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“When we can’t think for ourselves, we can always quote.”

Ludwig Wittgenstein



Abstract

This thesis is devoted to the following question: what does the neighborhood of

a generic extremal horizon look like? We are interested in all possible (stationary)

perturbations that may be induced either by a far-away matter distribution or by

non-trivial boundary conditions at infinity (in the case of asymptotically AdS space-

times). Thus, we want to go beyond explicitly known solutions such as Kerr-Newman
(AdS). To this end, we consider the behavior of a small perturbation that is sup-

posed to die off at the horizon. Its smallness allows us to linearize appropriate (e.g.

Einstein-Maxwell) equations. Our considerations will mainly focus on spacetimes

with a negative cosmological constant.

We found out that in four dimensions, generically the perturbations are not C2.
As a result, the horizon is replaced by a null singularity. Perhaps counter-intuitively,
the larger the black hole, the worse the singularity can get. At the same time, all
curvature scalars remain finite and thus analytic continuation of those solutions to
the Euclidean signature is smooth. The singularity vanishes when the cosmological
constant A = 0. It exists for A > 0 albeit it is no longer so robust. Moreover, in that
case, the tidal forces are always integrable through the horizon and thus the effect is
not so big.

At finite temperatures, the singularity leaves significant observational imprints.
The tidal forces at the horizon, though finite, may be arbitrarily large as T — 0.
Moreover, the specific heat is changed by an anomalous term that, for large and cold
black holes, dominates over the usual (linear in T) contribution.

In five (and higher) dimensions the singularity for RN AdS becomes even worse
and leads to RG instability - a small perturbation of the boundary conditions dra-
matically changing the infrared (it means near-horizon) region. New near-horizon
geometries were constructed. However, none of them is RG stable. In dimensions
higher than five, the same conclusion also holds without a cosmological constant.
Moreover, for toroidal black holes, we have a phase transition. Small ones are sta-
ble and only large ones are not. At the phase transition threshold, we expect the
resistivity to approach a constant.

As a result, we predict that the boundary theory put on a non-homogeneous
background could flow to a different infrared fixed point. Unfortunately, the end-
point of that instability (either in the bulk or on the boundary) is currently unknown.
In particular, it is not clear that it is described by only one horizon.

Finally, we show that the higher-curvature corrections generated by UV physics
may render even an asymptotically flat extremal Kerr black hole singular. This is an
example of a scenario in which quantum effects qualitatively change the system de-
spite the fact that the curvature is very small. The scaling dimensions of RNy do not
get modified. However, they are shifted in higher dimensions. In particular, quan-
tum corrections render RN5 RG-unstable provided that the Weak Gravity Conjecture
is satisfied. Moreover, we found that this very conjecture implies that Kerr-Newman
(AdS) is unstable with respect to stationary perturbations by massive, charged scalar
fields.
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Chapter 1

Introduction

1.1 Motivation

Quite likely the most recognizable objects from the modern' theoretical physics are
black holes. Intuitively, they are spacetime’s regions from which even light cannot
escape. Thus, I imagine it must have been rather surprising when Hawking showed
that they in fact radiate thermally [59]. The topic of this work are extremal black
holes, it means such that their Hawking temperature T vanishes’.

There are many reasons to study extremal black holes. First of all, due to the lack
of Hawking radiation, they are believed to have a simpler quantum-mechanical de-
scription. In particular, they allow for a better control over the microstates counting
[104]. In the same spirit, they are deeply intertwined with a supersymmetry. More-
over, black hole spacetimes in AdS/CFT corresponds to the thermal states on the
boundary. Thus, extremal black holes should describe the ground state of the (de-
formed) CFT. In the language of RG (renormalization group) flow the region near the
horizon (one that we shall work with extensively here) encodes information about
the infrared. Quite often this near-horizon geometry is characterized by an emergent
O(2,1) symmetry that simplifies many calculations.

Also Readers with a more mathematical® approach may find the topic interest-
ing. Many important results, even in the classical gravity, are derived assuming that
the horizon is not extremal, for example higher-dimensional version of the rigidity
theorem [64]. Even an extremal version of (obviously, four-dimensional) no hair
theorem” was proven relatively recently [28]. Thus, the quest for generalizing many
results to the T = 0 case is still open and may lead to interesting developments. Even
more, we know that in five dimensions there are more exotic horizons, for example
black rings. A finite classification of asymptotically flat black holes remains an open
problem. One step towards it must consist of classifying all possible extremal hori-
zons.

We may now state the main question behind the Thesis: what does a generic
extremal black hole look like? To answer that, we will consider small (stationary)
perturbations in the near-horizon region of well-known black holes. One may think
that they originate from non-trivial boundary conditions (in AdS) or a matter distri-
bution in the galaxies far away. Either way, our analysis is local and does not depend
on those details. Hopefully, the answers we obtained are going to be interesting to
Readers interested both in physical and mathematical aspects of the story.

! Author firmly believes that viewing Laplace as the black holes’ father is highly anachronistic.

2Tt does not mean that they do not radiate though but only that the spectrum is not thermal at
infinity. In particular, RN black holes may produce particles due to the Schwinger process.

3While searching the literature, one should keep in mind that mathematicians prefer to use a name
‘degenerate horizon’. This nomenclature from the fact that most T > 0 black holes have bifurcated
horizons that overlap as T — 0.
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1.2 Horizons — a few definitions

It is a good practice to start any discourse by defining terms used throughout it.
Since this thesis is devoted to (certain aspects of) horizons, it would be incomplete
without a short explanation what we mean by the word ’horizon’. Here we en-
counter our first difficulty: literature is filled with different approaches to the topic.
Before we will commit to one of them, let us present a few (and likely omit a few
more) non-equivalent definitions and discuss their respective advantages and draw-
backs®.

The most common association, even outside the scientific community, is prob-
ably "the event horizon” which informally speaking is supposed to be a boundary
of a black hole. And in that spirit the black hole is a region in which the gravity
is so strong that even light cannot escape it. In the asymptotically flat context® be
formalized in the following manner:

Definition 1.1. [108] Let (M, g) be a strongly asymptotically predictable (SAP) space-
time. It contains a black hole if M ¢ [~ (Z"). Then B= M\ ]~ (Z") is called a black
hole region and its boundary is called the (future) event horizon.

Although this notion encompasses a common intuition about black holes, it is not
useful in practice. The event horizon is defined teleologically — one needs to know
the whole spacetime, up to infinite future to find that surface. It cannot be a priori
excluded that the event horizon is growing (say, due to a merger that could happen
billions of years from now) even in a little café I am writing these words in. This
difficulty is the raison d'étre behind this Section and different proposals presented
below — we are rather interested in (quasi)local objects. Before that, let us introduce

Definition 1.2. [108] Let T be a compact, two-dimensional , smooth spacelike sub-
manifold such that the expansion of both ingoing and outgoing future directed null
geodesics orthogonal to T is everywhere negative. Such T is called a trapped sur-
face.

Given a Cauchy slice ¥, we call it closed sub-region C a trapped region if at dC the
outgoing expansion is non-positive and we call dC a marginally outer trapped sur-
face (MOTS).

Trapped surfaces are extremely important in the mathematical and numerical
relativity due to the Penrose theorem [99] and quite often they are a litmus test for
the presence of singularities. One can show that all trapped surfaces are hidden
behind the event horizon if the spacetime is SAP and null energy-condition is satis-
fied. Similarly, it was argued that if the gravity theory enjoys a holographic dual, all
MOTSs must be hidden behind the horizon [41]. We can now introduce

Definition 1.3. [108] Given a Cauchy slice ¥, let the total trapped region F be the
closure of the union of all trapped regions. We call its boundary 0F = Ay the
apparent horizon on X.

Clearly, the apparent horizon is defined using much more local data than the
event horizon — one needs to know only initial data for the Einstein equations. On
the other hand (as its name could suggest) it depends on the choice of the Cauchy

“Most of the notions described below are not going to appear in the Thesis later on. This Section
resulted just from the fact the author thought it would be useful to have all those definitions in one
place for his own sake and thus can be safely omitted.

5 Analogous definitions may be given also for different asymptotics.
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foliation and thus it is not unique. Let us mention that in the holographic context, it
is more natural to use apparent horizons since their area may be associated with the
coarse-grained entropy of the interior [42].

In this Thesis, we will be interested in stationary or asymptotically stationary
spacetimes. In this context, one assumes that there is a timelike Killing vector K.

Definition 1.4. [27] A null surface whose normal is the Killing vector field K is called
the Killing horizon of K.

Clearly, this is a purely local definition. Its usefulness comes from the Hawking
rigidity theorem [60] which states that a real-analytic bifurcated® event horizon in a
stationary SAP spacetime is a Killing horizon of a certain Killing vector field. The
assumption of analyticity can be dropped if one restricts themselves to the neighbor-
hood of the horizon [2].

It is easy to show that all null surfaces are foliated by families of null geodesics.
Since K is a null generator of H, it must satisfy

VK| = K. (1.1)

If H is either bifurcated or if the dominant energy condition is satisfied, one can
check that k(X) (called surface gravity) is a constant — this is the zeroth law of thermo-
dynamics [8]. This is not only an analogy. In fact, x is proportional to the Hawking
temperature
x(K)
T = e (1.2)
assuming that K is appropriately normalized at infinity.

If k&) = 0, it follows that K at H is tangent to affinely parameterized geodesics.
The Killing horizons with x(X) = 0 are called extremal. They are going to be the
main subject of this Thesis.

Clearly, the realistic spacetimes are dynamical which limits the applicability of
the Killing horizons. Nevertheless, they are useful as a test-bed for more complicated
processes. The following definitions may be seen as intermediate steps between
exactly stationary and highly dynamical spacetimes:

Definition 1.5. [6] A null surface A is called a non-expanding horizon (NEH) if for
every null normal, future-directed ¢

(i) its expansion 0) vanishes,
(ii) —T,¢%|a is causal and future directed,
(iii) A is topologically R x S

It is worth mentioning that on a generic null surface, there is no symmetric,
metric-compatible connection — a necessary and sufficient condition for its existence
is exactly that said surface must be shear and expansion-free. Based on this observa-
tion, one can slightly strengthen the def. 1.5 to an isolated horizon:

Definition 1.6. [6] A non-expanding horizon A is called an isolated horizon if there
is a null normal ¢ such that
[D, Ly)|ln =0, (1.3)

where D is a covariant derivative induced on H.

®A horizon (of any type) is called a bifurcated horizon if it includes two (or more) transversal com-
ponents.
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Note that in the case of isolated horizons, the obtained structure is more rigid, in
particular, £ (at the horizon) is defined only up to a rescaling ¢ +— f/, where L,f = 0.
One should note that both NEHs and isolated horizons are broader categories than
the Killing horizons. They may appear in a spacetime that is for example filled with
gravitational waves. A classical example consists of Robinson-Trautman solutions
[26].

In a highly-dynamical situation (say during a merger of two black holes) restrict-
ing to (even perturbed) NEH is not justified. Then, one should rather work with a
dynamical horizon (called also a holographic screen)

Definition 1.7. [7] A codimension one surface A is called a dynamical horizon if it
can be foliated by a family of surfaces whose ingoing expansion is strictly negative
and whose outgoing expansion vanishes.

Note that the main difference between dynamical and apparent horizon lies in
the fact that the former does not depend on the choice of a Cauchy slice. It should
be mentioned that suitably formulated laws of black hole thermodynamics hold for
isolated and dynamical horizons [7].

1.3 Extremal horizons and their near-horizon geometry

Since the extremal horizons are important objects in this Thesis, let us discuss them
a little more now. The first examples of extremal horizons are Reissner-Nordstrom
black hole with maximal charge |Q| = M and Kerr black hole with maximal angular
momentum | = M?2. This should explain the name — they correspond to black holes
with extremal admissible physical quantities (at fixed mass). Nevertheless, it is a
misnomer — solutions for which parameters are the biggest but the surface gravity is
non-vanishing are known [33].

Near any null surface N (which we take to be topologically a product R x H)
(with a null normal /) we may introduce null gaussian coordinates [96] in the fol-
lowing way: we choose a cross-section H transversal to ¢ and fix any coordinate
system x* on H. Then, we can Lie-drag x? along the integral lines of ¢*. Let v be a
unique function on N which satisfies v|y = 0 and £v = 1. (v,x?) is then a good
coordinate system on . At each point we choose also a vector field n (transversal
to V) orthogonal to v = const. slices, normalized in such a way that (#n u = 1. Then,
from any point of /' we may shoot a null geodesics with a tangent vector n. In this
way, we extend 7 into bulk, and to a point lying on this geodesic, we associate co-
ordinates (v, r,x?), where r is an affine parameter and (v, x?) is an initial shooting
point. Thus, we introduced coordinates in the neighborhood of N.Iflisa Killing
vector field satisfying V ¢|»s = 0, it is easy to convince yourself that if the metric is
C?, it takes the following form:

g = 2dv(dr + rh,(r, x*)dx" + %rZC(r, X)dv) + vap (r, x")dx"dx’. (1.4)
Let us now consider a one-parameter family of diffeomorphisms
¢e(v,1,x%) — (e’l,er, x"), (1.5)

which is well-defined for € > 0. The physical interpretation of these transformations
is such that we move observers closer and closer to the horizon (or, equivalently, we
boost them faster and faster). Surprisingly, the pull-back ¢Zg is well-defined even
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in the limit when € — 0. Since it is no longer a diffeomorphism, we obtain a bona
fide different spacetime. If the initial metric was Einstein, so is the limiting one.
Similar statements hold in the presence of matter fields 7. The first realization of this
limiting procedure (though formulated in a different gauge) was given by Bardeen
and Horowitz for the Kerr black hole [9]. One can check that the Maxwell field
allows for an analogous limiting procedure. In this way, we obtain physical fields of
the form

g =2dv <dr + rhydx® + ;rZCdv> + Yapdx"dx" (1.6a)

F = Edo Adr + rW,do A dx* + %Babdx“ Adx?, (1.6b)

where now C, hy, v, E, Wy, By are functions of x* only. Metrics of the form (2.19)
are called near-horizon geometries. Notice that they have at least two Killing vector
fields: not only 9, but also a dilation generator rd, — vd,. One could now invert the
logic. Instead of starting with a known solution and taking an appropriate limit, one
could work with (2.19) directly and e.g. classify possible solutions of this form to the
appropriate equations of motion which in turn can constraint horizon’s geometries
in general.

This approach was quite fruitful in the past — for example, it was used to prove
that there are no supersymmetric® black rings in AdSs within a minimal N' = 1
gauged supergravity [50, 85]. It was also a first step towards the construction of
asymptotically AdSs supersymmetric black holes [54]. Our considerations are rel-
atively close to these. Indeed, the bosonic sector of a minimal (gauged) sugra in
4 dimensions is exactly Einstein-Maxwell theory with a negative cosmological con-
stant A. In 5 dimensions it is slightly more complicated due to the presence of an
additional Chern-Simons term. In this work we will restrict ourselves to black holes
which carry only an electric charge’ and so the Chern-Simons term vanishes identi-
cally and we are perfectly justified in omitting it.

Having said that, let us present equations in question explicitly:

DiByy =0, (1.7a)
D,E=W,, (1.7b)

(Do — ) E+ (D” - h”) By, =0, (1.7¢)

Rap = %hahb — Dy + Ayap + 2BacBy + %%bEZ - ﬁ%ﬁz, (1.7d)
C= %hah“ - %D“ha +A— 2(11;__23) E?— 5 1_ 2Bz, (1.7e)

where D, and R, are a covariant derivative and Ricci tensor associated with ,,,
respectively, and D is the number of spacetime dimensions. As we may see, this is a
system of equations on a cross-section of the horizon — there is no » dependence.
These Near-Horizon equations were first derived in [96] for the case of four-
dimensional vacuum (F = 0 = A). It is not hard to show that when the cross-
section is a torus, then ki, = 0 and 1y, is flat. All those solutions can be embedded in

Tt was probably first noticed by Geroch in [45].

8 Although supersymmetric black holes are not the topic of this thesis, we feel obliged to note that
supersymmetry implies extremality.

9Note that in four dimensions this is not a real restriction since equations of motion possess a sym-
metry between electric and magnetic fields.
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pp-wave spacetimes. The version with the Maxwell field (still in 4d and without a
cosmological constant) appeared in [87]. It was also shown there that all axisymmet-
ric solutions correspond to Kerr-Newman. A higher-dimensional vacuum formula-
tion can be for example in [88]. Note that to derive these equations, one needs only
properties of an isolated (not necessarily Killing) horizon.

Quite often we will be interested in the static spacetimes additionally satisfying

D,C = h,C (1.8a)

and
D[ahb} =0. (1.8b)

One can check that if C is nowhere vanishing, then the static geometries must be a
warped product of AdS; with a cross-section [86]. Indeed, then we can write h,dx* =
dlog(C) and rescale r = pC~! so that the metric reads

g = C' (0*dv* + 2dvdp) + v pdx"dx’. (1.9)

A two-dimensional metric in a bracket is just AdS;. Instead of assuming C # 0, we
can take the cross-section to be simply connected. A similar statement holds also for
axisymmetric spacetimes on shell [86]. In D dimensions, if the symmetry group of
NHG contains U (1)P~3, then (assuming Einstein equations), it must actually contain
G x U(1)P~3, where G is either O(2,1) or 2d Poincare group [86].

Solutions to (1.7) on a sphere S? (when D = 4) where classified under either an
assumption of staticity [30, 84] or U(1)-symmetry [84, 87]. They correspond to the
limits of the Reissner-Nordstrom (AdS) (the limiting case is known as a Robinson-
Beltrotti spacetime) and Kerr-Newman (AdS) black holes, respectively. Whether
there are any other vacua or electrovacua S? is still an open question (for partial
negative results, see [29, 75]). More is known about the moduli spaces when the
cross-section has a different topology. It was shown in [38] that the only vacuum
NHG on a compact two-dimensional surface with a positive genus satisfies

R =2A (1.10a)

and
h, = 0. (1.10b)

The most important lesson for us coming from these classification results is that if
we look for a static extremal black hole in AdS,, its horizon geometry cannot depend
on any details (like the boundary conditions at infinity).

Much less is known about the extremal black holes in 5 dimensions. Perhaps
surprisingly, even in the static case, the full classification is still missing. It was per-
formed only under assumptions of U(1)? symmetry and a vanishing cosmological
constant [83] (and with additional restrictions on the Maxwell field). In particular,
when the cross-section is S° and the magnetic field vanishes, a two-parameter family
of solutions was found. A large part of Chapter 3 is devoted to extending these re-
sults to A < 0, albeit with a different symmetry group. For a state-of-the-art review
of classifications of near-horizon geometries (in various dimensions and theories),
see [82].

So far we have discussed only the geometry of the horizon (understood as the
induced metric). However, ultimately we are interested in the full spacetime (with
prescribed asymptotics, e.g. asymptotically flat or AdS). Thus, to go beyond the
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near-horizon limit, it was proposed in [90] to take ¢} g (¢ defined as above) and ex-
pand it in a power series in €. Then, Einstein equations would be expanded as well
and could be solved order by order. The first-order equations were derived in [90].
They were also obtained in [80] but as constraints for connections admissible on the
extremal horizons'’. These results were extended to the Einstein-Maxwell(-dilation)
theory in [44, 89]. Although this elegant program of systematic power series expan-
sion near the horizon, is the initial motivation behind Chapter 2, we will be obliged
to abandon it. As we will see, in four dimensions when A # 0, a generic extremal
black hole is not smooth at the horizon even though it is a limit of finite-temperature
perfectly smooth black holes. Thus, it is not justified to treat it as a power series in
€. There is no such obstruction when A = 0. However, in higher dimensions, it is
going to be true even in this case. This can be seen as a reason behind a well-known
fact that Majumdar-Papapetrou solutions are generically singular above 4d [19, 109].

1.4 AdS/CFT correspondence

Since observations indicate that the cosmological constant in our universe is positive
[100], an honest physicist needs a good reason to work with negative A. A possible
(rather vague) justification could be made as follows: since the conformal boundary
of (asymptotically) AdS spacetime is timelike, it is not so different than putting grav-
ity into a box. Moreover, since we can (and, in fact, we have to) impose boundary
conditions at infinity, it is analogous to controlling what happens at that box’s walls.

Instead of working directly with this analogy'!, we will focus on the AdS/CFT
correspondence. It was noticed by Maldacena that in the string theory with a cou-
pling constant g; a stack of N D3 branes in an otherwise empty spacetime can be
described in various ways [93]. If

A=4ngN <1, (1.11)

the effective action for the low-energy excitations (open strings that begin and ends
on D3 branes) is N' = 4 Yang-Mills theory with the gauge group'”> SU(N) and 't
Hooft coupling A. All the fields are in the adjoint representation, it means they are
matrices.
In the opposite limit
4mgsN > 1, (1.12)

the branes gravitate strongly and collapse forming a black brane. In this case, due to
the redshift, the low-energy (as observed by a distant observer) excitations are the
ones living close to the horizon. Near-horizon region of the solution in IIB super-
gravity is AdSsx S°. It was proposed that the gravity on that spacetime should be
dual to the strongly interacting N’ = 4 Yang-Mills theory.

AdSs radius (that happen to be equal to S° radius) can be written as

L=AiL; = (47N)iLp, (1.13)

100ne should note that on a null surface, the metric does not specify the connection uniquely (if
at all). Thus, the proper intrinsic geometry of the extremal horizon consists of both the metric and a
choice of the metric-compatible covariant derivative.

1Though one should not haste too much to abandon it! In fact, it is exactly the timelike nature of
the conformal boundary that allows all the constructions in this Section to work.

121t is in fact U(N) group but the trace is clearly trivial and does not contribute anything to the
correspondence.
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where Ls and Lp; are the string and Planck lengths, respectively. Thus, it is much
larger than both of them when A > 1, N > 1. That means that the duality is between
strongly interacting gauge theory and classical (super)gravity! Although the original
argument was for the duality between two very specific theories, it is now believed
to be much more general.

1.41 GKPW dictionary

Let us now give a more quantitative description of the duality. In the large N limit,
a nice set of operators are so-called single trace operators

O[(x) = %TI‘F], (114)

where Fj is a function of physical fields and (a finite number of) their derivatives. To
the leading order in N, these operators are classical, which means

(040,01 ) = (01){(OL)..(0;). (1.15)

All the information about correlators can be obtained from the generating functions

Zorr|{h}] = <exp (i;/dxhl(x)Ol(x)> > (1.16)

Observables in GR are much harder to find because of the diffeomorphism invari-
ance. However, in our case, the spacetime has a(n asymptotic) boundary that breaks
diff-invariance and can be used to generate observables. Let as assume that we im-
posed Dirichlet boundary conditions ¢; — h; for all physical fields'®. Then, we can
construct the partition function!*

Zgwl{h}] = |

J i—rh;

<HD¢1~> exp(iS[{¢}], (1.17)

1

where § is an action of the full gravitational theory.
The AdS/CFT duality claims that there is a one-to-one correspondence between
O; and ¢; and (having appropriately identified their sources h; and h;) [52, 110]

ZQFT[{h}] = ngv[{h}]- (1.18)

Thus, if we know Zg.,[{h}] we know everything about the boundary theory as
well. The nicest part is the fact that in the regime L > Lpj, L, the gravitational path
integral may be calculated in the saddle-point approximation. Thus, an effective
description of large N, strongly interacting gauge theory reduces to (semi-)classical
gravitational calculations. That is a huge simplification!

The underlying string theory provides a detailed map between single-trace op-
erators, sources, and bulk degrees of freedom. A canonical example is of course the
fact that the metric is a source (h) for the energy-momentum tensor (O). In practice,
identification is hard, and the symmetry principles may help. For example, from

13Tn general, physical fields may exhibit a power law behavior near infinity. ¢; — /; means that the
expansion of ¢ is f; times an appropriate power law.

4Tn general, to prescribe the partition function we should also impose initial and finial conditions
as t — 0. This is equivalent to the choice of the state on the QFT side, see [95] for a relevant discussion.
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(large) gauge transformations:
A A+dy, (1.19)

we have
Ss S+ /vwgﬁ' —5— /Xv;,]ﬂ. (1.20)

Thus, consistency requires that the operator | for which A is a source must be con-
served. In general, bulk gauge fields must source (conserved) currents for global
symmetries in QFT. Analogously, charged bulk fields are sources for fields with a
global charge. In particular, the electric charge of both systems must match.

Let us now give a simple example. On the AdS;,1 background:

dxtdx’ + dz2
d52:L2<’7"“ Yax +az > (1.21)

72

we consider a scalar field of mass m. Near infinity (z = 0), it has an expansion

P0) P

— A
(P - Ld_l/z mz + ceey (122)

A=A

where
A(A —d) = (mL)2. (1.23)

We will encounter this behavior very often in this work. ¢ ) is a boundary value of
¢ that we previously denoted by h. The background is scale invariant. If we require
that the (radial profile of) ¢ remains invariant, we must have

$(0)(x) = h(x) = A% h(Ax) (1.24a)
as
(x¥,z) — A(xF, 2). (1.24b)

It follows that the operator O that is dual to & must scale as
O(x) — A720(Ax). (1.24c)

We thus see that A is the scaling dimension of O. The action that properly describes
the scalar field is

1 A—d
5=~ | d /g (VP +mig?) + =% | aly=re?, 25)

where 7 is the metric induced on the boundary. The last term does not affect equa-
tions of motion nor the boundary conditions, it is needed to render the whole ex-
pression finite. In general, we choose the boundary at r = € and then go with e — 0.
Then, a simple calculation shows that (in the saddle-point approximation)

(O(x)) = i(sgb(:)(x)s — (20— d)pp). (1.26)

We thus see that boundary one-point functions are simply prescribed in terms of the
asymptotic behavior of the bulk fields.
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1.4.2 Holographic renormalization

Another key feature of holography is the fact that it geometrizes the RG (renormal-
ization group) flow of the boundary theory. Behavior close to the asymptotic bound-
ary corresponds to the UV observables (for example, n-point functions) while what
happens deep in the bulk encodes the IR. The simplest example is the fact that the
entropy is given by the Bekenstein-Hawking formula [10, 59]

A

S = 1 (1.27)
where A is the horizon’s area (more generally, the entanglement entropy is given
by a Ryu-Takayanagi [102] formula in which the horizon is replaced by the minimal
surface and one takes into account also the entropy of the matter fields outside).
We will not get into a detailed statement about connections between the RG flow
and the radial evolution. A derivation may be found for example in [43, 61, 98].
What matters to us is a simple statement that infrared physics is captured by the

near-horizon geometry of the black hole inside'.
Let us give one more example of that correspondence. It was shown in [57] that if
we perturb the boundary Hamiltonian by the translation-invariance-breaking term:

H = Hy— O(kp) (1.28)

with a characteristic wavelength k. (given e.g. by a lattice), then the current J' in the
infrared is going to have a scaling dimension Ay, (one needs to determine Ay, from
the equations of motion). It then follows that dc resistivity for low temperatures
follows the power law:

T (1.29)

A large part of this Thesis is devoted to the study of scaling dimensions in the in-
frared and on the role the spatial symmetry breaking terms have. We thus see that
they can be translated into very physical observable quantities such as transport co-
efficients. More about applications of AdS/CFT to the condensed matter may be
found in [58].

1.5 Weak Gravity Conjecture

In 4, we will encounter the Weak Gravity Conjecture (WGC) a few times. It seems
appropriate to introduce it already here. One can informally state it as follows: there
must be a particle for which gravity is the weakest force. One can see this claim as a
stronger version of there are no global symmetries in quantum gravity. Indeed, if we
take any gauge symmetry and consider the limit g — 0 of its coupling constants
going to zero, we would obtain a global symmetry that is excluded (since its charge
would be inevitably lost in a black hole). Thus, there should be a physical principle
forbidding such limits [5].

It should be kept in mind that WGC is not actually a single conjecture but rather
a bundle of connected ideas. We will only need its mildest version:

Conjecture 1.1. [5] For any U(1) gauge field, let (%)m be a ratio of mass and U(1)
charge of the extremal black hole (of that mass). Then, in the spectrum of the theory, there

15Somehow along the line we assumed that there is a black hole inside. In the Einstein-Maxwell
theory at a non-zero charge it seems almost necessary because that charge must be stored somewhere.
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should be a particle of mass m and U (1) charge q such that

9| Q]
m = <M>m (1:30)

Note that in the Einstein-Maxwell theory, the right-hand side is 1. The motivation
for this version is very simple. If the bound is not satisfied, then extremal black
holes are stable (in a particle physics sense — they cannot decay into lighter particles).
Moreover, large black holes sufficiently close to the extremality would actually lower
their temperature due to Hawking radiation. Since arbitrarily heavy stable particles
(that are not protected by any symmetry) are rather troublesome it was proposed in
[5] that there must be always a decay channel.

There are at least a few ways to satisfy WGC'® The simplest one would be obvi-
ously to simply start with a field (say, scalar one) with |g| > m. We will encounter
consequences of that in Sec. 4.4. Another possibility, somehow subtler, has to do

with the higher-curvature corrections. In their presence, (%) changes and, in

particular, it depends on the mass [76]. If the ratio is larger foixsmall black holes
than for big ones, very heavy black holes could decay into smaller ones! That con-
dition puts constraints on a certain field-redefinition invariant combination of the
Wilson coefficients (usually denoted dp). We will see that dyg > 0 also leads to the RG
instability of five-dimensional Reissner-Nordstrom.

