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Streszczenie
UNIWERSYTET WARSZAWSKI

Wydział Fizyki

Badanie stochastycznych
sprzężeń dynamicznych

metodami fizyki statystycznej

Jarosław KLAMUT

Jednym z działów fizyki statystycznej, który znacząco rozwinął się ostatnimi
laty dzięki inspiracji nauk przyrodniczych oraz społeczno-ekonomicznych,
jest teoria procesów stochastycznych. Obecnie dynamiki stochastyczne uży-
wane są powszechnie do opisu procesów i zjawisk zarówno ściśle fizycz-
nych, jak też zachodzących w układach złożonych należących do szeroko ro-
zumianej fizyki interdyscyplinarnej. Przez pojęcie ‘stochastyczne sprzężenia
dynamiczne’ rozumiem takie sprzężenia pomiędzy zmiennymi losowymi, w
których biorą udział przedziały czasu. Przykładami takich zmiennych loso-
wych mogą być same czasy międzyzdarzeniowe lub te czasy wraz z towa-
rzyszącymi im przemieszczeniami.

W niniejszej rozprawie skupiam się na wykorzystaniu dynamik stochastycz-
nych do badania aktywności układów złożonych. Posługuję się tutaj cza-
sami pomiędzy pojedynczymi zdarzeniami obserwowanymi w układzie jako
wielkościami podstawowymi. Przykładowo, w układach fizycznych mogą to
być czasy między przeskokami nośników ładunku zlokalizowanymi w mini-
mach potencjału substratu w procesie relaksacji fotoprądu, a np. w geofizyce
odstępy czasu pomiędzy trzęsieniami ziemi. Opis aktywności tych procesów
jest komplikowany przez występującą w nich pamięć. Jej skutkiem jest au-
tokorelacja szeregu czasów międzyzdarzeniowych, która prowadzi między
innymi do klastrowania zdarzeń. Prominentny przykład, który obrazuje tego
rodzaju zjawiska klastrowania w układzie złożonym, stanowią transakcje za-
wierane na rynkach finansowych wynikające m.in. z istniejącego tam tzw.
‘efektu stadnego’. Dlatego właśnie dane empiryczne dotyczące aktywności
giełdowej (dostępne powszechnie w dużych ilościach) wykorzystałem jako
podstawę analiz zawartych w mojej rozprawie doktorskiej.

W pierwszej części rozprawy, przedstawiam i szczegółowo opisuję modele
błądzenia losowego w czasie ciągłym. Są to procesy stochastyczne, w któ-
rych zmiennymi losowymi są zarówno zmiany wartości procesu, jak też od-
stępy czasu pomiędzy tymi zmianami. Następnie wprowadzam, rozwiązuję
i analizuję autorski wariant modelu błądzenia losowego w czasie ciągłym ze
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skorelowanymi czasami międzyzdarzeniowymi jako podstawę sprzężeń dy-
namicznych. Własności stochastyczne tego wariantu porównuję z empirycz-
nymi danymi finansowymi. Dane te pozwalają na wyznaczenie wykładnika
praw potęgowych charakteryzujących zarówno zaniki krokowej funkcji au-
tokorelacji szeregów czasów międzytransakcyjnych, jak też nieliniowej au-
tokorelacji czasowej szeregów absolutnych zmian cen. Związki empiryczne
pomiędzy tymi wykładnikami porównuję z ich odpowiednikami wprowa-
dzonymi jako tezy niniejszej rozprawy. Dzięki temu autorski model posłużył
mi m.in. do pokazania kluczowej roli skorelowanych czasów międzytransak-
cyjnych w tworzeniu zasadniczego efektu jakim jest klastrowanie zmienno-
ści.

W drugiej części rozprawy skupiam się na pogłębionej interpretacji zależ-
ności obserwowanych w aktywności giełdowej. W tym celu wprowadzam
uogólnioną analizę multifraktalną zdetrendowanych fluktuacji opartą na sze-
regu średnich czasów międzyzdarzeniowych, czyli opartą na podejściu gru-
boziarnistym. Pozwoliło mi to na uzyskanie niemonotonicznego zachowa-
nia wykładnika Höldera, co wcześniej było jedynie okazjonalnie wzmian-
kowane w literaturze naukowej. Następnie, poprzez uogólnienie standar-
dowego podejścia, uzyskałem szerokie, asymetryczne, wielogałęziowe spek-
trum multifraktalne, z dobrze określoną stabilnością i dostępnością każdej
gałęzi widma.



vii

Abstract
UNIVERSITY OF WARSAW

Faculty of Physics

Analysis of stochastic dynamic couplings
by methods of statistical physics

Jarosław KLAMUT

One of the branches of statistical physics that has remarkably developed in
recent years due to the inspiration of the natural and socio-economic sciences
is the theory of stochastic processes. Currently, stochastic dynamics are wi-
dely used to describe processes and phenomena, both strictly physical and
occurring in complex systems belonging to the broadly understood interdi-
sciplinary physics. By the term ‘stochastic dynamic couplings’ I refer to co-
uplings between random variables that involve time intervals. Examples of
such random variables may be the interevent times themselves or these times
together with the corresponding displacements.

In this dissertation I focus on the use of stochastic dynamics to study the acti-
vity of complex systems. I use here the times between individual events obse-
rved in the system as basic quantities. For example, in physical systems these
can be times between charge carrier jumps located in the substrate potential
minima in the photocurrent relaxation process, and in geophysics, time inte-
rvals between earthquakes. The description of process activity is complicated
by the presence of a memory. Its consequence is the autocorrelation of a series
of interevent times, which leads, among others, to the clustering of events. A
prominent example that illustrates this type of clustering phenomena in a
complex system are transactions concluded on financial markets resulting,
among others, from the so-called ‘herd effect’. That is why analyzes included
in my doctoral dissertation are based on empirical data on stock market acti-
vity (widely available in large quantities).

In the first part of the dissertation, I present and describe in detail continuous-
time random walk models. These are stochastic processes, in which both
changes of the value of the process, as well as time intervals between these
changes are random variables. Then, I introduce, solve and analyze the ori-
ginal variant of the continuous-time random walk model with correlated in-
terevent times as the basis for dynamic couplings. I compare the stochastic
properties of this variant with empirical financial data. These data make it
possible to determine the exponent of the power laws characterizing both the
decays of the step autocorrelation function of inter-trade time series, as well
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as the non-linear temporal autocorrelation of absolute price change series. I
compare the empirical relationships between these exponents with their equ-
ivalents introduced as theses of this dissertation. Thanks to this, the author’s
model served, among others, to show the fundamental role of correlated in-
tertrade times in creating the volatility clustering effect.

In the second part of the dissertation, I focus on an in-depth interpretation
of the relationships observed in stock market activity. For this purpose, I in-
troduce a generalized multifractal detrended fluctuations analysis based on
a series of mean times between events, i.e. based on a coarse-grained ap-
proach. This allows me to obtain the non-monotonic behavior of the Höl-
der exponent, previously only occasionally mentioned in the scientific lite-
rature. Then, by generalizing the standard approach, I obtain a wide, asym-
metric, multi-branched multifractal spectrum, with well-defined stability of
each branch of the spectrum.
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ekstremalnymi . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Właściwy proces . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Propagator procesu . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Momenty procesu . . . . . . . . . . . . . . . . . . . . . 66
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Rozdział 1

Wprowadzenie

1.1 Aktywność w układach złożonych

Dynamiki stochastyczne i teorie procesów stochastycznych mają szerokie
zastosowanie w modelowaniu zjawisk zachodzących w świecie realnym.
Są wykorzystywane niemal w każdej dziedzinie nauki - przede wszystkim
w szeroko rozumianej fizyce, a zwłaszcza w fizyce układów złożonych
oraz fizyce interdyscyplinarnej. Służą one między innymi do opisu zjawisk
i procesów zachodzących w układach złożonych, takich jak transport i
dyfuzja anomalna (w ośrodkach porowatych i amorficznych) czy propagacja
na złożonych sieciach komunikacyjnych (sieciach ulic, autostrad, połączeń
kolejowych i lotniczych). Wykorzystuje się je również do modelowania
dynamiki tłumu (a w tym zagadnień ruchu ulicznego, korkowania się miej-
skiego ruchu samochodowego czy strategii ewakuacji), a także dynamiki
mrowisk oraz interakcji rybosomów podczas syntezy białek [1]–[3].

