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Abstract

This dissertation is devoted to interactions of Higgs-portal dark matter in the early Universe and at
particle colliders. After recalling the most relevant cosmological concepts, including the Boltzmann
equation and the freeze-out mechanism, we provide a short review of dark matter physics: evidence and
candidates (chapter 3), and experimental searches (chapter 4).

Chapters 5 and 6 contain original results. The former discusses the issue of 𝑡-channel singularity:
a phenomenon affecting processes with a massive, stable 𝑡-channel mediator on its mass shell. An occur-
rence of that issue leads to singularity of the matrix element describing the process, which results in an
infinite value of the corresponding cross section. After determining the strict condition for the singularity
to occur in a given 2 → 2 process, we propose a regularization mechanism, which is based on interactions
between the on-shell mediator and the surrounding gas of particles. Those interactions limit the lifetime
of the mediator, allowing to introduce an effective decay width, which regularizes the would-be-singular
cross section. Chapter 6 presents a study of production of dark particles at the future 𝑒+𝑒− colliders,
operating at energies maximizing the cross section of the Higgs-strahlung process (around 240–250 GeV).
We take into account the present limits, constraining the parameter space of the DM models employed,
and estimate the maximal possible production cross section. The conclusion is that although the models
of DM are severely constrained by the null-results of the present and past experimental searches, the dark
particles could be efficiently produced and detected at the future colliders if the values of the parameters
are close to the optimal ones. Moreover, in that chapter, we investigate the influence of the spin of the
dark particle on production rate: although all three analysed models of dark matter provide a similar
maximal production cross section (at the level of 60 fb), the shape of the allowed parameter space differs
depending on the spin, which, in principle, could enable to disentangle the cases of dark particles of
different spins from each other.

The models of dark matter employed in this dissertation are fully consistent, renormalizable Higgs-
portal models. Along with some details of calculations performed throughout the thesis, they are de-
scribed in the appendices.

Streszczenie

Niniejsza rozprawa poświęcona jest oddziaływaniom ciemnej materii, opisywanej modelami z portalem
Higgsa, we wczesnym Wszechświecie oraz w zderzaczach cząstek. Po przypomnieniu najistotniejszych
pojęć z zakresu kosmologii, w tym równania Boltzmanna oraz mechanizmu freeze-outu („wymrożenia”),
dokonujemy krótkiego przeglądu fizyki ciemnej materii, obejmującego dowody na jej istnienie oraz dyskusję
proponowanych kandydatów na ciemną materię (rozdział 3), jak również doświadczalne poszukiwania
ciemnej materii (rozdział 4).

Rozdziały 5 i 6 zawierają oryginalne wyniki. Pierwszy z nich omawia problem osobliwości w kanale 𝑡:
zjawiska mającego wpływ na procesy z masywnym, stabilnym mediatorem w kanale 𝑡, znajdującym się na
powłoce masy. Wystąpienie owego problemu prowadzi do osobliwości elementu macierzowego opisującego
proces, co powoduje, że wartość odpowiedniego przekroju czynnego jest nieskończona. Po wyznaczeniu
ścisłego warunku na wystąpienie osobliwości w danym procesie typu 2 → 2, przedstawiamy mechanizm
regularyzacji oparty o uwzględnienie oddziaływań pomiędzy mediatorem na powłoce masy a otaczającym
gazem cząstek. Owe oddziaływania ograniczają czas życia mediatora, co pozwala na wprowadzenie efek-
tywnej szerokości rozpadu, regularyzującej potencjalnie osobliwy proces. Rozdział 6 prezentuje analizę
produkcji ciemnych cząstek w przyszłych zderzaczach 𝑒+𝑒−, operujących w energiach maksymalizujących
przekrój czynny na proces typu Higgs-strahlung (ok. 240–250 GeV). Bierzemy w nim pod uwagę obecne
limity ograniczające przestrzeń parametrów wykorzystanych modeli ciemnej materii i szacujemy maksy-
malny możliwy przekrój czynny na proces produkcji. Dochodzimy do następującego wniosku: mimo
że modele ciemnej materii podlegają poważnym ograniczeniom wynikającym z braku rezultatów obec-
nych i przeszłych doświadczalnych poszukiwań, ciemna cząstka mogłaby być wydajnie produkowana i
wykrywana w przyszłych zderzaczach, jeśli wartości parametrów są zbliżone do optymalnych. Ponadto,
w wymienionym rozdziale badamy wpływ spinu ciemnej cząstki na tempo produkcji: mimo że wszystkie
trzy analizowane modele ciemnej materii dają podobną maksymalną wartość przekroju czynnego na pro-
dukcję (na poziomie 60 fb), kształt dozwolonej przestrzeni parametrów różni się w zależności od spinu,
co w zasadzie mogłoby umożliwić odróżnienie od siebie przypadków cząstek ciemnej materii o różnych
spinach.

Modele ciemnej materii użyte w niniejszej rozprawie są w pełni spójnymi, renormalizowalnymi mode-
lami z portalem Higgsa. Wraz z pewnymi szczegółami obliczeń przeprowadzonych w pracy, są one opisane
w dodatkach.
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Potencjał twórczy, zdolność do podźwignięcia problemów zmienia
się w człowieku przypływami i odpływami, z których trudno zdać
sobie samemu sprawę. Nauczyłem się stosować jako rodzaj testu
– lekturę moich własnych prac, tych, które uważam za najlepsze.
Jeśli dostrzegam w nich potknięcia, luki, jeśli widzę, że można było
rzecz przeprowadzić lepiej, próba wypada pomyślnie. Jeżeli jednak
odczytuję własny tekst nie bez podziwu, oznacza to, że jest ze mną
niedobrze.

Stanisław Lem, Głos Pana

Dark matter: Do we need it? What is it? Where is it? How much?
What is it? What is it? What is it? What is it?

David Weinberg, The Dark Matter Rap: A Cosmological History
https://www.astronomy.ohio-state.edu/weinberg.21/Rap/
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Acronyms and abbreviations
(not including names of experiments and collaborations)

BSM beyond the Standard Model (of particle physics)
c.c. complex cojugation
CCD charge-coupled device
C.L. confidence level
CM centre-of-momentum (reference frame)
CMB cosmic microwave background
DD direct detection (of dark matter)
DM dark matter
ER electronic recoil
ID indirect detection (of dark matter)
FDM fermion dark matter (model)
FLRW Friedmann-Lemaître-Robertson-Walker (metric)
h.c. Hermitian conjugation
MACHO massive astrophysical compact halo object
MoND modified Newtonian dynamics
NR nuclear recoil
pGDM pseudo-Goldstone dark matter (model)
PMT photomultiplier tube
SD spin-dependent (scattering of dark matter on nuclei)
SHM Standard Halo Model
SI spin-independent (scattering of dark matter on nuclei)
SM Standard Model (of particle physics)
SSB spontaneous symmetry breaking
TeVeS tensor-vector-scalar (theory of modified gravity)
VDM vector dark matter (model)
VEV vacuum expectation value
VFDM vector-fermion dark matter (model)
WIMP weakly interacting massive particle

Units, conventions and some frequently used symbols

� The Greek indices (𝜇, 𝜈, . . .) take the values 0, 1, 2, 3, while the Latin indices (𝑖, 𝑗, 𝑘, . . .) take the
values 1, 2, 3, unless otherwise explicitly stated.

� Throughout the whole dissertation, the “mostly-minus” Minkowski metric tensor is used:

𝑔𝜇𝜈 ≡

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ . (0.1)

� To express most of the numerical values, we shall use the natural system of units, in which the
Boltzmann constant, the speed of light in vacuum, and the Dirac constant are equal to 1:

𝑘𝐵 = ℏ = 𝑐 = 1 . (0.2)

Hence, every quantity has the unit which is the appropriate power of gigaelectronovolts (GeV).
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quantity symbol power of GeV
matrix element |ℳ|2𝑎1...𝑎𝑖→𝑏1...𝑏𝑓

2(4− 𝑖− 𝑓)

spinor 𝑢𝑠(𝑝), 𝑣𝑠(𝑝) 1/2
distribution function 𝑓(x,p, 𝑡) 0
momentum, energy,
mass, decay width

p, 𝐸, Γ, 𝑚 1

distance, time x, 𝑡 −1
annihilation/creation
operators

𝑎𝑝, 𝑎
†
𝑝 −3/2

Lagrangian ℒ 4
scalar field 𝜑 1
vector field 𝑋 1
fermion field 𝜓 3/2
phase-space element,
luminosity 𝑑Φ ≡ 𝑑3𝑝

(2𝜋)32𝐸 , ℒ 2

cross section, thermally
averaged cross section

𝜎, ⟨𝜎𝑣⟩ −2

number density,
entropy density

𝑛, 𝑠 3

energy density, pressure 𝜌, 𝑝 4
Hubble parameter 𝐻 1

Nevertheless, especially in the introductory part of the dissertation, other units are in use as well.
Apart of the SI units, some others are:

– the year (yr),

– the light year (ly), which is the distance covered by light during one year (1 ly ≃ 9.5×1015 m),

– the parsec (pc), defined as the radius of a circle whose second of arc has a length of 1 as-
tronomical unit (equal to the average distance between the Sun and the Earth, i.e., roughly
1.5× 1011 m, so that 1 pc ≃ 3.3 ly ≃ 3.1× 1016 m),

– the barn, equal to 10−28 m2.

and the corresponding derived units (e..g, Mpc = 106 pc or Gyr = 109 yr).

� Conventions regarding the Dirac gamma matrices are listed in appendix D.

� The phase-space element, 𝑑Φ, is defined as

𝑑Φ ≡ 𝑑3𝑝

(2𝜋)3 2𝐸𝑝
, (0.3)

where 𝐸𝑝 ≡
√︀
𝑝2 is the corresponding mass-shell energy.

� The Källén triangle function 𝜆 is defined as

𝜆(𝑥2, 𝑦2, 𝑧2) ≡
[︀
𝑥2 − (𝑦 + 𝑧)2

]︀ [︀
𝑥2 − (𝑦 − 𝑧)2

]︀

=
[︀
𝑦2 − (𝑧 + 𝑥)2

]︀ [︀
𝑦2 − (𝑧 − 𝑥)2

]︀

=
[︀
𝑧2 − (𝑥+ 𝑦)2

]︀ [︀
𝑧2 − (𝑥− 𝑦)2

]︀
.

(0.4)
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Chapter 1

Introduction: the Higgs portal to the

dark sector

1.1 Dark matter and the Higgs portal

Dark matter (DM) is a true mystery of the Universe. So far, no proper candidate able to form most
of DM has been empirically discovered; on the other hand, basing on the observed gravitational effects
(chapter 3), we know that the solution to this mystery must exist. This tension makes the DM-related
studies a tempting, vibrant field of research.

Currently, there are numerous known reasons (see chapter 3) to believe that most of DM should
consist of weakly interacting massive particles (WIMPs), of beyond-the-Standard-Model (BSM) origin.
They have to be massive enough to be cold (no-relativistic) at the moment when their relic density is
established, electromagnetically neutral (hence, ”dark") and stable or very long lived. Their interactions
with the baryonic matter cannot be too strong; otherwise, the dark particles would already have been
directly detected.

In principle, it is possible that the dark particles are fully decoupled from the Standard Model of
particle physics (SM) and interact with the baryonic matter only gravitationally. However, allowing for
DM-SM interactions provides a natural mechanism capable to produce the correct relic density required
by observations: the freeze-out mechanism described in section 2.3.4. Moreover, the presence of DM
self-interactions can solve several discrepancies (so called small scale problems) between the simulations
involving collisionless DM and astronomical observations.

One of the simplest, but theoretically consistent methods to introduce DM-SM interactions is to
extend the SM scalar sector by a field coupled to the dark states. If the scalar mass eigenstates mix
the new scalar with the SM Higgs field, they couple both to the SM and DM. The coupling between the
scalar fields forms a portal between the sectors.

1.2 Higgs-portal DM as the topic of this dissertation

The DM models adopted in this dissertation are Higgs-portal models. One of them, the vector-fermion
DM (VFDM) model described in appendix A, provides two or three (depending on the values of the
model parameters) DM candidates; the other three: the pseudo-Goldstone (pGDM), fermion (FDM) and
vector (VDM) models of dark matter, described in appendix B, introduce one DM candidate, but are
similar to each other, which enables to focus on differences caused by different spins of dark particles.
For a comprehensive review and numerous examples of Higgs-portal models, see [8] and the references
therein.

As stated in the title of the dissertation, those models have been used to investigate some effects of
DM interactions in the early Universe (chapter 5) and at the future 𝑒+𝑒− colliders (chapter 6).

In the case of multicomponent DM, interactions within the dark sector provide a reach phenomenology,
distinct from the SM features, as the DM candidates are simultaneously stable and massive (which is
rather uncommon among the SM particles). A phenomenon that occurs in the SM, but naturally arises
in theories of dark matter, is the so-called 𝑡-channel singularity, being a subject of chapter 5.

Interactions between the dark and the SM particles may allow for experimental detection of DM
in direct-detection, indirect-detection and collider experiments. Chapter 4 describes those directions of
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searches, presenting relevant examples of experiments and summarizing the constraints deduced form their
null-results. Chapter 6 focuses on predictions concerning DM production at the future 𝑒+𝑒− colliders,
investigating the influence of DM spin on detection chances.

1.3 Composition of the dissertation

The dissertation is composed in the following way. Chapter 2 recalls the most relevant aspects of physical
cosmology, including standard theory of dark matter, that are referred to throughout the dissertation.
Chapter 3 summarizes the history of the term ”dark matter” and presents observational evidence of
existence of DM, followed by a short discussion of galactic-scale aspects of DM physics: the structure
of the galactic dark halos, and the so-called small-scale problems which justify the assumption that
DM is self-interacting. Chapter 4 presents the methods of searches for dark particles and summarizes
the constraints corresponding to the null-results of experiments. In chapter 5, the issue of 𝑡-channel
singularity is defined, discussed and resolved. Chapter 6 contains a discussion of DM production at the
future 𝑒+𝑒− colliders. Chapter 7 summarizes results of the dissertation. Appendices A to C describe
the models of particle interactions employed in the dissertation: three one-component DM models, the
VFDM model and a toy model consisting of three scalar states. Appendices D and E collect some
standard identities satisfied by the Dirac matrices and fermionic fields, useful in calculations performed
in appendices A to C. In appendix F, the real-time Green’s function used in chapter 5 are collected.
Appendix G collects the Passarino-Veltman loop functions, while appendix H contains some calculation
details of chapter 6.
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Chapter 2

Relevant aspects of cosmology

2.1 Geometry of the Universe

As discussed in [9] (whose conventions are followed in this chapter), the Universe, as a gravitationally
bounded system, should satisfy the Einstein equation

ℛ𝜇𝜈 −
1

2
𝑔𝜇𝜈 ℛ = 8𝜋𝐺𝑇𝜇𝜈 + Λ 𝑔𝜇𝜈 , (2.1)

where

� ℛ𝜇𝜈 and ℛ denote, respectively, the Ricci tensor and the Ricci scalar,

� 𝐺 stands for Newton’s gravitational constant,

� Λ is the cosmological constant,

� 𝑔𝜇𝜈 denotes the metric,

� 𝑇𝜇𝜈 is the energy-momentum tensor of the Universe.

The metric tensor of a homogeneous, isotropic Universe must have the form of the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric [9]. As indicated by measurements of the Planck satellite [10], geom-
etry of the Universe is flat (or almost flat), so the metric is given by

𝑑𝑠2 = 𝑑𝑡2 −𝑅(𝑡)2(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) , (2.2)

where 𝑅(𝑡) denotes the scale factor, and 𝑡 is the cosmic time, i.e., the time measured in the reference
frame in which the Universe is isotropic and homogeneous at large scales (of at least 100 Mpc). Existence
of such a frame is an assumption called the cosmological principle, tested, e.g., by the observations of the
cosmic microwave background (CMB) radiation, which appears to be highly homogeneous [11]. Assuming
that the Universe can be treated as a perfect fluid (which is the simplest, but not the only possibility [9]),
the energy-momentum tensor is

𝑇𝜇𝜈 = diag(𝜌,−𝑝,−𝑝,−𝑝) , (2.3)

with 𝜌 denoting the energy density and 𝑝 standing for pressure. Under those assumptions, the 𝜇 = 𝜈 = 0
component of the Einstein equation (2.1) is

𝐻2 =
8𝜋𝐺

3
𝜌+

Λ

3
, (2.4)

where 𝐻 ≡ 𝑅̇/𝑅 is the Hubble parameter, describing the expansion rate of the Universe. Its present
value, 𝐻0, has been measured to be

𝐻0 = ℎ2 × 100
km/s
Mpc

, ℎ ≃ 0.7 , (2.5)

6



where the precise value of the auxiliary parameter ℎ is subject to some discrepancies [12]. Dividing
eq. (2.4) by 𝐻2, one obtains

1 =
∑︁

𝑖

Ω𝑖 +ΩΛ , (2.6)

where Ω𝑖, the density parameter of the 𝑖-th component of the Universe, is defined as

Ω𝑖 ≡
8𝜋𝐺𝜌𝑖
3𝐻2

, (2.7)

and the analogous parameter corresponding to the cosmological constant is

ΩΛ ≡ Λ

3𝐻2
. (2.8)

Let us remind that eq. (2.6) is valid for a flat Universe only. In a curved geometry, an additional term
corresponding to the curvature appears.

As discussed in section 3.1.2, recent observations indicate that the present values of the density
parameters corresponding to the baryonic matter (Ω𝑏), cold dark matter (Ω𝑐) and the cosmological
constant (ΩΛ) are

Ω𝑏 = 0.022ℎ−2 , Ω𝑐 = 0.120ℎ−2 , ΩΛ = 0.685 , (2.9)

while the densities of the relativistic species (photons, neutrinos) are negligible [10].

2.2 Thermodynamics of the early Universe

Here, basing on [9], we summarize the relevant concepts of thermodynamics.
At large scales, subject to the cosmological principle, each component of the Universe is treated as a

gas described by a phase-space distribution function 𝑓 , representing the density of a given component in
the position and momentum space:

𝑓 = 𝑓(𝑘, 𝑥) . (2.10)

Here, 𝑘 = (𝐸,k) is the four-momentum and 𝑥 = (𝑡,x) denotes the four-position. The number density 𝑛,
energy density 𝜌 and pressure 𝑝 are defined as

𝑛(𝑥) ≡ 𝑔

(2𝜋)3

∫︁
𝑓(𝑘, 𝑥) 𝑑3𝑘 , (2.11a)

𝜌(𝑥) ≡ 𝑔

(2𝜋)3

∫︁
𝐸 𝑓(𝑘, 𝑥) 𝑑3𝑘 , (2.11b)

𝑝(𝑥) ≡ 𝑔

(2𝜋)3

∫︁
k2

3𝐸
𝑓(𝑘, 𝑥) 𝑑3𝑘 . (2.11c)

The quantity denoted by 𝑔 is the number if internal degrees of freedom of particles forming the component
of interest. The first law of thermodynamics:

𝑑𝑈 = 𝑇 𝑑𝑆 − 𝑝 𝑑𝑉 , (2.12)

with 𝑈 , 𝑆, 𝑉 and 𝑇 denoting the energy, entropy, volume and temperature, respectively, allows to express
the entropy density 𝑠 ≡ 𝑑𝑆/𝑑𝑉 as

𝑠 =
𝜌+ 𝑝

𝑇

=
𝑔/𝑇

(2𝜋)3

∫︁ (︂
𝐸 +

k2

3𝐸

)︂
𝑓(𝑘, 𝑥) 𝑑3𝑘 .

(2.13)

Note that in eq. (2.12), the term containing the chemical potential has been omitted. For components in
chemical equilibrium with photons, the chemical potential must be equal to zero [13], while for components
outside the equilibrium, is is usually assumed that the chemical potential is negligible in comparison to
mass, often (e.g., in [9]) without any comment.
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At large scales, at which the cosmological principle applies, the Universe should be homogeneous and
isotropic; thus, the distribution functions are assumed to be independent on the spatial coordinates and
on the direction of the momentum vector. The remaining relevant parameters are time and energy:

𝑓(𝑝, 𝑥) = 𝑓(𝐸, 𝑡) . (2.14)

For a system in kinetic (thermal) equilibrium, characterized by temperature 𝑇 , the distribution function
of a given kind of particles is

𝑓(𝐸, 𝑡) = (𝑒
𝐸−𝜇
𝑇 ± 1)−1 , (2.15)

with the plus sign for fermions (Fermi-Dirac distribution) and minus for bosons (Bose-Einstein distri-
bution). Here, we keep the chemical potential 𝜇 as it becomes relevant later. It appears that the time
dependence is implicitly encoded in dependence on temperature, so hereafter 𝑇 is used as an argument of
the thermodynamic functions. Using the thermal function (2.15), we express the number density, energy
density, pressure and entropy density, given by eqs. (2.11) and (2.13), as

𝑛(𝑇 ) =
𝑔

2𝜋2

∫︁ ∞

𝑚

√
𝐸2 −𝑚2

𝑒
𝐸−𝜇
𝑇 ± 1

𝐸 𝑑𝐸 , (2.16a)

𝜌(𝑇 ) =
𝑔

2𝜋2

∫︁ ∞

𝑚

√
𝐸2 −𝑚2

𝑒
𝐸−𝜇
𝑇 ± 1

𝐸2 𝑑𝐸 , (2.16b)

𝑝(𝑇 ) =
𝑔

6𝜋2

∫︁ ∞

𝑚

(𝐸2 −𝑚2)3/2

𝑒
𝐸−𝜇
𝑇 ± 1

𝑑𝐸 , (2.16c)

𝑠(𝑇 ) =
𝑔

6𝜋2

∫︁ ∞

𝑚

√
𝐸2 −𝑚2

𝑒
𝐸−𝜇
𝑇 ± 1

(4𝐸2 −𝑚2) 𝑑𝐸 . (2.16d)

Let us calculate those quantities in the regime of non-relativistic (𝑚≫ 𝑇, 𝜇) and ultra-relativistic (𝑚,𝜇≪ 𝑇 )
particles in equilibrium. In the non-relativistic case,

𝑛(𝑇 ) ≃ 𝑔

2𝜋2
𝑒𝜇/𝑇

∫︁ ∞

𝑚

𝑒−𝐸/𝑇
√︀
𝐸2 −𝑚2𝐸 𝑑𝐸

=
𝑔 𝑇

2𝜋2
𝑚2𝐾2(𝑚/𝑇 ) 𝑒

𝜇/𝑇 , (2.17a)

𝜌(𝑇 ) ≃ 𝑔

2𝜋2
𝑒𝜇/𝑇

∫︁ ∞

𝑚

𝑒−𝐸/𝑇
√︀
𝐸2 −𝑚2𝐸2 𝑑𝐸

=
𝑔 𝑇 2

2𝜋2
𝑚2

[︁𝑚
𝑇
𝐾1(𝑚/𝑇 ) + 3𝐾2(𝑚/𝑇 )

]︁
𝑒𝜇/𝑇 , (2.17b)

𝑝(𝑇 ) ≃ 𝑔

6𝜋2
𝑒𝜇/𝑇

∫︁ ∞

𝑚

𝑒−𝐸/𝑇 (𝐸2 −𝑚2)3/2 𝑑𝐸

=
𝑔 𝑇 2

2𝜋2
𝑚2𝐾2(𝑚/𝑇 ) 𝑒

𝜇/𝑇 , (2.17c)

𝑠(𝑇 ) ≃ 𝑔

6𝜋2
𝑒𝜇/𝑇

∫︁ ∞

𝑚

𝑒−𝐸/𝑇
√︀
𝐸2 −𝑚2

(︀
4𝐸2 −𝑚2

)︀
𝑑𝐸

=
𝑔 𝑇

2𝜋2
𝑚2

[︁𝑚
𝑇
𝐾1(𝑚/𝑇 ) + 4𝐾2(𝑚/𝑇 )

]︁
𝑒𝜇/𝑇 , (2.17d)

where 𝐾𝑖 (𝑖 = 1, 2) denotes the 𝑖-th modified Bessel function of the second kind. For large arguments,
those functions can be approximated by

𝐾𝑖(𝑥) ≃
√︂

𝜋

2𝑥
𝑒−𝑥 , 𝑖 = 1, 2 (2.18)
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so that

𝑛(𝑇 ) ≃ 𝑔

(︂
𝑚𝑇

2𝜋

)︂3/2

𝑒−𝑚/𝑇 𝑒𝜇/𝑇 , (2.19a)

𝜌(𝑇 ) ≃ 𝑔𝑚

(︂
𝑚𝑇

2𝜋

)︂3/2

𝑒−𝑚/𝑇 𝑒𝜇/𝑇 , (2.19b)

𝑝(𝑇 ) ≃ 𝑔 𝑇

(︂
𝑚𝑇

2𝜋

)︂3/2

𝑒−𝑚/𝑇 𝑒𝜇/𝑇 , (2.19c)

𝑠(𝑇 ) ≃ 𝑔
𝑚

𝑇

(︂
𝑚𝑇

2𝜋

)︂3/2

𝑒−𝑚/𝑇 𝑒𝜇/𝑇 . (2.19d)

It can be observed that in the non-relativistic case, all the thermodynamic functions are proportional to
the number density 𝑛:

𝜌(𝑇 ) = 𝑚𝑛(𝑡) , 𝑝(𝑇 ) = 𝑇 𝑛(𝑡) , 𝑠(𝑇 ) =
𝑚

𝑇
𝑛(𝑡) , (2.20)

Moreover, all of them are strongly suppressed by the exponential term 𝑒−𝑚/𝑇 . For convenience, let us
denote the value of 𝑛 corresponding to the chemical equilibrium (𝜇 = 0) by 𝑛̄:

𝑛̄(𝑇 ) ≡ 𝑔 𝑇

2𝜋2
𝑚2𝐾2(𝑚/𝑇 )

≃ 𝑔

(︂
𝑚𝑇

2𝜋

)︂3/2

𝑒−𝑚/𝑇 .
(2.21)

This function will be useful in section 2.3, concerning the Boltzmann equation describing cold DM.
In the ultra-relativistic case,

𝑛(𝑇 ) ≃ 𝑔

2𝜋2

∫︁ ∞

0

𝐸2

𝑒𝐸/𝑇 ± 1
𝑑𝐸

=
𝜁(3)

𝜋2
𝑔 𝑇 3 ×

{︃
1 for bosons
3
4 for fermions

, (2.22a)

𝜌(𝑇 ) ≃ 𝑔

2𝜋2

∫︁ ∞

0

𝐸3

𝑒𝐸/𝑇 ± 1
𝑑𝐸

=
𝜋2

30
𝑔 𝑇 4 ×

{︃
1 for bosons
7
8 for fermions

, (2.22b)

𝑝(𝑇 ) ≃ 𝑔

6𝜋2

∫︁ ∞

0

𝐸3

𝑒𝐸/𝑇 ± 1
𝑑𝐸

=
𝜋2

90
𝑔 𝑇 4 ×

{︃
1 for bosons
7
8 for fermions

, (2.22c)

𝑠(𝑇 ) ≃ 2 𝑔/𝑇

3𝜋2

∫︁ ∞

0

𝐸3

𝑒𝐸/𝑇 ± 1
𝑑𝐸

=
2𝜋2

45
𝑔 𝑇 3 ×

{︃
1 for bosons
7
8 for fermions

. (2.22d)

Here, 𝜁 is the Riemann zeta function.
Let us observe that the non-relativistic densities are suppressed in comparison to their ultra-relativistic

counterparts, assuming the temperatures are similar. The standard cosmological model states that the
inflation period was followed by the radiation-dominated era, in which the energy density of the relativistic
species was the main component of the total energy density. This ceased to be true in the next period,
called the matter-dominated era, but for temperatures relevant for the evolution of the cold dark species,
the Universe was still radiation-dominated [9]. Thus, we shall approximate the total energy density and
entropy density of the Universe by the corresponding densities of the relativistic species. Those quantities
can be expressed as

𝜌(𝑇 ) =
𝜋2

30
𝑇 4 𝑔* , 𝑠(𝑇 ) =

2𝜋2

45
𝑇 3 𝑔*𝑠 , (2.23)
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where the effective numbers of the relativistic degrees of freedom, 𝑔* and 𝑔*𝑠, are defined as

𝑔*(𝑇 ) =
∑︁

𝑏

𝑔𝑏

(︂
𝑇𝑏
𝑇

)︂4

+
7

8

∑︁

𝑓

𝑔𝑓

(︂
𝑇𝑓
𝑇

)︂4

, (2.24a)

𝑔*𝑠(𝑇 ) =
∑︁

𝑏

𝑔𝑏

(︂
𝑇𝑏
𝑇

)︂3

+
7

8

∑︁

𝑓

𝑔𝑓

(︂
𝑇𝑓
𝑇

)︂3

, (2.24b)

with the indices 𝑏 and 𝑓 running through boson and fermion species, respectively. Using 𝑇𝑏 and 𝑇𝑓 (in
contrast to one, common value of temperature) reflects the fact that temperatures of different components
may have different values after they kinetically decouple from the thermal bath of photons. By 𝑇 , the
temperature of the thermal bath of photons is meant.

2.3 Boltzmann equation

The cosmological Boltzmann equation describes the evolution of densities of particle species filling the
Universe, taking into account both the expansion of the Universe and particle interactions. Although the
Boltzmann equation can be obtained as a semi-classical limit of the so-called Kadanoff-Baym equations
[14,15], such a detailed analysis lies beyond the scope of this dissertation. Thus, in this chapter, we shall
introduce the Boltzmann equation in the usual, simplified way, presented in [9] and carefully discussed
in [16].

Section 2.3.1 contains a standard derivation of the Boltzmann equation. What may be an advantage of
this presentation is a special attention that has been paid to express all the collision terms in a consistent
way, including all symmetry factors and carefully counting weights of all contributions (which is expressed
by the Kronecker deltas). In section 2.3.2, a non-standard discussion of interactions with an energy-
dependent matrix element is provided. The results presented there have been used to produce the
numerical results of chapter 5. In section 2.3.3, the Boltzmann equation is reformulated using more
convenient variables. Section 2.3.4 briefly discusses the freeze-out mechanism, mentioned in chapter 1,
and section 2.3.5 describes the so-called WIMP miracle.

2.3.1 Derivation

The derivation starts with the following equation:

𝐿[𝑓 ] = 𝐶[𝑓 ] , (2.25)

relating the Liouville operator 𝐿 and the collision operator 𝐶, acting on a phase-space density function
𝑓 describing the species of interest. The former of the operators contains the information about the
geometry of the spacetime, while the latter describes the relevant particle interactions. In general, the
Liouville operator is given by

𝐿 = 𝑝𝜇 𝜕𝜇 − Γ𝜇𝛼𝛽 𝑝
𝛼 𝑝𝛽 𝜕𝑝𝜇 , (2.26)

where 𝑝 denotes the momentum and Γ𝜇𝛼𝛽 are the Christoffel symbols of the second kind, describing the
Levi-Civita connections of the metric. In the FLRW metric, described in section 2.1, this reduces to

𝐿 = 𝐸 𝜕𝑡 −𝐻 p2 𝜕𝐸 , (2.27)

where 𝐸 is the energy, 𝑡 is the cosmic time and 𝐻 denotes the Hubble parameter. This equation is
integrated over

𝑔

(2𝜋)3
𝑑3𝑝

𝐸
, (2.28)

with 𝑔 denoting the number of internal degrees of freedom of the species of interest. Integrating by parts
and neglecting the boundary term, we obtain

𝑔

(2𝜋)3

∫︁
𝑑3𝑝

𝐸
𝐿[𝑓 ] = 𝑛̇+ 3𝐻𝑛 , (2.29)
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where 𝑛 is the number density defined in section 2.2. Then, the Boltzmann equation (2.25) becomes

𝑛̇+ 3𝐻 𝑛 =
𝑔

(2𝜋)3

∫︁
𝑑3𝑝

𝐸
𝐶[𝑓 ] . (2.30)

How does a given process contribute to the right-hand side of the above equation? Let us denote the
species of interest by 𝑥 and investigate the following process:

𝑖1, 𝑖2, . . . , 𝑖𝐼 → 𝑓1, 𝑓2, . . . , 𝑓𝐹 . (2.31)

Here, 𝑖1, . . . , 𝑖𝐼 are the initial-state particles (𝐼 denotes their number), while 𝑓1, . . . , 𝑓𝐹 are the final-
state particles (whose number is 𝐹 ). Note that some of the particles denoted by different indices can
be identical. The process may contribute to the Boltzmann equation if at least one of the particles
𝑖1, . . . , 𝑖𝐼 , 𝑓1, . . . , 𝑓𝐹 is of type 𝑥. We shall denote the corresponding contribution, called the collision
term, by 𝐶𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 , so the Boltzmann equation becomes

𝑛̇𝑥 + 3𝐻 𝑛𝑥 =
∑︁

processes
involving 𝑥

𝐶𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 .
(2.32)

The collision terms have the following form:

𝐶𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 = −𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 + . . .+ 𝛿𝑥,𝑖𝐼 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼 𝑐𝐹

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 . . . 𝑑Φ𝑖𝐼 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 + . . .+ 𝑝𝑖𝐼 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

×
[︁
𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2) . . . 𝑓𝑖𝐼 (𝑝𝑖𝐼 )

× [1± 𝑓𝑓1(𝑝𝑓1)] [1± 𝑓𝑓2(𝑝𝑓2)] . . . [1± 𝑓𝑓𝐹 (𝑝𝑓𝐹 )]

×
∑︁

sp.

|ℳ|2𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹

− [1± 𝑓𝑖1(𝑝𝑖1)] [1± 𝑓𝑖2(𝑝𝑖2)] . . . [1± 𝑓𝑖𝐼 (𝑝𝑖𝐼 )]

× 𝑓𝑓1(𝑝𝑓1)𝑓𝑓2(𝑝𝑓2) . . . 𝑓𝑓𝐹 (𝑝𝑓𝐹 )

×
∑︁

sp.

|ℳ|2𝑓1,𝑓2,...,𝑓𝐹→𝑖1,𝑖2,...,𝑖𝐼

]︁
,

(2.33)

where 𝑐𝐼 (𝑐𝐹 ) denotes combinatoric factor of the initial (final) state, given as 1 multiplied by 𝑘! for each
set of 𝑘 identical particles in the initial (final) state. The Kronecker deltas count the number of particles
of type 𝑥 produced and destroyed in the process. The factors 1± 𝑓 , containing the phase-space density
𝑓 , are taken with the plus for bosons and with the minus for fermions. Assuming that the particle gas
is diluted, one approximates those factors by one. Moreover, if the process is 𝐶𝑃 -invariant, both matrix
elements squared, integrated over the final state, are equal to each other [16]. Under those assumptions,
the collision takes the form

𝐶𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 = −𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 + . . .+ 𝛿𝑥,𝑖𝐼 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼 𝑐𝐹

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 . . . 𝑑Φ𝑖𝐼 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 + . . .+ 𝑝𝑖𝐼 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

×
[︁
𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2) . . . 𝑓𝑖𝐼 (𝑝𝑖𝐼 )− 𝑓𝑓1(𝑝𝑓1)𝑓𝑓2(𝑝𝑓2) . . . 𝑓𝑓𝐹 (𝑝𝑓𝐹 )

]︁

×
∑︁

sp.

|ℳ|2𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 .

(2.34)

Let us denote

𝑓 ≡ 𝑛̄

𝑛
𝑓 , (2.35)

11



where 𝑛̄ is the equilibrium number density introduced by eq. (2.21). Neglecting the quantum degeneracies,
we approximate the equilibrium distribution functions, 𝑓 , by the Maxwell-Boltzmann value

𝑓(𝑝) ≃ 𝑒−𝐸/𝑇 . (2.36)

Assuming all the species to be in the kinetic equilibrium with the thermal bath, we obtain

𝑓𝑖1𝑓𝑖2 . . . 𝑓𝑖𝐼 =
1

𝑒𝐸𝑖1/𝑇 ± 1

1

𝑒𝐸𝑖2/𝑇 ± 1
. . .

1

𝑒𝐸𝑖𝐼
/𝑇 ± 1

≃ 𝑒−[𝐸𝑖1+𝐸𝑖2+...+𝐸𝑖𝐼 ]/𝑇

= 𝑒−[𝐸𝑓1
+𝐸𝑓2

+...+𝐸𝑓𝐹 ]/𝑇

≃ 1

𝑒𝐸𝑓1
/𝑇 ± 1

1

𝑒𝐸𝑓2
/𝑇 ± 1

. . .
1

𝑒𝐸𝑓𝐹
/𝑇 ± 1

= 𝑓𝑓1𝑓𝑓2 . . . 𝑓𝑓𝐹 .

(2.37)

The third equality is implied by the energy conservation. Using this relation, one can express the collision
term as

𝐶𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 = −𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 + . . .+ 𝛿𝑥,𝑖𝐼 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼 𝑐𝐹

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 . . . 𝑑Φ𝑖𝐼 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 + . . .+ 𝑝𝑖𝐼 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

×
[︁𝑛𝑖1
𝑛̄𝑖1

𝑓𝑖1(𝑝𝑖1)
𝑛𝑖2
𝑛̄𝑖2

𝑓𝑖2(𝑝𝑖2) . . .
𝑛𝑖𝐼
𝑛̄𝑖𝐼

𝑓𝑖𝐼 (𝑝𝑖𝐼 )

− 𝑛𝑓1
𝑛̄𝑓1

𝑓𝑓1(𝑝𝑓1)
𝑛𝑓2
𝑛̄𝑓2

𝑓𝑓2(𝑝𝑓2) . . .
𝑛𝑓𝐹
𝑛̄𝑓𝐹

𝑓𝑓𝐹 (𝑝𝑓𝐹 )
]︁

×
∑︁

sp.

|ℳ|2𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹

=
𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 + . . .+ 𝛿𝑥,𝑖𝐼 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹

𝑐𝐼 𝑐𝐹

×
[︁𝑛𝑖1𝑛𝑖2 . . . 𝑛𝑖𝐼
𝑛̄𝑖1 𝑛̄𝑖2 . . . 𝑛̄𝑖𝐼

− 𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 . . . 𝑑Φ𝑖𝐼 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 + . . .+ 𝑝𝑖𝐼 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2) . . . 𝑓𝑖𝐼 (𝑝𝑖𝐼 )×
∑︁

sp.

|ℳ|2𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 .

(2.38)

Special case: a 2 → 𝐹 scattering process. Having derived this form of the collision term, let us
now discuss two special cases: a 2 → 𝐹 scattering (𝐼 = 2) and a 1 → 𝐹 decay (𝐼 = 1). For the scattering,
the collision term becomes

𝐶𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 = −𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼 𝑐𝐹

×
[︁𝑛𝑖1𝑛𝑖2
𝑛̄𝑖1 𝑛̄𝑖2

− 𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2)×
∑︁

sp.

|ℳ|2𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹

= − 𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼

×
[︁
𝑛𝑖1𝑛𝑖2 − 𝑛̄𝑖1 𝑛̄𝑖2 . . . 𝑛̄𝑖𝐼

𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

× ⟨𝜎𝑣⟩𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 .

(2.39)
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Here, ⟨𝜎𝑣⟩ denotes the so-called thermally averaged cross section, defined as

⟨𝜎𝑣⟩𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 ≡ 1

𝑐𝐹

1

𝑛̄𝑖1 𝑛̄𝑖2

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑖2 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2)×
∑︁

sp.

|ℳ|2𝑖1,𝑖2,...,𝑖𝐼→𝑓1,𝑓2,...,𝑓𝐹 ,

(2.40)

and related to the ..regular” cross section 𝜎 in the following way:

⟨𝜎𝑣⟩ = 𝑔𝑖1𝑔𝑖2
𝑛̄𝑖1 𝑛̄𝑖2

∫︁
𝑑3𝑝𝑖1
(2𝜋)3

𝑑3𝑝𝑖2
(2𝜋)3

𝑓𝑖1(𝑝𝑖1)𝑓𝑖2(𝑝𝑖2) 𝑣𝑖1,𝑖2 𝜎𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 . (2.41)

In this equation, 𝑣𝑖1,𝑖2 denotes the so-called Møller velocity, given by

𝑣𝑖1,𝑖2 ≡
√︀

(v𝑖1 − v𝑖2)
2 − (v𝑖1 × v𝑖2)

2

=

√︁
(𝑝𝑖1𝑝𝑖2)

2 −𝑚2
𝑖1
𝑚2
𝑖2

𝐸𝑖1𝐸𝑖2
,

(2.42)

with v𝑖1 ≡ p𝑖1

𝐸𝑖1
, v𝑖2 ≡ p𝑖2

𝐸𝑖2
. Let us recall that 𝜎 can be calculated as

𝜎𝑖1,𝑖2→𝑓1,𝑓2 ≡ 1

𝑐𝐹

1

4𝐸𝑖𝑗 𝐸𝑖2 𝑣𝑖1,𝑖2

∫︁
𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 + 𝑝𝑖2 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 1

𝑔𝑖1𝑔𝑖2

∑︁

sp.

|ℳ|2𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 ,

(2.43)

where the summation is performed over spin states.

Special case: a 1 → 𝐹 decay process. For a decay process, the collision term becomes

𝐶𝑖1→𝑓1,𝑓2,...,𝑓𝐹 = −𝛿𝑥,𝑖1 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐹

×
[︁𝑛𝑖1
𝑛̄𝑖1

− 𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

×
∫︁
𝑑Φ𝑖1 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑖1 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 𝑓𝑖1(𝑝𝑖1)
∑︁

sp.

|ℳ|2𝑖1→𝑓1,𝑓2,...,𝑓𝐹 .

= − (𝛿𝑥,𝑖1 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹 )

×
[︁
𝑛𝑖1 − 𝑛̄𝑖1

𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

× ⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 .

(2.44)

Here, ⟨Γ⟩ denotes the so-called thermally averaged decay width, defined as

⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 ≡ 1

𝑐𝐹

1

𝑛̄𝑖1

∫︁
𝑑Φ𝑖1 𝑑Φ𝑓1 𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹 (2𝜋)4𝛿(4)(𝑝𝑖1 − 𝑝𝑓1 − 𝑝𝑓2 − . . .− 𝑝𝑓𝐹 )

× 𝑓𝑖1(𝑝𝑖1)
∑︁

sp.

|ℳ|2𝑖1→𝑓1,𝑓2,...,𝑓𝐹

(2.45)

or, using the “regular” decay width Γ,

⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 =
𝑔𝑖1
𝑛̄𝑖1

∫︁
𝑑3𝑝𝑖1
(2𝜋)3

𝑓𝑖1(𝑝𝑖1)
𝑚1

𝐸1
Γ𝑖1→𝑓1,𝑓2,...,𝑓𝐹 . (2.46)
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For completeness, let us recall the definition of Γ:

Γ𝑖1→𝑓1,𝑓2,...,𝑓𝐹 ≡ 1

𝑐𝐹

1

2𝑚𝑖1

∫︁
𝑑Φ𝑓1𝑑Φ𝑓2 . . . 𝑑Φ𝑓𝐹

× (2𝜋)4𝛿(4)(𝑝𝑓1 + 𝑝𝑓2 . . .+ 𝑝𝑓𝐹 )

× 1

𝑔𝑖1

∑︁

sp.

|ℳ|2𝑖1→𝑓1,𝑓2,...,𝑓𝐹 .

(2.47)

Note the delta function in the above definition is calculated at different point than the one in eq. (2.45).
This comes from the fact that 𝑚𝑖1

𝐸𝑖1
Γ𝑖1→𝑓1,𝑓2,...,𝑓𝐹 is equal to the value of Γ𝑖1→𝑓1,𝑓2,...,𝑓𝐹 boosted to the

frame in which particle 𝑖1 has energy 𝐸𝑖1 .