Let me end that discussion by pointing out that the version of WGC presented
above is too weak to be actually self-consistent if we take into account possible di-
mensional reductions [62]. Thus, stronger versions (e.g. lattice WGC) are probably
required to hold. Nevertheless, it is all we need in this Thesis. A good review of the
topic may be found in [55].

1.6 Main results

For the Reader’s convenience let us summarize the main results presented in the
thesis. Before we shall dive into the detailed description, let me emphasize that vir-
tually all the work constituting the dissertation was performed in the collaboration
with my wonderful coauthors. I shall point out where they were published (if ap-
plicable) and with whom I collaborated on the topic. The leitmotif of the thesis is
(nearly) extremal black holes and their stationary perturbations. I hope the Reader
finds them as interesting as I do.

In Chapter 2 we shall describe how small stationary perturbations (induced for
example by some distant matter distribution or by non-trivial boundary conditions
at infinity) backreact on the background of extremal black holes in AdS,. Perhaps
quite surprisingly we will see that these perturbations transform the horizon into a
null singularity. (Hopefully) counter-intuitively in this case the larger the black hole,
the worse the singularity. Most of that content is identical with [66], published with
Gary Horowitz and Jorge Santos. I feel obliged to emphasize that a large part of the
numerical search was (very unfortunately!) not performed by myself. At the same
time, I believe them to be crucial to show that the many approximations performed
are in fact valid, that no surprising fine-tuning occurs, and to provide examples. This
was not my first paper about the neighborhood of extremal horizons. Previously,

16 Any conditional sentence "... assuming that WGC holds" in this Thesis means actually "... assuming
that WGC holds in a particular way". To simplify the language, we will not discern between them later
on.
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I collaborated on the topic with Jerzy Lewandowski and Adam Szereszewski, the
results may be found in [79, 80]. The starting point back then was slightly different
since we assumed smoothness from the very beginning. As a result, this body of
work may be seen as a special case of [66] (with ¢ = 1).

Let me emphasize that the singularity discussed here is physical. It describes
tidal forces that would be measured by the infalling observer so it is not a gauge
artifact. Moreover, there is no reason to reject them [53] (as one would do for exam-
ple with M < 0 Schwarzschild). In particular, we are able to prepare those states
using gravitational path integral. Moreover, since all the curvature scalars remain
small, we do not expect higher-curvature corrections to change these results in any
significant way.

Even at finite temperatures, there are signatures of that singularity. First of all,
the tidal forces evaluated at the horizon follow a power law with the temperature:

Cpapb ~ T’ny/ (1.31)

where v < 2 depends on the black hole’s parameters. Moreover, the specific heat
gains an anomalous term ~ T27. If the scaling dimension < is smaller than %, this
dominates over a usual (linear) behavior of the specific heat with the temperature.
Thus, a small perturbation may drastically change thermodynamics. This should be
a very clear prediction for the boundary theory. Incidentally, if the condition 7 < %
is satisfied, T — 0 limit of the solutions to Einstein-Maxwell equations is not even a
weak solution.

Encouraged by the findings in four-dimensional spacetimes we shall move into
higher dimensions in Chapter 3. There, we find that the singularity becomes even
worse and in fact leads to the RG (renormalization group) instability. That means
that a holographic CFT4 with a non-vanishing U(1) charge when put on a non-
symmetric background would behave very differently in the IR than previously
believed. On the bulk side, it means that (contrary to what happens in four di-
mensions) a small change in the boundary conditions can radically deform or even
destroy the near-horizon region of the extremal black hole. We are still lacking an
understanding of what is the endpoint of this instability (either in the bulk or in the
boundary). I hope to try to address this question in the future. These results explain
(and perhaps put into a broader perspective?) well-known statements regarding the
non-smoothness of the higher-dimensional Majumdar-Papapetrou solutions. This
Chapter was again a group effort in collaboration with Gary Horowitz and Jorge
Santos, published in [65]. Certain results (in Sec. 3.4 regarding toroidal black holes)
are new. In particular, they correspond to the quantum phase transition, and thus
may have certain condensed matter applications.

Every result mentioned so far was awfully classical. In Chapter 4 we move be-
yond that and try to include quantum corrections encoded in the effective field the-
ory. This is again a group effort together with Gary Horowitz, Grant Remmen, and
Jorge Santos. As we have seen in the previous Chapters, four-dimensional A = 0
extremal black holes are miraculously smooth. This fine-tuning is removed when
we include higher-curvature corrections. We found that the singularities are quite
robust (albeit they do not have to occur, that depends on either a UV completion or
the black hole’s size) and do not require a cosmological constant or higher dimen-
sions. The scaling dimensions of the Kerr black hole (but not of Reissner-Nordstrom)
are shifted. For the Standard Model, they become smaller, and thus the horizon is
replaced by a null singularity. This happens even without any additional sources. If
the underlying UV theory was SUSY, the same conclusion would be reached (for any
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supersymmetric matter content). All the curvature scalars remain finite (and small)
and so the higher-curvature expansion seems trustworthy.

In 5d, quantum corrections lead to the RG instability of Reissner-Nordstrém
black hole provided that the Weak Gravity Conjecture is satisfied. At the same time,
I have to emphasize that the curvature (and Maxwell) scalars diverge at the hori-
zon. Thus, it is not clear that we can trust these results. Nevertheless, they are too
interesting (at least to me) to ignore them. In D > 5, the corrections to the scaling
dimensions are negative (also provided that WGC holds). However, in this case,
the background was unstable anyway so this does not offer any qualitatively new
effects. These EFT results shall appear soon [69].

It is also in Chapter 4 that we show that a scalar field of mass smaller than charge
(it means, one satisfying WGC), leads to RG instability also on the background of
Kerr-Newman. This effect is slightly more subtle due to the gauge transformations
and a non-zero rotation of the background. There is no new solution bifurcating
from the onset of the instability for A = 0. The connection between RG instability
and WGC is highly suggestive and may shed some light on the nature of extremal
black holes in quantum gravity.
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Chapter 2

Generic extremal black holes and
their singularities

2.1 Motivation

In the last few years, our understanding of (nearly) extremal black holes grew enor-
mously, even at the level of quantum gravity. Indeed, the most important ingre-
dient close to the extremality, the so-called Schwarzian, was identified and non-
perturbatively quantized. That allowed for a much more accurate (from the physical
point of view) quantum-mechanical description. As an example, let us mention a
beautiful calculation of the density of states in four dimensions [72]. This progress
did not omit also supersymmetric black holes (see for example [91]) which are spe-
cial cases of extremal black holes. All of it was possible thanks to the dimensional
reduction to JT gravity.

Thus, it may seem surprising that, in these exciting times, the author believes
that something physically interesting can be said about the classical behavior of the
extremal black holes. Even though it was not my initial motivation, I feel obliged to
connect the work presented here with the beautiful body of results just mentioned.
It is quite often (for example in [72]) to assume that, having done dimensional reduc-
tion, Kaluza-Klein modes are not sourced. In this Chapter, we will try to understand:
what would be different if we turned the sources on? At this stage, I can only offer
a classical answer to that question and I hope to convince my kind Readers that
the difference is significant, at least as long as we keep the cosmological constant
negative.

Nevertheless, since our description is classical, let us phrase it in the language of
general relativity. In this Chapter, we aim to show that generic extremal black holes
are in fact singular. Over the years, various examples have been found showing that
this may be the case. A mild lack of smoothness (where the metric is C? but not C3)
was first noticed in the static multi-black hole solutions to D = 5 Einstein-Maxwell
theory [109]. This became more serious with the discovery that in D > 5, static
multi-black hole solutions have curvature singularities on the horizon [19]. These
were null singularities in which tidal forces on infalling observers diverge, but all
curvature scalars remain finite.

Similar null singularities were also seen in the extremal limit of some black holes
in anti-de Sitter (AdS) space. This includes solutions with less symmetry [32, 63,
92], nonsupersymmetric attractor flows [71] and even in some supersymmetric black
holes [94]. A natural question to ask is: how common are these singular extremal
solutions? Are they exceptional special cases, or indicating a more general phe-
nomenon?

As we will see, in AdS they are very common. In fact, almost all extremal
black holes are singular. This is true even in four dimensions (and becomes worse
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in higher dimensions). We will focus on four-dimensional solutions of Einstein-
Maxwell theory with A < 0. The higher dimensional case will be discussed in Chap-
ter 3. There are many more stationary black holes in AdS than in asymptotically flat
spacetime since one has the freedom to choose boundary conditions for the metric
and the vector potential at infinity'. In particular, static nonspherical charged black
holes exist, but we will show they are generically singular. The derived results apply
whenever rotational symmetry is broken. For example, if one puts a cage around a
static AdS black hole — it becomes singular.

If the horizon was smooth, it is known that in the extremal limit, the only pos-
sible static near-horizon geometry is AdS; x 52 [84] so the horizon itself remains
spherical. We will see that in four dimensions, even when the horizon becomes
singular, a well-defined near-horizon geometry exists and remains AdS; x S2. In-
tuitively, this is because the radial distance (along a static hypersurface) from the
horizon to any point outside is infinite, and thus any nonspherical perturbation’
should decay before reaching the horizon. But the key point is how quickly they
decay. The symmetry of AdS; ensures that all perturbations should have power law
behavior near an extremal horizon. If the exponent is not an integer, the solution is
not C%, and if the exponent is too small, the curvature will diverge. We will show
that for AdS black holes with topology S?, an ¢ = 2 perturbation always falls off
slowly enough to produce a singularity on the horizon. So generic extremal black
holes with S? topology are singular. This singularity is null, and all curvature scalars
remain finite. However, the tidal forces on infalling particles diverge.

As one increases the charge, this singularity becomes stronger, and higher ¢
modes also become singular. Similar results hold for static black holes of differ-
ent topologies (with the exception of small toroidal ones) and for Kerr AdS. In fact,
for large hyperbolic black holes, the singularity is so strong that some perturbations
diverge at the horizon. Thus, we see that almost all extremal black holes in AdS
are singular. The smoothness of the known exact solutions is an artifact of symme-
try rather than a basic physical feature. Solutions with extremal AdS black holes in
nonspherical backgrounds have been constructed before [70]. Although it was not
noticed at the time, the current analysis shows that these "hovering" black holes also
have diverging tidal forces on their horizon.

2.2 A simple example

In this Section, we will discuss a simple toy model that aims to explain all relevant
phenomena. Let us look for stationary solutions to the massless (neutral) Klein—
Gordon equation

gV, Vyp =0 (2.1)

1t does not mean that we cannot discuss more general black holes without a cosmological constant.
We would just have to assume that there is a matter far away that we keep stationary (for example,
by external forces). Our analysis automatically extends to A = 0 case, the answer just happens to be
qualitatively different.

20ne should note that in this work a "perturbation”" does not mean any dynamical change, but
rather a change in boundary conditions for the elliptic problem of finding static black holes. In partic-
ular, this work is different from the Aretakis instability of extremal black holes [3] which results from
time-dependent perturbations. Nevertheless, both effects share their geometric origin — symmetries of
the near-horizon geometries.
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on the background of the RN AdS:

ds? = —f(r)df* + drt + r2dO)? (2.2)
f(r) '

where dO? is the line element on a unit radius round two-sphere,

f) = +1-"2+% 2.3)

and L is the AdS radius. In the extremal limit, the horizon is at

ry = 27 (2.4)
V1 120212 '

and 5
6 2
() = 5 + 2T 5)
Jr

Since the background is spherically symmetric, we may decompose ¢ into spherical
harmonics:

¢ = Z ‘Pém(r)yfm- (2.6)
{m

Then, Eq. (2.1) reads

(fpum) +

2 /
[ AL, 0 @7

72

This is a simple ODE with r = r being a regular singular point. Thus, near r = r.
we can approximate it by the Euler equation:

—_

S Rt - Of 00— g =0 28
+

and so near the horizon we have ¢y, ~ (r —r; )7+, where

i\/1+W+1) 1] . (2.9)

1

=73 1462702

Since y_ < 0, it must be discarded as a diverging solution (mathematically speaking,
we choose Dirichlet boundary conditions ¢(r = r) = 0). Nevertheless, notice that
when ¢ = 1, we have 0 < 4 < 1 for all % > 0. Thus, the field is only CY at the
horizon. Moreover, certain components of the associated energy-momentum tensor:

Ty ~ (4’,}’)2 ~ <7’ - 7’+)2(’y+71) (210)

are divergent. Thus the backreaction on the metric will produce a singularity. Nev-
ertheless, all scalar quantities built from Ty, such as T or Ty, T"" are finite. Thus,
one could be tempted to blame our choice of coordinates for the apparent non-
smoothness. However, that would be too naive since r is a good coordinate at the
horizon. Moreover, if one replaces t with an ingoing Eddington coordinate v, the
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calculation is the same, and now 0, is a vector field tangent to the affinely parame-
terized null geodesics and so it has a clear geometrical meaning. Moreover, T;, en-
ters the Raychaudhuri equation and so its divergence signifies that the family of null
rays emanating from the horizon is singular. This is going to be a general lesson for
all the examples we consider later in this paper: generic nonspherical perturbations
produce a physical curvature singularity along the null horizon, but all curvature
scalars are finite. Thus, one needs to be extra careful with the choice of coordinates
to properly capture these divergences. A few remarks are in order regarding (2.9):

¢ Although we assumed that ¢ is massless, similar conclusions would hold also
for massive but light fields. Thus, it is a generic result, not just a product of an
unfortunate fine-tuning of the model.

e If r. /L is large enough, 74 < 1 also for higher ¢’s.

¢ The larger r; is, the smaller 7, and thus the solutions are more and more di-
vergent. As we will see, this and the previous remark hold also in the nonlin-
ear Einstein-Maxwell theory. This means that (counter-intuitively) large black
holes, whose curvature scalars at the horizon are much less than small black
holes’, nevertheless have stronger singularities if we perturb them a little bit.

* Eq. (2.9) does not depend on any asymptotic conditions. It was derived locally,
just near the horizon. The only role of the asymptotic region is to provide a
source for non-symmetric modes.

* The case A = 0 can be read off from Eq. (2.9) by taking L — co. The result is
Y+ = £, so ¢ remains smooth.

* The case A > 0 can be read off from Eq. (2.9) by analytically continuing L? —
—L2. One sees that ¢ is at least C! but it is still not smooth. As we will see, for
certain black holes in dS, the singularity at the horizon may persist, although it
will be milder.

Eq. (2.9) can be understood as a special case of a familiar result in gravitational
holography. The near-horizon geometry of the extremal RN AdS solution is AdSy X
S? with AdS, radius L, = [2/f"(r+)]'/?. We may perform (rather trivial) dimen-
sional reduction of the scalar field to the AdS, throat. Then, the ¢ component be-
comes a free field of mass m? = ¢ (L+1)/ ri in this AdS, spacetime. In terms of L,

and m?, eq. (2.9) becomes
—14 /1 +4m2L3
2 2.11)

2

T+ =

This is a special case of a more general formula that gives the power law behavior of
fields with mass m in AdSp, which is the scaling dimension of the dual operator.”

This shows all the important properties of the perturbations we are about to
study in this Chapter. They exhibit a power-law behavior near the extremal horizon
with a (generically) non-integer scaling dimension and thus are going to be non-
smooth. Notice that this is a purely geometrical statement that relies only on the
presence of the infinite AdS, throat. Only the exact values of the exponents depend
on the theory at hand.

3Eq. 2.11 differs from the usual scaling dimension by an overall sign, since we have defined it to be
the power of r — r, rather than the more commonly used power of an inverse radius.
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221 BTZ

Although the focus of this Chapter is on four-dimensional extremal black holes, we
now briefly comment on the situation with the three-dimensional BTZ black hole
(rotating one). This is not at all harder but it will be a nice warm-up before we attack
similar problems on the Kerr-Newman background in Sec. Since three-dimensional
gravity is purely topological, to perturb BTZ we must add matter fields. We will
consider a scalar field of an arbitrary mass . The line element (in the near horizon
limit) reads:

2 2
¢ = 2dvdp + %dvdx +dx? = —%dvz + 2dvdp + (2Lpdv + dx> : (2.12)

Near the horizon, solutions to the Klein-Gordon equation may be decomposed into*:
¢ = p“e™, (2.13)

where « = 1 (—1 +ilm =+ \/1+ L2 ;42). Only the + choice is continuous at the hori-

zon. Nevertheless, if 0 < L2y2 < 8, then the solution is not C! and the associated
energy-momentum tensor is diverging. Moreover, for m # 0, the solution is highly
oscillating. Notice that the BF bound in three dimensions is

> mip = —12 (2.14)
Thus, there are masses above the BF bound for which « < 0. That is a sign of RG
instability. A small source for the scalar field would destroy the extremal horizon.
2.3 Linearized Einstein-Maxwell theory

2.3.1 General approach

With all this in mind, let us move towards non-trivial examples such as Einstein-
Maxwell theory. The equations of motion read

1 3
Ry =2F,F/ — ngl—“aﬁlfﬂfﬁ — 128w (2.15a)
dF =0, (2.15b)
dxF=0, (2.15¢)

where F = dA is the Maxwell two-form, A is its potential and L is the radius of
AdSy.

We are interested in the solutions to (2.15) which describe a stationary extremal
black hole. Near the horizon we may introduce Gaussian null coordinates (v, p, x*)
in which the metric and Maxwell field read:

¢ =2dv (dp +ph, dx" — % o?C dv) + ap dx” dx? (2.16a)

F=EdoAdp+pW,doAdx®+ Z,dp A dx® + % By dx® A dx?, (2.16b)

“The physical field is, of course, given by the real and imaginary parts.
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where nothing depends on v. In particular, 9, is the Killing vector generating the
horizon. It is often useful to work with the near-horizon geometry of the spacetimes
of the form (2.16). To this end one may consider a one-parameter (¢ > 0) family of
diffeomorphisms

pe(v,0,x") = (¢ 'v,ep,x"). (2.17)

The limits of pull-backs
lim (92, 92F) = (8, F) 18)

exist and provide us with a new smooth solution to the Einstein-Maxwell equations.
This leads to a significant simplification of (2.16), namely

¢ =2dv (dp +ph,dx® — % 0? Cdv) + gap dx* dx® (2.19a)

F=Edondp+pW,doAdx" + % By dx® A dx?, (2.19b)

where now all the p-dependence is explicit. Notice that ¢ posses a new Killing vec-
tor: pd, — vdy. This should not come as a surprise since the action of ¢ is generated
by pdp — vdy. Also, (2.15) simplifies significantly for ($,F). This allowed for the
classification (under the assumption of smoothness and either staticity or axial sym-
metry) of geometries of the extremal horizons in four dimensions. The only possible
geometries are either those of Reissner-Nordstrom (AdS) or Kerr-Newman (AdS)
(in the static or the axially symmetric case, respectively). Below we consider how
stationary solutions to (2.15) behave near those horizons.
Since we are interested only in near-horizon behavior, we may write our (generic
yet stationary) fields as
g§=8+4g, (2.20a)

F=F+F (2.20b)

where (0g, 0F) are supposed to vanish on the horizon (and by continuity, are small
nearby). Thus, it seems reasonable to expect that (3g, F) satisfies linearized Einstein-
Maxwell equations on the background of (§, F). Due to the symmetries, we may
decompose our perturbations into eigenspaces of pd, — v9, > They are thus of the
form

g = p7 (5P 02 dv? + 2 p Ohy do dx® + 5ggp dx” dxb> (2.21a)

OF =p7 (515 doAdp+pdW,doAdx” +p 16Z,dp Adx” + %(5Bab dx® A dxb> .

(2.21b)

This ansatz implies
6Cpapb ~ (7 —1)p7? (2.22a)
6Rpp ~ (7 — 1)p77?, (2.22b)

where C,p,,, is the Weyl tensor. The derivation is quite simple and does not require
any calculation. Let D = pd, — vd,. It is a Killing vector field of the background, so
it holds that®

LpoR,y[68] = IR [Lpdg] = Ry [vg] = YOR[0g]. (2.23)

> Although partial, and pd, — v9, do not commute, they do so on the stationary fields.
®One should note that Ry below is a Ricci tensor written in the abstract-index notation, whereas
Ryp is a particular component of this object.
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Thus it follows that 6R,,,[6g] must have an expansion similar to Eq. (2.21), with the
same exponent y. We are interested in R,,, which stands in front of dpdp. Since
Lpdpdp = 2dpdp, Ry, must be proportional to p? 2. v = 0 and y = 1 correspond
to smooth perturbations and so there will be factors of y(y — 1) in front to ensure
it does not diverge for those values. The same reasoning holds for the Weyl tensor.
The only remaining question is whether the coefficient in front is non-zero. A simple
calculation (e.g. for the RN AdS black hole discussed below) shows that generically
it does not vanish.

Thus, we see that if 1 # 7 < 2, then our linearized solutions are singular. I will
show that there are indeed solutions with 0 < 7 < 1 which strongly suggests that
generically the spacetime is singular at the horizon.” Notice that since the diverging
components always involve a p index and the inverse of the metricin (2.19) has ¢ =
Cp?, all curvature invariants will remain finite at the horizon. Nevertheless, Coapb
and R, are physically measurable quantities. They encode tidal forces acting on a
body. Thus, the singularity present for v < 1 is not a mere coordinate singularity
but a physical issue.

2.3.2 Finite temperature

Of course, black holes with T = 0 are not present in nature. Before we will proceed
with our investigations of <s, let us look for finite temperature traces of this singu-
larity. For simplicity, we will restrict to RN AdS but the main reasoning remains the
same also on different backgrounds.

Let us fix a charge Q and a temperature T ~ 0. In Schwarzschild coordinates, the
horizon is now located at r;, =~ ro + ZNTL%, where

L= Lt (2.24)

is the AdS, radius and r is the radius of the horizon of the extremal black hole with
the same charge. In the region p = r — ry < rp, the metric can be approximated as
2 2 2
> —(rn—r0)” . » Ly 2 2302
N ———dt" + —F———5d dO-. 2.25
8 L% +P2—<1’h—7’0)2 P +(7’0+P) ( )

The first two terms are just AdS; in Rindler coordinates. Thus, a little bit from the
horizon, any perturbation in this region should behave in the same way as in the
T = 0 case, i.e., the Weyl tensor should grow like

Cpapb ~ Pry_zr (2.26)

where < is the same as for the black hole with the same charge at T = 0. When
p = O(ry, —rg) = O(T), the Weyl tensor will be

Coapp(p = O(T)) ~ T7 2. (227)

It is not clear what happens very close to the horizon. Nevertheless, if the result-
ing spacetime is smooth, it cannot change very much. Thus, we expect that on the

"Weak solutions of the Einstein-Maxwell equations can be defined if the curvature is integrable.
This requires the Christoffel symbols to be square integrable. If ¢ > % this is the case, so one can
extend the fields inside the horizon as a weak solution, but the extension is not unique. As we will see,
for sufficiently large black holes, that condition is not satisfied and no extension is possible.
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horizon
Cogop|r ~ T2 (2.28)

As we will see later on, this is truly the case. Thus, even at finite T, tidal forces
(though finite) can be arbitrarily large.

It turns out that those T = 0 singularities may have an important effect on stan-
dard black hole thermodynamics. Most notably, if oy < 1/2, the increase in black
hole entropy with T acquires an anomalous scaling at low T, which in turn yields
an anomalous scaling for the specific heat at low temperatures. Intuitively, this can
be seen as follows. The perturbation to the metric on the horizon decays like p7. As
we will see, linearized analysis shows that the volume element does not change in
the first order. Thus, the leading correction to the area comes from the second-order
contribution which scales like p?7. One may now use the above scaling argument to
relate p to the near extremal horizon temperature T to obtain

S~ So+ S, T* (2.29)

where Sg and S, are suitable constants. This implies that the specific heat at constant

charge scales like

Co= Tj—? o« T2V (2.30)

It still could happen that the horizon’s area at the second order is not corrected (if
appropriate coefficients cancel out). In the Appendix, it will be shown explicitly that
this is not the case. Moreover, we will see that S, > 0if ¢ < % so that Cg is positive
and the system is thermodynamically stable. We will also see that for v = 1/2, there
is an anomalous T log T scaling of the specific heat.

We have discussed so far how the perturbations behave near the (nearly ex-
tremal) horizon but we omitted their source. The easiest way to obtain such so-
lutions is to consider slightly deformed boundary conditions. Indeed, a standard
(spherically symmetric) black hole spacetimes satisfy

Atlam = po, (2.31)

where pg is a constant. By the AdS/CFT dictionary, it corresponds to the chemical
potential for the dual theory. We perturb this boundary condition by writing

Atlam = (0, ), (2.32)

where p is still time-independent. We look for static black hole solutions (of fixed
temperature T) satisfying this condition and we monitor their Weyl tensor at the
horizon.® Note that in this scheme, the total charge Q is determined by the solution
and not prescribed apriori. Of course, we also need to specify the metric at infinity.
For simplicity, we will keep it spherical.

2.3.3 Reissner-Nordstrom AdS

We will start our investigations by considering static NHG. Since in four dimensions,
there is a duality between electric and magnetic charges, we may put the latter to

8We will see the anomalous scaling of the specific heat in the next section, in a theory where it is
easier to reach the low temperatures required.
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zero. It was shown in [84] that the only such solutions are of the form:
¢=2dv <dp - %pz C dv) + Gap dx” dx? (2.33a)

EF=EdvAdp, (2.33b)

where now C, E are constants and g is a two-dimensional metric of constant curva-
ture. The first term is just AdS, with a length scale set by C. The field equations
require:

R = —% + 2F? (2.34a)
3 2
= TE, (2.34b)

where R is the Ricci scalar of g. In short, this says that the near-horizon solution has
a product structure AdS, x H, where H has a constant curvature (of any sign).

Although it is possible to solve Einstein-Maxwell equations for the ansatz (2.21)
directly, it is not the most convenient way to find exponents y. Indeed, we perturb
a highly symmetrical background so one should take an advantage of that. We may
thus decompose é¢ and JF into the eigentensors of the Laplacian on H and then
use the Kodama-Ishibashi formalism’. Since our usage of these methods is rather
simple, for the sake of completeness, we will provide a short introduction here. We
will restrict ourselves to the scalar-derived perturbations. The inclusion of the vector
perturbations is rather immediate and one reproduces the same exponents.

If g, has a positive (negative) curvature, we may normalize it'’ g,, = 73 4, in
such a way that R € {—2,4+2}. (And obviously R = 0 for a torus.) LetS be a
non-constant eigenfunction of the Laplacian A:

(A + k2> S=0 (2.35)
and .
S, = —Ez:")as, (2.36a)
1. 1
Sap = PD”DhS + EqabS. (2.36b)

Then, we may decompose our perturbation as:
O0F =fS, O6ha=hS,, g = hr¥awS+ hrSap (2.37a)

SE =qS, OW,=wS,, 06Z,=2S,, 0By =0, (2.37b)

where all new variables are simply constants. In this way, the problem of solving lin-
earized Einstein-Maxwell reduces to solving a system of linear (algebraic) equations:

z+khy =0, (2.38a)

o1, s o 3% 4Er%k
§—§C7’+’)’(1+’)’)—7’+E +L2:| hT—

k2 — 2R
2k

3
Eyhr+[Cri(1+7)y—k* —4E* ] z+kE (2 —7) hy =0, (2.38b)

90One important difference between the proper Kodama-Ishibashi formalism [78] and the treatment
presented here is our assumption of stationarity. Certain formulas derived in [78] are written after a
Fourier transform in the time variable and thus their time-independent limit requires extra care.
10From now on, all objects with a little circle are associated with 4.
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(v =1)h =0, (2.38¢)
(v +1Dw+gk=0, (2.38d)
k E
= —z2— —h, 2.38
q ’)/7’3_2 7’3_ L ( e)
E (1+ )h+2;f2 ht—2Ez=0 (2.38f)
1 1 1
§(1+'y)(2—|—'y)f+?(l+'y)kh—rTC'th+2Eq=O. (2.38g)
+ +

For y(7y — 1) # 0 we obtain ii;, = 0. As a result, the first two equations are decoupled
from the rest and can be solved. Then, all the other equations have unique solutions
in terms of it and z. Thus, the whole system (2.38) has a non-zero solution if and
only if its two first equations constitute an underdetermined system.
The case v = 0 reproduces a linearized NHG solution. It does not have any non-
trivial solutions in four dimensions so we will skip it. The case v = 1 (first derived in
[89] and solved in [79]) is somewhat special. As shown in [89], there is an additional
gauge freedom then. It may be used to put §°64,, = const. and that implies h; =
0 for k # 0. Besides that point, all other calculations are equivalent to the ones
presented in this Section.

We will now go through the solutions in different cases, corresponding to the
different geometries of H.

Spherical black holes

We start by considering the case H = S2. There is, obviously, only one (up to scale)
constant-curvature geometry on S2. Then, k? = ¢ (£ 4+ 1), and r is related to the
electric charge Q by (2.4). Solutions to (2.38) exist only when

2
. _1i\/4£(£—|—1)+50i4\/0 LS VCET2]
2 o
where
e
c=1+F. (2.39b)

There are a total of four solutions for each £ and 7. We are free to choose a boundary
condition at the horizon to remove two of them. Since y__,y_+ < 0 the solution
blows up at the horizon for this choice. Thus, the physical perturbations are +4- and
+—. The values of vy for a few /s are plotted in Fig. 2.1. As one may see, for / = 2,3
and for +— modes, the Weyl tensor

Cpapb = P’Y_2hTSab (2.40)

is divergent for any value of 7. Moreover, the larger 7=, the stronger the divergence.
In particular, for sufficiently large black holes, the perturbation is not even a weak
solution. The associated region is represented in gray. Since a generic nonspherical
perturbation includes the ¢/ = 2 mode, we see that a generic perturbation would
replace the horizon with a null singularity. One may notice from Eq. (2.39a) that
Y+— = 0 for £ = 1 (and any r,). Since it does not decay, one might be tempted to
interpret it as a deformation that changes the horizon geometry itself (and not just
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FIGURE 2.1: Scaling exponents for different £ as a function of Q/L.

