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Abstract

“Towards ultracold molecules containing transition-metal and lanthanide atoms:
Interatomic interactions and ultracold collisions”

The past three decades of rapid development in laser cooling and trapping techniques have allowed
to produce ultracold quantum matter that can be controlled, manipulated, and measured with
unprecedented precision. Ultracold atoms and molecules have emerged as a versatile platform
for exploring novel quantum phenomena, and have found application in research areas such
as condensed-matter physics, quantum computing, controlled chemistry, and precision tests of
fundamental physics.

In recent years, there has been a growing interest in the properties of ultracold quantum
gases with strong dipolar interactions, such as ultracold gases of highly-magnetic atoms and
polar molecules. Ultracold quantum mixtures containing transition-metal or lanthanide atoms
offer prospects for the formation of polar molecules with large both electric and magnetic dipole
moments. An interplay between long-range interactions of both electric and magnetic nature
should allow for applications of such molecules in, among others, quantum simulations of many-
body systems and observation of novel exotic quantum phases, while their complex electronic
structure could be utilized in precision measurements of fundamental constants.

The doctoral thesis presents a theoretical investigation of interatomic interactions and col-
lisions in ultracold mixtures containing transition-metal (such as Cr, Zn, Cd) and lanthanide
atoms (such as Eu, Dy, Er) and analyzes the prospects for the formation of ultracold diatomic
molecules containing these atoms. The present research involves calculations of interaction poten-
tials with the use of ab initio quantum chemistry methods and quantum scattering calculations
for ultracold atom-atom collisions in external magnetic fields.

The thesis is divided into four main parts. The first part gives an introduction to ultracold
matter and presents the state of the art in the research of ultracold molecules and dipolar
quantum gases. The second part provides the theoretical and methodological foundations for the
work presented in the third, main part of the thesis. The third part of the thesis comprises a series
of thematically linked publications and preprints devoted to studies of interatomic interactions
and collisions in ultracold mixtures containing transition-metal and lanthanide atoms. The
presented papers investigate the following research problems: atom-atom collisions in ultracold
quantum gases of europium atoms and ultracold quantum mixtures of europium and alkali-
metal atoms (Li, Rb), the electronic structure of van der Waals molecules consisting of a zinc
or cadmium atom interacting with an alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-
metal (Be, Mg, Ca, Sr, Ba, Ra) atom, the electronic structure of LiCr molecule and atom-atom
collisions in ultracold mixtures of chromium and lithium atoms, and the long-range interactions
in ultracold mixtures of dysprosium or erbium atoms with alkali-metal (Li, Na, K, Rb, Cs, Fr)
or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba) atoms. The last, fourth part of the thesis provides
a brief summary of the obtained results and outlines the prospects for further research.
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Streszczenie

“W kierunku ultrazimnych cząsteczek zawierających atomy metali przejściowych
i lantanowców: oddziaływania międzyatomowe i ultrazimne zderzenia”

Ostatnie trzy dekady dynamicznego rozwoju technik laserowego chłodzenia i pułapkowania atomów
umożliwiły produkcję ultrazimnej kwantowej materii, która może być z ogromną precyzją kon-
trolowana i mierzona. Ultrazimne atomy i cząsteczki tworzą doskonałą platformę do badania
nowych zjawisk kwantowych i znalazły swoje zastosowanie w takich obszarach badań jak fizyka
materii skondensowanej, obliczenia kwantowe, kontrolowana chemia, czy precyzyjne testy funda-
mentalnych praw fizyki.

W ostatnich latach uwagę badaczy przyciągnęły tzw. ultrazimne gazy dipolowe, w których
atomy lub cząsteczki wykazują silne oddziaływania dipol-dipol – takie ultrazimne gazy mogą
tworzyć zarówno wysokomagnetyczne atomy, jak i polarne cząsteczki. Ultrazimne kwantowe
mieszaniny zawierające atomy metali przejściowych lub lantanowców oferują perspektywy ut-
worzenia polarnych cząsteczek posiadających zarówno duży elektryczny, jak i magnetyczny mo-
ment dipolowy. Obecne w takich mieszaninach połączenie dalekozasięgowych oddziaływań o
elektrycznym i magnetycznym charakterze pozwoli na stworzenie nowych symulatorów kwan-
towych i obserwację egzotycznych faz kwantowych, natomiast złożona struktura elektronowa
takich cząsteczek mogłaby zostać wykorzystana w precyzyjnych pomiarach stałych fundamen-
talnych.

Niniejsza rozprawa doktorska przedstawia teoretyczne badania międzyatomowych oddziały-
wań i zderzeń w ultrazimnych mieszaninach zawierających atomy metali przejściowych (takich
jak Cr, Zn, Cd) i lantanowców (takich jak Eu, Dy, Er) oraz analizuje perspektywy tworzenia
ultrazimnych dwuatomowych cząsteczek zawierających te atomy. Prezentowane badania obej-
mują obliczenia potencjałów oddziaływania metodami ab initio chemii kwantowej oraz obliczenia
rozpraszania kwantowego dla ultrazimnych zderzeń atom-atom w zewnętrznych polach magne-
tycznych.

Praca podzielona jest na cztery główne części. Pierwsza część stanowi wprowadzenie do ultra-
zimnej materii i przedstawia aktualny stan badań nad ultrazimnymi cząsteczkami i dipolowymi
gazami kwantowymi. W drugiej części przedstawiono podstawy teoretyczne i metody badawcze
zastosowane w celu uzyskania wyników przedstawionych w trzeciej, głównej części rozprawy.
Trzecią część rozprawy stanowi seria powiązanych tematycznie publikacji i przeddruków poświę-
conych badaniom oddziaływań i zderzeń międzyatomowych w ultrazimnych mieszaninach zaw-
ierających atomy metali przejściowych i lantanowców. W prezentowanych publikacjach i przed-
drukach poruszane są następujące problemy badawcze: zderzenia atom-atom w ultrazimnych
gazach kwantowych atomów europu i ultrazimnych mieszaninach europu i metali alkalicznych
(Li, Rb), struktura elektronowa cząsteczek van der Waalsa składających się z atomu cynku
lub kadmu oddziałującego z atomem metalu alkalicznego (Li, Na, K, Rb, Cs, Fr) lub metalu
ziem alkalicznych (Be, Mg, Ca, Sr, Ba, Ra), struktura elektronowa cząsteczki LiCr i zderzenia
atom-atom w ultrazimnych mieszaninach chromu i litu, a także oddziaływania dalekozasięgowe
w ultrazimnych mieszaninach atomów dysprozu lub erbu z atomami metali alkalicznych (Li, Na,
K, Rb, Cs, Fr) lub metali ziem alkalicznych (Be, Mg, Ca, Sr, Ba). Ostatnia, czwarta część pracy
zawiera krótkie podsumowanie uzyskanych wyników oraz rysuje perspektywy dalszych badań.
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Preface

The advent of methods to cool and trap atoms with laser light in the 1980s sparked a revolution
in the field of atomic, molecular, and optical (AMO) physics and eventually led to the first
experimental observation of a Bose-Einstein condensate (BEC) with dilute alkali-metal-atom
gases in 1995 [1–3] – a phenomenon predicted by S. Bose [4] and A. Einstein [5] over 70 years
earlier. The experimental breakthroughs of atom cooling and trapping, the realization of an
atomic BEC, and, further, the development of laser-based precision spectroscopy and quantum
control were all recognized by Nobel Prizes in Physics – in 1997 (awarded to S. Chu [6], C. N.
Cohen-Tannoudji [7], and W. D. Phillips [8]), 2001 (awarded to E. A. Cornell [9], W. Ketterle [10],
and C. E. Wieman [9]), 2005 (awarded to J. L. Hall [11] and T. W. Hänsch [12], and R. J.
Glauber [13]), and 2012 (awarded to S. Haroche [14] and D. J. Wineland [15]). Over the past
three decades, exceptional controllability of matter and light has been achieved, allowing to
produce cold (< 1 K) and ultracold (< 1 mK) atomic and molecular samples whose properties
can be precisely tailored with electromagnetic fields.

A variety of atomic species of increasingly complex internal structure has already been
brought to quantum degeneracy and employed in sophisticated ultracold experiments: starting
from alkali-metal atoms [1–3; 16–20], through alkaline-earth-metal [21–24] and transition-metal
atoms [25; 26], to lanthanide atoms [27–34]. After the successful production of single-species
atomic quantum gases, research on ultracold matter has soon expanded onto double-degenerate
quantum mixtures [35; 36], ultracold molecules [37–41], and hybrid systems of ultracold atoms
with ions [42; 43]. Ultracold quantum gases serve as an unequaled platform for studies of quan-
tum matter and light-matter interactions due to their unprecedented controllability and have
found applications in, among others, quantum computation [44; 45] and quantum simulations of
many-body physics [46–48], controlled chemistry [49; 50], and fundamental physics [51; 52].

In recent years, there has been a growing interest in ultracold quantum gases of highly
magnetic atoms, such as transition-metal atom chromium and lanthanide atoms like europium,
erbium, holmium, or dysprosium. Quantum mixtures containing transition-metal or lanthanide
atoms offer prospects for the formation of ground-state polar molecules with large both electric
and magnetic dipole moments. An interplay between long-range interactions of both electric and
magnetic nature should allow for novel applications in, among others, quantum simulations of
many-body systems [50], while the complex electronic structure of such molecules could serve as a
sensitive probe in precision measurements [51]. Heteronuclear mixtures of highly magnetic atoms
are promising systems for the exploration of polaron physics [53–55], Efimov physics [56], exotic
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [57; 58], and binary supersolids [59]. Degenerate
mixtures of Dy and K atoms [60–62], Dy and Er atoms [63–65], Er and Li atoms [66], Cr and Li
atoms [67; 68], and Er and Yb atoms [69] are currently being investigated experimentally.

An increased interest in the properties of ultracold quantum gases with strong dipolar in-
teractions, such as ultracold gases of highly magnetic atoms and polar molecules, motivated
us to theoretically investigate the interatomic interactions and ultracold collisions in mixtures
containing transition-metal (such as Cr, Zn, Cd) and lanthanide atoms (such as Eu, Dy, Er)
and analyze the prospects for the formation of diatomic molecules containing these atoms. The
results of this study form the content of the present PhD thesis and include:
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• the analysis of magnetically tunable Feshbach resonances between ultracold europium
atoms and between europium and alkali-metal (Li, Rb) atoms, calculated with the use
of multichannel quantum scattering formalism,

• investigation of the properties (potential energy curves, permanent electric dipole moments,
and spectroscopic constants) of diatomic molecules consisting of either a Zn or Cd atom
interacting with an alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg,
Ca, Sr, Ba, Ra) atom, calculated with the use of the ab initio electronic-structure coupled-
clusters method,

• calculation of the potential energy curves and the permanent and transition electric dipole
moments for the electronic states of the LiCr molecule correlated to the four lowest atomic
dissociation limits (with the use of coupled-clusters and multireference configuration in-
teraction methods), analysis of magnetically tunable Feshbach resonances in the Cr+Li
mixtures (obtained using multichannel quantum scattering calculations), analysis of the
prospects for the formation of polar and highly magnetic LiCr molecules via magneto- and
photoassociation, proposal of the precision measurements of the variation of electron-to-
proton mass ratio using ultracold LiCr molecules,

• derivation and numerical calculations of the C6 coefficients characterizing the van der Waals
interactions between Dy or Er atoms in the two lowest energy levels and the ground-state
alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba) atoms.

The present dissertation is based on a series of thematically linked publications and preprints:

• Paper I: K. Zaremba-Kopczyk, P. Żuchowski, and M. Tomza, Magnetically tunable Feshbach
resonances in ultracold gases of europium atoms and mixtures of europium and alkali-metal
atoms, Phys. Rev. A 98, 032704 (2018), DOI: 10.1103/PhysRevA.98.032704 [70],

• Paper II: K. Zaremba-Kopczyk and M. Tomza, Van der Waals molecules consisting of a
zinc or cadmium atom interacting with an alkali-metal or alkaline-earth-metal atom, Phys.
Rev. A 104, 042816 (2021), DOI: 10.1103/PhysRevA.104.042816 [71],

• Paper III: K. Zaremba-Kopczyk, M. Gronowski, and M. Tomza, Ultracold mixtures of Cr
and Li atoms: theoretical prospects for controlled atomic collisions, LiCr molecule forma-
tion, and molecular precision measurements, preprint,

• Paper IV: K. Zaremba-Kopczyk, M. Tomza, and M. Lepers, Van der Waals coefficients
for interactions of dysprosium and erbium atoms with alkali-metal and alkaline-earth-metal
atoms, preprint.

and is outlined as follows. Chapter 1 gives a brief introduction to ultracold matter, describes the
methods for the production of ultracold quantum gases, and presents the state of the art in the
research of ultracold molecules and dipolar quantum gases. Chapter 2 provides the theoretical
and methodological foundations for the work presented in Papers I – IV. It begins by describing
the electronic and rovibrational structure of diatomic molecules within the adiabatic approxi-
mation. Next, we describe the ab initio quantum chemistry methods employed in our electronic
structure calculations (Papers I – III), as well as the coupled-channels formalism underlying the
quantum scattering calculations (Paper I and Paper III). The last section of Chapter 2 is devoted
to the description of long-range interactions between ultracold atoms and sets the ground for the
calculations presented in Paper IV. Papers I – IV, complemented by the commentary about the
motivation behind each work and the PhD Candidate’s contribution to each paper, comprise the
core of the thesis and are presented in Chapter 3. Finally, in Chapter 4 we provide a brief
summary of the obtained results and outline prospects for further research.
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Chapter 1

Introduction

1.1 Ultracold matter

The production of ultracold atoms and molecules has revolutionized modern physics and chem-
istry, allowing to investigate quantum properties of matter at an unattainable otherwise level.
Since thermal fluctuations are suppressed at ultralow temperatures, ultracold quantum matter
can be controlled, manipulated, and measured with unprecedented precision.

Ultracold quantum gases are very dilute systems, with gas densities obtained experimentally
typically ranging from 1012 to 1015 cm−3. In a dilute gas, the mean interparticle distance n−1/3

greatly exceeds the range of the interparticle interaction Rint:

n−1/3 � Rint ,

where n denotes the gas density and Rint is the characteristic radius of the interparticle in-
teraction (Rint marks a transition point between the short-range and the long-range asymptotic
behavior of the s-wave scattering wave function and is determined by the shape of the interaction
potential [72]).

At ultralow temperatures, the thermal de Broglie wavelength λth of particles greatly ex-
ceeds Rint:

λth =

√
2π~2

mkBT
� Rint ,

with ~ and kB denoting the reduced Planck and Boltzmann constants, respectively, m denoting
the particle mass, and T being the gas temperature. Therefore, the ultracold regime is achieved
when Rintλ

−1
th � 1, which roughly corresponds to temperatures below 1 mK.

An ultracold gas enters the quantum-degenerate regime when the thermal de Broglie wave-
length λth becomes comparable to the mean interparticle distance n−1/3, so that:

nλ3
th & 1 ,

where nλ3
th is the phase-space density of the gas. Depending on the statistics of constituent

particles (bosons or fermions), the ground-state of an ultracold quantum gas is either a Bose-
Einstein condensate or a Fermi sea. In the case of an ideal BEC, all particles occupy the
same, lowest-lying single-particle quantum state, while in the case of a Fermi sea, the particles
populate the lowest allowed by the Pauli exclusion principle single-particle levels, up to the Fermi
energy. For an ideal gas of bosonic particles in a three-dimensional box, the BEC is formed when
the phase-space density exceeds the critical value of 2.612. Because nλ3

th ∝ nT−3/2, very low
temperatures are required to reach quantum degeneracy since, at the same time, gas density
needs to be low enough to avoid losses due to inelastic collisions. For atomic quantum gases
obtained experimentally, the temperatures of degeneracy commonly range from 100 nK to 1 µK.
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Since ultracold quantum gases are very dilute, it is usually sufficient to only consider pair
interactions and collisions in their description. At ultralow temperatures, the lowest angular-
momentum (l) collisions dominate, and for identical bosons only even values of l are possible,
while for identical fermions – only odd values. For bosonic gases, only s-wave scattering between
particles can take place in the ultracold regime (unless the so-called shape resonances with
bound states of l 6= 0 exist), which allows us to replace the actual interaction potential by a
pseudopotential, which, following Ref. [73], reads:

V (r) =
2π~2a

µ
δ(R)

∂

∂R
R , (1.1)

where µ is the reduced mass of the system, R is the vector between the positions of the particles,
and a is the s-wave scattering length. Since for identical fermions the s-wave collisions are
forbidden due to the Pauli exclusion principle, the p-wave collisions dominate.

The magnitude and sign of the s-wave scattering length can be tuned by means of the so-called
Feshbach resonances [74]; Feshbach resonances serve as a powerful tool to control the interaction
strength in ultracold gases and allow us to enter the strongly-interacting regime and explore the
many-body physics of strongly-correlated systems (the physics of Feshbach resonances will be
discussed in more detail in Secs. 1.3.1 and 2.3.3).

1.2 Production of ultracold atomic gases

The production of ultracold atomic quantum matter is realized through laser cooling of an atomic
ensemble in a magneto-optical trap (MOT), followed by evaporative cooling in a magnetic or an
optical dipole trap. The mechanisms for neutral atom trapping involve [75]:

• radiation-pressure trapping [76], which uses the force exerted on an atom in the pro-
cess of incoherent photon scattering (due to spontaneous emission when operating with
near-resonant light) to counteract external forces and create a stable trapping potential;
radiation-pressure traps have typical depths of up to a few kelvins and allow to cool a gas
of atoms down to temperatures of a few tens of microkelvins; their performance is limited
by strong optical excitations,

• magnetic trapping [77], which employs the interaction between an atom’s magnetic dipole
moment and an external magnetic field gradient to create a state-dependent shift in the
energy of the atom; magnetic traps are shallow, with typical depths of the order of 100 mK,

• optical dipole trapping [78], which results from the interaction between an atom’s induced
electric dipole moment with far-detuned light (therefore, as opposed to radiation-pressure
traps, optical excitations can be kept extremely low); the trap depths are typically below
1 mK; this type of trapping mechanism is the weakest among the three, but offers the
flexibility to realize a variety of trapping geometries (e.g., multi-well potentials, periodic
potentials of optical lattices).

Radiation-pressure trapping is typically applied during the first stage of an ultracold gas
production, when the atomic ensemble is pre-cooled to temperatures in the microkelvin range
with the use of a MOT. The laser cooling mechanism primarily exploits the momentum conser-
vation law during repeated cycles of near-resonant absorption of a photon and its subsequent
spontaneous emission (see Fig. 1.1). In the Doppler cooling scheme, the laser is red-detuned
(tuned to a frequency below the resonant frequency) from the atomic transition frequency. As
the atom moves towards the laser, it sees the counterpropagating photons as blue-shifted due
to the Doppler effect and can absorb the resonant ones. The photon absorption transitions the
atom to an excited electronic state and makes it lose momentum in the direction of the photon

4



Figure 1.1: A depiction of the laser cooling scheme, as presented in W. D. Phillips’s Nobel Lecture [8]:
a) an atom with velocity v absorbs a photon with momentum ~k (k denotes the wave vector of the
photon); b) the atom (of mass m) is slowed by ~k/m in the direction of the incident beam; c) the photon
is emitted in a random direction and, on average, the atom moves slower than in a).

propagation. Subsequent spontaneous emission of the photon causes a recoil of the atom in a
random direction. After many absorption-emission cycles, the atom recoil is averaged to zero
due to a random walk in the momentum space. The lowest temperature obtainable within the
Doppler cooling scheme, TDoppler, is limited by the atomic transition’s natural linewidth, Γ:

TDoppler =
~Γ

2kB
.

Over time, sub-Doppler cooling schemes have been elaborated, such as the polarization-gradient
cooling, Raman cooling, or resolved-sideband Raman cooling, which are described in Ref. [75].

The pre-cooled atoms are next transferred from a MOT to a magnetic or an optical dipole
trap to perform evaporative cooling. During evaporative cooling, weakly-confined atoms with
high kinetic energies are removed as the trap depth is adiabatically decreased. This process
gradually reduces the average temperature of an ensemble and eventually allows to reach quantum
degeneracy.

1.3 Ultracold molecules

1.3.1 Production of ultracold molecules

Up till now the extension of laser cooling and trapping techniques from atoms to molecules poses
a significant challenge. This is due to the fact that molecules, as compared to atoms, possess
additional degrees of freedom that give rise to a richer energy level structure (i.e., the additional
presence of rotational and vibrational levels associated with each electronic state, see Fig. 2.1 in
Sec. 2.1.2). The dense spectrum of energy levels makes the molecules more prone to various loss
mechanisms what significantly complicates the cooling process and quantum state manipulation.

On the other hand, the very complexity of molecular structure offers a diverse landscape for
probing fundamental physics, exploring strongly-correlated quantum matter and exotic quantum
phases, quantum computing, or investigating the dynamics of chemical reactions [79]. There-
fore, much effort has been put into the development of methods to produce cold and ultracold
molecular samples. These methods employ two main approaches: direct (cooling of molecules
using external fields or other cold species) and indirect (association of pre-cooled atoms into
molecules).

5



Figure 1.2: (1) Methods for the production of cold and ultracold molecules in different regions of
temperature T and phase-space density n. (2) Potential applications of cold and ultracold molecules,
along with the required values of T and n. Image source: Ref. [79].

Indirect methods

Indirect methods are so far the most efficient ones to produce ultracold quantum gases of (di-
atomic) molecules – they allow to obtain samples with the highest phase space densities and
control over molecular degrees of freedom. In this approach, ultracold atoms are associated into
molecules using magnetoassociation via Feshbach resonances (FRs) [80] and photoassociation
(PA) [81] followed by stimulated Raman adiabatic passage (STIRAP) [82]. The methods, how-
ever, only allow to synthesize molecules from atomic species that are amendable to laser cooling
and trapping. So far, mainly bialkali homo- and heteronuclear dimers [37–41; 83–92] have been
produced, although the association of alkaline-earth-metal- [93–95] and lanthanide-containing
molecules has also been demonstrated [96; 97].

1. Magnetoassociation followed by STIRAP

One way to produce an ultracold molecular quantum gas is magnetoassociation via Fes-
hbach resonances. In this method, pairs of ultracold atoms are associated into weakly-
bound Feshbach molecules by ramping an applied magnetic field across a FR (see Fig. 1.3).
Weakly-bound Feshbach molecules can be then transferred into deeply-bound molecular

Figure 1.3: Two-channel model for a magnetic Feshbach resonance. (1) A FR occurs when two atoms
colliding at energy E in the entrance channel resonantly couple to a molecular bound state with energy
Ec in the closed channel. (2) The scattering length (a) and the molecular bound state energy (b) as a
function of the magnetic field near the FR. Images taken from Ref. [74].
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states by STIRAP as presented in Fig. 1.5b). In the process, a pair of Raman lasers is
used to coherently transfer the molecules between quantum states via a third intermedi-
ate state. The proper choice of the intermediate state is key as it must have a favorable
function overlap with both the initial and the final molecular state [82].

Magnetoassociation via Feshbach resonances has been employed to produce ultracold homonu-
clear bialkali dimers: Li2 [98; 99], Na2 [100], K2 [40; 101], Rb2 [37; 102], and Cs2 [84]
and a variety of heteronuclear bialkali dimers, such as: LiK [103], LiCs [104], NaK [105],
NaRb [90; 106], KRb [83], or RbCs [86; 87]. The production of lanthanide-containing
dimers, such as Er2 [96] and DyK [97] has also been demonstrated recently. Heteronuclear
molecules are produced out of an atomic quantum gas mixture as illustrated in Fig. 1.4.

Figure 1.4: Production of ultracold heteronuclear molecules out of a binary quantum gas. Beginning
with degenerate gases of two atomic species, Feshbach molecules are created by sweeping a magnetic
field through a FR. Next, the weakly-bound molecules are coherently transferred to the ground state by
STIRAP. Image from Ref. [92].

2. Photoassociation

Photoassociation is a process in which two colliding atoms A and B in an unbound scatter-
ing state are excited into a weakly-bound molecular state AB∗ (see Fig. 1.5). The process
is driven by resonant light with angular frequency ω:

A+B + ~ω −→ AB∗ .

Since the lifetime of a molecule in an excited state is finite, the weakly-bound molecule
AB∗ subsequently spontaneously decays into a stable ground-state molecule:

AB∗ + ~ω′ −→ AB

or dissociates back into a pair of atoms, depending on the overlap between the vibrational
wave function of the photoassociated molecule and the wave functions of the ground-state
levels.

Since PA is followed by spontaneous decay, the final distribution of the population may
span multiple rovibrational levels, depending on the transition selection rules and Franck-
Condon overlap. Therefore, coherent population transfer needs to be applied (e.g., via
STIRAP) to ensure a complete population transfer of the weakly-bound molecules into a
target quantum state [81].

PA has been applied to produce ultracold homonuclear (Li2 [107], Na2 [108], K2 [109],
Rb2 [110], and Cs2 [111]) and heteronuclear (LiK [112], LiRb [113], NaK [114], KRb [85;
115], NaCs [116], RbCs [117]) alkali-metal molecules, as well as molecules containing non-
magnetic closed-shell atoms, such as alkaline-earth-metal atoms (Ca2 [118] and Sr2 [93; 95;
119]) and lanthanides (YbLi [120], YbRb [121], CsYb [122], Yb2 [123]).
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Figure 1.5: Schematic depiction of a cold ground-state molecule formation by a) photoassociation
b) magnetoassociation followed by STIRAP. a) In photoassociation, a free pair of atoms is coupled to a
weakly-bound excited molecular state at long range (solid arrow), followed by radiative stabilization via
spontaneous decay at short range (dashed arrow). b) In magnetoassociation, a molecule is first created in
a vibrational state near the dissociation threshold using a magnetic FR. The molecule is then transferred
to a lower-bound state by STIRAP (solid arrows). Image source: Ref. [81].

Direct methods

For many years, direct laser cooling of molecules down to ultralow temperatures has been con-
sidered as nearly impossible, and indirect techniques are to this day the most effective means
to produce molecular quantum matter. Indirect methods, however, exclude many chemically
relevant species from formation – such as monohydrides, nitrides, oxides, fluorides, chlorides,
or organic molecules [79]. Direct methods in which molecules are cooled from molecular beam
temperatures (decelerated supersonic beams, buffer-gas cooling) can only produce molecules in
the low energy regime (1 mK – 1 K) [124]. However, a major breakthrough was made in 2010,
when direct laser cooling of a diatomic molecule (SrF) to millikelvin temperatures was demon-
strated for the first time [125]. In 2017, sub-Doppler temperature regime was achieved with the
laser-cooled CaF [126], and the past few years have brought rapid progress in the laser cool-
ing and trapping of molecules (including polyatomic ones) to sub-Doppler temperatures in the
microkelvin range.

1. Molecular beam deceleration

Molecular beam deceleration is used to prepare cold, velocity-controlled molecular beams.
It begins by a supersonic expansion of a molecular beam (a mixture of molecules of interest
and a buffer gas – composed of chemically inert atoms, typically helium – is expanded from
high pressure into vacuum) and its subsequent deceleration using electric (Stark decelera-
tor) [124], magnetic (Zeeman slower) [127], or optical fields [128]. During the supersonic
expansion, molecules undergo many elastic collisions with the buffer-gas atoms and lose
most of their vibrational and rotational energy. Therefore, once injected into a decelerator,
the molecules are vibrationally and rotationally cold in the moving frame despite moving
at a speed of 300 – 2000 m/s in the laboratory frame. In decelerators employing the Stark
and Zeeman effects, a beam of molecules is slowed by a rapidly switching, inhomogeneous
electric or magnetic field, respectively, while optical decelerators use deep periodic optical
lattice potentials to slow the molecules through oscillatory motion.

Multiple molecular species have already been Stark-decelerated, for example: CO [129],
NH3/ND3 [130], OH [131], SrF [132], H2CO [133], NH [134], SO2 [135], LiH [136], CaF [137],
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and benzene [138]. Zeeman-effect-based deceleration was demonstrated, for example, for:
O2 [139], NH [140], CaOH [127], and YbOH [141].

2. Buffer-gas and sympathetic cooling

Buffer-gas and sympathetic cooling both employ collisional thermalization of molecules
with an atomic-gas coolant. In buffer-gas cooling, molecules thermalize via collisions with
cryogenic buffer gas (helium or neon), reaching temperatures in the kelvin regime. As the
cooling process does not depend on molecular properties like the energy level structure
and electric dipole moment, it can be applied to a large variety of molecular species. A
wide range of cold molecules have already been produced via buffer-gas cooling, spanning
small polyatomic molecules such as ND3 [142; 143] and H2CO [142], heavy molecules like
ThO [144; 145], and radicals NH [146], SrF [147], CaH [148], BaF [149], or CaF [150].

Sympathetic cooling uses a reservoir of ultracold atoms to cool atoms and molecules to
ultralow temperatures. In the first step, the species of interest are cryogenically pre-
cooled or beam-decelerated. Sympathetic cooling has been successfully applied to produce
ultracold gases of atoms through interspecies collisions [17; 151]. However, in order for
sympathetic cooling to be effective, elastic cross section must significantly dominate the
inelastic cross sections [152], which is difficult to achieve with atom-molecule systems.
Theoretical proposals for the production of ultracold molecules by sympathetic cooling
have been presented, for example for OH with Rb acting as a coolant [153], NH3 with
alkali-metal and alkaline-earth-metal atoms [154], NH/OH with Mg [155; 156], or CaF
with Li/Rb [157], but not yet fully realized experimentally. Signatures of sympathetic
cooling, however, were observed in Na–NaLi system [158].

3. Laser cooling and trapping

A class of molecules eligible for direct cooling and trapping was identified in the first
proposal of a molecular MOT [159], namely, the molecules have to be characterized with
diagonal Franck-Condon factors (FCFs), no net nuclear spin, and the ground or lowest
metastable state needs to have a higher angular momentum than the first electronically
excited state. Diatomic molecules such as metal oxides, sulfides, carbides, hydrides, and
halides were proposed to meet these criteria.

Several diatomic molecules (SrF [160–162], CaF [126; 163; 164], YbF [165] and YO [166])
have already been trapped and cooled in a MOT to sub-Doppler temperatures. In 2017,
laser cooling of a polyatomic molecule, SrOH [167], was demonstrated for the first time,
and the achievement of sub-Doppler regime was demonstrated with CaOH in 2022 [168].
Direct laser cooling has also recently been extended to more complex polyatomic molecules,
such as CaOCH3 [169].

4. Evaporative cooling

Evaporative cooling, described earlier in Sec. 1.2, can be also applied to molecular species.
Molecules from the high-energy tail in a thermal distribution are removed by adiabatic
lowering of the trap depth. Subsequent elastic molecule-molecule collisions rethermalize
the ensemble to a lower temperature. Similarly to sympathetic cooling, the performance
of evaporative cooling is ultimately limited by the ratio of elastic-to-inelastic two-body
collision rates.

Evaporative cooling of molecules was demonstrated for the first time in 2012 with hydroxyl
radicals [170] and recently allowed to produce quantum degenerate gases of bialkali dimers:
KRb [171] and NaK [172]. Molecular dipolar BECs of NaCs [173] and NaRb [174] should
also be realized very soon.
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1.3.2 Applications and prospects

Ultracold molecules with their rich internal structure, large polarizabilities, and strong cou-
pling to microwave fields offer a rich playground for studying strongly-correlated quantum sys-
tems. They have emerged as a platform connecting a variety of research areas, including chem-
istry [50], particle physics and cosmology [51], condensed matter physics [48], and quantum
information [175]. Here we give a brief overview of the current and prospective applications of
ultracold molecules.

Controlled chemistry

Studies on cold and ultracold molecules have provided detailed insights into molecular interac-
tions and chemical reactivity, including reaction pathways, resonance phenomena, and reactive
collisions [50]. At low and ultralow temperatures, the energy scales of long-range interactions
are comparable to or greater than the collision energies, what dramatically changes the reaction
dynamics [176]. As reactants approach the short range, the particle rearrangements occur. Be-
cause ultracold reactants can be controlled with the accuracy of a single quantum state, each
stage of the short-range reaction dynamics can be tracked and studied.

A remarkable example of control over a chemical reaction was presented in the seminal work
by Ospelkaus et al. [177], where the dynamics of the ultracold bimolecular reaction KRb + KRb
→ K2 + Rb2 was studied. When the fermionic 40K87Rb molecules were all prepared in their
absolute ground state, s-wave scattering was prohibited, and at the given collision energy the
reaction KRb + KRb → K2 + Rb2 required tunneling through the p-wave centrifugal barrier.
Next, half of the molecules were transferred to another hyperfine state, allowing for the s-wave
scattering and hence increasing the reaction rate by nearly an order of magnitude. In a subsequent
experiment, it was possible to directly observe all reactants, intermediates, and products of the
reaction KRb + KRb → K2Rb2* → K2 + Rb2 [178].

Many-body physics and quantum simulations

The realization of atomic Bose-Einstein condensates and degenerate Fermi gases opened a window
to the exploration of strongly correlated many-body systems and quantum simulations. In the
early experiments on degenerate atomic gases, it was possible to demonstrate, for example, a
transition between a superfluid and a Mott-insulating phase with bosonic atoms confined in
an optical lattice [179], the Bardeen-Cooper-Schrieffer–Bose-Einstein condensation (BCS-BEC)
crossover – between a BCS state of weakly-attractive fermionic atoms and a BEC of weakly-bound
bosonic molecules [99; 101], or the realization of a a fermionic Mott insulator [180]. Atoms loaded
into optical lattices (artificial periodic potentials formed by the interference of counterpropagating
laser beams, see Ref. [48]) have allowed for quantum simulations of solid-state-like systems with
different geometries, strength of interactions, and disorder [48].

In the realm of many-body physics, ultracold molecules offer opportunities to explore phe-
nomena such as novel exotic forms of superfluidity [181], supersolidity [182], or quantum mag-
netism [183; 184]. Moreover, owing to the additional degrees of freedom and possibly strong
long-range interactions, molecules offer a more versatile platform for building synthetic quantum
matter as compared to atoms. Exemplary advanced quantum materials that could be emulated
with ultracold molecules loaded into optical lattices are depicted in Fig. 1.6.

Precision measurements and tests of fundamental physical laws

Heavy, multielectron molecules offer enhanced possibilities in terms of applications in fundamen-
tal research, such as tests of fundamental symmetries, searches for spatio-temporal variations of
fundamental constants, tests of quantum electrodynamics, tests of general relativity, or searches
for dark matter, dark energy, and extra forces [51; 52; 185]. Moreover, cold and ultracold atoms,
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Figure 1.6: Prospective quantum materials assembled with ultracold molecules. Image source: Ref. [50].

ions, and molecules serve as ideal systems for high-resolution spectroscopy due to the reduced
Doppler broadening of spectral lines at low and ultralow temperatures.

Atoms like dysprosium [186] and multiple highly-charged atomic ions [52] have already been
applied in searches of physics beyond the Standard Model and setting constraints on temporal
variations of the fine-structure constant α and the proton-to-electron mass ratio mp/me. The
complex electronic structure of molecules and molecular ions allows for even greater sensitivity to
the variations of fundamental constants such as α [187] and mp/me [188–190], and offer potential
improvement in constraining the value of the electron electric dipole moment (eEDM) [191; 192]
or investigation of parity (P) and time-reversal (T) violation [167; 193; 194]. Polar paramagnetic
molecules have been proposed to offer enhanced sensitivity to eEDM, while diamagnetic molecules
– to P and T violation [51]. Additionally, weakly-bound Feshbach molecules have been shown to
be extremely sensitive to the variations of the mp/me [187].