Boltzmann equation with scattering and decay terms. Using the thermally averaged cross section
(2.40) and decay width (2.45), we can express the Boltzmann equation (2.32) in the following way:

𝑛̇𝑥 + 3𝐻 𝑛𝑥 = −
∑︁

2→𝐹

𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼

×
[︁
𝑛𝑖1𝑛𝑖2 − 𝑛̄𝑖1 𝑛̄𝑖2 . . . 𝑛̄𝑖𝐼

𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

× ⟨𝜎𝑣⟩𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹

−
∑︁

1→𝐹

(𝛿𝑥,𝑖1 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹 )

×
[︁
𝑛𝑖1 − 𝑛̄𝑖1

𝑛𝑓1𝑛𝑓2 . . . 𝑛𝑓𝐹
𝑛̄𝑓1 𝑛̄𝑓2 . . . 𝑛̄𝑓𝐹

]︁

× ⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 ,

(2.48)

with the first (second) summation running through the 2 → 𝐹 (1 → 𝐹 ) processes involving particles of
type 𝑥.

2.3.2 Energy-dependent matrix element of a 𝑡-channel-singular process

Here, we discuss the case of an energy-dependent matrix element appearing if one performs the regu-
larization of a 𝑡-channel-singular process using the method described in chapter 5. Although not very
illuminating, the results presented here are of practical importance for this dissertation, as they have been
used to prepare the ⟨𝜎𝑣⟩ plots shown in sections 5.5.3 and 5.5.4. The derivation is provided as potentially
useful for the reader who would like to reproduce the numerical results of chapter 5 or perform similar
calculations.

We focus on a 2 → 2 𝑡-channel process, with particles denoted as 1 and 2 (in the initial state), 3 and 4
(in the final state). As stated by eq. (2.41), the thermally averaged cross section can be calculated using
the “regular” cross section in the following way:

⟨𝜎𝑣⟩12→34(𝑇 ) =
𝑔1𝑔2
𝑛̄1𝑛̄2

∫︁
𝑑Φ1 𝑑Φ2 𝑓1(𝐸1, 𝑇 ) 𝑓2(𝐸2, 𝑇 ) 4𝐸1𝐸2 𝑣12 𝜎(𝐸1, 𝐸2, cos𝛼12) . (2.49)

Note that as 𝜎 contains integration over the final states, it depends only on the values of the initial
momenta, |p1| and |p2| (equivalently: energies 𝐸1, 𝐸2), and the angle between them, 𝛼12. Defining new
variables, 𝜌 and 𝜉, satisfying

|p1| = 𝜌 cos 𝜉 , |p2| = 𝜌 sin 𝜉 , (2.50)

we rewrite eq. (2.49) as

⟨𝜎𝑣⟩12→34(𝑇 ) =
𝑔1𝑔2
𝑛̄1𝑛̄2

1

32𝜋4

×
∫︁ ∞

0

𝑑𝜌

∫︁ 𝜋
2

0

𝑑𝜉

∫︁ 1

−1

𝑑 cos𝛼12

√︀
p 2
1 + p 2

2 |p1|2 |p2|2
𝐸1𝐸2

𝑓1(𝐸1, 𝑇 ) 𝑓2(𝐸2, 𝑇 )

× 4𝐸1𝐸2 𝑣12 𝜎(𝐸1, 𝐸2, cos𝛼12) .

(2.51)
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Using the explicit form of 𝑛̄1,2, given by eq. (2.21), and approximating 𝑓1,2 by the Maxwell-Boltzmann
distribution (2.36), we obtain

⟨𝜎𝑣⟩12→34(𝑇 ) ≃
𝐾2

(︀
𝑚1

𝑇

)︀−1
𝐾2

(︀
𝑚2

𝑇

)︀−1

8𝑚2
1𝑚

2
2 𝑇

2

×
∫︁ ∞

0

𝑑𝜌

∫︁ 𝜋
2

0

𝑑𝜉

∫︁ 1

−1

𝑑 cos𝛼12

√︀
p 2
1 + p 2

2 |p1|2 |p2|2
𝐸1𝐸2

𝑒−
𝐸1+𝐸2

𝑇

× 4𝐸1𝐸2 𝑣12 𝜎(𝐸1, 𝐸2, cos𝛼12) .

(2.52)

As stated in eq. (2.43), the cross section 𝜎 can be expressed through the matrix element:

𝜎 ≡ 1

𝑐𝐹

1

4𝐸1𝐸2 𝑣12

∫︁
𝑑Φ3 𝑑Φ4 (2𝜋)

4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)
1

𝑔1𝑔2

∑︁

sp.

|ℳ|212→34 . (2.53)

It is usually assumed that the matrix element squared is a Lorentz invariant, so one is allowed to calculate
the integral in the CM system. This is, however, not the case if the effective thermal width is used to
regularize the possible 𝑡-channel singularity (see chapter 5 for details). To calculate the cross section in
that case, let us assume that the spin-averaged matrix element has the following form:

1

𝑔1𝑔2

∑︁

𝑠𝑝.

|ℳ|212→34 ≡ 𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2 +Σ(𝐸, 𝑇 )2
, (2.54)

where 𝑠 and 𝑡 denote the Mandelstam variables

𝑠 ≡ (𝑝1 + 𝑝2)
2 , 𝑡 ≡ (𝑝1 − 𝑝3)

2 , (2.55)

𝑀 is the mass of the 𝑡-channel mediator, and 𝐴 is Lorentz-invariant, while Σ depends on energy 𝐸 ≡
𝐸1 −𝐸3 and temperature 𝑇 . Then, we start the calculation with transforming the phase-space elements
𝑑Φ3,4 and the delta function to the CM frame. Note that this does not change the result, because the
phase-space elements and the delta function are Lorentz-invariant. For clarity, we shall distinguish the
integration variables in the CM frame by prime, while the index “cm” will denote the values imposed by
the delta functions.

In the CM frame, the cross section is given by

4𝐸1𝐸2 𝑣12 𝜎 =

∫︁
𝑑Φ′

3 𝑑Φ
′
4 (2𝜋)

4𝛿(
√
𝑠− 𝐸′

3 − 𝐸′
4) 𝛿

(3)(p ′
3 + p ′

4) |ℳ|212→34

=

∫︁
𝑑Φ′

3 𝑑Φ
′
4 (2𝜋)

4𝛿(
√
𝑠− 𝐸′

3 − 𝐸′
4) 𝛿

(3)(p ′
3 + p ′

4)
𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2 +Σ(𝐸, 𝑇 )2
.

(2.56)

For convenience, the factor 1/𝑐𝐹 has been dropped here. Integrating over 𝑑3𝑝′4, we obtain

4𝐸1𝐸2 𝑣12 𝜎 =
1

16𝜋2

∫︁
𝑑3𝑝′3
𝐸′

3𝐸
′
4

𝛿(
√
𝑠− 𝐸′

3 − 𝐸′
4)

𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2 +Σ(𝐸, 𝑇 )2
. (2.57)

Let us use the spherical coordinates:

𝑑3𝑝′3 = p′
3
2
𝑑|p′

3| 𝑑Ω′
3 , (2.58)

where 𝑑Ω′
3 denotes integration over the solid angle. We can also switch the integration variable from |p′

3|
to 𝐸′

3, using the relation

|p′
3| 𝑑|p′

3| = 𝐸′
3 𝑑𝐸

′
3 . (2.59)

Then, the cross section becomes

4𝐸1𝐸2 𝑣12 𝜎 =
1

16𝜋2

∫︁ |p ′
3| 𝑑𝐸′

3 𝑑
2Ω′

3√
𝑠

𝛿(𝐸′
3 − 𝐸cm

3 )
𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2 +Σ(𝐸, 𝑇 )2

=
1

16𝜋2

|pcm3 |√
𝑠

∫︁
𝑑2Ω′

3

𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2 +Σ(𝐸, 𝑇 )2
,

(2.60)
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where 𝐸cm
3 and |pcm3 | are the CM values of the energy and momentum, determined by kinematics:

𝐸cm
3 ≡

√
𝑠

2
+
𝑚2

3 −𝑚2
4

2
√
𝑠

, |pcm3 | ≡ 𝜆(𝑠,𝑚2
3,𝑚

2
4)

1/2

2
√
𝑠

. (2.61)

For completeness, let us also write down the CM energy and momentum of the incoming particle:

𝐸cm
1 ≡

√
𝑠

2
+
𝑚2

1 −𝑚2
2

2
√
𝑠

, |pcm1 | ≡ 𝜆(𝑠,𝑚2
1,𝑚

2
2)

1/2

2
√
𝑠

. (2.62)

Here, 𝜆 denotes the Källén triangle function defined by eq. (0.4). Assuming that the integration range
includes the point 𝑡 =𝑀2 (the other case is discussed at the end of this section), and the regulator Σ is
small (so that the matrix element squared is sharply peaked at that point), we can use the narrow-width
approximation:

1

𝑥2 + 𝑎2
≃ 𝜋

𝑎
𝛿(𝑥) (2.63)

to obtain

4𝐸1𝐸2 𝑣12 𝜎 ≃ 𝐴(𝑠,𝑀2)

16𝜋

|pcm3 |√
𝑠

∫︁
𝑑2Ω′

3

|Σ(𝐸, 𝑇 )| 𝛿(𝑡−𝑀2) . (2.64)

Since the variable 𝑡 is given in the CM frame by

𝑡 = 𝑚2
1 +𝑚2

3 − 2𝐸cm
1 𝐸cm

3 + 2|pcm1 ||pcm3 | cos 𝜃′ , (2.65)

where 𝜃′ denotes the angle between pcm1 and pcm3 , the delta function can be transformed to provide

4𝐸1𝐸2 𝑣12 𝜎 ≃ 𝐴(𝑠,𝑀2)

32𝜋
√
𝑠 |pcm1 |

∫︁
𝑑2Ω′

3

|Σ(𝐸, 𝑇 )| 𝛿(cos 𝜃
′ − 𝑐𝜃𝑀2) . (2.66)

Here, 𝑐𝜃2𝑀 is the value of cos 𝜃′ corresponding to 𝑡 =𝑀2 (by the aforementioned assumption, such a value
exists), given by

𝑐𝜃𝑀2 =
𝑀2 −𝑚2

1 −𝑚2
3 + 2𝐸cm

1 𝐸cm
3

2|pcm1 ||pcm3 | . (2.67)

Performing the 𝑑 cos 𝜃′ integration and recalling the definition of |pcm1 | given by eq. (2.62), we finally
obtain

4𝐸1𝐸2 𝑣12 𝜎 =
𝐴(𝑠,𝑀2)

32𝜋
√
𝑠 |pcm1 |

∫︁
𝑑𝜑′

|Σ(𝐸, 𝑇 )|

=
𝐴(𝑠,𝑀2)

16𝜋 𝜆(𝑠,𝑚2
1,𝑚

2
2)

1/2

∫︁
𝑑𝜑′

|Σ(𝐸, 𝑇 )| .
(2.68)

This formula has been used in numerical calculations to obtain the plots of ⟨𝜎𝑣⟩ presented in sections 5.5.3
and 5.5.4. Here,

∫︀
𝑑𝜑′ denotes integration of pcm3 over a unit circle lying in a plane perpendicular to pcm1 ,

while the energy 𝐸 and the invariants 𝑠, 𝑡 are given in terms of the CM variables as

𝐸(𝜑′) = 𝐸1 −
𝐸cm

3 𝐸tot + |ptot||pcm3 | cos(∠(ptot,pcm3 ))√
𝑠

, (2.69)

where

|ptot||pcm3 | cos(∠(ptot,pcm3 )) = 𝑐𝜃𝑀2 |ptot||pcm3 | cos (∠(ptot,pcm1 ))

+ sin𝜑 |ptot||pcm3 |
√︁
1− 𝑐𝜃2𝑀2 sin (∠(ptot,p

cm
1 ))

=
|pcm3 |
|pcm1 | ×

[︃
𝑐𝜃𝑀2 ptot · pcm1

+ sin(𝜑)
√︁

1− 𝑐𝜃2𝑀2

√︁
p2
tot p

cm
1

2 − (ptot · pcm1 )2

]︃
,

(2.70)
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and

𝑠 = 𝐸2
tot − p2

tot , 𝐸tot ≡ 𝐸1 + 𝐸2 , ptot ≡ p1 + p2 . (2.71)

It may seem peculiar that we are calculating the dot products of vectors from different reference frames,
e.g., ptot and pcm1 . The reason is that the CM variables 𝐸cm

1 , pcm1 are related to 𝐸1, p1 through the
following Lorentz transformation:

𝐸cm
1 =

𝐸1𝐸tot − p1 · ptot√
𝑠

,

pcm1 = p1 +

[︂
−𝐸1 +

p1 · ptot
𝐸tot +

√
𝑠

]︂
ptot√
𝑠

(2.72)

(the four-momenta of the other particles transform analogously). Thus, the dot product of ptot and pcm1
can be expressed as

ptot · pcm1 = ptot · p1 +

[︂
−𝐸1 +

p1 · ptot
𝐸tot +

√
𝑠

]︂
p2
tot√
𝑠

=
(𝐸1𝐸2 − p1 · p2)(𝐸1 − 𝐸2)−𝑚2

1𝐸2 +𝑚2
2𝐸1√

𝑠
,

(2.73)

using only quantities from the same reference frame.
If we are not in the singular range of 𝑠 (i.e., 𝑡 ̸= 𝑀2 in the whole integration range), Σ becomes

irrelevant and the result for 4𝐸1𝐸2 𝑣12 𝜎 is simply

4𝐸1𝐸2 𝑣12 𝜎 =
1

16𝜋2

|pcm3 |√
𝑠

∫︁
𝑑2Ω′

3

𝐴(𝑠, 𝑡)

(𝑡−𝑀2)2

=
1

8𝜋

|pcm3 |√
𝑠

∫︁ 1

−1

𝑑 cos 𝜃′
𝐴(𝑠, 𝑡(cos 𝜃′))

(𝑡(cos 𝜃′)−𝑀2)2
,

(2.74)

where

𝑡(cos 𝜃′) ≡ 𝑚2
1 +𝑚2

3 − 2𝐸cm
1 𝐸cm

3 + 2 |pcm1 ||pcm3 | cos 𝜃′ . (2.75)

2.3.3 Convenient variables

In this section, we will express the Boltzmann equation (2.48) using variables 𝑥, 𝑦, defined as

𝑥 ≡ 𝑚

𝑇
, 𝑦 ≡ 𝑛𝑥

𝑠
, (2.76)

where 𝑚 is a reference mass, 𝑇 is temperature of the thermal bath and 𝑠 is the entropy density of the
Universe. Note that the variable 𝑥 should not be confused with the index 𝑥 denoting the considered
species of particles. The total entropy of the Universe is assumed to be conserved [9], so

0 = 𝑅−3 𝑑

𝑑𝑡
(𝑅3𝑠)

= 3𝐻 𝑠+ 𝑠̇ .
(2.77)

Let prime denote differentiation with respect to 𝑥. The derivative of 𝑦 is

𝑦′ =
𝑦̇

𝑥̇

=
𝑛̇− 𝑛 𝑠̇

𝑠

− 𝑠𝑚
𝑇 2 𝑇̇

=
𝑛̇+ 3𝐻 𝑛

− 𝑠𝑚
𝑇 2 𝑇̇

,

(2.78)
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which is proportional to the left-hand side of the Boltzmann equation. After a replacement of 𝑛 by 𝑦 𝑠
on the right-hand side, eq. (2.48) becomes

𝑦′𝑥 =
𝑠𝑚

𝑥2 𝑇̇

∑︁

2→𝐹

𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼

×
[︁
𝑦𝑖1𝑦𝑖2 − 𝑦𝑖1𝑦𝑖2 . . . 𝑦𝑖𝐼

𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹
𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹

]︁

× ⟨𝜎𝑣⟩𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 ,

+
𝑚

𝑥2 𝑇̇

∑︁

1→𝐹

(𝛿𝑥,𝑖1 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹 )
[︁
𝑦𝑖1 − 𝑦𝑖1

𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹
𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹

]︁

× ⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 .

(2.79)

The value of 𝑦 ≡ 𝑛̄/𝑠 is given by

𝑦(𝑥) =
45

4𝜋7/2
√
2

𝑔

𝑔*𝑠
𝑥3/2 𝑒−𝑥 . (2.80)

We have used the fact that in the radiation-dominated era, the entropy density is given by eq. (2.23):

𝑠 ≃ 2𝜋2

45
𝑔*𝑠 𝑇

3 . (2.81)

Moreover, it can be shown [9] that in that period, the time derivative of temperature is

𝑇̇ = −
√︂

4𝜋3 𝑔*
45

𝑇 3

𝑚Pl
, (2.82)

where 𝑚Pl ≃ 1.22× 1019 GeV. The effective numbers of relativistic degrees of freedom, 𝑔* and 𝑔*𝑠, have
been defined in eq. (2.24). Finally, the Boltzmann equation becomes

𝑦′𝑥 = −𝑎2 𝑥−2
∑︁

2→𝐹

𝛿𝑥,𝑖1 + 𝛿𝑥,𝑖2 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹
𝑐𝐼

×
[︁
𝑦𝑖1𝑦𝑖2 − 𝑦𝑖1𝑦𝑖2 . . . 𝑦𝑖𝐼

𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹
𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹

]︁

× ⟨𝜎𝑣⟩𝑖1,𝑖2→𝑓1,𝑓2,...,𝑓𝐹 ,

−𝑎1 𝑥
∑︁

1→𝐹

(𝛿𝑥,𝑖1 − 𝛿𝑥,𝑓1 − 𝛿𝑥,𝑓2 − . . .− 𝛿𝑥,𝑓𝐹 )

×
[︁
𝑦𝑖1 − 𝑦𝑖1

𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹
𝑦𝑓1𝑦𝑓2 . . . 𝑦𝑓𝐹

]︁

× ⟨Γ⟩𝑖1→𝑓1,𝑓2,...,𝑓𝐹 ,

(2.83)

where

𝑎2 ≡ −𝑠𝑚
𝑇̇

=

√︂
𝜋

45
𝑚𝑚Pl

𝑔*𝑠√
𝑔*

,

𝑎1 ≡ − 𝑚

𝑥3 𝑇̇
=

√︂
45

4𝜋3

𝑚Pl

𝑚2

1√
𝑔*

.

(2.84)

2.3.4 Boltzmann equation for one-component DM. Freeze-out mechanism

In this section, based on chapter 5.2 of [9], we discuss a Boltzmann equation for a simple case of one-
component DM and derive the relic density, which will be used in the next section. The assumption
is that the dark particles were initially in thermal and chemical equilibrium with the thermal bath of
photons. This equilibrium was maintained by annihilation (chemical equilibrium) and scattering (thermal
equilibrium) processes between DM and the SM. It will appear that at some moment, when the density of
dark particles reaches a small value due to the Hubble expansion, the annihilation processes become too
inefficient to keep DM in chemical equilibrium with photons. Then, the DM density ceases to follow the
equilibrium density and approaches an approximately constant value, called relic density. The moment

18



of chemical decoupling is called the freeze-out. Figure 2.1 shows a qualitative picture of the DM density
governed by the freeze-out mechanism.
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x

Figure 2.1: A qualitative picture of the freeze-out mechanism. The solid orange line is the DM
abundance, 𝑦 ≡ 𝑛/𝑠, while the dashed black line represents the equilibrium abundance 𝑦. The stronger
the annihilation cross section ⟨𝜎𝑣⟩ is, the longer dark matter is kept in chemical equilibrium with the
thermal bath, which results in lower relic density.

Note that the density of the dark particles, 𝑛DM, decreases faster than the density of still relativistic
light SM particles, 𝑛SM (see section 2.2). As the DM annihilation rate should be proportional to 𝑛2DM,
while the scattering rate depends on 𝑛DM𝑛SM, the scattering processes are assumed to be still efficient
long after the freeze-out, so the thermal equilibrium is assumed to be maintained [9]. This assumption
may be invalid in the case of early kinetic decoupling discussed in [17].

We assume that the only processes affecting density of the dark particles are a 2 → 2 annihilation
process and the corresponding inverse process. The thermally averaged cross section for the annihilation
process will be approximated as

⟨𝜎𝑣⟩ = 𝜎0 𝑥
−𝑘 , (2.85)

with 𝜎0 being a constant and 𝑘 = 0, 1, 2, . . . depending on dynamics of the process. In this simple
case, with the reference mass (used to define the variable 𝑥) equal to the mass of the dark particle, the
Boltzmann equation (2.83) takes the following form:

𝑑𝑦

𝑑𝑥
= −𝑎(𝑥)𝑚𝑥−2 ⟨𝜎𝑣⟩ (𝑦2 − 𝑦2)

= −𝑎(𝑥)𝑚𝜎0 𝑥
−(𝑘+2) (𝑦2 − 𝑦2) .

(2.86)

where

𝑎(𝑥) ≡
√︂

𝜋

45
𝑚Pl

𝑔*𝑠(𝑥)√︀
𝑔*(𝑥)

(2.87)

can be approximated by a constant value

𝑎(𝑥) ≃ 𝑎 ≡
√︂

𝜋

45
𝑚Pl 𝑔*(𝑥𝑓 )

1/2 = const . (2.88)

This approximation is justified by the fact that the effective numbers of relativistic degrees of freedom are
close to each other and slowly-changing during most of the history of the Universe. The quantity 𝑥𝑓 used
here is defined as the value of 𝑥 for which the interaction ceases to be effective enough to maintain the
chemical equilibrium between the dark species and the thermal bath, so that the dark particles decouple
and their density is no longer the equilibrium one. This moment is called the freeze-out. More precisely,
at 𝑥 = 𝑥𝑓 we require

𝑦 − 𝑦 = 𝑐 𝑦 , (2.89)
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where 𝑐 is a number of the order of unity that will be determined later.
First, let us relate the relic value of 𝑦 to 𝑥𝑓 . Shortly after the freeze-out, the equilibrium value 𝑦 can

be neglected comparison to 𝑦, so the Boltzmann equation (2.86) becomes

𝑑𝑦

𝑑𝑥
= −𝑎𝑚𝜎0 𝑥

−(𝑘+2) 𝑦2 . (2.90)

Dividing both sides by 𝑦2 and integrating over 𝑑𝑥 from 𝑥𝑓 to ∞, we obtain

−𝑦−1
∞ + 𝑦−1

𝑓 = −𝑎𝑚𝜎0
𝑘 + 1

𝑥
−(𝑘+1)
𝑓 . (2.91)

The freeze-out value 𝑦𝑓 is assumed to be much larger than the relic value 𝑦∞, so its inverse can be
neglected. Consequently, we obtain

𝑦∞ =
𝑘 + 1

𝑎𝑚𝜎0
𝑥𝑘+1
𝑓 . (2.92)

Combining this equation with the results of

� eq. (2.7), defining the density parameter,

� eq. (2.20), relating the energy density of a non-relativistic species to its number density,

� eq. (2.76), defining variable 𝑦,

we obtain the following present value of the density parameter of the cold dark matter:

Ω𝑐 =
8𝜋𝐺𝑠0
3𝐻2

𝑘 + 1

𝑎 𝜎0
𝑥𝑘+1
𝑓

≃ 8.52× 10−11 GeV−2

𝜎0
(𝑘 + 1)

𝑥𝑘+1
𝑓

𝑔*(𝑥𝑓 )1/2
.

(2.93)

Here, 𝑠0 denotes the present value of the entropy density, equal to ca. 2.2× 10−38 GeV3 [18].
In order to determine 𝑥𝑓 , let us recall eq. (2.86):

𝑦′ = −𝑎𝑚𝑥−2 ⟨𝜎𝑣⟩ (𝑦2 − 𝑦2) . (2.94)

With ∆ ≡ 𝑦 − 𝑦, this becomes

∆′ + 𝑦′ = −𝑎𝑚𝑥−2 ⟨𝜎𝑣⟩∆(∆+ 2 𝑦) . (2.95)

Before the freeze-out, 𝑦 follows the equilibrium value, so ∆′ ≪ 𝑦′. Extending validity of this assumption
up to the moment of freeze-out, we obtain

𝑦′

𝑦
= −𝑎𝑚𝑥−2 ⟨𝜎𝑣⟩ 𝑐 (𝑐+ 2) 𝑦 . (2.96)

Substituting the explicit form of 𝑦 given by eq. (2.80) we obtain in the limit of large 𝑥

𝑒𝑥 = 𝑤 𝑎𝑚𝑥−1/2 ⟨𝜎𝑣⟩ 𝑐 (𝑐+ 2) , (2.97)

where 𝑤 ≡ 𝑥−3/2 𝑒𝑥 𝑦 ≃ const, see eq. (2.80). After taking the logarithm and using the fixed-point
iteration method (starting from the first approximation 𝑥𝑓 = 1), we obtain

𝑥𝑓 ≃ ln [𝑤 𝑎𝑚𝜎0 𝑐 (𝑐+ 2)] . (2.98)

For 𝑐(𝑐+ 2) = 1, 𝑔* ≃ 60 and 𝑔 = 2 the result is

𝑥𝑓 = ln

[︃√︂
3

2

𝑚𝑚Pl 𝜎0
4𝜋3

]︃

≃ 39.3 + ln

[︂
𝑚

GeV
𝜎0

GeV−2

]︂
.

(2.99)

Note that dependence of 𝑥𝑓 on the parameters is logarithmic, thus, the precise values 𝑐(𝑐+ 2), 𝑔* and 𝑔
are not very important for determination of 𝑥𝑓 .
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2.3.5 Miraculous WIMPs

Let us assume a one-component DM model in which the dark particles are allowed to annihilate into the
SM. Moreover, let us assume that the value of the thermally averaged cross section is comparable to the
cross sections resulting from the SM weak interactions:

⟨𝜎𝑣⟩ = 𝐺2
𝐹 𝑚

2

2𝜋
, (2.100)

where 𝐺𝐹 ≃ 1.17 × 10−5 GeV−2 [19] is the Fermi constant. Then, according to eq. (2.99), the value of
𝑥𝑓 is

𝑥𝑓 ≃ 14.8 + 3 ln
𝑚

GeV
. (2.101)

Using eq. (2.93), we can estimate the present density parameter of the cold dark matter to be

Ω𝑐 ℎ
2 ∼

(︁ 𝑚

GeV

)︁−2

(7.4 + 1.5 ln
𝑚

GeV
) . (2.102)

For DM mass of the order of 10 GeV, roughly the same as the order of the masses of the weak gauge
bosons, 𝑊± and 𝑍, the cross section is

⟨𝜎𝑣⟩ = 2.2× 10−9 GeV−2

≃ 2.5× 10−26 cm3/s ,
(2.103)

and the relic density takes the value

Ω𝑐 ℎ
2 ∼ 0.1 , (2.104)

very close to the one observed by Planck [10]:

Ωobs
𝑐 ℎ2 = 0.12 . (2.105)

Surprisingly, choosing the values of the parameters to be similar to those occurring in the theory of weak
interactions or theories of supersymmetry [20], we automatically obtain the correct relic density. This is
sometimes referred to as the WIMP miracle.

2.4 Boltzmann equations for multicomponent DM

Studying multicomponent DM models, such as the VFDM model [21–23] described in appendix A, one
has to face a coupled set of Boltzmann equations describing all the DM components. Those equations
must contain not only the terms corresponding to pair annihilation of the dark particles into the SM,
but also the contribution of the processes mixing various dark species, which leads to highly non-trivial
phenomenology, as discussed in the cited papers. The complexity of equations describing multicomponent
dark matter can be illustrated by the set of Boltzmann equations relevant for the VFDM model, governing
the abundances of the dark-sector particles 𝜓+, 𝜓−, 𝑋:
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𝑑𝑛𝑋
𝑑𝑡

=− 3𝐻𝑛𝑋 − ⟨𝜎𝑋𝑋𝜑𝜑′
𝑣 ⟩

(︁
𝑛2𝑋 − 𝑛̄2𝑋

)︁
− ⟨𝜎𝑋𝜓+𝜓−ℎ𝑖

𝑣 ⟩
(︁
𝑛𝑋𝑛𝜓+ − 𝑛̄𝑋 𝑛̄𝜓+

𝑛𝜓−
𝑛̄𝜓−

)︁

− ⟨𝜎𝑋𝜓−𝜓+ℎ𝑖
𝑣 ⟩

(︁
𝑛𝑋𝑛𝜓− − 𝑛̄𝑋 𝑛̄𝜓−

𝑛𝜓+
𝑛̄𝜓+

)︁
− ⟨𝜎𝑋ℎ𝑖𝜓+𝜓−

𝑣 ⟩𝑛̄ℎ𝑖

(︁
𝑛𝑋 − 𝑛̄𝑋

𝑛𝜓+𝑛𝜓−
𝑛̄𝜓+ 𝑛̄𝜓−

)︁

− ⟨𝜎𝑋𝑋𝜓+𝜓+
𝑣 ⟩

(︁
𝑛2𝑋 − 𝑛̄2𝑋

𝑛2𝜓+

𝑛̄2𝜓+

)︁
− ⟨𝜎𝑋𝑋𝜓−𝜓−

𝑣 ⟩
(︁
𝑛2𝑋 − 𝑛̄2𝑋

𝑛2𝜓−

𝑛̄2𝜓−

)︁
(2.106a)

+ Γ𝜓+→𝑋𝜓−

(︁
𝑛𝜓+ − 𝑛̄𝜓+

𝑛𝑋
𝑛̄𝑋

𝑛𝜓−
𝑛̄𝜓−

)︁
,

𝑑𝑛𝜓−

𝑑𝑡
=− 3𝐻𝑛𝜓− − ⟨𝜎𝜓−𝜓−𝜑𝜑

′
𝑣 ⟩

(︁
𝑛2𝜓− − 𝑛̄2𝜓−

)︁
− ⟨𝜎𝜓−𝜓+𝑋ℎ𝑖

𝑣 ⟩
(︁
𝑛𝜓−𝑛𝜓+ − 𝑛̄𝜓− 𝑛̄𝜓+

𝑛𝑋
𝑛̄𝑋

)︁

− ⟨𝜎𝑋𝜓−𝜓+ℎ𝑖
𝑣 ⟩

(︁
𝑛𝑋𝑛𝜓− − 𝑛̄𝑋 𝑛̄𝜓−

𝑛𝜓+
𝑛̄𝜓+

)︁
− ⟨𝜎𝜓−ℎ𝑖𝑋𝜓+

𝑣 ⟩𝑛̄ℎ𝑖

(︁
𝑛𝜓− − 𝑛̄𝜓−

𝑛𝜓+

𝑛̄𝜓+

𝑛𝑋
𝑛̄𝑋

)︁

− ⟨𝜎𝜓−𝜓−𝑋𝑋
𝑣 ⟩

(︁
𝑛2𝜓− − 𝑛̄2𝜓−

𝑛2𝑋
𝑛̄2𝑋

)︁
− ⟨𝜎𝜓−𝜓−𝜓+𝜓+

𝑣 ⟩
(︁
𝑛2𝜓− − 𝑛̄2𝜓−

𝑛2𝜓+

𝑛̄2𝜓+

)︁
(2.106b)

+ Γ𝜓+→𝑋𝜓−

(︁
𝑛𝜓+

− 𝑛̄𝜓+

𝑛𝜓−

𝑛̄𝜓−

𝑛𝑋
𝑛̄𝑋

)︁
,

𝑑𝑛𝜓+

𝑑𝑡
=− 3𝐻𝑛𝜓+ − ⟨𝜎𝜓+𝜓+𝜑𝜑

′
𝑣 ⟩

(︁
𝑛2𝜓+

− 𝑛̄2𝜓+

)︁
− ⟨𝜎𝜓+𝜓−𝑋ℎ𝑖

𝑣 ⟩
(︁
𝑛𝜓+𝑛𝜓− − 𝑛̄𝜓+ 𝑛̄𝜓−

𝑛𝑋
𝑛̄𝑋

)︁

− ⟨𝜎𝑋𝜓+𝜓−ℎ𝑖
𝑣 ⟩

(︁
𝑛𝑋𝑛𝜓+ − 𝑛̄𝑋 𝑛̄𝜓+

𝑛𝜓−
𝑛̄𝜓−

)︁
− ⟨𝜎𝜓+ℎ𝑖𝑋𝜓−

𝑣 ⟩𝑛̄ℎ𝑖

(︁
𝑛𝜓+ − 𝑛̄𝜓+

𝑛𝜓−

𝑛̄𝜓−

𝑛𝑋
𝑛̄𝑋

)︁

− ⟨𝜎𝜓+𝜓+𝑋𝑋
𝑣 ⟩

(︁
𝑛2𝜓+

− 𝑛̄2𝜓+

𝑛2𝑋
𝑛̄2𝑋

)︁
− ⟨𝜎𝜓+𝜓+𝜓−𝜓−

𝑣 ⟩
(︁
𝑛2𝜓+

− 𝑛̄2𝜓+

𝑛2𝜓−

𝑛̄2𝜓−

)︁
(2.106c)

− Γ𝜓+→𝑋𝜓−

(︁
𝑛𝜓+

− 𝑛̄𝜓+

𝑛𝜓−

𝑛̄𝜓−

𝑛𝑋
𝑛̄𝑋

)︁
.

Here, ⟨𝜎𝑣⟩ denotes the thermally averaged cross section, Γ is the thermally averaged width, and
𝜑𝜑′ denote all possible SM particles, including the Higgs-portal mediators ℎ1 and ℎ2. As discussed in
chapter 5, some of the processes contributing to those equations are affected by the 𝑡-channel singularity,
which makes the corresponding ⟨𝜎𝑣⟩ infinite, making solving the equations impossible.
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Chapter 3

Dark matter

3.1 Definition and evidence

Dark matter is the component of the Universe that does not interact electromagnetically, but provides
the missing mass needed to explain various phenomena observed. This chapter briefly summarizes the
required properties of dark matter and presents the most notable evidence of its existence. It is evident
that most of DM should exist in a form of cold BSM particles. Moreover, the small-scale problems
described in section 3.3 indicate that the dark sector should be self-interacting.

3.1.1 Historical perspective

According to [24], the first to use the term “dark matter” (Fr. “matière obscure”) was Henri Poincaré
in 1906 [25], discussing Lord Kelvin’s proposal [26] to apply the kinetic theory of gases to the stars of
the Milky Way and deduce their number from the observed dispersion of their velocity. As Poincaré
concluded, the numbers theoretically predicted by Kelvin are close to the observed ones, hence, the
amount of non-luminous matter should be very small in comparison to the number of stars. Since the
models used by Kelvin and Poincarè to derive this conclusion were highly inaccurate comparing to the
current state of knowledge, their results are no longer valid. Nevertheless, this was probably the first
attempt to estimate the amount of the non-luminous matter in the Universe using a strict methodology.

An argument for existence of DM has been provided by Fritz Zwicky in his famous paper [27]. He
applied the virial theorem to the observed velocity dispersion of galaxies forming the Coma cluster. The
mean potential energy of the system constituents, ⟨𝑉 ⟩, should be proportional to the mean kinetic energy,
⟨𝑇 ⟩, in the following way:

⟨𝑇 ⟩ = −1

2
⟨𝑉 ⟩ . (3.1)

The mean potential energy can be expressed in terms of the cluster’s mass and size, while the mean
kinetic energy should roughly determine velocities achieved by the constituents. The resulting estimation
of the cluster’s mass has been confronted with the estimation based on the observed number of galaxies
forming the cluster (800). Zwicky assumed the total mass of the cluster to be 109 solar masses, and
estimated its size as 106 ly. The resulting square root of the average square velocity should is 80 km/s,
while the observed velocities were of the order of 1000 km/s. Zwicky concluded that the missing mass,
needed to provide additional gravitational potential resulting in higher kinetic energies, exists in the form
of dark matter (Ger. “dunkle Materie”). However, as his work based on many rough assumptions, this
conclusion was subject to large uncertainties, hence, not imposing a significant impact on the community.
Moreover, due to technical limitations, applying a similar procedure to the stars forming a single galaxy
was impossible that time. Zwicky himself stated that it is not possible to derive the masses of [galaxies]
from observed rotations, without the use of additional information [28].

The first convincing proof of existence of DM based on the analysis of the galactic rotation curves. In
1970, Vera Rubin and Kent Ford published the analysis of the optical rotation curve of the Andromeda
Galaxy (M31) [29]; simultaneously, Kenneth Freeman compared the rotation curves of M33 and NGC 300,
observed in 21 cm radiation, with the predictions deduced from the assumed mass distribution [30]. As
the position of the distribution peak appeared further from the galactic centre than expected, Freeman
concluded that the dark component should be at least as massive in total as the luminous matter,
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and its distribution should be much different than the assumed exponential one. Numerous subsequent
observations of the rotation curves of various galaxies brought the authors to the conclusion that non-
luminous matter, present in large amounts, is necessary to explain the observation.

3.1.2 Evidence

Rotation curves. Using the Newtonian laws of motion and theory of gravity, the non-relativistic
velocities of gravitationally bounded bodies rotating around the center of the bounding system can be
easily related to the distribution of mass in the system: in the reference frame of a given body, the
gravitational force should balance the centrifugal force. If the velocity of the body is denoted by 𝑣 and
the distance from the centre is 𝑟, the resulting relation reads

𝑣2 =
𝐺𝑀(𝑟)

𝑟
, (3.2)

where𝑀(𝑟) is the mass contained within a sphere of radius 𝑟, and 𝐺 is Newton’s constant. Consequently,
it is possible to determine the density profile of the system (assuming it is isotropic) from the observed
dependence of rotation velocity on the radius,

As mentioned, since early 1970s, this relation applied to the contents of galaxies provides a strong
evidence of DM existence. The observed rotation velocity often appears to be larger than the value
expected from estimation of mass of the luminous matter in a given galaxy. The missing mass is attributed
to a DM halo. For an illustration, fig. 3.1 shows the rotation curve of the M33 galaxy and the fitted
profile of DM.

data

halo (fit)

stars

gas

M33

Figure 3.1: Rotation curve of the M33 galaxy (solid line) observed in 21 cm radiation. Points denote
the data, while the dashed lines represent the rotation curves corresponding to the contributions of
the DM halo, the stellar disk, and the gas. The DM halo contribution has been fitted to agree with
the data. Plot adapted from [31].

Anisotropies of CMB. Among other cosmological parameters, the amount of DM can be deduced
from the power spectrum of the cosmic microwave background (CMB). According to [32], in the early
Universe, initial fluctuations of DM density grew and formed wells of gravitational potential which at-
tracted baryonic matter. When the density of the baryonic matter grows, its temperature grows as well,
finally causing it to radiate. The increasing radiation pressure provides a repulsive force to the system. At
some moment, the pressure starts to dominate the gravitational attraction and the baryonic cloud begins
to expand, decreasing its density and cooling down. Then, when the density becomes small enough, the
attractive force dominates again and the cycle repeats. In this way, the density of baryons and photons
oscillates. At the moment of decoupling of the CMB, those photons that were in the expanded phase were
slightly cooler than those in the dense phase. This is considered to be the origin of small anisotropies of
the CMB temperature, depicted in the left panel of fig. 3.2.

The density parameter of baryons, Ω𝑏. determines the ratio between the even and odd peaks of the
CMB spectrum (see the right panel of fig. 3.2), while the sum Ω𝑏 + Ω𝑐, where Ω𝑐 is the contribution
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of cold DM, determines the damping rate of the spectrum. Measurements of the Planck satellite [10]
indicate that the Λ-CDM model of the Universe, which assumes cold DM and a non-zero value of the
cosmological constant Λ, appears to be in excellent agreement with observations, with the present values
of Ω𝑏, Ω𝑐 and ΩΛ (the value corresponding to the cosmological constant) equal to

Ω𝑏 = 0.022ℎ−2 , Ω𝑐 = 0.120ℎ−2 , ΩΛ = 0.685 , (3.3)

and a negligible contribution of the relativistic species (photons, neutrinos). This means that 68.5% of
the Universe energy density is provided by the dark energy (represented by the cosmological constant),
26.6% comes from cold dark matter and the remaining 4.9% is formed by the baryonic matter.

Figure 3.2: Left: map of temperature anisotropy of the CMB observed by Planck, with the dipole
anisotropy (which corresponds to the Earth’s motion relatively to the CMB rest frame) removed.
Colouring denotes the difference between the temperature of each point and the mean value of 2.7255 K
[33]. Right: the power spectrum of the anisotropies shown in the left plot. The shape of the spectrum
allows to determine cosmological parameters, including DM density parameter (see text for discussion).
In the plot, the points represent the observed values and the line is the Λ-CDM fit. Plots adapted
from [10,34].

Colliding clusters. Observations of gravitationally bended light allow to reconstruct the mass distri-
bution that caused the lensing effect. It may happen that the reconstructed mass is distributed differently
than the observed luminous matter. The most famous example of such a discrepancy is the 1E0657-558
cluster (known as the Bullet Cluster) [35], formed by two colliding clusters. As can be seen in the plot
presented in fig. 3.3, the luminous matter observed in the X-rays is distributed closer to the center than
the mass reconstructed from the lensing. The interpretation is that during the collision, the baryonic
matter has decelerated due to particle interactions, while the dark halos of both clusters have passed
through with only small slowdown. Figure 3.4 presents other examples of observed colliding clusters,
with distribution of luminous and DM mass marked by different colours.

Observations of the Bullet Cluster provide an important constraint of the strength of DM self-
interaction, as too strong interactions would prevent DM from splitting apart. Moreover, they are the
most direct proof of existence of DM and one of the most serious arguments against theories of modified
gravity.
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Figure 3.3: The Bullet Cluster. The colours represent the X-ray image of the system, while the
green contours show the mass distribution deduced from lensing effects. It can be observed that the
luminous matter is concentrated near the centre of the image, while the mass distribution forms two
distinct regions (interpreted as DM halos of the colliding clusters) far from each other. The length of
the white bar, added for scale, is 200 kpc. Image from [35].

Figure 3.4: Images of six colliding clusters (names are annotated in the top-right corner of each
image) observed with NASA’s Hubble Space Telescope and Chandra X-ray Observatory. The colour
shading overlaid on optical images denotes distribution of X-ray sources (pink) and dark matter (blue).
Image from [36].

3.1.3 Candidates

Here, we discuss proposed constituents of the missing mass and summarize the arguments leading to the
conclusion that the most proper candidate for DM is a non-relativistic, non-baryonic, electrically neutral
particle, at most weakly coupled to the SM. To maintain the correct relic density, the dark particles
should be stable (or, at least, their lifetime should be comparable to the age of the Universe).
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MACHOs and other baryonic candidates. Initially, DM was supposed to consist of objects of
known objects: interstellar gas, dust, and the so-called massive astrophysical compact halo objects (MA-
CHOs): asteroids, planets and dark stellar remnants (neutron stars, dwarfs, black holes). However further
evidence shows that if the baryonic matter was the main source of the missing mass, the content of light
nuclei would be disturbed. The primordial production of light nuclei is almost fully determined by the
value of baryon-to-photon ratio 𝜂 [37]. The observed deuterium-to-hydrogen ratio, equal to 2.6× 10−5, is
consistent with 𝜂 ≃ 6× 10−10 [38]. On the other hand, knowing the energy density of photons from the
Planck observations of CMB [10], it is possible to use 𝜂 to calculate the density parameter of baryons,
Ω𝑏, as

Ω𝑏 ℎ
2 = 3.66× 107 𝜂

≃ 0.022 .
(3.4)

This result perfectly agrees with the value determined from the damping rate of the spectrum of the
CMB anisotropies, provided in section 3.1.2. Thus, baryonic matter can form only a small amount of the
missing mass.