Do kluczowych pojęć pozwalających na ilościowy opis wspomnianych
wcześniej procesów zalicza się pojęcie aktywności. Jedną z jej zasadniczych
miar są czasy pomiędzy zdarzeniami (czyli międzyzdarzeniowe, np. pomię-
dzy punktami zwrotnymi cząsteczki Browna) - im krótsze są te okresy, tym
aktywność procesu jest większa. W związku z tym modelowanie zależności
i korelacji pomiędzy tymi czasami jest szczególnie istotne dla właściwego
zrozumienia i odwzorowania aktywności opisywanych układów. Skore-
lowane przedziały czasów pomiędzy zdarzeniami obserwujemy w wielu
dziedzinach, takich jak np. mechanika kwantowa (transfer elektronów [4],
[5]), sejsmologia (trzęsienia ziemi [6]), ekonofizyka (transakcje na giełdach
[7], [8]), genomika (odległości pomiędzy nukleotydami [9]), neuronauka
(aktywność pojedynczych neuronów [10]), czy też socjofizyka (komunikacja
międzyludzka [11], [12]). Wymienione powyżej empiryczne pamięci wystę-
pują w przeróżnych formach, zarówno krótko- i długozasięgowych, jak i
krótko- i długookresowych, a do ich opisu stosuje się korelacje liniowe oraz
nieliniowe.

Powszechność wykorzystywania procesów stochastycznych oraz różnorod-
ność aktywności, które opisują, bezpośrednio wskazuje na niezwykle istotną
rolę czasów międzyzdarzeniowych w badaniu skomplikowanej ewolucji
układów złożonych. W związku z tym istnieje paląca potrzeba rozwijania
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metodologii modelowania oraz metod badawczych aktywności, zwłaszcza
że dotychczasowe podejścia są już daleko niewystarczające. Nie są one w
stanie sprostać wyzwaniom, jakie stawiają przed nimi współczesne układy
złożone o skomplikowanej strukturze aktywności, reprezentowane między
innymi przez dane o transakcjach giełdowych, wykorzystane w niniejszej
pracy.

1.2 Cele i tezy pracy

Niniejsza rozprawa skoncentrowana jest na dwóch głównych celach.
Pierwszy cel to wyprowadzenie odpowiedniego formalizmu należącego
do rodziny tzw. błądzeń losowych w czasie ciągłym (ang. continuous-time
random walk, CTRW - w dalszej części pracy będę używał takiego właśnie
akronimu), będącego w stanie modelować pamięci związane z czasami
międzyzdarzeniowymi (czyli stochastyczne sprzężenia dynamiczne) cha-
rakterystycznymi dla analizowanych w pracy procesów. Wymaga to
omówienia zasadniczych idei leżących u podstaw rodziny formalizmów
CTRW, a zwłaszcza omówienia formalizmów typu ‘przeloty’ (ang. flights)
oraz typu ‘spacery’ (ang. walks). Rozważania prowadzę m.in. na przykładzie
modelu błądzeń losowych Weierstrassa [13], w ramach którego można
badać zarówno świat błądzeń normalnych, jak i anomalnych, a w tym np.
multifraktalnych. Bogactwo tych błądzeń jest dobrze widoczne na charakte-
rystycznym diagramie fazowym stanowiącym jeden z wyników niniejszej
pracy. Diagram ten bazuje na własnościach fluktuacji (wariancji) oraz wła-
snościach pogrubionych ("tłustych") ogonów rozkładu (czyli nadmiarowej
kurtozie zwanej także ekscesem).

W dalszym ciągu podaję umotywowaną listę powodów wskazujących na
konieczność prowadzenia badań nad aktywnością w układach złożonych.
W tym miejscu warto doprecyzować nazwę ‘czasy międzyzdarzeniowe’ (czy
też czasy pomiędzy zdarzeniami). Otóż w przypadku grupy modeli typu
przeloty czasy te odpowiadają po prostu czasom wyczekiwania (ang. waiting
times lub pausing times) jakie mają miejsce po każdym skoku (przeskoku)
- wygląda to tak, jakby po każdym przeskoku proces "odpoczywał", przy
czym ten czas odpoczywania jest zmienną losową. Mamy tutaj do czynienia
z trzema rodzajami zależności: 1) pomiędzy wielkościami skoków procesu,
2) pomiędzy czasami międzyzdarzeniowymi i 3) mieszanymi, pomiędzy
wielkościami skoków procesu a czasami międzyzdarzeniowymi.

Punktem wyjścia dla osiągnięcia pierwszego celu jest, powszechnie
wykorzystywany dotychczas, skokowy model CTRW (należący do grupy
przelotów) z krótkozasięgową korelacją pomiędzy kolejnymi skokami pro-
cesu. Niestety, jego przewidywania odbiegają od wyników dostarczanych
przez dane empiryczne dotyczące nieliniowych autokorelacji prędkości
procesu. Rozbieżności te stały się inspiracją mojej głębszej analizy. W
tym celu przeprowadziłem symulacje w ramach CTRW. Pokazałem, że
wprowadzenie do tego formalizmu długookresowych zależności pomiędzy
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czasami międzyzdarzeniowymi istotnie wpływa na własności procesu, w
szczególności na autokorelację prędkości procesu znacząco poprawiając jej
zgodność z danymi empirycznymi. Stanowi to wyjściową, kluczową tezę
pracy.

Innymi słowy, wyniki symulacji uwzględniających pamięć długookresową
w szeregach czasów międzytransakcyjnych (w rozprawie wykorzystuję
dane empiryczne pochodzące z giełdy) okazały się bliższe wynikom uzy-
skanym na bazie danych empirycznych. Wskazało to jasno na konieczność
dokładnego zbadania wpływu skorelowanych czasów wyczekiwania na
charakterystykę procesu. Ich analiza skłoniła mnie do postawienia drugiej
tezy rozprawy, dotyczącej faktów stylizowanych (czyli dobrze ugrunto-
wanych) opisujących własności danych transakcyjnych. Uwzględnienie
długookresowych zależności w szeregu czasów międzytransakcyjnych jest
kluczowe do precyzyjnego zamodelowania zjawisk klastrowania zarówno
aktywności, jak i zmienności (opisane są one dokładniej w rozdziale 2.3).
W rozprawie wskazuję, że odtworzenie wykładnika w prawie potęgowym
zaniku autokorelacji modułów zmian może być dokonane jedynie przez
wykorzystanie skorelowanych czasów wyczekiwania.

W ramach pierwszego celu rozprawy zaproponowałem ogólny formalizm
skokowego wariantu CTRW, uwzględniającego długookresowe (zanikające
potęgowo) autokorelacje pomiędzy czasami wyczekiwania, spójne z własno-
ściami empirycznymi czasów międzytransakcyjnych. Poprzez rozwiązanie
tego wariantu, czyli wyznaczenie jego charakterystyk, zrealizowałem pierw-
szą tezę rozprawy. Następnie, otrzymane wyniki teoretyczne porównałem
z odpowiednimi pochodzącymi z danych empirycznych. Dzięki takiemu
podejściu zrealizowałem drugą tezę pracy pokazującą mechanizm klastro-
wania zmienności na rynkach finansowych.

Jest faktem stylizowanym, że notowania giełdowe przejawiają różnego
rodzaju zachowania multifraktalne. Ponieważ zjawiska klastrowania ak-
tywności i zmienności występują w różnych skalach czasowych, dlatego
uzasadnionym jest sformułowanie drugiego celu mojej rozprawy. Do-
tyczy on wieloskalowych/wielofraktalnych (multifraktalnych) procesów
stochastycznych. Skupiłem się na rozwinięciu nowych metod analizy
wielofraktalnej i zastosowaniu ich do badania aktywności procesów
stochastycznych. Na podkreślenie zasługuje zwłaszcza nowatorskie wy-
korzystanie w pracy transformacji Legendre-Fenchela. Umożliwiła mi ona
opisanie niemonotonicznego przebiegu uogólnionego wykładnika Hursta
oraz wykładnika Höldera a stąd opisanie bogatego, wielogałęziowego
kształtu widma tego wykładnika. Pozwoliło mi to na uogólnienie analizy
zdetrendowanych wielofraktalnych fluktuacji (ang. multifractal detrended
fluctuation analysis, MFDFA). Stanowi to konkretną realizację drugiego celu
niniejszej rozprawy.
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1.3 Konstrukcja rozprawy doktorskiej

Konstrukcja mojej rozprawy doktorskiej jest następująca:

1. W pierwszym rozdziale zamieściłem wprowadzenie do rozprawy, po-
dałem jej główne cele i tezy oraz przedstawiłem układ pracy.

2. Następnie, w rozdziale drugim, omówiłem dane empiryczne, z któ-
rych korzystałem, a przede wszystkim zwróciłem uwagę na ich specy-
ficzną charakterystykę. Głębsze zrozumienie tkwiących w nich zjawisk
i procesów, możliwe dzięki odpowiedniemu modelowaniu, jest zasad-
niczym, ogólnym celem niniejszej rozprawy.

3. W trzecim rozdziale wprowadziłem formalizm błądzenia losowego
w czasie ciągłym (CTRW) oraz przedstawiłem aktualny stan modeli
CTRW wraz z porównaniem do innych alternatywnych modeli. W
szczególności przedstawiłem też wyniki z pracy [13], porównujące
różne definicje CTRW, na przykładzie spacerów oraz przelotów
Weierstrassa.

