UNIWERSYTET WARSZAWSKI

ROZPRAWA DOKTORSKA

Badanie stochastycznych
sprzezen dynamicznych
metodami fizyki statystycznej

Autor: Promotor:
Jarostaw KLAMUT prof. dr hab. Ryszard KUTNER

Promotor pomocniczy:
dr Tomasz GUBIEC

Wydzial Fizyki

Warszawa, marzec 2023






iii

Lista publikacji

Ponizej przedstawitem liste publikacji, ktérych wyniki stanowia podstawe
niniejszej rozprawy:

e Jarostaw Klamut i Tomasz Gubiec. “Continuous time random walk
with correlated waiting times. The crucial role of inter-trade times
in volatility clustering”, Entropy, 23(12), 2021, https://doi.org/10.
3390/e23121576.

¢ Tomasz Gubiec, Jarostaw Klamut i Ryszard Kutner. “Multi-phase long-
term autocorrelated diffusion: Stationary continuous-time Weierstrass
walk versus flight”, Simplicity of Complexity in Economic and Social Sys-
tems, strony 55-88, rozdz. 4, 2021 (edytorzy Dariusz Grech i Janusz Mis-
kiewicz). Springer International Publishing, https://link.springer.
com/chapter/10.1007/978-3-030-56160-4_4.

¢ Jarostaw Klamut, Ryszard Kutner, Tomasz Gubiec i Zbigniew R. Stru-
zik. "Multibranch multifractality and the phase transitions in time
series of mean interevent times”, Physical Review E, 101:063303, Jun
2020, https://1link.aps.org/doi/10.1103/PhysRevE.101.063303.

¢ Jarostaw Klamut i Tomasz Gubiec. "Directed continuous-time random
walk with memory”, The European Physical Journal B, 92(4):69, Apr 2019,
https://doi.org/10.1140/epjb/e2019-90453-y.


https://doi.org/10.3390/e23121576
https://doi.org/10.3390/e23121576
https://link.springer.com/chapter/10.1007/978-3-030-56160-4_4
https://link.springer.com/chapter/10.1007/978-3-030-56160-4_4
https://link.aps.org/doi/10.1103/PhysRevE.101.063303
https://doi.org/10.1140/epjb/e2019-90453-y




Streszczenie

UNIWERSYTET WARSZAWSKI

Wydziat Fizyki

Badanie stochastycznych
sprzezen dynamicznych
metodami fizyki statystycznej

Jarostaw KLAMUT

Jednym z dziatéw fizyki statystycznej, ktéry znaczaco rozwinat sie ostatnimi
laty dzieki inspiracji nauk przyrodniczych oraz spoteczno-ekonomicznych,
jest teoria proceséw stochastycznych. Obecnie dynamiki stochastyczne uzy-
wane sa powszechnie do opisu proceséw i zjawisk zaréwno Sciéle fizycz-
nych, jak tez zachodzacych w uktadach ztozonych nalezacych do szeroko ro-
zumianej fizyki interdyscyplinarnej. Przez pojecie ‘stochastyczne sprzezenia
dynamiczne’ rozumiem takie sprzezenia pomiedzy zmiennymi losowymi, w
ktérych biora udziat przedziaty czasu. Przykladami takich zmiennych loso-
wych moga by¢ same czasy miedzyzdarzeniowe lub te czasy wraz z towa-
rzyszacymi im przemieszczeniami.

W niniejszej rozprawie skupiam sie na wykorzystaniu dynamik stochastycz-
nych do badania aktywnosci uktadéw ztozonych. Postuguje sie tutaj cza-
sami pomiedzy pojedynczymi zdarzeniami obserwowanymi w uktadzie jako
wielko$ciami podstawowymi. Przykladowo, w uktadach fizycznych moga to
by¢ czasy miedzy przeskokami no$nikéw tadunku zlokalizowanymi w mini-
mach potencjatu substratu w procesie relaksacji fotopradu, a np. w geofizyce
odstepy czasu pomiedzy trzesieniami ziemi. Opis aktywnosci tych proceséw
jest komplikowany przez wystepujaca w nich pamie¢. Jej skutkiem jest au-
tokorelacja szeregu czaséw miedzyzdarzeniowych, ktéra prowadzi miedzy
innymi do klastrowania zdarzeni. Prominentny przyklad, ktéry obrazuje tego
rodzaju zjawiska klastrowania w uktadzie zfozonym, stanowia transakcje za-
wierane na rynkach finansowych wynikajace m.in. z istniejacego tam tzw.
‘efektu stadnego’. Dlatego wlasnie dane empiryczne dotyczace aktywnosci
gieldowej (dostepne powszechnie w duzych ilosciach) wykorzystatem jako
podstawe analiz zawartych w mojej rozprawie doktorskie;j.

W pierwszej czeSci rozprawy, przedstawiam i szczegélowo opisuje modele
btadzenia losowego w czasie ciagtym. Sa to procesy stochastyczne, w kto-
rych zmiennymi losowymi sq zaré6wno zmiany wartos$ci procesu, jak tez od-
stepy czasu pomiedzy tymi zmianami. Nastepnie wprowadzam, rozwiazuje
i analizuje autorski wariant modelu bladzenia losowego w czasie ciagtym ze
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skorelowanymi czasami miedzyzdarzeniowymi jako podstawe sprzezen dy-
namicznych. Wlasno$ci stochastyczne tego wariantu poréwnuje z empirycz-
nymi danymi finansowymi. Dane te pozwalaja na wyznaczenie wykladnika
praw potegowych charakteryzujacych zaréwno zaniki krokowej funkgji au-
tokorelacji szeregéw czasO6w miedzytransakcyjnych, jak tez nieliniowej au-
tokorelacji czasowej szeregdéw absolutnych zmian cen. Zwiazki empiryczne
pomiedzy tymi wyktadnikami poréwnuje z ich odpowiednikami wprowa-
dzonymi jako tezy niniejszej rozprawy. Dzieki temu autorski model postuzyt
mi m.in. do pokazania kluczowej roli skorelowanych czaséw miedzytransak-
cyjnych w tworzeniu zasadniczego efektu jakim jest klastrowanie zmienno-
Sci.

W drugiej czesci rozprawy skupiam sie na poglebionej interpretacji zalez-
nosci obserwowanych w aktywnosci gietdowej. W tym celu wprowadzam
uogodlniona analize multifraktalna zdetrendowanych fluktuacji oparta na sze-
regu $rednich czaséw miedzyzdarzeniowych, czyli oparta na podejsciu gru-
boziarnistym. Pozwolito mi to na uzyskanie niemonotonicznego zachowa-
nia wykladnika Holdera, co wczesniej byto jedynie okazjonalnie wzmian-
kowane w literaturze naukowej. Nastepnie, poprzez uogdlnienie standar-
dowego podejscia, uzyskatem szerokie, asymetryczne, wielogaleziowe spek-
trum multifraktalne, z dobrze okreélong stabilnosciq i dostepnoscia kazdej
gatezi widma.
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Abstract
UNIVERSITY OF WARSAW

Faculty of Physics

Analysis of stochastic dynamic couplings
by methods of statistical physics

Jarostaw KLAMUT

One of the branches of statistical physics that has remarkably developed in
recent years due to the inspiration of the natural and socio-economic sciences
is the theory of stochastic processes. Currently, stochastic dynamics are wi-
dely used to describe processes and phenomena, both strictly physical and
occurring in complex systems belonging to the broadly understood interdi-
sciplinary physics. By the term “stochastic dynamic couplings’ I refer to co-
uplings between random variables that involve time intervals. Examples of
such random variables may be the interevent times themselves or these times
together with the corresponding displacements.

In this dissertation I focus on the use of stochastic dynamics to study the acti-
vity of complex systems. I use here the times between individual events obse-
rved in the system as basic quantities. For example, in physical systems these
can be times between charge carrier jumps located in the substrate potential
minima in the photocurrent relaxation process, and in geophysics, time inte-
rvals between earthquakes. The description of process activity is complicated
by the presence of a memory. Its consequence is the autocorrelation of a series
of interevent times, which leads, among others, to the clustering of events. A
prominent example that illustrates this type of clustering phenomena in a
complex system are transactions concluded on financial markets resulting,
among others, from the so-called ‘herd effect’. That is why analyzes included
in my doctoral dissertation are based on empirical data on stock market acti-
vity (widely available in large quantities).

In the first part of the dissertation, I present and describe in detail continuous-
time random walk models. These are stochastic processes, in which both
changes of the value of the process, as well as time intervals between these
changes are random variables. Then, I introduce, solve and analyze the ori-
ginal variant of the continuous-time random walk model with correlated in-
terevent times as the basis for dynamic couplings. I compare the stochastic
properties of this variant with empirical financial data. These data make it
possible to determine the exponent of the power laws characterizing both the
decays of the step autocorrelation function of inter-trade time series, as well
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as the non-linear temporal autocorrelation of absolute price change series. I
compare the empirical relationships between these exponents with their equ-
ivalents introduced as theses of this dissertation. Thanks to this, the author’s
model served, among others, to show the fundamental role of correlated in-
tertrade times in creating the volatility clustering effect.

In the second part of the dissertation, I focus on an in-depth interpretation
of the relationships observed in stock market activity. For this purpose, I in-
troduce a generalized multifractal detrended fluctuations analysis based on
a series of mean times between events, i.e. based on a coarse-grained ap-
proach. This allows me to obtain the non-monotonic behavior of the Hol-
der exponent, previously only occasionally mentioned in the scientific lite-
rature. Then, by generalizing the standard approach, I obtain a wide, asym-
metric, multi-branched multifractal spectrum, with well-defined stability of
each branch of the spectrum.
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Rozdzialt 1

Wprowadzenie

1.1 Aktywnos¢ w ukladach zlozonych

Dynamiki stochastyczne i teorie proceséw stochastycznych maja szerokie
zastosowanie w modelowaniu zjawisk zachodzacych w Swiecie realnym.
Sa wykorzystywane niemal w kazdej dziedzinie nauki - przede wszystkim
w szeroko rozumianej fizyce, a zwlaszcza w fizyce ukladéw zlozonych
oraz fizyce interdyscyplinarnej. Stuza one miedzy innymi do opisu zjawisk
i proceséw zachodzacych w ukladach zlozonych, takich jak transport i
dyfuzja anomalna (w o$rodkach porowatych i amorficznych) czy propagacja
na ztozonych sieciach komunikacyjnych (sieciach ulic, autostrad, potaczent
kolejowych i lotniczych). Wykorzystuje sie je réwniez do modelowania
dynamiki ttumu (a w tym zagadnieni ruchu ulicznego, korkowania sie miej-
skiego ruchu samochodowego czy strategii ewakuacji), a takze dynamiki
mrowisk oraz interakcji rybosoméw podczas syntezy biatek [1]-[3].

Do kluczowych poje¢ pozwalajacych na iloSciowy opis wspomnianych
wczedniej proceséw zalicza sie pojecie aktywnosci. Jedna z jej zasadniczych
miar sa czasy pomiedzy zdarzeniami (czyli miedzyzdarzeniowe, np. pomie-
dzy punktami zwrotnymi czasteczki Browna) - im krétsze sa te okresy, tym
aktywnos$¢ procesu jest wieksza. W zwiazku z tym modelowanie zaleznosci
i korelacji pomiedzy tymi czasami jest szczegélnie istotne dla wtasciwego
zrozumienia i odwzorowania aktywnosci opisywanych ukladéw. Skore-
lowane przedzialy czaséw pomiedzy zdarzeniami obserwujemy w wielu
dziedzinach, takich jak np. mechanika kwantowa (transfer elektronéw [4],
[5]), sejsmologia (trzesienia ziemi [6]), ekonofizyka (transakcje na gieldach
[7], [8]), genomika (odleglosci pomiedzy nukleotydami [9]), neuronauka
(aktywnos¢ pojedynczych neuronéw [10]), czy tez socjofizyka (komunikacja
miedzyludzka [11], [12]). Wymienione powyzej empiryczne pamieci wyste-
puja w przeréznych formach, zaréwno krétko- i dlugozasiegowych, jak i
krétko- i dtugookresowych, a do ich opisu stosuje sie korelacje liniowe oraz
nieliniowe.

Powszechno$¢ wykorzystywania proceséw stochastycznych oraz r6znorod-
nos¢ aktywnosci, ktére opisuja, bezposrednio wskazuje na niezwykle istotna
role czasow miedzyzdarzeniowych w badaniu skomplikowanej ewolucji
uktadéw ztozonych. W zwiazku z tym istnieje palaca potrzeba rozwijania
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metodologii modelowania oraz metod badawczych aktywnosci, zwlaszcza
ze dotychczasowe podejécia sa juz daleko niewystarczajace. Nie sa one w
stanie sprosta¢ wyzwaniom, jakie stawiaja przed nimi wspoétczesne uklady
zlozone o skomplikowanej strukturze aktywnosci, reprezentowane miedzy
innymi przez dane o transakcjach gieldowych, wykorzystane w niniejszej

pracy.

1.2 Celei tezy pracy

Niniejsza rozprawa skoncentrowana jest na dwéch gléwnych celach.
Pierwszy cel to wyprowadzenie odpowiedniego formalizmu nalezacego
do rodziny tzw. bladzen losowych w czasie ciaglym (ang. continuous-time
random walk, CTRW - w dalszej czesci pracy bede uzywat takiego wilasnie
akronimu), bedacego w stanie modelowa¢ pamieci zwiazane z czasami
miedzyzdarzeniowymi (czyli stochastyczne sprzezenia dynamiczne) cha-
rakterystycznymi dla analizowanych w pracy procesow. Wymaga to
omoéwienia zasadniczych idei lezacych u podstaw rodziny formalizméw
CTRW, a zwlaszcza oméwienia formalizméw typu ‘przeloty” (ang. flights)
oraz typu ‘spacery’ (ang. walks). Rozwazania prowadze m.in. na przykladzie
modelu bladzen losowych Weierstrassa [13], w ramach ktérego mozna
bada¢ zaréwno $wiat bladzert normalnych, jak i anomalnych, a w tym np.
multifraktalnych. Bogactwo tych bladzer jest dobrze widoczne na charakte-
rystycznym diagramie fazowym stanowiacym jeden z wynikéw niniejszej
pracy. Diagram ten bazuje na wlasnosciach fluktuacji (wariancji) oraz wia-
snosciach pogrubionych ("ttustych") ogonéw rozktadu (czyli nadmiarowej
kurtozie zwanej takze ekscesem).

W dalszym ciagu podaje umotywowana liste powodéw wskazujacych na
konieczno$¢ prowadzenia badan nad aktywnos$cia w uktadach ztozonych.
W tym miejscu warto doprecyzowac nazwe ‘czasy miedzyzdarzeniowe’ (czy
tez czasy pomiedzy zdarzeniami). Oté6z w przypadku grupy modeli typu
przeloty czasy te odpowiadaja po prostu czasom wyczekiwania (ang. waiting
times lub pausing times) jakie maja miejsce po kazdym skoku (przeskoku)
- wyglada to tak, jakby po kazdym przeskoku proces "odpoczywatl", przy
czym ten czas odpoczywania jest zmienna losowa. Mamy tutaj do czynienia
z trzema rodzajami zaleznosci: 1) pomiedzy wielkoSciami skokéw procesu,
2) pomiedzy czasami miedzyzdarzeniowymi i 3) mieszanymi, pomiedzy
wielko$ciami skokéw procesu a czasami miedzyzdarzeniowymi.

Punktem wyjscia dla osiagniecia pierwszego celu jest, powszechnie
wykorzystywany dotychczas, skokowy model CTRW (nalezacy do grupy
przelotéw) z krétkozasiegowa korelacja pomiedzy kolejnymi skokami pro-
cesu. Niestety, jego przewidywania odbiegaja od wynikéw dostarczanych
przez dane empiryczne dotyczace nieliniowych autokorelacji predkosci
procesu. Rozbieznosci te staly sie inspiracja mojej glebszej analizy. W
tym celu przeprowadzilem symulacje w ramach CTRW. Pokazalem, ze
wprowadzenie do tego formalizmu dlugookresowych zaleznosci pomiedzy
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czasami miedzyzdarzeniowymi istotnie wptywa na wilasnosci procesu, w
szczegOlnosci na autokorelacje predkosci procesu znaczaco poprawiajac jej
zgodno$¢ z danymi empirycznymi. Stanowi to wyjsciowa, kluczowa teze
pracy.

Innymi stowy, wyniki symulacji uwzgledniajacych pamie¢ dtugookresowa
w szeregach czaséw miedzytransakcyjnych (w rozprawie wykorzystuje
dane empiryczne pochodzace z gieldy) okazaly sie blizsze wynikom uzy-
skanym na bazie danych empirycznych. Wskazalo to jasno na koniecznos¢
dokladnego zbadania wplywu skorelowanych czaséw wyczekiwania na
charakterystyke procesu. Ich analiza sklonita mnie do postawienia drugiej
tezy rozprawy, dotyczacej faktéw stylizowanych (czyli dobrze ugrunto-
wanych) opisujacych wiasnosci danych transakcyjnych. Uwzglednienie
dtugookresowych zaleznosdci w szeregu czaséw miedzytransakcyjnych jest
kluczowe do precyzyjnego zamodelowania zjawisk klastrowania zaréwno
aktywnosci, jak i zmiennoS$ci (opisane sa one dokladniej w rozdziale 2.3).
W rozprawie wskazuje, ze odtworzenie wykladnika w prawie potegowym
zaniku autokorelacji moduléw zmian moze by¢ dokonane jedynie przez
wykorzystanie skorelowanych czaséw wyczekiwania.

W ramach pierwszego celu rozprawy zaproponowatem ogoélny formalizm
skokowego wariantu CTRW, uwzgledniajacego diugookresowe (zanikajace
potegowo) autokorelacje pomiedzy czasami wyczekiwania, spdjne z wlasno-
Sciami empirycznymi czaséw miedzytransakcyjnych. Poprzez rozwiazanie
tego wariantu, czyli wyznaczenie jego charakterystyk, zrealizowatem pierw-
sza teze rozprawy. Nastepnie, otrzymane wyniki teoretyczne poréwnatem
z odpowiednimi pochodzacymi z danych empirycznych. Dzieki takiemu
podejsciu zrealizowalem druga teze pracy pokazujaca mechanizm klastro-
wania zmienno$ci na rynkach finansowych.

Jest faktem stylizowanym, Zze notowania gieldowe przejawiaja réznego
rodzaju zachowania multifraktalne. Poniewaz zjawiska klastrowania ak-
tywnos$ci i zmiennosci wystepuja w réznych skalach czasowych, dlatego
uzasadnionym jest sformulowanie drugiego celu mojej rozprawy. Do-
tyczy on wieloskalowych/wielofraktalnych (multifraktalnych) proceséw
stochastycznych. Skupilem sie na rozwinieciu nowych metod analizy
wielofraktalnej i zastosowaniu ich do badania aktywnosci proceséw
stochastycznych. Na podkreslenie zastuguje zwlaszcza nowatorskie wy-
korzystanie w pracy transformacji Legendre-Fenchela. Umozliwita mi ona
opisanie niemonotonicznego przebiegu uogoélnionego wykladnika Hursta
oraz wykladnika Holdera a stad opisanie bogatego, wielogateziowego
ksztattu widma tego wykladnika. Pozwolilo mi to na uogdlnienie analizy
zdetrendowanych wielofraktalnych fluktuacji (ang. multifractal detrended
fluctuation analysis, MFDFA). Stanowi to konkretna realizacje drugiego celu
niniejszej rozprawy.
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1.3 Konstrukcja rozprawy doktorskie;j

Konstrukcja mojej rozprawy doktorskiej jest nastepujaca:

1. W pierwszym rozdziale zamieScitem wprowadzenie do rozprawy, po-
dalem jej gtéwne cele i tezy oraz przedstawilem ukiad pracy.

2. Nastepnie, w rozdziale drugim, oméwitem dane empiryczne, z kt6-
rych korzystatem, a przede wszystkim zwrécitem uwage na ich specy-
ticzna charakterystyke. Glebsze zrozumienie tkwiacych w nich zjawisk
i proceséw, mozliwe dzieki odpowiedniemu modelowaniu, jest zasad-
niczym, og6lnym celem niniejszej rozprawy.

3. W trzecim rozdziale wprowadzitem formalizm bladzenia losowego
w czasie ciaglym (CTRW) oraz przedstawilem aktualny stan modeli
CTRW wraz z poréwnaniem do innych alternatywnych modeli. W
szczegOlnosci przedstawilem tez wyniki z pracy [13], poréwnujace
rézne definicie CTRW, na przykladzie spaceréw oraz przelotow
Weierstrassa.

4. W czwartym rozdziale pracy przedstawitem obecnie istniejace modele
CTRW oraz zwrécitem uwage na ich wykorzystanie do opisu danych
empirycznych. Na tym tle przedstawilem wyniki zamieszczone w pu-
blikacji [14]. Omoéwitem je w kontekscie motywacji empirycznych i teo-
retycznych niniejszej rozprawy, stanowiacych podstawe do stworzenia
modelu uwzgledniajacego dalekozasiegowe korelacje pomiedzy cza-
sami wyczekiwania.

5. W piatym rozdziale wprowadzitlem i rozwiazalem kluczowy dla tej
rozprawy autorski model CTRW z dluga pamiecia pomiedzy czasami
miedzyzdarzeniowymi, ktéry przedstawilem w publikacji [15]. Wyniki
uzyskane w ramach tego modelu poréwnatem z danymi empirycz-
nymi.

6. Wyniki zaprezentowane w poprzednich rozdziatach, wskazuja na po-
trzebe dalszej, poglebionej analizy aktywnosci procesu. Dlatego w ko-
lejnej czesci (rozdz. 6), przedstawitem autorskie rozwiniecie metodo-
logii analizy mulifraktalnej zdetrendowanych fluktuacji (MFDFA) w
zastosowaniu do badania aktywno$ci procesu. Stosowanie tej metodo-
logii wymaga analizy niemonotonicznego przebiegu wyktadnika Hol-
dera. Wyniki przedstawione w tym rozdziale bazuja na mojej publikacji
[16].

7. Kolejny rozdzial stanowi zakoriczenie podsumowujace wyniki calej
roZprawy.

8. Rozprawe uzupelniaja dodatki, w ktérych znajduja sie szczegoétowe
opisy danych empirycznych, dluzsze obliczenia matematyczne oraz
rozszerzenie i uogdlnienie konkretnych wynikéw analizy danych em-
pirycznych. Calos¢ zamyka literatura przedmiotu, do ktérej odwotuje
sie¢ w niniejszej rozprawie.



Rozdzial 2

Charakterystyka danych
empirycznych

Zrealizowanie celéw rozprawy doktorskiej wymaga wykorzystania danych
empirycznych. Po pierwsze, to na podstawie ich wilasnosci wyprowa-
dzam cze$¢ motywagji niniejszej rozprawy. Po drugie, sa one niezbedne
do przeprowadzenia analizy multifraktalnej. Po trzecie, wykorzystuje je
bezposrednio do weryfikacji modelu teoretycznego.

Rozwazany przeze mnie w rozdz. 5 oryginalny proces btadzenia loso-
wego w czasie ciaglym wynika nie tylko z inspiracji teoretycznych, ale
rowniez z motywacji bezposrednio zwiazanych z danymi empirycznymi.
Konkretne wtasnoéci wybranych danych sklonily mnie do konstrukgji
formalizmu wprowadzajacego pamie¢ pomiedzy czasami miedzyzdarze-
niowymi. Wykorzystalem go do analizy procesu z potegowo zanikajaca
autokorelacja czaséw miedzyzdarzeniowych mierzonych tyknieciami
chronometru (liczba krokéw/stopni czasowej separacji). Na tej drodze
poréwnatem rozwigzanie analityczne (uzyskane w ramach mojego forma-
lizmu) z danymi empirycznymi. Analogicznie rzecz sie ma w przypadku
multifraktalnej analizy aktywnosci ukladéw ztozonych (patrz rozdz. 6) - ona
takze musi zosta¢ przeprowadzona na konkretnych danych empirycznych.
Pozwala to prawidlowo zobrazowaé rozwijang procedure, bedaca uogol-
nieniem dotychczasowej analizy multifraktalnej. Uzyskane przeze mnie
wyniki wspomnianych powyzej analiz danych empirycznych sa oryginalne
i stanowia jeden z filar6w niniejszej rozprawy.

Modelowanie aktywnosdci ukladéw zlozonych wymaga mikroskopo-
wego spojrzenia na badane procesy, tzn. takiego, ktére pozwala wyréznic
pojedyncze zdarzenia, a poprzez to pojedyncze czasy miedzyzdarzeniowe.
Zaproponowane przeze mnie metodologie sa uniwersalne w takim sensie,
ze moga by¢ zastosowane do opisu zjawisk nalezacych do szerokiej palety z
tradycyjnie rozumianej fizyki oraz fizyki interdyscyplinarnej (patrz rozdz.
1.1), w ktérych obserwujemy czasy miedzyzdarzeniowe. Prominentnym
przykltadem moze by¢ tutaj jeden z najbardziej ztozonych mechanizméw
spoteczno-ekonomicznych jakim jest gielda, czyli rynek sprzedajacego i
kupujacego (ang. double auction market). Kupujacy konkuruja na nim o
zakup dostepnych w danym momencie papieréw warto$ciowych, dazac do
zawarcia transakcji po mozliwie najnizszej cenie. Jednoczes$nie sprzedajacy
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akceptuja mozliwie najwyzsze zlozone oferty kupna. Od blisko trzech
dekad systemy gieldowe obstugiwane sa elektronicznie. Dzieki temu stato
sie mozliwe gromadzenie i przetwarzanie gigantycznych zbioréw danych
empirycznych dotyczacych aktywnosci zarejestrowanych na gietdach pod-
miotow.

Aktywno$¢ na gieldzie jest procesem zlozonym, zawierajacym niesta-
cjonarnosci, zaleznosci diugookresowe, jak tez zjawiska klastrowania [17].
Model bedacy w stanie odwzorowaé¢ powyzsze skomplikowane zalezno$ci
powinien umozliwia¢ modelowanie aktywnos$ci ukladéw ztozonych po-
chodzacych takze z innych obszaréw. Jednak to dane gieldowe stanowia
potencjalnie jeden z bardziej wymagajacych testow dla takiego modelu.

W  ponizszym rozdziale przedstawilem charakterystyke finansowych
danych empirycznych. Wykorzystalem w tym celu dane transakcyjne
pochodzace z Gieldy Papieréw Wartosciowych w Warszawie (GPW), doty-
czace cen akcji spotek z fazy notowan ciaglych sesji gietdowych z okresu od
15.04.2013 do 15.04.2020. Doktadniejszy opis uzywanych danych znajduje
sie w dodatku A.

2.1 Mechanizm funkcjonowania gieldy

Na $wiecie istnieje wiele gietd, ktérych zasady funkcjonowania moga sie
rézni¢ w szczegotach, jednak gléwne mechanizmy dzialania sa podobne
[18]. Inwestorzy uczestnicza w handlu poprzez skladanie zlecen. Istnieja
dwa podstawowe rodzaje zleceni: zlecenie kupna oraz zlecenie sprzedazy.
Kazde zlecenie musi zawiera¢ odpowiedni zestaw informacji. Pierwsza z
nich jest instrument zlecenia, czyli podmiot jakiego dotyczy dane zlecenie.
Inwestor musi tez okre$li¢ wolumen zlecenia, czyli liczbe papieréw warto-
$ciowych jakie zamierza kupi¢ badz sprzedac¢. Ze wzgledu na cene realizacji,
zlecenia dziela sie na dwa gléwne typy. Zlecenia rynkowe (ang. market
orders) maja zosta¢ zrealizowane natychmiast po zlozeniu, po najlepszej
obecnie dostepnej cenie. Natomiast zlecenia z limitem (ang. limit orders)
okreslaja maksymalna cene dla zlecen kupna (oraz minimalng cene dla
zlecenn sprzedazy), po ktoérej wykona sie zlecenie. W przypadku kiedy w
momencie zlozenia takie zlecenie nie moze by¢ zrealizowane, pozostaje
one aktywne, tworzac ksiege badz arkusz zlecerr (ang. order book). Ostatnia
niezbedna informacja jest termin realizacji zlecenia. Zlecenie z limitem,
ktére trafi do arkusza zlecerr, moze mie¢ zdefiniowany termin waznosci,
po ktérym staje sie nieaktualne i jest usuwane z rynku. Dodatkowo mozna
tez ustala¢ warunki aktywacji, dopiero po spelnieniu ktérych zlecenie
staje sie aktywne i moze by¢ zrealizowane, na przyklad dla zlecerr typu
stop-limit [19]. Oczywiscie dopuszcza sie réwniez wiele innych rodzajéow
zleceri, ktore powstaja w wyniku lekkich modyfikacji powyzej przedsta-
wionych regul. Jednak celem tego wstepu jest jedynie przyblizenie idei i
podstawowych zasad funkcjonowania gieldy. Dokladniejsze opisy typéw
zleceri i zasad ich parowania mozna znaleZ¢ miedzy innymi w [18], [20], [21].
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Transakcja zostaje zawarta w momencie, kiedy na gieldzie spotkaja sie
zlecenia kupna i sprzedazy z odpowiadajacymi sobie cenami. Obie strony za
pomoca gieldy wymieniaja sie papierami warto$ciowymi o ustalonej cenie i
liczbie.

Réwniez harmonogram sesji wplywa na czas realizacji zlecerr. Oto har-
monogram sesji GPW od 15.04.2013 [22]:

¢ 8:30 - 9:00. Faza przed otwarciem

9:00. Faza otwarcia

9:00 - 16:50. Faza notowan ciagtych

16:50 - 17:00. Faza przed zamknieciem

17:00. Faza zamkniecia

17:00 - 17:05. Faza dogrywki

Pierwsze zlecenia mozna sklada¢ od 8:30, jednak nie sa one wykonywane
od razu. Realizowane sa one dopiero w fazie otwarcia o 9:00, kiedy tez usta-
lany jest kurs otwarcia. Nastepnie przez 7 godzin i 50 minut pomiedzy 9:00
a 16:50 trwa faza notowan ciagtych, z ktérej dane transakcyjne wykorzystuje
w niniejszej pracy doktorskiej. Jest to okres standardowego funkcjonowania
gieldy. Nastepnie przez 10 minut mozna skladaé zlecenia na faze zamknie-
cia, analogicznie jak przed faza otwarcia. O 17:00 nastepuja transakcje na za-
mkniecie wraz z publikacja kursu zamkniecia. Faza dogrywki jest okresem
kiedy mozna zawiera¢ transakcje po cenie zamkniecia. Oczywiscie harmono-
gram gieldy dotyczy jedynie dni handlowych, czyli standardowego tygodnia
pracy, oprocz dni $wiatecznych.

2.2 Definicja ceny p(t)

Uzywane przeze mnie pojecie ‘cena’ wydaje sie by¢ intuicyjne, jednak wbrew
pozorom nie ma jednej Scislej definicji ceny danego instrumentu w czasie
p(t). Rozpatrujac jeden instrument finansowy, w danym momencie istnieje
wiele aktywnych zleceni z limitem, ktére razem tworza ksiege zlecenr. Przy-
kltadowy prawdziwy arkusz zlecerr przedstawiony jest w tabeli 2.1 oraz na
rys. 2.1.

Podstawowym, najbardziej caloSciowym podejSciem do badania ceny instru-
mentu jest podanie arkusza zlecenn w kazdym momencie. Jednak takie podej-
Scie wymaga przetworzenia duzej ilosci ztozonych danych, a ponadto takie
dane nie sa dostepne publicznie. Naturalnym uproszczeniem jest podziele-
nie arkusza na zlecenia kupna oraz sprzedazy. Wtedy kazdej ze stron mozna
probowaé przypisac tylko jedna cene. Cena kupna dla kazdej chwili defi-
niowana jest na podstawie aktywnych wtedy zlecerr kupna, np. jako érednia
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Zlecenia kupna
Cena [PLN] | Liczba | Czas ztozenia | Wolumen | Wartos$é

125.70 102 11:01:45 102 12 821.40
125.70 70 11:02:16 172 21 620.40
125.65 356 10:58:30 528 66 351.80
125.65 400 11:01:24 928 116 611.80
125.60 200 16:37:24 1128 141 731.80
125.60 250 10:57:58 1378 173 131.80
125.60 800 10:59:29 2178 273 611.80
125.60 125 11:01:21 2303 289 311.80
125.60 114 11:02:43 2417 303 630.20
125.55 100 09:10:11 2517 316 185.20

Zlecenia sprzedazy
Cena [PLN] | Liczba | Czas ztozenia | Wolumen | Wartosé

125.85 10 10:58:39 10 1258.50

125.85 231 11:04:34 241 30 329.85
125.90 391 10:57:41 632 79 556.75
125.90 108 11:04:30 740 93 153.95
125.95 490 10:57:37 1230 154 869.45
125.95 391 10:57:46 1621 204 115.90
125.95 404 10:57:46 2025 254 999.70
126.00 1040 10:57:32 3065 386 039.70
126.00 87 10:57:33 3152 397 001.70
126.00 356 10:57:42 3508 441 857.70

Tabela 2.1: Przyktad ksiegi zleceri. Wypisano po 10 najbardziej

korzystnych zlecen dla kazdej ze stron, dotyczacych akcji PE-

KAOQO, aktywnych o 11:05 w dniu 14 VII 2016. Cena, liczba i

czas zlozenia dotycza bezposrednio najkorzystniejszych zleceri.

Wolumen oznacza taczna liczbe zlozonych zlecert po danej i

bardziej korzystnych cenach, natomiast warto$¢ oznacza taczna
cene tych papieréw.

(arytmetyczna lub wazona wolumenem) ze wszystkich badzZ kilku najlep-
szych zlecen. Jednak najczesciej definiuje sie ja po prostu jako najwyzsza cene
po jakiej rynek moze kupi¢ dany instrument. Analogicznie mozna zdefinio-
wac cene sprzedazy. Te ceny i ich przykladowe zachowanie w czasie poka-
zane sa na rys. 2.2. Patrzac na niego od razu mozna zauwazy¢ potrzebe zde-
finiowania kolejnej wielkosci, jaka jest réznica pomiedzy tymi cenami. Na-
zywana jest ona po angielsku bid-ask spread badZ w skrécie po prostu spread.
Ta réznica w jednym momencie jest dobrze pokazana w jednym momencie
narys 2.1. W przypadku kiedy chcemy postugiwac sie tylko jedna wartoscia
ceny p(t), mozemy wyznaczy¢ Srednia arytmetyczna z cen kupna i sprze-
dazy.

Alternatywne podejscie do okreslenia ceny instrumentu polega na rozpa-
trywaniu jedynie transakcji, bez uwzgledniania aktywnych zleceri. Kazda
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Schemat arkusza zlecen

1500 A
sprzedail I

1000 -

500 A

01w | W
—500 A I

Wielkos$¢ zlecenia
BID-ASK|SPREAD

~1000 - kupno

—1500 A

125.6 125.7 125.8 125.9 126.0
Cena [PLN]

Rysunek 2.1: Schemat arkusza zlecerr na podstawie 10 najlep-

szych aktywnych zleceni dla kazdej ze stron, przedstawionych

w tabeli 2.1, z godziny 11:05 w dniu 14 VII 2016. Rézne kolory
symbolizuja r6zne zlecenia z ta sama cena.

transakcja posiada konkretna cene, na ktéra zgodzity sie dwie strony rynku.
Oznacza to, ze zaréwno inwestor kupujacy dany walor, jak i sprzedajacy
uznali te cene za sprawiedliwa cene instrumentu i dokonata sie faktyczna
wymiana. Przy takim podejsciu, cena waloru zmienia sie w momencie poja-
wienia sie nowej transakcji i przyjmuje jej warto$¢. Nastepnie jest ona stata
az do chwili zawarcia kolejnej transakcji. W niniejszej pracy bede korzystat z
tak wlasnie zdefiniowanej ceny waloru p(t). Zauwazmy, ze przy takiej defi-
nicji, ceny transakcji beda znajdowaty sie na jednym z wykreséw cen kupna
lub sprzedazy. Zobrazowane jest to na rys. 2.3. Powoduje to "skakanie"ceny
transakcyjnej pomiedzy cenami bid i ask, co opisane jest dokladniej w roz-
dziale 2.3.3.

15.935 +
— 15.930 A f\LLI_‘_,
=
§ — Sprzedaz
© 15.9254 — Kupno
()
o
15.920 A
O N X S »© s ®
NNV APV A LN A KRN
- - ™ ™ - ™ ™
N ~y N N ~y y N
Czas

Rysunek 2.2: Przyktadowe krzywe ceny kupna i sprzedazy,
wyznaczone jako najbardziej korzystne aktywne zlecenia. Pio-
nowa przerwa pomiedzy nimi odpowiada bid-ask spreadowi.



10

Rozdziat 2. Charakterystyka danych empirycznych

15.935 A
J i
i
= 159301 — Sprzedaz i
.E'; Kupno !
© 15925 - L J Transakcjei
]
(@] ®-——-----5 i
L |
15.920 - 6.0
I T S RS S
NS U L A
- ™ - - v - 3
N N N y N N y
Czas

Rysunek 2.3: Przykladowe krzywe ceny kupna i sprzedazy
z rys. 2.2. Dodatkowo czarnymi kropkami oznaczono czas i
cene zachodzacych przyktadowych transakcji. Przerywana li-
nia przedstawiona jest chwilowa cena instrumentu. Po zmianie
krzywej, na ktérej znajduje sie cena, kolejna transakcja moze
zajé¢ po cenie na tej samej krzywej lub drugiej. Oznacza to,
ze kolejna zmiana ceny bedzie albo losowa albo w przyblize-
niu przeciwna poprzedniej zmianie, gdyz cena powrdci na po-
przednia krzywa.



2.3. Fakty stylizowane 11

2.3 Fakty stylizowane

Od dawna badanie statystycznych wilasnosci cen akcji na gieldzie jest
popularnym tematem wéréd naukowcow. Charakterystyki, ktére wystepuja
w zdecydowanej wiekszosci szeregoéw finansowych i ktére zostaly obszernie
zbadane oraz opisane, nazywamy faktami stylizowanymi. Najistotniejsze
tfakty stylizowane zostaly zebrane miedzy innymi w pracy [17]. Ponizej
przedstawie najbardziej znane fakty stylizowane dotyczace rozkladéw i
autokorelacji zmian cen oraz aktywnos$ci na gieldzie, postugujac sie dla
przykltadu danymi uzywanymi w calej rozprawie. Wyniki w tym rozdziale
dotycza jedynie zmian cen wewnatrz sesji handlowej, bez uwzglednia-
nia zmian cen pomiedzy cena zamkniecia jednego dnia a cena otwarcia
kolejnego dnia handlowego.

2.3.1 Rozklady logarytmicznych zwrotéw

Standardowa metoda badania dynamiki ceny, jest rozwazanie logarytmicz-
nych stop zwrotu. Logarytmiczna stopa zwrotu r(t) ceny p(t) w czasie t z
okresu At jest zadana jako:

ras) =tog (PO ) = loglp(t)] ~loglp(t— a0l 21)

Rozwazane dane pogrupowalem wedtug réznych okreséw: 1 minuta, 5
minut, 15 minut, 1 godzina oraz 1 dzier. Na rys. 2.4 prezentuje empiryczne
rozklady logarytmicznych stép zwrotu h(r) dla réznych skal czasowych w
skali pétlogarytmicznej.