Primordial black holes. A possibility that demands a dedicated discussion is that DM could consist
of primordial black holes (PBHs), forming at the early stage of the Universe evolution, when the amount
of baryons is still small, so that the abundance of PBHs is not constrained by the Big-Bang nucleosyndis-
sertation [39], which limits the contribution of baryons to DM as discussed above. However, the amount
of PBHs is limited by numerous other observations: taking into account only robust constraints allows
PBHs to form all DM only if their masses fit in a small window around 10−13 solar mass, while if the less
established constraints are also included, the contribution of PBHs of any masses is limited to at most
10% of DM [40,41].

Modified gravity. So far, all evidence of the existence of DM, described in section 3.1.2, is of gravi-
tational nature. Hence, a question arises: if our understanding of gravity demands improvement, maybe
the observed effects could be explained by modifying theory of gravity, without introducing any new
particles?

Such an idea has been first suggested in 1983 by Mordehai Milgrom [42–44]. He proposed to modify
the Newtonian laws of motion (hence the name of the theory: modified Newtonian dynamics, abbreviated
as MoND) to reproduce the rotation curves without introducing additional dark mass. He stated that
the second Newton’s law could include an additional factor, depending on acceleration of the body with
respect to some reference frame. This factor would be close to one for high acceleration, and proportional
to the acceleration for small values, e.g.:

𝐹 = 𝑚𝑎𝜇

(︂
𝑎

𝑎0

)︂
, 𝜇(𝑥) ≡ 𝑥

𝑥+ 1
, (3.5)

where 𝑎 is acceleration and 𝑎0 is a new constant of dimension of acceleration and a small value (of the
order of 10−10 m/s2). Using this assumption, Milgrom has successfully reproduced the observed rotation
curves using only stellar and gas contribution to the mass.

Equivalently to adding the extra term to the law of motion, the theory can introduce a corresponding
term to the Newtonian law of gravity, without altering the whole dynamics. Thus, MoND is treated as
the first example of theories of modified gravity. MoND and its relativistic generalization, the tensor-
vector-scalar theory (TeVeS) [45], as well as other theories of modified gravity, are able to reproduce
some of phenomena attributed to DM, but still have troubles to explain the shape of the spectrum of the
CMB anisotropies [46] and observations of colliding clusters (both those types of evidence are discussed
in the next section). Moreover, those theories are severely constrained by all observations fully consistent
with Einstein’s general relativity, e.g., those involving gravitational waves [47]. Summing up, modifying
gravity is currently unable to provide a satisfactory alternative to theories of particle DM.

Hot and cold non-baryonic particle dark matter. The discussion of various DM candidates pre-
sented in this section brings us to the conclusion that most of DM should exist in a form of non-baryonic
particles. Here, we argue that most of those particles should be “cold”, i.e., non-relativistic.

There is one component of non-baryonic DM which is already known, namely, the neutrinos. They are
electrically neutral, interact very weakly, and are known to have a non-zero mass due to their oscillations
[48]. However, their mass is so tiny that they are still relativistic when they decouple from the thermal
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bath, thus neutrinos are hot relics contributing to the effective number of relativistic degrees of freedom
of the Universe, defined by eq. (2.24).

The effective number of relativistic degrees of freedom, defined by eq. (2.24), affects the expansion
rate of the Universe during Big-Bang nucleosyndissertation, and influences the shape of envelope of the
CMB spectrum [49–51]. Consequently, the number of BSM relativistic degrees of freedom is strongly
constrained. At the 95%C.L., the discrepancy between the value predicted by the SM, 3.04, and the true
value must be smaller than 1 [49].

It can be shown [9], that the relic density of hot relics is proportional to their mass, which results [49]
in the following relation between the sum of neutrinos masses and their abundance:

Ω𝜈 ℎ
2 =

∑︀
𝑚𝜈

93.14 eV
. (3.6)

Combining this relation with the upper limit of
∑︀
𝑚𝜈 < 0.12 eV [10] gives

Ω𝜈 ℎ
2 < 0.0013 , (3.7)

which is much smaller than the required value of DM relic density. Therefore, most of DM should exist
in a form of cold particles.

3.2 Small-scale structure: the galactic halos

This section, basing on [52], describes the usual assumption regarding DM distribution at the galaxy
level, known as the Standard Halo Model (SHM).

The model of the halo, currently known as the SHM, has been first proposed by A.K. Drukeir, K. Freese
and D.N. Spergel in 1986 [53]. Approximating the rotation curve of the galaxy of the interest by a flat
line, and assuming that the distribution of DM is isotropic, they deduced from eq. (3.2) that the density
should scale with the distance from the galactic centre, denoted by 𝑟, as 𝑟−2. The DM halo is assumed
to form an isothermal sphere, which leads to the following velocity distribution of the velocities of the
dark particles:

𝑓(v) = 𝒩 exp

(︂
− v2

2𝜎2
𝑣

)︂
𝜃(𝑣esc − |v|) , (3.8)

where 𝜎𝑣 denotes the velocity dispersion and 𝒩 is a normalization constant. The step function 𝜃 is
introduced to reflect the fact that, assuming DM to be gravitationally bounded, the maximal speed is cut
off at the galactic escape velocity. The local value of this cut-off scale in the vicinity of the Sun (treated
as a part of the Galaxy) is ca. 533 km/s [54].

The SHM assumes the galactic halos to be stationary (non-rotating). Thus, for the Earth moving
through the Milky Way, the total velocity with respect to the DM halo is

𝑣 = 𝑣𝑠 + 𝑣𝑒 cos 𝛾 cos

(︂
2𝜋

𝑡− 𝑡0
1 yr

)︂
, (3.9)

where 𝑣𝑠 ≃ 230 km/s is the velocity of the Sun, 𝛾 ≃ 60∘ is the angle between the plane of the planetary
motion in the Solar System and the direction of the solar motion, and 𝑡0 denotes the date corresponding
to the maximal total velocity, i.e., the 2nd of June [55]. A consequence of the periodical modulation of
this velocity is expected modulation of the signal in DD experiments discussed in section 4.1.

It is worth to bear in mind that the SHM is a convenient assumption. In fact, observations indicate
that it is not applicable to dwarf galaxies, whose DM density profile, as deduced from the rotation curves,
appears to not satisfy the inverse square profile, see section 3.3 for more details. Moreover, the assumption
of isotropy is a subject of discussion at small scales, and could be tested to some extent if the proposed
experiments involving paleo-detectors (section 4.1.8) are performed.

Simulations (see, e.g., [56–58] ) predict that a DM halo of a size corresponding to the Milky Way
should be accompanied by hundreds of smaller subhalos. The largest of them should be capable to
form satellite galaxies in a number exceeding those observed. This leads to the missing-satellite problem
discussed in the next section.
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3.3 Self-interacting dark matter

3.3.1 Cusp-core problem

The simple assumption that DM consists of identical massive, collisionless particles is sufficient to explain
the large-scale effects, but has some troubles when it comes to analysis at the galactic scale [59]. Namely,
simulations indicate that the density profile generated by such a collisionless DM in dwarf galaxies should
have a profile which is peaked at the galaxy centre. However, from observations, it appears that many
rotation curves provide a flat region (core) at small values of 𝑟. This discrepancy is often called the
cusp-core problem. For an illustration, an exemplary comparison between the profile of collisionless DM
and the actual one is presented in fig. 3.5.
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Figure 3.5: Left: rotation curve of the DDO 154 dwarf galaxy. Black points indicate the observed
values, while the blue dashed line represents the profile predicted for collisionless DM. The red line is
the actual fit. Contribution of the stars and gas are presented as the pink lines. Right: DM density
profiles deduced from the rotation curves from the left plot. The correct rotation curve provides the
profile with a central core, while the cuspy profile leads to incorrect results. Plots from [59].

3.3.2 Missing-satellites problem

Another small-scale issue is the so-called missing-satellites problem. The simulations predict the Milky
Way halo to have hundreds of subhalos, in principle large enough to contain a dwarf galaxy [56–58]. On
the other hand, only several tens of dwarf satellites of the Milky Way are known (for instance, [60] claims
39 confirmed and 22 candidate objects). Although some of the recent works (e.g., [61]) argue that the
problem disappears if one modifies the method of estimation of the number of dwarf satellites, other
(e.g., [62]) confirm the discrepancy. Figure 3.6 shows results of an exemplary simulation of the Milky
Way satellites confronted with the actually observed distribution.
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Figure 3.6: Left: simulation of a structure of collisionless DM within a 250 kpc sphere centred at
the centre of the Milky Way. Right: the satellites of the Milky Way (represented by the central disk)
known in 2017, drawn inside the same sphere. The red ones are those discovered after 2015. The size
of a given circle is proportional to the logarithm of the stellar mass, and the brightest satellites are
labelled by names. A clear discrepancy between the simulation and the observations is visible. Plots
from [62].

3.3.3 Too-big-to-fail problem

Probably the most natural approach to the missing-satellites problem is to assign the most massive of the
predicted subhalos to the observed satellite galaxies of the Milky Way, and state that due to unknown,
non-trivial effects affecting galaxy formation, the rest of subhalos fail to form galaxies bright enough to be
noticed [62]. This, however, requires the dark halos of the observed satellite galaxies to match the largest
masses predicted in simulations. The comparison shows that the densities of the halos of the known
satellites of the Milky Way are too small to fit the predictions [63, 64]: more than ten subhalos with the
maximal circular velocity 𝑣max greater than 25 km/s are predicted, while none of the dwarf spheroidal
satellites of the Milky Way exceeds this threshold. Surprisingly, it seems that the largest of the predicted
halos fail to form observable galaxies, while those smaller are able to gather enough baryonic matter. This
apparent contradiction is referred to as the too-big-too-fail problem. Figure 3.7 shows the comparison
between observed satellites and the results of the simulations.
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Figure 3.7: The lines represent rotation curves of the largest from the simulated DM subhalos of the
Milky Way, while the points denote the rotation velocity of the largest satellite galaxies measured at
the half-light radius. The densest of the predicted subhalos, represented by the upper lines, surprisingly
fail to form galaxies. Plot from [62].
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3.3.4 Solution: interactions within the dark sector

All the small-scale problems described above arise from the assumption that DM exists in a form of
cold, collisionless particles. As coldness of the dark particles is well-motivated (see section 3.1.3) the
solution is to allow for self-interactions of DM. Indeed, if the dark particles interact with each other,
their energy is redistributed in regions of high DM concentration, which leads to flat inner region of the
density profiles, resolving the core-cusp problem. The simple physical picture is that the self-interactions
produce pressure when the DM density reaches large values, preventing DM from forming a density
peak. Moreover, reduced central density makes the simulations consistent with number and densities of
the observed halos. Assuming the self-interactions are present, simulations predict galaxies to be more
spheroidal, which agrees with observations of the satellite galaxies, while there are no differences at the
large scales [65,66].

According to [65], the cross section of DM self-interactions required to resolve the problems is around

𝜎DM/𝑚DM ≃ 0.1 cm2/g . (3.10)

Higher values seem to be excluded by observations of the Bullet cluster, as they would lead to deceleration
of DM, similarly to the way it happens to the baryonic matter [67,68], while lower values are not sufficient
to achieve the required drop of central density [65,66].

The presence of the self-interactions may indicate that the dark sector consists of more than one type
of particles; for example, containing a proper cold dark particle, constituting the correct relic abundance,
and a lighter mediator responsible for interactions. A long list of references to papers describing various
multi-component DM models can be found in the introductory section of [22]. The self-interactions
naturally appear in the Higgs-portal theories, like those employed in this dissertation (see appendices A
and B).
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Chapter 4

Experimental search for particle DM:

a short overview

As stated in chapter 3, most of dark matter should exist in a form of BSM particles. If any non-
gravitational interactions between them and the SM particles exist, as it it the case for the Higgs-portal
models (see chapter 1), the dark particles could be detectable. It is, thus, natural to search for them in
experiments. Currently, the search for DM employs numerous experimental approaches, which can be
grouped into the following three main branches [69]:

� direct detection (DD) searches, aiming to detect effects of interactions between the dark particles
and the baryonic matter of which the detectors are built;

� indirect detection (ID) experiments, searching the observed Universe for a flux of SM products of
DM annihilation or decay;

� searches for dark particles produced at colliders.

The following sections discuss those three approaches: section 4.1 describes the DD experiments, the ID
approach is discussed in section 4.2, and the collider searches are the topic of section 4.3.

Despite constant efforts, no proper candidate for the dark particle has been discovered so far. Instead,
the null-results of the experiments provide stringent limits on the DM-SM interaction strength. Even
though several excesses over the predicted background have been noticed by ID experiments analysing cos-
mic rays, announcing them to be of DM origin seem to contradict the relic-density constraints; moreover,
alternative explanations exist (see section 4.2.2 for details).

4.1 Earth-based direct detection experiments

As a part of the Milky Way, the Solar System (and, in particular, the Earth) is immersed in the Galactic
DM halo. Hence, if DM exists in the form of particles, they should be present everywhere around us. The
so-called direct detection (DD) experiments aim to observe the possible effects of interactions between
those particles and the matter of the detectors, such as ionization, phonon excitation or defects of the
crystal lattice.

As already mentioned, no convincing signal1 of DM direct detection has been observed so far. Fig-
ure 4.1 presents the current limits on the cross section for spin-independent (see section 4.1.5) scattering
of dark particles on nucleons, deduced from the null-results of the DD experiments.

1Unconvincing signals include the results of the DAMA/LIBRA experiment, see section 4.1.6.
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Figure 4.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass [69]. The
most stringent limits have been obtained in experiments employing liquid-xenon detectors: XENON1T,
LUX, PandaX-II. The so-called neutrino floor, i.e., the background coming from coherent neutrino-
nucleus scattering (see section 4.1.2 for details), is denoted by the blue shading.

The remaining part of this section discusses the ID approach in some detail. Section 4.1.1 describes
the unique features expected from the DM signal. Section 4.1.2 is devoted to the possible sources of ex-
perimental background and ways to reduce it. Section 4.1.3 explains the difference between nuclear-recoil
and electronic-recoil events, and section 4.1.4 shortly describes the Migdal effect, facilitating detection of
nuclear-recoil events. In section 4.1.5 the difference between spin-dependent and spin-independent inter-
actions is briefly discussed. Finally, a list of DD methods, along with examples of experiments utilizing
them, is provided in sections 4.1.6 to 4.1.8. Although the list covers the most widespread approaches to
DD, it is by no means exhaustive, as new techniques are constantly being invented and proposed.

4.1.1 Expected signatures

The yet-unobserved flux of dark particles is believed to be caused by the motion of the Earth relatively
to the dark Galactic halo. Thus, the DD signal is expected to possess some unique features that may
allow to distinguish it from possible background. Those features are:

� directional dependence,

� daily modulation,

� annual modulation,

� (possibly) long-period (ca. 250 Myr) modulation.

Regarding the directional dependence, the velocity of the Sun in its motion around the Galactic centre,
equal to ca. 230 km/s, is currently directed towards the Cygnus constellation. Consequently, most of the
DM flux should be directed oppositely to that direction [70].

The reason for the daily modulation is a combination of the directional dependence of the flux with
the rotational motion of the Earth. When the Earth faces the Sun with the side the experiment of interest
is performed on, the DM flow should be enhanced comparing to the opposite situation, assuming that
dark particles interact with particles that conform the Earth [71].

The annual modulation (discussed in detail in [55]) is a consequence of the Earth’s motion around
the Sun (with velocity of ca. 30 km/s) with the Sun’s motion with respect to the DM halo. When both
velocities are pointing similar direction (around the 2nd of June), they add up, so that the flux should
be larger, while when they are opposite (around the 2nd of December), the flux should be reduced. Let
us estimate the difference. As described in section 3.2, the Standard Halo Model assumes that the total
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velocity of the Earth with respect to the stationary DM halo is

𝑣 = 𝑣𝑠 + 𝑣𝑒 cos 𝛾 cos

(︂
2𝜋

𝑡− 𝑡0
1 yr

)︂
, (4.1)

with 𝑣𝑠 ≃ 230 km/s denoting the Sun’s velocity, 𝛾 ≃ 60∘ being the angle between the plane containing
Earth’s orbit and the direction of the solar motion, and 𝑡0 denoting the 2nd of June. It is clear that
the relative change of the flux should be equal to (𝑣𝑒/𝑣𝑠) cos 𝛾 ≃ 7%. A similar mechanism, taking into
account the rotational velocity of the Earth, can influence the daily modulation as well, however only by
a small relative factor of ca. 0.1%, as the rotational velocity of the Earth’s surface is around 0.5 km/s.

Finally, if the angular distribution of the DM halo is not homogeneous (in contrast to the SHM, see
section 3.2), motion of the Sun around the Galactic centre may provide an additional modulation of a
period of ca. 250 Myr and an unknown shape, induced by fluctuations of the local DM density. This
kind of modulation could be observed using the so-called mineral paleo-detectors, briefly described in
section 4.1.8.

4.1.2 Experimental background

Because DM is expected to interact with the baryonic matter very weakly, the main challenge of the
DD experiments is to reduce the experimental background inevitably appearing when sensitivity of the
detectors is increased. Most of the experimental background is caused by

� neutrinos (solar and atmospheric),

� cosmic-ray induced muonic showers,

� neutrons (from radioactive decays of surrounding matter),

� 𝛽 and 𝛾 radioactivity,

see sec. 4 of [72].
To ensure that a sufficient amount of observed signal is of DM origin, the detectors are set in under-

ground facilities and use additional shielding against the possible background. Usually, lead is utilized
to protect the detector from 𝛾 radiation, while polyethylene absorbs environmental neutrons. Moreover,
the detectors and their shielding must be built of radiopure materials; for example, the lead used for
shielding is obtained from centuries-old archaeological finds [73,74].

Further reduction of the background is achieved by vetoing so-called multiple events, i.e., those induc-
ing detector reaction at more than one place, which suggests multiple scattering of the incoming particle.
Due to low expected cross section, such events would by highly unlikely caused by dark particles; on the
other hand, such a scenario is probable for neutrons.2 Also the events occurring in the external parts
of the detector (outside the so-called fiducial mass) are often rejected, as possibly caused by external
radiation [75].

A type of background which is irreducible unless the aforementioned modulation effects are taken
into account is the so-called neutrino floor, shown in fig. 4.1 as the blue shading. A neutrino (solar
or atmospheric) can mimic dark particles in the processes known as elastic neutrino-electron scattering
and coherent neutrino-nucleus scattering (predicted by D. Z. Freedman in 1973 [76] and observed in
2017 by the COHERENT collaboration [77]). Although reaching the neutrino floor will substantially
decrease sensitivity, it should not be treated as a hard limit [78]. The processes responsible for this kind
of background are depicted in fig. 4.2. A detailed discussion, containing numerical results, can be found
in [79].

2However, part of them still scatter only once, constituting background that is irreducible unless the modulation effects
(see section 4.1.1) are taken into account [72].
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Figure 4.2: Diagrams representing the coherent neutrino-nucleus scattering (a) and neutrino-electron
scattering (b-e) processes, constituting the neutrino floor for the DD experiments. In the diagram (a),
the nucleus, denoted by 𝑁 , is additionally distinguished by a double line.

For further details of implementation of background-reduction methods, the reader is encouraged to
follow the references given in sections 4.1.6 to 4.1.8 which describe actual experiments.

4.1.3 Nuclear vs. electronic recoil

The DD experiments search for a signal induced by scattering of dark particles. Depending on what target
the dark particle interacts with, the scattering may induce a nuclear (NR) or an electronic (ER) recoil
in the detector [69]. Assuming that before and after the interaction all particles involved in the process
are non-relativistic (which should be the case for cold dark matter) and the scattering is elastic, simple
kinematics allows to establish a relation between the recoil energy 𝐸𝑅, the mass of the dark particle
𝑚DM, and the relative velocity 𝑣:

𝐸𝑅 =
𝜇2 𝑣2

𝑚𝑁,𝑒
(1− cos 𝜃cm) (4.2)

Here, 𝑚𝑁,𝑒 is the mass of the target particle (either a nucleus or an electron), 𝜇 is the reduced mass of
the dark particle–target system, given by

𝜇 ≡ 𝑚𝑁,𝑒𝑚DM

𝑚𝑁,𝑒 +𝑚DM
, (4.3)

and 𝜃cm is the scattering angle in the CM frame, related to the angle in the laboratory frame, 𝜃, in the
following way:

cos 𝜃 =
𝑚DM +𝑚𝑁,𝑒 cos 𝜃cm√︁

𝑚2
DM +𝑚2

𝑁,𝑒 + 2𝑚DM𝑚𝑁,𝑒 cos 𝜃cm
(4.4)

The maximal recoil energy induced by an elastic NR event, obtained for a collinear scattering (𝜃cm = 𝜋),
is

𝐸max
NR = 2

𝜇2 𝑣2

𝑚𝑁
, (4.5)

which, for a light dark particle, reduces to

𝐸max
NR = 2

𝑚2
DM

𝑚𝑁
𝑣2 . (4.6)

The range of DM masses that can be tested via NR events is limited from below by sensitivity of the
detector of interest to the nuclear recoil. As DM is expected to move relatively to the Earth with the
velocity of ca. 230 km/s (see section 3.2), the minimal DM mass that can be probed through the elastic
NR event involving a heavy nucleus is roughly

𝑚min
DM ≃ 920

√︁
𝑚𝑁𝐸0

NR , (4.7)

where 𝐸0
NR denotes the NR sensitivity threshold.
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For an electron being the target, the maximal recoil energy is independent of DM mass (assuming it
is much larger than 𝑚𝑒) and equal to

𝐸max
ER = 2𝑚𝑒 𝑣

2 . (4.8)

Comparing this result with eq. (4.6) we conclude that for dark particles lighter than roughly
√
𝑚𝑁𝑚𝑒 ∼

0.1 GeV the electronic recoil energy is larger than the nuclear recoil energy, making electrons a preferable
target for light dark particles.

4.1.4 Migdal effect

Even if a given NR event is of low energy, it may induce ionization in the detector through the so-called
Migdal effect [80]: the nuclear recoil is followed by a subsequent perturbation of the atomic electron cloud,
possibly inducing electronic excitation (followed by deexcitation with photon emission) or ionization. This
effect, which may affect electrons from inner orbitals, should not be confused with scintillation effects
that appear due to interactions between atoms of the detector and affect electrons from outer orbitals
only. Some of the experiments taking into account the Migdal effect in their searches are XENON [81],
EDELWEISS [74] and CDEX [82].

4.1.5 Spin-dependent and spin-independent interactions

Interactions between the dark particles and the SM nuclei can be either nuclear-spin-independent (SI)
or nuclear-spin-dependent (SD) (see sec. 3.4 of [72]). The former arise from scalar, vector and tensor
couplings, while the latter from pseudo-scalar and axial-vector terms.

For the SI interaction, the cross section should be proportional to

𝜎SI ∝ [𝑍 𝑓𝑝 + (𝐴− 𝑍) 𝑓𝑛 ]
2
, (4.9)

where 𝑍 and 𝐴 − 𝑍 are the numbers of, respectively, protons and neutrons in the nucleus, while 𝑓𝑝,𝑛
represents the strength of the DM-proton and DM-neutron coupling. If the momentum transfer is small,
so that the internal structure of the nucleus is not accessed by the interaction, it is usually assumed that
𝑓𝑝 ≃ 𝑓𝑛. Then, the cross section scales as 𝐴2, the squared size of the nucleus. Hence, the highest chance
of detection is provided by detectors employing heavy elements as the target material.

For the SD interactions, the cross section of the following form is usually assumed:

𝜎SD ∝ 𝐽 + 1

𝐽
[ 𝑎𝑝 ⟨𝑆𝑝⟩+ 𝑎𝑛 ⟨𝑆𝑛⟩ ]2 , (4.10)

where 𝐽 is the nuclear angular momentum, ⟨𝑆𝑝,𝑛⟩ denotes the expectation value of the proton (neutron)
spin and 𝑎𝑝,𝑛 parametrizes the DM-nucleon coupling strength. Of course, for the SD coupling 𝐽 must be
non-zero (otherwise, the expectation values vanish; in particular, cancelling the denominator 𝐽).

The nucleons are fermions of spin one half. Due to the Pauli exclusion principle, if the nucleus contains
an even number of protons, their total angular momentum is zero since their spins must alternate. The
same applies to an even number of neutrons. Hence, the even-even nuclei do not interact in the SD way.
Consequently, only utilizing the nucleons with an odd number of protons or neutrons allows to investigate
the SD interactions. This can affect the choice of detector material; e.g., this is one of the reasons using
xenon is often preferred over using argon in the detectors employing liquid nobles (see the next section
for details).

4.1.6 Ionization and scintillation detectors

Most of the DD experiments employ ionization or scintillation detectors. This section contains a short
description of the most important methods utilized by those detectors, illustrated by examples.

Liquid and gaseous detectors. Currently, the DD experiments providing the most stringent limits
on DM interactions of masses higher than a few GeV (see fig. 4.1) are those employing dual-phase noble-
liquid time-projection chambers. Examples include XENON [75], LUX [83], PandaX [84], utilizing xenon
as the target material, and DarkSide-50 [85], using argon. A detector of this kind consists of a tank filled
to a certain level with a large amount (of the order of 100–1000 kg) of a noble liquid, while the remaining
space above contains the gaseous phase. The upper and lower surfaces of the detector are covered with
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photomultiplier tubes (PMTs). After a recoil event, resulting in local ionization of the liquid, part of
electrons recombine, emitting a scintillation flash (denoted S1), while the remaining part, accelerated by
the external electric field, enters the gaseous phase and emits the second flash (S2). The time separation
between the two signals allows to determine the vertical coordinate of the event, while the horizontal
coordinates are read by the PMTs. Knowing the position of the event allows to reject signals originating
outside the detector’s fiducial volume, possibly induced by the external radiation. The ratio between the
strength of S1 and S2 enables to distinguish NR events (possibly induced by the dark particles) from ER
(likely caused by 𝛽 or 𝛾 radiation, and so constituting the background).

Utilizing xenon, the heaviest stable3 noble gas, as a target material [86] is a popular choice due
to its high mass number (increasing probability of SI interactions as described in section 4.1.5), high
boiling temperature (reducing efforts required to maintain the liquid phase), and lack of radioactivity
which would increase the experimental background. Moreover, as a noble gas, xenon is relatively easy to
purify, so that the possible radioactive contaminants can be removed. Another advantage is transparency
of the liquid xenon to the scintillation light induced by the incident particles, which facilitates spatial
reconstruction of the event. Finally, using the 131

54Xe isotope, with an odd value of the nuclear spin,
makes the xenon-based experiments sensitive to SD interactions (see section 4.1.5). On the other hand,
utilizing argon instead allows for easier separation of the NR events from the ER background through
the so-called pulse shape discrimination procedure [85]. A disadvantage of both methods is that they are
mostly sensitive to NR events, while the ER events are likely to be induced by the background processes,
so a lower limit for the mass of detectable dark particles appears as shown in section 4.1.3. Taking
into account the Migdal effect, described in section 4.1.4, may allow to decrease this minimal value from
several GeV to tens of MeV [81].

Another technology that utilizes liquids to seek dark particles employs bubble chambers filled with
several tens to several hundreds kilograms of a superheated freon liquid. Examples are PICO [88] and
MOSCAB [89], both using octafluoropropane (C3F8) as the target liquid. The sensitivity range of these
experiments is similar as for those utilizing noble liquids. An advantage of this kind of experiments is
the possibility of adjusting the experimental conditions (temperature, pressure and type of the liquid) in
such a way that most of the background events, induced by muon scattering, 𝛽 and 𝛾 radiation, X-rays
etc., do not exceed the bubble nucleation threshold (a minimal value of energy loss per unit track length
that leads to a bubble production in the superheated liquid) [90]. Another source of the background,
neutron scattering events, is mostly discriminated by discarding multi-bubble events (likely for neutron
and very unlikely for DM scattering) from the data.

The NEWS-G experiment [91] employs a spherical proportional counter, consisting of a copper sphere
of diameter of the order of 1 m, filled with gas (whose type can be changed; among others, methane and
neon have been used). The copper surface serves as a cathode, while the anode is placed on a supporting
rod in the centre of the sphere. Any ionization signal is amplified by the electric field, whose strength is
adjusted in such a way that detector response is proportional to the number of ionized electrons. The
range of DM mass to which the experiment is sensitive is 0.1–10 GeV.

The NEWAGE detector [92] is an example of a direction-sensitive detector. It consists of time-
projection chamber containing ca. 40 dm3 of low-pressure (0.1 atm.) CF4 gas. Low gas density makes
the track of a recoiled nucleus long enough to enable determination of the recoil direction. The ionized
electrons, released from the molecules as the recoiled nucleus passes through the gas, are attracted by
the electric field to the readout plane where their XY position is detected. The difference in detection
time between the electrons ionized at different points of the track allow to deduce the value of the third
coordinate. As the recoiled fluorine nucleus is predicted to ionize the gas more efficiently right after the
recoil event (when its kinetic energy is maximal), the signal-strength gradient can be used to distinguish
between the start and the end of the track, finally determining the recoil direction, which can be compared
with the predicted anisotropy of the signal described in section 4.1.1. Since this experiment is sensitive
to NR events, it covers the DM masses above a few GeV.

Solid detectors. Detectors used in room-temperature scintillation experiments, like DAMA/LIBRA
[93], ANAIS [94], COSINE-100 [95], consist of multiple cylindrical crystals of thallium-activated sodium
iodide, NaI(Tl), acting as scintillators, with PMTs attached to both sides. The total mass of such a
detector is of the order of several hundreds of kilograms. To reduce the background, events inducing
a scintillation flash in more than one crystal (multiple-hit events) are rejected, as dark particles are

3Two naturally occurring long-lived radioactive isotopes of Xe are 136Xe and 124Xe, with half-life time of 2.17× 1021 y
and 1.8×1022 y, respectively [86,87]. The two-neutrino double electron capture of 124Xe is the rarest process ever observed.

37



unlikely to cause them, in contrast to the neutron, 𝛽 and 𝛾 background. These experiments should
enable detection of dark particles of masses higher than 1 GeV.

In 2013, the DAMA/LIBRA experiment gained attention by announcing [96] annual modulation of
observed rate of single-hit events (i.e., with a flash in only one crystal), which should be a clear evidence
of DM interactions, as explained in section 4.1.1. That result, however, could not have been undoubtedly
reproduced by other experiments and seems to be a residue of the chosen method of statistical analysis [97].

Another type of solid detectors are CCD ionization detectors, employed in, e.g., DAMIC [73], SENSEI
[98] and DMSQUARE [71] experiments. Due to their extreme sensitivity, those detectors aim to detect
low-mass DM particles. The utilized silicon charge-coupled devices (CCDs) are sensitive to ionization
signals even at the single-electron level, which makes the experiments able to seek dark particles as light
as 1 MeV. The CCD patterns are divided into pixels, which enables background reduction: as scattering
of a dark particle should induce well-localized ionization (the track length of the recoiled particle should
be much shorter than the pixel size), with energy deposition less than 10 keV of electron equivalent,
multi-pixel-cluster events of higher energies are discarded. DMSQUARED focuses on searching for a
daily-modulated signal, see section 4.1.1 for a brief discussion.

Some experiments, like CoGeNT [99] or CDEX [82, 100], utilize the so-called p-type point-contact
germanium detectors of active mass of the order of 100 g, sensitive to sub-keV recoil energies. Such
detectors are based on germanium diodes. A recoil event is expected to generate an electron-hole pair,
which is then detected by external electrodes. These detectors can probe dark particles heavier than a
few GeV.

4.1.7 Cryogenic calorimeter search

The cryogenic calorimeter method, employed in, e.g., SuperCDMS [101], CRESST [102] and EDEL-
WEISS [74] experiments, utilizes solid cryogenic detectors consisting of one or more crystals (germanium
for EDELWEISS and SuperCDMS; silicon, CaWO4, Al2O3 or LiAlO2 for CRESST). Attached to each
crystal is a transition edge sensor, a high-precision thermometer maintained nearby the critical temper-
ature (for example, the critical temperature of 𝛼-tungsten used in sensors of the CRESST detector is
15 mK). In such conditions, any temperature bump induced by energy deposition in the detector causes
a proportional increase of continuously measured sensor resistance. Detectors of this kind are sensitive
to energy deposition even at the level of 10 eV (in the case of CRESST using a 0.35 g Si crystal as
a target), which means they should be able to detect dark particles as light as 0.1 GeV. To facilitate
distinguishing between ER and NR events, an additional light detector can be used to detect photons
produced in ER events. The SuperCDMS and EDELWEISS experiments combine calorimetric search
with ionization measurements performed similarly to the way it is done in the aforementioned CoGeNT
and CDEX experiments.

4.1.8 Some novel methods

Directional solid detectors. The proposed NEWSdm [70] experiment, sensitive mainly to 10–100 GeV
WIMPS, is going to utilize thin layers of a gelatin nuclear emulsion containing tiny silver bromide (AgBr)
crystals. A recoiled nucleus passing through the emulsion changes the structure of the crystals in a
direction-dependent way. After exposition, the layers have to be developed and checked for a signal.
What complicates the experiment is the fact that after the emulsion is produced, it accumulates signals
constantly until it is developed. Hence, to reduce the time of unshielded measurement, the machines used
to produce and develop the emulsion layers must be placed as close to the experimental site as possible.
Indeed, during the demonstration run in 2022, they have been installed in hall F of Gran Sasso complex,
while the experiment has been performed in hall C.

The PTOLEMY experiment [103], aiming to detect dark particles of masses in the MeV–GeV range,
is proposed to employ stacked graphene monolayers as the target, each of them forming a field-effect
transistor with the substrate underneath. As a result of an ER event, an electron should be ejected from
the layer, and then caught by another layer or a calorimeter placed at the boundary of the detector.
Removal or addition of an electron from the graphene layer would affect conductivity of the transistor,
constantly measured. The sheets would be divided into pixels, enabling 3D determination of ejection and
acceptance events, thus providing a method to determine recoil direction, making the detector sensitive
to the signal anisotropy. Measuring time between both impulses allows to deduce the electron velocity,
while the calorimetric readout is an additional test of kinematics.
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Paleo-detectors. The idea of mineral paleo-detectors [104] bases on the fact that the detector exposure,
which should be as large as possible to collect efficient amount of DM-induced signal, can be increased
in two ways: by expanding the detector size or by extending the exposure time. As construction and
maintenance of a detector heavier than several tonnes may be troublesome due to large costs and difficult
signal analysis, the latter possibility should be considered.

The naturally occurring minerals can be treated as detectors with the exposure time reaching the
Gyr scale, making a 1 kg specimen equivalent to a thousand-tonne detector operating for a millennium.
However, the main disadvantages of natural crystals (in contrast to those produced in laboratory) are:
chemical impurity, presence of natural radioactive isotopes, and heterogeneous crystal structure. Those
properties increase the amount of the background processes and impede analysis of the specimens. To
reduce the impact of those obstacles on the potential experiments, the detector material has to be carefully
selected. One of the proposed target minerals is muscovite mica due to its perfect basal cleavage and
transparency, facilitating readout of the samples. Some other candidates include nchwaningite, halite,
epsomite, nickelbischofite and olivine; all of them occurring in marine evaporite deposits and ultra-basic
rocks, characterized by low concentration of radioactive isotopes and shielded by the surrounding rock
against external radiation.

An attractive feature of such experiments is that examining specimens of various ages may provide
an access to the possible signal modulation corresponding to the motion of the Sun around the Galactic
centre, see section 4.1.1.

4.2 Astrophysical search

As it is clear from the previous section, direct detection of dark particles poses serious difficulties. More-
over, if the local DM density is for some reason much lower than usually assumed, DD experiments may
not provide positive conclusions at all.

Another direction of DM searches are astrophysical observations. If the dark particles are able to
produce SM content in their interactions, the products could be detectable. A signal is expected from
regions where gravitational attraction induces high concentration of DM. Those include centres of dwarf
galaxies, centre of the Milky Way, accretion disks, or celestial bodies (stars and planets).

The search focusing on the first three possibilities is called indirect detection (ID). The first possibility
is especially promising due to high signal-to-background ratio. Contrary, the signal from the Galactic
centre would be highly noised by millisecond pulsars.

Regarding the last possibility, due to large nucleon density, stars and planets may serve as giant DM
detectors, capturing the dark particles like the Earth-based detectors do. Hence, although belonging to
astrophysical search, experiments investigating this kind of signals contribute to DD limits.

4.2.1 Gamma-ray search: Fermi-LAT and Cherenkov detectors

The most popular type of ID experiments seeks gamma rays produced in DM-annihilation processes like
those depicted in fig. 4.3. The advantages of such experiments include low background at the super-GeV
range, good development of methods of photon detection, and directionality of the experiments which
enables to focus on regions of expected high concentration of DM.
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Figure 4.3: Exemplary DM-annihilation processes with photon production; 𝑓 denotes an SM fermion.

Among the potential astrophysical sources of the DM signal, the most important are the dwarf
spheroidal satellite galaxies of the Milky Way and the Galactic centre [69, 105]. The dwarf spheroidal
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galaxies are believed to be dominated by the DM contents, with only a small amount of the baryonic
matter, which reduces the amount of poorly-known background caused by production of the gamma rays
in the SM processes. The small distance between the satellite galaxies and the Milky Way makes the
expected gamma flux still large at the detectors. On the other hand, the Galactic centre, being close to
the Earth and probably characterized by a large concentration of DM, should provide the most powerful
ID signals available [106]. Unfortunately, its baryonic content also strongly radiates (in the range between
long radio wavelengths to hard X-rays except the 1 𝜇m–1 nm band due to so-called extinction caused by
the dust in the Galactic plane [107,108]), so the signal-to-background ratio is probably worse than in the
previous case.

Since the gamma rays are blocked to a large extent by the Earth’s atmosphere, ground-based telescopes
cannot observe then directly. Instead, the gamma radiation can be detected by space telescopes (for
example, Fermi-LAT described below) operating outside the atmosphere. Unfortunately, installing a
detector on the orbit is a complicated and expensive task, with costs increasing proportionally to the
detector’s mass. For this reason, the data-collecting surface of the currently operating space gamma
telescopes is limited to the values of the order of m2. Another method employs arrays of ground-based
detectors of Cherenkov radiation induced by relativistic charged particles that are produced when highly
energetic photons reach the atmosphere. Examples include H.E.S.S., MAGIC and VERITAS, see below.

When combined, searches performed by multiple detectors operating at similar energy scales are
more sensitive than each of the experiments separately. Nevertheless, no convincing gamma-ray signal
attributed to DM annihilation has been observed so far [109]. Figure 4.4 presents the current limits on
the rate of DM annihilation into 𝑏𝑏̄ and 𝜏+𝜏− pairs (those two channels are treated as representative
in ID studies, as they exemplify signals of quark and lepton nature). The following part of this section
describes the aforementioned experiments that provided the data used to create the plots in fig. 4.4.

Figure 4.4: Upper limits on thermally averaged cross section for annihilation of dark particles (de-
noted by 𝜒) into 𝑏𝑏̄ (left) and 𝜏+𝜏− (right) pairs, as a function of the mass of the dark particle. The
limits have been obtained by the Fermi-LAT (blue), HAWC (orange), H.E.S.S. (green), MAGIC (red)
and VERITAS (violet) experiments. The black line represents combined limits, while the red dashed
line corresponds to the value of cross section that leads to the correct value of the DM relic density,
as calculated in [110]. For dark particles lighter than 103 GeV, the most stringent constraints are
imposed by the results of Fermi-LAT. Plots from [109].

Fermi-LAT. So far, the most stringent limits on DM annihilation into SM fermion pairs have been
imposed by Fermi-LAT [111] observations of the gamma rays from nearby dwarf spheroidal galaxies. This
experiment employs a pair-conversion gamma-ray telescope of almost 1 m2 of effective area, divided into
a 4Ö4 array of 16 modules. Each module consists of two layers: a precision converter-tracker above and a
calorimeter beneath. The tracker (see fig. 4.5) is a stack of 19 trays, each containing two layers of silicon
strip detectors, performing the readout in perpendicular directions. Each of the top 16 trays is preceded
by a tungsten plane, whose purpose is to convert the incident gamma rays into 𝑒+𝑒− pairs. The tracker
module, measuring position and time of subsequent readouts of the induced 𝑒+𝑒− pair, determines the
momentum of the incident photon, while the calorimeter placed below the tracker measures the total
energy of the secondary particle shower. To reduce the background caused by charged particles hitting
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the device, a surrounding anticoincidence detector is used, which consists of plastic scintillator tiles and
PMTs collecting the flashes. The telescope is sensitive to gamma rays of energies of ca. 20 MeV–300 GeV.
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Figure 4.5: The structure of the tracker modules of Fermi-LAT, based on [112]. On one of the
tungsten conversion planes, the incident photon is converted into an 𝑒+𝑒− pair. Directions of the
particles are determined by the silicon strips and the total energy is measured by the underneath
calorimeter, so that the photon’s momentum can be reconstructed.

In 2009, an excess of the gamma radiation from the Galactic centre, with energy peak around 1–
5 GeV, has been observed [106]. Annihilation of DM of mass around 30–50 GeV has been proposed
as an explanation, but an alternative proposal suggests nearby pulsar as the source. Currently, both
interpretations are still under discussion [113]. Figure 4.6 presents the excess and a possible fit of DM-
induced signal.

Figure 4.6: The excess of gamma rays produced in the region within 3𝑜 from the Galactic centre [106].
The red points are the measured values of energy, while the dashed line corresponds to a theoretical
signal of dark matter annihilation (mass and cross section are provided in the plot). The dash-dotted
line represents the contribution of the astrophysical sources known at the time of publication (2009),
and the solid line is the combination.

Cherenkov telescopes. The ground-based atmospheric Cherenkov detectors consist of arrays of tele-
scopes observing atmospheric Cherenkov light, emitted by the atmospheric showers of charged particle
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induced by incident gamma photons. Utilizing multiple telescopes allows for stereoscopic reconstruction
of the gamma-induced showers. The examples described here are the H.E.S.S., MAGIC and VERITAS
detectors. The H.E.S.S. detector [105] consists of five Cherenkov telescopes, four of them, having diam-
eter of 12 m, placed at the corners of a 120 m × 120 m square, and the fifth one, of diameter 28 m, at
the centre. The detector is sensitive to DM masses of ca 100 GeV–20 TeV. The MAGIC [114] instrument
involves two telescopes of 17 m diameter, sensitive to energies between tens of GeV and tens of TeV. The
VERITAS [115] experiment employs four telescopes, each of ca. 100 m2 data-collecting area, observing
gamma rays of energies of 100 GeV–100 TeV.

Another method is utilized by the HAWC experiment [116], being an array of 300 water Cherenkov
detectors. Each of them, having diameter 7.3 m and depth 4.5 m, is filled with almost 2 × 105 l of
purified water. Like H.E.S.S., MAGIC and VERITAS, the detectors register gamma-induced showers of
relativistic charged particles. The gamma rays detected by HAWC are of 1–100 TeV of energy.