4. W czwartym rozdziale pracy przedstawiłem obecnie istniejące modele
CTRW oraz zwróciłem uwagę na ich wykorzystanie do opisu danych
empirycznych. Na tym tle przedstawiłem wyniki zamieszczone w pu-
blikacji [14]. Omówiłem je w kontekście motywacji empirycznych i teo-
retycznych niniejszej rozprawy, stanowiących podstawę do stworzenia
modelu uwzględniającego dalekozasięgowe korelacje pomiędzy cza-
sami wyczekiwania.

5. W piątym rozdziale wprowadziłem i rozwiązałem kluczowy dla tej
rozprawy autorski model CTRW z długą pamięcią pomiędzy czasami
międzyzdarzeniowymi, który przedstawiłem w publikacji [15]. Wyniki
uzyskane w ramach tego modelu porównałem z danymi empirycz-
nymi.

6. Wyniki zaprezentowane w poprzednich rozdziałach, wskazują na po-
trzebę dalszej, pogłębionej analizy aktywności procesu. Dlatego w ko-
lejnej części (rozdz. 6), przedstawiłem autorskie rozwinięcie metodo-
logii analizy mulifraktalnej zdetrendowanych fluktuacji (MFDFA) w
zastosowaniu do badania aktywności procesu. Stosowanie tej metodo-
logii wymaga analizy niemonotonicznego przebiegu wykładnika Höl-
dera. Wyniki przedstawione w tym rozdziale bazują na mojej publikacji
[16].

7. Kolejny rozdział stanowi zakończenie podsumowujące wyniki całej
rozprawy.

8. Rozprawę uzupełniają dodatki, w których znajdują się szczegółowe
opisy danych empirycznych, dłuższe obliczenia matematyczne oraz
rozszerzenie i uogólnienie konkretnych wyników analizy danych em-
pirycznych. Całość zamyka literatura przedmiotu, do której odwołuję
się w niniejszej rozprawie.
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Rozdział 2

Charakterystyka danych
empirycznych

Zrealizowanie celów rozprawy doktorskiej wymaga wykorzystania danych
empirycznych. Po pierwsze, to na podstawie ich własności wyprowa-
dzam część motywacji niniejszej rozprawy. Po drugie, są one niezbędne
do przeprowadzenia analizy multifraktalnej. Po trzecie, wykorzystuję je
bezpośrednio do weryfikacji modelu teoretycznego.

Rozważany przeze mnie w rozdz. 5 oryginalny proces błądzenia loso-
wego w czasie ciągłym wynika nie tylko z inspiracji teoretycznych, ale
również z motywacji bezpośrednio związanych z danymi empirycznymi.
Konkretne własności wybranych danych skłoniły mnie do konstrukcji
formalizmu wprowadzającego pamięć pomiędzy czasami międzyzdarze-
niowymi. Wykorzystałem go do analizy procesu z potęgowo zanikającą
autokorelacją czasów międzyzdarzeniowych mierzonych tyknięciami
chronometru (liczbą kroków/stopni czasowej separacji). Na tej drodze
porównałem rozwiązanie analityczne (uzyskane w ramach mojego forma-
lizmu) z danymi empirycznymi. Analogicznie rzecz się ma w przypadku
multifraktalnej analizy aktywności układów złożonych (patrz rozdz. 6) - ona
także musi zostać przeprowadzona na konkretnych danych empirycznych.
Pozwala to prawidłowo zobrazować rozwijaną procedurę, będącą uogól-
nieniem dotychczasowej analizy multifraktalnej. Uzyskane przeze mnie
wyniki wspomnianych powyżej analiz danych empirycznych są oryginalne
i stanowią jeden z filarów niniejszej rozprawy.

Modelowanie aktywności układów złożonych wymaga mikroskopo-
wego spojrzenia na badane procesy, tzn. takiego, które pozwala wyróżnić
pojedyncze zdarzenia, a poprzez to pojedyncze czasy międzyzdarzeniowe.
Zaproponowane przeze mnie metodologie są uniwersalne w takim sensie,
że mogą być zastosowane do opisu zjawisk należących do szerokiej palety z
tradycyjnie rozumianej fizyki oraz fizyki interdyscyplinarnej (patrz rozdz.
1.1), w których obserwujemy czasy miedzyzdarzeniowe. Prominentnym
przykładem może być tutaj jeden z najbardziej złożonych mechanizmów
społeczno-ekonomicznych jakim jest giełda, czyli rynek sprzedającego i
kupującego (ang. double auction market). Kupujący konkurują na nim o
zakup dostępnych w danym momencie papierów wartościowych, dążąc do
zawarcia transakcji po możliwie najniższej cenie. Jednocześnie sprzedający
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akceptują możliwie najwyższe złożone oferty kupna. Od blisko trzech
dekad systemy giełdowe obsługiwane są elektronicznie. Dzięki temu stało
się możliwe gromadzenie i przetwarzanie gigantycznych zbiorów danych
empirycznych dotyczących aktywności zarejestrowanych na giełdach pod-
miotów.

Aktywność na giełdzie jest procesem złożonym, zawierającym niesta-
cjonarności, zależności długookresowe, jak też zjawiska klastrowania [17].
Model będący w stanie odwzorować powyższe skomplikowane zależności
powinien umożliwiać modelowanie aktywności układów złożonych po-
chodzących także z innych obszarów. Jednak to dane giełdowe stanowią
potencjalnie jeden z bardziej wymagających testów dla takiego modelu.

W poniższym rozdziale przedstawiłem charakterystykę finansowych
danych empirycznych. Wykorzystałem w tym celu dane transakcyjne
pochodzące z Giełdy Papierów Wartościowych w Warszawie (GPW), doty-
czące cen akcji spółek z fazy notowań ciągłych sesji giełdowych z okresu od
15.04.2013 do 15.04.2020. Dokładniejszy opis używanych danych znajduje
się w dodatku A.

2.1 Mechanizm funkcjonowania giełdy

Na świecie istnieje wiele giełd, których zasady funkcjonowania mogą się
różnić w szczegółach, jednak główne mechanizmy działania są podobne
[18]. Inwestorzy uczestniczą w handlu poprzez składanie zleceń. Istnieją
dwa podstawowe rodzaje zleceń: zlecenie kupna oraz zlecenie sprzedaży.
Każde zlecenie musi zawierać odpowiedni zestaw informacji. Pierwszą z
nich jest instrument zlecenia, czyli podmiot jakiego dotyczy dane zlecenie.
Inwestor musi też określić wolumen zlecenia, czyli liczbę papierów warto-
ściowych jakie zamierza kupić bądź sprzedać. Ze względu na cenę realizacji,
zlecenia dzielą się na dwa główne typy. Zlecenia rynkowe (ang. market
orders) mają zostać zrealizowane natychmiast po złożeniu, po najlepszej
obecnie dostępnej cenie. Natomiast zlecenia z limitem (ang. limit orders)
określają maksymalną cenę dla zleceń kupna (oraz minimalną cenę dla
zleceń sprzedaży), po której wykona się zlecenie. W przypadku kiedy w
momencie złożenia takie zlecenie nie może być zrealizowane, pozostaje
one aktywne, tworząc księgę bądź arkusz zleceń (ang. order book). Ostatnią
niezbędną informacją jest termin realizacji zlecenia. Zlecenie z limitem,
które trafi do arkusza zleceń, może mieć zdefiniowany termin ważności,
po którym staje się nieaktualne i jest usuwane z rynku. Dodatkowo można
też ustalać warunki aktywacji, dopiero po spełnieniu których zlecenie
staje się aktywne i może być zrealizowane, na przykład dla zleceń typu
stop-limit [19]. Oczywiście dopuszcza się również wiele innych rodzajów
zleceń, które powstają w wyniku lekkich modyfikacji powyżej przedsta-
wionych reguł. Jednak celem tego wstępu jest jedynie przybliżenie idei i
podstawowych zasad funkcjonowania giełdy. Dokładniejsze opisy typów
zleceń i zasad ich parowania można znaleźć między innymi w [18], [20], [21].
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Transakcja zostaje zawarta w momencie, kiedy na giełdzie spotkają się
zlecenia kupna i sprzedaży z odpowiadającymi sobie cenami. Obie strony za
pomocą giełdy wymieniają się papierami wartościowymi o ustalonej cenie i
liczbie.