The shaded region indicates values of 7y for which no weak solution

exists. The solid red line is a +— mode with ¢ = 2, the blue dash-

dotted line is a +— mode with ¢ = 3 and the black dashed line is a

++ mode with £ = 2. All ¥ < 2 (except v = 1) lead to a singularity
on the horizon via Eq. (2.22a).

a neighborhood of it). This is however not justified since the system of equations
(2.38) was derived using a decomposition into 5,5, and S;;. When ¢ = 1,5, = 0
and so all equations proportional to it are automatically satisfied. Instead, we are
left with a simpler constraint (k? = 2):

[—24+CrA(1+7)y—4E*3]z=0, (2.41)

which has non-trivial solutions only when

1 16 + 90
=—-|-1=%£ . 2.42
TE=5 ( - ) (2.42)

We have only two solutions, so our boundary conditions can get rid of y_ (which
would lead to the mode diverging at the horizon). Since 4 > 1, this solution is at
least C! (but not necessarily C2). The fact that ¢ = 1 perturbation behaves slightly
differently should not be a surprise. It is always an exceptional mode in the Kodama-
Ishibashi formalism. It is connected to the fact that gravity is a quadrupole force and
so ¢ = 1 mode describes in a sense only Maxwell field (in particular, dq,, = 0).

For completeness, let us now discuss here what happens when A > 0. If A =
0, we have simply ¢ = 1 and y,+ = ¢£1 € IN. As a result, perturbations are
perfectly smooth. The case of A > 0 may be obtained by replacing L> — —L?.
Then, v+ are generically not going to be integers so the perturbations have only a
finite degree of smoothness. In this case, the singularity is stronger for small black
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2
holes. In particular, if TL—; is small enough, it is only C! and it still suffers from the
diverging tidal forces at the horizon. A static extremal black hole in our universe

2
would certainly have small %, and nonspherical perturbations from other galaxies,
so if they existed, they would have singular horizons.

Toroidal black holes

Analogous analysis can be performed in the toroidal case. This was done previously
in [92] for flat, non-compact cross-sections. As we will see, compactness changes the
results qualitatively for small enough black holes. For definiteness, we compactify
the space directions in such a way that the cross-section of the horizon has volume
Ly Lyr3, where x and y are periodic coordinates with x ~ x + Ly and y ~ y + L,
From (2.34a), it follows that

V3

and
C= 6 2.44
=7 (244)

Consequently, the charge confined within a black hole is:

_ VBLe LA

Q 4L

(2.45)

Note that in contrast to a sphere, we have a larger family of geometries on a two-
dimensional torus — it is encoded in periods of x and y coordinates and the angle
between o, and dy,.

We may now repeat our scheme and calculate the associated exponent. Perturba-
tions are again scalar derived, however, this time we need to decompose them into
eigenfunctions of the Laplacian on T?, namely Re ¢/*=**%%) and Tm /(¥ +k¥). The
exponent turns out to be'!

5 2
7:% 45+6k2—36\/1+k3—3 , (2.46)

wherek = kL/r, withk = ,/k2 + kj. As usual, the (linearized) Weyl tensor diverges

when ¢ < 2. Not surprisingly, for k large enough, - given by the expression above
is larger than 2 and thus modes with high momenta are not singular, just as in the
spherical case. However, if the black hole is toroidal, we can make it arbitrarily small
and then <y is arbitrarily large. Thus, the toroidal black holes which are small enough
are not going to become singular under an arbitrary (small) perturbation. It happens
when

k> > 36 +12V3 (2.47)

for all non-zero eigenvalues of the minus Laplacian A. In particular, for a torus that
is obtained from a square with L, = L, = 27, the minimal k is 1 and this translates

into 1
'+ . (2.48)
L 36 +121/3

11 As before, there are four values of 7. Two of them are excluded automatically since they are nega-
tive. Below we focus only on the smaller positive value since we are interested in possible singularities.
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This explains the ‘almost all” in the title of this paper — there is a finite volume in the
moduli space of extremal black holes which are singularity-free. On the opposite end
of this spectrum are planar black holes for which there are infinitely many singular
modes (of small momentum), as pointed out in [92].

Hyperbolic black holes

Let us now consider a case when H has a constant negative curvature. All such
surfaces are given by a quotient of a hyperbolic space H? by a discrete group. As
follows from Eq. (2.34a), such solutions exist even without a Maxwell field. To begin,
we will restrict ourselves to this case. As we noticed earlier, the larger the charge on
a black hole, the more singular it becomes so we can expect that the inclusion of
charge will make the perturbations even more divergent. This will be confirmed
below. With E = 0, it follows from (2.34a) that R = —% and so ry = % The
analysis follows exactly in the same way as in the spherical case (except that only
gravitational modes are included).

We find that the perturbed solutions (for gravity modes) exist only when

Yo = 5 (14 Vo + 42). (249)

As before, the perturbation is singular if ¢,y < 2, or equivalently k? < 4. The first
non-zero eigenvalue of the Laplacian on a compact Riemann surface is bounded by
[39, 111] ) 2
2 g+
K< HLTJ < 4, (2.50)

where g is a genus of H and |z] denotes the largest integer in z. Note that the
last inequality is saturated only when ¢ = 2. We thus see that for ¢ > 2 and for
any geometry of the horizon, at least one mode in the perturbation is singular. For
g = 2, a recent bootstrap calculation has shown that k* < 3.839 [15, 81], so generic
gravitational perturbations of all extremal hyperbolic black holes are singular. It is
immediate to see that the same holds true also when the cross-section of the horizon
is non-compact. Indeed, then the first non-zero eigenvalue is ; which is clearly less
than 4.

If we next consider a test Maxwell field on this neutral extremal black hole, the
appropriate exponent reads

1
Yem = 5 (—1 V1 +4k2) < Yorav- (2.51)

Notice that this perturbation may cause a singularity through its backreaction. Thus,
the metric would be singular only if ygp < 1 which translates to k% < 2. Thus, there
are geometries on H (for example, the Bolza surface which nearly saturates the above
g = 2 bound) for which the Maxwell field would not produce a singularity. Never-
theless, when the black hole is charged, the situation is very different. Gravitational
and Maxwell perturbations are then coupled to each other, and the two physical
exponents become:

2 2 _ 2
%i:% _1+\/5+4k +4./7 +i(c7 DGR 052
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where 0 = 6% — 1. The minimal radius of the hyperbolic extremal horizon is ob-
%, so o > 1. Notice that when o > % (4 +2k* + k*),
Y+— becomes negative. Thus the perturbation blows up on the horizon and our per-
turbative scheme breaks down. It is likely that some curvature invariants will now
diverge. This also signals an RG instability - a small change in the boundary condi-
tions at asymptotic infinity (UV) would lead to a drastic change in the near-horizon
(IR) region. At the moment we are not sure what the endpoint of this instability is.
Indeed, all smooth static near-horizon geometries are classified in four dimensions
[84] so the endpoint cannot be described by a single component extremal black hole
with a smooth horizon. Most likely, the horizon just develops a strong singularity in
which the metric is not even continuous.

tained with no charge, r4 =

2.3.4 Kerr AdS

So far, we have considered only static solutions and their perturbation. This is of
course far from any reasonable notion of ‘all extremal black holes’. To gain more
completeness, let us now consider perturbations of the extremal Kerr AdS with a

mass M%, an angular momentum (17%%2)2' and an angular velocity Q). It will

be convenient to express these parameters in terms of the horizon radius r << L) :

V3

2\ 2
e <1 + %) 312 + 12 \/L4 +2r2 L2 —3rt

a=r —_—
) ’ + 2 _ 2 7 2
1_%2 L= —r4 2ry L

M =

(2.53)

Though very useful, r;- has no geometric meaning per se. Indeed, it is simply the lo-
cation of the horizon measured in a particular coordinate system. We thus introduce
the areal radius, defined as the square root of the area of the spatial section of the

event horizon, divided by 47
\/ 13+ a2
Ry =-+——. (2.54)

1-F
It is convenient to use the Teukolsky formalism [35]. This is especially useful
since one works directly with the Weyl tensor. We want to consider only stationary
perturbations. However, stationarity is ambiguous in this context since one could
consider perturbations annihilated either by d; (which are stationary at infinity) or
by the helical Killing vector d; + Q2dy (which are stationary at the horizon). Since
we are interested in the behavior near the horizon, we choose the latter. Notice
that this is the choice that corresponds to the black resonators at finite temperature
[36]. Following [35] we use the Kinnersly tetrad and Boyer-Lindquist coordinates
for a non-rotating frame at infinity for the Kerr AdS. Rather than restrict to pure
gravitational perturbations, it is no more difficult to consider a spin s perturbation
(with s = +2 corresponding to pure gravity). We want to separate variables for the
spin s field:
) — et (1), (6). (2.55)

Then, the radial (homogeneous) equation reads:

£70, |A3719,00) ()| + H(n @) (r) = 0 (2.56)
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and the angular equation is

—

0= |(aw cos 19)zi 2saw cosf— t s+ Awim
A A

E\* Mg a2 ) 1
- (m + scos 9> — 26— sin’ 0 Seim(6) + siTag (sin 0Ag99Siimew) »

Ny ) sin®@ L2 6
(2.57)
where
. 2 72 2
Ay = (r"+a%) <1+LZ> —2Mr, E= 1—§, Ag zl—ﬁcos 6, (2.58a)
K2 —isA’K .
H(r) = # + 2isKly + S+2|S|A;’ — Aot
v
r2 ) a?
—Is|(s] +1)(2[s] = 1)(2[s| = 7) 575 — Is[([s| —2)(4s" = 12|s| + 11) 1,

3L 3L

(2.58b)
2 2 r?

Kr =w(r"+a°) —ma <1—|—L2>, (2.58¢)
Aotm = Ao — 2amw + a?w? 45 + |s|, (2.58d)

Apim is a separation constant and é; = 1 for s # 0 and é; = 0 for s = 0.

Since we want the perturbation to be invariant under d; + Q2d,, we only consider
fields satisfying w = Qm. Given m € Z, one first solves (2.57) (treating it as an
eigenproblem for A,,) and then inserts the obtained values of that constant into
the radial equation (2.56). This equation for the extremal Kerr AdS has a regular
singular point at 7 = r... Thus, one finds that ¥g ~ (r — 7, )Y and ¥4 ~ (r —r,)7.12
As usual, there are two possible values of y and 7' - one is always negative, so must
be discarded. In general, s = 2 modes (which describe the perturbation of ¥) have
smaller exponent. Their values for the ¢ = 2,m = 0 mode are depicted in Fig. 2.2.
It is clear that this particular mode is always divergent. Since ¥ measures the tidal
forces in the direction transversal to the horizon, this is the same type of singularity
as the one encountered for static black holes. In general, increasing ¢ increases 7y, so
¢ = 3,m = 0 mode is non-singular for small black holes. If m # 0, ¥ may become
complex (even with A = 0) — this is a sign of the superradiant instability.

For completeness, let us discuss what happens when one changes the cosmolog-
ical constant. For simplicity, we restrict to m = 0 perturbations. In the Ricci flat
A = 0 case, all the exponents are (with reasonable accuracy) integers. For A > 0,
we found all y to be positive (at least while real). Thus, Kerr (dS) seems to be free
of this type of singularity at the horizon. However, even a small charge appears to
change this conclusion. In the Kerr-Newman dS background, the electromagnetic
and gravitational perturbations are intertwined. On the neutral background, the
former has a smaller scaling dimension . Since introducing a small charge will not
change its value too much, it follows that this will cause diverging curvature for
Kerr-Newman dS black holes. At the same time, when the cosmological constant
vanishes, both scaling dimensions remain integer and thus no singularity develops.

12Note that here 7,9’ denote the exponents for the curvature perturbation, not the metric perturba-
Y P p p
tion.
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FIGURE 2.2: Curvature exponent <y as a function of the area radius,
R /L, for the £ = 2, m = 0 mode of extremal Kerr AdS. The fact that
it is negative shows that the curvature diverges on the horizon.

2.4 Einstein-Maxwell theory beyond the linear approxima-
tion

2.4.1 Numerical scheme

To construct solutions at nonzero T, we will work directly in Bondi-Sachs coordi-
nates. The reason for this is two-fold: 1) in Bondi-Sachs coordinates there are no
non-analyticities near the conformal boundary, and we thus expect numerical meth-
ods to exhibit stronger convergence properties; 2) we need to work in a coordinate
system where ingoing null geodesics are easy to determine so that one can easily
calculate tidal force singularities. Our work will roughly follow [14, 23], but with
some important differences.
We thus take the following metric and gauge field Ansitze

dv®> 2dod
{—(1—y><1+yA1>L2— -

N . 2 22
As (dx+ Ag(1—y)sinx dv> 4 Sin xd¢2] }’ (2.59)

+ A

L As

A= (1-y)Asdv+ L sinx Agdx, (2.59b)

where all A; are functions of (x,y) and ¢ is a periodic coordinate with ¢ ~ ¢ + 27.
Note that x € [0, 7] is an angular coordinate and y = [0,1] is a radial coordinate,
with x = 0, 7t being the poles of the two-sphere and y = 0,1 being the conformal
boundary and black hole event horizon, respectively. We note that d/dy is globally
null and is thus a physical coordinate with respect to which one can easily com-
pute tidal force singularities by looking at certain components of the Weyl tensor in
(v,y,x,¢) coordinates.
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It remains to explain how Egs. (2.59) together with the Einstein-Maxwell equa-
tions give rise to a well-defined system of Elliptic equations which can be solved
using standard numerical methods, such as the ones in [37].

Instead of using the trace-reversed version of the Einstein equation, we are going
to use the Einstein equation itself. The reason for this is that we will take advantage
of the constraint equations to proceed. We thus consider the following equations of
motion

R 3
Ew = Ry — 8w~ 28w 2 (Fﬂapva - %Faﬁljaﬁ> =0, (2.60a)

P, = V'F, =0. (2.60b)

Note that we have more independent components of the Einstein equations than
variables to solve for. We thus need to choose a subset of the equations and show
that, given appropriate boundary conditions, the remaining equations are solved.
We thus label the equations we actually solve for as dynamical, and the ones that are
enforced via the Bianchi identities as constraints (in analogy with the constraint and
dynamical equations of the initial value problem in general relativity).

For dynamical equations we take E*” and P* with p = {v,x,¢}. This gives
us exactly six equations to solve for within our symmetry class. For the constraint
equations, we take EY* and PY. Now, we would like to show that if we impose
EY¥" and PY at either y = 0 or y = 1, then by virtue of the dynamical equations
and the Bianchi identities, the constraint equations E¥* and PY should be satisfied
everywhere'®. This is a relatively simple exercise that we leave to the reader. We
do, however, have to check that the dynamical equations form a well-posed Elliptic
problem. This, in particular, means that near each boundary we must have a number
of free constants of integration that matches the order of the differential equation.
That is to say, near the conformal boundary and black hole event horizon, we expect
to find six functions of integration.

In four spacetime dimensions, when using Bondi-Sachs coordinates and focusing
on the Einstein-Maxwell equations, one can show that the asymptotic expansion of
the A; functions near the boundary is a power-law in y. As such, we take

Ai(x,y) = JioylAfI)(x). (2.61)
=0

As boundary conditions we impose

Ax(x,0) = A3(x,0) =1, As(x,0) = Ae(x,0) =0, and As(x,0) = pu(x),
(2.62)
with p(x) being our boundary chemical potential. Note that we have not yet detailed
what boundary condition we take for A;. One can input the above expansion in the
dynamical equations and work out which coefficients are left free. It turns out that
all remaining coefficients are uniquely fixed in terms of y(x) and

{a0@), a0 (), A7 (x), A0 (x), 47 (x), AV (), AV (1)} 269)

and their derivatives with respect to x. These are seven free functions (once we fix
#(x)), and thus one too many with respect to what we are expecting. To remove this

131t might appear confusing that we only need to impose the constraint at a single boundary, but this
is the result of the Bianchi identities being first order in Eyy.
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redundancy we impose the constraint equation E¥” asymptotically. This constraint
then imposes
0Aq 1

i 2
% |y 4 [5+2A:(x,0) + A1(x,0)7] , (2.64)

which fixes Agl) (x) in terms of Ago) (x). We thus have the expected number of in-
tegration functions near the conformal boundary and have imposed one of the con-
straint equations.

We now turn our attention to the black hole event horizon located at y = 1. The
powers of (1 — y) in the Ansatz for the gauge field and metric (see Egs. (2.59)) were
chosen in such a way that P¥ and E¥* are automatically satisfied at the black hole
event horizon. The savvy reader will note that we have not yet imposed EY/, but we
shall shortly. We again expand all equations in power series in (1 — y) near the black

hole event horizon
—+o0

Ary) = (1~ NIAD (x). (2.65)

We also impose EY at the horizon, which demands that Ago) be a constant. In fact, if

we set
AV =1 -1 (2.66)

we find that the black hole temperature is given by
ARLT = Ty. (2.67)

All coefficients appearing in the expansion near the horizon Eq. (2.65) are uniquely
fixed in terms of Ty and

(A ), A0 (), A7 (), A7 (), AP (), AP ()}, 2.69)

which is precisely the number of expected integration constants near y = 1.

All we need to discuss are the axes of symmetry, located at x = 0, 77. We will
focus on x = 0, but x = 7 has identical boundary conditions. Since we want ¢ to
have period 271, we must demand A3(0,y) = As(7,y) = 1. Regularity at the axis
further imposes

0A;
ox

One can check that the above boundary conditions are consistent with the constraint
equations, and provide the right number of integration functions near the axis of
symmetry. We have thus sketched in some detail that our dynamical equations,
together with our choice of boundary conditions, enforce the constraint equations
and give rise to a well-posed Elliptic problem.

Before presenting the results, we shall detail a little about the numerical method
we used. Since the functions A; develop enormous gradients close to the black hole
event horizon as T — 0, we discretize the integration domain into two patches
[0, yc] U [ye, 1]. Chebyshev-Gauss-Lobatto grids are placed in each patch using trans-
finite interpolation (see [37]). At the patch boundaries, we require the metric and
its first derivative to be continuous (continuity of the remaining derivatives is then
enforced via the equations of motion). We then implement a standard Newton-
Raphson routine, solving each linear iteration via a LU decomposition. Since large
gradients develop near the horizon, we typically take y. = 0.95. On the patch near
the event horizon, we had to resort to enormous resolutions (with more than 100

—0. (2.69)

x=0
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points in the y direction) to resolve the gradients and achieve convergence. With
these high resolutions, we were able to reach as low as 47LT = 10-3.

2.4.2 Results

For the boundary profile, we take
u(x) = fi+ p1 cosx. (2.70)

This corresponds to a dipole-type perturbation, where the inhomogeneous compo-
nent of the chemical potential is given entirely in terms of an ¢ = 1 harmonic on the
round two-sphere.

The most interesting quantity to plot is the C,g,p component of the Weyl tensor
evaluated on the event horizon, i.e. at y = 1, for which the scaling given in Eq. (2.28)
should apply. In Bondi-Sachs coordinates, this component is simply given by

sin® x

Ay [0A3\% 0A,0A; 92A,
Copop = T 2242 < ) Ap—— (2.71)

As\oy ) dy 3y

dy oy o

In Fig. 2.3 we plot the maximum value of Coppp ON the black hole event horizon, i.c.
maxy+ Cpppg, as a function of 47TL in a log-log scale, for fixed values of fi = 2 and
u1 = 0.1. We have tried other values of ji and y; and the results remain qualitatively
similar. If the scaling given in Eq. (2.28) holds, we should see a straight line in a
log-log plot appearing at low T. This appears evident from Fig. 2.3. Furthermore,
the slope of this linear behavior should be given precisely by ¢ — 2, with v being
computed by the limiting Q at zero temperature. We can extract such Q from the
numerical results via a linear fit
SL gyt @)
in the range 47TL € [1073,1072]. We find go &~ 2.00181 which, as expected is very
close to fi, since pj is small. This is the value of Q that controls the smallest value of
7. This occurs for the £ = 2 mode with the minus sign in Eq. (2.39a). For this value
of Q, we find ¢ ~ 0.122025. On the other hand, the solid black line in Fig. 2.3 is well
fit by a function of the form
agT72 (2.73)

and via a fit in the region 47T € [1073,1072] we find ¥ ~ 0.122401 and ay ~
0.00166763. The agreement between 7y computed with the limiting value of Q and
according to Eq. (2.39a) and the value extracted from the fit (¥) is striking: the dif-
ference is below 0.5%. Furthermore, we expect the / = 2 mode to be nonlinearly
sourced by the / = 1 boundary mode. As such, the expectation is that this mode at
the horizon must have a magnitude that scales as a power of p;. This is precisely
what we find for ay.

We have also looked at curvature invariants, such as the maximum value of the
square of the Weyl tensor at the black hole horizon. For an extremal RN AdS black
hole of any size, we find that the square of the Weyl tensor on the horizon H* is
simply

LAC? e = L* CHPACyypr L. =48 (2.74)

If our linear results are to hold, we should see all curvature invariants approaching
their AdS; value at small temperatures. In Fig. 2.4 we plot the maximum value of
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FIGURE 2.3: A plot showing the maximum of Cy¢pp on the horizon

as a function of 47TL, computed for fi = 2 and y; = 0.1. The solid

black line shows the best fit to the functional form given in Eq. (2.73)

in the range 47T € [1072,107%] yielding ¥ ~ 0.122401 and a9 =~

0.00166763. The blue disks correspond to the numerical data points
extracted from our simulations.

the square of the Weyl tensor on the black hole event horizon as a function of the
temperature in a log-linear plot. The blue disks are the exact numerical results and
the dashed black horizontal line is the AdS; prediction. Clearly, the square of the
Weyl tensor on the horizon not only remains finite as we cool down the system but
it also approaches its unperturbed value, as predicted by perturbation theory.

2.5 Nonlinear scalar field model

It is difficult to numerically construct the T = 0 limit of the solution in the previ-
ous section, or get T low enough to see the anomalous scaling of the specific heat
predicted in Sec. 2.3. To remedy this, in this section we consider a simpler model
in which both can be achieved. We confirm that the exact T = 0 solution has di-
verging tidal forces as predicted by the linear analysis and that the specific heat has
anomalous scaling.

Our model consists of adding 2¢ 4 1 neutral, massless, minimally coupled scalar
fields to the Einstein-Maxwell theory. By cleverly choosing their angular depen-
dence, one can keep the stress tensor spherically symmetric, so the metric remains
spherical. From the behavior of a test field in Sec. 2.2, we still expect the scalars will
develop power-law behavior with non-integer exponents near the horizon which
will backreact on the metric.

The scalar fields can be viewed as components of a vector ®:

(D) = P, (2.75)
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FIGURE 2.4: A plot showing the square of the Weyl tensor on the

black hole event horizon as a function of 47tTL, computed for the

same black holes as Fig. 2.3. The solid black line shows the AdS;

prediction of Eq. (2.74). The blue disks correspond to the numerical
data points extracted from our simulations.

with |m| < ¢. The action is then simply

L[ R S 0,8 (5

where - denotes the usual Cartesian dot product between vectors in R**! and G is
Newton’s constant. One could generalize this by adding the same mass to all scalars
without changing the conclusion.

The equations of motion derived from (2.76) read

R 3 Suv
R v— F8uw — 758 1/22 F“ch_inx F“ﬂ
g8~ gzsw =2 (R 4 [; ) (2.77a)
+ (V@) - (Vo®) = == (Va®) - (VD)
V'Fuw =0, (2.77b)
and
vV, VId =0. (2.77¢)

We will focus on static black holes with a spherically symmetric stress-energy
tensor. We then introduce ingoing Eddington-Finkelstein coordinates (v, 7,6, ¢) in
which the metric and gauge field take the form

ds* = —f(r) dv® + 2dodr + r* p(r) (d6* + sin? 6d¢?) , (2.78a)

and
A= Ay(r)do (2.78b)

with f and p functions of r to be determined by our numerical scheme.
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As promised, we would like to retain non-homogeneity in the scalar field, and
at the same time ensure that the resulting stress energy-momentum tensor is spher-
ically symmetric. We can achieve this by choosing

V2sin(m¢), for m <0
{ 1, for m=0 ,
V2 cos(m¢), for m >0
(2.79)
where P!, (x) are the standard associated Legendre polynomials. The normalizations
are chosen so that

Om(7,0,9) = ¢(r) x M x P! (cosf) x

l
Y. Pulr6,¢)* = ¢(r)*. (2.80)

m=—/{

We first solve Eq. (2.77b). This is a simple exercise since the scalars are uncharged
under the Maxwell field and the solution is spherically symmetric. We thus find

Q

A0 =20

, (2.81)

where Q is an integration constant and ' denotes differentiation with respect to r. It
is a simple exercise to show that in fact Q is the charge of the black hole solutions we
seek to construct so long as we demand lim,_; 1« p(r) = 1. We can use this relation
in the remaining Einstein and scalar field equations to eliminate all dependence on
Ay. The Einstein and scalar field equations reduce to

(Pp)f 1) 6 207 2 NG on
p f 2 r2p? fL2+1’2fp2 p+ 1T re¢gc =0, (2.82a)
1, H(E+D)
P IY) == =0, (282)
i(f2 ’)’+<p’2—p—/2 =0. (2.820)
2p p 277 . .

The line element Eq. (2.78a) has residual gauge freedom. Namely, we are free to
shift » by a constant. We fix this freedom by demanding p(r) = 1, where r = r, is
the black hole event horizon (extremal or otherwise) defined by f(r;) = 0.

2.5.1 Zero temperature results

For zero-temperature black holes, we want f(r) to have a double zero at the black
hole horizon r = r,. We shall also assume that near the horizon ¢ « (r —r,)? for
some power 7y > 0 to be determined shortly. From Eq. (2.82a) it easy to see that the
requirement that f has a double zero at 7 = r implies

312
Q=r, 1+L—;. (2.83)
We thus choose this value throughout and parameterize our extremal black holes by
r4 /L > 0.
We now write

f=folr—r)?(1+6f), (2.84)
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where 6 f is a function we wish to determine next as a function of . The first non-
trivial order in Eq. (2.82a) determines fj as a function of ., and we find

L246r3 1
fo= S s S (2.85)
L?r% L3
where L; is the AdS; radius. The next to leading order terms in Eq. (2.82a) determine
0f. The leading contribution to Jf is of the form

(r—ri)%0f o« (r—ry )™ = 6f « (r—ry)*7, (2.86)

where 4 = min (vy,1/2).
Similarly, p admits an expansion

p=1+pi(r—ry)7, (2.87)

where p; is a known constant. For v = 1/2, there are logarithmic terms appearing
in the expansions of both f and p.

It remains to determine <y. These we read off from the scalar equation, which to
leading order off the extremal horizon yield

y= | iy D g (2.88)
1+6ys

where vy is again the dimensionless radius y, = r, /L. Note that this agrees with
the linear result (2.9).
To proceed numerically, we introduce a compact coordinate

_
=iy (2.89)

so that the extremal horizon is located at y = 0, whereas the conformal boundary is
located at y = 1. To implement our boundary conditions, we also define

oN2(72 .2 2
() = (r—ry) (L —ll:zrr;- 3r3 +2rry) 2. (2.90)

and regard g, ¢ and p as functions of y. The boundary conditions are now simply
q(0) =1, $(0) = 0, p(0) = 1 at the extremal horizon. At the conformal boundary
we demand g(1) = 1, ¢(1) = V and p(1) = 1. The conditions on g and p just
ensure that the spacetime is asymptotically AdS. V is the amount that we turn on
the scalars asymptotically. If there were a holographic dual to this theory, V would
be the source of the operator dual to ¢.

After obtaining the exact solution, we extract the exponents by computing loga-
rithmic derivatives as a function of radius

Y(y) =S5 and F,(y) = —— - (2.91)

If our linear analysis is accurate, we expect 7,(0) = v and 4,(0) = 2y if y < 1/2.
If ¥ > 1/2, we expect 4,(0) = 1. In this case, even though the leading correction
to the metric looks smooth, at the next order there are fractional powers that make
the horizon singular. The results are shown in Fig. (2.5) as a function of y for £ =1
and V = 1. On the top row we have v = 1/4 (y; = 3/ v/10), whereas on the
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bottom row we have v = 3/4 (y; = 1/11/126). On the left column, we plot v, (y),
whereas on the right column, we plot 4,(y). The numerical data is represented in
blue, and the linear analytic prediction is given as a red disk at y = 0. The agreement
between the numerical results and the analytic analysis is reassuring and shows that,
despite starting the scalars with magnitude one asymptotically and having a horizon
singularity, the linear near horizon calculation is reproduced at the non-linear level.
Note that our boundary conditions at no point assumed power law decay. Indeed,
our boundary conditions assumed only that ¢(r4) = 0 and that p(r;) = q(r;) = 1.
In this sense, our nonlinear confirmation of the linear results is non-trivial.
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FIGURE 2.5: Left column: Plots of v, (y) as a function of y. Right

column: Plots of §,(y) as a function of y. The top row has y = 1/4

and the bottom row has v = 3/4. In all cases, / = 1and V = 1.

The red dots denote the scaling exponents derived from the linear
analysis.