1.4 Dipolar quantum gases

This section gives an overview of the achievements in the field of ultracold dipolar quantum gases,
i.e., quantum gases whose constituents interact via strong dipole-dipole interactions (DDIs). The
DDIs have a long-range (∝ 1/r3) and anisotropic (d-wave symmetry) character, and their relative
strength (with respect to short-range and isotropic interactions) can often be tuned with external
fields [195]. The interaction potential of two polarized dipoles reads:

Vdd(r) =
Cdd

4π

(1− cos2 θ)

r3
,

where |r| = r is the distance between the dipoles, θ gives the angle between |r| and the polariza-
tion axis, and Cdd is the dipole coupling constant, which is equal to µ0µ

2 for particles having a
permanent magnetic dipole moment (µ0 denotes the vacuum magnetic permeability) and d2/ε0
for particles with a permanent electric dipole moment d (ε0 denotes the vacuum permittivity).
Since θ varies from 0 to π/2, the factor 1− cos2 θ takes values between -2 and 1. Therefore, the
DDI is repulsive for particles in a side-by-side alignment and attractive in a head-to-tail config-
uration. The dipolar coupling is much larger for particles having an electric dipole moment as
compared to those with a magnetic dipole moment since:

µ0µ
2

d2/ε0
∼ α2 ∼ 10−4 ,

where α is the fine-structure constant. Another quantity often used in measuring the absolute
strength of the DDI (for a particle of mass m) is the so-called dipolar length add, defined as:

add =
Cddm

12π~2
.

Dipolar quantum gases of highly magnetic atoms

In recent years, particular attention has been drawn to dipolar quantum gases of highly mag-
netic atoms such as chromium Cr(7S3), erbium Er(3H6), and dysprosium Dy(5I8) with magnetic
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dipole moments of 6, 7, and 10 Bohr magnetons µB, respectively. Dipolar quantum gases have
enabled access to novel many-body quantum phases and realization of complex spin models [196].
Pioneering experiments on atomic quantum gases with strong DDIs, realized in the group of T.
Pfau, involved the use of Cr atoms and allowed to demonstrate, e.g., the d-wave collapse of a
dipolar BEC [197–199]. Even more spectacular dipolarity effects have been observed later with
Dy and Er atoms, such as the emergence of quantum chaos in ultracold collisions [200; 201],
Fermi surface deformation [202], self-bound droplets of a dilute magnetic quantum liquid [203],
Rosensweig instability of a quantum ferroffuid [204], realization of extended Bose-Hubbard mod-
els [205], and supersolidity [206–208].

What distinguishes highly magnetic lanthanides possessing both large electronic spin and
large electronic orbital angular momentum, such as dysprosium and erbium, is the large anisotropy
of interactions, having its source not only in the long-range magnetic DDIs, stemming from the
atoms’ large magnetic moments, but also in the anisotropic contributions to the van der Waals
(vdW) interactions, resultant of the large orbital angular momentum of valence electrons that
occupy a partially filled 4f electron shell shielded by a closed 6s shell [209]. This anisotropy
leads to rich, dense, and chaotic spectra of magnetic Feshbach resonances in collisions between
highly magnetic atoms in non-S electronic ground states [200; 201], far different from Feshbach
resonance spectra observed in collisions between S-state alkali-metal and alkaline-earth-metal
atoms [74]. The complexity of interatomic interactions, and consequent complexity of collisional
spectra, is what causes the investigation of such systems and explanation of their properties very
challenging.

Figure 1.7: A schematic of the experimental procedure for observing Rosensweig instability in a dipolar
quantum gas as presented in Ref. [204]. A strongly dipolar BEC in prepared in a pancake-shaped trap
(left). By tuning the scattering length with a Feshbach resonance, such that the dipolar attraction
dominates the repulsive contact interaction, an instability of a dipolar gas is induced and the atoms
cluster to droplets (right).

So far, degenerate quantum gases of highly magnetic transition-metal and lanthanide atoms,
such as Cr (7S3; 6µB) [25; 26], Eu (8S7/2; 7µB) [34], Er (3H6; 7µB) [32; 33], and Dy (5I8;
10µB) [30; 31] have been realized experimentally. Magneto-optical trapping of Ho(4Io15/2; 9µB) [210]
and Tm(2F7/2; 4µB) [211] atoms has also been demonstrated.

Dipolar quantum gases of polar molecules

Another way to realize a quantum gas with significant DDIs is to use particles having a large
permanent electric dipole moment. Therefore, molecules are ideal candidates for studying dipolar
effects, provided that they: i. are heteronuclear and possess a significant permanent EDM, ii. are
prepared in a low rovibrational state and are stable against collisional relaxation, iii. an external
electric field is applied to orient the molecules in the laboratory frame [212]. The experimentally
available ultracold molecular systems with a large EDM include: KRb, NaK, RbCs, NaRb, KCs,
LiCs, NaLi, SrF, CaF, YO, HO (see Sec. 1.3.1).
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Ultracold quantum mixtures containing highly magnetic atoms

Heteronuclear mixtures containing highly magnetic atoms have been proposed as a platform to
study polaron physics in systems with dominant dipolar interactions [53–55], Efimov physics [56],
exotic FFLO states in systems with significant mass imbalance [57; 58], and binary super-
solids [59]. Experiments on degenerate mixtures of Dy and K atoms [60–62], Dy and Er
atoms [63–65], Er and Li atoms [66], Cr and Li atoms [67; 68], and Er and Yb atoms [69]
are currently being realized, making the theoretical proposals more and more feasible.

One particular feature that motivates the experiments on Fermi-Fermi mixtures such as
161Dy+40K [60–62] and 53Cr+6Li [67; 68] is the favorable mass imbalance of constituent atoms
(8.17 ≤ M/m ≤ 13.6), that, according to theoretical predictions, should allow for the access to
novel superfluid states with exotic pairing mechanisms like the FFLO and Sarma phases [57; 58;
213; 214]. In addition, mass-imbalanced fermionic mixtures have been predicted to exhibit exotic
few-body effects like p-wave atom-dimer interactions [215–217] or non-Efimovian weakly-bound
trimer, tetramer, and pentamer states [218; 219].

Ultracold quantummixtures of highly magnetic transition-metal or lanthanide atoms interact-
ing with open-shell or closed-shell S-state atoms offer prospects for the formation of ground-state
polar molecules with large both electric and magnetic dipole moments (the production of DyK
Feshbach molecules was recently reported in Ref. [97]). The interplay between magnetic and elec-
tric DDIs specific to such molecules should allow to build novel quantum simulators and explore
different regimes of quantum magnetism [50; 220]. Moreover, the complex electronic structure
of molecules containing transition-metal or lanthanide atoms, including a very rich structure of
the excited electronic states, provides enhanced sensitivities in precision tests of fundamental
physics [51; 189].

Therefore, the electronic structure of molecules containing highly magnetic transition-metal
and lanthanide atoms, such as Cr– [221; 222] and Eu–alkali-metal and alkaline-earth-metal
dimers [223] have been theoretically investigated alongside the collisional properties of ultra-
cold heteronuclear mixtures: Cr+Li [Paper III], Cr+Rb [221], Cr+Ca+/Sr+/Ba+/Yb+ [224],
Eu+Li/Rb [Paper I], Er+Li [225], Er+Yb [226; 227], Er+Sr [227], and Dy+Sr/Yb [227]. The ab
initio studies of interatomic interactions in homonuclear dimers of highly magnetic lanthanide
atoms such as Eu2 [228], Ho2 [229], Er2 [230], and Tm2 [230] have also been reported.
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Chapter 2

Methodology

The present Chapter discusses the theory underlying the calculations presented in Papers I – IV.
Hartree atomic units (me = 1, e = 1, ~ = 1, 4πε0 = 1; e denotes the electron charge) are used
throughout the Chapter.

2.1 Electronic and rovibrational structure of diatomic molecules

2.1.1 Adiabatic and Born-Oppenheimer approximations

The separation of variables method is frequently employed to simplify complex Schrödinger equa-
tions for systems with many variables and underlies one of the most important and fundamental
approximations used in quantum chemistry and molecular physics – the adiabatic approxima-
tion. In the adiabatic approximation, and its universally used variation – the Born-Oppenheimer
(BO) approximation, we assume that the electronic degrees of freedom can be decoupled from
the nuclear ones. The assumption relies on the fact that the atomic nuclei move much slower
than the electrons (due to their 103 − 105 times larger mass), and therefore the electrons can
instantaneously adapt to a new configuration of the nuclei.

In the non-relativistic approach, the total Hamiltonian of a molecule – a system composed
of n electrons and N nuclei bound by Coulomb interactions – can be written as:

H = Hel + Tn (2.1)

with
Hel = Tel + V , (2.2)

where we have defined the electronic Hamiltonian, Hel; Tel and Tn denote the electronic and
nuclear kinetic energy operators, respectively, and V is the electrostatic potential energy operator.
In the space-fixed frame, the above terms can be expressed as:

Tel = −1

2

n∑

i=1

∇2
i , (2.3)

Tn = −
N∑

I=1

1

2MI
∇2
I , (2.4)

V =

n∑

i<j

1

|ri − rj |
−

n∑

i=1

N∑

I=1

ZI
|ri −RI |

+

N∑

I<J

ZIZJ
|RI −RJ |

, (2.5)

where ∇i is the gradient operator for electron i (∇I for nucleus I), ri denotes a position vec-
tor of electron i (RI – a position vector of nucleus I), and MI and ZI denote the mass and
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charge of nucleus I, respectively. The consecutive terms of the V operator describe the electron-
electron, electron-nucleus, and nucleus-nucleus Coulomb interactions. Our aim is to solve the
time-independent Schrödinger equation for the molecular Hamiltonian H defined in Eq. (2.1):

HΨtot(r,R) = EΨtot(r,R) . (2.6)

The total molecular wave function Ψtot(r,R) depends on the positions of all electrons and nuclei:
r ≡ {ri} and R ≡ {RI}. To simplify the solution of Eq. (2.6), Ψtot(r,R) is first expanded in
terms of the electronic ψk(r;R) and nuclear χk(R) wave functions:

Ψtot(r,R) =
∑

k

ψk(r;R)χk(R) , (2.7)

where the summation is over all electronic states k. The wave function ψk(r;R) depends directly
on the positions of the electrons and parametrically on the frozen positions of the nuclei. The
above expansion is referred to as the Born-Huang expansion [231], and is equivalent to the decom-
position of Ψtot in the complete basis of the electronic Hamiltonian, Hel (2.2). In the adiabatic
and Born-Oppenheimer approximations, we next assume that the electron cloud adiabatically
follows the nuclear motion, and we limit the expansion in Eq. (2.7) to a single term:

Ψk(r,R) = ψk(r;R)χk(R) , (2.8)

which holds provided that the electronic state k is well-separated from other electronic states.
The assumption that electronic and nuclear motions can be decoupled allows us to solve the

electronic and nuclear Schrödinger equations separately. The electronic Schrödinger equation
reads:

Helψk(r;R) = Eel
k (R)ψk(r;R) , (2.9)

where the energy of the electronic state Eel
k (R) depends parametrically on the internuclear dis-

tance R. By solving Eq. (2.9) for all possible positions of the nuclei, one obtains the potential
energy curve (PEC) for the nuclear motion. It is worth noting here that the basic concepts
of quantum chemistry, such as PEC and the notion of electronic structure, are implicit to the
adiabatic and BO approximations.

The nuclear dynamics is governed by the nuclear Schrödinger equation:
(
Tn + Ekel(R) + T ′kk(R)

)
χk(R) = Eχk(R) , (2.10)

where T ′kk = 〈ψk|Tn|ψk〉 is the adiabatic correction (diagonal Born-Oppenheimer correction,
DBOC) to the BO potential Ekel(R), and is usually very small and neglected in the electronic
structure calculations. In the adiabatic approximation, the PEC for the nuclear motion is given
by:

Uk(R) = Eel
k (R) + T ′kk(R) , (2.11)

while the BO approximation completely neglects the T ′kk term. If two electronic eigenstates k, k′

are close in energy, Eel
k (R) ≈ Eel

k′(R), the nuclear wave packet is no longer localized on one
PEC. In this case, the adiabatic (or BO) approximation breaks down and non-adiabatic coupling
terms, involving integrals of the type 〈ψk′ |∇Iψk〉, need to be taken into account [232].

Once the BO approximation is applied and PECs are calculated, one can define the interaction
energy between atoms forming a molecule. In the supermolecule approach, the interaction energy
(Eint) is defined as the difference between the total energy of a complex (EAB) and the energies
of isolated monomers (EA, EB). For a diatomic molecule AB composed of atoms A and B, it
can be calculated as:

Eint(R) = EAB(R)− EA(∞)− EB(∞) . (2.12)
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2.1.2 Rovibrational structure of diatomic molecules

Let us discuss the solution of the nuclear Schrödinger equation introduced in Eq. (2.10) for a
diatomic molecule composed of monomers A and B. We assume that the center-of-mass (COM)
motion has been separated out and PECs are known. The Hamiltonian describing the internal
energy of the dimer in a given electronic state k reads:

Hn = − 1

2µ
∇2
R + Uk(R) , (2.13)

where µ = MAMB
MA+MB

is the reduced mass of the nuclei, R = RA − RB, and Uk(R) has been
defined in Eq. (2.11). We again apply the separation of variables technique to separate the
vibrations of the molecule from its rotations around the COM. To this end, we express the
nuclear (rovibrational) wave function χk(R) in terms of a product of a spherical function Y (θ, ϕ)
describing the rotations (with co-latitude angle θ and the longitudinal angle ϕ) and function
φk(R) describing the vibrations:

χk(R) = Y (θ, ϕ)
φk(R)

R
. (2.14)

After inserting χk(R) (2.14) into the nuclear motion equation defined in Eq. (2.13), we find
that Y (θ, ϕ) ≡ YM

J (θ, ϕ) is a spherical harmonic function being the solution to the quantum
rigid rotor problem with respective eigenvalues J(J+1)

2µR2 (where J is the angular momentum of the
molecule and M denotes its projection onto the quantization axis). The equation describing the
molecular vibrations then reads:

(
− 1

2µ
∇2
R + V eff

kJ (R)

)
φkvJ(R) = EkvJφkvJ(R) , (2.15)

where
V eff
kJ (R) = Uk(R) +

J(J + 1)

2µR2
(2.16)

is the effective potential including the centrifugal term, J(J+1)
2µR2 , which is responsible for the

elongation of bond length as J increases and the rotational motion gets faster. We can see that
φk(R) ≡ φkvJ(R), thus rotations and oscillations of a molecule cannot be fully separated.

For the lowest-lying vibrational levels of a given electronic state, the molecular vibrations
can be modeled by a quantum harmonic oscillator with vibrational energies Ev:

Ev = ωe

(
v +

1

2

)
, (2.17)

where ωe denotes the harmonic constant, proportional to the second derivative of the electronic
potential Uk(R) at equilibrium distance R = Re. A more accurate approximation to the vibra-
tional energy levels include the anharmonicity term:

Ev = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

, (2.18)

where xe is the first anharmonicity constant – proportional to the third derivative of the potential.
The vibrational bound states φkvJ(R) with energies EkvJ can be obtained by solving the

equation Eq. (2.15) numerically using the discrete variable representation (DVR) method. There
are multiple variations of the method [234], but we will illustrate its principles for a simple
case of an equally spaced quadrature [234–236]. The vibrational wave function φkvJ(R) will be
represented on a grid of equidistant points {Ri}:

Ri = Rmin + i
(Rmax −Rmin)

N
, i = 1, ..., N − 1 . (2.19)
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Figure 2.1: Depiction of the electronic, vibrational, and rotational energy levels’ structure for a diatomic
molecule [233].

The set of functions, orthonormal in the (Rmin, Rmax) interval (the wave function vanishes at the
endpoints Rmin and Rmax), that generate the quadrature is given by:

fi(R) =

√
2

Rmax −Rmin
sin

(
iπ(R−Rmin)

Rmax −Rmin

)
, i = 1, ..., N − 1 ; (2.20)

this set of functions is referred to as the DVR primitive functions and is equivalent to the
particle-in-a-box eigenfunctions. For this choice of primitive functions, the DVR basis set reads:

φα(R) =
2√

N(Rmax −Rmin)

N−1∑

i=1

sin

(
iπα

N

)
sin

(
iπ(R−Rmin)

Rmax −Rmin

)
, α = 1, ..., N − 1 . (2.21)

We are solving the eigenproblem (2.15) in the DVR functions basis. The Hamiltonian matrix
element reads:

Hαβ = Tαβ + V eff
kJ (Rα)δαβ , (2.22)

where the diagonal and non-diagonal kinetic energy matrix elements, Tαα and Tαβ (α 6= β),
respectively, are given by [236]:

Tαα =
1

2µ

π2

2(Rmax −Rmin)2

(
3N2 + 1

3
− 1

sin2(απN )

)
(2.23)

and

Tαβ =
1

2µ

π2(−1)α−β

2(Rmax −Rmin)2

(
1

sin2[π(α−β)
2N ]

− 1

sin2[π(α+β)
2N ]

)
. (2.24)

The Hamiltonian (2.22) is diagonalized numerically to obtain the vibrational bound states
φkvJ(Rα) with respective binding energies EkvJ .

2.2 Ab initio methods for electronic structure calculations

For most quantum-mechanical systems, obtaining the exact solution to the Schrödinger equation
is impossible. The ab initio (= derived from first principles) electronic structure methods have
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been developed to provide accurate estimates of molecular structure and properties. State-of-
the-art quantum chemistry methods allow for the calculation of atomic and molecular properties
at an unprecedented level of precision without any prior experimental knowledge.

2.2.1 Self-consistent field methods

A powerful tool to obtain approximate solutions to the Schrödinger equation is the variational
method based on the variational principle, which for an arbitrary function Φ can be written as:

E[Φ] =
〈Φ|HΦ〉
〈Φ|Φ〉 ≥ E0 , (2.25)

where E0 is the exact ground-state energy (the variational method can also be adapted to give
bounds on the energies of the excited states [237]). Approximate ground-state solution is derived
by minimizing the energy functional E[Φ] with a reasonable ansatz for the wave function Φ.

The first step in electronic structure calculations typically involves applying the Hartree-Fock
(HF) approximation to the atomic or molecular Schrödinger equation. The HF method is also
known as the self-consistent field (SCF) method. In this method, the trial wave function for a
system of n electrons, ΦHF, is a normalized Slater determinant:

ΦHF =
1√
n!

∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φn(1)
φ1(2) φ2(2) · · · φn(2)

...
...

. . .
...

φ1(n) φ2(n) · · · φn(n)

∣∣∣∣∣∣∣∣∣
, (2.26)

which is an antisymmetrized product of one-electron wave functions called spinorbitals, φi(j)
(where j ≡ τj ≡ (rj , σj) with σj = ±1/2 denoting the spin coordinate). The electronic Hamilto-
nian introduced in Eq. (2.2) can be rewritten as the sum of zero-, one- and two-electron terms:

Hel =
n∑

i

hi +
n∑

i<j

1

rij
+

N∑

I<J

ZIZJ
RIJ

, (2.27)

where rij ≡ |ri − rj | and RIJ ≡ |RI −RJ |, and hi is the one-electron Hamiltonian describing
the kinetic energy of electron i and its interaction with the nuclei:

hi = −1

2
∇2
i −

N∑

I=1

ZI
riI

, (2.28)

with riI ≡ |ri −RI |. For further analysis, we can introduce the sum of one-electron energy
operators h =

∑
i hi, and the Coulomb (Jj) and exchange (Kj) operators, which are defined

through their action on a spinorbital φi(k) in the following way:

Jjφi(k) =

(∫
φ∗j (l)φj(l)

rkl
dτl

)
φi(k) , (2.29)

Kjφi(k) =

(∫
φ∗j (l)φi(l)

rkl
dτl

)
φj(k) . (2.30)

Let us also define the total Coulomb and exchange operators:

J =
∑

i

Ji , (2.31)

K =
∑

i

Ki . (2.32)
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By calculating the expectation value of E[ΦHF] = 〈ΦHF|Hel |ΦHF〉, we obtain the energy
functional:

E[ΦHF] =
n∑

i=1

hii +
1

2

n∑

i,j=1

(Jij −Kij) , (2.33)

where hii = 〈φi|h|φi〉 is the one-electron integral, while Jij and Kij are the two-electron integrals
describing, respectively, the Coulomb repulsion between electrons and the exchange energy due
to the antisymmetry of the total wave function. They are defined as follows:

Jij = 〈φiφj |φiφj〉 , (2.34)

Kij = 〈φiφj |φjφi〉 , (2.35)

where

〈φiφj |φkφl〉 =

1/2∑

σ1,σ2=−1/2

∫ ∫
d3r1d3r2

φ∗i (r1, σ1)φ∗j (r2, σ2)φk(r1, σ1)φl(r2, σ2)

r12
. (2.36)

In the HF method, we want to obtain the spinorbitals φi that minimize the energy functional
E[ΦHF]. This is achieved by solving the Fock operator eigenproblem:

Fφi(k) = εiφi(k) , (2.37)

where F is defined as follows:
F = h+ J −K . (2.38)

The energy of an electron in a spinorbital φi can therefore be expressed as:

εi = hii +
∑

j

(Jij −Kij) , (2.39)

which can be interpreted as the energy of an electron moving in a mean field created by all other
electrons and the nuclei (the HF method does not take into consideration the electron correla-
tion). The energy of an atomic or a molecular system within the Hartree-Fock approximation
can be eventually written as:

EHF =

n∑

i=1

εi −
1

2

n∑

i,j=1

(Jij −Kij). (2.40)

Even though the HF approach introduces a substantial simplification of the original molecular
Hamiltonian eigenproblem, obtaining an exact numerical solution to the HF equations (2.37)
requires computational power and poses a challenge for most molecular systems. In practical
implementations, the molecular orbitals (MOs), ψi(r), are approximated by a linear combination
of atomic orbitals (LCAO) ζj(k) of a known analytical form (typically, the orbitals are of Gaussian
type):

ψi(r) =

m∑

j=1

Cijζj(r) , (2.41)

where m ≥ n. Within the LCAO scheme, the energy is minimized with respect to the expansion
coefficients Cij , which yields the Roothaan-Hall equations:

FC = SCε , (2.42)
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where F is the Fock matrix with elements Fkl = 〈ζk|F |ζl〉, S is the overlap matrix with elements
Skl = 〈ζk|ζl〉, C is the matrix of expansion coefficients Ckl, and ε is a diagonal matrix of the
orbital energies. By inserting the LCAO expansion, we obtain the energy functional:

E[C] =
∑

p,q

Dpqhpq +
1

2

∑

p,q

∑

r,s

(DpqDrs −DprDqs) 〈ζpζr|ζqζs〉 , (2.43)

where we have introduced the density matrix D = CCT with matrix elements Dpq =
∑m

i CpiCqi.
In a self-consistent field procedure, an initial guess of the density matrix is first made. The

Fock matrix is then constructed and diagonalized to obtain a set of MOs, which are in the
next step used to construct an improved density matrix. The procedure is repeated until the
density matrix stops changing and the energy difference from one iteration to another is below
a predefined threshold.

The main limitation of the Hartree-Fock method is that it does not take into account the elec-
tron correlation – both dynamical and non-dynamical. The dynamical correlation in responsible
for the instantaneous electron-electron repulsions (i.e., the cusp condition as rij → 0), while the
non-dynamical one accounts for the nearly-degenerate electron configurations and plays a crucial
role in the description of bond formation and bond breaking processes. The non-dynamical cor-
relation can be factored in using the multi-configuration self-consistent field (MCSCF) approach,
where several configurations are explicitly included in the SCF procedure [238].

2.2.2 Configuration interaction methods

The dynamical electron correlation may be recovered by going beyond the ansatz of a single-
determinant Hartree-Fock wave function. In the configuration interaction (CI) method, the total
wave function is represented as a combination of Slater determinants constructed from the one-
electron basis. The method gives an exact solution to the electronic Schrödinger equation if the
expansion includes all possible Slater determinants (obtained by exciting all possible electrons
to all possible virtual orbitals). In this case, the total wave function (the full configuration
interaction (FCI) wave function) can be written as:

|ΨFCI〉 = (1 + Ĉ) |ΦHF〉 (2.44)

with the correlation operator Ĉ defined as:

Ĉ =
∑

ai

Cai â
†
aâi +

∑

abij

Cabij â
†
aâ
†
bâj âi + ... , (2.45)

where â†i and âj are the creation and annihilation operators of spinorbitals i and j, respectively,
while Cai , C

ab
ij , etc., are the expansion coefficients computed using the variational principle or by

direct diagonalization.
Since the number of determinants included in the FCI expansion grows factorially with the

number of electrons and basis functions, full CI calculations are only possible for few-electron
systems. In practice, the expansion (2.45) is often truncated to only account for a limited
number of the lowest-order excitations (for example, the CISD method is limited to single (S)
and double (D) excitations). This, however, introduces the main limitation of the CI approach
– truncation of the correlation operator by excitation level leads to the lack of size consistency
and size extensivity of the method. The lack of size consistency poses a particular problem at
large internuclear distances, where the computed molecular energies lose physical meaning.

In a multireference configuration interaction (MRCI) method, the CI wave function is con-
structed by including excitations not only from the ground-state electronic configuration, but
also from chosen excited states [239].
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2.2.3 Coupled-cluster methods

The main limitations of the CI methods are the lack of size consistency and size extensivity
and slow convergence towards the FCI limit. These problems are resolved by the coupled-
clusters (CC) method based on an exponential ansatz wave function:

|ΨCC〉 = eT̂ |ΦHF〉 , (2.46)

where eT̂ is the exponent of the cluster operator T̂ . The cluster operator T̂ is a sum of operators
corresponding to all single, double, ..., and n-fold excitations:

T̂ = T̂1 + T̂2 + ...+ T̂n . (2.47)

These operators can be expressed as:

T̂1 =
∑

ai

tai â
†
aâi

T̂2 =
1

4

∑

abij

tabij â
†
aâ
†
bâj âi

...

T̂n =
1

(n!)2

∑

i1i2...in

∑

a1a2...an

ta1a2...ani1i2...in
â†a1 â

†
a2 ...â

†
an âin ...âi2 âi1 ,

(2.48)

where t are the cluster amplitudes. The ΨCC wave function in Eq. (2.46) without truncation
of excitations is equivalent to a full CI wave function ΨCI from Eq. (2.44). The expansion
coefficients can be related as follows:

Cai = tai ,

Cabij = tabij + tai t
b
j − tbi taj ,

(2.49)

etc. Unlike the CI method, the CC method is not variational. The energy of the system calculated
within the CC approach reads:

ECC =
〈ΦHF| e−T̂HeT̂ |ΦHF〉

〈ΦHF|ΦHF〉
. (2.50)

When the cluster operator T̂ includes all terms up to T̂n, we obtain the exact (within a given
basis set) solution to the electronic Schrödinger equation. For multielectron systems, the cluster
operator expansion has to be truncated at an excitation level smaller than n. The truncation of
the cluster operator, however, does not lead to mixing of cluster amplitudes for monomers at an
infinite distance, making the CC method inherently size consistent.

Among the CC methods frequently employed in real electronic structure computations one
could mention the CCSD method, which corresponds to T̂ = T̂1 + T̂2, or the CCSDT method
– corresponding to T̂ = T̂1 + T̂2 + T̂3. The CCSD(T) method – the coupled-clusters method
restricted to single, double and non-iterative (calculated based on perturbation theory) triple
excitations is considered to be the gold standard of quantum chemistry.

2.2.4 Basis sets

In the LCAO-MO approach, introduced in Sec. 2.2.1, a set of atomic orbitals is used in the
expansion of molecular orbitals (see Eq. (2.41)). As a consequence of atomic symmetry, AOs
always take the form:

ζ(r) = R(r)Y m
l (θ, ϕ) , (2.51)
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where the radial function R(r) is known exactly only for one-electron systems. The exact function
satisfies the cusp condition due to the singularity of the interaction potential at the nucleus, i.e.:

dR

dr

∣∣∣∣
r=0

= −ZR(0) . (2.52)

At large distances, an electron sees the remainder of the molecule as a structureless charge.
Therefore, just like in the case of a hydrogen atom, the wave function of the electron will decay
exponentially. This behavior is satisfied by the so-called Slater-type orbitals (STOs) [240]:

χSTO(r) = P (r)Y m
l (θ, ϕ)e−αr , (2.53)

where the radial polynomial P (r) can take different forms. However, due to the difficulty asso-
ciated with the evaluation of multi-center integrals using STOs, they are rarely used in the ab
initio calculations nowadays. Gaussian-type orbitals (GTOs) have been introduced to remediate
the problem with multi-center integrals: owing to the so-called Gaussian product rule, the four-
center integrals can be reduced to a finite sum of two-center integrals, and, in the next step, to
a finite sum of one-center integrals [241]. GTOs can be written in a form similar to STOs:

χGTO(r) = P (r)Y m
l (θ, ϕ)e−αr

2
. (2.54)

Even though GTOs are less physical than STOs, and a larger number of basis functions is needed
to reproduce the behavior of a real atomic orbital, they allow for a much faster computation of
molecular integrals. The poor description of the cusp behavior is resolved by the contraction of
GTOs, i.e., rather than using primitive Gaussian functions in the AO expansion, linear combi-
nations of Gaussians are used:

χCGTO
k (r) =

∑

i

Cikχ
GTO
i (r) . (2.55)

Different contraction schemes may be adapted to factor in the electron correlation effects.
Correlation-consistent basis sets of type cc-pVXZ developed by Dunning and coworkers [242]
are constructed by adding higher angular momentum functions to account for a more complex
electron density distribution caused by correlation.

A basis set suitable for accurate molecular calculations requires more than just describing
the atoms effectively. It must also flexibly accommodate atomic deformations during molecule
formation and incorporate adjustments due to external perturbations for calculating molecular
properties. Achieving this flexibility involves adding diffuse and polarization functions to the
basis set [243].

An atom in a molecule experiences the field from surrounding atoms, therefore causing a
shift in the charge density. Polarization functions are employed to reshape the atomic orbitals
with respect to the configuration adopted in an atom. Polarization functions supply the basis
set with functions of higher angular momenta than those of occupied orbitals in the atomic SCF
calculation. They have their radial maxima in the region of valence electrons.

Another enhancement frequently incorporated into Gaussian-type basis sets are the so-called
diffuse functions. These functions are characterized by shallow Gaussian profiles that better
capture the tail of atomic orbitals. They play a crucial role in accurately describing the behavior
of electrons in larger and more flexible molecular systems, including anions and polar molecules.
They are also necessary for the computation of excited states.

Dunning basis sets are typically labeled with ‘cc-pVXZ’, where ‘cc-p’ stands for ‘correlation-
consistent polarized’, ‘V’ stands for ‘valence’ (meaning that the basis set focuses on the descrip-
tion of valence correlation effects), ‘X’ indicates the cardinal number of the basis set (single,
double, triple, etc.), and ‘Z’ (zeta) refers to a set of Gaussian-type functions. Augmented ver-
sions of the basis sets with added diffuse functions are typically labeled with with ‘aug-’ preceding
‘cc-pVXZ’.
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The basis sets developed by Dunning systematically achieve the convergence of post-HF
calculations towards the complete basis set (CBS) limit. The CBS extrapolation formula allows
to estimate the energy of a system at the limit of an infinitely large basis set size. For the
correlation energy, the following general form of the extrapolation formula is assumed:

Ecorr(∞) = Ecorr(X) +AX−α . (2.56)

In most chemical applications, relative energies are more important than absolute energies.
Within the supermolecule approach (2.12), the interaction energy is computed as a difference
between the total energy of a complex and the energies of constituent monomers. As practically
all ab initio computations are performed using finite basis sets, the calculation of Eint is suscep-
tible to the basis set superposition error (BSSE). This is because MOs are linear combinations of
AOs and, when the energy of the whole complex is computed, the monomers ‘borrow’ functions
from each other, leading to an expansion of their basis set. This problem can be addressed by
applying the Boys-Bernardi counterpoise correction, i.e., by using ‘ghost’ functions (empty basis
functions of another monomer) in the computations of monomer energies [244].

2.2.5 Relativistic effects

Relativistic effects strongly affect the physical and chemical properties of heavy, multi-electron
atoms, such as the transition metals, lanthanides, and actinides. Rigorous treatment of rela-
tivistic effects requires solving the Dirac-Coulomb equation, which is not a standard practice
in routine quantum chemistry calculations due to its four-component nature and computational
demands. Instead, various approximations and methods like the Breit-Pauli approximation,
Douglas-Kroll-Hess (DKH) method, effective core pseudopotentials (ECPs), and different levels
of relativistic corrections within the established techniques have been implemented to incorporate
relativistic effects into quantum chemical calculations [245; 246].

The Dirac Hamiltonian for an electron moving in an external potential V reads [245]:

HD = cα · π + c2β + V =

(
V + c2 cσ · π
cσ · π V − c2

)
, (2.57)

where c is the speed of light (≈ 137 in Hartree units), α and β are the standard symbols for the
4x4 Dirac matrices, σ = [1, σx, σy, σz] denotes a vector of Pauli matrices, and π = p +A with
the electron momentum p = −i∇ and vector potential A. The above equation is a one-electron
equation and needs to be augmented to treat many-electron systems. For example, the Dirac-
Coulomb-Breit Hamiltonian (or the Breit-Pauli Hamiltonian) allows to treat systems of two or
more electrons.

Breit-Pauli approximation

The Breit-Pauli approximation is a non-relativistic approximation to the Dirac equation. It
assumes that the energy scales associated with relativistic effects are much smaller than the
typical energy differences between atomic or molecular states, which allows to treat relativistic
effects as perturbations to the non-relativistic Hamiltonian. The dominant relativistic corrections
in heavier many-electron systems are the mass-velocity term, the Darwin term, and the spin-orbit
(SO) coupling term. Within the Breit-Pauli approximation, the modified Schrödinger equation
reads [246]:

(H0 +HMV +HDarwin +HSO)Ψ = EΨ , (2.58)

where H0 = T + V is the non-relativistic Hamiltonian, and the consecutive operators describe
the scalar relativistic effects (HMV is the mass-velocity term and HDarwin is the Darwin term)
and the spin-orbit coupling (HSO):

HMV = − p4

8c2
, (2.59)
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HDarwin = −p
2V

8c2
, (2.60)

HSO =
iσ(pV )× p

4c2
. (2.61)

The mass-velocity correction describes the overall increase in the effective mass of an electron
moving at high speeds due to special relativity. The Darwin correction arises from the interaction
between the electron’s charge distribution and the rapidly changing electric field of the nucleus
caused by its motion (Zitterbewegung).

The magnetic field generated by the electron’s motion about the nucleus becomes velocity-
dependent due to special relativity and interacts with the electron’s spin. This interaction couples
the electron’s spin angular momentum with its orbital angular momentum, giving rise to the SO
coupling. It leads to the energy level splittings between states that have different total angular
momenta and the emergence of fine structure effects in atomic and molecular spectra, particularly
for heavy elements – the strength of the SO coupling strongly depends on the nuclear charge
(∼ Z4). In molecules, SO coupling introduces interactions between the electronic states of
different multiplicities, which has implications for optical properties of the molecules, e.g., by
opening avoided crossings.