Również harmonogram sesji wpływa na czas realizacji zleceń. Oto har-
monogram sesji GPW od 15.04.2013 [22]:

• 8:30 - 9:00. Faza przed otwarciem

• 9:00. Faza otwarcia

• 9:00 - 16:50. Faza notowań ciągłych

• 16:50 - 17:00. Faza przed zamknięciem

• 17:00. Faza zamknięcia

• 17:00 - 17:05. Faza dogrywki

Pierwsze zlecenia można składać od 8:30, jednak nie są one wykonywane
od razu. Realizowane są one dopiero w fazie otwarcia o 9:00, kiedy też usta-
lany jest kurs otwarcia. Następnie przez 7 godzin i 50 minut pomiędzy 9:00
a 16:50 trwa faza notowań ciągłych, z której dane transakcyjne wykorzystuję
w niniejszej pracy doktorskiej. Jest to okres standardowego funkcjonowania
giełdy. Następnie przez 10 minut można składać zlecenia na fazę zamknię-
cia, analogicznie jak przed fazą otwarcia. O 17:00 następują transakcje na za-
mknięcie wraz z publikacją kursu zamknięcia. Faza dogrywki jest okresem
kiedy można zawierać transakcje po cenie zamknięcia. Oczywiście harmono-
gram giełdy dotyczy jedynie dni handlowych, czyli standardowego tygodnia
pracy, oprócz dni świątecznych.

2.2 Definicja ceny p(t)

Używane przeze mnie pojęcie ’cena’ wydaje się być intuicyjne, jednak wbrew
pozorom nie ma jednej ścisłej definicji ceny danego instrumentu w czasie
p(t). Rozpatrując jeden instrument finansowy, w danym momencie istnieje
wiele aktywnych zleceń z limitem, które razem tworzą księgę zleceń. Przy-
kładowy prawdziwy arkusz zleceń przedstawiony jest w tabeli 2.1 oraz na
rys. 2.1.

Podstawowym, najbardziej całościowym podejściem do badania ceny instru-
mentu jest podanie arkusza zleceń w każdym momencie. Jednak takie podej-
ście wymaga przetworzenia dużej ilości złożonych danych, a ponadto takie
dane nie są dostępne publicznie. Naturalnym uproszczeniem jest podziele-
nie arkusza na zlecenia kupna oraz sprzedaży. Wtedy każdej ze stron można
próbować przypisać tylko jedną cenę. Cena kupna dla każdej chwili defi-
niowana jest na podstawie aktywnych wtedy zleceń kupna, np. jako średnia
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Zlecenia kupna
Cena [PLN] Liczba Czas złożenia Wolumen Wartość

125.70 102 11:01:45 102 12 821.40
125.70 70 11:02:16 172 21 620.40
125.65 356 10:58:30 528 66 351.80
125.65 400 11:01:24 928 116 611.80
125.60 200 16:37:24 1128 141 731.80
125.60 250 10:57:58 1378 173 131.80
125.60 800 10:59:29 2178 273 611.80
125.60 125 11:01:21 2303 289 311.80
125.60 114 11:02:43 2417 303 630.20
125.55 100 09:10:11 2517 316 185.20

Zlecenia sprzedaży
Cena [PLN] Liczba Czas złożenia Wolumen Wartość

125.85 10 10:58:39 10 1 258.50
125.85 231 11:04:34 241 30 329.85
125.90 391 10:57:41 632 79 556.75
125.90 108 11:04:30 740 93 153.95
125.95 490 10:57:37 1230 154 869.45
125.95 391 10:57:46 1621 204 115.90
125.95 404 10:57:46 2025 254 999.70
126.00 1040 10:57:32 3065 386 039.70
126.00 87 10:57:33 3152 397 001.70
126.00 356 10:57:42 3508 441 857.70

Tabela 2.1: Przykład księgi zleceń. Wypisano po 10 najbardziej
korzystnych zleceń dla każdej ze stron, dotyczących akcji PE-
KAO, aktywnych o 11:05 w dniu 14 VII 2016. Cena, liczba i
czas złożenia dotyczą bezpośrednio najkorzystniejszych zleceń.
Wolumen oznacza łączną liczbę złożonych zleceń po danej i
bardziej korzystnych cenach, natomiast wartość oznacza łączną

cenę tych papierów.

(arytmetyczna lub ważona wolumenem) ze wszystkich bądź kilku najlep-
szych zleceń. Jednak najczęściej definiuje się ją po prostu jako najwyższą cenę
po jakiej rynek może kupić dany instrument. Analogicznie można zdefinio-
wać cenę sprzedaży. Te ceny i ich przykładowe zachowanie w czasie poka-
zane są na rys. 2.2. Patrząc na niego od razu można zauważyć potrzebę zde-
finiowania kolejnej wielkości, jaką jest różnica pomiędzy tymi cenami. Na-
zywana jest ona po angielsku bid-ask spread bądź w skrócie po prostu spread.
Ta różnica w jednym momencie jest dobrze pokazana w jednym momencie
na rys 2.1. W przypadku kiedy chcemy posługiwać się tylko jedną wartością
ceny p(t), możemy wyznaczyć średnią arytmetyczną z cen kupna i sprze-
daży.

Alternatywne podejście do określenia ceny instrumentu polega na rozpa-
trywaniu jedynie transakcji, bez uwzględniania aktywnych zleceń. Każda
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Rysunek 2.1: Schemat arkusza zleceń na podstawie 10 najlep-
szych aktywnych zleceń dla każdej ze stron, przedstawionych
w tabeli 2.1, z godziny 11:05 w dniu 14 VII 2016. Różne kolory

symbolizują różne zlecenia z tą samą ceną.

transakcja posiada konkretną cenę, na którą zgodziły się dwie strony rynku.
Oznacza to, że zarówno inwestor kupujący dany walor, jak i sprzedający
uznali tę cenę za sprawiedliwą cenę instrumentu i dokonała się faktyczna
wymiana. Przy takim podejściu, cena waloru zmienia się w momencie poja-
wienia się nowej transakcji i przyjmuje jej wartość. Następnie jest ona stała
aż do chwili zawarcia kolejnej transakcji. W niniejszej pracy będę korzystał z
tak właśnie zdefiniowanej ceny waloru p(t). Zauważmy, że przy takiej defi-
nicji, ceny transakcji będą znajdowały się na jednym z wykresów cen kupna
lub sprzedaży. Zobrazowane jest to na rys. 2.3. Powoduje to "skakanie"ceny
transakcyjnej pomiędzy cenami bid i ask, co opisane jest dokładniej w roz-
dziale 2.3.3.
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Rysunek 2.2: Przykładowe krzywe ceny kupna i sprzedaży,
wyznaczone jako najbardziej korzystne aktywne zlecenia. Pio-
nowa przerwa pomiędzy nimi odpowiada bid-ask spreadowi.
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Rysunek 2.3: Przykładowe krzywe ceny kupna i sprzedaży
z rys. 2.2. Dodatkowo czarnymi kropkami oznaczono czas i
cenę zachodzących przykładowych transakcji. Przerywaną li-
nią przedstawiona jest chwilowa cena instrumentu. Po zmianie
krzywej, na której znajduje się cena, kolejna transakcja może
zajść po cenie na tej samej krzywej lub drugiej. Oznacza to,
że kolejna zmiana ceny będzie albo losowa albo w przybliże-
niu przeciwna poprzedniej zmianie, gdyż cena powróci na po-

przednią krzywą.
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2.3 Fakty stylizowane

Od dawna badanie statystycznych własności cen akcji na giełdzie jest
popularnym tematem wśród naukowców. Charakterystyki, które występują
w zdecydowanej większości szeregów finansowych i które zostały obszernie
zbadane oraz opisane, nazywamy faktami stylizowanymi. Najistotniejsze
fakty stylizowane zostały zebrane między innymi w pracy [17]. Poniżej
przedstawię najbardziej znane fakty stylizowane dotyczące rozkładów i
autokorelacji zmian cen oraz aktywności na giełdzie, posługując się dla
przykładu danymi używanymi w całej rozprawie. Wyniki w tym rozdziale
dotyczą jedynie zmian cen wewnątrz sesji handlowej, bez uwzględnia-
nia zmian cen pomiędzy ceną zamknięcia jednego dnia a ceną otwarcia
kolejnego dnia handlowego.

2.3.1 Rozkłady logarytmicznych zwrotów

Standardową metodą badania dynamiki ceny, jest rozważanie logarytmicz-
nych stóp zwrotu. Logarytmiczna stopa zwrotu r(t) ceny p(t) w czasie t z
okresu ∆t jest zadana jako:

r∆t(t) = log
(

p(t)
p(t − ∆t)

)
= log[p(t)]− log[p(t − ∆t)]. (2.1)

Rozważane dane pogrupowałem według różnych okresów: 1 minuta, 5
minut, 15 minut, 1 godzina oraz 1 dzień. Na rys. 2.4 prezentuję empiryczne
rozkłady logarytmicznych stóp zwrotu h(r) dla różnych skal czasowych w
skali półlogarytmicznej.
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Rysunek 2.4: Empiryczne rozkłady wewnątrzsesyjnych loga-
rytmicznych stóp zwrotu h(r∆t) dla różnych kroków czaso-
wych ∆t. Dla dłuższych skal czasowych rozkłady coraz bar-
dziej zbliżają się do rozkładu normalnego (linie ciągłe). Dane
na wykresach w tym podrozdziale dotyczą spółki PKNORLEN

z okresu 15.04.2013 do 15.04.2020.
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Ciągłe linie to parabole odpowiadające dopasowanym rozkładom nor-
malnym dla dwóch skrajnych skal czasowych. Dla minutowej skali
zdecydowanie widać, że ogony rozkładu zanikają znacznie wolniej niż
rozkład normalny, a nawet wolniej niż funkcja wykładnicza (która w tej
skali reprezentowana byłaby linią prostą). Na wykresie widać też, że czym
większa skala, tym ogony stają się mniej grube, a sam rozkład zbliża się do
rozkładu normalnego. Dokładniej ten efekt prezentuję na rys. 2.5 w skali
logarytmicznej.
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Rysunek 2.5: Wykresy dopełnień empirycznych dystrybuant
rozkładów modułów odchyleń logarytmicznych stóp zwrotu
od średniej dla różnych kroków czasowych ∆t. Dla krótszych
skal czasowych ogony rozkładów dają się dobrze zamodelo-
wać rozkładami potęgowymi, dla dłuższych skal czasowych
rozkłady coraz bardziej zbliżają się do rozkładu normalnego.