2.5.2 Non-zero temperature results

Having discussed the zero temperature limit, we now turn our attention to the non-
extremal case. In particular, in this section, we aim to show that whenever the linear
analysis predicts v < 1/2, the specific heat at constant charge Q, i.e. Cg, will show
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a leading anomalous scaling in the small temperature expansion. In particular, ac-
cording to the general arguments established in section 2.3.2 we expect the leading
behavior at small T of the specific heat to be Co o T27.

We will again use the ingoing Eddington-Finkelstein coordinates of (2.78a). Since
we want a non-degenerate horizon we demand that f has a simple zero at r = r.
Under this assumption, Eq. (2.82a) and Eq. (2.82b) develop a regular singular point
atr = r4. To implement the boundary conditions we define

r r? r ra 2
f(r)z(l—%) (L2+1+L+;+L+2—m) q(r). (2.92)
Again, we introduce a compact coordinate as in Eq. (2.89), and regard ¢, ¢, and p
as functions of y, with y = 0 being the location of the event horizon and y = 1 the
conformal boundary.

At the conformal boundary we demand g(1) = p(1) = 1 and ¢(1) = V, just like
we did for the extremal case. We are thus left with specifying the boundary condi-
tions at the event horizon. Since r = r, is a regular singular point of Eq. (2.82a) and
Eq. (2.82b), the boundary conditions for g4 and ¢ follow from demanding regularity
atr = r4 and in particular yield

dp |, YR )9(0)
4(0) ( 3 y0+2) - [2 fpneT, (2.93a)
and d 2 0(1 + £)$(0)
o) _ _ yatl 40 2.93b
dyl,—o  (v3 +3y} — Q%) q(0)’ (2935)

where we defined y =, /L and Q = Q/L. For p(y), we again demand p(0) = 1.
Having determined the boundary conditions, we can now readily compute all

quantities of interest. We are particularly interested in the behavior of the specific

heat at constant charge Cp. This is obtained via the usual thermodynamic relation

dS
Co=T <8T>Q . (2.94)

In order to determine Cg as a function of T, we need to find the entropy S and
temperature T of our novel black holes. These are given by

2 2\ _ A2
G 4y

q(0). (2.95)

The strategy is clear: we hold fixed a particular value of Q, and decrease y+ thus
decreasing the temperature. The expected low-temperature scaling depends on 7
which is uniquely determined by Q. So we can predict vy from the onset. It remains
then to check whether C does exhibit the scaling predicted in section 2.3.2. For an
RN AdS black hole, it is relatively easy to check that

GCRN 27112
Q Y+ 2 2 22

= 2~ 1+3yy) — 2.96

2 3Q2 _]/%_ _’_3]/4_1’_ [y+ ( + y+) Q ] ( )
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and thus near T ~ 0 we find

G CRN Z\F . 1 32 - -
Q T 2\1/4 2
~—4/=(1+120 1— —— T+O(T 2.97
L2 3 3( ) < V14 12Q2 () 297)

In Fig. 2.6 we plot the logarithmic derivative of Cg, at constant charge Q, with
respect to T. This particular data was collected for / = 1, v+ = 1/4, and thus
Q = 34/37/10. Furthermore, we have chosen V = 1/2. The purple disks are the
numerical data, the solid black curve is given in Eq. (2.96) for the same charge Q
and the red horizontal line shows 1/2 and is there to guide the eye. We can see that
the logarithmic derivative approaches 2y = 1/2 at low temperatures, as expected
from our scaling in section 2.3.2. For smaller values of V we need to resort to (even)
smaller temperatures to see the scaling emerging at small T. We have probed other
values of Q and find that whenever v < 1/2, we see an anomalous scaling. For
v > 1/2, we return to the standard AdS; linear scaling given in (2.97).
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FIGURE 2.6: Logarithmic derivative of Cp, at constant charge Q,
with respect to T. For the data shown we have used ¢ = 1 and
Q/L = 3\/37 /10. The anomalous scaling predicted in section 2.3.2 is
marked as a horizontal red line showing 2y = 1/2, the purple disks
are the exact numerical data collected at finite temperature and the
solid black line shows the standard AdS; result of Eq. (2.96).

2.6 Discussion

We have seen that as soon as one breaks the usual spatial symmetry, almost all sta-
tionary black holes in AdS, develop curvature singularities on their horizon in the
extremal limit. (The main exceptions are small toroidal black holes.) This singularity
results in infinite tidal forces for infalling observers. Contrary to the usual situation
where the horizon curvature increases when the black hole becomes smaller, this sin-
gularity becomes stronger when the black hole becomes larger. Since the singularity
arises in the limit of a family of smooth black holes, the solution is clearly physical
[53], and not like the singularity of M < 0 Schwarzschild.



2.6. Discussion 41

The diverging tidal forces close to the horizon should be proportional to the de-
viation from spherical symmetry at infinity. Thus, one could be tempted to infer that
(close to the spherical symmetry) the physical effects are negligibly small, despite
the null singularity. However, to properly account for e.g. the total deformation an
infalling observer experiences, one should look at the integrated tidal forces rather
than their pointwise values. If the scaling dimension of the metric perturbation sat-
isfies v > 1, the forces are integrable, so the deformation would be finite and indeed
small for the boundary conditions close to the spherical symmetry. However, for
¥ < 1, the forces are not integrable. Thus, the total deformation remains infinite for
arbitrary small deviations from the spherical symmetry. In particular, this is the case
for RN AdS of any charge and for sufficiently large Kerr AdS black holes.

Many supersymmetric solutions have been found in AdS with smooth hori-
zons.!* However, if one deforms the boundary conditions slightly, supersymme-
try will be broken and we expect that the horizon will become singular. (We have
checked this explicitly in one case.) So supersymmetric solutions are very special,
like Reissner-Nordstrom, and do not see these singularities.

The Einstein-Maxwell theory that we studied can be embedded in supergravity
in different ways. In some embeddings, there are charged scalars with mass m and
charge g. Depending on (1, q), there may be a range of r in which the extremal black
hole is unstable to turning on the scalar field [34]. In this case, the singularity is likely
to become much worse, as we will see in the A = 0 case in Sec. 4.4. However, even
with charged scalars, there is usually a space of parameters for which there is no
instability to turning on the scalar field, and in those cases, our tidal force singularity
will remain. (An extensive discussion of the near-horizon scaling dimensions of
supergravity fields is given in [22].)

It is natural to ask how stringy or quantum effects will modify this singularity.
Although we cannot fully answer this at the moment, let us make the following
comments. Infalling strings will certainly become excited by the large tidal forces
and should backreact on the geometry. Quantum effects are often discussed in the
context of Euclidean theory. To this end, let us focus for a moment on static solu-
tions since they have a real Euclidean analytic continuation.'® In the extremal limit,
the horizon moves off to infinity and becomes another asymptotic boundary to the
Euclidean solution. All curvature invariants of the Euclidean solution are the same
as the Lorentzian solution. Since the latter remains finite, and the Euclidean cur-
vature is completely determined by its scalar invariants, the Euclidean solution is
completely nonsingular! The only remnant of the tidal force singularity seen in the
Lorentzian solution is that the solution decays with noninteger powers of the radius
in the asymptotic region associated with the horizon. But that also occurs near the
boundary at infinity for most massive fields in AdS and does not cause any prob-
lems. Thus there is no reason to discard these solutions. In particular, they are
proper saddles for the Euclidean path integral with appropriate boundary condi-
tions. It follows, that such black holes may be also prepared (as quantum states)
using the Euclidean path integral.

As we have discussed, when these tidal force singularities are strong enough,
there is a clear signal of them in a holographic dual theory. Various quantities such
as the specific heat will exhibit anomalous scaling with temperature as T — 0. For
topologically spherical, charged black holes, this applies whenever the black hole is

14Gee [94] for an example of a supersymmetric solution with a singular horizon.

15The Maxwell field will also remain real if we consider the magnetic rather than electrically charged
solutions. Since the four-dimensional Maxwell stress tensor is symmetric with respect to exchanging
magnetic and electric fields, the metric remains the same.
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larger than roughly the AdS radius. We have also discussed two examples of ex-
treme black holes in pure gravity: Kerr AdS and hyperbolic black holes. These black
holes exhibit more mild singularities which holographically appear in anomalous
higher-order corrections to the leading (linear in T) behavior of the specific heat. DC
resistivity also exhibits power law behavior dictated by the scaling dimensions we
found [57].

Finally, there is an interesting holographic argument that a singularity should
perhaps be expected on the horizon of an extremal black hole and not be resolved by
quantum effects.!® The entanglement wedge of the entire boundary of an extremal
black hole only covers the region of spacetime outside the horizon (that becomes a
Cauchy horizon in the extremal limit). Since there is no other boundary, it appears
that the region inside the horizon cannot be described in terms of the dual theory. If
the theories are really equivalent, then perhaps spacetime should end at a singular
horizon. Note that this argument does not depend on having a timelike singular-
ity inside the black hole. The event horizon is a Cauchy horizon for any complete
spacelike surface outside the black hole.

There is still a lot for me (and, hopefully, for an interested Reader) to under-
stand, for example, what happens in supergravity theories. Probably the most im-
portant question is connected with the recent developments regarding nearly ex-
tremal black holes” entropy [72] (see also [16] for the supersymmetric part of this
story). These highly sophisticated calculations start with the dimensional reduc-
tion to the JT gravity (with many matter fields). Although the authors do not ig-
nore Kaluza-Klein modes in their path-integral calculations, they assume that those
modes are not sourced. As we have seen, at least classically, when they are sourced
they may drastically change the thermodynamics of the system. A naive calculation
shows that (as T — 0) they are more important than the classical Schwarzian but less
significant than the quantized one. It is not clear what will happen with the Kaluza-
Klein modes when we will treat them quantum-mechanically as well. Moreover, the
scaling dimensions of those modes depend on the black hole’s charge. This begs the
question of how to describe them in the holographic (one-dimensional) dual.

Let me end this chapter by emphasizing that the arguments presented here are
mainly geometric in nature. The fact that all (weak) fields exhibit a power-law be-
havior close to the extremal horizon is independent of any equations of motion and
comes simply from the fact that any near-horizon geometry is scale invariant. Only
the values of the exponent are to be determined from the dynamics. Thus, we may
expect similar behavior in other dimensions, in theories with more derivatives or
more matter fields. In retrospect, it seems almost necessary that generic extremal
black holes are non-smooth and it is rather a mystery why all four-dimensional ex-
amples without a cosmological constant are perfectly regular.

16T am grateful to Leonel Queimada for suggesting this during our ride from Davis to Santa Barbara.
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Chapter 3

A deformed IR

3.1 Introduction

It has been said already a few times in this Thesis that the dual of a thermal state of
a field theory at temperature T and chemical potential y is described by an asymp-
totically anti-de Sitter (AdS) charged black hole [56]. Assuming that the spherical
symmetry, the black hole is obviously given by the Reissner-Nordstréom (RN) AdS
solution. Since another tenet of holography is that the radial direction corresponds
to an energy scale in the field theory [97], the IR behavior of the theory is described
by the near-horizon limit of the extremal solution, which for RN AdS is AdS, x S".

In four bulk dimensions, AdS, x S? remains the near-horizon geometry of the ex-
tremal black hole even if one deforms the chemical potential or the boundary metric
to a static, non-spherical configuration [66]. (For smooth horizons, it has been shown
that the only static near-horizon solutions in Einstein-Maxwell theory are AdS, x H
where His a space of constant curvature, i.e., a sphere, torus, or a compact Riemann
surface [82]. Even though this theorem does not apply to generic non-spherical so-
lutions since the horizon is singular, the conclusion still holds as follows from the
previous Chapter.) Intuitively, this is because the extremal horizon is infinitely far
away from any effect outside the horizon (along a static surface). From the dual field
theory perspective, AdS; x S? describes a stable IR fixed point. Note that we are not
referring to dynamical stability, but rather stability in the RG sense, which is a prop-
erty of the space of static solutions. It is widely believed that in higher dimensions,
AdS;y x S" similarly describes a stable IR fixed point.

We will show that this common belief is incorrect. For all n > 2, generic static
non-spherical perturbations of AdS; x S" blow up on the horizon, even though the
horizon is still infinitely far away. We will construct a new near-horizon geometry
in D = n+ 2 = 5 that is invariant under only SO(3) (and not SO(4)) symmetry and
show that it is stable to SO(3)-preserving perturbations. In addition, we construct an
open set of non-extremal, SO(3)-invariant black holes and show that as T — 0, they
approach our new near-horizon geometry. This shows that, within this symmetry
class, our new solution is a stable IR fixed point for four-dimensional holographic
theories. Of course, SO(4)-symmetry is a special point in our class, and if one im-
poses it, one still flows to AdS; x S3 but this is now seen as an unstable fixed point.
This is illustrated in Fig. 3.1.

There is actually a one-parameter family of these new IR geometries which are
conveniently labeled by the total charge Q. While we do not have analytic expres-
sions for the new solutions, we can construct them numerically and (for small Q)
check them with an analytic perturbative expansion. When Q is small, the solutions
are close to AdS, x S3. However, as Q increases, the curvature near the poles of
the S® decreases so the sphere becomes flattened. For even larger Q, this curvature
becomes negative. In the limit Q — oo the curvature near the poles approaches a
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Deformations

FIGURE 3.1: Illustration of stable and unstable fixed points in the RG
sense.

finite negative value, so the sphere looks like two large hyperbolic disks joined by a
positive curvature ring around the equator. There is still an AdS, factor, but now it
is warped as one moves around the deformed sphere.

The solutions we find turn out to be unstable to perturbations that break the
SO(3) symmetry, so they do not describe true stable IR fixed points. It is an im-
portant open problem to find the gravitational description of these true stable fixed
points. One might think that a reasonable approach to this problem is to first clas-
sify all possible near-horizon geometries in higher dimensions and then study their
stability. However, this approach is doomed to failure since we expect there to be an
infinite number of (RG unstable) near-horizon geometries [66].

We will also show that the toroidal black holes exhibit a phase transition. Small
ones are RG stable and larger ones become unstable. For a generic solution at the
threshold of instability, there is no new geometry bifurcating. We constructed per-
turbatively two new families of solutions that start from very special ones. One may
show that they are the only bifurcating ones (from those points in the moduli space).
Unfortunately, they are still RG unstable.

3.2 Reissner-Nordstrom AdS is IR unstablein D =5

To study IR fixed points of four-dimensional holographic theories, we work with the
D = 5 Einstein-Maxwell theory

— 1 5 — _ ab E
5_167TG5//\/[d X/ g(R F.,F +L2>+SaM’ (3.1)

where F = dA, A is the Maxwell 1-form potential, L is the AdS5 length scale and Gs
is the five-dimensional Newton’s constant. The equations of motion derived from
this action read

R 6 b
Rap = 5 8ab = 178a0 =2 (FaCFbc - %chFCd) (3.2a)

and
V%, =0. (3.2b)
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There is a unique two-parameter spherical solution to these equations (with a
non-constant areal radius) which is given by

2
dszy = —f(r)dt? + ar r2d03, (3.3a)
f(r)
2
Apy = L ( ”) dt, (3.3b)
ry r2

where d()Z is the metric on a unit radius round three-sphere and
12 o 4q 4q
= — 1 - 34
f(r) T <L2+ +3r+>+3r4 G.4)

This is the familiar Reissner-Nordstrom AdS solution (RN AdS).
We will take |g] < gext, with

\/,
let 2 1 + 2 L2 + 7 (3.5)

so that r = r; is the largest root of f(r) = 0. The black hole event horizon is then the
null hypersurface r = r, where f(r) vanishes. For |g| < gext, f(7) vanishes linearly
and the black hole has non-vanishing Hawking temperature

TH — |f’(7’+)| — zqut <1 _ q2> , (36)

4 2
4 3n r+ Hext

whereas for ¢ = gext, f(r) vanishes quadratically at » = r and the hole is said to
be extremal and has vanishing temperature. The parameter q determines the total
charge of the black hole by

q
= — 7
o="1, (37)
while its energy E, chemical potential y and entropy S are given by
3nry (1} 49° q ™ 5
E = 3G <B+1+%>, }l—E, and S—Er+, (3.8)

respectively. It is a simple exercise to show that all of these thermodynamic quanti-
ties satisfy the first law of black hole mechanics

dE = Ty dS + udQ. (3.9)

Hereafter we will focus on the extremal case. In particular, we are interested in
the near-horizon geometry of the RN AdS black hole. To obtain this, we take a limit
where we zoom near the extremal horizon located at r = r... Define new coordinates
p. Tby

Ligs, T
r=ri(1+Ap) and t= 2, (3.10)
T4+ /\
where A is a constant and we defined
1,2 LZ
2=+ 3.11
AdS T 4(12 +312) (3.11)
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We then take the limit A — 0. The resulting line element is the Robinson-Bertotti
solution (or a five-dimensional version thereof), which takes the familiar AdS, x S3
form

2
dsfg = Ligs, (—pszz + c;’;) +73d03, (3.12a)
and 5
Arg = X L5, dT, (3.12b)
+

with p = 0 being the black hole horizon, which in this limit yields the AdS, Poincaré
horizon. The Robinson-Bertotti solution is itself a solution of the Einstein-Maxwell
equations, since it is just a particular limit of the RN AdS black hole.

This near-horizon geometry, according to the standard rules of AdS/CFT [31],
controls the IR of the dual theory. For this reason zero temperature solutions such as
the one above, are often called IR geometries. To understand whether a given IR ge-
ometry is stable, in the RG sense, we perturb the IR geometry by time-independent
perturbations (1, a), where h and a are metric and gauge field perturbations, respec-
tively.

One might think that perturbing (3.12) is a complicated task, but it turns out
that symmetry can help us. We first note that AdS, has constant curvature. This
means we can use harmonic functions on AdS; as building blocks for construct-
ing our generic perturbations (1, a). For time independent perturbations, harmonic
functions on AdS, take a particularly simple form:

Y(y+1)

2
LAdSZ

Oads, S+ () — Sy(p) =0 = Sy(p)=Cp". (3.13)

where C is a normalization constant.

To construct perturbations (h,a) we use S, (p) as building blocks. Let I be an
AdS, index and [ an index on S3. It then follows that metric perturbations with
indices on the S° only behave as scalars under coordinate transformations on AdS,,
so we take

hyy =Sy (0) Iy (3.14)

where /1 ij is a symmetric 2-tensor on S3. The metric components #, j» on the other
hand, behave as vectors, so we set

hyj = DiS,(p) Iy (3.15)

where Dj is the covariant derivative on AdS, and h j a vector on Ss.

Finally, we come to metric perturbations with indices on AdS,. These behave
as symmetric 2-tensors with respect to coordinate transformations on AdS,. Any
symmetric 2-tensor can be built from a trace and a traceless symmetric 2-tensor. The
latter two need to be built from S, (p). We thus set

h[] :SvﬁLgI]+flTSI] (3.16)
with Lo 3
— rly +
Sij = DiDjS,(p) — ETgI]SW(p) (3.17)
AdS,

where g;; is the metric on AdS; and h; and hit are functions on S°.
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We now discuss the thorny issue of gauge invariance. A generic gauge transfor-
mation ¢ can be written using the same procedure as above. In particular we find

Eadx” = & DS, (p) dx' + &8, (p) da!, (3.18)

where s is a scalar on $° and ¢ ; is a vector on S3. The metric perturbations will
transform under an infinitesimal transformation generated by ¢ according to

oh = ,ngRB, (319)
which induces
~ 1) -
sy = T T g (3.20a)
LAdSZ

Shr =28 (3.20b)
oh; = 2(Dyés + &) (3.20¢)
Ship = (Le8)y (3.20d)

where §j; is the metric on a unit radius round S and D; its metric preserving co-

variant derivative. We will work in a gauge where we choose {5 and ¢; so that
hr = h; = 0.
For the gauge field perturbation, we have

a=dsS,(p)dT, (3.21)

where dg is a function on S3. Our perturbed gauge and metric field configurations
are thus, in our gauge, parameterized by /i, f jj and ds, which depend on the s3
angles only.

Next we repeat the procedure and decompose the remaining perturbations in
terms of spherical harmonics on the S3. These, in turn, are parameterized by a quan-
tum number ¢ € IN. Since we want to study non-spherical perturbations, we are
interested in £ > 0.

We are left with a linear system of homogeneous, algebraic equations for the coef-
ficients, whose nontrivial solutions can be studied by computing the corresponding
characteristic polynomial. This reduces to a fourth-order polynomial equation in
the scaling exponent -y, with coefficients depending on ¢ and r.. All the roots of the
polynomial, which provide the non-trivial solutions to the homogeneous equations,
are real. We can eliminate two of the four solutions with boundary conditions at the
horizon. Since the two smallest roots are negative, the corresponding perturbation
would blow up as p — 0. We therefore discard them as our choice of boundary
conditions. The remaining two roots give the physical scaling of the non-spherical
perturbations near the p = 0 horizon. If one of them is again negative, it cannot be
removed by boundary conditions, and indicates that the perturbation is singular on
the horizon.

It is convenient to view the roots as functions of the dimensionless horizon radius
y+ = r4+ /L. The largest two roots are:

1 1 1
7e(lys) = 5 |45 A= 1281 iS\/4 +12 </32+ - 144> Ae—1|, (3.22a)



48 Chapter 3. A deformed IR

where

2
By = L‘zgsz - é and A, =((0+2). (3.22b)
Note that A, is the eigenvalue of spherical harmonics on S* and Lags,/L? is only a
function of y (see Eq. (3.11)).

It remains then to check whether v+ (¢, y; ) are positive. It turns out that the scal-
ing dimension y (¢, y+) is positive for all values of £ and y but y_(¢,y4 ) is not. In
particular, for / = 2, y_ is negative for all y. > 0! Since a generic linear pertur-
bation will always contain the ¢ = 2 mode with some coefficient, we conclude that
generic non-spherical perturbations blow up on the AdS, x S3 horizon. Nonlinearly,
even if one starts with a deformation on the boundary that does not include an ¢ = 2
mode, it will be generated as one evolves in to smaller radius. This means that from
the standpoint of the RG flow of a dual field theory, AdS; x S® is an unstable IR fixed
point.

We now comment on the / = 0,1 modes. In this case one has to repeat the
above analysis separately, since some of the structures that are used to decompose
our perturbations with respect to coordinate transformations on S° turn out to van-
ish. A deformation with / = 0 corresponds to an infinitesimal deformation of the
background charge. For ¢ = 1, the calculation is more subtle. Once the dust set-
tles, one finds a single pair of modes, with one being negative and another positive.
Again, we discard the smallest exponent based on boundary conditions as p — 0.
We thus restrict to the positive exponent, which is precisely given by v (1, y) with
v+ (4, y+) given in Eq. (3.22a).

For modes with ¢ > 3, v_ (¥, y ) becomes negative whenever the horizon is large
enough. The condition is:

v 2 () = = L= 2) e+ ), (323)

In Fig. 3.2 we plot y_ (¢, y) for several values of £. Note that these higher £ modes
become more divergent on the horizon of a large black hole.
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FIGURE 3.2: The scaling exponents y_ for perturbations of AdS; x
S3, as a function of y = r; /L, computed for several values of /
shown on the legend on the right.
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The instability of the near-horizon geometry that we found above in D = 5 be-
comes even worse in higher dimensions, where the solution is AdS; x S". The com-
putation detailed above can be readily generalized to n > 3. The corresponding
scaling dimensions are now given by

1 2A dn(n+1)A
Telly) = 5 {5- 220 At U,

1/2
4(n+1) , 1 (n—-1)\° n—1\2 1
irtl\l4n/\€!’8+4712<n+1> HVES Tp (324)
with
e 1
By = + —— and Ay=/(l({+n—1). (3.24b)

(n—12+nn+1)y% 2n

There are now more modes that are always unstable. In analogy with the D = 5
(n = 3) case, we see that for £ = n — 1, we have

7y-(n—1,0) =0. (3.25a)
However,
1/ |n—35|
_(2,0) = = -1, 3.25b
7o = (5= -1) (3.25b)

which is negative for all n > 3. In fact, for ¢ <n—1,y_({,y+) < Oforall y; > 0.
Which modes dominates near the horizon depends on the size of the black hole. This
is illustrated in Fig. 3.3 where we plot y_(¢,y) forn = 5and ¢ = 2,3,4,5. Since
Reissner-Nordstrom with A = 0 corresponds to y+ = r /L = 0, this shows that the
near-horizon region of RN in D > 5 is also unstable to non-spherical perturbations.
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FIGURE 3.3: The scaling exponents y_ for perturbations of AdS; x
S5, as a function of y+ = r4/L, computed for several values of ¢
shown on the legend on the right.
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An electrically charged BTZ black hole (whose near-horizon geometry is de-
scribed by AdS; x S1) is different from the above discussion. This stems from the
fact DyDgf on S! (for any function f) is a pure trace. Moreover, gravity has no local
degrees of freedom. In this way, three-dimensional Einstein-Maxwell theory has a
lot in common with the / = 1 sector of its higher-dimensional counterparts. The
background reads:

2 2
g= % <—p2dt2 + dp‘;) + 2 dg? (3.26a)

and L
A= Epdt. (3.26b)

Notice that . is an arbitrary parameter. We may again decompose perturbations in
terms of S, (p) and Fourier modes ¢¢ on S'. Then, we find two possible values of

’)’:
1 3 2m2L2
=z 1+ 27
TE= T E T 97 (3:27)

The boundary conditions at the horizon choose v > 1. Thus, we see that the BTZ
black hole is RG stable. Nevertheless, it may suffer from (rather mild) tidal-force
singularities as longas 1 < 7y < 2.

3.3 A new SO(3)-invariant IR geometry

In this section, we construct a new near-horizon geometry that is only invariant
under an SO(3) subgroup of the SO(4) rotational symmetry. We will show that it
is stable to small SO(3)-invariant perturbations. Since the charge is conserved in
Einstein-Maxwell theory, we need a near-horizon geometry for each Q. For AdS, x
S® this just corresponds to a trivial overall rescaling. However, our new solutions
will depend non-trivially on Q, so we actually construct a one-parameter family of
new IR geometries.

These new geometries can be written as a warped product of AdS, with a de-
formed three-sphere, where the AdS; length scale depends on the angles of the S°.
The S3 is deformed in such a way that preserves a round S?. In order to describe
these solutions we first introduce an angle 6 € [0, 7r| and write the metric on the unit
round S° as

dO3 = d6? + sin? 003 (3.28)

where d()3 is the metric on a unit radius round S2.
We then write our full IR metric and gauge field configuration as

sin? 6
H(0)

2 2
ds? = L2 {B(G) <—A3 pzd—t + ‘;@) +Y2 [H(G)de)z +

T3 dag} } (3.29a)

and
A= —PIR AO 1Y dt ’ (329b)

Note that the factor in parenthesis is just AdS; with the Poincare horizon at p = 0.
Our Ansatz depends on two constants, Y, and pir, that determine the size of the
horizon and charge density respectively. We have introduced a third constant Ay
that just rescales t. It will play no role in constructing the near-horizon geometries
but will be useful when we later relate these geometries to full asymptotically AdS
solutions. The function B(f) describes the warping of the AdS,, and the function
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H(0) describes the distortion of the S>. The entropy, S, and total electric charge, Q,
of our field configuration are given by

2y3
_ Yy

S PIR 4,3 T sin29
~ 2Gs

—Y
Gs tJo B(9)

and Q=

de, (3.30)

Note that since the charge is conserved, Q can be computed at the boundary or the
horizon.

The Maxwell equation is automatically satisfied using Eq. (3.29b), whereas the
Einstein equation yields a pair of nonlinear ordinary differential equations

sin?0 )\’ 4 03
< e B’> +2Y?2 sin’6 <1 — 5% — 4B> =0 (3.31a)

where ' denotes differentiation with respect to 6 and

1 B2sin?0 ] 3sin?f
Fopm. [( = ) ] —4B*H — "= B” —4Y} sin® 6 (pf — B +6B%) = 0.
(3.31b)
Note that, as advertised, Ay does not appear in these equations of motion. Regu-
larity at the poles requires the boundary conditions B’(0) = B'(71) = 0 and H(0) =
H(m) =1
From Eq. (3.31a) it is clear that pir is not a free parameter. Indeed, one can in-
tegrate both sides of Eq. (3.31a) and use the above boundary conditions to find the
following relation

/” 20 [1- 2P 4p00)] a0 =0 (3.32)
0 ° 3B(6) Y '

Thus, although our Ansatz depends on two free parameters (Y4, pir) the relation
above fixes one of them, so that we only have a single parameter free.

3.3.1 Perturbative analytic treatment

We have not managed to find closed form solutions of Egs. (3.31). We have, however,
found an analytic perturbative scheme which we can extend to whatever order in
perturbation theory we wish. The idea is the following. We have seen in section
3.2 that ¢ = 2 perturbations have y_(2,0) = 0. This suggests that there might
exist a new family of near-horizon geometries with AdS, symmetry that branches
off from the zero size limit of AdS, x S2. Since the zero size limit is singular, this is

an unconventional perturbation expansion. Nevertheless we will see that it is well
defined.
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We thus expand
o
B(0) = Y b)(0)e, (3.33a)
i=1
oo .
H@) =1+ ) n9 (), (3.33b)
i=1
+o0 o
ok = Y EO¢, (3.33¢)
=1
+oo
Y2 =Y =2l (3.33d)

where ¢ is a book-keeping parameter, whose normalization we choose to be
s
/ Bsin20Y,_,(0)d6 = ¢ (3.34)
0

where Y;(6) is a spherical harmonic on the three-sphere preserving SO(3), which we
choose to be given by

1 T
Y, (8) = \/gsm[(sij'el)g] so that /0 Y,(0)Y;(0)d0 = 6,; and  Y,(0) > 0.
(3.35)
Note that H starts with 1 to satisfy our boundary conditions, and € > 0 is required
since Y? begins at order €.