4.2.2 Antiparticle-oriented search

Apart of photons, the DM searches can focus on positrons and other antiparticles possibly produced in
DM-annihilation processes, which results in excess of cosmic rays in the form of antimatter. Indeed,
such an excess (see fig. 4.7), peaked around 300 GeV of positron energy, has been observed in several
experiments [117], including Fermi-LAT (which has appeared to be sensitive not only to gamma radiation,
but to this type of signature as well [118]) and cosmic-ray telescopes: satellite-borne AMS [119] and
PAMELA [120], and balloon-borne CAPRICE [121], MASS [122] and HEAT [123]. The excess could be
explained by annihilation of dark particles of mass around 500 GeV, with the annihilation rate ⟨𝜎𝑣⟩ =
4× 10−24 cm3/s [124]. This value, much greater than (2–3)× 10−26 cm3/s corresponding to the correct
relic density of a classical WIMP DM [110], may suggest self-interacting DM as a source. However, an
alternative explanation interprets the excess as produced by the nearby young pulsars [125] (similarly as
in the case of the Galactic-centre gamma excess mentioned in section 4.2.1).

theoretical
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DM signal
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Figure 4.7: The positron flux measured by AMS-02 (black dots) and other experiments [117]. The
red line correspond to a theoretically predicted flux caused by dark matter of annihilation rate ⟨𝜎𝑣⟩ =
4.63× 1024 cm3/s and mass 𝑚DM = 780 GeV.

The detectors employed in the aforementioned experiments (see fig. 4.8 for a scheme of the AMS-02
detector) consist of several types of modules (not every detector contains all of them):

� A transition radiation detector measures the energy of the radiation emitted by the incident
charged particle passing between layers of different media. Knowing the energy-loss profile of the
particle, it is possible to distinguish electrons and positrons from hadrons.

� A tracking system, consisting of layers of silicon strip detectors, placed inside a magnetic coil.
The momentum-to-charge ratio (also called rigidity) of the particle is deduced from the way its
trajectory bends in the magnetic field.

� A calorimeter measures the energy.
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� A time-of-flight hodoscope, consisting of scintillator layers separated by a certain distance,
determines velocity (value and direction).

� A Cherenkov detector performs charge- and velocity-dependent measurements.

Combined, the measurements of all the modules allow to determine the mass, charge, energy, and velocity
vector of the detected particle.

Figure 4.8: Scheme of the AMS-02 detector [119]. TRD is the transition radiation detector, TOF
denotes the time-of-flight plate, RICH is the ring imaging Cherenkov counter (see the text for descrip-
tion). The red line represents the track of the detected particle.

Searching for antinuclei originating from DM annihilation has also been proposed. For example, the
GAPS experiment [126] is going to search for antideuterons.

4.2.3 Neutrino astronomy

Neutrino telescopes can participate in DM searches by looking for neutrinos produced in DM-annihilation
processes, e.g., the one depicted in fig. 4.3 (b), with 𝑓− being a virtual SM lepton subsequently decaying
into a 𝑊−𝜈 pair. As it is with the gamma-ray and cosmic-ray searches, the highest signal is expected to
be emitted from the objects locally increasing the concentration of DM, e.g., the Galactic centre, stars
(including the Sun) or planets (including the Earth).

Neutrino detectors observe Cherenkov light emitted by relativistic charged particles, whose motion
has been induced by neutrinos passing through the used medium. As all the neutrino detectors listed
below are Earth-based (i.e., not satellite-borne), the atmospheric muons produced by cosmic rays reaching
the atmosphere form most of the experimental background. The background reduction can be achieved
by rejecting signals induced by particles going downwards (i.e., from the sky), keeping those directed
upwards, which have passed through the Earth. Unfortunately, that method cannot significantly reduce
another type of background, caused by the atmospheric neutrinos. Their flux is, however, well-studied,
which allows to subtract them from the observed signal [127].

Some of the neutrino experiments that are partially focused on DM searches are IceCube [128],
ANTARES [129] and KM3NeT (under construction) [127], each of them employing an array of PMTs
attached to 100-1000 m strings suspended in the sea (ANTARES, KM3NET) or within the Antarctic
ice (IceCube). The size of the arrays is of the order of (100–1000 m)3, which allows to reconstruct the
direction of the signal. Another type of neutrino detectors able to search for the dark particles include
Super-Kamiokande [130] and its successor, Hyper-Kamiokande (under construction) [131,132], consisting
of a cylindrical tank filled with water (50 kt for Super-Kamiokande, 258 kt for Hyper-Kamiokande), whose
internal surface is covered with PMTs. The IceCube, ANTARES and KM3NeT experiments are mostly
oriented towards detection of Galactic neutrinos, while Super- and Hyper-Kamiokande focus on analysis
of the solar neutrinos, however all of them are able to perform both types of measurements. The most
stringent limits on DM annihilation rate imposed by the neutrino telescopes are presented in fig. 4.9.
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Figure 4.9: Upper limits on thermally averaged cross section for annihilation of dark particles (de-
noted by 𝜒) into a 𝜏+𝜏− pair, as a function of the mass of the dark particle, imposed by the null-results
of the following experiments: neutrino-oriented IceCube (dashed red, solid teal, solid-with-points black)
and ANTARES (dot-dashed blue, solid teal); and gamma-ray-oriented H.E.S.S. (dashed gray), MAGIC
and Fermi (dot-dashed gray). Plot from [128].

While the DM-capture rate of the supermassive black hole in the Galactic centre should be governed
mostly by the gravitational interaction, the capture rate of stars and planets is affected by the DM-nuclei
interactions. Thus, in particular, the experiments measuring the flux of solar neutrinos are an additional
source of DD limits. Basing on [133], let us show how the DM annihilation rate in the Sun, Γ𝐴, limited by
measurements of the neutrino flux, can be related to the capture rate, 𝐶𝐶 . The number of dark particles
within the Sun, 𝑁 , evolves with time according to

𝑁̇ = 𝐶𝐶 − 𝐶𝐴𝑁
2 − 𝐶𝐸 𝑁 , (4.11)

where 𝐶𝐶 , 𝐶𝐸 and 𝐶𝐴 ≡ 2Γ𝐴/𝑁
2 are assumed to be 𝑁 -independent. For the Sun, the term containing

𝐶𝐸 , describing evaporation of the dark particles, can be neglected. Then, the solution of this equation is

𝑁(𝑡) =
√︀
𝐶𝐶/𝐶𝐴 tanh𝜔 𝑡 , (4.12)

where 𝜔 ≡ √
𝐶𝐶𝐶𝐴, and the current value of 𝑡 is the age of the Sun. As 𝑡 grows, the hyperbolic tangent

tends to one. In the limit, equilibrium is reached and 𝑁 becomes constant. Then, from eq. (4.11) it
follows that

Γ𝐴 =
1

2
𝐶𝐶 , (4.13)

so the neutrino production rate, determined by Γ𝐴, is related to the capture rate that depends on the
cross section for the DM-nucleon scattering. After further calculations, it eventually appears that the
cross section is proportional to the neutrino flux, with the proportionality constant dependent on DM
mass. Currently, the limits on the DM-nucleon interactions obtained in this way [130] are still weaker
than those presented in section 4.1, but this may change after the Hyper-Kamiokande is built.

4.2.4 Heating effect of DM interactions inside celestial bodies

Dark matter captured by celestial bodies, such as stars and planets, may interact with the matter forming
them or annihilate into SM particles, thus transferring its energy to those bodies. Using the relation
eq. (4.13), one can estimate the energy transfer through the annihilation process to be 𝐸 = 𝐶𝐶 𝑚DM,
where 𝐶𝐶 is the capture rate and 𝑚DM denotes the mass of the dark particle [134]. This may significantly
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heat up the body of interest. Predictions concerning that heating have to be confronted with the known
planetary heat flow data.

That mechanism has been discussed in the context of the Earth [134], as well as Uranus, Neptune
and hot Jupiter exoplanets [135], and could explain the unusually small heat production of Uranus in
comparison to the other gas giants: the collision with a supermassive impactor, believed to have tilted
the rotational axis of Uranus 98 degrees with respect to the planetary plane, could have knocked Uranus
out of its local DM cloud, depriving the planet of the DM-induced heat production.

The constraints on the DM-nucleon interaction cross section, deduced from the heat balance of the
Earth, are presented in fig. 4.10.
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Figure 4.10: The purple shading indicates the region in which the predicted heat production caused
by DM interactions would contradict the observed heat balance of the Earth. Plot from [134].

4.3 Collider searches for DM

If there exists a mechanism of particle interaction between DM and the baryonic matter, the dark particles
could be not only detected in the DD and ID experiments, but also produced at colliders. Below, the
expected signatures of DM production at colliders are described (section 4.3.1) and the current constraints
imposed by the LHC measurements are presented (section 4.3.2). Section 4.3.3 discusses strengths and
weaknesses of different types of colliders in the context of DM searches, with a particular emphasis on
the future 𝑒+𝑒− colliders.

4.3.1 Expected signatures

Searching for DM at colliders is based on the two main approaches described below: the missing-energy
analysis and looking for extra resonant peaks [136].

If the total energy of the observed collision products is distinctly lower than the total collision energy,
the missing part could have been taken away by invisible states, including dark particles (see fig. 4.11).
Unfortunately, production of the SM neutrinos provides exactly the same experimental signature, con-
stituting the background. The analysed signatures of this type include missing energy produced in
association with the so-called mono-states: a jet, a photon, a 𝑍 boson, a top quark, a Higgs boson, or a 𝑡𝑡
pair. As the energy of the collision products emitted along the beam axis cannot be measured, the actual
observed signature is the momentum imbalance along the transverse directions, called missing transverse
energy or missing transverse momentum.

As an example, chapter 6 discusses the mono-𝑍 signature of DM production at the future 𝑒+𝑒−

colliders in some detail, focusing on differences between signatures of DM of different spins.
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Figure 4.11: Collision of the SM particles may result in associate production of invisible states,
including neutrinos and dark particles. This event would be observed in the detector as a missing-
energy event, in which the total energy of detected collision products is smaller then the collision
energy.

In the second method, the signature of BSM physics would be an unexpected enhancement of the
measured cross section for a given SM→SM collision process. If the process can be mediated by a BSM
particle, the energy of the observed enhancement could correspond to the mass of the mediator allowed
to be on its mass shell, as shown in fig. 4.12. The standard way to seek this signature is to reconstruct
the invariant mass of jets produced in the so-called dijet events.
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Figure 4.12: An exemplary SM→SM process mediated by an SM particle 𝜑 or a beyond-SM parti-
cle 𝜒. Left: Feynman diagram, right: cross section as a function of the CM energy. In the plot, the
dashed line is the SM prediction while the values represented by the solid line include contribution of
the 𝜒-mediated diagram. A BSM mediator can induce an unexpected resonant enhancement of the
cross section at collision energy equal to 𝑚𝜒.

4.3.2 Current constraints from the LHC

So far, there are no signals of DM production at existing colliders. Consistency of the missing-energy
measurements with the SM predictions is interpreted dependently on the assumed model of invisible
particle production. In the case of the Higgs-portal DM models, the most important results are the
limits on the invisible Higgs branching ratio and on the scalar-sector mixing angle. Currently, the most
stringent 95% C.L. limit on the invisible branching ratio is BR(𝐻 → inv) < 0.107, provided by the ATLAS
collaboration [137]. To obtain numerical results presented in chapter 6, a value of BR(𝐻 → inv) < 0.19,
obtained by the CMS experiment [138], has been used. Figure 4.13 presents examples of ATLAS and
CMS missing energy analysis. Due to its relevance for chapter 6, the mono-𝑍 case has been chosen as an
illustration.
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Figure 4.13: Atlas [139] and CMS [140] results for 𝑝𝑝→ 𝑙𝑙+ inv. events, a signature for 𝑝𝑝→ 𝑍+DM
process. Bands of different colors denote different kinds of background caused by production of the
SM bosons decaying to neutrinos. The solid line represents a simulated signal of 𝑝𝑝 → 𝑍 + 𝐻(DM)
process, with BR(𝐻 → inv) = 0.3. No excess over the SM background has been observed.

Lack of extra resonant enhancement of the 𝑝𝑝 → dijet processes provides limits on the coupling
strength between the mediator and the SM quarks, see fig. 4.14.
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Figure 4.14: ATLAS [141] and CMS [142] limits on coupling strength between a dark mediator and
quarks in the so-called leptophobic 𝑍′ model [143].

4.3.3 Strengths and weaknesses of different types of colliders

In order to enable a collider discovery of DM, a perfect device should be characterized by a high lumi-
nosity, low background, and the collision energy high enough to produce potentially heavy dark particles.
Unfortunately, the better the detector of interest satisfies one of those requirements, the worse its perfor-
mance is regarding at least one of the other two properties. Hence, the best strategy would be to utilize
multiple colliders performing complementary measurements.

Hadron vs. lepton colliders. The hadron colliders generally operate at higher energies, making the
production of DM easier, especially if the dark particles are heavy. However, since hadrons participate
in the strong interactions and have a complex structure, colliding them provides huge amounts of back-
ground. Moreover, as the momentum of a given hadron is distributed among the constituting partons, the
precise values of the components of the collision momentum vector are to a large extent unknown, which
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makes the missing-energy analysis a challenging task. On the other hand, colliding leptons do not interact
strongly, which significantly diminishes the number of possible outcomes, reducing the background. At
the same time, energies of colliding leptons are much better defined than in the case of hadronic collisions.
Thus, lepton colliders seem to be the right tool for DM searches.

Circular vs. linear colliders. Another possibly important factor, discussed in, e.g., [144], is the
shape of the collider. In general, the luminosity of linear colliders increases with beam energy, which
facilitates obtaining larger number of interesting events if the particles of interest will appear to be
heavy. Moreover, linear machines are easy to upgrade to higher energies, since it basically requires
simple elongation. Circular colliders seem to be a better choice at smaller energies, as their luminosity
at this range is larger than at linear colliders, while dropping above ca. 350–400 GeV due to synchrotron
radiation.

Another feature of the linear colliders is that they can be easily adapted to produce longitudinally
polarized beams, consisting predominantly of particles of given chirality.4 Among other advantages, dis-
cussed in sec. 5.3 of [147], this allows to reduce the experimental background, suppressing processes in
which the electron and the positron scatter exchanging a 𝑊± boson (see fig. 4.15). Obtaining longitu-
dinally polarized beams at circular colliders requires much more effort, as due to the so-called Sokolov-
Ternov effect, emission of the synchrotron radiation is likely to reorient the electron spin parallel to the
external magnetic field, causing the beam to be mostly (the asymptotic value is 92.3%) transversally-
polarized [148].

Figure 4.16 presents the relation between the collision energy and the luminosity for the planned
future 𝑒+𝑒− colliders. It can be observed that the luminosity of circular colliders decreases with energy,
while for linear collider the opposite is true.
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Figure 4.15: Left: an exemplary process of electron-positron scattering (with production of 𝑍
boson) that can be suppressed if polarized beams are used. Right: the relevant Feynman vertex.
If the electron is right-handed, the projection operator 𝑃𝐿 acting on the corresponding field gives 0.
Physically, this corresponds to the fact that the SM neutrinos are left-handed only.
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Figure 4.16: Luminosity of the proposed future 𝑒+𝑒− colliders: ILC, FCC-ee, CEPC, CLIC, as a
function of collision energy. Luminosity of the circular colliders, FCC-ee and CEPC, drops with energy,
while for the linear colliders, ILC and CLIC, the opposite holds. Data from [147,149–151].

4Strictly speaking, the method that will be used to produce a polarized beam (that is, illuminating a photocathode with
a circularly polarized laser light, see [145]) enhances production of electrons of given helicity, not chirality. However, at
energies achieved at the collider, electrons are ultra-relativistic and chirality is almost fully determined by helicity [146].
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Future lepton colliders. The most established proposals of future lepton colliders are: linear ILC
[147] and CLIC [149], and circular FCC-ee [150] and CEPC [151]. Other concepts, focusing on novel
techniques that could improve performance and lower power consumption, include C3 [152], CERC [153]
and ReLiC [154]. Table 4.1 collects the most relevant characteristics of the described colliders, while
fig. 4.16 shows their luminosity as a function of the collision energy.

The colliders are going to operate at various CM collision energies. The most popular physically-
motivated values (a brief discussion can be found, e.g., in sec. 5.1 of [147]) are (approximately):

� 91.2 GeV, the 𝑍 pole, corresponding to 𝑠-channel processes mediated by the on-shell 𝑍 boson;

� 160 GeV, the 𝑊+𝑊− production threshold;

� 240 GeV, the 𝐻𝑍 production peak;

� 350 GeV, the 𝑡𝑡 production threshold;

� 400+ GeV, where 𝑊+𝑊− fusion process (𝑒+𝑒− → 𝐻𝜈𝑒𝜈𝑒) dominates the 𝐻𝑍 production;

Indeed, all the future 𝑒+𝑒− colliders present in table 4.1 cover one or more of these values.

collider type
length(a) beam pol.(b) 𝐸CM ℒ(c)

∫︀
ℒ 𝑑𝑡 run time

source
[km] [% 𝑒−/% 𝑒+] [GeV] [1034 cm−2s−1] [ab−1] [yr]

91.2 0.21/0.41 0.1 1.5
250 1.35/5.4 2.0 11
500 1.8/3.6 4.0 9

ILC linear 20.5–40 80/30

1000 5.1 8.0 10

[147]

380 2.3 1.5 8
1500 3.7 2.5 7CLIC linear 11.4–50.1 80/0
3000 5.9 5.0 8

[149]

91 400 192 4
160 40 6–12 1–2
240 15 5.1 3

FCC-ee circular 91.2 –

365 2.6 1.7 5

[150]

91.2 191.7 100 2
160 26.6 6 1
240 8.3 20 10

CEPC circular 100 –

360 0.83 1 5

[151]

250 1.3 1.0 10
C3 linear 8 80/0

550 2.4 4.0 10
[152]

CERC(d) circular 100 – 240 78 ? ? [153]
ReLiC(d) linear 20 ? 240 343 ? ? [154]
LEP(e) circular 26.7 – 202 0.01 2.5× 10−4 1 [155]

(a) For circular colliders: circumference. Wherever a range is provided, the lower value denotes the initial length,
possibly extensible up to the higher value.

(b) Longitudinal polarization, defined as in [156], provided for linear colliders only.
(c) Per interaction point, if there are more than one. If two values are provided, smaller of them is the initial one,
while the larger value is planned to be achieved after an upgrade.

(d) The 240 GeV mode.
(e) The 1999 run.

Table 4.1: The most relevant parameters of the proposed future 𝑒+𝑒− colliders. For comparison, the
value corresponding to the 1999 run of LEP, the most powerful 𝑒+𝑒− collider already built, have been
provided.

Besides the 𝑒+𝑒− devices, muon colliders have also been proposed [157]. Circular colliders employing
muons, which are leptons ca. 200 times heavier than electrons, may combine a clean collision environment
with high achievable energies (as the synchrotron radiation would be much lower for muons than for
electrons). However, as muons are unstable, a serious challenge would be to accelerate and collide them
within their short lifetime.

Production of dark particles at the future 𝑒+𝑒− colliders is investigated in some detail in chapter 6,
which discusses the influence of DM spin on detection probability.
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Chapter 5

𝑡-channel singularity

This chapter, based on [1, 2], describes the 𝑡-channel singularity which arises in some processes with a
massive, stable 𝑡-channel mediator. After a discussion of importance of the singularity, conditions for
its occurrence are provided. After that, a regularization mechanism, basing on interactions between the
mediator and the surrounding medium, is proposed.

Let us consider a 2 → 2 process (with possible decays of the final-state particles) mediated by a
𝑡-channel mediator. If the mediator is on its mass shell, the matrix element describing this process
contains zero in the denominator and is, thus, ill-defined. This leads to a singular cross section.

For a massless mediator, the singularity can be ruled out using known IR regularization schemes that
move the singular point out of the integration range [158].

This cannot be used if the mediator has a non-zero mass. In such a case, the usual way to regularize
the singularity is to replace the bare propagator of the mediator by a resummed propagator, which
appears as a sum of a series of self-energy corrections. From the optical theorem it follows that on the
mass shell, the imaginary part of the self-energy is proportional to the width of the mediator. If the
mediator is unstable (so its decay width is non-zero), the denominator of the propagator is non-zero even
on-shell and the matrix element is always finite. For this reason, the problem does not exist for 𝑠-channel
processes: an 𝑠-channel mediator that is on-shell can always decay into the initial state of the process
and, thus, has a non-zero width.

In the case of a massive, stable mediator no standard way to deal with the singularity exists, so
it becomes a real issue that deserves a careful investigation. We call this case a (genuine) 𝑡-channel
singularity.

5.1 Awareness of the issue among the community and proposed
regularization methods

The problem has been noticed, probably for the first time, by Peierls [159], who observed that the
scattering amplitudes of the pion-isobar scattering 𝜋𝑁* → 𝑁*𝜋 mediated by a 𝑡-channel nucleon 𝑁 may
become divergent when the mediator is on its mass shell. The author argues that this process can be
treated as a decay of 𝑁* into a pair 𝜋, 𝑁 , followed by an absorption of the nucleon by another pion.
Similarly, any scattering of an unstable particle with one of its decay products should exhibit the same
singular behaviour. Those so-called Peierls singularities have been discussed in, e.g., [160–163], as a
potential source of energy peaks observed in scattering experiments.

The issue of the 𝑡-channel singularity has been also investigated by the authors of [164–169] in the
context of the muonic scattering process 𝜇+𝜇− → 𝑊+𝑊−* → 𝑊+𝑒−𝜈𝑒 (see fig. 5.1), in connection to
planned experiments involving lepton colliders. In most1 of those papers, a regularization mechanism
that uses the finite beam width as a regulator has been proposed and developed. A similar method
has been proposed in [170, 171] to deal with singular processes encountered during studies of neutrino
oscillations. Their proposal is to take into account the non-local effects taking place within the source and
the detector. Although both those methods can cure the issue when the colliding particles originate from

1In [164], the author proposes modifying the wave function of the colliding particles using their finite lifetime, which
results in a simple multiplication of the initial-state momentum by a complex term (1 + 𝑖Γ/𝑚), where Γ and 𝑚 are the
decay width and the mass of the unstable initial-state particle. Then, the momentum of the mediator contains a non-zero
imaginary part that regularizes the scattering amplitude. This simple and elegant proposition, however, seems to not be
internally consistent, as applying it to the final-state particles gives different results.
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a source of a finite size, they are not applicable to the processes taking place in the early Universe due
to lack of any characteristic size that could influence the mathematical description of colliding particles.

µ+

µ−

W+

ν̄e

e−

νµ

W−

Figure 5.1: A muon-muon scattering that can be affected by the 𝑡-channel singularity. As the
neutrinos are stable particles known to have a non-zero mass due to the fact they oscillate [48], they
can serve as singular mediators.

The issue has been addressed directly in the context of particles interacting in thermal gas in Giudice
et al. [172]. In sec. 3.2.3, the authors propose a regularization way that is also used here, namely,
including the imaginary part of the self-energy of the mediator to the propagator. They refer to a paper
of Weldon [173], who has calculated the imaginary part of the self energy that is a result of interactions
between the mediator and the surrounding gas. In that paper, the imaginary-time (Matsubara) formalism
has been used, in contrast to this dissertation, where we use the real-time (Keldysh-Schwinger) formalism.
Weldon’s results are in agreement with those presented in section 5.5 up to an additional numerical
constant, namely, 1/2 for a fermion particle and 1/3 for a vector particle.

In contrast to Giudice et al., we provide analytical results that are fully integrated and ready to use.

5.2 Relevance of the singularity

The discussed singularity can affect processes in the very Standard Model of particle physics. Apart
of the reactions already mentioned, the weak Compton-like scattering 𝑍𝑒− → 𝑒−𝑍 with an electron in
the 𝑡-channel should be mentioned as a simple example. Note that in order to keep that process truly
𝑡-channel singular, it is crucial to not neglect the electron mass, otherwise the divergence becomes infrared
and can be regularized using the known procedures.

The singularity can play a great role in dark matter studies, because models of dark matter inherently
assume existence of stable, massive particles that can serve as the mediator of a given singular process.
This chapter is devoted to find a way to regularize the divergence in the case of particles interacting in
early Universe.

It should be emphasized that, due to massiveness of the mediator, the 𝑡-channel singularity discussed
here is different from infrared singularities widely discussed in literature. Its appearance influences the
scattering amplitude dramatically. The amplitude becomes divergent, which means that the interaction
rates cannot be calculated (or even estimated). Hence, finding a practical solution to that issue can be
potentially very useful.

5.3 Conditions for occurrence

The purpose of this section is to provide a strict condition for a given 2 → 2 process to be affected by
the 𝑡-channel singularity.

m1

m2

m3

m4

p1 p3

p2 p4

p1 − p3M

Figure 5.2: Diagram of a general 2 → 2 𝑡-channel process. The four-momentum 𝑝𝑖 ≡ (𝐸𝑖,p𝑖)
(𝑖 = 1, 2, 3, 4) are assumed to be on-shell: 𝐸2

𝑖 = p2
𝑖 +𝑚2

𝑖 . The mediator has been distinguished by a
thick line.
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Let us consider the process depicted in fig. 5.2. Particles of masses 𝑚1 and 𝑚2 collide and exchange
a 𝑡-channel mediator of mass 𝑀 , producing particles of masses 𝑚3 and 𝑚4 in the final state.

By definition, the condition for the mediator to be on-shell reads

𝑡 ≡ (𝑝1 − 𝑝3)
2 =𝑀2 , (5.1)

which can be reformulated as

2 |p1||p3| cos 𝜃13 =𝑀2 −𝑚2
1 −𝑚2

3 + 2𝐸1𝐸3 . (5.2)

Here, 𝜃13 denotes the angle between p1 and p3. In the CM frame, the energies and momenta can be
expressed as
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, (5.3a)
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√
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, (5.3b)

where 𝑠 is the centre-of-mass energy of the process, defined as

𝑠 ≡ (𝑝1 + 𝑝2)
2 = (𝑝3 + 𝑝4)

2 , (5.4)

and 𝜆 denotes the Källén triangle function defined by eq. (0.4). Using eq. (5.3), we rewrite the condition
(5.2) as

𝜆(𝑠,𝑚2
1,𝑚

2
2)

1/2𝜆(𝑠,𝑚2
3,𝑚

2
4)

1/2 cos 𝜃13 = 𝑠2 − 𝑠 (𝑚2
1 +𝑚2

2 +𝑚2
3 +𝑚2

4 − 2𝑀2)

+ (𝑚2
1 −𝑚2

2)(𝑚
2
3 −𝑚2

4) .
(5.5)

If eq. (5.5) holds for at least one value of 𝑠 that is kinematically allowed for the process under consideration,
the mediator is on-shell and the process is affected by the 𝑡-channel singularity. Calculating the cross
section, one integrates over the final-state momenta, which includes a cos 𝜃13-integration over the (−1, 1)
interval. The process is singular when the value of cos 𝜃13 calculated from eq. (5.5) lies within this range.
It happens when

cos2 𝜃13 < 1 , (5.6)

so the singularity condition (5.5) becomes
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4)
]︀2

, (5.7)

which is equivalent to

𝐴𝑠2 +𝐵 𝑠+ 𝐶 < 0 (5.8)

with 𝐴, 𝐵 and 𝐶 defined as

𝐴 ≡𝑀2 ,
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(5.9)

Inequality (5.8) is satisfied when
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where
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(5.11)
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If the value of 𝑠 lies within this range (in particular, ∆ must be positive for the solution to exist), the
cross section for the process depicted in fig. 5.2 is 𝑡-channel singular.

Let us now check when the thermally averaged cross section for that process is singular. That quantity
can be calculated by integrating the cross section over statistical distribution of momenta of the initial-
state particles. The result will be singular if condition (5.10) is satisfied for any value of 𝑠 that is allowed
for the process. Since the integration is performed over the whole range of momenta that are kinematically
allowed, the range of 𝑠 is

𝑠 ∈ [𝑠min,∞) , 𝑠min ≡ max{(𝑚1 +𝑚2)
2, (𝑚3 +𝑚4)

2} . (5.12)

The thermally averaged cross section is singular when the above integration range contains a non-empty
subinterval of eq. (5.10), which means that ∆ must be positive and

𝑠min <
−𝛽 +

√
∆

2𝑀2
, (5.13)

i.e.
√
∆ > 2𝑀2𝑠min + 𝛽 . (5.14)

If the RHS of the above inequality is positive, this inequality is equivalent to

0 > (2𝑀2𝑠min + 𝛽)2 −∆

=

{︃
4𝑀2

[︀
(𝑚1𝑚2 +𝑀2)(𝑚1 +𝑚2)−𝑚2𝑚

2
3 −𝑚1𝑚

2
4

]︀2
if 𝑚1 +𝑚2 > 𝑚3 +𝑚4

4𝑀2
[︀
(𝑚3𝑚4 +𝑀2)(𝑚3 +𝑚4)−𝑚2

2𝑚3 −𝑚2
1𝑚4

]︀2
if 𝑚1 +𝑚2 < 𝑚3 +𝑚4

,
(5.15)

which forms an obvious contradiction. On the other hand, if the RHS of (5.14) is negative, the inequality
is obviously satisfied for any positive ∆. Hence, the singularity conditions can be rewritten as

∆ > 0 , (5.16a)

2𝑀2𝑠min + 𝛽 < 0 . (5.16b)

It can be explicitly checked that

2𝑀2𝑠min + 𝛽 =𝑀2
⃒⃒
(𝑚1 +𝑚2)

2 − (𝑚3 +𝑚4)
2
⃒⃒

+
[︀
𝑀2 + (𝑚1 −𝑚3)(𝑚2 −𝑚4)

]︀ [︀
𝑀2 + (𝑚1 +𝑚3)(𝑚2 +𝑚4)

]︀ (5.17)

(note the absolute value in the first term). Consequently, if

𝑀2 + (𝑚1 −𝑚3)(𝑚2 −𝑚4) > 0 , (5.18)

eq. (5.16b) cannot be satisfied and the process cannot be singular. To make use of that observation, let
us notice that as ∆ is given by

∆ =
[︀
𝑀2 − (𝑚1 +𝑚3)

2
]︀ [︀
𝑀2 − (𝑚2 +𝑚4)

2
]︀ [︀
𝑀2 − (𝑚1 −𝑚3)

2
]︀ [︀
𝑀2 − (𝑚2 −𝑚4)

2
]︀
, (5.19)

it is positive if and only if one of the following two conditions holds:

𝑀 > |𝑚1 −𝑚3| and 𝑀 > |𝑚2 −𝑚4| , (5.20a)

𝑀 < |𝑚1 −𝑚3| and 𝑀 < |𝑚2 −𝑚4| , (5.20b)

because negativeness of the first two brackets of eq. (5.19) (so, positiveness of their product) is a con-
sequence of stability of the mediator. If the condition (5.20a) is true, the inequality (5.18) is obviously
satisfied and the process cannot be singular. If eq. (5.20b) holds, in the following two cases the inequality
(5.18) is obviously satisfied as well:

𝑚1 > 𝑚3 and 𝑚2 > 𝑚4 , (5.21a)

𝑚1 < 𝑚3 and 𝑚2 < 𝑚4 . (5.21b)

Therefore, for the singularity to occur it is necessary that either

𝑚1 > 𝑚3 and 𝑚2 < 𝑚4 (5.22a)
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or

𝑚1 < 𝑚3 and 𝑚2 > 𝑚4 . (5.22b)

Combining this result with eq. (5.20b), we conclude that either

𝑚1 > 𝑚3 +𝑀 and 𝑚4 > 𝑚2 +𝑀 (5.23a)

or

𝑚3 > 𝑚1 +𝑀 and 𝑚2 > 𝑚4 +𝑀 (5.23b)

must hold for the thermally averaged cross section to be affected by the 𝑡-channel singularity.
Note that any of the conditions expressed by eqs. (5.23a) and (5.23b) ensures that eqs. (5.16a)

and (5.16b) are satisfied. Indeed, let us assume that eq. (5.23a) holds. Then, condition (5.20b) is
satisfied, which means that ∆ is positive. Moreover,

2𝑀2𝑠min + 𝛽 =

{︃
−𝐴12𝐵12 − 2𝑚1𝑀 𝐵12 − 2𝑚2𝑀 𝐴12 if 𝑚1 +𝑚2 > 𝑚3 +𝑚4

−𝐴34𝐵34 − 2𝑚3𝑀 𝐵34 − 2𝑚4𝑀 𝐴34 if 𝑚1 +𝑚2 < 𝑚3 +𝑚4

, (5.24)

where

𝐴12 ≡ (𝑚1 −𝑀)2 −𝑚2
3 , 𝐵12 ≡ 𝑚2

4 − (𝑚2 +𝑀)2 ,

𝐴34 ≡ 𝑚2
1 − (𝑚3 +𝑀)2 , 𝐵34 ≡ (𝑚4 −𝑀)2 −𝑚2

2 .
(5.25)

Since for 𝑚1 > 𝑚3 +𝑀 and 𝑚4 > 𝑚2 +𝑀 all of the above four quantities are positive, 2𝑀2𝑠min + 𝛽
must be negative, which means that the condition (5.16b) is fulfilled. In the case (5.23b), the proof goes
analogously.

Summing up, we conclude that the process depicted in fig. 5.2 has a singular thermally averaged
cross section if and only if one of the conditions (5.23a), (5.23b) holds. It means that the process
can be treated as a sequence of two subprocesses with all particles on-shell: a decay of particle “1”
into “3” and the mediator, and an inverse decay of the mediator and particle “2” producing “4”. Those
possibilities are illustrated in fig. 5.3 This appears to be a special case of the so-called Coleman-Norton
theorem which states that a Feynman amplitude has singularities on the physical boundary if and only if
the relevant Feynman diagram can be interpreted as a picture of an energy- and momentum-conserving
process occurring in space-time, with all internal particles real, on the mass shell, and moving forward in
time [174].

1

2

3

4

M

1

3

M

followed by

M

2

4

2

M

4

followed by

1

M

3

Figure 5.3: The possible decompositions of the considered 𝑡-channel process corresponding to the
conditions (5.23a) and (5.23b). For clarity, the mediator has been distinguished by thick lines.

5.4 Resummed propagators and the effective width

In this section, the resummed propagator, being a sum of a series of self-energy corrections (see fig. 5.4),
is determined for a scalar, a fermion and a vector field. For simplicity, the calculation is restricted to
one-loop self-energy. Basing on the result, a formula for the effective width is obtained.
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Figure 5.4: Resummed propagator as a sum of a series of one-loop self-energy corrections for a scalar
(top), a fermion (centre) and a vector (bottom) field. Δ, 𝐺 and 𝐷 denote resummed propagators of the
fields, while Δ(0), 𝐺(0) and 𝐷(0) are the bare propagators. Π+ is the retarded self-energy, calculated
within the Keldysh-Schwinger formalism.

For a scalar field, the resummed propagator is

𝑖∆(𝑝, 𝑇 ) ≡ 𝑖∆(0)(𝑝)

∞∑︁

𝑛=0

[︁
𝑖Π+(𝑝, 𝑇 )𝑖∆(0)(𝑝)

]︁𝑛

= 𝑖∆(0)(𝑝)
[︁
1− 𝑖Π+(𝑝, 𝑇 )𝑖∆(0)(𝑝)

]︁−1

,

(5.26)

while for a fermion

𝑖𝐺(𝑝, 𝑇 ) ≡ 𝑖𝐺(0)(𝑝)

∞∑︁

𝑛=0

[︁
𝑖Π+(𝑝, 𝑇 )𝑖𝐺(0)(𝑝)

]︁𝑛

= 𝑖𝐺(0)(𝑝)
[︁
1− 𝑖Π+(𝑝, 𝑇 )𝑖𝐺(0)(𝑝)

]︁−1

,

(5.27)

and for a vector

𝑖𝐷𝜇𝜈(𝑝, 𝑇 ) ≡ 𝑖𝐷(0)
𝜇𝛼(𝑝)

(︃ ∞∑︁

𝑛=0

[︁
𝑖Π+(𝑝, 𝑇 )𝑖𝐷(0)(𝑝)

]︁𝑛
)︃𝛼

𝜈

= 𝑖𝐷(0)
𝜇𝛼(𝑝)

(︂[︁
1− 𝑖Π+(𝑝, 𝑇 )𝑖𝐷(0)(𝑝)

]︁−1
)︂𝛼

𝜈

.

(5.28)

In the above equations, ∆, 𝐺 and 𝐷 denote resummed propagators of a scalar, a fermion and a vector
field, while ∆(0), 𝐺(0) and 𝐷(0) are bare propagators. In section 5.5, Π+ denotes the retarded self-
energy, calculated within the Keldysh-Schwinger formalism. Here, however, the precise definition of Π+

is irrelevant; the index plus is kept only for consistency.
The following sections 5.4.1 to 5.4.3 provide the sums for the above series. In section 5.4.4, the effective

width is introduced.

5.4.1 Scalar case

For a scalar field, Π+ is a scalar quantity as well as ∆(0) given by.

∆(0)(𝑝) =
1

𝑝2 −𝑀2
. (5.29)

From eq. (5.26) it is straightforward to obtain:

∆(𝑝, 𝑇 ) =
1

𝑝2 −𝑀2 +Π+(𝑝, 𝑇 )
. (5.30)
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5.4.2 Fermion case

For a fermion field, both 𝐺(0) and Π+ are expressed through the gamma matrices (see appendix D) as
follows:2

𝐺(0)(𝑝) =
1

/𝑝−𝑀
,

Π+(𝑝, 𝑇 ) = [𝐴𝑣(𝑝, 𝑇 ) +𝐴𝑎(𝑝, 𝑇 )𝛾5] /𝑝+ [𝐵𝑣(𝑝, 𝑇 ) +𝐵𝑎(𝑝, 𝑇 )𝛾5] 𝑀 .

(5.31)

Here, 𝐴𝑣,𝑎 and 𝐵𝑣,𝑎 are dimensionless Lorentz scalars and we use the Feynman slash notation: /𝑝 ≡ 𝑝𝜇𝛾𝜇.
Using the trace operator, we can conveniently extract coefficients 𝐴𝑣 and 𝐵𝑣 from the self-energy:

𝐴𝑣(𝑝, 𝑇 ) =
1

4𝑝2
Tr[/𝑝Π+(𝑝, 𝑇 )] , 𝐵𝑣(𝑝, 𝑇 ) =

1

4𝑀
Tr[Π+(𝑝, 𝑇 )] , (5.32)

The resummed propagator from eq. (5.27) can be calculated as follows:

𝑖𝐺 = 𝑖𝐺(0)
[︁
1− 𝑖Π+ 𝑖𝐺(0)

]︁−1

= 𝑖
1

/𝑝−𝑀

[︂
(1 +𝐴𝑣 +𝐴𝑎 𝛾5) /𝑝+ (−1 +𝐵𝑣 +𝐵𝑎 𝛾5)𝑀

/𝑝−𝑀

]︂−1

= 𝑖
(1 +𝐴𝑣 +𝐴𝑎 𝛾5) /𝑝+ (1−𝐵𝑣 +𝐵𝑎 𝛾5)𝑀

[(1 +𝐴𝑣)2 −𝐴2
𝑎] 𝑝

2 − [(1−𝐵𝑣)2 −𝐵2
𝑎]𝑀

2
.

(5.33)

Therefore,

𝐺(𝑝, 𝑇 ) =
[1 +𝐴𝑣(𝑝, 𝑇 ) +𝐴𝑎(𝑝, 𝑇 ) 𝛾5] /𝑝+ [1−𝐵𝑣(𝑝, 𝑇 ) +𝐵𝑎(𝑝, 𝑇 ) 𝛾5]𝑀(︁

[1 +𝐴𝑣(𝑝, 𝑇 )]
2 −𝐴𝑎(𝑝, 𝑇 )2

)︁
𝑝2 −

(︁
[1−𝐵𝑣(𝑝, 𝑇 )]

2 −𝐵𝑎(𝑝, 𝑇 )2
)︁
𝑀2

. (5.34)

The following assumptions are made to simplify the above result:

� the self-energy is much smaller than mass: |𝐴𝑣,𝑎| ≪ 1, |𝐵𝑣,𝑎| ≪ 1,

� the axial components of the self-energy do not dominate the vector components: |𝐴𝑎|, |𝐵𝑎| ≲
|𝐴𝑣|, |𝐵𝑣|,

� the propagating field is approximately on-shell:3 |𝑝2 −𝑀2| ≪𝑀2.

The simplified formula reads

𝐺(𝑝, 𝑇 ) ≃ /𝑝+𝑀

𝑝2 −𝑀2 + 2 [𝐴𝑣(𝑝, 𝑇 ) +𝐵𝑣(𝑝, 𝑇 )] 𝑀2
, (5.35)

which is in agreement with eq. (11) from [176] (coefficients 𝐴 and 𝐵 defined there are equivalent to,
respectively, −𝐵𝑣𝑀 and −𝐴𝑣 used here). Using eq. (5.32) we obtain

𝐺(𝑝, 𝑇 ) ≃ /𝑝+𝑀

𝑝2 −𝑀2 + 2Tr
[︁
/𝑝+𝑀

4 Π+(𝑝, 𝑇 )
]︁ . (5.36)

5.4.3 Vector case

For a vector field, ∆(0) and Π+ are tensors that can be split into a transverse and a longitudinal part
with respect to the momentum of the field:

𝐷(0)
𝜇𝜈 (𝑝) = −

(︂
𝑇𝜇𝛼

𝑝2 −𝑀2
− 𝐿𝜇𝛼
𝑀2

)︂
,

Π+
𝜇𝜈(𝑝) = ΠT(𝑝, 𝑇 )𝑇𝜇𝜈 +ΠL(𝑝, 𝑇 )𝐿𝜇𝜈 .

(5.37)

2For a brief discussion, see section A of chapter III in [175].
3Mathematically, the on-shell contribution dominates the integration over four momentum.
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Here, the scalar quantities ΠT and ΠL of dimension [mass]2 denote, respectively, the longitudinal and the
transverse part of the self-energy. Operators 𝑇𝜇𝜈 (transverse projector) and 𝐿𝜇𝜈 (longitudinal projector)
are given by

𝑇𝜇𝜈 ≡ 𝑔𝜇𝜈 −
𝑝𝜇𝑝𝜈
𝑝2

, 𝐿𝜇𝜈 ≡ 𝑝𝜇𝑝𝜈
𝑝2

. (5.38)

Note that Π𝑇 can be obtained from Π+ ad

Π𝑇 (𝑝, 𝑇 ) =
1

3

(︂
𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

𝑝2

)︂
Π+
𝜇𝜈(𝑝, 𝑇 ) . (5.39)

From eq. (5.28) we obtain

𝑖𝐷𝜇𝜈 = 𝑖𝐷(0)
𝜇𝛼

(︂[︁
1− 𝑖Π+(𝑝, 𝑇 )𝑖𝐷(0)(𝑝)

]︁−1
)︂𝛼

𝜈

= −𝑖
(︂

𝑇𝜇𝛼
𝑝2 −𝑀2

− 𝐿𝜇𝛼
𝑀2

)︂(︃[︂
𝑝2 −𝑀2 −Π𝑇
𝑝2 −𝑀2

𝑇 +
𝑀2 +Π𝐿
𝑀2

𝐿

]︂−1
)︃𝛼

𝜈

= −𝑖
(︂

𝑇𝜇𝛼
𝑝2 −𝑀2

− 𝐿𝜇𝛼
𝑀2

)︂[︂
𝑝2 −𝑀2

𝑝2 −𝑀2 −Π𝑇
𝑇𝛼𝜈 +

𝑀2

𝑀2 +Π𝐿
𝐿𝛼𝜈

]︂

= −𝑖 𝑇𝜇𝜈
𝑝2 −𝑀2 −Π𝑇

+ 𝑖
𝐿𝜇𝜈

𝑀2 +Π𝐿

= 𝑖
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑀2+Π𝐿

𝑝2−Π𝑇+Π𝐿

𝑝2

𝑝2 −𝑀2 −Π𝑇
.