Douglas-Kroll-Hess method

The idea behind the DKH method is to define a unitary operator that removes the off-diagonal
blocks of the Dirac Hamiltonian (2.57) and splits the Dirac equation into large and small com-
ponents, H+ and H− [247; 248]:

HDKH = UHDU
† =

(
H+ 0
0 H−

)
, (2.62)

where the upper and lower blocks correspond to the positive and negative energy branches of the
full Dirac spectrum, respectively. Since the negative energy branch is not of interest for chemistry,
it can be discarded. Hence, the upper block will define the equation for the two-component DKH
wave function, ΨDKH:

H+ΨDKH = EΨDKH . (2.63)

Finding the unitary matrix that allows for such transformation is no less complicated than solving
the Dirac equation itself. Therefore, in practice, the decoupling is done up to a certain level of
precision. As proposed by Douglass and Kroll [247], the unitary operator can be decomposed
into a sequence of simpler transformations:

U = ...U2U1U0 , (2.64)

where U0 is the transformation that decouples the free-particle Dirac equation:

U0 = Ap(1 + βRp) =

(
Ap ApRp
−ApRp Ap

)
(2.65)

with

Ap =

√
Ep + c2

2Ep
(2.66)

and
Rp =

cσ · p
Ep + c2

= σPp , (2.67)

where Ep =
√
c4 + p2c2. The first-order DKH Hamiltonian thus reads:

HDKH1 = U0HDU
†
0 = Ep +Ap[V + σPpV σPp]Ap , (2.68)

25



where the potential energy operator is transformed into momentum space, V ≡ V (p,p). The
additional decoupling transformations Ui, required in the presence of an external potential, take
the form:

Ui =
√

1 +W 2
i +Wi , (2.69)

where Wi is an anti-Hermitian operator of the i-th order in the external potential operator V (i);
the form of Wi has been discussed by Heß and coworkers [249; 250]. For example, the standard
expression for the W1 operator is given by:

W1 =
ApRpV (p,p′)Ap′ −ApV (p,p′)Rp′Ap′

Ep + Ep′
, (2.70)

yielding the second-order DKH Hamiltonian:

HDKH2 = HDKH1 +
1

2
{W1, {W1, Ep}} , (2.71)

where {a, b} denotes the anticommutator of operators a and b.

Effective Core Potentials

The frozen core approximation and effective core potentials are another way to include relativistic
effects in the non-relativistic framework. In the frozen core approximation, it is assumed that the
core electrons’ contribution to the total electron correlation energy is constant, whereas ECPs
reproduce the behavior of chemically inert core electrons with a simplified pseudopotentials and
treat only the outermost electrons explicitly. What justifies this approach is the fact the chemical
bonding arises from the reorganization of the highest-lying orbitals while the core orbitals in
heavy elements remain hardly affected. ECPs allow to restrict the computations to a smaller
number of electrons while maintaining the accuracy comparable to all-electron calculations. The
effective core potentials can incorporate not only the effects of the core electrons, but also the
relativistic effects, such as the mass-velocity and Darwin effects into the potential [251].

2.3 Description of ultracold collisions

2.3.1 Basics of quantum scattering

Let us first consider the collision of two isotropic particles whose interaction is governed by
the isotropic potential V (r). We are solving the Schrödinger equation describing their relative
motion: (

− 1

2µ
∇2

r + V (r)

)
ψ(r) = Eψ(r). (2.72)

Since the potential is isotropic, there is no coupling between the partial waves, and ψ(r) can be
decomposed into a sum over products of radial functions Rl(r) and spherical harmonics Y m

l (θ, ϕ):

ψ(r) =
∑

l,m

Rl(r)

r
Y m
l (θ, ϕ) , (2.73)

where l is the relative angular momentum with its projection m onto a space-fixed z-axis. Now
we consider only the radial part of Eq. (2.72):

(
− 1

2µ

d2

dr2
+
l(l + 1)

2µr2
+ V (r)

)
Rl(r) = ERl(r) , (2.74)

where the second term corresponds to the centrifugal barrier, which is repulsive for l > 0 and
vanishes for the s-wave. The equation (2.74) has a spectrum of Nl bound states with discrete
energies El for E < 0, and a continuous spectrum of scattering states with E > 0.
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Consider now the case when r → ∞ and V (r → ∞) → 0. We can now neglect the two
latter terms of Eq. (2.74). The particles are then described by a plane wave with relative
kinetic energy E = k2/2µ and relative momentum k. The first term of of Eq. (2.74) yields
d2R
dr2

= −k2R(r), leading us to the asymptotic solution expressed in terms of spherical Bessel and
Neumann functions, jl(kr) and nl(kr), respectively:

lim
r→∞

Rl(r)→ kr (Aljl(kr) +Blnl(kr)) (2.75)

with

lim
r→∞

jl(kr)→
sin
(
kr − lπ

2

)

kr
(2.76)

and

lim
r→∞

nl(kr)→ −
cos
(
kr − lπ

2

)

kr
, (2.77)

where Al and Bl are l-dependent normalization constants that we obtain by imposing another
boundary condition, Rl(0) = 0, i.e., the wave function vanishes at the origin. By inserting (2.76)
and (2.77) into Eq. (2.75), we can obtain the normalized radial wave function in the long-range
limit:

lim
r→∞

Rl(r)→
√

2µ

πk

(
sin

(
kr − lπ

2

)
+Kl cos

(
kr − lπ

2

))
, (2.78)

where Kl is the K-matrix defined as:

Kl = − tan δl(k) (2.79)

with δl denoting the phase shift, which gives all the information about the scattering process,
defined as:

δl = arctan

(
−Bl
Al

)
. (2.80)

Another important quantity in the scattering problems is the S-matrix, which is related to the
phase shift δl and K-matrix in the following way:

Sl = e2iδl =
1 + iKl

1− iKl
. (2.81)

We can now also introduce the scattering amplitude f(k, θ):

f(k, θ) =
1

2ik

∑

l

(2l + 1)(eiδl − 1)Pl(cos θ) , (2.82)

with Pl(cos θ) denoting the Legendre polynomials, and the scattering cross section σ(k):

σ(k) =

∞∑

l=0

σl(k) (2.83)

with
σl(k) =

4π

k2
(2l + 1) sin2 δl(k) =

4π

k2
(2l + 1)|1− Sl|2 . (2.84)

In the low energy regime, when the relative energy of the incident particle is much lower than
the centrifugal barrier, we can assume that the scattering takes place in the lowest partial wave
only, l = 0. As k → 0, the scattering cross section yields:

lim
k→∞

σ0(k) = 4πa2 , (2.85)

where a denotes the s-wave scattering length, which is given by [252]:

a = − lim
k→∞

tan δ0(k)

k
. (2.86)
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2.3.2 Multichannel scattering theory

In a simple two-particle scattering scenario, there is typically just one channel, which represents
the initial state of the particles and their final state after the scattering event. However, in
more complex scenarios involving multiple degrees of freedom, there can be multiple possible
final states that the particles can scatter into. Each of these will constitute a separate scattering
channel.

In general, the atoms used in ultracold experiments have a spin structure. The Hamiltonian
describing the nuclear motion of two atoms, A and B, possessing a hyperfine structure and
colliding in an external magnetic field reads [253; 254]:

Ĥ = − ~2

2µ

1

R

d2

dR2
R+

L̂2

2µR2
+
∑

S,MS

VS(R)|S,MS〉〈S,MS |+ ĤA + ĤB + Ĥss , (2.87)

where R denotes the internuclear distance, L̂ – the rotational angular momentum operator, µ is
the reduced mass of the system, VS(R) describes the Born-Oppenheimer potential energy curves
for a state of a given total electronic spin S, and |S,MS〉〈S,MS | is the projection operator on
the state with spin S and its projection MS . The atomic Hamiltonians, Ĥj (i = A,B), comprise
the hyperfine and Zeeman interactions and are given by:

Ĥj = aj îj · ŝj +
(
geµBŝj,z + gjµNîj,z

)
Bz , (2.88)

where ŝj and îj denote the electronic and nuclear spin operators, aj is the hyperfine coupling
constant, Bz is the magnetic field strength, ge/j is the electron/nuclear g factor, and µB/N is
the Bohr/nuclear magneton, respectively. The last term of Eq. (2.87) describes the magnetic
dipole-dipole interaction between the electronic spins:

Ĥss =
α2

R3
(ŝA · ŝB − 3ŝA,z ŝB,z) , (2.89)

where α is the fine structure constant.
The total scattering wave function and Hamiltonian can be constructed in a in a fully un-

coupled basis set:
|iA,miA〉|sA,msA〉|iB,miB 〉|sB,msB 〉|L,mL〉 , (2.90)

wheremxj is the projection of the angular momentum xj on the space-fixed z-axis. The expansion
includes all possible spin configurations for which the projection of the total angular momentum
Mtot = mfA +mfB +mL = miA +msA +miB +msB +mL is conserved. The Hamiltonian is then
transformed to the basis of atomic hyperfine eigenstates, which is asymptotically diagonal. The
coupled-channels equations can be solved using a renormalized Numerov propagator as described
in Ref. [255]: the wave function ratio Ψi+1/Ψi at the i-th grid step is propagated starting from
short interatomic distances within the classically forbidden region, where the amplitude of the
scattering wave function is negligible, to large interatomic separations, where the electronic and
dipole-dipole interaction potentials become insignificant in comparison to the collision energy.

Subsequently, the K and S matrices are extracted by imposing the long-range scattering
boundary conditions in terms of Bessel functions, and the scattering lengths are obtained using
the S-matrices as described in the previous section.

2.3.3 Physics of Feshbach resonances

The notion of a Feshbach resonance has already been introduced in Sec. 1.3.1. The aim of this
section is to outline the elementary properties of FRs. For a comprehensive analysis we refer the
Reader to, e.g., Refs. [74; 80].
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The basic idea behind a FR can be explained using Fig. 1.3 presented in Sec. 1.3.1. We are
limiting our analysis to the case of magnetically tuned Feshbach resonances, although optically
induced FRs are also possible [74]. Consider two molecular potential energy curves, Vbg(R)
and Vc(R), where the former refers to the background potential that asymptotically connects
to two free atoms in an ultracold gas, whereas the latter represents the closed (energetically
inaccessible) channel. In the collision process, the background potential Vbg(R) represents an
energetically accessible pathway for two atoms colliding at a small energy E, therefore is referred
to as the entrance channel. The closed channel can support bound molecular states close to
the dissociation threshold of the open channel. A FR occurs when the bound molecular state
in the closed channel energetically approaches the scattering state when varying the magnetic
field. The energy difference between the two states can be tuned by means of the Zeeman effect,
provided that the magnetic moments of the separated atoms and the molecular bound state differ
(for future reference, let us denote this difference as δµ).

The coupled two-channel Hamiltonian describing the relative motion of two colliding atoms
can be represented by a 2x2 matrix:

H2B =

(
− ~2

2µ∇2 + Vbg(R) W (R)

W (R) − ~2
2µ∇2 + Vc(R,B)

)
, (2.91)

where the off-diagonal potential W (R) describes the spin-exchange or dipole-dipole interaction
that is responsible for the interchannel coupling. We assume that the zero of energy is shifted
to the energy E of the dissociated atoms for all values of the magnetic field. In the absence of
coupling, the eigenstates of a two-channel Hamiltonian are given by diabatic states (ψ1,j , 0) and
(0, ψ2,j), where ψi,j denotes the eigenstates of the Hamiltonian for channel i. The coupling results
in mixing between these states. As a consequence, the H2B eigenstates will have components
from each channel, and therefore will be referred to as dressed (or adiabatic) states.

Fig. 1.3 (2b) shows the behavior of the weakly-bound molecular state energy in the vicinity
of a FR. Close to the resonance position B0, the open and closed channels are strongly coupled,
and the scattering length a is large and positive (at B0 the scattering length diverges). In this
case, there exists a dressed molecular state with binding energy:

Eb =
1

2µa2
, (2.92)

where Eb depends quadratically on the magnetic detuning, B − B0. Since the molecular state
is weakly bound, it can spontaneously dissociate back into a pair of unbound atoms as a result
of resonant couplings to the two-atom scattering states. The decay rate of the molecules is
determined from the Fermi’s golden rule [256]:

Γ(Eb) = 2|δµ∆|
√
ma2

bgEb , (2.93)

where ∆ denotes the width of a resonance, which is related to the strength of the coupling between
the bound and scattering states, abg is the background scattering associated with Vbg(R), and m
denotes the atomic mass. Far from the resonance, the energy of the bare molecular state varies
linearly with B, with a slope determined by the difference in magnetic moments of the open and
closed channels, δµ.

Magnetically tunable FRs allow to control the sign and magnitude of the scattering length a
according to the expression [257]:

a(B) = abg

(
1− ∆

B −B0

)
. (2.94)

This functional form can be numerically fitted to the calculated scattering lengths in the vicinity
of resonance poles in order to characterize FRs in a given system.
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2.4 Long-range interactions between ultracold atoms

2.4.1 Definition of the long range

Whether an interaction is of long-range character depends on a system under consideration and
the context of our study. For example, from the ultracold collisions point of view, a long-range
interaction is one that can be felt beyond the centrifugal barrier. In the absence of DDIs, ground-
state neutral atoms interact via short-range vdW interactions with the leading term ∝ 1/R6. In
contrast, the DDIs have a long-range behavior, decaying as 1/R3, and can be either attractive
or repulsive depending on the relative orientation of the dipoles.

At low collision energies, the centrifugal barrier l(l+1)
2µR2 (see Eq. (2.74)) prevents the atoms

from interacting in higher (l > 0) partial waves. For a power-law potential decaying as 1/Rn, the
scattering phase shift δl(k) ∝ k2l+1 for l < n−3

2 and δl(k) ∝ kn−2 otherwise [196]. Therefore, for
n < 4, all partial waves contribute to the scattering process and the interaction is of long-range
character, whereas for n ≥ 4, the interaction is purely s-wave and short-ranged.

For the remainder of this section, rather than using the long-range definition from the per-
spective of ultracold collisions, we will define the long range as a distance at which the overlap
between atomic electron clouds is negligible.

2.4.2 Perturbative calculation of long-range interactions

Consider two distant electrostatic potential distributions A and B whose centers of mass are
separated by distance R. In the body-fixed frame and using spherical coordinates, the multipolar
expansion of the interaction energy for the two distributions can be written as [258]:

VAB(R) =
+∞∑

lA,lB=0

+l<∑

m=−l<

flAlBm
R1+lA+lB

QlA,m(A)QlB ,−m(B) , (2.95)

where lA and lB describe the tensor rank related to the multipole moments QlA,m(A) and
QlB ,−m(B) of the charge distributions A and B, respectively, and −l< ≤ m ≤ l<, where
l< = min(lA, lB). The multipole moments are defined in the following way:

QlA,m(A) =

√
4π

2lA + 1

∑

i∈A
qir

lA
i Y

mA
l (θi, ϕi) , (2.96)

where ri denotes the position of the i-th charge qi. The number factor flAlBm is given by:

flAlBm = (−1)lB

√
(2lA + 2lB)!

(2lA)!(2lB)!
C lA+lB ,0
lAmlB−m (2.97)

with Caαbβcγ denoting a Clebsch-Gordan coefficient.
Let A and B be two distant atoms characterized by total angular momenta JA and JB with

their projections on the quantization axisMA andMB, respectively. We use the uncoupled basis
set of |βAJAMAβBJBMBA〉 to derive the matrix elements describing their interaction, where β
denotes all remaining quantum numbers describing the state of a given atom. Since atoms are
electrically neutral, there is no first-order correction resulting from their interaction. However,
the charge distribution within the atomic electron clouds undergoes fluctuations, causing the
atoms to acquire momentary multipole moments. These multipole moments can then interact,
effectively causing the atoms to attract each other. The matrix element describing the second-
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order energy correction arising from this interaction reads:

〈βAJAM ′AβBJBM ′B|V (2)
AB |βAJAMAβBJBMB〉 = −

∑

lAlB l
′
Al

′
B

(−1)lB+l′B+2JA+2JB

R2+lA+lB+l′A+l′B

×
√

(2lA + 2lB + 1)!(2l′A + 2l′B + 1)!

(2lA)!(2lB)!(2l′A)!(2l′B)!

∑

kAkBkq

(−1)kA+kB (2kA + 1)(2kB + 1)

× Ck0
lA+lB ,0,l

′
A+l′B ,0

Ck0
kAqkB−q





l′B lB kB
l′A lA kA

l′A + l′B lA + lB k





∑

β′′
AJ

′′
Aβ

′′
BJ

′′
B

C
JAM

′
A

JAMAkAqA
C
JBM

′
B

JBMBkBqB√
(2JA + 1)(2JB + 1)

×
〈βAJA||QlA ||β′′AJ ′′A〉〈β′′AJ ′′A||Ql′A ||βAJA〉〈βBJB||QlB ||β

′′
BJ
′′
B〉〈β′′BJ ′′B||Ql′B ||βBJB〉

Eβ′′
AJ

′′
A
− EβAJA + Eβ′′

BJ
′′
B
− EβBJB

×
{
l′A lA kA
JA JA J ′′A

}{
l′B lB kB
JB JB J ′′B

}
,

(2.98)

whereEβ{A,B}J{A,B} is the energy of level |β{A,B}J{A,B}〉, and 〈β{A,B}J{A,B}||Ql{A,B} ||β′′{A,B}J ′′{A,B}〉
is the reduced transition multipole moment between |β{A,B}J{A,B}〉 and |β′′{A,B}J ′′{A,B}〉 levels,
related to the transition multipole moment 〈β{A,B}J{A,B}M{A,B}|Ql{A,B} |β′′{A,B}J ′′{A,B}M ′′{A,B}〉
through the Wigner-Eckart theorem:

〈
β′J ′M ′

∣∣Qlm |βJM〉 =
CJ

′M ′
JMlm√

2J ′ + 1
〈β′J ′||Ql||βJ〉 . (2.99)

The selection rules impose that MA + MB = M ′A + M ′B. The pairs (kA, kB) and the value of
k are constrained by the values of (lA, l′A, lB, l

′
B) and define the possible ranks of the tensorial

terms; qA, qB, and q are limited by the values of kA, kB, and k [258]. The first curly brackets
contain a Wigner 9j symbol, whereas the latter two contain a Wigner 6j symbol.

The leading term of Eq. (2.98) describes the induced-dipole–induced-dipole interaction (lA =
lB = l′A = l′B = 1) and decays as 1/R6. By writing the energy correction as −C6/R

6, we can
extract the leading van der Waals coefficient C6:

C6 = 30(−1)2JA+2JB
∑

kAkBkq

(−1)kA+kB (2kA + 1)(2kB + 1)Ck0
2020C

k0
kAqkB−q

×




1 1 kB
1 1 kA
2 2 k





∑

β′′
AJ

′′
Aβ

′′
BJ

′′
B

C
JAM

′
A

JAMAkAqA
C
JBM

′
B

JBMBkBqB√
(2JA + 1)(2JB + 1)

{
1 1 kA
JA JA J ′′A

}{
1 1 kB
JB JB J ′′B

}

×
〈βAJA||QlA ||β′′AJ ′′A〉〈β′′AJ ′′A||Ql′A ||βAJA〉〈βBJB||QlB ||β

′′
BJ
′′
B〉〈β′′BJ ′′B||Ql′B ||βBJB〉

Eβ′′
AJ

′′
A
− EβAJA + Eβ′′

BJ
′′
B
− EβBJB

.

(2.100)

A derivation for a particular case of an S-state atom possessing only electronic spin interact-
ing with a non-S-state atom possessing both electronic spin and orbital angular momentum is
presented in Paper IV.

If the charges within distributions A and B move along closed orbits, it can be shown that
the magnetostatic force exerted by A on B derives from a potential energy [258]. Therefore, for
distant charge distributions, the magnetic interaction can also be written in terms of a multipolar
expansion similar to Eq. (2.95) by replacing 1/4πε0 (equal to 1 in atomic units) with µ0/4π (equal
to α2 in atomic units). Hence, for two atoms A and B with respective spins SA and SB, the
magnetic DII is given by:

V̂ mdd
AB =

α2

R3

(
SA · SB − 3(SA · R̂)(SB · R̂)

)
(2.101)

with R̂ denoting the unit vector: R = RR̂.
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Chapter 3

Main results of the thesis

The core of the present PhD work comprises a series of thematically linked publications and
preprints:

[Paper I]: K. Zaremba-Kopczyk, P. Żuchowski, and M. Tomza, Magnetically tunable Feshbach res-
onances in ultracold gases of europium atoms and mixtures of europium and alkali-metal
atoms, Phys. Rev. A 98, 032704 (2018), DOI: 10.1103/PhysRevA.98.032704.

[Paper II]: K. Zaremba-Kopczyk and M. Tomza, Van der Waals molecules consisting of a zinc or
cadmium atom interacting with an alkali-metal or alkaline-earth-metal atom, Phys. Rev. A
104, 042816 (2021), DOI: 10.1103/PhysRevA.104.042816.

Paper III: K. Zaremba-Kopczyk, M. Gronowski, and M. Tomza, Ultracold mixtures of Cr and Li
atoms: theoretical prospects for controlled atomic collisions, LiCr molecule formation, and
molecular precision measurements (preprint).

Paper IV: K. Zaremba-Kopczyk, M. Tomza, and M. Lepers, Van der Waals coefficients for inter-
actions of dysprosium and erbium atoms with alkali-metal and alkaline-earth-metal atoms
(preprint).
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3.1 Paper I: Magnetically tunable Feshbach resonances in ultra-
cold gases of europium atoms and mixtures of europium and
alkali-metal atoms

Paper I

“Magnetically tunable Feshbach resonances in ultracold gases of europium
atoms and mixtures of europium and alkali-metal atoms”

Klaudia Zaremba-Kopczyk, Piotr S. Żuchowski, and Michał Tomza

Phys. Rev. A 98, 032704 (2018)

Commentary

Ultracold gases of europium atoms represent a promising system for experiments exploiting
strong dipole-dipole interactions. In contrast to the ground-state of dysprosium or erbium used in
current experiments on magnetic quantum gases, the ground-state of europium is an S-state. The
large magnetic dipole moment of Eu atoms results solely from their large electron spin. Therefore,
the use of europium could potentially allow for the realization of many-body phenomena, such
as magnetic polaron or Efimov physics, that may be extremely difficult to realize with Dy and
Er ultracold quantum gases (the dense and chaotic spectra of magnetic Feshbach resonances
in ultracold collisions between those atoms significantly hinder the controllability of the atoms’
internal degrees of freedom). Moreover, a BEC of europium atoms has been realized in the
group of M. Kozuma just recently [34], paving the way for exploring the many-body physics in
non-chaotic systems with strong DDIs.

For the above reasons, we investigated magnetically tunable Feshbach resonances between
ultracold europium atoms and between europium and alkali-metal atoms using multichannel
quantum scattering calculations. We analyzed the prospects for the control of scattering proper-
ties, observation of quantum chaotic behavior, and magnetoassociation into ultracold polar and
paramagnetic molecules. In the work presented in [Paper I], the PhD Candidate: performed
all numerical calculations for europium-containing ultracold gases, generated all numerical data
presented in the article, participated in the results analysis and interpretation, and prepared all
figures and tables presented in the article.
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Magnetically tunable Feshbach resonances in ultracold gases of europium atoms
and mixtures of europium and alkali-metal atoms

Klaudia Zaremba-Kopczyk,1 Piotr S. Żuchowski,2 and Michał Tomza1,*

1Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
2Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Toruń, Poland

(Received 6 June 2018; published 14 September 2018)

We investigate magnetically tunable Feshbach resonances between ultracold europium atoms and between
europium and alkali-metal atoms using multichannel quantum scattering calculations. For ultracold gases of
europium atoms both homonuclear 153Eu + 153Eu and heteronuclear 151Eu + 153Eu systems are studied. Calcula-
tions for mixtures of europium and alkali-metal atoms are carried out for prototype systems of 153Eu + 87Rb and
153Eu + 7Li. We analyze the prospects for the control of scattering properties, observation of quantum chaotic
behavior, and magnetoassociation into ultracold polar and paramagnetic molecules. We show that favorable
resonances can be expected at experimentally feasible magnetic-field strengths below 1000 G for all investigated
atomic combinations. For Eu atoms, a rich spectrum of resonances is expected as a result of the competition
between relatively weak short-range spin-exchange and strong long-range magnetic dipole-dipole interactions,
where the dipolar interaction induces measurable resonances. A high density of resonances is expected at
magnetic-field strengths below 200 G without pronounced quantum chaos signatures. The present results may
be useful for the realization and application of dipolar atomic and molecular quantum gases based on europium
atoms in many-body physics.

DOI: 10.1103/PhysRevA.98.032704

I. INTRODUCTION

Magnetically tunable Feshbach resonances are a universal
and useful tool to control collisional properties in ultracold
quantum gases [1,2]. They have been essential for the realiza-
tion of a plethora of ground-breaking experiments in quantum
many-body physics [3,4]. Magnetic Feshbach resonances are
expected between any open-shell atoms, but first applications
involved ultracold alkali-metal atoms [5]. Nevertheless, they
were also observed and employed in experiments with ultra-
cold Cr atoms [6–10], and recently with ultracold Er and Dy
atoms [11–17]. Moreover, they were measured in mixtures
of Yb atoms in the metastable 3P state with the ground-state
Yb [18,19] or Li [20] atoms, and in a mixture of the ground-
state closed-shell Sr and open-shell Rb atoms [21,22].

Ultracold gases of dipolar atoms are especially interesting
because the rich physics of different quantum phases and spin
models can be realized with them [23,24]. Therefore, atoms
in complex electronic states with large both spin and orbital
electronic angular momenta, such as Er and Dy, have been
cooled down to low and ultralow temperatures. Tremendous
successes have already been accomplished with these atoms,
just to mention the observation of quantum chaos in ultracold
collisions [25], Fermi surface deformation [26], self-bound
quantum droplets [27], Rosensweig instability [28], and ex-
tended Bose-Hubbard models [29]. The spin dynamics of
impurities in a bath of strongly magnetic atoms and magnetic
polaron physics [30,31] wait for realization.

*michal.tomza@fuw.edu.pl

The first highly dipolar atoms obtained at ultralow temper-
atures were Cr (7S3), Dy (5I8), and Er (3H6); however, several
other transition-metal or lanthanide atoms may potentially
be used. For example, magneto-optical cooling and trapping
of Tm (2F7/2) [32] and Ho (4I15/2) [33] were also realized.
Another lanthanide candidate is Eu (8S7/2). The buffer-gas
cooling and magnetic trapping of Eu atoms were demon-
strated [34–36], and recently magneto-optical cooling and
trapping of optically pumped metastable Eu (10D13/2) atoms
were achieved [37]. Further cooling to the quantum degener-
acy should not be more challenging than the already demon-
strated production of ultracold gases of other lanthanide atoms
with more complex electronic structure [11–14]. In contrast
to Er and Dy atoms, ground-state Eu atoms do not have any
electronic orbital angular momentum (l = 0), and their large
magnetic dipole moment is solely related to the large elec-
tronic spin angular momentum (s = 7/2) of seven unpaired
f -shell electrons. Eu atoms, thus, are more similar to Cr
atoms than to other lanthanides. However, they possess 17%
larger dipole moment than Cr, which combined with three
times larger mass of Eu as compared to Cr will result in four
times stronger dipole-dipole interactions in ultracold gases of
Eu atoms as compared to Cr atoms, but four times weaker
interactions as compared to Dy and Er atoms (the strength of
the dipolar interaction is add ∼ d2m, where d is the dipole
moment and m is the mass of atoms [23]).

Heteronuclear molecules possessing a permanent electric
dipole moment are another promising candidate for numerous
applications, ranging from ultracold controlled chemistry to
quantum computation and quantum simulation of many-body
physics [38–40]. Heteronuclear molecules formed of atoms

2469-9926/2018/98(3)/032704(12) 032704-1 ©2018 American Physical Society
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with large magnetic dipole moments could possess large both
magnetic and electric dipole moments useful for investigat-
ing the interplay between the electric and magnetic dipolar
interactions and phases in ultracold gases. Therefore, the
chromium–alkali-metal-atom molecules such as CrRb [41],
chromium–closed-shell-atom molecules such as CrSr and
CrYb [42], europium–alkali-metal-atom molecules such as
EuK, EuRb, and EuCs [43], and erbium-lithium molecules
ErLi [44] were theoretically investigated and shown to possess
large both electric and magnetic dipole moments. Experimen-
tally, the magnetoassociation into ultracold Er2 dimers [45]
and photoassociation into spin-polarized Cr2 dimers [46] were
demonstrated. Ultracold mixtures of Dy and K atoms [47]
and Dy and Er atoms [48] were also obtained, opening the
way for the formation of ultracold highly magnetic and polar
molecules in nontrivial electronic states. The extraordinarily
rich, dense, and chaotic spectra of magnetic Feshbach reso-
nances for Dy and Er atoms [16,17,49] may, however, make
the magnetoassociation into heteronuclear molecules and in-
vestigation of magnetic polaron or Efimov physics difficult.
The use of ultracold Eu atoms may be a remedy.

Here we investigate magnetically tunable Feshbach reso-
nances between ultracold europium atoms and between eu-
ropium and alkali-metal atoms using multichannel quantum
scattering calculations. We study both homonuclear 153Eu +
153Eu and heteronuclear 151Eu + 153Eu systems of europium
atoms, and 153Eu + 87Rb and 153Eu + 7Li combinations as
prototype systems of mixtures of europium and alkali-metal
atoms. We show that resonances favorable for the control of
scattering properties and magnetoassociation into ultracold
polar and paramagnetic molecules can be expected at exper-
imentally feasible magnetic-field strengths below 1000 G for
all investigated atomic combinations. The density of s-wave
resonances strongly depends on the projection of the total
angular momentum on the magnetic field. For Eu atoms,
the dipolar interaction induces measurable resonances, and
a high density of resonances without pronounced quantum
chaos signatures is expected at magnetic-field strengths below
200 G.

The plan of this paper is as follows. Section II describes the
used theoretical methods. Section III presents and discusses
the numerical results and physical implications of our find-
ings. Section IV summarizes our paper and presents future
possible applications and extensions.

II. COMPUTATIONAL DETAILS

Europium atoms in the electronic ground state have very
large electronic spin angular momentum (s = 7/2), but they
do not have any electronic orbital angular momentum (l = 0).
This results in the 8S7/2 term. Lithium and rubidium atoms,
as all alkali-metal atoms, have simpler structures described
by the 2S1/2 term. Characteristics of all investigated atoms are
collected in Table I, and atomic hyperfine energy levels as a
function of the magnetic field are presented for 7Li, 87Rb, and
153Eu in Fig. 1. Coupling of the electronic spin with the nu-
clear spin, which is i = 5/2 for both isotopes of Eu, results in
a very rich hyperfine structure for these atoms. Interestingly,
hyperfine coupling constants for Eu are small and negative.
They are between one to two orders of magnitude smaller

TABLE I. Terms 2s+1lj , electronic spins s, nuclear spins i, pos-
sible total angular momenta f , and hyperfine coupling constants ahf

for the investigated atoms.

Atom 2s+1lj s i f ahf (MHz)

7Li 2S1/2 1/2 3/2 1, 2 401.752 [50]
87Rb 2S1/2 1/2 3/2 1, 2 3417.34 [50]
151Eu 8S7/2 7/2 5/2 1, . . . , 6 −20.052 [51]
153Eu 8S7/2 7/2 5/2 1, . . . , 6 −8.853 [51]

than for alkali-metal atoms; therefore, the regime dominated
by the Zeeman interaction with the linear dependence of
hyperfine energy levels on the magnetic field can be observed
for Eu atoms at relatively small strengths of the magnetic
field (cf. Fig. 1). A negative value of the hyperfine coupling
constant means the inverse order of hyperfine levels; thus the
hyperfine ground state of Eu atoms has angular momentum of
f = 6.

The Hamiltonian describing the nuclear motion of two
colliding atoms, A + B, reads

Ĥ = − h̄2

2μ

1

R

d2

dR2
R + L̂2

2μR2
+

∑
S,MS

VS (R)|S,MS〉〈S,MS |

+ ĤA + ĤB + Ĥss, (1)

where R is the interatomic distance, L̂ is the rotational angular
momentum operator, μ is the reduced mass, VS (R) is the
potential-energy curve for the state with the total electronic
spin S, and |S,MS〉〈S,MS | is the projection operator on the
states with the total electronic spin S and its projection MS .
The atomic Hamiltonians, Ĥj (j = A,B ), including hyper-
fine and Zeeman interactions are given by

Ĥj = aj îj · ŝj + (geμBŝj,z + gjμN îj,z)Bz, (2)

FIG. 1. Hyperfine energy levels for (a) 7Li, (b) 87Rb, and
(c),(d) 153Eu atoms as a function of the magnetic field. Panel (d)
shows an enlarged part of panel (c) for the small magnetic field.
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where ŝj and îj are the electronic and nuclear spin angular
momentum operators, aj is the hyperfine coupling constant,
Bz is the magnetic-field strength, ge and gj are the electron
and nuclear g factor, and μB and μN are the Bohr and nuclear
magneton, respectively. For Eu atoms we neglect the hyperfine
electric quadrupole coupling because it is much smaller than
the leading hyperfine magnetic dipole coupling. The magnetic
dipole-dipole interaction between electronic spins is

Ĥss = α2

R3

(
ŝA · ŝB − 3ŝA,zŝB,z

)
, (3)

where α is the hyperfine coupling constant.
We perform ab initio quantum scattering calculations

using the coupled-channel formalism as implemented in
Refs. [53–55]. We construct the total scattering wave function
and Hamiltonian in a fully uncoupled basis set,∣∣iA,miA

〉∣∣sA,msA

〉∣∣iB,miB

〉∣∣sB,msB

〉|L,mL〉, (4)

where mj is the projection of the angular momentum j on the
space-fixed z axis, including all possible spin configurations,
but assuming the projection of the total angular momentum
Mtot = mfA

+ mfB
+ mL = miA + msA

+ miB + msB
+ mL to

be conserved. Next, we transform the Hamiltonian to the
basis of atomic hyperfine eigenstates, which is asymptotically
diagonal. For homonuclear collisions of Eu atoms we impose
properly the bosonic symmetry by transforming the wave
function and Hamiltonian to the basis with well-defined total
electronic spin S, nuclear spin I , and rotational L angular
momenta, and restricting the Hilbert space to its bosonic
sector [53,56]. We solve the coupled-channel equations using
a renormalized Numerov propagator [57] with step-size dou-
bling and about 100 step points per de Broglie wavelength.
The wave function ratio �i+1/�i at the ith grid step is prop-
agated from small finite interatomic separations in the clas-
sically forbidden region where the scattering wave-function
amplitude is negligible to large interatomic separations where
electronic and dipolar potentials are negligible as compared to
the collision energy. Then the K and S matrices are extracted
by imposing the long-range scattering boundary conditions
in terms of Bessel functions. The scattering lengths are ob-
tained from the S matrices for the lowest entrance channels
a0 = (1 − S00)(1 + S00)/(ik), where k =

√
2μE/h̄2 and E is

the collision energy. Feshbach resonances are characterized
by their positions B0, widths �, and background scattering
lengths abg, obtained by numerical fitting of the functional
form a(B ) = abg[1 − �/(B − B0)] to the calculated scatter-
ing lengths in the vicinity of resonance poles. All calculations
are carried out for the collision energy of 100 nK.