Despite the fact that ¢ = 0 corresponds to a singular solution, at each order in ¢
our boundary conditions are sufficient to solve for each of the functions above. In
particular, for any finite value of € our perturbative expansion yields a completely
smooth solution. We carried this expansion all the way to O(¢”). The first few coef-
ficients are

V7

56 cos(20) — 61
b(l) )= ————, b 2 _ ,
) 2(2m)t/4 ©) 1427
b3 (6) = 588 cos(26) + 588 cos(46) + 6354
147+/7(27)3/4 ’
423/%sin% 0 496 \F
Mgy~ < SNV @ gy — 226 |2 . 2
h' () T h')(0) 5 nsm 0,
1621/4sin 6
KB (0) = — 2= S 715891 cos(20) + 11442]
©) 1029ﬁ7r3/4[ (26) ]
s o V7 g 6L e 1585
8(2rr)1/4 56727 98+/7(277)3/4
3/4 1/4
SN N 639
/4 7 Vm 49\/7 773/4

Note that since the solution starts with an ¢ = 2 perturbation, there is a reflection
symmetry about 6 = 77/2 which is preserved to all orders.
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With the above it is a simple exercise to compute the total charge and entropy as
a function of e. These turn out to be given by

GsQ  V21m3/4 303 36869 [2, 15631151 4
L2 2174 7\/7(2m)1/4 343 V rr 2401v/7(27)3/4
682434694 , 630372065550 - 6
€+ e+ 0(e 3.37a
504217 823543+/7(27r)5/4 ( )] (3:372)
and

615 574395 , 34688917 4

G55 _ ,1/8-3/4_13/8 3/2
— = 2777 e e+ e+ €
14V/7(2m)V4 " 2744+/27 5488+/7(27r)3/4

L3 b

392491070291 4 309058579837106
301181447 421654016+/7(277)5/4

e+ (9(56)] , (3.37b)

respectively. The parameter ¢, though very useful for practical implementations,
has little physical meaning. We shall see that the entropy of this novel solution is
not very different from that of an extremal RN AdS black hole with the same total
charge Q. For this reason, we define

AS = 5(Q) — Srn(Q) (3.38)

which gives the difference in entropy between one of the solutions we are seeking
to construct and an extreme RN AdS black hole with the same total charge Q. It is
then a simple exercise to compute AS as a function of ¢ (or alternatively, Q through
Eq. (3.37a)). The final result, consistent with our O(¢”) expansion for B and H, turns
out to be

GsA 3/81/4q.7/8.9/2 34682!/8 7r°/8 11/2 987123703/8 13/2 15/2
T:—z 78 e S — ~5/i e i 8aigg € +O(e7'%)
. 16V2 GsQ\ "2 1_310\@ GsQ\ , 415279 (GsQ 2
© 44175/231/4 12 497t 12 4802772 L2
GsQ\°
+0 < 22 )]} (3.39)

This analytic expression works remarkably well when Q/ L2 < 1.

3.3.2 Exact numerical results

We now solve Egs. (3.31) fully non-linearly using numerical methods. It is easy to
see that, at least locally, Eqgs. (3.31) gives a one-parameter family of solutions. It
might appear that Egs. (3.31) depends on two parameters, p% and Y2, but because
of the global constraint in Eq. (3.32), one of these parameters gets locked in terms of
the other.

We discretize the 6 direction with a Chebyshev-Gauss-Lobatto collocation grid,
and solve the resulting equations using a Newton-Raphson method. These methods
have been reviewed in the literature in [37]. The size of the horizon is determined
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by Y;, and the charge Q is a monotonically increasing function of Y. We are able
to construct solutions for all Q up to about GsQ/L? ~ 3 x 10* without encountering
any numerical issues. We believe they extend to arbitrarily large Q.

In Fig. 3.4 we show AS for charges up to GsQ/L? ~ 100. Note that AS < 0 for all
Q, showing that the new IR geometries have smaller entropy than RN AdS with the
same charge.
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FIGURE 3.4: The difference in entropy between the new near-horizon
geometries and RN AdS, as a function of charge.

We now explore the geometry of a spatial cross section of the horizon. It is topo-
logically S%, but is no longer round. The reflection symmetry about 6 = 71/2 that we
saw in the perturbative solution remains in the exact solutions for all Q. To begin,
let us try to embed it into R*. To do this we set

y1=LZ(6),

Y2 = LR(0)cosby,

y3 = LR(0)sin6; cos¢,
ys = LR(0)sinb;sin¢,

with 0; € [0, 7] and ¢ ~ ¢ + 27 the usual latitude and longitude angles on a two-
sphere, respectively. We then compare the induced metric on

4
ds> =Y dy? (3.40)
i=1

with that of a spatial cross section of our horizon obtained from Eq. (3.29a). We thus

obtain

_ Y,sin®
H(9)

R(6) and Z'(0)* = Y2H(8)* - R'(9)>. (3.41)

The latter equation can be solved using numerical methods. For small Y, (i.e. small
Q) the horizon is only slightly distorted from a round S?, consistent with the previ-
ous perturbative results. For sufficiently large values of Y, (i.e. large Q) there is no
solution to (3.41), showing that the near-horizon geometry stops being embeddable
into R*. This is similar to Kerr and Kerr-Newman black holes near extremality [103].
The isometric embedding of the horizon for GsQ/L? ~ 1.61 is shown in Fig. 3.5.
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One can see that the horizon becomes flattened like a pancake. The black dashed
line shows what a perfect sphere would look like, for comparison. The blue disks
correspond to the numerical embedding obtained by solving Eq. (3.41).
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R

FIGURE 3.5: Isometric embedding of the near-horizon geometry into

R*. The black dashed line shows what a perfect sphere would look

like and the blue disks represent our novel pancaked IR geometry.
This particular embedding was generated for GsQ/L? ~ 1.61.

In order to picture the large Q solution, we first plot R and F? on the horizon, as
a function of 6 for GsQ/L? = 100. This is shown in Fig. 3.6. We can see that near
the equator, i.e. 8 = 71/2, the Ricci scalar R is positive as expected, but R becomes
negative near the poles. In addition, we see that the electric field is stronger at the
equator and weaker near the poles.

To map out how a round sphere with a uniform electric field (for small Q) evolves
to something like Fig. 3.6 (for large Q), we plot R(0), R(7/2), F?|,_, and FZ‘GZ% as
one increases Q. This is shown in Fig. 3.7. One clearly sees that the curvature at the
poles decreases rapidly as Q increases from the large positive curvature of a small
sphere to a constant negative value. The curvature at the equator also decreases but
settles down to a constant positive value. The limiting behavior at large Q is

lim L2R(0) = Ry~ —9.3913, lim L2R(7/2) = R.~9.3058, (3.42a)

Q—+o Q—+o0
and
lim F?|,_, ~ —2.5947, lim F?|,_. ~ —18.9797. (3.42b)
01400 =0 Q— o0 =2

Since the horizon volume is growing with Q, but the curvature is not decreasing, the
horizon must look like a large three-dimensional hyperbolic space near each pole,
joined together by a positive curvature ring around the equator.
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FIGURE 3.6: R and F? on the horizon, as a function of § for Q ~
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FIGURE 3.7: R(7/2) (blue disks), R(0) (orange squares), F2|6:%

(green diamonds) and F? ] o—o (red triangles) as a function of Q.

To understand the limiting geometry more explicitly, we will change gauge. Con-
sider

2 2
ds® =12 {B(X) (—A% pzcitz + i)g) + Y2 [H(x)dx? + sin® x dO3] } (3.43)

instead of Eq. (3.29a). This amounts to a simple change of coordinates. We are in-
terested in the large Y limit of the resulting equations of motion. The advantage of
this coordinate system is that we have to solve just a single second order equation of
motion for B. Indeed, after some algebra, we find that H can be expressed in terms
of B and its first derivative:

4 (B*+Y? [pfx — B(1—6B)] sin® x) H(x) =

oB 2 (3.44a)
= <sin)(ax +4cost> —12B2 cos? .
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while B()x) satisfies the following second order differential equation

in2 2Y2VH
9 <sm XBB> B +\/»Sin2X(4P%R_3B+1sz) =0. (3.44b)

oax \ VH 9X 3B

Note that near the poles, located at x = 0, 7r, Eq. (3.44a) automatically yields H=1,
as it should from regularity. The solution we seek to construct is even around x =
71/2, so we have
JB
— pu— . -4
o 0 (3.45)

x=%

From Eq. (3.44a) we find that in order for H(7t/2) not to vanish we must demand

s (3) -0 (3) (o5 =

The above equation, so long as B(7r/2) is non-vanishing, provides a simple relation
between p% and B(7r/2). In particular, in the large Y. limit we find

0% =B (g) 1-6B (g)} . (3.47)

We would like to find a similar relation, in the large Y, limit, between p%R and
B(0). However, it is clear from Eq. (3.44a) that the expansion near xy = 0 needs
to be treated with care, since the factor of Y2 appearing in the denominator comes
multiplied by sin? x. In order to deal with this, we first change into a new variable

&=Y2siny (3.48)

and take the large Y, limit a posteriori, while keeping ¢ fixed. This ensures that while
we take Y to be large, we are zooming in to x = 0. This procedures then yields

oh = 3 [1 - 4B(0)] BO), (349)
to leading order at large Y... We have thus found a relation between B(0) and B(7t/2)
for large horizons, by combining Eq. (3.47) and Eq. (3.49).

We can use this result to obtain analytic expressions relating R and F? at the
equator and at the poles. Let us start with R. This is a function of H()x) and its
first derivative only. However, from Eq. (3.44a) we can alternatively express R as a
function of B and its first and second derivatives. By using the equation of motion for
B (see Eq. 3.44b) we can eliminate all second derivatives, thus finding an expression
for R as a function of B and its first derivative only. Finally we note that the first
derivative of B vanishes at § = 0,77/2, so we are left with an expression for R(0)
and R(7t/2) as a function of B(0) and B(7t/2), respectively.

We can now substitute in the above relation between B(0) and B(7t/2) to obtain
an analytic relation between Ry = R(0) and R, = R(7t/2), valid for large Q. The
result is:

9

Ro = 128(R. + 16)

(3Re +32) (Re —32) — (Re + 32) \/ IRZ + 64R. + 1024} .
(3.50)
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We have tested this relation with the values in Eq. (3.42a) and find that it matches
the numerical results to within 0.1%.

Since F? only depends on B and p;r (which is determined in terms of B via (3.47)
or (3.49)) we clearly have a relation between F? at x = 0 and at xy = 77/2. But we can
also express both of them in terms of R.:

lim L*F?|

3
lim ez =5 (Ret16), (3.51a)
+ o0

(S B

and
3072 (R, + 16)

lim L?F?|
(3Re +96 + /ORI + 64R, + 1024)

Y4 —+o0

(3.51b)

=0 "

Using the value quoted in Eq. (3.42a) for R,, we find that these expressions repro-
duce the values quoted in Eq. (3.42b) to within 0.25%. So we see that the large Q
limits of the curvature and Maxwell field at the equator and the pole are all deter-
mined by R,.

3.3.3 RG stability of the new IR geometries with respect to SO(3) preserv-
ing deformations

In this section, we study the RG stability of our new near-horizon geometries. The
analysis developed here has a drawback: it is a linear analysis and it could well be
that nonlinearities change the overall picture. In the next section, we study fully
nonlinear deformations and show that this is not the case.

Before proceeding let us briefly discuss what the expectations are. When we
studied the RG stability of AdS; x S%, we decomposed all perturbations in terms
of spherical harmonics on S3, which in turn were labeled by a quantum number /.
For each value of / we can find a total of four scaling exponents y. Two of these are
eliminated via boundary conditions at the horizon since they turn out to always be
negative. The remaining two roots are then studied as a function of y, or equiva-
lently Q. We would like to keep this procedure as much as possible.

However, once we break SO(4) we need to find a way to articulate what we
mean by a perturbation having a certain . We do this by counting nodes along the
6 direction. This allows us to make sense of ¢ beyond spherical symmetry. Note that
a given standard ¢-harmonic on the three-sphere does have ¢ nodes along the polar
direction. For each value of ¢ # 0,1 we are then supposed to find four values for
the scaling exponents. We discard the two most negative exponents, which connect
to the unphysical scaling exponents when SO(4) symmetry is restored (i.e. Q = 0).
Unlike for the perturbations of AdS; x S3, we now need to resort to solving an honest
quadratic Stiirm-Liouville problem, which we will detail next.

First, we present our perturbative Ansatz, which is a function of the scaling ex-
ponents y. We then take ¢ = ¢+ h, A = A + a, with bared quantities being our
novel IR geometries, and set

0 drr  dp?
6ds® = hypdx"dx? = p7 LZ{B(G)qlr(Y ) <—A§ Pz + p@)

+Y; [qz(f)) H(0)?d6? + q5(0) Lﬁ‘;f;dng] } (3.52a)
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and
0A = a,dx" = —pr Agp' 7 4(6) dt. (3.52b)

Note that the perturbations preserve an SO(3) symmetry. This form of the metric
is already gauged fixed, in the sense that h; and h,, are not independent compo-
nents, and metric components of the form h,y are absent. These conditions fix both
infinitesimal reparametrizations of 6 and p, as it should. It then remains to find g1,
92, 93, 94 and <y from the Einstein-Maxwell equations.
The procedure is somehow tedious, so we will only present the final results.
Setting A = y(y + 1), we find
g2 = —243, (3.53a)

1
=5 {zyi [4pf; + (A —2)B] sin 9H3% — 8pR Y2 (7 +1)sin0Hq4

4 2
+3B* (2cos 0H — sin 0H') % — [4Bsin6H' — 8H (Bcos +sinfB')] PH}YLL;} ’

(3.53b)
H3 B%sin® 0H ¢
)\ /
BZSin39H< H, (@0t +a+azd) gy
+ (,30 Hy+ ,31 + ,32/\ + ﬁg,/\z) q1+ (Ko Hy+x1 + Kz/\) /\Q4 =0. (3.53¢0)
s 2 N\’ 2 i
sin“ 0 Y< sin“ 6
( 7B "4> =5 (01— Aq4) =0, (3.53d)

where ag, a1, a2, Bo, B1, B2, B3, %o, k1 and k; are functions of B, B', H, H' and 6 given
in Appendix B and are independent of A, and

Hy = sine{zn& [o%& — (A+1—6B)B] H® —3HB"” + 6BB/H’} —12BcosOHB'.
(3.53e)
Once g1 and g4 are known from Eq. (3.53c) and Eq. (3.53d), g2 and g3 are fixed in
terms of Eq. (3.53a) and Eq. (3.53b). We are thus left with solving Eq. (3.53¢c) and
Eq. (3.53d), which should determine g1, 44 and A. As boundary conditions we de-
mand
91(0) = q1(71) = q4(0) = q4(7) = 0, (3.54)
which render Eq. (3.53c) and Eq. (3.53d) a quadratic Stiirm-Liouville eigenvalue
problem in A. Note that once a solution for q; and g4 has been found, we still need
to a posteriori check that g3 given in Eq. (3.53b) is everywhere smooth. The present
work only discusses modes for which all of the functions g; are smooth for 6 € [0, 7r].
We solved Eq. (3.53¢) and Eq. (3.53d) in two different manners, which agree well
with each other in the regime where both methods are applicable. First, by using
our perturbative scheme, we determine A as a function of ¢ (see section 3.3.1), which
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gives an expansion valid at small Q. We set

oo ,
710) = Y_ i (0)é (3.55a)
i=0
(1) i
74(0) =Y q,"(0)¢ (3.55b)
i=0
+o00 o
y=Y 70 (3.55¢)

and solve order by order in e. The most problematic mode is the mode that goes
negative for all Q > 0 for AdS, x S3. This mode has ¢ = 2, which is the mode we
would like to disentangle.

To start our perturbative treatment we take

4O =0, 4= \/z 2+cos(20)] and ¢\ =0. (3.56)

Note that qgo) (0) is an ¢ = 2 harmonic on a round three-sphere, as expected. One
can now proceed to solve these equations order by order in €. For instance, one finds

3/4 1/4
) _22YWT7 ) 3686 [2 (5 50220162

s/t T T T s N T T 110077
(1)(9) _ 2 21 [2 cos(48) 4 2 cos(20) — 1]
ql \/771_3/4 4
g2 (0) = —% [25 cos(20) + 25 cos(48) — 21 cos(66) + 166], (3.57)
221/4 7
100) = 2277 5 cos(26) +1,

3r3/4

2 gy = __2
q,"(8) = 18971[430 cos(26) +1727].

Note that the fact that ’y(l) > 0 indicates that at least for sufficiently small Q, the
mode that used to go negative for AdS, x S3, becomes positive! We shall see that
this remains the case for all values of Q we have managed to probe.

For any other perturbation with ¢ > 3 our perturbative scheme starts with non-
trivial {7(?), qgo), qflo) ()}, since 7% is non-zero at Q = 0 for any other value of £ > 3
(see Fig. 3.2). For instance, for the ¢ = 3 mode we find

1 5V/7 2987 317057 5

= — + — + O(et). 3.58
2220 AT envan 6272ﬁ(2n)3/4€ (&) (3.55)

’)/:

We now proceed using our exact numerical solutions for the background and by
solving Eq. (3.53¢c) and Eq. (3.53d) numerically. We again use the numerical methods
detailed in [37] to do this calculation. The results are displayed in Fig. 3.8 where
we track the two lowest-lying modes. These are associated with / = 2 and ¢ =
3 perturbations, respectively. Recall that for each ¢/ > 2 perturbation of AdS; x
S3, there are two physical scaling exponents 7, which we labeled v+ (¢,y+). The
perturbations we study naturally connect to y_ (¢,0) for £ = 2, 3. Recall that for each
value of /, horizon boundary conditions allow us to discard two negative values of
v (which connect to the values of -y that we discard when we plot Fig. 3.2). Since the
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lowest scaling exponent in Fig. 3.8 remains positive, this conclusively shows that the
novel IR geometry is RG stable at the linear level to SO(3)-symmetric deformations.
Furthermore, when Q is small enough, our perturbative results in Eq. (3.57) (dashed
red line) and Eq. (3.58) (dotted black line) match well our exact numerical results
given by the blue disks and orange squares for ¢ = 2, 3, respectively.
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FIGURE 3.8: The two lowest lying modes of the quadratic Stiirm-

Liouville equations Eq. (3.53c) and Eq. (3.53d) governing perturba-

tions of the new near-horizon geometries. The red dashed line shows

the perturbative result displayed in Eq. (3.57), whereas the black dot-

ted line shows v given in Eq. (3.58). The blue disks have ¢ = 2 and

the orange squares have ¢ = 3. In the language used in section 3.2,
the modes shown both connect to y_ (¢, 0).

We tracked the lowest lying mode all the way to GsQ/L? ~ 3 x 10* and it re-
mains positive, saturating at around -y ~ 0.1013.

3.3.4 RG instability of the new IR geometries
with respect to SO(3) breaking deformations

Having investigated the stability properties of the new IR geometries with respect to
SO(3)-preserving deformations, we now ask whether the new geometries are stable
with respect to deformations that break S O(3). Unfortunately, this is not the case, as
we show below.

We start by presenting an Ansétze for the metric and gauge field perturbations.
These are necessarily more involved than the SO(3) symmetric case. Since we want
to break the symmetries of the round S2, we expand all perturbations in terms of
standard spherical harmonics Y ,, (), ¢) on S?, where x € [0, 7] and ¢ ~ ¢ + 27T are
the standard latitude and longitude angles on the round S?, respectively. Spherical
harmonics on the S? obey

withk =0,1,2,... and |m| < k being the standard quantum numbers of the spheri-
cal harmonics and Oq, the standard Laplacian on the round two-sphere. The sector
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with k = 0 was studied in the previous section, and the sector with k = 1 has to be
treated separately. For this reason, we take k > 2 from here onward.

There are two types of gravito-electromagnetic perturbations that we can con-
sider here. Perturbations built from scalar harmonics are often called scalar-derived
gravito-electromagnetic perturbations, while perturbations built from vector har-
monics are often coined vector-derived gravito-electromagnetic perturbations. The
former sector is one of interest to us since one can easily show that vector-derived
gravito-electromagnetic perturbations are RG stable.

Let D be the metric preserving connection on the round two-sphere, so that
D,D* = Ogq,, with lower case Greek indices running on S?, ie. a = {x,¢}. We

then introduce Kk 1)
o +

g = DaDgYim + —

where g, being the metric on the round two-sphere. By construction, S,g is trace-

less. We then write the following Ansétze for the metric and gauge field perturba-

tions

N

Sup Yem s (3.60)

h1(6 dr  dp?
6ds? = hydx"dx? = L?p7 {B(Q) ql,(y ) Yiem <—A% 0? =t pg>
. sin 6 |
Y3 [H(0)? 02(0) Yion 0% + Fr575(6) Yo 4O

+2 qiy(? dB (Dy Y )dx® + 46 (6) Skj'dx" dxﬂ } , (3.61a)

and
0A = a,dx" = —or Ao 0> §4(6) Yy, dt . (3.61b)

There are total of six functions of 6 to solve for, namely {4,...,4s}. After some
considerable algebra, one can express §», §3 and g as a function of the remaining
unknown functions and their first derivatives with respect to 8. We are thus left with
three second-order ordinary differential equations in 6 for {41, 44, 45 }. Regularity at
the poles demands

§1(8) ~sin"0Cy, §4(0) ~sinf0C, and §5(8) ~sint10Cs, (3.62)

where C1, C; and C; are constants. In order to impose these, we change to a new set
of variables

§1(8) =sin*0Q1(0), §a(8) =sin"0(0y(9) and 4§5(0) =sin" 10 D3(0) (3.63)
with regularity at the poles now simply demanding
Q1(0) = @5(0) = @5(0) = @ () = Qy(7r) = Q5(m) = 0. (3.64)

It is possible to cast, with the above boundary conditions, the second order dif-
ferential equations for Ql, Qz and Qg as a Sturm-Liouville problem, where the com-
bination y(y 4+ 1) appears as the eigenvalue. This is the system we solve numerically
using the numerical methods detailed in [37].
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We start by using the perturbative scheme of section 3.3.1, which allows us to
predict y for small enough charge Q. Indeed, for k = 2 we find that

34 C o7

0 / /4 . 52933540168
42347 4% [2 2 6259984214 5 &4 O(S). (3:65)
T 11907+/773/4 262549357

The fact that the first term in the € expansion of v is negative (note that we must
take ¢ > 0 in order for our perturbative scheme to make sense) is a signal that our
new geometries are RG unstable with respect to SO(3) breaking perturbations. The
question remains as to whether for larger values of the charge (or alternatively, larger
values of ¢) ¢ will become positive. In order to address this question we solve the
problem numerically, and report our findings in Fig. 3.9. As a dashed red line we
plot our perturbative result (3.65), while the exact numerical results are shown as
blue disks. The agreement between the two at small charges is reassuring. The fact
that o remains negative for all values of the charge is the main result of this section
and shows that our SO(3) symmetric zero-temperature geometries are RG unstable
to perturbations that break SO(3). The endpoint of this SO(3) breaking instability
remains unknown and is under current investigation.
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FIGURE 3.9: The lowest lying scaling exponent <y as a function of Q

for SO(3) breaking perturbations. The dashed red line is the pertur-

bative result (3.65) whereas the blue disks label the exact numerical

results. The agreement between the two at small charges is reassuring
for both methods.

3.4 Toroidal black holes

We could repeat all the work performed in this Chapter also for the toroidal black
holes. It may intuitively seem simpler since on the torus one works simply with
periodic functions and does not need to worry about conical singularities. On the
other hand, while spherical geometry is (up to scale) unique, the moduli space of
three-dimensional torii is 6-dimensional. Indeed, a (flat) torus is R? divided by dis-
crete translations along three linearly independent vectors vy, v, v3. Up to rotations,
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they are parameterized by their length and angles between them and thus we have a
6-dimensional family of geometries. As we will see, whether there are perturbative
non-flat solutions nearby a given one depends not only on the scale but on all the de-
tails of the background geometry. Because discrete translations can be also thought
of as generating a (crystal) lattice, we will use a crystallographic nomenclature when
convenient.

Before diving into messy calculations, let us discuss what the picture that we
should expect is. Based on Ch. 2, for very small torii, the scaling dimension 7y
may be very large and thus they are as smooth as needed. Then, there is a criti-
cal size at which they develop a null singularity (0 < o < 2) along the lines of
four-dimensional solutions. Finally, for even larger black holes we encounter RG
instability (y < 0). We are interested in the borderline case v = 0. For the sake
of brevity, we will work directly with the near-horizon geometry (it means we put
v = 0 from the very beginning). Let us start by describing the background. The
metric reads

g2 — 2 (1 2.0, dp? e 1 idi
s“=1L <12 (—p dt” + pz> + gijdx'dx ) , (3.66)
where jj is a flat metric on T°. We normalize our toroidal coordinates in such a way
that
Xt~ x4 27, (3.67)

The potential is

NG
A=-Dpdt (3.68)

The charge inside clearly depends only on the volume of 4. The general ansatz for
this section is on the other hand:

. 2 . .
ds? = L2 (B(xl) (—pzdtz + i@) + qijdxldx]> (3.69)

and
A= —C]Idef. (370)

We assume a perturbative expansion:

1 .
_ (I) (i I
B = 7t 1221 B (x')e', (3.71a)

qii () = dij + Y qf]-l)(x")el (3.71b)
I=1

and g
6
qIR = 75 + Z qggel (3.71¢c)
=1

We will now consider a simple example to illustrate the main difficulties we may
encounter. Let
§ = L3dx® + L3dy* + L3dy?, (3.72)

where L1 > L, > L,. Expanding Einstein-Maxwell equations in €, we first find

qg{) = 0. Then tt component of EOMs gives

L
82

1 1
B+ —35,,BW dyyBY + @SZZB(U =0. (3.73)
3

+87L’%
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Expanding B(!) into Fourier modes

BW(x,y,z) = Y (apcos(kix') + by sin(kix') (3.74)
kez3

we see that solutions exist only if

K2k
—= 4+ < 4+ = =8, 3.75
ERNTRET (3.75)

Since we are interested in the lowest k, we have to choose k= (1,0,0)and L, = 21W
Thus!,
BM = sin(x) (3.76)

Ly, L are arbitrary but smaller than L;. Having found B(!), we may (upon a suitable
gauge fixing) also determine q(!). It reads

qul) = Ajj + Bysin(x), (3.77a)
where
By, = —24L3 (3.77b)
and
B,, = —24123, (3.77¢)

and all other components of B;; are zero. A;; are completely arbitrary and they de-
scribe zero tensor modes that may become fixed by equations of higher order in €.
Going to the next order is not any harder. It should be clear that we can expand
all unknown functions in 1, sin(x), cos(x), sin(2x), cos(2x). Unfortunately, a direct
calculation shows that the resulting equations are inconsistent. Thus, our linear per-
turbation cannot be lifted to a non-linear solution. The reason for this is a small
symmetry of the underlying lattice. If we had, L1 = L, = L3, we could have simply
written
BW = a,sin(x) + ay sin(y) + a, sin(z) (3.78)

and then treat higher-order equations as constraints for a, &y, oz. One could do the
same with L; = Ly # L3 but then one would find still more constraints than free
parameters. Examples will be presented shortly.

Before that, let us think for a moment about what these results suggest for the
bulk. What if we started with a toroidal RN AdSs (of appropriate metric on the hori-
zon) and then perturb boundary conditions by éu ~ sin(x)? We still expect 9,, 9,
to be Killing vector fields so we cannot expect just mentioned near-horizon geome-
tries that perturbatively start with (3.78) to pop out. There is a different possibility
though. It could happen that non-linearities drastically deform the horizon’s geom-
etry but in such a way that g;; is still flat. Then, if gy, is sufficiently small, we would
not notice any problems at all. If this is the case, the toroidal black holes would be
very boring. I do not know how to exclude that scenario a priori. However, a di-
rect numerical calculation shows that it does not occur. Unfortunately, our accuracy
is too small to conclude unambiguously what exactly happens. It seems relatively
likely that in the limit T — 0, the horizon could break into two pieces. Such in-
frared geometry (or rather: infrared geometries) would be of great interest from the

1We may always choose sin(x) instead of cos(x) by shifting x. In the same spirit, the coefficient can
be chosen to be one by rescaling €
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holographic perspective. In particular, it could describe an insulating phase of the
boundary?. I believe that this direction deserves much more attention than what I
could have offered it so far.

3.4.1 Simple cubic torus

Having expressed all those comments, we will now construct a new geometry. Our

starting point is a simple cubic torus®:
1 (100
4= 3 010 (3.79)
0 01
We perturb it by*
BM = sin(x) + sin(y) + sin(z) (3.80)

In general, we demand that

/1r3 B(x,y,z)cos(x) = /T3 B(x,y,z)cos(y) = /1r3 B(x,y,z)cos(z) =0 (3.81)

This is just a choice of a constant phase for (x,v,z). Additionally, we impose’

/1r3 B(x,y,z)sin(x) = 4rce. (3.82)

This is just a normalization condition for €. Perturbative form of the metric (up to
€2)° that starts with that seed is presented in Appendix B. It is an easy exercise to
check that this geometry is still unstable — one of the zero modes obtains a scaling
dimension v that is negative and of order O(e?).