10° 5
102
10° 4

100 Jo

h(r)

1071 4

1072 4

103 : : : ;
-0.04 -0.02 0.00 0.02 0.04
r

Rysunek 2.4: Empiryczne rozkltady wewnatrzsesyjnych loga-

rytmicznych stép zwrotu h(ra;) dla réznych krokéw czaso-

wych At. Dla dtuzszych skal czasowych rozklady coraz bar-

dziej zblizaja sie do rozkladu normalnego (linie ciagle). Dane

na wykresach w tym podrozdziale dotycza sp6tki PKNORLEN
z okresu 15.04.2013 do 15.04.2020.
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Ciagte linie to parabole odpowiadajace dopasowanym rozkladom nor-
malnym dla dwoéch skrajnych skal czasowych. Dla minutowej skali
zdecydowanie wida¢, ze ogony rozkladu zanikaja znacznie wolniej niz
rozklad normalny, a nawet wolniej niz funkcja wykladnicza (ktéra w tej
skali reprezentowana bylaby linia prosta). Na wykresie wida¢ tez, ze czym
wieksza skala, tym ogony staja sie mniej grube, a sam rozklad zbliza sie do
rozkladu normalnego. Dokladniej ten efekt prezentuje na rys. 2.5 w skali
logarytmiczne;j.
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Rysunek 2.5: Wykresy dopelnieri empirycznych dystrybuant
rozkladéw moduléw odchyleni logarytmicznych stép zwrotu
od $redniej dla r6znych krokéw czasowych At. Dla krétszych
skal czasowych ogony rozkladéw daja sie dobrze zamodelo-
waé rozkladami potegowymi, dla dtuzszych skal czasowych
rozktady coraz bardziej zblizaja sie do rozkladu normalnego.

Aby zbada¢ jedynie ogony, rozwazam rozklad wartosci bezwzglednej
réznicy logarytmicznego zwrotu od Sredniego logarytmicznego zwrotu.
Dodatkowo wykres przedstawia nie rozklad, a dopelnienie dystrybuanty
rozkladu H(r) = ["_ h(r")dr’, czyli prawdopodobieristwo, ze zmiana bedzie
wieksza niz rozpatrywana réznica. Widag¢, ze dla krétszych skal czasowych
ogony zanikaja potegowo, jednak coraz szybciej wraz ze wzrostem skali.
Natomiast dzienne zmiany zanikaja szybciej niz potegowo. Wilasnosci,
ktore przedstawilem powyzej to dwa fakty stylizowane. Pierwszy moéwi
o tym, ze rozklady logarytmicznych stép zwrotu sa gruboogonowe i ich
ogony zazwyczaj moga by¢ dobrze przyblizone rozktadami potegowymi.
Jednak zwykle wykladnik ten jest wiekszy niz 3, co oznacza istnienie dwoch
pierwszych momentéw zmian. Natomiast drugi fakt méwi o dazeniu do
gaussowosci wraz ze wzrostem skali. Czym wiekszej skali uzywamy, tym
rozklad zmian zbliza sie do rozktadu normalnego.

Trzeci fakt stylizowany dotyczacy rozkladéw logarytmicznych zwro-
tow odnosi sie do ich niesymetrycznosci. Konkretnie lewa (ujemna) strona
rozkladu zazwyczaj posiada lekko grubszy, wolniej zanikajacy ogon.



2.3. Fakty stylizowane 13

Oznacza to, ze olbrzymie spadki ceny zdarzajq sie czeéciej niz analogiczne
logarytmiczne wzrosty. Rozklad dla rozwazanych danych empirycznych
przedstawiam na rys. 2.6. Podzielilem na nim jednominutowe zmiany na
wieksze od $redniej oraz mniejsze od Sredniej, a nastepnie narysowalem
ich rozklad. Wida¢, ze obydwa ogony zanikaja potegowo, jednak ogon
odpowiadajacy spadkom zanika z odrobine mniejszym wykladnikiem.

10° 5
102 4
10! 4

10° - °

h(lr=<n1)

1071 4

1072 3 ] .

1073 : T . e o oo
1073 1072
Ir=(n]

Rysunek 2.6: Wykresy empirycznych rozkladéw modutéw od-

chyleri logarytmicznych stép zwrotu od éredniej dla jednomi-

nutowego kroku czasowego. Rozklad zyskéw (r > (r)) zanika
szybciej niz rozklad strat.

2.3.2 Aktywnos¢ na gieldzie

Przy analizie danych transakcyjnych jako podstawowe wydarzenie wy-
godnie wybra¢ pojedyncza transakcje. W zwiazku z tym aktywnos$¢ na
gieldzie mierzy¢ mozna poprzez czasy pomiedzy transakcjami At. Zatem
podstawowym procesem opisujacym wydarzenia na gietdzie jest proces
punktowy opisujacy te okresy. Tak jak w przypadku wielu innych proceséw
punktowych opisujacych spoteczne badz ekonomiczne zachowania, charak-
terystyka procesu transakgji jest daleka od procesu Poissona. Na poczatek
mozemy przyjrze¢ sie rozkladowi dlugosci czaséw miedzytransakcyjnych
P(At) przedstawionym na rys. 2.7 w skali pétlogarytmicznej i 2.8 w skali
logarytmicznej. Oczywiscie rozpatruje jedynie okresy w czasie handlu cia-
glego, nie uwzgledniajac okreséw pomiedzy r6znymi sesjami handlowymi.

Widaé znaczne odstepstwo od rozkladu wykladniczego, ktéry bylby obser-
wowany w procesie Poissona. W szczegdlnosci wystepuje grubszy ogon,
co dobrze wida¢ na rys. 2.7 w skali péllogarytmicznej. Jednak na rys. 2.8
widag¢, ze rozklad ten nie zanika tez potegowo, gdyz w skali logarytmiczne;j
nie uklada sie w linie prosta. Istnieje wiele prac modelujacych ten nie-
zwykle ciekawy rozklad [23]-[26]. Na powyzszych wykresach uzywam
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Rysunek 2.7: Empiryczny rozklad czaséw miedzytransakcyj-

nych 1(At) (niebieskie kropki) w skali pétlogarytmicznej wraz

z dopasowanym rozkladem wykladniczego Weibulla (linia cia-
gla).

rozkladu wyktadniczego Weibulla (ang. Exponentiated Weibull distribution
[27]) zadanego przez dystrybuante:

ExpWeibull, .(x) = [1 — exp(—x)]*, x>0,a>0,c>0. (2.2)

Parametry dopasowane metoda najwiekszej wiarygodnosci to a = 4.72 oraz
c = 0.353.

Innym faktem stylizowanym jest niestacjonarno$¢ wewnatrzdzienna,
czesto nazywana ’efektem lunchu’, opisana miedzy innymi w [28], [29].
Aktywnos¢ na gieldzie nie jest stala w ciagu sesji handlowej. Zazwyczaj
najwiecej transakcji wykonywanych jest na poczatku oraz na koncu sesji.
Na i wkroétce po otwarciu nastepuje reakcja na wydarzenia z innych gietd
oraz wiadomosci z okresu bez handlu. Wystepuje takze sprzezenie zwrotne,
poniewaz zwyczajowa najwieksza ptynnosé i najwieksza liczba transakcji
w tym okresie umozliwia zajmowanie pozycji przy wzglednie najnizszych
kosztach, sprzyjajac dalszemu wzrostowi aktywnosci inwestoréw. Podobny
mechanizm obserwuje sie na koniec sesji, kiedy tez inwestorzy dostosowuja
pozycje, by zoptymalizowa¢ ryzyko zwiazane z przetrzymywaniem akty-
woéw przez noc. Okres srodkowy, w okolicach pory obiadowej, jest okresem
z najmniejsza liczba transakcji. Z jednej strony transakcje wynikajace z infor-
magji sprzed otwarcia gieldy zostaly juz wykonane oraz ludzie decydujacy
o zawieraniu nowych pozycji czesto maja obiadowe przerwy w pracy. Z
drugiej strony wystepuje analogiczne sprzezenie zwrotne: skoro o tej porze
jest mniej transakcji i ofert na rynku, to ciezej otworzy¢ nowa pozycje.

Ten efekt mozna pokaza¢ dzielac sesje handlowa na 94 pieciominu-
towe okienka, w ktérych zliczam liczbe transakcji. Nastepnie wynik dla
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Rysunek 2.8: Empiryczny rozklad czaséw miedzytransakcyj-
nych 1(At) (niebieskie kropki) w skali logarytmicznej wraz z
dopasowanym rozkladem wykladniczego Weibulla (linia cia-

gla).

kazdego okienka mozna usredni¢ po wszystkich dniach. Wynik tej pro-
cedury przedstawiam jako czarna linie na rys. 2.9. Dodatkowo niebieskie
stupki prezentuja przyktadowa realizacje aktywnosci dla jednego losowego
dnia. Z wykresu mozna odczyta¢, ze w ciagu pierwszych minut sesji Srednia
aktywnos$¢ to okoto 20 transakcji na 5 minut. Nastepnie aktywnos¢ spada
mniej wiecej do okoto 11 transakcji na 5 minut w 38. okienku odpowiadaja-
cym okresowi od 12:05 do 12:10. Potem aktywnosé¢ znowu ro$nie, osiagajac
maksymalna warto$¢ okolo 33 transakcji w ostatnie 5 minut handlu. Zatem
wida¢, ze najwieksza $rednia aktywno$¢ wewnatrzdzienna jest prawie 3
razy wieksza od minimalne;.

Kolejnym efektem powszechnie wystepujacym na rynkach finansowych jest
klastrowanie aktywnosci. Transakcje na gietdzie nie wystepuja niezaleznie
od siebie. Moga by¢ one reakcja na wiadomosci rynkowe badZz zmiane
ceny danego lub innego aktywa. Zatem w naturalny sposéb w danych
transakcyjnych obserwowane sa okresy spokojne, jak i aktywne. Zjawisko
to wystepuje na wszystkich skalach czasowych - obserwowane jest zaréwno
w danych sekundowych, jak i miesiecznych i jest niezalezne od niestacjo-
narno$ci wewnatrzdziennej. Przedstawione jest to réwniez na rys. 2.9. W
przypadku jednego dnia wystepuja pieciominutowe okienka zawierajace
zaréwno tylko 2 transakgje, jak réwniez 50.

Elementarna metoda zbadania tego zjawiska jest wyznaczenie autokorelacji
(ACF) szeregu czaséw miedzytransakcyjnych Aty, Aty, Ats, . ... Znormalizo-
wana krokowa autokorelacja szeregu zmiennych i.i.d. definiowana jest jako
Srednia:

(Atidtii,) — (A1)

2 7
Oat

ACFy(n) = 2.3)
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Rysunek 2.9: Niebieskimi stupkami przedstawiony jest wykres
empirycznej liczby transakcji w 5-minutowych oknach czaso-
wych dla przykladowo wybranego dnia 06.05.2019. Widzimy
na nim efekt klastrowania aktywnosci: okresy z duza liczba
transakcji wystepuja przy sobie. Natomiast czarna linia przed-
stawiona jest érednia dla kazdego okna wyliczona na pod-
stawie danych ze wszystkich rozpatrywanych dni. Obrazuje
ona niestacjonarno$¢ wewnatrzdzienna, okresy na poczatku i
koricu sesji sa najbardziej aktywne, natomiast w okolicach po-
fowy sesji liczba transakcji jest najmniejsza.

gdzie (-) oznacza operacje usredniania. Wielko$¢ ta okresla rednia site ko-
relacji pomiedzy elementem w szeregu a elementem oddalonym o n miejsc.
Jedli jest dodatnia, to oznacza, ze wielkoé¢ oddalonego elementu bedzie
podobna do wielko$ci rozwazanego elementu. W szczeg6lnosci z procedury
normalizacji wynika, ze ACF,;(0) = 1. Natomiast nieznormalizowana
wielko$¢, zdefiniowana jedynie przez licznik, nazywamy autokowariancja.

Juz sama wewnatrzdzienna niestacjonarno$¢ przedstawiona na rysunku 2.9
wprowadza zaleznosci pomiedzy czasami miedzytransakcyjnymi. Dlatego,
by wyznaczy¢ autokorelacje niewynikajaca z tego efektu, nalezy zestacjona-
ryzowac czasy wyczekiwania. Robie to, wykorzystujac wewnatrzdzienny
wz6r aktywnosci, przedstawiony jako czarna linia na rys. 2.9. Kazdy czas
miedzytransakcyjny dziele przez Sredni czas w przypadajacym pieciominu-
towym okienku. Wzory wewnatrzdzienne wyznaczam osobno dla kazdego
dnia tygodnia. Tak wyznaczone autokorelacje przedstawiam na rys. 2.10
w skali logarytmicznej. Autokorelacja zestacjonaryzowanych danych nie
faluje dla przesuniecia paruset krokéw, co normalnie wynika z efektu
lunchu. Jednak autokorelacja dalej jest znaczna i zanika bardzo powoli z
wykladnikiem bliskim 0.2. Pokazuje to, Ze zaleznosci pomiedzy okresami
bez transakcji sa bezskalowe, rozciagaja sie na wiele skal. Warto zauwazy¢,
ze dla rozwazanych danych transakcyjnych, dziennie wystepuje okoto 1419
czasOw miedzytransakcyjnych. Natomiast autokorelacja jest istotna nawet
po 10000 krokach, co pokazuje ze zaleznosci te widoczne sa nawet dla
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przesunie¢ czasowych rzedu tygodni.
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Rysunek 2.10: Wykres autokorelacji krokowej szeregu empi-

rycznych czaséw miedzytransakcyjnych dla danych surowych

(niestacjonarnych) oraz zestacjonaryzowanych (procedura opi-

sana w gléwnym tekscie). Autokorelacja danych zestacjonary-

zowanych zanika potegowo z niewielkim wykladnikiem. Za-

nik widzimy na wielu skalach (od sasiednich czaséw do prze-
sunie¢ rzedu tygodni).

W tym miejscu warto pokaza¢ tez Srednia dzienna liczbe transakcji dla
kolejnych miesiecy (czarna linia na rys. 2.11). Pomarariczowe linie pre-
zentuja maksymalna i minimalna dzienna liczbe transakcji dla kazdego
miesiaca. W przypadku rozwazanej spétki PKNORLEN widzimy ogdélny
trend wzrostowy aktywnosci.

2.3.3 Liniowe i nieliniowe autokorelacje zmian cen

Niezwykle istotna charakterystyka dynamiki ceny jest zachowanie sie au-
tokorelacji jej zmian, szczegélnie ze wzgledéw praktycznych - przewidze-
nie kierunku zmiany ceny pozwala wprost na zbudowanie strategii inwesty-
cyjnej. W danych transakcyjnych obserwujemy zjawisko po angielsku nazy-
wane bid-ask bounce, odpowiadajace ‘skakaniu’ ceny pomiedzy cenami kupna
i sprzedazy. Z tego tez powodu wystepuje negatywna korelacja zmiany ceny
z kolejna zmiana. Jest to jednak tylko techniczny skutek konstrukgji zasad
ksiegi zleceri, na podstawie ktérego nie da sie w prosty sposéb stworzy¢ stra-
tegii inwestycyjnej. Techniczny opis powstawania tego zjawiska znajduje sie
w rozdziale 2.2. Dalsze zmiany nie sa juz istotnie skorelowane (dokltadniej-
szy opis tego efektu oraz modele go tlumaczace mozna znalez¢ w [30], [31]).
Oznacza to, Ze patrzac na podstawowe zaleznosci, wczesniejsze zmiany ceny
aktywa nie wplywaja na jej przyszle zmiany. Innymi stowy, patrzac jedynie
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Rysunek 2.11: Wykres $redniej (linia czarna), minimalnej oraz
maksymalnej (linie pomararniczowe) dziennej liczby transakcji
dla kazdego z rozpatrywanych miesiecy.

na historie ceny nie jesteSmy w stanie przewidzie¢ przysztych zmian. Auto-
korelacja logarytmicznych zmian cen przedstawiona jest na rys. 2.12.
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Rysunek 2.12: Wykres empirycznej autokorelacji krokowej sze-

regu logarytmicznych zmian ceny. Pierwsza, negatywna war-

tos¢ odpowiada zjawisku bid-ask bounce opisanemu w gtow-
nym tekscie. Kolejne wartosci sa bliskie zeru.

Innym réwnie waznym tematem jest kwestia ogélnie nazywana zarzadza-
niem ryzykiem. W tym przypadku wazniejsza od samego kierunku zmiany
ceny aktywa jest wielko$¢ tej zmiany. Istnieje wiele miar opisujacych te wiel-
kos¢, przykladowo wariancja, odchylenie standardowe czy drugi moment
zmian lub statystyki pochodzace z rozkladu moduléw zmian, jak $rednia
czy odpowiednie percentyle. Jednak ogélne wnioski sa niezalezne od uzy-
wanej metody i wskazuja na kolejny fakt stylizowany, jakim jest klastrowanie
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zmienno$ci. Okresy wiekszej zmiennos$ci zazwyczaj sasiaduja ze soba. Ozna-
cza to, ze mozemy oczekiwa¢, Ze po okresie, w ktérym obserwuje sie duze
skoki ceny, wystapi kolejny okres réwniez z duzymi zmianami. Natomiast
okres spokojny powinien by¢ poprzedzony réwniez wzglednie spokojnym
okresem. Zaleznosci te sq dalekozasiegowe i sa widoczne na wszystkich ska-
lach - zaczynajac od sekundowych i koriczac na skali miesiecznej. Matema-
tycznie to zjawisko najtatwiej opisa¢ autokorelacja moduléw zmian. Jest ona
dodatnia i zanika bardzo powoli, mozna ja dobrze przyblizy¢ zanikiem pote-
gowym o matym wykladniku. Zagadnienie modelowania i przyczyn wyste-
powania tego zjawiska jest wciaz obiektem wielu prac naukowych [32]-[34].
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Rysunek 2.13: Wykres empirycznej czasowej autokorelacji mo-

duléw logarytmicznych zmian ceny w skali logarytmiczne;.

Autokorelacja jest dodatnia i zanika bardzo powoli, z dobrym

przyblizeniem w sposéb potegowy. Jest istotna w wielu skalach
czasowych.
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Rozdzial 3

Modele bladzenia losowego w
czasie ciaglym

W niniejszym rozdziale wprowadzam tematyke modelowania aktywno-
Sci, przedstawiam rézne podejScia do opisu proceséw punktowych oraz
argumentuje, dlaczego zdecydowalem sie na uzycie modeli btadzenia
losowego w czasie ciaglym. Podaje ich definicje oraz metodyke analizy
ich charakterystyk. W szczegdlnosci przedstawiam wyniki pracy [13], w
ktorej analizowatem réznice pomiedzy przelotami a spacerami Weierstrassa,
bazujac na zachowaniu w czasie drugiego i czwartego momentu procesu,
czyli wariancji oraz kurtozy dla przestrzeni izotropowej i jednorodnego
czasu w obecnoéci fluktuagji.

Aktywno$¢ jest ogélnym pojeciem, odnoszacym sie do szerokiego spek-
trum proceséw fizycznych, jednak w mojej pracy skupiam sie na analizie
aktywnos$ci w procesach punktowych — czyli takich, w ktérych obserwuje
sie dobrze zlokalizowane w czasie i przestrzeni zdarzenia losowe. W
takim przypadku naturalnymi miarami aktywnosci sa licznoé¢ zdarzen
w ustalonym przedziale czasowym, intensywno$¢ procesu, czyli gestos¢
prawdopodobieristwa wystapienia zdarzenia, badZ tez czasy miedzyzda-
rzeniowe, ktére wykorzystuje do badania aktywnosci proceséw.

3.1 Modelowanie procesé6w punktowych

3.1.1 Model Poissona

Podstawowym procesem stochastycznym opisujacym zdarzenia statystycz-
nie niezalezne jest proces Poissona, w ktérym czasy miedzy zdarzeniami, At,
pochodza z rozktadu wyktadniczego:

P(At) = Aexp(—AAL), At>0, A > 0. (3.1)

Jak wida¢, czasy miedzyzdarzeniowe wybierane sa losowo, przy czym
intensywnos¢ procesu A jest niezalezna zaréwno od At, jak tez od kolejnosci
losowania. Proces ten traktuje w rozprawie jako referencyjny, do ktérego
odnosze (gtéwnie w rozdziale 6) wyniki analiz danych empirycznych.
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Oczywiscie, w przypadku proceséw ze skorelowanymi czasami miedzyzda-
rzeniowymi, konieczne jest uzycie bardziej wyrafinowanych modeli.

3.1.2 Model autoregresyjnego warunkowego czasu trwania

Istnieje wiele sposobéw modelowania zaleznosci pomiedzy czasami mie-
dzyzdarzeniowymi za pomoca proceséw punktowych w czasie ciagtym [35],
[36]. Powszechnie znanym przykladem jest model autoregresyjnego warun-
kowego czasu trwania (ang. Autoregressive Conditional Duration, ACD) [37],
wprowadzony w 1998 roku. W tym modelu czas do kolejnego zdarzenia jest
kombinacja liniowa poprzedzajacych go przedziatéw czasu. Scislej rzecz bio-
rac, n-ty przedzial czasu miedzyzdarzeniowego jest dany w postaci At, =
0nzn, gdzie z,, n = 1,2,3,..., sa niezaleznymi dodatnimi zmiennymi z roz-
kfadu o $redniej réwnej 1. Natomiast wspotczynnik 6, jest miara zalezno-
Sci aktualnego przedziatu czasu od poprzednich przedzialéw. Dla modelu
ACD(m, q) jest on dany w postaci liniowej rekurencji:

m q
On = a0+ ) aiMy_i+ Y Bibu_i, mqg<mn, a9>0,a;,p; >0, (3.2)
i=1 i=1

gdzie parametry m i q okreslaja zasiegi pamieci w tym procesie. Model ten
zostal wprowadzony do opisu transakgji nieregularnie wystepujacych na
gieldzie, gdzie czasy miedzytransakcyjne posiadaja dodatnia autokorelacje.
Jest wciaz uzywany w modelowaniu danych finansowych [35], a takze np.
ryzyka kredytowego [38]. Ponadto, dzieki swojej uniwersalno$ci, znalazt
liczne zastosowania takze poza rynkami finansowymi, na przyklad do opisu
rozprzestrzeniania sie zakazenn wirusem polio [39] czy korkéw w ruchu
ulicznym [40]. Kanoniczna wersja modelu uwzgledniata jedynie pamieci
krotkozasiegowe, dlatego poczatkowe prace skupialy sie na takim jego
zastosowaniu, przykladowo z wykorzystaniem pamieci jednokrokowej [41].
Wraz z rosnacq popularnoécia modelu powstawaly wersje uwzgledniajace
takze pamieci dlugookresowe [42].

3.1.3 Proces Hawkesa

Innym przykladem modelu uwzgledniajacego czasy miedzyzdarzeniowe w
procesach punktowych w czasie ciaglym jest proces Hawkesa [43], [44]. Zo-
stal zaproponowany w 1971 roku i poczatkowo byt uzywany do opisu trze-
sieni ziemi [45]. Jednak ostatnimi czasy zyskal na popularnosci szczeg6lnie w
kontekscie modelowania aktywnosci spotecznej (wiadomosci na Twitterze
[46], filméw na YouTube [47], wiadomosci email czy rozméw na komuni-
katorach [48]) oraz w finansach [49]. Jest to samopobudzajacy sie proces, co
oznacza, ze kazde wydarzenie moze spowodowac kolejne wydarzenie. Pro-
cesy Hawkesa oparte sa na intensywnosci, czyli prawdopodobienstwie wa-
runkowym wystapienia zdarzenia. Wystapienie zdarzenia powoduje wzrost
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intensywnosci procesu, co skutkuje wiekszym prawdopodobieristwem wy-
stapienia kolejnego zdarzenia. Matematycznie mozna to zapisa¢ nastepujaco:

A(E) = Ag(F) + Z h(t—t), (3.3)

it <t

gdzie Ag(f) to intensywnos$¢ bazowego procesu Poissona, natomiast /(-)
jest funkcja okreslajaca natezenie i zasieg pamieci procesu. Podobnie jak
w przypadku modeli ACD, poczatkowe zastosowanie proceséw Hawkesa
dotyczylo zaleznosci krétkozasiegowych [45] (gdzie funkcja h(-) zanika
wyktadniczo). Jednak ostatnio zostaly zaproponowane modele z pamie-
cia dlugookresowa [49], [50] (gdzie funkcja h(-) zanika potegowo). W
ogoOlnosci, procesy Hawkesa pozwalaja lepiej zrozumie¢ i wytlumaczyé
badane zjawisko, jednak modele ACD sa tatwiejsze w analizie danych
empirycznych.

3.2 Ogoblne wlasnosci i zastosowania modelu bla-
dzenia losowego w czasie ciaglym - uwagi
wstepne

Model btadzenia losowego w czasie ciagtlym (ang. Continuous-Time Random
Walk, CTRW) zostal zaproponowany przez fizykéw Montrolla i Weissa
w 1965 roku [51]. Od tego czasu stal sie modelem szeroko uzywanym w
fizyce, przyktadowo w modelowaniu amorficznych, §wiatloczutych filmow
[52], [53], osrodkéw porowatych [54], [55], w modelowaniu starzenia sie
szkiet [56], [57], transportu koherentnego oraz transportu elektronowego
[58], [59], w modelowaniu geofizycznym [60], [61] czy astrofizycznym [62],
[63]. Czesto wykorzystuje sie go tez do modelowania ukladéw ztozonych
[64]-[69], szczegblnie w tematyce zwiazanej z transportem w fizyce plazmy,
materiatach szklistych, czy w nauce o komérkach [70] oraz w fizyce interdy-
scyplinarnej: fizyce biomedycznej [71], [72], ekonofizyce [8], [23], [73]-[77]
czy socjofizyce [78]. Szersza lista zastosowan i ich krétkie oméwienie znaj-
duje sie w pracy przegladowej [79], w ktorej zebrane zostaly najwazniejsze
osiagniecia z 50-letniej historii r6znych wariantéw formalizmu CTRW.

Jednym z pierwszych istotniejszych osiagnie¢ w ramach formalizmu
CTRW byta mozliwo$¢ wyttlumaczenia i modelowania zaréwno dyfuzji
normalnej, jak i anomalnej — subdyfuzji oraz superdyfuzji. Oryginalnie,
wyniki te zostaly otrzymane poprzez zastosowanie gruboogonowych
rozktadow skokéw oraz czaséw wyczekiwania [80]. Zaproponowano tez
metody stacjonaryzacji réznych wariantéw formalizmu CTRW poprzez
stacjonaryzacje pierwszego skoku [81], [82].

Istotna cecha wskazujaca na elastyczno$¢ formalizmu CTRW jest mozliwo$¢
uwzgledniania w jego ramach r6éznych zaleznosci miedzy podstawowymi
elementami procesu. Skorelowane skoki byly poczatkowo rozwazane w
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tematyce dyfuzji gazow w osrodkach porowatych [83]-[85]. Ostatnio uzy-
wane sa tez m.in. w modelowaniu danych transakcyjnych [14], [30], [31]
— opisatem to w rozdziale 4.1. Wykorzystana tam zostala zasada przekory
Le Chateliera. Jest ona obecna w zjawisku bid-ask bounce (wprowadzonym
w rozdziale 2.3.3). Wynika z niego tendencja ceny do powrotu do swojej
poprzedniej wartosci. Rozwazatem tam takze sprzezenie miedzy skokami
i czasami wyczekiwania pomiedzy nimi [75], [77], [86], w wyniku ktérych
mozna bylo uzyska¢ m.in. zjawisko superdyfuzji. Wspomniane sprzezenie
wystepuje takze w wielce charakterystycznych procesach Weierstrassa, ktére
omoéwitem w podrozdziale 3.5. Procesy te pozwalaja na badania zaré6wno
dyfuzji normalnej, jak tez anomalnej oraz przelotéw i spaceréw Lévy’ego.

Zagadnienie, ktore jest przedmiotem mojego zainteresowania dotyczy
zaleznosSci pomiedzy czasami miedzyzdarzeniowymi. Ostatnio opubli-
kowano kilka prac rozwazajacych formalizm CTRW ze skorelowanymi
czasami wyczekiwania [87]-[94]. Zaleznosci te byly wprowadzane po-
przez jadro pamieci albo przez konstruowanie podporzadkowanego (ang.
subordinated) szeregu czaséw wyczekiwania. Jednak zagadnienie to wy-
maga prowadzenia dalszych badan, gdyz dotychczasowe modele maja
zbyt uproszczony charakter. Przykladowo w niektérych z tych modeli
wprowadzenie zaleznosci w szeregach czaséw wyczekiwania prowadzi
do ich niestacjonarno$ci. W innym przypadku rozwazane sa jedynie pro-
cesy z rozkladem czaséw o nieskoriczonej $redniej i rozkladem skokéw o
nieskoniczonej wariancji. Ponadto, co jest nadzwyczaj istotne, przewidywa-
nia tych modeli nie byly dotychczas poréwnywane z danymi empirycznymi.

Istotna zaleta formalizmu CTRW jest mozliwo$¢ badania w jego ra-
mach procesé6w zlozonych bioracych pod uwage sprzezenia pomiedzy
zmiennymi losowymi jakimi sa zar6wno czasy miedzyzdarzeniowe, jak
tez zmiany procesu. Mozliwo$¢ uwzglednienia obydwu rodzai sprzezen
dynamicznych pozwala na poglebiona analize proceséw stochastycznych
znacznie blizszych procesom rzeczywistym, co wskazuje na przewage
formalizmu CTRW nad modelami typu ACD czy Hawkesa. W modelach
CTRW mozna w naturalny sposéb analizowa¢ (gdyz sa na to nastawione)
takie charakterystyki procesu jak jego wariancje czy autokorelacje. Zapropo-
nowany w niniejszej rozprawie wariant formalizmu CTRW pozwala zbada¢
nie tylko podstawowe charakterystyki procesu, jak $rednia i wariancje, ale
tez bardziej ztoZzone charakterystyki, jak propagator procesu badzZ autokore-
lacja predkoséci i modutu predkosci procesu.

Nalezy wspomnie¢, ze istnieje rozszerzenie proceséw punktowych o
warto$ci nazwane znakowanymi procesami punktowymi (ang. marked point
processes) [95], [96]. Obok procesu punktowego, niezbedny jest réwniez
szereg towarzyszacych oznaczen (ang. marks), ktoérych wartosci reprezentuja
stan procesu. Kazdemu wydarzeniu z procesu punktowego przypisana jest
jedna warto$¢ z drugiego szeregu. Jednak formalizm takiego rozwiazania
oparty jest na formalizmie proceséw punktowych. Formalizm CTRW jest
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znacznie lepiej dostosowany do wyznaczenia szczegétowych charakterystyk
procesu.

Modele CTRW pozwalaja na uwzglednienie fluktuujacych oraz skorelowa-
nych czaséw miedzytransakcyjnych w przeciwienstwie do kanonicznych
modeli szeregéw finansowych, takich jak ARIMA (odwzorowujacego za-
leznosci pomiedzy kolejnymi zmianami ceny) czy GARCH (opisujacego
heteroskedastycznos¢, czyli zmienna w czasie wariancje procesu). Zatem,
formalizm CTRW jest naturalnym wyborem dla modelowania wykorzy-
stywanych w rozprawie danych empirycznych, gdyz laczy on potrzebne
cechy procesow punktowych oraz szeregéw czasowych. Jego elastycznosé
pozwala uwzglednié zaréwno zjawisko klastrowania aktywnosci czy ogol-
niej klastrowania zmiennosci, jak tez zjawisko bid-ask bounce (powrotu ceny
aktywa do poprzedniej wartosci, patrz rozdz. 2.3.3).

3.3 Formalizm CTRW

Celem zdefiniowania dowolnego procesu stochastycznego potrzebne jest
zbudowanie metodologii otrzymywania jego trajektorii, czyli wartosci
procesu w zaleznosci od czasu x(t).

3.3.1 Skokowe btadzenie losowe w czasie ciaglym

Btadzenie losowe w czasie ciaglym o charakterze skokowym jest procesem
stochastycznym, ktérego trajektoria zdefiniowana jest przez ciag zmian war-
tosci procesu Ax; = x1 — xg9, Axp = x2 — x1,..., zwanych skokami procesu
oraz ciag przedziatéw czasu pomiedzy tymi zmianami At; = tg —t;, Aty =
tp —t1,..., zwanych czasami wyczekiwania, przy czym x; jest wartoscia pro-
cesu w chwili £, j =0,1,2,... Zmiany wartosci procesu sa tutaj natychmia-
stowe, zatem w okresach pomiedzy skokami warto$¢ procesu nie ulega zmia-
nie. Przykltadowa trajektorie tego procesu przedstawilem na rysunku 3.1.

Definicja formalizmu CTRW bazuje na gestosci ostrego prawdopodobieni-
stwa warunkowego wystapienia n-tej pary typu (skok procesu, czas wycze-
kiwania) w zaleznosci od poprzednich tego typu par, ktore zapisuje nastepu-

jaco:
P(Axy, Aty |Axy 1, Aty _1; Axy—p, Aty_2; .. .; Axq, Aly), (3.4)

gdzien =1,2,3,...,indeksuje kolejne punkty zwrotne trajektorii, a zarazem
kolejne chwile. Termin "ostre" oznacza tutaj sytuacje, w ktérej wartos¢
procesu x; jest osiagana doktadnie w chwili £;.

Kanoniczny, skokowy model CTRW Montrolla i Weissa opiera sie na
trzech zatozeniach:

(1) aktualne wartosci skoku i czasu wyczekiwania nie zaleza od swoich
przesztych wartosci,
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Rysunek 3.1: Przykladowa trajektoria skokowego bladzenia
losowego w czasie ciaglym. Niebieskim kolorem oznaczone
sa czesci trajektorii odpowiadajace momentom, kiedy wartos¢
procesu jest stala przez czas wyczekiwania At;. Po jego uply-
wie nastepuje natychmiastowa zmiana warto$ci procesu o wiel-
kos¢ skoku Ax;, przedstawiona zielonym kolorem. Proces sko-
kowego btadzenia losowego w czasie ciaglym jest oczywiscie
idealizacja proceséw rzeczywistych.

(2) wartosci skoku i czasu wyczekiwania w kazdej parze sa od siebie sta-
tystycznie niezalezne,

(3) wszystkie skoki pochodza z tego samego rozkltadu h(Ax), podob-
nie wszystkie czasy wyczekiwania z tego samego rozktadu ¢(At);
rozklady te sa niezalezne od n.

Powyzsze warunki pozwalaja na przedstawienie gestosci prawdopodobieni-
stwa danego wzorem (3.4) w prostszej postaci:

p(Axp, Aty |Axy_1, Aty_1; Axp—2, Aty_2; . ..; Ax1, Aty) = p(Axy, Aty), (3.5)

ktéra wykorzystuje w dalszej czeSci tego rozdzialu. Ma miejsce normalizacja:
/ dAx, / AP (A, Aty) =1, 1=0,1,2, .. (3.6)
—o00 0

W og6lnosci, moze wystapi¢ sprzezenie dynamiczne zmiennych losowych
Axy 1 At,, wtedy gestos¢ prawdopodobienistwa p(Axy,, At,), n =0,1,2,...,
nie rozklada sie na czynniki przestrzenny i czasowy. Faktoryzacja ma miejsce
wtedy i tylko wtedy, gdy to sprzezenie znika. W takim przypadku

p(Axy, Aty) = h(Ax,)p(Aty), n=0,1,2,..., (3.7)

gdzie obie gestosci prawdopodobienistwa, przestrzenna h(-) i czasowa ¥(-),
sa unormowane.
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3.3.2 Propagator procesu stochastycznego

Wielkoscia, ktéra pozwala na peitna charakterystyke procesu stochastycz-
nego, jest jego propagator P(xy, f2]x1, t1), czyli prawdopodobienistwo warun-
kowe tego, ze w chwili ¢, proces bedzie miatl wartoé¢ x, pod warunkiem, ze
w czasie t; < t proces miat wartoé¢ x;. Dla jednorodnych proceséw stocha-
stycznych w przestrzeni i czasie (czyli Sci$le stacjonarnych), co ma miejsce w
stanie rownowagi statystycznej ukladu, zachodzi nastepujaca réwnos¢:

P(Xz, t2|X1, tl) = P(Xz + Ax, tr + At|X1 + Ax, t + At)/ (38)

okreslajaca translacyjna niezmienniczo$¢ procesu stochastycznego w prze-
strzeni i czasie. Zatem, przyjmujac Ax = —x; a At = —t1, mozemy propaga-
tor procesu wyrazi¢ w nastepujacej postaci:

dlef P(x,t0,0) = P(x2 — xq,t, — 11]0,0), «x oy —x, t -1y,

P(x,t)
Wyraze teraz propagator procesu, P(x, t) za pomoca propagatoréow czastko-
wych, P, (x,t), n =0,1,2,..., nastepujaco:

t) = i Pu(x,t), (3.9)
n=0

gdzie propagator czastkowy P,(x,t) oznacza gesto$¢ prawdopodobieristwa
tego, ze w chwili ¢t proces ma warto$¢ x i wykonat do tego czasu dokfadnie
n przemieszczen (tutaj skokéw). Powyzsza réwnosé¢ wygodniej jest przed-
stawi¢ (ze wzgledow technicznych) w réwnowaznej postaci wyrazonej za
pomoca transformat Fouriera oraz Laplace’a. Mianowicie,

= i Dy(k,s), (3.10)
n=0
gdzie
Y(ks) = F{L{Y(x,0)}} = /O " dtet / " dxe®Y (x, 1), (3.11)

przy czym Y(x, t) jest dowolna funkcja od zmiennych niezaleznych x oraz .

Mozna teraz wypisa¢ réwnanie dla n-krokowego progatora P (x,t) w
nastepujacej postaci,

P()(x, t) = x—xo)‘I’(t—tO

Pa(x,f) = / dx, 1. / de/ dxl/dtn/ dt, 1. /dt1

p(x1 —xo,t1 —to)p(x2 —x1,t2 —t1) ... p(X — X1, tn — ty1)
Y(t—ty), n=12,..., (3.12)
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gdzie prawdopodobieristwo przetrwania w dowolnym miejscu przez okres
czasu od 0 do t jest dane wzorem:

Y(t) = /too at'p(t). (3.13)

gdzie

¢aq:/iﬁyﬂfj) (3.14)

Dokonujac w réwnaniu (3.12) transformacji Fouriera wzgledem zmiennej
x — xg oraz Laplace’a wzgledem zmiennej t — ¢y otrzymujemy:

Py(k,s) = ¥(s),

Py (k,s) Y(s)[p(k,9)]", n=1,2,.... (3.15)

Korzystajac z réwnan (3.15) i (3.10) otrzymujemy, ze propagator jest suma
nieskoriczonego szeregu geometrycznego o ilorazie |f(k,s)| < 1 postaci:

P =150 =5 T a0

gdzie w drugiej réwnosci wykorzystaliSmy transformate Laplace’a réwnania
(3.13) postaci:

F(s) = L 90) (3.17)

Jak widaé, bazowym rozkladem kanonicznego formalizmu CTRW jest
transformata Fouriera-Laplace’a, f(k,s), lokalnego rozkladu p(Ax,At).
Zatem, mozna stwierdzi¢, ze lokalne witasnosci procesu CTRW pozwalaja
wyznaczy¢ charakterystyki globalne tego procesu. Wynika to z tego, ze
rozpatrujemy uklad znajdujacy sie w stanie r6wnowagi statystycznej, co nie
wyklucza jednak istnienia w ukladzie nawet gigantycznych fluktuacji. Jest
to wykorzystywane przeze mnie w podrozdziatach 3.5.1 — 3.5.6 do iloSciowej
analizy stochastycznego procesu Weierstrassa.