Interaction between 8S-state Eu and 2S-state Li or Rb atoms
results in two molecular electronic states of the 7�− and 9�−
symmetries which have total electronic spin of S = 3 and 4,
respectively. Interaction between two 8S-state Eu atoms results
in eight electronic states of the 1�+

g , 3�+
u , 5�+

g , 7�+
u , 9�+

g ,
11�+

u , 13�+
g , and 15�+

u symmetries with the total electronic
spin S from zero to 7, respectively. The energy differences
between molecular electronic states with different total elec-
tronic spin result from the exchange interaction.

For the Eu + Rb and Eu + Li systems we use potential-
energy curves calculated in Ref. [43]. Analytical potential-

energy functions VS (R) are fitted to ab initio data separately
for S = 3 and 4 assuming the same long-range van der Waals
coefficients C6 reported in Ref. [43]. For Eu + Eu system we
use potential-energy curves calculated in Ref. [52]. For this
system, however, it was shown that the exchange interaction
is small, and a family of potential-energy curves with dif-
ferent total electronic spin S can be reproduced assuming
the Heisenberg spin-exchange model of the spin-exchange
interaction between f -shell electrons of Eu atoms [52]. As
a result, the potential-energy curves for the Eu + Eu system
read

VS (R) = VS=7(R) + J (R)[56 − S(S + 1)]/2, (5)

where functions VS=7(R) and J (R) were calculated using
ab initio methods in Ref. [52], and here we fit an analytical
formula to them.

Morse–long-range potential-energy functions [58] are used
to represent VS (R). They are given by

VS (R) = De

[
1 − uLR(R)

uLR(Re )
exp[−φ(R)yp(R)]

]2

− De, (6)

where De and re are the well depth and equilibrium distance
of the interaction potential, respectively. The long-range part
of the interaction potential is given by

uLR(R) = −C6

R6
, (7)

whereas other functions are of the form

yp(R) = Rp − R
p
e

Rp + R
p
e

,

φ(R) = ϕ∞ yp(R) + (1 − yp(R))
4∑

i=0

ϕiy
i
q (R),

(8)

with ϕ∞ = ln ( 2De

uLR (Re ) ), p = 4, and q = 4. De, Re, and C6

are directly taken as reported in Refs. [43,52]. The free
parameters in the potential-energy functions, ϕi (i = 0–4), are
determined by numerical fitting to the ab initio points from
Refs. [43,52]. The obtained parameter values are presented in
Table II. The R-dependent spin coupling constant J (R) of the
underlying Heisenberg model for the Eu + Eu system can be
accurately approximated by the function

J (R) = α/ cosh [β(R − R0)], (9)

where α = −0.53915 cm−1, β = 0.79223 bohr−1, and R0 =
7.8760 bohr are obtained by numerical fitting to the ab initio
points from Ref. [52]. Such a function has a proper, exponen-
tially decaying with R, asymptotic behavior.

We set the scattering lengths aS of the employed potential-
energy curves by scaling them with appropriate factors λ,
VS (R) → λVS (R), taking values in the range of 0.97–1.03.
We express the scattering lengths in the units of characteristic
length scales of the van der Waals interaction, R6, given by

R6 =
(

2μC6

h̄2

)1/4

. (10)

It takes values 84 bohr, 166 bohr, and 178 bohr for
153Eu + 7Li, 153Eu + 87Rb, and 153Eu + 151Eu, respectively.
The corresponding characteristic energy scale is given by
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TABLE II. Parameter values of the used Morse–long-range potential-energy functions fitted to ab initio data from Refs. [43,52]. De is in
cm−1 and other parameters are in atomic units or are dimensionless.

Eu + Li Eu + Rb Eu + Eu

Parameter VS=3 VS=4 VS=3 VS=4 VS=7

De 2971.0 2443.2 1239.1 1047.1 704.32
Re 6.5561 6.7288 8.6393 8.7904 9.2919
ϕ0 −1.1665 −0.96262 −0.80406 −0.75536 −0.78004
ϕ1 0.24492 0.37826 −0.28015 −0.23809 −0.49552
ϕ2 1.2024 0.49243 −0.71864 −0.66458 −0.28324
ϕ3 −1.1880 −1.3791 −0.88769 −0.54075 0.36690
ϕ4 −4.2923 −2.9548 −1.2472 −0.84187 −0.45423
C6 2066 2066 3779 3779 3610

E6 = h̄2/(2μR2
6 ), and is 1.8 mK, 56 μK, and 36 μK for the

above mixtures.

III. NUMERICAL RESULTS AND DISCUSSION

Before we discuss the results for magnetically tunable
Feshbach resonances, we will analyze the hyperfine structures
of the investigated mixtures and their impact on the scat-
tering properties. Figure 2 presents hyperfine energy levels
for mixtures of 153Eu + 7Li, 153Eu + 87Rb, and 153Eu + 151Eu
atoms with Mtot = 0 as a function of the magnetic field. Black
lines show atomic thresholds which are the result of combin-
ing the atomic hyperfine energy levels, presented in Fig. 1,
summing to selected Mtot. The colorful (gray scale) lines are
the atomic thresholds shifted by the largest possible binding
energies of the last three most weakly bound vibrational levels
supported by the van der Waals potentials determined by the
long-range coefficients C6 [59]. These positions of molecular
levels correspond to infinitely large and negative scattering
lengths and true molecular binding energies must be equal
to or smaller than them, and lie in such defined bins. The
number of mixture’s hyperfine energy levels is the largest for

Mtot = 0; therefore, the presented spectra correspond to the
richest limiting cases, which are expected to be associated
with the largest number of Feshbach resonances. Feshbach
resonances can occur at crossings of molecular levels and
atomic thresholds.

Interestingly, the most important energy scale for the
153Eu + 7Li system is associated with the vibrational spacing,
which is large because of the small reduced mass. At the
same time, the hyperfine coupling constants are small for both
atoms. In this case, the positions and properties of Feshbach
resonances will crucially depend on the background scattering
lengths and related binding energies of vibrational levels.
For the 153Eu + 87Rb system, the energy scales associated
with the vibrational and hyperfine structures are of similar
order of magnitude, and the spectrum of Feshbach resonances
will be a result of the interplay of both energy scales. For
the 153Eu + 151Eu system, the vibrational binding energies
are small because of the large reduced mass, and thus the
properties of Feshbach resonances will depend crucially on
the hyperfine structure, even though the hyperfine coupling
constants are small in this system. As a result, it is guaranteed
that a large number and density of resonances can be expected

FIG. 2. Hyperfine energy levels for mixtures of (a) 153Eu + 7Li, (b) 153Eu + 87Rb, and (c) 153Eu + 151Eu atoms with Mtot = 0 as a function
of the magnetic field. Black lines show atomic thresholds, whereas colorful (gray scale) lines correspond to the progression of the last three
most weakly bound vibrational molecular levels for infinitely large and negative scattering lengths.

032704-4



MAGNETICALLY TUNABLE FESHBACH RESONANCES IN … PHYSICAL REVIEW A 98, 032704 (2018)

FIG. 3. Scattering lengths for ultracold collisions between 153Eu and 7Li atoms as a function of the magnetic field: (a),(b) for Mtot = 0,
(c),(d) for Mtot = −6, (e),(f) for Mtot = −7, and (g),(h) for Mtot = −8. The following scattering lengths for the potential-energy functions
are assumed: (a),(c),(e),(g) aS=3 = 1.5R6 and aS=4 = −1.5R6; (b),(d),(f),(h) aS=3 = 0.5R6 and aS=4 = −0.5R6. Blue (dark gray) lines show
scattering lengths without the dipole-dipole interaction included and red (gray) and green (light gray) lines show scattering lengths with the
dipole-dipole interaction included with Lmax = 2 and 4, respectively. Note different scales for different Mtot .

at relatively weak magnetic-field strengths below 200 G. The
hyperfine spectrum for the homonuclear 153Eu + 153Eu sys-
tem, which is equivalent to the heteronuclear one restricted
to the bosonic sector of the Hilbert space, will have roughly
twice smaller number of atomic and molecular levels, but
other characteristics will be the same as in the heteronuclear
case.

The positions and widths of Feshbach resonances depend
on the hyperfine structure, progression of weakly bound rovi-
brational levels just below atomic thresholds, and background
scattering lengths, as discussed above. Unfortunately, even
the most accurate potential-energy functions obtained in the
most advanced ab initio electronic structure calculations do
not allow one to predict accurately the scattering lengths
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FIG. 4. Scattering lengths for ultracold collisions between 153Eu and 87Rb atoms as a function of the magnetic field: (a),(b) for Mtot = 0,
(c),(d) for Mtot = −6, (e),(f) for Mtot = −7, and (g),(h) for Mtot = −8. The following scattering lengths for the potential-energy functions
are assumed: (a),(c),(e),(g) aS=3 = 1.5R6 and aS=4 = −1.5R6; (b),(d),(f),(h) aS=3 = 0.5R6 and aS=4 = −0.5R6. Blue (dark gray) lines show
scattering lengths without the dipole-dipole interaction included and red (gray) and green (light gray) lines show scattering lengths with the
dipole-dipole interaction included with Lmax = 2 and 4, respectively. Note different scales for different Mtot .

for collisions between many-electron atoms, except for the
systems with small number of bound states [60]. Thus, at
present, it is impossible to determine all parameters of Fes-
hbach resonances without a priori experimental knowledge.
Nevertheless, the general characteristics of Feshbach reso-
nances, such as the density of resonances and typical widths,
can be learned by tuning the scattering lengths around the

values of the characteristic length scales of the underlying van
der Waals interactions R6. Therefore, we have calculated the
spectra of magnetic Feshbach resonances for a large number
of combinations of scattering lengths and present the most
typical ones.

Figures 3–6 show s-wave scattering lengths for ultracold
collisions in the 153Eu + 7Li, 153Eu + 87Rb, 153Eu + 151Eu,
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FIG. 5. Scattering lengths for ultracold collisions between 153Eu and 151Eu atoms as a function of the magnetic field: (a),(b) for Mtot = 0,
(c),(d) for Mtot = −5, (e),(f) for Mtot = −11, and (g),(h) for Mtot = −12. Panels (b),(d),(f),(g) are zoomed versions of panels (a),(c),(e),(h).
The scattering length of aS=7 = 1.5R6 is assumed for spin-polarized collisions. Blue (dark gray) lines show scattering lengths without the
dipole-dipole interaction included and red (gray) and green (light gray) lines show scattering lengths with the dipole-dipole interaction included
with Lmax = 2 and 4, respectively.

and 153Eu + 153Eu systems as a function of the magnetic-field
strength. Results are presented for several different projec-
tions of the total angular momentum on the magnetic field
Mtot, including collisions with Mtot = 0, which correspond
to the largest number of channels, and ones with maximal
possible |Mtot| that correspond to maximally spin-stretched

states, for which only resonances induced by the dipole-dipole
interaction can occur. In all calculations the same step in
the magnetic-field strength of 0.01 G is assumed; therefore,
the prominence of the resonances can be related to their
widths, which can be visually compared between different
channels and systems. Different colors encode results without
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FIG. 6. Scattering lengths for ultracold collisions between 153Eu atoms as a function of the magnetic field: (a),(b) for Mtot = 0, (c),(d)
for Mtot = −5, (e),(f) for Mtot = −11, and (g),(h) for Mtot = −12; panels (b),(d),(f),(g) are zoomed versions of panels (a),(c),(e),(h). The
scattering length of aS=7 = 1.5R6 is assumed for spin-polarized collisions. Blue (dark gray) lines show scattering lengths without the dipole-
dipole interaction included and red (gray) and green (light gray) lines show scattering lengths with the dipole-dipole interaction included with
Lmax = 2 and 4, respectively.

the dipole-dipole interaction included, that are obtained by
restricting the basis set given by Eq. (4) to Lmax = 0, and with
the dipole-dipole interaction included when Lmax = 2 or 4.
For Lmax = 2 d-wave resonances appear, and for Lmax = 4
additionally g-wave resonances emerge. These resonances are
a result of coupling of the s-wave entrance channel with d-

wave and g-wave bound molecular levels in closed channels.
The coupling with d-wave bound levels is direct, whereas
the coupling with g-wave bound levels is indirect via d-wave
channels. Calculations including Lmax = 4 are presented only
for channels with large |Mtot| for the clarity and because the
g-wave resonances are at least an order of magnitude narrower
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than the d-wave ones. At the same time, the number of chan-
nels increases fast with Lmax. For example, for Mtot = 0 of the
153Eu + 7Li or 153Eu + 87Rb system the number of channels
is 46, 258, and 582 for Lmax = 0, 2, and 4, respectively,
whereas for Mtot = 0 of the 153Eu + 151Eu system the number
of channels is 218, 1252, and 2916 for Lmax = 0, 2, and 4,
respectively.

The dipole-dipole interaction not only couples different
partial waves but it also modifies the long-range character of
the interatomic interaction potential in higher partial waves
from 1/R6 to 1/R3 [61–63]. Thus, in the zero collision
energy limit, not only s-wave scattering length but also d-
wave one can have a finite value. We present only s-wave
scattering lengths for brevity and because they are at least
an order of magnitude larger than d-wave ones in the present
case.

Figures 3 and 4 show s-wave scattering lengths for ul-
tracold collisions in the 153Eu + 7Li and 153Eu + 87Rb sys-
tems as a function of the magnetic-field strength. Results are
presented for two sets of scattering lengths: aS=3 = 1.5R6

and aS=4 = −1.5R6 and aS=3 = 0.5R6 and aS=4 = −0.5R6.
The first set corresponds to rather large and favorable for
broad resonances scattering lengths, whereas the second one
corresponds to rather small and less favorable scattering
lengths. As expected, the largest number of resonances is
observed for collisions with Mtot = 0, counting around 10
and 30 s-wave resonances, and 30 and 100 d-wave reso-
nances below 1000 G for the 153Eu + 7Li and 153Eu + 87Rb
mixtures, respectively. The number of resonances decreases
with increasing |Mtot| and there are no s-wave resonances
for fully spin-polarized collisions with Mtot = −8 for which,
however, higher wave resonances exist. Interestingly, for the
spin-polarized 153Eu + 87Rb mixture, there are around 30 d-
wave resonances and around 200 g-wave resonances below
1000 G. The broad s-wave Feshbach resonances have widths
around 10–100 G for 153Eu + 7Li and around 1–10 G for
153Eu + 87Rb. The d-wave Feshbach resonances have widths
around 10–100 mG and g-wave Feshbach resonances have
widths below 10 mG for both systems. The s-wave resonances
in mixtures of europium and alkali-metal atoms have a very
similar nature to the resonances between alkali-metal atoms
because the exchange-interaction-induced splitting between
two electronic states is relatively large. At the same time,
higher wave resonances are expected to be broader in the
present case because the dipole-dipole interaction is seven
times stronger between europium and alkali-metal atoms than
between alkali-metal atoms.

Figures 5 and 6 show s-wave scattering lengths for ul-
tracold collisions in the 153Eu + 151Eu and 153Eu + 153Eu
systems as a function of the magnetic-field strength. The
scattering length for the electronic potential-energy curve
with the total electronic spin of S = 7, which governs the
spin-polarized collisions, is set to aS=7 = 1.5R6. There are
around 100 s-wave and 200 d-wave Feshbach resonances
below 1000 G for the collisions with Mtot = 0, and this
number slowly decreases with increasing |Mtot|. At the same
time, two-thirds of resonances are located below 200 G be-
cause of the small hyperfine coupling constants for Eu atoms
[cf. Fig. 2(c)]. For small |Mtot|, the spectra below 200 G are
very dense with many overlapping resonances and the density

of resonances approaches one per Gauss. The number of
resonances for the homonuclear combination is smaller than
for the heteronuclear mixture, but the reduction in the number
of visible resonances is smaller than the reduction in the
number of channels. The typical widths of both s-wave and
d-wave resonances are between 10 mG and 100 mG, whereas
the widths of g-wave resonances are below 10 mG for both
homonuclear and heteronuclear collisions. The inclusion of
g-wave channels noticeably moves positions of d-wave res-
onances at small magnetic-field strengths. Additionally, the
dipole-dipole interaction visibly modifies the background
scattering length (by up to around 20%). Interestingly, the
widths of s-wave resonances induced by the relatively weak
short-range spin-exchange interaction and the widths of d-
wave resonances induced by the relatively strong long-range
magnetic dipole-dipole interaction are of the same order of
magnitude. In fact, the spin-exchange interaction between Eu
atoms counts below 0.1% of the total electronic interaction
energy at the equilibrium geometry and was classified as
extremely weak as compared to typical energy scales of the
exchange interaction in other molecular systems [52].

Due to its very small value and computational complex-
ity, the spin-exchange interaction calculated for the Eu + Eu
system [52] is the most uncertain parameter of our model. It
was already shown that its actual value is crucial to deter-
mine correctly the Zeeman relaxation rates for collisions of
magnetically trapped Eu atoms [36]. Therefore, we have also
evaluated ultracold collisions between Eu atoms as a function
of the magnetic-field strength for several values of the scaling
parameter λJ , where linear scaling of the spin-exchange inter-
action J (R) → λJ J (R) was assumed. An exemplary depen-
dence of the scattering lengths for ultracold collisions between
153Eu and 151Eu atoms with Mtot = 0 at the magnetic-field
strength of B = 50 G on the scaling parameter λJ is presented
in Fig. 7(a). For λJ = 1 the dependence is weak and linear,
only interrupted by d-wave resonances. That suggests the per-
turbative impact of the spin-exchange interatomic interaction
on the collisions and s-wave resonances. The nonperturbative
regime can be identified for the spin-exchange interaction
increased three times or more. For λJ > 3 the number and
density of resonances increase by a factor of two and stop
to depend on λJ . For example, for λJ = 5 the number of
s-wave and d-wave resonances below 1000 G for ultracold
collisions between 153Eu and 151Eu atoms with Mtot = 0 is
300 and 300, respectively. For comparison, Fig. 7(b) presents
the dependence of the scattering lengths on the scaling of the
isotropic part of the interaction potential which, as expected,
is very strong.

We have observed similar characteristics as those presented
in Figs. 3–7 also for different sets of scattering lengths. Only
accidentally very close values of the background scattering
lengths for the potential-energy curves with S = 3 and 4
can significantly reduce the widths of s-wave Feshbach reso-
nances in mixtures of europium and alkali-metal atoms, while
the widths of higher wave resonances can be reduced in all
atomic combinations only if the scattering lengths for all
the potential-energy curves are very close to zero. This is
very improbable and can be resolved by changing the used
isotopes. Thus, for all the investigated systems, for a broad
range of possible scattering lengths, there should exist, at least
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FIG. 7. Scattering lengths for ultracold collisions between 153Eu
and 151Eu atoms with Mtot = 0 at the magnetic field B = 50 G as
a function of the parameters scaling the anisotropic (a) J (R) →
λJ J (R) and isotropic (b) VS=7(R) → λV VS=7(R) interatomic elec-
tronic interaction potential functions. The scattering length of aS=7 =
1.5R6 is assumed. Blue (dark gray) lines show scattering lengths
without the dipole-dipole interaction included and red (gray) lines
show scattering lengths with the dipole-dipole interaction included.

for some Mtot, favorable resonances for controlling ultracold
collisions and magnetoassociation at magnetic-field strengths
below 1000 G. For mixtures of europium and alkali-metal
atoms s-wave resonances as broad as between alkali-metal
atoms (with widths much over 1 G) can be expected. For
ultracold homo- and heteronuclear gases of europium atoms
a large number of useful s-wave and d-wave resonances (with
widths reaching 100 mG) can be expected even at magnetic-
field strengths below 100 G. At the same time, it should be
possible to find magnetic-field strengths at which independent
control of scattering properties in different scattering channels
can be realized without being disturbed by accidental reso-
nances. This should be a favorable condition for investigating
magnetic polaron and similar phenomena in ultracold highly
magnetic gases.

The complex spectra of many overlapping Feshbach reso-
nances observed in Figs. 5(a) and 5(b) and Figs. 6(a) and 6(b)
raise a question of whether the investigated systems exhibit
a quantum chaotic behavior. For ultracold collisions of Dy
and Er atoms it was measured [16,25] and theoretically con-
firmed [16,44,64–67] that the interplay of anisotropic elec-
tronic and dipolar interactions leads to the chaotic spectra
of Feshbach resonances being the signature of the level re-

FIG. 8. Nearest-neighbor spacing distributions of s-wave (a),(c)
and both s-wave and d-wave (b),(d) resonance positions for ultracold
collisions between 153Eu and 151Eu atoms with Mtot = 0 at magnetic-
field strengths between 0 and 100 G with the spin-exchange interac-
tion as obtained in ab initio calculations (a),(b) and scaled to the
nonperturbative regime by λJ = 5 (c),(d). The Poisson (solid blue)
and Wigner-Dyson (dashed red) distribution curves are plotted for
comparison.

pulsion following the predictions of the Gaussian orthogo-
nal ensemble of random matrices [68]. Similar results were
predicted for atom-molecule collisions [69–71]. To verify the
above hypothesis in the considered case, in Fig. 8 we present
nearest-neighbor spacing distributions of Feshbach resonance
positions for ultracold collisions between 153Eu and 151Eu
atoms with Mtot = 0 at the magnetic-field strengths between
zero and 100 G, for which the density of overlapping reso-
nances is the largest and chaotic behavior is the most prob-
able. Although we have selected the most dense part of the
spectrum, the number of resonances is still relatively small,
which makes our analysis semiquantitative. The distribution
of uncorrelated energy levels should be described by the
Poisson distribution, PP(s) = exp(−s), whereas the quantum
chaotic distribution should be described by the Wigner-Dyson
distribution, PWD(s) = πs

2 exp(−πs2/4), where the distance
between adjacent levels s is in the units of mean reso-
nance spacing [68]. The transition between Poissonian and
quantum chaotic Wigner-Dyson distributions can be quanti-
fied by the intermediate Brody distribution, PB(s, η) = b(1 +
η)sη exp(−bsη+1), with associated Brody parameter η [72],
which is zero for Poisson and 1 for Wigner-Dyson distri-
bution. In the present case, for the distribution of s-wave
resonance positions, the level repulsion can be noticed, but
the Brody parameter does not exceed 0.25. When d-wave
resonances are included in the spectra, the level repulsion is
less pronounced with the Brody parameter not exceeding 0.1.
Very similar results are obtained for both native and increased
spin-exchange interaction, with only very slight increase of
the Brody parameter in the second case. This suggests that the
Heisenberg model describing the interatomic spin-exchange
interaction in the Eu + Eu system does not support quantum
chaotic behavior and the anisotropic interaction related to
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the nonzero electronic orbital angular momentum, as in Dy
and Er, is needed [16]. The decrease of the level repulsion
when the resonances induced by the dipole-dipole interaction
are included agrees with previous theoretical works [16,66],
which show that the magnetic dipole moment of Dy and Er,
and so of Eu, is too small to support quantum chaotic behavior
on its own. For larger |Mtot| and for mixtures of europium
with alkali-metal atoms the resonance spectra are too simple
to expect quantum chaotic signatures.

IV. SUMMARY AND CONCLUSIONS

Motivated by recent advances in production and applica-
tion of ultracold highly dipolar atoms in complex electronic
states, such as Er and Dy [11–17], we have considered ul-
tracold collisions involving Eu atoms as another lanthanide
candidate for the realization and application of dipolar atomic
and molecular quantum gases in many-body physics. Dy and
Er atoms are excellent systems for experiments exploiting
dipolar interactions, but their very complex internal struc-
ture resulting in very rich, dense, and chaotic spectra of
unavoidable magnetic Feshbach resonances [17] can limit
applications based on the precision control of internal degrees
of freedom, such as magnetoassociation, optical stabiliza-
tion to deeply bound states, or magnetic polaron physics
investigations.

Therefore, we have investigated magnetically tunable Fes-
hbach resonances between ultracold europium atoms and
between europium and alkali-metal atoms using multichan-
nel quantum scattering calculations. We have studied both
homonuclear 153Eu + 153Eu and heteronuclear 151Eu + 153Eu
systems of europium atoms and 153Eu + 87Rb and 153Eu + 7Li
combinations. We have analyzed the prospects for the con-
trol of scattering properties, observation of quantum chaotic
behavior, and magnetoassociation into ultracold polar and
paramagnetic molecules.

The most important of our findings can be summarized as
follows.

(1) Favorable resonances are expected at experimentally
feasible magnetic-field strengths below 1000 G for all inves-
tigated atomic combinations.

(2) The density of resonances depends strongly on the
projection of the total angular momentum on the magnetic
field (the degree of polarization).

(3) The dipole-dipole interaction between europium and
alkali-metal atoms is weaker than the spin-exchange inter-
action; therefore, s-wave resonances are more favorable than
d-wave ones in these systems.

(4) The dipole-dipole interaction between europium atoms
is comparable to relatively weak short-range spin-exchange
interaction, but strong enough to induce favorable resonances.

(5) Large number and density of s-wave and d-wave reso-
nances is expected in ultracold gases of europium atoms.

(6) Especially large number and density of resonances
is expected at magnetic-field strengths below 200 G, but
signatures of quantum chaotic behavior measured by level
repulsion are limited.

The present results draw attention to Eu atoms as an
interesting and favorable candidate for dipolar many-body
physics and pave the way towards experimental studies and
application at ultralow temperatures.
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Commentary

Ultracold molecules containing alkaline-earth-type atoms are promising candidates for high-
precision measurements. Transition-metal Zn and Cd atoms (1S0 ground state) possess a richer
structure of excited electronic states (as compared to the alkaline-earth-metal atoms, also with
1S0 ground state) due to the possibility of electron excitations from the d subshell, and may
be utilized to explore potential spatio-temporal variations in the fundamental constants [259].
Additionally, Zn or Cd atom interacting with other atoms may form weakly-bound van der
Waals molecules that may potentially be used as precise probes of new gravity-like forces [185].
Moreover, optical lattice clocks based on group-IIB atoms, such as Zn, Cd, and Hg, have been
shown to exhibit reduced susceptibility to the blackbody radiation as compared to currently
operational Sr and Yb clocks [260].

In the work presented in [Paper II], we calculated the potential energy curves, permanent
electric dipole moments, and spectroscopic constants for molecules consisting of a Zn or Cd atom
interacting with an alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr,
Ba, Ra) atom using the ab initio coupled-clusters method. We found out that the investigated
molecules in the ground electronic state form weakly bound van der Waals complexes with small
permanent electric dipole moments and are chemically reactive. In this work, the PhD Candidate:
generated all numerical data presented in the article, participated in the results analysis and
interpretation, prepared all figures and tables, wrote the first draft and edited subsequent drafts
of the manuscript.
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Van der Waals molecules consisting of a zinc or cadmium atom interacting
with an alkali-metal or alkaline-earth-metal atom
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Alkaline-earth-like transition-metal atoms such as Zn and Cd are promising candidates for precision measure-
ments and quantum many-body physics experiments. Here, we theoretically investigate the properties of diatomic
molecules containing these closed-shell atoms. We calculate potential-energy curves, permanent electric dipole
moments, and spectroscopic constants for molecules consisting of either a Zn or Cd atom interacting with an
alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom. We use the ab initio
electronic-structure coupled-cluster method with single, double, and triple excitations combined with large
Gaussian basis sets and small-core relativistic energy-consistent pseudopotentials for heavier atoms. We predict
that the studied molecules in the ground electronic state are chemically reactive weakly bound van der Waals
complexes with small permanent electric dipole moments. The present results may be useful for spectroscopy
and application of the studied molecules in modern ultracold physics and chemistry experiments.

DOI: 10.1103/PhysRevA.104.042816

I. INTRODUCTION

Ultracold molecules have emerged in recent years as a
versatile platform for studies of complex quantum phenomena
[1–3]. The rich internal molecular structure and intermolec-
ular interactions have been employed in studies of quantum
many-body physics, allowing for the realization of many-
body Hamiltonians of yet unexplored complexity [4,5]. The
controllability of molecular collisions with external magnetic
or electric fields, along with precise control over molecular
quantum states, have enabled research on ultracold controlled
chemical reactions [6–8]. Furthermore, the complexity of
molecular structure provides novel possibilities for precision
tests of fundamental physics, which include tests of funda-
mental symmetries, searches for spatiotemporal variations of
fundamental constants, tests of quantum electrodynamics, and
tests of general relativity, among others [9,10].

Ultracold molecules containing alkaline-earth-type atoms
are promising candidates for high-precision measurement
experiments [11] and emerging quantum technologies [12],
while alkaline-earth-type atoms have already served as im-
portant building blocks of high-precision physics [13]. For
example, optical lattice clocks based on the 1S0 → 3P0 transi-
tion in alkaline-earth-type atoms have played a substantial role
in establishing current time and frequency standards [14–17].
Here, the main focus has been put on optical lattice clocks
based on strontium [14,15,17], ytterbium [16,18], and mer-
cury [19–21] atoms; however, recent proposals have brought
attention to two other suitable candidates, zinc and cadmium
atoms [22–25]. Optical lattice clocks based on group-IIB
atoms, such as Zn, Cd, and Hg, have been shown to ex-
hibit reduced susceptibility to the blackbody radiation (BBR)

*klaudia.zaremba-kopczyk@fuw.edu.pl
†michal.tomza@fuw.edu.pl

compared to Sr- or Yb-based clocks [19–22,24,26]. With
BBR being the major factor limiting the accuracy of atomic
clocks, Zn and Cd atoms serve as promising alternatives to
the currently operational Sr and Yb clocks [23,25]. In addi-
tion, optical lattice clocks based on alkaline-earth-type atoms
are excellent systems for quantum simulations of many-body
physics [27,28]. Finally, optical clock transitions in divalent
atoms have been suggested as a tool to explore potential
variations in the fine-structure constant [19,29] or establish-
ing constraints on the value of the electron’s electric dipole
moment (EDM) [19].

The use of ultracold molecules based on alkaline-earth-
type atoms provides further enhancement of sensitivities
to the variations of fundamental constants or EDM effects
[10]. In this context, one potentially interesting class of
molecules is heteronuclear molecules composed of a closed-
shell alkaline-earth-like atom interacting with an open-shell
atom, such as an alkali-metal atom [30] or a halide [31]. Such
molecules have been proposed to be useful for measuring the
variations in the proton-to-electron mass ratio [32] and sug-
gested as appealing candidates for searches of the electron’s
EDM [31,33–36]. Moreover, homonuclear dimers of alkaline-
earth-type atoms also show prospects for precise measure-
ments of the proton-to-electron mass ratio [37,38], while
heteronuclear 2�-symmetry molecules have been proposed
as quantum simulators with prospects for creating topologi-
cally ordered states [39]. 2�-state molecules can be formed
from ultracold mixtures of closed-shell and open-shell atoms,
following recent experimental advances in studies of Yb+Rb
[40], Sr+Rb [41], Yb+Li [42], and Yb+Cs [43] combina-
tions.

In this work, we propose the formation of ultracold het-
eronuclear molecules composed of a transition-metal zinc or
cadmium atom interacting with an alkali-metal or alkaline-
earth-metal atom. The electronic structure of homonuclear
dimers of group-IIB atoms, such as Zn2, Cd2, and Hg2, has

2469-9926/2021/104(4)/042816(10) 042816-1 ©2021 American Physical Society



KLAUDIA ZAREMBA-KOPCZYK AND MICHAŁ TOMZA PHYSICAL REVIEW A 104, 042816 (2021)

been the subject of theoretical studies [44–47], while het-
eronuclear molecules composed of a Hg atom interacting with
an alkali-metal atom have been investigated both theoreti-
cally [48,49] and experimentally [50–52]. To the best of our
knowledge, molecules composed of a Zn or Cd atom inter-
acting with an alkali-metal or alkaline-earth-metal atom have
not yet been investigated in the literature. Transition-metal
zinc and cadmium atoms, compared to the alkaline-earth-
metal atoms, possess a richer structure of excited electronic
states due to the possibility of electron excitations from the
d subshell. While the ground-state electronic structure of
such zinc- or cadmium-containing molecules resembles the
electronic structure of alkaline-earth-metal or alkali-metal–
alkaline-earth-metal molecules, the richer electronic structure
of constituent atoms would have its reflection in a more com-
plex structure of excited electronic states, which may find
application in precision measurements [10]. Additionally, zinc
or cadmium atom interacting with other atoms may form
weakly bound van der Waals molecules that may potentially
be used as precise probes of new gravitylike forces [53,54].
The ongoing progress in laser cooling and trapping of cad-
mium atoms [24,55–57] further motivates our investigation.

Here, we theoretically investigate the ground-state prop-
erties of diatomic molecules composed of either a Zn or Cd
atom interacting with an alkali-metal (Li, Na, K, Rb, Cs, Fr)
or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom. We use
state-of-the-art electronic structure methods to calculate the
potential-energy curves (PECs) and spectroscopic constants
for the investigated molecules. We predict that the considered
molecules in the ground electronic state are weakly bound
van der Waals complexes, which are chemically reactive.
They possess rather small permanent electric dipole moments,
despite Zn and Cd atoms having electronegativity signifi-
cantly larger than that of alkali-metal and alkaline-earth-metal
atoms. In this way, the present study extends the range of
species available for ultracold molecular studies.

This paper is constructed as follows. Section II intro-
duces the ab initio electronic structure methods employed in
our calculations. Section III presents and analyzes the ob-
tained numerical data, including the potential-energy curves
and electric properties of the investigated molecules. Finally,
Sec. IV summarizes our paper.

II. COMPUTATIONAL DETAILS

In order to calculate the potential-energy curves within
the Born-Oppenheimer approximation, we employ the closed-
shell and the spin-restricted open-shell coupled-cluster meth-
ods restricted to single, double, and noniterative triple
excitations [CCSD(T)]. Next, we include the full itera-
tive triple-excitation correction, �T, calculated with the
use of the coupled-cluster method restricted to single, dou-
ble, and full triple excitations (CCSDT). We obtain the
counterpoise-corrected interaction energies within the super-
molecule approach [58].

We use the small-core scalar-relativistic energy-consistent
pseudopotentials from the Stuttgart/Köln library, ECPnMDF,
to describe n inner-shell electrons of studied transition-metal
atoms and heavier alkali-metal and alkaline-earth-metal atoms
(ECP10MDF for Zn, K, and Ca; ECP28MDF for Cd, Rb,

and Sr; ECP46MDF for Cs and Ba; and ECP78MDF for
Fr and Ra) [59–61]. This approach treats only the electrons
from the two outermost shells of a given atom explic-
itly [i.e., 3s23p63d104s2 from Zn, 4s24p64d105s2 from Cd,
(n − 1)s2(n − 1)p6ns1 from alkali-metal, and (n − 1)s2(n −
1)p6ns2 from alkaline-earth-metal atoms], and hence, it allows
us to use larger basis sets for more accurate molecular calcula-
tions. We correlate all remaining electrons. For the presented
computations at the CCSD(T) level of theory, we employ the
corresponding correlation-consistent polarized weighed core-
valence quintuple-ζ quality basis sets (aug-cc-pwCV5Z-PP
[44,62] with ECP and aug-cc-pwCV5Z [63] for Li, Na, Be,
and Mg) augmented by the set of the [3s3p2d2 f 1g] bond
functions. To account for the full triple-excitation correc-
tion (�T), we perform electronic structure calculations at the
CCSDT level of theory with the use of valence-only triple-ζ
quality basis sets (aug-cc-pVTZ for Li, Na, Be, and Mg atoms
and aug-cc-pVTZ-PP for the remaining atoms).