Aby zbadać jedynie ogony, rozważam rozkład wartości bezwzględnej
różnicy logarytmicznego zwrotu od średniego logarytmicznego zwrotu.
Dodatkowo wykres przedstawia nie rozkład, a dopełnienie dystrybuanty
rozkładu H(r) =

∫ r
−∞ h(r′)dr′, czyli prawdopodobieństwo, że zmiana będzie

większa niż rozpatrywana różnica. Widać, że dla krótszych skal czasowych
ogony zanikają potęgowo, jednak coraz szybciej wraz ze wzrostem skali.
Natomiast dzienne zmiany zanikają szybciej niż potęgowo. Własności,
które przedstawiłem powyżej to dwa fakty stylizowane. Pierwszy mówi
o tym, że rozkłady logarytmicznych stóp zwrotu są gruboogonowe i ich
ogony zazwyczaj mogą być dobrze przybliżone rozkładami potęgowymi.
Jednak zwykle wykładnik ten jest większy niż 3, co oznacza istnienie dwóch
pierwszych momentów zmian. Natomiast drugi fakt mówi o dążeniu do
gaussowości wraz ze wzrostem skali. Czym większej skali używamy, tym
rozkład zmian zbliża się do rozkładu normalnego.

Trzeci fakt stylizowany dotyczący rozkładów logarytmicznych zwro-
tów odnosi się do ich niesymetryczności. Konkretnie lewa (ujemna) strona
rozkładu zazwyczaj posiada lekko grubszy, wolniej zanikający ogon.
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Oznacza to, że olbrzymie spadki ceny zdarzają się częściej niż analogiczne
logarytmiczne wzrosty. Rozkład dla rozważanych danych empirycznych
przedstawiam na rys. 2.6. Podzieliłem na nim jednominutowe zmiany na
większe od średniej oraz mniejsze od średniej, a następnie narysowałem
ich rozkład. Widać, że obydwa ogony zanikają potęgowo, jednak ogon
odpowiadający spadkom zanika z odrobinę mniejszym wykładnikiem.
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Rysunek 2.6: Wykresy empirycznych rozkładów modułów od-
chyleń logarytmicznych stóp zwrotu od średniej dla jednomi-
nutowego kroku czasowego. Rozkład zysków (r > ⟨r⟩) zanika

szybciej niż rozkład strat.

2.3.2 Aktywność na giełdzie

Przy analizie danych transakcyjnych jako podstawowe wydarzenie wy-
godnie wybrać pojedynczą transakcję. W związku z tym aktywność na
giełdzie mierzyć można poprzez czasy pomiędzy transakcjami ∆t. Zatem
podstawowym procesem opisującym wydarzenia na giełdzie jest proces
punktowy opisujący te okresy. Tak jak w przypadku wielu innych procesów
punktowych opisujących społeczne bądź ekonomiczne zachowania, charak-
terystyka procesu transakcji jest daleka od procesu Poissona. Na początek
możemy przyjrzeć się rozkładowi długości czasów międzytransakcyjnych
ψ(∆t) przedstawionym na rys. 2.7 w skali półlogarytmicznej i 2.8 w skali
logarytmicznej. Oczywiście rozpatruję jedynie okresy w czasie handlu cią-
głego, nie uwzględniając okresów pomiędzy różnymi sesjami handlowymi.

Widać znaczne odstępstwo od rozkładu wykładniczego, który byłby obser-
wowany w procesie Poissona. W szczególności występuje grubszy ogon,
co dobrze widać na rys. 2.7 w skali półlogarytmicznej. Jednak na rys. 2.8
widać, że rozkład ten nie zanika też potęgowo, gdyż w skali logarytmicznej
nie układa się w linię prostą. Istnieje wiele prac modelujących ten nie-
zwykle ciekawy rozkład [23]–[26]. Na powyższych wykresach używam
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Rysunek 2.7: Empiryczny rozkład czasów międzytransakcyj-
nych ψ(∆t) (niebieskie kropki) w skali półlogarytmicznej wraz
z dopasowanym rozkładem wykładniczego Weibulla (linia cią-

gła).

rozkładu wykładniczego Weibulla (ang. Exponentiated Weibull distribution
[27]) zadanego przez dystrybuantę:

ExpWeibulla,c(x) = [1 − exp(−xc)]a , x > 0, a > 0, c > 0. (2.2)

Parametry dopasowane metodą największej wiarygodności to a = 4.72 oraz
c = 0.353.

Innym faktem stylizowanym jest niestacjonarność wewnątrzdzienna,
często nazywana ’efektem lunchu’, opisana między innymi w [28], [29].
Aktywność na giełdzie nie jest stała w ciągu sesji handlowej. Zazwyczaj
najwięcej transakcji wykonywanych jest na początku oraz na końcu sesji.
Na i wkrótce po otwarciu następuje reakcja na wydarzenia z innych giełd
oraz wiadomości z okresu bez handlu. Występuje także sprzężenie zwrotne,
ponieważ zwyczajowa największa płynność i największa liczba transakcji
w tym okresie umożliwia zajmowanie pozycji przy względnie najniższych
kosztach, sprzyjając dalszemu wzrostowi aktywności inwestorów. Podobny
mechanizm obserwuje się na koniec sesji, kiedy też inwestorzy dostosowują
pozycje, by zoptymalizować ryzyko związane z przetrzymywaniem akty-
wów przez noc. Okres środkowy, w okolicach pory obiadowej, jest okresem
z najmniejszą liczbą transakcji. Z jednej strony transakcje wynikające z infor-
macji sprzed otwarcia giełdy zostały już wykonane oraz ludzie decydujący
o zawieraniu nowych pozycji często mają obiadowe przerwy w pracy. Z
drugiej strony występuje analogiczne sprzężenie zwrotne: skoro o tej porze
jest mniej transakcji i ofert na rynku, to ciężej otworzyć nową pozycję.

Ten efekt można pokazać dzieląc sesję handlową na 94 pięciominu-
towe okienka, w których zliczam liczbę transakcji. Następnie wynik dla
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Rysunek 2.8: Empiryczny rozkład czasów międzytransakcyj-
nych ψ(∆t) (niebieskie kropki) w skali logarytmicznej wraz z
dopasowanym rozkładem wykładniczego Weibulla (linia cią-

gła).

każdego okienka można uśrednić po wszystkich dniach. Wynik tej pro-
cedury przedstawiam jako czarną linię na rys. 2.9. Dodatkowo niebieskie
słupki prezentują przykładową realizację aktywności dla jednego losowego
dnia. Z wykresu można odczytać, że w ciągu pierwszych minut sesji średnia
aktywność to około 20 transakcji na 5 minut. Następnie aktywność spada
mniej więcej do około 11 transakcji na 5 minut w 38. okienku odpowiadają-
cym okresowi od 12:05 do 12:10. Potem aktywność znowu rośnie, osiągając
maksymalną wartość około 33 transakcji w ostatnie 5 minut handlu. Zatem
widać, że największa średnia aktywność wewnątrzdzienna jest prawie 3
razy większa od minimalnej.

Kolejnym efektem powszechnie występującym na rynkach finansowych jest
klastrowanie aktywności. Transakcje na giełdzie nie występują niezależnie
od siebie. Mogą być one reakcją na wiadomości rynkowe bądź zmianę
ceny danego lub innego aktywa. Zatem w naturalny sposób w danych
transakcyjnych obserwowane są okresy spokojne, jak i aktywne. Zjawisko
to występuje na wszystkich skalach czasowych - obserwowane jest zarówno
w danych sekundowych, jak i miesięcznych i jest niezależne od niestacjo-
narności wewnątrzdziennej. Przedstawione jest to również na rys. 2.9. W
przypadku jednego dnia występują pięciominutowe okienka zawierające
zarówno tylko 2 transakcje, jak również 50.