Réwnanie (3.16) jest ogdlna, kanoniczna formula formalizmu CTRW
uwzgledniajaca sprzezenie dynamiczne pomiedzy zmiennymi losowymi,
ktore tutaj jest wyrazone w domenie Fouriera-Laplace’a.

W przypadku braku wspomnianego powyzej sprzezenia ma miejsce
faktoryzacja rozktadu bazowego, #(k,s) = ¢(s)h(k), co prowadzi do
nastepujacej, uproszczonej formuly:

Blk,s) = L= ) (3.18)
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Jak wiadomo, propagator stanowi kluczowa wielko$¢ procesu stocha-
stycznego (tutaj dany ogélnym wzorem (3.16)), gdyz mozemy na jego
podstawie wyznaczy¢ inne charakterystyki procesu, takie jak np. momenty,
a w tym zwlaszcza momenty centralne i absolutne, a z nich kolejne miary,
w tym m.in. kurtozy oraz autokorelacje. Miary te sa konieczne zaréwno
do uzyskania niezbednej wiedzy o procesu, jak tez do opisu faktow
empirycznych.

3.4 Charakterystyki formalizmu CTRW

3.41 Momenty

Waznymi wielko$ciami opisujacymi wlasnosci proceséw stochastycznych sa
jego momenty m;(t), ktére mozemy wyznaczy¢ wprost z propagatora w na-
stepujacy sposéb:

mi(t) = (¥ (t)) = /_oo WP(x,)dx, j=1,2,3,... (3.19)
Z drugiej strony, mozna je otrzymac dysponujac transformata propagatora
P(k; s) jako jego odpowiednie pochodne w punkcie k = 0:

P (k;s)
ok/
mi(t) = L7[m;(s)]. (3.20)

; = ,1=1,2,3,...,
1j(s) ! ‘k:O J

Wystepuja tez przypadki, gdy catka we wzorze (3.19) jest nieokreslona lub
rozbiezna. Wéwczas nie mozemy przypisa¢ j-emu momentowi skoficzonej
wartosci.

Wielkodcia czesto wykorzystywana w kontekscie drugiego i czwartego
momentu jest, oprocz wariangji, nadmiarowa kurtoza, zwana takze eks-
cesem, zdefiniowana jako x(t) = py(t) — 3pa(t), gdzie pj, j = 2,4, sa
momentami centralnymi, odpowiednio, stopnia drugiego (wariancja) i
czwartego. Oczywiécie, momenty centralne sa réwne zwyklym jezeli w
procesie nie wystepuje dryf, gdyz woéwczas znikaja wszystkie zwykle
momenty stopnia nieparzystego. Poniewaz kurtoza nadmiarowa rozkladu
normalnego znika, wiec je$li w procesie wystepuje niezerowa kurtoza,
mozemy okresli¢ go jako proces niegaussowski. Przy czym znikanie kurtozy
nie determinuje gaussowskiego charakteru procesu — do tego potrzebne jest
rowniez znikanie wszystkich wyzszych kumulant procesu, czyli stopnia
wyzszego niz czwarty [97]. W rozdz. 3.5 analizuje wlasnosci proceséw wy-
korzystujac wlasnie druga i czwarta kumulante pod nieobecno$¢ kumulant
nieparzystych.



30 Rozdziat 3. Modele btadzenia losowego w czasie ciaglym

Skt G | nG |
B B-G | BnG
nB nB-G | nB-nG

Tabela 3.1: Tabela przedstawia generyczna klasyfikacje proce-

sow dyfuzji: B oznacza proces Browna, nB oznacza proces nie-

brownowski, G oznacza proces Gaussa, nG oznacza proces nie-
gaussowski.

Pozyteczna, generyczna klasyfikacje proceséw dyfuzji przedstawitem w
tabeli 3.1. Uzylem w niej nastepujacych skrétow:

— B oznacza proces Browna,
— nB oznacza proces niebrownowski,
— G oznacza proces Gaussa,

- nG oznacza proces niegaussowski.

Moéwimy, ze proces dyfuzji jest typu Browna jezeli jego wariancja jest
asymptotycznie liniowa funkcja czasu. Niebrownowski proces dyfuzji jest
jego zaprzeczeniem. Natomiast mamy do czynienia z dyfuzyjnym proce-
sem Gaussa jezeli wartoSci procesu podlegaja rozkladowi Gaussa. Proces
niegaussowski jest jego zaprzeczeniem. Zauwazmy, ze proces typu B-G jest
odpowiednikiem Centralnego Twierdzenia Granicznego (CTG) — dotyczy
czasu ciaglego a nie dyskretnego jak to ma miejsce w CTG. Pierwszy wiersz
w tabeli 3.1 definiuje dyfuzje normalna (nie myli¢ z rozkladem normalnym),
czyli brownowska, a ostatni wiersz w tej tabeli definiuje dyfuzje anomalna,
czyli niebrownowska. Ponadto, pierwsza kolumna tabeli dotyczy dyfuzji
gaussowskiej, a druga niegaussowskiej.

Klasyfikacja przedstawiona w tabeli 3.1 dotyczy zaréwno proceséw
typu przelotow/lotéw (ang. flights), czyli skokowych, jak tez spaceréw
(ang. walks) zachodzacych w czasie ciaglym. Poréwnanie ich dyfuzyjnych
diagraméw fazowych (czyli ich asymptotycznych w czasie wlasnosci)
przedstawilem w rozdz. 3.5 na bazie "uniwersalnych" proceséw Weier-
strassa.

3.4.2 Autokorelacje

Wazna wielko$cia charakteryzujaca proces stochastyczny jest zalezna od
czasu autokowariancja predkosci procesu COV,(t) oraz standaryzowana
autokowariancja, czyli zalezna od czasu autokorelacja predkosci procesu
ACF,(t). Dla stacjonarnego procesu stochastycznego autokowariancje
predkosci procesu mozna wyznaczy¢ z dwoch pierwszych momentéw

procesu:
d2my (t dmq (£)\ 2
COV,(t) = 2d2t§)_( dlt()> . (3.21)
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Autokorelacje mozemy otrzymac¢ dzielac autokowariancje przez poczat-
kowa wariancje predkosci 02(t = 0) = ([o(t = 0)]?) — (v(t = 0))%. Wtedy,
ACF,(t = 0) = 1. Predkos$¢ procesu stochastycznego definiujemy za pomoca
nastepujacego ilorazu réznicowego:

def. Ax _ x(t+Aty) — x(t). (3.22)
AtJr At+

o(t)

Oznaczenie At; moéwi, ze iloraz réznicowy jest liczony w czasie wprzdd,
natomiast Ax nalezy rozumie¢ jako jednokrokowe przemieszczenie procesu
(skokowe lub nie) w czasie wprzéd. Dobrze to ilustruje rysunek 3.2 na
przykladach proceséw Weierstrassa (opisanych w rozdz. 3.5).

Nalezy rozréznia¢ autokowariancje/autokorelacje czasowa i autokowa-
riancje/autokorelacje krokowa. W autokowariancji/autokorelacji krokowej
argumentem jest liczba krokéw (réwna liczbie punktéw zwrotnych) o jaka
przesuwamy sie w szeregu czasowym. Oznacza to Sredniowanie po zespole
statystycznym szeregéw czasowych przy ustalonej liczbie krokéw a nie
przy ustalonym czasie — w réznych szeregach czasowych czas potrzebny
na wykonanie ustalonej liczby krokéw moze by¢ ré6zny. Natomiast w auto-
kowariangji/autokorelacji czasowej przedziat czasu jest ustalony a zmianie
moze ulegac liczba krokéw, jaka miata miejsce w tym przedziale czasu.

3.5 Przeloty oraz spacery

Rozdziatl ten oparty jest na wynikach publikagji [13] i dotyczy wlasnosci for-
malizméw CTRW typu "przelotow’ oraz ‘spaceréw’. Tego typu dychotomia
jest typowa klasyfikacja trajektorii bladzeni losowych, dlatego badanie jej
konsekwengji jest tak waznym elementem niniejszej rozprawy. Zbudowanie
trajektorii bladzenia losowego w czasie ciaglym dla obu wspomnianych
typéw polega na okreéleniu jej kolejnych punktéw zwrotnych — zdarzen
losowych. Punkty te pojawiaja sie w wyniku losowania kolejnych zmian
procesu i odpowiadajacych im przedziatéw czasu.

Procesy stochastyczne typu przelotow sa dobrze widoczne w wewnatrz-
dziennych szeregach finansowych. Cena (zgodnie z definicja podana w
rozdz. 2.2) pozostaje przedzialami stata, a zmienia sie "natychmiastowo" ini-
cjujac realizacje nowej transakcji. W przypadku procesu stochastycznego
typu spaceréw, zamiast natychmiastowo przeskakiwa¢ do nowej lokalizacji
po uptywie losowego czasu wyczekiwania, proces wedruje przez caly ten
okres czasu ze stala predkoscia. Czyli ma miejsce budowanie trajektorii
procesu za pomoca losowych odcinkéw taczacych punkty zwrotne. Tego
typu proces CTRW nadaje sie do modelowania np. potozenia ptakéw (np.
albatroséw [98], [99]) czy samolotéw, podrézujacych pomiedzy réznymi
miejscami docelowymi.

Poréwnanie trajektorii przelotow i spacer6w znajduje sie na rysunku
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3.2. Niektoére rdéznice, jakie niosa ze soba te dwie metody budowania pro-
cesu, zaprezentowane zostaly m.in. w pracy [100]. W tym rozdziale uzywam
procesu hierarchicznego bladzenia Weierstrassa, aby poréwnac¢ obydwa
rodzaje bladzen (przeloty ze spacerami). Bladzenia Weierstrassa cechuja sie
sprzezeniem pomiedzy zmiang wartoéci procesu a odpowiadajacym mu
czasem realizacji, z ktérego wynikaja odmienne charakterystyki przelotéw
oraz spacerOw Weierstrassa. Wybér procesé6w Weierstrassa wynika z
faktu, ze mozna je wykorzystywaé jako reprezentantéw dowolnej klasy
uniwersalnosci poprzez odpowiedni wybér parametré6w proceséw. Jest
to wielce przydatna wilasnos¢ kategoryzujaca w badaniu wspomnianych
powyzej sprzezen. Jest o tym mowa w dalszej czesci rozprawy. W roz-
prawie poréwnuje dyfuzyjne diagramy fazowe przelotéw Weierstrassa
(ang. continuous-time Weierstrass flight, CTWF) z odpowiadajacym im
spacerom Weierstrassa (ang. continuous-time Weierstrass walk, CTWW).

CTWF CTww
10 10
8 -~ 8
1
x H x
2 ! 2
§ 6 ._'| 1 i § 6 1
1 1 .
s E ! ibob’ a
3 b ! B
£ 4] P | £ 47
© ! ! [ ©
1 | 1
1 1 1
- 1
2 EEAY: 2
1
o—
0 0
0 5 10 15 0 5 10 15
Czast Czast

Rysunek 3.2: Poréwnanie trajektorii (czarne ciagle linie) jed-
nowymiarowych przelotéw, czyli CTWF oraz spaceréw, czyli
CTWW, na przykladzie proceséw Weierstrassa. Niebieskie
kropki reprezentuja punkty zwrotne, ktére taczone sa odpo-
wiednimi trajektoriami. Dla CTWF warto$¢ procesu jest prze-
dziatami stala, a w przypadku wystapienia nowego zdarzenia
pojawia sie natychmiastowy skok potozenia (przelot) do nowej
lokalizacji. Natomiast w przypadku CTWW predkos¢ procesu
jest przedziatami stata przez caly okres czasu uptywajacy po-
miedzy kolejnymi punktami zwrotnymi.

3.5.1 IloSciowe definicje przelotow oraz spaceré6w Weier-
strassa

Podstawowa wlasno$cia wyrédzniajaca procesy Weierstrassa jest zgeome-
tryzowana hierarchiczna stochastyczna struktura zdarzen. Kazde kolejne
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pokolenie tej hierarchii oznacza zdarzenie wystepujace z mniejsza czesto-
tliwoscia, ale wieksze zaré6wno co do absolutnej zmiany wartosci procesu,
jak tez dtugosci przedziatu czasu potrzebnego na realizacje tego zdarzenia.
Procesy Weierstrassa mozna zdefiniowaé poprzez (wielopokoleniowy)
rozktad p(Ax, At) kolejnego przemieszczenia Ax oraz czasu At potrzebnego
na jego pokonanie. W ramach kazdego pokolenia z osobna zmiany te, w
przypadku przelotéw, sa statystycznie niezalezne od poprzednich, jednak
sumarycznie rzecz biorac ma miejsce dla obu typéw sprzezenie pomiedzy
Ax oraz At. Zatem, rozklad p(Ax, At) w og6lnosci nie rozktada sie na osobne
czynniki przestrzenny i czasowy, czyli p(Ax, At) # h(Ax)p(At).

W Swietle powyzszego, dla zadanego poziomu hierarchii j formalizmu
CTWF mozna zaproponowac wyrazenie postaci:

Ax At 1 1 Ax At

F

j L e 3.23
p] (bob] T()T]) bob] T()T](P <b0b] T()T]) ( )

gdzie by, b > 1, 1y oraz T > 1 sa parametrami procesu, a ¢(-,-) jest
znormalizowana funkcja skalujaca niezalezna od poziomu j, czyli
Jo do [%_dyp(y,8) = 1. Dodatkowo, zakladam symetrycznos¢ funkgji
¢ ze wzgledu na przestrzenna zmienna y, co powoduje, Zze rozwazany pro-
ces nie posiada dryfu. Przyjmuje dla przelotéw i spaceréw, ze przestrzer jest
izotropowa a czas jednorodny. Wszystkie wielkosci zwiqzane z przelotami
beda posiadaty gérny indeks f, natomiast ze spacerami V. Powyzszy wzor
mozna interpretowaé nastepujaco: wielkosci skokéw zarzadzane sa przez
wielko$¢ iloczynu byb/, ktéry w oczywisty sposob zalezny jest od poziomu
hierarchii j, natomiast czasy wyczekiwania sa niezalezne od wielkosci
skokéw i réwniez zarzadzane sa poziomem j poprzez warto$é iloczynu /.
Przy czym, im wyzszy poziom w hierarchii, z tym ($rednio rzecz biorac)
wiekszymi skokami i czasami wyczekiwania mamy do czynienia.

Analogiczna definicja dla spaceréw Weierstrassa jest nastepujaca:

A At 1 1 A At
A e Y e S (3.24)
I\ vgvi At 1T/ voU/ At 9T/ voU/ At ToT/

gdzie vy, v > 0 to parametry procesu. W przypadku spaceréw rysunek 3.2
(prawy panel) dobrze ilustruje zdefiniowane powyzszym wzorem sprzeze-
nie pomiedzy pojedynczym przemieszczeniem procesu a czasem potrzeb-
nym na jego pokonanie. Wystepuije tutaj predkosé¢ pokoleniowa vyv/ z jaka
porusza proces w przedziale czasu At. Parametry proceséw sa dobrane w
sposob naturalny, tzn. tak aby w kazdym pokoleniu (na kazdym poziomie
hierarchii) zachodzily réwnosci:

bob] = Z)()Uj <At>], (At>] = T()Tj, by = vo1y, b = vT, (3.25)

gdzie (At) j jest srednim czasem wyczekiwania dla pokolenia j. Jak widag,
w przypadku spaceréw, proces jest przedzialami liniowa funkcja czasu.
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Wystepuje tutaj liniowa zaleznos¢ czasoprzestrzenna na kazdym poziomie
hierarchii.

Kazdy kolejny poziom w hierarchii wystepuje z mniejsza waga — mniejsza
czestotliwodcia. Przyjmujemy przypadek najprostszy, gdy stosunek tych
wag w kolejnych pokoleniach jest staly. Prowadzi to do nastepujacego
wyrazenia:

. 1\ 1
definiujacego rozklad geometryczny sterowany parametrem N, ktéry okre-
$la stosunek kolejnych wag (];; )1) = & niezaleznie od j. Jest to zgodne z

geometrycznym charakterem v/, T/ oraz /.

W tym miejscu warto wprowadzic’: parametry zlozone typu wykladni-

kéw fraktalnych g = 1 = . al ll(z)ggf
« i B charakteryzuja asymptotyczne wlasnosci procesow Weierstrassa i
definiuja ich przynaleznos¢ do okreslonej dyfuzyjnej klasy uniwersal-
no$ci. Wykazuje ponizej, ze sa to podstawowe wykladniki pozwalajace
budowa¢ dyfuzyjne diagramy fazowe zaréwno dla procesu typu CTWE, jak
tez CTWW.

oraz &« =

To wladnie te dwa parametry

W oparciu o rozwazania przeprowadzone w niniejszym podrozdziale
definiuje jednokrokowe rozklady postaci:

1 Ax At
Ax At) w(j -, -],
Z b()b] T()T](P (bob] T()T])
1 A At (8.27)
p" (Ax, At) Z w(j 0 ( iy ) ,
vov]At Tt/ VU At 19T/

stanowiace uogoélnione (hierarchiczne) rozklady Weierstrassa. W dalszym
ciagu wprowadze jawna posta¢ funkcji skalowania ¢ wspélna dla dla prze-
lotéw i spaceréw.

3.5.2 Rozklad skokéw oraz ich sprzezenie z czasami wycze-
kiwania

Aby pokaza¢ réznice pomiedzy przelotami i spacerami, wyznaczam drugi
moment pojedynczych skokéw —w przypadku spaceréw uwzgledniam jesz-
cze losowos¢ czasu wyczekiwania. Dla ustalonego poziomu j mozna ze wzo-
réow (3.23) i (3.24) fatwo wyznaczy¢ zaleznos$¢:

(ax?)] = (Ax?); Q@: ), (3.28)
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gdzie moment (y"8™) = [7do9™ [ dyy"¢(y,8), n,m > 0, przy czym y =
Ax At

- 0= o Orazw oparciu o wyrazenie (3.23) otrzymuje:

(Ax%)] = B3bY (), (3.29)
gdzie (y?) jest momentem brzegowym bezwymiarowej zmiennej losowej y.

W przypadku, gdy funkcja skalujaca ¢ faktoryzuje sie (co ma miejsce
ponizej - patrz wzoér (3.32)), zachodzi (y"9™) = (y") (9™) a stad réwnanie
(3.28) upraszcza sie do postaci:

(A% = (8) (A%, (3.30)

gdzie (9?) jest drugim momentem bezwymiarowej zmiennej losowej 8.
W powyzszej relacji wspoélczynnikiem proporcjonalnosci jest wariancja
zmiennej losowej ¢, ktéra wzbogaca fluktuacje przemieszczenia spaceru (w
stosunku do przelotu) na sposéb multiplikatywny.

Powyzsze wyrazenie w polaczeniu z wzorami (3.27) wyznacza zwiazek po-
miedzy sumarycznymi (wazonymi/hierarchicznymi) drugimi momentami
pojedynczych przemieszczen dla spaceréw i przelotéw. Mianowicie,

(8" = Y w(j) (a5 = (a2 (82) = Y (2) (%),
=0 (3.31)

Y { LN > 1dlap > 2,

codlap < 2.
Jak wida¢, zakres zmiennoSci parametru B okreSla przedzial, w ktérym
istnieje drugi moment pojedynczych przemieszczen dla obydwu proceséw
Weierstrassa, badZ nie istnieje (tzn. jest nieskoriczony). Powyzsze wyrazenie
jest interesujace, gdyz pomimo istnienia zaleznosci pomiedzy zmiennymi
losowymi Ax oraz At ma miejsce faktoryzacja wariancji jednokrokowego
przemieszczenia na czeS¢ przestrzenna i czasowa.

Aby dokladniej zobrazowa¢ réznice wystepujace pomiedzy przelotami
a spacerami, przyjme prosta posta¢ ¢, ktoérej bede uzywacé tez w dalszych
obliczeniach w tym rozdziale:

Py,8) = 16y 1) + 8y +1)] exp(~9). (3.32)
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Wstawiajac konkretne postaci ¢ oraz w(j) do réwnar (3.27) otrzymuje jawne
postaci faczonych rozkladéw przemieszczenn Ax i odpowiadajacych im prze-
dzialéw czasu At:

1 1\ & , A
p(Ax,At) = - (1 N) ];)N [0(x —zj) +6(x + zj)] - exp( TOT],)
om. | PF(Ax,At), dlaz; = bol,
~ P (ax, At dlaz; = vouiAt.
(3.33)

Histogramy tych rozkladéw przedstawitlem na rysunku 3.3. Na tym wy-
kresie dobrze wida¢ (prawy panel) sprzezenie pomiedzy warto$ciami
przemieszczenn a czasami potrzebnymi na ich pokonanie. Lewy panel
ilustruje brak takiego sprzezenia.

CTWF CTWW
20 20
18 1 18 A
16 16
14 1 14
12 A 12
S 5
2 10 A S 10
= E3
8 8 -
6 6
44 4
24 2
0 T 0
0 2 4 6 8 10 0 2 4 6 8 10
At{To] At[ o]

Rysunek 3.3: Przedstawienie sktadowych pokoleniowych facz-
nego rozkladu dla przelotéw (lewy panel) oraz spaceréw
(prawy panel), zgodnie ze wzorem (3.33) dla wartosci N =
1057 = 13,b = 14 iv = 14. Poszczegblne linie na obu
panelach sa indeksowane poziomem j, opisujac sktadowe po-
koleniowe obu rozkladéw. Wzrost intensywnosci szarosci pik-
sela odpowiada wiekszej wartosci rozktadu — jest ona ttu-
miona czynnikiem wykladniczym. Prawy panel dobrze ilu-
struje sprzezenie wartoéci czasu wyczekiwania z wartoscia
skoku.
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Ze wzoru (3.33) fatwo otrzymam rozklady brzegowe postaci:

Foan = oV (a0 = (1- LYy NI exp (AL
P (A =9 (At) = <1 N);N JTOTjexp( Torf)'

W (8x) = (1 _ %) Y NTa([x] — bb), (334)
fa

1 1\ & |Ax|
W ——(1—-= j 124
AN =5 (1 N> j_oN oP ( bobj) ’

ktére uzywam ponizej do wyznaczenia propagatoréw.

3.5.3 Propagatory spacer6w oraz przelotéw

Propagatory zestacjonaryzowane ze wzgledu na warunki poczatkowe wyra-
zone sa nastepujaco ogélnymi wzorami w domenie Fouriera-Laplace’a [101]:

PYE(k,s) = EWE(k,s) + gV (k,s)PVF (k,5), (3.35)

gdzie dla spacerow:

- 00 j (3.36)
i IV (ks) 2o (%) 01 (ks)
PRs) = 12w e = @ j /
RS, (1) (1-0p )
. I +1
j(ks) (stoT/ +1)2 + (kbob/ )2
natomiast dla przelotow:
':‘F(k S) T <1 T) i (TZ)]éF(k S)
= 7 — 0 X7 NT 79)rs
N faur N J
Ty w= /T ~
o) = (1-5) L () ©f ks,
j=0 , (3.37)

0
OF (k,s) = cos(kbob)O}" (k = 0,5),
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przy czym indeks st oznacza stan stacjonarny. Pierwszy sktadnik po prawej
stronie réwnania (3.35) opisuje przetrwanie procesu stacjonarnego (spaceru
lub przelotu) w poczatku uktadu, a pierwszy czynnik w drugim skladniku
stacjonarny rozklad pojedynczego przemieszczenia (spaceru lub przelotu).
Stan stacjonarny uzyskuje sie tutaj poprzez takie sredniowanie stanu nie-
stacjonarnego po warunku poczatkowym, ktére prowadzi do niezaleznosci
od wyboru chwili poczatkowej. Dzieki temu uzyskuje sie kluczowa relacje
(3.35) pomiedzy stacjonarnymi i niestacjonarnymi propagatorami, zaré6wno
dla procesu przelotéw jak i spaceréw. W dalszym ciagu wykorzystuje klu-
czowy wzor (3.35) do analizy zestacjonaryzowanych parzystych momentéw
przestrzennych.

3.5.4 Momenty spacerow
Zgodnie z wynikami zawartymi w pracach [102], [103], drugi moment pro-

cesu spacer6w mozna zapisac jako sume czeéci regularnej i singularnej:

(x(£)2) = (2D + (x(H2) (3.38)

st

Wyraz regularny odpowiada brownowskiemu (liniowemu) wzrostowi wa-
riancji z czasem:

W
Wreg W (sz)
(x(t)%)s © =2DNt = a7 t. (3.39)
Natomiast cze$¢ singularna jest rowna:
5\ Wsing ZDZXf £\
BV = o)
[(m+1) \1
pWf _ 2 T 1-1/N o (3.40)

st O(At) TogN [sin(m(m —1))|

2
171:1+(X(E—1>, 171751,7]1<2,

gdzie T'(-) to funkcja gamma Eulera. Przechodzac do funkgji autokorelacji
predkosci procesu, korzysta sie, oczywiscie, jedynie z czesci singularnej:

W _1d_2 2 W_ld_z 2 Wsing_lﬂl—l W i -(2-m)
Cat (1) = 5 (07t = 50 GO0 = a5 ,
(3.41)
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gdzie 171 < 2. W podobny spos6b mozna przeanalizowac¢ czwarty moment,
dla ktérego réwniez zachodzi:

(x(ONY = (X(OHEE + (x(tHy",

2 2
2BV 12 (DY) 2 =12(DV) &
st st

st
(e — 2205 (LY

st a 1“(172 + 1) T ’
D 4 T0 1—=1/Nma(ny—2)(n2 —3)
O(At) logN  sin(m(n,—1)) ’

4
172:1+0c<——1), m <4,

p
gdzie thf W jest fraktalnym wspétczynnikiem super-Burnetta. Wyprowadze-

nie powyzszych wzoréw wraz z zakresem ich stosowalnosci zamie$citem w
dodatku C.

(3.42)

2fW
st

=b

3.5.5 Dyfuzyjny diagram fazowy procesu spaceréw

Potaczenie réwnan (3.40) i (3.42) pozwala na zbudowanie wygodnych dyfu-
zyjnych diagraméw fazowych procesu spaceréw Weierstrassa w zmiennych
% oraz % za pomoca drugiego (MSD) i czwartego (MSQD) momentu pro-
cesu. Diagramy te zostaly zbudowane dla asymptotycznie diugich czaséw
t > 17 (stad przymiotnik "dyfuzyjne"). Odpowiednie obliczenia zawartem
w dodatku C. Na rys. 3.4 wyrdznitem szes¢ osobnych faz, ktére oméwitem

ponizej (w oparciu o wczesniejsza publikacje [13]).

Pierwszy poziom klasyfikacji (drugorzedowy) wynika z zachowania
drugiego momentu i dzieli diagram na trzy zasadnicze obszary.

1. Dla [1—5 < % mamy do czynienia z obszarem (skladajacym sie z faz pot-
regularnych SRD1 i SRD2 oraz fazy regularnej RD), ktére charaktery-
zuja sie liniowa zaleznoscia drugiego momentu (MSD) od czasu t oraz

subliniowq zaleznoscia skltadowej singularnej MSD od czasu. Innymi
Wreg

stowy, sktadowa regularna (x(t)2),

singularna <x(t)2>gsmg . Ta druga stanowi podstawe potegowego zani-
kania w czasie funkgji autokorelacji predkosci procesu. R6znice pomie-
dzy tymi fazami sa widoczne dopiero na poziomie MSQD - jej sktado-
wej singularnej oraz nadmiarowej kurtozy.

dominuje tutaj nad skladowa

2. Kolejny obszar diagramu fazowego lezacy pomiedzy czerwonymi li-
niami prostymi zadanymi rownaniami g = g oraz % = % + % (sktada-
jacy sie z dwoéch faz ED1 i ED2), jest scharaktgryzowany superliniowa

zaleznoscia sktadnika singularnego <x(t)2>gsmg od czasu t (wyktadnik
71 przyjmuje tutaj wartosci pomiedzy 1 a 2). Oznacza to, ze MSD jest
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Rysunek 3.4: Diagram z sze$cioma fazami dyfuzyjnymi dla
stacjonarnego procesu CTWW. Dokladny opis znajduje sie w
glownym tekscie w rozdziale 3.5.5. Uzyte tutaj skroty: MSD
(ang. stationary mean-square displacement) :(x(t)2>2/, MSQD
(ang. stationary mean-square quadratic displacement)= <x(t)4>2/.
(Uwaga: x oznacza tutaj skrétowo warto$¢ absolutna kurtozy.)

skoriczone, ale ros$nie szybciej niz liniowo (superliniowo), z wyktadni-
kiem 71, przy czym jego granica gorna dla tego obszaru jest wartosc¢
1 = 2 odpowiadajaca dyfuzji balistycznej.

3. Dla obszaru odpowiadajacego ostatniej czesci diagramu fazowego le-
. s, . Qe es . .. W
zacego powyzej gornej czerwonej linii, MSD jest rozbiezne (x(t)%),, =
oo, dla t > 0. Jest to faza dyfuzji Lévy’ego (LD).

Jak wida¢, dyfuzyjny diagram fazowy przedstawiony na rys. 3.4 wprowadza
zasadnicza klasyfikacje procesu Weierstrassa, scharakteryzowana asympto-
tycznym (w czasie) zachowaniem drugiego (MSD) i czwartego (MSQD) mo-
mentu. Teraz omawiam wklady do charakterystyki poszczeg6lnych dyfuzyj-
nych faz diagramu, jakie daje ten drugi, czyli do charakterystyki na poziomie
czwartego rzedu.

1. Faza lezaca ponizej dolnej niebieskiej linii prostej (zdefiniowanej przez
warto$¢ wykltadnika 7, = 2) jest scharakteryzowana przez liniowa za-
leznos¢ MSD ~ t oraz brak nadmiarowej kurtozy x = 0 (czyli znika-
nie kumulanty, tzn. pétzmiennika czwartego rzedu), a ponadto przez
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czwarty moment (MSQD) rosnacy kwadratowo z czasem, <x(t)4>g ~
t2. Jest to faza dyfuzji regularnej RD. Jednak nie wiemy czy wyzsze ku-
mulanty znikaja w tej fazie, co oznacza, ze nie wiemy czy nalezy ta faze
traktowac jak gaussowska. Zatem, mozemy na nia patrzeé co najwyzej
jak na dyfuzje brownowska. Innymi stowy, procesy nalezace do tej fazy
trzeba lokowaé¢ w trzeciej kolumnie i drugim wierszu (element B-nG)
tabeli 3.1.

2. Dla faz diagramu (SRD1 i ED1) znajdujacymi sie pomiedzy niebieskimi
(uko$nymi) liniami prostymi odpowiadajacymi warto$ciom wykladni-
kéw (dolna linia) 7, = 2 a (gbérna) 72 = 4, istnieje skoriczona nadmia-
rowa kurtoza, a czwarty moment procesu roénie w czasie szybciej niz
kwadratowo, z warto$cia wyktadnika 77, ograniczona od goéry warto-
Scig rOwna 4.

3. Fazy lezace pomiedzy gérnymi liniami prostymi: niebieska i czerwona
(czyli SRD2 i ED2) sa scharakteryzowane rozbiezna nadmiarowa kur-
toza wynikajaca z rozbieznosci MSQD.

4. Natomiast obszar powyzej gérnej czerwonej linii prostej stanowi faze
LD.

Jak wida¢, mamy tutaj do czynienia z szeScioma fazami: RD, SRD1, SRD2,
ED1, ED2, LD. Pie¢ sposéréd tych faz (czyli za wyjatkiem fazy LD) charakte-
ryzuja sie dlugozasiegowym (potegowym) zanikiem autokorelacji predkosci
procesu z wykladnikiem zaniku réwnym 2 — 71, gdzie 771 < 2 . Z punktu
widzenia skoriczonej wartosci MSD, fazy te ograniczone sa od gory dyfu-
zja balistyczna. Zauwazmy jeszcze, ze wspomnianych pie¢ faz zajmuje 3/4
obszaru diagramu fazowego (pozostate 1/4 obszaru dotyczy fazy LD).

3.5.6 Charakterystyka procesu przelotéw

Z technicznego punktu widzenia, analiza stacjonarnego procesu CTWF
jest analogiczna do tej dla procesu CTWW. Jednakze na skutek tego, ze
predkosci procesu pomiedzy punktami zwrotnymi sa nieskoriczone (proces
jest typu skokowego), faza LD zajmuje znacznie wiekszy obszar (3/4 calego
diagramu fazowego) w poréwnaniu z pozostatymi fazami (patrz rys. 3.5).
W tych pozostatych fazach skladowa singularna jest zdominowana przez
liniowe zachowanie drugiego momentu w funkgji czasu (gdyz #; < 1).
Prowadzi to z jednej strony do procesu brownowskiego, a z drugiej do
potegowego zaniku funkcji autokorelacji predkosci procesu.

Na diagramie fazowym linie rozdziatu faz dla procesu CTWF nie prze-
cinaja sie w przeciwienistwie do procesu CTWW. Obszar diagramu ponizej
czerwonej linii jest rozdzielony niebieska linia, odpowiadajaca dwém fazom,
w ktérych czwarty moment procesu zachowuje sie réznie. Powyzej niej
znajduje sie poélregularna dyfuzja SRD2 z nieskoficzona kurtoza x = oo
nalezaca do fazy oznaczonej w tabeli 3.1 przez element B-nG. Ponizej jest
obszar dyfuzji regularnej RD; jednak podobnie jak w przypadku procesu



42 Rozdziat 3. Modele btadzenia losowego w czasie ciaglym

spaceréw, jest to obszar fazy brownowskiej, ale niegaussowskiej (takze
B-nG).

Fakt, ze diagram fazowy dla stacjonarnego procesu CTWW jest bogat-
szy (posiada wieksza liczbe faz) od analogicznego dla procesu CTWF
nie dziwi. Proces CTWW dostarcza wiecej mozliwosci, gdyz pojedyncze
przemieszczenie w tym procesie jest (dodatkowo) bezposrednio zalezne od
czasu (w przeciwienistwie do procesu stacjonarnego CTWF). Doktadniejsza
analiza zachowania momentéw dla procesu przelotéw (podobnie jak dla
spacerow) jest zawarta w dodatku C.

™=
Nl =

m<1; MSD~t
N, <2; MSQD ~ t2

RD
k=0

o

NP
QI N+
Alw 4

Rysunek 3.5: Diagram z trzema fazami dyfuzyjnymi dla stacjo-

narnego procesu CTWE. Jak wida¢, faza LD zajmuje trzykrotnie

wiekszy obszar niz pozostate fazy razem wziete — odwrotnie
jak ma to miejsce dla procesu CTWW (patrz rys. 3.4).

3.5.7 Podsumowanie

W niniejszym podrozdziale przedstawilem wplyw hierarchicznego sprze-
zenia czasoprzestrzennego na dyfuzje. W przypadku CTWW zaprezento-
walem to, jak na dyfuzje oddziatuja: zhierarchizowana predkosci procesu,
$redni czas relaksacji oraz dodatkowe sprzezenie powstate ze wzgledu na
czasy elementarnych (jednokrokowych) przemieszczeni pomiedzy punktami
zwrotnymi trajektorii bladzenia. W przypadku CTWE, w ktérym nie wy-
stepuje wspomniane dodatkowe sprzezenie, ukazalem zalezno$ci miedzy
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dyfuzja a zhierarchizowanymi elementarnymi przemieszczeniami tego
procesu.

Kluczowym, nowatorskim wynikiem tego rozdziatu, wynikajacym z wymie-
nionych powyzej sprzezer, sa diagramy fazowe dla procesu spaceréw (rys.
3.4) i przelotow (rys. 3.5), wykazujace ré6znorodnosé proceséw Weierstrassa.
Zasadniczo mozna wyréznié trzy gtéwne cechy tych diagramoéw fazowych,
a mianowicie:

(i) Powod istnienia wiekszej liczby faz w przypadku diagramu dla pro-
cesu CTWW, w poréwnaniu z tym dla CTWF, ma charakter fluktu-
acyjny., co determinuje tez zachowania zaréwno MSD, jak i MSQD.
Dynamika stochastyczna wyrazona w postaci elementarnego, pojedyn-
czego przemieszczenia procesu CTWW vgv/ At zalezy zaréwno od vgv/,
jak tez od fluktuujacej zmiennej losowej At, podczas gdy dla CTWF
tylko od bob/. Zatem dla procesu CTWW mamy do czynienia (w ramach
rownan dynamiki stochastycznej) z dwiema zmiennymi losowymi (j
oraz At), podczas gdy dla procesu CTWF tylko z jedna (j).

(ii) W przypadku obu proceséw fazy zdefiniowane skoriczona warto$cia
MSD dla skoriczonego czasu, sa ograniczone przez dyfuzje balistyczna
(scharakteryzowana wykiadnikiem #; = 2). Pokonanie tego ograni-
czenia i przejScie do obszaru superbalistycznego (hiperdyfuzji) bytoby
mozliwe w przypadku procesu CTWW pod warunkiem zastapienia ru-
chu jednostajnego w pojedynczym przemieszczeniu procesu (w dyna-
mice stochastycznej) przez jednostajnie przysp1eszone przemieszczenie
(czyli zamiast wyrazenia vgv/ At wziecie agal (At)?/2).

(iii) Dla obu proceséw wystepuje faza LD, przy czym dla procesu CTWW
zajmuje ona obszar 1/4 diagramu fazowego, podczas gdy dla procesu
CTWEF jest to obszar 3/4 diagramu.

Warto zda¢ sobie sprawe, ze technicznie rzecz biorac, granice istnienia faz
réznych od fazy LD, sa zdefiniowane po prostu warunkami okreslajacymi
zbiezno$¢ (nieskoriczonych) szeregéw definiujacych momenty typu (C.1)
oraz (C.3). Odpowiednie obliczenia dotyczace tego aspektu przedstawitem
w dodatku C. Zauwazmy réwniez, ze analiza diagraméw fazowych (czyli de
facto momentéw) rzedoéw wyzszych niz czwarty (m > 4) zostata wstepnie
przeprowadzona w mojej pracy [13], a takze naszkicowana w dodatku C.
Jednak w niniejszym rozdziale skupilem sie przede wszystkim na diagra-
mach typu dyfuzyjnego (m = 2,4). Analiza wyzszych momentéw procesu
pokazuje znaczacq réznice pomiedzy procesami spaceréw i przelotow.
Spacery, poprzez uwzglednianie dodatkowego (w stosunku do przelotéw)
sprzezenia czasoprzestrzennego, sa procesem znacznie bardziej ztozonym.

Proces przelotow posiada kurtoze albo znikajaca, albo nieskoriczona.
Ponadto, drugi moment tego procesu jest albo liniowa funkcja czasu, albo
jest rozbiezny. Rozréznione zostaty tutaj trzy fazy: 1) dyfuzji Lévy’ego (LD),
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2) dyfuzji potregularnej (SRD2) z nieskoriczona kurtoza oraz 3) brownow-
skiej i niegaussowskiej dyfuzji regularnej (RD). Te dwie ostatnie fazy naleza
do kategorii oznaczonej w tabeli 3.1 jako B-nG.