Additionally, for two representative systems, an open-shell
RbZn molecule and a closed-shell SrZn molecule, we carry
out convergence tests to analyze the accuracy of the ob-
tained interaction energies and confirm the optimal method
and basis sets for the remaining calculations. To this end,
we compute interaction energies using the CCSD(T) method
and aug-cc-pwCVnZ-PP basis sets with n = D, T, Q, 5. We
use these basis sets to extrapolate the interaction energies to
the complete-basis-set (CBS) limit and show that adding a
bond function (BF) to aug-cc-pwCV5Z-PP basis sets allows
us to reproduce the CBS limit accurately. Next, we obtain
the full iterative triple-excitation correction (�T), given as
a difference between interaction energies calculated at the
CCSDT and CCSD(T) levels of theory, in smaller basis sets
(aug-cc-pVnZ-PP, with n = D, T, Q, and aug-cc-pwCVDZ-
PP). Analogously, we estimate the magnitude of noniterative
and iterative quadruple excitations [�(Q) and �Q] using the
CCSDT(Q) and CCSDTQ methods, respectively, with the
aug-cc-pVDZ-PP and aug-cc-pVTZ-PP basis sets. For com-
pleteness, we also compare the PECs obtained within the
coupled-cluster method with the ones calculated using the
multireference configuration interaction method restricted to
single and double excitations (MRCISD).

The permanent electric dipole moments and static elec-
tric dipole polarizabilities are calculated using the finite-field
method at the CCSD(T)/aug-cc-pwCV5Z level of theory. The
z axis is chosen along the internuclear axis and oriented from a
Zn or Cd atom to an alkali-metal or alkaline-earth-metal atom.

All electronic structure calculations are performed using
the MOLPRO package of ab initio programs [64,65]. The full
triple and quadruple contributions are computed using the
MRCC code embedded in MOLPRO [66]. Vibrational eigenstates
are calculated numerically by employing the exact diagonal-
ization of the nuclear motion Hamiltonian within the discrete-
variable representation (DVR) on the nonequidistant grid [67].
Atomic masses of the most abundant isotopes are assumed.

III. RESULTS AND DISCUSSION

A. Potential-energy curves

We consider interactions between a zinc or cadmium atom
and an alkali-metal AM (AM = Li, Na, K, Rb, Cs, Fr) or
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FIG. 1. Potential-energy curves of (a) the AM-Zn molecules in the X 2�+ electronic state, (b) the AEM-Zn molecules in the X 1�+

electronic state, (c) the AM-Cd molecules in the X 2�+ electronic state, and (d) the AEM-Cd molecules in the X 1�+ electronic state.

alkaline-earth-metal AEM (AEM = Be, Mg, Ca, Sr, Ba, Ra)
atom in their electronic ground states. The ground-state Zn
and Cd atoms, as well as alkaline-earth-metal atoms, are de-
scribed with the 1S0 electronic term, while the alkali-metal
atoms are described with the 2S1/2 electronic term. This
yields the 2�+ molecular electronic states for the ground-state
open-shell molecules composed of a Zn or Cd atom and an
alkali-metal atom and the 1�+ molecular electronic states for
the ground-state closed-shell molecules composed of a Zn or
Cd atom and an alkaline-earth-metal atom.

For the above molecules, we compute the potential-energy
curves and provide spectroscopic characteristics: the equi-
librium bond lengths Re, potential-well depths De, harmonic
constants ωe, first anharmonicity constants ωexe, numbers of
bound vibrational states Nν , and rotational constants Be. We
also report the permanent electric dipole moments de and
parallel and perpendicular components of the static electric
dipole polarizabilities, α‖

e and α⊥
e , respectively, at equilibrium

distances. The computed curves are presented in Fig. 1, and
obtained characteristics are collected in Table I. We estimate
the number of bound vibrational states Nν with the use of
the DVR method, in which we employ the computed PECs,
describing the short-range part of the interaction, smoothly
connected with the long-range part of the interaction, −C6/R6,

where the dispersion-interaction coefficients C6 are taken
from Ref. [68] and presented in Table I for completeness. We
also provide the results for the ground-state homonuclear Zn2

and Cd2 dimers described with the 1�+
g molecular term and

the ZnCd molecule in the 1�+ electronic ground state.
Figure 1 presents the potential-energy curves of the AM-Zn

and AM-Cd molecules in the X 2�+ electronic ground state
and AEM-Zn and AEM-Cd molecules in the X 1�+ elec-
tronic ground state calculated at the CCSD(T)+�T level of
theory. All PECs exhibit a smooth behavior with well-defined
minima. For the AM-Zn and AM-Cd molecules, the well
depths systematically decrease with the increasing atomic
number of the alkali-metal atoms (a deviation from the trend
is observed for radium-containing molecules), while for the
AEM-Zn and AEM-Cd molecules, the well depths system-
atically increase with the increasing atomic number of the
alkaline-earth-metal atoms. The opposite trends can be ex-
plained by different characters of bonding within molecules
containing alkali-metal and alkaline-earth-metal atoms: the
open-shell AM-Zn and AM-Cd molecules are bound chemi-
cally (with a bond order of 1

2 ), while the closed-shell AEM-Zn
and AEM-Cd molecules are bound solely by the dispersion
forces. All considered molecules are of van der Waals char-
acter, with moderate equilibrium distances and well depths
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TABLE I. Spectroscopic characteristics of the AM-Zn and AM-Cd molecules in the X 2�+ electronic state and AEM-Zn and AEM-Cd
molecules in the X 1�+ electronic state: equilibrium bond length Re, well depth De, harmonic constant ωe, first anharmonicity constant ωexe,
number of bound vibrational states Nν , rotational constant Be, permanent electric dipole moment de, parallel and perpendicular components of
the static electric dipole polarizability α‖

e and α⊥
e , and long-range dispersion-interaction coefficient C6. The results for the Zn2, Cd2, and ZnCd

molecules are also presented.

Molecule State Re (bohr) De (cm−1) ωe (cm−1) ωexe (cm−1) Nν Be (cm−1) de (D) α‖
e (a.u.) α⊥

e (a.u.) C6 (a.u.) [68]

LiZn X 2�+ 5.67 827 131 6.84 17 0.296 0.30 375 164 541
NaZn X 2�+ 6.61 474 50.9 1.51 24 0.081 0.20 315 173 597
KZn X 2�+ 7.57 395 34.8 0.35 28 0.043 0.18 457 291 837
RbZn X 2�+ 7.93 368 26.6 0.45 34 0.026 0.16 481 321 959
CsZn X 2�+ 8.33 354 23.4 0.62 37 0.020 0.12 558 390 1129
FrZn X 2�+ 8.45 339 21.5 0.41 39 0.017 0.11 467 331 1056
BeZn X 1�+ 6.91 218 39.9 1.88 11 0.159 −0.03 101 69 270
MgZn X 1�+ 7.39 280 33.2 0.46 18 0.063 −0.003 148 99 450
CaZn X 1�+ 7.60 404 33.4 0.30 28 0.042 −0.08 271 175 771
SrZn X 1�+ 7.92 415 27.4 0.23 35 0.026 −0.07 321 215 916
BaZn X 1�+ 8.17 446 25.7 0.70 40 0.021 −0.12 417 287 1138
RaZn X 1�+ 8.49 396 22.2 0.21 41 0.017 −0.02 373 266 1044
LiCd X 2�+ 5.80 988 134 5.41 19 0.270 0.54 409 165 708
NaCd X 2�+ 6.66 596 53.2 1.19 28 0.071 0.40 350 175 783
KCd X 2�+ 7.58 515 36.4 1.50 34 0.036 0.44 511 288 1090
RbCd X 2�+ 7.92 482 26.6 0.30 44 0.020 0.42 537 318 1251
CsCd X 2�+ 8.32 467 22.7 0.33 50 0.014 0.40 624 383 1470
FrCd X 2�+ 8.43 443 20.1 0.31 54 0.011 0.34 519 328 1381
BeCd X 1�+ 6.95 255 42.2 1.59 12 0.149 −0.03 115 75 365
MgCd X 1�+ 7.44 329 33.8 0.48 21 0.055 0.02 164 105 605
CaCd X 1�+ 7.62 496 34.5 1.38 33 0.035 −0.02 299 179 1023
SrCd X 1�+ 7.93 513 26.7 0.12 44 0.019 0.01 352 219 1212
BaCd X 1�+ 8.17 563 24.7 0.10 53 0.014 −0.02 456 290 1499
RaCd X 1�+ 8.49 494 20.4 0.20 55 0.011 0.08 406 269 1335
Zn2 X 1�+

g 7.23 231 23.4 0.62 22 0.036 0 97 70 359
ZnCd X 1�+ 7.28 275 22.6 0.53 27 0.028 0.01 110 76 495
Cd2 X 1�+

g 7.32 330 21.1 0.24 35 0.020 0 124 83 686

not exceeding 1000 cm−1. We also notice that molecules con-
taining cadmium are more strongly bound than molecules
containing zinc due to the larger polarizability of the cadmium
atom.

The well depths of the AM-Zn molecules in the ground
X 2�+ electronic state range from 827 cm−1 for LiZn to
339 cm−1 for FrZn, systematically decreasing with the atomic
number of the alkali-metal atom AM. The equilibrium dis-
tances range from 5.67 bohrs for LiZn to 8.45 bohrs for FrZn,
systematically increasing with the atomic number of AM.
We observe the same trend for the AM-Cd molecules in the
ground X 2�+ electronic state, whose well depths range from
988 cm−1 for LiCd to 433 cm−1 for FrCd, and equilibrium
distances increase from 5.80 bohrs for LiCd to 8.43 bohrs for
FrCd. The computed number of vibrational levels increases
with the reduced mass of the molecule, from 17 and 19 for
LiZn and LiCd to 39 and 54 for FrZn and FrCd, respectively.

For the AEM-Zn molecules in the ground X 1�+ elec-
tronic state, the well depth systematically increases from
218 cm−1 for BeZn to 446 cm−1 for BaZn and slightly drops
to 396 cm−1 for RaZn. AEM-Cd molecules in the ground
X 1�+ electronic state are characterized by well depths which
also systematically increase with the atomic number of AEM,
ranging from 255 cm−1 for BeCd to 563 cm−1 for BaCd and
494 cm−1 for RaCd. The equilibrium distance systematically

increases from 6.91 bohrs for BeZn to 8.49 bohrs for RaZn
and from 6.95 bohrs for BeCd to 8.49 bohrs for RaCd. The
estimated number of vibrational levels amounts to 11 and 12
for BeZn and BeCd and increases with the reduced mass of the
molecule up to 41 and 55 for RaZn and RaCd, respectively.

The observed trends in the studied molecules are similar
to those reported for analogous alkali-metal–alkaline-earth-
metal and alkaline-earth-metal molecules [69–71]. However,
the potential-well depths are smaller, and equilibrium dis-
tances are larger in the present case due to smaller polarizabil-
ities of the Zn and Cd atoms than those of alkaline-earth-metal
atoms.

For completeness, we also provide results for the homonu-
clear Zn2 and Cd2 and heteronuclear ZnCd molecules in their
ground X 1�+

g and X 1�+ electronic states, respectively. The
calculated spectroscopic characteristics are collected in Ta-
ble I. Figure 2 presents the PECs, which were calculated at
the CCSD(T)+�T + �(Q) level of theory. The potential-well
depths amount to 231, 275, and 330 cm−1 for Zn2, ZnCd, and
Cd2, respectively, and the respective equilibrium distances are
7.23, 7.28, and 7.32 bohrs. The estimated number of vibra-
tional levels is equal to 22 for Zn2, 27 for ZnCd, and 35 for
Cd2. The values of the well depths De and harmonic constants
ωe obtained for homonuclear dimers are in good agree-
ment with the results of previous theoretical calculations and
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FIG. 2. Potential-energy curves of the Zn2 and Cd2 molecules
in the X 1�+

g electronic state and the ZnCd molecule in the X 1�+

electronic state.

spectroscopic measurements, which are compared in Table II.
Like previous theoretical works, we observe discrepancies
between the calculated equilibrium distances and their exper-
imental values, especially for Zn2.

B. Permanent electric dipole moments and static electric
dipole polarizabilities

The permanent electric dipole moments of the AM-Zn
and AM-Cd molecules in the X 2�+ electronic state and the
AEM-Zn and AEM-Cd molecules in the X 1�+ electronic
states as functions of the internuclear distance are presented
in Fig. 3. The values of permanent electric dipole moments at
equilibrium distances are collected in Table I. They govern the
strength of the intermolecular dipolar interaction and coupling
with an external static electric field.

The AM-Zn and AM-Cd molecules in the X 2�+ elec-
tronic state have small permanent EDMs, not exceeding 0.54
debye at equilibrium distances. The values of the EDMs at
equilibrium distances systematically decrease with the in-
creasing atomic number of the alkali-metal atom, ranging

TABLE II. Spectroscopic constants of the Zn2 and Cd2

molecules in the X 1�+
g electronic state: Comparison with previous

studies.

Molecule Source Re (bohr) De (cm−1) ωe (cm−1)

Zn2 This work 7.23 231 23.4
Theory [44] 7.27 226 23.9
Theory [45] 7.23 226 24.0
Theory [46] 7.32 242 25.65

Experiment [72] 7.92 242 25.9
Cd2 This work 7.32 330 21.1

Theory [44] 7.36 325 20.2
Theory [45] 7.32 319 21.3
Theory [46] 7.75 328 21.5

Experiment [73] 7.14 ± 0.06 328 ± 3 21.4 ± 0.2

from 0.30 debye for LiZn to 0.11 debye for FrZn and from
0.54 for LiCd to 0.34 for FrCd.

The permanent EDMs of the AEM-Zn and AEM-Cd
molecules in the X 1�+ electronic state take even smaller val-
ues, not exceeding 0.12 debye at equilibrium distances. The
equilibrium-distance EDMs take values ranging from 0.003
debye for MgZn to 0.12 debye for BaZn and from 0.01 for
SrCd to 0.08 for RaCd, with no distinct systematics of atomic
number dependence. In contrast to the AM-Zn molecules, the
permanent electric dipole moments of the AEM-Zn molecules
point from the alkaline-earth-metal atom to the zinc atom. For
BeCd, CaCd, and BaCd molecules, the dipoles are oriented
from the alkaline-earth-metal atom to the cadmium atom,
while for MgCd, SrCd, and RaCd, the dipoles are oriented
from the cadmium atom to the alkaline-earth-metal atom.

The permanent electric dipole moments of all the stud-
ied molecules take very small values despite relatively large
electronegativity differences between involved atoms. The
electronegativity by the Pauling scale of the Zn (1.65) and Cd
(1.69) atoms is almost two times larger than that of the alkali-
metal (0.79–0.98) and alkaline-earth-metal (0.89–1.57) atoms
[74]. For such large differences, significant permanent EDMs,
larger than those for analogous alkali-metal–alkaline-earth-
metal and alkaline-earth-metal molecules [69–71], could be
expected (similar to what was recently reported for molecules
containing Cu and Ag atoms [75]). Unfortunately, the present
values are significantly smaller, partially as a result of weak
interatomic interactions and van der Waals nature of the
studied molecules and partially because around minima the
permanent EDMs cross zero and change sign. At large dis-
tances, the permanent EDMs present an expected systematic
dependence on the electronegativity differences.

We also calculate the parallel, α‖
e , and perpendicular, α⊥

e ,
components of the static electric dipole polarizability tensor,
which play an important role in the evaluation of intermolec-
ular interactions and coupling of molecular rovibrational
dynamics with a laser field. The values of the parallel and per-
pendicular components of static electric dipole polarizabilities
at equilibrium distances are collected in Table I.

C. Convergence and accuracy analysis

In order to investigate the uncertainty of the present
molecular electronic structure calculations, we first examine
whether the employed ab initio methods describe the atomic
properties accurately. To this end, we employ the CCSD(T)
method to calculate the atomic static electric dipole polar-
izabilities and ionization potentials of the Zn and Cd atoms
using the aug-cc-pwCV5Z-PP basis sets. The obtained atomic
polarizabilities of the zinc and cadmium atoms amount to
37.7 and 45.8 a.u. and agree well with the recommended
combined experimental-theoretical values of 38.7 ± 0.3 and
46 ± 2 a.u. [76], respectively. The calculated ionization po-
tentials of 75 848 cm−1 for Zn and 72 526 cm−1 for Cd are
also in good agreement with respective experimental values
of 75 769 cm−1 [77] and 72 540 cm−1 [78]. The atomic po-
larizabilities and ionization potentials of the alkali-metal and
alkaline-earth-metal atoms obtained with the used theoretical
methods are also in good agreement with experimental data,
as confirmed in Ref. [75].
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FIG. 3. Permanent electric dipole moments of (a) the AM-Zn molecules in the X 2�+ electronic state, (b) the AEM-Zn molecules in the
X 1�+ electronic state, (c) the AM-Cd molecules in the X 2�+ electronic state, and (d) the AEM-Cd molecules in the X 1�+ electronic state.
The points mark the permanent electric dipole moments at equilibrium distances.

Next, we analyze the convergence of the interatomic in-
teraction energy with the size of the employed basis sets.
Figure 4 presents the potential-energy curves for the rep-
resentative RbZn and SrZn molecules in the X 2�+ and
X 1�+ electronic states, respectively, obtained with different
basis sets. An inspection of Fig. 4 allows us to conclude
that the inclusion of inner-shell electron correlation is crucial
for an accurate description of the interatomic interactions
and the core-core and core-valence contributions are signif-
icant, especially for the AM-Zn and AM-Cd molecules. The
addition of a bond function to the aug-cc-pwCV5Z-PP ba-
sis set allows describing the complete-basis-set-limit energy
accurately.

Finally, we analyze the convergence of the interatomic
interaction energy with the quality of employed wave-function
representation. Figure 5 presents the potential-energy curves
for the representative RbZn and SrZn molecules in the X 2�+
and X 1�+ electronic states, respectively, calculated at dif-
ferent levels of theory: RHF (spin-restricted Hartree-Fock),
MRCISD, MRCISD+Q, MP2 (second-order Møller-Plesset
perturbation theory), CCSD, CCSD(T), CCSD(T)+�T, and
CCSD(T)+�T + �Q. The aug-cc-pwCV5Z-PP+BF basis
set is used in the CCSD(T) calculations, aug-cc-pVTZ-PP

is used in the calculation of the full triple correction �T,
and aug-cc-pVDZ-PP is used in the calculation of the full
quadruple correction �Q.

In the coupled-cluster calculations, the inclusion of higher-
order excitations significantly improves the description of
the interaction energies. The obtained potential-well depths
for the RbZn and SrZn molecules are equal to, respectively,
352 and 391 cm−1 at the CCSD(T) level, 368 and 415 cm−1

at the CCSD(T)+�T level, and 372 and 435 cm−1 at the
CCSD(T)+�T + �Q level. Hence, the full triple correction
increases the well depth by about 4% for RbZn and about
6% for SrZn, while the full quadruple correction introduces
a further 1% well-depth increase for RbZn and about 5% for
SrZn. Moreover, for the Zn2, ZnCd, and Cd2 dimers, the per-
turbative quadruple correction �(Q) (calculated with the use
of the aug-cc-pVTZ-PP basis set) increases the potential-well
depths obtained at the CCSD(T)+�T level by 5% to 7%.

Therefore, an accurate description of the interatomic in-
teractions between closed-shell transition-metal atoms, like
zinc and cadmium, and alkali-metal or alkaline-earth-metal
atoms has to take into consideration higher-order electron cor-
relation, in contrast to alkali-metal dimers with two valence
electrons [79]. The triple-excitation contribution is signifi-
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FIG. 4. Potential-energy curves of (a) the RbZn molecule in
the X 2�+ electronic state and (b) the SrZn molecule in the
X 1�+ electronic state, computed with the CCSD(T) method, using
different-sized Gaussian basis sets. CBS limit energy for the aug-cc-
pwCVnZ basis sets is also presented.

cant for both open-shell AM-Zn and AM-Cd and closed-shell
AEM-Zn and AEM-Cd molecules, while the quadruple-
excitation contribution is particularly large for closed-shell
AEM-Zn and AEM-Cd molecules. It is in agreement with
the fact that the CCSDT method for the AM-Zn and AM-Cd
molecules with three valence electrons already provides the
description of valence electrons at the full configuration inter-
action level, while the AEM-Zn and AEM-Cd molecules with
four valence electrons require the CCSDTQ method for the
same.

We also find that the values of the full-iterative triple
and full-iterative quadruple corrections systematically de-
crease with the increasing size of the basis sets, leading us
to conclude that the calculated corrections may be slightly
overestimated. Overall, we estimate that the uncertainty of our
calculations should be at most 5% for molecules containing
alkali-metal atoms and slightly more for molecules containing
alkaline-earth atoms.

In the MRCISD calculations, the full-valence active space
is used. The well depths of the potential-energy curves ob-
tained at the MRCISD level amount to 22.8 cm−1 for RbZn

FIG. 5. Potential-energy curves of (a) the RbZn molecule in the
X 2�+ electronic state and (b) the SrZn molecule in the X 1�+

electronic state computed at different levels of theory: RHF, MR-
CISD, MRCISD+Q, MP2, CCSD, CCSD(T), CCSD(T)+�T, and
CCSD(T)+�T + �Q. See the text for details.

and 51.5 cm−1 for SrZn. The addition of the Davidson correc-
tion, MRCISD+Q, yields deeper PECs, with the well depths
of 103 and 175 cm−1, respectively, for RbZn and SrZn, yet
the results are still not comparable to those obtained with the
coupled-cluster method. We also calculate the PECs within
the MRCISD method with 4p Zn orbitals and 5p Rb/Sr or-
bitals included in the active space; however, this approach
leads to almost identical results. Interestingly, those PECs do
not differ significantly from the ones obtained at the CISD
level, meaning that the ground electronic states of RbZn and
SrZn are well described by a single reference, and higher-
order excitations need to be taken into account to reproduce
the coupled-cluster results. We also see that the energies
obtained within the second-order Møller-Plesset perturbation
theory (MP2) are overestimated, particularly for the SrZn
molecule.

D. Chemical reactions

We use the calculated potential-well depths De to assess the
stability of the investigated molecules against atom-exchange
chemical reactions [80–82]. A ground-state heteronuclear
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molecule AB can undergo an atom-exchange chemical reac-
tion,

AB + AB → A2 + B2, (1)

provided that the sum of the dissociation energies D0 of the
products, A2 and B2, is larger than or equal to the sum of the
dissociation energies of the reactants, 2AB,

D0(A2) + D0(B2) � 2D0(AB). (2)

The dissociation energy D0 is related to the potential-well
depth De, D0 ≈ De − 1

2ωe.
All the studied AM-Zn, AM-Cd, AEM-Zn, and AEM-Cd

molecules in the ground rovibrational levels of their ground
electronic states are chemically unstable, and atom-exchange
reactions are energetically possible,

2AM-Zn(X 2�+) → Zn2(X 1�+
g ) + AM2(X 1�+

g ),

2AM-Cd(X 2�+) → Cd2(X 1�+
g ) + AM2(X 1�+

g ),

2AEM-Zn(X 1�+) → Zn2(X 1�+) + AEM2(X 1�+
g ),

2AEM-Cd(X 1�+) → Cd2(X 1�+
g ) + AEM2(X 1�+

g ),

(3)

because the well depths of alkali-metal AM2 and alkaline-
earth-metal AEM2 dimers [80] are significantly larger than
those of the present molecules.

The atom-exchange chemical reactions for the AM-Zn and
AM-Cd molecules could potentially be suppressed by restrict-
ing the collision dynamic to the high-spin potential-energy
surfaces by fully spin polarizing the molecules in an external
magnetic field [81]. Unfortunately, only channels leading to
alkali-metal dimers in the a 3�+

u electronic state are closed,
while ones leading to Cd2 and Zn2 in the a 3�+

u electronic
state are open,

2AM-Zn(X 2�+) �→ Zn2(X 1�+
g ) + AM2(a 3�+

u ),

2AM-Cd(X 2�+) �→ Cd2(X 1�+
g ) + AM2(a 3�+

u ),

2AM-Zn(X 2�+) → Zn2(a 3�+
u ) + AM2(X 1�+

g ),

2AM-Cd(X 2�+) → Cd2(a 3�+
u ) + AM2(X 1�+

g ).

(4)

Finally, most likely, the trimer formation reactions are an-
other path of chemical losses for all considered molecules

[80–82],

AB + AB → A2B + B, (5)

but their detailed study is out of the scope of this work.

IV. SUMMARY AND CONCLUSIONS

Motivated by the recent progress in laser cooling and
trapping of cadmium atoms [24,55–57] and experimental
realizations of ultracold mixtures of closed-shell and open-
shell atoms [40–43], in this paper, we brought attention to
diatomic molecules composed of a closed-shell zinc or cad-
mium atom interacting with an alkali-metal (Li, Na, K, Rb,
Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom.
Such molecules are potential candidates for ultracold quantum
physics and chemistry experiments, ranging from controlled
chemical reactions to precision measurements. To this end,
we have carried out state-of-the-art ab initio calculations of
the potential-energy curves, permanent electric dipole mo-
ments, and spectroscopic constants for the molecules in their
electronic ground states. We have used the ab initio elec-
tronic structure coupled-cluster method with single, double,
and triple excitations combined with large Gaussian basis
sets and small-core relativistic energy-consistent pseudopo-
tentials for heavier atoms. We have predicted that the studied
molecules in the ground electronic state are weakly bound van
der Waals complexes. We have also found that they have rather
small permanent electric dipole moments, despite Zn and Cd
atoms having electronegativity significantly larger than that
of alkali-metal and alkaline-earth-metal atoms. Finally, we
have concluded that they are chemically reactive, and for
applications other than studies of ultracold chemical reactions,
they should be segregated in an optical lattice, or shielding
strategies should be employed [83].

Full potential-energy curves and permanent electric dipole
moments as a function of interatomic distance in a numerical
form are collected in the Supplemental Material [84].

ACKNOWLEDGMENTS

We acknowledge the financial support from the
National Science Centre of Poland (Grant No.
2016/23/B/ST4/03231) and the Foundation for Polish
Science within the First Team program cofinanced by the
European Union under the European Regional Development
Fund. The computational part of this research was partially
supported by the PL-Grid Infrastructure.

[1] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys.
11, 055049 (2009).

[2] G. Quéméner and P. S. Julienne, Chem. Rev. 112, 4949
(2012).

[3] J. L. Bohn, A. M. Rey, and J. Ye, Science 357, 1002 (2017).
[4] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z.

Cai, M. Baranov, P. Zoller, and F. Ferlaino, Science 352, 201
(2016).

[5] C. Gross and I. Bloch, Science 357, 995 (2017).

[6] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B.
Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin,
and J. Ye, Science 327, 853 (2010).

[7] M. Tomza, Phys. Rev. Lett. 115, 063201 (2015).
[8] M.-G. Hu, Y. Liu, D. D. Grimes, Y.-W. Lin, A. H. Gheorghe,

R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, T. Rosenband, and
K.-K. Ni, Science 366, 1111 (2019).

[9] D. DeMille, J. M. Doyle, and A. O. Sushkov, Science 357, 990
(2017).

042816-8



VAN DER WAALS MOLECULES CONSISTING OF A ZINC … PHYSICAL REVIEW A 104, 042816 (2021)

[10] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008
(2018).

[11] M. McDonald, B. H. McGuyer, F. Apfelbeck, C.-H. Lee, I.
Majewska, R. Moszynski, and T. Zelevinsky, Nature (London)
535, 122 (2016).

[12] S. S. Kondov, C.-H. Lee, K. H. Leung, C. Liedl, I. Majewska,
R. Moszynski, and T. Zelevinsky, Nat. Phys. 15, 1118 (2019).

[13] A. Derevianko and H. Katori, Rev. Mod. Phys. 83, 331 (2011).
[14] H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D.

Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003).
[15] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M.

Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M.
Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y.
Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and
C. W. Oates, Science 319, 1805 (2008).

[16] N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A.
Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker,
and C. W. Oates, Phys. Rev. Lett. 103, 063001 (2009).

[17] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M.
Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny,
R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G.
Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J.
Lodewyck, Nat. Commun. 4, 2109 (2013).

[18] N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma,
J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg, J. C.
Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker,
Phys. Rev. A 77, 050501(R) (2008).

[19] H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D.
Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori,
Phys. Rev. Lett. 100, 053001 (2008).

[20] J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J.
Guéna, Y. Le Coq, and S. Bize, Phys. Rev. Lett. 108, 183004
(2012).

[21] K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H.
Katori, Phys. Rev. Lett. 114, 230801 (2015).

[22] V. D. Ovsiannikov, S. I. Marmo, V. G. Palchikov, and H. Katori,
Phys. Rev. A 93, 043420 (2016).

[23] V. A. Dzuba and A. Derevianko, J. Phys. B 52, 215005 (2019).
[24] A. Yamaguchi, M. S. Safronova, K. Gibble, and H. Katori, Phys.

Rev. Lett. 123, 113201 (2019).
[25] S. G. Porsev and M. S. Safronova, Phys. Rev. A 102, 012811

(2020).
[26] M. S. Safronova, S. G. Porsev, U. I. Safronova, M. G. Kozlov,

and C. W. Clark, Phys. Rev. A 87, 012509 (2013).
[27] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E.

Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Nature
(London) 542, 66 (2017).

[28] A. Goban, R. B. Hutson, G. E. Marti, S. L. Campbell, M. A.
Perlin, P. S. Julienne, J. P. D’Incao, A. M. Rey, and J. Ye, Nature
(London) 563, 369 (2018).

[29] E. J. Angstmann, V. A. Dzuba, and V. V. Flambaum, Phys. Rev.
A 70, 014102 (2004).
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Koperski, Chem. Phys. 327, 229 (2006).
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Commentary

Motivated by the ongoing experiment on the 53Cr+6Li ultracold Fermi-Fermi mixture realized
by the group of M. Zaccanti [67; 68], we have theoretically investigated interatomic interactions
and ultracold atom-atom collisions between chromium and lithium atoms. The project has in-
volved calculations of the potential energy curves for both the ground and excited states of LiCr
molecule with the use of ab initio quantum chemistry methods, as well as quantum scattering
calculations, followed by the analysis of the prospects for magnetoassociation via magnetic Fes-
hbach resonances and photoassociation of chromium and lithium into polar and highly magnetic
LiCr molecules. We have also proposed precision measurements of the variation of the proton-
to-electron mass ratio using ultracold LiCr molecules. To our knowledge, this work tackles for
the first time (in the context of ultracold studies) the calculation of excited electronic states of a
molecule containing an atom with a more complex internal structure than that of an alkali-metal
or alkaline-earth-metal atom.

In the work presented in Paper III, the PhD Candidate: calculated the potential energy
curves and the permanent and transition electric dipole moments for the quartet, sextet, and
octet electronic states of the LiCr molecule correlated to the four lowest atomic dissociation
limits, analyzed chemical reactivity of the LiCr molecule in theX 6Σ+ and a 8Σ+ electronic states,
analyzed the prospects for precision measurements of the variation ofmp/me using ultracold LiCr
molecules, computed the scattering lengths for ultracold collisions between different isotopes of
Cr and Li atoms as a function of the system’s reduced mass for the X 6Σ+ and a 8Σ+ potential
energy curves, and calculated magnetically tunable Feshbach resonances for ultracold 52Cr+6Li
and 53Cr+6Li collisions to assess prospects for magnetoassociation into polar and highly magnetic
LiCr molecules. The results obtained by the PhD Candidate are presented in Sections III.A, III.C,
and III.E-G of Paper III. The PhD Candidate also prepared all figures and tables presented in
Paper III and wrote the first version of the manuscript. The submission of the manuscript has
been postponed due to the ongoing collaboration with the experimental group of M. Zaccanti.
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Ultracold mixtures of Cr and Li atoms: theoretical prospects for controlled atomic collisions,
LiCr molecule formation, and molecular precision measurements

Klaudia Zaremba-Kopczyk,1 Marcin Gronowski,1 and Michał Tomza1, ∗

1Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
(Dated: July 31, 2023)

We theoretically investigate interatomic interactions and ultracold collisions between chromium and lithium
atoms. We use the coupled cluster and multireference configuration interaction methods to calculate the poten-
tial energy curves and the permanent and transition electric dipole moments for the quartet, sextet, and octet
electronic states of the LiCr molecule correlated to the four lowest atomic dissociation limits. We find that the
LiCr molecule in the X 6Σ+ ground electronic state is strongly bound with the well depth of 8406(150) cm−1

and has a large permanent electric dipole moment of 3.3 D at an equilibrium distance of 4.87 bohr, while the
a 8Σ+ first excited electronic states is weakly bound with the well depth of 565(18) cm−1 and has a noticeable
permanent electric dipole moment of 0.7D at the equilibrium distance of 6.48 bohr. We also report fine and
hyperfine coupling constants for ground-state interactions. Next, we employ the electronic structure data in
nuclear dynamics calculations. We investigate the optical paths of forming deeply-bound LiCr molecules via
photoassociation and stimulated Raman adiabatic passage. We propose precision measurements of the variation
of electron-to-proton mass ratio using ultracold LiCr molecules. We predict the scattering lengths for the ultra-
cold spin-polarized Cr+Li collisions (37+29

−22 bohr for 53Cr+6Li) governed by the a 8Σ+ electronic state without
any adjustment to experimental data and in good agreement with recent experimental measurements. Finally, we
calculate magnetically tunable Feshbach resonances for ultracold 52Cr+6Li and 53Cr+6Li collisions and assess
prospects for magnetoassociation into polar and highly magnetic LiCr molecules. Present theoretical results
may guide and explain ongoing experimental studies on ultracold strongly-interacting mass-imbalanced Li+Cr
mixtures and LiCr molecules.

I. INTRODUCTION

Recent years have seen remarkable progress in atom cooling and trapping techniques, enabling to reach the ultralow temper-
ature regime with species of more and more complex internal structure. In this direction, one substantial achievement was the
realization of ultracold samples of highly magnetic transition-metal or lanthanide atoms, such as Cr (7S3) [1–3], Dy (5I8) [4, 5],
Er (3H6) [6, 7], and Eu (8S7/2) [8] while magneto-optical cooling and trapping of Tm (2F7/2) [9, 10], Ho (4I15/2) [11], and
In (2P3/2) [12] have also been demonstrated. The large electronic angular momenta of these atoms are the source of their high
magnetic moments that, in turn, give rise to strong dipole-dipole interatomic interactions.

Ultracold quantum gases of highly magnetic atoms have set the stage for the investigation of the interplay between tunable
short-range contact interactions and long-range anisotropic dipole-dipole interactions (DDIs), leading to the observation of many
intriguing phenomena [13]. The pioneering experimental works on dipolar quantum gases involved the use of chromium atoms,
whose high magnetic moment of 6 Bohr magnetons (µB) stems solely from their large electronic spin angular momentum. In the
chromium Bose-Einstein condensate, the magnetic DDIs were already strong enough to manifest themselves in the condensate
stability dependent on the magnetic moments’ orientation [14–16]. Further experiments have employed lanthanide erbium and
dysprosium atoms, whose even higher magnetic moments of around 7µB and 10µB, respectively, combined with their larger
atomic masses, have allowed observing even more pronounced dipolar effects, such as the Fermi surface deformation [17],
Rosensweig instability of a quantum ferrofluid [18], self-bound quantum droplets [19], or supersolidity [20–22]. Additionally,
the anisotropy of electronic interactions introduced by the large orbital angular momenta of these atoms has been shown to
induce a chaotic character of their ultracold collisions [23, 24]. Dipolar quantum gases have moreover enabled the realization of
complex spin models [25].

