal minimum for the pulses measured in the
tagging counter.

pile–up events.
The cut on the number of reconstructed peaks should rather be used, if the timing

bias needs to be avoided. It allows to remove events with additional signal peaks
preceding the coincidence signal, while leaving the single–peak events, including those
out of time, in the data sample. Such events might be useful for the analysis as they
carry information about the false–coincidence background rate (cf. Section 7.4.3).

Peak width

Taking into account that overlapping signals can contribute to single measurement,
another interesting variable to be considered is the peak width. Firstly, it might also
be used to remove the events with overlapping signals. Alternatively, it could be useful
to cross–check the efficiency of the peak finding algorithm, when the number of peaks
is used for event selection.

The histograms of the reconstructed peak width, for the polarimeter and the tagging
counter, are shown in Fig. 7.12. Both distributions consist of a single, symmetric peak.
There is no significant difference between the polarimeter detector response and that
of the tagging counter. No separation between the single-peak and pile-up events can
be obtained with this variable. Additionally, a possible correlation between the signal
amplitude and width could introduce an unwanted amplitude bias, if such selection
was applied.

Summary

In the analysis of the tagging counter signals, significant contribution from the pile-
up events was identified, when two electrons are observed in a detector within a time
shorter than the signal width. Since the number of such events is low, the easiest solu-
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Figure 7.11: Signals with the largest maximum voltage in the tagging counter from the
first 20 ns of the time window.
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Figure 7.12: Histograms of the peak width in the polarimeter (a) and tagging counter
(b).
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Table 7.1: Results of the pile-up analysis in configuration A. The fractions of events
with more than one peak and with negative values before the peak, as well as the
fraction of events passing the selections, are shown.

0—20 ns signal Accepted as
detector minimum < −5 mV > 1 peak single-peak events

polarimeter 0.002% 0.2% 99.8%
tagging counter 12% 5% 84%

tion is to remove such events from the analysis. A two–stage event selection procedure
was used:

1. Events with negative pulse values before the peak were removed based on the
measured signal minimum (voltage in the first 20 ns of the time window below
−5 mV).

2. Events with more than one peak were removed using the automatic peak search
function (more than one peak found between the beginning of the time window
and the middle of the falling edge, typically around 60 ns from the beginning,
depending on the amplitude).

The statistics of pile-up events can be found in Table 7.1. The number of such events
is negligible in the polarimeter detectors and around 16% in the tagging counter.

7.4. Event analysis

7.4.1. Tagging counter amplitude distribution

The tagging counter recorded electrons scattered off the beryllium target. These in-
cluded Mott-scattered beam electrons (of approx. 3 MeV energy) as well as Møller
electrons (of 1.5 MeV on average). Together with one of the detectors in the po-
larimeter, it produced a coincidence trigger used to record symmetric Møller scattering
events. It also allowed us to infer the energy spectrum of particles reaching the Mott
polarimeter. A typical raw signal amplitude spectrum is shown in Fig. 7.13, and an
approximate energy calibration is also shown for reference. The peak at higher energies
corresponds to the beam electrons Mott-scattered off the beryllium target, while the
peak at lower energies to the Møller electrons.

Pointing directly to the beryllium target, the tagging counter was exposed to a
large flux of particles. As a result, a significant fraction of events, around 16%, contains
overlapping signals (cf. Section 7.3). The amplitude of the overlapping signals typically
does not correspond to the energy of any of the particles that hit the detector during
such event. If the number of events with a wrong amplitude is large, it might lead to
the broadening of the 1.5 and 3 MeV peaks in the tagging counter amplitude spectrum.

The experimental distribution, shown in Fig. 7.13, was fitted with a sum of two
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Figure 7.13: Signal amplitude spectrum in the tagging counter pointing directly at the
beryllium target. The higher peak corresponds to the Mott-scattered beam electrons,
and the lower peak to Møller electrons. Solid line – sum of two gamma distributions
fitted to the spectrum; dashed line – gamma fit to the Møller peak; dotted line – gamma
fit to the beam peak. The black vertical lines indicate the cuts applied to select the
Møller scattering events.

gamma distributions,

Γ(x) = C exp
(

−
(

x0

σ

)2 (x − x0

x0
− log x

x0

))
, (7.2)

and the results are listed in Table 7.2. While the effect of the peak broadening is
not significant enough to be easily noticeable in the histogram, the fit results seem
to confirm it. This demonstrates also the usefulness of the pile-up removal procedure
discussed in the previous section.

Energy calibration

Thanks to the large number of events recorded in the tagging counter, the peak posi-
tions can be determined with a high precision using the data from a single run. This

Table 7.2: Results of the tagging counter amplitude analysis in configuration A. The
widths σ of the 1.5 and 3 MeV peaks in the amplitude spectrum were determined
from gamma fits to the experimental distribution. The results were obtained without
selections and for single-peak events; the broadening of the peaks demonstrates the
usefulness of pile-up removal.

event selection 1.5 MeV peak σ 3 MeV peak σ
all events 7.9 mV 6.1 mV

single peak 7.7 mV 5.7 mV
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way even peak position variation smaller than 1 mV can be detected. The recon-
structed 1.5 MeV peak position for the tagging counter is plotted as a function of time
in Fig. 7.14. The 3 MeV peak position, shifted by the average distance between the
two peaks, is also shown for comparison.

Fit results indicate clearly that the peak position is not stable. The general trend
is similar in both DRS boards except that the last part of results, after about 75 hours
from the beginning of the data taking, is shifted to lower amplitudes in DRS board
2. The fact that a similar pattern is observed in both digitizer boards and that the
largest differences occur after longer breaks in data acquisition, suggest that a possible
reason of this effect might be the change of temperature. Furthermore, the difference
between two digitizer boards suggests that it is more likely the variation of the DRS
chip temperature and not of the SiPM sensor (in the latter case one would expect
similar patterns in both DRS boards). The DRS chip is calibrated at a typical working
temperature, thus the measurements performed shortly after the board is powered on
(i.e., before it warms up) might be less precise.

The observed changes of peak position are most likely not caused by the fit pro-
cedure itself. In order to verify this possibility the tagging counter signal ampli-
tude spectrum from DRS board 2 was plotted for the run with highest (run 446,
0.021987 ± 0.000021 mV) and lowest (run 774, 0.021040 ± 0.000022 mV) peak position
in Fig. 7.15. The two-component fit matches the data well in both cases. It can be
seen that that the whole distribution is visibly shifted to lower amplitudes (between
run 446 and run 774), even though the difference is small (less than 1 mV).

As can be seen in Fig. 7.14, the positions of both peaks follow a very similar
pattern. The data from different runs can therefore give some more information about
the energy calibration of the counter. Taking into account that there are only two
data points, there are two reasonable calibration functions: a quadratic dependence
aE2 + bE (assuming that the calibration curve should pass through zero) and a linear
function aE + b (assuming that there is a constant detection threshold). Comparison
of the linear and quadratic fit to the data from different runs can give some hint on
which of the two calibration curves is more appropriate.

The calibration curves are shown in Fig. 7.16 again for the run with highest and low-
est peak positions. If one assumes that the calibration is linear and that it does not pass
through zero due to a non–zero detection threshold, one would expect this detection
threshold (a physical effect) to be independent of calibration. The detection threshold
(intersection of the calibration curve and the energy axis) is (0.2348 ± 0.0026) MeV
for run 446 and (0.2743 ± 0.0026) MeV for run 774. The difference is more than 10 σ,
which is one of the arguments in favor of the quadratic calibration. Nevertheless, the
energy calibration is shown only for reference, as it has no impact on presented re-
sults. The analysis is performed in terms of signal amplitude (voltage) and only the
signal amplitude is used for event selection (distinguishing between events belonging
to the two peaks). Therefore, the result depends only on the peak position and width
(detector resolution) and not on the exact calibration.

As the peak positions in the tagging counter can be determined with very good
precision even using the data from a single run only, the tagging counter amplitude
cuts were evaluated individually for each run, in order to account for the changes of
the peak position in time.

101



0 20 40 60 80 100
Time [hrs]

0.021

0.0215

0.022

P
ea

k 
p

o
si

ti
o

n
 [

V
]

Moller
beam - 0.026175 V

(a)
DRS 1

0 5 10 15 20 25 30 35 40
Number of runs

0.0208

0.021

0.0212

0.0214

0.0216

0.0218

0.022

0.0222

0.0224

M
o

lle
r 

P
ea

k 
P

o
si

ti
o

n
 C

H
3 

[V
]

0 20 40 60 80 100
Time [hrs]

0.021

0.0215

0.022

P
ea

k 
p

o
si

ti
o

n
 [

V
]

Moller
beam - 0.025839 V

(b)
DRS 2

0 2 4 6 8 10 12 14 16 18 20 22
Number of runs

0.0208

0.021

0.0212

0.0214

0.0216

0.0218

0.022

0.0222

0.0224

M
o

lle
r 

P
ea

k 
P

o
si

ti
o

n
 C

H
3 

[V
]

Figure 7.14: Dependence of the Møller and beam peak positions on time in the tagging
counter from DRS board 1 (a) and 2 (b). Beam peak values are shifted by the average
distance between peaks for comparison. The lines represent the linear fit.
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Figure 7.15: Signal amplitude spectrum in the tagging counter (DRS board 2) with
(a) the largest 1.5 MeV peak position (run 446) and (b) the smallest 1.5 MeV peak
position (run 774).
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Figure 7.16: Dependence of the signal amplitude (peak position) on energy in the
polarimeter detector for runs with the largest and the smallest peak positions (run 446
and 774, respectively). The lines represent the linear and quadratic fit.

103



7.4.2. Polarimeter-detectors amplitude distribution
The signal amplitude spectrum recorded in the polarimeter detectors with the Møller
trigger, after dead time correction, is shown before and after offline background sub-
traction in Fig. 7.17. The data sample recorded with the Møller trigger is dominated
by background events, which has to be corrected for using data collected with an empty
target frame. After background subtraction, two peaks become clearly visible. The
one around 1.5 MeV corresponds to Møller electrons, which give the coincidence signal,
while the smaller peak around 3 MeV results from false coincidences of Mott-scattered
beam electrons. The signal amplitudes are slightly higher than in the tagging counter,
due to the tagging counter signal being split to two digitizer boards.

Energy calibration

Similarly to the tagging counter calibration, an approximate energy calibration for the
polarimeter detectors was performed using the 1.5 and 3 MeV peak positions from
the fits to the amplitude spectrum. The two data points were fitted with a quadratic
equation aE2 + bE. The fitted calibration curves are shown in Fig. 7.18.

In order to check if the calibration is stable, the positions of the 1.5 MeV peak were
determined independently for each run. The peak position is plotted as a function of
time in Fig. 7.19. The points appear to be distributed randomly, without any trend,
which is confirmed with a linear fit. The slope is in agreement with zero: (3.4±4.6)10−6

V/h (spin up), (3.5 ± 4.5)10−6 V/h (spin down), for the L polarimeter detector, and
(1.9±2.9)10−6 V/h (spin up), (−1.6±2.7)10−6 V/h (spin down), for the R polarimeter
detector.

The distribution of the peak positions is significantly wider for one of the polarime-
ter detectors than for the other. The ratio of the distribution widths is about 1.66. This
is in an approximate agreement with the ratio of the relative count rate uncertainties,
which is about 1.64 (cf. Section 7.5.2, results for selection 2 in Table 7.7).

7.4.3. Time distribution
The histogram of the rising edge position (time corresponding to 50% of the signal
amplitude) for the single–peak events in the tagging counter is shown in Fig. 7.20. A
clear maximum around 40 ns is visible on top of a uniform spectrum extending down to
around 10 ns. Assuming that the position of the large peak corresponds to the expected
timing of physical coincidences, the flat part of the distribution can be interpreted as
originating from the false coincidences.

The histograms of the time distance between the rising edge position in the po-
larimeter and tagging counter without event selections are shown in Fig. 7.21 for the
runs with an empty target frame and with the gold target. The analysis was performed
for all events and for single–peak events only, in order to verify if removing the pile–up
events might affect the timing distribution. It can be seen that the distribution shapes
are very similar in both cases except that the pile–up events add an approximately
uniform contribution extending outside the ±30 ns time difference range covered by
the single–peak events. This result again illustrates the usefulness of pile-up removal
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Figure 7.17: Signal amplitude spectrum, recorded in the L (left) and R (right) po-
larimeter detectors with the Møller (coincidence) trigger, before (top) and after (bot-
tom) empty-target background subtraction. The peak around 1.5 MeV corresponds
to Møller electrons backscattered off the gold target and the peak at higher energies
to doubly Mott-scattered beam electrons (false coincidences). Solid line – sum of an
exponential and two gamma functions fitted to the spectrum; dashed line – gamma
fit to the (Møller or beam) peak; dotted line – exponential fit to the background tail.
The black vertical lines indicate the cuts applied to select the Møller scattering events.
Histograms for opposite beam polarizations are plotted with different colors.
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Figure 7.18: Dependence of the signal amplitude (peak position) on energy in the L
(a) and R (b) polarimeter detectors. The line represents the quadratic fit. Data for
opposite beam polarizations are plotted with different colors.

discussed in Section 7.3. Therefore, the further analysis was performed on single–peak
events only, in order to avoid the ambiguity regarding the rising edge identification.