Natomiast w przypadku drugiego momentu dla spaceréw: 1) drugi
moment moze rosnaé liniowo w czasie, 2) moze wystepowac superdyfuzja,
az do dyfuzji balistycznej lub 3) daje sie zaobserwowa¢ dyfuzje Lévy’ego.
Fazy, o ktérych mowa w pkt. 1), naleza do kategorii B-nG (patrz tabela
3.1), natomiast wspomniane w pkt. 2) do kategorii nB-nG. Ponadto dla
procesu spaceréw zachodza bardziej zltozone zachowania dla czwartego
momentu. Wystepuje tutaj: 1) faza bez nadmiarowej kurtozy (RD), trzy-
krotnie obszerniejsza niz dla procesu przelotéw, 2) faza (ED1) z czwartym
momentem rosnacym szybciej niz kwadratowo w czasie, z wykladnikiem
2 < 12 < 4 oraz 3) faza (ED2) z nieskoriczona nadmiarowa kurtoza. Przejscie
pomiedzy fazami o skoriczonej (SRD1 i ED1) oraz nieskoriczonej (SRD2 i
ED2) nadmiarowej kurtozie rozdziela na dwie czesci granica faz w postaci

. 1. c e qeas . . . -1 1 3 .
niebieskiej linii prostej zadanej réwnaniami: B =1 Tagorazi =4

Powyzsze wyniki pokazuja obiecujace mozliwosci modelowania r6z-
nych rodzajéw dyfuzji, a w tym zwlaszcza dyfuzji anomalnej, za pomoca
procesu Weierstrassa — procesu, ktéry za pomoca jednej formuly i zmien-
nych wartosci parametréw sterujacych jest w stanie opisa¢ prawie wszystkie
rodzaje dyfuzji ujete w tabeli 3.1. W tym w szczegdlnosci takze dyfuzje
typu nB-G, czyli fraktalnego (utamkowego) ruchu Browna (ang. fractional
Brownian motion, fBm) zdefiniowanego przez Kolmogorowa w kontekscie
badarn nad turbulencja, a nastepnie wprowadzonego do szeroko rozumia-
nych finanséw przez Mandelbrota oraz Van Nessa. Jak wida¢, bladzenie
Weierstrassa w istotny sposéb rozszerza fBm.
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Rozdzial 4

Modele bladzenia losowego w
czasie ciaglym w modelowaniu
finansowych szeregow czasowych

W niniejszym rozdziale przedstawie przyklady zastosowan proceséw
bladzenia losowego w czasie ciaglym (CTRW) w modelowaniu danych
finansowych. Na przykladzie modelu z jednokrokowa pamiecia po-
miedzy sasiednimi zmianami, zaproponowanego w [14], pokaze role
czasé6w wyczekiwania w autokorelacji predkosci procesu. Nastepnie,
poprzez symulacje wykonane w oparciu o dane empiryczne wykaze, ze
niezbedne i kluczowe jest uwzglednienie zaleznosci miedzy okresami
miedzytransakcyjnymi. Wyniki te przedstawilem w pracy [15]. Sa one
podstawowa motywacja do stworzonego w rozdziale 5 modelu CTRW ze
skorelowanymi czasami wyczekiwania.

Na poczatku XXI wieku zaczeto stosowa¢ modele bladzenia losowego
w czasie ciaglym do opisu dynamiki cen waloréw finansowych. Metodo-
logia ta przyjeta sie i rozwinela. Obecnie istnieje kilka prac przegladowych
opisujacych zastosowania CTRW w modelowaniu danych finansowych
[8], [79], [86], [104], [105]. Pierwsze prace skupialy sie na zmianach ceny,
konkretnie na duzych skokach [75]. Zaproponowany model wykazywat
dyfuzje anomalna dla krétkich czaséw. Kolejne publikacje skupiaty sie
nad rozszerzeniem metod analizy danych. Zauwazono, ze opis jedynie
zachowania sie¢ wariancji procesu jest niewystarczajacy. W danych empi-
rycznych obserwowano pamieci dalekozasiegowe, nieliniowe korelacje
(miedzy innymi autokorelacje moduléw zmian), rozkiady gruboogonowe
czy multifraktalnos¢. Okazalo sie, Ze réwniez czasy miedzytransakcyjne
posiadaja podobne, nietrywialne charakterystyki [106], co mozna zauwazy¢
pracujac na niezagregowanych danych tickowych, badz transakcyjnych.

Jesli przyjmiemy definicje ceny jako cene ostatniej transakcji, od razu
wida¢ podobienistwo wykreséw przebiegu ceny oraz trajektorii CTRW
odpowiednio z rysunkéw 2.3 oraz 3.1. W kontekscie rozdziatu 3.5 poréw-
nujacego spacery z przelotami, oznacza to, ze stusznym podejsciem bedzie
zastosowanie formalizmu przelotéw. Zatem, zeby opisa¢ cene za pomoca
btadzenia losowego w czasie ciaglym, uznajemy, ze wartos¢ procesu odpo-
wiada cenie (a dokladnie zlogarytmowanej cenie) instrumentu finansowego.
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Wydarzeniami zmieniajacymi natychmiastowo cene waloru, a przez to tez
wartoé¢ procesu, sa transakcje. Okresy pomiedzy transakcjami to czasy
wyczekiwania, kiedy warto$¢ procesu jest stata.

Wiadomym jest, ze empiryczny rozklad logarytmicznych zmian h(Ax)
jest niegaussowski, jednak w wiekszosci prac przyjmuje sie istnienie dwéch
pierwszych momentéw tego rozkladu. Z jednej strony zgadza sie to dobrze
z danymi empirycznymi (opisane jest to szerzej w akapicie dotyczacym
rys. 2.5), a z drugiej strony skorficzone wartoéci (Ax) i (Ax?) pozwalaja na
analize wariangcji i autokorelacji zmian procesu. Podobnie dobrze zbadane sa
odstepstwa empirycznego rozktadu czaséw miedzytransakcyjnych ¢ (At) od
rozkladu wykladniczego. Jednym z proponowanych rozkltadéw jest rozktad
wykladniczy Weibulla (patrz wzér 2.2), ktérego dopasowania przedsta-
wione sa narys. 2.7 i 2.8. W dalszej czeSci pracy pozostawie dowolna postac
rozktadu i (At), jednak zatoze istnienie wszystkich jego momentéw (At").

4.1 Pamieci krétkozasiegowe w finansowych mo-
delach CTRW

Jednym z pierwszych i istotniejszych modeli CTRW uwzgledniajacych jed-
nokrokowa pamie¢ pomiedzy sasiednimi zmianami ceny jest model zapro-
ponowany przez Montero i Masolivera [87], [107]. Skupiono sie w nim na
zalezno$ci miedzy kolejnymi przyrostami ceny, zakladajac, ze czasy wycze-
kiwania sa niezalezne. Same zmiany ceny byly zamodelowane w bardzo pro-
sty sposob, jako dwustanowy rozkiad skokéw (w goére i dét) lub trzystanowy,
gdzie z pewnym prawdopodobieristwem warto$¢ procesu nie ulegata zmia-
nie. Odpowiada to sytuacji, gdzie cena zmienia si¢ 0 najmniejsza mozliwa
wartos¢, czyli pojedynczy tick, co jest bardzo czesta sytuacja w danych em-
pirycznych. W dalszej cze$ci pracy autorzy postuluja ogélny wzoér na jedno-
krokowa pamie¢, bedacy konkretna postacia wzoru (3.4):

P(Axy, Aty|Axy_1, Aty_1; Axp—2, Aty _2;...; Ax1, Aty) = h(Axy|Ax,—1)P(Aty),
B(Axa| A%, 1) = h(8x,) [1 + e sgn (A, )sgn(Ax, 1)),
(4.1)

gdzie —1 < e < 1 jest parametrem opisujacym site tej zaleznosci, a sgn(+)
to funkgja signum. Dla ujemnego € w modelu wystepuje ujemne sprzezenie
zwrotne.

Celem tak zdefiniowanego procesu bylo opisanie zjawiska bid-ask bo-
unce przedstawionego w rozdziale 2.3.3, w tym krokowej autokorelacji z
rys. 2.12. Model ten nastepnie zostal rozszerzony przez Gubca i Kutnera
do dowolnych symetrycznych rozkladéw skokéw oraz pamieci jedno-,
dwu- oraz wielo-krokowej pomiedzy kolejnymi skokami [30], [31]. Dzieki
temu skutecznie udato sie zamodelowac i wyjasni¢ autokorelacje predkosci
obserwowana w danych empirycznych. Jednak préby wytlumaczenia
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autokorelacji moduléw zmian przy uzyciu krétkozasiegowych zaleznosci
pomiedzy skokami okazaly sie kompletnie nieskuteczne. W pracy [14]
wyprowadzitem miedzy innymi analityczny wzoér na postac¢ funkcji autoko-
relacji dla dwueksponencjalnego rozktadu czaséw wyczekiwania. Rozklad

t

ten ma posta¢ P(At) = 7 exp (—T—tl> + 1;—;"exp <_T_2)’ gdzie w, 7y, ) to

parametry. Otrzymana funkcja autokorelagcji to:

ACF|py(t) = 5(t) + Agexp(—vot) + A1 exp(—vit) + Az exp(—0vat),
w; =1,

v =wwy + (1 —w)wy,

vg = wwy + (1 — w)ws,

1 .
v == |w) +wp, —€v— (—1)1\/(w1 + wy — €v)? — dwywy (1 —¢€) |,

2
Ag=2 UMw (1= w)(w; — w2,
0
2¢(1— M
Ai = (—1)1 g[wlwz — U’UZ'],

01 — 02
ie{l,2}.
(4.2)

Szczegblnie wazna jest réznica w sposobie zaniku tych pamieci - empi-
ryczna autokorelacja zanika w sposéb potegowy, natomiast teoretyczna
eksponencjalnie. Praca ta dostarczyla kilku niezwykle istotnych podpowie-
dzi. Po pierwsze, autokorelacja zmian zalezy réwniez od rozkladu czasow
wyczekiwania. W szczeg6lnosci autokorelacja zmian moze by¢ niezerowa
dla zmian o niezerowej éredniej, nawet przy braku jakichkolwiek zaleznosci
pomiedzy skokami. Dzieje sie tak, kiedy rozklad czaséw wyczekiwania
nie jest wykladniczy. Jest to tez klarowna przestanka za tym, Ze réwniez
zaleznosci pomiedzy czasami wyczekiwania moga by¢ istotnym elementem
w modelowaniu czasowej autokorelacji modutéw zmian. Drugim istotnym
wynikiem jest rys. 4.1. Pokazuje on, ze poczatkowo warto$¢ krokowej auto-
korelagji szeregu moduléw zmian jest wieksza niz analogiczna warto$¢ dla
szeregu czaséw wyczekiwania ACF|py(n = 1) > ACFu(n = 1). Pomimo
to, dla duzych przesunie¢ (n > 10) ta relacja odwraca sie i to korelacje
pomiedzy czasami wyczekiwania sa silniejsze. Powyzsze dwa punkty sa
przestanka, aby zbada¢ istotnos$¢ roli czaséw miedzytransakcyjnych i
zalezno$ci w ich szeregu w zjawisku klastrowania zmiennosci.

4.2 Pamieci dalekozasieggowe w finansowych mo-
delach CTRW

Skutecznym sposobem zobrazowania zjawiska klastrowania zmiennosci
jest wyznaczenie autokorelacji modutéw zmian ceny, co przedstawitem w
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Rysunek 4.1: Poréwnanie empirycznych autokorelacji kroko-
wych szeregu okreséw miedzytransakcyjnych (niebieski) i mo-
dutéw logarytmicznych zmian ceny (zielony). Wykresy przed-
stawione sa w skali logarytmicznej, obie autokorelacje zanikaja
potegowo. Pomimo, ze dla pierwszego punktu (n = 1) au-
tokorelacja modutéw skokéw przyjmuje wieksza wartosé, to
potem zanika szybciej i dla duzych przesunieé¢ to pamieci po-
miedzy okresami miedzytransakcyjnymi sa istotniejsze. Jest to
przestanka do uwzglednienia w modelu pamieci silniejszej w
dlugim terminie, czyli pamieci w szeregu czaséw wyczekiwa-
nia.

rozdziale 2.3.3. Kluczowe pytanie dotyczy tego, ktéra zaleznos¢ jest waz-
niejsza w zrozumieniu tego efektu: zalezno$¢ pomiedzy kolejnymi skokami
czy pomiedzy czasami wyczekiwania? W celu uzyskania odpowiedzi na to
pytanie przeprowadzitem symulacje w oparciu o dane empiryczne. Wyniki
tej symulacji przedstawione sa na rys. 4.2 oraz w publikacji [15]. Czasowa
korelacja modutéw zmian narysowana jest niebieska linia. Zanika w spos6b
potegowy z maltym wykladnikiem. Z poprzednich prac wiemy, ze wptyw na
nia moga mie¢ rozklad czaséw miedzytransakcyjnych, korelacje pomiedzy
tymi czasami, korelacje pomiedzy modutami zmian oraz miedzy czasami
a zmianami. Aby sprawdzi¢ sam wplyw rozkladu czaséw, musze usunaé
zalezno$ci w procesie. Moge to zrobi¢ poprzez wyznaczenie z danych em-
pirycznych szeregu czaséw wyczekiwania At, Atp, ... oraz szeregu skokéw
Ax1,Axy, ..., a nastepnie catkowicie losowemu przemieszaniu elementéw w
kazdym z szeregéw. Wtedy kazdy szereg nie bedzie posiadal autokorelacji.
Z takich przemieszanych szeregéw At, i Ax, buduje ponownie proces cen
i licze czasowa autokorelacje moduléw zmian. Jest ona przedstawiona na
wykresie jako czerwona linia. Jest dodatnia, ale szybko zanika i staje sie
nieistotna. Podobna procedure mieszania moge wykonac tylko na jednym
szeregu, przykladowo na szeregu okresow miedzytransakcyjnych. Wtedy
wszystkie zmiany zostaja niezmienione, a wiec w szczegélnosci korelacje
pomiedzy nimi zostaja takie same jak w szeregu empirycznym. Wynik tej
symulacji przedstawiony jest jako linia pomaraniczowa. O ile dla krétkich
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czaséw amplituda wynikéw jest zblizona do danych empirycznych, a sam
zanik autokorelacji jest potegowy, to autokorelacja zanika szybciej niz dla
danych empirycznych. Pokazuje to, ze nawet perfekcyjne zamodelowanie
zaleznodci jedynie w szeregu zmian, nie moze ttumaczy¢ w pelni zjawiska
klastrowania zmienno$ci. W ostatniej symulacji sprawdzam wplyw jedynie
pamieci pomiedzy czasami wyczekiwania, czyli z przemieszanym szere-
giem skokoéw. Wynikiem jest zielona linia praktycznie réwnolegta do linii
empirycznej. Pokazuje to, ze uwzglednienie jedynie pamieci pomiedzy
okresami miedzytransakcyjnymi jest kluczowe w poprawnym zamo-
delowaniu wykladnika potegowo zanikajacej czasowej autokorelacji
moduléw zmian. Poprzez usuniecie wszelkich zaleznosci pomiedzy sko-
kami (czyli tez korelacji pomiedzy modutami zmian) oczywiscie otrzymamy
autokorelacje o mniejszej amplitudzie. Jednak w zrozumieniu efektu klastro-
wania zmienno$ci kluczowe jest zrozumienie przyczyny powolnego zaniku
autokorelacji. Powyzsza symulacja jest gléwna motywacja empiryczna tej
czedci niniejszej rozprawy doktorskiej, ktéra dotyczy modeli btadzenia
losowego w czasie ciagltym.
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Rysunek 4.2: Wykres znormalizowanej autokorelacji czasowej
modutéw zmian dla czterech szeregéw czasowych: dane em-
piryczne (niebieski), empiryczne zmiany cen oraz przemie-
szane czasy miedzytransakcyjne (pomaranczowy), przemie-
szane zmiany cen oraz empiryczne czasy miedzytransakcyjne
(zielony), niezaleznie przemieszane zmiany cen oraz czasy mie-
dzytransakcyjne (czerwony). Rozwazenie jedynie empirycz-
nych zaleznos$ci w szeregu okreséw miedzyzdarzeniowych od-
wzorowuje wykladnik zaniku empirycznej autokorelagji.

Literatura dotyczaca modeli z dlugozasiegowa pamiecia pomiedzy
czasami wyczekiwania nie jest zanadto rozbudowana i posiada braki,
réwniez w czesSci bezposredniego zastosowania do modelowania danych
empirycznych. Jednak wyniki powyzszej analizy wprost sugeruja, ze
zbadanie tych zaleznosci moze by¢ kluczowe w zrozumieniu przyczyn
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wystepowania klastrowania zmienno$ci. Popularne podejscie uwzgled-
nienia jedynie zaleznosci pomiedzy skokami nie jest i nigdy nie bedzie
wystarczajace w tym przypadku. Dlatego jednym z najistotniejszych
elementéw mojej rozprawy doktorskiej jest autorski model CTRW
przedstawiony w nastepnym rozdziale, uwzgledniajacy dalekozasiegowe
zalezno$ci pomiedzy czasami wyczekiwania, ktéry ma na celu miedzy
innymi odwzorowanie potegowego wykladnika zaniku autokorelacji
moduléw zmian w finansowych szeregach czasowych.
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Rozdzial 5

Model btadzenia losowego w
czasie ciaglym z pamiecia w
szeregu czasOw wyczekiwania

Whnioski z analiz zaprezentowanych we wczesniejszych rozdziatach wska-
zuja na to, ze odpowiednim modelem do zbadania efektéw klastrowania
aktywnosci i zmiennosci na rynkach finansowych, bedzie model btadzenia
losowego w czasie ciaglym, uwzgledniajacy zaleznodci pomiedzy okre-
sami miedzytransakcyjnymi w formalizmie przelotéw. W niniejszej czeSci
rozprawy wprowadze oraz rozwiaze kluczowy autorski model CTRW z
pamiecia w szeregu czaséw wyczekiwania, opublikowany w [15]. Zapro-
ponowana metoda jest ogdlna i pozwala na rozwazenie r6znych pamieci,
jednak skupie sie na rozwiazaniu modelu z dalekozasiegowymi (zanika-
jacymi potegowo) zalezno$ciami. Przeanalizuje charakterystyke modelu
poprzez jego pierwsze dwa momenty, wariancje oraz autokorelacje zmian,
a w szczegoOlnosci ich zachowanie w granicy dlugich czaséw. Otrzymane
wyniki (wyktadniki przy potegowym zaniku krokowej autokorelacji czaséw
oraz czasowej autokorelacji zmian i modutéw zmian) poréwnam z danymi
empirycznymi.

5.1 Proces czasOw

Zgodnie z definicja, do skonstruowania trajektorii CTRW potrzebne sa
szeregi warto$ci zmian procesu oraz czaséw pomiedzy zmianami. Najpierw
rozwaze oddzielnie szereg czaséw wyczekiwania Aty, Aty, ..., Aty, ...,
jako ze model skupia¢ sie bedzie na wystepujacych w nim zaleznosciach.
Podstawowa wlasnoscia, ktéra musi spelnia¢ ten szereg, jest mozliwosé
uwzgledniania zaleznosci pomiedzy kolejnymi czasami wyczekiwania,
a w szczeg6lnosci pozytywnej krokowej autokorelacji tych czaséw, czyli
korelacji pomiedzy np. dwoma kolejnymi czasami wyczekiwania. Zapro-
ponowany proces powinien by¢ réwniez rozwiazywalny analitycznie,
przynajmniej w granicy dlugich czaséw. Po pierwsze pozwoli to na znacznie
glebsze zbadanie jego wiasciwosci, zachowania jego charakterystyk oraz
ogoOlnego zrozumienia zachodzacych w nim zjawisk, a po drugie wyrézni
ten model wzgledem obecnie istniejacych modeli. Wykorzystana w pracy
inspiracja do stworzenia takiego szeregu zaskakujaco prosto wynika wprost
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z wlasnosci procesow bladzenia losowego w czasie ciaglym, co zostalo
dokladnie opisane ponize;j.

Proponowane rozwiazanie omoéwionego problemu stanowi szereg z
powtarzajacymi sie warto$ciami czaséw wyczekiwania At A2, A L
(oznaczonymi indeksami gérnymi), gdzie kazda z tych wartosci powtérzona
jest odpowiednio vy, vy,...,v", ... razy. Kazda z wartosci At" jest niezalezna
od poprzedniej i wszystkie pochodza z tego samego rozkltadu y(At").
Przykladowo (co jest tez zobrazowane na rys. 5.1), jesli pierwsza wartos¢
okreséw At! jest powtérzona raz (1; = 1), druga wartoéé At? trzy razy
(1o = 3), a trzecia wartoé¢ At> dwa razy (v3 = 2), da nam to wypadkowo
nastepujacy szereg czaséw wyczekiwania we wladciwym procesie:

At; = A, Aty = Aty = Aty = AP, Ats = Aty = AP, . .. (5.1)

O procesie czaséw mozna mysle¢ jako o dyskretnym procesie wygenerowa-
nym przez rGwnomierne prébkowanie wartoéci z trajektorii bladzenia loso-
wego w czasie ciaglym. W kanonicznym CTRW wartos¢ procesu jest repre-
zentowana jako zmienna przestrzenna, natomiast czas jest ciagly. Aby dosto-
sowac taki proces do roli podrzednego procesu czaséw wyczekiwania, na-
lezy przyja¢, ze wartos¢ procesu At, reprezentuje czas wyczekiwania, nato-
miast podrzedny czas n jest dyskretny. W kanonicznym przypadku wartosé
procesu btadzenia losowego jest stata przez caly czas wyczekiwania. Ozna-
cza to, ze w dyskretnym przypadku analogiem kanonicznego czasu wycze-
kiwania jest liczba powtérzen v, tej samej wartosci procesu At". Dodatkowo,
przy zmianie warto$ci w dostosowanym procesie, nowa warto$é At jest nie-
zalezna od poprzedniej At" 1. Przykladowa trajektoria tak dostosowanego
CTRW jako podrzednego procesu czasOw wyczekiwania jest przedstawiona
narys.b5.1.

Do zbudowania wtasciwego procesu CTRW potrzebujemy, aby wartosci pro-
cesu czasOw wyczekiwania At" w dyskretnym podrzednym czasie 1, pocho-
dzity z rozktadu ¢ (At") (A" > 0) ze skoriczona $rednia (At). Rozktad warto-
Sci procesu czasoéw, a przez to tez w szczegdlnosci jego Srednia, jest taki sam
jak rozklad czaséw wyczekiwania wlasciwego procesu ¥ (-), ktéry moze by¢
dowolnym rozkladem czaséw ze skoriczona Srednia. Nastepnie kazdy czas
wyczekiwania At" jest powtérzony vy, razy. Te liczby powtérzen, osobno lo-
sowane dla kazdego z czas6w wyczekiwania, pochodza z rozktadu w(vy)
oraz sa niezalezne od siebie. Rozklad w(v,,) wynika wprost z zadanych wta-
snosci procesu czasOw, ale w ogoélnosci moze to by¢ dowolny rozklad. To
pokazuje wszechstronno$¢ zaproponowanej metody, gdyz w zaleznosci od
uzytego rozkladu w(v,) w modelu mozemy uzyskac brak pamieci (przykia-
dowo dla w(vy,) rownej delcie Kroneckera dla wartosci 1), pamieé krétko-
zasiegowa (przyktadowo gdy w(v,) jest rozktadem geometrycznym) badz
dalekozasiegowa w szeregu czaséw wyczekiwania.
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Vo Va

Rysunek 5.1: Przykladowa trajektoria procesu czaséw wycze-
kiwania, ktérego wartosci odpowiadaja czasom wyczekiwania
At, uzytym do skonstruowania wiasciwego procesu CTRW.
Wartosci podrzednego procesu to At!,At?,...,At",..., gdzie
kazda warto$¢ jest powtdérzona odpow1edn1o Vi,Vo, ..., Vn, ...
razy. Liczba powtérzen v, pochodzi z rozkiadu liczby powto-
rzen w(vy). W powyzszym przykladzie daje nam to v; =
L,y = 3,13 = 2,...0raz Aty = At}, Aty = Atz = Aty =
AR, Ats = Atg = AP, .. ..

5.1.1 Pamie¢ dalekozasiegowa

Aby odtworzy¢ potegowa krokowa autokorelacje czasow wyczekiwania,
bede rozpatrywac gruboogonowa posta¢ rozkladu liczby powtérzen. Uzyje
jednego z najprostszych dyskretnych rozkladéw potegowych, mianowicie
rozkladu zeta z parametrem p:

W) = v /L) L) =Y i, p> 1, (5.2)

i=1

gdzie {(p) to funkcja zeta Riemanna. Warto$¢ oczekiwana takiego rozktadu
_ Clp=1)

jest réwna (v) = 40 dla p > 2, natomiast wariancja jest ograniczona dla

p > 3. Poniewaz skupie sie jedynie na rozkladach ze skoriczonym pierwszym
momentem (v), to w dalszym ciagu rozwazac bede jedynie przypadkip > 2.

Dystrybuanta rozkladu wyrazona jest wzorem H( L gdzie Hy,p = Y i F

jest uogodlniona liczba harmoniczna. Dodatkowo wprowadze prawdopodo-
bieristwo przetrwania:

= iw(i), (5.3)

ktore w przypadku rozkladu zeta przyjmuje wartos¢ Q(v) =1 — I?(;,l)’P-

Propagator procesu czas6w wyczekiwania P(At; n|Aty;0), zdefiniowany
wczedniej przez réwnanie (3.8), jest warunkowym prawdopodobieristwem
tego, ze czas wyczekiwania, ktéry na poczatku (dla n = 0) miat wartos¢ Aty,
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jest rowny At po n krokach. Mozemy go zapisac jako:
P(At; n|Atg;0) = 6(At — At) QI (1) + [1 — QS (1) ]y (At), (5.4)

gdzie Qfit(n) stanowi prawdopodobienstwo przetrwania otrzymane z
w'™t(n), bedacego zestacjonaryzowanym rozktadem liczby powtérzeri
pierwszego czasu wyczekiwania:

c(}ﬁrs’c(n) — Zn’:l w(n + 1’1/) _ Zn’zl w(n + n/) _ En’:n—H w(n’)
Zn”:O Zn’:l w(n// + Tl’) anl nw(”) <w> '
inrst — Ei:n En’:i—l-l (U(I’l/) _ Zi:l iw<i + Tl)
" @) (@)
(w) —nQn+1) -y iw(i)
(w) '

(5.5)

Pierwszy czlon prawej strony wzoru (5.4) dotyczy sytuacji, w ktdrej nie
zachodzi zmiana wartoéci procesu (z wartosci Aty) w przeciagu n skokow.
W przeciwnym wypadku, ktéry wystepuje z prawdopodobieristwem
1-— QﬁrSt(n), warto$¢ procesu sie zmieni. Bedzie ona pochodzita z rozkiadu
P(At) oraz bedzie catkowicie niezalezna od poprzedniej wartosci.

W szczegbélnym przypadku, kiedy w(n) jest w postaci rozktadu zeta,
otrzymamy:

ir n TZH y H , —1
R il AV R >0
co po wstawieniu do wzoru (5.4) pozwoli nam na otrzymanie wprost propa-
gatora procesu czasow.

5.1.2 Krokowa autokorelacja czaso6w wyczekiwania

Krokowa autokowariancja czaséw wyczekiwania At,, zgodnie z definicja z
akapitu pod wzorem (2.3), zadana jest jako:

COVar(n) = (AtiAtiy) — (AL) (Atii,) = (AtiAt,) — (M), (5.7)

gdzie symbol (-) oznacza usrednianie. Dla spelnionego zalozenia z ostat-
niego akapitu ze wstepu rozdziatu 4 o istnieniu wszystkich momentéw roz-
kadu i (At), autokorelacja krokowa bedzie zawsze skoriczona. Latwo mozna
zauwazy¢, ze czas wyczekiwania At;,, bedzie rowny wczeéniejszemu At; z
prawdopodobienstwem p = Qfit(n), gdyz beda pochodzi¢ z tej samej se-
rii powtérzonych czaséw. Natomiast z prawdopodobieristwem przeciwnym
1 — p czas wyczekiwania At; bedzie pochodzil z innej serii powtdrzen i be-
dzie catkowicie niezalezny. Te obserwacje pozwalaja zapisaé réwnanie:

COVai(n) = p (A?) + (1 — p) (A1) — (A1) = 0%,p = 03,0 (n).  (5.8)
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Szczegodlnie istotna bedzie postaé asymptotyczna tej autokorelacji dla n > 1.
Uzywajac przyblizenia (Twierdzenie 12.21 z [108]):

(5.9)

moge otrzymac znormalizowana funkcje krokowej autokorelacji czaséw wy-
czekiwania:

_ COVpi(n) n—(0=2)
—COVp(0) T Z(e—1)(p—2)(p—1)

Krokowa autokorelacja czaséw wyczekiwania zanika potegowo z wykladni-
kiem p — 2. Potegowy zanik odpowiada doktadnie pamieciom obserwowa-
nym w danych empirycznych (przedstawionym miedzy innymina rys. 2.10),
dzieki czemu model spelnia postawione wobec niego wymagania. W tym
miejscu nalezy przypomnie¢, ze rozwazam jedynie przypadki, dla ktérych
p > 2, co jest warunkiem istnienia skoriczonej $redniej liczby powtdrzen.
Mimo to tatwo zauwazy¢, ze w przedstawionym modelu mozna uzyskaé
dowolny wykladnik potegowego zaniku autokorelacji krokowej czasé6w
wyczekiwania. Dzieki tej wlasnosci zaproponowane podejscie jest uniwer-
salne i moze znaleZ¢ zastosowanie przy modelowaniu szerokiego spektrum

danych empirycznych.

ACF (1) (5.10)

5.1.3 Krokowa autokorelacja czaséw pomiedzy zdarzeniami
ekstremalnymi

W kontekscie danych empirycznych, szczegélnie czesto analizie poddawane
sa czasy pomiedzy wydarzeniami ekstremalnymi, takimi jak np. odpowied-
nio duze spadki ceny rozwazanego instrumentu finansowego [109], [110].
W przypadku procesu CTRW mozemy je zdefiniowa¢ jako zdarzenia, ktore
wystepuja $rednio co (N) wydarzer w szeregu zmian procesu Ax;. Pracujac
na danych historycznych, jest to réwnowazne z definicja zdarzenia ekstre-
malnego jako kwantylowi zmian rzedu ﬁ Réwniez w tym przypadku
moge wyprowadzi¢ wzoér na autokorelacje krokowa szeregu czaséw miedzy
zdarzeniami ekstremalnymi.

Czasy pomiedzy zdarzeniami ekstremalnymi bede oznaczal jako AT;.
Kazdy taki czas bedzie sie skladat z odpowiednio K; zwyklych czaséw
wyczekiwania AT; = Zﬁl At;. Przyjmujac, ze elementy szeregu zmian
Ax; sa niezalezne i losowane z tego samego rozkladu (szczegdtowy opis
tego zalozenia znajduje sie w kolejnym podrozdziale 5.2), to z powyzszej
definicji zdarzenia ekstremalnego wynika, ze wielkosci K; beda pochodzity
z ujemnego rozkladu dwumianowego NB(k;1) (nazywanego tez rozkla-
dem Pascala). W ogoélnosci ten rozklad zadany jest dla k préb dajacych n
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Rysunek 5.2: Wykresy krokowej autokorelacji czaséw wyczeki-
wania dla zaproponowanej metody generowania szeregu cza-
sow wyczekiwania. Kolorowe linie ciagle odpowiadaja wyni-
kom symulacji komputerowych dla réznych parametréw p.
Przerywane czarne linie to odpowiadajace im przyblizenia za-
dane wzorem (5.10). Wida¢, ze nawet juz po kilku krokach po-
dane przyblizenie jest praktycznie rowne wynikom symulacyj-
nym.

sukceséw z prawdopodobiefistwem sukcesu zadanym jako GW):

Pr(K =k) = NB(k,n) = (’;:D (ﬁ)n (1 - <1T>>kn, k>n>1.
(5.11)

Poniewaz kazdy czas AT; zadany jest jako suma podstawowych czaséw
wyczekiwania, to autokowariancja tych czaséw bedzie zadana jako od-
powiednia suma autokowariancji podstawowych czasow wyczekiwania.
Dokladne obliczenia, w ktérych wyznaczam kolejne wartosci autoko-
wariancji czasé6w pomiedzy zdarzeniami ekstremalnymi znajduja sie w
dodatku D.

Rozpatrujac przypadek n = 0, czyli wariancje szeregu czasOw pomie-
dzy ekstremalnymi zdarzeniami, dla ustalonego K = K; moge zapisac¢:

Ki Ky

Y. Y COVai(li—jl), (5.12)

COVar(0)|
i=1j=1

K=K,
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gdzie COV,(+) jest autokowariancja czaséw wyczekiwania, zdefiniowana
wzorem (5.7). Nastepnie, uwzgledniajac losowos$¢ K pochodzacego z roz-
ktadu ujemnego dwumianowego binarnego, otrzymam:

Ccov = (N COVar() (1 — ) - 1
(0= ) 1 st (1= 1) 619

W podobny sposéb moge zapisaé wzor analogiczny do (5.12) dla autokowa-
riancji sasiednich czaséw pomiedzy wydarzeniami ekstremalnymi (sytuacji
odpowiadajacej n = 1) dla ustalonych wartosci K; oraz Kj:

Ky Ky

=Y Y CcoVa(j+i—1). (5.14)

COVar(1)
vk iS5 i3

Wtedy generalizacja uwzgledniajaca losowos¢ wartosci K; oraz K, wyglada
nastepujaco:

COVar(1) = ¥ (1 _ L)“ [ COV 0 () (5.15)
AT & (N) ] At\])- :

W ogélnym przypadku, dla n > 2, pomiedzy czasami AT; oraz AT, bedzie
wystepowalo n — 1 czaséw pomiedzy zdarzeniami ekstremalnymi. Oznacza
to, ze wzor na autokowariancje nalezy zmodyfikowa¢ do postaci:

Ky Ky

COVpr(n) =Y Y COVu(j+i=1+Wy1), n>2, (516)
Ky,Ky, Wy 1 i=1j=1

gdzie W,,_1 pochodzi z rozktadu NB(k,n — 1) i oznacza liczbe podstawo-
wych czaséw wyczekiwania At; pomiedzy rozwazanymi czasami AT; oraz
ATy, Zatem ogdlny wzoér bedzie wygladat nastepujaco:

COVar(n) = (ﬁ)n_l io (1 - <1W>)] COVp(j+ 1) (f J’; ”), (5.17)
£

Na podstawie wynikéw ze wzoréw (5.13) i (5.15), powyzszy wzor (5.17) jest
poprawny réwniez dlan = 1 oraz n = 0.
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Kolejnym krokiem bedzie policzenie Z transformaty, zdefiniowanej po-
nizej:

COVar(z) = Z {COVar(n)} := i 27"COVar(n)

n=0
00 B 1 n—1 1 j ' ]-I—TZ
- Y —— - ) co
LL: (g) (1) covatem(™")
1
— <N> COVAt ((N)l o+ 1/<N>)
(N) z

(5.18)

Dzieki tej operacji otrzymamy autokowariancje czaséw pomiedzy ekstremal-
nymi zmianami, dana wprost jako autokowariancje czaséw wyczekiwania w
domenie po Z transformacji. Teraz moge wstawi¢ konkretna posta¢ autoko-
wariancji COV (1) z réwnania (5.8):

P €0 1) — Hug 1) o)

C(p
- n*(sz)
Tle-D(e—-2)(p—1)
Z{Lo -1} = 2 —1),

COVar(n) =

(5.19)
z .
Z{Hn,pfl} = lepfl,Zfl’
z
Z{nl(p)} = mg(f?),
Z . z .
Z{nH,,} = leplzfl + ZTlep_qu,
co po potaczeniu daje:
— 1 z .
COVar(z) = oD o) [(z=1)¢(p—1) = g(p) + Li, 1], (520
gdzie Li,. 1 = Y2y z7/j7P jest funkcja specjalna nazywana polilogaryt-
mem. Podstawiajac do powyzszego wzoru z = exp(s) mozna wykazac,

ze najwazniejszym potegowym wyrazem jest czlon z s°73, ktéry po
powrdceniu do przestrzeni krokéw n odpowiada potegowemu zanikowi
COVar(n) ~ n=(P=2), analogicznemu jak we wzorze (5.10). Zatem w zapro-
ponowanym modelu autokorelacja krokowa czaséw pomiedzy zdarzeniami
ekstremalnymi zanika z tym samym wykladnikiem, co autokorelacja czaséw
wyczekiwania.
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Rysunek 5.3: Wykresy krokowej autokorelacji czaséw pomie-
dzy wydarzeniami ekstremalnymi dla zaproponowanej me-
tody generowania szeregu czasoéw wyczekiwania. Kolorowe li-
nie ciagle odpowiadaja wynikom symulacji komputerowych
dla réznych parametréw p. Przerywane czarne linie to od-
powiadajace im funkcje potegowe o wykladniku réwnym
—(p — 2). Widag, ze nawet juz po kilku krokach podane przy-
blizenie jest praktycznie réwne wynikom symulacyjnym.

5.2 Wlasciwy proces

Zaproponowana metodologia tworzenia szeregu czaséw spetnita oczekiwa-
nia i w szczego6lnosci generuje potegowo zanikajaca krokowa autokorelacje
czaséw wyczekiwania. Teraz moge wprowadzi¢ wilasciwy proces btadzenia
losowego w czasie ciagtym wykorzystujacy czasy wyczekiwania z zapropo-
nowanego szeregu. Autorski model CTRW z powtarzajacymi si¢ czasami
wyczekiwania jest w pelni zdefiniowany przez podanie dwéch skladni-
koéw:

* zmian warto$ci procesu Ax,, ktére definiuje jako niezalezne zmienne
losowe pochodzace z tego samego rozkladu h(Ax,). Dodatkowo za-
ktadam, ze rozklad ten posiada skoriczona wariancje aﬁ 1w zwiazku z
tym skoriczony pierwszy (Ax) i drugi moment (Ax?);

* czaséw wyczekiwania At,, ktére pochodza z procesu czaséw opisa-
nego w poprzedniej sekcji. W szczeg6lnosci ich rozkltad posiada skon-
czone wszystkie momenty.

Warto tutaj podkresli¢, ze nie rozwazamy zadnych pamieci w szeregu zmian
procesu. Co wiecej, ich rozkltad moze by¢ dowolny, o ile posiada skoriczona
wariancje. Zostawiam tez dowolnos$¢ rozkladu czaséw wyczekiwania,
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z jednym zastrzezeniem dotyczacym istnienia jego momentéw. Dzieki
takiemu zdefiniowaniu modelu mozliwe bedzie dokladne zbadanie
konsekwencji wystepowania dalekozasiegowych zaleznosci pomiedzy
czasami wyczekiwania. Prezentowane w dalszej czeSci pracy réznice po-
miedzy wlasno$ciami analizowanego procesu a kanonicznymi wlasno$ciami
CTRW, beda skutkiem wylacznie wprowadzenia do modelu pamieci do
szeregu czaséw miedzyzdarzeniowych. Podstawowa wielko$cia opisujaca
proces stochastyczny jest propagator P(x, t), zdefiniowany przez réwnanie
(3.9). Znajac propagator procesu, mozemy latwo wyznaczy¢ wartosci jego
momentéw, a na ich podstawie autokorelacje predkosci procesu, czyli
autokorelacje przyrostéw. Zatem pierwszym krokiem do poznania wila-
Sciwosci modelu CTRW z powtarzajacymi sie czasami wyczekiwania jest
wyznaczenie jego propagatora.