3.4.2 Graphene-like torus

The simple cubic perturbations have a discrete symmetry

€ —€

3.83
(x,y,2) = (x+ 1,y +m,z+ ). (3.83)

As a result, any measurable quantity (like the total charge or scaling dimensions)
must be an even function of €. In this section, we shall consider a different back-
ground, for which perturbations with positive and negative € are physically distinct.
To this end, we wish to find a lattice on which k = (1,0,0), (0,1,0), (1,1,0) have the

2Itis a well-known result in AdS/CMT that a single black hole always corresponds to the conducting
phase.

3The scale is of course chosen in such a way that there is a marginal perturbation.

“The equality (up to phase) between different Fourier modes is needed to ensure that the solution
in the next order exists.

5One may be surprised that we do not impose this condition also on sin(y) and sin(z). Unfortu-
nately, our further gauge choice is not symmetric with respect to permutations of (x,y,z), and at the
third order in € this would lead to inconsistencies.

®One should keep in my mind that at each order certain coefficients are left unknown and they
become fixed in higher orders. To actually know unambiguously perturbation up to €2, we had to
solve equations of motion up to the fourth order.
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same length’. The most symmetric starting point is

L (420
j=512 4 0] (3.84)
00 3

z = const. surfaces have symmetries of a honeycomb. Thus one can imagine the
underlying lattice as layers of graphene. In the first order, we find:®

BM = cos(x +y) + sin(x) + sin(y) + \/Esin(z) (3.85)
Clearly, for this mode € — —e is not a symmetry. Perturbative form of the metric
(up to €3)’ that starts with that seed is presented in Appendix B.

This expansion is not very illuminating in its own right. The most important
question is what happens with zero modes of the background. Do they develop a
power-law behavior, and if they do, with what exponent? To answer this question
we should consider a zero mode that is also generated by

k = (1,0,0),(0,1,0), (1,1,0), (0,0,1), (3.86)

but is different than the one above. Then, we should calculate its scaling dimension
in the first order in €. Of course, a random combination of those covectors will mix
(at the next order) different powers of . One can check that a good starting point is

0B = (—(a+ B) cos(x +y) + Bsin(y) + asin(x)) p7 + O(e). (3.87)

Of course, we must also specify tensor modes. Then, depending on that specifica-
tion, we obtain

12
5
What is important is the fact that the numerical coefficient is positive (for the plus
sign) or negative (for the minus sign). Thus, no matter what is the sign of ¢, there is
always a mode with ¢ < 0. We (again) reach a sad conclusion that our new solutions
are RG unstable (at least for small €).

v =B+ V14)e+O0(e?). (3.88)

3.5 Time-dependent perturbations

Let us now go back to the spherical black holes but ask a different question: what
about time-dependent boundary conditions? For concreteness, let us imagine that
we start extremal RN AdS in the bulk, and then at t = t; we deform BCs very slowly
by changing 4 = u(t,x) in such a way that at all ¢ the boundary conditions are
such as in Sec. 3.3'°. Moreover, we keep the charge fixed. Then, at time t = t,
the evolution stops, which means p(t > tf,x) = u(ts, x). It seems that by making
the change in y very slow and t; — t; very large, we should be able to do it almost

7One should keep in mind that k is a covector, so its norm is calculated using the inverse metric
8The coefficients are chosen to ensure that the higher-order constraints are satisfied.
90ne should keep in my mind that at each order certain coefficients are left unknown and they
become fixed in higher orders. To actually know unambiguously perturbation up to €3, we had to
solve equations of motion up to the fifth order.
10There is no point in considering more general boundary conditions since we do not know what
the stationary bulk solutions would be!
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adiabatically. Now, the natural question that raises is: what would the result of this
evolution be? I should emphasize that this section is much more speculative than the
rest of this dissertation and it deserves a much deeper (probably numerical) study.
Nevertheless, I find this issue so important that I believe it would be wrong of me to
ignore it entirely.

Having said that, let me start by pointing out a small oversimplification I per-
formed in the previous paragraph. Since the horizon is compact, it is rather unlikely
that we may just treat any perturbation adiabatically. Indeed, any change in the
boundary conditions requires pumping energy into the system. Since we start at
T = 0 (and the horizon is compact), this will immediately increase the temperature.
Thus, to be on the safe side, we should start at a finite (albeit very small in compari-
son to the area-radius of the horizon) temperature.

The naive picture of time evolution is very simple. The horizon will get deformed
and it should slowly become more and more deformed reaching asymptotically the
endpoint described in Sec. 3.3 (albeit at a slightly larger temperature). This is the
only possible scenario in which the black hole stabilizes and becomes again static as
t — co (as we usually assume while discussing any process in an asymptotically flat
spacetime). However, a quick glance at Fig. 3.4 convinces us that this would lead
to a violation of the Generalized Second Law of thermodynamics (which obviously
cannot be an acceptable answer). Let us consider are our ways out of this situation:

(i) RN AdS is in fact RG stable

That statement may seem to be in direct contradiction with everything else
said in this Chapter so far. However, one should note that only the extremal
RN AdSs is unstable. There is no reason to expect any instability at a finite
temperature. Based on dimensional analysis'!, we may expect that as long as

‘5: < (r )7, (3.89)

the endpoint’s horizon should be close to the spherical symmetry and will not
look like our deformed solutions. Then, there is no point in looking at the en-
tropies shown in Fig. 3.4. However, it seems that (by making t; — ¢; sufficiently
long), we should be able to make du arbitrarily large still within the adiabatic
approximation so this cannot be the full answer.

(ii) The assumption of adiabaticity is not valid

If this is the case, no matter how slowly we would change the boundary condi-
tions, the rise in the temperature would be significant. It does not seem valid
if we start at finite T. As discussed above, for very small 6y, there is no way
to observe the instability. Thus, the problems should arise at some finite defor-
mation — we would need more and more energy to change i, even extremely
slowly. However, there is nothing to suggest that this is the case. (Of course,
the final resolution must be based on the actual calculations, not just on simple
observations or lack thereof!)

(iii) There is no stationary endpoint

If this statement is correct, we again do not need to worry about Fig. 3.4. How-
ever, it does not truly answer the question. Generalized Second Law still must

To give perhaps a few more details, we expect (properly normalized) perturbations to behave close
to the horizon as % (r4T)7. If this quantity is small, we should be able to trust perturbation theory
and not expect any large deviations from the spherical symmetry.
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be satisfied and thus (now time-dependent) horizon’s entropy will grow either
way. Assuming it does not blow up'?, at least the horizon must settle down'?
so there is still a question of what is it actually.

(iv) RN AdS is actually a highly excited state

Since (again, at T = 0) RN AdSs is RG unstable, we may expect (based on the
thermodynamical intuitions) that it is actually a local maximum of the (ADM)
energy. Thus, it has more energy than the solutions of Sec. 3.3 and it actually
evolves to their highly excited (and thus highly heated) counterpart. This may
be seen as a more detailed version of the idea (ii).

This idea, though it may seem physically sound, possesses two drawbacks.
First of all, we know that static solutions are always energy’s minimizers (see
[105] for the proof in the asymptotically flat context, I believe a similar claim is
also true in AdS). Moreover, these two black holes exist for different boundary
conditions'* and thus they have different notions of ADM mass and there is no
meaningful way to compare them. In particular, we could modify our action
by any boundary functional of . At fixed y that only shifts all the energy
levels by a constant (and thus is not physical) but that would not be the case
here, obviously. This shows that the whole discussion based on the ideas of
energy is not rigorous.

Despite the hand-wavy nature of the last argument, I find it the most convincing.
If this is correct, we should be not able to reach a small-temperature "pancaked’
horizon starting from the RN AdS. Of course, one should be open to the possibility
that the proper numerical results will surprise us (again!)

3.6 Discussion

We have seen that the extremal Reissner-Nordstrom AdS solution does not provide
a good dual description of the generic IR behavior of four (or higher) dimensional
holographic theories. This is because its near-horizon geometry, AdS; x S3, is un-
stable to static perturbations that break SO(4). We have constructed a new family
of near-horizon geometries, labeled by the charge Q, and shown that they are stable
to SO(3)-invariant linearized perturbations. Moreover, they are stable to nonlinear
perturbations in this class, since they arise in the T — 0 limit of an open family of
SO(3)-invariant AdS black holes. Thus, following the usual holographic dictionary,
under this reduced symmetry they represent stable IR fixed points of a dual RG flow.

Although our new IR geometries have the property that perturbations go to zero
at the horizon, they are not generically completely smooth. As shown in Fig. 3.8,
they go to zero like a power law with a power <y that is much less than one. This
means that if we take two derivatives to compute the curvature, certain components
will diverge. In other words, infalling observers experience diverging tidal forces at
the horizon. For the solutions constructed in Sec. 4 that approach our new IR ge-
ometries, we have computed certain components of the Weyl tensor on the horizon

12That would be a surprising conclusion — an infinite shift of entropy generated by the finite energy
inflow!

13This would be a solution similar to the well-known black resonators [36], for which the spacetime
is not stationary but the horizon is still a Killing horizon

14 At least at finite temperature, it would be interesting to understand what happens with the de-
formed solutions in the limit p(x) — const.
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as a function of T. We find that they diverge as T — 0 in a way consistent with the
perturbative argument in Sec. 3.3.

This is exactly analogous to the singularities described in Chapter 2. The main
difference is that in four bulk dimensions, the horizon geometry remains AdS, x s?
and does not get distorted. As we have seen, all curvature scalars remain finite
at the horizon, so if one analytically continues the solution to obtain a Euclidean
black hole, it is completely smooth. The same will be true for the five-dimensional
solutions constructed here. These singularities are only a feature of the Lorentzian
solution, although they can affect thermodynamic quantities like the specific heat.

An important open problem is to find the generic stable IR geometry. In [66]
another large class of SO(3)-invariant near-horizon geometries were constructed.
They are associated with ¢ > 2 instabilities of AdS; x S® that only arise at large
enough Q. However, all of them have at least one unstable SO(3)-invariant mode,
so they are not stable RG fixed points, even under this reduced symmetry. Also, a
very large class of near-horizon geometries without any rotational symmetry was
constructed in that paper. These solutions exist close to AdS; x S® when the S3 is
large enough. However, we expect these solutions will also be unstable since the
unstable mode of AdS, x S® should persist for the new solutions, via continuity.

We have also studied what happens for toroidal black holes. Similarly to the pre-
vious Chapter, small ones are as smooth as one wants them to be. Then, at some size,
they become singular (7 < 2). If we further increase their volume, they become RG
unstable (7 < 0). We constructed perturbatively new solutions that bifurcate from
the RN AdSs. The fundamental difference between spherical and toroidal BHs is
that the moduli space of flat torii is 6-dimensional. Only for carefully chosen points
from that space, do the bifurcating solutions exist. Otherwise, the linear perturba-
tion (with v = 0) does not satisfy additional quadratic constraints at higher orders
in perturbation theory. All new solutions are RG unstable so also in this case the
question for the endpoint is open.

In the previous Chapter we commented on the connections between our results
and recent results in JT gravity (or rather its generalization obtained from the full
dimensional reduction of a four-dimensional Einstein-Maxwell theory). We see that
a higher-dimensional version of these calculations leads to even more radical effects.
It seems sure that, if one tried to repeat the dimensional reduction to AdS, and then
quantize Schwarzian, many problems would arise. Even without sources, since the
KK modes are marginal (for A = 0) or relevant (for A < 0), their contribution to the
partition function could compete with Schwarzian one. It would be exciting to see
this story to unravel itself in more details in the future.
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Chapter 4

Extremal black holes and UV
physics

4.1 Motivation and introduction

In Chapter 2 we have seen that almost all extremal black holes in AdS, suffer from
null singularities. These singularities affect not the infalling observers but also the
black hole’s thermodynamics. Thus, it seems rather discouraging that this interest-
ing physics vanishes in the limit A — 0. Nevertheless, let us emphasize that this is
a result of a very unfortunate fine-tuning. The key geometrical ingredient, namely
the scaling symmetry of the near-horizon limit, is still present. In particular, small
charged black holes are generically singular for any A # 0. I could try to claim that
since we live in a universe with a positive cosmological constant, these singularities
are still present and we could observe them astrophysically. That would be a lie.
Indeed, the cosmological constant is incredibly small and it is rather unlikely to ob-
serve highly charged black holes. Nevertheless, one could ask if there are different
(so far neglected) corrections to the theory that make the scaling dimensions non-
integer and lead to the effects larger than those based on the cosmological constant.

This is a perfect setting to use effective field theories. Instead of trying to come up
with the corrected dynamics (and hope that this is a physically realized guess), we
will consider all possible actions (up to a fixed number of derivatives) that are con-
sistent with the symmetries of Einstein and Einstein-Maxwell theories. Unknown,
small coefficients in front of the higher-derivative corrections should come from the
UV degrees of freedom that we integrated out. As long as we will keep the coeffi-
cients arbitrary, we do not have to know too much about the UV completionl. Aswe
will see in a moment, these corrections may be much larger than the cosmological
constant.

4.1.1 A short introduction to gravitational EFTs

Let us start by considering a simple example of possible higher-derivative correc-
tions to the Einstein-Hilbert action in four dimensions. This action contains two
derivatives. The underlying theory is diffeomorphically invariant and we want to
keep this symmetry. Thus, we may add to the Lagrangian only scalars built out of
the metric, the Levi-Civita connection, and the Riemann tensor. It is not hard to
check that there are no such terms with an odd number of derivatives. Thus, we
should start with four derivative terms and there are five possible terms:

R%, Ry R", RyyapR™, V* V4R, VEVF R (4.1)

In fact, there may be certain bounds on the coefficients to ensure that the theory is consistent. We
will comment on them when we encounter such cases.
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The last two are the full divergences and thus cannot affect equations of motion.
(Besides, V¢V Ryp = %V"‘V,XR, due to Bianchi identities.) Moreover, we have well-
known Euler invariant

£= / et (RuapR — 4R, R™ + R?) 4.2)
Thus, only R? and R,y R" are independent. As a result, our effective action (up to
four derivatives) reads?

1
Supf = 53 | AxV/=g (R+21R? + 2R, R) (43)

and we assume that ¢y, ¢; are (in appropriate units to be specified later) small. S,/
may be further simplified. Indeed, let us consider a field redefinition

8uv = v + 7"1R]11/ + 72ngv/ (44)

where we again assume that 71, 7o are small. The change in the effective Lagrangian
(to the first order in small parameters and ignoring the boundary terms) is simply

1

where G,y = Ry — %Rg,w is the Einstein tensor. As a result, the Wilson coefficients

are changed:

1 1
dl — d1 — 11’1 — 57’2 (46a)

dy — dy + %1’1. (4.6b)

Thus, we see that by an appropriate choice of 1, 7, we can make dy, d, zero. Someone
accustomed to thinking about the metric as a fundamental, somehow distinguished
field may protest against those field redefinitions. However, the coefficients in the
effective actions are usually derived in the context of the scattering and it is well-
known fact that the S matrix is unchanged under them. Unfortunately, that means
physically meaningful quantities (at, least in this approach) are only those that are
invariant with respect to the field redefinitions. One can argue that the scaling di-
mensions satisfy that requirement. Indeed, we start with a smooth metric ¢ that
describes the near-horizon region and smooth (y € IN) perturbations of that back-
ground. Field redefinitions (to leading order) are

v = & + hw[§], (4.7)

where h,, is covariantly built out of ¢ (and E, if the Maxwell field is present) and
thus is smooth (in particular, from the symmetry, it has the same ). If g exhibit
non-integer power law behavior with a scaling dimension <y, so must g +  since the
addition of something smooth cannot change the singular part of g. We will see this
explicitly in the case of Reissner-Nordstrom.

Having checked that there are no non-trivial terms with four derivatives, let us
discuss what happens with six or eight derivatives. One can check [20, 40] that

2Since it is important to keep track of the scales involved, we will restore units in this Chapter. In
our conventions x = v/87G.
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modulo field redefinitions, the only possible terms are’

1 . s
L=53 (R + 7tV RE + AkOC? + Ae;&cz) ) (4.8)
where we define
R® = R,“R R, (4.92)
C = RypeaR™ (4.9b)
and )
C = R, pog R, (4.9¢)
with the dual tensor
Roped = euthqucd~ (4.9d)

In the above, 7., Ae, and A, are dimensionless. We will discuss in detail the effect
these operators have on the scaling dimensions in Sec. 4.3. Before that, let us state
the equations of motion:

1 . .
Ry — ERgub — T;ll;lblc + T;{;artlc, (4.10)
where

i h 1 d h h
T;:;blc =1 K4 [3 RacdeRdgg Rghcb -+ EgabRghC RCdEfRe gh 6chd (Racgthdg ):|

f
(4.11a)
and
Tt — ), 6 <8RacdeCVdC n %bcz) — X, %6 (sﬁacdeCvdc” + %éz) .
(4.11b)
We will also consider Einstein-Maxwell theory. The well-known Lagrangian is

R 1

where F = dA. Then, there exist non-trivial EFTs with four derivatives. Indeed, the
most general (orientation-preserving) one is

Ly = d1R* + dyRyy R" + d3Rp,sR*P7°
+ x(dyRF? + dsRM Fj, + deR"*PF,, Fop) (4.13)
+ x*(d7 (F?)* 4 dgFj, F*"),
The most general field redefinition is
Suv > §uv + 1Ry + 12Rguy + 1367 FuoF, * + 14 gy FupF*P. (4.14)

Then, only certain combinations of fields are invariant with respect to those redefi-
nitions. These are:
do :=dy +4ds + ds + dg + 4d7 + 2ds, (4.15a)

dg :=dr + 4d3 =+ d5 + 2d6 =+ dg (415b)

and d3,de. As we have discussed at the beginning, nothing can depend on d3 since

3We omit parity-odd terms that cannot change the scaling dimensions in the leading order
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we can reabsorb it into dq, d, using the Euler invariant. Nevertheless, we will keep
it to make contact with the literature. Moreover, in higher dimensions, (4.13) is still
the most general Lagrangian we could have. The definitions of dy, dg slightly change
but d3, dg remain invariant. With the x? insertions we made, all d; are dimensionless.

Before we proceed to the calculations we have in mind, let us explain the gen-
eral logic guiding us here. If we had a UV completion of our theory (or at least if
we knew which degrees of freedom from the full theory are relevant in the IR), we
could calculate gravitons” and photons’ scattering amplitudes (up to an appropriate
number of loops). Then, we could ask what form of S, is needed to recover those
results and in this way fix our coefficients. For now, we will skip this part and simply
assume that they are small. Then, from S, ffwe derive equations of motion. Then we
solve them perturbatively in the higher-curvature coefficients up to the first order.

Let us emphasize that it would not be consistent to do it in the second order. To
do so, we had to include in the action terms with even more derivatives (that can be
now generated also through more loops). Notice that our calculations of the scaling
dimensions will be affected at two stages. First of all, higher curvature corrections
will modify the near-horizon background we consider. Let us emphasize that due to
(4.14) the spacetime metric is not an invariant object. Then, on this background, we
may consider linearized Einstein(-Maxwell) equations, also with additional correc-
tions. Finally, we expand solutions to the linearized equations of motion with respect
to d;. In this way, a solution to the zeroth order (in other words: a solution to lin-
earized Einstein-Maxwell equations without any EFT additions) serves as a source
for the next order. From our previous discussions, it follows that stationary solutions
may be decomposed into powers of the radial coordinate. This statement does not
depend on the equations of motion but only on their geometric nature and the sym-
metries of the background. Since all near-horizon geometries are scale-invariant,
this claim still holds.

4.2 Reissner-Nordstrom deformed

4.2.1 Four dimensions

Let us start with the Reissner-Nordstrom background. It is much easier than Kerr
because we can stick with the four-derivative action (4.13) and use the spherical
symmetry to reduce the problem to purely algebraic equations. We will repeat all
the steps mentioned in the previous section to illustrate them. All equations used
in this part were generated using the Mathematica suite of packages xAct (xCoba
and xPert, to be more precise) [17]. The EOMs are rather lengthy and not especially
illuminating so I will not write them down specifically.

Step 1: Deform the background
We start on the Berttoti-Robinson background:

drr  dz?
PRSI (_22 + 4 g in? 9d¢2> (4.16a)
and
Ffr = — —\/3 2. (4.16b)
K7’+

In the coordinates (f,z,6, ¢) the horizon is located at z = co. Our background
has a lot of symmetries, namely O(2,1) x SO(3). We wish to find a solution
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Step 2:

Step 3:

to the EFT equations of motion (up to terms linear in d;) with the same sym-
metries. This is a simple exercise since the form of the metric is fixed by the
symmetries uniquely and we only need to find (constant) coefficients. At the
end of the day, we find*

1
§=—> (% — (4ds + 8ds + 32d7 + 16d3) + A) (4.17a)
1
8= (r} — (4ds + 8de + 32d7 + 16ds)) (4.17b)
Itz — _isz <1 — %(@ +ds + 2dg + 6d7 + 3dg) — Az) : (4.17¢)
K13, L 2ry

The presence of the constant A (that is supposed to be of order d;) is a man-
ifestation of the fact that the rescaling t +— at is not physically meaningful
near the horizon. The proper normalization of d; can be prescribed only in the
asymptotically flat region. Nevertheless, because this rescaling is unphysical,
no measurable result should depend on A. We may use it as an additional
check of our calculations.

Deform linearized EOMs

In the next step, we have to write down the deformed (again, up to terms
linear in d;) (linearized) equations of motions on the just-derived background.
We may write them schematically as

8
Eo[ég, (SF] + ZdiEi[ég/ 5P] = O, (4.18)
i=1

where Ey and E; are linear operators. Note that E; terms are built out of two
different contributions. On one hand, they come from Einstein-Maxwell equa-
tions on the deformed background. On the other hand, £4 also modify lin-
earized equations on the undeformed background. There is no need to distin-
guish between those two contributions. Because the equations are long, we
shall not write them down explicitly. Everything was done in Mathematica
anyway.

Solve the resulting equations
The only thing that remains is to solve the resulting equations. We do it per-
turbatively, which means that we write

8¢ = 6g0 +€6g’ (4.19a)
and

SF = 6Fy + edF, (4.19b)
where ¢ = O(d;) and

Eo [5g0, 5F0] =0. (420)

“We will keep the radius 7 fixed. This is not a physically proper way to do this because . cannot
be measured at infinity. Instead, we should rather keep the charge constant. Moreover, let me also
point out that in the EFT, the horizon’s area no longer has an interpretation of the entropy. Instead,
one should use Wald’s prescription [107]. In particular, this entropy is a well-defined quantity only
as a function of charge and mass, not as a function of the radius. Nevertheless, because the scaling
dimensions in the two-derivative theory do not depend on the size of a black hole, this cannot affect
our results.
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Then, we are left with:

€Eo[0¢,6F'] = —

8
d;E;[0g0,0Fy). (4.21)

i=1

In our case, we are interested only in static, scalar-derived perturbations. Thus,
we may use the decomposition (2.37), only now coefficients f,hr, hr,h,q,w,z
and the exponent 7 are functions of €. In this way, we may write (4.21) as
a non-homogeneous matrix equation for %( f,he, hr,h,q,w,z)|e=o. (The most
interesting part, namely %7]6:0 = 71 does contribute actually as a source, on
the RHS of the equation). This system in general is inconsistent unless y; takes
a particular value. To my bitter disappointment, that value happens to be 71 =
0. Thus, (the leading order) EFT corrections cannot make Reissner-Nordstrom
horizon singular. The positive part of the answer is that it is definitely field-
redefinitions invariant and does not depend on the unphysical parameter A.
The same conclusion holds also for vector-derived perturbations.

It would interesting to understand whether this is just a numerical coincidence
or maybe a result of some properties of RN. The fact that y.—g is an integer
may be understood on the grounds of dimensional analysis. The black hole
has only one dimensionful parameter Q = M so there is no way to create
a dimensionless quantity and so s must be Q-independent. However, this
argument does not work in the EFT.

4.2.2 Five (and higher) dimensions

Not discouraged by this failure, we shall investigate what happens in higher dimen-
sions. The procedure is analogous. The only (rather technical) difference is that we
can have now zero modes. For such modes, 6o, F are described by two free pa-
rameters /i, ht (while for all other modes, they are described by kit only). However,
hr becomes fixed to zero when we go to the first order in €. Since xCoba enforces
one to work in a concrete dimension D, I had to derive <, for each dimension D
separately. I did it, up to D = 11. There is a very simple formula that describes the
results in all those dimensions:

8x2(D — 4){(¢+ D —3)

n= _dO(D—3)2(D—2)(2£—D+3)72+' (422)
where
do = E(D —3)(2D* - 11D +16) dp + % (2D° —16D* + 45D — 44) d3
+%(D—3)(D—4)2d1%(D—3)(D—2)(D—4)d4 (4.23)
+ %(D —3)2(D —2)(ds +de) + (D —3)(D —2)? <d7+ dzg)

is an invariant combination of the Wilson coefficients. The obvious conjecture is that
this result holds for any D > 4. A few remarks are in place:

* Weak Gravity Conjecture (WGC) implies that dj is positive. Thus, 71 < 0 for
(> B3,
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e Since for { = D —3 > 233, 4 = 0, it follows that the exponent becomes nega-
tive. As a result, a 5-dimensional extremal Reissner-Nordstrom black hole be-
comes RG unstable (in the nomenclature of the previous Chapter). For D > 5,
it was already unstable but now there are more modes leading to that instabil-

ity.

¢ Note that when 7 < 0, the scalar quantities may actually diverge at the hori-
zon. That would signalize the breakdown of the EFT approach, since £4 could
be comparable to L.

e In D = 5,/ = 3 mode (without deformation) had ¢ = % so it was on the
threshold of being a weak solution. Since 7y < 0, it cannot be a weak solution
in EFT°.

¢ Asageneral rule, it seems that EFT corrections make black holes more singular.
As we already mentioned, the only exceptions are ¢ < 232 modes. Neverthe-
less, for them 7y < 0 and so the perturbative treatment is not justified anyway.

e If we take / > D, the associated perturbation is as smooth as we want (at least
if we ignore non-linearities that would produce all possible modes). Thus, a
small change in the exponent could not be detected in any reasonable experi-
ment.

* This 71 was calculated for modes +— using the notation from the previous
Chapters. The scaling dimensions for ++- also depend only on d.

* A similar calculation can be performed also for vector and tensor modes. In
D = 4, vector scaling dimensions are not changed (and there are no tensor
ones). In higher dimensions, they are shifted. Although the shift is invariant,
it does not have a positivity bound, as far as I know.

It seems rather peculiar that the change in the exponent is described by such a simple
formula that depends only on dy. Moreover, it is exactly dy that becomes constrained
by the Weak Gravity Conjecture. In a sense, it seems that UV degrees of freedom
(whatever they are) seem to destabilize extremal black holes in more than one way.
Nevertheless, it is still an open question of what is the endpoint of the instability —a
different geometry or maybe naked singularity in the bulk? As it is hopefully clear
from the list of our remarks above, EFT is not necessarily to be trusted when y < 0.
Thus, in my opinion, this result is the most interesting in D = 5 where it signifies
that something qualitatively changes when we introduce higher-curvature corrections.

4.3 Kerr deformed

We expand the metric as

o (4.24)

b = 8 4 1 ') + Ao b

a a

50f course, since our EFT introduces higher derivatives, it is far from obvious that the notion of
weak solutions remains the same. Nevertheless, our arguments regarding black hole thermodynamics
for v < 1 could still hold
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with ¢(0) satisfying the vacuum Einstein equation, and solve Egs. (4.10) and (4.11)
to linear order in the EFT coefficients {7, A¢, A} °. To study tidal force singularities,
we are interested in the leading behavior of the Weyl tensor associated with the EFT-
corrected metric. The effects of interest to this paper only become important near
the horizon of a nearly-extremal black hole, since they arise from unusual scaling in
the near horizon region when the horizon becomes arbitrarily far away (in spacelike
directions). For this reason, we can focus mainly on the near-horizon geometry.
We do this in two steps: i) we EFT-correct the near-horizon extreme Kerr (NHEK)
geometry [9], and ii) we then determine how metric perturbations fall off near the
horizon by computing the so-called scaling dimensions .

We focus on extremal black hole solutions that are stationary and axisymmetric
with respect to k = 9/dt and m = 9/0¢, respectively. Furthermore, we will im-
pose the symmetry (f,¢) — —(t,¢). The most general ansatz compatible with the
symmetries above can be written as

ds> =2JQ?| — p*dt* + F—; (do + p B dx)?

P (4.25)
dx? 2 2

0 + B (d¢ +pwdt)?|,
where the factors of p are adjusted so that p = 0 is a Killing extremal horizon, ¢ ~
¢$+2m,and O, w, A, B, F;, and F, are functions of p and x, with (p, x) € R™ x [—1,1].
To fix the gauge, we further impose F; = 1 and F, = 0. In the above, all coordinates
are dimensionless, and in the case of the NHEK solution, ] is simply the Kerr angular
momentum (in geometric units of length squared given by the size of the black hole).

4.3.1 The EFT-corrected near horizon geometries

In order to find the near horizon geometry, we start by imposing O(2,1) x U(1)
symmetry, in which case we take Q) = Qnp(x) and B = Byu(x) in Eq. (4.25) to
be functions of x only, as well as taking A = Ay = (1 — x?)/T'%yy, with Iy and
w = wny constants. The resulting line element reads
dsiy = 2 QR | — p*dt* + di,(f + rizqgi]zcz
3 (4.26)
+ BIZ\TH(d(P + p wNH C].l‘)2 .