In general, there is a sharp signal peak around zero in the runs with the gold target,
which is much smaller in case of the empty–target runs. The small peak remaining
without the gold target is probably due to the electrons back–scattered of the target
frame or the chamber walls.

The histograms of the time distance between the rising edge position in the po-
larimeter and tagging counter are shown in Fig. 7.22 for events which pass the ampli-
tude selection in both channels: polarimeter-detector amplitude in the right half of the
Møller peak and tagging counter amplitude in the full Møller peak. According to the
amplitude analysis, these events consist in large part of the exponential empty–target
background, but after removing the background there should be more than 95% Møller
electrons in the data sample.

Contrary to the spectrum without selections (Fig. 7.21), the time difference dis-
tribution with amplitude selection (Fig. 7.22) is practically uniform in case of the
empty–target data. The same histogram for the runs with the gold target consists of
a sharp peak on top of a slightly higher flat background.

The distribution can be fitted with a sum of a constant and a Gaussian curve, the
fit result is shown in Fig. 7.23. The fit results are listed in Table 7.3.

Due to the finite sampling rate of the signal digitizer, the analysis can be improved
by interpolating the signals between the recorded data points. The time-difference dis-
tribution peak width obtained with a linear interpolation on the rising edge is slightly
smaller than without interpolation, which is in agreement with the expectations. Any-
way, the difference between the two methods is very small, which suggests that the
main source of the observed distribution width is the natural variation of the signal
timing, originating from the detector, and not the sampling frequency of the digitizer
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Figure 7.19: Dependence of the Møller peak position on time in the L (a) and R
(b) polarimeter detectors. The lines represent the linear fit. Data for opposite beam
polarizations are plotted with different colors.
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Figure 7.20: Histogram of the rising edge position in the tagging counter.
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Figure 7.21: Histograms of the time distance between the rising edge position in the
polarimeter and tagging counter, for runs with an empty target frame and with the
gold target; (a) all events, (b) only single–peak events.
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Figure 7.22: Histograms of the time distance between the signal rising edge position
in the polarimeter and tagging counter, for events with the polarimeter-detector am-
plitude in the right half of the Møller peak and tagging counter amplitude in the full
Møller peak, for runs with an empty target frame and with the gold target.
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Figure 7.23: Central part of the histograms of the time distance between the signal po-
sition in the polarimeter and tagging counter, for events with the polarimeter-detector
amplitude in the right half of the Møller peak and tagging counter amplitude in the full
Møller peak, for runs with the gold target, shown with the fitted functions (see text);
(a) time from rising edge, (b) time from signal maximum. Histograms for opposite
beam polarizations are plotted with different colors.
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Table 7.3: Results of the timing analysis in configuration A. The mean time distance
between the rising edge position in the tagging counter and the polarimeter detector
was determined from a Gaussian fit to the experimental distribution. The results were
obtained with three different definitions of rising edge position, and the distribution
widths σ are shown to demonstrate the accuracy of different analysis methods (see text
for details).

detector analysis mean σ
L rising edge (50%) 0.20 ns 0.51 ns
L rising edge (50%) interpolated 0.23 ns 0.51 ns
L maximum −0.03 ns 1.41 ns
R rising edge (50%) 0.58 ns 0.51 ns
R rising edge (50%) interpolated 0.55 ns 0.49 ns
R maximum 0.52 ns 1.48 ns

board.
For comparison, the analysis was also performed by measuring the time difference

between the signal maximum positions. The time difference distribution width in this
case is about a factor of 3 larger than using the rising edge position, which shows
that this method is much less precise. Maximum position is much more sensitive to
noise and shape fluctuations, due to the fact that the signal derivative is zero in the
maximum.

Electrons reflected back from the Møller dump are expected to be delayed by about
10 ns, which should be a measurable effect even with a limited timing precision. No
such additional peak is visible in the spectrum, which suggests that the number of
such events is much lower than the low–energy forward–scattered background from the
beryllium target.

The empty–target runs can as well be fitted with the same function in order to
verify if there is a statistically significant peak around zero time difference. The fit
was performed with the peak position and width fixed according to the signal fit.
The central parts of the time difference distributions for background events are shown
with the fit results in Fig. 7.24. In three cases the resulting peak height was found
in agreement with zero: (−46 ± 76) 1/ns for the L detector (one polarization) and
(50 ± 64) 1/ns for R polarimeter detector (both polarizations). In the L detector, the
result for the other polarization, (214 ± 77) 1/ns, deviates from zero by about 2.8 σ.

7.5. Calculation of the asymmetry

7.5.1. Beam
Data acquired with the beam trigger was used to determine the incident electron-beam
polarization. A typical signal amplitude spectrum recorded in the Mott polarimeter
(i.e., after beam Mott scattering both off the beryllium and gold targets), after dead
time correction, before and after background (empty-target runs) subtraction, is shown
in Fig. 7.25 for two opposite beam polarizations. The asymmetry arising due to the
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Figure 7.24: Central part of the histograms of the time distance between the signal
rising edge position in the tagging counter and the L (a) or R (b) polarimeter detector,
for events with the polarimeter-detector amplitude in the right half of the Møller peak
and tagging counter amplitude in the full Møller peak, for empty target runs, shown
with the fitted functions (see text). Histograms for opposite beam polarizations are
plotted with different colors.

beam polarization is clearly visible. The half peak cuts are also marked in the drawing.
A significant fraction of remaining internal, target-related background events, including
Møller electrons, is also visible in the low-energy part of the spectrum shown in Fig.
7.25.

The beam asymmetries are listed in Tables 7.4 and 7.5, together with the fraction of
background events passing the amplitude cuts, estimated using a gamma fit. In the final
analysis, the asymmetries were obtained by counting events in the right half of the beam
peak, where the signal-to-background ratio is sufficiently high that the subtraction of
this remaining background is not necessary. According to an exponential fit to the
background tail, the fraction of remaining background events in the data sample is
approx. 1%.

If wider cuts are used, the asymmetry of the peak becomes important. Due to the
asymmetry of the gamma distribution, a symmetric ±2 σ cut accepts a significantly
larger part of the peak on the left hand side than on the right. Therefore, asymmetric
cuts were applied in the full peak analysis, with a high–amplitude cut of +2 σ and a
low–amplitude cut corresponding to the same value of the fitted gamma distribution
as for the high–amplitude cut (Γ(x0 + 2σ)).1 The difference between the symmetric
and asymmetric cuts is shown in Fig. 7.26.

The asymmetries obtained with full peak cuts are also shown in Tables 7.4 and
7.5 for comparison. The difference between full peak and half peak asymmetry val-

1Throughout this work the asymmetric signal-amplitude cut, with a low–amplitude cut correspond-
ing to the same value of the fitted gamma distribution as for +2 σ high-amplitude cut, will be shortly
referred to as the full peak amplitude cut.
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Figure 7.25: Signal amplitude spectrum, recorded in the polarimeter with the beam
trigger, before (top) and after (bottom) empty-target background subtraction in the
L (left) and R (right) polarimeter detector. The peak corresponds to beam electrons
Mott-scattered off the beryllium and gold targets. The distributions are fitted with
a sum of two gamma functions. The half peak low-amplitude cuts are marked with
the black vertical lines. Histograms for opposite beam polarizations are plotted with
different colors.
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Figure 7.26: Signal amplitude spectrum after background subtraction in the polarime-
ter detector acquired with the beam trigger. The black vertical lines mark the part of
the spectrum used to calculate the asymmetry in the full peak analysis, dotted lines:
symmetric ±2 σ cuts, solid line: asymmetric low-amplitude cut according to the fit-
ted gamma distribution. Histograms for opposite beam polarizations are plotted with
different colors.

ues is related to the different fraction of background events and different analyzing
power, which is discussed in more detail below, and is taken into account in systematic
uncertainty in Section 8.3.

The beam polarization measurement was repeated every day, and the individual
results are in agreement within their statistical uncertainties, which can be seen in
Fig. 7.27.

Background subtraction

The results with both the half peak and the full peak cuts must give the same beam
polarization value if the analysis is performed correctly. The differrence between the
half peak and full peak asymmetry can be partly explained by the fact that the full
peak data contain more background events, as much as 20% in the R polarimeter
detector.

In a perfect experiment, with 100% efficient event selection, the measured numbers
of events would correspond to the beam electrons only, and the asymmetry could be
written as

Abeam = N+
beam − N−

beam

N+
beam + N−

beam

. (7.3)

In reality, the measured numbers of events contain both the number of beam elec-
trons and of the background events. Let us assume for simplicity that there is only one
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Table 7.4: Results of the beam polarization measurements in configuration A (after
empty-target background subtraction), obtained with two different low-amplitude cuts.
Single-counter asymmetry values Abeam were obtained from Eq. (3.2), before and after
dead time correction. The fraction of background events passing the selections was
estimated from the fits to the amplitude spectra.

Abeam without Abeam with % bgd
analysis dead time correction dead time correction events

L half peak 0.0625 ± 0.0019 0.0695 ± 0.0022 0.4%
L full peak 0.0577 ± 0.0022 0.0642 ± 0.0029 5.4%
R half peak 0.0649 ± 0.0017 0.0750 ± 0.0021 0.4%
R full peak 0.0608 ± 0.0017 0.0731 ± 0.0024 5.0%

Table 7.5: Results of the beam polarization measurements in configuration B (after
empty-target background subtraction), obtained with two different low-amplitude cuts.
Single-counter asymmetry values Abeam were obtained from Eq. (3.2), before and after
dead time correction. The fraction of background events passing the selections was
estimated from the fits to the amplitude spectra.

Abeam without Abeam with % bgd
analysis dead time correction dead time correction events

L half peak 0.0454 ± 0.0017 0.0482 ± 0.0021 2.5%
L full peak 0.0404 ± 0.0013 0.0453 ± 0.0023 17%
R half peak 0.0461 ± 0.0015 0.0508 ± 0.0019 3%
R full peak 0.0360 ± 0.0012 0.0431 ± 0.0022 28%
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Figure 7.27: Time dependence of the asymmetry calculated for individual runs using
events from the right half of the beam peak, in the L (a) and R (b) polarimeter detector.
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source of background. In this case the total numbers of events are

N+ = N+
beam + N+

bgd (7.4a)

and
N− = N−

beam + N−
bgd. (7.4b)

The experimental asymmetry is determined from these two numbers according to

Aexp = N+ − N−

N+ + N− =
N+

beam + N+
bgd − N−

beam − N−
bgd

N+ + N− . (7.5)

The enumerator can be rewritten to separate the contribution from beam and back-
ground electrons:

Aexp = N+
beam − N−

beam

N+ + N− +
N+

bgd − N−
bgd

N+ + N− . (7.6)

Note that the denominator still contains the contributions from both types of events,
thus in order to rewrite Aexp in terms of the original signal and background asymmetries
one has to know the relative event rates of signal and background. They can be
approximately determined from the fits to the signal amplitude spectrum.

Denoting the fraction of background events in the data sample by

xbgd =
N+

bgd + N−
bgd

N+ + N− , (7.7a)

we find from Eqs. (7.4) that the fraction of beam events is

1 − xbgd = N+
beam + N−

beam

N+ + N− . (7.7b)

Now we can use Eqs. (7.7) to replace the total number of events (N+ + N−) in the
denominator of Eq. (7.6) with xbgd:

Aexp = (1 − xbgd) N+
beam − N−

beam

N+
beam + N−

beam

+ xbgd

N+
bgd − N−

bgd

N+
bgd + N−

bgd

. (7.8)

This way Aexp has been expressed in terms of the individual asymmetries of the two
contributing types of events:

Aexp = (1 − xbgd) Abeam + xbgdAbgd. (7.9)

According to Eq. (7.9), the measured asymmetry value is an average of the asym-
metries describing the different types of events, each with a weight equal to the fraction
of events belonging to that category. Therefore, if the background asymmetry is smaller
(larger) that that of the signal, it decreases (increases) the measured asymmetry, which
is illustrated in Fig. 7.28. In particular, if the background asymmetry is equal to zero,
the measured value has to be divided by the fraction of signal events in the data sample
(1 − xbgd), in order to obtain the true asymmetry of the signal events.
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Figure 7.28: Dependence of the experimental asymmetry on the fraction of background
events in the data sample xbgd, for signal asymmetry Abeam = 0.1 and twice–lower
background asymmetry Abgd = 0.05.