5.2.1 Propagator procesu

Ponizsza analiza ma na celu wyznaczenie propagatora omawianego procesu.
Jest ona pierwszym z dwéch kluczowych elementéw analitycznych czesci
mojej rozprawy doktorskiej dotyczacej autorskiego modelu CTRW z pa-
miecia w szeregu czas6w wyczekiwania. Do wyznaczenia propagatora pro-
cesu P(x,t) wykorzystam formalizm przelotéw, gdzie w chwili  istotna jest
liczba skokéw 7 do tej chwili oraz warto$¢ procesu po ostatnim skoku, opi-
sana wzorem (3.9). Standardowo propagatora poszukuje sie w przestrzeni
Fouriera-Laplace’a (patrz wzor (3.11)), takze docelowo bede szukat wartosci:

P(k,s) = F{L{P(x,t)}} = ]-"{L’ { iopn(x,t)}} _ io]-"{ﬁ{Pn(x,t)}}
= ipn(k,s).

n=0
(5.21)

Na poczatku rozwaze przypadek n = 0. Do dalszych obliczerr przyda sie
prawdopodobieristwo przetrwania ¥(:) rozkladu czaséw wyczekiwania
P(-) zdefiniowane jako:

Y(t) = /t " (), (5.22)

czyli prawdopodobienistwo, ze wylosowany czas wyczekiwania bedzie
wiekszy niz t. Jest ono réwnowazne z prawdopodobiefistwem przetrwania
w stanie po ostatnim skoku przez okres co najmniej t. Prawdopodobieristwo
Py(k,s) moze by¢ wyznaczone jako transformata Fouriera-Laplace’a Py(x, ),
natomiast samo Py(x, t) oblicze wprost z definicji jako iloczyn prawdopodo-
biefistw tego, Ze nie zostal wykonany jeszcze zaden skok oraz poczatkowego
punktowego rozkladu potozenia, czyli:

Py(x,t) = Py(t)o(x) =¥ (t)d(x),

_d(s 5.23
Po(k,s) = Po(s)F{o(x)} =¥(s) -1 ="¥(s) = 1o9) 2
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Nastepnie przechodzac do n > 1 nalezy pamietaé, ze zgodnie z definicja
procesu przyrosty sa catkowicie niezalezne. Oznacza to, ze rozwazane n-
krokowe prawdopodobienistwo P, (x,t) moge roztozy¢ jako iloczyn dwoéch
niezaleznych prawdopodobienistw: prawdopodobieristwa wykonania 7 sko-
kéw do czasu t oraz rozktadu prawdopodobieristwa potozenia x po n sko-
kach. W przestrzeni Fouriera-Laplace’a moge zapisa¢ to jako:

Py(k,s) = P,(s)h(k)", n>1. (5.24)

Zatem do poznania propagatora zaproponowanego procesu niezbedne be-
dzie jeszcze wyznaczenie P, (s). Dla przypadku, kiedy wystapi co najmniej
jedno wydarzenie (n > 1) liczba wydarzen w procesie moze by¢ dokladnie
opisana poprzez:

¢ dotychczasowa liczbe serii powtérzen k,
e szereg czaséw wyczekiwania w kazdej serii powtérzen Atl, ..., AtF,
¢ liczbe powtérzen vy, ..., v w kazdej z serii.

Doktadniejszy opis tych wielkosci znajduje sie w rozdziale dotyczacym pro-
cesu czasow, w szczegOlnosci powyzsze elementy opisane sanarys. 5.1. Zde-
finiowanie procesu przez podanie takich liczb narzuca kilka ograniczen.

1. Kazda liczba powtorzen v; musi wynosi¢ co najmniej 1, skad wynika,
ze calkowita liczba serii k nie moze by¢ wieksza niz liczba wszystkich
wydarzen n: 0 < k < n.

2. Suma wszystkich wydarzen we wszystkich seriach musi by¢ réwna cal-
kowitej liczbie wszystkich skokéw n: vy + vy + - - - + v = n.

3. Wszystkie rozwazane skoki musza wystapi¢ przed momentem ¢, zatem
calkowity czas potrzebny do zrealizowania wszystkich skokéw musi
by¢ mniejszy niz t: letl + vatz + -+ vatk < t. Réznice czasu po-
miedzy ostatnim skokiem, a chwila t oznaczmy jako:

k .
6t =1t—) vAt' > 0. (5.25)
i=1

Wz6ér na P,(t) moze by¢ wyznaczony wprost z definicji procesu. W chwili ¢
proces jest podczas k-tej serii powtorzen, gdzie wystapilo vy, powtérzen czasu
wyczekiwania AtF. W og6lnosci proces moze by¢ w jednej z dwéch sytuadiji.
Albo wlasnie rozpoczeta sie kolejna k + 1-sza seria albo proces moze by¢ dalej
w trakcie k-tej serii powtérzeri. Oznacza to, ze prawdopodobienstwo P, (t)
mozemy zapisaé jako sume dwoch czynnikéw.

1. Wlasnie zakoriczyta sie k-ta seria powtoérzen z czasami wyczekiwania
rownymi Atk Nastepny czas wyczekiwania bedzie juz pochodzit z ko-
lejnej, k + 1-szej serii. Prawdopodobienistwo pojedynczego zdarzenia w
tym przypadku jest zadane jako iloczyn:
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(a) prawdopodobienstw Y(At), ze w i-tej serii czas wyczekiwania
wynosit At!, dla kazdej z serii 1, ..., k;

(b) prawdopodobienstw w(v;), ze w i-tej serii liczba powtdrzen wy-
nosita v;, dla kazdej z serii 1,. .., k;

(c) prawdopodobiefistwa ¥ (5t), ze kolejny czas wyczekiwania Atk+1
jest wiekszy niz obecny czas oczekiwania na wydarzenie 4t;

(d) prawdopodobieristwa (3(0) = 1, ze liczba powtdrzen vg, 1 w ko-
lejnej serii wynosi co najmniej 1. Z definicji podanej wzorem (5.3),
to prawdopodobiefistwo jest rowne 1.

Aby wyznaczy¢ catoSciowe prawdopodobieristwo tego przypadku, na-
lezy rozwazy¢ zagregowane prawdopodobiefistwo wszystkich mozli-
wych zdarzen pojedynczych. Oznacza to, rozpatrzenie wszystkich do-
puszczalnych zestaw6w k, v;, At'. Aby tego dokonaé, nalezy zsumowacé
prawdopodobieristwa pojedynczych zdarzefi po k i v; oraz scatkowac
po At dla wszystkich dopuszczalnych wartosci, czyli takich spehniaja-
cych ograniczenia podane na poczatku rozdziatu.

. Proces jest dalej w trakcie k-tej serii powtérzen, czyli kolejny czas wy-

czekiwania bedzie kolejnym - v + 1-szym powtoérzeniem czasu wycze-
kiwania réwnego Atf. Prawdopodobienstwo pojedynczego zdarzenia
w tym przypadku moze by¢ zapisane jako iloczyn:

(a) prawdopodobiefistw (At), ze w i-tej serii czas wyczekiwania
wynosit At', dla kazdej z serii 1,.. ., k;

(b) prawdopodobienstw w(v;), ze w i-tej serii liczba powtérzert wy-
nosita v;, dla kazdej z serii 1,...,k —1;

(c) prawdopodobienistwa Q(vy), ze wystapi jeszcze co najmniej jedno
powtoérzenie w obecnej k-tej serii. Oznacza to, ze liczba powtorzen
w tej serii jest wieksza niz zaobserwowane dotychczas vy.

W tym przypadku, analogicznie jak w poprzednim, nalezy zsumowac i
scatkowaé wszystkie pojedyncze prawdopodobienistwa, aby otrzymac
prawdopodobienistwo caloSciowe tego przypadku. Jednak tutaj docho-
dzi jeszcze jedno ograniczenie. Czas oczekiwania na kolejne zdarzenie
0t, musi by¢ mniejszy niz czas wyczekiwania Atk aktualnej k-tej serii.
W przeciwnym przypadku skok powinien sie juz wydarzy¢ przed roz-
wazanym czasem t.
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Laczac w calo$¢ wzory wynikajace w powyzszych rozwazan, dlan > 1 moge
zapisa¢ og6lny wzoér na prawdopodobieristwo liczby zdarzerh w rozwaza-
nym modelu jako sume dwoéch sktadowych A, (t) oraz B, (t):

P,(t) =

Y[ e g ee() () dad . dad
k=1 =

see Vi
vy Fve=n AtL,... Atk
0<ot

+f Y. / YA (Ao (1) ... w(ve 1) Q) dAE .. dAEF
k=1 "

s Vi
V1+...+V=n Atl,...,Atk
0<ot< Atk

=Au(t) + Bp(t).
(5.26)

Powyzsze ré6wnanie zadajace prawdopodobiefistwo P, (t) jest kluczowym
rOwnaniem tego rozdzialu. Rozwiazanie go przy zastosowaniu wzoréw
(5.24) oraz (5.21) pozwoli na otrzymanie propagatora procesu. Analityczna
postac propagatora (dajaca mozliwo$¢ dalszej matematycznej analizy wila-
$ciwosci procesu) jest niezwykle waznym naukowym wkladem w zrozu-
mienie istotnosci oraz roli skorelowanych czaséw miedzyzdarzeniowych
w ksztaltowaniu charakterystyk proceséw, takich jak miedzy innymi Sred-
nia, wariancja czy autokorelacja zmian. W réwnaniu skrétowe oznaczenie

[ oznacza calkowanie po takich wartosciach A#, ktérych 6t zadana

AL AR
0<ot

wzorem (5.25) jest dodatnia, czyli suma Y5_, v;At! jest mniejsza niz t. Jest
to calkowanie po wnetrzu k-wymiarowego sympleksu posiadajacego wierz-
chotki w punktach (0,0,0,...,0,0), (¢/v1,0,0,...,0,0), (0,t/1,,0,...,0,0),
(0,0,t/v3,...,0,0), ..., (0,0,0,...,t/vx1,0) i (0,0,0,...,0,t/v). Zapisujac
to wprost:

/ dAtY .. ANt

AH,.. ALK
0<ét
vy Aty Ak t-v A - Aty
= / * - / b B / T AN AAPAAR . dAE
0 0 0 0
= | (0t = [t —viA — AP — L~y A]) dAPAAPAAR . dAdst,
]R+
(5.27)
gdzie §(x) to delta Diraca. Podobne oznaczenie [  doktada dodatkowy
AL, AR
0<ot< Aty

warunek, aby obecny czas oczekiwania na kolejne wydarzenie 6t byt mniej-
szy niz poprzedni czas wyczekiwania At;. Mozemy to zapisa¢ uzywajac
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funkdji skokowej Heaviside’a @ (At — 6t):

/ dAt .. dAHE
AL ALK
0<dt<Atk (5.28)
= S(6t — [t — 1At — .. — AR O(AE — 6t) dAEY .. dAFd6t.

]RliFl

Natomiast oznaczenie sumowania po liczbach powtérzen v; mozna rozpisac
wprost jako:

Y, 1=y Y Y Y dvsum (5.29)

gdzie 4, j, to delta Kroneckera.

Nastepne rozwazane przeze mnie przeksztalcenia sa operacjami linio-
wymi, dlatego wykonywac je bede osobno na kazdej z czeSci propagatora
An(t) oraz By(t). Operacje wykonywane na obydwu czlonach oraz ich
kolejno$¢ sa takie same, dlatego bardziej zlozone obliczenia dotyczace
drugiej czesci przeniostem do dodatku E, aby zwiekszy¢ czytelnosé tekstu.
W pierwszym kroku policze transformate Laplace’a (t — s), dla ktorej
zachodzi P,(s) = A,(s) + B,(s).

An(s) = L{A (D)} = /0 et AL (f)dt

:éz

V1,.--/Vk
Vi+...+tV=n
/ e SV (A ) w (1) ALY . e S Ve (A ) (v ) dtreOMF (5¢)dot

AL, Atk 5t

n
=%(s))Y. Y. Plsn)...P(su)w(vr) ... w(vg).

k=1 V1,V

V1+...+V=n

(5.30)
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Przy przejsciu z pierwszej do drugiej linii rownosci wykorzystalem fakt, Ze:

/ et (/ 5(6t — [t — v At — . —yAK])dAE . .dAtkcht) dt
0 R]:rl
= [ e o6t = [t =it — . — AR AL . dAdstdt

]R+
=/ oS Aot AL Ak st

RE*
_ / o SA 4 AN gA L gk g

AL, Atk St

(5.31)

oraz zamienilem kolejnos¢ catkowania i sumowania.

Kolejnym krokiem bedzie przejécie z otrzymanej postaci P,(s) do pel-
nej postaci propagatora P,(k;s), uwzgledniajacej wymiar przestrzenny.
Laczac réwnania (5.21), (5.24) oraz (5.26) otrzymamy:

(k;s) i Py(k;s) = Py(k;s) + i Py (s)h(k)"
= =1 (5.32)
=¥(s)+ Y An(s)h(k)" + Y Bu(s)h(k)"
n=1 n=1

Dwie sumy w powyzszym réwnaniu przypominaja jednostronna transfor-
mate Z (n — z), dlatego w kolejnych obliczeniach uzywac bede podstawie-
nia z = hi(k)~!. W obydwu skladnikach A, (s) oraz B, (s) wystepuja te same
sumy. Zobaczmy jak zadziala na nie sumowanie po n:

LY L =L ¥ SPID NI SRS ) S

n=1k=1 ViV etk gz tpye KIS U= ==y

V1+...+V=n ~~
k
(5.33)
Teraz moge wyznaczy¢ pozostate sktadniki transformaty Z:
Az(s) =) z7"Au(s)
n=1
— Z Z l[) Sl/1 IIB(SVk) ( )Z—(v1+...+vk)
—1v
v (5.34)
= Z Z z " (svp)w(vy) .. 27 P (s ) w (V)
=11,

z[gz ‘g SUW)r.

k=1
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Przed dalszymi obliczeniami, w ramach uproszczenia zapisu wprowadze
oznaczenia:

“~~y
—~~
N
w
N—
I
[-1e
N\
<
=
—~
»
<

Jw(v),

vl (5.35)
F(z;s) = Z:lz_"t/?(sv)ﬂ(v).
Poniewaz | f(z;s)| < 1, moge zapisa¢:
L(s) = ¥(s) Y Fzss) = ¥(s) L ES)
A,(s) =¥(s) k_zlf(z,s) =¥ (s) Ty e (5.36)

Laczac powyzszy wynik z warto$cia wyznaczona dla cztonu B.(s) (patrz do-
datek E) i ponownie podstawiajac z = h(k) !, otrzymuije:

P(k,s) = (5.37)

s 1— f(h(k)~;s)

Powyzszy wzér na propagator rozwazanego bladzenia losowego w cza-
sie ciaglym z powtarzajacymi sie czasami wyczekiwania jest kluczowym
elementem dalszej analizy, gdyz na jego podstawie wyznacze zachowanie
momentéw procesu oraz autokorelacji zmian.

5.2.2 Momenty procesu

Znajac propagator procesu w przestrzeni Fouriera-Laplace’a, moge wyzna-
czy¢ jego charakterystyke, a w szczegdlnosci jego dwa pierwsze momenty,
jako odpowiednie pochodne:

my(s) = _iaPéllcc;s)
_aZP(k;s) ‘
ok k=0’

7

‘k:O (5.38)

7’7[2(5) =
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ktoére pochodza z ogélnego wzoru (3.20). Po zastosowaniu ich do propaga-
tora zadanego wzorem (5.37) otrzymam:

+(2<AX>2 (Ax*))(1 f( s))(F(1;s)
2i (Ax) f'(1;5)(F(1;8) + f(1;5))
s (1-f(1;5))?
C12i{Ax) (F'(1s) + f'(1;5)) + (§ x)* = (Ax®) (E(1;5) + f(1;9))
s —f(L;s) '
(5.39)

gdzie oznaczenie ' jest skrétowym oznaczeniem pochodnej po k w punkcie

k = 0, czyli przyktadowo f'(1;s5) = & f(h(k)~1;s) ’k o Do wyznaczenia po-

wyzszego wzoru wykorzystalem pochodne rozktadu skokéw /(k) w punk-
cie k = 0:

7(0) =1,

j_kmk) =) =i(ax),

D] =0 = - (a2, (5.40)
%fl—l(k) =i,
aa_;fz—l(k) = (Ax?) — 2 (Ax)?.

Nastepnie przyjrze sie wartosciom f(1;s), f'(1;5), f"(1;s), F(1;s) oraz
F"(1;s) wykorzystujac oznaczenia:

ju(s) = Y v'P(sv)w(v),
v=l (5.41)
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Wszystkie wielkos$ci wyznaczane sa w punkcie k = 0:

f(fl(k)l;S)(ko = f(1is) = L 17"(sv)w(v) = Y vP§(sv)w(v) = fo(s),
- v=1 v=1
0 -, 1 _a°°~ v _°o~/ 7 \v—1,7
G/ B0 70)| = 5 KRR Genw)],_ = L v O e
=i(Ax) Y vi(sv)w(v) =i (Ax)ji(s),
v=1
0% - - .
Sl () hs)| = ((8x)* = (Ax%))ja(s) — (Ax)* fa(s),
F(h(k)"59)| _ = X #(sv)Ov) = Jols),
- v=1
SFHE) )| = Y AN vEn)OWw) = i (Ax) fi(s).
=0 3
(5.42)
Dzieki temu momenty procesu mozemy zapisac jako:
. (Ax) Jo + jo
ity (s) = s 1—jo’
i (s) = 2 (82)? j1(Jo + jo) + (1 —]'0)'(]; i =Jo—jo) (&%) Jo+jo _
s (1—jo) s 1—jo
_ 208" Joto 2080 hi4j —2(A%) Jo+jo
S 1—j01—j0 S 1—j0 5 1_j0
I (Ax?) Jo +]0’
s 1—jp
(5.43)
gdzie dla krétszego zapisu ominatem argument s funkdji j,(s) = j, oraz

Ju(s) = Ju.Jest to 0gblny wzoér na zachowanie sie momentéw zadanego pro-
cesu w przestrzeni Laplace’a.

5.2.3 Przyblizenie dla matych s

Zbadam zachowanie momentéw procesu w granicy diugich czaséw
(t — 00). W szczeg6lnosci gtéwny nacisk klade na funkcyjne zachowanie sie
momentéw w zaleznosci od czasu t, sama warto$¢ amplitudy nie jest tutaj
kluczowa. Aby pozna¢ asymptotyczne zachowanie momentéw procesu w
takim przypadku, nalezy ich transformate Laplace’a rozwina¢ w szereg
potegowy dla s — 0. Wykorzystam w tym celu réwnanie (5.43), ktére
jest podane dla dowolnego rozkladu powtérzen czaséw wyczekiwania
w(v). Dopiero teraz rozwaze konkretna posta¢ pamieci w szeregu czaséw
wyczekiwania, wprowadzona w rozdziale 5.1.1. Uzyje najprostszego dys-
kretnego rozktadu potegowego, czyli rozkladu zeta (Zipfa) z parametrem p:
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w(v) = g(—;;), p > 2, jako ze na podstawie wnioskéw z analizy danych em-

pirycznych postanowilem skupi¢ sie na modelowaniu dalekozasiegowych
zaleznoSci.

Najpierw rozpatrze j,(s) dlan = {0,1} < (p —1):

n(s) = 001/”~51/(,(J1/ :Loo B(sv)y— (=™

jn(s) Vg (sv)w(v) g(p)vgl#’( P
T ), (5.44)
=gy L Henen s

BN 3

0 S 2s 3s 4s 5s

Rysunek 5.4: Oszacowanie warto$ci I(s) opisane wzo-

rami (5.45) i (5.46). Ksztatlt funkcji wynika z nastepu-

jacych faktow: ¥(0) =1; z definigi ¥(x) jest malejace;

o >n=lim_gr x 7" = o0, x~ =" jest malejace dla
x > 0.

Wartos¢ szukanej sumy I(s) jest rowna polom zakre$lonych prostokatéw z
rys. 5.4 (niebieskich oraz czerwonych). Te pola mozna oszacowaé catkami.
Zauwazmy ze pole prostokatow zakreslonych na niebiesko jest mniejsze niz
catka od s funkcji przedstawionej czarnq linia na rys. 5.4, natomiast pole
prostokatéw zakreslonych na czerwono jest wieksze niz analogiczna catka
z dolna granica réwna 2s. Oznacza to:

Li(s) <I(s) < I(s), h(s)= /:olp(x)x_(p_")dxf L(s) = /ootﬁ(x)x_(f"")dx.
(5.45)
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Przyjrzyjmy sie zachowaniu I,(s) dla matych s. Mozemy podzieli¢ catke na
dwie czesci:

N J/

b= [ §ex v+ [Thegx P s<a<l (540
?;r - c;nrst

Zgodnie z zalozeniami przedstawionymi we wstepie rozdzialu 4, rozwa-
zamy jedynie rozklady czaséw posiadajace wszystkie momenty, to znaczy
takie, dla ktérych mozemy zapisac:

- 1 1
Pla) =1—(At)x+ 5 (A#?) x* — c (A3) x>+ - (5.47)
Stad wiemy, ze I bedzie postaci:
—p+n+1 —p+n+2 A2 —p+n+3
Ifzconst—s—+<At> ° _{a8) s +
—p+n+1 —p+n+2 2 —p+n+3
1Ak ' (5.48)
T (—=1)*(AtF)y g—ptnt N
k! —o+n+k '

Rozpatrujac I; dostaniemy rozwiniecie z takimi samymi potegami i zalez-
noéciami od momentéw rozkladu ¢ jak w przypadku Ip; to samo dotyczy
pierwszego wyrazu nieuwzglednionego w sumie. Jednak znaki dla obu
przypadkéw nie s konsystentne, co ostatecznie daje nam zachowanie I dla
matych s postaci:

I = consty + consty - s P 4 consty - sTPT2 4 consty - sPTTI 4
(5.49)
Wstawiajac powyzszy wynik do j,(s) otrzymamy jego rozwiniecie dla ma-
tych s:
ju(s) = Cus? "L CO4- Cls 4 C26> + C33 + - - - . (5.50)

Znane sa tez zaleznosci powyzszych wspélczynnikéw wzgledem rozkladu
czasé6w. Wspotczynnik C,, jest dodatni i zalezy od catego rozkltadu czaséw:
0 < Cy ~ (). Natomiast wspétczynniki Ck nie zaleza od catego rozktadu
czas6éw, a jedynie od jego konkretnych momentéw: Ck ~ (AtK). W szcze-
golnosci oznacza to, ze zerowy wyraz C) nie zalezy od rozkladu czaséw:
CY = y(-). Samo rozwiniecie j,(s) — oprécz standardowego analitycznego
rozwiniecia z catkowitymi dodatnimi potegami — posiada réwniez jeden wy-
raz potegowy. W przypadkach, gdy s wystepuje jedynie w dodatnich pote-
gach (0 > n + 1), mozemy fatwo z definicji wyznaczy¢ wyraz staly:

" (o) — g(g(—;)") > 1. (5.51)
=1

W pozostatych przypadkach j,(0) = oo, przez co nie mozemy wyznaczy¢
CY w taki spos6b. Zauwazmy za to, ze ze sposobu rozwiniecia I, wynika

0 m_ 1
C”_]”(O)_C(p)

v
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zaleznosé:
k
ck o~ — (/(—1)"(Ak—i>x_9+”+kdx> (s). (5.52)

. 1. 2 . P 2 . ~k k
Daje nam to mozliwo$¢ wyznaczania wartosci ilorazéw postaci Cy,; /Gy, dla
n1 + k1 = ny + kp. W szczego6lnodci:

G -1
a = Gy (5.53)
W podobny sposéb mozemy podejs¢ do rozwiniecia J,(s):
©= S Q) =TT s 1 60 650
Ju(s) =Y v'P(sv) Qv) = sv)"p(sv)s sk)~Ps. (5.54
= ~—— Z(p) o k=v+1

Zl?:v-&-l w(k)
Podobnie jak poprzednio, mozemy te wielko$¢ oszacowac catkami:

go—n—2 go—n—2

Ju(s) = TP) /Soo x"(x)dx /xoo y Pdy = m /Soo x—(P—n—l),p(x)dx =

= D" 24+ DY 4+ Dls + D252 + D3s% 4 - ..
(5.55)

Wyraz staly mozemy przy odpowiednich warunkach (o > n + 2) wyznaczy¢
w podobny sposéb jak wczedniej:

Dgzg(P_l)_lzcg)_C(O)’ Dg):C(P_z)_g(P_l) CS—C?.

Z(p) 2Z(p) T2
(5.56)

W szczegélnoéci  analogicznie zachodzi: 0 < D, ~ ¢(-), DY = y(-),
Dk ~ (AtF).

5.2.4 Momenty procesu w granicy dlugich czaséw

Aby analitycznie zbada¢ zachowanie dwéch pierwszych momentéw procesu
w granicy dlugich czaséw, nalezy do wzoréw (5.43) wstawic uzyskane przy-
blizenia z poprzedniego podrozdziatu. Na podstawie przyblizerr ze wzoru
(F.1) umieszczonego w dodatku F, mozemy pozna¢ analityczne zachowanie
pierwszego momentu:

Co 02 B CoC?

ity (s) ~ (Ax) <C0 +D SP—2> — C_gsp _ () -C) () Do cgl
1 s 1 0 SC(l) ) C(l) s4—p Cé ’
(5.57)

uwzgledniajac wyrazy rosnace w czasie (s*, a > 1): analityczne i wiodacy
potegowy. Przechodzac do przestrzeni czasu oraz korzystajac ze wzoru
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(5.53), otrzymujemy:
my(t) = L7 {11 (s)}
L (8x) Dot g3y 15 _ (8%) (¥}
~ <At)t_ (Ax) T —p) 3—p — mt— (Ax) F(4—p)t3 o

(5.58)

dla p € (2;5), gdzie a{y} jest funkcjonatem rozktadu czaséw wyczekiwa-
nia, co oznacza, ze zalezy od rozkladu ¢, jednak w szczegélnosci nie za-
lezy od czasu t. W rozwinieciu pierwszego momentu, oprocz najwazniej-
szego standardowego liniowego wyrazu, widzimy takze subliniowy czton
dla p € (2;3), przedstawiony przerywanymi liniami przy wynikach od-
powiadajacych symulacji na prawym wykresie rys. 5.5. Powyzsza aproksy-
macja pierwszego moment procesu porOwnana jest z momentami wyzna-
czonymi poprzez symulacje komputerowe (opis w rozdziale 5.3) na lewym
wykresie rys. 5.5. Rozwiniecie (5.58) jest elementem kluczowych wynikéw
analitycznych dotyczacych zaproponowanego modelu. W podobny sposéb
przeanalizowany bedzie drugi moment, wariancja oraz autokorelacja pro-
cesu.

— 22 -2
105 4 2.4 -
— 26 e
— 28 P

-
| — 30 -

— 3.5
5.0
10!

T T T T T T
10° 10t 102 103 104 10° 106
t [s]

\
t

<AXx>
<At>

my(t)
-
o
2

my(t) —

Rysunek 5.5: Wykresy estymat charakterystyk procesu z sy-
mulacji komputerowych dla réznych wartosci parametru p w
skali logarytmicznej. Po lewej stronie przedstawiony jest pierw-
szy moment procesu. Dla wszystkich wartoSci parametru p
roénie on liniowo w czasie. Po prawej stronie przedstawiony
jest pierwszy moment z odjetym kanonicznym cztonem %t.
Zgodnie ze wzorem (5.58), widzimy rosnace potegowe czlony
dla parametru p < 3. Przerywane linie obrazuja funkcje pote-

gowe o wykladniku 3 — p.

Obliczenia dla drugiego momentu réwniez umieszczone sa w dodatku F.
Bazujac na réwnaniu F.6 i przechodzac do przestrzeni t w granicy duzych
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czas6éw, drugi moment mozemy przyblizy¢ jako:

Tnz(t) i~
N(Ax2>
N<Awt—waﬂquszFc&+mﬁ<m>+2q«Aw+2QﬁAw+c§mﬂﬂt
<Ax>2 2 CO _ )
O ey (P4 Duvaggy ) ¢ o @),

(5.59)

Mozna to zapisa¢ fatwiej uzywajac funkcjonatéw rozkladu czaséw wyczeki-

wania {y} oraz y{y}:

2
) ~ (0302 (a7 )+ R + O3 B} + (00 e

dlap € (2;5). (5.60)

Drugi moment procesu (analityczne przyblizenie oraz symulacje kompute-
rowe) przedstawiony jest na lewym wykresie rys. 5.6. We wzorze (5.60) po-

2
nownie pojawia sie standardowa cze$¢ drugiego momentu <Ax>2 (<A—tt>) +
Uix(A_th)' Dokfadne jego zachowanie najlepiej bedzie zbada¢ przechodzac do
wariancji procesu.

5.2.5 Wariancja

Wariancja procesu w dziedzinie czasu zadana jest jako:
o2 (t) = ma(t) — mi(t). (5.61)

Na podstawie wnioskéw z poprzednich podrozdziatéw moge zapisa¢ przy-
blizenie zawierajace wyrazy analityczne oraz wiodacy wyraz potegowy:

1) % (R (052 (4} g + (00 HE L0, p € (239). (562

Dla p € (2;3) najwazniejszy czton wyrazenia (5.62) to drugi czton potegowy.
W procesie obserwujemy wtedy superdyfuzje, w granicznym przypadku do-
chodzaca do dyfuzji balistycznej. Dla p > 3 wystepuje dyfuzja normalna. Jest
to niezwykle ciekawy wynik, pokazujacy, jak znaczaco moga zmienia¢ sie
podstawowe wlasnosci procesu (takie jak rodzaj dyfuzji), jedynie w efekcie
uwzglednienia odpowiednio silnych zalezno$ci pomiedzy czasami miedzyz-
darzeniowymi. Ten wynik, pokazujacy mozliwosci opisu dwéch swiatéw
przez autorski model, zar6wno dyfuzji normalnej, jak i superdyfuzji, jest
kolejnym istotnym wynikiem analitycznym mojej rozprawy doktorskiej.
Wariancja procesu wyznaczona z symulacji komputerowych wraz z granicz-
nymi przypadkami (dyfuzja normalna i balistyczna) przedstawiona jest na
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prawym wykresie rys. 5.6.

1011 B
1011 4

109 4

107 4

my(t)
o2(t)

105 4

103 4

101 4

100 10t 102 103 104 10° 108 10° 10! 102 103 104 10° 10°
t[s] t[s]

Rysunek 5.6: Wykresy estymat charakterystyk procesu z symu-
lacji komputerowych dla r6znych wartosci parametru p w skali
logarytmicznej. Po lewej stronie przedstawiony jest drugi mo-
ment procesu. Dla wszystkich warto$ci parametru p ro$nie on
kwadratowo w czasie. Po prawej stronie przedstawiona jest
wariancja procesu. Zgodnie ze wzorem (5.62) dla parametru
p < 3 najwazniejszym czlonem jest wyraz potegowy t*7F, a
funkcja roénie szybciej niz liniowo. Natomiast dla p > 3 domi-
nujacym czlonem wariangji jest czton liniowy. Przerywane linie
obrazuja funkcje potegowe o skrajnych wykfadnikach 11 2.

5.2.6 Autokorelacja predkosci procesu

Znajac dwa pierwsze momenty stacjonarnego procesu, moge wyznaczy¢
jego autokorelacje predkosci, czyli autokorelacje zmian procesu COV, ().
Korzystajac ze wzoru (3.21) i wstawiajac wartoéci z réwnan (5.58) i (5.60),
moge otrzymac przyblizenie autokorelacji zmian dla rozwazanego modelu
CTRW:

COVar(t) = =

2, m 2 K
s = () covat) = (a2 g e

dlap € (2;4), (5.63)

gdzie x{yp} = (@ - 202%}) Powyzsze przyblizenie uwzglednia naj-
wazniejszy niezerujacy sie czlon ze wzoréw na pierwszy i drugi moment
procesu. W tym miejscu warto tez doda¢, ze w powyzszych wzorach (5.58),
(5.60), (5.62), (5.63) wyraz potegowy istnieje rowniez w przypadku, kiedy
p wykracza poza przyjety zakres i cechuje sie on taka sama zalezno$cia
od (Ax) oraz tym samym wykladnikiem czasowym. Jednak zalezno$¢ am-
plitudy od rozkladu czaséw wyczekiwania 1 oraz parametru p przyjmuje

bardziej ztozona postac.

Zobaczmy niezwykle ciekawe wlasnosci powyzszego wzoru. W przy-
padku rozktadu skokéw o zerowej sredniej (Ax) = 0 ten wzor sie zeruje, co
jest spojne z wynikiem dla kanonicznego CTRW. Natomiast dla niezerowego
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pierwszego momentu zmian (Ax) # 0 w granicy t — oo, czasowa autokore-
lacja zmian zanika potegowo z wyktadnikiem p — 2. Zobrazowane to zostato
na rys. 5.7, gdzie ponownie poréwnuje przyblizony wzér analityczny z
symulacjami komputerowymi. Oznacza to, ze powtarzajace sie czasy wy-
czekiwania wywieraja najsilniejszy wpltyw na btadzenia losowe z dryfem.
Powyzszy wynik obserwowaé mozemy dla nieliniowych autokorelacji
zmian w procesie z zerowym dryfem. Przykladowo dla takiego procesu
mozemy rozwazy¢ autokorelacje moduléw zmian. Wtedy faktycznie li-
czymy autokorelacje zmian procesu zbudowanego na podstawie bazowego
procesu bez dryfu, jednak z bezwzglednymi warto$ciami zmian w miejsce
zmian procesu bazowego. OczywiScie powstaly proces modutéw zmian jest
procesem niemalejacym, ktérego rozklad zmian jest nieujemny i posiada
dodatni pierwszy moment. Oznacza to, ze dla procesu z powtarzajacymi sie
czasami wyczekiwania o zerowym dryfie nie obserwujemy autokorelacji
zmian, jednak autokorelacja modulé6w zmian bedzie zanikaé¢ potegowo.
Jest to kolejny kluczowy analityczny wynik mojej rozprawy doktorskie;j.
Dodatkowo wykladnik potegowego zaniku czasowej autokorelacji zmian
p — 2 jest taki sam, jak wyktadnik potegowego zaniku krokowej autokorelacji
czasOw wyczekiwania.

10° 5

ACF ax|(t)

t[s]

Rysunek 5.7: Wykresy estymat autokorelacji predkosci procesu
zniezerowym dryfem z symulacji komputerowych dla r6znych
warto$ci parametru p w skali logarytmicznej. Przerywane linie
obrazuja funkcje potegowe o odpowiadajacych wykladnikach

—(p—2).

5.3 Symulacje komputerowe

Czes$¢ z analitycznych wynikéw wyprowadzonych w poprzednim roz-
dziale 5.2 jest asymptotycznymi przyblizeniami w granicy duzych czaséw
(t — o0). Przeprowadzitem symulacje komputerowe proceséw, aby na ich
podstawie otrzymacé estymacje badanych statystyk. Dzieki temu, moglem
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poréwnac jak szybko przyblizenia analityczne staja sie zbiezne z wynikami
symulacyjnymi, co przedstawilem na rysunkach 5.2,5.3, 5.5, 5.6, 5.7.

Pierwszym krokiem do przeprowadzenia symulacji omawianego pro-
cesu bylo wygenerowanie dwoéch szeregéw: czaséw wyczekiwania oraz
zmian wartoSci procesu. Tworzac szereg okreséw miedzyzdarzeniowych,
najpierw losowatem warto$¢ At' z rozktadu wykladniczego o $redniej 1 s,
a nastepnie powtarzatem ja v; razy, gdzie v; pochodzito z rozktadu zeta
o zadanym parametrze p. Natomiast szereg zmian warto$ci w wiekszoSci
przypadkéw powstawal w oparciu o losowanie z rozkladu normalnego o
jednostkowej $redniej i wariancji. Zgodnie z definicja procesu, szereg ten
byl niezalezny od szeregu czaséw wyczekiwania. W symulacjach czasowej
autokorelacji moduléw zmian, w celu ulatwienia obliczeri numerycznych,
uzylem szeregu jedynek jako szeregu moduléw zmian. Nastepnie z tak
wyznaczonych szeregéw tworzona byta wiasciwa trajektoria procesu CTRW.

Korelacje krokowe bylby estymowane na podstawie symulacji szeregéw o
dtugosci 228 = 268435456. Natomiast w przypadku tworzenia trajektorii
procesu, rozwazatem procesy o dtugosci 22 s = 1048576 s. Przy wyznacze-
niu kazdej wielko$ci, symulacje byly wielokrotnie powtarzane (co najmniej
100 razy), a wynik prezentowany na wykresach jest ich usrednieniem.

5.4 Poréwnanie z danymi empirycznymi

Motywacja do stworzenia modelu ze skorelowanymi czasami wyczekiwa-
nia w duzym stopniu pochodzita wprost z analizy danych empirycznych, a
konkretniej danych z rynkéw finansowych. W zaproponowanym modelu —
zgodnie z definicja z rozdziatu 5.2 oraz wlasno$ciami danych przedstawio-
nymi w rozdziale 2.3 — powinny zachodzi¢ nastepujace prawidlowosci:

* Warto$¢ procesu odzwierciedla logarytm ceny instrumentu finanso-
wego. Zatem zmiany wartosci procesu Ax to logarytmiczne zmiany
cen, a czasy wyczekiwania At to czasy miedzy transakcjami.

* Rozktad logarytmicznych zmian /(Ax) posiada zerowa $rednia (Ax) =
0.

* Rozktad czaséw wyczekiwania {(At) posiada wszystkie momenty.
* Rozklad liczby powtoérzen to rozklad zeta z parametrem p > 2.

W efekcie tak zdefiniowany model posiada nastepujace wlasnosci poréw-
nane z danymi empirycznymi:

* czasowa autokorelacja zmian jest zerowa COV,(t) = 0.

* obydwie czasowa autokorelacja modutéw zmian COV |,y (t) oraz
krokowa autokorelacja czaséw wyczekiwania COVy;(n) zanikaja
potegowo z tym samym wykladnikiem p — 2.
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Dla czaséw wiekszych niz kilka $rednich czaséw miedzytransakcyjnych
pierwsza wlasnosé jest faktem stylizowanym na rynkach finansowych.
Natomiast poréwnanie wykladnikéw autokorelacji z drugiej witasnosci
przedstawione jest w ponizszej tabeli 5.1. Uwzglednia ona 5 najbardziej
plynnych spétek z rozwazanego przedzialu czasowego. Ponadto przy-
ktadowa czasowa autokorelacja modutéw zmian dla spétki PKNORLEN
zobrazowana jest na rys. 5.8. Widzimy, ze (z dokladnoscia do kilkunastu
procent) uzyskane wykladniki sa zgodne z danymi empirycznymi. Pokazuje
to, ze korelacje pomiedzy czasami miedzytransakcyjnymi sa kluczowe w
modelowaniu i zrozumieniu zaréwno zjawiska klastrowania aktywnosci,
jak i zmiennosci.