The majority of the aforementioned experiments utilized magnetic Feshbach resonances to tune the ratio between contact in-
teraction and magnetic dipole-dipole interaction strengths. Magnetically tunable Feshbach resonances serve as an unprecedented
tool to control the collisional properties of ultracold quantum gases and are crucial for the formation of ultracold molecules via
magnetoassociation [26–28]. There is currently an increased interest in the production of ultracold molecules as their richer
internal structure, as compared to atoms, offers new insights into many-body physics, quantum chemistry, or fundamental
physics [28–30].

Quantum mixtures of highly magnetic transition-metal or lanthanide atoms with open-shell or closed-shell S-state atoms are
favorable systems to study, offering prospects for the formation of ground-state polar molecules with large both electric and
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magnetic dipole moments. The additional degrees of freedom in the molecular internal structure and an interplay of long-
range electric and magnetic interactions would allow for novel applications in quantum computation and quantum simulations,
controlled chemistry, and more [28–31]. Moreover, heteronuclear quantum mixtures serve as a promising platform for stud-
ies of impurity physics, magnetic polarons, Efimov physics, or exotic regimes of superfluidity [32–51]. Therefore, cold and
ultracold mixtures of Dy+Er [52], Dy+K [53–55], Cr+Li [56–58], Er+Li [59, 60], and Er+Yb [61] are currently being investi-
gated experimentally, while magnetoassociation into weakly-bound homonuclear Er2 [62] and heteronuclear KDy [63] dimers
as well as photoassocation into spin-polarized Cr2 homonuclear dimers [64] have already been demonstrated. Regarding theo-
retical studies, the electronic structure of ground-state chromium–alkali-metal-atom molecules [65–67] and chromium–alkaline-
earth-metal-atom molecules and their ions [68, 69], or the electronic structure of ground-state europium–alkali-metal-atom and
europium–alkaline-earth-metal-atom molecules [70] have been investigated, along with collisional properties of Cr+Rb [65],
Cr+Ca+/Sr+/Ba+/Yb+ [69], Er+Li [71], Eu+Li/Rb [72], Er+Yb [73], Er+Sr, or Dy+Yb [74] ultracold mixtures.

Ultracold Fermi-Fermi mixtures such as 161Dy+40K [53, 54] or 53Cr+6Li [56–58] possess another favorable feature, which is
the peculiar mass imbalance between constituent species that, according to theoretical predictions, should allow for the access to
novel superfluid states with exotic pairing mechanisms, such as the Fulde-Ferrell-Larkin-Ovchinnikov or Sarma phases [45–50].
Among the few two-component Fermi mixtures that have been realized experimentally: 40K+6Li [75, 76], 173Yb+6Li [77, 78],
161Dy+40K [53, 54], and 53Cr+6Li [56–58], only the latter two combine the prerequisites to reach the strongly interacting
regime: collisional stability, tunability of interactions, and a mass ratio below 13.6 [41]. In addition, mass-imbalanced fermionic
mixtures offer exotic few-body effects like p-wave atom-dimer interactions [42, 44] or non-Efimovian weakly-bound trimer,
tetramer, and pentamer states [41, 51].

While cold and ultracold gases of 52Cr or 53Cr isotopes have already been subject to successful experimental studies [1–3, 14–
16, 64], initially little progress has been made towards heteronuclear mixtures of chromium with alkali-metal atoms since the
realization of a two-species magnetooptical trap (MOT) for 52Cr and 87Rb in 2004 [79], where the operation of superimposed
MOTs was limited by the photoionization of the excited state of the Rb atoms by the Cr cooling-laser light. Only recently,
the production of a cold fermionic mixture of 53Cr and 6Li atoms was reported [56] and paved the way for the very recent
investigation of ultracold collisions and magnetically tunable Feshbach resonances in Fermi-Fermi mixture of 53Cr and 6Li
atoms [57, 58]. This experimental progress further motivates the present study.

In this communication, we bring attention to ultracold mixtures of chromium and lithium atoms and related diatomic
molecules. We show that a heteronuclear diatomic molecule composed of chromium and lithium atoms possesses both large
magnetic and electric dipole moments, similar to the RbCr molecule that was already investigated theoretically [65]. We explore
the electronic structure of the LiCr molecule both in the ground and excited electronic states using state-of-the-art electronic
structure methods. We provide more accurate potential energy curves for the ground-state asymptote than previously reported in
the literature [66, 67]. We also analyze the magnitude of fine and hyperfine interactions between Cr and Li atoms in their ground
electronic states. We calculate for the first time in the context of ultracold studies the potential energy curves for the excited
states of a heteronuclear molecule comprising a highly magnetic atom. We predict the optical formation of deeply-bound LiCr
molecules using photoassociation and stimulated Raman adiabatic passage. We analyze the chemical stability of the investigated
molecules and point out their possible applications in precision measurements of the variation of electron-to-proton mass ratio.
Our interaction potential describing spin-polarize collisions is accurate enough to predict the scattering lengths without any
adjustment to experimental data for the first time for collisions involving a transition-metal atom. Finally, we investigate mag-
netically tunable Feshbach resonances between ultracold 6Li and 52Cr or 53Cr isotopes with the use of multichannel quantum
scattering calculations and study prospects for magnetoassociation into highly magnetic and polar molecules LiCr.

The paper is organized as follows. Section II introduces the theory underlying ab initio electronic structure and quanutm
scattering calculations. Section III presents the obtained numerical results and discusses their physical implications. Section IV
summarizes our findings.

II. COMPUTATIONAL METHODS

A. Electronic structure calculations

The LiCr molecule consists of an open-shell chromium atom with six valence electrons (3d54s1) interacting with an open-
shell lithium atom with one valence electron (2s1). The seven valence electrons of the resulting system give rise to a sextet
multiplicity of the ground electronic state, while excited states can be either quartets, sextets, or octets. Here, we consider the
electronic states of the LiCr molecule that correlate asymptotically to the atomic states with excitation energies below 20 000
cm−1, i.e., Cr(7S)+Li(2S), Cr(5S)+Li(2S), Cr(5D)+Li(2S), and Cr(7S)+Li(2P ) (see Tables I and II).

The potential energy curves (PECs) for all electronic states are obtained within the Born-Oppenheimer approximation using
the internally contracted multireference configuration interaction method restricted to single and double excitations (MRCISD).
The orbitals employed in the MRCISD calculations are optimized using the multi-configurational self-consistent field method
(MCSCF) with large active spaces, including molecular orbitals created from the 3d, 4s, 4p, and 4d orbitals of the Cr atom and
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TABLE I. Atomic excitation energies and ionization potentials of the Cr and Li atoms calculated with the MRCISD+Q and RCCSD(T) methods
and compared with experimental data. All energies are in cm−1.

Electronic transition MRCISD+Q RCCSD(T) Exp. [88–90]
Cr(7S → 5S) 7293 – 7593
Cr(7S → 5D) 8105 8035 8088
Li(2S → 2P ) 14852 14908 14904

Li(2S) → Li+(1S) – 43480 43487
Cr(7S) → Cr+(6S) – 54653 54576

2s and 2p orbitals of the Li atom. We also include the Davidson correction (MRCISD+Q). Additionally, the PECs of the ground
state and the lowest-lying excited electronic states in each irreducible representation of the C2v symmetry are computed with
the use of the spin-restricted open-shell coupled-cluster method restricted to single, double, and noniterative triple excitations,
RCCSD(T). The counterpoise-corrected interaction energies are computed within the supermolecule approach [80]:

Vint(R) = ELiCr(R) − ECr(R) − ELi(R) , (1)

where Vint(R) is the interaction energy at an internuclear distance R, ELiCr(R) is the total energy of the LiCr molecule, and
ECr(R) and ELi(R) are the total energies of the atoms calculated in the diatom’s basis set.

We employ large Gaussian basis sets to describe all 27 electrons of the LiCr molecule. The scalar relativistic effects are
included by the third-order Douglas-Kroll-Hess (DKH) relativistic Hamiltonian [81, 82] while the relativistic spin-orbit coupling
is neglected. The augmented correlation-consistent polarized valence and (weighted) core-valence quintuple-ζ quality basis sets
optimized with the DKH Hamiltonian are used to describe the 24 electrons of the Cr atom (aug-cc-pV5Z-DK and aug-cc-
pwCV5Z-DK) [83] and the 3 electrons of the Li atom (aug-cc-pV5Z-DK and aug-cc-pCV5Z-DK) [84]. For the aug-cc-pV5Z-
DK basis sets, we correlate only the valence electrons, while for aug-cc-pCV5Z-DK basis sets, we correlate electrons from the
two outermost shells of the considered atoms. The atomic basis sets are additionally augmented by a set of bond functions
(BF) [85, 86] to accelerate the convergence toward the complete basis set limit (CBS).

The interaction potential between two neutral atoms in the electronic ground state at large internuclear distances R is domi-
nated by the dispersion interaction of the form −C6/R

6, where the leading dispersion (van der Waals) coefficient C6 is given
by:

C6 =
3

π

∫ ∞

0

αCr(iω)αLi(iω)dω, (2)

i.e., the integral over the product of dynamic polarizabilities of the Cr(Li) atom at an imaginary frequency, αCr(Li)(iω). The
dynamic polarizability αLi(iω) is taken from Ref. [87], while αCr(iω) from Ref. [68].

In order to assess the uncertainty of the molecular electronic structure calculations, we first examine whether the employed
ab initio methods reproduce the atomic properties accurately. To this end, we first compare the calculated theoretical excitation
energies and ionization potentials (IPs) of the chromium and lithium atoms with experimental data found in Refs. [88–90] (see
Table I). We neglect the spin-orbit coupling in all electronic structure calculations, hence the excitation energies presented in
Table I were averaged out over the energy shifts for different values of the total angular momentum. The excitation energies
and IPs are computed with the use of both MRCISD+Q with the aug-cc-pV5Z-DK basis sets and RCCSD(T) with the aug-cc-
p(w)CV5Z-DK basis sets. We observe that for the excitation energy of Cr to the lowest excited state, Cr(3d54s 7S → 3d54s 5S),
the value obtained at the MRCI+Q level of theory agrees with the experimental value within 4%, exhibiting the lowest accuracy.
The excitation energy of Cr to the lowest D state, Cr(3d54s 7S → 3d44s2 5D), and the ionization potential, Cr(3d54s 7S) →
Cr+(3d5 6S), agree within 1% with the experimental values, both for the MRCI+Q and RCCSD(T) calculations. For the lithium

TABLE II. Asymptotic energies (in cm−1) from molecular calculations with the MRCISD+Q and RCCSD(T) methods and molecular states
arising from the interaction of the chromium and lithium atom in different electronic states.

Asymptote MRCISD+Q RCCSD(T) Exp. [88, 90] Molecular states
Cr(7S)+Li(2S) 0 0 0 X 6Σ+ ≡ (1) 6Σ+, a 8Σ+ ≡ (1) 8Σ+

Cr(5S)+Li(2S) 7274 – 7593 (1) 4Σ+, (2) 6Σ+

Cr(5D)+Li(2S) 7740 8035 8088 (2) 4Σ+, (1) 4Π, (1) 4∆, (3) 6Σ+, (1) 6Π, (1) 6∆

Cr(7S)+Li(2P ) 15039 14908 14904 (4) 6Σ+, (2) 6Π, (2) 8Σ+, (1) 8Π
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atom, the errors of both the excitation energy to the first excited state, Li(2s 2S → 2p 2P ), and the ionization potential, Li(2s 2S)
→ Li+(1s2 1S), do not exceed 0.3% with respect to the experimental data, for both the MRCI+Q and RCCSD(T) methods.

Next, for the ground molecular electronic stateX 6Σ+ ≡ (1) 6Σ+ and the energetically lowest excited state a 8Σ+ ≡ (1) 8Σ+

that correlate to the Cr(7S) and Li(2S) dissociation asymptote, we compute the interaction energies at different levels of theory:
spin-restricted Hartree-Fock (RHF), multi-configurational self-consistent field (MCSCF), configuration interaction restricted
to single and double excitations (CISD), multireference configuration interaction restricted to single and double excitations
(MRCISD) along its version with the Davidson correction (MRCISD+Q), open-shell second-order Møller-Plesset perturbation
theory (RMP2), spin-restricted open-shell coupled cluster restricted to single and double excitations (RCCSD), and its version
with and noniterative triple excitations [RCCSD(T)]. Additionally, we compute the interaction energies, including the correction
for the full triple excitations CCSDT with the aug-cc-pVTZ+bf basis set (RCCSD(T)+∆T) and the full quadruple excitations
CCSDTQ with the aug-cc-pVTZ+BF basis set (RCCSD(T)+∆T+∆Q).

We also compute the permanent electric dipole moments and static electric dipole polarizabilities of the X 6Σ+ and a 8Σ+

electronic states. We use the finite-field method at the RCCSD(T)/aug-cc-pCV5Z-DK and MRCISD/aug-cc-pV5Z-DK levels
of theory. The z axis is chosen along the internuclear axis and oriented from the chromium atom to the lithium atom. The
vibrationally averaged dipole moments are calculated as expectation values ofR-dependent dipole moment functions with radial
vibrational wave functions.

All electronic structure calculations described above are performed with the MOLPRO package of ab initio programs [91, 92].
The full triple and quadruple contributions are computed using the MRCC code embedded in MOLPRO [93]. Vibrational
eigenstates are calculated numerically with the exact diagonalization of the Hamiltonian for the nuclear motion within the
discrete variable representation (DVR) on the non-equidistant grid [94].

B. Quantum scattering calculations

We consider scattering between ground-state chromium atoms Cr(7S3) and ground-state lithium atoms Li(2S1/2). Chromium
atoms in their ground electronic state do not have any electronic orbital angular momentum (lCr = 0), and their large magnetic
dipole moment stems solely from the large electronic spin angular momentum (sCr = 3) of the six unpaired electrons occupying
3d and 4s orbitals. Lithium atoms have a simple electronic structure, with one valence electron giving rise to the electronic spin
angular momentum of sLi = 1/2 and no orbital angular momentum (lLi = 0). We consider the bosonic 52Cr and fermionic
53Cr chromium isotopes with respective nuclear spins i = 0 and i = 3/2, and the fermionic lithium isotope 6Li with nuclear
spin i = 1. The coupling between electronic and nuclear spins results in the hyperfine splitting of the energy levels of 53Cr and
6Li isotopes. The 52Cr isotope has no hyperfine structure. The hyperfine coupling constant for 53Cr is negative and amounts to
a

53Cr
hf = −82.5994(16) MHz [95], while the hyperfine coupling constant for 6Li equals to a

6Li
hf = 152.137 MHz [96]. Hence,

53Cr atoms are characterized by the inverse order of hyperfine levels and the hyperfine ground state of angular momentum
f = 9/2.

The nuclear motion Hamiltonian describing the scattering between Cr and Li atoms reads:

Ĥ = − ℏ2

2µ

1

R

d2

dR2
R+

L̂2

2µR2
+
∑

S,MS

VS(R)|S,MS⟩⟨S,MS | + ĤCr + ĤLi + V̂ss , (3)

whereR is the internuclear distance, L̂ is the rotational angular momentum operator, µ denotes the reduced mass of the colliding
atoms, VS(R) is the Born-Oppenheimer potential energy curve for the state with total electronic spin S, and |S,MS⟩⟨S,MS | is
the projection operator onto a state with the total spin S and its space-fixed projection MS . The atomic Hamiltonians Ĥj with
j = Cr, Li describe the hyperfine and Zeeman interactions:

Ĥj = ajhf ŝj · îj +
(
geµBŝj,z + gjµNîj,z

)
Bz , (4)

where ajhf is the hyperfine coupling constant, ŝj and îj denote the electron and nuclear spin operators, ge/j – the electron/nuclear
g factors, µB/N are the Bohr/nuclear magnetons, and Bz is the magnetic field strength. The nuclear magnetons of the considered
atoms are taken from Ref. [97]. The last term of the Hamiltonian (3) describes the effective dipolar-like interaction between the
electronic spins:

V̂ss =

(
α2

R3
− λSO(R)

)
(ŝCr · ŝLi − 3ŝCr,z ŝLi,z) , (5)

where α2/R3 is the contribution due to the direct magnetic dipole-dipole interaction and λSO(R) is the effective dipole-dipole
interaction in the second order of perturbation theory with the spin-orbit operator. The latter term is smaller than the former one
for light atoms, therefore, we neglect it in our scattering calculations. α denotes the fine structure constant.
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TABLE III. Parameter values of the MLR potential energy functions fitted to the computed ab initio data for the X 6Σ+ and a 8Σ+ electronic
states of the LiCr molecule. De is in cm−1, and other parameters are in atomic units or are dimensionless.

VS De (cm−1) Re (bohr) φ0 φ1 φ2 φ3 φ4 C6

VS=5/2 8406.1 4.8654 -1.6472 -0.7801 -1.0455 -2.6313 -2.8868 954
VS=7/2 564.95 6.4753 -1.1049 0.4317 -0.4696 -2.3948 -2.5846 954

We carry out quantum scattering calculations within the coupled-channel formalism [27]. The total scattering wave function
is constructed in a fully uncoupled basis set,

|sCr,msCr
⟩|iCr,miCr

⟩|sLi,msLi
⟩|iLi,miLi

⟩|L,mL⟩ , (6)

where mj is the projection of angular momentum j on the space-fixed z axis, and assuming that the projection of the total
angular momentumMtot = msCr +miCr +msLi +miLi +mL is conserved. The Hamiltonian is then transformed to the asymp-
totically diagonal basis of hyperfine eigenstates. The coupled-channel equations are solved using the renormalized Numerov
propagator [98] with step-size doubling and about 100 step points per de Broglie wavelength as implemented in Ref. [72]. The
K and S matrices are obtained by imposing the long-range scattering boundary conditions in terms of the Bessel functions. The
scattering lengths are then extracted from the S matrices for the lowest entrance channels a0 = (1− S00)(1 + S00)/(ik), where
k =

√
2µE/ℏ2 with E being the collision energy. The collision energy in our scattering calculations is fixed at 100 nK.

We use the most accurate PECs of the X 6Σ+ and a 8Σ+ electronic molecular states calculated with the use of ab initio
methods as described in Sec. III A. Next, we numerically fit the Morse/Long-range (MLR) potential energy functions [99] to the
ab initio points to represent VS(R) in Eq. (3). The MLR potential energy functions are given by:

VS(R) = De

[
1 − uLR(R)

uLR(Re)
exp (−ϕ(R)yp(R))

]2
−De, (7)

where De is the well depth and Re is the equilibrium distance of the interaction potential, uLR(R) describes the long-range part
of the potential,

uLR(R) = −C6

R6
, (8)

and the remaining functions take the form:

yp(R) =
Rp −Rp

e

Rp +Rp
e
,

ϕ(R) = φ∞ yp(R) +
(

1 − yp(R)
) 4∑

i=0

φiy
i
q(R) ,

(9)

with φ∞ = ln
(

−2De

uLR(Re)

)
, p = 4, and q = 4. The fitted parameter values are collected in Table III.

For many-electron systems, even the most accurate potential energy curves obtained using ab initio electronic structure meth-
ods do not allow for an accurate prediction of scattering lengths. Therefore, we use the assignment of scattering lengths aS of
the electronic potentials VS(R) based on recent experimental data, aS=5/2 = 15.5 bohr and aS=7/2 = 41.5 bohr [57]. We set the
scattering lengths aS of the employed Morse/Long-range PECs by scaling them with appropriate factors λ, VS(R) → λVS(R).
Magnetic Feshbach resonances are characterized by their positionsB0, widths ∆, and background scattering lengths abg that can
be determined by numerical fitting of the expression a(B) = abg (1 − ∆/(B −B0)) [100] to the computed scattering lengths
in the vicinity of the resonance pole.

C. Molecular fine and hyperfine interactions

Electromagnetic interactions of different electric and magnetic moments related to diferent angular momenta present in a
molecule, such as electronic and nuclear spins, electronic orbital angular momenta, molecular rotation, and other, result in
molecular fine and hyperfine structures [101, 102]. Typical energies of fine and hyperfine interactions are much smaller than
electronic energies, therefore they can be treated and included perturbatively. Additionally, nuclear hyperfine couplings are
usually much smaller than electronic fine couplings. We study fine and hyperfine interactions for theX 6Σ+ and a 8Σ+ electronic
states, only. For those states, there is no first-order spin-orbit coupling.
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1. Zero-field splitting (electron spin–spin coupling)

The effective Hamiltonian describing the electron spin–spin interaction for a molecule with the total electronic spin S is:

ĤSS = D

[
Ŝ2
z − 1

3
Ŝ2

]
+ E(Ŝ2

x + Ŝ2
y) , (10)

where Ŝz , Ŝx, Ŝz are the components of the total electronic spin operator Ŝ = ŝCr+ŝLi. D has two contributions: direct magnetic
spin–spin interaction and a second-order spin-orbit term and is connected to the spin–spin coupling constant in Eq. (5) by D =

[ α
2

R3 −λSO(R)]/2. The direct magnetic interaction can be approximated by α2/2R3; however, the whole electronic wave function
is desired for an accurate description. We use the multireference averaged quadratic coupled-cluster (MR-AQCC) electronic
wave-function [103] to obtain the magnetic spin–spin contribution to D, and the MRCISD method to obtain the second-order
spin-orbit contribution to D. The scalar relativistic effects are included within the Douglas-Kroll-Hess Hamiltonian [81]. We
use the DKH versions of augmented correlation-consistent polarized weighted core-valence basis sets (aug-cc-pwCVDZ-DK,
aug-cc-pwCVTZ-DK, aug-cc-pwCVQZ-DK) [83] as available in the ORCA software [104, 105]. We use the method developed
by Ganyushin and Neese [106] to obtain D and E from the electronic wave function. We check that E is at least four orders of
magnitude smaller than D, which allows us to comclude that E is negligible and can be neglected.

2. Magnetic hyperfine splitting (nuclear spin–electron spin coupling)

The effective Hamiltonian for the electron spin–nuclear spin interaction is:

ĤnSeS =
∑

j

(
Aj

fcŜ · îj + Ŝ ·Aj
sd · îj

)
. (11)

The summation is over all nuclei j possessing a non-zero spin. The nuclear spin–electron spin interaction is the sum of the Fermi
contact term (described by Aj

fc) and magnetic dipolar interaction (represented by Aj
sd). The equivalent form of Eq. (11) is:

ĤnSeS =
∑

j

(
Aj

fcŜ · îj +
1

3
c(3Ŝz îj,z − Ŝ · îj) −

1

2
d(Ŝ+îj,+ + Ŝ−îj,−)

)
. (12)

The total magnetic hyperfine Hamiltonian also contains a nuclear-spin–electron-orbit term, which we neglect. We check that
the Fermi contact term dominates the nuclear-spin–electron-spin interaction and the components of Aj

sd matrix (or c and d
parameters) are smaller than Aj

fc.
We employ the domain-based local pair natural orbital CCSD (DLPNO-CCSD) method [107–115]. The basis set, treatment

of relativistic effects and software are the same as for the electron-spin–electron-spin interaction. We neglect the second-order
contribution from the spin-orbit coupling.

3. Electron spin–rotation coupling

The electron spin–rotation coupling ε is connected with the electronic g-tensor [116], and for diatomic molecules, the relation
has a simple form:

ε = 2B0∆g⊥. (13)

∆g⊥ describes the difference between the component of the electronic g-tensor perpendicular to the interatomic axis and the
free-electron g-factor. B0 is the rotational constant. The relation in Eq. (13) is correct only in the first order of perturbation
theory; however, it works well for most deeply bound diatomic molecules [117, 118]. Based on our experience, we expect that
for a weekly bound system the relation can give only a rough estimation of the order of magnitude of ε. We use the ORCA
software to obtain ∆g⊥. We use the same electronic structure method as for the spin-orbit contribution to the electron spin–spin
coupling.

4. Nuclear quadrupole coupling

In order to compute the nuclear quadrupole coupling constant (NQC), we use the CCSD method and the CFOUR 2.1 [119]
software. We describe the relativistic effects by the one-electron variant of the Spin-free Exact Two-component Theory [120].
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FIG. 1. Potential energy curves of the LiCr molecule in the X 6Σ+ and a 8Σ+ electronic states together with corresponding vibrational energy
levels. The inset shows the enlarged a 8Σ+ electronic state. Shaded areas represent the theoretical uncertainty of the presented potential energy
curves.

We use all-electron weighted core-valence relativistic triple-zeta basis set (aug-cc-pwCVTZ-DK) for Cr and all-electron core-
valence triple-zeta basis set (aug-cc-pCVTZ) for Li [121, 122]. The electronic structure computations provide the electric field
gradient tensor at a given nucleus, whereas the nuclear quadrupole moments are taken from the literature [123].

5. Other components of hyperfine structure

The isotropic nuclear spin–spin [124, 125] and nuclear spin-rotation [126, 127] coupling constants are estimated at the CCSD
level of theory as implemented in CFOUR 2.1 [119]. We neglect the relativistic effects. We ignore the spin-dipole and spin-orbit
contributions to the nuclear-spin–nuclear-spin coupling constants. The basis sets are the same as for the nuclear quadrupole
coupling constant calculations.

III. NUMERICAL RESULTS AND DISCUSSION

A. Potential energy curves

1. Potential energy curves and permanent electric dipole moments for the X 6Σ+ and a 8Σ+ electronic states

The X 6Σ+ and a 8Σ+ molecular electronic states arise from the interaction of ground-state Cr(7S) and Li(2S) atoms. The
a 8Σ+ state is well described by single-reference methods at all internuclear distances, while the X 6Σ+ state has a single-
reference character at small internuclear distances and takes on multireference character at intermediate and large internuclear
distances due to the open-shell nature of the interacting atoms. Hence, we compute the interaction energies for the a 8Σ+

electronic state using the RCCSD(T) method at all internuclear distances, and for the X 6Σ+ state we use the RCCSD(T)
method to compute the interaction energies at short to midrange distances. As the RCCSD(T) method fails to describe properly
the dissociation of the molecule in theX 6Σ+ state into the correct atomic limit, we combine the obtained interaction energies for
small to intermediate internuclear distances with the interaction energies for intermediate to large internuclear distances obtained
at the MRCISD+Q level. For the MRCISD calculations, we use the active space of all orbitals necessary to describe the valence
electrons: 3d and 4s for the Cr atom and 2s for the Li atom, and additionally the 2p orbital for the Li atom. We smoothly merge
the coupled-cluster interaction energies with the energies calculated with the MRCI method at a distance of around 10 bohr. The
MRCI results are prior shifted so that the asymptote for the X 6Σ+ state overlaps with the asymptote for the a 8Σ+ state as the
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TABLE IV. Spectroscopic characteristics of the 6Li53Cr molecule in the X 6Σ+ and a 8Σ+ electronic states: equilibrium bond length Re,
well depth De, and harmonic constant ωe, calculated at different levels of theory.

Method Basis Re (bohr) De (cm−1) ωe (cm−1)
X 6Σ+

MRCISD aug-cc-pV5Z+BF 4.97 6546 309.7
MRCISD+Q aug-cc-pV5Z+BF 4.88 7935 333.1
CCSD(T) aug-cc-pCV5Z+BF 4.87 8406 343.7
CCSD(T) CBS(Q,5)/aug-cc-pCVnZ 4.86 8435 344.0
CCSD(T)+∆T ” + aug-cc-pV5Z+BF 4.86 8382 343.8
CCSD(T)+∆T+∆Q ” + aug-cc-pVTZ 4.86 8376 343.8

a 8Σ+

MRCISD aug-cc-pV5Z+BF 7.56 219.5 43.75
MRCISD+Q aug-cc-pV5Z+BF 6.92 473.5 75.55
CCSD(T) aug-cc-pV5Z+BF 6.58 565.2 85.10
CCSD(T) aug-cc-pVXZ CBS(Q,5) 6.58 568.3 85.11
CCSD(T) aug-cc-pCV5Z+BF 6.54 531.5 82.94
CCSD(T) CBS(Q,5)/aug-cc-pCVnZ 6.54 530.9 82.58
CCSD(T)+∆T ” + aug-cc-pV5Z+BF 6.49 561.4 85.29
CCSD(T)+∆T+∆Q ” + aug-cc-pVTZ 6.48 565.0 86.19

MRCI method is not size consistent.
The final, most accurate potential energy curves for theX 6Σ+ and a 8Σ+ electronic states of the LiCr molecule are presented

in Fig. 1. TheX 6Σ+ PEC is computed at the CCSD(T)+∆T+∆Q level at short range and combined with the MRCISD+Q results
at around 10 bohr, while the a 8Σ+ PEC is computed at the CCSD(T)+∆T+∆Q level of theory at all distances. The obtained
potential energy curves are smooth and have well-defined minima. The LiCr molecule in the X 6Σ+ electronic state is strongly
bound with the well depth of 8376 cm−1 at the equilibrium distance of 4.86 bohr, similar to the experimental well depth of the
Li2 dimer in its X 1Σ+

g ground electronic state with the well depth of 8516.7 cm−1 at Re = 5.05 bohr [128]. For comparison,
the well depths for the Cr2 dimer corresponding to the Cr(7S)+Cr(7S) dissociation limit range from about 15500 cm−1 at around
3.5 bohr in the X 1Σ+

g ground state to about 550 cm−1 at around 6 bohr in the maximally spin-stretched state (1) 13Σ+
g [129].

The LiCr molecule in the spin-polarized a 8Σ+ electronic state is weakly bound with the well depth of 565 cm−1 at equilibrium
distance of 6.48 bohr. This can be compared to the experimental well depth of the Li2 dimer in the a 3Σ+

u electronic state with
the well depth of 333.7 cm−1 at Re = 7.88 bohr [130].

Estimating the uncertainty of molecular calculations is challenging but important for reliable guiding and explaining exper-
imental results. Therefore, to access the accuracy of our final calculations, we analyze their convergence with the quality of
wavefunction representation, the size of atomic orbitals basis set, and the inclusion of relativistic effects and core electron cor-
relation. Table IV collects the main spectroscopic characteristics: equilibrium bond lengths Re, well depths De, and harmonic
constants ωe (calculated assuming the mass of 6Li53Cr) of the PECs for the X 6Σ+ and a 8Σ+ electronic states calculated with
the use of MRCISD, MRCISD+Q, and RCCSD(T) methods and the largest basis sets employed in our calculations (aug-cc-
pV5Z-DK+BF for MRCI and aug-cc-pCV5Z-DK+BF for CC), compared to the results for the two-point CBS extrapolation
of the interaction energies. Additionally, we also calculate the full iterative triple excitations correction (∆T), given as the
difference between interaction energies calculated at the CCSDT and CCSD(T) levels of theory, computed with the use of
smaller basis sets, aug-cc-pV5Z-DK+BF. In the same manner, we calculate the full quadruple excitation correction (∆Q), given
as the difference between CCSTQ and CCSDT energies, calculated with the aug-cc-pVTZ-DK basis sets. The PECs for the
a 8Σ+ state computed at different levels of theory: RHF, MRCISD, MRCISD+Q, MP2, CCSD, CCSD(T), CCSD(T)+∆T, and
CCSD(T)+∆T+∆Q are presented in Fig. 2 (a) (all PECs are computed with the use of the aug-cc-pCV5Z-DK+BF basis sets
except for the MRCISD and MRCISD+Q calculations, where the aug-cc-pV5Z-DK+BF basis sets were used). We also provide
the spectroscopic characteristics of PECs for the a 8Σ+ state calculated at the CCSD(T) level and using different-sized basis sets
in Appendix A.

For the LiCr molecule in the X 6Σ+ electronic state, the potential well depth calculated at the MRCISD level amounts to
6546 cm−1 at the equilibrium distance of 4.97 bohr, and for the MRCISD+Q calculations the well depth is increased by 21% to
7935 cm−1 at the equilibrium distance of 4.88 bohr. The well depth of the PEC calculated at the CCSD(T) level equals to 8406
cm−1 at the equilibrium distance of 4.87 bohr. The addition of full triple excitations correction further improves the description
of the interaction energies and decrease the well depth by 24.1 cm−1 with respect to the CCSD(T) curve, and the full quadruple
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FIG. 2. (a) Potential energy curves for the LiCr molecule in the a 8Σ+ electronic state computed at different levels of theory: RHF, MRCISD,
MRCISD+Q, MP2, CCSD, CCSD(T), CCSD(T)+∆T, and CCSD(T)+∆T+∆Q. (b) Corrections to the interaction energy in the a 8Σ+ elec-
tronic state introduced by the core correlation and scalar relativistic effects computed at the CCSD(T) level. See the text for details.

excitations correction decrease the well depth by 5.4 cm−1 with respect to the CCSD(T)+∆T curve. The well depth obtained at
the CCSD(T)+∆T+∆Q level amounts to 8376 cm−1 at the equilibrium distance of 4.86 bohr with a 0.3% contribution from the
full-iterative triple excitations correction and a 0.06% contribution from the full-iterative quadruple excitations correction.

The PECs for the a 8Σ+ electronic state computed at different levels of theory are presented in Fig. 2(a). As mentioned
earlier in the text, we use the aug-cc-pV5Z-DK basis sets augmented by bond functions for the MRCI method, and aug-cc-
pCV5Z-DK basis sets augmented by bond functions for the CC method. The use of core-valence basis sets does not provide
a good description of the interaction energies within the MRCI method. For the MRCISD method, the well depth amounts
to 219.5 cm−1 at the equilibrium distance of 7.56 bohr. The inclusion of the Davidson correction significantly improves the
description of the interaction energies, and the well depth increases by over 100% to 473.5 cm−1 at the equilibrium distance
of 6.92 bohr for the MRCISD+Q method. The well depth of 198.5 cm−1 at Re = 7.05 bohr obtained at the MP2 level is
significantly underestimated. For the coupled-cluster calculations, the well depth computed at the CCSD level amounts to 370.8
cm−1 at the equilibrium distance of 6.89 bohr, and the inclusion of non-iterative triple excitations increases the well depth by
70% to 531.5 cm−1 at Re = 6.54 bohr. The addition of full triple excitations correction further improves the description of
the interaction energies and increases the well depth by 29.8 cm−1 with respect to the CCSD(T) curve, and the full quadruple
excitations correction increases the well depth by 3.6 cm−1 with respect to the CCSD(T)+∆T curve. The well depth obtained
at the CCSD(T)+∆T+∆Q level amounts to 565 cm−1 at the equilibrium distance of 6.48 bohr with a 5% contribution from the
full-iterative triple excitations correction and a 0.6% contribution from the full-iterative quadruple excitations correction. Triple
excitations are therefore non-negligible for an accurate calculation of interaction energies, while quadruple excitations do not
contribute significantly to the interaction energy, allowing us to conclude that the CCSDT method already provides a description
of the LiCr molecule close to the full configuration interaction level.