The measured asymmetry values were corrected for the presence of background
by subtracting the number of Møller and background events following from the fit
combined with the asymmetry of background. The asymmetry was calculated inde-
pendently for events in the beam peak and for events below the low–amplitude cut,
where the rate of beam electrons is much lower than that of Møller electrons and
background. The asymmetry was corrected by subtracting the number of background
events estimated from background asymmetry and the weight obtained from the fit to
the spectrum. The uncertainty of the corrected asymmetry is higher, since it is in fact
a combination of two asymmetries with similar uncertainties.

The full dependence of the asymmetry on the low–amplitude cut in configuration B,
before and after background subtraction, is shown in Figs. 7.29 and 7.30, respectively
(the dependence was not as strong in configuration A). The subtraction of background
removes the rapid decrease of the asymmetry in the left side of the plot (low cuts), while
the right side (high cuts) is practically unchanged, since there is very little background
in that part of the spectrum. The remaining dependence can be explained by the
fact that the effective analyzing power as well depends on the low-amplitude cut;
the differences between the results obtained with different cuts are included in the
systematic uncertainty (cf. Section 8.3).

7.5.2. Møller

In order to record the Møller electrons in the polarimeter, a coincidence trigger of
the tagging and one of the polarimeter detectors was used. As in the beam polar-
ization measurement, the number of events recorded with an empty target frame was
subtracted from the number of events recorded with the gold target foil.
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Figure 7.29: Dependence of the asymmetry in the L (a) and R (b) polarimeter detector
on the low–amplitude cut.
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Figure 7.30: Dependence of the asymmetry in the L (a) and R (b) polarimeter detector
on the low–amplitude cut, after low–energy background subtraction based on a fit to
the spectrum.
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Event selections

In addition to the shielding mentioned in Chapter 3, a further reduction of background
was achieved by event selection based on two variables: (1) energy (signal amplitude)
in the tagging detector and (2) arrival-time difference of the polarimeter and tagging
detector signals.

Five different data selection approaches have been compared:

1. Raw data (no selections).

2. Tagging counter amplitude restricted to the 1.5 MeV peak.

3. Time difference in the ±2 σ range around the maximum.

4. Time difference in the ±2 σ range around the maximum, and the tagging counter
amplitude in the 1.5 MeV peak.

5. Time difference in the ±2 σ range around the maximum, and the tagging counter
amplitude in the 1.5 MeV peak, with background subtraction based on the inter-
polation of the time distribution.

The selection criteria and their effects are described below.

Amplitude selection

The tagging counter amplitude selection can be used to remove part of the background
events present in the data collected with the Møller trigger, which produced a false
coincidence with a beam electron in the tagging counter.

When data from all runs are combined, the 1.5 MeV peak is broadened compared
to the peak width in an individual run (cf. Section 7.4.1). Therefore, the cuts were
applied on a run–by–run basis, leading to a lower number of events, but also a lower
fraction of background and therefore a lower statistical uncertainty, in comparison to
a constant cut for all runs.

The signal amplitude spectrum after selections is shown in Fig. 7.31. Applying this
selection decreases the fraction of background and beam events (estimated from fits to
the spectrum) that are present in the Møller peak part of the spectrum, from which
the asymmetry is calculated. As the fit to the background tail is getting unstable when
background is removed from the data sample, all spectra with event selections were
fitted with a fixed background shape, by rescaling the background obtained without
selections.

Timing selection

The timing selection, discussed in Section 7.4.3, was used to remove the false coin-
cidences of particles produced by two different beam electrons, present in the data
collected with the Møller trigger due to the finite timing resolution of the coincidence
logic.
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Figure 7.31: Signal amplitude spectrum, recorded in the L (left) and R (right) polarime-
ter detectors with the Møller (coincidence) trigger, after empty-target background sub-
traction, without (top) and with (bottom) full peak amplitude selection on the tagging
counter data. The peak around 1.5 MeV corresponds to Møller electrons backscattered
off the gold target and the peak at higher energies to doubly Mott-scattered beam
electrons (false coincidences). Solid line – sum of an exponential and two gamma func-
tions fitted to the spectrum; dashed line – gamma fit to the (Møller or beam) peak;
dotted line – exponential fit to the background tail. The black vertical lines indicate
the cuts applied to select the Møller scattering events. Histograms for opposite beam
polarizations are plotted with different colors.
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Table 7.6: Background level in the Møller polarization measurement in configuration A,
for events with signal amplitude within the full Møller peak, after dead time correction.
The number of background events recorded in both detectors was obtained from a fit to
the distribution of time between the rising edge position in the tagging counter and the
polarimeter detector (cf. Fig. 7.33). The fraction of target-induced background events
was determined by comparing the background level before and after empty-target data
subtraction.

detector total bgd target bgd % target bgd
L UP 63890 ± 59 4014 ± 15 6.3%
L DN 64174 ± 59 3930 ± 15 6.1%
R UP 43884 ± 48 4829 ± 16 11%
R DN 44391 ± 48 5050 ± 16 11%

The signal amplitude spectrum after selections is shown in Fig. 7.32. The main
observation is that the timing selection greatly reduces the amount of low–energy back-
ground and beam electrons producing false coincidences. This reduction is much more
effective with timing selection than with the tagging counter amplitude selection (cf.
Tables 7.7 and 7.8).

Thanks to the fact that with the timing selection the amount of low–energy back-
ground is very low also in the left half of the Møller peak, the asymmetry can be
calculated using the data from the whole peak. In this case, again, the asymmetry of
the peak has to be taken into account. The full peak cuts were calculated in the same
way as for the beam peak in the beam polarization analysis.

Target-induced background

The time difference distributions of the events that pass the amplitude selections are
shown in Fig. 7.33. A Gaussian peak, about 2 ns wide, corresponding to the coin-
cidences of Møller electrons, is visible on top of background, whose distribution is
uniform to a good approximation. The different level of background before and after
empty–target data subtraction is also clearly visible.

The spectrum can be fitted with a sum of a constant and a Gaussian curve. The
resulting background level can be used to estimate the number of background events
passing the timing selection, according to the interpolation under the signal peak. The
results are summarized in Table 7.6.

The ratio of the numbers of target induced background events recorded in the
L and R polarimeter detector (0.80) is similar to the ratio of signal events (0.76),
therefore, both effects can be explained with detector efficiency. Meanwhile, the amount
of empty–target background is significantly lower in the R polarimeter detector, which
seems to be caused by a lower amount of external background reaching this counter.

It is worth noting that the number of target induced background events from this
analysis is significantly higher than the number obtained from the fit to the amplitude
(energy) spectrum. According to the flat fit it accounts for 5.0% and 4.7% of events,
compared to 3.8% and 1.5% according to the analysis presented in the previous section,
in the L and R polarimeter detector, respectively. It can be explained by the false
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Figure 7.32: Signal amplitude spectrum, recorded in the L (left) and R (right) polarime-
ter detectors with the Møller (coincidence) trigger, after empty-target background sub-
traction, with the ±2 σ timing selection, without (top) and with (bottom) full peak
amplitude selection on the tagging counter data. The peak around 1.5 MeV corresponds
to Møller electrons backscattered off the gold target and the peak at higher energies
to doubly Mott-scattered beam electrons (false coincidences). Solid line – sum of an
exponential and two gamma functions fitted to the spectrum; dashed line – gamma
fit to the (Møller or beam) peak; dotted line – exponential fit to the background tail.
The black vertical lines indicate the cuts applied to select the Møller scattering events.
Histograms for opposite beam polarizations are plotted with different colors.
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Figure 7.33: Histograms of the time distance between the rising edge position in the
tagging counter and the L (left) or R (right) polarimeter detector, before (top) and
after (bottom) empty–target background subtraction, for events with signal amplitude
within the full Møller peak, after dead time correction. The distribution is fitted with
a sum of a constant (background) and a Gaussian curve (signal), shown with a solid
line. The background interpolation under the signal peak is marked with a dashed line.
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coincidences of two Møller electrons (with approx. 1.5 MeV energy, thus passing the
amplitude selections) produced by two different beam electrons.

Subtracting fitted background

An alternative method of determining the asymmetry follows from analyzing the time
difference distributions shown in Fig. 7.33. The fitted uniform background can be
subtracted from the number of events passing the selection criteria. In this method, the
empty-target background subtraction is not necessary, since both sources of background
(empty-target and target-induced events) are removed with a single fit.

The time distribution of background events is uniform, therefore, it can be fitted
with a better precision than the exponential amplitude distribution. Since the random
fluctuations of experimental data average out in the fit, the result is subject to a lower
statistical uncertainty than the raw number of empty-target background events. This
way, the uncertainty of the asymmetry is reduced.

Results

The results (the asymmetry, the number of events passing the selection, as well as the
fraction of background and beam events present in the part of the spectrum selected
for analysis) are summarized in Table 7.7 (after dead time correction). The same
algorithms were used to analyze the data in configuration B; the results can be found
in Table 7.8. In case of the analyses without timing selection, half-peak results are
shown, since otherwise the subtraction of remaining background would be necessary
for comparison. The results regarding the asymmetry are in agreement within the
statistical uncertainties.

The amount of background remaining after subtracting the empty-target data is
different in the L and R polarimeter detectors. This effect can be partly explained by
the asymmetry of the experimental setup (different positions of the detectors, resulting
in different background conditions). The difference is, however, much smaller if the
event selections are applied.

A notable fact is that the asymmetry uncertainties obtained with the timing se-
lection are comparable to those obtained without selections, despite the much lower
number of events (thanks to the much lower amount of empty–target background pass-
ing the selection). The uncertainty of the number of events taking into account all
effects (empty–target data subtraction and dead time correction) for analysis 1. on the
L polarimeter-detector data is a factor of 5 higher than the square root of the number
of events, while for analysis 5. this ratio is less than 2.

The results obtained with background interpolation are in agreement with the stan-
dard analysis using empty-target background subtraction with the same event selec-
tions. The slightly lower number of events shows that the fit removes some of the
background remaining after event selection.

The Møller electrons asymmetry measured in individual runs can also be plotted as
a function of time, and the results are in agreement within their statistical uncertainties,
which can be seen in Fig. 7.34.

123



Table 7.7: Results of the Møller polarization measurements in configuration A (after
dead time correction). The results were obtained with five different analysis methods
(see text for details). Single-counter asymmetry values AMøller were obtained from Eq.
(3.2). NMøller is the total number of events recorded in both detectors. The fraction
of low-energy background and beam events passing the selections was estimated from
the fits to the amplitude spectra.

selection AMøller % bgd % beam
(see text) (half peak) NMøller events events

1 L 0.0309 ± 0.0074 (437.4 ± 3.2)103 8.1% 0.9%
2 L 0.0243 ± 0.0087 (203.3 ± 1.8)103 5.8% 0.6%
3 L 0.0342 ± 0.0066 (105.21 ± 0.69)103 2.4% 0.1%
4 L 0.0293 ± 0.0053 (93.93 ± 0.50)103 1.5% 0.05%
5 L 0.0349 ± 0.0050 (90.06 ± 0.45)103

1 R 0.0360 ± 0.0045 (602.6 ± 2.7)103 1.7% 0.4%
2 R 0.0303 ± 0.0055 (278.0 ± 1.5)103 1.4% 0.3%
3 R 0.0312 ± 0.0046 (139.96 ± 0.64)103 0.5% 0.08%
4 R 0.0337 ± 0.0040 (125.93 ± 0.51)103 0.3% 0.02%
5 R 0.0345 ± 0.0040 (120.74 ± 0.48)103

selection AMøller % bgd % beam
(see text) (full peak) NMøller events events

4 L 0.0264 ± 0.0049 (165.84 ± 0.81)103 3.8% 0.03%
5 L 0.0291 ± 0.0043 (160.19 ± 0.69)103

4 R 0.0317 ± 0.0035 (219.51 ± 0.77)103 1.5% 0.01%
5 R 0.0309 ± 0.0033 (210.12 ± 0.69)103
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Table 7.8: Results of the Møller polarization measurements in configuration B (after
dead time correction). The results were obtained with two different analysis methods
(see text for details). Single-counter asymmetry values AMøller were obtained from Eq.
(3.2). NMøller is the total number of events recorded in both detectors. The fraction
of low-energy background and beam events passing the selections was estimated from
the fits to the amplitude spectra.

selection AMøller % bgd % beam
(see text) (half peak) NMøller events events

1 L 0.0238 ± 0.0047 (387.6 ± 1.8)103 2.8% 1.5%
2 L 0.0233 ± 0.0055 (189.0 ± 1.0)103 2.7% 1.0%
3 L 0.0201 ± 0.0046 (107.02 ± 0.49)103 1.3% 0.3%
4 L 0.0204 ± 0.0042 (98.66 ± 0.41)103 1.1% 0.6%
5 L 0.0208 ± 0.0042 (95.58 ± 0.40)103

1 R 0.0147 ± 0.0032 (575.9 ± 1.9)103 4.1% 1.7%
2 R 0.0158 ± 0.0039 (274.4 ± 1.1)103 2.1% 1.1%
3 R 0.0127 ± 0.0037 (152.96 ± 0.56)103 0.6% 0.8%
4 R 0.0122 ± 0.0036 (139.33 ± 0.50)103 0.3% 0.9%
5 R 0.0129 ± 0.0036 (134.75 ± 0.49)103

selection AMøller % bgd % beam
(see text) (full peak) NMøller events events

4 L 0.0189 ± 0.0037 (171.42 ± 0.63)103 2.3% 0.4%
5 L 0.0193 ± 0.0035 (166.44 ± 0.57)103

4 R 0.0092 ± 0.0031 (224.99 ± 0.69)103 1.1% 0.6%
5 R 0.0123 ± 0.0030 (216.24 ± 0.65)103
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Figure 7.34: Time dependence of the asymmetry calculated for individual runs using
events from the full Møller peak, in the L (a) and R (b) polarimeter detector.
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Chapter 8

Analysis of uncertainties

The statistical and systematic uncertainties relevant for the measurement of polariza-
tion are discussed. Parts of this chapter were published in [31].