6x1072

1072 —— ey ———r S —
100 101 102 103 104
t[s]

Rysunek 5.8: Wykres empirycznej czasowej autokorelacji mo-

duléw logarytmicznych zmian ceny dla PKNORLEN dla da-

nych z czasami miedzytransakcyjnymi zestacjonaryzowanymi

ze wzgledu na wewnatrzdzienna niestacjonarnos¢. Autokore-

lacja ta jest dodatnia i zanika w sposéb potegowy z matym wy-
kiadnikiem, bliskim 0.2.

5.5 Podsumowanie

W powyzszym rozdziale rozpatrzylem autorski model btadzenia losowego
w czasie ciaglym z powtarzajacymi sie czasami wyczekiwania. Stanowi
on ogdlny model CTRW umozliwiajacy uwzglednienie skorelowanych
czasOw miedzyzdarzeniowych. Zaproponowana metodologia jest ogdlna i
poprzez odpowiednie dobranie rozkladu liczby powtérzen wartosci czaséw
wyczekiwania moze modelowaé rézne (krétko- i dalekozasiegowe) zalez-
nosci pomiedzy okresami miedzyzdarzeniowymi; w moich rozwazaniach
skupilem sie na pamieciach dalekozasiegowych. Dzieki prostocie modelu
udato sie go rozwiaza¢ i analitycznie zbadac jego wladciwosci statystyczne
w granicy dlugich czasow. Dodatkowo jego parametry (miedzy innymi
rozkltad zmian h(Ax), czasow wyczekiwania (At) czy wykladnika pote-
gowej autokorelacja czasow wyczekiwania 2 — p) sa fatwo interpretowalne
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Spétka Krokowa ACF At  Czasowa ACF |Ax|

PKNORLEN —0.175 £ 0.005 —0.203 £0.010
KGHM —0.207 £0.010 —0.237 £ 0.006
PKOBP —0.263 £ 0.011 —0.225 £ 0.006

PzU —0.265£0.017 —0.238 £ 0.005
PGE —0.268 = 0.014 —0.253 £ 0.007

Tabela 5.1: Tabela z dopasowanymi wyktadnikami empirycz-
nych autokorelacji zestacjonaryzowanych danych: krokowej
czas6w wyczekiwania ACFa;(n) oraz czasowej modutéw loga-
rytmicznych zmian ACF,/(t) dla 5 najptynniejszych spétek z
GPW w rozwazanym okresie. Uzyte przedzialy do estymacji
to 10°° < n < 1025 dla ACFas(n) oraz 10! < t < 103 dla
ACFp, (). Obydwa wykladniki dla poszczegélnych spotek sa
sobie bliskie. Przyktadowe wykresy samych autokorelacji wraz
z dopasowanymi wykladnikami znajduja sie w dodatkach (ry-
sunki B.8 oraz B.10).

i mozna je ustawia¢ niezaleznie. Umozliwia to ich tatwa estymacje na pod-
stawie danych empirycznych. Dzieki temu potencjalny zakres uzytecznosci
przedstawionego modelu jest znacznie szerszy niz przykladowa aplikacja
zaprezentowana w niniejszej rozprawie.

Poniewaz wlasnosci statystyczne modelu byly inspirowane miedzy innymi
danymi rynkowymi, mozna go uzywac jako prostego modelu dynamiki
ceny. Oczywiscie jest to model, ktéry w zalozeniu skupia sie gléwnie na
jednym efekcie — zjawisku klastrowania aktywno$ci, przejawiajacym sie
silnie skorelowanymi czasami miedzytransakcyjnymi. Celem tego modelu
nie jest uwzglednienie wszystkich znanych faktéw stylizowanych obser-
wowanych w danych transakcyjnych, takich jak gruboogonowe rozklady
zwrotow logarytmicznych [7], multifraktalno$¢ [111], [112] czy ogdlne
prawa skalowania czaséw pomiedzy ekstremalnie duzymi skokami [109],
[110]. Glé6wnym zamierzeniem bylo stworzenie prostego, rozwiazywal-
nego modelu, dzieki ktéremu bedzie mozna lepiej poznaé podstawy oraz
wspoélzaleznosci efektow klastrowania aktywnosci i zmienno$ci. Wyniki
modelu pokazaly, ze faktycznie rola czaséw miedzytransakcyjnych moze
by¢ kluczowa w zrozumieniu powstawania efektu klastrowania zmienno-
$ci. Model ttumaczy wykladniki zaniku zar6wno autokorelacji czaséw
wyczekiwania, jak i moduléw zmian, uwzgledniajac jedynie zalezno$ci
pomiedzy czasami miedzytransakcyjnymi, nie modelujac w ogéle za-
leznosci pomiedzy zmianami ceny czy modulami zmian ceny. Pokazuje
to, ze na podstawowym poziomie pojedynczych transakcji, to zaleznosci
pomiedzy okresami miedzy transakcjami sa istotniejsze niz zaleznosci
pomiedzy samymi warto$ciami zmian ceny czy ich modutami. Co wiecej,
aby zweryfikowaé uniwersalnos¢ wyciagnietych wnioskéw, symulacyjnie
sprawdzilem inne metody generowania skorelowanych szeregéw czaséw
wyczekiwania, w tym metode filtrowania w przestrzeni Fouriera (przykfa-
dowo zastosowana w [113]). Okazato sie, ze nie miato to wplywu na gtéwne
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wnioski z analizy: wykladniki autokorelacji krokowej szeregu czaséw
wyczekiwania i autokorelacji czasowej modutéw zmian réwniez byly takie
same. Ta weryfikacja pokazuje, Ze wnioski wyciagane z modelu sa ogodlne,
niezalezne od szczegélnego Zrodla wprowadzania zaleznosci w szeregu
czasOw wyczekiwania.

Obecnie najbardziej popularnym modelem dotyczacym klastrowania
zmiennodci jest model GARCH (ang. Generalized AutoRegressive Conditional
Heteroskedasticity), ktéry operuje na szeregu czasowym i skupia sie na
uwzglednieniu zalezno$ci pomiedzy wariancja kolejnych skokéw. Jednak
niezwykle ciekawy wynik otrzymany dla modelu rozwazanego w tej rozpra-
wie pokazuje, ze istnieje potrzeba rozwijania alternatywnych metodologii do
standardowych podejs¢. Rzutowanie procesu istniejacego w czasie ciagtym
na szereg czasowy moze by¢ nieodpowiednia metoda, gdyz to wiasnie
zalezno$ci w przestrzeni czaséw moga pozwoli¢ na prawdziwe zrozumienie
zjawiska, a przez to umozliwié w przysztosci powstanie dokladniejszych
i bardziej precyzyjnych modeli klastrowania zaréwno aktywnosci, jak i
zmiennosci.






81

Rozdzial 6

Multifraktalna analiza aktywnosci

Istota proceséw opisujacych aktywnosci ukladéw zlozonych jest przedmio-
tem intensywnych badan. Przykltadami rozwazanych uktadéw moga by¢
wieloatomowe uklady fizyczne, ztozone uktady biologiczne (w tym homo
sapiens), czy tez te nadzwyczaj istotne dla spotecznosci ludzkich (takie jak
rynki finansowe czy sieci infrastrukturalne). Nieliniowe oddzialywania
pomiedzy elementami tworzacymi ukiad (np. typu sprzezefi zwrotnych),
obecnos¢ w ukladzie dlugookresowej pamieci oraz niestacjonarnosci, sa
zrédltem zlozonej struktury aktywnosci ukladéw. W niniejszej rozprawie
skupitem sie na mechanizmach mogacych stanowi¢ klucz do glebszego zro-
zumienia zasad funkcjonowania wielu uktadéw ztozonych. Prominentnym
przykladem moze by¢, opisana w rozdziale 5.5, zasadnicza rola zaleznosci
pomiedzy czasami miedzytransakcyjnymi w powstawaniu zjawiska klastro-
wania zmienno$ci na gieldzie.

Skomplikowana aktywno$¢ ukladu moze przejawia¢ sie w wielu cha-
rakterystykach ukladu, takich jak niewykladniczy rozklad czaséw mie-
dzytransakcyjnych, potegowe korelacje w wielu skalach czasowych (czyli
niezmienniczo$¢ ze wzgledu na skalowanie) oraz korelacje wyzszych rze-
déw a w tym korelacje nieliniowe. Analiza aktywnosci ukladu musi by¢ w
stanie uwzgledni¢ powyzsze konsekwencje. Nowoczesna, zaawansowana
metoda spelniajaca ten warunek jest analiza multifraktalna, zwana tez
wielofraktalna. W niniejszym rozdziale omawiam autorska metode analizy
multifraktalnej [16]. Metoda ta polega na zdefiniowaniu, w réznych skalach
czasowych, lokalnych érednich czaséw miedzytransakcyjnych (co stanowi
analogie do podejscia typu coarse graining). Oznacza to zasadnicza réznice
w stosunku do standardowego podejscia. W wyniku przeprowadzenia
procedury skalowania podstawowych charakterystyk czaséw miedzy-
transakcyjnych, otrzymalem niemonotoniczne zachowanie uogélnionego
wykladnika Hursta h(q) oraz Holdera a(q) w funkcji rzedu fluktuagji
g. Dzieki zastosowaniu transformaty Legendre-Fenchela (subtelniejszej
od powszechnie uzywanej w tym kontekScie transformaty Legendre’a),
otrzymatem wielogateziowe widmo (spektrum) f(a) stanowiace zasadnicza
charakterystyke multifraktalnosci.
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6.1 Analiza multifraktalna

Analiza multifraktalna jest metoda analizy ukladéw zlozonych i nieli-
niowych systeméw dynamicznych [111], [114], [115], ktéra w ostatniej
dekadzie wyraZnie zyskata na popularnosci. Multifraktale to obiekty, ktore
skaluja sie analogicznie do fraktali, jednak skalowanie ich charakterystyk
moze by¢ rézne dla réznych czedci multifraktali. W tym sensie analiza
multifraktalna stanowi rozszerzenie kanonicznej analizy fraktalnej. Obecnie
udokumentowane sa dwa Zrédia pochodzenia multifraktalnos$ci: gruboogo-
nowe rozklady i/lub dalekozasiegowe zaleznosci [111], ktére prowadza
do hierarchicznej organizacji w wielu skalach. Duzym wyzwaniem jest
zidentyfikowanie prawdziwej multifraktalnosci. Szumy, niektére korelacje
krétkookresowe, a takze zbyt mata dlugos$¢ szeregu moga prowadzi¢ do
multifraktalno$ci pozornej [116], [117].

Jednak pomimo trudnosci technicznych, analiza multifraktalna znaj-
duje coraz szersze zastosowania. Na przyklad, w medycynie [118] a
zwlaszcza w neuronauce [119] i elektrografii [120]-[122]. Uzywana jest
do opisu aktywnosci sejsmicznej (zwlaszcza w wulkanologii) [123], [124],
zjawiskach turbulencji w atmosferze [125], a nawet rozrostu miast w urba-
nistyce [126]. Powszechnie stosowana jest w analizie rynkéw finansowych
[112], [127]-[130], przede wszystkim w analizie procesu ceny, a nie samej
aktywnodci. Prace rozwazajace multifraktalno$é aktywnosci, koncentrowaly
sie bezposrednio na szeregach czaséw miedzytransakcyjnych [106], [131],
[132]. Rozwinieta przez mnie metoda opiera sie na innej, niz dotychczas
stosowana, mierze aktywnos$ci, a mianowicie na lokalnych $rednich cza-
sach miedzytransakcyjnych, przy czym aktywnos¢ jest do nich odwrotnie
proporcjonalna.

Dotychczasowe metody analizy multifraktalnej mozna podzieli¢é na
dwie gléwne kategorie: a) opierajace sie na analizie odchyleri od trendu
(podejscie fluktuacyjne) oraz b) transformacji falkowej maksiméw modutéw
(ang. wavelet transform modulus maxima) (podejscie transformacyjne). Jednak
pokazano, ze metoda (b) jest czesto mniej stabilna, dlatego nie jest prefe-
rowana do analizy danych ktérych cechy multifraktalne nie sa wczesniej
znane [114]. Przy stosowaniu metody wymienionej w punkcie (a), mozna
uzyska¢ wykorzystywany w tej metodzie trend przez dopasowanie krzywej
wielomianowej do danych w oparciu o technike DFA (ang. detrended fluc-
tuations analysis) badZ postuzy¢ sie érednia kroczaca (ang. detrended moving
average). Jednak w przypadku danych posiadajacych niestacjonarnosci, w
tym wewnatrzdziennych niestacjonarnosci, ktére wystepuja w przypadku
uzywanych przeze mnie danych (zobacz rys. 2.9), znacznie lepiej jest
postuzy¢ sie technika DFA.
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6.2 Analiza multifraktalna srednich czasé6w mie-
dzyzdarzeniowych

W tym rozdziale przedstawiam wyniki autorskiej analizy multifraktalnej
Srednich czaséw miedzytransakcyjnych. Metoda oparta jest na kanonicz-
nej analizie multifraktalnej zdetrandowanych fluktuacji (ang. multifractal
detrended fluctuations analysis, MFDFA), jednak posiada dwie istotne mo-
dyfikacje. Po pierwsze w niestandardowy sposéb definiuje wielko$¢, na
ktérej wprost przeprowadzona jest analiza multifraktalna. Zamiast uzywac
szeregu czasOw miedzytransakcyjnych, wyznaczam lokalne Srednie czasy
miedzytransakcyjne, co definiuje ponizej w paragrafie 6.2.1. Po drugie,
otrzymawszy niemonotoniczny wykladnik Holdera, uzywam transfor-
macji Legendre-Fenchela, zamiast zwyklej transformaty Legendre’a, co
pozwala na uzyskanie wielogateziowego spektrum (widma) singularnosci
(osobliwosci). Opisatem to w paragrafie 6.2.4.

6.2.1 Wewnatrzdzienne fluktuacje Srednich czasé6w miedzy-
transakcyjnych

Dane sa w naturalny sposéb podzielone na N; dni handlowych, kazdy o
dtugosci T, tutaj jest to N; = 1741 oraz T = 7 h 50 min = 28 200 s. Poniewaz
systematyczna skladowa aktywnosci jest powiazana przede wszystkim z
wewnatrzdzienna niestacjonarnoscia (przedstawiona w postaci wyrazistego
"u$miechu" zmiennosci na rys. 2.9), dlatego nie tacze dni w jeden dlugi
szereg czasowy. Dodatkowo, ogélna liczba transakcji zmienia sie znaczaco
w zaleznosci od dnia (patrz rys. 2.11). Zamiast tego, kazdy dzien traktuje
osobno, dzieki czemu otrzymuje zespét statystyczny zlozony z Ny dni
(replik statystycznych) umozliwiajacy usrednianie po tym zespole. Pola-
czenie takiego podejscia z elementami metody MFDFA, pozwola pozby¢
sie niestacjonarnosci zaréwno wewnatrzdziennych, jak i tych w dltuzszym
okresie.

Nastepnie kazdy dziern handlowy dziele na s roztacznych okienek czasu o
jednakowej dlugosci A, przy czym zachodzi T = sA. Zatem w przedstawio-
nym podejsciu s definiuje skale. Dla kazdego takiego okienka, i’ = 1,...,s,
definiuje lokalny Sredni czas miedzytransakcyjny, At}, jako iloraz dtugosci
okienka A przez liczbe n; transakcji zaobserwowanych w okienku (plus 1,
co pozwala unikna¢ dzielenia przez 0 w przypadku, gdy n = 0):

A
7’11'/—|—1

At = (6.1)
(takie podejScie jest uzasadnione wtedy, gdy n > 1, co najczesciej ma miej-
sce dla spétek o duzej ptynnosci). Zatem, dla kazdego dnia v = 1,..., Ny,
otrzymuje szereg o dlugosci s, sktadajacy sie z lokalnych Srednich czaséw
miedzytransakcyjnych Af}. Przykladowy pojedynczy szereg przedstawiony
jest na wykresie (a) rys. 6.1. Odwrotnosci tak zdefiniowanych $rednich
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czasO6w przyjmuje jako miare aktywnosci na gieldzie. Czasy te sa punktem
wejécia analizy multifraktalnej przedstawionej w niniejszej rozprawie.

W kolejnym kroku, dla kazdego dnia v oraz zadanej skali s definiuje profil
U, jako sume kroczaca lokalnych $rednich czaséw miedzytransakcyjnych:

i
U,(i) =) A}, 1<i<s. (6.2)
i'=1

Zatem profil ma ksztatt dodatniej monotonicznie rosnacej krzywej, zdefinio-
wanej dla skali s. Aby usuna¢ gtéwna niestacjonarnos¢, czyli zdetrendowac
profil (i méc dalej analizowa¢ jedynie odchylenia od trendu), nalezy uzy¢
wielomianu co najmniej trzeciego stopnia. Wynika to z koniecznosci od-
tworzenia punktu przegiecia empirycznej niestacjonarnosci przedstawionej
na wykresie (b) na rys. 6.1 oraz oméwionej wczesniej w paragrafie 2.3.2
(tzw. ‘efektu lunchu’), jak réwniez ze skumulowanego charakteru tej wiel-
kos$ci. Dzieki temu usuwam z danych niestacjonarno$¢ wewnatrzdzienna.
Ponadto, poniewaz dla kazdego dnia dobieram wielomian niezaleznie, to
detrendowanie ma tutaj charakter indywidualny. Stad, usuwane sa takze
inne niestacjonarnosci, nawet diugoterminowe (wielodniowe), gdyz w takiej
procedurze uzywam zindywidualizowanego, najlepszego dla kazdego dnia
dopasowania.

Dla kazdego dnia definiuje wielomian detrendujacy stopnia M:

M
y() =Y ArM™, M>0, 1<i<s, 1<v<Ng;  (63)

m=0

W ponizszych rozwazaniach wystarczy dobraé stopieri wielomianu M = 3
(jednakowy dla kazdego dnia). Przykladowy profil dla pojedynczego dnia
oraz dopasowany wielomian detrendujacy pokazatem na wykresie (b) rys.
6.1. Natomiast wartosci bezwzgledne odchyleri profilu empirycznego od
tego wielomianu pokazalem na wykresie (c). Widaé na nim, ze poprawnie
usuwamy wewnatrzdzienng strukture aktywnosci, zostawiajac dobrze wi-
doczne grupy duzych odchylent. Dzieki temu wybrana procedura pozwala
na analize klastrowania sie fluktuacji (w tym przypadku odpowiadajacych
zmienno$ci aktywnosci).

Zdetrendowana funkgcje fluktuacyjna drugiego stopnia definiuje dla kazdego

dnia v i zadanej skali s, jako $rednie odchylenie kwadratowe profilu od
dopasowanego wielomianu:

P9 = L LI -y 649
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Rysunek 6.1: Wykresy wewnatrzdziennych charakterystyk sze-
regéw czasowych dla przyktadowo wybranego dnia 6-go maja
2019 r (v = 1505) dla ustalonej wielkosci okna czasowego A =
5 min, odpowiadajacego skali s = 96, prezentujace efekt kla-
strowania aktywnodci. (a) Wykres podstawowej wielko$ci wy-
znaczonej z empirycznych danych transakcyjnych, czyli $red-
nie czasy miedzytransakcyjne ATE}’, i=1,...,5. Widaé¢ na nim
efekt klastrowania aktywnosci — zaréwno diugie $rednie czasy
miedzytransakcyjne odpowiadajace spokojnym okresom (o ni-
skiej aktywnosci), jak i krotkie odpowiadajace okresom o du-
zej aktywnosci skupiajace sie w gronach. Ponadto, wida¢ we-
wnatrzdzienna niestacjonarnos¢ — okresy najmniej aktywne ob-
serwuje sie w §rodku dnia, a okna z najwieksza liczba transak-
cji wystepuja na poczatku i koricu sesji. (b) Empiryczny, mo-
notonicznie rosnacy wykres (dodatniego) profilu U, (i) (poma-
raficzowe kropki) posiadajacy punkt przegiecia wraz z dopa-
sowanym trendem y, (i), czyli wielomianem trzeciego stopnia
(czarna ciagta linia). (c¢) Wykres bezwzglednych odchyler od
trendu |U, (i) — y,(i)|, ktérych usredniony kwadrat definiuje
zdetrendowana funkcje fluktuacyjna drugiego stopnia. Dobrze
widoczny jest efekt klastrowania fluktuacji.

Tego rodzaju dwuczynnikowa funkcja (okre$lona indywidualnie dla kaz-
dego dnia) ilustruje rozmiary fluktuacji srednich czaséw miedzytransakcyj-
nych w stosunku do znormalizowanego trendu. Warto zaznaczy¢, ze niniej-
sza analiza r6zni sie od standardowych wariantéw metody MFDFA uzywa-
nych dotychczas [112], rozpatrujacych wielodniowy szereg danych jako je-
den szereg. W moim podejsciu nie zajmuje sie bezposrednio samymi czasami
miedzytransakcyjnymi, ale ich lokalnymi §rednimi. Ponadto, szeregi danych
reprezentujacych pojedyncze dni handlowe byly rozpatrywane osobno (po-
niewaz laczenie danych nie jest procedura okre$lona precyzyjnie). Zatem
dla ustalonego v, funkcja F?(v,s) jest funkcja od skali s. Kolejne charakte-
rystyki danych beda definiowane za pomoca zbioru zdetrendowanych funk-
qji fluktuacyjnych w liczbie N;. Nalezy podkresli¢, ze w takim przypadku
skalowanie nie wykracza poza pojedynczy dziefi handlowy, czyli badane sa
zaleznosci wewnatrzdzienne. Mimo tego, ze operuje krotszymi szeregami,
mozliwe jest zaobserwowanie prawa skalowania funkgcji fluktuacyjnej do-
wolnego rzedu g (gdyz wprowadzam dodatkowe Sredniowanie po zespole
statystycznym dni handlowych), ktére szerzej omawiam ponize;j.
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6.2.2 Uogdlniona suma statystyczna

Uogolniona suma statystyczna definiowana jest nastepujaco:

Zy(s) = ) [p(v,9)]", (6.5)

gdzie dla zadanej skali s funkcja p(v, s) jest prawdopodobieristwem wysta-
pienia konkretnej wielkosci fluktuacji (a dokladnie pierwiastka $redniego
kwadratowego odchylenia od trendu) dla rozwazanego dnia v. Przy zastoso-
waniu funkgji fluktuacyjnej drugiego stopnia mozna zdefiniowac ta wielkos¢
w postaci:

NI—=

2 v,s
plvs) = [liTo(rr;lgs])

N|—

Ny
, Norm(s) = Y [F*(v,s)]2. (6.6)
v=1

Na podstawie warunku normalizacji otrzymujemy $rednia warto$¢ tego
prawdopodobienistwa:
1 U

(pls)) = X ps) = Nid 67)

a takze sume statystyczna dla g = 0:
Zqzo(s) = Nd- (68)

Jest to konsekwencja stworzenia zespotu statystycznego z szeregéw czaso-
wych podzielonych na dni handlowe.

Nastepnie moge sformutowa¢é kluczowa hipoteze skalowania fluktuacji:

Ny

) [F2(v,s)]

v=1

Nl=

~ NyAgs™@), (6.9)

Podobnie jak w kanonicznym podejsciu, zakladam (weryfikowana ponizej)
potegowa zaleznos¢ od skali s lewej strony wyrazenia (6.9), z wykladnikiem
réwnym gh(q), gdzie h(q) to uogdlniony wyktadnik Hursta. Podstawa
potegi to jedyne miejsce zalezne od skali s, tzn. wspétczynnik A, oraz
uogodlniony wyktadnik Hursta h(g) nie zaleza od s. Co wiecej, podstawiajac
q = 0 otrzymuje, ze A;—o =~ 1.

Kluczowym elementem analizy multifraktalnej jest sformutowanie hi-
potezy skalowania. Wyznaczanie kolejnych wielko$ci ma miejsce na jej
bazie. W zwiazku z tym, wazne jest zweryfikowanie tego twierdzenia w
oparciu o dane empiryczne. Szczegbétowy opis tego procesu zawarty jest w
rozdziale 6.2.3. Trzeba jednak zaznaczy¢, ze hipoteza skalowania uzyta w
niniejszej rozprawie rézni sie od jej standardowej formy opartej na petnej
uogodlnionej sumie statystycznej. Zaproponowane przeze mnie podejscie
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opiera sie na wykorzystaniu parcjalnej (czeSciowej) sumy statystycznej
pozwalajace omina¢ trudnosci, jakie generuje uzycie pelnej uogdlnionej
sumy statystycznej. Szczegoty tego podejscia sa wyjasnione w dodatku G.

6.2.3 Hipoteza skalowania

W tym podrozdziale przeprowadzam analize multifraktalng na konkretnym
przykladzie danych empirycznych. Wydarzeniami sa pojedyncze transakcje
na spolce PKNORLEN z okresu 15-04-2013 do 15-04-2020, tworzace zespot
Ny = 1741 dni handlowych. (Dokladniejszy opis uzywanych danych em-
pirycznych zamiescitem w dodatku A.) W tym celu wprowadzam (ogélna)
funkgje fluktuacyjna:

Ny ; %
Fq(s) = {Ndl Z[Fz(v,s)P} , q#0, (6.10)

v=1

pozwalajaca wyrazi¢ hipoteze skalowania (6.9) w postaci:

- =

Fyls) ~ [ 4570 6.11)
Definicje (6.10) nalezy uzupeki¢ o przypadek g4 = 0, dla ktérego funkcje
fluktuacyjna mozna wyznaczy¢ wprost przechodzac w (6.10) z g — 0:

Ny
Fo(s) = exp [%Nd ) log <F2(v,s)>] . (6.12)
v=1

W dalszym ciagu warto zlogarytmowac¢ stronami réwnanie (6.10) ze
wzgledu na jego potegowy charakter:

log F4(s) = h(q)logs + B(q), B(g) = q_l log A,. (6.13)

W nastepnym kroku moge przystapi¢ do bezposredniej weryfikacji hipotezy
skalowania. W rzeczywistosci moze ona by¢ spelniona tylko w ograniczo-
nym przedziale skal. Kluczowym krokiem jest poprawne okreSlenie tego
przedzialu. Na podstawie konkretnej realizacji F,(s), przedstawionej na
rysunku 6.2 dla kilku reprezentatywnych wartoéci g, wyznaczam przedziat
skal, w ktérym zaobserwowano zgodno$¢ z hipoteza skalowania. Dla ma-
tych skal, np. s = 10, co odpowiada oknu o dlugosci A = 2820 sek = 47 min,
mam do czynienia ze zbyt mala liczba okienek. Procedura detrendowa-
nia oznacza dopasowanie wielomianu trzeciego stopnia do malej liczby
punktéw — w tym wypadku 10 — co powodowaé moze zbyt dokladne dopa-
sowanie i eliminacje zdetrendowanych fluktuacji. Przeciwny przypadek to
zbyt duza skala, kiedy to okienka sa zbyt krétkie, co powoduje powstanie
niereprezentatywnego szeregu lokalnych $rednich czaséw miedzytran-
sakcyjnych AtY. Przykladowo, dla skali s = 940 dtugos¢ okienka wynosi
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Rysunek 6.2: Wykres empirycznej funkci F,(s) (kolorowe
punkty) w skali log-log dla wybranych reprezentatywnych
wartosci g z przedziatu [—10; 10]. Przedziat ten jest na tyle sze-
roki, ze pozwala na wyodrebnienie obu asymptot (dla ujem-
nych i dodatnich wartosci q) wykladnika Rényi’ego T(g) zde-
finiowanego réwnaniem 6.14, ktérego przebieg przedstawi-
fem na rys. 6.6 ponizej. Ciagle linie na niniejszym wykre-
sie to proste dopasowane regresja liniowa oddzielnie dla kaz-
dego q do punktow empirycznych w zadanym zakresie skal.
Pionowe przerywane linie zaznaczaja wybrany zakres skali
s € [15;150] odpowiadajacy zakresowi okien czasowych A €
[188 sek; 1880 sek]. Jest to odpowiednio szeroki przedziat z naj-
mniejszymi bledami wzglednymi i bezwzglednymi dopaso-
wan. Wida¢, co jest nadzwyczaj wazne, ze nachylenia prostych
zaleza w spos6b niemonotoniczny od q. Wspomniane btedy do-
pasowan sa tutaj na tyle male, ze pozwalaja na analize tej sub-
telnej, ale wyraZnej niemonotonicznosci.

A = 30 sek. Jest ona poréwnywalna ze Srednim czasem miedzytransakcyj-
nym dla tej spétki (wynoszacym okoto 20 sek). Oznacza to, ze zdecydowana
wiekszos¢ okienek nie bedzie zawierata zadnej transakgji albo jedna lub
co najwyzej dwie (wyzsza liczba transakcji jest mato prawdopodobna). W
konsekwengji, otrzymany szereg lokalnych $rednich czaséw miedzytran-
sakcyjnych bedzie sie skladat przede wszystkim z niemal takich samych
wartoéci, uniemozliwiajac analize zdetrendowanych fluktuacji.

Na rysunku 6.2 wida¢, ze dla duzych wartosci s i 4 nie wystepuje skalowa-
nie, jednak w przedziale srodkowym (pomiedzy pionowymi przerywanymi
liniami prostymi) wartoéci funkgji fluktuacyjnej rosna liniowo (w skali log-
log) wraz ze wzrostem s dla wszystkich wartosci g. Dla ujemnych wartoéci g
przedziat skalowania jest dluzszy, jednak mdj cel to zlokalizowanie uniwer-
salnego (wspdlnego dla wszystkich wartosci q) zakresu s, dla ktérego ma
miejsce skalowanie. Zakres s powinien obejmowac¢ przynajmniej jeden rzad
wielko$ci danych empirycznych o wystarczajaco matym rozproszeniu staty-
stycznym. Innymi stowy, wyznaczony uogdélniony wyktadnik Hursta h(g),
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czyli w tym przypadku wspoétczynnik przy wyrazie liniowym (otrzymany
z regresji liniowej opartej na wzorze (6.13)), powinien mie¢ mata wartos¢
wzglednych bledéw dopasowania. Tym poszukiwanym przedziatem jest
[15,150], odpowiadajacy zakresom okien czasowych A € [188 sek, 1880 sek].
Istotnym jest tez tutaj wybranie odpowiedniego zakresu q — w tym przy-
padku jest on szerszy niz zwykle uzywany i wynosi —10 < g < 10, co
pozwala na wyodrebnienie asymptot ukosnych wyktadnika Rényi’ego 7(q)
(danego wzorem (6.14) ponizej, ktérego zalezno$¢ od g przedstawitem na
rysunku 6.6).

W rozwazanym przedziale skali wyznaczylem uogoélniony wykladnik
Hursta h(g). Jego interesujacy przebieg przedstawitem na rysunku 6.3. Po
pierwsze warto zauwazy¢ duza rozpieto$¢ wartosci wyktadnika Hursta,
ktéry dla —10 < g < 10 przyjmuje wartosci od 0.22 do 1.08. Dobrze wida¢
tez niemonotoniczno$¢ h(q) — osiaga on maksymalna wartos$¢ dla g = —1.31.
Zielona linia przedstawitem wynik dla symulowanego procesu Poissona o
dtugosci szeregu i Srednim czasie miedzytransakcyjnym odpowiadajacym
danym empirycznym. Jego wariancja (nieprzekraczajaca grubosci krzywej
w kolorze zielonym) oraz zmienno$¢ (nieprzekraczajaca 0.07) sa niewielkie,
co pokazuje, ze wplyw skoniczonego rozmiaru empirycznego szeregu cza-
sowego jest do zaniedbania. Rzuca sie w oczy drastyczna réznica pomiedzy
przebiegami h(gq) dla obu proceséw zaréwno co do jego rozpietosci, jak
i ksztattu. Wygodna miara tego jest roznica Ah(q) = h(—q) — h(q) - jej
zaleznos¢ od g dla obu proceséw przedstawilem na rysunku 6.4. Waznym
aspektem tego poréwnania jest fakt, ze proces Poissona nie jest samoskore-
lowany. Zagadnienia zwiazane z autokorelacjami omawiam w dodatku H.

Z regresji liniowej, na podstawie ktérej wyznaczany jest wykladnik Hursta,
otrzymuje sie tez niezalezny od skali s skladnik B(q) (patrz wzér (6.13)).
Jego zachowanie, zaprezentowane na rysunku 6.5, jest bardziej zlozone niz
w przypadku procesu Poissona, co jest kolejnym sygnalem wskazujacym na
ztozonos¢ struktury aktywnosci w analizowanych danych empirycznych.

Nastepna, omawiana w rozprawie wielkoscia jest wykladnik skalowania
Rényi’ego T(gq) zdefiniowany jako:

T(q) = gh(q) —h(qg =1). (6.14)

Dokladne wyprowadzenie, a w szczeg6lnosci wyjasnienie obecnosci wyrazu
stalego /(g = 1), zamieScilem w dodatku G. W przypadku monofraktali,
dla ktérych wyktadnik Hursta nie zalezy od g, 7(g) jest po prostu funkcja
liniowa. Wida¢ to dobrze dla nieskorelowanego procesu Poissona. W przy-
padku danych empirycznych, widzimy zmiane asymptotycznego nachyle-
nia dla ujemnych i dodatnich q. Dodatkowo w otoczeniu g = 0 wystepuje
niewielkie, ale wyraZne falowanie. To jest wlasnie (méwiac ogoélnie) sygna-

tura niemonotonicznej multifraktalnosci. Aby zbada¢ doktadniej ta subtel-

nos¢, nalezy wziaé pod uwage pochodna %, czyli wyktadnik Holdera.
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Rysunek 6.3: Wykres empirycznego uogélnionego wykladnika
Hursta h1(q) (niebieska krzywa) wraz z jego bledami dopaso-
wan (punkty wokoét tej krzywej; pochodza one z bltedéw wcze-
$niejszych dopasowan przedstawionych na rysunku 6.2). Na
tym oraz kolejnych wykresach zielone krzywe sa wynikiem
symulowanego procesu Poissona — dla nieskoriczenie dtugich
danych powinna by¢ horyzontalna. W przypadku symulagji o
dtugosci réwnej dlugosci danych empirycznych, jest ona tylko
nieznacznie wygieta. Pozwala to twierdzi¢, ze wplyw skon-
czonego rozmiaru szeregu czasowego, w tym szeregu empi-
rycznego, jest znikomy. Co wazniejsze, widoczna znaczna roz-
pieto$¢ uogdlnionego wyktadnika Hursta oznacza, ze analizo-
wane dane empiryczne przejawiaja silne wiasnosci multifrak-
talne. Niemonotonicznoé¢ uogélnionego wykladnika Hursta,
ktéra popchneta mnie do dalszych badani, byla juz wczesniej
opisywana w sposob inspirujacy przez autoréw prac [116],
[133], [134]. Zauwazyli oni, ze udekorowanie autokorelacji dtu-
gookresowych (np. korelacjami krétkookresowymi, addytyw-
nym szumem, czy okresowym trendem) moze prowadzi¢ do
niemonotonicznos$ci /(). Jednakze ta obserwacja jest niepetna
— np. wciaz nie jest znana odpowiedZ na pytanie dotyczace
roli dtugookresowych autokorelacji wyzszych rzedéw (wielo-
punktowych) w wywolywaniu tego typu niemonotonicznosci,
tzn. jakie ich klasy moga do niej prowadzi¢. W niniejszej roz-
prawie skupiam sie na badaniu konsekwencji wystepowania
wspomnianej niemonotonicznosci, nie odpowiadajac na pyta-
nie o jej Zrodta.
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Rysunek 6.4: Wykres empirycznej funkcji nieparzystosci wy-
ktadnika Hursta Ah(gq) = h(—g) — h(g) (linia niebieska) w po-
réwnaniu z analogiczna dla procesu Poissona (linia zielona).
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Rysunek 6.5: Wykres empirycznej funkgji tta B(g) (wystepujacej
w réwnaniu (6.13)) w poréwnaniu z analogiczna dla procesu
Poissona.



92

Rozdziat 6. Multifraktalna analiza aktywnosci

7(q)
o

_10_

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
q

Rysunek 6.6: Wykres wyktadnika skalowania Rényi’ego 7(q) w
zalezno$ci od q. W przypadku monofraktali (tak jak dla przy-
ktadowo wybranego symulowanego procesu Poissona ozna-
czonego zielong linia) 7(g) jest funkcja liniowa. W danych
empirycznych (linia niebieska) oprécz zmiany nachylenia, w
czesci srodkowej wystepuje takze niewielkie, ale wyraZzne za-
falowanie. Wlasnie to subtelne zafalowanie jest zasadniczym
przedmiotem analizy w niniejszym rozdziale.



6.2. Analiza multifraktalna srednich czaséw miedzyzdarzeniowych 93

6.2.4 Multifraktalnos¢ wielogaleziowa

Kluczowymi wielko$ciami multifraktalnymi sa wykladnik Holdera a(g),
ktéry jest lokalnym wymiarem fraktalnym oraz jego rozktad f(a). W
przypadku monofraktali wyktadnik skalowania Rényi’ego jest linia prosta.
Odstepstwa od tej liniowosci wygodnie jest bada¢, biorac pod uwage jego
pochodna po g, czyli wykladnik Holdera. Zmienno$¢ tej funkgji jest oznaka
multifraktalnosci analizowanych danych. Wyktadnik a(q) oraz jego rozktad
f(a) otrzyma¢ mozna poprzez transformacje Legendre-Fenchela (L-F).
Pomimo, ze rownania definiujace te wielkosSci sa formalnie takie same jak
dla transformacji Legendre’a, to podejécie z uzyciem transformacji L-F
pozwala na uzyskanie rozwiqzania wielogateziowego. Dokladniej opisalem
to w dodatku L.

Wykladnik Holdera definiowany jest jako pochodna wykladnika skalo-
wania 7(q) po g:

a(q) = d;fj), (6.15)

ajego rozklad f(«) definiuje za pomoca transformacji L-F:

f(q) = qa(q) — t(q). (6.16)

Kluczowym wynikiem jest tutaj duza zmienno$¢ wyktadnika a(g) oraz
jego niemonotoniczne zachowanie. Funkcja ta najpierw jest stata, nastepnie
maleje i dla g = —3.06 osiaga lokalne minimum. Nastepnie wzrasta i osiaga
maksimum w punkcie 4§ = —0.83. Kolejne lokalne minimum jest osiagane
przez wykladnik a(q) w punkcie g = 4.58. W dalszych rozwazaniach
empirycznych skupiam sie na przedziale g € [—5;10], gdyz dla mniejszych
wartosci ¢ wykladnik Holdera nie zmienia sie istotnie zmniejszajac jedynie
czytelnod¢ wynikéw empirycznych.

Podejécie kanoniczne stosujace transformacje Legendre’a nie pozwala na
otrzymanie spektrum f(a) w postaci wielogaleziowej. Jednakze, dzieki
zastosowaniu transformacji L-F otwiera sie mozliwo$¢ zdefiniowania i
otrzymania wielogateziowego spektrum multifraktalnego.