®We note that second-order perturbation 5h[(£) from R3 at O(2) is smaller than the linear-order
8
b

quartic-Riemann perturbation i,

via the following reasoning. The linear perturbation from the cubic-

Riemann term, by Egs. (4.10) and (4.11), is given schematically by Dh? ~ 11eR3, s0 hg]) ~ et/ T2

a
Then the O(7?2) back-reaction effect is generated via the equation of motion as D(Sh(? ~ (Vh(g))2 +

a a
(8)
ab

from the quartic-Riemann operator is generated schematically via Dhg’j) ~ ARY, so hgg) ~ Aek®/ 3

and analogously for A,. Hence, ((Shgz)) / (h[(f;)) ~ (12/X¢)(x2/]), which we should be able to make
arbitrarily small for sufficiently large black holes. Indeed, by the dispersion relation arguments of [21],
one has 2/A. < 1/(xk2A%y,), for Ayy the energy scale of new physics, so as long as the size of the
black hole is larger than the Compton wavelength of the UV states generating the higher-dimension
operators (which must be the case to apply the EFT in the first place), we indeed find that the O(52) is
negligible.

1eR?OR ~ n2x8/]°, so (5h$> ~ 1n2x8/J*. In comparison, the linear-order metric perturbation h



4.3. Kerr deformed 79

The first two terms in brackets correspond to the metric on a two-dimensional unit-
radius AdS,, with p = 0 being the location of the AdS, Poincaré horizon.
We expand all quantities appearing in Eq. (4.26) as

Ona=0 (x) [1457.00) () +4.00) () +2,00) (x)

B =B (x) 1478 () +A.B® (x)+ 2.5 ()|
o (4.27)

l—‘NH:F(O) |:1+77@r(6)+)\er(8)+)\er(8):|

wnp=w® [1+173w(6)+)\ew(8)+iew(8)} .
Forn, = A, = A. = 0 we recover the NHEK geometry, for which

QO (x)=/ 2=, BO(x)=21, 10— =1, (4.28)

Proceeding to the next order, we determine the corresponding EFT corrections. For
instance, we find

4 4
©__ 1% e K
32v/2]2 7]
[(s) _ 366435 K (g _ (4864 +1575m) k°

= e B Y= , 429
256v/2)3 207 (4.29)
f(s) _ _ 368829x° 5 _ (4736 +15757) K6
o eaV2p B 5]3 ’

where some of these constants were chosen to ensure the absence of conical singu-

larities near the poles x = +1. Explicit expressions for QI(\%(x) and Bl(\%(x) can be
found in the supplementary material (Sec. D.1).

4.3.2 Deforming the EFT-corrected NHEK geometries

Having found the new near-horizon geometries, we now study how they respond to
external tidal deformations. These deformations are generated by simply having the
near-horizon geometry connected to an asymptotically flat region. We expect such
deformations to become arbitrarily small near the extremal horizon, and as such, we
can use perturbation theory to study their properties.

We again start with Eq. (4.25) with F; = 1and F, = 0, but now ), B, A and w
can be functions of both x and p. Since we are perturbing around an O(2,1) x U(1)-
symmetric solution and we are restricting our attention to stationary and axisym-
metric perturbations, we decompose our perturbations in terms of harmonics on
AdS; with dependence on p only. These turn out to be power-law solutions of the
form p”7. We thus set

Anu (%) [1+€p” Q1(x)]
Ban(x) [1+¢ep07 Qs(x)]

(4.30)
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with € being a bookkeeping parameter we take to be infinitesimally small. All the
Q;, withi =1,2,3,4, and y have an expansion in #,, A, and A, of the form

Qi(x) = Q) (1)+7.Q" (1) +2.Q1Y (x)+1.0 (x)

g (4.31)
v =90 +57® + 2.9® + 1,50,

The main goal of this paper is to determine the corrections to the scaling dimension
7(©),48) and 48, since these control the deviation from the standard Kerr result. At
each order, we find that le) and Qél) can be expressed in terms of le) and QEJ) and
their first derivatives. We are thus left with two second-order differential equations
for Q%I) and Qil).

For I = 0, i.e., deviations away from NHEK, the equations for ng) and Qio)
are second-order homogeneous equations of the Sturm-Liouville type where ()
appears as an eigenvalue. These can be solved analytically in terms of standard
Legendre polynomials Py of degree ¢ (see Sec. D.2 of the supplementary material).

We find two classes of solutions, labeled by ’ygg ) with critical exponents given by ’

YO =¢ with ¢€N > 2, w2
YO0 =041 with LeN>1. '

Since the scaling exponents are positive integers, the perturbation decays and the
horizon remains perfectly smooth. In other words, without higher-derivative cor-
rections, the extremal Kerr horizon is unaffected by these deformations.

For fixed values of ¢, there are two distinct values of ,),(0), thus yielding a non-
degenerate spectrum at fixed ¢ at zeroth order. We can thus proceed using standard
perturbation theory. The resulting equations can again be solved analytically for
each value of /, and after some algebra one finds

(6) 0y _ (6)(qy _ 24K
’Y-‘r (2) =7- (1) - 7]2

®) 4y 21(32+ 4577)K°

9(8576 + 3045 6

1® 1y = - 207 Wl (4.33)
_8),~y _ 12(736 + 3157)x®
- 189(384 + 1457)«°
70(1) - -2,

(6)

At the moment we have no understanding of why 7(_6) (1) = v}’(2). Furthermore,
'y(_l) (r—-1) < 7@ (¢) for fixed values of £.

Even though these are small corrections, the scaling exponent is no longer an
integer, so when y < 2 the curvature will diverge. The reader might worry that
we have done this calculation using coordinates that are not regular at the extremal
horizon. In the supplementary material in Sec. D.3, we give an explicit map between

"There is also an ¢ = 1 mode for 7 that is not pure gauge, but it does not contribute to tidal forces.
It is analogous to the ¢ = 0 mode in spherically symmetric systems that changes M or Q.
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the Kerr-like coordinates of Eq. (4.25) and Bondi-Sachs coordinates, which are mani-
festly regular at p = 0. It is in Bondi-Sachs coordinates that we compute the relevant
components of the Weyl tensor and find diverging tidal force singularities at the
future (and past) extremal event horizon so long as ¢ < 2.

Since the metric is C! but not C2, Einstein’s equations remain well defined in a
distributional sense. However, since the event horizon is a Cauchy horizon for a
constant-t hypersurface, the evolution is not unique.

4.4 Kerr-Newman black hole and RG stability

Let us consider yet another possibility for changing the theory. Instead of taking into
account higher-curvature corrections, we may introduce additional matter fields.
Thus, we will generalize the results of (2.2). We will replace a massless Klein-Gordon
field with a charged, massive one. In the spirit of this Chapter, we shall put the
cosmological constant to zero but allow for the rotations of the black hole. Thus, we
consider a scalar field of mass m and charge g on the background of the extremal
Kerr—-Newman black hole®. We will work only close to the horizon, ignoring the
question of the far-away asymptotics, sources for the scalar fields, and the way we
shall avoid no-hair theorems.

In the Schwarzschild-like coordinates (¢, p, xip), the near-horizon geometry of the
extremal Kerr-Newman black hole may be written down as

2 2 242, dp? dx? 2 2
ds” = 2], (x) (—p dt” + o ti—a2™t A(x)*(dy + pwdt) ) (4.34a)
and
A= 2%21?2 ((1 —(1-QY)xH)pdt + /1 — Q1 — x2)d¢> , (4.34b)
where
Q() \/(1—Q%)X2+1 (4.340)
xX) = 34c
/2 ’
2 _ 2 1 — x2
Alx) = ((1 _Qé; )sz +915 (4.34d)
and
24/1—Q2
w= oL (4.34¢)

2-QF
As is usual in the spherical coordinates, x € [—1,1] and ¥ is a periodic function on
[0,277)7 J; and Q; are connected to the angular momentum | and charge Q as

Ji = S (4.35a)

y1-Qf

8Non-extremal black holes in AdS are known to develop scalar hairs - this is the key ingredient for
the holographic superconductors. The fate of those condensates as T — 0 may vary [67], in particular
allowing for singular limits.

9The reason we use ¢ instead of ¢ shall be clear soon.
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and

Qr = g, (4.35b)
T+
where 7, is the Boyer-Lindquist radius of the horizon.
On this background, we consider a field ¥ of charge g and mass m. It means,

under gauge transformations
A A+dA, (4.36)

it changes as ‘
¥ — MY, (4.37)

The covariant (gauge-field) derivative acting ¥ gives
DY =V, Y —iqA.Y, (4.38)
and so under gauge transformations, we have
DY s D, Y. (4.39)
Then, the equation of motion for the scalar field reads
gD, DY — m*¥ = 0. (4.40)

We will now try to solve Einstein-Maxwell-scalar equations perturbatively starting
with the Kerr-Newman background. Since ¥ = 0 on the background, we must start
simply with (4.40). Let us keep the axial symmetry. Since we are dealing with a
linear equation, we may still use the symmetries of the background to decompose
the perturbation with respect to the scaling dimensions. Thus, without a loss of
generality, we take

¥(p,x) = p"P(x). (4.41)

We will discuss how smoothness depends on p in a moment. (4.40) written in terms
of P reads

0=P(x) (@ 2" (7 + 7+ 4 (G 1) 2~ 1))
— P(x)q2Q} (QF = QF (¥ = 1) +22 = 1) + (@} —2)" ((* = 1) P"(x) + 2P (),

(4.42)
where the rescaled parameters are
Ur = m/J; (4.43a)
and
g = q\/Tr. (4.43b)

Since the coefficient in front of P(x) is just a linear combination of a constant and
of x?, a well-educated Reader immediately recognizes this as a Helmholtz equation
written in the spheroidal coordinates:

(1-22)y" —2zy + (A +u*(1 —z))y =0, (4.44)

where A is an eigenvalue and u measures the deviation from spherical symmetry
(substitutions u = 0 recovers the well-known Legendre equation). Since it is a
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Sturm-Liouville problem, there are countably many regular eigenfunctions'’ (or-
dered by their eigenvalues). We see that in our case

202
w= 1 |- 9 (4.45)

(2-@)*

Taking P(x) to be the (th eigenfunction, we get a quadratic equation for . Choosing
(as in Sec. 2.2), a larger solution gives

2 N6
2-Q?)

2

It may look rather implicit, so let us plot it. An example of v behavior with respect to
the parameters of the black hole is shown in Fig. 4.1. Interestingly enough, at some
point, v becomes negative which is a sign of instability — even a small (stationary)
source for the scalar field far away will lead to extremely large values close to the
extremal horizon. As a result, the perturbation theory breaks down and we may
expect that the Kerr-Newman horizon hole is replaced either by a deformed horizon
or by a singularity. In the latter case, one expects this singularity to be even more
serious than the ones discussed in the Chapter 2 — those would correspond to the
case 0 < v < 1.

F42(2-Q2) +1-1 (4.46)

0.0 \

0.0 0.2 0.4 0.6 0.8 1.0
QJry
FIGURE 4.1: The scaling dimensions of the scalar field as a function of

the black hole’s parameter. In this example, { =0, yy = 0 and q; = 1.
For larger values of %, the scaling dimension becomes complex.

The fact that we can get ¢y < 0 is not a result of a particularly bad choice of
parameters. In fact, we find the instability (for sufficiently large %) for any scalar
field provided that |q| > m (see Fig. 4.2 for an example). When the inequality is
saturated, v = 0 on the Reissner-Nordstrom background. Incidentally, the condition

10They are called the angular spheroidal functions of the first kind P, o(1,z). In Mathematica, they
are implemented as SpheroidalPS(n,0,u,z)
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lg| > m is the simplest version of the Weak Gravity Conjecture [55] stating that
every consistent quantum theory incorporating gravity must have in its spectrum a
particle for which the gravity is the weakest force. The primary motivations behind
the WGC are exactly extremal black holes and possible channels of their decay. It is
rather amusing to find out that it has such exciting implications even in the classical
regime. We have encountered WGC a few times already in this story. Whether it is
just a coincidence or a sign of a deeper connection between the two topics is yet to
be understood.

Even more, there are parameters (below the orange line in the Fig. 4.2) such that
v = —4 +ia for a non-zero (real) constant a. Such solutions are not only highly
singular but also oscillate close to the horizon. A complex scaling dimension close
to the AdS boundary would be seen as a violation of the Breitenlohner-Freedman
(BF) bound. There is an analogous interpretation in the near-horizon region. In-
deed, the NHG of Kerr-Newman is essentially a bundle of AdS, spaces over a non-
homogeneous S%. In a small patch on a sphere, we can treat the Maxwell field as
effectively constant, and then our solution (locally) behaves like a neutral Klein—-
Gordon of a mass'! m? + g2 A2. Tt is a BF bound associated with those local AdS, and
local effective masses that is violated here. Of course, due to the non-trivial bundle
structure, AdS; spaces over different points of S2 have different radii and would re-
sult in different BF bounds. Nevertheless, qualitatively, this is exactly what happens
here.

4.4.1 The next order

Having found modes with oy = 0, one must feel tempted to go beyond the first order
in the perturbation theory. There is a natural hope that maybe we could find a new
near-horizon geometry. In the second order, we would have to solve Einstein and
Maxwell equations sourced by ¥. Let us start our discussion by calculating the U(1)
current. The standard formula is

ja — i (T*DQT - IDQT*T) . (4.47)
When 7 = 0, Y is real and thus it simplifies:
ja = qP(x)*A, (4.48)

From the current, we can read off the charge density, which is xj ~ p~!, and ev-
idently diverges close to the horizon. This may seem rather surprising — why a
smooth solution would lead to a non-regular charge distribution!??
To see how we should correct the The answer to this question lies in Eq. (4.34). Un-
fortunately, the Maxwell potential we used is not well-defined at the horizon. Thus,
the smoothness of ¥ is just an artifact of the non-smoothness of A. We will proper
solutions in a moment. Before that, let us notice that j, is a gauge invariant quantity.
As a result, ¥ written in a well-behaved gauge cannot be smooth.

To see what a smooth Maxwell potential looks like, let us start by changing coor-
dinates to ones well-defined at the horizon. To this end, we write

t=v+ (1) (4.49a)

HgGince the potential A is timelike, the second term in fact decreases the mass
12 Any attentive Reader will notice that not only the charge distribution is diverging, but also that the
total charge stored close to the horizon is infinite
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FIGURE 4.2: The scaling dimensions of the scalar field as a function

of the black hole’s parameter and its own mass. Below the blue line,

v is negative and thus the black hole is unstable. Below the orange

one, Rey = —% and Imy # 0. In this example, / = 0. We see that

for fields with a small charge, BF bound is not violated (at least for
positive mass squared).

and

o

Y =¢+wlog P (4.49b)

Clearly coordinates (v, p, x, ¢) are well-defined at the horizon. Let us look at A:

_ dovTiQ) | dovTipQ: (- (& -1) %) —1)

- p(QF-2) (QF-1)x2-1 450
dy/Try/1— QFQr (¥ — 1) @0
+ Q@ -N2-1

Since the coordinates are regular, clearly A is not due to the first term. However, the
irregular part may be easily fixed by a simple (also singular) gauge transformation:

VIiQ; o
A— A—d <(Q%_t2)10g r+> . (4.51)
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Under this gauge transformation, the scalar field becomes:

N ) o V19
—iq log ;7 T-iq
¥ e ((QM Yp  (F2)p(x). (4.52)

We thus see that the proper scaling dimensions are complex from the very beginning.
In particular, if v = 0, the scalar field is not even continuous at the horizon due to
the oscillatory term. That explains why we found j, to be singular as well.

Let us emphasize that from the discussion above it follows that any stationary
solution cannot be smooth because Imy # 0. As a result, a single mode is of Cck1
class, where k = |Revy|.

4.4.2 Beyond the axial symmetry

For completeness, let us now discuss what happens if the perturbation is not axi-
ally symmetric. Since dy is a Killing vector of the background, we may decompose
solutions into Fourier modes. In Schwarzschild-like coordinates, they will read

¥ = e™p7P(x), (4.53)

whereas in the global coordinates:

¥ = e™Pp7P(x), (4.54)
where
QB
g = —iq o - 5+ imw. (4.55)

(We used ¥ and ¥ to emphasize that those are the same object but written in a dif-
ferent gauge).

Either way, P satisfies an analogous equation as before but now with additional
m-dependence. At the end of the day, the solutions are

P(x) = Pym(x,u), (4.56)
where
¢ (1-Qf) (mz (QF = 1) —2mqiQe\/1— QF — 7QF + 17 (QF — 2)2>
u= PRy (4.57)
t
and analogously
_ 1 2 (4 2 2 2
T [—4(2m (Qt — 507 +4) +2mg; (Q2+2) /1 - Q2Q

(4.58)

1

+qQf A (QF—2)" +pF (QF—2)" ) + Qf —4QF +4

In particular, we see that m — —m is the same as Q; — —Q;. For this reason, we
will restrict to m € IN and assume instead that Q; € [—1,1].

For certain parameters we may obtain v < 0 or ¢ = —% +wai, 0 € R (see Fig. 4.3
below). In these aspects, the breaking of the axial symmetry does not change too
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much. There is however one difference. If

Q-2
Q}

¥ is going to be real (provided that 7y is real). As a result, if 4 € IN, then also ¥ € IN
and the mode is actually smooth. Unfortunately (after a numerical search) we found
out that with this condition -y is bounded by 1 (see Fig. 4.4) The bound is saturated
only by the Reissner-Nordstrom black hole and massless (yet charged!) scalar field.
As a result, among smooth solutions there are no zero modes.

g = mw (4.59)
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FIGURE 4.3: The scaling dimensions of the scalar field as a function

of the black hole’s parameter and its own mass. Below the blue line,

7 is negative and thus the black hole is unstable. Below the orange

one, Rey = —% and Imvy # 0. In this example, { = 1,m = 1. As one

may see, for sufficiently small scalar’s charges, the black hole is stable
with respect to this mode (at least for non-negative m?)

We shall not get discouraged by the fact that we found no interesting solutions
so far and instead come back to our favorite A < 0 case (to be more precise: Kerr-
Newman AdS). Then, finding < requires actual (easy) numerics — one needs to find
an eigenvalue of a simple ODE on an interval [—1,1]. Instead of doing that (and
producing not a very clear plot), let us just describe qualitatively what may happen.
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FIGURE 4.4: The scaling dimensions of the scalar field as a function of
the black hole’s parameter and its own mass. At the blue line y = 3.
At the orange one, v = 2. In this example, { = 1,m = 1.

As before, we want to impose a condition that 4 is real. This condition reads
qr ~ mw, (4.60)

where the proportionality constant does not depend on the field. In particular, if we
take the limit w — 0, we have q; = 0. Thus, on the background of RN AdS, only
neutral scalar fields can have real scaling dimensions. In this case, we may find it
exactly. It reads

1 4(€(€+1)+y2ri)
== |44/1 —1] . 4.61
=73 \/ T ten /2 &oh
Clearly, for ;42 = —@, the exponent will vanish. Thus, we have a proper zero
+

mode. Of course, as a result, we have to consider a field with negative mass squared.
In AdS, this is not a problem as long as this mass is larger than the (four-dimensional)
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BF bound: 9
W= mpp = — o5 (4.62)
Thus, such novel horizons could be embedded into AdS as long as
2
re 8
275 (4.63)

We expect (and the aforementioned numerics confirms that) if we turn on a small
rotation (while keeping its extremal) if we change the charge and mass accordingly,
we may still find a zero-mode that is truly smooth. It would be a fun exercise to go
beyond the first order in this calculation. It seems likely that this time we should not
encounter any problems in the second order and the zero-mode could be uplifted
to the full non-linear solution for a near-horizon geometry. At the same time, let us
notice that this novel configuration is still RG unstable. £ = 0 mode of ¥ is going
to be badly divergent at the horizon. Unfortunately, that may limit any holographic
usefulness of these solutions.

Let us quickly summarize the results of this Section. Scalar fields satisfying the
Weak Gravity Conjecture g > m may render sufficiently charged Kerr-Newman so-
lutions unstable. There is no new solution bifurcating at the onset of the instability.
Thus, one may only speculate what the endpoint of the instability is. Either way,
it should be something very different in comparison to the Kerr-Newman solution
(and its near-horizon limit). If we consider Kerr-Newman AdS instead, for suffi-
ciently large black holes, there is a smooth zero mode (for a field with fine-tuned
charge and mass above the BF bound) that we could uplift to a new non-linear so-
lution for the near-horizon geometry. Unfortunately, the same charged field renders
this configuration unstable due to badly divergent ¢ = 0 mode.

4.5 Observations and discussions

The fate of the black hole horizon depends sensitively on the signs of the coefficients
of the higher-dimension operators. From our calculation of the scaling dimensions,
we see that extremal Kerr black hole horizons develop singularities if 7, is negative
orif A, or A, are positive. Further, if dy > 0, then the extremal RN black hole in five
dimensions develops a singular horizon '*. The signs of the various Wilson coeffi-
cients in the EFT is therefore of paramount importance in determining the nature of
the horizon.

Fortuitously, there exists an infrared consistency program of bounding the coef-
ficients of EFTs from first principles using the tools of analytic dispersion relations in
QFT, in a manner agnostic of the details of the UV theory [1]. Using either analyticity
and unitarity of scattering amplitudes [11] or causality of graviton propagation [51],
one can prove that, in any consistent theory of quantum gravity, the coefficients of
the quartic Riemann operators A, and A, must be positive. This is borne out in string
theory [11], where calculations of the low-energy EFT yield A, = a”®[13 + (3)]/8x®
and A, = a’3[1 4 (3)]/32x° in the bosonic case [73, 74], A, = 4A, = «/37(3)/8x® in
the type II case [48, 49, 77], and A, = 4A, = a3[1 + 27(3)]/16x° in the heterotic [48,
77] (equivalently, type I [106]) case, respectively.

BThe significance of the negative shift in -y, for dy > 0, for extremal charged black holes in D > 6 is
less clear, since generic nonspherical perturbations blow up on the horizon already in the pure Einstein-
Maxwell theory.
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However, the Riemann-cubed operator is not amenable to such a general theory-
independent bound on the basis of extant dispersion relations. While vanishing on
general grounds in any supersymmetric theory [18], the 7, coefficients receives finite
contributions at one loop [46] from massive states in the theory 14

3
Te = 15120(4 2K2Z<m2 "2 mz> (4.64)

f v

where ms, mg, and my label the masses of the heavy real scalars, Dirac fermions, and
vectors in the theory. As expected, this combination vanishes for supersymmetric
theories. In the standard model, where all of the lightest states are fermions, we
therefore will have 7, < 0, leading to singular horizons for rapidly-spinning Kerr
black holes.

Further, the signs of Wilson coefficients in the Einstein-Maxwell EFT are of great
importance for the Weak Gravity Conjecture (WGC) [4, 5, 24, 25, 76]. Let us remind
the reader that the WGC is the statement that, when an Abelian gauge theory is con-
sistently coupled to quantum gravity, there should always be a state in the spectrum
for which Q/M > 1 in Planck units, with 1 corresponding to the charge-to-mass ra-
tio of an extremal black hole [5]. In the presence of higher-dimension operators in the
EFT, the black hole solutions are deformed, and thus the maximum allowed charge-
to-mass ratio of black holes free of naked singularities is also shifted. For electric
black holes, the particular combination dy defined in Eq. (4.23) dictates this shift,
with A(Q/M) « dy [25], so that dy > 0 allows the black holes themselves to satisfy
the WGC. In this case, there are expected to be nonperturbative decay processes, i.e.,
a black hole version of Schwinger pair production, by which large extremal black
holes decay to smaller ones with Q/M slightly > 1. Interestingly, the shift in the
black hole entropy and on-shell action are also « dy [4, 25], and it was argued via
black hole thermodynamics in Ref. [25] that dy > 0 in tree-level completions. It is
interesting that for precisely this same situation dy > 0, we also find an instability
toward singular extremal charged black holes in D = 5, and a negative shift in the
associated scaling dimension for all D > 5. We leave the question of whether this
effect is somehow connected with the WGC-mandated black hole decay to future
work.

When the curvature diverges on the horizon of an extremal black hole, a near-
extremal black hole has a curvature that diverges as one approaches extremality [66].
Since we observe rapidly spinning black holes in nature (see, e.g., Refs. [47, 101,
112]), one might wonder if the effect described here could be observable. That is
possible, but detecting tidal forces much larger than the ambient curvature would
require black holes much closer to extremality than have been observed to date.
However, we take our results as proof of principle that black hole horizons can serve
to amplify the effects of higher-derivative terms in the action. Since all the scalar
quantities are bounded, we expect that the EFT approach should be still valid.

HAt two loops, 1. is generated even in a purely gravitational theory, with a beta function that leads
to positive 7, in the asymptotic infrared [12, 13], though this effect is too small to be physically relevant,
even for astrophysical black holes.
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Chapter 5

Conclusions

51 Summary

In this thesis, we tried to understand: what does the neighborhood of a generic de-
generate black hole look like? From the astrophysical point of view, it is of no in-
terest. After all, due to the third law of thermodynamics, we expect that there are
no T = 0 black holes in our universe. However, extremal black holes are quite
important for quantum gravity. They inspired deep conjectures like Weak Gravity
Conjecture. Moreover, they allow enhanced control over the quantization which led
to a series of beautiful results such as a non-perturbative calculation of the black
hole entropy as T — 0. Moreover, in AdS/CFT black holes are dual to thermal states
of the boundary theory (usually with a non-vanishing chemical potential). In this
context, the low-temperature regime is of obvious interest.

Of course, if we assume Einstein(-Maxwell) equations everywhere, asymptotic
flatness, stationarity, and four dimensions, this is a void question because extremal
black holes are completely classified in this setting. They must be in either Kerr-
Newman or Majumdar—Papapetrou solution class. Thus, to talk about genericity, we
had to include either a distant matter distribution or non-trivial boundary conditions
(for example in AdS).

Chapter 2 was devoted to this very question in AdS; with symmetry-breaking
boundary conditions. Somehow surprisingly, we found that generically the horizon
is replaced by a null singularity. To be more precise, the Weyl tensor in the null-
gaussian coordinates (v, p, x?) reads

Cpupb ~ (r)/ - 1)p’y—2. (6.1)

Counter-intuitively, the larger the black hole the worse the singularity is (it means,
the smaller the ). We have a few different regions in the parameter space:

e ¥>2
This happens only for small toroidal black holes. It means that the horizon is
not singular (albeit probably still not smooth)

e l<y<x?2
In this case, the horizon is replaced by a singularity that is very mild. In par-
ticular, the tidal forces are integrable and thus would lead only to a finite de-
formation of an infalling test body.

e loy<i
2
When ¢ < 1, the tidal forces stop being integrable. An infalling test body
would get destroyed.
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c0<y<y
The tidal forces are still not integrable. Moreover, the Einstein(-Maxwell) equa-
tions do not hold anymore on the horizon even in a distributional sense.

e v <0
This happens only for large hyperbolic black holes. If this is the case, a "small’
perturbation diverges at the horizon, the perturbative expansion breaks down
and the whole solution is RG unstable. We do not know what the endpoint of
that instability is.

Despite the fact that solutions are singular!, their analytic continuation to the Eu-
clidean signature is perfectly smooth. Thus, it seems that, as long as v > 0, those
configurations can be prepared by the gravitational path integral and should not be
ruled out as unphysical singularities (in contrast to a singularity at» = 0 for M < 0
Schwarzschild). Even more, because all curvature scalars remain small at the hori-
zon, we do not expect higher-curvature corrections (of either stringy or quantum
origin) to change that conclusion.

Although turning the temperature T up restores the smoothness, it still leaves
significant observational imprints. In particular, the Weyl tensor at the horizon reads

Cpapp ~ T72 (5.2)

and thus may be arbitrarily large. Moreover, the second-order perturbation theory
shows that the horizon’s entropy increases by something proportional to T?. As a
result, the specific heat (say at a fixed charge) obtains an anomalous term

Co = CiT +CT* + O(T?, T*7) (5.3)

that dominates at low temperatures assuming that 2y < 1. This seems to be a clear
prediction for the boundary theory. It would be interesting to see a field-theoretic
derivation of this scaling.

Let me also remind the Reader that we found that when a cosmological constant
A vanishes, all ys become integers and the horizon is C*. For A > 0, the scaling
dimensions grow with the black hole’s size. Only small (in comparison with the
Hubble radius), charged black holes remain singular albeit with 1 < .

Having investigated four-dimensional black holes, we moved into higher dimen-
sions. We found out that generic stationary perturbations of RN AdSs have ¢ < 0,
and thus they lead to drastic changes in the horizon’s geometry (we say it is RG
unstable). This is rather an unexpected turn of events. Apparently, putting a (holo-
graphic) CFT4 on a slightly deformed background leads to a drastically different
infrared. It seems that a lot of work on the topic so far studied the IR fixed point that
was unstable and there is still a lot to understand. Again, it would be interesting to
see that RG flow also on the field theory side of the story. In particular, I would like
to understand whether this is a property of only holographic CFTs or maybe a more
robust behavior. If the theory is placed on a three-dimensional torus (instead of a
three-sphere), then the phase diagram becomes even richer. For small torii (in com-
parison with the chemical potential), background deformations are irrelevant and
they become more and more relevant as we increase the size. In particular, at the
threshold of instability, one can check that the dc resistivity approaches a constant.

Several new near-horizon geometries (both spherical and toroidal) were con-
structed perturbatively and numerically. Unfortunately, all of them are RG unstable.