8.1. Statistical uncertainty
In case of the beam polarization measurement, the statistical uncertainty reflects
mainly the number of recorded signal events. This is, however, not the case for Møller
electrons. In this case, the signal-to-background ratio ranges from 1 to approx. 0.05
in different parts of the Møller peak, so in general, the statistical uncertainty follows
mostly from the number of registered background events. Since the background spec-
trum is well described by an exponential distribution, the higher-energy part of the
peak is subject to a much lower uncertainty than the low-energy tail of the Møller
peak.

The dead time correction is subject to a significant statistical uncertainty as well,
since it is based on the fits to the experimental time distributions, which was also in-
cluded in the total statistical uncertainty. The contribution of the dead time correction
to the asymmetry uncertainty is approx. 0.0006 with the beam trigger and 0.0003 with
the Møller trigger (the statistical uncertainties of the single-counter asymmetry are of
the order of 0.002 and 0.004 with the beam and Møller trigger, respectively).

8.2. Analyzing power
In view of the lack of experimental data on the effective Sherman function under the
conditions corresponding to this experiment, it was obtained from a dedicated Monte
Carlo simulation, initially used to optimize the parameters of the Mott polarimeter,
including target thickness and scattering angle (cf. Chapter 5). The simulated val-
ues of the analyzing power used for data analysis were 0.0847 at 3 MeV and 0.0886
at 1.5 MeV. The effective Sherman function at beam energy could be determined ex-
perimentally, from the measured asymmetry and the independent measurement of the
beam polarization. However, since the final result is to be obtained as the ratio of the
polarizations before and after the scattering, it is favorable to use the values of the
analyzing power obtained with the same method both at 1.5 MeV and 3 MeV. With
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Figure 8.1: Dependence of the effective Sherman function on the electron scattering
angle, obtained from the Monte Carlo simulation, for three target thicknesses, corre-
sponding to the nominal target thickness and its extreme values used to estimate the
uncertainty.

this approach the polarization ratio is less sensitive to systematic uncertainties of the
Monte Carlo predictions, which partly cancel out.

In particular, the uncertainty of the target thickness might significantly affect the
result of the absolute polarization measurement. At the same time, its influence on
the polarization ratio should be much smaller. The gold target thickness uncertainty
was estimated at 10%. The effective Sherman function values were calculated for the
extreme values of 8.9 µm and 10.9 µm; their dependence on the electron scattering
angle is shown in Fig. 8.1. The systematic uncertainties of the analyzing power related
to the target thickness were estimated from the range of values obtained for different
thicknesses as ±0.0014 at 3 MeV and ±0.0026 at 1.5 MeV.

The Monte Carlo simulation was validated by comparing its predictions to the
experimental values from a few different polarimeters operating at energies between
100 keV and 14 MeV. The systematic uncertainties of the Monte Carlo predictions
were estimated by analyzing the differences between the simulations and the values
measured with the MAMI Mott polarimeter for energies from 1 to 3.5 MeV and several
target thicknesses [50], cf. Chapter 5.

The total systematic uncertainties of the analyzing power, taking into account both
effects, were estimated as ±0.0034 at 3 MeV and ±0.0063 at 1.5 MeV.

8.3. Dependence on applied cuts
The count-rate asymmetry was calculated for several values of the low-energy cuts
applied to both Møller and beam spectra recorded in the polarimeter. The effective
analyzing power was adjusted accordingly based on the Monte Carlo simulation results.
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The energy loss of electrons in the gold target was also taken into account in the
simulation. In order to calculate the effective Sherman function corresponding to the
applied cuts, an effective Gaussian smearing, modeling the detector resolution measured
experimentally at 1.5 and 3.0 MeV, was applied to the Monte Carlo-generated energy
values.

The energy distributions before and after smearing are shown in Figs. 8.2. It is
interesting to note that the average energy loss in scattering off the target is approx.
0.1 MeV, showing that the 9.9 µm gold target is relatively thick for electron energies
of a few MeV.

Despite the limited detector resolution, events from the right half of the peak will
have a larger average energy than those from the left half. The larger energy corre-
sponds to a larger value of the effective Sherman function, since the energy loss is to a
first approximation proportional to the distance travelled by the particle inside the tar-
get (leading to depolarization and multiple scattering). The effective Sherman function
was calculated using events selected from the same part of the spectrum as in the data
analysis. Several low-energy cuts were applied to the resulting energy spectra, yielding
the effective Sherman function dependence on the low-amplitude cut shown in Fig. 8.3.
A significant dependence is observed for the chosen target thickness of 9.9 µm. The
difference between the full-peak value and that obtained with a half-peak cut can be
of approx. 5% and further increase when even higher cuts are applied (cuts above the
nominal beam energy value can be considered because of a finite energy resolution),
which must be taken into account in the data analysis.

The dependence of the electron polarization on the low-amplitude cut is shown in
Figs. 8.4 and 8.5 (the first data point corresponds to the full-peak cut and the last
data point to the half-peak cut) for beam and Møller electrons, respectively. After the
cut-dependent corrections, the results obtained with different low-amplitude cuts show
no significant cut dependence, which confirms the consistency of the analysis.

The range of polarization values obtained with different cuts was used to estimate
the systematic uncertainty of the result. The polarization uncertainty related to this
effect was estimated as approx. ±0.01.

Several timing cut and energy cut values in the tagging detector were considered,
and the values resulting in the lowest uncertainty were used for the final result, while
no significant dependence of the result on these selections was observed.

8.4. Target-related background
The background events can be divided in two classes: (i) empty-target background,
which can be removed by subtracting the data acquired with an empty target frame
and (ii) target-related background remaining after the subtraction.

The latter class of events consists of the low-energy background, whose spectrum can
be described approximately as exponential, as well as Mott-scattered beam electrons,
with energy around 3 MeV. The asymmetry of the low-energy background is much
smaller than that of the signal, while the asymmetry for the beam electrons is higher
than for Møller electrons. Therefore, the former type of events could decrease and the
latter increase the measured asymmetry.
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Figure 8.2: Simulated energy distribution after 1.5 MeV (top) and 3 MeV beam (bot-
tom) scattering off a 9.9 µm gold target, before (left) and after smearing corresponding
to the measured detector resolution (right).

130



Low energy cut [MeV]
0.8 1 1.2 1.4 1.6

ef
f

E
ff

ec
ti

ve
 S

h
er

m
an

 f
u

n
ct

io
n

 S

0.100−

0.095−

0.090−

0.085−

0.080−

(a)
1.5 MeV

Low energy cut [MeV]
2 2.2 2.4 2.6 2.8 3 3.2

ef
f

E
ff

ec
ti

ve
 S

h
er

m
an

 f
u

n
ct

io
n

 S

0.100−

0.095−

0.090−

0.085−

0.080−

(b)
3 MeV

Figure 8.3: Dependence of the effective Sherman function Seff on the low-energy cut
for detectors placed at an angle of 120◦ with respect to the beam axis (scattering angle
range 115◦ < θ < 125◦), for two beam energies: 1.5 MeV (a) and 3.0 MeV (b). The
detector resolution was modeled with a Gaussian peak fitted to the energy spectrum.

For the data collected with the beam trigger, the number of target-related back-
ground events was estimated from the fits to the spectrum, which are also shown in
Fig. 7.25. For the data collected with the Møller trigger, the number of such events pass-
ing the selection criteria was calculated by interpolating the time difference distribution
between the polarimeter and tagging detector signals. This method, independent of
the background energy distribution, relies on the assumption that the time distribution
of background events (false coincidences) is uniform. The validity of this approach was
verified by establishing an upper limit on the existence of an additional background
peak on top of the uniform distribution using the data collected with an empty target
frame. No additional contribution was found within the statistical uncertainty.

8.5. Beam current stability
Another factor, which could affect the asymmetry measurement, is the stability of the
beam current. The data were acquired in four-run sequences: the target in – target out
– target out – target in. Histograms in Figs. 8.6 and 8.7, each made with data from
one four-run sequence in configuration B, illustrate this effect. If the beam current was
stable or changing linearly with time, the above order would ensure that the average
event rate is unbiased in the signal as well as the background (empty target frame)
data, see Fig. 8.6. In the contrary case there would be a wrong amount of background
subtracted from the raw data (too much background is subtracted in Fig. 8.7 due to
non-linear increase of the beam current).

The event rate, which is assumed to be proportional to the beam current, measured
in 10 minute intervals, in configuration B, is plotted as a function of time in Fig. 8.8.
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Figure 8.4: Dependence of the beam polarization measured with the L (a) and R
(b) polarimeter detector on the low–amplitude cut, taking into account the effective
Sherman function dependence on the low–energy cut as shown in Fig. 8.3.

0.02 0.025 0.03 0.035
Low amplitude cut [V]

0.3

0.35

0.4

0.45

M
o

lle
r 

el
ec

tr
o

n
s 

p
o

la
ri

za
ti

o
n

(a)

0.02 0.025 0.03
Low amplitude cut [V]

0.3

0.35

0.4

0.45

M
o

lle
r 

el
ec

tr
o

n
s 

p
o

la
ri

za
ti

o
n

(b)

Figure 8.5: Dependence of the Møller electrons polarization measured with the L (a)
and R (b) polarimeter detector on the low–amplitude cut, taking into account the
effective Sherman function dependence on the low–energy cut as shown in Fig. 8.3.
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Figure 8.6: Left: signal amplitude spectrum in the polarimeter after background sub-
traction, made with data from 4 runs with stable beam current. Right: event rate
dependence on time; magenta – runs with the gold target, yellow – empty target
frame.
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Figure 8.7: Left: signal amplitude spectrum in the polarimeter after background sub-
traction, made with data from 4 runs with beam current increasing non-linearly with
time. Right: event rate dependence on time; magenta – runs with the gold target,
yellow – empty target frame.
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The beam current read out by the operator from the control display is also indicated
with a red line. The black vertical lines mark the moments when the beam current
was manually changed between runs. It can be seen that the current is changing quite
significantly and that the changes are often non–monotonic.

The background (empty target frame) runs taken with a higher (lower) current
than the signal runs, would result in an increased (decreased) asymmetry. The data
were corrected by assigning each run a weight equal to the ratio of the average event
rate (signal or background) during the whole data taking period to the average event
rate during this run. The weights applied to each run in configuration B are shown
in Fig. 8.9. The weight variation was in the range ±10%, although the momentary
variations of the beam current were larger (to some extent they average out during the
run). The resulting asymmetry correction for the beam current instability is, however,
negligible (order of 10−4). The final asymmetry turns out to be insensitive to this effect
as the random changes of the beam current average out to a large extent when data
from all runs are combined.

During the data acquisition period in configuration A the run duration was reduced
to 15 minutes (in comparison to 1 hour in configuration B) in order to further decrease
the sensitivity to beam current changes.

8.6. Finite aperture of the collimators
The collimators between the Møller (beryllium) and Mott (gold) target accept events
in the ±1.5◦ scattering angle range around the symmetric scattering angle of 26.75◦.
Due to the finite angular acceptance, Møller electrons reaching the polarimeter are not
mono–energetic. Their energy range can be obtained for a given angular acceptance
from a simple kinematical calculation; the result is shown in Fig. 8.10. It can be seen
that the energy varies from 1.4 to 1.6 MeV for the scattering angles in the ±1.5◦ range
around the symmetric scattering angle of 26.75◦.

The theoretical Møller cross section dependence on the scattering angle is shown in
Fig. 8.11. The variation of the cross section in the range of interest is approx. 7.9%.
The histogram of the Monte Carlo-generated scattering angles is shown in Fig. 8.12.
It can be seen that even though the distribution is slightly non–uniform, the mean
scattering angle is practically the same as the nominal symmetric scattering angle
(26.73◦ vs 26.75◦).