Elementarną metodą zbadania tego zjawiska jest wyznaczenie autokorelacji
(ACF) szeregu czasów międzytransakcyjnych ∆t1, ∆t2, ∆t3, . . .. Znormalizo-
wana krokowa autokorelacja szeregu zmiennych i.i.d. definiowana jest jako
średnia:

ACF∆t(n) =
⟨∆ti∆ti+n⟩ − ⟨∆t⟩2

σ2
∆t

, (2.3)
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Rysunek 2.9: Niebieskimi słupkami przedstawiony jest wykres
empirycznej liczby transakcji w 5-minutowych oknach czaso-
wych dla przykładowo wybranego dnia 06.05.2019. Widzimy
na nim efekt klastrowania aktywności: okresy z dużą liczbą
transakcji występują przy sobie. Natomiast czarną linią przed-
stawiona jest średnia dla każdego okna wyliczona na pod-
stawie danych ze wszystkich rozpatrywanych dni. Obrazuje
ona niestacjonarność wewnątrzdzienną, okresy na początku i
końcu sesji są najbardziej aktywne, natomiast w okolicach po-

łowy sesji liczba transakcji jest najmniejsza.

gdzie ⟨·⟩ oznacza operację uśredniania. Wielkość ta określa średnią siłę ko-
relacji pomiędzy elementem w szeregu a elementem oddalonym o n miejsc.
Jeśli jest dodatnia, to oznacza, że wielkość oddalonego elementu będzie
podobna do wielkości rozważanego elementu. W szczególności z procedury
normalizacji wynika, że ACF∆t(0) = 1. Natomiast nieznormalizowaną
wielkość, zdefiniowaną jedynie przez licznik, nazywamy autokowariancją.

Już sama wewnątrzdzienna niestacjonarność przedstawiona na rysunku 2.9
wprowadza zależności pomiędzy czasami międzytransakcyjnymi. Dlatego,
by wyznaczyć autokorelację niewynikającą z tego efektu, należy zestacjona-
ryzować czasy wyczekiwania. Robię to, wykorzystując wewnątrzdzienny
wzór aktywności, przedstawiony jako czarna linia na rys. 2.9. Każdy czas
międzytransakcyjny dzielę przez średni czas w przypadającym pięciominu-
towym okienku. Wzory wewnątrzdzienne wyznaczam osobno dla każdego
dnia tygodnia. Tak wyznaczone autokorelacje przedstawiam na rys. 2.10
w skali logarytmicznej. Autokorelacja zestacjonaryzowanych danych nie
faluje dla przesunięcia paruset kroków, co normalnie wynika z efektu
lunchu. Jednak autokorelacja dalej jest znaczna i zanika bardzo powoli z
wykładnikiem bliskim 0.2. Pokazuje to, że zależności pomiędzy okresami
bez transakcji są bezskalowe, rozciągają się na wiele skal. Warto zauważyć,
że dla rozważanych danych transakcyjnych, dziennie występuje około 1419
czasów międzytransakcyjnych. Natomiast autokorelacja jest istotna nawet
po 10000 krokach, co pokazuje że zależności te widoczne są nawet dla
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przesunięć czasowych rzędu tygodni.
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Rysunek 2.10: Wykres autokorelacji krokowej szeregu empi-
rycznych czasów międzytransakcyjnych dla danych surowych
(niestacjonarnych) oraz zestacjonaryzowanych (procedura opi-
sana w głównym tekście). Autokorelacja danych zestacjonary-
zowanych zanika potęgowo z niewielkim wykładnikiem. Za-
nik widzimy na wielu skalach (od sąsiednich czasów do prze-

sunięć rzędu tygodni).

W tym miejscu warto pokazać też średnią dzienną liczbę transakcji dla
kolejnych miesięcy (czarna linia na rys. 2.11). Pomarańczowe linie pre-
zentują maksymalną i minimalną dzienną liczbę transakcji dla każdego
miesiąca. W przypadku rozważanej spółki PKNORLEN widzimy ogólny
trend wzrostowy aktywności.

2.3.3 Liniowe i nieliniowe autokorelacje zmian cen

Niezwykle istotną charakterystyką dynamiki ceny jest zachowanie się au-
tokorelacji jej zmian, szczególnie ze względów praktycznych - przewidze-
nie kierunku zmiany ceny pozwala wprost na zbudowanie strategii inwesty-
cyjnej. W danych transakcyjnych obserwujemy zjawisko po angielsku nazy-
wane bid-ask bounce, odpowiadające ’skakaniu’ ceny pomiędzy cenami kupna
i sprzedaży. Z tego też powodu występuje negatywna korelacja zmiany ceny
z kolejną zmianą. Jest to jednak tylko techniczny skutek konstrukcji zasad
księgi zleceń, na podstawie którego nie da się w prosty sposób stworzyć stra-
tegii inwestycyjnej. Techniczny opis powstawania tego zjawiska znajduje się
w rozdziale 2.2. Dalsze zmiany nie są już istotnie skorelowane (dokładniej-
szy opis tego efektu oraz modele go tłumaczące można znaleźć w [30], [31]).
Oznacza to, że patrząc na podstawowe zależności, wcześniejsze zmiany ceny
aktywa nie wpływają na jej przyszłe zmiany. Innymi słowy, patrząc jedynie
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Rysunek 2.11: Wykres średniej (linia czarna), minimalnej oraz
maksymalnej (linie pomarańczowe) dziennej liczby transakcji

dla każdego z rozpatrywanych miesięcy.

na historię ceny nie jesteśmy w stanie przewidzieć przyszłych zmian. Auto-
korelacja logarytmicznych zmian cen przedstawiona jest na rys. 2.12.
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Rysunek 2.12: Wykres empirycznej autokorelacji krokowej sze-
regu logarytmicznych zmian ceny. Pierwsza, negatywna war-
tość odpowiada zjawisku bid-ask bounce opisanemu w głów-

nym tekście. Kolejne wartości są bliskie zeru.

Innym równie ważnym tematem jest kwestia ogólnie nazywana zarządza-
niem ryzykiem. W tym przypadku ważniejsza od samego kierunku zmiany
ceny aktywa jest wielkość tej zmiany. Istnieje wiele miar opisujących tę wiel-
kość, przykładowo wariancja, odchylenie standardowe czy drugi moment
zmian lub statystyki pochodzące z rozkładu modułów zmian, jak średnia
czy odpowiednie percentyle. Jednak ogólne wnioski są niezależne od uży-
wanej metody i wskazują na kolejny fakt stylizowany, jakim jest klastrowanie
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zmienności. Okresy większej zmienności zazwyczaj sąsiadują ze sobą. Ozna-
cza to, że możemy oczekiwać, że po okresie, w którym obserwuje się duże
skoki ceny, wystąpi kolejny okres również z dużymi zmianami. Natomiast
okres spokojny powinien być poprzedzony również względnie spokojnym
okresem. Zależności te są dalekozasięgowe i są widoczne na wszystkich ska-
lach - zaczynając od sekundowych i kończąc na skali miesięcznej. Matema-
tycznie to zjawisko najłatwiej opisać autokorelacją modułów zmian. Jest ona
dodatnia i zanika bardzo powoli, można ją dobrze przybliżyć zanikiem potę-
gowym o małym wykładniku. Zagadnienie modelowania i przyczyn wystę-
powania tego zjawiska jest wciąż obiektem wielu prac naukowych [32]–[34].
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Rysunek 2.13: Wykres empirycznej czasowej autokorelacji mo-
dułów logarytmicznych zmian ceny w skali logarytmicznej.
Autokorelacja jest dodatnia i zanika bardzo powoli, z dobrym
przybliżeniem w sposób potęgowy. Jest istotna w wielu skalach

czasowych.
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Rozdział 3

Modele błądzenia losowego w
czasie ciągłym

W niniejszym rozdziale wprowadzam tematykę modelowania aktywno-
ści, przedstawiam różne podejścia do opisu procesów punktowych oraz
argumentuję, dlaczego zdecydowałem się na użycie modeli błądzenia
losowego w czasie ciągłym. Podaję ich definicję oraz metodykę analizy
ich charakterystyk. W szczególności przedstawiam wyniki pracy [13], w
której analizowałem różnice pomiędzy przelotami a spacerami Weierstrassa,
bazując na zachowaniu w czasie drugiego i czwartego momentu procesu,
czyli wariancji oraz kurtozy dla przestrzeni izotropowej i jednorodnego
czasu w obecności fluktuacji.

Aktywność jest ogólnym pojęciem, odnoszącym się do szerokiego spek-
trum procesów fizycznych, jednak w mojej pracy skupiam się na analizie
aktywności w procesach punktowych – czyli takich, w których obserwuje
się dobrze zlokalizowane w czasie i przestrzeni zdarzenia losowe. W
takim przypadku naturalnymi miarami aktywności są liczność zdarzeń
w ustalonym przedziale czasowym, intensywność procesu, czyli gęstość
prawdopodobieństwa wystąpienia zdarzenia, bądź też czasy międzyzda-
rzeniowe, które wykorzystuję do badania aktywności procesów.