(5.40)

As a consequence,

𝐷𝜇𝜈(𝑝, 𝑇 ) =
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑀2+Π𝐿(𝑝,𝑇 )
𝑝2−Π𝑇 (𝑝,𝑇 )+Π𝐿(𝑝,𝑇 )

𝑝2

𝑝2 −𝑀2 −Π𝑇 (𝑝, 𝑇 )
. (5.41)

This formula, up to a sign of their Π𝑇 , is in agreement with eq. (20) of [177]. The conventions of that
paper are slightly different than those here: Π𝑇 (𝑞

2) from that paper is equivalent to our Π𝑇 (𝑞
2), and

their Π𝐿(𝑞2) would be expressed by our [Π𝐿(𝑞2)−Π𝑇 (𝑞
2)]/𝑞2.

Similarly to the previous case, we assume that the self-energy is negigible in comparison to mass
squared, |Π𝐿|, |Π𝑇 | ≪ 𝑀2. Moreover, the propagator is assumed to be on-shell (so |𝑝2 −𝑀2| ≪𝑀2).
Then, the following simplified result can be obtained:

𝐷𝜇𝜈(𝑝, 𝑇 ) ≃
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑀2

𝑝2 −𝑀2 −Π𝑇 (𝑝, 𝑇 )
, (5.42)

which, after applying eq. (5.39), becomes

𝐷𝜇𝜈(𝑝, 𝑇 ) ≃
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑀2

𝑝2 −𝑀2 + 1
3

(︁
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑝2

)︁
Π+
𝜇𝜈(𝑝, 𝑇 )

. (5.43)

5.4.4 Effective width

We will call the difference between the imaginary parts of the denominators of the resummed and free
propagator “regulator” and denote it by Σ(𝑝, 𝑇 ). According to sections 5.4.1 to 5.4.3, it is given by

Σ(𝑝, 𝑇 ) ≡

⎧
⎪⎪⎨
⎪⎪⎩

ℑΠ+(𝑝, 𝑇 ) scalar case

ℑ
(︁
Tr
[︁
/𝑝+𝑀

2 Π+(𝑝, 𝑇 )
]︁)︁

fermion case

ℑ
[︁
1
3

(︁
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑝2

)︁
Π+
𝜇𝜈(𝑝, 𝑇 )

]︁
vector case

. (5.44)

As the resummed propagators resemble the Breit-Wigner propagator of unstable particle, we introduce
an effective decay width Γeff(𝑝, 𝑇 ) defined in the following way:

Γeff(𝑝, 𝑇 ) ≡
|Σ(𝑝, 𝑇 )|

𝑀
. (5.45)

This effective width regularizes the propagator in the same manner as the standard decay width regularizes
the Breit-Wigner propagator.
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5.5 Regularization by the thermal medium

In this section, the regularization method is derived and illustrated by examples within a toy model
described in appendix C and the VFDM model described in appendix A. The regularization is performed
using the one-loop self-energy of the mediator propagating through a thermal medium, corresponding
to a diagram of the type shown in fig. 5.5. The assumption that the medium has defined temperature
is convenient, as it simplifies the calculations„ but not necessary: it is enough to know the distribution
function of the medium to apply the method proposed here.

M M

1

2

p p

Figure 5.5: Diagram of mediator’s one-loop self-energy.

Throughout the whole derivation, 𝛽 denotes inverse temperature, 𝐸𝑝 is the on-shell energy of the
mediator with momentum p, and 𝐸1, 𝐸2 denotes the on-shell energies of particles “1” and “2”, respectively,
moving with momentum k.

𝛽 ≡ 1

𝑇
, 𝐸𝑝 ≡

√︀
p2 +𝑀2 , 𝐸1,2 ≡

√︁
k2 +𝑚2

1,2 , (5.46)

Since the singularity leads to a strong enhancement of on-shell contribution to the propagator of the
mediator, the mediator is assumed to be well-approximated by an on-shell particle, so it is assumed that

𝑝0 = 𝐸𝑝 , 𝑝2 =𝑀2 . (5.47)

As stated at the beginning of this chapter, for a true singularity to occur the mediator must be stable in
vacuum. Therefore, it is assumed that

𝑀 < 𝑚1 +𝑚2 . (5.48)

In the Keldysh-Schwinger formalism, the retarded one-loop self-energy for all particles scalar is given by

Π+(𝑝, 𝑇 ) =
𝑖

2

∫︁
𝑑4𝑘

(2𝜋)4

[︁
𝜇∆+

1 (𝑘 + 𝑝)𝜇∆sym
2 (𝑘, 𝑇 ) + 𝜇∆sym

1 (𝑘, 𝑇 )𝜇∆−
2 (𝑘 − 𝑝)

]︁
, (5.49)

In general, if the spins are non-zero, the scalar propagators ∆±, ∆sym must be replaced by their fermion
(𝐺±, 𝐺sym) or vector (𝐷±

𝜇𝜈 , 𝐷
sym
𝜇𝜈 ) counterparts. All the propagators are defined in appendix F.

Let us recall that if the mediator is a scalar particle, the imaginary part of the self-energy is the
regulator defined in section 5.4.4:

Σ(𝑝, 𝑇 ) = ℑΠ+(𝑝, 𝑇 ) . (5.50)

To obtain the regulator for a fermionic mediator, one should calculate the following trace:

Σ(𝑝, 𝑇 ) = ℑTr
[︂
/𝑝+𝑀

2
Π+(𝑝, 𝑇 )

]︂
, (5.51)

and for a vector mediator, the regulator is obtained as

Σ(𝑝, 𝑇 ) = ℑ
[︂
1

3

(︂
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈

𝑝2

)︂
Π+
𝜇𝜈(𝑝, 𝑇 )

]︂
. (5.52)
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Regardless which case is the actual one, eq. (5.49) takes the following form:

Σ(𝑝, 𝑇 ) = ℑ
[︃
1

2

∫︁
𝑑4𝑘

(2𝜋)4

{︂
𝑋(𝑝2, 𝑘2, (𝑘+𝑝)2)

(𝑘 + 𝑝)2 −𝑚2
1 + 𝑖 sgn(𝑘0 + 𝑝0) 0+

× 𝜋

𝐸2

(︁
𝛿(𝐸2 − 𝑘0) + 𝛿(𝐸2 + 𝑘0)

)︁
𝑓2(𝛽𝑘0)

+
𝑋(𝑝2, (𝑘−𝑝)2, 𝑝2)

(𝑘 − 𝑝)2 −𝑚2
2 − 𝑖 sgn(𝑘0 − 𝑝0) 0+

× 𝜋

𝐸1

(︁
𝛿(𝐸1 − 𝑘0) + 𝛿(𝐸1 + 𝑘0)

)︁
𝑓1(𝛽𝑘0)

}︂]︃
,

(5.53)

with function 𝑓𝑖 (𝑖 = 1, 2) defined as

𝑓𝑖(𝑥) ≡
{︃
𝑒𝑥−1
𝑒𝑥+1 for fermionic particle 𝑖
𝑒𝑥+1
𝑒𝑥−1 for bosonic particle 𝑖

(5.54)

(see appendix F). A Lorentz-invariant factor 𝑋(𝑝2,𝑘2,(𝑘+𝑝)2) is the effect of applying the appropriate
operation from eqs. (5.50) to (5.52) to the product of the couplings and the numerators of the propagators.
Its value has to be determined for each model separately.

As the 𝑑4𝑘 integration makes direction of p irrelevant, the imaginary part of the self-energy depends
on energy only (instead of the full four-momentum):

Σ(𝑝, 𝑇 ) = Σ(𝐸𝑝, 𝑇 ) . (5.55)

Integration over 𝑘0 leads to the following result:

Σ(𝐸𝑝, 𝑇 ) = ℑ
[︃
1

4

∫︁
𝑑3𝑘

(2𝜋)3

{︃
𝑋(𝑝2, 𝑘2, (𝑘+𝑝)2)

𝐸2
𝑓2

×
[︂

1

𝑀2 +𝑚2
2 −𝑚2

1 + 2𝑝𝑘 + 𝑖 sgn(𝐸2 + 𝐸𝑝) 0+

+
1

𝑀2 +𝑚2
2 −𝑚2

1 + 2𝑝𝑘 + 𝑖 sgn(−𝐸2 + 𝐸𝑝) 0+

]︂

+
𝑋(𝑝2, (𝑘−𝑝)2, 𝑘2)

𝐸1
𝑓1

×
[︂

1

𝑀2 −𝑚2
2 +𝑚2

1 − 2𝑝𝑘 − 𝑖 sgn(𝐸1 − 𝐸𝑝) 0+

+
1

𝑀2 −𝑚2
2 +𝑚2

1 − 2𝑝𝑘 − 𝑖 sgn(−𝐸1 − 𝐸𝑝) 0+

]︂ }︃]︃
.

(5.56)

Using Sochocki’s formula:

lim
𝜀→0+

1

𝑥± 𝑖𝜀
= 𝒫 1

𝑥
± 𝑖𝜋𝛿(𝑥) (5.57)

with 𝒫 denoting the principal value and 𝛿 being the Dirac delta, we obtain

Σ(𝐸𝑝, 𝑇 ) =
𝜋

4

∫︁
𝑑3𝑘

(2𝜋)3

{︃
−𝑋0 𝑓2

[︂
sgn(𝐸2 + 𝐸𝑝)

𝐸2
+

sgn(−𝐸2 + 𝐸𝑝)

𝐸2

]︂

× 𝛿(𝑀2 +𝑚2
2 −𝑚2

1 + 2𝑝𝑘)

𝑋0 𝑓1

[︂
sgn(𝐸1 − 𝐸𝑝)

𝐸1
+

sgn(−𝐸1 − 𝐸𝑝)

𝐸1

]︂

× 𝛿(𝑀2 −𝑚2
2 +𝑚2

1 − 2𝑝𝑘)

}︃
.

(5.58)

Here, 𝑋0 denotes the value of 𝑋 calculated on-shell:

𝑋0 ≡ 𝑋(𝑝2=𝑀2, 𝑘2=𝑚2
2, (𝑘+𝑝)

2=𝑚2
1)
. (5.59)
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In order to perform the spatial integration, we can choose the spherical coordinate system in which

𝑝𝜇 = (𝐸𝑝 =
√︀
p2 +𝑀2, 0, 0, |p|) ,

𝑘𝜇 = (𝑘0, |k| sin 𝜃 cos𝜑, |k| sin 𝜃 sin𝜑, |k| cos 𝜃) .
(5.60)

In this system, the products of four-momenta take the form

𝑝𝜇𝑝𝜇 =𝑀2 , 𝑘𝜇𝑘𝜇 = 𝑘20 − k2 , 𝑝𝜇𝑘𝜇 = 𝐸𝑝𝑘0 − |k||p| cos 𝜃 . (5.61)

It can be shown that taking p = 0 at this point gives the same result as the corresponding limit of the
result obtained for a non-zero momentum (this limit is discussed in section 5.5.1). Hence, from now on
we assume that p ̸= 0. After performing the trivial integration over 𝑑𝜑, we obtain

Σ(𝐸𝑝, 𝑇 ) =
𝑋0

32𝜋

∫︁ ∞

0

k2𝑑|k|
∫︁ 1

−1

𝑑 cos 𝜃

×
{︃

− 𝑓2

[︂
sgn
(︀
𝐸2 + 𝐸𝑝

)︀

𝐸2

𝛿(cos 𝜃 − cos𝛼2)

|k||p|

+
sgn
(︀
− 𝐸2 + 𝐸𝑝

)︀

𝐸2

𝛿(cos 𝜃 − cos𝛽2)

|k||p|

]︂

+𝑓1

[︂
sgn
(︀
𝐸1 − 𝐸𝑝

)︀

𝐸1

𝛿(cos 𝜃 − cos𝛼1)

|k||p|

+
sgn
(︀
− 𝐸1 − 𝐸𝑝

)︀

𝐸1

𝛿(cos 𝜃 − cos𝛽1)

|k||p|

]︂}︃

=
𝑋0

32𝜋|p|

{︂
−
∫︁ ∞

0

𝑑𝐸2

∫︁ 1

−1

𝑑 cos 𝜃 𝑓2

×
[︀

sgn (𝐸2 + 𝐸𝑝) 𝛿(cos 𝜃 − cos𝛼2)

+ sgn (−𝐸2 + 𝐸𝑝) 𝛿(cos 𝜃 − cos𝛽2)
]︀

+

∫︁ ∞

0

𝑑𝐸1

∫︁ 1

−1

𝑑 cos 𝜃 𝑓1

×
[︀

sgn (𝐸1 − 𝐸𝑝) 𝛿(cos 𝜃 − cos𝛼1)

+ sgn (−𝐸1 − 𝐸𝑝) 𝛿(cos 𝜃 − cos𝛽1)
]︀}︂

(5.62)

with cos𝛼1, cos𝛼2, cos𝛽1 and cos𝛽2 defined via the following relations

cos𝛼1 ≡ −𝑚2
1 +𝑚2

2 −𝑀2 + 2𝐸1𝐸𝑝
2 |k||p| , cos𝛽1 ≡ −𝑚

2
1 −𝑚2

2 +𝑀2 + 2𝐸1𝐸𝑝
2 |k||p| ,

cos𝛼2 ≡ −𝑚2
1 +𝑚2

2 +𝑀2 + 2𝐸2𝐸𝑝
2 |k||p| , cos𝛽2 ≡ −𝑚

2
1 −𝑚2

2 −𝑀2 + 2𝐸2𝐸𝑝
2 |k||p| .

(5.63)

Let us observe that

� if 𝑚2 > |𝑚1 −𝑀 |, then cos𝛼1 > 1:

cos𝛼1 =
−𝑚2

1 +𝑚2
2 −𝑀2 + 2𝐸1𝐸𝑝
2 |k||p| >

−2𝑚1𝑀 + 2𝐸1𝐸𝑝
2 |k||p| > 1 , (5.64)

� if 𝑚2 < 𝑚1 +𝑀 , then cos𝛽1 < −1:

cos𝛽1 = −𝑚
2
1 −𝑚2

2 +𝑀2 + 2𝐸1𝐸𝑝
2 |k||p| < −−2𝑚1𝑀 + 2𝐸1𝐸𝑝

2 |k||p| < −1 , (5.65)

� if 𝑚1 < 𝑚2 +𝑀 , then cos𝛼2 > 1:

cos𝛼2 =
−𝑚2

1 +𝑚2
2 +𝑀2 + 2𝐸2𝐸𝑝
2 |k||p| >

−2𝑚2𝑀 + 2𝐸2𝐸𝑝
2 |k||p| > 1 , (5.66)
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� if 𝑚1 > |𝑚2 −𝑀 |, then cos𝛽2 < −1:

cos𝛽2 = −𝑚
2
1 −𝑚2

2 −𝑀2 + 2𝐸2𝐸𝑝
2 |k||p| < −−2𝑚2𝑀 + 2𝐸2𝐸𝑝

2 |k||p| < −1 . (5.67)

From the above eqs. (5.64) to (5.67) it follows that the regulator vanishes if 𝑚1, 𝑚2 and 𝑀 satisfy the
triangle inequality. Hence, in order to regularize the singularity, one of “1”, “2” must be alllowed to decay
into the other one and the mediator. Fortunately, there always exists a loop with an unstable particle as
to have a singularity 𝑀 must be a decay product. Without loss of generality let us assume that “1” is
unstable, so that

𝑚1 > 𝑚2 +𝑀 . (5.68)

From this assumption it follows that cos𝛽1,2 < −1 so the delta functions containing (cos 𝜃 − cos𝛽1,2)
must vanish.

It can be observed that

4 𝑘2𝑝2(cos2𝛼1 − 1) = 4𝑀2𝐸2
1 − 4 (𝑚2

1 −𝑚2
2 +𝑀2)𝐸𝑝𝐸1 + 4𝑚2

1𝐸
2
𝑝 + 𝜆(𝑚2

1,𝑚
2
2,𝑀

2) , (5.69)

where 𝜆 denotes the Källén function, defined by eq. (0.4). This formula, treated as a function of 𝐸1, is
negative for

𝑏− 𝑎 < 𝐸1 < 𝑏+ 𝑎 , (5.70)

with 𝑎 and 𝑏 given by

𝑎 ≡ 𝜆(𝑚2
1,𝑚

2
2,𝑀

2)1/2

2𝑀2
|p| , 𝑏 ≡ 𝑚2

1 −𝑚2
2 +𝑀2

2𝑀2
𝐸𝑝 . (5.71)

This means that the absolute value of cos𝛼1 is smaller than 1 for 𝐸1 satisfying eq. (5.70), so the delta
function limits the range of integration over 𝑑𝐸1 to the one provided in eq. (5.70).

Analogously,

4 𝑘2𝑝2(cos2𝛼2 − 1) = 4𝑀2𝐸2
2 − 4 (𝑚2

1 −𝑚2
2 −𝑀2)𝐸𝑝𝐸2 + 4𝑚2

2𝐸
2
𝑝 + 𝜆(𝑚2

1,𝑚
2
2,𝑀

2) (5.72)

is negative when

𝑏− 𝑎− 𝐸𝑝 < 𝐸2 < 𝑏+ 𝑎− 𝐸𝑝 , (5.73)

which is, thus, the range of the integration over 𝑑𝐸2 imposed by the delta function.
Then, the regulator becomes

Σ(𝐸𝑝, 𝑇 ) =
𝑋0

32𝜋

1

|p|

[︂
−
∫︁ 𝑏+𝑎−𝐸𝑝

𝑏−𝑎−𝐸𝑝

𝑑𝐸2 𝑓2 sgn (𝐸2 + 𝐸𝑝) +

∫︁ 𝑏+𝑎

𝑏−𝑎
𝑑𝐸1 𝑓1 sgn (𝐸1 − 𝐸𝑝)

]︂
, (5.74)

where 𝑎 and 𝑏 are given by

𝑎 ≡ 𝜆(𝑚2
1,𝑚

2
2,𝑀

2)1/2

2𝑀2
|p| , 𝑏 ≡ 𝑚2

1 −𝑚2
2 +𝑀2

2𝑀2
𝐸𝑝 ,

𝜆(𝑚2
1,𝑚

2
2,𝑀

2) ≡
[︀
𝑚2

1 − (𝑚2 −𝑀)2
]︀ [︀
𝑚2

1 − (𝑚2 +𝑀)2
]︀
.

(5.75)

In eq. (5.74), the first sign function gives obviously +1 as both 𝐸2 and 𝐸𝑝 are positive. The value of the
second sign function is +1 as well: at the lower integration limit the argument is

𝐸1 − 𝐸𝑝 = 𝑏− 𝑎− 𝐸𝑝 =
(𝑚2

1 −𝑚2
2 −𝑀2)𝐸𝑝 − 𝜆(𝑚2

1,𝑚
2
2,𝑀

2)1/2|p|
2𝑀2

, (5.76)

which is positive as 𝐸𝑝 > |p| and 𝑚2
1 −𝑚2

2 −𝑀2 > 𝜆(𝑚2
1,𝑚

2
2,𝑀

2)1/2. Therefore,

Σ(𝐸𝑝, 𝑇 ) =
𝑋0

32𝜋

1

|p|

[︂
−
∫︁ 𝑏+𝑎−𝐸𝑝

𝑏−𝑎−𝐸𝑝

𝑑𝐸2 𝑓2(𝛽𝐸2) +

∫︁ 𝑏+𝑎

𝑏−𝑎
𝑑𝐸1 𝑓1(𝛽𝐸1)

]︂

=
𝑋0

32𝜋

1

𝛽|p|

[︂ ∫︁ 𝛽(𝑏+𝑎)

𝛽(𝑏−𝑎)
𝑓1(𝑥) 𝑑𝑥−

∫︁ 𝛽(𝑏+𝑎−𝐸𝑝)

𝛽(𝑏−𝑎−𝐸𝑝)

𝑓2(𝑥) 𝑑𝑥

]︂
,

(5.77)
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Finally, after the integration the result becomes

Γeff(𝐸𝑝, 𝑇 ) ≡
1

𝑀
|Σ(𝐸𝑝, 𝑇 )| ,

Σ(𝐸𝑝, 𝑇 ) =
1

16𝜋

𝑋0

𝛽|p|

[︃
ln
𝑒𝛽(𝑏+𝑎) + 𝜂1
𝑒𝛽(𝑏−𝑎) + 𝜂1

− ln
𝑒𝛽(𝑏+𝑎)𝑒−𝛽𝐸𝑝 + 𝜂2
𝑒𝛽(𝑏−𝑎)𝑒−𝛽𝐸𝑝 + 𝜂2

]︃

=
1

16𝜋

𝑋0

𝛽|p| ln

[︃
1 +

𝑒−𝛽(𝑏−𝑎)𝑒𝛽𝐸𝑝
(︀
1− 𝑒−2𝛽𝑎

)︀ (︀
𝜂2 − 𝜂1 𝑒

−𝛽𝐸𝑝
)︀

(︀
1 + 𝜂1 𝑒−𝛽(𝑏−𝑎)

)︀ (︀
1 + 𝜂2 𝑒−𝛽(𝑏+𝑎)𝑒𝛽𝐸𝑝

)︀
]︃
,

(5.78)

where 𝜂𝑖 (𝑖 = 1, 2) is +1 for fermions, −1 for bosons, and quantities 𝑎 and 𝑏 are

𝑎 ≡ 𝜆(𝑚2
1,𝑚

2
2,𝑀

2)1/2

2𝑀2
|p| , 𝑏 ≡ 𝑚2

1 −𝑚2
2 +𝑀2

2𝑀2
𝐸𝑝 ,

𝜆(𝑚2
1,𝑚

2
2,𝑀

2) ≡
[︀
𝑚2

1 − (𝑚2 −𝑀)2
]︀ [︀
𝑚2

1 − (𝑚2 +𝑀)2
]︀
.

(5.79)

To obtain the values of thermally averaged cross section, presented in sections 5.5.3 and 5.5.4 we use the
results obtained in section 2.3.2.

5.5.1 Discussion of the result

The result presented by the eq. (5.78) is consistent with the one obtained in [173] up to a numerical factor
of 1/2 (for a fermion mediator) or 1/3 (for a vector mediator).

As can be inferred from the last line of eq. (5.78), the sign of the logarithmic part is the same as the
sign of

𝜂2 − 𝜂1 𝑒
−𝛽𝐸𝑝 . (5.80)

As the exponential function of a negative argument is always smaller than one, the overall sign of the
logarithmic part is the same as the sign of 𝜂2. Hence, the logarithmic part is positive if particle 2 is
a fermion and negative otherwise. This corresponds to the sign of 𝑋0, as can be seen in tables 5.1
to 5.3. Consequently, the imaginary part of the self-energy given by eq. (5.78) is always positive and, in
particular, never equal to zero. Thus, a 𝑡-channel would-be-singular process occurring in a medium can
always be regularized using the method proposed here.

In the limit of 𝑚1 = 𝑚2 +𝑀 , quantity 𝑎 defined in eq. (5.79) becomes zero and so does the effective
width. This is expected, as the derivation has been performed under an assumption that 𝑚1 is grater
than 𝑚2 +𝑀 , see eq. (5.68).

It should be noticed that interchanging spins of the loop states 1 and 2 (mathematically, switching 𝜂1
and 𝜂2 in eq. (5.78)) changes the result, as the statistical factors corresponding to the decaying and the
produced particle are taken into account differently.

In the zero-temperature limit (𝛽 → ∞) the regulator given by eq. (5.78) vanishes (argument of the
logarithmic function in the second line becomes 1). It comes from the fact that the regulator is a result of
interactions between the mediator and the thermal medium, while the zero-temperature limit corresponds
to a lack of a medium.

In the limit of infinite momentum of the mediator (|p| → ∞), variable 𝑏 defined in eq. (5.79) is
proportional to the momentum. Consequently, in eq. (5.78), for large momentum, the inverse temperature
𝛽 is always multiplied by the momentum and the regulator depends on the product 𝛽|p|. Therefore, the
limit of the regulator for |p| → ∞ is the same as in the case of 𝛽 → ∞, i.e., the regulator vanishes.
The physical picture can be described as follows: the would-be singular propagator is regularized by
interactions of the mediator with the thermal medium. The process responsible for limiting the medium’s
lifetime is production of particle “1” in an inverse decay process, 𝑀, 2 → 1, where the source of particle
“2” is the medium. This process is followed by a decay of particle “1” into “2” and the mediator particle
of the same momentum as before the inverse decay. The minimal energy 𝐸2 required for an on-shell
production of particle “1”, defined by eq. (5.73), increases with the value of |p|. For |p| much larger than
the temperature, the amount of particles “2” of sufficient energy in the thermal medium is statistically
suppressed and decreases exponentially, making it hard to find a particle capable to merge with the
mediator and produce an on-shell particle “1”.
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For negligible momentum of the mediator (p → 0), the limit becomes finite and takes the following
form:

Γeff(p = 0, 𝑇 ) =
𝑋0

16𝜋𝑀

𝜆(𝑚2
1,𝑚

2
2,𝑀

2)1/2

𝑀2

𝑒−𝛽(𝑏0−𝑀)
(︀
𝜂2 − 𝜂1 𝑒

−𝛽𝑀)︀

(1 + 𝜂1 𝑒−𝛽𝑏0)
(︀
1 + 𝜂2 𝑒−𝛽(𝑏0−𝑀)

)︀ , (5.81)

with 𝑏0 ≡ (𝑚2
1 −𝑚2

2 +𝑀2)/(2𝑀) > 𝑀 .
A useful approximation of eq. (5.78) can be provided if

𝛽(𝑏− 𝑎− 𝐸𝑝) ≳ 3 , (5.82)

so that

𝑒𝛽(𝑏−𝑎−𝐸𝑝) ≫ 1 . (5.83)

The first non-vanishing term of expansion around 𝑒−𝛽(𝑏−𝑎−𝐸𝑝) = 0 is

Γeff(𝐸𝑝, 𝑇 ) ≃
1

16𝜋𝑀

𝑋0

𝛽|p| 𝑒
−𝛽(𝑏−𝑎−𝐸𝑝)

(︀
1− 𝑒−2 𝛽𝑎

)︀ (︀
𝜂2 − 𝜂1 𝑒

−𝛽𝐸𝑝
)︀
. (5.84)

This form is convenient to use in numerical calculations.

5.5.2 𝑋0 in general

Here, we provide the value of the factor 𝑋0 calculated for any combination of the spins of the mediator
and particles 1, 2. Tables 5.1 to 5.3 show the values for a scalar, fermion or vector mediator, respectively.
Each of the tables consists of two panes. The upper one assigns a three-letter code to each possible type
of a loop and the corresponding interaction vertex. The first, the second and the third letter of the code
denote the spin of the mediator and particles 1 and 2, respectively, with “S” standing for a scalar (spin-0),
“F” for a fermion (spin-1/2) and “V” for a vector (spin-1). The lower panel provides the value of the “spin
& vertex factor” (i.e., the matrix element that corresponds to the loop, with denominators omitted), the
value of the factor 𝑋0 and the ratio between 𝑋0 and the matrix-element-squared corresponding to the
decay of particle 1 into 2 and the mediator.
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loop
code loop relevant vertex

SSS ϕa ϕa

p,M

p1,m1

ϕb

p2,m2

ϕc

p,M

iµϕa

ϕb

ϕc

SSV ϕa ϕa

p,M

p1,m1

ϕb

p2,m2

A

p,M

g (pa − pb)µAµ

ϕa

ϕb

pa

pb

SVS ϕa ϕa

p,M

p1,m1

A

p2,m2

ϕb

p,M

g (pa − pb)µAµ

ϕa

ϕb

pa

pb

SVV ϕ ϕ
p,M

p1,m1

A

p2,m2

B

p,M

iµ gµνϕ

Aµ

Bν

SFF ϕ ϕ
p,M

p1,m1

ψa

p2,m2

ψb

p,M

i (Yv + i Yaγ5)ϕ

ψb

ψa

loop
code

spin & vertex factor X0 ≡ [spin & vertex factor]on-shell
X0

|M|2dec

SSS −µ2 −µ2 −1

SSV −g2(p1 + p)α(p1 + p)β
(
−gαβ +

p2αp2β
m2

2

)
−g2 λ(m

2
1,m

2
2,M

2)

m2
2

−1

SVS −g2(p2 − p)α(p2 − p)β
(
−gαβ +

p1αp1β
m2

1

)
−g2 λ(m

2
1,m

2
2,M

2)

m2
1

−1

SVV −µ2
(
−gαβ +

p1αp1β
m2

1

)(
−gαβ +

pα2 p
β
2

m2
2

)
−µ2

[
λ(m2

1,m
2
2,M

2)

4m2
1m

2
2

+ 3
]

−1

SFF −(−1)Tr
[
(Y ∗
v + i Y ∗

a γ5)(/p1 +m1)
×(Yv + i Yaγ5)(/p2 +m2)

] 2 |Yv|2
[
(m1 +m2)

2 −M2
]

+2 |Ya|2
[
(m1 −m2)

2 −M2
] 1

Table 5.1: Values of the factor 𝑋0 corresponding to two-particle loops of a scalar mediator.
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loop
code loop relevant vertex

FSF ψa ψa

p,M

p1,m1

ϕ

p2,m2

ψb

p,M

i (Yv + i Yaγ5)ϕ

ψb

ψa

FFS ψa ψa

p,M

p1,m1

ψb

p2,m2

ϕ

p,M

i (Yv + i Yaγ5)ϕ

ψb

ψa

FVF ψa ψa

p,M

p1,m1

A

p2,m2

ψb

p,M

i γµ (Gv +Gaγ5)Aµ

ψb

ψa

FFV ψa ψa

p,M

p1,m1

ψb

p2,m2

A

p,M

i γµ (Gv +Gaγ5)Aµ

ψb

ψa

loop
code

spin & vertex factor X0 ≡ Tr
[
/p+M

2 [spin & vertex f.]
]

on-shell

X0

|M|2dec

FSF −(Y ∗
v + i Y ∗

a γ5)(−/p2 +m2)(Yv + i Yaγ5)
|Yv|2

[
m2

1 − (m2 +M)2
]

+|Ya|2
[
m2

1 − (m2 −M)2
] 1

2

FFS −(Y ∗
v + i Y ∗

a γ5)(/p1 +m1)(Yv + i Yaγ5)
−|Yv|2

[
(m1 +M)2 −m2

2

]

−|Ya|2
[
(m1 −M)2 −m2

2

] − 1
2

FVF
−γβ(G∗

v +G∗
aγ5)(−/p2 +m2)

γα(Gv +Gaγ5)
(
−gαβ +

p1αp1β
m2

1

) |Gv|2
[
2m2

1+(m2+M)2
][
m2

1−(m2−M)2
]

m2
1

+|Ga|2
[
2m2

1+(m2−M)2
][
m2

1−(m2+M)2
]

m2
1

1
2

FFV
−γβ(G∗

v +G∗
aγ5)(/p1 +m1)

γα(Gv +Gaγ5)
(
−gαβ +

p2αp2β
m2

2

) −|Gv|2
[
(m1+M)2+2m2

2

][
(m1−M)2−m2

2

]

m2
2

−|Ga|2
[
(m1−M)2+2m2

2

][
(m1+M)2−m2

2

]

m2
2

− 1
2

Table 5.2: Values of the factor 𝑋0 corresponding to two-particle loops of a fermion mediator.
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loop
code loop relevant vertex

VSS Aα Aβ
p,M

p1,m1

ϕa

p2,m2

ϕb

p,M

g (pa − pb)µAµ

ϕa

ϕb

pa

pb

VSV Aα Aβ
p,M

p1,m1

ϕ

p2,m2

B

p,M

iµ gµνϕ

Aµ

Bν

VVS Aα Aβ
p,M

p1,m1

B

p2,m2

ϕ

p,M

iµ gµνϕ

Aµ

Bν

VVV µ

ρ

ν

σAα Aβ
p,M

p1,m1

B

p2,m2

C

p,M
fklm (pm)µk

gµlµm

(k, l,m = 1, 2, 3)Aµ1

Bµ2

Cµ3

p1

p2

p3

VFF Aα Aβ
p,M

p1,m1

ψa

p2,m2

ψb

p,M

i γµ (Gv +Gaγ5)Aµ

ψb

ψa

loop
code spin & vertex factor

X0 ≡ 1
3

[ (
−gαβ +

pαpβ
M2

)

× [spin & vertex f.]αβ
]

on-shell

X0

|M|2dec

VSS −g2(p1 + p2)
α(p1 + p2)

β − g2

3
λ(m2

1,m
2
2,M

2)
M2 − 1

3

VSV −µ2
(
−gαβ +

pα2 p
β
2

m2
2

)
−µ2

3

[
λ(m2

1,m
2
2,M

2)

4m2
2M

2 + 3
]

− 1
3

VVS −µ2
(
−gαβ +

pα1 p
β
1

m2
1

)
−µ2

3

[
λ(m2

1,m
2
2,M

2)

4m2
1M

2 + 3
]

− 1
3

VVV
−f2123

(
−gµν + p1µp1ν

m2
1

)(
−gρσ +

p2ρp2σ
m2

2

)

×
[
gνσ(p1 + p2)

β + gσβ(p− p2)
ν − gβν(p+ p1)

σ
]

× [gµρ(p1 + p2)
α + gρα(p− p2)

µ − gαµ(p+ p1)
ρ]

− f2
ABC

3 λ(m2
1,m

2
2,M

2)

×λ(m2
1,m

2
2,M

2)+12(m2
1M

2+m2
2M

2+m2
1m

2
2)

4m2
1m

2
2M

2

− 1
3

VFF −(−1)Tr
[
γβ(G∗

v +G∗
aγ5)(/p1 +m1)

×γα(Gv +Gaγ5)(/p2 +m2)
]

2
3 |Gv|2

[
(m1−m2)

2−M2
][
(m1+m2)

2+2M2
]

M2

+ 2
3 |Ga|2

[
(m1+m2)

2−M2
][
(m1−m2)

2+2M2
]

M2

1
3

Table 5.3: Values of the factor 𝑋0 corresponding to two-particle loops of a vector mediator.
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5.5.3 𝑋0 in the toy model

This section provides the results of application of the developed regularization method to the 3-scalar toy
model described in appendix C. The process that suffers from the 𝑡-channel singularity is the 𝜑1𝜑2 → 𝜑2𝜑1
scattering mediated by Φ, depicted in fig. 5.6 along with the relevant loop diagram.

φ1

φ2

φ2

φ1

Φ
Φ Φ

φ1

φ2

p p

Figure 5.6: Left: the 𝑡-channel singular process of the 3-scalar toy model. Right: the loop diagram
relevant for the regularization of the singularity.

For this process, the factor 𝑋0 is equal to −𝜇2 and all particles are bosons, so the regulator given by
eq. (5.78) becomes

Σ(𝐸𝑝, 𝑇 ) =
1

16𝜋

−𝜇2

𝛽|p|

[︃
ln
𝑒𝛽(𝑏+𝑎) − 1

𝑒𝛽(𝑏−𝑎) − 1
− ln

𝑒𝛽(𝑏+𝑎)𝑒−𝛽𝐸𝑝 − 1

𝑒𝛽(𝑏−𝑎)𝑒−𝛽𝐸𝑝 − 1

]︃
. (5.85)

with

𝑎 =
𝜆(𝑚2

1,𝑚
2
2,𝑀

2)1/2

2𝑀2
|p| , 𝑏 =

𝑚2
1 −𝑚2

2 +𝑀2

2𝑀2
𝐸𝑝 ,

𝜆(𝑚2
1,𝑚

2
2,𝑀

2) =
[︀
𝑚2

1 − (𝑚2 −𝑀)2
]︀ [︀
𝑚2

1 − (𝑚2 +𝑀)2
]︀
.

(5.86)

The thermally averaged cross section calculated using this regulator is plotted in fig. 5.7. As can be
observed, the cross section decreases with temperature. It happens because the larger temperature
is, the larger is the regulator which enters the matrix element in the denominator. For diminishing
temperature, the cross section rises, reproducing the infinite result without the regularization in the limit
of zero temperature. That agrees with the asymptotic behaviour described in section 5.5.1.

〈σ
v
〉
[G

e
V
-
2
]

●

●

●

●

●

●

●  calculated values

Γ= const = 10-3 GeV

Γ= const = 10-2 GeV

Γ= const = 10-1 GeV

Γ= const = 100 GeV

parameters

m1 = 70 GeV, m2 = 40 GeV

M = 20 GeV, μ = 10 GeV

5002001005020105

10-10

10-8

10-6

10-4

10-2

100

thermally averaged cross section

for φ1φ2 → φ2φ1

T [GeV]

Figure 5.7: Thermally averaged cross section calculated for 𝜙1 𝜙2 → 𝜙2 𝜙1 scattering using the
proposed regularization method. The red dots denote the values calculated with the thermal width,
with a black dashed line added to guide reader’s eyes. The dotted blue, dashed green, dash-dotted
orange and dash-double-dotted purple lines provide the cross section calculated under an assumption
that the mediator has a non-zero, constant decay width equal to 1 MeV, 10 MeV, 100 MeV or 1 GeV,
respectively. Values of parameters of the model are shown in the plot.
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5.5.4 𝑋0 in VFDM

Here, we present the value of factor 𝑋0 calculated for singular processes occurring in the VFDM model,
see appendix A.

In fig. 5.8, the relevant vertices of the VFDM model are presented, while fig. 5.9 shows the spin factors,
i.e., propagators with the part 𝑖 (𝑝2 −𝑚2 + 𝑖Π)−1 omitted, corresponding to particles of the model.

Tables 5.4 to 5.6 show the value of 𝑋0, calculated for particle 𝑋, 𝜓+ or 𝜓−, respectively, being the
mediator. Also the corresponding loop diagram and a condition for a given loop to provide a non-zero
contribution to the regulator is included. In each case, a diagram of the 𝑡-channel singular process is
depicted as well.

i 2gxmX R2ihi

X

X

∓ i yxR2ihi

ψ±

ψ±

1
2 γ

µ gxX

ψ+

ψ−

Figure 5.8: Vertices of the VFDM model relevant for calculation of the effective thermal width. For
a detailed description of the variables, see appendix A.

p

hi
→ 1 µ ν

p

X
→ −gµν + pµpν

m2
X

p

ψ±
→ /p+mψ±

Figure 5.9: Spin factors, i.e., propagators with the part 𝑖 (𝑝2 −𝑚2 + 𝑖Π)−1 omitted, corresponding
to particles of the VFDM model: ℎ𝑖 (𝑖 = 1, 2) (left), 𝑋 (centre), 𝜓± (right).

mediator: X

loop X0 condition singular
process

ψ+

X

ψ−

hi

X

X X

p

k + p

ψ+
p

k

ψ−

1
6

g2x
m2

X

[
(mψ+

−mψ−)
2 −m2

X

]

×
[
(mψ+

+mψ−)
2 + 2mX

] mψ+
> mX +mψ−

X X

p

k + p

hi
p

k

X
− 1

3 g
2
xR

2
2i

m4
hi

−4m2
hi
m2

X+12m2
X

m2
X

mhi > 2mX

Table 5.4: Factor 𝑋0 (second column) corresponding to the one-loop self-energy (depicted in the first
column) of the vector mediator 𝑋. In the third column, a condition for the masses for a given loop to
provide a non-zero contribution to the effective width is provided. In the rightmost column, a diagram
of the singular process mediated by the 𝑡-channel 𝑋 is shown.
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mediator: ψ+

loop X0 condition singular
process

X

ψ+

ψ−

hi

ψ+

ψ+ ψ+

p

k + p

X
p

k

ψ−

1
4

g2x
m2

X

[
m2
X − (mψ+

−mψ−)
2
]

×
[
2m2

X + (mψ+
+mψ−)

2
] mX > mψ+

+mψ−

ψ+ ψ+

p

k + p

hi
p

k

ψ+

y2X R
2
2i

(
m2
hi

− 4m2
ψ+

)
mhi > 2mψ+

Table 5.5: Like table 5.4, but with the fermion 𝜓+ as a mediator.

mediator: ψ−

loop X0 condition singular
process

X

ψ−

ψ+

hi

ψ−

or
ψ+

ψ−

X

hi

ψ−

ψ− ψ−

p

k + p

X
p

k

ψ+

1
4

g2x
m2

X

[
m2
X − (mψ+

−mψ−)
2
]

×
[
2m2

X + (mψ+
+mψ−)

2
] mX > mψ+

+mψ−

ψ− ψ−

p

k + p

ψ+
p

k

X

− 1
4

g2x
m2

X

[
(mψ+

−mψ−)
2 −m2

X

]

×
[
(mψ+

+mψ−)
2 + 2m2

X

] mψ+
> mX +mψ−

ψ− ψ−

p

k + p

hi
p

k

ψ−
y2xR

2
2i

(
m2
hi

− 4m2
ψ−

)
mhi > 2mψ−

Table 5.6: Like table 5.4, but with the fermion 𝜓− as a mediator.

The following fig. 5.10 present the effective width of particle 𝑋 as a function of momentum of the
mediator and its mass. Figure 5.11 contains plots of cross section and thermally averaged cross section
for the singular process 𝜓+𝑋 → 𝜓−ℎ2 mediated by a 𝑡-channel 𝑋.
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Figure 5.10: Effective width of particle 𝑋 as a function of momentum (left) and mass (right) of the
particle. The solid purple, dashed blue, dot-dashed green and dotted red line correspond to different
values of temperature: 40 GeV, 20 GeV, 10 GeV and 5 GeV, respectively. Parameters of the model
and diagrams of the first-order loop corrections contributing to the effective width are provided below
the plots. In the right plot, the regions that allow the given loop (denoted by (𝐴), (𝐵) or (𝐶)) to
contribute are marked with shading.
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Figure 5.11: Cross section as a function of CM momentum (left) and thermally averaged cross
section as a function of temperature (right) of the 𝑡-channel singular 𝜓+𝑋 → 𝜓−ℎ2 process mediated
by the 𝑡-channel mediator 𝑋. In the left plot, the solid purple, dashed blue, dot-dashed green and
dotted red line correspond to different values of temperature: 40 GeV, 20 GeV, 10 GeV and 5 GeV,
respectively. The black solid line corresponds to the result before the regularization, which is infinite
for 𝑠1 < 𝑠 < 𝑠2. The parameters are provided in the right plot.

Analogously, the following fig. 5.12 present the effective width of particle 𝜓+ as a function of momen-
tum of the mediator and its mass. Figure 5.13 contains plots of cross section and thermally averaged
cross section for the singular process 𝑋𝜓+ → 𝜓−ℎ2 mediated by a 𝑡-channel 𝜓+. This set resembles
the previous one but the masses of 𝑋 and 𝜓+ have been switched to perform the comparison between
cases of various spins: vector vs fermion mediator. Note that in notation used here, 𝜓+𝑋 → 𝜓−ℎ2 and
𝑋𝜓+ → 𝜓−ℎ2 denote two different diagrams.
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Figure 5.12: Like fig. 5.10, but for 𝜓+ being the mediator.
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Figure 5.13: Like fig. 5.11, but for 𝑋𝜓+ → 𝜓−ℎ2 process mediated by 𝜓+.
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Chapter 6

Collider production and detection of

Higgs-portal dark matter at the future

𝑒+𝑒− colliders

As mentioned in chapter 4, the planned lepton colliders may be particularly suitable for the purpose
of searching for dark matter particles. Here, basing on based on publications [3, 4] and conference
proceedings [5–7], we provide a detailed discussion of possible production of Higgs-portal dark matter
at the future 𝑒+𝑒− colliders. Although we focus on the case of the ILC working at

√
𝑠 = 250 GeV, the

methodology and results described here can be applied to the studies of other 𝑒+𝑒− colliders operating
at similar energies, such as FCC-ee or CEPC (see section 4.3.3).