Kazda z czterech monotonicznych czesci wykltadnika Holdera odpowiada
innej gatezi na wykresie spektrum przedstawionym na rysunku 6.8. Gléwna
gataz spektrum multifraktalnego f(«) jest wypukta oraz styczna do prze-
rywanej cienkiej linii o nachyleniu 1 (opisatem to dokfadniej w dodatku I).
Boczne gatezie facza sie z nia w sposéb gladki. Oznacza to, ze pochodne obu
gatezi w miejscu styku sa sobie rowne. Zatem odwzorowanie « w f(«) jest
wszedzie rézniczkowalne. Formalnie, kazda pojedyncza gataz definiowana

d*f (a)

jest jako segment spektrum, dla ktérego druga pochodna = jest ciagta.
Punkty nieciagltosci drugiej pochodnej definiujq korice pojedynczych galezi,
pozwalajac otrzyma¢ widmo wielogateziowe (omawiam to dokladnie w
podrozdziale 6.2.5. Na rysunku 6.9 przedstawilem powiekszenie fragmentu
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Rysunek 6.7: Wykres empirycznego wykltadnika Holdera a(q)
w zaleznosci od g. Kolorem niebieskim oznaczylem (monoto-
nicznie rosnace) przedzialy tego wykladnika. Kluczowym jest
tutaj jego zmiennos¢ oraz niemonotoniczne zachowanie. Wynik
dla (referencyjnego) symulowanego procesu Poissona przed-
stawilem (jak zwykle) za pomoca zielonej krzywej. Punkty A,
B i C, odpowiadajace lokalnym ekstremom wyktadnika, ozna-
czaja miejsca przemian fazowych, ktére oméwilem w podroz-
dziale 6.2.5 ponizej. Jak wida¢, struktura wyktadnika Holdera
zawarta jest w przedziale nie wiekszym niz (z dobrym przy-
blizeniem) « € [—5.0,5.0]. Szerszy przedzial q wziatem pod
uwage dlatego, aby mozliwie precyzyjnie wyznaczy¢ zakresy,
w ktorych 7(g) jest liniowa funkgja g.

spektrum dla wyktadnikéw Holdera wiekszych od 0.98.

Niestety z niespelnienia warunkéw stycznosci dla (g = 1) zadanych wzo-
rami (I.2) dla bocznych galezi f(a) oraz niestandardowego przesuniecia
niektorych wielkoséci multifraktalnych (przyktadowo 7(g) — doktadny opis
w dodatkach G i I) wynika brak jednoznacznego wyznaczenia potozenia
spektrum.
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Rysunek 6.8: Wykres empirycznego wielogateziowego spek-
trum f(«) w funkgji a. Gtéwna galaz przedstawiona jest za po-
moca czarnej monotonicznie rosnacej krzywej ciagtej. Przery-
wana czarna, cienka linia prosta jest styczna w punkcie (a(g =
1), f(a(g = 1)) do gléwnej galezi spektrum i jak powinna prze-
chodzi przez punkt (0,0). Punkt C oznacza jedno z miejsc prze-
miany fazowej, opisanej w podrozdziale 6.2.5. Aby nie zaciem-
nia¢ wykresu, pozostate dwa punkty zwrotne A i B przedsta-
wilem na rysunku 6.9. Warto w tym miejscu podkresli¢, ze gdy-
bySmy f interpretowali jako rozklad wyktadnika «, to ujemna
wartoé¢ f wskazywataby na to, ze odpowiadajacy jej przedziat
« definiuje fizycznie niedostepny obszar przestrzeni fazowej
ukladu.
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Rysunek 6.9: Powiekszony wycinek wykresu pelnego widma

f(a) przedstawionego powyzej na rysunku 6.8. Punkty

zwrotne A i B lokalizuja miejsca przemian fazowych opisane
w podrozdziale 6.2.5.
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6.2.5 Przemiany fazowe

Do pogtebionej analizy wynikéw uzyskanych na bazie danych empirycz-
nych, mozna wykorzysta¢ kanoniczne metody termodynamiczne. Jest to
standardowe podejscie do analizy wlasnosci multifraktalnych. Celem okre-
$lenia analogonéw faz termodynamicznych (w dalszym ciagu nazywane
po prostu fazami) z jakimi ma sie do czynienia w przypadku struktury
multifraktalnej, mozna uzy¢ analogonu ciepta wiasciwego [135]. Zatem,
analogon ciepta wiasciwego ukladu (w dalszym ciagu nazywam go krétko
cieptem wlasciwym) moge zdefiniowaé nastepujaco:

c(q) = dd(";(/";) = —qz‘”';—(;'”- (6.17)

Jego wykres przedstawilem na rys. 6.10.

c(q)
o

Rysunek 6.10: Wykres empirycznego ciepta wlasciwego c¢(q).

Fazy niestabilne, dla ktérych zachodzi c(q) < 0 oznaczone sa

kolorem niebieskim. Fazy stabilne (c(q) > 0), w tym giéwna
galaz spektrum, oznaczone sa kolorem czarnym.

W ukladzie obserwuje istnienie dwdéch obszaréw stabilnych z nieujemnym
cieplem wilasciwym. Pierwszy dla 4 < —3.08. Drugi, tworzacy gtéwna ga-
taz spektrum f(«), dla g € [—0.85,4.56]. W dwoch pozostatych przedziatach
q ciepto wlasciwe jest ujemne, co oznacza, ze sa to fazy niestabilne. Miejsca
styku faz na rysunkach 6.7, 6.8, 6.9, 6.10 i 6.11 zaznaczone sa jako punkty
zwrotne A, B i C. W nich wystepuja ciagle przemiany fazowe (co jest spéjne
z zerowq wartoscia ciepta wlasciwego w tych punktach, rys. 6.10). Dalsza
analize przemian fazowych kontynuuje z wykorzystaniem wykresu pierw-
szej i drugiej pochodnej spektrum f, przedstawionego na rysunku 6.11.

Prowadzona ponizej analiza przemian fazowych bazuje na klasyfikacji Man-
delbrota/zmodyfikowanej Ehrenfesta [136], ktora tutaj jest oparta na spek-
trum wyktadnika Holdera f(a). Jak to przedstawiam na rysunkach 6.816.11,
zaréwno f jak i jej pochodna df /da sa funkcjami ciaglymi. Dopiero druga
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Rysunek 6.11: Wielogateziowy wykres pierwszej (krzywa

czarno-niebieska) oraz drugiej (krzywa czerwona) pochodnych

widma (spektrum) wykladnika Holdera f(«). Pierwsza po-

chodna jest ciagta, w przeciwieristwie do drugiej. Punkty A, B

i C lokalizuja przemiany fazowe — ich potozenia wyznaczaja

wartosci &, w ktérych wystepuja osobliwosci (singularnosci)
drugiej pochodnej.

pochodna d?f /da? jest nieciagta, zlozona z czterech osobnych gatezi. Punkty
osobliwosci drugiej pochodnej definiuja granice galezi w tym wielogatezio-
wym spektrum. Gléwna galaZ pierwszej pochodnej (zaznaczona kolorem
czarnym) rozciaga sie pomiedzy punktami C i A. Odpowiadajaca jej galaz
drugiej pochodnej przyjmuje wartosci ujemne i na koricach (czyli w punk-
tach Ci A) jest rozbiezna do —oo. Pozostale trzy czesci drugiej pochodnej od-
powiadaja trzem bocznym gateziom spektrum. Dwie (boczne) gatezie o war-
tosciach dodatnich odpowiadaja fazom niestabilnym (dotycza ich niebieskie
czedci pierwszej pochodnej: rozciagajaca sie pomiedzy punktami A i B oraz
ta zaczynajaca sie w punkcie C). Trzecia (boczna) gataz drugiej pochodnej o
ujemnych warto$ciach jest stabilna posiadajac osobliwos¢ w punkcie B. Aby
doktadniej zbada¢ zachowanie pochodnej f(a) w punktach A, B i C, rozwi-
jam wykladnik Holdera uzywajac dwéch pierwszych niezerowych wyrazéw
szeregu Taylora:

~ 1 2d%a(q)
Dé(a) =~ (X(I]extr) + E(q - qextr) dqz q:qem, (618)
gdzie gextr to wartoSci parametru g odpowiadajace lokalnym ekstremom
funkgji a(q) (réwnowazne punktom A, B i C). Przechodzac do pochodnych
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f w tych punktach otrzymuje:

af [ —as
—— 44 /2 ,
du 3 + Gextr

d*f 1 1
2 N E ‘ 6.19
da V2] /o — s (6.19)
Ks = “(Qextr)/
d?
&S - d_é .
(14 J=fextr
Wzory te uzyskuje sie wykorzystujac fakt, ze g = %, wynikajacy z réw-

nania (6.15). Powyzsze réwnania potwierdzaja na drodze analitycznej, ze w
rozpatrywanych punktach zachodza przemiany fazowe drugiego rodzaju.
Dalej korzystajac z przyblizenia wykladnika Holdera (6.18), moge zbada¢ za-
chowanie ciepta wlasciwego:

C(q) ~ —‘12(1 - Qextr)bzs/ (620)

ktdre w otoczeniu punktéw przemian fazowych zanika liniowo do zera (co
y
jest oczekiwane).

6.3 Podsumowanie

W' niniejszym rozdziale podjalem tematyke analizy dlugookresowych
zalezno$ci i dlugookresowych pamieci wystepujacych w procesach opisu-
jacych aktywnosé ukladéw ztozonych. W szczeg6lnosci formalizm analizy
multifraktalnej dostosowatem do charakterystyki ukladéw, w ktérych
mozna wyrdzni¢ pojedyncze zdarzenia. Wtedy miara aktywnosci moga
by¢ odwrotnosci czaséw pomiedzy zdarzeniami. Uzylem danych transak-
cyjnych jako reprezentatywnych danych empirycznych ze wzgledu na ich
dostepnos$¢ w wystarczajacej ilosci. Aby upewnic sie, ze otrzymane wyniki
multifraktalnych wiasnosci danych empirycznych nie sa multifraktalnoscia
pozorna (wynikajaca np. ze skoniczonej dlugosci szeregéw czasowych),
przeprowadzilem dodatkowo analize dla symulowanego, referencyjnego
procesu Poissona, ktory traktuje jako przyklad procesu monofraktalnego.

Wyniki przedstawione w niniejszym rozdziale poszerzaja tematyke
analizy multifraktalnej. Pierwszym, autorskim elementem przedstawionej
zmodyfikowanej multifraktalnej analizy zdetrendowanych fluktuacji, jest
zastosowanie nowej miary aktywnosci w postaci lokalnych $rednich czaséw
miedzytransakcyjnych. Kolejnym autorskim, kluczowym elementem byto
wykorzystanie transformaty Legendre-Fenchela, co pozwolilo mi na otrzy-
manie i analize wielogateziowego spektrum multifraktalnego w zaleznosci
od (niemonotonicznego) wykladnika Holdera. Nowym wynikiem jest
roéwniez zaobserwowanie tej wlasnosci w danych empirycznych — w szeregu
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czasOw miedzytransakcyjnych. Wreszcie, poprzez analize ciepta wlasciwego
okredlitem fazy stabilne i niestabilne ukladu oraz rodzaje przemian fazo-
wych pomiedzy nimi.

Wyniki przedstawione w tym rozdziale oraz w dodatkach G — ] maja
na celu pokazanie, ze omawiana w rozprawie, niemonotoniczna multifrak-
talnos¢ moze by¢ powszechna cecha spotek gietdowych z r6znych sektoréw
rynku. Przypuszczam, ze wspomniane niemonotonicznosci nie pochodza
od niestacjonarno$ci, wptywu dodatkowych szuméw, autokorelacji krétko-
okresowych czy niekontrolowanych artefaktéw, gdyz (aby zminimalizowaé
te niekorzystne wpltywy) dokonuje w moim podejsciu szeSciostopniowej
filtracji wynikéw. Przez filtracje rozumiem tutaj procedure eliminujaca
zanieczyszczenie szeregu cZasowego.

(i) Pierwszy etap filtrowania wynika z definicji zespotu statystycznego,
skladajacego sie z kolejnych dni roboczych. Rozpatrujac osobno dane
z réznych dni uwzgledniam przede wszystkim zachowania wewnatrz-
dzienne. Mimo to, obserwuje wlasnosci multifraktalne. Sugeruje to, ze
autokorelacje wielodzienne (lezace u podstaw zachowarn multifraktal-
nych) moga mieé swoje Zr6dto w autokorelacjach wewnatrzdziennych.

(ii) Drugi filtr ttumi dodatkowe szumy addytywne czaséw miedzytransak-
cyjnych, dzieki podejéciu gruboziarnistemu, wykorzystujacemu nieza-
leznie Srednie czaséw miedzytranskcyjnych w kazdym pojedynczym
oknie czasowym (czyli lokalne Srednie).

(iif) Trzeci filtr ma charakter standardowy — dokonuje po prostu detren-
dowania szeregéw skladajacych sie ze wspomnianych powyzej lokal-
nych $rednich czaséw miedzytranskcyjnych. Wykorzystuje w tym celu
najnizszy z mozliwych stopiert wielomianu detrendujacego (w moim

przypadku byt to stopien trzeci).

(iv) Czwarty filtr odcina niepotrzebne tlo multiplikatywne oraz resztkowe
multiplikatywne zanieczyszczenia wspomnianego powyzej szeregu
czasowego za pomoca funkgji tta B(g) wystepujacej w réwnaniu (6.13).

(v) Piaty filtr odcina niepotrzebny wptyw monofraktalny za pomoca funk-
qji Zf]’” (s) wystepujacej w dodatku G w drugiej rownosci w (G.4).

(vi) Szosty filtr w postaci (referencyjnego) procesu Poissona pokazuje ist-
nienie diugofalowych oscylacji w funkgji autokorelacji w dyskretnym
czasie, niemal identycznych do tych obecnych w analogicznej funkcji
autokorelacji dla danych empirycznych (rysunek 8 w publikacji [16]).
Moge przypuszcza¢, ze ich wpltyw na proces realny jest nieistotny, po-
niewaz oscylacje nie zmieniaja wiasnosci multifraktalnych procesu Po-
issona (jest on nadal monofraktalny). Musze zaznaczy¢, ze nie zbada-
fem Zrédta tych oscylagji (np. skoficzona diugos¢ szeregu czasowego),
a jedynie fakt, ze ich wplyw na proces jest do zaniedbania. Zatem, np.
detrendowanie wielomianami wyzszych rzedéw nie jest juz tutaj ko-
nieczne.
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Warto jeszcze doda¢, ze sformulowane przeze mnie (w dodatku I) i
udowodnione twierdzenie o standaryzacji wskazuje na réwnowazno$é
zestandaryzowanego i niezestandaryzowanego widma osobliwosci. Wielo-
galeziowos¢ tego widma moze wynikaé z samej struktury funkcji 7, a nie ze
wspomnianych powyzej przyczyn.

Obecnie, wciaz nie sa w pelni rozpoznane wszystkie mozliwe Zrédia
multifraktalno$ci. Przedstawiony w rozprawie rozbudowany proces filtracji
danych okresla podejscie bardziej odporne na ré6znorakie zanieczyszczenia i
artefakty danych niz kanoniczna metoda MFDFA. Jednak nie jest to uniwer-
salny proces filtracji, zagadnienie stworzenia kompletnej filtracji w analizie
multifraktalnej wciaz pozostaje otwarte. Tym bardziej, ciezko jednoznacznie
rozpoznaé przyczyne niemonotonicznej multifraktalnosci zaobserwowanej
w danych empirycznych, nawet pomimo wyeliminowania wspomnia-
nych powyzej potencjalnych Zrédel pozornej multifraktalnosci. Jednak na
pierwszy plan potencjalnych Zrédel niemonotonicznej multifraktalnosci
wysuwaja sie autokorelacje wyzszych rzedéw (czyli wielopunktowe) oraz
ich relacje z fluktuacjami wyzszych rzedéw, czyli odpowiedniki twierdzen
fluktuacyjno-dysypacyjnych wyzszych rzedéw. Innym kierunkiem przy-
szlych badarh moze by¢ poszukiwanie fizycznych modeli przejawiajacych
niemonotoniczna multifraktalnoé¢. Podsumowujac, formalizm rozwiniety
W niniejszym rozdziale pozwolil mi wydoby¢ i opisa¢ niemonotoniczna
multifraktalnos$é, podkreslajac potencjalna wage jaka moze ona odegraé¢ w
badaniach uktadéw ztozonych.
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Rozdzial 7

Zakonczenie

W niniejszym rozdziale skupiam sie na wynikach przedstawionych w mojej
rozprawie doktorskiej. Najpierw podsumowuje uzyskane rezultaty, a nastep-
nie dokonuje ich oceny i prezentuje wynikajace z nich wnioski.

7.1 Podsumowanie uzyskanych wynikéw

We wstepie do mojej rozprawy przedstawilem wprowadzenie do tematu
pracy, jej gtéwne cele i tezy oraz jej uklad. Metodologiczna istota rozprawy
oparta jest na poréwnaniu przewidywarn modeli teoretycznych zapropono-
wanych w rozprawie z danymi empirycznymi. Dlatego w rozdziale 2 omé-
wilem dane empiryczne, z ktérych korzystatem, czyli dane transakcyjne po-
chodzace z polskiej Gietdy Papieréw Wartosciowych. Na ich przyktadzie
przedstawilem fakty stylizowane, a zwlaszcza wtasnosci r6znych funkgcji au-
tokorelacji. Mianowicie, w danych empirycznych obserwujemy:

¢ dlugookresowa autokorelacje czaséw miedzytransakcyjnych,
¢ dlugookresowa autokorelacje modutéw logarytmicznych zmian,

¢ istotna dla kilku poczatkowych krokéw czasowych autokorelacje loga-
rytmicznych zmian cen.

W kolejnym rozdziale 3 zdefiniowalem proces btadzenia losowego w
czasie ciagtym (ang. skr6t CTRW) oraz oméwitem metody jego analizy. W
szczegolnosci poréwnatem formalizmy przelotéw i spaceréw Weierstrassa,
gdzie czes¢ waznych wynikéw pochodzi z publikagi [13]. Dodatkowo
przedstawilem motywacje teoretyczna dla zbudowania formalizmu CTRW
uwzgledniajacego zalezno$ci pomiedzy czasami wyczekiwania. Obecne
najpopularniejsze metody modelowania zaleznosci pomiedzy czasami
miedzyzdarzeniowymi w szeregach czasowych to procesy ACD (ang.
Autoregressive Conditional Duration) i Hawkesa. Jednak ich formalizmy nie sa
przystosowane do bezposredniego uwzglednienia warto$ci procesu i jego
wlasciwosci takich jak wariancja procesu czy autokorelacja zmian procesu.
Z tego punktu widzenia znacznie lepszym formalizmem jest biadzenie
losowe w czasie ciaglym. Jednak w tym przypadku napotykamy trudnos¢
zwiazana z konieczno$cia uwzglednienia skorelowanych czasow wycze-
kiwania. Uwzglednienie tego typu czaséw wyczekiwania w formalizmie
CTRW bylo jednym ze zrealizowanych celéw teoretycznych mojej rozprawy.
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Dotychczasowe wysitki innych autoréw w tym kierunku znajdowaly sie
dopiero na etapie poczatkowym [79].

W rozdziale 4 dokonalem wprowadzenia do tematu modelowania da-
nych finansowych za pomoca btadzenia losowego w czasie ciaglym. Oprécz
tego przedstawitlem kluczowa motywacje dla zbudowania modelu CTRW
z silnie skorelowanymi czasami wyczekiwania, bazujaca na danych em-
pirycznych a pochodzaca z publikagji [14]. Jej podstawe stanowia wyniki
symulacji, ktére wykazaty, ze uwzglednienie jedynie zaleznoSci pomiedzy
czasami miedzytransakcyjnymi, moze by¢ juz wystarczajace do odtworzenia
warto$ci wykladnika potegowego zaniku funkgji autokorelacji absolutnych
zmian logarytmicznych cen.

Kolejny, 5 rozdzial zawiera wyprowadzenie wlasciwego formalizmu
CTRW ze skorelowanymi czasami wyczekiwania. Formalizm ten jest sfor-
mulowany ogélnie, bez wprowadzenia konkretnych postaci rozkladéw
przeskokoéw, czaséw wyczekiwania, jak tez pamieci tkwiacej w szeregu cza-
sow miedzyzdarzeniowych. Bazujac na wynikach empirycznych z rozdzialu
4, skupitem sie w obliczeniach na przypadku pamieci dlugookresowej.

Najpierw rozpatrywalem tylko (teoretyczny) proces czaséw wyczeki-
wania, dla ktoérego sile korelacji opisuje parametr p > 2, gdzie autokorelacja
krokowa szeregu czasow wyczekiwania zanika potegowo z wykladnikiem
p — 2. Taki wynik otrzymalem tez rozpatrujac jedynie czasy pomiedzy
zdarzeniami ekstremalnymi (popularnie zwanymi "czarnymi tabedziami").
Wskazuje to na kluczowa role czaséw miedzyzdarzeniowych w procesie.

Nastepnie przeszedlem do wlasciwego procesu bladzenia losowego,
ktory zdefiniowatem poprzez wyprowadzenie wzoru na jego (pelny czaso-
przestrzenny) propagator. Ponadto, w granicy dlugich czaséw wyznaczylem
podstawowe statystyki procesu, a w szczeg6lnosci:

* wariancje procesu, ktéra oprocz skladnika liniowego posiada takze
sktadnik potegowy proporcjonalny do (Ax)* t*~°. Zatem, dla proces6w
z dryfem oraz silna pamiecia miedzy czasami miedzyzdarzeniowymi,
czylidla (Ax) # 0 oraz 2 < p < 3, w procesie wystepuje superdyfuzja,
dochodzaca do dyfuzji balistycznej (dla p bliskiego 2). W pozostatych
przypadkach wiodacym wyrazem jest wyraz liniowy w ¢.

* autokorelacje zmian procesu zanikajaca jak (Ax)z t2p.

Rozpatrywany model przedstawilem w publikacji [15].

Prezentacje kluczowych wynikéw rozprawy kontynuowalem w rozdziale 6.
Zawiera on poglebiona analize aktywnos$ci ukladu metoda multifraktalnej
analizy zdetrendowanych fluktuacji (ang. skr6t MFDFA). Nastepnie to
kanoniczne podejScie zmodyfikowalem w dwoéch miejscach w opisany
ponizej sposob.
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¢ Odwrotnosé¢ aktywnosci inwestorow zmierzytem poprzez $rednie lo-
kalne czasy miedzytransakcyjne — im dluzszy ten czas, tym mniejsza
aktywnos¢. Czasy te wyznaczatem kolejno dla kazdego z niepokry-
wajacych sie okien czasowych, ktérych rozmiar jest zalezny od rozpa-
trywanej skali. Dla tak zadanej miary zaobserwowatem skalowanie sie
funkgji fluktuacyjnej (rysunek 6.2).

* Dane empirycznie (tutaj odpowiednio zagregowane czasy miedzytran-
sakcyjne) przejawiaja wyrazne wlasnosci multifraktalne. Zbadatem
je korzystajac z narzedzi takich jak uogélniony wykladnik Hur-
sta h(g), uogdlniony wykladnik skalowania Rényi'ego 7(q) jak tez
uogoblniony wyktadnik Holdera «(g). Zaobserwowalem niemonoto-
niczna zalezno$¢ miedzy innymi empirycznego wykladnika Holdera
od g. Aby wyznaczy¢ jego spektrum zastosowalem transformate
Legendre-Fenchela (L-F), dzieki czemu otrzymalem wielogaleziowe
spektrum f(a). Ten nowy wynik wymagat dalszej analizy. Poprzez
wyznaczenie ciepla wlasciwego ukladu, bytem w stanie kazdej ga-
tezi spektrum przypisa¢ faze termicznie stabilna badZ niestabilna.
Dodatkowo okreslitem przemiany pomiedzy fazami jako drugiego
rodzaju. Trzeba powiedzie¢, Ze niemonotoniczne zachowania wyklad-
nikéw Hursta i Holdera nie maja swojego Zrédia w autokorelacjach
krétkookresowych.

Metoda i metodologia analizy multifraktalnej prezentowane w tej czesci roz-
prawy zostaty opublikowane [16].

7.2 Ocena kluczowych wynikéw

Autorski model CTRW przedstawiony w rozdziale 5 jest wprowadzeniem do
nowej rodziny bladzern losowych w czasie ciaglym. Warianty modelu z cza-
sami wyczekiwania o wartodciach powtarzajacych sie w sekwencjach loso-
wej diugosci pozwalaja odtworzy¢ rézne zalezno$ci wystepujace w szeregu
czasOw miedzyzdarzeniowych. Model ten posiada nastepujace zalety.

* W definicji modelu podstawowe rozklady czaséw wyczekiwania
P(At) oraz skokéw h(Ax) sa niezalezne od siebie i moga by¢ za-
dawane osobno lub osobno wyznaczone z danych empirycznych.
Utatwia to znaczaco poréwnywanie przewidywan modelu z danymi
empirycznymi.

e W modelu mozemy dowolnie zada¢ rozklad w(v) liczby powtérzen v
danej wartosci czasu wyczekiwania. Mozemy przez to modelowa¢ za-
leznosci zar6wno krétkozasiegowe (gdy w(v) jest rozktadem geome-
trycznym), jak i dalekozasiegowe (gdy w(v) jest rozkladem potego-
wym). Mozliwo$é ta pokazuje, ze wprowadzona rodzina bladzeni lo-
sowych jest szeroka i moze by¢ zastosowana do bardzo réznych da-
nych empirycznych. W niniejszej rozprawie skupitem sie szczegdlnie
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na przykladzie dalekozasiegowych zaleznosci w szeregu czaséw mie-
dzyzdarzeniowych. W takim przypadku czasy wyczekiwania posia-
daja potegowo zanikajaca autokorelacje krokowa z dowolnym wyklad-
nikiem. Dzieki temu przewidywania modelu mozna tatwo poréwny-
wa¢ z dowolnymi danymi z potegowo zanikajacymi pamieciami po-
miedzy czasami miedzyzdarzeniowymi.

* Kolejna, szczegdlnie istotna zaleta modelu jest jego rozwiazywalnosé
analityczna. W rozprawie znajduje analityczna posta¢ propagatora pro-
cesu oraz podaje zachowanie asymptotyczne jego charakterystyk staty-
stycznych w granicy dtugich czaséw, co dodatkowo wyréznia zapropo-
nowany model.

* Dzieki wynikom analitycznym mogtem w prosty sposéb zbada¢ bezpo-
$redni wpltyw pamieci wystepujacej w szeregu czaséw wyczekiwania
na momenty procesu i autokorelacje predkosci. W szczeg6lnosci uzy-
skatem ciekawy wynik dla autokorelacji predkosci. Dla modelu bez
dryfu autokorelacja skokéw jest zerowa, natomiast autokorelacja mo-
duléw zmian zanika potegowo.

* Powyzsza wlasnos¢ modelu skonfrontowalem bezposrednio z wtasno-
$ciami danych finansowych. Zgodnie z faktami stylizowanymi przed-
stawionymi w rozdziale 2.3, nie powinni$my obserwowa¢ autokorela-
i logarytmicznych zmian ceny, natomiast powinniSmy obserwowac
efekt klastrowania zmiennosci, reprezentowany przez potegowo zani-
kajaca autokorelacje modutéw logarytmicznych zmian cen. Efekt ten
jest dobrze odtwarzany przez model.

* Dodatkowo w modelu autokorelacja szeregu czaséw wyczekiwania
réwniez zanika potegowo, z tym samym wykladnikiem co autokore-
lacja modutéw zmian. Zostato to zweryfikowane w oparciu o dane
empiryczne (wyniki przedstawilem w tabeli 5.1). Zgodnosé¢ wynikéw
jasno pokazuje, ze zaleznoSci pomiedzy czasami wyczekiwania sa
kluczowym skladnikiem odpowiadajacym za efekt klastrowania
zmiennoSci, a dokladniej za wyktadnik w powolnym, potegowym
zaniku autokorelacji modutéw logarytmicznych zmian cen.

Zaproponowany w pracy model nie moze by¢ traktowany bezposrednio
jako model dynamiki ceny. Nie odtwarza on (badZ jego mozliwo$ci w tym
zakresie nie zostaly przeanalizowane) innych faktéw stylizowanych, jak
korelacja w szeregu moduléw zmian, czy multifraktalnos¢ procesu. Nie-
mniej jednak, zbudowany model speinil zasadnicze wymagania. Nalezy go
postrzegac jako ogélny model CTRW, dzieki ktéremu mozemy dokladniej
zrozumie¢ bezposredni wpltyw skorelowanych czaséw miedzyzdarzenio-
wych na statystyki procesu. Dodatkowo, przedstawione wnioski mozna
rozciagna¢ na inne metody generowania skorelowanego szeregu czaséw
wyczekiwania. Stwierdzitem to dzieki uzyciu symulacyjnej analizy sytuadji,
gdy pamie¢ w szeregu czasOw wyczekiwania kreowana jest, na przykiad,
metoda filtrowania z uzyciem transformaty Fouriera. Uzyskane w ten
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sposéb wykladniki autokorelacji szeregu czaséw miedzyzdarzeniowych i
moduléw zmian okazaly sie takie same jak odpowiadajace im w przypadku
modelu bazowego.

W kontekécie danych finansowych pokazatem, ze zjawisko klastrowania
aktywnosci przeklada sie bezposrednio na efekt klastrowania zmienno$ci.
Zgodnie z modelem, potegowo zanikajace autokorelacje w obydwu typach
charakterystyk powinny zanikac¢ z tym samym wykladnikiem. Jest to wazny
wynik, dzieki ktéremu mozna lepiej zrozumie¢ istote tych efektéw. Najcze-
Sciej obecnie stosowane modele dotyczace klastrowania zmiennosci operuja
na szeregach czasowych ze stalym krokiem czasowym i skupiaja sie na
dokladnym zamodelowaniu zaleznosci pomiedzy modutami zmian procesu
badz ich wariancjami. W niniejszej rozprawie pokazatem, ze kluczowym
elementem sa tutaj nie absolutne wartosci skokéw, a czasy pomiedzy nimi.
Otwiera to droge do dalszych badan w tej tematyce, ktére by¢ moze pozwola
na jeszcze lepsze jej zrozumienie oraz stworzenie bardziej precyzyjnych
modeli zjawiska klastrowania zmiennosci.

Przedstawione powyzej wyniki pozwolilty mi na kontynuowanie analizy
aktywnosci ukladéw, a w szczegélnosci analizy czaséw miedzyzdarze-
niowych. W tym celu w rozdziale 6 stworzylem modyfikacje kanonicznej
metody MFDFA, dostosowana do operowania na czasach miedzyzdarzenio-
wych. Otrzymane wyniki oceniam ponizej.

e Zaproponowane przeze mnie nowatorskie podejscie do uzywania Sred-
nich lokalnych czasé6w miedzyzdarzeniowych jest rozwinieciem obec-
nie istniejacych metod. Metodologia jest ogélna i moze by¢ zastoso-
wana do danych empirycznych réznego typu (tzn. pochodzacych row-
niez ze zrédel innych niz rynki finansowe).

¢ Zastosowanie w tym kontekscie transformaty Legendre-Fenchela do
otrzymania wielogateziowego spektrum/widma wyktadnika Holdera
f(a) jest moim oryginalnym wkladem w tematyke analizy multifrak-
talnej. Takie podejécie nie bylo wczesniej w ten sposéb rozwazane w
kontekscie danych empirycznych. Stad, kolejne otrzymane rezultaty sa
takze nowymi.

¢ Analizowalem w dalszym ciagu otrzymane powyzej wielogaleziowe
widmo f(«). Poprzez wyznaczenie (analogonu) ciepta wtasciwego
uktadu, kazda gataZ spektrum zbadatem pod wzgledem stabilnosSci
termicznej. Przykladowo gltéwna gataz spektrum jest w fazie stabilne;.
Zachowanie ukladu przeanalizowatem tez w brzegowych punk-
tach gatezi, gdzie zachodzi przemiana pomiedzy fazami stabilna i
niestabilna. Jest to przemiana ciagta (drugiego rzedu).

* Oprécz podstawy teoretycznej, wyniki tej czeSci rozprawy w znacz-
nej mierze opieraja sie na konkretnych rezultatach analizy przeprowa-
dzonej na danych empirycznych. Niezwykle wazne sa tutaj uzyskane
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wyniki dla danych finansowych. Zaobserwowanie niemonotonicznego
przebiegu wyktadnika Holdera dla danych empirycznych jest rezul-
tatem jedynie pobieznie sygnalizowanym w dotychczasowej literatu-
rze przedmiotu. Jak pokazuje w tej rozprawie, jednym z mozliwych
rozwinie¢ jest dalsze badanie lokalnych $rednich czaséw miedzytran-
sakcyjnych oraz implikacji wynikajacych z faktu wystapienia niemo-
notonicznego wykladnika Holdera. W kontekscie danych empirycz-
nych jest to kluczowe zagadnienie, gdyz nie jest wywotane krétkoza-
siegowymi/krétkookresowymi autokorelacjami. Kontynuujac wyniki
z pierwszej cze$ci rozprawy, aktywnos¢ uktadu wptywa bezposrednio
na wiele z jego charakterystyk. Zaleznosci pomiedzy okresami mie-
dzytransakcyjnymi moga by¢ wiec kluczowe w zrozumieniu i lepszym
wytlumaczeniu zjawiska klastrowania zmiennosci. Pokazuje to, ze opi-
sanie i zamodelowanie proceséw rzadzacych czasami miedzyzdarze-
niowymi w ukladzie pozwoli na lepsze zrozumienie nie tylko samej
aktywnosci ukladu, ale takze jego ogélnego zachowania oraz innych
obserwowanych witasciwosci.

¢ Upewnilem sie, ze wyniki otrzymane przeze mnie na bazie danych
empirycznych nie zawieraja multifraktalnosci pozornej, ktéra mogtaby
wynika¢ z niedoskonato$ci procedury, istnienia autokorelacji krétkoza-
siegowych badz skoriczonej liczebnosci danych (ang. finite-size effect).
Wszystkie wielko$ci wyznaczone byly z odpowiadajacymi im niepew-
noSciami. Dla poréwnania moja procedure przyktadowo przetestowa-
fem w drodze symulacji monofraktalnego procesu Poissona. Procedura
nie wyprodukowata zadnych artefaktéw typu multifraktalnego. Testy
potwierdzily, ze otrzymane wyniki sa poprawne i istotne statystycznie.

7.3 Ogoblne wnioski

Podsumowujac ogélnie ocene wynikéw mojej rozprawy doktorskiej moge
stwierdzi¢, ze spelnione zostaly wszystkie jej cele oraz udowodnione posta-
wione tezy. W niniejszej pracy rozwinatem zaréwno metodologie i metody
modelowania, jak i analizy stochastycznych sprzezeri dynamicznych wyste-
pujacych w uktadach ztozonych. Wprowadzone podejscia zastosowatem do
opisu empirycznych danych finansowych uzyskujac wymagane zgodnosci
pomiedzy przewidywaniami teoretycznymi a wspomnianymi danymi
empirycznymi. Po pierwsze, stworzyltem formalizm wprowadzajacy nowa
rodzine bladzeni losowych w czasie ciaglym, ktéra umozliwia modelowanie
skorelowanych czaséw wyczekiwania. Po drugie, rozwinatem metodologie
analizy multifraktalnej aktywnosci ukladéw. Po trzecie sformulowalem
asymptotyczna (dyfuzyjna) klasyfikacje bladzen losowych w tym anomal-
nych, w oparciu o zalezne od czasu bladzenie Weierstrassa.

Pomimo, ze moja rozprawa odpowiedziala na postawiane pytania, to
warto byloby badania kontynuowac¢. Na przykiad, metodologia CTRW
otwiera mozliwo$¢ odpowiedzi na pytanie o wplyw skorelowania czaséw
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wyczekiwania (miedzyzdarzeniowych) na inne statystyki procesu, a w tym
na przyklad na wyzsze momenty. Ponadto, mozna zastosowa¢ formalizm
do zbadania wptywu réznego rodzaju pamieci zawartej w szeregach czaséw
miedzyzdarzeniowych, jak tez uzyska¢ wyniki dla konkretnych rozkltadéw
skokéw i czaséw pomiedzy skokami. W kontekscie danych finansowych
podejécie zaproponowane w rozprawie mozna traktowaé jako inspirujacy
punkt wyjscia do zbudowania teorii opisujacej wszystkie fakty stylizowane,
czyli teorii dynamiki cen na gietdzie.

Przedstawione w rozprawie rozszerzenie analizy multifraktalnej mozna
wykorzystaé¢ do poglebionego badania przemian fazowych na rynkach
finansowych, zwlaszcza w kontekscie krachéw rynkowych i recesji. Na
przyktad, zbadac reakcje poszczegélnych gatezi widma wymiaréw f(«) na
takie sytuacje. Pozwolitoby to nie tylko lepiej zrozumie¢ reguly dynamiki
rynkéw finansowych, lecz takze mogloby mie¢ praktyczne przelozenie na
zarzadzanie ryzykiem rynkowym. Jak wiadomo, kanoniczna analiza mul-
tifraktalna jest takze wykorzystywana w innych obszarach nauki. Ciekawe
mogloby by¢ uzycie metodologii zaproponowanej w niniejszej rozprawie do
subtelniejszej analizy sygnatéw biomedycznych.
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Dodatek A
Opis danych empirycznych

Dane dotyczace cen transakcji na akcjach na Gieldzie Papieréw Wartoscio-
wych w Warszawie pobieram ze strony Domu Maklerskiego Banku Ochrony
Srodowiska [21]. Sa to sekundowe $wieczki OHLCV (ang. Open, High, Low,
Close, Volume), czyli zagregowane dane transakcyjne, zawierajace informacje
o cenach pierwszej, najwyzszej, najnizszej i ostatniej w danej sekundzie
oraz Iaczny wolumen transakcji (liczba akgji). Dane zapisywane sa tylko
dla sekund, w ktérych wystapila co najmniej jedna transakcja. Uzywam
danych z sesji ciaglej (doktadniejszy opis w rozdziale 2.1) od 15 kwietnia
2013 roku, kiedy byla zmiana harmonogramu sesji, do 15 kwietnia 2020
roku. Ponizej w tabeli A.1 przedstawionych jest pierwszych 10 wierszy dla
sp6tki PKNORLEN z dnia 2013-04-15.

Czas | Open | High | Low | Close | Volume
09:00:01 | 51.30 | 51.30 | 51.30 | 51.30 1642
09:00:35 | 51.00 | 51.00 | 51.00 | 51.00 461
09:00:36 | 51.00 | 51.00 | 51.00 | 51.00 16
09:00:44 | 51.00 | 51.00 | 51.00 | 51.00 1000
09:00:55 | 51.00 | 51.00 | 51.00 | 51.00 398

09:01:20 | 51.10 | 51.10 | 51.10 | 51.10 11
09:01:25 | 51.10 | 51.10 | 51.10 | 51.10 1
09:02:38 | 51.01 | 51.01 | 51.01 | 51.01 5
09:03:09 | 51.10 | 51.10 | 51.10 | 51.10 1199
09:03:20 | 51.20 | 51.20 | 51.20 | 51.20 11

Tabela A.1: Tabela przedstawiajaca 10 pierwszych sekundo-
wych §wieczek OHLCV dla sp6tki PKNORLEN z dnia 15 kwiet-
nia 2013. Doktadny opis kolumn znajduje sie w tekscie.