10r, in the case 0 < v < %, are not even solutions
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Thus, the proper IR fixed point remains elusive. Our numerical search suggests that
at least for small (spherical) RN AdS, there is no stable near-horizon geometry. This
suggests that maybe the endpoint of RG instability is not a black hole at all. This,
in turn, allows one to conjecture what are the properties of the new phase. If it is
not described by a single horizon, it does not have to be a conductor at all. Maybe
we have a new holographic conductor/insulator phase transition? Either way, one
should keep in mind that this is rather a speculative discussion.

We also showed that higher-curvature corrections may render extremal Kerr sin-
gular even without any additional sources. This should happen in particular for
black holes of astrophysical sizes (assuming that neutrinos are the lightest massive
particles). For supersymmetric theories it is a robust statement that does not depend
on the black hole’s size or the UV matter content. Unfortunately, scaling dimen-
sions of RNy are unchanged (to leading order). This is no longer the case in higher
dimensions. If the Weak Gravity Conjecture holds, it follows that RN5 is RG unsta-
ble. Moreover, charged scalar field satisfying WGC also renders Kerr-Newman RG
unstable. The appearance of WGC is perhaps not very surprising (since it started
exactly with extremal black holes) but I think it would be worthwhile to actually
understand the connection.

5.2 Further work

Essentially all the work done in this thesis was (in one sense or another) classical. I
believe that the most important next step is trying to connect our results with very
impressive statements regarding quantum extremal black holes. Most of them as-
sume from the very start that all Kaluza-Klein modes are not sourced. In this thesis,
we saw that when they are, they may significantly alter thermodynamics. The in-
teraction (or at least competition) between the quantum effects and sources is some-
thing I would like to investigate further. The simplest way to do it would be to treat
KK modes as small perturbations of Schwarzian theory. If this can be done con-
sistently (it means, if their contribution to the effective action remains small), that
would strongly suggest that quantum effects dominate as T — 0. One should prob-
ably also understand better the interplay between Schwarzian physics and higher-
curvature corrections.

Going back to the classical realm, we could ask about non-compact (say, planar)
horizons and perturb the boundary conditions adiabatically in real time. Due to
non-compactness, we may do this without changing the temperature. Then, we can
expect that at late times, the curvature at the horizon would grow unboundedly.
In this way, we could potentially create a new counterexample to the weak cosmic
censorship in AdS,. One may notice a similarity to [68]. The only practical difference
is the fact that for our example we need only an infinitesimal perturbation of the
boundary conditions because we now know to look for null tidal forces. I think
it is important to understand whether the connection between the Weak Gravity
Conjecture and Weak Cosmic Censorship will be still present — for now it seems to
me that it would not have to be there.

Even more work is needed in higher dimensions. Due to RG instability, any
source would drastically alter the horizon’s geometry. The very first question would
be: what is the endpoint? What kind of properties does it have and what is the
correspondence IR for the boundary theory? One could also ask about the time-
dependence boundary conditions at infinity that could trigger in some sense phase
transition. On a more mathematical side, the problem of classifying near-horizon
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geometries in five dimensions seems harder than ever. There is a plethora of new
solutions that awaits a good idea of how to describe them all.

Our work on the higher-curvature corrections showed a connection between RG
stability of extremal black holes and the Weak Gravity Conjecture. That does not
seem to be a coincidence. Since WGC is exactly about making extremal black holes
unstable (though in a particle physics sense), the fact that it leads to "the destruction’
of RN5 horizon feels right. Getting a better understanding of the process from the
point of view of UV could shed new light on WGC and swampland.

Let me finish my dissertation with this very Section. As one can see, certain
results were obtained here but there is much more that we do not know. I hope to
have a pleasure to work on these topics again in the future.
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Appendix A

Anomalous scaling of the specific
heat

In this Appendix, we provide some details of the calculation of the anomalous scal-
ing of the specific heat with temperature. The final answer agrees with the scaling
argument (2.30) given in Sec. 2.3.2. We will use second-order perturbation theory
about the near-horizon geometry of an extreme RN AdS black hole.

Since our argument relies on second-order perturbation theory, our calculations
will become less explicit and, for the sake of presentation, less general. We will
focus on deformations of the near-horizon geometry that break SO(3) but preserve
a U(1)y symmetry. Additionally, we will impose the discrete symmetry ¢ — —¢.
We then write an Ansétze for the deformed metric and gauge field in Bondi-Sachs
coordinates adapted to the extremal horizon:

2
ds? = Lz{ —A(p,f))pzdLZ; + 2dzdp

2 )
2 Hip,6) [HT(M) (de— W) +Sm9d4>2] } (Ada)

Hr(p,0)

and
A=pAy(p,0)dv+ L Ag(p,0)d6, (A.1b)

with the extremal horizon being located at p = 0, as usual.

We now expand all metric and gauge field functions in terms of harmonics on
the round S?, by identifying how each transforms under diffeomorphism on a two-
sphere. This will make contact with section 2.3.3. Essentially, A, H; and A, can
be written as an infinite sum of scalar spherical harmonics and Uy and Ay as an
infinite sum of gradients of spherical harmonics. Hr is slightly more subtle, but its
transformations properties can be read from (2.36b). Note that no spherical vector
harmonics appear in our expansion, since these would necessarily break the discrete
symmetry ¢ — —¢ that we want to preserve. To sum up, we have

Ap,0) = }ffsz(e)af(p), (A22)
=0

+00o
Hi(p,8) = Y Se(8)hi(p), (A.2b)
=0

—+00
Ao(p,0) = ) Se(0)ay(p), (A.2¢)
(=0



96 Appendix A. Anomalous scaling of the specific heat

+o0 ,
Ug(p,0) = Y 9Se(0)ug(p), (A2d)
(=1
—+o0
Ag(p,0) =Y 9S:(0)ag(p), (A.2€)
(=1
and e
Hr(p,0) = Y [6(£+1)S, +2cot09,S,(6)] h(p) . (A.2f)
(=2

So far we have not made any approximation. Indeed, we could have used this ex-
pansion to perform the full nonlinear numerical analysis of section (2.4.1), precisely
in the spirit of Galerkin spectral methods.

We now introduce our approximation scheme. We expand each of the functions
{a’, ht,al, uf, al, h%} as a power series in a book keeping parameter ¢ which we take
to be small

+oo
a‘(p) =Y a; (o), (A.3a)
j=0
{ pacgy l
(o) = ) &hy ;) (0), (A.3b)
j=0
l o l
a,(p) = ) &ay (), (A.3¢)
j=0
J4 Ay 4
ug(p) = Y &ug (), (A.3d)
j=0
l gy l
ag(p) = ijaé () (o), (A.3e)
j=0
and .
hr(p) = Y &ht ;) (p) - (A.3f)
j=0

We take the background, i.e. the order Y, to be given by an extreme RN AdS

black hole, which amounts to taking
1 V14374

s Y+

with all the remaining coefficients in (A.3) set to zero.

At linear order, i.e. €', we impose an ¢ = 2 deformation. If we imagine that these
near-horizon deformations arise from a boundary deformation of a generic profile,
the ¢ = 2 perturbation is the one that decays the slowest as we approach the horizon,
and as such provides the leading effect we want to study. In order to only keep a
¢ = 2 deformation, we take a%l) (o), u3 ) (o), b2 1) (p), hzT(1) (0), a2 ) () and a3 1) (p)
to be non-vanishing, but keep all the remaining coefficients with ¢ > 2 zero. Solving
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the linear Einstein-Maxwell equations yields

aty(p) =07, (A.5a)
1
2 _
uy 1y (p) = A6y (r—1) o7, (A.5b)

2 2 2 (A2
y+1) ¥+y—-10+6y5 (v +7v—2
h%(l)(P): y+( 2) 2 +(2 2 )p’yl (ASd)
4(1+6y7) 6+7[7 7+6y5 (v 1)}

\/1+312
2 (o) = T (A.5e)

= Y
1+626+7[12—7+62 (2 -1)] "

J1 4392
2 )= s (A56)

— Y
1+62 64712 —7+62 (2 -1)] "

where the first equation defines what we mean by ¢. The exponent 7y can again take
four distinct values. Two are negative, and we ignore those via boundary conditions,
and we are interested in the smallest of the two that are positive. This yields

1 24 24 (14 3y%)
== 41+ A5
T=75 J5+1+6y2+ \/+ A+672)2 (A.5g)

which matches v, _ in Eq. (2.39a) with ¢ = 2, as it should. Note that hi ) vanishes
via the equations of motion.

One can now proceed to second order in e. At quadratic order, modes with ¢/ =
0,2,4 are generated in the expansion. The final expression for each of the coefficients
is rather complicated and not very illuminating. However, in order to make the
argument we want, we only need to focus on Hy. The reason for this is that the area
of a surface of constant v and p = pg is simply given by

7T
A(po) = 27L2 2 /0 Hy (po,0) sin0df = 4mL? 21 (o), (A.6)

where we used that spherical harmonics have vanishing integral over the sphere.
Note that the above expression is exact. From this expression, it is clear that we can
only get contributions to the area coming from the ¢ = 0 harmonic. This justifies
why we need to go to second order in ¢ to see the effect we want.

After some algebra, one finds

1 () (0) = Ca(7) 0*" + Co+ Cip, (A7)
with
(Y+D(y+2) ) . ..
= 48 + 127 — 492 — 954 _
G(7) 5760(1 —29)(1 — ) (v2+ v+ 6) 8+ 12y 7" — 35y 5v* — 9y

72 — 229 — 279% — 10
V3

3 _ 4
—37°+ S VI + D (2t +4)| (A7)
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where we regard v as a function of 7y by inverting (A.5g), i.e.

1 1 12

In the above, Cy and C; are integration constants. We set Cy = 0, which essentially
defines y. Cy, on the other hand, cannot be set to zero.

The exact form of Eq. (A.7) is largely unimportant, except for a few of points. The
most important point is that it turns out to be non-zero, unlike at first order in e. The
second important point is that in the range 0 < ¢ < 1/2, the leading contribution
to hY 2) () is proportional to p?7. Furthermore, its coefficient, C,(y), turns out to be
positive definite (see Fig. A.1 below).

020 |

015+

(7)

Q010+

005 |

0.00 |
00 01 02 03 04 05
Y

FIGURE A.1: Cy(7) as a function of 7y in the range 0 < v < 1/2.

The apparent singularity at v = 1/2 reflects the fact that, for that value of v,

h% 2 (p) is no longer given as in (A.7a), but instead

997+281\/Ep log (;) (A9)

0o _
hL(z) =Co+Cip+ 110592

where again we can set Cyp = 0, but not C;. The leading behaviour near p = 0 is then
given by plog(1/p), again with a positive coefficient.

We can now apply the same scaling argument we used in section 2.3.2 to the
black hole entropy. Indeed, if we use (A.6), we have just shown that a surface of
constant v and p = py, to leading order in pg < 1, has an area given by

Alpo) = ALy [1 +Ca(7) pﬂ , (A.10)

in the range 0 < v < 1/2, which yields an entropy of the black hole horizon scaling
as
S~ Sy+ Sy T* (A.11)
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where Sy and S, are suitable constants. Using similar arguments, applied for ¢ =
1/2, we find instead
S~8y+ S, TlogT+ 55T, (A.12)

for suitable constants Sp, 5, and S3. Note that v is ultimately fixed by the total charge
Q (or alternatively ). Using standard thermodynamic relations, we predict the
scaling of the specific heat at constant charge Q, at sufficiently small temperatures,
to be given by

Co ~ 275, T* (A.13)

in the range 0 < v < 1/2 and
Co~ T (S2+853) +S,TlogT, (A.14)

for v = 1/2. Note that the fact that C(1y) is positive is paramount to argue that the
near-horizon geometry we found is thermodynamically locally stable since S, turns
out to be proportional to C>(7y), which makes Cg, in (A.13) also positive.

Though we have deduced this anomalous scaling for Einstein-Mawell, we pre-
dict this will be true for a variety of systems that suffer from tidal force-type sin-
gularities. For instance, in section 2.5.2 we show that our finite temperature scalar
model exhibits a scaling of the form (A.13).
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Appendix B

Expressions for the equations
governing the IR perturbations in
Sec. 3.3.3

Bp3 Y2 H2

% = ~gbrg [3B(1—4B) —4p%] , (B.1a)
o = SISO {432 (351 — 4B) — apie] [phe — B(1 — 6B)] P2
—9B(1 - 123)3/2} + W, (B.1b)
— %Rﬁg ]S;,“ OH {22 [4p% —3B(1 —4B)| 2+ 9B}, (B1o)
Bo = “f;z (7ptk — 3B) (B.1d)
Bi = 20 (o 3_35 ) sin 6H (472 (5% — 3B+ 6B%) H>+ 98|, (B.le)

H2Y?
pr=—p {9HB' (8B cos 0 +sin 0B') — 36Bsin 0B'H'

—4H%sin 0 Y3 [23pf; — 3B(5 — 14B)] } , (B.1f)

B3 = 4Y{sin6H>, (B.1g)
2803, Y2 H?
Ko = —pgT;, (B.1h)
403 Y? sin O H?
i = PR EREE {4v? [sph —3B(1-2B)] H2 + 987} (B.1i)
and vt 5
Ky = 1601 Y% sin0H . (B.1))

B
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Appendix C

Deformed toroidal horizons -
perturbative expansions

In this Appendix, we shall present in more detail perturbatively constructed near-
horizon geometries that are topologically torii. All the results were essentially ob-
tained by first expanding in € and then into appropriate Fourier modes. In this way,
the periodicity of the coordinates is automatically enforced. We shall follow the no-
tation of 3.4.

C.1 Simple cubic

The following expansion is up to order €2. One may keep in mind that higher-order
equations of motion lead also to constraints for lower terms. Thus, to obtain an
unambiguous solution up to the second order, we had to solve EoMs up to the fourth
one. Our starting point is a three-dimensional metric

L (10
i=g 0(1) . (C.1)

As a seed in the first order, we find:'
BM = sin(x) + sin(y) + sin(z). (C.2)

—_ O O

The parameter gir reads

1
= —— — 6V6e” + O(e*). C3
IR =57 (€%) (C.3)
Note that because the solution has a symmetry € — —¢, there cannot be €3 term in

qIR-
Then, all the remaining functions are

BW = sin(x) + sin(y) + sin(z) (C.4a)
B® = —48(2sin(x)(sin(y) + sin(z)) + 2sin(y) sin(z) — 1) (C.4b)
qg{) = —3(sin(y) + sin(z)) (C4o)

qxi) = —Z (—152sin(y) sin(z) + 9 cos(2y) — 9sin®(z) + 9 cos?(z) +557)  (C.4d)

IThe coefficients are chosen to ensure that the higher-order constraints are satisfied.
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g%y = —3(sin(x) + sin(z)) (C.4e)

qg‘) = —Z( — 264 sin(x) sin(y) — 152sin(x) sin(z) — 9sin?(x) + 9 cos?(x)

(C.4f)
—9sin?(z) + 9 cos?(z) + 557>
qg) = —3(sin(x) + sin(y)) (C4g)
i = - ( — 152sin(x) sin(y) — 264 sin(x) sin(z) — 9sin*(x) +9 cos® (x)
! (C.4h)

— 264 sin(y) sin(z) — 9sin?(y) + 9 cos?(y) + 557) :

All the other coefficients vanish.

C.2 Graphene-like torus

The following expansion is up to order €*. One may keep in mind that higher-order
equations of motion lead also to constraints for lower terms. Thus, to obtain an
unambiguous solution up to the third order, we had to solve EoMs up to the fifth
one.

Our starting point is a three-dimensional metric

1 4 20
j= 21 2 4 0. (C.5)
0 03
As a seed in the first order, we find:?
BM = cos(x + ) + sin(x) + sin(y) + \/gsin(z). (C.6)

Notice that (in contrast to the simple cubic case) € — —e is not a symmetry. The
parameter q;r reads

1
= —— —9v6e% — 576V/6€% + O(e* C.7
qIr e (e) (C.7)

Then, all the remaining functions are

BMW = cos(x + ) + sin(x) + sin(y) + \/Esin(z) (C.8a)

B® = —24/6sin(x 4+ v+ z) + 24V6sin(x + y — z) — 5sin(2x + y)
—17sin(x +2y) — 29 cos(x — y) — 2cos(2(x + y)) — 24v6 cos(x — z)
+24+/6 cos(x + z) + 12sin(x) 4 2 cos(2x) — 24v/6 cos(y — z) (C.8b)

+24v/6 cos(y + z) + 24sin(y) + 2 cos(2y) + 41 \/Esin(z) 178

2The coefficients are chosen to ensure that the higher-order constraints are satisfied.
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16B®) = —23712v/6sin(x — i — z) — 2658V/6 sin(2x + 2y — z)
— 45984V/6sin(x + y + z) + 45984+/6sin(x + y — z)
+23712V/6sin(x — y + z) + 2658v/6sin(2x + 2y + 2)

— 585616 cos(2x + y 4 z) — 14784+/6 cos(x + 2y + z)
— 19926 cos(x +y +2z) — 19926 cos(x + y — 2z)

4 58561/6 cos(2x + y — z) + 14784+/6 cos(x + 2y — z)
+4772sin(2x — i) + 6248 sin(2x + i) + 5888 sin(x + 2y)

+ 228 ssin(3x + 2y) + 4004 sin(2x + 3y) — 10372 sin(x — 2y)

+ 1688 cos(x — y) — 2336 cos(2(x +y)) + 72 cos(3(x +y))

— 228 cos(3x + ) — 6268 cos(x + 3y) — 2658+/6sin(2x + z)

— 19926 sin(x + 2z) — 19926 sin(x — 2z) 4 2658+/6 sin(2x — z)

— 54912v/6 cos(x — z)54912v/6 cos(x + z) + 96 sin(x) — 72 sin(3x)
+ 4256 cos(2x) — 2658/6sin(2y + z) — 19926 sin(y + 2z)

— 19926 sin(y — 2z) 4 2658V/6 sin(2y — z) — 63840v/6 cos(y — z)
+ 63840v/6 cos(y + z) + 2280 sin(y) — 72 sin(3y) + 26816 cos(2y)
— 29642V/6sin(z) — 81/65sin(3z) + 66816

(C.8¢)

qg() = —4sin(y) — 2V6sin(z) — 9 (C.8d)

Zq,@ = 456V/6sin(y) sin(z) 4 70sin(y) + 292sin(y) — 70 cos?(y) (C8¢)
+ 81 sin?(z) + 52V/65sin(z) — 81 cos?(z) — 2474
49%) = —8202/65in(2y — z) + 36126 sin(y + 2z) + 36126 sin(y — 2z)
+ 8202v/6sin(2y + z) — 383761/6 cos(y + z) + 3837616 cos(y — z)
+ 134344 sin(y) + 1080 sin(3y) — 15460 cos(2y) + 117602v/6sin(z)
+513v/6sin(3z) — 4536 cos(2z) — 939388,

(C.8f)

9
T = —V6sin(z) - 5, (C8g)
qg(czy) = 411 (52\/651n(z) — 81 cos(2z) — 2570) , (C.8h)

1
g = o (137186[6 sin(z) + 513v/6 sin(3z) — 4536 cos(2z) — 935740) . (C8)

g =0, (C.8j)
92 = 90v/6 cos(y) cos(z), (C.8k)
& = _g cos(y) cos(z) (409[6 sin(y) + 6156 sin(z) — 2108\@) (C.81)
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qg) = —3(cos(x +y) + sin(x) + sin(y)) (C.8m)
_gqg? = —456V/65sin(x +y +z) +456v/6sin(x +y — z) — 136 sin(2x + y)
— 232sin(x + 2y) — 328 cos(x — y) — 70cos(2(x + y)) + 5061
— 45616 cos(x — z) 4 456V/6 cos(x + z) 4+ 96 sin(x) + 70 cos(2x)
— 4561/6 cos(y — z) + 4561/6 cos(y + z) + 192 sin(y) + 70 cos(2y)

(C.8n)

_gqg? — —38456\/6sin(x — y — z) — 6480v/6sin(2x + 2y — z)
— 48312V/6sin(x + y + z) + 48312V6sin(x +y — z)
+38456V/6sin(x — y + z) + 6480v/6 sin(2x + 2y + z)

—13172V6 cos(2x + y + z) — 308246 cos(x + 2y + z)
— 83403 cos(x +y + 2z) — 83403 cos(x + y — 2z)

+13172v/6 cos(2x + y — z) + 30824v/6 cos(x + 2y — 2)

+ 6346 sin(2x — y) + 1300 sin(2x + y) + 1120 sin(x + 2y)

+ 1626 sin(3x + 2y) + 4666 sin(2x + 3y) — 9146 sin(x — 2y) (C.80)
— 980 cos(x —y) — 106848 cos(x + i) — 3220 cos(2(x + y))

+ 540 cos(3(x +y)) — 1626 cos(3x + y) — 5942 cos(x + 3y)

— 6480V/6sin(2x 4 z) — 83403 sin(x + 2z) — 83403 sin(x — 22)
+ 6480V/65in(2x — z) — 55944/6 cos(x — z) 4 559441/6 cos(x + z)
— 107952 sin(x) — 540 sin(3x) + 6484 cos(2x) — 6480v/6sin(2y + z)
— 83403 sin(y + 2z) — 83403 sin(y — 2z) + 6480v/6sin(2y — z)

— 6933616 cos(y — z) 4 693361/6 cos(y + z) — 108012 sin(y)
— 540sin(3y) + 20068 cos(2y) + 743274

From the symmetry, it follows that .. (x, y, z) = qyy(y, %, z) and .z (X, ¥, 2) = 42 (y, X, 2).
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Appendix D

EFT-corrected solutions

D.1 The EFT-corrected near-horizon geometries

Let C®,C®) and C® be integration constants, and define

oV
K(x) = arcsin (W) arcsin x. (D.1)

I=6

For the six-derivative corrections, we find

BO) (x) — K* 2656 — 42885x% + 45895x* — 8130x° — 1218x® + 183x'0 4 139x12
P 224(1 + x2)6
42
_ 15vV2x(3 ) K(x)
32(1+x2)v/1 — 22
(D.2)
and
4 2 4 6 8 10
QO (x) = & | ) _ 3285 — 554497 + 54210x" — 7058x° — 1527x° — 309x0 15xv/2v/1— 22 )
J2 224(1 + x2)6 64(1+ x2)
(D.3)
=38

For the eight-derivative corrections, there are two families of solutions:

BO) (1) = K8 [3(277663 —336007r) 407005 + 32887800x> + 38302380x* + 227158536x°
J? 1280 1280(1 + x2)°
_ 244951182x° 4 207667400x"° + 108083820x'> 4 31954360x'* + 4114685x'
1280(1 + x2)°
1612800x 366435x(3 — x?)

+ —————arctanx — K(x)|, (D4
2560(1 + x?) 2561/2v/1 — x2(1 4 x2) (). D4
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(8) x® (8) , /83837 + 16684758x2 + 33602022x* + 119986542x°
w(x)=—=|C¥ +
(x) 1280(1 + x2)?

N 138199680x8 + 115247810x1° 4 59401850x12 + 17424890x14 + 2229315x16
1280(1 + x2)°

A1 — x2
_7315x2 arctanx+366435x 1-x K(x)|, (D.5)
1+x 2561/2(1 + x2)
. 61 3 368829x (3 — x2)
B® (x) = 5| 2 (282113 — 3360077) — K(x
(x) 3 320( ) 64v/2v/1 — x2(1 + x2) )

1149443 + 5618952x2 + 136013268x* + 154320120x° + 254641842x8
320(1 + x2)°

208733752x10 4 108674580x12 + 32136008x1% + 4138723x1¢  2520x
— 320(1 + x2)° + T+ 2 arctanx |,
(D.6)
and
6 ST A2
(D(g)(x) o K C(S) 368829x+/1 X K(x)

TR eav2(1+22)
N 1018371 + 7724394x2 + 67516506x* + 96062418x° + 141833088x8
320(1 + x2)?

N 115923454x10 4 59757382x12 + 17530822x 4 + 224303716 1260«
320(1 + x2)? 1+ x2

arctan x| .

(D.7)

D.2 The approach to the near horizon geometry
We find two families of modes for stationary and axisymmetric deformations of the

near horizon limit of the extremal Kerr black hole.
For the + family, we find

C(0+1)xPy(x) + (1 — x?)P)(x)

(D.8)
1
Q§0)+(x) - 2(1+ x2)

20(0 4+ 1) x Py(x) + (1 — 3x2)P,§(x)]

1
QY (x) = 5 | £x Pi(x) +

2(0+1) ¢

(1—22)(2+ 0+ z)P,(x)] ,
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where ' denotes differentiation with respect to x. Modes with ¢ = 0 vanish, while
modes with ¢ = 1 are special] , so that in the + family we take ¢ > 2.
For the — family, we find

YO =141
Q. (x) =0
09 () = ~2 1= Ly 1y xPy(x) — [24 (1 — 220 PU(x)
2 - 21+ 2 ! (D.9)
1—x?
QY (x) = sz{w +1) xPy(x) — [24 (1~ )] Pé(x)}
QY (x) = £(¢+1) x Py(x) + (1 + x20) Pj(x),
where modes with ¢ = 0 vanish, so that for the — family we take ¢ > 1.
D.2.1 Two examples of EFT corrected deformations
We normalize perturbations so that, for each value of /,
1 1 22 3
2y (1—x%) , 2, 20(04+1)°(£+2)(L+3)
/_1Q1+(x) dx=/¢({+1) and /_173(2 Qy _(x)"dx = 213 .
(D.10)

We give examples of EFT corrections in the + family, with ¢ = 2. For the six-
derivative correction, we find

4
©) Kt 3x 36372480 72826880 50065408 13659904 1148992
=5 2% 352 1675 — - -
Q=) =7 224{ v2 227 T dra26 (11225 (a2 (1427
136 374 1 105v1— 2K
- - +384log | ~(1+22)| + LRNCING
(1+x2)2 1+x2 2 V2 x
(D.11)

while for one of the eight-derivative corrections, we have

QP (x) = K® 9x { 203230547 — 2721885065x% + 10948541740x* — 13485253140x° + 8456364570x"
1+

T 320 480(1 + x2)10

| 729506558x'0 — 621146940x'2 — 217212700x™ — 50262315x'6 — 52168951
480(1+ 22)10

420 4462619 203575 610725v/1 — x2 K
e + +2520C — 29857 + x K(x)
1—x 320 3242 64+/2 x
1680(2 — 3x? 14 x?
688(_ xz?;x Jarctanx _ 5040 arctan x arctanhx — 448log < X >
1—x? 1+i 1+i
—6307tlog< 4x > — 2520 D [( ;Ll> (1 —x)} — 2520 D K ;Ll> (1 +x)} }
(D.12)
where D(z) is the Bloch-Wigner dilogarithm function defined as
D(z) = Im(Liy(z)) + arg(1 — z) log|z|, (D.13)

ISee a footnote on p. 80 for the explanation
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Liy(z) is the dilogarithm function, and —7t < argz < 7. Note that D(z) is a real
analytic on C except at the two points z = 0 and z = 1, where it is continuous
but not differentiable (with singularities of the form |z|log |z| and |1 — z|log |1 — z|,
respectively). Finally, C = Y5 ,(—1)"/(2n + 1)? &~ 0.915966 is Catalan’s constant.

D.3 Map between perturbations in Kerr-like coordinates, and
Bondi-Sachs

One might worry that the coordinates we used to determine the behavior of near-
horizon deformations away from the EFT-corrected near-horizon geometries are not
regular at the event horizon. Indeed, this is the case even for the Kerr-like coordi-
nates used in Eq. (4.26). In this section, we show that a simple map exists between
the Kerr-like coordinates of Eq. (4.25) (with F; = 1 and F, = 0) and standard Bondi-
Sachs coordinates. This map was worked out as an expansion in €.

Recall that Bondi-Sachs coordinates take the following general form:

ds? = (=Vdo? +2dvdp)e? + ey, (dy? + UPdo)(dy! + Uldv). (D.14)

with p, § = 1,2. Consider the following coordinate transformation:

t=v+ 1
o (D.15)
¢ = ¢ +logp+Ap, x).

One finds that Eq. (4.25) takes the same form as (D.14) with V = p?, y* = {x, ¢},

e =e2X =2702, and
1 L, (9A\? _,[dA
B (a) (%

pq—
g N 22 (D.16)
ox
u=1[0 pw ],
so long as

oA 1-w
—=— (D.17)
o P

The last equation is a first-order equation in p and can be readily solved for any w.

Since V = ,02, in Bondi-Sachs coordinates, the future extremal event horizon is
the null hypersurface p = 0. So long as oy > 0, these coordinates are regular at
the horizon and can be used to extend the deformations of the EFT near-horizon
geometries to a new region with p < 0. Since for extremal black holes, the (past
and future) event horizons are also Cauchy surfaces for initial data on constant-
hypersurfaces, the extension beyond p = 0 into the new region with p < 0 is not
unique.
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It is now a simple exercise to show that, to linear order in ¢, the Weyl tensor
satisfies

TR (Q1 4 2Q3) Ry

2 2 /
. o 2(1 _ xz) BNHQNHQ4
Copog =] (1 —7)p" "¢
7 B (Q1 +2Q3) %
Butheoy - 1owl@ 200

(D.18)
For Kerr, the smallest scaling exponent that contributes to the above quantity has
v = 2, rendering C,;,4 finite. But when higher derivative corrections are included,
7 < 2 and the curvature diverges, resulting in infinite tidal forces.
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