8.7. Finite thickness of the Møller target
Møller scattering took place in a relatively thick target (100 µm), while the theoretical
predictions refer to the scattering off an isolated electron. As a result of multiple scat-
tering off atomic nuclei, the passage of electrons through the target material affects
their state in two ways: it causes depolarization and alters the kinematics. The first
effect was estimated with a Monte Carlo simulation taking into account the polariza-
tion transfer in Mott scattering; the depolarization in the passage of 3 MeV electrons
through 100 µm of beryllium is negligible (below 0.1%) in the case of the electrons

134



0 20 40 60 80 100 120
Time [hrs]

55

60

65

70

75

80

85

90

95

100

E
ve

n
t 

ra
te

 [
H

z]

57

58

59

60

61

62

63

64

65

66

B
ea

m
 c

u
rr

en
t 

[n
A

]

gold foil
empty target

Figure 8.8: Points: event rate dependence on time; magenta – runs with the gold
target, yellow – empty target frame. Red line: beam current. Black lines: moments of
manual beam current changes.
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Figure 8.10: Theoretical dependence of the Møller electron kinetic energy on the scat-
tering angle for a 3 MeV incident beam. The scattering angle range in the plot corre-
sponds to the acceptance of the collimators.
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Figure 8.11: Theoretical dependence of the Møller scattering cross section on the scat-
tering angle for a 3 MeV incident beam. The scattering angle range in the plot corre-
sponds to the acceptance of the collimators.
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Figure 8.12: Histogram of the scattering angle sampled with the Møller scattering
generator for a 3 MeV incident beam. The mean scattering angle is 26.73◦, while the
symmetric scattering angle is 26.75◦.

that are scattered at small angles (see Section 6.3.3). The kinematic effect of multiple
scattering is more significant, as it leads to the broadening of the energy (or angular)
range of accepted Møller scattering events. However, since the polarization transfer
dependence on the scattering angle is approximately linear, and the analyzing power
almost constant in the considered energy range, the impact on the final experiment
result was found to be negligible.

8.8. Beam position
The shift of the beam spot position with respect to the geometrical center of the
beryllium target would affect the kinematic range of events accepted by the collimators.
This effect is particularly important if the beam is off center in the Møller scattering
plane. In this case, due to the scattering geometry, the average energy of Møller
electrons is different from the design value of 1.5 MeV. The upper limit on this energy
difference was estimated with a Monte Carlo simulation as 0.04 MeV for ±1 mm beam
position shift in the Møller scattering plane (cf. Section 6.4.3). The change of the
polarization transfer corresponding to this energy variation was determined from the
theoretical predictions and amounts to approx. ±0.013.

8.9. Scattering off the collimators
If the beam was perfectly focused in the center of the beryllium target, it would be
extremely unlikely for an electron, scattered outside of the nominal angular acceptance
of the collimators, to scatter off the collimator surface and reach the polarimeter.
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According to a Monte Carlo simulation, only about 0.1% of electrons reaching the
Mott target would fall into that category. However, taking into account the real beam
spot diameter of approx. 1.5 mm and beam position shift up to 1 mm, the simulated
fraction of such events might be as high as 4.2% in the most pessimistic scenario.
The systematic uncertainty related to this effect was estimated by assuming that the
electrons scattered off the collimators are completely depolarized, which allowed us
to calculate the upper limit on the asymmetry reduction. The upper limit on the
contribution to the asymmetry is approx. −4.4% of the measured asymmetry value.

8.10. Alignment of the experimental setup
As the Mott polarimetry method is sensitive only to the polarization-vector component
perpendicular to the scattering plane (according to Eq. (3.4)), there is a systematic
uncertainty related to the possible rotation of the polarization vector with respect to
the Mott scattering plane. Such rotation can be caused by two effects: rotation of the
incoming-beam polarization and misalignment of the experimental setup (rotation of
the Mott scattering plane with respect to the polarization vector).

According to the calculations, typical magnetic fields used to adjust the beam-spot
position on the target lead to a rotation of the polarization vector much below 1 deg.
The detector components were aligned with millimeter precision, which corresponds to
a possible rotation of the Mott scattering plane of a similar order. Since the asymmetry
is proportional to the cosine of the rotation angle, small rotations of the order of 1 deg
are negligible compared to the other sources of uncertainty.

8.11. False asymmetries
Count-rate asymmetries calculated for the empty-target runs collected with the beam
trigger were found to be 0.0044 ± 0.0029 and 0.0188 ± 0.0057, for configurations A and
B, respectively. The empty-target background might have a nonzero asymmetry due
to the fact that there is a small but nonzero analyzing power in electron scattering off
the aluminum target frame.

Thanks to higher statistics, the empty-target asymmetry could be measured with
a much better precision in the energy range corresponding to Møller electrons. The
combined asymmetry, Eq. (3.3), obtained with the Møller trigger was 0.0002 ± 0.0005
in configuration A. Thanks to the fact that the beam polarization orientation was
reversed periodically, it can be checked if the single-counter results, Eq. (3.2), which
are more likely to be sensitive to false asymmetries, are also in agreement with zero.
The single-counter asymmetry values were 0.0033 ± 0.0007 and 0.0037 ± 0.0008, for
counter L and R, respectively, which indicates that there was a small false asymmetry
in the experimental setup that cancels out when when data from two detectors are
combined. A small change of the beam position in the direction perpendicular to the
beam polarization direction is the most likely explanation of the observed asymmetry
with respect to the beam-polarization reversal.

In configuration B, the empty-target asymmetry with the Møller trigger was 0.0059±
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0.0008, in perfect agreement with the single-counter asymmetry values of 0.0060 ±
0.0010 and 0.0059±0.0012. The cancellation of false asymmetries might not take place
in this configuration because the detectors were not placed opposite to each other.
According to the Monte Carlo simulation, a 0.2 mm difference between the beam po-
sitions for opposite polarizations would produce an asymmetry in the intensity of the
background electrons scattered off the collimators of approx. 0.0063 (i.e., of the same
order as the experimental value). The corresponding asymmetry calculated for all elec-
trons reaching the Mott target (most of which are not scattered off the collimators, cf.
Section 8.9) would be, however, more than a factor of 5 lower. It is thus reasonable
to assume that the false asymmetry in the signal data is approx. 1/5 of the measured
empty-target asymmetry, which was included in the systematic uncertainty for config-
uration B. This can be considered as a conservative estimate, as the contribution of
this false asymmetry should partly cancel out in the polarization ratio.

8.12. Radiative corrections
The magnitude of the radiative corrections to Mott scattering is expected to be in-
creasing with energy [68] and might produce a significant contribution to the effective
analyzing power with respect to the Monte Carlo-generated value. However, since the
systematic uncertainty of the Monte Carlo predictions was estimated by comparing the
simulated and measured values, this effect is already included in the uncertainty.

In the case of Møller scattering, the radiative corrections were estimated following
the calculations of Tsai [69]. At 3 MeV, the correction to the cross section is below 1%;
therefore, in our experimental conditions, this effect can be neglected compared to the
other sources of uncertainty (the overall uncertainty of the effective Sherman function
is 4% at 3 MeV and 7% at 1.5 MeV).

The relevant contributions to the polarization value uncertainties, which were included
in the final results presented in this work, are summarized in Table 8.1.
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Table 8.1: Summary of the individual uncertainties contributing to the total uncer-
tainty of the beam polarization and the Møller electrons polarization in configuration
A (values in configuration B are given in parentheses).

beam Møller electrons
polarization polarization

analyzing power1 0.034 (0.033) 0.024 (0.018)
cuts 0.010 (0.010) 0.010 (0.010)

beam position — (—) 0.013 (0.013)
scattering off the collimators1 0.019 (0.018) 0.007 (0.006)

false asymmetry1 — (0.021) — (0.006)
total systematic 0.040 (0.044) 0.030 (0.026)

statistical 0.013 (0.017) 0.022 (0.026)
total 0.042 (0.047) 0.037 (0.037)

1Partly cancels out in the polarization ratio.
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Chapter 9

Final results and conclusions

The final results regarding the polarization of beam and Møller electrons, the polar-
ization transfer, and the experimental limits on the spin correlation function in Møller
scattering, are summarized in this chapter. Most of these results were published in [31].

9.1. Determination of the final result

9.1.1. Beam polarization
The beam polarization values were calculated using Eqs. (3.3) and (3.4) from the
measured numbers of events, assuming the Monte Carlo value of the effective Sherman
function Sbeam = 0.0847 ± 0.0034. The results listed in Table 9.1 were obtained by
counting events in the right half of the beam peak. According to the Monte Carlo
simulation, the change of beam polarization in Mott scattering off beryllium at an
angle of 26.75◦ is negligible (below 0.3%, cf. Section 6.3.3).

The beam polarization was independently measured at 3.5 MeV with the MAMI
Mott polarimeter [50] operating directly on the beam; the results from both sources
can be compared in order to verify the correctness of the measurement, as well as the
accuracy of the Monte Carlo predictions for the analyzing power. The results from the
MAMI polarimeter, 0.835±0.020 and 0.806±0.020, for the periods of data acquisition
in configurations A and B, respectively, are in agreement within 1 σ with the results
presented in Table 9.1. While still being consistent with statistical fluctuations, the
slightly lower MAMI measurement results could also follow from the presence of the
2POL polarimeter installed directly behind the MAMI Mott polarimeter on the same
beam extraction, which might cause additional background.

All beam polarization results presented above are also in agreement with the typical
beam polarization values achieved at MAMI, which which are in the range from 80%
to 85%.

9.1.2. Møller polarization
The mean polarization values of Møller electrons were calculated using Eqs. (3.3) and
(3.4) from the measured numbers of events, assuming the Monte Carlo value of the
effective Sherman function SMøller = 0.0886 ± 0.0063. The results listed in Table 9.2

141



Table 9.1: Results of the beam polarization measurements. Nbeam
L and Nbeam

R are the
numbers of events (after background subtraction and dead time correction) recorded in
the L and R detector, respectively. Single-counter asymmetry values Abeam

L and Abeam
R

were obtained from Eq. (3.2) and the combined value Abeam from Eq. (3.3). The
beam polarization P beam was calculated from Abeam and the Monte Carlo value of the
effective analyzing power.

Configuration A Configuration B
Nbeam

L (586.9 ± 1.3)103 (561.2 ± 1.2)103

Nbeam
R (653.4 ± 1.4)103 (671.9 ± 1.3)103

Abeam
L 0.0694 ± 0.0023 0.0482 ± 0.0021

Abeam
R 0.0748 ± 0.0021 0.0508 ± 0.0019

Abeam 0.0721 ± 0.0011 0.0495 ± 0.0010
P beam 0.851 ± 0.042 0.8261 ± 0.047

1 In configuration B, the polarization, measured in the direction at an angle of 45◦ to the Møller
scattering plane, was divided by cos(45◦) to obtain the total beam polarization, which had an
orientation perpendicular to the Møller scattering plane.

Table 9.2: Results of the Møller polarization measurements. NMøller
L and NMøller

R are
the numbers of events (after background subtraction, dead time correction and event
selection) recorded in the L and R detector, respectively. Single-counter asymmetry
values AMøller

L and AMøller
R were obtained from Eq. (3.2) and the combined value AMøller

from Eq. (3.3). The Møller electrons polarization P Møller was calculated from AMøller

and the Monte Carlo value of the effective analyzing power.

Configuration A Configuration B

NMøller
L (160.19 ± 0.69)103 (166.48 ± 0.57)103

NMøller
R (210.12 ± 0.69)103 (227.63 ± 0.70)103

AMøller
L 0.0291 ± 0.0043 0.0190 ± 0.0034

AMøller
R 0.0309 ± 0.0033 0.0133 ± 0.0031

AMøller 0.0300 ± 0.0019 0.0161 ± 0.0016
P Møller 0.339 ± 0.037 0.2582 ± 0.037

2 In configuration B, the polarization, measured in the direction at an angle of 45◦ to the Møller
scattering plane, was divided by cos(45◦) to obtain the total Møller electrons polarization, which,
according to the theoretical predictions, has an orientation perpendicular to the Møller scattering
plane.
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Table 9.3: Polarization transfer (length of the transverse polarization vector component
in the final state of symmetric Møller scattering divided by the initial beam polariza-
tion). Experimental results are compared to the theoretical predictions [21].

Configuration A Configuration B
experiment 0.398 ± 0.046 0.312 ± 0.046

theory 0.399 0.382
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Figure 9.1: Polarization transfer (length of the transverse polarization vector com-
ponent in the final state of symmetric Møller scattering divided by the initial beam
polarization), plotted as a function of the angle between the beam polarization vector
and the Møller scattering (horizontal) plane. Solid line – theoretical predictions [21],
points – experimental data.

were obtained by counting events in the full Møller peak (using the cuts marked in
Fig. 7.32).