In Fig. 2(b) we present the core correlation and scalar relativistic corrections to the interaction energy for the a 8Σ+ electronic
state computed at the CCSD(T) level. To this end, we calculate the differences between interaction energies: computed with the
aug-cc-pCV5Z basis sets and computed with the aug-cc-pV5Z basis sets, ∆Ecore; computed with the aug-cc-pCV5Z-DK basis
sets and computed with the aug-cc-pV5Z-DK basis sets (and including the DKH correction in both cases), ∆EDK

core; computed
with the aug-cc-pV5Z-DK basis sets and including the DKH correction and computed with the aug-cc-pV5Z basis sets, ∆EDK;
computed with the aug-cc-pCV5Z-DK basis sets and including the DKH correction and computed with the aug-cc-pCV5Z basis
sets, ∆Ecore

DK . Hence, ∆Ecore describes the effect of the core-core (cc) and core-valence (cv) electron correlations, ∆EDK
core

describes the effect of cc and cv correlations in the presence of the DKH relativistic correction, ∆EDK describes the scalar
relativistic effects within the DKH framework while considering only the valence-valence (vv) electron correlations, and ∆Ecore

DK
describes the scalar relativistic effects within the DKH framework computed while taking into account all cc, cv, and vv electron
correlations. An inspection of Fig. 2(b) shows that the scalar relativistic correction increases the interaction energies at all
internuclear distances, while the cc and cv electron correlations decrease the interaction energies for small internuclear distances
in the vicinity the PEC minimum and at intermediate internuclear distances, and increase the interaction energies for small
internuclear distances in the repulsive region. As shown in Table VIII in Appendix A, core electron correlations slightly decrease
the potential well depths as compared to the corresponding calculations with valence-only active space, and shift the potential
minima towards smaller internuclear distances.
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FIG. 3. (a) Permanent electric dipole moments as a function of the internuclear distance for the LiCr molecule in the X 6Σ+ and a 8Σ+

electronic states. The points mark the permanent electric dipole moments at equilibrium distances. (b) Permanent electric dipole moments
calculated for each vibrational level supported by the X 6Σ+ and a 8Σ+ electronic states.

The above convergence analysis and our previous experience [137] allow us to estimate the numerical uncertainty of our final
PECs. The uncertainty of the well depth for the X 6Σ+ state is around 150 cm−1 (2 %) and is dominated by the uncertainty of
the leading CCSD(T) calculation, including the basis set incompetence and approximate treatment of relativistic effects. The
uncertainty of the well depth for the a 8Σ+ state is around 18 cm−1 (3 %), where the largest contribution of 13 cm−1 originates
from the uncertainty of the leading CCSD(T) part, while the uncertainty of full-triple and higher excitations calculations is
3 cm−1 and 2 cm−1, respectively. In this way, the results presented in this work are more accurate than those reported in
previous theoretical studies: De = 6499 cm−1 and Re = 5 bohr for the X 6Σ+ state, and De = 291 cm−1 and Re = 6.8 bohr for
the a 8Σ+ state [66]; De = 7840 cm−1 and Re = 4.96 bohr for the X 6Σ+ state, and De = 847 cm−1 and Re = 6.28 bohr for
the a 8Σ+ state [67], where no uncertainty and convergence analysis was provided.

At large internuclear distances the interaction between Cr(7S) and Li(2S) atoms is dominated by the van der Waals interaction
of Eq. (8). The computed value of the C6 coefficient is 954Eha

6
0. It agrees well both with result of recent experimental fit to

Feshbach resonances spectrum, CFR
6 = 922(6)Eha

6
0 [57], and with the value of the van der Waals coefficient obtained by fitting
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the analytic form of Eq. (8) to the calculated potential energy curve for the a 8Σ+ electronic state at large internuclear distances,
Cfit

6 = 995Eha
6
0. The larger value of the fitted coefficient may be explained by our single-parameter fit compensating for the

omitted higher-order terms. When the next dispersion term is included in the formula of Eq. (8), we get C̃fit
6 = 927Eha

6
0 and

C̃fit
8 = 7.0 × 104Eha

6
0, in much better agreement with the recent experimental values [57].

The permanent electric dipole moments (EDMs) of the LiCr molecule in the X 6Σ+ and a 8Σ+ electronic states states as
functions of the internuclear distance are presented in Fig. 3 (a). The permanent EDMs, as well as static electric dipole polariz-
abilities described further in the text, are computed at the CCSD(T) level, and for the X 6Σ+ state the CCSD(T) and MRCISD
results are merged similarly as the potential energy curves. The permanent EDM at the equlibrium distance is relatively large for
the X 6Σ+ state and amounts to 3.30 D. For the a 8Σ+ state, the permanent EDM is smaller and is equals to 0.70 D at the equi-
librium distance. We use the DVR method to estimate the number of vibrational levels (for j = 0) for both X 6Σ+ and a 8Σ+

electronic states, in which we employ the calculated potential energy curves to describe the short-range part of the interaction,
smoothly connected with the long-range part of the interaction given by Eq. (8). The obtained number of bound vibrational states
is: 44 for the X 6Σ+ state and 16 for the a 8Σ+ state. Next, for each vibrational level we compute the expected value of the
EDM, as presented in Fig. 3 (b). For the X 6Σ+ state, the EDM first increases, reaches the maximum value of 3.56 debyes for
the vibrational level v = 14 and subsequently decreases, while for the a 8Σ+ state the permanent EDM decreases monotonically,
taking the maximum value of 0.68 debyes for v = 0.

Figure 4 (a) shows the computed parallel, α∥, and perpendicular, α⊥, components of the static electric dipole polarizability
tensor for the X 6Σ+ and a 8Σ+ electronic states as a function of the internuclear distance. At equilibrium distances, these
amount to: α∥(Re) = 212.2 e2a20/Eh and α⊥(Re) = 126.5 e2a20/Eh for the X 6Σ+ state, and α∥(Re) = 568.3 e2a20/Eh and
α⊥(Re) = 185.7 e2a20/Eh for the a 8Σ+ state. At large internuclear distances, the polarizabilites correctly converge to the sum
of atomic polarizabilities: α = 82.42 e2a20/Eh for Cr(7S) and α = 164.2 e2a20/Eh for Li(2S) (computed with the CCSD(T)
method).

2. Potential energy curves and transition electric dipole moments for excited electronic states

We calculate the potential energy curves and their spectroscopic characteristics for the quartet, sextet, and octet electronic
states of the LiCr molecule corresponding to the four lowest dissociation limits: Cr(7S)+Li(2S), Cr(5S)+Li(2S), Cr(5D)+Li(2S),
and Cr(7S)+Li(2P ). The spin-orbit coupling in excited electronic states in neglected thus potential energy curves in the Hund’s
case (a) are reported in this work. All possible molecular electronic states are listed in Tab. II, along with the computed asymp-
totic energies. All calculated PECs are shifted to match the experimental asymptotic atomic energies. The MRCI excitation
energies are determined as a difference between asymptotic energies of molecular states computed with the same MCSCF wave
functions used as reference in the MRCI calculations.

Calculation of the potential energy curves for excited states of the LiCr molecule is numerically and technically challenging
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TABLE V. Spectroscopic characteristics of the 6Li53Cr molecule in the ground and excited electronic states: equilibrium bond length Re, well
depth De, and harmonic constant ωe, calculated using the various approaches discussed in the text.

State Method Basis Re (bohr) De (cm−1) ωe (cm−1)
X 6Σ+ MRCISD aug-cc-pV5Z+BF 4.97 6546 309.7

MRCISD+Q aug-cc-pV5Z+BF 4.88 7935 333.1
CCSD(T) aug-cc-pCV5Z+BF 4.87 8406 343.7
CCSD(T)+∆T ” + aug-cc-pV5Z+BF 4.86 8382 343.8
CCSD(T)+∆T+∆Q ” + aug-cc-pVTZ 4.86 8376 343.8

a 8Σ+ MRCISD aug-cc-pV5Z+BF 7.56 219.5 43.75
MRCISD+Q aug-cc-pV5Z+BF 6.92 473.5 75.55
CCSD(T) aug-cc-pCV5Z+BF 6.54 531.5 82.94
CCSD(T)+∆T ” + aug-cc-pV5Z+BF 6.49 561.4 85.29
CCSD(T)+∆T+∆Q ” + aug-cc-pVTZ 6.48 565.0 86.19

(1) 4Σ+ MRCISD aug-cc-pV5Z 6.10 1001 165.3
MRCISD+Q aug-cc-pV5Z 5.86 1704 151.0

(2) 6Σ+ MRCISD aug-cc-pV5Z 5.83 3463 157.6
MRCISD+Q aug-cc-pV5Z 5.77 3844 173.9

(2) 4Σ+ MRCISD aug-cc-pV5Z 9.68 102.8 25.88
MRCISD+Q aug-cc-pV5Z 8.78 208.4 37.48

(1) 4Π MRCISD aug-cc-pV5Z+BF 6.23 861.6 161.4
MRCISD+Q aug-cc-pV5Z+BF 5.99 1340 172.2

(1) 4∆ MRCISD aug-cc-pV5Z+BF 6.43 616.3 111.9
MRCISD+Q aug-cc-pV5Z+BF 6.18 960.7 139.4

(3) 6Σ+ MRCISD aug-cc-pV5Z 5.56 3494 281.0
MRCISD+Q aug-cc-pV5Z 5.69 3384 224.5

(1) 6Π MRCISD aug-cc-pV5Z 5.51 3761 315.4
MRCISD+Q aug-cc-pV5Z 5.64 3187 239.6
CCSD(T) aug-cc-pCV5Z+BF 5.65 2528 253.2

(1) 6∆ MRCISD aug-cc-pV5Z 5.60 2303 235.3
MRCISD+Q aug-cc-pV5Z 5.97 2650 159.4
CCSD(T) aug-cc-pCV5Z+BF 5.70 2242 191.2

(4) 6Σ+ MRCISD aug-cc-pV5Z 6.31 4595 154.5
MRCISD+Q aug-cc-pV5Z 6.31 5624 158.2

(2) 6Π MRCISD aug-cc-pV5Z+BF 4.92 5831 373.9
MRCISD+Q aug-cc-pV5Z+BF 4.93 7037 387.4

(2) 8Σ+ MRCISD aug-cc-pV5Z+BF 5.74 3781 197.8
MRCISD+Q aug-cc-pV5Z+BF 5.75 4259 195.0

(1) 8Π MRCISD aug-cc-pV5Z+BF 4.94 8742 335.9
MRCISD+Q aug-cc-pV5Z+BF 4.92 9225 338.6
CCSD(T) aug-cc-pCV5Z+BF 4.76 10512 343.8

and requires the elaboration of a specific computational scheme for each molecular symmetry and spin multiplicity, including
restarts from different geometries, reference states, or active spaces with different hyperparameters controlling the convergence.
In Fig. 5 we present the PECs obtained within the most accurate method available – MRCISD+Q for the majority of states and,
if possible, RCCSD(T). The characteristics of the obtained PECs are collected in Tab. V.

The computational scheme for the calculation of the interaction energies in the two lowest molecular states was described
in detail in the previous section. Here we will focus on the molecular states correlating to the three higher dissociation limits:
Cr(5S)+Li(2S), Cr(5D)+Li(2S), and Cr(7S)+Li(2P ). There are 3 molecular states with the octet multiplicity: a 8Σ+, (2) 8Σ+,
and (1) 8Π. As the calculation of the octet states does not pose significant computational challenges, we obtain the PECs with
the use of MRCISD and MRCISD+Q methods and aug-cc-pV5Z-DK+BF basis sets. We use the active space composed of the
3d and 4s orbitals of the Cr atom and 2s and 2p orbitals of the Li atom. Next, we calculate the quartet and sextet states in the
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Π and ∆ symmetries. We perform separate MRCI calculations for each symmetry with the use of the aug-cc-pV5Z-DK+BF
basis sets and calculate the energies for both spin multiplicities at the same time. We use the minimum active space of 3d and
4s orbitals of the Cr atom and 2s orbital of the Li atom. For the remaining MRCI calculations, we use the aug-cc-pV5Z-DK
basis sets without the augmentation by bond functions. In order to compute the quartet states in the Σ symmetry, we use the
same minimum active space as described above for the Π and ∆ states. For the calculation of the 6Σ+ potential energy curves,
we first use the active space composed of the 3d, 4s, 4p and 4d orbitals of the Cr atom and 2s and 2p orbitals of the Li atom
to obtain the wave functions at the MCSCF level. Next, we decrease the active space to the 3d and 4s orbitals of the Cr atom
and 2s and 2p orbitals of the Li atom to perform the MRCI calculations. In the same manner we obtain the 6Π potential energy
curves, however, for the Π symmetry multiple restarts of MCSCF were necessary to obtain the convergence. For the (1) 6Π,
(1) 6∆, and (1) 8Π states we additionally obtain the PECs with the CCSD(T) method and aug-cc-pCV5Z-DK+BF basis sets.

Based on the MRCI+Q and CCSD(T) results, we identify that the molecular states correlating to the fourth asymptote,
Cr(7S)+Li(2P ), are most strongly bound with the well depths of 5624, 7037, 4259, and 10512 cm−1 for the (4) 6Σ+, (2) 6Π,
(2) 8Σ+, and (1) 8Π states, respectively. The equilibrium distances are smaller for the Π states, 4.96 and 4.76 bohr for the
(2) 6Π and (1) 8Π states, and slightly larger for the Σ states, 6.31 bohr for the (4) 6Σ+ state and 5.75 for the (2) 8Σ+ state. The
molecular states correlating to the Cr(5S)+Li(2S) asymptote exhibit moderate binding energies. The (2) 6Σ+ potential energy
curve has a well with depth of 3844 cm−1 at 5.77 bohr, and the (1) 4Σ+ potential well depth is 1704 cm−1 at 5.86 bohr. The
sextet electronic states correlating to the Cr(5D)+Li(2S) asymptote have potential well depths of 3384, 2528, and 2242 cm−1 for
the (3) 6Σ+, (1) 6Π, and (1) 6∆, at respective equilibrium distances of 5.69, 5.65, and 5.70 bohr. It needs to be noted here that
for the (1) 6Π state the MRCI and MRCI+Q well depths have relative differences of 48% and 26% with respect to the CCSD(T)
result. Similarly, the MRCI+Q well depth for the (1) 6∆ state has a relative error of 18% with respect to the CCSD(T) value.
Therefore, MRCI calculations with the use of large active spaces might have led to slightly overestimated results. The quartet
electronic states corresponding to the third dissociation asymptote have the smallest binding energies. The (1) 4Π potential curve
has a well of 1340 cm−1 at 5.99 bohr and the (1) 4∆ potential curve has a well of 961 cm−1 at 6.18 bohr. The (2) 4Σ+ electronic
state is predicted to be most weakly bound, with De = 208 cm−1 at the equilibrium distance of 8.78 bohr.

The weakest binding of molecular electronic states corresponding to the Cr(5D)+Li(2S) asymptote may be explained by the
fact that the interaction occurs between an electron occupying the 2s orbital of lithium and electrons occupying the 3d orbital of
chromium which is screened by its fully occupied 4s orbital. The molecular states correlating to the Cr(7S)+Li(2P ) have largest
binding energies because the 2p orbital of lithium is more spatially extended than its 2s orbital and stronger overlapping and
mixing of valence orbitals can be expected.

For many-electron systems, estimating the uncertainty of ab initio calculations is a difficult task, as the accuracy depends on
multiple factors, such as convergence with the basis set size or proper treatment of electron correlation and relativistic effects.
For the two lowest electronic states, we were able to analyze the convergence in detail and estimate the uncertainty of interaction
energy calculations. For higher excited states, it is much harder. Due to the lack of experimental knowledge of dissociation and
excitation energies for the LiCr molecule and limitations of the applied theoretical methods, we estimate the uncertainty of the
calculated interaction energies for the higher excited states to be up to 30%. Therefore, our description of some excited electronic
states may have a partially qualitative character. The order of states, magnitude of interactions, and other characteristics should,
however, be correct.

In Fig. 4 (b) we present the transition dipole moments between the electronic states correlating to the Cr(7S)+Li(2S) and
Cr(7S)+Li(2P ) asymptotes, i.e., the transition dipole moment from the electronic ground stateX 6Σ+ to the (4) 6Σ+ and (2) 6Π
electronics states, and the transition dipole moment from the first excited state a 8Σ+ to the (2) 8Σ+ and (1) 8Π electronic
states obtained at the MRCISD level. We employ the computed transition moments to study prospects for photoassociation and
stabilization of ground-state chromium and lithium atoms into LiCr molecules, as described in Sec. III D.

B. Fine and hyperfine interactions

The results of the electron spin–nuclear spin interaction calculations are collected in Tab. VI. The hyperfine coupling constants
Afc

Cr, A
fc
7Li, and Afc

6Li are only slightly affected by interatomic interaction in the weakly bound spin-polarized a 8Σ+ state, while
for the deeply bound X 6Σ+ state the variation of the hyperfine structure is significant.

The value of ∆g⊥ (13) is about -0.0008 and -0.0003 for a 8Σ+ and X 6Σ+, respectively. ε of Eq. (13) describing the
electron spin-rotation coupling is roughly −10 MHz for both states. We expect that the nuclear quadrupole coupling constant
of 53Cr in LiCr is around 4 MHz for the a 8Σ+ state and 1 MHz for the X 6Σ+ state. A significant uncertainty of the nuclear
quadrupole moment of 53Cr (around 30%) limits the precision of the computed NQCC. However, a precise spectroscopy of LiCr
combined with our predictions of the electric field gradient may provide a more reliable value of the nuclear quadrupole moment
of 53Cr. The NQCC of 6Li is about 103 lower than the NQCC of 53Cr. The isotropic nuclear spin–spin and nuclear-spin–rotation
interactions are below 1 kHz.
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TABLE VI. Hyperfine coupling constants Afc (in MHz) for the ground-state Li and Cr atoms and the LiCr molecule in the X 6Σ+ and a 8Σ+

electronic states.

System State Method 6Li 7Li 53Cr
Li 2S non-relativistic DLPNO-CCSD/aug-cc-pwCV5Z-DK 153.2 404.6 -
Li 2S DLPNO-CCSD/aug-cc-pwCVQZ-DK 148.8 392.9 -
Li 2S DLPNO-CCSD/aug-cc-pwCV5Z-DK 150.3 396.8 -
Li 2S Exp. [96] 152.1368407(20) 401.7520433(5) -
Cr 7S non-relativistic DLPNO-CCSD/aug-cc-pwCVQZ-DK - - -119.9
Cr 7S DLPNO-CCSD/aug-cc-pwCVTZ-DK - - -81.9
Cr 7S DLPNO-CCSD/aug-cc-pwCVQZ-DK - - -83.4
Cr 7S Exp. [131] - - -83.5985(15)
LiCr X 6Σ+ DLPNO-CCSD/aug-cc-pwCVQZ-DK at Re 5.7 15.0 3.2
LiCr X 6Σ+ DLPNO-CCSD/aug-cc-pwCVQZ-DK at R → ∞ 29.8 78.6 -100.1
LiCr X 6Σ+ at R → ∞ based on Exp. [96, 131] 30.427368 80.350408 -100.318
LiCr a 8Σ+ DLPNO-CCSD/aug-cc-pwCVQZ-DK at Re 20.7 54.6 -69.3
LiCr a 8Σ+ DLPNO-CCSD/aug-cc-pwCVQZ-DK at R → ∞ 21.3 56.1 -71.5
LiCr a 8Σ+ at R → ∞ based on Exp. [96, 131] 21.733834 57.393149 -71.655

C. Chemical reactivity of ground-state molecules

We use the computed potential well depths, De, and related dissociation energies, D0 ≈ De − 1
2ωe, to assess the stability of

the ground-state LiCr molecules against atom-exchange chemical reactions. For a ground-state heteronuclear molecule AB, an
atom-exchange chemical reaction,

2AB −→ A2 +B2, (14)

is energetically possible provided that the sum of dissociation energies of the products is larger than or equal to the sum of the
dissociation energies of the reactants:

D0(A2) +D0(B2) ≥ 2D0(AB). (15)

As the calculation of the potential energy curves for the Cr2 dimer poses a significant challenge, accurate values of the binding
energies within the Cr2 dimer have not been yet provided in the literature. However, based on the available data, we can assess
that the deeply-bound ground-state X 6Σ+ LiCr molecules may be chemically stable against atom-exchange reactions if the
collision complex dynamics is restricted to higher total spin projectsion MS manifolds in magnetic field, i.e.,

2 LiCr (X 6Σ+) −̸→ Cr2 ((1) 9Σ+
g ) + Li2 (a 3Σ+

g ), (16)

2 LiCr (X 6Σ+) −̸→ Cr2 ((1) 11Σ+
u ) + Li2 (X 1Σ+

g ), (17)

because the Cr2 [129] and Li2 dimers [132] have considerably smaller binding energies than the one of theX 6Σ+ LiCr molecule
(except for X 1Σ+

g Li2, for which the dissociation energy is comparable).
The LiCr molecule can be also prepared in the spin-polarized a 8Σ+ state, for which the atom-exchange reactions are most

probably energetically possible:

2 LiCr (a 8Σ+) −→ Cr2 ((1) 13Σ+
g ) + Li2 (a 3Σ+

g ). (18)

We estimate that the reaction is close thermoneutral.

D. Photoassociation spectroscopy and STIRAP

The ground-state LiCr molecules can be produced by associating pairs of atoms in an ultracold Cr+Li mixture. Either pho-
toassociation to excited electronic states followed by spontaneous or stimulated stabilization to the ground state or magnetoas-
sociation followed by optical stabilization using the Stimulated Raman Adiabatic Passage (STIRAP) can be employed. Both
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FIG. 6. Franck-Condon factors between vibrational levels of the LiCr molecule in the electronic states dissociating into Cr(7S)+Li(2S) and
Cr(7S)+Li(2P ): (a) X 6Σ+ → (4) 6Σ+, (b) X 6Σ+ → (2) 6Π, (c) a 8Σ+ → (2) 8Σ+, and (d) a 8Σ+ → (1) 8Π.

approaches are governed by the transition dipole moments between vibrational levels of the ground and excited electronic states.
For the successful production of deeply-bound ground-state molecules, the excited-state vibrational levels having a significant
overlap with both scattering or weekly-bound states and deeply-bound levels are needed.

The initial insight and approximation description of possible optical transitions in molecules are given by Franck-Condon
factors (FCFs) between vibrational levels supported by the ground and excited electronic states. Figure 6 presents the Franck-
Condon factors between vibrational levels of the LiCr molecule in the electronic states dissociating into Cr(7S)+Li(2S) and
Cr(7S)+Li(2P ). Molecular states associated with the Cr(7S)+Li(2P ) asymptote have been selected because this asymptote is
relatively well separated from other atomic thresholds and related molecular states should be accessible by strong transition
dipole moments borrowed from the strong atomic transition 2S →2 P in Li. The relevant transition dipole moments are
presented in Fig. 4(b). The overall scheme involving those states would be similar as in heteronuclear alkali-metal molecules.
The overview of Fig. 6 suggests the X 6Σ+ → (4) 6Σ+ transitions as the most promising path for the formation of ground-state
molecules. Similarly as in alkali-metal dimers, the characteristic bent shape of largest FCFs shows the existence of intermediate
levels of the excited (4) 6Σ+ state having noticeable overlap with both weakly and deeply bound levels of the ground X 6Σ+

state. In contrast, the FCFs for the X 6Σ+ → (2) 6Π transitions are visibly diagonal, that is not preferable pattern for the
STIRAP formation, but may allow for direct optical imaging of ground-state LiCr molecules.
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FIG. 7. Vibrationl energy sensitivity ∂µEv to the proton-to-electron mass ration µ as a function of the binding energy of the vibrational levels
of the LiCr molecule in the X 6Σ+ and a 8Σ+ electronic states.

E. Application in precision measurements

The electronic, vibrational, and rotational levels within the molecular energetic structure exhibit different sensitivities to
fundamental constants, such as the fine-structure constant or the proton-to-electron mass ratio. Therefore, ultracold molecules
have been proposed as sensitive probes to study possible variations of fundamental constants [133], and high resolution molecular
spectroscopy with homonuclear Cs2 [134] and Sr2 [135] dimers, as well as heteronuclear dimer KRb [136] has already been
applied in the searches of temporal variation of the proton-to-electron mass ratio, mp/me.

We examine the sensitivity of the vibrational levels associated with the X 6Σ+ and a 8Σ+ electronic states of the LiCr
molecule to the mp/me ratio. The sensitivity of a vibrational energy level Ev to the system’s reduced mass µ (which cor-
responds to the variation of mp, assuming that me remains constant), ∂µEv , can be expressed as [134]:

∂µEv ≡ ∂Ev

∂(lnµ)
=

v + 1
2

2ρ(Ev)
, (19)

where ρ(Ev) is the density of states at energy Ev , ρ(Ev) = (∂Ev/∂v)−1 ≈ (Ev − Ev−1)−1. The maximum energy sensitivity
∂µEv is expected for v ≈ Nv/2, with Nv denoting the total number of vibrational levels, while vibrational states at the bottom
and at the top of a potential well are least sensitive to variations in mp/me. We use Eq. (19) to explicitly calculate the energy
sensitivity for each vibrational level of the X 6Σ+ and a 8Σ+ electronic states obtained with the use of the DVR method.

Figure 7 presents the results of this calculation. The maximum sensitivity ∂µE
(max)
v = 2405 cm−1 for the X 6Σ+ state is

associated with the vibrational level v = 24, while for the a 8Σ+ state ∂µE
(max)
v = 138.7 cm−1 corresponds to v = 8. The

most sensitive vibrational levels of the X 6Σ+ state lie near the least sensitive, most deeply-bound levels of the a 8Σ+ state. The
highest sensitivity can be obtained by precision measurements of the energy difference between most and last sensitive levels
within the same or two different electronic states. Direct or Raman transitions between such levels of the X 6Σ+ state would
pose a challenge for present day laser technology. A solution and a compromise between the sensitivity and laser techniques
accessibility may be the measurement between the lowest level of the a 8Σ+ state and lying nearby level of the X 6Σ+ state.

Heteronuclear dimers may offer higher sensitivities of vibrational levels to the proton-to-electron mass ratio as compared to
homonuclear dimers [134, 135]. However, their sensitivity to the black-body radiation, presence of hyperfine structure may lead
to systematic shifts that may affect the preparation of the system and precision of measurements.

F. Scattering lengths and vibrational levels for spin-polarized interaction

The magnetic Feshbach resonances in the 53Cr+6Li mixture have been recently measured in the group of Matteo Zaccanti [57].
In this work we perform scattering calculations using the electronic potentials VS=5/2 and VS=7/2 rescaled by λ5/2 = 0.9932
and λ7/2 = 1.0069 to match the experimentally determined values of aS=5/2 = 15.53(7) and aS=7/2 = 41.49(3) bohr. The



17

10000 10400 10800 11200
-500

-250

0

250

500

7Li + xCr

Sc
at

te
rin

g 
le

ng
th

 (b
oh

r)

6Li + xCr

(a)  NX
v  = 43

 NX
v  = 44

 NX
v  = 45

10000 10400 10800 11200
-500

-250

0

250

500

7Li + xCr6Li + xCr

(b)

Reduced mass (me)

 Na
v = 15

 Na
v = 16

 Na
v = 17

1.00 1.05 1.10 1.15
Reduced mass ( m6Li53Cr)

1.00 1.05 1.10 1.15
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and the scattering length obtained from the original ab initio PEC (blue solid line) is presented. Dotted and dashed lines show the scattering
lenghts assuming different number of vibrational levels (±1) supported by the PECs with the scattering lengths fixed to be the same for the
53Cr+6Li combination. The blue-shaded area in panel (b) shows the uncertainty of the calculated scattering length related to the uncertainty
of the underlying PEC.

TABLE VII. The scattering lengths as (in bohr) for the spin-polarized nCr+mLi collisions in the a 8Σ+ electronic state.

mLi / nCr 50Cr 52Cr 53Cr 54Cr
6Li 42.5+37

−21 39.0+32
−22 37.4+29

−22 35.9+27
−22

7Li 30.5+26
−29 26.4+24

−34 24.4+24
−38 22.4+24

−42

scattering lengths for the Cr+Li system have been previously reported in Ref. [66], but they do not have any physical meaning
due to the high inaccuracy of the employed electronic structure methods.

In Fig. 8 we present the computed scattering lengths for ultracold collisions between different isotopes of chromium and
lithium atoms as a function of the system’s reduced mass for (a) X 6Σ+ and (b) a 8Σ+ potential energy curves in order to
analyse the prospects for controlling the magnetic Feshbach resonance spectrum with different combinations of isotopes. We
use the fitted MLR potential energy functions and initially fix the scattering lengths associated with the X 6Σ+ and a 8Σ+

interaction potentials at aS=5/2 and aS=7/2 by using the respective scaling λ factors. We apply the semiclassical formula to
express the dependence of the scattering length, a, on a phase shift of the wave function, Φ:

a = ā (1 − tan(Φ − π/8)) , (20)

where ā is the mean scattering length given by:

ā =
2πR6

Γ( 1
4 )2

, (21)

and the phase shift Φ reads:

Φ =

∫ ∞

R0

(
−2µVS(R)

ℏ2

)
dR, (22)

where we integrate from the inner classical turingn point R0.
An inspection of Fig. 8 reveals that the variability of the scattering length with reduced mass is more rapid for theX 6Σ+ state

than for the a 8Σ+ state due to the larger number of supported vibrational levels by theX 6Σ+ electronic potential. It also shows
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that the change of lithium isotope from 6Li to 7Li leads to a phase shift of around π for a 8Σ+ and multiples of π for X 6Σ+. As
the computed potential energy curve for theX 6Σ+ electronic state is not accurate enough to assign the corresponding scattering
length, Fig. 8 (a) has a rather tentative character. The a 8Σ+ PEC on the other hand is accurate enough to allow for the assignment
of the associated scattering length and Fig. 8 (b) allows us to infer about the dependence of the scattering length on the reduced
mass of the system. Accidentally, the actual reduced masses of available isotopic mixtures fall into the plateau region of the
plot. Since the reduced mass of the Cr+Li system is dominated by the mass of lithium, the use of different chromium isotopes
does not introduce a significant change in the value of the scattering length for the a 8Σ+ interaction potential. We observe the
same behaviour of scattering lengths calculated for the a 8Σ+ potential energy curve rescaled so that it supports ±1 vibrational
level as compared to the initial PEC. The corresponding scattering lengths are depicted in Fig. 8 (b) as a blue-shaded area. We
conclude that the scattering length of the a 8Σ+ electronic potential cannot be significantly altered by a different choice of both
chromium or lithium isotopes.

G. Magnetically tunable Feshbach resonances

Before we analyse the magnetically tunable Feshbach resonances for Bose-Fermi 52Cr+6Li and Fermi-Fermi 53Cr+6Li mix-
tures, let us first discuss the impact of the mixtures’ hyperfine structures on their scattering properties. Figure 9 presents the
hyperfine energy levels of 6Li, 52Cr, and 53Cr atoms and their mixtures: 52Cr+6Li and 53Cr+6Li as a function of the magnetic
field strength. Panels (c)-(f) show the hyperfine energy levels summing to selected values of Mtot: panels (c) and (d) present the
energy levels of 52Cr+6Li and 53Cr+6Li mixtures in their absolute ground states with Mtot = −2.5 and Mtot = −4, respectively,
while panels (e,g) and (f,h) are plotted for Mtot = −0.5 and Mtot = 0 corresponding to the largest possible numbers of hyperfine
energy levels for the respective mixtures. The blue solid lines in panels (c)-(f) present the atomic thresholds being a combination
of the atomic hyperfine energy levels with zero binding energy. The red dashed-dotted lines in panels (g) and (h) are the atomic
thresholds shifted by the largest possible binding energy of the most weakly bound vibrational level v = −1 supported by the
van der Waals potential [138]. These red lines set the maximum binding energy of the v = −1 level that is determined for
infinitely large and negative scattering lengths, hence the actual molecular binding energy must lay between these lines and the
atomic thresholds. Feshbach resonances can occur when atomic thresholds and molecular levels cross.

The main energy scale that governs the positions and properties of magnetic Feshbach resonances for the Cr+Li mixtures is
the vibrational level spacing, which is large because of the small reduced mass of the colliding atoms. Therefore, the resonance
spectrum will primarily depend on the background scattering lengths and binding energies of vibrational levels.

Figure 10 shows s-wave scattering lengths for ultracold collisions in the (a,c,e,g) 6Li+52Cr and (b,d,f,h) 6Li+53Cr mixtures
as a function of the magnetic field strength. The results are presented assuming the experimentally assigned scattering lengths
aS=5/2 = 15.53(7) and aS=7/2 = 41.49(3) bohr [57]. We show results for several different projections of the total angular
momentum on the magnetic field Mtot, including collisions with: (a) Mtot = −0.5 and (b) Mtot = 0, which correspond to the
largest number of channels, (c) Mtot = −2.5 and (d) Mtot = −4, which correspond to the absolute ground states of 6Li+52Cr
and 6Li+53Cr systems, respectively, and (g)Mtot = −4.5 and (h)Mtot = −6 that correspond to maximally spin-stretched states,
for which only resonances induced by the dipole-dipole interaction can occur. We assume the step in the magnetic field strength
of 0.01 G in all calculations. Different colours represent results without the dipole-dipole interaction included (blue lines) that
are obtained by restricting the basis set (6) to Lmax = 0, and with the dipole-dipole interaction included with Lmax = 2, for which
d-wave resonances emerge (red lines). d-wave resonances are a result of a coupling between the s-wave entrance channels and
d-wave bound molecular levels in the closed channels.

As expected, the largest number of Feshbach resonances is observed for collisions with Mtot = −0.5 and Mtot = 0 for
Fermi-Bose 6Li+52Cr and Fermi-Fermi 6Li+53Cr mixtures, respectively, amounting to around 4 and 16 s-wave resonances, and
5 and 23 d-wave resonances below 1500 G. The number of resonances decreases with increasing value of |Mtot| and there are no
s-wave resonances for the fully spin-polarized cases with Mtot = −4.5 and Mtot = −6 respectively for 6Li+52Cr and 6Li+53Cr
collisions. Unfortunately, almost all of the predicted s-wave resonances are narrow with widths of several mG. The widest
s-wave resonances are expected to be located between 1000 and 1500 G and have widths of 0.1-0.65 G. The d-wave Feshbach
resonances have widths below 10 mG for both systems.

IV. SUMMARY AND CONCLUSIONS

Advancements in atom cooling and trapping techniques in recent years have allowed for reaching ultralow temperature regimes
with atoms that have increasingly complex internal structures. Significant progress has been made in creating ultracold sam-
ples of highly magnetic transition-metal or lanthanide atoms such as Cr, Dy, Er, and Eu. These atoms’ large electronic angular
momenta are a source of their high magnetic moments, which give rise to strong dipole-dipole interatomic interactions. Re-
cently, ultracold mixtures of such atoms with alkali-metal atoms, including Cr+Li, have become experimentally accessible and
motivated the present work.
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FIG. 9. Hyperfine energy levels for (a) 6Li, (b) 52Cr and 53Cr atoms, and for mixtures of (c,e,g) 6Li+52Cr and (d,f,h) 6Li+53Cr atoms as a
function of the magnetic field. Panels (c) and (d) are plotted for Mtot = −2.5 and Mtot = −4, respectively, corresponding to the absolute
ground states of the mixtures. Panels (e,g) are plotted for Mtot = 0.5 and panels (f,h) are plotted for Mtot = 0 corresponding to the largest
number of channels. Blue solid lines represent atomic thresholds, while red dash-dotted lines on panels (g,h) correspond to the progression of
the most weakly bound vibrational molecular level for infinitely large and negative scattering lengths.