The goal of the work summarized in this chapter was to estimate the chance for dark particles to
be produced at the future colliders efficiently enough to be noticed at detectors. Another question was
whether it is possible to determine properties of the produced particles, such as their mass and spin.
Taking into account limits and constraints imposed on considered models by the experimental results
(like measured values of the DM relic density) and theoretical requirements (such as perturbativity of the
theory), we have determined the area of the parameter space where efficient production of Higgs-portal
dark particles at the ILC may be possible. We have estimated the maximal possible cross section for the
considered DM production process and compared the cases of various spins.

The analysis has been carried out basing on three simple models of one-component DM, described in
appendix B:

� pseudo-Goldstone DM model (shortened as pGDM and described in appendix B.1),

� fermion DM model (FDM, appendix B.2),

� vector DM model (VDM, appendix B.3).

They extend the SM to provide a dark particle interacting with the baryonic matter through the Higgs
portal consisting of two Higgs-like scalar states: ℎ1, identified with the discovered Higgs particle, and ℎ2.
All the models share exactly the same parameter space:

� sin𝛼, sine of the scalar-sector mixing angle;

� 𝑣𝑆 , the vacuum expectation value of the additional scalar 𝑆;

� 𝑚DM, mass of the dark particle;

� 𝑚ℎ2 , mass of the second Higgs state that couples mostly to the dark sector;

but differ in the spin of the proposed dark particle, which is 0, 1/2 and 1 for the pGDM, FDM and
VDM models, respectively. This made it possible to investigate the influence of DM spin on detection
probability, while keeping other relevant quantities, such as masses and couplings, the same for each
model.

Note that even though dark matter may actually consist of more than one component (as discussed
in section 3.3), so that none of the three models discussed here is fully appropriate, it is not unlikely that
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one of them or a combination can serve as an approximation of a more complete theory, especially if one
of the DM components has significantly smaller mass or stronger coupling to the SM than the others.

This chapter is organized as follows. In section 6.1, we discuss the limitations and constraints on the
parameter space imposed by the experimental results and theoretical requirements (such as perturbativity
of the theory). Then, for each model, we calculate the cross section for the analysed DM production
process, the so-called Higgs-strahlung described in section 6.2. To estimate a chance for detection of the
dark particles, the predicted numbers of DM production events have to be compared with the detection
thresholds provided in section 6.3. Section 6.4 collects the results.

It appeared that most of the points of the parameter space are already excluded by the existing limits
or lead to the DM production rate that is too small to enable detection. In spite of that, in the vicinity
of 𝑚ℎ1 ≃ 2𝑚DM or 𝑚ℎ2 ≃ 2𝑚DM, the amount of the produced dark particles may be not only sufficient,
but even allow to distinguish between the cases of different spins.

6.1 Experimental and theoretical constraints

In this section, we discuss the main sources of constraints and limits on DM models, of both experimental
and theoretical nature. Among them are:

� measurements of DM relic abundance (section 6.1.1),

� null-results of indirect-detection (section 6.1.2) and direct-detection (section 6.1.3) experiments,

� Higgs-measurements at the LHC, limiting invisible branching ratio of the Higgs particle (sec-
tion 6.1.4),

� requirements of theoretical nature (section 6.1.5).

Here, we interpret those limits and constraints in the context of the pGDM, FDM and VDM models.

6.1.1 Relic abundance

The main process that governs evolution of dark matter abundance in the early Universe is the DM
pair annihilation into the SM fermions, 𝜎(DM DM → 𝑓𝑓), which is depicted in fig. 6.1. Due to large
masses of other SM particles coupled to Higgs, the other annihilation channels are strongly kinematically
suppressed for DM masses considered here.

DM

DM

f

f̄

hi

Figure 6.1: Annihilation of two dark paticles into a pair of SM fermion-antifermion through the
Higgs portal. This is the main process responsible for dark matter abundance for the range of masses
under consideration.

The thermally averaged cross section for this process can be calculated as

⟨𝜎𝑣⟩ = 𝑛𝑐
3

𝑚DM𝑚
2
𝑓

𝜋
· 𝒳 ·

(︁
𝑚2

DM −𝑚2
𝑓

)︁3/2
[︀
(4𝑚2

DM −𝑚2
ℎ1
)2 +𝑚2

ℎ1
Γ2
1

]︀ [︀
(4𝑚2

DM −𝑚2
ℎ2
)2 +𝑚2

ℎ2
Γ2
2

]︀ ·

×

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

12 +𝒪
[︁(︀
𝑚DM
𝑇

)︀−1
]︁

(pGDM)

1 +𝒪
[︁(︀
𝑚DM
𝑇

)︀−1
]︁

(VDM)
9
4

(︀
𝑚DM
𝑇

)︀−1
+𝒪

[︁(︀
𝑚DM
𝑇

)︀−2
]︁

(FDM)

,

(6.1)
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where 𝑛𝑐 = 1(3) denotes the number of colour degrees of freedom for 𝑓 being a lepton (quark), while
quantity 𝒳 is defined by the following formula:

𝒳 ≡ (sin𝛼 cos𝛼)2
[︀
(𝑚2

ℎ1
−𝑚2

ℎ2
)2 + (𝑚ℎ1

Γ1 −𝑚ℎ2
Γ2)

2
]︀

𝑣2𝑣2𝑆
. (6.2)

At the tree level, this formula reduces to a square of the coupling constant 𝜅 given by eq. (B.29a).
The 2018 Planck results [10], discussed in section 3.1.2, provide a value of the relic abundance

(︀
Ωℎ2

)︀obs
DM

= 0.1200± 0.0012 . (6.3)

According to eq. (2.93), if

⟨𝜎𝑣⟩DM→𝑏𝑏̄ = 𝜎0(𝑚DM/𝑇 )
−𝑛 , (6.4)

the relic density should be approximately equal to

Ωℎ2 ≃ 8.52× 10−11 GeV−2

𝜎0
(𝑛+ 1)

(𝑚DM/𝑇𝑓 )
𝑛+1

𝑔*(𝑇𝑓 )1/2
. (6.5)

where 𝑇𝑓 ∼ 𝑚DM/25 is the DM temperature at the freeze-out. Combining eqs. (6.3) and (6.5), we obtain

𝜎0 = 7.10× 10−10 GeV−2 (𝑛+ 1)
(𝑚DM/𝑇𝑓 )

𝑛+1

𝑔*(𝑇𝑓 )1/2
, (6.6)

which means that

⟨𝜎𝑣⟩
⃒⃒
⃒
now

= 7.10× 10−10 GeV−2 (𝑛+ 1)
(𝑚DM/𝑇𝑓 )

𝑛+1

𝑔*(𝑇𝑓 )1/2
(𝑇0/𝑚DM)𝑛

≃ 1.92× 10−9 GeV−2 (𝑛+ 1) (𝑇0/𝑇𝑓 )
𝑛 ,

(6.7)

assuming 𝑚DM/𝑇𝑓 ≃ 25 and 𝑔*(𝑇𝑓 ) ≃ 85. Note that the value of 𝑔* is slightly different from the one
assumed in section 2.3.4, but, as stated there, the precise value is of small importance for cold dark
matter since 𝑥𝑓 depends on 𝑔* only logarithmically. Parameter 𝑛 is defined as 0 for bosonic dark matter
(which is the case of the pGDM and VDM models) and 1 for fermion dark matter (FDM).

The leading contribution to eq. (6.1) comes from annihilation into 𝑏𝑏̄ due to high coupling to Higgs
while still light enough to not be kinematically suppressed. Thus, we can apply eq. (6.7) to eq. (6.1) to
obtain

𝒳 ≃ 𝑋(ΩDM
0 ) ≡

[︀
(𝑚2

ℎ1
− 4𝑚2

DM)2 +𝑚2
ℎ1
Γ2
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]︀ [︀
(𝑚2

ℎ2
− 4𝑚2

DM)2 +𝑚2
ℎ2
Γ2
2

]︀

𝑚DM(𝑚2
DM −𝑚2

𝑏)
3/2

× 3.5 · 10−10 GeV−4 ×

⎧
⎪⎨
⎪⎩

0.83 (pGDM)

1 (VDM)

22.2 (FDM)

.

(6.8)

6.1.2 Indirect detection

As discussed in the previous section, assuming the freeze-out temperature to be of the order of 𝑚DM/25,
the present value of the cross section for DM annihilation is fixed by eq. (6.7) to depend on 𝑚DM

only. Thus, the null-results of the ID experiments (see section 4.2), which limit the annihilation cross
section, can be translated into limits on DM mass. Taking into account the 𝑏𝑏̄ data of the Fermi-LAT
experiment [178] that are provided in fig. 6.2, we obtain the following lower limit for the mass of bosonic
DM particles in the pGDM and VDM models:

𝑚DM ≳ 20 GeV . (6.9)

From now on, only the values that exceed this limit are considered.
The factor of 𝑇0/𝑇𝑓 present in the cross section calculated within the FDM model (eq. (6.7) with

𝑛 = 1) suppresses the obtained value by orders of magnitude (𝑇𝑓 should be of the order of 1 − 10 GeV
while the present temperature of the Universe, 𝑇0, is of the order of 10−13 GeV), so that it is consistent
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with the null-results of the ID experiments for any mass. Hence, the mass of fermionic DM is not limited
by the ID experiments. Nevertheless, for consistency, we consider the same range of masses for both
fermionic and bosonic models.
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68% Containment
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Thermal Relic Cross Section
(Steigman et al. 2012)

Figure 6.2: The upper limit on the DM annihilation cross section, coming from null-results of the
Fermi-LAT experiment [178], used in this analysis. The dashed gray line denotes the value leading to
the correct relic density of bosonic DM, as calculated in [110]. Comparison between the limit and the
expected value provides a lower limit for bosonic DM mass. For fermionic dark matter, the value of
cross section that provides the correct relic density is orders of magnitude smaller than in the bosonic
case (see eq. (6.7)).

6.1.3 Direct detection

The current null-results of the DD search for dark matter (see section 4.1) lead to limits on DM parameters
range.

For the one-component DM models discussed in this chapter (described in appendices B.1 to B.3),
the spin-independent cross-section for the DM-nucleon scattering is equal to

𝜎SI ≃
𝜇2𝑓2𝑁
𝜋

· 𝒳 · 𝑚
2
DM𝑚

2
𝑁

𝑚4
ℎ1
𝑚4
ℎ2

⎧
⎨
⎩

[︁
𝒜

64𝜋2𝑣𝑣2𝑆

]︁2
(pGDM)

1 (VDM), (FDM) ,
(6.10)

with 𝑚𝑁 denoting the nucleon mass, 𝜇 standing for the reduced mass defined for the DM-nucleon system,
and the form factor 𝑓𝑁 approximated by 𝑓𝑁 ≃ 0.3 GeV. The momentum transfer and decay widths in
the denominator are omitted as negligible in comparison to masses.

In the limit of zero momentum transfer, the cross section for the pGDM model vanishes [179, 180].
Hence, 1-loop results are used to calculate the factor 𝒜, defined as in [179]1 in the following way:

𝒜 = 𝑎1 · 𝒞12 + 𝑎2 · 𝒟112 + 𝑎3 · 𝒟122 , (6.11)

where the mass-dependent functions 𝒞 and 𝒟 are defined in appendix G and the coefficients 𝑎1, 𝑎2, 𝑎3
are given by

𝑎1 = 4 (𝑚2
ℎ1

sin2 𝛼+𝑚2
ℎ2

cos2 𝛼)
[︀
2𝑣(𝑚2
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cos2 𝛼)− (𝑚2
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−𝑚2

ℎ2
)𝑣𝑆 sin 2𝛼

]︀
, (6.12a)

𝑎2 = −2𝑚4
ℎ1

sin𝛼
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(𝑚2

ℎ1
+ 5𝑚2

ℎ2
)𝑣𝑆 cos𝛼− (𝑚2

ℎ1
−𝑚2
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)(𝑣𝑆 cos 3𝛼+ 4𝑣 sin3 𝛼)
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, (6.12b)

𝑎3 = 2𝑚4
ℎ2

cos𝛼
[︀
(5𝑚2

ℎ1
+𝑚2

ℎ2
)𝑣𝑆 sin𝛼− (𝑚2

ℎ1
−𝑚2

ℎ2
)(𝑣𝑆 sin 3𝛼+ 4𝑣 cos3 𝛼)

]︀
. (6.12c)

Note that the sign of sin𝛼 is relevant here. However, the above formulae are used only to show (see the
right panel of fig. 6.3) that for the pGDM model the value of 𝒳 saturating the DD limit on 𝜎SI is much
greater than the one corresponding to the correct relic density. This conclusion remains valid regardless
of the sign of sin𝛼.

1The loop integrals in Appendix B of [179] are defined with the wrong factor 1/(2𝜋)4 instead of the correct 1/(𝑖𝜋2).
Nevertheless, the results in the main text of that paper are correct.
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The XENON1T limit [75] on the spin-independent cross section for DM-nucleon interaction, 𝜎SI, is
plotted in the left panel of fig. 6.3. For 𝑚DM ≳ 40 GeV, the limit can be approximately parametrized in
the following way:

𝜎max
SI

1 cm2
≃ 8.5× 10−49 𝑚DM

1 GeV
. (6.13)

Figure 6.3: Left: the DD limits from the XENON experiment [75]. The yellow-blue line corresponds
to the used approximation: 𝜎SI ≃ 𝑚DM

1 GeV
10−48.05 cm2. Right: Comparison between 𝒳 (DD) (defined

in eq. (6.14)), which is the value of the variable 𝒳 that saturates the DD limit, and 𝒳 (ΩDM
0 ) (see

eq. (6.8)), the one leading to the correct relic density, in the pGDM model. As 𝒳 (DD) is always much
greater than 𝒳 (Ω0), DD does not restrict the parameter space of that model.

This leads to the following limit on 𝒳 :

𝒳 ≲ 𝒳 (DD) ≡ 𝑚4
ℎ1
𝑚4
ℎ2

𝑚DM𝑚2
𝑁 𝑓

2
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1 (VDM), (FDM) ,

≃ 𝑚4
ℎ2
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· 2.4 · 10−11 GeV−3 ×

⎧
⎨
⎩

[︁
𝒜

64𝜋2𝑣𝑣2𝑆

]︁−2

(pGDM)

1 (VDM), (FDM)
.

(6.14)

As already mentioned, in the case of the pGDM model, this value is always much larger than 𝑋(ΩDM
0 )

provided in eq. (6.8), which has been proved numerically, see the right panel of fig. 6.3. Hence, in that
case, the DD limit does not restrict the parameter range. For the FDM or VDM model, the DD limit
has to be taken into account, which is done numerically by calculating 𝜎SI (as given by eq. (6.10)) and
comparing with the limiting value (6.13) at each considered point of the parameter space.
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6.1.4 LHC measurements

Here, we discuss the implications of the LHC measurements of the Higgs boson decay and production
rates, which are consistent with the SM predictions within the achieved accuracy (see section 4.3.2).

In the case of multi-Higgs models (in particular, our Higgs-portal DM models), that consistency
implies the following condition on the scalar-sector mixing angle 𝛼 [181,182]:

cos2 𝛼 = 1.09± 0.11 . (6.15)

In the SM, the value would be just 1. At the 2𝜎 C.L., this result is equivalent to

cos2 𝛼 > 0.87 (6.16)

This means that the sine of the mixing angle should satisfy

sin2 𝛼 < 0.13 . (6.17)

In this dissertation, a slightly stricter limit of is used:

sin𝛼 < 0.3 . (6.18)

If the SM-like Higgs boson ℎ1 is allowed to decay into two dark particles (i.e., 𝑚ℎ1
> 2𝑚DM), the

decay widths calculated within the models:
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ℎ𝑖

(︂
1− 4

𝑚2
DM

𝑚2
ℎ𝑖

)︂
(FDM)

(6.19)

should be compared with the 95% C.L. LHC limit on invisible Higgs decays [138]:

BR(ℎ1 → inv) < 19% . (6.20)

To obtain the results presented in this chapter, that comparison has been performed numerically.

6.1.5 Theoretical constraints

All the decay widths and cross sections used in this chapter are calculated in the lowest order of the per-
turbation theory. For these results to be meaningful, the models has to satisfy perturbativity conditions.
First, let us consider the coupling between the Higgs states and the dark particles. For the FDM and
VDM models, the coupling constants 𝑦𝑥 and 𝑔𝑥, respectively, must satisfy:

𝑦𝑥 < 4𝜋 , 𝑔𝑥 < 4𝜋. (6.21)

In both models it implies that

𝑣𝑆 >
𝑚DM

4𝜋
. (6.22)

In the pGDM model, the relevant coupling constant is equal to 𝑚2
ℎ𝑖
/𝑣𝑆 multiplied by the appropriate

function of the scalar-sector mixing angle (cf. fig. B.1). In that case, we demand that

𝑚ℎ𝑖/𝑣𝑆 < 4𝜋 (𝑖 = 1, 2) . (6.23)

The perturbativity also requires that the scalar-potential quartic couplings 𝜆𝑆 , 𝜅 are equal to at most
4𝜋. Hence, the set of the perturbativity conditions is:

𝑚DM

𝑣𝑆
< 4𝜋

⏟  ⏞  
for VDM and FDM

,
𝑚ℎ𝑖

𝑣𝑆
< 4𝜋

⏟  ⏞  
for pGDM

, 𝜆𝑆 < 4𝜋 , |𝜅| < 4𝜋 . (6.24)

Also the vacuum-stability conditions, discussed in appendices B.1 to B.3, should be taken into account.
Equations (B.7) and (B.25) (for the pGDM model), (B.37), (B.45) and (B.47) (for the FDM model),
(A.12), (A.20) and (A.21) (for the VDM model) provide:
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� for all models:

𝜆𝐻 > 0 , 𝜆𝑆 > 0 , 𝜅 > −2
√︀
𝜆𝐻𝜆𝑆 , 4𝜆𝐻 𝜆𝑆 − 𝜅2 > 0 , (6.25)

� for the pGDM model:

2𝜆𝑆𝜇
2
𝐻 − 𝜅(𝜇2

𝑆 − 2𝜇2) > 0 , 2𝜆𝐻(𝜇2
𝑆 − 2𝜇2)− 𝜅𝜇2

𝐻 > 0 , (6.26)

� for the FDM and VDM models:

2𝜆𝑆𝜇
2
𝐻 − 𝜅𝜇2

𝑆 > 0 , 2𝜆𝐻𝜇
2
𝑆 − 𝜅𝜇2

𝐻 > 0 . (6.27)

Those conditions, expressed in terms of the input parameters 𝑚ℎ1
, 𝑚ℎ2

, 𝑣, 𝑣𝑆 , 𝑚DM and sin𝛼, are
automatically satisfied:

0 < 𝜆𝐻 ⇔ 0 <
𝑚2
ℎ1

cos2 𝛼+𝑚2
ℎ2

sin2 𝛼

2𝑣2
, (6.28a)
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𝑚2
ℎ1

sin2 𝛼+𝑚2
ℎ2

cos2 𝛼

2𝑣2𝑆
, (6.28b)

0 < 4𝜆𝐻𝜆𝑆 − 𝜅2 ⇔ 0 <
𝑚2
ℎ1
𝑚2
ℎ2

𝑣2𝑣2𝑆
, (6.28c)

0 <

{︃
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2
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2
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⇔ 0 <
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2𝑣2𝑆
, (6.28d)
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. (6.28e)

This happens because choosing the input parameters we implicitly assumed that 𝑣2, 𝑣2𝑆 , 𝑚
2
ℎ1
, and 𝑚2

ℎ2

are all positive, which is equivalent to stability of the vacuum state.
In the pGDM model, two more conditions must be satisfied to ensure that the chosen minimum is the

global one:

2𝜆𝐻𝜇
2
𝑆 − 𝜅𝜇2

𝐻 > 0 . (6.29)

𝜇2
𝑆 > 0 . (6.30)

In terms of the input parameters it means that:

0 < 2𝜆𝐻𝜇
2
𝑆 − 𝜅𝜇2

𝐻 ⇔ 0 <
2𝑚2

ℎ1
𝑚2
ℎ2

− (𝑚2
ℎ1

+𝑚2
ℎ2
)𝑚2

DM + (−𝑚2
ℎ1

+𝑚2
ℎ2
)𝑚2

𝐴 cos(2𝛼)

4𝑣2
, (6.31)

0 < 𝜇2
𝑆 ⇔ 0 <

1

2
𝑚2
ℎ1

sin2 𝛼+
1

2
𝑚2
ℎ2

cos2 𝛼+
1

4

𝑣

𝑣𝑆
(𝑚2

ℎ1
−𝑚2

ℎ2
) sin 2𝛼− 1

2
𝑚2

DM . (6.32)

Figure 6.4 presents results of numerical tests showing that these inequalities are satisfied for within the
parameter range under consideration.
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Figure 6.4: These plot show that the conditions (6.31) (left pannel) and (6.32) (right pannel) are
always true for the considered parameters range (this is equivalent to positiveness of the plotted
quantities). We assume sin𝛼 = 0.3 and calculate 𝑣𝑆 from eq. (6.8).

6.2 Production process

This analysis is focused on the so-called Higgs-strahlung process (or: mono-𝑍 emission), in which dark
particles could be produced along with a 𝑍 boson [183–189]. The process is depicted in fig. 6.5.

e−

e+

ZZ

DM

DM
Z

Q

hi

Figure 6.5: The Higgs-strahlung process, a DM production channel discussed in this chapter. The
dark particle denoted by DM can be 𝐴, 𝑋 or 𝜓, depending on the model, and ℎ𝑖 (𝑖 = 1, 2) denotes
one of the scalar states, carrying four-momentum 𝑄.

Although the 𝑍 boson is not directly registered, as it is an unstable particle that decays before reaching
the detector, we assume that it is possible to reconstruct energy of the boson from the collected data.
Consequently, the recoil mass, i.e., invariant mass of the pair of dark particles equal to

√︀
𝑄2, is a known

quantity.
The largest number of production events is expected at the peak of the Higgs-strahlung process. The

cross section is given by

𝜎SM(𝑠,𝑄2) ≡ 𝑔2𝑉 + 𝑔2𝐴
24𝜋

(︂
𝑔2

cos 𝜃2𝑊

)︂2

× 𝜆1/2(𝑠,𝑄2,𝑚2
𝑍)

8𝑠2
12 𝑠𝑚2

𝑍 + 𝜆(𝑠,𝑄2,𝑚2
𝑍)

(𝑠−𝑚2
𝑍)

2
,

(6.33)

where 𝜆 is the Källén triangle function defined by eq. (0.4). and 𝑔𝑉 , 𝑔𝐴 denote, respectively, the vector
and axial coupling of electron to the Z boson.
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For 𝑄2 = 𝑚2
ℎ1
, the value of 𝜎SM is maximal around 240 − 250 GeV. Hence, we focus on the case of

colliders operating with the CM energy close to that value, specializing to the case of the ILC operating
at

√
𝑠 = 250 GeV.

The differential cross section for that process is given by

𝑑𝜎

𝑑𝑄2
=
𝜎SM(𝑠,𝑄2) 𝑣2

32𝜋2

𝒳 ·
(︀
𝑄2
)︀2

[︀
(𝑄2 −𝑚2

ℎ1
)2 + (𝑚ℎ1

Γ1)2
]︀ [︀

(𝑄2 −𝑚2
ℎ2
)2 + (𝑚ℎ2

Γ2)2
]︀×

×
√︃

1− 4
𝑚2

DM

𝑄2
·

⎧
⎪⎪⎨
⎪⎪⎩

1 (pGDM)

1− 4
𝑚2
DM

𝑄2 + 12
(︁
𝑚2
DM

𝑄2

)︁2
(VDM)

2
𝑚2
DM

𝑄2

(︁
1− 4

𝑚2
DM

𝑄2

)︁
(FDM)

.

(6.34)

The quantity 𝒳 is given by eq. (6.2). The cross section for the SM process of Higgs boson production,
𝑒+𝑒− → 𝑍ℎSM, is denoted by 𝜎SM(𝑠,𝑄2). Here, 𝑠 denotes the CM energy of the process and the Higgs
mass is assumed to be equal to 𝑚ℎSM =

√︀
𝑄2. This cross section is given by eq. (6.33).

𝜎SM(𝑠,𝑄2) ≡ 𝑔2𝑉 + 𝑔2𝐴
24𝜋

(︂
𝑔2

cos 𝜃2𝑊

1

𝑠−𝑚2
𝑍

)︂2

×

× 𝜆1/2(𝑠,𝑄2,𝑚2
𝑍)
[︀
12 𝑠𝑚2

𝑍 + 𝜆(𝑠,𝑄2,𝑚2
𝑍)
]︀

8𝑠2
,

(6.35)

6.2.1 Polarized beams

At linear lepton colliders, polarized beams are proposed to be used to improve the signal-to-background
ratio [147,149]. In such a case, the cross section for the DM production process should be multiplied by
the factor

(1 + 𝑃+)(1− 𝑃−)(𝑔𝑉 + 𝑔𝐴)
2 + (1− 𝑃+)(1 + 𝑃−)(𝑔𝑉 − 𝑔𝐴)

2

2 (𝑔2𝑉 + 𝑔2𝐴)
, (6.36)

where 𝑃− and 𝑃+ denote polarizations of the electron and the positron beam, respectively, defined as
in [156], and are in the range [−1, 1]. For the ILC, the predicted polarizations are 𝑃+ = −30% and
𝑃− = 80%, so that the factor (6.36) is approximately 1.5. Although, because of reduced luminosity, the
resulting number of production events will be smaller, some of the background processes (e.g., the one
depicted in the right panel of fig. 6.6) are suppressed; see a short discussion in section 4.3.3.

The results presented in section 6.4 are expressed in terms of the ratio 𝜎/𝜎SM. Therefore, it does not
matter whether the polarization factor (6.36) is used to perform the calculations, because it appears both
in 𝜎 and 𝜎SM.

6.2.2 Resonant propagator

We observe that the cross section eq. (6.34) is enhanced if 𝑚ℎ2
is close to 𝑚ℎ2

and ℎ𝑖 is on-shell, so that
𝑄2 ≃ 𝑚2

ℎ1,2
. On the other hand, according to eqs. (B.29a) and (B.50), 𝑚ℎ1

= 𝑚ℎ2
means that the portal

coupling 𝜅 should vanish, making DM completely decoupled from the SM and, thus, making the cross
section zero. Those two statements seem to contradict, which deserves a deeper investigation.

To resolve the contradiction, let us examine the propagator of the mediating scalar state ℎ𝑖 in the
limit of 𝑚ℎ2

→ 𝑚ℎ1
. It appears that in that limit, when calculating the resummed propagator of ℎ𝑖, we

should take into account not only the diagonal (𝑖 = 𝑗), but the off-diagonal terms as well. In the case of
our process, the matrix element reads

ℳ = ℳ𝑒+𝑒−→𝑍ℎ𝑖
(𝑄2) ·∆𝑖𝑗(𝑄

2) · ℳℎ𝑗→𝑋𝑋(𝑄2) =

= ℳ𝑒+𝑒−→𝑍ℎ(𝑄
2) ·𝑅1𝑖 ·∆𝑖𝑗(𝑄

2) ·𝑅2𝑗⏟  ⏞  
̂︀Δ(𝑄2)

·ℳℎ→𝑋𝑋(𝑄2) , (6.37)

where ∆𝑖𝑗 is the propagator and ̂︀∆ denotes the propagator contracted with the scalar-sector mixing
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matrix 𝑅. This contracted propagator has the following form, derived in [190,191]:

̂︀∆(𝑄2) = 𝑅1𝑖𝑅2𝑗 ·
1

det𝐷

𝐷⏞  ⏟  [︂
𝑄2 −𝑚2

ℎ2
+Π22(𝑄

2) −Π12(𝑄
2)

−Π21(𝑄
2) 𝑠−𝑚2

ℎ1
+Π11(𝑄

2)

]︂

𝑖𝑗

=

= sin𝛼 cos𝛼 · (𝑚
2
ℎ1

−𝑚2
ℎ2
)−

[︀
Π11(𝑄

2)−Π22(𝑄
2)
]︀
+
[︀
tan𝛼 ·Π12(𝑄

2)− cot𝛼 ·Π21(𝑄
2)
]︀

[︀
𝑄2 −𝑚2

ℎ1
+Π11(𝑄2)

]︀ [︀
𝑄2 −𝑚2

ℎ2
+Π22(𝑄2)

]︀
−Π12(𝑄2)Π21(𝑄2)

.

(6.38)

Here, Π𝑖𝑗 stands for the self-energy imaginary part of the ℎ𝑖ℎ𝑗 (times 𝑖). They are provided in appendix H.
Important is that all of them are roughly the same order of magnitude as 𝑚ℎ𝑖

Γ𝑖.
From the optical theorem it follows that Π𝑖𝑖(𝑄2 = 𝑚2

ℎ𝑖
) = 𝑖𝑚ℎ𝑖

Γ𝑖.
It can be easily observed that if |𝑚ℎ1

−𝑚ℎ2
| ≫ Γ1,Γ2, the numerator is dominated by the 𝑚2

ℎ1
−𝑚2

ℎ2

term, while in the denominator the Π12Π21 term can be neglected, which leads to the formula

̂︀∆(𝑄2) ≃ sin𝛼 cos𝛼 · 𝑚2
ℎ1

−𝑚2
ℎ2

(𝑄2 −𝑚2
ℎ1

+Π11)(𝑄2 −𝑚2
ℎ2

+Π22)
, (6.39)

which can be rewritten in the following way

̂︀∆(𝑄2) ≃ ̂︀∆(𝐵𝑊 )(𝑄2) ≡ sin𝛼 cos𝛼 ·
[︃

1

𝑄2 −𝑚2
ℎ1

+ 𝑖𝑚ℎ1
Γ1

− 1

𝑄2 −𝑚2
ℎ2

+ 𝑖𝑚ℎ2
Γ2

]︃
, (6.40)

given that the terms proportional to the widths are dropped in the numerator.
However, in the 𝑚ℎ2 → 𝑚ℎ1 limit the full formula eq. (6.38) should be used. Then, the propagator

becomes

̂︀∆(𝑄2)
𝑚ℎ2

→𝑚ℎ1−−−−−−−→ sin𝛼 cos𝛼 · −
[︀
Π11(𝑄

2)−Π22(𝑄
2)
]︀
+
[︀
tan𝛼 ·Π12(𝑄

2)− cot𝛼 ·Π21(𝑄
2)
]︀

[︀
𝑄2 −𝑚2

1,2 +Π11(𝑄2)
]︀ [︀
𝑄2 −𝑚2

1,2 +Π22(𝑄2)
]︀
−Π12(𝑄2)Π21(𝑄2)

.

(6.41)

In appendix H it is shown that this limiting value vanishes:

(Π11 −Π22)− (tan𝛼 ·Π12 − cot𝛼 ·Π21)
𝑚ℎ1

→𝑚ℎ2−−−−−−−→ 0 . (6.42)

It means that the whole propagator vanishes as well, consistently with vanishing of 𝜅.
Although it is not strictly justified, we nevertheless use the Breit-Wigner propagator (6.40) because

the region of inapplicability of this approximation is so narrow that it would not be visible in the plots.
It is just important to bear in mind that the quantity 𝒳 given by eq. (6.2) in fact vanishes at 𝑚ℎ1 = 𝑚ℎ2 .

6.3 Standard Model background and detection sensitivity

In collider experiments, the 𝑍 boson produced in the discussed process depicted in fig. 6.5 is not observed
directly. What is detected are products of its decay. Hence, the experimental signature of the DM
production process would be a leptonic/hadronic shower along with missing energy. The energy of 𝑍 is
reconstructed from measured energies of the decay products. Then, the recoil mass, i.e., the invariant
mass of the invisible states, is calculated as

𝑚2
rec ≡ 𝑄2

= (
√
𝑠− 𝐸𝑍)

2 − p2
𝑍

= 𝑠− 2𝐸𝑍
√
𝑠+𝑚2

𝑍 .

(6.43)

Obviously, for this calculation
√
𝑠 should be precisely known. However, mainly due to the initial-state

radiation effects, energy of the incident particles is not absolutely known. In fact, the energies can be
less than assumed, leading to overestimation of the recoil mass.

Another source of measurement uncertainty are the SM background processes, mostly the two shown
in fig. 6.6, namely, the 𝑍𝑍 production (with one of the 𝑍 bosons decaying into neutrinos) and production
of neutrinos along with the 𝑍 boson through the 𝑊𝑊 fusion. In both processes, the observed final state
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(products of 𝑍-boson decay plus missing energy) is identical to the one expected from the DM production
process. Therefore, to claim that dark matter is produced, the number of DM production events must
not only be non-zero, but exceed the background.
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Figure 6.6: The main processes constituting the SM background of the discussed DM production
process. Left: 𝑍𝑍 production with one of the bosons decaying into neutrinos. Right: production of
neutrinos and 𝑍 boson through the 𝑊𝑊 fusion.

For 𝑚ℎ2
≲ 125 GeV, the best estimation of 𝑍 invariant mass is obtained if the muonic decay of 𝑍

is chosen, as the invariant mass of the 𝜇+𝜇− system can be reconstructed very precisely. Moreover, the
SM background is much less than in the case of the hadronic decay. The hadronic background increases
for low recoil masses. For hadronic, also detector resolution effects (due to jet energy resolution) play an
important role.

Figure 6.7 shows the expected 95% C.L limits for detection of BSM invisible Higgs decays at the ILC
operating at

√
𝑠 = 250 GeV. The limit is expressed as the ratio between the cross section that provides

an exceed above the background with the 95% C.L. to the cross section with the SM Higgs boson of a
given mass, assuming selection of 𝜇+𝜇− channel, while making no assumption on the decay modes or
branching ratios of the Higgs [192–194].

The predicted loss of sensitivity around 𝑚ℎ2 = 𝑚𝑍 ≃ 91 GeV comes from the 𝑍𝑍 production,
with one of the bosons decaying invisibly into neutrinos and the other into muons. The upper limit
is

√
𝑠−𝑚𝑍 ≃ 155 GeV.
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Figure 6.7: The predicted 95% C.L. detection limit [192–194] on the cross section for 𝜎(𝑒+𝑒− →
𝑍 + inv) at the ILC at

√
𝑠 = 250 GeV, as a function of the mass of the additional Higgs boson ℎ2,

calculated using the CL(s) approach [195]. The cross section is normalized to 𝜎SM with mass of the
SM Higgs boson equal to 𝑚ℎ2 .

This threshold has been obtained assuming only one scalar mediator, while our processes are super-
positions of diagrams mediated by ℎ1 and ℎ2. Nevertheless, as the considered masses of ℎ1 and ℎ2 are
close to each other, the threshold can be employed to estimate detection chance corresponding to the
results presented in the next section.

6.4 Numerical results

In this section, the numerical predictions for DM production at the future lepton colliders are presented.
As a benchmark, we use the ILC working at

√
𝑠 = 250 GeV [192,194].

All three models: pGDM, FDM and VDM, are parametrized by the following variables:
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� 𝑚ℎ2
, mass of the additional Higgs-like particle ℎ2;

� 𝑚DM, mass of the dark particle (scalar 𝐴, fermion 𝜓 or vector 𝑋, depending on the model);

� 𝑣𝑆 , VEV of the additional scalar field 𝑆;

� sin𝛼, sine of the scalar-sector mixing angle.

The value of 𝑣𝑆 is fixed by the relic-density constraint eq. (6.8) for the value of parameter 𝑋, as given
by (6.2). The value of sin𝛼 is chosen from the allowed range of (0, 0.3) in a way that maximizes the
cross section (usually the maximizing value is just the maximal one, i.e., sin𝛼 ≃ 0.3). Then, two
independent parameters are left: 𝑚ℎ2 and 𝑚DM. For convenience, we reparametrize the parameter space
using 𝑚DM −𝑚ℎ1/2 and 𝑚DM −𝑚ℎ2 as variables. Now, degeneracy in the scalar sector, 𝑚ℎ1 = 𝑚ℎ2 ,
is represented by the diagonal line, 𝑚DM −𝑚ℎ1

/2 = 𝑚𝑑𝑚 −𝑚ℎ2
, while the vertical and horizontal line

correspond to 𝑚DM = 𝑚ℎ1
/2, 𝑚DM = 𝑚ℎ2

/2, respectively.
The cross section is strongly enhanced when the mediator can be on-shell, i.e., when ℎ𝑖 (𝑖 = 1, 2)

is allowed to decay into a pair of dark particles. This happens for 𝑚DM < 𝑚ℎ𝑖/2. From eq. (6.34) it
follows that the cross section is largest when 𝑚ℎ1 ≃ 𝑚ℎ2 , so that both 𝑄2 − 𝑚2

ℎ1
and 𝑄2 − 𝑚2

ℎ2
can

be simultaneously small. Consequently, the maximum appears in the lower-left quarter of the plots,
corresponding to 𝑚ℎ2

≃ 𝑚ℎ1
> 2𝑚DM.

Note that although the exact formula for the propagator, given by eq. (6.38), should be used instead
of the Breit-Wigner approximation (6.39) if the scalar masses 𝑚ℎ1

, 𝑚ℎ2
are very close to each other, the

region affected by the difference is to narrow to be noticeable in the plots.
The FDM and VDM models are strongly constrained by the direct detection limits (see section 6.1.3).

The DM-SM coupling, as proportional to 𝒳 (see eq. (6.10)) is suppressed (according to eq. (6.14)).
In order to provide the annihilation cross section at the sufficient level, while keeping the DD cross
section small enough, the parameters must be close to the resonant values: ⇒ 2𝑚DM − 𝑚ℎ1

≃ 0 or
2𝑚DM −𝑚ℎ2

≃ 0.
On the contrary, in the pGDM the tree-level DD cross section vanishes for zero momentum transfer,

see section 6.1.3, so that the DD does not limit the parameters severely and resonant annihilation is
not necessary to keep the relic density correct. Nevertheless, for comparison with the FDM and VDM
models, we focus on the same range:

⃒⃒
⃒𝑚DM − 𝑚ℎ1,2

2

⃒⃒
⃒ < 5 GeV , (6.44)

which means that 𝑚DM is between 57.5 GeV and 67.5 GeV, while 𝑚ℎ2
is between 105 GeV and 145 GeV

(keep in mind that the analysed region is not rectangular in variables (𝑚DM,𝑚ℎ2
) eq. (6.44)).

Figures 6.8 and 6.9 show the value of the cross section calculated for the process depicted in fig. 6.5,
normalized to 𝜎SM with the mass of the Higgs boson equal to 𝑚ℎ1

= 125 GeV. The values are compared
with the threshold shown in fig. 6.7; also the regions contradicting the constraints discussed in section 6.1
are marked.
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benchmark point for pGDM

𝑚ℎ2 = 120.8 GeV , 𝑚DM = 58.9 GeV ,

sin𝛼 = 0.30 , 𝑣𝑆 = 646 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 9.8 · 10−3 GeV ,

BR(ℎ1 → DM) = 19% , BR(ℎ2 → DM) = 95% ,

𝜎 = 62 fb

Figure 6.8: The cross section for the DM production process 𝑒+𝑒− → 𝑍ℎ𝑖 → 𝑍𝐴𝐴, calculated
within the pGDM model and normalized to the cross section 𝜎SM for the SM process 𝑒+𝑒− → 𝑍ℎ.
Cyan denotes the region where the limits for invisible Higgs branching ratio are exceeded, while gray
corresponds to cross section too small to be distinguishable from the SM background. In the remaining
area, yellow corresponds to high cross section while green denotes small values. The benchmark point,
whose parameters are listed next to the plot, is denoted by the star.

benchmark point for FDM

𝑚ℎ2
= 123.6 GeV , 𝑚DM = 61.1 GeV ,

sin𝛼 = 0.30 , 𝑣𝑆 = 76 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 5.9 · 10−3 GeV ,

BR(ℎ1 → DM) = 18% , BR(ℎ2 → DM) = 91% ,

𝜎 = 59 fb

benchmark point for VDM

𝑚ℎ2
= 118.4 GeV , 𝑚DM = 58.5 GeV ,

sin𝛼 = 0.30 , 𝑣𝑆 = 561 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 6.4 · 10−3 GeV ,

BR(ℎ1 → DM) = 18% , BR(ℎ2 → DM) = 92% ,

𝜎 = 61 fb

Figure 6.9: Like fig. 6.8, but for the FDM model (left) and the VDM model (right). Black denotes
the area where the direct-detection limits contradict the relic-density constraint.
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Assuming the mass of dark particle and the mass of the additional Higgs particle can be measured,
they can be used as a probe to disentangle the models. The measured results should be compared with
the values allowed by the experimental constraints, presented in fig. 6.10. As seen from the figure, there
are regions forbidden for a given value of DM spin and allowed for another, e.g., point (𝑚DM,𝑚ℎ2) =
(64.5 GeV, 133 GeV) (so that 𝑚DM−𝑚ℎ1/2 = 2 GeV and 𝑚DM−𝑚ℎ2/2 = −2 GeV) is forbidden for the
FDM model, while allowed for the pGDM and VDM model.

Figure 6.10: Comparison of parameter space allowed for the DM models under discussion. Top-left:
pGDM model, top-right: FDM model, bottom-left: VDM model, bottom-right: the previous three
plots combined. The coloured regions are forbidden by the limits for the invisible Higgs branching ratio
and the direct-detection limits. The light- and dark-gray areas correspond to violation of perturbativity
constraints (see eq. (6.24)). The perturbativity condition |𝜅| < 4𝜋, whose violation would be marked
in red, is fulfilled in the whole considered part of the parameter space.

Another possibility to disentangle the models would be to compare the values of cross sections to
the theoretical predictions. In the following plots figs. 6.11 and 6.12, we compare the maximal possible
difference obtained for the most optimistic value of sin𝛼 with the predicted sensitivity of the detectors
fig. 6.7. Whenever the difference is smaller, the models are undistinguishable by this method. There are,
however, regions (especially when comparing pGDM to the VDM) where the difference should be large
enough to make the models distinguishable.
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Figure 6.11: The difference between the results obtained for the pGDM and VDM models. Cyan
and black denote the region where at least one of the models is inconsistent with the experimental
limits, while the region where the difference is too small to be noticeable (cf. fig. 6.7) is marked with
gray.

Figure 6.12: Like fig. 6.11, but for the pGDM and FDM models (left panel), and for the FDM and
VDM models (right panel).

As can be observed in the plots, most of the parameter space is either forbidden by the current
experimental constraints or would correspond to a signal too low to be detected. Nevertheless, there still
exist combination of parameters leading to effective DM production at the future DM colliders. Moreover,
it appears that disentangling dark particles of different spins could be, in principle, possible comparing
their measure parameters with the allowed range shown in fig. 6.10. The precise values of cross section
differing by the spin of the dark particle are different as well.
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Chapter 7

Summary

Higgs-portal models satisfy all requirements expected from theories of dark matter. They provide: mas-
sive, stable candidates; a mechanism of establishing the relic density; and a possibility of self-interactions
within the dark sector. What is worth to stress is that those models are renormalizable gauge-symmetry
theories, fully consistent from the theoretical point of view.

In this dissertation, we have focused on interactions of dark matter in the early Universe and at the fu-
ture 𝑒+𝑒− colliders. In chapter 5, we have discussed the so-called 𝑡-channel singularity, affecting processes
involving massive stable particles, which are crucial for DM studies, as they influence the relic abundances
through the Boltzmann equation (see section 2.4). We have provided a strict condition for a given process
to be affected by the singularity, and proposed a regularization method, employing interactions between
the on-shell 𝑡-channel mediator and the surrounding gas to obtain an effective, temperature-dependent
decay width of the mediator. As demonstrated, this solution can be applied always if the medium is
present. Although the calculations assume that the medium is thermal, this assumption is not necessary,
as any form of the phase-space distribution function of the medium components can be used to obtain
numerical results. The method has been applied to a simple model consisting of three scalar fields, and
to the multi-component vector-fermion DM model, in each case successfully regularizing the would-be
singular cross sections.