9.1.3. Polarization transfer
When taking systematic uncertainties into account, the optimal approach to measure
the polarization transfer is to define it as the ratio of electron polarizations before and
after the scattering. This way, the impact of some systematic effects is partly sup-
pressed (compared to an absolute polarization measurement), since their contributions
to both polarization measurements are similar. This applies, in particular, to the sys-
tematic uncertainties of the Monte Carlo predictions and of the target thickness, which
affect the effective Sherman function values at 1.5 and 3 MeV in a similar way.

In Table 9.3, the final polarization transfer measurement results, P Møller/P beam (cf.
Tables 9.1 and 9.2) are compared to the theoretical predictions [21] (predicted ratio
of polarizations in the initial and final states of Møller scattering). The experimen-
tal values in both configurations were found to be in agreement with the theoretical
predictions.
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Table 9.4: Limits on the correlation function, Eq. (2.17), derived from the experimental
results on the polarization transfer in Møller scattering presented in Table 9.3, com-
pared to the theoretical predictions for the correlation function [21].

Configuration A Configuration B
experimental limit > −0.204 ± 0.092 > −0.559 ± 0.065

relativistic prediction 0.025 −0.011
singlet state −0.595 −0.797

In both experimental configurations, Møller scattering took place in the horizontal
plane, and the beam polarization was either horizontal or vertical. It should allow us
to verify the dependence of the polarization transfer on the angle between the beam
polarization vector and the Møller scattering plane, as shown in Fig. 9.1. Unfortunately,
the present experimental uncertainty is higher than the small expected amplitude of
the angular dependence. Nevertheless, one can conclude that the experimental points
are in agreement with the predicted theoretical dependence.

The experimental result regarding polarization transfer in Møller scattering can
be also used to derive the experimental limit on the correlation function. The lower
limit on the correlation function is compared to the theoretical predictions of relativis-
tic quantum mechanics and predictions for the singlet state (nonrelativistic limit) in
Table 9.4. It can be seen that the nonrelatvistic prediction is excluded by the experi-
mental result at a level of above 4 σ in configuration A and above 3 σ in configuration
B. The probabilities of obtaining such values, if the nonrelativistic theory holds, are
of the order of 10−5 and 10−4 in configuration A and B, respectively. The combined
probability of obtaining both results in independent measurements is of the order of
10−9, which would correspond to a 6 σ deviation.

Both theoretical predictions are also plotted together with the theoretical and ex-
perimental limits in Fig. 9.2 illustrating the dependence of the correlation function
on energy. It confirms that the 3 MeV beam energy is appropriate for distinguishing
between the nonrelativistic and relativistic predictions with the present experimental
uncertainty.

9.2. Summary and conclusions
Reviewed in these thesis were the theoretical predictions regarding polarization transfer
from a polarized beam electron to the electrons after Møller scattering and quantum
spin correlations between both electrons in the final state. An additional theoretical
analysis showed that the correlation function is closely related to the polarization
transfer. Namely, the average polarizations of two electrons in the final state, P1 and
P2, and the correlation function C must fulfill the condition −1 +

∣∣∣P1(⃗a) + P2(⃗b)
∣∣∣ ≤

C (⃗a, b⃗) ≤ 1 −
∣∣∣P1(⃗a) − P2(⃗b)

∣∣∣.
A dedicated experimental setup for the measurement of polarization transfer in

Møller scattering was designed and constructed. The Mott polarimetry method was
used for the spin-projection measurement. The polarimeter was equipped with SiPM
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Figure 9.2: Dependence of the theoretical limits on the correlation function obtained
from polarization transfer, Eq. (2.17), on beam energy (dashed lines) and experimental
lower limits measured at 3 MeV (points), for a pair of electrons originating from Møller
scattering with (a) the a⃗ and b⃗ vectors (on which the spins are projected) in the Møller
scattering plane, (b) a⃗ and b⃗ vectors at angles equal to 45◦ to the Møller scattering
plane. The theoretical predictions for the correlation function [20] and predictions for
the singlet state (nonrelativistic limit) are shown for comparison (solid lines). The
scattering is symmetric with respect to the beam direction.

detectors and a high sampling speed readout, necessary to distinguish signal (coinci-
dence events) from background.

Monte Carlo simulation was used to demonstrate that the electrons detected in a
Mott polarimeter may undergo several consecutive scattering events, thus the effec-
tive analyzing power cannot be calculated analytically. Therefore, a comprehensive
optimization of a Mott-polarimetry measurement requires collecting a large amount of
data, either from extensive experimental studies, or from a Monte Carlo simulation
taking into account multiple Mott scattering in the passage of electrons through the
target material.

A new model of Mott scattering for polarized electrons, which can be used with
Geant4 instead of the default electron Coulomb scattering model, was developed [33].
The results of the Monte Carlo simulation agree with experimental values measured
in wide ranges of energy and target thickness, which encourages the use of this code
to obtain predictions for polarimetry in kinematical regions and conditions (energy,
scattering angle, target material and thickness) where no measurements exist.

The effective Sherman function dependence on target thickness, as well as the op-
timal ranges of target thickness and scattering angle for the polarization transfer ex-
periment were determined [34]. It was found that the target thickness values optimal
from the statistics point of view are significantly greater than those typically used in
MeV Mott polarimetry.
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In the experiment, Møller electrons backscattered off a gold target were observed
in the Mott polarimeter. Background events were efficiently suppressed based on the
measured amplitude and time information and the remaining background could be sub-
tracted with the use of empty-target data collected at the same time. It was confirmed
that a standard Mott polarimeter is a suitable tool for measuring polarization with a
divergent stream of Møller electrons despite the high-background environment.

The asymmetry of the polarimeter count rates arising from the beam polarization
was measured. The beam polarization, as well as the mean polarization of the electrons
in the final state of symmetric Møller scattering, was calculated assuming a Monte
Carlo value of the analyzing power. The beam-polarization value was found in good
agreement with an independent measurement with the MAMI Mott polarimeter, which
confirmed the correct operation of the polarimeter.

The measured polarization transfer, defined as the ratio of polarizations before and
after Møller scattering, was compared to the predictions of relativistic quantum me-
chanics [31]; up to our knowledge it was the first such measurement. The experiment
was performed in two experimental configurations corresponding to two orientations of
the beam polarization, and both results are in agreement with the theoretical predic-
tions. Whether or not the small difference between the experimental and theoretical
results for configuration B, of about 1.5 σ, reflects some real discrepancy can only be
assessed in a measurement with increased precision.

The average polarization of electrons in the final state was used to calculate the
experimental limits on the correlation function. It was shown that the results of the
nonrelativistic calculations are excluded by the experimental result with high signifi-
cance.

While the present measurement gives valuable insight into the polarization-related
effects in relativistic Møller scattering (including the phenomenon of entanglement), the
ultimate confirmation of the theory could only be achieved with a full spin-correlation
experiment, based on a simultaneous measurement of the spin projections of both
electrons in the final state. Such a measurement would be much more challenging; its
feasibility, as well as possible improvements towards an optimized experimental setup,
are discussed in Appendix A.

The possible violation of the CHSH inequality [72] with relativistic particles [21],
which is a topic that gathered considerable attention [73, 74], is also discussed in Ap-
pendix A. Such a measurement would require a dedicated accelerator setup providing
two polarized beams, but it is shown that the required beam polarization degree is
technically attainable at present.

146



Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

[2] D. Bohm, Quantum Theory, Prentice-Hall, Inc., New York (1951).

[3] J. S. Bell, Physics 1, 195 (1964).

[4] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

[5] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

[6] P. Caban and J. Rembieliński, Phys. Rev. A 72, 012103 (2005).

[7] P. Caban and J. Rembieliński, Phys. Rev. A 74, 042103 (2006).

[8] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev. A 77, 012103 (2008).

[9] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev. A 79, 014102 (2009).

[10] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev. A 83, 034101 (2011).

[11] P. Caban, J. Rembieliński, P. Witas, and M. Włodarczyk, Phys. Rev. A 83, 032115
(2011).

[12] P. Caban, Phys. Rev. A 77, 062101 (2008).

[13] M. Czachor, Phys. Rev. A 55, 72 (1997).

[14] H. Terashima and M. Ueda, Int. J. Quantum Information 1, 93 (2003).

[15] D. Ahn, H. J. Lee, Y. H. Moon, and S. W. Hwang, Phys. Rev. A 67, 012103
(2003).

[16] M. Lamehi–Rachti and W. Mittig, Phys. Rev. D 14, 2543 (1976).

[17] S. Hamieh et al., J. Phys. G 30, 481 (2004).

[18] H. Sakai et al., Phys. Rev. Lett. 97, 150405 (2006).

[19] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev. A 88, 022119 (2013).

[20] P. Caban, J. Rembieliński, and M. Włodarczyk, Phys. Rev. A 88, 032116 (2013).

147



[21] M. Włodarczyk, P. Caban, J. Ciborowski, M. Drągowski, and J. Rembieliński,
Phys. Rev. A 95, 022103 (2017).

[22] Ch. Møller, Ann. Phys. 406, 531 (1932).

[23] Ya. B. Zeldovich, J. Exp. Theor. Phys. 36, 964 (1959).

[24] P. L. Anthony et al., Phys. Rev. Lett. 95, 081601 (2005).

[25] J. Benesch et al., The MOLLER Experiment: An Ultra-Precise Measurement of
the Weak Mixing Angle Using Møller Scattering, JLAB-PHY-14-1986 (2014).

[26] P. S. Cooper et al., Phys. Rev. Lett. 34, 1589 (1975).

[27] K. Aulenbacher, E. Chudakov, D. Gaskell, J. Grames, and K. D. Paschke, Int. J.
Mod. Phys. E 27, 1830004 (2018).

[28] J. M. Grames et al., Phys. Rev. ST Accel. Beams 7, 042802 (2004).

[29] T. J. Gay and F. B. Dunning, Rev. Sci. Instrum. 63, 1635 (1992).

[30] K. Bodek et al., AIP Conf. Proc. 1563, 208 (2013).

[31] M. Drągowski et al., Phys. Rev. D 104, 092011 (2021).

[32] A. Jankowiak, Eur. Phys. J. A 28, s01, 149 (2006).

[33] M. Drągowski, M. Adamus, G. Weber, and M. Włodarczyk, Nucl. Instrum. Meth-
ods Phys. Res. B 488, 37 (2021).

[34] M. Drągowski, M. Adamus, V. Tioukine, and A. F. Żarnecki, Nucl. Instrum.
Methods Phys. Res. B 535, 1 (2023).

[35] C. J. Powell, J. Electron Spectrosc. Relat. Phenom. 185, 1 (2012).

[36] D. Bote, F. Salvat, A. Jablonski, and C. J. Powell, At. Data Nucl. Data Tables
95, 871 (2009).

[37] R. Beigang, D. Schmidt, and P. J. West, J. Phys. Colloques 44, C7-229 (1983).

[38] J. D. Bjorken, S. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1964).

[39] N. F. Mott, Proc. R. Soc. A 124, 425 (1929).

[40] J. Kessler, Polarized Electrons. Second Edition, Springer, Berlin (1985).

[41] N. Sherman, Phys. Rev. 103, 1601 (1956).

[42] F. Salvat, A. Jablonski, and C. J. Powell, Comput. Phys. Commun. 165, 157
(2005).

148



[43] A. Jablonski, F. Salvat, C.J. Powell, NIST Electron Elastic-Scattering Cross-
Section Database, Version 3.1, Standard Reference Data Program Database 64,
Available from: http://www.nist.gov/srd/nist64.cfm

[44] N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, third edition, Oxford
University Press, London (1965).

[45] B. Hahn, D.G. Ravenhall, R. Hofstadter, Phys. Rev. 101, 1131 (1956).

[46] J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).

[47] Ch. Kittel, Introduction to Solid State Physics, fifth edition, John Wiley and Sons,
New York (1976).

[48] G. D. Fletcher, T. J. Gay, and M. S. Lubell, Phys. Rev. A 34, 911 (1986).

[49] S. Agostinelli et al., Nucl. Inst. Meth. in Phys. Res. A 506, 250 (2003).

[50] V. Tioukine, K. Aulenbacher, and E. Riehn, Rev. Sci. Instrum. 82, 033303 (2011).

[51] ON Semiconductor, Biasing and Readout of ON Semiconductor SiPM Sensors,
Application note AND9782/D Rev. 3, Semiconductor Components Industries,
LLC (2019).

[52] ON Semiconductor, ArrayJ Series. Silicon Photomultiplier (SiPM) High Fill-
Factor Arrays, ARRAYJ-SERIES/D Rev. 4, Semiconductor Components Indus-
tries, LLC (2018).

[53] ON Semiconductor, J-Series SiPM Sensors, MICROJ-SERIES/D Rev. 6, Semi-
conductor Components Industries, LLC (2018).

[54] S. Ritt, 2008 IEEE Nuclear Science Symposium Conference Record, 1512 (2008).