W powyzszych danych wida¢, ze w wielu sekundach nie obserwujemy
transakgji. Sredni okres miedzy transakcjami dla PKNORLEN dla catych
danych to okoto 20 sekund. Dodatkowo w ponad 80% Swieczek wszystkie
ceny OHLC sa sobie rowne. Rzadkie transakcje i te same ceny pozwalaja
sugerowac, ze te Swieczki opisuja pojedyncze transakcje. Dodatkowo, poje-
dyncze zlecenie moze technicznie zosta¢ zrealizowane jako kilka transakgji.
Ceny tych transakcji powinny by¢ monotoniczne. Dla rozwazanej spo6tki
jedynie niecate 3.6% $wieczek nie spelnia tej zalezno$ci. Pozwala to uznag,
ze uzywanie ostatnich cen z sekundowych $wieczek jest wystarczajacym
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przyblizeniem niezagregowanych danych transakcyjnych dla polskiej gietdy
w rozwazanym okresie, ktérego uzywam w mojej rozprawie.
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Dodatek B

Empiryczne przyklady faktow
stylizowanych

W tym dodatku przedstawiam wyniki analizy danych empirycznych ana-
logiczne jak w rozdziatach 2.3 oraz 5.4 dla kolejnych najbardziej ptynnych
spotek z GPW. Wszystkie Wykresy w tym dodatku odpowiadaja kolejno
spotkom: gérny wiersz po lewej KGHM i po prawej PKOBP, dolny wiersz
po lewej PZU i po prawej PGE. Wyniki pokazuja uniwersalnos¢ faktéw sty-
lizowanych, jak réwniez metod analizy zaproponowanych w tej rozprawie.
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Rysunek B.1: Wszystkie wykresy w tym dodatku odpowiadaja

kolejno spétkom: gérny wiersz po lewej KGHM i po prawej

PKOBP, dolny wiersz po lewej PZU po prawej PGE. Rysunek

przedstawia empiryczne rozklady h(ra;) analogiczne do rys.
24.
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Rysunek B.2: Wykresy dopelnieri empirycznych dystrybuant
modutéw odchyleri od $redniej 1 — H(r — (r)) analogiczne do

rys. 2.5.

10° v 10°
. r
102 . . " 102
1 N 1
10 . = 10
. . =
10° T, 100
IR =
107t ‘s, < 107!
H
1072 Se, ., 102
3%’
1073 4= T s 1073
1073 1072
Ir=(n|
10° 15 103
o >
1074, . . r<in 107
10! ‘ ~ 10!
. <
10° coe. I 10°
. =
107! o, < 107
®ae
107 ‘et 10-2
o e,
1073 . 20 Y 10-3
1073 1072
|r=(nl

° o r>(r)
. r<(r
s, .
. 31'- °
10 102
Ir=(nl
: . >
. . r<(n
i,
8o, 00
107 10-2
Ir=(nl

Rysunek B.3: Wykresy empirycznych rozkladéw modutéw od-
chyleni logarytmicznych stép zwrotu od éredniej dla jednomi-
nutowego kroku czasowego h(r — (r)), analogiczne do rys. 2.6.
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Rysunek B.4: Empiryczne rozklady czaséw miedzytransakcyj-
nych (At) w skali pétlogarytmicznej wraz z dopasowanymi
rozkltadami wyktadniczego Weibulla, analogiczne do rys. 2.7.
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Rysunek B.5: Empiryczne rozklady czaséw miedzytransakcyj-
nych ¢(At) w skali logarytmicznej wraz z dopasowanymi roz-
ktadami wyktadniczego Weibulla, analogiczne do rys. 2.8.
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Rysunek B.6: Wykresy $redniej, minimalnej oraz maksymalnej
dziennej liczby transakgji dla kazdego z rozpatrywanych mie-
siecy, analogiczne do rys. 2.11.

35
30
g g5
s 3
B ]
5 S 20
B ]
2 815
2 L
] ]
3 3510

o u

40 60 40 60
Numer okna Numer okna

Liczba transakcji

40

20

o
N
o

40 60 80 40 60
Numer okna Numer okna

Rysunek B.7: Wykresy przedstawiajace Srednia liczbe transakcji
w poszczegdlnych okienkach czasowych oraz ich przykladowa
jednorazowa realizacje, analogiczne do rys. 2.9.
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Rysunek B.8: Wykresy krokowych autokorelacji szeregu cza-
sOw wyczekiwania pomiedzy zmianami ceny w skali logaryt-
micznej (czarne) wraz z potegowymi dopasowaniami (czer-

wone). Tak wyznaczone wyktadniki uzyte sa w tabeli 5.1.
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Rysunek B.9: Wykresy empirycznych autokorelacji krokowych
szeregu logarytmicznych zmian ceny, analogiczne do rys. 2.12.
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Rysunek B.10: Wykresy czasowych autokorelacji modutéw lo-

garytmicznych zmian cen w skali logarytmicznej (czarne) wraz

z potegowymi dopasowaniami (czerwone). Tak wyznaczone
wykladniki uzyte sa w tabeli 5.1.
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Dodatek C

Momenty procesu spacerow i
przelotow Weierstrassa

Zgodnie ze wzorami (3.20), do wyznaczenia momentéw mozna postuzy¢
sie propagatorami w przestrzeni Fouriera-Laplace’a i ich odpowiednimi po-
chodnymi w punkcie k = 0. Z powodu symetrii przestrzennej rozwaza-
nych proceséw (tzn. brak dryfu), omawiam jedynie parzyste momenty prze-
strzenne. Co wiecej, mozna wykaza¢, ze wiodacym skladnikiem propaga-
tora, z ktérego wyznaczamy wartosci oraz przedzialy zbieznosci momentéw

procesow, sa sktadowe EWE(k,s). Dla spaceréw otrzymuje:

" s m 2 T
® = (= | m =
e (k,s))k:O (—1)"™2m! (by)2" 7y (1 N)
o/ 12p2m i 2m+1
X ZE) ( N ) [@}N(k = 0,5)] ,  (C1)
]:
gdzie O (k = 0,5) = sr0r1i+1 na podstawie czwartego rownania w (3.36).
Stad:
" < m 2 T
=& — (— | m =
T (k,s)‘k:0 (=1)"2m! (by)™™ 10 (1 N)

00 TZme j 1 2m+1
. . C.2
<L (%) (1) - ©

Natomiast dla przelotéw uzyskujemy prostsza postac:

dZm ~F T 00 TZme ] ~r
g k), = o (“N)E)( N ) ©;(k=10,53)

Ty & /1
= T <1 - N) Jg) ( N ) sTOTj + 1, (C3)

przy czym skorzystaliSmy tutaj z réwnosci OF (k = 0,5) = ®"(k = 0,s),
ktéra zachodzi na podstawie czwartego réwnania w (3.36) i (3.37).

Wiasnie ta réznica w wykladniku potegi w ostatnich czynnikach obu
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wzoréw (C.2) i (C.3) jest matematyczna przyczyna istotnych réznic w
rozmiarach przedziatach zbiezno$ci przestrzennych momentéw procesu
spaceréw i przelotow.

Na przykladzie spaceréw, kontynuuje obliczenia poprzez zastapienie

1 2m+1 . . .
wyrazu <ST071+1> w réwnaniu (C.2) odwrotna transformata Mellina.
Stad otrzymuje:

d2m - " 00 2b2m
el - — (— I _ =
e (k,s)‘kzo (=1)"2m! (b7 (1 ) y ( )

j=0

1 petie o L (z—1
— j z
27ti /c_ioo 4zt sin(7tz) (s70) ( 2m )' 4

przy czym ostatni czynnik stanowi uogélniony czynnik binomialny (New-
tona) oraz warunek zbieznosci catki ma posta¢ 0 < ¢ = R(z) < 2m + 1.
W ramach tego warunku, kolejnoé¢ sumowania i catkowania moze by¢ za-
mieniona o ile (dodatkowo) operacja sumowania jest zbiezna. Po zamianie,

otrzymujemy szereg geometryczny sldadajacy sie z wyrazc’)w (Tz_irbzm >], j=

0,1,2,..., ktoéry jest zblezny]ezeh SRS =" /5 < ﬁ + CZmzi Uzywa-

jac gornej granicy wartosci ¢ = 2m + 1 otrzymamy ogoélny wzor na zbieznos¢
pOWYZszego szeregu:

1 1 2m—11

< — —.
B 2m+ 2m

Dalej, dopuszczajac warunki zbieznosci otrzymuje prostsze wyrazenie:

(C.5)

dz 144 m 2m l
= (= ! _
12 (k,S) =0 ( 1) 2m! (bo) [00) (1 N)

1 c+ioo 1 7T z—1
_— d —z .
271i /c_ioo Z1 _ bsz sin(71z) (570) < 2m )

=

(C.6)

[z

Powyzsza calke mozna juz wykona¢ standardowa metode residuéw
(bardziej szczegdtowy rachunek zostal przeprowadzony w pracy [13])
poprzez wybranie odpowiedniego prostokatnego konturu obejmujacego
bieguny pochodzace z wyrazen () zo(n) = 0,—1,-2,..., oraz
e+ zi(n) = 2+1x<2ﬁ )iZmlog() n=012...W
granicy dlugich czaséw, czyli dla |s| < 1, istotny wktad daja jedynie
bieguny zp(0) = 0orazz; =z1(0) =2+« ( v 1) Stad, ostateczny wynik
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przyjmuje postac:

q2m W ) T
T k)| = (=1"2m (00)" 0 (1- 1)
1 1 7 (711
[ o ()]

(C.7)

Dla procesu przelotéw mozna przeprowadzi¢ analogiczna procedure, jed-
nak z powodu réznic pomiedzy wzorami (C.2) i (C.3) we wzorze na zbiez-
no$¢ szeregu wystarczy uzy¢ ¢ = 1. Dlatego, ograniczenie analogiczne do
warunku (C.5) wyglada nastepujaco:

g . (C.8)
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Dodatek D

Autokowariancja procesu czasow

W tym dodatku znajduja sie bardziej szczeg6towe obliczenia dotyczace wy-
znaczenia autokowariancji czaséw pomiedzy zdarzeniami ekstremalnymi
COVur(n) dlan =0, n =1 oraz pozostatych n > 2.

W szczegblnosci dla n = 0 moge wzoér (5.13) rozpisaé jako wzoér (5.12)
gdzie K pochodzi z rozktadu ujemnego dwumianowego NB(K;1):

COVa7(0) = i NB(K;1) f fcovw —Jl)
K=1 i=1j=1
— S NBK 1) | [ X 2(K - HCOVA(H)] — KCOVA/(0)
K=1 k=0
1 Ny 1\
= <—Z\]>]§)COVA1‘(]) i;)l (1 - m)
_L 00 _L j—1 ool 1 i
=) ]§COVAt(]) (1 < >) 1_20 (1 <N>) (D.1)
1
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W podobny sposéb rozwazam wzoér (5.15) dla sasiednich czaséw wyczeki-
wania:

COVuar(1) = ) Z ZNB K1;1)NB(K; 1)COVps(j+i—1)

B EEE () () oo

s i ii(%m)z (1—<1W>)A1+A2+i+j_2COVAt(j+i—1)
o o 1 \iHi2
Yy (1—_) COVp(j+i—1)

1 m—1
(1 - —) m COVp(m).
(D.2)
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Nastepnie przechodze do pozostatych n > 2:

COVar(n) = ), NB(W;n—1) } NB(K;;1) ) NB(Ky;1)COV(n)
W=n—-1 Ki=1 K=1 K1,K2, Wy -1
00 ) oo Ki Kj
= ) ). ). ) ) NB(W;n—1)NB(Ky;1)NB(Kp; 1)COVa(j+i+ W — 1)
W=n—-1K;=1Ky=1i=1j=1
00 00 oo Ki Kj
W—an Klz—l Kzz—l =1 ];

) () e

W—1 1 n+1 1 WA +Ar+i+j—n—1 ' .
() ) COVaj+i4 W -1

() (@) () ot

B g i (”—2()1!/2]1/\791!11%)! ((zim)nl (1—<1W>>W+mnmCOVAt(m+W)

W=n—1m=1
(D.3)
Niechw =W —n+1:
COVAT(H)
& & (wn—=2) 1\ 1 \“rmt
S L L 2w () (-qg)  meovatmrosn-
© _ 9\ n—1 w+m
:EOEO (z(untnz)!uz,!)' (Uif)) (1—<17>) (m+1) COVpr(m +w + n)

(D.4)
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Niechx =w+morazy = w — m:

- i ix (f_z;;;)' (&D)nl (1— <;]>)x (x;erl) COVp(x +n)

:(n_12)! (<117>>H i (1— ﬁ)x COV as(x + 1)
» yix (¥¥g_2)! <x;y+1>

:(n—12)! (&w)nl; <1 - %)xcovAt(ern);W(x —g+1)

n—1 oo X |
B —12)! (<117>> ;(l_%NQ COVy(x+ ) :(Z)Exlil) (X(ij-;)!l)'
_ ((Lm)nlxé (1 _ <1T>>x COVi(x + 1) (x:”).

(D.5)

Ostatnim obliczeniem bedzie wyznaczenie Z transformaty ze wzoru (5.18)
przy podstawieniu g = j + n:

COVar(z) iCOVAt ;O(zl > <1 (N) ) ()
N T covato (o + i)

(e
ZCOVN (z —z+1) )
_zZN)

(D.6)
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Dodatek E

Rozwiazanie czesci By (1)
propagatora procesu

Pierwszym obliczeniem jest wyznaczenie transformaty Laplace’a drugiej
czesci propagatora By, (t):

Bu(s) = L{Bn(t)} = /O " e SB, (D)t
Atk

_z Y[ et e st e (A ()
=1

14 WV
1/1—1—1 +1/]f n A, Atk 0

e M (AF)Q(vy) dA .. dAFTIAAL

SY T ) Pl )0() ool ) [ (a0
0

_ —sAtk

AAtE

i Z P(svy) ... P(sve_q) [W(svg) — P(s(vk + 1)) ] w(vy) ... w(ve_1)Q(vg)-

(E.1)

= % i Y 2 (s)w(vr) ...z P (v )w (Ve_q)
x 27 [P(svp) — P(s(ve +1)] Q) (E2)
Yo f(zs)! Z_j z " [P(svi) — P(s(vk +1))] Q)
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Zauwazmy, ze wystepujaca sume mozemy rozpisac jako:

L = [plen) — flstv +1))20)
= Y = (E)0) — Yz (s +1)0()
v=1 v=1

) = ] (E.3)
=F(z;s) —z ;z_(v+1)tp(s(v +1)[Qv+1)+w(v+1)]

=F(z;s) — 2 |[F(z;s) + f(z5) = 2 ' §(0)[Q(1) + w(1)]
=F(z;5) — zF(z;8) — zf(z;8) + P(s),

gdzie f(z;s) i F(z;s) zostaly zdefiniowane w réwnaniu (5.35).
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Dodatek F

Obliczenia momentoéw procesu w
granicy dlugich czasow

Najpierw oblicze rozwiniecia z najwazniejszymi cztonami potegowymi skta-
dowych momentéw:

l—jor1-— (1 + Cls + Cos 1 + C3s? + C853> =
Co G G

j1 &~ C) 4 C1s°2 + Cis + C3s?,
Jo+ o~ CY + Dos? 2 + (D§ + CJ ) s+ Cos? ' + (DF + GF) &,

cz 3
= —5C} (1 + C—[l)sp_2 + s+ —052> ,

' CO CO
Ji+j1~ DysP 3+ <?1 + 72) +Cis* 2+ (Dl +Cl) s+ (DE+ ) &
by, Gopa, G, G
—~ 14+ —s""“+ s+ —s
1—jo G} c o ch
2 2\ 2 2
— & 52(‘0_2) —+ (&) 52 + ZCOCO SP_ZS
Cl Cl 1\2
0 0 (Co)
3
LG B2 4 3(C0)7Ch -2
1 3
Co (&)
4
(G gy HCCE 52
G (cd)*

(F.1)

Nastepnie przeanalizuje zachowanie drugiego momentu, patrzac osobno na
wspolczynniki przy najwazniejszych potegach s. Zaczne od najnizszej potegi
s~3 razem z odpowiadajacym mu wyrazem w przestrzeni czasow:

2
_ 1 2 (Ax)? (Ax)?
s73:2(Ax)? (c_5> (c?c?); Tk z ik . (F2)
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Widag¢, ze przy wyznaczeniu wariangji, ten wyraz wyzeruje sie przy odejmo-
waniu podniesionej do kwadratu liniowej czedci pierwszego momentu.
Wsp6lezynnik przy wyrazie zawierajacym s 2 oraz (Ax)?:

(Ax)?s72
1+ s 2 0 0
G & C
2| (@+Ck)«f+@%+%>§—(ELF%>%&+QQS
0
C2
Gy C C
%Z(Oﬁ (@+ch)@%+@%+q)g—<ijf)qg+@%S
0
2
1 1 3 iy
%2<a> DK?+@@—§%@+E%@—2Oé1 —
1 2
=~ gy 4 3C8 () +2CH () + 205 (9) + € )]
0
(E3)
Wsp6tczynnik przy wyrazie zawierajacym s 2 oraz (Ax?):
2y _ 0 2
(Ax?) —Cj (Ax?) )

=
2 S W)
Wspétezynnik przy najwazniejszym wyrazie potegowym s>

(Ax)? 5P~ ;

—1+ FsP2
: (C_) (24 Cus2) (cf+ Do)+ (1) (~sc3)]
(3] 87 ) [ (o)
2
— 2 <Cié>

___2 G
= e (D0+C1+D1 <¢>+2<1P)>'

C
CDy + CCy — Dy — 2C—$c§’c§’]
0

(E.5)

Zobaczmy, ze patrzac na zachowanie wariancji ten wyraz potegowy jest
wazniejszy niz wyraz potegowy z pierwszego momentu, poniewaz zachodzi
4—p>2(83—p)dlag > 2. Laczac to otrzymujemy przyblizenie drugiego
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momentu w przestrzenie Laplace’a:

2
C
i (s) ~ 222;? 573 — (Ax)? T y) (Do +C— Dy +2W()>) sP°
(Ax?) 1 .
gy e g7 4 H3ch 0 2ck ) 20} () + A 9] s

(F.6)
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Dodatek G

CzeSciowa suma statystyczna,
wymiary Rényi’ego oraz
maksimum widma osobliwosci

Postawiona przeze mnie w rozdziale 6.2.2 hipoteza skalowania pozwala wy-
razi¢ uogoélniona sume statystyczna Z,(s) w postaci skalujacej. Mianowicie,
faczac réwnania (6.5), (6.6) i (6.9) otrzymuje:
1 A
q—1 a4
N Aq:l

Zy(s) ~ gk (q)=h(g=1)] (G.1)

Nastepnie, poréwnujac wyrazenie (6.9) z powyzszym, przedstawiam Z;(s)
w wygodniejszej dla dalszych rozwazan postaci:

1 hrel ( ) ].
NIt NIt

rel( ) 1

= — s@-1D™@) (G.2)
Ny

4

ZE] (S) q

gdzie wzgledne wielkosci multifraktalne zdefiniowatem nastepujaco:

(G.3)

Stad, uog6lniona suma statystyczna faktoryzuje sie:

1
q—1
Nd

Zy(s) = Z8(s)Zy(s),  Zp™(s) = s, Zy(s) =570, (G4

gdzie /" = (g — 1)D(g = 0) oraz dla zachowania samozgodnosci formali-
zmu nalezy przyjaé, ze:

D(qg=0)=h(g=1) oraz 1t(q) =qh(q9) —D(q=0).  (G5)
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maksimum widma osobliwosci

-10.0 -7.5 -5.0 -25 0.0 25 50 7.5 10.0
q

Rysunek G.1: Przykladowy wykres empirycznych wymiaréw

Rényi’ego D(q) dla spotki PKNORLEN (krzywa niebieska) po-

réwnany z wynikami symulowanego referencyjnego procesu

Poissona przedstawionymi za pomoca zielonej linii. Takze i w

tym przypadku widoczny jest subtelny charakter niemonoto-
nicznosci.

Zauwazmy jeszcze, ze ma miejsce nastepujaca wygodna standaryzacja
Zyma(s) = ZIM) = Zya(s) = 1

Zatem, uogoélniona suma statystyczna jest iloczynem czynnika skaluja-
cego sie z wykladnikiem potegi liniowo zaleznym od g (nieistotnego z
punktu widzenia niniejszej rozprawy) oraz czynnika wlasciwego, w ktérym
zawarta jest poszukiwana przeze mnie multifraktalnosé. W szczegélnosci,
taka faktoryzacja sumy statystycznej pozwala na otrzymanie z czeSciowej
sumy statystycznej Z,(s) uogolnionego wyktadnika Hursta h(q) a dzieki
temu umozliwia dalsza analize multifraktalna, ktéra przedstawitem w
niniejszej rozprawie.

Wymiary Rényi’ego (kanoniczne i wzgledne) definiuje za pomoca wy-
ktadnika skalowania 7(¢q) nastepujaco:

()
D(q) = ,
(q) P G6)
D'"!(q) = D(q) = D(q =0),
gdzie przy wyprowadzeniu drugiej réwnosci skorzystalem z drugiej réwno-
Sci w (G.5) oraz drugiej, trzeciej i czwartej réwnosci w (G.3). Przykladowy

wykres D(g) w zalezno$ci od g przedstawitem na rysunku G.1. Takze i w
tym przypadku widoczny jest subtelny charakter niemonotonicznosci D(q).

Na podstawie réwnania (6.16) oraz drugiej réwnosci w (G.5) otrzymuje, ze
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maksimum widma osobliwosci:

fla(g=0))=-7(9g=0)=D(q=0)=h(g=1), (G.7)

czyli jest ono réwne D(g = 0), ktére (w og6lnosci) jest rézne od 1.

W kanonicznym podejsciu MFDFA, z relacji skalowania uogoélnionej
sumy statystycznej wynika, ze D(q = 0) jest wymiarem Hausdorffa szeregu
czasowego (nosnika). Jednakze, opracowane przeze mnie podejScie opiera
sie na analizie czeSciowej sumy statystycznej (zdefiniowanej trzecia réwno-
Scia w (G.4)). Definicja ta bazuje na wyktadniku skalowania danym drugim
réwnaniem w (G.5), gdzie w ogdélnosci D(q = 0) # 1. Dlatego kanoniczna
interpretacja D(q = 0) nie jest tutaj brana pod uwage. Po prostu, w moim
podejsciu D(q = 0) moze by¢ traktowane jako parametr zdefiniowany przez
h(q = 1), czyli zwiazany jedynie z informacja, a nie z topologia. Prowadzi
to do ogolniejszego ujecia kanonicznego formalizmu multifraktalnego
(MFDFA).
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Dodatek H

Funkcja autokorelacji (F%(j;s))

Do zbadania zaleznosci wystepujacych w wewnatrzdziennych szeregach od-
chylerr od profilu, wprowadzam funkcje autokorelacji 2 (j;v;s) jako uogol-
nienie wzoru 6.4:

F(jiv;s) ——ZIUV ONU (G +7) = yu (i + )] (H.1)

Wielkoé¢ ta usredniam po zespole dni handlowych (F?(j;s)) = I\lld ZNd F2(j;i;s)

i przedstawiam na ponizszym rys. H.1. Empiryczna autokorelacja,

8000

7000 +

6000 -

<F2%(j;s) >

5000 ~

4000 1

Rysunek H.1: Poréwnanie dwéch wewnatrzdziennych nieli-
niowych funkdji autokorelacji (F?(j;s)) w funkgji j dla ustalo-
nego s = 94, usrednionych po zespole statystycznym wszyst-
kich dni. (a) Zanik empirycznej funkcji autokorelacji (linia cia-
gla) jest dobrze przyblizony zanikiem potegowym (linia prze-
rywana). Gérna pozioma linia przerywano-kropkowana jest na
wysokosci ((U —y)?), podczas gdy dolna (U — y)*. Kropko-
wana pozioma linia reprezentuje pionowe stale przesuniecie
funkcji potegowej. Przypuszczalnie, potozenie tej linii znacz-
nie powyzej (U — y>2 spowodowane jest istnieniem wzorcéw
w szeregu czasOw miedzyzdarzeniowych (przedstawionych na
rys. 6.1). Wykres (b) analogicznie pokazuje zanik funkgji au-
tokorelacji dla wygenerowanego procesu Poissona, opartego
na $rednich empirycznych czasach miedzyzdarzeniowych dla
kazdego dnia oddzielnie. Zanik wykfadniczy (linia przery-
wana) dobrze pasuje do danych.
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przedstawiona na czeéci (a), zanika powoli z widocznym falowa-
niem. W znacznej mierze udaje sie ja przyblizy¢ funkcja potegowa
(F2(j;s)) ~ A/(a+j)* + const z amplituda A = 9027 4 16600 oraz
stata const = 5088 4+ 133 > (U —y)> = 3358. Parametr przesuniecia jest
zadany jako a = AV*({(U — y)?) — const) ~1/% = 2,53 4 2.20. Autokorelacja
zanika powoli do dodatniej wartosci, czego bezposrednia przyczyna jest
definicja, w ktérej uzywam iloczynu wartosci bezwzglednych fluktuacji. Na
podstawie obserwowanych oscylacji wnioskowa¢ moge o istnieniu dtugo-
zasiegowej struktury fluktuacji. Mozna wnioskowaé, ze to dlugozasiegowe
korelacje pomiedzy odchyleniami sa przyczyna tej struktury.

Dla procesu Poissona (cze$¢ (b)) autokorelacja zanika znacznie szyb-
ciej, przyblizona jest funkcja wyktadnicza (F?(j;s)) ~ Aexp (—aj) + const
z parametrami A = 3382 +24, a = 0.321 4+ 0.017, const = 600.0 = 2.4.
Kropkowana linia nie zbiega sie z dolna kropkowano-przerywana linia,
co spowodowane jest skoriczona wielkoscia danych. Jednak wzgledem
wartos$ci dolnej linii ta réznica jest znacznie mniejsza, niz w przypadku da-
nych empirycznych. Na tej podstawie moge wnioskowa¢, ze w przypadku
danych empirycznych efekt danych skoriczonej dtugosci jest zaniedbywalny
w poréwnaniu do efektéw wynikajacych z empirycznych zaleznosci.
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Dodatek 1

Jednowymiarowa transformata
Legendre-Fenchela

Jednowymiarowa transformata Legendre-Fenchela (L-F) jest rozszerzeniem
kanonicznej jednowymiarowej transformaty Legendre’a (L) poza dziedzine
funkcji wypuktych (do ktérych ograniczona jest transformata L) — np. na
dziedzine funkcji wypuklo-wklestych. Pozwala to na pogtebiona analize
szeregOdw czasowych, a poprzez to na lepszy opis ukladéw zltozonych — w
szczegblnosci na otrzymanie wielogaleziowego widma, f(«), wykladnika
Holdera a(q). Takie wykorzystanie transformaty L-F jest autorskim krokiem
w wielofraktalnej analizie szeregéw czasowych.

Przypominam, ze jednowymiarowa transformata L dla rézniczkowal-
nej wypuktej funkcji 7(g) definiuje funkgje f(a) jako:

fla) = ag—1(q),

w=alp) = T2,
qzﬂ@zdgy, (L1)

gdzie zmienne g oraz a sa powiazane ze soba za pomoca drugiego zestawu
réwnan poprzez funkgje T lub trzeciego poprzez funkcje f.

Transformacja L-F rozszerza mozliwo$¢ zastosowania tego przeksztal-
cenia na funkcje wypukio-wkleste (oczywiscie tez na wklesto-wypukte),
korzystajac odpowiednio przedziatami z réwnan (I.1). Dzieki temu mozna
otrzymac¢ wielogateziowe odwzorowanie f(«). Wynika to z niemonotonicz-
nej zaleznosci wyktadnika Holdera od zmiennej g, gdzie ustalonemu a moze
odpowiadac¢ kilka wartosci g (rys. 6.7).

Dodatkowo, z réwnan (I.1) i warunkéw (G.5) wynika, ze:

fla(g=1)) =a(g=1),
f( (9)) _
da(q) agen T 1.2
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ktore definiuja, a w tym lokalizuja, gtéwna gataz spektrum f(a). Wiasnosci
(I.2) wykorzystuje przedzialami, analogicznie jak w przypadku réwnan
(L1). Warunki (I.1) i (I.2) oznaczaja, ze prosta o wspélczynniku nachyle-
nia réownym 1 jest styczna do krzywej f(a) w punkcie o wspétrzednych
(a(qg=1), f(a(qg = 1)) wychodzac z punktu (0,0). Styczna ta przedstawilem
na rysunku 6.8 w postaci cienkiej kropkowanej linii proste;.

Zastosowanie transformaty L-F przedstawiam na prostym, analitycz-
nym przykladzie funkcji t(x) = —ax® + cx, gdzie a,c > 0, przy czym
rozwazam przypadek ¢ > 4. Mianowicie dopuszczam, ze funkcja 7(x)
okreslona na poddziedzinie zmiennej x, zawiera zaréwno czes¢ wypukla
(okreslona na poddziedzinie [x1,0]), jak i wklesta (okreslona na poddzie-
dzinie [0, x3]). Przedstawiam ja na rysunku L1, przy czym obu "ogonkéw"
funkcji 7, jednego dla x < x; a drugiego dla x > x;, nie biore tutaj pod
uwage. Zamiescitem tam wykresy funkgji 7(x) i y(x) = ax oraz funkgi f(q)
dla takich wybranych wartosci g dla ktérych mam do czynienia zaréwno
z supremum (kresem gérnym) jak tez infimum (kresem dolnym) funkcji
f(x). Pokrywaja sie one tutaj z ekstremami funkgji f(x), odpowiednio, z
maksimum i minimum. Mozna to zapisa¢ (dla g > 0) nastepujaco:

f SuPperen (¥ —T(x)], z=—q,
/ (Z)‘{ infomrenly(x) — T(x)],  z =4, L.3)

dla ustalonego « (< c) (dolny wykres na rysunku I.1). Pozwala to wyznaczy¢
lokalizacje —q i g oraz wartosci f(—¢q) i f(g). Mianowicie, z definicji (I.1)
wynika, ze f(x) < 0dlax; < x < 0oraz f(x) > 0dla0 < x < x, gdzie
ograniczylem sie do przedziatu [x1, x3]. Jak wida¢, f(—q) i f(q) potozone sa
tutaj symetrycznie, gdzie g wyznaczam z rownania:

df (x)

-0 = 2 (c—
Ir =0=23a3"— (c —«a), (L.4)

x=Fq

z ktoérego dla zadanego &, bedacego wspodtczynnikiem nachylenia prostej

y(x) = ax, otrzymuje:
c—uw
q(a) = £/ 5~ (L5)

Dzieki réwnaniu (I.4) mozna powiazaé ze soba dwie kluczowe wielkosci: g
oraz « i traktowac je jak zmienne sprzezne.

Jak wynika z réwnania (I.4) (lub réwnowaznie z réwnania (I.5)), wspélczyn-
nik ¢ okres$la gérna granice wartosci «, co pozwala wyznaczy¢ jego dozwo-
lone granice, tzn. 0 < a < c¢. Zmienna Fq wskazuje wartoéci x, w ktérych
funkgja f(x) ma swoje ekstrema. Wz6r (1.5) mozna odwrécié uzyskujac:

wi) =T s, (L6)
dx X=7Fq
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T(x), y(x)

Rysunek I.1: Schematyczne wykresy wypuklo-wklestej funkgcji
T(x) (linia ciagta), z zaznaczonymi na dolnym wykresie po-
fozeniami kreséw (infimum i supremum) funkgji f (czerwone

strzatki) w punktach, odpowiednio, —q oraz g > 0. Nalezy sie

tutaj ograniczy¢ do zakresu 0 < w < dfi(xx)

= C.
x=0

a nastepnie, korzystajac z pierwszego réwnania w (I.1), otrzyma¢ dwugate-
ziowe widmo:

3/2
fla) = +2a (C;a“) . (L7)

Przebieg tego widma przedstawilem na rysunku 1.2 w postaci krzywej prze-
rywanej.

Ponadto, na tym rysunku zamie$cilem krzywa ciagla przesunieta do gory
o wielko$¢ ¢ — a, dzieki czemu to przesuniete widmo f(a) spelnia juz za-
sadnicze wymagania analizy wielofraktalnej przedstawionej w dodatku G.
Mianowicie:

(i) T(x) = t(x)+a—c= —ax’+cx+a—c,copowoduje, ze (t(g = 1)) =
0, a stad zapewniona jest wlasciwa normalizacja czeSciowej sumy sta-
tystycznej Z, okreslonej trzecia réwnoécia we wzorze (G.4). Powyzsze
przesuniecie nie zmienia ani 4 ani a.

(ii) Dzieki powyzszemu otrzymuje, ze D(q) = % = —%
szczegOlnosci D(q = 0) = ¢ —a oraz D(q =
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_Za(;_a)3/2 .

Rysunek 1.2: Dwugateziowe widma f(«) vs. a. Linia ciagta to

widmo przesuniete 0 D(g = 0) = ¢ — a wzgledem kreskowa-

nej linii — widma wyjSciowego. W wyniku tego przesuniecia

otrzymatem punkt stycznosci pochodnej %’? 1) spelniajacy
a(qg=

relagie f(a(q =1)) =a(q =1) = D(g = 1) = ¢ — 34, dla usta-
lonego g = 1. Nalezy zaznaczy¢, ze maksymalna wartos¢ f(«)
wynosi f(a(q =0)) = ¢ —aiw ogdlnosci moze by¢ rézna od 1
—jak wida¢, réwnataby sie 1 wtedy i tylko wtedy gdyby c=a+1.
Ponizej, w przedostatnim akapicie, rozwijam to stwierdzenie.

Stad,a = w ic= 3D(q:0); D(g=1) . Zauwazmy, ze uzyta tutaj

zostala ta nowa, przesunieta funkcja 7.

(iii) W dalszym ciagu, korzystajac z przesunietej funkcji T oraz obu réwno-

T(9)+D(g=0) _
q

pozyteczna réwnos¢ h(q = 1) = D(q = 0).

sci w (G.5), otrzymuje h(g) = —ag® + c. Stad otrzymuje

(iv) Wynika stad ostatecznie, ze nowe widmo f(a) = f(a) + ¢ — a, gdzie
wykorzystalem przesunieta funkcje 7 i definicje (1.3).

Trzeba podkresli¢, ze jest mozliwa standaryzacja widma f, czyli znalezie-

nie takiego przeksztalcenia liniowego funkcji T, aby w konsekwencji spet-

nione byly trzy kluczowe wymagania: maksimum widma f(a(q = 0)) =1,

f(a(qg = 1)) = a(qg = 1) oraz styczna % ) 1. Latwo sprawdzi¢, ze
a(g=
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a(q), h(q)

\

H A

T T T
_./< _.J< 0 Je J<
a 3a 3a a

Rysunek 1.3: Dwuramienne wykresy a(q) (linia ciagta) oraz
h(gq) (linia przerywana) dobrze ilustruja ich niemonotoniczny
charakter w zmiennej g.

poszukiwane przeksztalcenie liniowe jest postaci:

(x) = y7(x)+B,
7(x) = yy(x)+B.

(I.8)

Stad:

a(x) = ya

) = | SUPocrey (%) —T(¥)], z=—q,

ICIRR e N

1f(2)
i=a

T(q) = (7-1)D(q),

R(q) = T(g) + 1;(07 =0) (19)
gdzie v = az B = —1, gdyz po drodze wykorzystaliSmy warunki:

#(q=1) —OoraZf( (1=0)) = —#(g=0)) =D(g=0) = —p = 1.

W ogoélnodci tego typu przeksztalcenie liniowe istnieje zaréwno dla
transformacji L, jak tez L-F i oznacza po prostu, ze funkcje T oraz 7 sa sobie
rownowazne. OczywiScie, odpowiednio do tego transformacji podlegaja
czedciowe sumy statystyczne okresSlone w (G.4). Powyzsza transformacje
mozna rozszerzy¢ na przypadek noénika o wymiarze réznym od 1 (w tym
celu wystarczy zamiast — w réwnosci w ostatnim wierszu poprzedniego
akapitu wstawi¢ ten wymiar).
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Pragne podkresli¢, ze zasadniczym celem niniejszego dodatku byto po-
kazanie, na mozliwie prostym przykltadzie, w jaki spos6b mozna i trzeba
wykorzysta¢ transformacje L-F, czyli jak postepowa¢ w przypadku, gdy
mamy do czynienia z funkcjami wypukto-wklestymi 7(x) (takze wklesto-
wypuktymi).
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Wyniki analizy multifraktalnej dla
ré6znych spotek

W tym dodatku przedstawiam wyniki analizy multifraktalnej dla kolejnych
najbardziej ptynnych spétek z GPW analogicznie jak to zrobilem w rozdziale
6. Wykresy zamieszczone na kolejnych rysunkach J.1 — ].8 odpowiadaja (w
nastepujacym porzadku) spétkom: gérny wiersz po lewej KGHM a po pra-
wej PKOBP, dolny wiersz po lewej PZU a po prawej PGE. Wyniki przedsta-
wione w tym dodatku majq na celu pokazanie, ze omawiana w rozprawie,
niemonotoniczna multifraktalno$¢ moze by¢ powszechna charakterystyczna
cecha spotek gietdowych.

10?
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Labonuza
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T T T T
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©

Rysunek J.1: Wykresy empirycznych funkcji F(s) (punkty) w
skali log-log dla wybranych reprezentatywnych wartosci q z
przedziatu [—10;10]. Ukosne linie ciaglte stanowia do nich do-
pasowania za pomoca funkcji danych wzorami (6.12) (dla g =
0) i (6.13) (dla g # 0). Pionowe przerywane linie pokazuja wy-
brany zakres obszaru dopasowania (skali). Pragne podkresli¢,
ze powyzsze postepowanie jest wyjsciowym elementem proce-
dury przedstawionej w rozdziale 6.
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Rysunek ].2: Wykresy empirycznych uogélnionych wyktadni-
kow Hursta h(q) (niebieskie krzywe ciagle) wraz z btedami do-
pasowan (niebieskie krzywe kropkowane). Widoczne sa sub-
telne niemonotonicznosci analogiczne do tej przedstawionej w
rozdziale 6 na rysunku 6.3.
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Rysunek ].3: Przebiegi empirycznych nieparzystosci wyktad-
nikéw Hursta, Ah(q) w zaleznosSci od g, analogiczne do tego
przedstawionego w rozdziale 6 na rysunku 6.4.
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Rysunek J.4: Wykresy empirycznych funkgji tla B(g), analo-
giczne do przedstawionego w rozdziale 6 na rysunku 6.5.
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Rysunek J.5: Wykresy empirycznych wykladnikéw skalowania
Rényi’ego T(gq); ich przebiegi sa analogiczne do tego przedsta-
wionego w rozdziale 6 na rysunku 6.6.
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Rysunek J.6: Wykresy empirycznych funkgji D(q); ich przebiegi
sa analogiczne do tego przedstawionego w dodatku G na ry-
sunku G.1.
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Rysunek J.7: Wykresy empirycznych niemonotonicznych wy-
ktadnikéw Holdera a(q), ktérych przebiegi sa analogiczne do
tego przedstawionego w rozdziale 6 na rysunku 6.7.
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Rysunek ].8: Wykresy empirycznych wielogateziowych widm

wymiaréw /osobliwosci, f(«), wyktadnikéw Holdera. Przypo-

minaja one analogiczne widmo przedstawione w rozdziale 6 na
rysunku 6.8.
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