In chapter 6, we have studied production of dark particles at the future 𝑒+𝑒− colliders. We have
taken into account all types of observational constraints that limit the parameter space of DM models. It
has appeared that although the parameters are tightly constrained, there are still regions allowed by the
present combined limits. Moreover, in some of those regions, DM production could be efficient enough
to enable detection. Thus, building new lepton colliders seems to be a promising perspective from the
point of view of DM studies. In our analysis, we have employed models very similar to each other in
construction and phenomenology, but differing by the spin of the proposed dark particle. This enabled
to investigate the influence of DM spin on production probability. In all three analysed models: the
one proposing a scalar dark particle, the one providing a dark fermion, and the one with a dark vector,
the obtained results are similar: the maximal possible production cross section of the Higgs-strahlung
processes, with a subsequent decay of the Higgs state into dark particles, is around 60 fb. However, the
shape of the allowed parameter space is slightly different for each model, which in principle could enable
disentangling the cases of different spins.

The results of this dissertation are applicable to a wide range of particle models: the 𝑡-channel singu-
larity can affect any model with a decay into massive, stable products, while the simple one-component
DM models employed in chapter 6 can serve, either treated separately or together, as the first approxima-
tion of more involved models of Higgs-portal DM. However, the most important aspect of those studies
are not the numerical results, but the developed general methodology that could be adapted to reader’s
own research.

87



Appendix A

Multicomponent vector-fermion dark

matter model

The vector-fermion dark matter (VFDM) model [21–23] is an extension of the Standard Model of particle
physics, which provides two or three dark matter candidates (depending on stability of the dark-sector
particles). The dark particles are interacting with the SM through the Higgs portal.

A.1 Introduction

In the VFDM model, the gauge group of the Standard Model is extended by an additional Abelian group,
𝑈(1)𝑥, which acts trivially on the SM fields. In the scalar sector, apart from the SM Higgs doublet 𝐻, an
additional complex singlet 𝑆 is introduced. The real-part fluctuations of 𝑆 and of the neutral component
of 𝐻 mix to provide two scalar mass-eigenstates: ℎ1, which is identified with the known Higgs particle of
the mass 𝑚ℎ1

= 125 GeV, and ℎ2, which can be, in principle, of any mass. The gauge vector of 𝑈(1)𝑥,
called 𝑋, becomes massive through the Higgs mechanism, absorbing the imaginary-part fluctuation of 𝑆.

Moreover, a Dirac fermion 𝜒 is introduced. The newly introduced fields have the following charges
with respect to the 𝑈(1)𝑥:

𝑆 : 𝑞𝑥 = 1 , 𝜒 : 𝑞𝑥 = 1/2 , (A.1)

and are even under the action of the SM gauge group. An additional dark-charge-conjugation symmetry 𝒞:

𝒞 : 𝑋 → −𝑋 , 𝑆 → 𝑆* , 𝜒→ 𝜒𝑐 ≡ −𝑖𝛾2𝜒* . (A.2)

is imposed to forbid the kinetic mixing between 𝑋 and the SM vector bosons. This symmetry does not
affect the SM fields. Here, 𝛾2 denotes one of the Dirac matrices (for a brief summary of their properties,
see appendix D) and (. . .)* is the complex conjugation.

The Lagrangian of the model consists of three parts:

ℒ = ℒSM + ℒDS + ℒportal . (A.3)

ℒSM is the SM Lagrangian (including the potential of the SM Higgs field), and ℒDS denotes the dark-sector
Lagrangian:

ℒDS ≡− 1

4
𝑋𝜇𝜈𝑋𝜇𝜈 + (𝐷𝜇𝑆)*𝐷𝜇𝑆 + 𝜒̄(𝑖 /𝐷 −𝑚𝐷)𝜒

+ 𝜇2
𝑆 |𝑆|2 − 𝜆𝑆 |𝑆|4 −

1√
2
(𝑦𝑥𝑆

*𝜒⊺𝒞𝜒+ h.c.) ,
(A.4)

where

𝑋𝜇𝜈 ≡ 𝜕𝜇𝑋𝜈 − 𝜕𝜈𝑋𝜇 , 𝐷𝜇 ≡ 𝜕𝜇 + 𝑖𝑔𝑥𝑞𝑥𝑋𝜇 , (A.5)

𝑔𝑥 is a real dimensionless coupling constant, 𝑞𝑥 is the charge defined in eq. (A.1), and 𝒞 ≡ 𝑖𝛾0𝛾2 denotes
the charge-conjugation operator (see appendix D.3 for a list of its main properties). Moreover, 𝑚𝐷
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denotes the Dirac mass of 𝜒, 𝜇2
𝑆 is a coupling constant of dimension of [mass]2, and 𝜆𝑆 and 𝑦𝑥 are

dimensionless. The Higgs-portal Lagrangian, ℒportal, is given by

ℒportal = −𝜅|𝑆|2|𝐻|2 (A.6)

with a dimensionless coupling 𝜅. Since the Lagrangian must be Hermitian, the couplings: 𝜇2
𝑆 , 𝜆𝑆 , 𝜅

must be real. The Dirac mass 𝑚𝐷 is assumed to be real (due to hermiticity) and positive. Moreover,
as the Lagrangian is invariant under complex rotations of 𝑆, the complex phase of the Yukawa coupling
constant 𝑦𝑥 can be absorbed by 𝑆, so it can be assumed that 𝑦𝑥 > 0.

A.2 Scalar sector

The scalar-sector potential 𝑉 consists of the SM Higgs potential and the scalar-potential part of ℒDS

(taken with the minus sign):

𝑉 (𝐻,𝑆) ≡ −𝜇2
𝐻 |𝐻|2 + 𝜆𝐻 |𝐻|4 − 𝜇2

𝑆 |𝑆|2 + 𝜆𝑆 |𝑆|4 + 𝜅|𝑆|2|𝐻|2 . (A.7)

A.2.1 Stability conditions

In order for the theory to be stable, the potential must be bounded from below. To provide a strict
condition for this requirement to be fulfilled, we assume

|𝑆| = 𝑟 sin𝛼 , |𝐻| = 𝑟 cos𝜙 , (A.8)

with 𝑟 > 0 and 𝜙 ∈ [0, 𝜋2 ], and observe that

𝑟−4 𝑉 (𝐻,𝑆)
𝑟→∞−−−→ 𝜆𝐻 cos4𝜙+ 𝜆𝑆 sin

4𝜙+ 𝜅 cos2𝜙 sin2𝜙 . (A.9)

If this limit is positive for any 𝜙 ∈ [0, 𝜋2 ], the stability is ensured. For 𝜙 = 0, the limit is 𝜆𝐻 , while for
𝜙 = 𝜋

2 it is equal to 𝜆𝑆 , so both 𝜆𝐻 and 𝜆𝑆 are required to be positive. In the case of 0 < 𝜙 < 𝜋
2 ,

positivity of the limit means that

0 < 𝜆𝐻 cos4𝜙+ 𝜆𝑆 sin
4𝜙+ 𝜅 cos2𝜙 sin2𝜙 (A.10)

⇔ 𝜅 > −(𝜆𝐻 cot2𝜙+ 𝜆𝑆 tan
2𝜙) . (A.11)

Given that 𝜆𝐻 , 𝜆𝑆 > 0, the maximal value (with respect to 𝜙) of the function on the right-hand side of
the last inequality is −2

√
𝜆𝐻𝜆𝑆 . Hence, to ensure that the potential is stable it is demanded that

𝜆𝐻 > 0 , 𝜆𝑆 > 0 , 𝜅 > −2
√︀
𝜆𝐻𝜆𝑆 . (A.12)

A.2.2 Spontaneous symmetry breaking and mass-eigenstates

Since the potential, as a function of |𝐻| and |𝑆|, is continuous, bounded from below and tends to positive
infinity when its arguments tend to infinity (positive or negative), it has a minimum whose position
defines the vacuum expectation values (VEVs) of 𝐻 and 𝑆. Due to symmetry of the Lagrangian, the
vacuum expectations values can be assumed to be real and non-negative:

⟨𝐻⟩ =
(︂

0
𝑣√
2

)︂
, ⟨𝑆⟩ = 𝑣𝑆√

2
, 𝑣, 𝑣𝑆 ⩾ 0 . (A.13)

The VEVs must satisfy

0 =
𝜕𝑉

𝜕|𝐻|
⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣√
2
(2 𝑣2 𝜆𝐻 − 2𝜇2

𝐻 + 𝜅 𝑣2𝑆) , (A.14a)

0 =
𝜕𝑉

𝜕|𝑆|
⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣𝑆√
2
(2 𝑣2𝑆 𝜆𝑆 − 2𝜇2

𝑆 + 𝜅 𝑣2) , (A.14b)
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which gives the following four solutions:

𝑣2 =
4𝜆𝑆𝜇

2
𝐻 − 2𝜅𝜇2

𝑆

4𝜆𝐻𝜆𝑆 − 𝜅2
, 𝑣2𝑆 =

4𝜆𝐻𝜇
2
𝑆 − 2𝜅𝜇2

𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
⇒ 𝑉 = 𝑉1 ≡ −𝜆𝑆 𝜇

4
𝐻 − 𝜅𝜇2

𝐻 𝜇
2
𝑆 + 𝜆𝐻 𝜇

4
𝑆

4𝜆𝐻 𝜆𝑆 − 𝜅2
, (A.15)

𝑣2 =
𝜇2
𝐻

𝜆𝐻
, 𝑣2𝑆 = 0 ⇒ 𝑉 = 𝑉2 ≡ − 𝜇4

𝐻

4𝜆𝐻
, (A.16)

𝑣2 = 0 , 𝑣2𝑆 =
𝜇2
𝑆

𝜆𝑆
⇒ 𝑉 = 𝑉3 ≡ − 𝜇4

𝑆

4𝜆𝑆
, (A.17)

𝑣2 = 0 , 𝑣2𝑆 = 0 ⇒ 𝑉 = 𝑉4 ≡ 0 . (A.18)

As both VEVs should be non-zero to provide masses to the gauge bosons of the theory (the SM gauge
bosons and the one corresponding to 𝑈(1)𝑥), the first solution is preferred. It is the global minimum if
𝑉1 is smaller than 𝑉2, 𝑉3 and 𝑉4. The difference between 𝑉2 and 𝑉1 is

𝑉2 − 𝑉1 = − 𝜇4
𝐻

4𝜆𝐻
+
𝜆𝑆 𝜇

4
𝐻 − 𝜅𝜇2

𝐻 𝜇
2
𝑆 + 𝜆𝐻 𝜇

4
𝑆

4𝜆𝐻 𝜆𝑆 − 𝜅2

=
(2𝜆𝐻 𝜇

2
𝑆 − 𝜅𝜇2

𝐻)2

4𝜆𝐻(4𝜆𝐻 𝜆𝑆 − 𝜅2)
,

(A.19)

which is positive if

4𝜆𝐻 𝜆𝑆 > 𝜅2 . (A.20)

Similarly, it can be shown that the same condition leads to 𝑉1 < 𝑉3. As 𝑉2 and 𝑉3 are obviously smaller
than 𝑉4 (note that (A.12) is assumed), this condition is sufficient to ensure that (A.15) is the global
minimum.

For consistency with positivity of 𝑣2 and 𝑣2𝑆 specified by eq. (A.15), also the following inequalities
must hold:

2𝜆𝑆 𝜇
2
𝐻 > 𝜅𝜇2

𝑆 , 2𝜆𝐻 𝜇
2
𝑆 > 𝜅𝜇2

𝐻 . (A.21)

Note that 𝜇2
𝐻 and 𝜇2

𝑆 are not necessarily positive. In fact, if 𝜅 < 0, one of them can be negative without
spoiling stability of the potential and moving the global minimum out of (A.15).

The scalar fields can be expanded around their VEVs as follows:

𝐻 =

(︃
𝜋+

𝑣+ℎ+𝑖𝜋0
√
2

)︃
, 𝑆 =

𝑣𝑆 + 𝜑+ 𝑖𝜎√
2

. (A.22)

As the Lagrangian is gauge invariant, we are allowed to work in the unitary gauge, in which the would-be
Goldstone bosons 𝜋+, 𝜋0 and 𝜎 vanish, as they are absorbed by the gauge vectors. Using this expansion
and eq. (A.15), after the spontaneous symmetry breaking (SSB) we obtain the following scalar-sector
mass-squared matrix:

𝑀2
ℎ,𝜑 ≡

[︃
𝜕2𝑉
𝜕ℎ2

𝜕2𝑉
𝜕𝜑 𝜕ℎ

𝜕2𝑉
𝜕ℎ 𝜕𝜑

𝜕2𝑉
𝜕𝜑2

]︃

ℎ=𝜑=0

=

[︂
2𝜆𝐻𝑣

2 𝜅𝑣𝑣𝑆
𝜅𝑣𝑣𝑆 2𝜆𝑆𝑣

2
𝑆

]︂
. (A.23)

Since 𝑣, 𝑣𝑆 > 0, the matrix is positive-definite as long as the condition (A.20) is satisfied. The matrix
(A.23) can be diagonalized in the basis of mass eigenstates ℎ1 and ℎ2 obtained by the following rotation
of ℎ and 𝜑:

(︂
ℎ1
ℎ2

)︂
≡ 𝑅−1

(︂
ℎ
𝜑

)︂
, 𝑅 ≡

[︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

]︂
, tan(2𝛼) ≡ 𝜅𝑣𝑣𝑆

𝜆𝐻𝑣2 − 𝜆𝑆𝑣2𝑆
. (A.24)

After the diagonalization, the mass-squared matrix becomes

𝑀2
ℎ1,ℎ2

= 𝑅−1𝑀2
ℎ,𝜑𝑅 =

[︂
𝑚2
ℎ1

0
0 𝑚2

ℎ2

]︂
, (A.25)

with

𝑚2
ℎ1

≡ 𝜆𝐻𝑣
2 + 𝜆𝑆𝑣

2
𝑆 + (𝜆𝐻𝑣

2 − 𝜆𝑆𝑣
2
𝑆)/ cos(2𝛼) , (A.26a)

𝑚2
ℎ2

≡ 𝜆𝐻𝑣
2 + 𝜆𝑆𝑣

2
𝑆 − (𝜆𝐻𝑣

2 − 𝜆𝑆𝑣
2
𝑆)/ cos(2𝛼) . (A.26b)

The squared masses 𝑚2
ℎ1

and 𝑚2
ℎ2

are automatically positive, as the matrix (A.23) is positive-definite.
As already mentioned, ℎ1 is identified with the known Higgs state, so 𝑚ℎ1 is assumed to be equal to
125 GeV.
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A.3 Dark fermionic sector

The part of the Lagrangian (A.3) that describes dark fermions reads

ℒDF ≡ 𝜒̄(𝑖 /𝐷 −𝑚𝐷)𝜒− 1√
2
(𝑦𝑥𝑆

*𝜒⊺𝒞𝜒+ h.c.) . (A.27)

With the charge-conjugated field 𝜒𝑐, defined as

𝜒𝑐 ≡ −𝑖𝛾2𝜒* = 𝒞𝜒̄⊺ , (A.28)

and using eq. (E.6), we can rewrite this part of the Lagrangian as

ℒDF =
𝑖

2
(𝜒̄/𝜕𝜒+ 𝜒𝑐/𝜕𝜒𝑐)− 𝑔𝑥

4
(𝜒̄𝛾𝜇𝜒− 𝜒𝑐𝛾𝜇𝜒𝑐)𝑋𝜇 − 𝑚𝐷

2
(𝜒̄𝜒+ 𝜒𝑐𝜒𝑐)− 𝑦𝑥√

2
(𝑆*𝜒𝑐𝜒+ 𝑆𝜒̄𝜒𝑐) . (A.29)

After the SSB, described by eqs. (A.13) and (A.22), this Lagrangian takes the following form:

ℒDF =
𝑖

2
(𝜒̄/𝜕𝜒+ 𝜒𝑐/𝜕𝜒𝑐)− 𝑚𝐷

2
(𝜒̄𝜒+ 𝜒𝑐𝜒𝑐)

− 𝑔𝑥
4
(𝜒̄𝛾𝜇𝜒− 𝜒𝑐𝛾𝜇𝜒𝑐)𝑋𝜇 − 𝑦𝑥𝑣𝑆

2
(𝜒𝑐𝜒+ 𝜒̄𝜒𝑐)− 𝑦𝑥

2
(𝜒𝑐𝜒+ 𝜒̄𝜒𝑐)𝜑 .

(A.30)

Introducing Majorana fermions 𝜓± with masses 𝑚𝜓± , defined as

𝜓+ ≡ 𝜒+ 𝜒𝑐√
2

= 𝜓𝑐+ , 𝜓− ≡ 𝜒− 𝜒𝑐

𝑖
√
2

= 𝜓𝑐− , (A.31a)

𝑚𝜓± ≡ 𝑚𝐷 ± 𝑦𝑥𝑣𝑆 , (A.31b)

and using eqs. (E.10) and (E.11), we can rewrite the dark fermionic Lagrangian as

ℒDF =
𝑖

2
(𝜓+/𝜕𝜓+ + 𝜓−/𝜕𝜓−)−

𝑚+

2
𝜓+𝜓+ − 𝑚−

2
𝜓−𝜓−

− 𝑖𝑔𝑥
4

(𝜓+𝛾
𝜇𝜓− − 𝜓−𝛾

𝜇𝜓+)𝑋𝜇 − 𝑦𝑥
2
(𝜓+𝜓+ − 𝜓−𝜓−)𝜑 .

(A.32)

As 𝑦𝑥 is assumed to be positive (see appendix A.1), we conclude that

𝑚𝜓+
> 𝑚𝜓− . (A.33)

A.4 Dark vector particle

The part of the Lagrangian (A.3) that describes the gauge boson 𝑋 reads

ℒ𝑋 = −1

4
𝑋𝜇𝜈𝑋𝜇𝜈 + (𝐷𝜇𝑆)*𝐷𝜇𝑆. (A.34)

The terms describing interactions with the dark fermions are not included here as they have already been
discussed in the previous section. After the SSB (see (A.13) and (A.22)), this Lagrangian becomes

ℒ𝑋 = −1

4
𝑋𝜇𝜈𝑋𝜇𝜈 +

1

2
𝜕𝜇𝜑𝜕𝜇𝜑+

𝑚2
𝑋

2
𝑋𝜇𝑋𝜇 + 𝑔𝑥𝑚𝑋𝑋

𝜇𝑋𝜇𝜑+
𝑔2𝑥
2
𝑋𝜇𝑋𝜇𝜑

2 , (A.35)

with 𝑚𝑋 ≡ |𝑔𝑥|𝑣𝑆 denoting the mass of the gauge boson 𝑋, gained from the scalar 𝑆 through the Higgs
mechanism. For convenience, we assume that

𝑔𝑋 > 0 . (A.36)

Eventually, the full Lagrangian (A.3) contains three dark-sector particles: Majorana fermions 𝜓+ and
𝜓−, and a massive vector boson 𝑋. Moreover, there are two scalar states: ℎ1 (identified with the known
Higgs particle) and ℎ2, that serve as mediators between the SM and the dark sector.
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A.5 Parameters of the model

The free parameters of the theory are:

� the couplings: 𝑔𝑥, 𝑦𝑥,

� parameters of the scalar potential (A.7): 𝜇𝐻 , 𝜇𝑆 , 𝜆𝐻 , 𝜆𝑆 , 𝜅,

� VEVs of the scalar fields: 𝑣, 𝑣𝑆 ,

� the Dirac mass: 𝑚𝐷.

The number of the parameters necessary to define the theory, eight, can be reduced by two by the
assumption that

� ℎ1 is the known Higgs particle,

� the VEV of 𝐻 is equal to the SM value,

so that

𝑚ℎ1
= 125 GeV , 𝑣 = 246 GeV . (A.37)

As the remaining six parameters the following set is chosen:

� masses of the dark states: 𝑚𝜓+
, 𝑚𝜓− , 𝑚𝑋 ,

� mass of the second scalar mass-eigenstate: 𝑚ℎ2
,

� the 𝑈(1)𝑥 coupling constant: 𝑔𝑥,

� sine of the scalar-sector mixing angle: sin𝛼.

By construction, 𝑚𝜓+
must always be greater than 𝑚𝜓− , see relation (A.33). The initial set of free

parameters can be expressed in terms of the chosen final set and the known parameters 𝑚ℎ1
, 𝑣 as follows:

𝑣𝑆 =
𝑚𝑋

𝑔𝑥
, 𝑚𝐷 =

𝑚𝜓+ +𝑚𝜓−

2
, 𝑦𝑥 =

𝑚𝜓+ −𝑚𝜓−

2𝑣𝑆
, 𝜅 = sin 2𝛼

𝑚2
ℎ1

−𝑚2
ℎ2

2 𝑣𝑣𝑆
, (A.38a)

𝜆𝐻 =
cos2𝛼𝑚2

ℎ1
+ sin2𝛼𝑚2

ℎ2

2 𝑣2
, 𝜇2

𝐻 =
1

2
𝑚2
ℎ1

cos2𝛼+
1

2
𝑚2
ℎ2

sin2𝛼+
1

4

𝑣𝑆
𝑣

sin 2𝛼 (𝑚2
ℎ1

−𝑚2
ℎ2
) , (A.38b)

𝜆𝑆 =
sin2𝛼𝑚2

ℎ1
+ cos2𝛼𝑚2

ℎ2

2 𝑣2𝑆
, 𝜇2

𝑆 =
1

2
𝑚2
ℎ1

sin2𝛼+
1

2
𝑚2
ℎ2

cos2𝛼+
1

4

𝑣

𝑣𝑆
sin 2𝛼 (𝑚2

ℎ1
−𝑚2

ℎ2
) . (A.38c)

The conditions expressed by eqs. (A.12), (A.20) and (A.21) are now automatically satisfied, as they have
transformed into positivity conditions for 𝑚2

ℎ1
, 𝑚2

ℎ2
, 𝑣2, 𝑣2𝑆 :

4𝜆𝐻 𝜆𝑆 − 𝜅2 =
𝑚2
ℎ1
𝑚2
ℎ2

𝑣2𝑣2𝑆
> 0 , (A.39a)

2𝜆𝑆 𝜇
2
𝐻 − 𝜅𝜇2

𝑆 =
𝑚2
ℎ1
𝑚2
ℎ2

2 𝑣2𝑆
> 0 , (A.39b)

2𝜆𝐻 𝜇
2
𝑆 − 𝜅𝜇2

𝐻 =
𝑚2
ℎ1
𝑚2
ℎ2

2 𝑣2
> 0 . (A.39c)

A.6 Interaction vertices. Dark matter candidates

Interactions of the dark-sector particles described by the Lagrangians (A.32) and (A.35) are represented
by the Feynman vertices provided in fig. A.1. The scalar particles ℎ1, ℎ2 interact with the SM particles
like the SM Higgs particle, but multiplied by 𝑅11 or 𝑅12, respectively, with the matrix 𝑅 defined by
eq. (A.24).
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∓ i yxR2ihi

ψ±

ψ±

2 i gxmX R2ihi

X

X

2 i g2xR2iR2j

hi

hj

X

X

1
2 γ

µ gxX

ψ+

ψ−

Figure A.1: Vertices corresponding to interactions of dark particles (vector 𝑋 and fermions 𝜓+, 𝜓−)
in the VFDM model. Matrix 𝑅 is defined in eq. (A.24) and 𝑖, 𝑗 = 1, 2. In [21,22], a wrong value of the
factor corresponding to the 𝑋𝑋ℎ𝑖ℎ𝑗 vertex has been provided (in the numerical calculations therein,
however, the correct value has been used).

The leftmost interaction shown in fig. A.1 makes a decay in the dark sector possible. As a consequence,
the model provides either two or three massive, stable candidates for dark matter, depending on whether
the heaviest from 𝜓+, 𝜓−, 𝑋 is heavy enough to decay into the two others.
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Appendix B

One-component dark matter models

The pseudo-Goldstone (appendix B.1), fermion (appendix B.2) and vector (appendix B.3) DM models,
described here basing on publications [3, 4] and conference proceedings [5–7], are simple, however not
necessarily minimal, fully self-consistent, renormalizable models of one-component Higgs-portal dark
matter of spin 0, 1/2 and 1, respectively. They have been used to investigate the influence of the spin of
dark particles on their interactions with the Standard Model. What makes the models especially useful
to perform the comparison, is a common parameter space that consists of:

� sin𝛼, sine of the scalar-sector mixing angle;

� 𝑣𝑆 , the vacuum expectation value of the additional scalar 𝑆;

� mass of the dark particle (depending on the model, it is denoted 𝑚𝐴, 𝑚𝜓 or 𝑚𝑋);

� 𝑚ℎ2 , mass of the second Higgs state that couples mostly to the dark sector.

Parameters 𝑚ℎ1 and 𝑣, appearing in the following description of the models, are assumed to correspond
to the known values of the mass of the known Higgs boson and the VEV of the SM Higgs field, so

𝑚ℎ1
= 125 GeV , 𝑣 = 246 GeV . (B.1)

All the aforementioned quantities are defined in detail in the following sections.

B.1 Pseudo-Goldstone (scalar) DM model

In the pseudo-Goldstone dark matter (pGDM) model, the Standard Model is extended by a complex scalar
singlet 𝑆. Analogously to the VFDM model (appendix A), the real-part fluctuation of 𝑆 mixes with the
real-part fluctuation of the neutral component of the SM Higgs field, resulting in two Higgs-like mass
eigenstates: ℎ1 (the known Higgs particle) and ℎ2. In contrast to the VFDM model, the imaginary-part
fluctuation of 𝑆, denoted by 𝐴, obtains a non-zero mass from the symmetry-breaking term 𝜇2(𝑆2+𝑆*2),1

and become a scalar dark matter particle.
The most general Lagrangian describing 𝑆 is too complicated to keep the model easily comparable

with the other one-component DM models described in this dissertation. Hence, in order to simplify the
Lagrangian, a local 𝑈(1)𝑥 symmetry which does not affect the SM fields is imposed:

𝑈(1)𝑥 : 𝑆 → 𝑒𝑖𝜙𝑆 . (B.2)

We allow this symmetry to be softly broken: it cancels all the terms that are power-42 in 𝑆 except |𝑆|4,
but the terms of lower power in 𝑆 are, in principle, allowed. The terms that are of odd powers in 𝑆 can
be cancelled by a discrete Z2 symmetry:

Z2 : 𝑆 → −𝑆 , (B.3)

1Without this term, 𝐴 would be a truly massless Goldstone boson
2In this paragraph, by “the terms that are power-𝑛 in 𝑆” one should understand the terms proportional to: 𝑆𝑛, 𝑆𝑛−1𝑆*,

𝑆𝑛−2𝑆*2, . . . , 𝑆*𝑛.
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which, again, does not affect the SM fields. The third symmetry, 𝒞, is imposed to make the coefficient of
the 𝑈(1)𝑥-softly-breaking term 𝑆2 + 𝑆*2 real, as it will be the source of the mass of the dark particle, as
described in the following sections. 𝒞 acts on the 𝑆 field in the following way:

𝒞 : 𝑆 → 𝑆* , (B.4)

while all the SM fields remain unchanged. Eventually, the remaining Lagrangian takes the form

ℒ = ℒSM + (𝐷𝜇𝐻)†(𝐷𝜇𝐻) + (𝜕𝜇𝑆)
*(𝜕𝜇𝑆)− 𝑉 (𝐻,𝑆) , (B.5)

where ℒSM denotes the SM Lagrangian (excluding the Higgs field), 𝐷𝜇 is the SM covariant derivative
and the scalar potential 𝑉 reads

𝑉 (𝐻,𝑆) ≡ −𝜇2
𝐻 |𝐻|2 + 𝜆𝐻 |𝐻|4 − 𝜇2

𝑆 |𝑆|2 + 𝜆𝑆 |𝑆|4 + 𝜅 |𝐻|2 |𝑆|2 + 𝜇2 (𝑆2 + 𝑆*2) . (B.6)

This potential describes the SM Higgs field 𝐻 and the additional scalar 𝑆 mixed by the Higgs-portal term
𝜅 |𝐻|2 |𝑆|2. Note that all the coefficients of the scalar potential (B.6): 𝜆𝐻 , 𝜇2

𝐻 , 𝜆𝑆 , 𝜇
2
𝑆 , 𝜅, 𝜇

2 are real,
but not necessarily positive. Conditions that must be satisfied by them are discussed in the following
section.

B.1.1 Stability of the scalar potential and globalness of its minimum

To keep the potential (B.6) asymptotically positive, the following conditions are required:

𝜆𝐻 > 0 , 𝜆𝑆 > 0 , 𝜅 > −2
√︀
𝜆𝐻𝜆𝑆 , (B.7)

as in the VFDM model (see eq. (A.12)). To find the vacuum expectation values (VEVs) of the scalar
fields, let us assume that the potential is minimized by

𝐻 = ⟨𝐻⟩ ≡
(︂

0
𝑣√
2

)︂
, 𝑆 = ⟨𝑆⟩ ≡ 𝑣𝑆 + 𝑖𝑣𝐴√

2
, (B.8)

with real 𝑣, 𝑣𝑆 and 𝑣𝐴. The potential is invariant under complex rotations of the neutral component
of 𝐻, so 𝑣 can be chosen to be real without any loss of generality. On the other hand, as the 𝑈(1)𝑥
symmetry is softly broken, the VEV of the 𝑆 field cannot be a priori assumed to be real. However, due to
invariance under the 𝑆 → −𝑆 symmetry, we can assume that the real part of that VEV is non-negative.
Summing up this paragraph, the assumptions are:

𝑣 ⩾ 0 , 𝑣𝑆 ⩾ 0 , 𝑣𝐴 ∈ R . (B.9)

The fields can be expanded around their VEVs as

𝐻 =

(︃
𝜋+

𝑣+ℎ+𝑖𝜋0
√
2

)︃
, 𝑆 =

𝑣𝑆 + 𝜑+ 𝑖(𝑣𝐴 +𝐴)√
2

, (B.10)

Fields 𝜋+ and 𝜋0 are the Goldstone bosons that provide mass to the SM gauge bosons. As already
mentioned, ℎ and 𝜑 will mix and provide two Higgs-like particles, while 𝐴 will serve as the dark particle.

In order for the VEVs to minimize the value of 𝑉 , the following derivatives must vanish

0 =
𝜕𝑉

𝜕|𝐻|
⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣√
2

(︀
−2𝜇2

𝐻 + 2𝜆𝐻𝑣
2 + 𝜅(𝑣2𝑆 + 𝑣2𝐴)

)︀
, (B.11a)

0 =
𝜕𝑉

𝜕ℜ𝑆
⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣𝑆√
2

(︀
−2𝜇2

𝑆 + 2𝜆𝑆(𝑣
2
𝑆 + 𝑣2𝐴) + 𝜅𝑣2 + 4𝜇2

)︀
, (B.11b)

0 =
𝜕𝑉

𝜕ℑ𝑆
⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣𝐴√
2

(︀
−2𝜇2

𝑆 + 2𝜆𝑆(𝑣
2
𝑆 + 𝑣2𝐴) + 𝜅𝑣2 − 4𝜇2

)︀
. (B.11c)

As it is evident from the second and the third equation, 𝑣𝑆 and 𝑣𝐴 can be both non-zero only if 𝜇2 is
equal to zero. Since setting 𝜇2 to zero would make the would-be dark particle 𝐴 massless, the possibility
of 𝑣𝑆 and 𝑣𝐴 both non-zero is rejected, which means that the following six solutions of eq. (B.11) are
possible:
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𝑣2 =
4𝜆𝑆𝜇

2
𝐻 − 2𝜅(𝜇2

𝑆 − 2𝜇2)

4𝜆𝐻𝜆𝑆 − 𝜅2
, 𝑣2𝑆 =

4𝜆𝐻(𝜇2
𝑆 − 2𝜇2)− 2𝜅𝜇2

𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
, 𝑣2𝐴 = 0

⇒ 𝑉 = 𝑉1 ≡ −𝜆𝐻(𝜇2
𝑆 − 2𝜇2)2 − 𝜅𝜇2

𝐻(𝜇2
𝑆 − 2𝜇2) + 𝜆𝑆𝜇

4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
,

(B.12)

𝑣2 =
4𝜆𝑆𝜇

2
𝐻 − 2𝜅(𝜇2

𝑆 + 2𝜇2)

4𝜆𝐻𝜆𝑆 − 𝜅2
, 𝑣2𝑆 = 0 , 𝑣2𝐴 =

4𝜆𝐻(𝜇2
𝑆 + 2𝜇2)− 2𝜅𝜇2

𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2

⇒ 𝑉 = 𝑉2 ≡ −𝜆𝐻(𝜇2
𝑆 + 2𝜇2)2 − 𝜅𝜇2

𝐻(𝜇2
𝑆 + 2𝜇2) + 𝜆𝑆𝜇

4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
,

(B.13)

𝑣2 =
𝜇2
𝐻

𝜆𝐻
, 𝑣2𝑆 = 0 , 𝑣2𝐴 = 0 ⇒ 𝑉 = 𝑉3 ≡ − 𝜇4

𝐻

4𝜆𝐻
, (B.14)

𝑣2 = 0 , 𝑣2𝑆 =
𝜇2
𝑆 − 2𝜇2

𝜆𝑆
, 𝑣2𝐴 = 0 ⇒ 𝑉 = 𝑉4 ≡ − (𝜇2

𝑆 − 2𝜇2)2

4𝜆𝑆
, (B.15)

𝑣2 = 0 , 𝑣2𝑆 = 0 , 𝑣2𝐴 =
𝜇2
𝑆 + 2𝜇2

𝜆𝑆
⇒ 𝑉 = 𝑉5 ≡ − (𝜇2

𝑆 + 2𝜇2)2

4𝜆𝑆
, (B.16)

𝑣2 = 0 , 𝑣2𝑆 = 0 , 𝑣2𝐴 = 0 ⇒ 𝑉 = 𝑉6 ≡ 0 . (B.17)

A non-zero value of 𝑣 is needed to provide masses to the SM gauge bosons through the Higgs mechanism.
Moreover, in order to make the SDM model maximally similar to the FDM (appendix B.2) and VDM
(appendix B.3) models, 𝑣𝑆 ̸= 0 is also demanded. Hence, the solution (B.12) is preferable. To ensure
that (B.12) defines the global minimum, the mass-squared matrix corresponding to that solution must
be positive-definite and the value of 𝑉1 must be smaller than 𝑉2, 𝑉3, 𝑉4, 𝑉5 and 𝑉6.

First, let us observe that the positive-definiteness of the mass-squared matrix, given by:

𝑀2
ℎ,𝜑,𝐴 ≡

⎡
⎢⎣

𝜕2𝑉
𝜕ℎ2

𝜕2𝑉
𝜕𝜑 𝜕ℎ

𝜕2𝑉
𝜕𝐴𝜕ℎ

𝜕2𝑉
𝜕ℎ 𝜕𝜑

𝜕2𝑉
𝜕𝜑2

𝜕2𝑉
𝜕𝐴𝜕𝜑

𝜕2𝑉
𝜕ℎ 𝜕𝐴

𝜕2𝑉
𝜕𝜑 𝜕𝐴

𝜕2𝑉
𝜕𝐴2

⎤
⎥⎦

⃒⃒
⃒⃒
⃒⃒
⃒
(B.12)

=

⎡
⎣
2𝜆𝐻𝑣

2 𝜅𝑣𝑣𝑆 0
𝜅𝑣𝑣𝑆 2𝜆𝑆𝑣

2
𝑆 0

0 0 −4𝜇2

⎤
⎦ . (B.18)

requires

𝜇2 < 0 , 4𝜆𝐻 𝜆𝑆 > 𝜅2 . (B.19)

Since 𝑣2 and 𝑣2𝑆 are squares of real, non-zero quantities, they should be positive, from eq. (B.12) it follows
that

2𝜆𝑆 𝜇
2
𝐻 > 𝜅 (𝜇2

𝑆 − 2𝜇2) , 2𝜆𝐻 (𝜇2
𝑆 − 2𝜇2) > 𝜅𝜇2

𝐻 . (B.20)

Given that eqs. (B.7) and (B.19) are satisfied, 𝑉1 is always smaller than 𝑉3 and 𝑉4 since

𝑉3 − 𝑉1 = − 𝜇4
𝐻

4𝜆𝐻
+
𝜆𝐻(𝜇2

𝑆 − 2𝜇2)2 − 𝜅𝜇2
𝐻(𝜇2

𝑆 − 2𝜇2) + 𝜆𝑆𝜇
4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2

=

(︀
2𝜆𝐻(𝜇2

𝑆 − 2𝜇2)− 𝜅𝜇2
𝐻

)︀2

4𝜆𝐻(4𝜆𝐻𝜆𝑆 − 𝜅2)
> 0 ,

𝑉4 − 𝑉1 = − (𝜇2
𝑆 − 2𝜇2)2

4𝜆𝑆
+
𝜆𝐻(𝜇2

𝑆 − 2𝜇2)2 − 𝜅𝜇2
𝐻(𝜇2

𝑆 − 2𝜇2) + 𝜆𝑆𝜇
4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2

=

(︀
2𝜆𝑆𝜇

2
𝐻 − 𝜅(𝜇2

𝑆 − 2𝜇2)
)︀2

4𝜆𝑆(4𝜆𝐻𝜆𝑆 − 𝜅2)
> 0 .

(B.21)

Consequently, 𝑉1 is smaller than 𝑉6 since 𝑉6 > 𝑉3. For 𝑉1 to be smaller than 𝑉5 we assume that

𝜇2
𝑆 > 0 . (B.22)

Then, 𝑉1 < 𝑉5 is a consequence of an obvious inequality 𝑉4 < 𝑉5. The difference between 𝑉2 and 𝑉1 is

𝑉2 − 𝑉1 = −𝜆𝐻(𝜇2
𝑆 + 2𝜇2)2 − 𝜅𝜇2

𝐻(𝜇2
𝑆 + 2𝜇2) + 𝜆𝑆𝜇

4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2

+
𝜆𝐻(𝜇2

𝑆 − 2𝜇2)2 − 𝜅𝜇2
𝐻(𝜇2

𝑆 − 2𝜇2) + 𝜆𝑆𝜇
4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2

= −4𝜇2 2𝜆𝐻𝜇
2
𝑆 − 𝜅𝜇2

𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
.

(B.23)
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Therefore, since 𝜇2 < 0 and 4𝜆𝐻 𝜆𝑆 > 𝜅2 (see eq. (B.19)), for 𝑉1 to be smaller than 𝑉2 the following
condition must hold:

2𝜆𝐻 𝜇
2
𝑆 > 𝜅𝜇2

𝐻 . (B.24)

To summarize this section, let us collect the conditions for eq. (B.12) to define a global minimum,
given by eqs. (B.19), (B.20), (B.22) and (B.24):

𝜇2 < 0 , 𝜇2
𝑆 > 0 , 4𝜆𝐻 𝜆𝑆 > 𝜅2 , (B.25a)

2𝜆𝑆 𝜇
2
𝐻 > 𝜅 (𝜇2

𝑆 − 2𝜇2) , 2𝜆𝐻 𝜇
2
𝑆 > 𝜅𝜇2

𝐻 . (B.25b)

The condition 2𝜆𝐻 (𝜇2
𝑆 − 2𝜇2) > 𝜅𝜇2

𝐻 , coming from eq. (B.20), is redundant given that the above
conditions hold.

B.1.2 Mixing of the scalar states. Parametrization of the model

Let us recall the mass-squared matrix provided in eq. (B.18):

𝑀2
ℎ,𝜑,𝐴 =

⎡
⎣
2𝜆𝐻𝑣

2 𝜅𝑣𝑣𝑆 0
𝜅𝑣𝑣𝑆 2𝜆𝑆𝑣

2
𝑆 0

0 0 −4𝜇2

⎤
⎦ (B.26)

with the VEVs defined by eq. (B.12). Similarly to the way it is done in the case of the VFDM model (see
eq. (A.24)), this matrix can be diagonalized using the following rotation:

⎛
⎝
ℎ1
ℎ2
𝐴

⎞
⎠ = 𝑅−1

⎛
⎝
ℎ
𝜑
𝐴

⎞
⎠ , 𝑅 ≡

⎡
⎣
cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

⎤
⎦ , tan 2𝛼 ≡ 𝜅𝑣𝑣𝑆

𝜆𝐻𝑣2 − 𝜆𝑆𝑣2𝑆
. (B.27)

In the rotated basis consisting of ℎ1, ℎ2 and 𝐴, the mass-squared matrix becomes

𝑀2
ℎ1,ℎ2,𝐴 = 𝑅−1𝑀2

ℎ,𝜑,𝐴𝑅 =

⎡
⎣
𝑚2
ℎ1

0 0
0 𝑚2

ℎ2
0

0 0 𝑚2
𝐴

⎤
⎦ , (B.28)

with masses 𝑚ℎ1
, 𝑚ℎ2

and 𝑚𝐴 related to the parameters of 𝑉 in the following way:

𝜅 = sin 2𝛼
𝑚2
ℎ1

−𝑚2
ℎ2

2𝑣𝑣𝑆
, 𝜇2 = −1

4
𝑚2
𝐴 , (B.29a)

𝜆𝐻 =
cos2𝛼𝑚2

ℎ1
+ sin2𝛼𝑚2

ℎ2

2𝑣2
, 𝜆𝑆 =

sin2𝛼𝑚2
ℎ1

+ cos2𝛼𝑚2
ℎ2

2𝑣2𝑆
, (B.29b)

𝜇2
𝐻 =

1

2
𝑚2
ℎ1

cos2𝛼+
1

2
𝑚2
ℎ2

sin2𝛼 +
1

4

𝑣𝑆
𝑣

sin 2𝛼 (𝑚2
ℎ1

−𝑚2
ℎ2
) , (B.29c)

𝜇2
𝑆 =

1

2
𝑚2
ℎ1

sin2𝛼+
1

2
𝑚2
ℎ2

cos2𝛼+
1

4

𝑣

𝑣𝑆
sin 2𝛼 (𝑚2

ℎ1
−𝑚2

ℎ2
)− 1

2
𝑚2
𝐴 . (B.29d)

Note that due to the positive-definiteness of the mass-squared matrix (B.18) before diagonalization, all
the masses: 𝑚2

ℎ1
, 𝑚2

ℎ2
and 𝑚2

𝐴 are automatically positive.
After the diagonalization, the model can parametrized by the following quantities:

𝑣 , 𝑣𝑆 , 𝑚ℎ1 , 𝑚ℎ2 , sin𝛼 , 𝑚𝐴 (B.30)

with an assumption that the values of 𝑣 and 𝑚ℎ1
are SM-like:

𝑣 = 246 GeV , 𝑚ℎ1
= 125 GeV , (B.31)

as it was in the case of the VFDM model (see appendix A).
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B.1.3 Interactions of the dark particle

Eventually, after the SSB and dropping the massless Goldstone bosons 𝜋+, 𝜋0 absorbed by the SM gauge
vectors, the part of the potential (B.6) containing the dark matter particle 𝐴 becomes:

𝑉 (𝐻,𝑆) → 𝑉 (ℎ1, ℎ2, 𝐴) ⊃
1

2
𝑚2
𝐴𝐴

2 +
1

2𝑣𝑆

(︀
𝑚2
ℎ1

sin𝛼ℎ1 +𝑚2
ℎ2

cos𝛼ℎ2
)︀
𝐴2

+
1

4
(2𝜆𝑆 sin2 𝛼+ 𝜅 cos2 𝛼)ℎ21𝐴

2 +
1

4
(2𝜆𝑆 cos2 𝛼+ 𝜅 sin2 𝛼)ℎ22𝐴

2

+
1

2
(2𝜆𝑆 − 𝜅) cos𝛼 sin𝛼ℎ1 ℎ2𝐴

2 +
𝜆𝑆
4
𝐴4 .