[55] S. Ritt, DRS4 Evaluation Board User’s Manual Rev. 5.1, Paul Scherrer Institute
(2016).

[56] Sung Hun Kim et al., IEEE Trans. Nucl. Sci. 62, 451 (2015).

[57] S. Qiao, A. Kakizaki, Rev. Sci. Instrum. 68, 4017 (1997).

[58] M.A. Khakoo et al., Phys. Rev. A 64, 052713 (2001).

[59] G. Weber et al., Nucl. Instr. Meth. Phys. Res. B 279, 155 (2012).

[60] M. Drągowski et al., Nucl. Instr. Meth. Phys. Res. B 389-390, 48 (2016).

[61] T. J. Gay et al., Rev. Sci. Instrum. 63, 114 (1992).

[62] H. Wegener, Z. Phys. 151, 252 (1958).

[63] L. Braicovich and B. De Michelis, Nuovo Cimento 58B, 269 (1968).

[64] J. Sromicki et al., Phys. Rev. Lett. 82, 57 (1999).

149



[65] M. Steigerwald, AIP Conf. Proc. 570, 935 (2001).

[66] J. M. Grames et al., Phys. Rev. C 102, 015501 (2020).

[67] T. Kohashi, M. Konoto, and K. Koike, Jpn. J. Appl. Phys. 45, 6468 (2006).

[68] X. Roca-Maza, EPL 120, 33002 (2017).

[69] Y. S. Tsai, Phys. Rev. 120, 269 (1960).

[70] M. Morhac et al., Nucl. Instr. Meth. Phys. Res. A 443, 108 (2000).

[71] T. Saito, Experimental Test of Bell’s Inequality via the 1H(d, 2He)n Reaction,
Doctoral dissertation, University of Tokio (2004).

[72] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Phys. Rev. Lett. 23, 880
(1969).

[73] J. B. Araujo, B. Hiller, I. G. da Paz, M. M. Ferreira, Jr., M. Sampaio, and H. A.
S. Costa, Phys. Rev. D 100, 105018 (2019).

[74] J. D. Fonseca, B. Hiller, J. B. Araujo, I. G. da Paz, and M. Sampaio, Phys. Rev.
D 106, 056015 (2022).

[75] T. Nishitani et al., J. Appl. Phys. 97, 094907 (2005).

[76] Yu. A. Mamaev et al., Appl. Phys. Lett. 93, 081114 (2008).

[77] X. Jin et al., Appl. Phys. Lett. 105, 203509 (2014).

150



Appendix A

Measurement of spin correlations

A.1. Experimental setup

The proposed experimental setup for the measurement of spin correlations is very sim-
ilar to the one used in the polarization transfer measurement, with the exception that
both legs are equipped with identical Mott polarimeters. This way, the simultaneous
measurement of the spin projections of both electrons is possible. There is no tagging
counter in this configuration. Nevertheless, the signal events are still selected by a
coincidence of two signals, one in each polarimeter.

Eq. (3.4) allows one to calculate the polarization of a single particle. However, in the
spin-correlation experiment the joint probabilities of obtaining given spin projections
of both particles have to be measured. They can be calculated from the two-detector
count rates according to the matrix equation given by Saito [71]


P++
P−−
P+−
P−+

 = 1
4Seff (⃗a)Seff (⃗b)


c++ c−− −c+− −c−+
c−− c++ −c−+ −c+−

−c+− −c−+ c++ c−−
−c−+ −c+− c−− c++




ÑLL

ÑRR

ÑLR

ÑRL

 , (A.1)

where ÑLL, ÑRR, ÑLR and ÑRL are the normalized count rates of coincidences (e.g.,
ÑLL = NLL/(NLL + NRR + NLR + NRL), Seff (⃗a) and Seff (⃗b) denote the effective Sher-
man function for Mott scattering in the first and second polarimeter (measuring spin
projections on directions a⃗ and b⃗, respectively), and the coefficients c±± are defined as

c±± = (1 ± Seff (⃗a))(1 ± Seff (⃗b)), (A.2)

(e.g., c−+ = (1 − Seff (⃗a))(1 + Seff (⃗b))).
The matrix in Eq. (A.1) describes the most general case of arbitrary effective Sher-

man function values in both polarimeters. When both polarimeters are identical, which
is the case in the proposed experiment design, the effective Sherman function takes, on
average, the same value in both polarimeters. In this case c+− = c−+ and Eq. (A.1)
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can be rewritten in a simpler form,
P++
P−−
P+−
P−+

 = 1
4S2

eff


(1 + Seff)2 (1 − Seff)2 −(1 − S2

eff) −(1 − S2
eff)

(1 − Seff)2 (1 + Seff)2 −(1 − S2
eff) −(1 − S2

eff)
−(1 − S2

eff) −(1 − S2
eff) (1 + Seff)2 (1 − Seff)2

−(1 − S2
eff) −(1 − S2

eff) (1 − Seff)2 (1 + Seff)2




ÑLL

ÑRR

ÑLR

ÑRL

 .

(A.3)
One finds by simple algebraic transformations of Eq. (A.3) that the probability of

obtaining the same spin projections of both electrons is

P++ + P−− = 1
2S2

eff

(
(1 + S2

eff)(ÑLL + ÑRR) − (1 − S2
eff)(ÑLR + ÑRL)

)
, (A.4)

and the probability of obtaining opposite spin projections of both electrons is

P+− + P−+ = 1
2S2

eff

(
(1 + S2

eff)(ÑLR + ÑRL) − (1 − S2
eff)(ÑLL + ÑRR)

)
. (A.5)

It can be seen that, thanks to the symmetry of the experimental arrangement, the
correlation function C = P++ + P−− − (P+− + P−+), calculated from Eqs. (A.4) and
(A.5), takes a trivial form

C = 1
S2

eff
(ÑLL − ÑLR − ÑRL + ÑRR). (A.6)

The first-choice scenario for the spin correlation experiment would correspond to
configuration A, with horizontal spin-projection directions of both electrons. The direct
realization of configuration B, with pairs of detectors at an angle of 45◦ to the Møller
scattering plane, as shown in Fig. A.1(a), would be less suitable due to the high level
of background in the detectors located close to the beam pipe.

The problem with background in configuration B can be worked around to some
extent, taking advantage of the additional symmetry of configuration B, which was
used in the polarization transfer experiment to place the detectors farther away from
the beam. Taking into account the normalization condition (sum of probabilities is
equal to 1), not all probabilities have to be known in order to calculate the correlation
function. In can be written in the following equivalent form:

C = 2(P++ + P−−) − 1 = 1 − 2(P+− + P−+), (A.7)

and in terms of count rates

C = 1
S2

eff

(
2(ÑLL + ÑRR) − 1

)
= 1

S2
eff

(
1 − 2(ÑLR + ÑRL)

)
. (A.8)

Therefore, in principle it is sufficient to measure the count rates of two coincidences
instead of four. However, the count rates must be normalized, thus the total number
of counts in four detectors (four coincidences) has to be known, for example from the
measurement in configuration A.

The two-polarimeter configuration with detector locations subject to the lowest
level of background is shown in Fig. A.2. The Nλρ coincidence in Fig. A.2 is the same
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Figure A.1: Schematic illustration of the spin-correlation experiment (cross sections
of both polarimeters in the gold-targets planes, perpendicular to the directions of the
Møller-electrons streams) in configuration B (45◦ angle between the Møller and Mott
scattering planes). L and R denote the locations of the detectors in the Mott polarime-
ters, with both spin-projection directions at an angle of 45◦ to the Møller scattering
plane (default arrangement of the detectors) (a), spin-projection directions at 45◦ and
135◦ to the Møller scattering plane (b).
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Figure A.2: Schematic illustration of the spin-correlation experiment (cross sections
of both polarimeters in the gold-targets planes, perpendicular to the directions of the
Møller-electrons streams) in configuration B with detector locations, denoted by λ and
ρ, minimizing external background.

as the NLR coincidence in the default configuration shown in Fig. A.1(a). Similarly, the
Nλλ number in the layout shown in Fig. A.2 is the same as NLR in the configuration
shown in Fig. A.1(b) (i.e., with the first spin projection direction at an angle of 45◦

and the second spin projection direction at 135◦ to the Møller scattering plane).
The other two coincidences, which can be measured in the experiment illustrated

in Fig. A.2, Nρλ and Nρρ, correspond to the NRL numbers with both spin projection
directions at 315◦ and with the first spin projection direction at 315◦ and the second
spin projection direction at 225◦ to the Møller scattering plane, respectively. Thanks
to the symmetry, the P−+ probabilities are equal in the default arrangements of the a⃗
and b⃗ vectors shown in Fig. A.1 and in the configuration mirrored with respect to the
Møller scattering plane (45◦ corresponds to 315◦ and 135◦ corresponds to 225◦ angle
between the spin projection direction and the Møller scattering plane). P−+ in all four
configurations is shown in Fig. A.3. Therefore, the detector layout proposed in Fig. A.2
not only allows one to reduce the background, but also to measure the spin correlation
function for two configurations of the a⃗ and b⃗ vectors simultaneously,

C(45◦, 45◦) = C(315◦, 315◦) = 1
S2

eff

(
1 − 2(Ñλρ + Ñρλ)

)
, (A.9a)

C(45◦, 135◦) = C(315◦, 225◦) = 1
S2

eff

(
1 − 2(Ñλλ + Ñρρ)

)
, (A.9b)

where C(α, β) denotes the spin correlation function for the angles α and β between the
Møller scattering plane and the a⃗ and b⃗ vectors, respectively.

The proposed experimental setup for the spin correlation experiment is shown
schematically in Fig. A.4. The correlation function is measured simultaneously in
three configurations. In configuration A all four count rates are measured. At the
same time two count rates corresponding to opposite spin projections of both electrons
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Figure A.3: Dependence of the P−+ probability on beam energy for a pair of elec-
trons originating from Møller scattering (theoretical predictions [20]), for four sets of
orientations of the a⃗ and b⃗ vectors (on which the spins are projected), with (a) un-
polarized beam / beam polarization perpendicular to the Møller scattering plane, (b)
beam transversely polarized in 85% in the Møller scattering plane. The scattering is
symmetric with respect to the beam direction.

are measured in each of the two variants of configuration B, and the total number of
counts in configuration A is used for normalization, allowing us to calculate the spin
correlation function value under the assumption that the symmetry predicted by the
theory holds.

A.2. Predictions for correlation experiments

A.2.1. Signal rate
In the polarization transfer measurement described in Chapter 7, data in configuration
A were collected with the coincidence trigger for 42.85 hours. During this time 414
030 Møller scattering events were recorded in both detectors (within ±2 σ energy and
timing cuts) at the average beam current of 60 nA, which corresponds to the event rate

fexp = 161 evt/h/nA. (A.10)

The joint interaction (Møller and one Mott scattering) probability corresponding to
this event rate is

pexp = 7.2 · 10−12 (A.11)

taking into account that 1 nA = 2.25 · 1013 e−/h.
According to the Monte Carlo simulation, as presented in Section 6.3.2, the total

probability of Møller scattering off a 100 µm beryllium target into the ±1.5◦ range
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Figure A.4: Drawing of the experimental setup for the spin correlation measurement;
a – Møller (Be) target, b – Møller scattering chamber, c – Mott scattering chambers,
L, R, λ, and ρ – detectors in the Mott polarimeters. The shielding and the full length
of the dump pipes are not shown.

around the symmetric scattering angle is

pMøller = 1.6 · 10−7. (A.12)

According to the Monte Carlo simulation performed with the polarized electron Mott
scattering model (cross section from ELSEPA) the probability of subsequent backscat-
tering off the 9.9 µm gold target into the 115◦ – 125◦ scattering angle range is

pMott = 1.9 · 10−4. (A.13)

The Monte Carlo joint probability of both interactions is therefore pMøller pMott = 3.0 ·
10−11.

In order to be compared to the experimental value, the Monte Carlo probability
has to be corrected for the loss of events due to pile-up removal and the timing and
amplitude selections, which reject some of the signal events in the tails of the distri-
butions (three times 2 σ cuts). The resulting value is 2.2 · 10−11. The experimental
probability, lower by a factor of 3, can be considered in agreement with the Monte
Carlo predictions, taking into account finite detector efficiencies.

The simulated probabilities can be used to estimate the event rates in the correlation
experiment. The interaction probability in the correlation experiment (i.e., Møller and
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Figure A.5: Histogram of the time distance between the rising edge position in two
polarimeter detectors, for events with both signal amplitudes in the Møller peak ±2 σ,
for runs with Au target, after dead time correction, shown with the fitted constant.

two Mott scatterings) is equal to

pMøller p2
Mott = 5.8 · 10−15. (A.14)

The total expected event rate is 0.13 evt/h/nA, which corresponds to

fcoinc = 0.032 evt/h/nA (A.15)

for each of the four coincidences.