3.1 Modelowanie procesów punktowych

3.1.1 Model Poissona

Podstawowym procesem stochastycznym opisującym zdarzenia statystycz-
nie niezależne jest proces Poissona, w którym czasy między zdarzeniami, ∆t,
pochodzą z rozkładu wykładniczego:

ψ(∆t) = λ exp(−λ∆t), ∆t ≥ 0, λ > 0. (3.1)

Jak widać, czasy międzyzdarzeniowe wybierane są losowo, przy czym
intensywność procesu λ jest niezależna zarówno od ∆t, jak też od kolejności
losowania. Proces ten traktuję w rozprawie jako referencyjny, do którego
odnoszę (głównie w rozdziale 6) wyniki analiz danych empirycznych.
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Oczywiście, w przypadku procesów ze skorelowanymi czasami miedzyzda-
rzeniowymi, konieczne jest użycie bardziej wyrafinowanych modeli.

3.1.2 Model autoregresyjnego warunkowego czasu trwania

Istnieje wiele sposobów modelowania zależności pomiędzy czasami mię-
dzyzdarzeniowymi za pomocą procesów punktowych w czasie ciągłym [35],
[36]. Powszechnie znanym przykładem jest model autoregresyjnego warun-
kowego czasu trwania (ang. Autoregressive Conditional Duration, ACD) [37],
wprowadzony w 1998 roku. W tym modelu czas do kolejnego zdarzenia jest
kombinacją liniową poprzedzających go przedziałów czasu. Ściślej rzecz bio-
rąc, n-ty przedział czasu międzyzdarzeniowego jest dany w postaci ∆tn =
θnzn, gdzie zn, n = 1, 2, 3, . . . , są niezależnymi dodatnimi zmiennymi z roz-
kładu o średniej równej 1. Natomiast współczynnik θn jest miarą zależno-
ści aktualnego przedziału czasu od poprzednich przedziałów. Dla modelu
ACD(m, q) jest on dany w postaci liniowej rekurencji:

θn = α0 +
m

∑
i=1

αi∆tn−i +
q

∑
i=1

βiθn−i, m, q ≤ n, α0 > 0, αi, βi ≥ 0, (3.2)

gdzie parametry m i q określają zasięgi pamięci w tym procesie. Model ten
został wprowadzony do opisu transakcji nieregularnie występujących na
giełdzie, gdzie czasy międzytransakcyjne posiadają dodatnią autokorelację.
Jest wciąż używany w modelowaniu danych finansowych [35], a także np.
ryzyka kredytowego [38]. Ponadto, dzięki swojej uniwersalności, znalazł
liczne zastosowania także poza rynkami finansowymi, na przykład do opisu
rozprzestrzeniania się zakażeń wirusem polio [39] czy korków w ruchu
ulicznym [40]. Kanoniczna wersja modelu uwzględniała jedynie pamięci
krótkozasięgowe, dlatego początkowe prace skupiały się na takim jego
zastosowaniu, przykładowo z wykorzystaniem pamięci jednokrokowej [41].
Wraz z rosnącą popularnością modelu powstawały wersje uwzględniające
także pamięci długookresowe [42].

3.1.3 Proces Hawkesa

Innym przykładem modelu uwzględniającego czasy międzyzdarzeniowe w
procesach punktowych w czasie ciągłym jest proces Hawkesa [43], [44]. Zo-
stał zaproponowany w 1971 roku i początkowo był używany do opisu trzę-
sień ziemi [45]. Jednak ostatnimi czasy zyskał na popularności szczególnie w
kontekście modelowania aktywności społecznej (wiadomości na Twitterze
[46], filmów na YouTube [47], wiadomości email czy rozmów na komuni-
katorach [48]) oraz w finansach [49]. Jest to samopobudzający się proces, co
oznacza, że każde wydarzenie może spowodować kolejne wydarzenie. Pro-
cesy Hawkesa oparte są na intensywności, czyli prawdopodobieństwie wa-
runkowym wystąpienia zdarzenia. Wystąpienie zdarzenia powoduje wzrost
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intensywności procesu, co skutkuje większym prawdopodobieństwem wy-
stąpienia kolejnego zdarzenia. Matematycznie można to zapisać następująco:

λ(t) = λ0(t) + ∑
ti :ti<t

h(t − ti), (3.3)

gdzie λ0(t) to intensywność bazowego procesu Poissona, natomiast h(·)
jest funkcją określającą natężenie i zasięg pamięci procesu. Podobnie jak
w przypadku modeli ACD, początkowe zastosowanie procesów Hawkesa
dotyczyło zależności krótkozasięgowych [45] (gdzie funkcja h(·) zanika
wykładniczo). Jednak ostatnio zostały zaproponowane modele z pamię-
cią długookresową [49], [50] (gdzie funkcja h(·) zanika potęgowo). W
ogólności, procesy Hawkesa pozwalają lepiej zrozumieć i wytłumaczyć
badane zjawisko, jednak modele ACD są łatwiejsze w analizie danych
empirycznych.

3.2 Ogólne własności i zastosowania modelu błą-
dzenia losowego w czasie ciągłym – uwagi
wstępne

Model błądzenia losowego w czasie ciągłym (ang. Continuous-Time Random
Walk, CTRW) został zaproponowany przez fizyków Montrolla i Weissa
w 1965 roku [51]. Od tego czasu stał się modelem szeroko używanym w
fizyce, przykładowo w modelowaniu amorficznych, światłoczułych filmów
[52], [53], ośrodków porowatych [54], [55], w modelowaniu starzenia się
szkieł [56], [57], transportu koherentnego oraz transportu elektronowego
[58], [59], w modelowaniu geofizycznym [60], [61] czy astrofizycznym [62],
[63]. Często wykorzystuje się go też do modelowania układów złożonych
[64]–[69], szczególnie w tematyce związanej z transportem w fizyce plazmy,
materiałach szklistych, czy w nauce o komórkach [70] oraz w fizyce interdy-
scyplinarnej: fizyce biomedycznej [71], [72], ekonofizyce [8], [23], [73]–[77]
czy socjofizyce [78]. Szersza lista zastosowań i ich krótkie omówienie znaj-
duje się w pracy przeglądowej [79], w której zebrane zostały najważniejsze
osiągnięcia z 50-letniej historii różnych wariantów formalizmu CTRW.

Jednym z pierwszych istotniejszych osiągnięć w ramach formalizmu
CTRW była możliwość wytłumaczenia i modelowania zarówno dyfuzji
normalnej, jak i anomalnej – subdyfuzji oraz superdyfuzji. Oryginalnie,
wyniki te zostały otrzymane poprzez zastosowanie gruboogonowych
rozkładów skoków oraz czasów wyczekiwania [80]. Zaproponowano też
metody stacjonaryzacji różnych wariantów formalizmu CTRW poprzez
stacjonaryzację pierwszego skoku [81], [82].

Istotną cechą wskazującą na elastyczność formalizmu CTRW jest możliwość
uwzględniania w jego ramach różnych zależności między podstawowymi
elementami procesu. Skorelowane skoki były początkowo rozważane w
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tematyce dyfuzji gazów w ośrodkach porowatych [83]–[85]. Ostatnio uży-
wane są też m.in. w modelowaniu danych transakcyjnych [14], [30], [31]
– opisałem to w rozdziale 4.1. Wykorzystana tam została zasada przekory
Le Chateliera. Jest ona obecna w zjawisku bid-ask bounce (wprowadzonym
w rozdziale 2.3.3). Wynika z niego tendencja ceny do powrotu do swojej
poprzedniej wartości. Rozważałem tam także sprzężenie między skokami
i czasami wyczekiwania pomiędzy nimi [75], [77], [86], w wyniku których
można było uzyskać m.in. zjawisko superdyfuzji. Wspomniane sprzężenie
występuje także w wielce charakterystycznych procesach Weierstrassa, które
omówiłem w podrozdziale 3.5. Procesy te pozwalają na badania zarówno
dyfuzji normalnej, jak też anomalnej oraz przelotów i spacerów Lévy’ego.

Zagadnienie, które jest przedmiotem mojego zainteresowania dotyczy
zależności pomiędzy czasami międzyzdarzeniowymi. Ostatnio opubli-
kowano kilka prac rozważających formalizm CTRW ze skorelowanymi
czasami wyczekiwania [87]–[94]. Zależności te były wprowadzane po-
przez jądro pamięci albo przez konstruowanie podporządkowanego (ang.
subordinated) szeregu czasów wyczekiwania. Jednak zagadnienie to wy-
maga prowadzenia dalszych badań, gdyż dotychczasowe modele mają
zbyt uproszczony charakter. Przykładowo w niektórych z tych modeli
wprowadzenie zależności w szeregach czasów wyczekiwania prowadzi
do ich niestacjonarności. W innym przypadku rozważane są jedynie pro-
cesy z rozkładem czasów o nieskończonej średniej i rozkładem skoków o
nieskończonej wariancji. Ponadto, co jest nadzwyczaj istotne, przewidywa-
nia tych modeli nie były dotychczas porównywane z danymi empirycznymi.