(B.32)

Although 𝜆𝑆 and 𝜅 can be expressed in terms of the mixing angle, VEVs and masses of the Higgs-like
states (see eq. (B.29a)), they are kept here for compactness. The corresponding interactions of particle
𝐴 are presented in fig. B.1. Self-interactions have been omitted. The scalar particles ℎ1, ℎ2 interact with
the SM particles like the SM Higgs particle, but multiplied by 𝑅11 or 𝑅12, respectively, with the matrix
𝑅 defined by eq. (B.27)

−i m
2
hi

vS
R2ihi

A

A

−i (2R2iR2j λS +R1iR1j κ)

hi

hj

A

A

Figure B.1: Vertices corresponding to interactions of the dark scalar 𝐴 in the pGDM model. Self-
interactions of 𝐴 have been omitted. Matrix 𝑅 is defined in eq. (B.27) and 𝑖, 𝑗 = 1, 2. In [3,4], a wrong
value of the factor corresponding to the 𝐴𝐴ℎ𝑖ℎ𝑗 vertex has been provided (this vertex, however, has
not been used to obtain the numerical results therein).

B.2 Fermion DM model

The fermion dark matter (FDM) model extends the SM by a real scalar singlet 𝑆 and a left-handed Dirac
fermion 𝜒. A Majorana fermion formed as a combination of 𝜒 and its charge conjugation, 𝜒𝑐, obtains its
mass from the Yukawa interaction with 𝑆 and becomes a fermionic DM particle.

The newly introduced fields are charged under an additional Z4 group:

Z4 : 𝑆 → −𝑆 , 𝜒→ 𝑖𝜒 . (B.33)

This Z4 does not affect the SM fields. The Lagrangian of the model reads

ℒ = ℒSM + 𝑖 𝜒̄ /𝜕𝜒+
1

2
(𝐷𝜇𝐻)† (𝐷𝜇𝐻) +

1

2
𝜕𝜇𝑆 𝜕𝜇𝑆 − 𝑦𝑥

2
(𝜒𝑐𝜒+ 𝜒̄𝜒𝑐)𝑆 − 𝑉 (𝐻,𝑆) , (B.34)

where ℒSM denotes the SM Lagrangian (excluding the Higgs field), 𝐷𝜇 is the SM covariant derivative,
the Yukawa coupling constant 𝑦𝑥 is real and dimensionless, and the charge-conjugated field 𝜒𝑐 is defined
as

𝜒𝑐 ≡ −𝑖𝛾2𝜒* , (B.35)

as in the case of the VFDM model (appendix A). The potential 𝑉 reads

𝑉 (𝐻,𝑆) = −𝜇2
𝐻 |𝐻|2 + 𝜆𝐻 |𝐻|4 − 𝜇2

𝑆

2
𝑆2 +

𝜆𝑆
4
𝑆4 +

𝜅

2
|𝐻|2𝑆2 . (B.36)

The stability conditions are

𝜆𝐻 > 0 , 𝜆𝑆 > 0 , 𝜅 > −2
√︀
𝜆𝐻𝜆𝑆 , (B.37)

similarly to the case of the VFDM and pGDM models discussed previously (see eqs. (A.12) and (B.7)).
The scalar fields 𝐻 and 𝑆 are expanded around their VEVs, 𝑣 and 𝑣𝑆 , respectively, as

𝐻 =

(︃
𝜋+

𝑣+ℎ+𝑖𝜋0
√
2

)︃
, 𝑆 = 𝑣𝑆 + 𝜑 . (B.38)
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Due to symmetry of the potential, it can be assumed without loss of generality that the VEVs are real
and non-negative: 𝑣 ⩾ 0, 𝑣𝑆 ⩾ 0. They must satisfy the following conditions:

0 =
𝜕𝑉

𝜕𝐻

⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

=
𝑣√
2
(−𝜇2

𝐻 + 𝜆𝐻𝑣
2 +

𝜅

2
𝑣2𝑆) , (B.39a)

0 =
𝜕𝑉

𝜕𝑆

⃒⃒
⃒𝐻=⟨𝐻⟩
𝑆=⟨𝑆⟩

= 𝑣𝑆 (−𝜇2
𝑆 + 𝜆𝑆𝑣

2
𝑆 +

𝜅

2
𝑣2) . (B.39b)

The above conditions are solved by

𝑣2 =
4𝜆𝑆𝜇

2
𝐻 − 2𝜅𝜇2

𝑆

4𝜆𝐻𝜆𝑆 − 𝜅2
, 𝑣2𝑆 =

4𝜆𝐻𝜇
2
𝑆 − 2𝜅𝜇2

𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
⇒ 𝑉1 = −𝜆𝐻𝜇

4
𝑆 − 𝜅𝜇2

𝐻𝜇
2
𝑆 + 𝜆𝑆𝜇

4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
, (B.40)

𝑣2 = 0 , 𝑣2𝑆 =
𝜇2
𝑆

𝜆𝑆
⇒ 𝑉2 = − 𝜇4

𝑆

4𝜆𝑆
, (B.41)

𝑣2 =
𝜇2
𝐻

𝜆𝐻
, 𝑣2𝑆 = 0 ⇒ 𝑉3 = − 𝜇4

𝐻

4𝜆𝐻
, (B.42)

𝑣2 = 0 , 𝑣2𝑆 = 0 ⇒ 𝑉4 = 0 . (B.43)

Non-zero values of 𝑣 and 𝑣𝑆 are necessary to provide masses to the SM gauge bosons and the dark
fermionic state, so the solution (B.40) is preferred. It defines the global minimum when 𝑉1 is smaller
than 𝑉2, 𝑉3 and 𝑉4. To check that, the following difference can be calculated:

𝑉2 − 𝑉1 =
𝜆𝐻𝜇

4
𝑆 − 𝜅𝜇2

𝐻𝜇
2
𝑆 + 𝜆𝑆𝜇

4
𝐻

4𝜆𝐻𝜆𝑆 − 𝜅2
− 𝜇4

𝑆

4𝜆𝑆

=
2𝜆𝑆𝜇

2
𝐻 − 𝜅𝜇2

𝑆

4𝜆𝑆(4𝜆𝐻𝜆𝑆 − 𝜅2)
,

(B.44)

which is positive when

4𝜆𝐻 𝜆𝑆 > 𝜅2 . (B.45)

An analogous calculation shows that the same condition ensures that 𝑉1 < 𝑉3. Since each of 𝑉2, 𝑉3 is
obviously smaller than 𝑉4, the inequality 𝑉1 < 𝑉4 holds as well.

As it is clear from eq. (B.40), positivity of 𝑣2 and 𝑣2𝑆 means that

2𝜆𝑆 𝜇
2
𝐻 > 𝜅𝜇2

𝑆 , 2𝜆𝐻 𝜇
2
𝑆 > 𝜅𝜇2

𝐻 . (B.46)

The mass-squared matrix for the fields ℎ and 𝜑 reads

𝑀2
ℎ,𝜑 =

[︂
2𝜆𝐻 𝑣

2 𝜅 𝑣 𝑣𝑆
𝜅 𝑣 𝑣𝑆 2𝜆𝑆 𝑣

2
𝑆

]︂
, (B.47)

which is positive-definite since eq. (B.45) holds. The same way as it happens in the previously discussed
models, the matrix is diagonalized using the following rotation:

(︂
ℎ1
ℎ2

)︂
= 𝑅−1

(︂
ℎ
𝜑

)︂
, 𝑅 ≡

[︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

]︂
, tan 2𝛼 ≡ 𝜅 𝑣 𝑣𝑆

𝜆𝐻𝑣2 − 𝜆𝑆𝑣2𝑆
. (B.48)

Then, the mass-squared matrix in the rotated basis consisting of ℎ1 and ℎ2 becomes

𝑀2
ℎ1,ℎ2

= 𝑅−1𝑀2
ℎ,𝜑𝑅 =

[︂
𝑚2
ℎ1

0
0 𝑚2

ℎ2

]︂
, (B.49)

with the masses related to the parameters of the potential by the following relations:

𝜅 = sin 2𝛼
𝑚2
ℎ1

−𝑚2
ℎ2

2 𝑣𝑣𝑆
, (B.50a)

𝜆𝐻 =
cos2𝛼𝑚2

ℎ1
+ sin2𝛼𝑚2

ℎ2

2 𝑣2
, 𝜇2

𝐻 =
1

2
𝑚2
ℎ1

cos2𝛼+
1

2
𝑚2
ℎ2

sin2𝛼+
1

4

𝑣𝑆
𝑣

sin 2𝛼 (𝑚2
ℎ1

−𝑚2
ℎ2
) , (B.50b)

𝜆𝑆 =
sin2𝛼𝑚2

ℎ1
+ cos2𝛼𝑚2

ℎ2

2 𝑣2𝑆
, 𝜇2

𝑆 =
1

2
𝑚2
ℎ1

sin2𝛼+
1

2
𝑚2
ℎ2

cos2𝛼+
1

4

𝑣

𝑣𝑆
sin 2𝛼 (𝑚2

ℎ1
−𝑚2

ℎ2
) . (B.50c)
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Note that due to positive-definiteness of the mass-squared matrix (B.47) before diagonalization, both
𝑚2
ℎ1

and 𝑚2
ℎ2

are automatically positive.
After the SSB, the dark-fermionic Lagrangian becomes

ℒDF = 𝑖 𝜒̄ /𝜕𝜒− 𝑦𝑥𝑣𝑆
2

(𝜒𝑐𝜒+ 𝜒̄𝜒𝑐)− 𝑦𝑥
2

(𝜒𝑐𝜒+ 𝜒̄𝜒𝑐)𝜑

=
1

2
𝜓(𝑖/𝜕 −𝑚𝜓)𝜓 − 𝑦𝑥

2
𝜓𝜓 𝜑

(B.51)

with Majorana fermion 𝜓 defined as

𝜓 ≡ 𝜒+ 𝜒𝑐 = 𝜓𝑐 (B.52)

and

𝑚𝜓 ≡ 𝑦𝑥𝑣𝑆 . (B.53)

In the second equality of eq. (B.51), eqs. (E.12) and (E.13) have been used.3 The massive Majorana
fermion 𝜓, whose interaction vertex is presented in fig. B.2, serves as the dark particle of the FDM model.
The scalar particles ℎ1, ℎ2 interact with the SM particles like the SM Higgs particle, but multiplied by
𝑅11 or 𝑅12, respectively, with the matrix 𝑅 defined by eq. (B.48).

−i yxR2ihi

ψ

ψ

Figure B.2: A vertex corresponding to the interaction of the dark fermion 𝜓 in the FDM model.
Matrix 𝑅 is defined in eq. (B.48) and 𝑖 = 1, 2.

The model is parametrized by

𝑣 , 𝑣𝑆 , 𝑚ℎ1
, 𝑚ℎ2

, sin𝛼 , 𝑚𝜓 . (B.54)

with 𝑣 and 𝑚ℎ1
assumed to take their SM values:

𝑣 = 246 GeV , 𝑚ℎ1
= 125 GeV , (B.55)

as in the previously discussed VFDM (appendix A) and pGDM (appendix B.1) models.

B.3 Vector DM model

The vector dark matter (VDM) model introduces a complex scalar singlet 𝑆 neutral under the action
of the SM gauge group and charged under an additional 𝑈(1)𝑥 group (which does not affect the SM
fields). The gauge vector of the 𝑈(1)𝑥 group, 𝑋, gains its mass, 𝑚𝑋 , through the Higgs mechanism from
interaction with 𝑆 and becomes a massive dark vector particle.

This model can be treated as a simplified version of the VFDM model, presented in appendix A, with
all dark-sector fermionic fields omitted. If we neglect the dark fermions, the description of both models
is exactly the same, so the details are not repeated here.

Interactions of the dark particle 𝑋 are depicted in fig. B.3.

2 i gxmX R2ihi

X

X

2 i g2xR2iR2j

hi

hj

X

X

Figure B.3: Vertices corresponding to interactions of dark particles in the VDM model. Matrix 𝑅 is
defined in the same way as the one provided by eq. (A.24) and 𝑖, 𝑗 = 1, 2.

3Note the difference in the coefficient between eq. (B.52) and (E.7a), resulting in a consequent difference between the
right-hand sides of eqs. (E.12) and (E.13) and the second line of eq. (B.51).
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Parameters of the model are

𝑣 , 𝑣𝑆 , 𝑚ℎ1
, 𝑚ℎ2

, sin𝛼 , 𝑚𝑋 . (B.56)

The 𝑔𝑥 coupling constant that appears in fig. B.3 is defined in terms of the above parameters as

𝑔𝑥 =
𝑚𝑋

𝑣𝑆
. (B.57)

As in the case of all the models described previously: VFDM (appendix A), pGDM (appendix B.1) and
FDM (appendix B.2), values of 𝑣 and 𝑚ℎ1

are assumed to correspond to the SM ones:

𝑣 = 246 GeV , 𝑚ℎ1 = 125 GeV . (B.58)
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Appendix C

Three-scalar toy model

This toy model, employed in publication [2] and chapter 5 of this dissertation, consists of three real scalar
fields: 𝜑1, 𝜑2, Φ, and is equipped with two discrete symmetries, Z2 and Z′

2, acting on the fields in the
following way:

Z2 : 𝜑1 → −𝜑1 , 𝜑2 → 𝜑2 , Φ → −Φ , (C.1a)

Z′
2 : 𝜑1 → 𝜑1 , 𝜑2 → −𝜑2 , Φ → −Φ . (C.1b)

These symmetries lead to cancellation of:

� all mixed dimension-2 terms,

� all dimension-3 terms except the one with three different fields,

� most of the dimension-4 terms.

The dimension-4 terms that are products of the mass terms and, therefore, cannot be forbidden if the
particles are massive, are dropped for simplicity. Then, the Lagrangian reads

ℒ =
1

2

(︀
𝜕𝜇𝜑1 𝜕𝜇𝜑1 −𝑚2

1 𝜑
2
1

)︀
+

1

2

(︀
𝜕𝜇𝜑2 𝜕𝜇𝜑2 −𝑚2

2 𝜑
2
2

)︀

+
1

2

(︀
𝜕𝜇Φ 𝜕𝜇Φ−𝑀2 Φ2

)︀
+ 𝜇𝜑1𝜑2Φ ,

(C.2)

where 𝑚1, 𝑚2 and 𝑀 are masses of the fields 𝜑1, 𝜑2 and Φ, respectively. It is assumed that

𝑚1 > 𝑚2 +𝑀 , (C.3)

so that 𝜑2 and 𝑀 are stable, while the decay 𝜑1 → 𝜑2𝑀 is allowed. The corresponding vertex is shown
in fig. C.1.

i µφ1

φ2

Φ

Figure C.1: A vertex corresponding to the interaction of the dark particles in the toy model of dark
matter. For clarity, different particles are symbolized with different types of line: dashed for Φ, solid
for 𝜑1 and double dashed for 𝜑2
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Appendix D

Properties of the Dirac matrices

Here, some properties of the Dirac gamma matrices are collected for reader’s convenience. Using them
throughout the dissertation is not explicitly stated in text.

In this appendix, 1 denotes the identity matrix (2× 2 or 4× 4, depending on the context).

D.1 Representation-independent properties

� Defining property:

{𝛾𝜇, 𝛾𝜈} = 2 𝑔𝜇𝜈1 , (D.1)

where {∙, ∙} denotes the anticommutator. One also defines the fifth matrix, 𝛾5:

𝛾5 ≡ 𝑖 𝛾0 𝛾1 𝛾2 𝛾3 , (D.2)

that anticommutes with the four gamma matrices:

{𝛾𝜇, 𝛾5} = 0 . (D.3)

� Corollaries:

𝛾20 = 1 , 𝛾2𝑖 = −1 , 𝛾25 = 1 , (D.4a)

Tr 𝛾𝜇 = 0 , Tr 𝛾5 = 0 , (D.4b)

where Tr denotes taking trace.

D.2 Representation-specific properties

Throughout the dissertation, wherever the representation of the gamma matrices matters,they are as-
sumed to be in the Dirac representation, in which

𝛾0 ≡
[︂
1 0
0 −1

]︂
, 𝛾𝑖 ≡

[︂
0 𝜎𝑖

−𝜎𝑖 0

]︂
, 𝛾5 ≡

[︂
0 1

1 0

]︂
, (D.5)

with 𝜎𝑖 denoting Pauli matrices (𝑖 = 1, 2, 3):

𝜎1 =

[︂
0 1
1 0

]︂
, 𝜎2 =

[︂
0 −𝑖
𝑖 0

]︂
, 𝜎3 =

[︂
1 0
0 −1

]︂
. (D.6)

The gamma matrices expressed in the Dirac representation satisfy the following properties:

� Hermitian conjugation:

𝛾†𝜇 = 𝛾0𝛾𝜇𝛾0 , 𝛾†5 = 𝛾5 , (D.7)

� complex conjugation:

𝛾*𝜇 = 𝛾2𝛾𝜇𝛾2 , 𝛾*5 = 𝛾5 , (D.8)

� transposition:

𝛾⊺𝜇 = (𝛾†𝜇)
* = 𝛾2𝛾0𝛾𝜇𝛾0𝛾2 , 𝛾⊺5 = 𝛾5 . (D.9)
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D.3 Charge-conjugation and projection operators

The following operators, defined in terms of the gamma matrices, are used in this dissertation:

� charge-conjugation operator 𝒞:

𝒞 ≡ −𝑖𝛾2𝛾0 = 𝑖𝛾0𝛾2 , (D.10)

which satisfies

𝒞2 = −1 , 𝒞† = 𝛾0 𝒞 𝛾0 = −𝒞 , 𝒞𝛾𝜇𝒞 = 𝛾⊺𝜇 , (D.11)

� projection operators 𝑃𝑅,𝐿:

𝑃𝑅 ≡ 1

2
(1+ 𝛾5) , 𝑃𝐿 ≡ 1

2
(1− 𝛾5) , (D.12)

which satisfy

𝑃𝑅 + 𝑃𝐿 = 1 , (D.13a)

𝑃𝑅𝑃𝐿 = 𝑃𝐿𝑃𝑅 = 0 , (D.13b)

𝑃𝑅𝛾𝜇 = 𝛾𝜇𝑃𝐿 , 𝑃𝐿𝛾𝜇 = 𝛾𝜇𝑃𝑅 , (D.13c)

𝑃 2
𝑅 = 𝑃 †

𝑅 = 𝑃 ⊺
𝑅 = 𝑃𝑅 , 𝑃 2

𝐿 = 𝑃 †
𝐿 = 𝑃 ⊺

𝐿 = 𝑃𝐿 . (D.13d)
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Appendix E

Some identities satisfied by fermionic

fields

As it was a non-trivial task for the author to correctly take into account all the counter-intuitive minus
signs when manipulating fermionic fields, some useful identities are presented here just in case the reader
faces similar difficulties. Whenever the identities presented here are used in the dissertation, it is explicitly
stated.

First of all, one has to bear in mind that a fermionic field is represented by a four-component vector
of anticommuting Grassmann numbers. As a consequence, transposing a product of fermionic fields
provides an additional minus sign due to changing the order of the components. For example, if 𝜓 and
𝜒 are fermionic fields, the transposition of their product is:

(𝜓⊺𝜒)⊺ = −𝜒⊺𝜓 . (E.1)

The Hermitian conjugation is defined in such a way that

𝜓† = 𝜓⊺* = 𝜓*⊺ , (𝜓†𝜒)† = 𝜒†𝜓 , (E.2)

where (. . .)* denotes the complex conjugation, which, therefore, must possess an additional minus:

(𝜓†𝜒)* = (𝜓†𝜒)†⊺ = (𝜒†𝜓)⊺ = −𝜓⊺𝜒†⊺ = −𝜓†*𝜒* . (E.3)

For a fermionic field 𝜒, one defines the charge-conjugated field 𝜒𝑐 and the Dirac-conjugated field 𝜒̄ as

𝜒𝑐 ≡ −𝑖𝛾2𝜒* , 𝜒̄ ≡ 𝜒†𝛾0 (E.4)

(the gamma matrices are described in appendix D).
Using the above identities and the fact that the Lagrangian is defined up to a total derivative, so

(𝜕𝜇𝜒̄)𝜓 =

irrelevant⏞  ⏟  
𝜕𝜇(𝜒̄𝜓) −𝜒̄ 𝜕𝜇𝜓 = −𝜒̄ 𝜕𝜇𝜓 ,

(E.5)

it is straightforward to prove that

𝜒𝑐 = 𝒞𝜒̄⊺ , 𝜒𝑐 = 𝜒⊺𝒞 , (E.6a)

𝜒⊺𝒞𝜒 = 𝜒𝑐𝜒 , (𝜒⊺𝒞𝜒)† = 𝜒̄𝜒𝑐 , (E.6b)

𝜒𝑐𝜒𝑐 = 𝜒̄𝜒 , (E.6c)

𝜒𝑐𝛾𝜇𝜒
𝑐 = −𝜒̄𝛾𝜇𝜒 , (E.6d)

𝜒𝑐 /𝜕𝜒𝑐 = 𝜒̄/𝜕𝜒 , (E.6e)

where operator 𝒞 is the charge-conjugation operator defined in appendix D.3.
In the DM models containing dark fermions (appendices A and B.2), the Dirac fermion 𝜒 and its

charge conjugation are decomposed into a pair of Majorana fermions 𝜓+, 𝜓−:

𝜓+ ≡ 𝜒+ 𝜒𝑐√
2

= 𝜓𝑐+ , 𝜓− ≡ 𝜒− 𝜒𝑐

𝑖
√
2

= 𝜓𝑐− , (E.7a)

𝜒 =
𝜓+ + 𝑖𝜓−√

2
, 𝜒𝑐 =

𝜓+ − 𝑖𝜓−√
2

. (E.7b)
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Then,

𝜒̄ =
𝜓+ − 𝑖𝜓−√

2
, 𝜒𝑐 =

𝜓+ + 𝑖𝜓−√
2

. (E.8)

As for Majorana fermions the following identity holds:

𝜓+𝜓− = 𝜓̄𝑐+𝜓
𝑐
− = 𝜓⊺

+𝒞𝒞𝜓⊺
− = −𝜓⊺

+𝜓
⊺
− = (𝜓−𝜓+)

⊺ = 𝜓−𝜓+ , (E.9)

it can by easily shown that

𝜒̄𝜒 = 𝜒𝑐𝜒𝑐 =
1

2
(𝜓+𝜓+ + 𝜓−𝜓−) , (E.10a)

𝜒𝑐𝜒 =
1

2
(𝜓+𝜓+ − 𝜓−𝜓−) + 𝑖 𝜓+𝜓− , (E.10b)

𝜒̄𝜒𝑐 =
1

2
(𝜓+𝜓+ − 𝜓−𝜓−)− 𝑖 𝜓+𝜓− , (E.10c)

Analogously, it can be proved that

𝜒̄ /𝜕𝜒 = 𝜒𝑐 /𝜕𝜒𝑐 =
1

2
(𝜓+ /𝜕𝜓+ + 𝜓− /𝜕𝜓−) . (E.11)

Moreover, if 𝜒 is left-handed (i.e., 𝜒 = 𝑃𝐿𝜒, with the projection operator 𝑃𝐿 defined in appendix D.3),
it is straightforward to show that

𝜒̄𝜒 = 𝜒𝑐𝜒𝑐 = 0 ⇒ 𝜓−𝜓− = −𝜓+𝜓+ ⇒
{︃
𝜒𝑐𝜒 = 𝜓+𝜓+ + 𝑖 𝜓+𝜓−
𝜒̄𝜒𝑐 = 𝜓+𝜓+ − 𝑖 𝜓+𝜓−

. (E.12)

Analogously, for a left-handed 𝜒 the following identities hold:

𝜒̄ /𝜕𝜒𝑐 = 𝜒𝑐 /𝜕𝜒 = 0 ⇒
{︃
𝜓+ /𝜕𝜓+ = 𝜓− /𝜕𝜓−
𝜓− /𝜕𝜓+ = −𝜓+ /𝜕𝜓−

⇒ 𝜒̄ /𝜕𝜒 = 𝜒𝑐 /𝜕𝜒𝑐 = 𝜓+ /𝜕𝜓+ . (E.13)
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Appendix F

Green’s functions in the real-time

formalism

In section 5.5, we make use of the retarded, advanced and symmetric Green’s functions (denoted by the
index +, − and sym, respectively). We follow the definitions from [196].

The position-space propagators of a scalar particle can be expressed in terms of the real-time Green
functions ∆>, ∆< as follows:

∆sym(𝑥, 𝑦) = ∆>(𝑥, 𝑦) + ∆<(𝑥, 𝑦) ,

∆+(𝑥, 𝑦) = Θ(𝑥0 − 𝑦0)
(︀
∆>(𝑥, 𝑦)−∆<(𝑥, 𝑦)

)︀
,

∆−(𝑥, 𝑦) = Θ(𝑦0 − 𝑥0)
(︀
∆<(𝑥, 𝑦)−∆>(𝑥, 𝑦)

)︀
,

(F.1)

with Θ(𝑡− 𝑡′) equal to 1 if 𝑡 succeeds 𝑡′ along the Keldysh-Schwinger integration contour, −1 otherwise.
The fermion and vector propagators satisfy analogous relations. For details, see, e.g., section 4.1 of [197].

For convenience, let us define auxiliary functions:

∆±
aux(𝑝) ≡

1

𝑝2 −𝑚2 ± 𝑖 sgn 𝑝0 0+
,

∆sym
F,B (𝑝, 𝑇 ) ≡ ± 𝑖𝜋

𝐸𝑝

(︁
𝛿(𝐸𝑝 − 𝑝0)

[︀
2𝑛F,B(p, 𝑇 )∓ 1

]︀
+ 𝛿(𝐸𝑝 + 𝑝0)

[︀
2𝑛F,B(−p, 𝑇 )∓ 1

]︀)︁
,

(F.2)

which will serve to define the Green’s functions.
Note that, for isotropic distribution functions, the auxiliary function ∆sym becomes

∆sym
F,B (𝑝, 𝑇 ) ≡ ± 𝑖𝜋

𝐸𝑝

(︁
𝛿(𝐸𝑝 − 𝑝0) + 𝛿(𝐸𝑝 + 𝑝0)

)︁[︀
2𝑛F,B(p, 𝑇 )∓ 1

]︀

= − 𝑖𝜋

𝐸𝑝

(︁
𝛿(𝐸𝑝 − 𝑝0) + 𝛿(𝐸𝑝 + 𝑝0)

)︁
· 𝑓F,B(𝛽𝐸𝑝)

(F.3)

with

𝑓𝐹,𝐵(𝑥) ≡ ±2𝑛𝐹,𝐵(p, 𝑇 )− 1. (F.4)

For 𝑛 describing thermal distribution of Maxwell-Boltzmann or Fermi-Dirac type, given by

𝑛F,B(−p, 𝑇 ) = 𝑛F,B(p, 𝑇 ) =
1

𝑒𝛽𝐸𝑝 ± 1
, (F.5)

the function 𝑓 reads

𝑓F,B(𝑥) =

{︃
𝑒𝑥−1
𝑒𝑥+1 for fermions
𝑒𝑥+1
𝑒𝑥−1 for bosons

. (F.6)

Then, the scalar Green’s functions are given by

∆±(𝑝) = ∆±
aux(𝑝),

∆sym(𝑝, 𝑇 ) = ∆sym
𝐵 (𝑝, 𝑇 ) ,

(F.7)
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while for a fermion particle

𝐺±(𝑝) = (/𝑝+𝑚)∆±
aux(𝑝) ,

𝐺sym(𝑝, 𝑇 ) = (/𝑝+𝑚)∆sym
𝐹 (𝑝, 𝑇 ) ,

(F.8)

and for a vector

𝐷±
𝜇𝜈(𝑝) =

[︁
−𝑔𝜇𝜈 +

𝑝𝜇𝑝𝜈
𝑚2

]︁
∆±
aux(𝑝) ,

𝐷sym
𝜇𝜈 (𝑝, 𝑇 ) =

[︁
−𝑔𝜇𝜈 +

𝑝𝜇𝑝𝜈
𝑚2

]︁
∆sym
𝐵 (𝑝, 𝑇 ) .

(F.9)
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Appendix G

Passarino-Veltman functions

If a given Feynman diagram contains a loop (like the one presented in fig. G.1), its contribution to the
scattering amplitude is given as an integral over the loop momentum. The result of the integration can be
expressed in terms of so-called Passarino-Veltman functions, introduced in [198, 199]. In this appendix,
we follow the notation of chapter 4 of [200].

m
2

m
N−2

p
1

p
2
− p

1

p
N−1

− p
N−2

−p
N−1

q + p
1

m
1

q + p
2

q + p
N−2

q + p
N−1

m
N−1

q
m0

Figure G.1: A loop, whose contribution to the amplitude is described by eq. (G.1). All the external
momenta are directed towards the loop.

The integral corresponding to the loop presented in fig. G.1 reads

𝑇𝑁𝜇1,...,𝜇𝑘
(𝑝1, 𝑝2, . . . , 𝑝𝑁−1;𝑚0,𝑚1,𝑚2, . . . ,𝑚𝑁−1) ≡

1

𝑖𝜋2

∫︁
𝑑4𝑞

𝑞𝜇1
. . . 𝑞𝜇𝑘

𝐷0𝐷1 . . . 𝐷𝑁−1
, (G.1)

where the factors in the denominator are

𝐷0 ≡ 𝑞2 −𝑚2
0 + 𝑖𝜀 , 𝐷𝑖 ≡ (𝑞 + 𝑝𝑖)

2 −𝑚2
ℎ𝑖

+ 𝑖𝜀 (𝑖 = 1, . . . , 𝑁 − 1) . (G.2)

Later, we use 𝐴 for 𝑇 1, 𝐵 for 𝑇 2 and so on. Functions used in eq. (6.11) are defined in the following way:
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𝒟112 ≡ 𝑝𝜇

𝑚2
DM

𝐷𝜇(0, 0, 𝑝;𝑚ℎ1 ,𝑚ℎ1 ,𝑚ℎ2 ,𝑚DM)
⃒⃒
⃒
𝑝2=𝑚2

DM

=
𝑝𝜇

𝑚2
DM

1

𝑖𝜋2

∫︁
𝑑4𝑞

𝑞𝜇
(𝑞2 −𝑚2

ℎ1
)2(𝑞2 −𝑚2

ℎ2
) [(𝑞 + 𝑝)2 −𝑚2

DM]

⃒⃒
⃒
𝑝2=𝑚2

DM

=
1

𝑚2
ℎ1

−𝑚2
ℎ2

(𝒞11 − 𝒞12) ,

(G.3a)

𝒟122 ≡ 𝑝𝜇

𝑚2
DM

𝐷𝜇(0, 0, 𝑝;𝑚ℎ2
,𝑚ℎ1

,𝑚ℎ2
,𝑚DM)

⃒⃒
⃒
𝑝2=𝑚2

DM

=
𝑝𝜇

𝑚2
DM

1

𝑖𝜋2

∫︁
𝑑4𝑞

𝑞𝜇
(𝑞2 −𝑚2

ℎ1
)(𝑞2 −𝑚2

ℎ2
)2 [(𝑞 + 𝑝)2 −𝑚2

DM]

⃒⃒
⃒
𝑝2=𝑚2

DM

= − 1

𝑚2
ℎ1

−𝑚2
ℎ2

(𝒞22 − 𝒞12) ,

(G.3b)

𝒞12 ≡ 𝑝𝜇

𝑚2
DM

𝐶𝜇(0, 𝑝;𝑚ℎ1
,𝑚ℎ2

,𝑚DM)
⃒⃒
⃒
𝑝2=𝑚2

DM

=
𝑝𝜇

𝑚2
DM

1

𝑖𝜋2

∫︁
𝑑4𝑞

𝑞𝜇
(𝑞2 −𝑚2

ℎ1
)(𝑞2 −𝑚2

ℎ2
) [(𝑞 + 𝑝)2 −𝑚2

DM]

⃒⃒
⃒
𝑝2=𝑚2

DM

=
1

𝑚2
ℎ1

−𝑚2
ℎ2

(ℬ1 − ℬ2) ,

(G.3c)

with the following auxiliary functions defined for 𝑖 = 1, 2:

𝒞𝑖𝑖 ≡
𝑝𝜇

𝑚2
DM

𝐶𝜇(0, 𝑝;𝑚ℎ𝑖
,𝑚ℎ𝑖

,𝑚DM)
⃒⃒
⃒
𝑝2=𝑚2

DM

= − 1

𝑚2
DM

[︂
1 +

𝑥+𝑖 (𝑥
+
𝑖 − 1)

𝑥+𝑖 − 𝑥−𝑖
ln

(︂
𝑥+𝑖 − 1

𝑥+𝑖

)︂
− 𝑥−𝑖 (𝑥

−
𝑖 − 1)

𝑥+𝑖 − 𝑥−𝑖
ln

(︂
𝑥−𝑖 − 1

𝑥−𝑖

)︂]︂
,

(G.4a)

ℬ𝑖 ≡
𝑝𝜇

𝑚2
DM

𝐵𝜇(𝑝;𝑚ℎ𝑖
,𝑚DM)

⃒⃒
⃒
𝑝2=𝑚2

DM

= −1

2

[︃(︂
2

𝜖
− 𝛾 + ln

𝜇2

𝑚2
DM

)︂
+ 1 +

𝑚2
ℎ𝑖

𝑚2
DM

+ (𝑥+𝑖 )
2 ln

(︂
𝑥+𝑖 − 1

𝑥+𝑖

)︂
+ (𝑥−𝑖 )

2 ln

(︂
𝑥−𝑖 − 1

𝑥−𝑖

)︂]︃
,

(G.4b)

𝑥±𝑖 ≡
𝑚2
ℎ𝑖

±
√︁
𝑚4
ℎ𝑖

− 4𝑚2
ℎ𝑖
𝑚2

DM

2𝑚2
DM

. (G.4c)

The term
(︁

2
𝜖 − 𝛾 + ln 𝜇2

𝑚2
DM

)︁
appearing in eq. (G.4b) is a remnant of the chosen regularization method

and cancels out in eq. (G.3c).
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Appendix H

Self-energies of the scalar states

In this appendix, we provide the values of the imaginary parts of one-loop two-point Green’s functions,
Π𝑖𝑗(𝑄

2), calculated for the Higgs-like states. To obtain each value, one has to sum contributions corre-
sponding to all possible intermediate loops:

Π𝑖𝑗 = ΠDM
𝑖𝑗 +Π𝑊

+𝑊−
𝑖𝑗 +Π𝑍𝑍𝑖𝑗 +

∑︁

𝑞

Π𝑞𝑞𝑖𝑗 +
∑︁

𝑙

Π𝑙
+𝑙−
𝑖𝑗 +

∑︁

𝑘,𝑙

Πℎ𝑘ℎ𝑙
𝑖𝑗 . (H.1)

The tadpole and seagull diagrams are omitted. Here, DM denotes a pair of dark particles, i.e., 𝐴𝐴, 𝜓𝜓
or 𝑋𝑋, depending on the model, while 𝑞 and 𝑙 denote the SM quarks and leptons, respectively. These
one-loop contributions take the following form:

ΠDM
𝑖𝑗 (𝑄2) = 𝐼(𝑄2,𝑚DM,𝑚DM)

𝑅2𝑖𝑅2𝑗

32𝜋2𝑣2𝑆
(𝑚ℎ𝑖𝑚𝑗)

2×

×

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 (pGDM)

1− 2𝑚2
DM

4𝑄2−𝑚2
𝑖−𝑚2

𝑗

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2 + 12
(︁

𝑚2
DM

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2

)︁2
(VDM)

2
𝑚2
DM

𝑄2

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2

(︁
1− 4

𝑚2
DM

𝑄2

)︁
(FDM)

,

Π𝑊
+𝑊−

𝑖𝑗 (𝑄2) = 𝐼(𝑄2,𝑚𝑊 ,𝑚𝑊 )
𝑅1𝑖𝑅1𝑗

16𝜋2𝑣2
(𝑚ℎ𝑖

𝑚ℎ𝑗
)2×

×
[︃
1− 2𝑚2

𝑊

4𝑄2 −𝑚2
𝑖 −𝑚2

𝑗

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2
+ 12

𝑚4
𝑊

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2

]︃
,

Π𝑍𝑍𝑖𝑗 (𝑄2) = 𝐼(𝑄2,𝑚𝑍 ,𝑚𝑍)
𝑅1𝑖𝑅1𝑗

32𝜋2𝑣2
(𝑚ℎ𝑖𝑚ℎ𝑗 )

2×

×
[︃
1− 2𝑚2

𝑍

4𝑄2 −𝑚2
𝑖 −𝑚2

𝑗

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2
+ 12

𝑚4
𝑍

(𝑚ℎ𝑖
𝑚ℎ𝑗

)2

]︃
,

Π𝑞𝑞𝑖𝑗 (𝑄
2) = 𝐼(𝑄2,𝑚𝑞,𝑚𝑞) ·

3𝑅1𝑖𝑅1𝑗

8𝜋2𝑣2
𝑚2
𝑞𝑄

2

(︃
1− 4

𝑚2
𝑞

𝑄2

)︃
,

Π𝑙
+𝑙−
𝑖𝑗 (𝑄2) = 𝐼(𝑄2,𝑚𝑙,𝑚𝑙) ·

𝑅1𝑖𝑅1𝑗

8𝜋2𝑣2
𝑚2
𝑙𝑄

2

(︂
1− 4

𝑚2
𝑙

𝑄2

)︂
,

Πℎ𝑘ℎ𝑙
𝑖𝑗 (𝑄2) = 𝐼(𝑄2,𝑚ℎ𝑘

,𝑚ℎ𝑙
) · 𝑉𝑖𝑘𝑙𝑉𝑗𝑘𝑙

32𝜋2
,
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with 𝑉𝑖𝑗𝑘 (𝑖, 𝑗, 𝑘 = 1, 2), given by

𝑉111 ≡ 3𝑚2
1

(︂
sin3 𝛼

𝑣𝑆
+

cos3 𝛼

𝑣

)︂
, (H.2a)

𝑉112 = 𝑉121 = 𝑉211 ≡ (2𝑚2
1 +𝑚2

2) sin𝛼 cos𝛼

(︂
sin𝛼

𝑣𝑆
− cos𝛼

𝑣

)︂
, (H.2b)

𝑉221 = 𝑉212 = 𝑉122 ≡ (𝑚2
1 + 2𝑚2

2) sin𝛼 cos𝛼

(︂
cos𝛼

𝑣𝑆
+

sin𝛼

𝑣

)︂
, (H.2c)

𝑉222 ≡ 3𝑚2
2

(︂
cos3 𝛼

𝑣𝑆
− sin3 𝛼

𝑣

)︂
, (H.2d)

being the ℎ𝑖ℎ𝑗ℎ𝑘 couplings [190] and

𝐼(𝑄2,𝑚𝑎,𝑚𝑏) ≡ 𝑖 · ℑ
[︀
𝐵0(𝑄

2,𝑚2
𝑎,𝑚

2
𝑏)
]︀

= 𝑖 · ℑ
[︂

1

𝑖𝜋2

∫︁
𝑑4𝑙

(𝑙2 −𝑚2
𝑎)[(𝑙 +𝑄)2 −𝑚2

𝑏 ]

]︂
(H.3a)

= 𝑖𝜋 · 𝜆
1/2(𝑄2,𝑚2

𝑎,𝑚
2
𝑏)

𝑄2
· 1𝑄2>(𝑚𝑎+𝑚𝑏)2

→ 𝐼(𝑄2,𝑚,𝑚) = 𝑖𝜋 ·
√︃
1− 4𝑚2

𝑄2
· 1𝑄2>4𝑚2 (H.3b)

denoting the imaginary parts (times 𝑖) of appropriate Passarino-Veltman integrals 𝐵0 [200]. Here, 𝜆
is the Källén triangle function defined by eq. (0.4). The overall sign of eq. (H.3a) corresponds to the
sign chosen in ln(−1) = ±𝑖𝜋. The positive sign provides values consistent with the optical theorem,
Π𝑖𝑖(𝑚

2
ℎ𝑖
) = +𝑖𝑚ℎ𝑖

Γ𝑖.
Note that, in [190], the ΠDM

𝑖𝑗 contribution calculated in the VDM model contains an additional minus
due to a redundant factor 𝑖 in their definition of 𝑉𝑖𝑗𝑘.

We perform a straightforward calculation in the limit of 𝑚ℎ2
= 𝑚ℎ1

to show that for 𝑎𝑏 standing for
DM, 𝑊+𝑊−, 𝑍𝑍, 𝑞𝑞, 𝑙+𝑙−, or ℎ𝑘ℎ𝑙, the following equality holds:

(︀
Π𝑎𝑏11 −Π𝑎𝑏22

)︀
−
(︀
tan𝛼 ·Π𝑎𝑏12 − cot𝛼 ·Π𝑎𝑏21

)︀ ⃒⃒
⃒
𝑚1=𝑚2

= 0 (H.4)

for (in the last case one has to sum over 𝑘, 𝑙 = 1, 2). Therefore, the sum of all contributions vanishes as
well.

From the optical theorem it follows that the partial widths of ℎ1 and ℎ2 are related to the imaginary
parts of the appropriate self-energies as

Γℎ𝑖→𝑎𝑏 =
Π𝑎𝑏𝑖𝑖 (𝑚

2
ℎ𝑖
)

𝑖𝑚ℎ𝑖

, (H.5)

so that they take the following form:

Γℎ𝑖→DM =
𝑅2

2𝑖

𝑣2𝑆

𝑚3
ℎ𝑖

32𝜋

√︃
1− 4𝑚2

DM

𝑚2
ℎ𝑖

×

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (pGDM)

1− 4
𝑚2
DM

𝑚2
ℎ𝑖

+ 12

(︂
𝑚2
DM

𝑚2
ℎ𝑖

)︂2

(VDM)

2
𝑚2
DM

𝑚2
ℎ𝑖

(︂
1− 4

𝑚2
DM

𝑚2
ℎ𝑖

)︂
(FDM)

, (H.6a)

Γℎ𝑖→SM = 𝑅2
1𝑖 𝛾(𝑚ℎ𝑖

) (𝛾 denotes decay width of the SM Higgs particle of given mass) , (H.6b)

Γℎ1→ℎ2ℎ2 = sin2𝛼 cos2𝛼 (𝑚2
1 + 2𝑚2

2)
2

(︂
cos𝛼

𝑣𝑆
+

sin𝛼

𝑣

)︂2 √︀
𝑚2

1 − 4𝑚2
2

32𝜋𝑚2
1

≃ sin2 𝛼 cos4 𝛼

𝑣2𝑆
(𝑚2

1 + 2𝑚2
2)

2

√︀
𝑚2

1 − 4𝑚2
2

32𝜋𝑚2
1

,

(H.6c)

Γℎ2→ℎ1ℎ1
= sin2 𝛼 cos2 𝛼 (2𝑚2

1 +𝑚2
2)

2

(︂
sin𝛼

𝑣𝑆
− cos𝛼

𝑣

)︂2 √︀
𝑚2

2 − 4𝑚2
1

32𝜋𝑚2
2

≃ sin2 𝛼 cos4 𝛼

𝑣2
(2𝑚2

1 +𝑚2
2)

2

√︀
𝑚2

2 − 4𝑚2
1

32𝜋𝑚2
2

.

(H.6d)
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