A.2.2. Background rate

Data were collected for 7.76 hours with the coincidence trigger of both detectors in the
Mott polarimeter, recording the false coincidences, which constitute background in the
correlation experiment. During this time 270 false coincidence events were recorded,
at the average beam current of 20 nA.

The number of events passing the ±2 σ energy and timing cuts is 9.1±0.7 (estimated
from the fit to the timing distribution shown in Fig. A.5). The corresponding event
rate is 1.2 evt/h at 20nA. The predicted signal to background ratio at 20 nA is about
1:2. Since the false coincidence rate is proportional to the square of the beam current,
the rate at 1 nA is lower by a factor of 400:

fbgd = 0.003 evt/h/nA2, (A.16)

for each pair of counters.
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Figure A.6: Dependence of the relativistic correction to the correlation function on
beam energy for a pair of electrons originating from Møller scattering (theoretical
predictions [20]) with (a) the a⃗ and b⃗ vectors (on which the spins are projected) in
the Møller scattering plane, (b) a⃗ and b⃗ vectors at angles equal to 45◦ to the Møller
scattering plane. The scattering is symmetric with respect to the beam direction.

A.2.3. Correlation measurement
The absolute values of the correlation function are small in the range of relativistic
energies. At 3 MeV they are approx. 0.025 and −0.011, in configuration A and B,
respectively. Nevertheless, it can be seen in Fig. A.6, that the difference between the
value at 3 MeV and the lowest value of the relativistic correlation function, which in
both configurations is obtained in the zero-energy limit, is approx. 0.49 in the latter
configuration of the a⃗ and b⃗ vectors.

Additionally, the a⃗ and b⃗ vectors, which are always perpendicular to electron mo-
menta, depend on beam energy, since the symmetric scattering angle changes with
beam energy. As a result, the singlet state prediction decreases with beam energy to
values lower than the zero-energy limit, increasing the difference between the nonrela-
tivistic and relativistic predictions. Therefore, the difference between the nonrelativis-
tic and relativistic value for a given configuration of the a⃗ and b⃗ vectors (the relativistic
correction) is even larger, as shown in Fig. A.6. At 3 MeV, the differences between the
relativistic value and singlet state prediction are approx. 0.62 and 0.79, in configuration
A and B, respectively.

The relative uncertainty of the number of signal events is

∆N

N
=

√
fbgdI2t + fcoincIt

fcoincIt
=

√
fbgd

fcoinc
√

t

√√√√1 + fcoinc

fbgdI
. (A.17)

Since the background contribution to the relative uncertainty is independent of the
beam current, it is optimal to run with the highest beam current possible. In such
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Figure A.7: Measurement time necessary to record a statistically significant number of
coincidences, plotted as a function of the beam current.

case the I2 term dominates and the uncertainty is determined mostly by the number
of background events:

∆N

N
≈

√
fbgd

fcoinc
√

t
. (A.18)

The relevance of this approximation is verified with plots of the measurement time cor-
responding to a given uncertainty as a function of the beam current in the 2 nA – 20 µA
range available at MAMI, shown in Fig. A.7. It can be seen that the approximation is
sufficiently accurate for beam currents above approx. 100 nA.

The signal and background event rates are shown in Fig. A.8 as a function of the
beam current. In summary, even though the signal to background ratio might be
favorable for very low beam currents, the event rates are extremely low. It is better
from the statistics point of view to run at a higher beam current even though the signal
to background ratio is much worse.

The uncertainty of the measured correlation function is

∆C = 2
S2

eff

√
(NLR + NRL)2(∆N2

LL + ∆N2
RR) + (NLL + NRR)2(∆N2

LR + ∆N2
RL)

(NLL + NLR + NRL + NRR)2 ,

(A.19)
where ∆N with appropriate indices are the uncertainties of the numbers of recorded
coincidences. Note that given the small value of analyzing power, the individual count
rates of all coincidences and their uncertainties take approximately the same values.
Under this assumption one obtains the approximate formula

∆C ≈ 1
2S2

eff

∆N

N
. (A.20)

Let us assume that the uncertainty is determined only by the number of background
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Figure A.8: Signal and background event rates plotted as a function of the beam
current.

events. Using Eq. (A.18) one obtains

∆C ≈ 1
2S2

eff

√
fbgd

fcoinc
√

t
. (A.21)

The time needed to measure the correlation function with a given precision is

t = fbgd

f 2
coinc

1
4∆C2S4

eff
. (A.22)

For example, taking into account the effective Sherman function value at 1.5 MeV of
about 0.0886, the time needed to observe the relativistic correction to the correlation
function of the order of 0.5 at a 3 σ level is approx. 4.1 · 105 h. The experiment would
take 51 years assuming that the beam is available for an average 28 days per month.
Such measurement is, therefore, totally impossible even with an accelerator available
for the exclusive use of the experiment.

One can also use the above equations to determine the background rate corre-
sponding to a given measurement time and precision. In order to calculate the highest
background rate allowing to measure the correlation function with a given precision
during a given beam time, one has to solve the following equation

∆C ≈ 1
2S2

eff

√
xI2 + ffalseI2 + fcoincI

fcoincI
√

t
, (A.23)

where x is the unknown background rate, and ffalse is the rate of false coincidences
of two Møller electrons originating from two different beam electrons, which cannot
be distinguished from the signal events within the timing resolution ∆t = 2 ns. Note
that in case of a measurement with a lower level of background, the approximation of
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Figure A.9: Event rates for the measurement with tracking plotted as a function of the
beam current for the signal and background: coincidence of four background signals
(4 bgd.), one Møller and two background (Møller + 2 bgd.) and two Møller electrons
(2 Møller).

Eq. (A.18) is no longer valid, so the exact uncertainty of the number of counts was
used. The rate of false coincidences is

ffalse = f 2
exp∆t = 1.4 · 10−8 evt/h/nA2, (A.24)

and the solution is

x = 1
I2

(
4∆C2S4

efff 2
coincI

2t − ffalseI
2 − fcoincI

)
. (A.25)

For example, the highest background rate allowing to observe the relativistic correction
of the order of 0.5 at a 3 σ level, during one year of beam time, at the beam current
I = 1 µA, is

x = 2.6 · 10−5 evt/h/nA2, (A.26)
which, compared to the measured background rate of 0.003 evt/h/nA2, is lower by 2
orders of magnitude.

A.2.4. Measurement with tracking
Such a substantial reduction of background cannot be achieved with simple modifi-
cation of shielding and geometry. A reasonable solution is to use additional tracking
detectors in the polarimeter arms, in coincidence with the main scintillation counters.
In such a case the theoretical probability of a four–detector background coincidence is
negligible (f 2

bgd ∆t ≈ 10−17 evt/h/nA4). The probability of registering one Møller elec-
tron (which passes through the tracking detector) in coincidence with two background
electrons in the other arm is higher, but still negligible (fexpfbgd∆t ≈ 10−13 evt/h/nA3).
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Figure A.10: Measurement time necessary to observe a relativistic correction equal to
0.5, assuming no external background, plotted as a function of the beam current.

In this case the false coincidences of two Møller electrons are the largest component of
background (the rate is the same as without tracking, f 2

exp∆t ≈ 10−8 evt/h/nA2), as
shown in Fig. A.9.

The theoretical signal to background ratio at 1 µA is about 2000. In the absence of
external background, the time needed to measure the correlation function with a given
precision is

t ≈ 1
4∆C2S4

eff

f 2
bgd∆tI4 + fexpfbgd∆tI3 + f 2

exp∆tI2 + fcoincI

f 2
coincI

2 . (A.27)

It can be seen in Fig. A.10 that in the low–background situation it is desirable
to use the highest beam current possible. However, even though the probability of
a coincidence of two or more electrons is very low, the single–counter rates are high,
leading to the overlapping signals observed in the experiment. The pile–up probability
(i.e., the probability that for a given signal there is another one within an approximately
20 ns time window) should be linearly proportional to the beam current, therefore, it
can be extrapolated from the fraction of pile–up events observed in the polarization
transfer experiment, as shown in Fig. A.11. The result is about 10% at 20 µA and 0.5%
at 1 µA. Note that in principle the event should be rejected from analysis if there is an
overlapping signal in any of the four detectors taking part in the coincidence, therefore,
it does not seem possible to perform the measurement with the beam current higher
than a few µA.

In the absence of external background, the time necessary to observe the relativistic
correction of the order of 0.5 at a 3 σ level, at the beam current I = 1 µA, is approx.
187 days. However, the rate of background events in which a single beam electron
produces signal in two detectors is unknown and cannot be reliably determined without
an experimental test.
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Figure A.11: Fraction of pile–up events recorded in the polarimeter detector with the
beam trigger, plotted as a function of the beam current.

A.3. Violation of Bell-type inequalities
The Bell-type inequality used commonly in the case of spin-1/2 fermions is the CHSH
inequality [72], ∣∣∣C (⃗a, b⃗) + C(c⃗, b⃗) + C(c⃗, d⃗) − C (⃗a, d⃗)

∣∣∣ < 2, (A.28)

which requires the correlation experiments to be performed with four different pairs of
spin-projection directions, described by a⃗, b⃗, c⃗, and d⃗ vectors. A typical arrangement
of the spin projection directions in all four experiments is shown schematically in
Fig. A.12.

The left hand side of the CHSH inequality is plotted as a function of beam energy in
Fig. A.13(a) in the case of an electron beam scattered off a target. In the simplest case
of scattering off an unpolarized target, plotted quantity approaches zero with increasing
energy. The typical polarization of the target electrons achieved experimentally is equal
to approx. 8%. Also in this case, the correlation function is small enough to fulfill the
above inequality for electrons of relativistic energies. However, in the case when both
interacting electrons are highly polarized, it is possible to find configurations in which
the CHSH inequality is not conserved; as an example, a hypothetical case of 90% target
polarization was analyzed.

While the preparation of a highly polarized target does not seem technically feasible
at present, an experiment with two polarized beams is possible. The left hand side of
the CHSH inequality for two colliding beams of equal energy and polarization is plotted
as a function of beam energy in Fig. A.13(b). With 85% beam polarization, the left
hand side of inequality (A.28) is slightly below 2. With 90% polarization, a significant
violation of the inequality is observed both for the polarized target and for colliding
beams. Such a measurement is not unrealistic, since polarization degrees as high as
92% were reported by several authors using special photocathode materials [75–77].
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Figure A.12: Spin-projection measurement directions in four experiments necessary
in order to evaluate the CHSH inequality, (a) C (⃗a, b⃗), (b) C(c⃗, b⃗), (c) C(c⃗, d⃗), (d)
C (⃗a, d⃗). The angles between the vectors on which the spin is projected and the Møller
scattering plane take values: 0◦(⃗a), 45◦(⃗b), 90◦(c⃗) and 135◦(d⃗). Note that the angles in
the drawing are measured counter-clockwise for the electron on the left hand side, and
clockwise for the electron on the right hand side, since the momenta of both electrons
are perpendicular to the drawing but have opposite directions.
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Figure A.13: Dependence of the left hand side of the CHSH inequality on beam en-
ergy for a pair of electrons originating from symmetric Møller scattering (theoretical
predictions [20]) for (a) a stationary target, for three degrees of target polarization: un-
polarized, 8% and 90% polarization (beam electron polarized in 85%), (b) two polarized
beams of equal energies and opposite momentum directions (85% and 90% polariza-
tion of both beams). In both cases the electrons are polarized in the same direction,
perpendicular to momentum, and in the Møller scattering plane. The angles between
the vectors on which the spin is projected and the Møller scattering plane take values:
0◦(⃗a), 45◦(⃗b), 90◦(c⃗) and 135◦(d⃗), cf. Fig. A.12.
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The experiment with colliding beams would also have significant advantages over
fixed target measurements. Since the electrons scattered perpendicular to the beam
directions would be detected, there would be no geometrical limitations to the posi-
tioning of the counters. Thanks to the large angle and lack of the target, a significantly
lower background level can be expected as well.
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Appendix B

Drawings of the experimental setup

The cross section of the experimental setup in the Møller scattering (horizontal) plane
is shown in Fig. B.1. The details of the collimators are shown in Fig. B.2. The
Mott scattering chambers and their cross section are shown in Figs. B.3 and B.4 in
configurations A and B, respectively. The details of the target ladder and frames
are shown in Fig. B.5. The vertical cross section of the experimental setup, along a
signal-electron trajectory, is shown in Fig. B.6. The details of the lead shielding of the
detectors are shown in Fig. B.7. The arrangement of the detector assembly (scintillator,
lightguide and SiPM) is shown in Fig. B.8.
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Figure B.2: Collimators in the Møller scattering chamber.
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Figure B.3: Drawings of the Mott scattering chamber in configuration A.
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Figure B.5: Target ladder in the Mott polarimeter.
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Figure B.6: Cross section of the polarization transfer experiment along a signal-electron
trajectory.
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Figure B.7: Lead shielding of the Mott-polarimeter detectors.
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