In this work, we have provided a comprehensive theoretical exploration of the interactions and ultracold collisions between
chromium and lithium atoms. Advanced computational methods, including coupled cluster and multireference configuration
interaction, have been employed to calculate the potential energy curves, as well as the permanent and transition electric dipole
moments of various electronic states of the LiCr molecule. The study has revealed that the LiCr molecule, in its ground elec-
tronic state, is stable with a deep well depth and a sizable permanent electric dipole moment. Conversely, the molecule’s first
excited electronic state is only weakly bound with a lesser well depth and a lower permanent electric dipole moment. Fine and
hyperfine coupling constants have beed reported for the ground-state interactions. Next, we have examined the potential for
forming deeply-bound LiCr molecules via photoassociation and stimulated Raman adiabatic passage, and proposed precision
measurements of the electron-to-proton mass ratio variation using ultracold LiCr molecules. Scattering lengths for the ultracold,
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FIG. 10. Scattering lengths for ultracold collisions between (a,c,e,g) 6Li+52Cr and (b,d,f,h) 6Li+53Cr atoms as a function of the magnetic
field and different values of Mtot. The following scattering lengths for the potential-energy functions are assumed: aS=5/2 = 15.5 and
aS=7/2 = 41.5 bohr. Blue lines show scattering lengths without the dipole-dipole interaction included, and red lines show scattering lengths
with the dipole-dipole interaction included with Lmax = 2.
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spin-polarized Cr+Li collisions have been predicted, with the results agreeing well with recent experimental measurements.
Furthermore, we have provides calculations of magnetically tunable Feshbach resonances for ultracold collisions between cer-
tain isotopes of Cr and Li, suggesting the potential for magnetoassociation into polar and highly magnetic LiCr molecules.
Our theoretical findings provide valuable insights for current experimental research focusing on ultracold, strongly interacting,
mass-imbalanced Li+Cr mixtures and LiCr molecules.
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Appendix A: Convergence with the basis set size

Table VIII collects the spectroscopic characteristics of the 6Li53Cr molecule in the a 8Σ+ electronic state calculated with
different-sized Gaussian basis sets with and without the DKH correction and with and without the core correlation included.

TABLE VIII. Spectroscopic characteristics of the 6Li53Cr molecule in the a 8Σ+ electronic state: equilibrium bond length Re, well depth De,
and harmonic constant ωe calculated at the CCSD(T) level of theory and using different-sized Gaussian basis sets (with and without the DKH
correction).

Basis Re (bohr) De (cm−1) ωe (cm−1)
aug-cc-pVTZ 6.77 487.4 77.14
aug-cc-pVQZ 6.74 510.5 78.77
aug-cc-pV5Z 6.73 516.6 79.08
aug-cc-pV5Z+BF 6.73 519.6 79.30
CBS(Q,5) 6.73 523.0 79.39
aug-cc-pVTZ-DK 6.61 531.3 82.86
aug-cc-pVQZ-DK 6.58 556.1 84.65
aug-cc-pV5Z-DK 6.58 562.0 84.87
aug-cc-pV5Z-DK+BF 6.58 565.2 85.10
CBS(Q,5) 6.58 568.3 85.11
aug-cc-pCVTZ 6.72 466.5 75.72
aug-cc-pCVQZ 6.68 485.1 77.48
aug-cc-pCV5Z 6.69 487.6 77.31
aug-cc-pCV5Z+BF 6.69 490.1 77.43
CBS(Q,5) 6.69 490.3 77.14
aug-cc-pCVTZ-DK 6.57 507.6 81.78
aug-cc-pCVQZ-DK 6.54 527.0 83.06
aug-cc-pCV5Z-DK 6.54 528.9 82.83
aug-cc-pCV5Z-DK+BF 6.54 531.5 82.94
CBS(Q,5) 6.54 530.9 82.58
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Phys. Rev. Lett. 115, 203201 (2015).

[63] E. Soave, A. Canali, Z.-X. Ye, M. Kreyer, E. Kirilov, and R. Grimm, arXiv preprint arXiv:2304.07921 (2023).
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Klaudia Zaremba-Kopczyk, Michał Tomza, and Maxence Lepers

Preprint (2023)

Commentary

The strong long-range and anisotropic dipole-dipole interactions present in ultracold quantum
gases of highly magnetic atoms yielded the observation of many unprecedented phenomena as
discussed in Sec. 1.4. At ultralow temperatures, neutral atoms interact mainly via short-range
van der Waals interactions whose leading term scales as 1/R6 with internuclear distance R, and,
for atoms with magnetic moments, also via long-range and anisotropic magnetic DDIs that scale
as 1/R3. In the case of atoms whose electronic state is not spherically symmetric (like Dy(5I8)
and Er(3F4)), the vdW interactions are also anisotropic.

Since the long-range interactions are a dominant form of interactions in ultracold gases,
their proper description is essential for the modeling of ultracold collisions. At the same time,
for molecules containing heavy, multielectron atoms (such as highly magnetic lanthanides) it
is impossible to compute BO potential energy curves covering the full range of internuclear
distances with the accuracy needed to precisely predict the scattering properties of an ultracold
gas. Therefore, simplified models for the ultracold atom-atom collisions have been developed,
in which the tail of the interaction potential plays the most significant role, while the effect
of short-range spin-exchange interactions is included within the phase of the scattering wave
function [74].

The aim of the study presented in Paper IV was to compute the leading van der Waals
coefficients, C6, for Dy and Er atoms in their two lowest electronic states interacting with ground-
state alkali-metal (Li, Na, K, Rb, Cs, Fr) and alkaline-earth-metal (Be, Mg, Ca, Sr, Ba) atoms.
In this work, the PhD Candidate derived the analytical formulas for the matrix elements of the
Hamiltonian describing the vdW interactions in a system composed of two neutral atoms using
the angular momentum algebra. First, the derivation was made for the general case, and then for
the particular case in which one of the atoms has both a non-zero electron spin and a non-zero
orbital angular momentum, while the other atom is in an S state and can only have a non-zero
electron spin. Next, the PhD Candidate implemented the derived formulas in the form of a
computer code and performed numerical calculations of the C6 coefficients. The PhD Candidate
also wrote the first version of the manuscript, which is presented below.
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Long-range part of the interatomic interactions plays a substantial role in the collisional dynamics
of ultracold gases. Here, we report on the calculation of the C6 coefficients characterizing the van
der Waals interaction between dysprosium or erbium atoms in the two lowest energy levels and
the ground-state alkali-metal (Li, Na, K, Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr,
Ba) atoms. The calculated van der Waals coefficients are essential for the modeling of collisional
properties of heteronuclear quantum mixtures containing highly-magnetic dysprosium or erbium
atoms and alkali-metal or alkaline-earth-metal atoms.

I. INTRODUCTION

Dipolar quantum gases have been experiencing a surge
in interest over the last years, driven by the experi-
mental breakthroughs in reaching quantum degeneracy
with ultracold gases of highly-magnetic atoms [1–7] and
continuous advances in the production of ultracold po-
lar molecules [8, 9]. Ultracold gases composed of parti-
cles possessing a large intrinsic magnetic or/and electric
dipole moment are characterized by the unique combi-
nation of tunable short-range contact interactions and
long-range anisotropic dipole-dipole interactions, offering
exceptional controllability with external electromagnetic
fields. This feature of dipolar quantum gases has opened
up new possibilites for exploring many-body physics of
strongly correlated systems [10, 11], controlled chem-
istry [12, 13], quantum information [14, 15], and physics
beyond the Standard Model [16].

Numerous fascinating phenomena have already been
observed with dipolar gases composed of highly-magnetic
lanthanide atoms, dysprosium and erbium, just to men-
tion the chaotic spectra of Feshbach resonances [17],
Fermi surface deformation [18], and quantum-stabilized
states – self-bound droplets [19, 20] and supersolids [21–
23]. While the experimental studies of ultracold polar
molecules have been focused so far mainly on heteronu-
clear bialkali molecules [24–29], the production of dimers
possessing much more complex internal structure, such
as Er2 [30] and DyK [31], has also been demonstrated.
The ongoing advances in the production and manipula-
tion of ultracold dipolar molecules hold promise for the
realization of novel exotic states of quantum matter, like
molecular superfluids and supersolids [32–34].

Recently, there has been a growing interest in degen-
erate mixtures containing highly-magnetic atoms, such
as Cr (7S3; magnetic dipole moment of 6 Bohr mag-
netons, µB), Eu (8S7/2; 7µB), Er (3H6; 7µB), Ho

∗ klaudia.zaremba-kopczyk@fuw.edu.pl
† maxence.lepers@u-bourgogne.fr

(4Io15/2; 9µB), or Dy (5I8; 10µB), as they offer great

versatility in exploring novel physical phenomena. Het-
eronuclear molecules formed via magneto- or photoas-
sociation will posses large both electric and magnetic
dipole moments, combining strong anisotropic interac-
tions of both electric and magnetic nature with the
complexity of molecular electronic structure. Aside
from the formation of molecules in non-trivial electronic
states, such heteronuclear mixtures can be employed
in studies of polaron physics in systems with domi-
nant dipolar interactions [35–37], Efimov physics [38],
exotic Fulde-Ferrell-Larkin-Ovchinnikov states in sys-
tems with significant mass imbalance [39, 40], and bi-
nary supersolids [41]. With current experiments on
degenerate mixtures of Dy and K atoms [42–44], Dy
and Er atoms [45–47], Er and Li atoms [48], Cr and
Li atoms [49, 50], and Er and Yb atoms [51], the
realization of theoretical proposals is becoming more
and more feasible. Therefore, the electronic struc-
ture of molecules containing highly-magnetic transition-
metal and lanthanide atoms, such as Cr– [52, 53]
and Eu–alkali-metal and alkaline-earth-metal dimers [54]
have been theoretically investigated alongside the col-
lisional properties of ultracold heteronuclear mixtures:
Cr+Li [55], Cr+Rb [52], Cr+Ca+/Sr+/Ba+/Yb+ [56],
Eu+Li/Rb [57], Er+Li [58], Er+Yb [59, 60], Er+Sr [60],
and Dy+Sr/Yb [60]. Additionally, the ab initio studies of
interatomic interactions in homonuclear dimers of highly-
magnetic lanthanide atoms such as Eu2 [61], Er2 [62], and
Tm2 [62] have also been reported.

Despite the significant increase in computational power
and development of computational methods for electronic
structure calculations over the last decades, a full ab ini-
tio approach to characterize the interatomic interactions
in dimers containing heavy atoms in non-trivial electronic
states would require the use of an enormous active space
to account for all possible electron configurations, and
that far exceeds currently available computational re-
sources. In the case of lanthanide atoms, the unpaired
electrons occupying the 4f or 5d shells, submerged under
a closed 6s shell, give rise to large magnetic moments and
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large electronic orbital angular momenta of the atoms,
which in turn lead to highly anisotropic interatomic in-
teractions. Large basis sets would need to be employed
in electronic structure calculations for dimers involving
these atoms to ensure proper description of interactions
at large internuclear distances. It is therefore impossible
to compute Born-Oppenheimer potential-energy curves
covering the full range of internuclear distances with the
accuracy needed to precisely predict the scattering prop-
erties in ultracold systems containing highly-magnetic
lanthanides.

At ultralow temperatures, neutral atoms interact
mainly via short-range van der Waals (vdW) interactions,
whose leading term scales as 1/R6 with internuclear dis-
tance R, and, for atoms with magnetic moments, also via
long-range and anisotropic magnetic dipole-dipole inter-
actions (DDI) that scale as 1/R3. In the case of atoms
whose electronic state is not spherically symmetric, the
vdW interactions are also anisotropic. This anisotropy
of interactions induces couplings between the scattering
states in the open channels and bound molecular states
in the closed channels, significantly modifying the colli-
sional properties of an ultracold quantum gas containing
magnetic atoms in non-S states. Due to the large number
of scattering channels involved, a full coupled-channels
approach to quantum scattering calculations would be
extremely computationally demanding. Therefore, sim-
plified models for the ultracold atom-atom collisions have
been developed [63]. Since the tail of the interaction po-
tential plays the most significant role in the two-body
dynamics, it is crucial to know accurate values of the
van der Waals (or dispersion) C6 coefficients that enter
the leading term of the multipole expansion, −C6/R

6,
while the effect of short-range spin-exchange interactions
can be included within the phase of the scattering wave
function.

The aim of the present study is to compute the leading
van der Waals coefficients, C6, for Dy and Er atoms in
their two lowest electronic states interacting with ground-
state alkali-metal (Li, Na, K, Rb, Cs, Fr) and alkaline-
earth-metal (Be, Mg, Ca, Sr, Ba) atoms. To this end,
we employ the sum-over-states method to calculate the
dynamic electric dipole polarizabilities, which are further
used to compute the C6 coefficients with the Gaussian
quadrature method. We derive the formulas for the C6

coefficients in the basis of fine atomic levels and present
the numeric values of the isotropic C6,0 and anisotropic
C6,2 coefficients.

The outline of this paper is as follows. In Section II,
we introduce the electronic structure of the considered
atoms, define the dynamic electric dipole polarizability,
recall the formula for the second-order energy correction
resulting from the vdW interactions between two neu-
tral atoms and, finally, we provide the formulas for the
C6 coefficients: isotropic C6,00 and anisotropic C6,20. In
Section III, we present the computed values of C6,00 and
C6,20 coefficients for Dy/Er+alkali-metal/ alkaline-earth-
metal atom pairs and discuss the obtained results. Sec-

tion IV contains a summary of our findings and conclud-
ing remarks.

II. METHODOLOGY

A. Electronic structure

The electronic configuration of ground-state dyspro-
sium Dy(5I8) is [Xe]4f106s2 with total electronic angu-
lar momentum J = 8, orbital angular momentum L = 6
and spin angular momentum S = 2. The first excited
level Dy(5I7) with J = 7 has the same electronic con-
figuration and belongs to the same LS manifold as the
ground state. The lowest electronic configuration of
erbium is [Xe]4f126s2 with the ground state Er(3H6)
(J = 6, L = 5, S = 1) and first excited state Er(3F4)
(J = 4, L = 3, S = 1). Ground-state alkali-metal
atoms AM and ground-state alkaline-earth-metal atoms
AEM posses a much simpler electronic structure, with
spherically-symmetric ground states described by 2S1/2

(J = 1/2, L = 0, S = 1/2) and 1S0 (J = 0, L = 0,
S = 0) terms, respectively. The total angular momenta
J and their projections on the quantization axis M are
good quantum numbers in the presence of a spin-orbit
coupling and we use them to label the atomic energy lev-
els throughout our derivations in Sec. II B – D.

B. Long-range potential energy

The multipolar expansion of the interaction energy be-
tween two distant charge distributions A and B, whose
centers of mass are separated by distance R, can be writ-
ten as (in spherical coordinates; Hartree atomic units are
used throughout the paper):

VAB(R) =
+∞∑

lA,lB=0

+l<∑

m=−l<

flAlBm
R1+lA+lB

QlA,m(A)QlB ,−m(B) ,

(1)
where lA and lB describe the tensor rank related to
the multipole moments QlA,m(A) and QlB ,−m(B) of the
charge distributions A and B, respectively, and −l< ≤
m ≤ l<, where l< = min(lA, lB). The number factor
flAlBm equals to:

flAlBm = (−1)lB

√
(2lA + 2lB)!

(2lA)!(2lB)!
ClA+lB ,0
lAmlB−m (2)

with Caαbβcγ denoting a Clebsch-Gordan (CG) coefficient.

Let A and B be two distant atoms. The matrix element
describing the second-order energy correction resulting
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from their interaction reads:

〈βAJAM ′AβBJBM ′B |V̂ (2)
AB |βAJAMAβBJBMB〉

= −
∑

lAlBl′Al
′
B

(−1)lB+l′B+2JA+2JB

R2+lA+lB+l′A+l′B

×
√

(2lA + 2lB + 1)!(2l′A + 2l′B + 1)!

(2lA)!(2lB)!(2l′A)!(2l′B)!

×
∑

kAkBkq

(−1)kA+kB (2kA + 1)(2kB + 1)

× Ck0lA+lB ,0,l′A+l′B ,0
Ck0kAqkB−q

×




l′B lB kB
l′A lA kA

l′A + l′B lA + lB k





∑

β′′
AJ

′′
Aβ

′′
BJ

′′
B

× 〈βAJA||Q̂lA ||β
′′
AJ
′′
A〉〈β′′AJ ′′A||Q̂l′A ||βAJA〉

Eβ′′
AJ

′′
A
− EβAJA + Eβ′′

BJ
′′
B
− EβBJB

× 〈βBJB ||Q̂lB ||β′′BJ ′′B〉〈β′′BJ ′′B ||Q̂l′B ||βBJB〉

×
{
l′A lA kA
JA JA J ′′A

}{
l′B lB kB
JB JB J ′′B

}

×
C
JAM

′
A

JAMAkAqA
C
JBM

′
B

JBMBkBqB√
(2JA + 1)(2JB + 1)

,

(3)

where the subscripts denote values corresponding
to atoms A and B, respectively, Eβ{A,B}J{A,B}
(Eβ′′

{A,B}J
′′
{A,B}

) is the energy of level |β{A,B}J{A,B}〉
(|β′′{A,B}J ′′{A,B}〉) (β denotes all remaining quantum

numbers describing the state of an atom), and

〈β{A,B}J{A,B}||Q̂l{A,B} ||β′′{A,B}J ′′{A,B}〉 is the reduced

transition multipole moment between |β{A,B}J{A,B}〉 and
|β′′{A,B}J ′′{A,B}〉 levels. The selection rules impose that

MA + MB = M ′A + M ′B . The pairs (kA, kB) and the
value of k are constrained by the values of (lA, l′A, lB ,
l′B) and define the possible ranks of the tensorial terms;
qA, qB , and q are limited by the values of kA, kB , and
k [64]. The first curly brackets contain a Wigner 9-j sym-
bol, whereas the latter two contain a Wigner 6-j symbol.

In this paper, we consider only the induced-dipole–
induced-dipole interaction term (lA = lB = l′A =
l′B = 1) and neglect higher-order terms as they de-
cay faster than R−6. In our particular case, atom
A = {Dy(5I8), Dy(5I7), Er(3H6), Er(3F4)} and atom
B = {AM(2S1/2), AEM(1S0)}. Therefore, kA = {0, 2}
and kB = 0, which implies that k = kA = {0, 2} and
qA = qB = q = 0. The CG coefficient Cαaαa00 equals to 1.
With the above assumptions, the matrix element from

Eq. (3) reads:

〈βAJAM ′AβBJBM ′B |V̂ (2)
AB |βAJAMAβBJBMB〉

= − 30

R6

∑

β′′
AJ

′′
Aβ

′′
BJ

′′
B

(−1)JA+J′′
A(−1)JB+J′′

B

√
(2JA + 1)(2JB + 1)

× |〈βAJA||Q̂1||β′′AJ ′′A〉|2|〈βBJB ||Q̂1||β′′BJ ′′B〉|
Eβ′′

AJ
′′
A
− EβAJA + Eβ′′

BJ
′′
B
− EβBJB

×
∑

kA=0,2

(2kA + 1)CkA0
2020C

kA0
kA000C

JAM
′
A

JAMAkA0

×




1 1 0
1 1 kA
2 2 kA





{
1 1 kA
JA JA J ′′A

}{
1 1 0
JB JB J ′′B

}

× δMA,M ′
A
δMB ,M ′

B
,

(4)

which can be written as −C6/R
6 with the leading van

der Waals C6 coefficient equal to:

C6 = 30
∑

β′′
AJ

′′
Aβ

′′
BJ

′′
B

(−1)JA+J′′
A(−1)JB+J′′

B

√
(2JA + 1)(2JB + 1)

× |〈βAJA||Q̂1||β′′AJ ′′A〉|2|〈βBJB ||Q̂1||β′′BJ ′′B〉|2
Eβ′′

AJ
′′
A
− EβAJA + Eβ′′

BJ
′′
B
− EβBJB

×
∑

kA=0,2

(2kA + 1)CkA0
2020C

kA0
kA000C

JAMA

JAMAkA0

×




1 1 0
1 1 kA
2 2 kA





{
1 1 kA
JA JA J ′′A

}{
1 1 0
JB JB J ′′B

}
.

(5)

C. Dynamic dipole polarizabilities

The dynamic electric dipole polarizability describes the
dynamical response of an atom to an external oscillating
electric field and, when calculated as a function of imag-
inary frequencies, it can be employed in calculations of
the C6 coefficients in a straightforward manner that will
be discussed in the subsequent subsection. For an atom
in a level |βJ〉 , the zz component of the dynamic electric
dipole polarizability αzz at imaginary frequency iω can
be written as:

αzz(iω;β, J,M) = 2
∑

(β′′J′′)6=(βJ)

Eβ′′J′′ − EβJ
(Eβ′′J′′ − EβJ)2 + ω2

× |〈βJ ||Q̂1||β′′J ′′〉|2(−1)J+J
′′ ∑

k=0,2

√
2k + 1

2J + 1
Ck01010C

JM
JMk0

×
{

1 1 k
J J J ′′

}
=
∑

k=0,2

Ck01010C
JM
JMk0√

2J + 1
αk(iω;β, J) .

(6)
We can further decompose αzz into isotropic (or scalar)
αscal
β,J (k = 0) and anisotropic αaniso

β,J,M (k = 2) components,
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expressed in terms of the coupled polarizabilities αk as:

αscal
β,J (iω) = − 1√

3(2J + 1)
α0(iω;β, J) , (7)

αaniso
β,J,M (iω) =

√
2(3M2 − J(J + 1))√

3J(J + 1)(2J + 3)(4J2 − 1)
α2(iω;β, J) ,

(8)
where

αk(iω;β, J) = 2
√

2k + 1
∑

(β′′J′′) 6=(βJ)

Eβ′′J′′ − EβJ
(Eβ′′J′′ − EβJ)2 + ω2

× |〈βJ ||Q̂1||β′′J ′′〉|2(−1)J+J
′′
{

1 1 k
J J J ′′

}
;

(9)
αaniso
β,J,M can be further related to the so-called tensor po-

larizability αtens
β,J in the following way:

αaniso
β,J,M (iω) =

3M2 − J(J + 1)

J(2J − 1)
αtens
β,J (iω) , (10)

where

αtens
β,J (iω) =

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α2(iω;β, J).

(11)
The anisotropic part of the polarizability is non-zero
when J ≥ 1.

As one can tell from Eq. (6), the calculation of the
dynamic electric dipole polarizabilities requires an ac-
curate knowledge of transition energies and transition
dipole moments. The atomic data for erbium and dys-
prosium were previously computed in Refs. [65, 66]. The
polarizability data for the alkali-metal AM(2S1/2) and

alkaline-earth-metal AEM(1S0) atoms used in this pa-
per were taken from Ref. [67].

D. van der Waals C6 coefficients

The C6 (5) coefficient can be written as a sum of
the isotropic C6,00 and anisotropic ∝ C6,20 contributions
(C6,20 is the only anisotropic contribution since atom B
is spherically symmetric):

C6 = C6,00 +
3M2

A − JA(JA + 1)

2JA(2JA − 1)
C6,20 , (12)

where C6,00 and C6,20 can be conveniently expressed in
terms of scalar αscal

β,J and tensor αtens
β,J dynamic polariz-

abilities at imaginary frequencies. To this end, we apply
the residue theorem to Eq. (5):

1

a+ b
=

2

π

∫ ∞

0

ab

(a2 + u2)(b2 + u2)
du (13)

TABLE I. C6 coefficients (in a.u.) characterizing the van
der Waals interactions between dysprosium atoms in the
ground 5I8 and first excited electronic state 5I7 and alkali-
metal (AM) atoms in the ground electronic state 2S1/2.

AM
Dy(5I8)+AM(2S1/2) Dy(5I7)+AM(2S1/2)

C6,00 C6,20 C6,00 C6,20

Li 1725 7.809 1725 8.104

Na 1850 8.033 1850 8.301

K 2857 13.13 2857 13.66

Rb 3139 14.29 3139 14.85

Cs 3762 17.24 3763 17.94

Fr 3372 14.47 3373 14.95

TABLE II. C6 coefficients (in a.u.) characterizing the van
der Waals interactions between dysprosium atoms in the
ground 5I8 and first excited electronic state 5I7 and alkaline-
earth metal (AEM) atoms in the ground electronic state 1S0.

AEM
Dy(5I8)+AEM(1S0) Dy(5I7)+AEM(1S0)

C6,00 C6,20 C6,00 C6,20

Be 671 1.997 671 1.973

Mg 1174 3.822 1174 3.821

Ca 2193 8.250 2193 8.393

Sr 2651 10.21 2651 10.41

Ba 3405 13.69 3406 14.03

where a, b > 0: in our case a = Eβ′′
AJ

′′
A
− EβAJA , b =

Eβ′′
BJ

′′
B
− EβBJB , and u = ω. We find that the isotropic

coefficient C6,00 can be computed using the integral:

C6,00 =
3

π

∫ ∞

0

dωαscal
βA,JA(iω)αscal

βB ,JB (iω) , (14)

while the C6,20 coefficient is given by:

C6,20 =
3

π

∫ ∞

0

dωαtens
βA,JA(iω)αscal

βB ,JB (iω) . (15)

Following Ref. [67], we compute the C6,kA0 coefficients
using the 50-point Gauss-Legendre quadrature method:

C6,{0,2}0 =
3

π

50∑

κ=0

wκα
{scal,tens}
βA,JA

(iωκ)αscal
βB ,JB (iωκ) . (16)

The values of Gaussian quadrature abscissas ωκ and
weights wκ are provided in Ref. [67].

III. RESULTS AND DISCUSSION

In Tables I – IV we present the computed isotropic
C6,00 and anisotropic C6,20 coefficients characterizing
the leading term of van der Waals interactions be-
tween: Dy(5I8)/Dy(5I7) and alkali-metal AM(2S1/2)
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TABLE III. C6 coefficients (in a.u.) characterizing the van der
Waals interactions between erbium atoms in the ground 3H6

and first excited electronic state 3F4 and alkali-metal (AM)
atoms in the ground electronic state 2S1/2.

AM
Er(3H6)+AM(2S1/2) Er(3F4)+AM(2S1/2)

C6,00 C6,20 C6,00 C6,20

Li 1609 -9.210 1607 0.6894

Na 1729 -8.956 1727 0.6578

K 2664 -15.89 2661 1.169

Rb 2929 -17.13 2925 1.242

Cs 3509 -20.95 3506 1.501

Fr 3156 -16.14 3152 1.105

TABLE IV. C6 coefficients (in a.u.) characterizing the van der
Waals interactions between erbium atoms in the ground 3H6

and first excited electronic state 3F4 and alkaline-earth metal
(AEM) atoms in the ground electronic state 1S0.

AEM
Er(3H6)+AEM(1S0) Er(3F4)+AEM(1S0)

C6,00 C6,20 C6,00 C6,20

Be 636 -0.8894 636 0.0029

Mg 1110 -2.367 1109 0.0950

Ca 2063 -7.279 2061 0.4608

Sr 2491 -9.435 2489 0.6117

Ba 3195 -13.68 3192 0.9187

atoms (Table I), Dy(5I8)/Dy(5I7) and alkaline-earth-
metal AEM(1S0) atoms (Table II), Er(3H6)/Er(3F4)
and alkali-metal AM(2S1/2) atoms (Table III), and

Er(3H6)/Er(3F4) and alkaline-earth-metal AEM(1S0)
atoms (Table IV). We can see that the isotropic coef-
ficients strongly dominate the anisotropic ones. Despite

their small values, the anisotropic C6,20 coefficients are
responsible for the coupling between scattering channels
and the emergence of Feshbach resonances in ultracold
collisions. For both dysprosium and erbium interactions
with alkali-metal and alkaline-earth-metal atoms, the C6

coefficients follow the trend of the static electric dipole
polarizabilities – their absolute value increases with the
increasing atomic number, and a slight deviation from
the trend is observed for the interactions with francium.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have provided analytical
expressions for the isotropic and anisotropic C6 van
der Waals coefficients for the interaction between a
non-S-state atom and an S-state atom. We have
applied the derived formulas to compute the C6 co-
efficients for the Dy(5I8)/Dy(5I7)/Er(3H6)/Er(4F3) +
AM(2S1/2)/AEM(1S0) systems, where AM = Li, Na,
K, Rb, Cs, Fr and AEM = Be, Mg, Ca, Sr, Ba.

With the rapid development in the field of dipo-
lar quantum gases and ongoing experiments involving
highly-magnetic lanthanide atoms, the present results
will be beneficial for studies of collisional properties of
heteronuclear quantum mixtures containing dysprosium
or erbium atoms and alkali-metal or alkaline-earth metal
atoms.

ACKNOWLEDGMENTS

K. Z.-K. acknowledges the financial support from
the National Science Center in Poland (Grant No.
2019/35/N/ST4/04504). The work reported here was
initiated during K. Z.-K.’s visit at the Université de Bour-
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J. Phys. 22, 023024 (2020).

[60] M. D. Frye, S. L. Cornish, and J. M. Hutson, Phys. Rev.
X 10, 041005 (2020).

[61] A. A. Buchachenko, G. Chalasinski, and M. M. Szczes-
niak, J. Chem. Phys. 131, 241102 (2009).

[62] E. Tiesinga, J. K los, M. Li, A. Petrov, and S. Ko-
tochigova, New J. Phys. 23, 085007 (2021).

[63] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga,
Rev. Mod. Phys. 82, 1225 (2010).

[64] M. Lepers and O. Dulieu, Phys. Chem. Chem. Phys. 13,
19106 (2011).

[65] H. Li, J.-F. Wyart, O. Dulieu, S. Nascimbène, and
M. Lepers, J. Phys. B: At. Mol. Opt. Phys. 50, 014005
(2016).

[66] M. Lepers, J.-F. Wyart, and O. Dulieu, Phys. Rev. A
89, 022505 (2014).

[67] A. Derevianko, S. G. Porsev, and J. F. Babb, At. Data
Nucl. Data Tables 96, 323 (2010).



90



Chapter 4

Conclusions and outlook

The main goal of the present thesis was theoretical investigation of interatomic interactions
and ultracold collisions in mixtures containing transition-metal and lanthanide atoms. In recent
years, such systems have been subject to intensified studies, both theoretical and experimental,
as they are promising candidates for many future applications.

The results obtained within this PhD work support current experiments on ultracold quantum
gases containing highly magnetic atoms (such as Cr, Eu, Dy, and Er) and propose new molecular
systems for quantum simulations of many-body physics and precision measurements. The main
achievements of the present work can be summarized as follows:

1. Magnetically tunable Feshbach resonances between ultracold europium 153Eu atoms and
between europium 153Eu and alkali-metal 7Li and 87Rb atoms have been investigated using
multichannel quantum scattering calculations. We have found out that favorable reso-
nances are expected at experimentally feasible magnetic-field strengths below 1000 G for
all investigated atomic combinations. A large number and density of s-wave and d-wave
resonances is expected in ultracold gases of europium atoms with limited signatures of
quantum chaotic behavior. The dipole-dipole interaction between europium and alkali-
metal atoms is weaker than the spin-exchange interaction and hence s-wave resonances are
more favorable than d-wave ones in these systems.

2. We have carried out state-of-the-art ab initio calculations of the potential-energy curves,
permanent electric dipole moments, and spectroscopic constants for diatomic molecules
composed of a closed-shell Zn or Cd atom interacting with an alkali-metal (Li, Na, K,
Rb, Cs, Fr) or alkaline-earth-metal (Be, Mg, Ca, Sr, Ba, Ra) atom in their ground states.
We have employed the coupled-clusters method with single, double, and triple excita-
tions combined with large Gaussian basis sets and small-core relativistic energy-consistent
pseudopotentials for heavier atoms. We have predicted that the molecules in the ground
electronic state are weakly bound van der Waals complexes with rather small permanent
electric dipole moments and are chemically reactive. The studied molecules are poten-
tial candidates for ultracold quantum physics and chemistry experiments, ranging from
controlled chemical reactions to precision measurements.

3. We have investigated interatomic interactions and ultracold collisions between chromium
and lithium atoms. We have employed the coupled-clusters and multireference configu-
ration interaction methods to calculate the potential energy curves and the permanent
and transition electric dipole moments for the quartet, sextet, and octet electronic states
of the LiCr molecule correlated to the four lowest atomic dissociation limits. We have
shown that the LiCr molecule is strongly bound in the ground X 6Σ+ electronic state and
possesses a large permanent electric dipole moment of 3.3D at an equilibrium distance.
We have employed multichannel quantum scattering calculations to investigate the mag-
netically tunable Feshbach resonances in ultracold 52Cr+6Li and 53Cr+6Li mixtures. We
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have proposed a way to probe the temporal variation of the proton-to-electron mass ratio
using ultracold LiCr molecules. We have investigated the prospects for magnetoassociation
and photoassociation of Li and Cr atoms into polar and highly magnetic LiCr molecules.
The obtained theoretical results may guide the ongoing experimental studies on ultracold
strongly-interacting mass-imbalanced Fermi-Fermi Cr+Li mixtures and LiCr molecules.

4. We have derived analytical expressions for the isotropic and anisotropic C6 van der Waals
coefficients for the interaction between a non-S-state atom and an S-state atom. We have
applied the derived formulas to compute the C6 coefficients for the Dy(5I8)/Dy(5I7) /
Er(3H6)/Er(4F3) + AM(2S1/2)/AEM(1S0) systems, where AM = Li, Na, K, Rb, Cs, Fr
and AEM = Be, Mg, Ca, Sr, Ba. The calculated van der Waals coefficients are essential for
the modeling of collisional properties of heteronuclear quantum mixtures containing highly
magnetic dysprosium or erbium atoms and alkali-metal or alkaline-earth-metal atoms and
may guide future experiments on heteronuclear mixtures containing these atoms.

Therefore, the results presented in the thesis may guide the ongoing and future experimen-
tal studies on ultracold quantum mixtures containing transition-metal and lanthanide atoms,
including molecule formation and investigation of novel exotic many-body physics or precision
measurements.
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Symbols and abbreviations

List of abbreviations
AMO atomic, molecular and optical
BCS Bardeen-Cooper-Schrieffer
BEC Bose-Einstein condensate
BO Born-Oppenheimer
BSSE basis set superposition error
CI Configuration Interaction
CBS complete basis set
CC coupled clusters
COM center of mass
DBOC diagonal Born-Oppenheimer correction
DDI dipole-dipole interaction
DKH Douglas-Kroll-Hess
DVR discrete variable representation
ECP effective core potential
EDM electric dipole moment
eEDM electron electric dipole moment
FCF Franck-Condon factor
FR Feshbach resonance
FFLO Fulde-Ferrell-Larkin-Ovchinnikov
GTO Gaussian-type orbital
HF Hartree-Fock
LCAO linear combination of atomic orbitals
MCSCF multi-configurational self-consistent field
MRCI multireference configuration interaction
MO molecular orbital
MOT magneto-optical trap
PA photoassociation
PEC potential energy curve
SCF self-consistent field
STIRAP stimulated Raman adiabatic passage
SO spin-orbit
STO Slater-type orbital
vdW van der Waals
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List of symbols

a s-wave scattering length
a0 Bohr radius
α fine-structure constant
c speed of light
d electric dipole moment
e electron charge
ε0 vacuum permittivity
∇ gradient operator
h Planck constant
~ reduced Planck constant, ~ = h/2π
g g-factor
I nuclear spin angular momentum
J total electronic angular momentum
kB Boltzmann constant
l orbital angular momentum quantum number
L electronic orbital angular momentum
me electron mass
mp proton mass
µ magnetic dipole moment
µ0 vacuum permeability
µB Bohr magneton
µN nuclear magneton
n phase-space density
ω angular frequency
S electronic spin angular momentum
T temperature
v vibrational quantum number
Z nuclear charge
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