Istotną zaletą formalizmu CTRW jest możliwość badania w jego ra-
mach procesów złożonych biorących pod uwagę sprzężenia pomiędzy
zmiennymi losowymi jakimi są zarówno czasy międzyzdarzeniowe, jak
też zmiany procesu. Możliwość uwzględnienia obydwu rodzai sprzężeń
dynamicznych pozwala na pogłębioną analizę procesów stochastycznych
znacznie bliższych procesom rzeczywistym, co wskazuje na przewagę
formalizmu CTRW nad modelami typu ACD czy Hawkesa. W modelach
CTRW można w naturalny sposób analizować (gdyż są na to nastawione)
takie charakterystyki procesu jak jego wariancje czy autokorelacje. Zapropo-
nowany w niniejszej rozprawie wariant formalizmu CTRW pozwala zbadać
nie tylko podstawowe charakterystyki procesu, jak średnią i wariancję, ale
też bardziej złożone charakterystyki, jak propagator procesu bądź autokore-
lacja prędkości i modułu prędkości procesu.

Należy wspomnieć, że istnieje rozszerzenie procesów punktowych o
wartości nazwane znakowanymi procesami punktowymi (ang. marked point
processes) [95], [96]. Obok procesu punktowego, niezbędny jest również
szereg towarzyszących oznaczeń (ang. marks), których wartości reprezentują
stan procesu. Każdemu wydarzeniu z procesu punktowego przypisana jest
jedna wartość z drugiego szeregu. Jednak formalizm takiego rozwiązania
oparty jest na formalizmie procesów punktowych. Formalizm CTRW jest
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znacznie lepiej dostosowany do wyznaczenia szczegółowych charakterystyk
procesu.

Modele CTRW pozwalają na uwzględnienie fluktuujących oraz skorelowa-
nych czasów międzytransakcyjnych w przeciwieństwie do kanonicznych
modeli szeregów finansowych, takich jak ARIMA (odwzorowującego za-
leżności pomiędzy kolejnymi zmianami ceny) czy GARCH (opisującego
heteroskedastyczność, czyli zmienną w czasie wariancję procesu). Zatem,
formalizm CTRW jest naturalnym wyborem dla modelowania wykorzy-
stywanych w rozprawie danych empirycznych, gdyż łączy on potrzebne
cechy procesów punktowych oraz szeregów czasowych. Jego elastyczność
pozwala uwzględnić zarówno zjawisko klastrowania aktywności czy ogól-
niej klastrowania zmienności, jak też zjawisko bid-ask bounce (powrotu ceny
aktywa do poprzedniej wartości, patrz rozdz. 2.3.3).

3.3 Formalizm CTRW

Celem zdefiniowania dowolnego procesu stochastycznego potrzebne jest
zbudowanie metodologii otrzymywania jego trajektorii, czyli wartości
procesu w zależności od czasu x(t).

3.3.1 Skokowe błądzenie losowe w czasie ciągłym

Błądzenie losowe w czasie ciągłym o charakterze skokowym jest procesem
stochastycznym, którego trajektoria zdefiniowana jest przez ciąg zmian war-
tości procesu ∆x1 = x1 − x0, ∆x2 = x2 − x1, . . . , zwanych skokami procesu
oraz ciąg przedziałów czasu pomiędzy tymi zmianami ∆t1 = t0 − t1, ∆t2 =
t2 − t1, . . . , zwanych czasami wyczekiwania, przy czym xj jest wartością pro-
cesu w chwili tj, j = 0, 1, 2, . . . Zmiany wartości procesu są tutaj natychmia-
stowe, zatem w okresach pomiędzy skokami wartość procesu nie ulega zmia-
nie. Przykładową trajektorię tego procesu przedstawiłem na rysunku 3.1.

Definicja formalizmu CTRW bazuje na gęstości ostrego prawdopodobień-
stwa warunkowego wystąpienia n-tej pary typu (skok procesu, czas wycze-
kiwania) w zależności od poprzednich tego typu par, które zapisuję następu-
jąco:

p(∆xn, ∆tn|∆xn−1, ∆tn−1; ∆xn−2, ∆tn−2; . . . ; ∆x1, ∆t1), (3.4)

gdzie n = 1, 2, 3, . . . , indeksuje kolejne punkty zwrotne trajektorii, a zarazem
kolejne chwile. Termin "ostre" oznacza tutaj sytuację, w której wartość
procesu xj jest osiągana dokładnie w chwili tj.

Kanoniczny, skokowy model CTRW Montrolla i Weissa opiera się na
trzech założeniach:

(1) aktualne wartości skoku i czasu wyczekiwania nie zależą od swoich
przeszłych wartości,
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Rysunek 3.1: Przykładowa trajektoria skokowego błądzenia
losowego w czasie ciągłym. Niebieskim kolorem oznaczone
są części trajektorii odpowiadające momentom, kiedy wartość
procesu jest stała przez czas wyczekiwania ∆ti. Po jego upły-
wie następuje natychmiastowa zmiana wartości procesu o wiel-
kość skoku ∆xi, przedstawiona zielonym kolorem. Proces sko-
kowego błądzenia losowego w czasie ciągłym jest oczywiście

idealizacją procesów rzeczywistych.

(2) wartości skoku i czasu wyczekiwania w każdej parze są od siebie sta-
tystycznie niezależne,

(3) wszystkie skoki pochodzą z tego samego rozkładu h(∆x), podob-
nie wszystkie czasy wyczekiwania z tego samego rozkładu ψ(∆t);
rozkłady te są niezależne od n.

Powyższe warunki pozwalają na przedstawienie gęstości prawdopodobień-
stwa danego wzorem (3.4) w prostszej postaci:

p(∆xn, ∆tn|∆xn−1, ∆tn−1; ∆xn−2, ∆tn−2; . . . ; ∆x1, ∆t1) = p(∆xn, ∆tn), (3.5)

którą wykorzystuję w dalszej części tego rozdziału. Ma miejsce normalizacja:∫ ∞

−∞
d∆xn

∫ ∞

0
d∆tn p(∆xn, ∆tn) = 1, n = 0, 1, 2, . . . (3.6)

W ogólności, może wystąpić sprzężenie dynamiczne zmiennych losowych
∆xn i ∆tn, wtedy gęstość prawdopodobieństwa p(∆xn, ∆tn), n = 0, 1, 2, . . . ,
nie rozkłada się na czynniki przestrzenny i czasowy. Faktoryzacja ma miejsce
wtedy i tylko wtedy, gdy to sprzężenie znika. W takim przypadku

p(∆xn, ∆tn) = h(∆xn)ψ(∆tn), n = 0, 1, 2, . . . , (3.7)

gdzie obie gęstości prawdopodobieństwa, przestrzenna h(·) i czasowa ψ(·),
są unormowane.
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3.3.2 Propagator procesu stochastycznego

Wielkością, która pozwala na pełną charakterystykę procesu stochastycz-
nego, jest jego propagator P(x2, t2|x1, t1), czyli prawdopodobieństwo warun-
kowe tego, że w chwili t2 proces będzie miał wartość x2 pod warunkiem, że
w czasie t1 ≤ t2 proces miał wartość x1. Dla jednorodnych procesów stocha-
stycznych w przestrzeni i czasie (czyli ściśle stacjonarnych), co ma miejsce w
stanie równowagi statystycznej układu, zachodzi następująca równość:

P(x2, t2|x1, t1) = P(x2 + ∆x, t2 + ∆t|x1 + ∆x, t1 + ∆t), (3.8)

określająca translacyjną niezmienniczość procesu stochastycznego w prze-
strzeni i czasie. Zatem, przyjmując ∆x = −x1 a ∆t = −t1, możemy propaga-
tor procesu wyrazić w następującej postaci:

P(x, t) def.
= P(x, t|0, 0) = P(x2 − x1, t2 − t1|0, 0), x def.

= x2 − x1, t def.
= t2 − t1.

Wyrażę teraz propagator procesu, P(x, t) za pomocą propagatorów cząstko-
wych, Pn(x, t), n = 0, 1, 2, . . . , następująco:

P(x, t) =
∞

∑
n=0

Pn(x, t), (3.9)

gdzie propagator cząstkowy Pn(x, t) oznacza gęstość prawdopodobieństwa
tego, że w chwili t proces ma wartość x i wykonał do tego czasu dokładnie
n przemieszczeń (tutaj skoków). Powyższą równość wygodniej jest przed-
stawić (ze względów technicznych) w równoważnej postaci wyrażonej za
pomocą transformat Fouriera oraz Laplace’a. Mianowicie,

P̃(k, s) =
∞

∑
n=0

P̃n(k, s), (3.10)

gdzie

Ỹ(k, s) = F{L{Y(x, t)}} =
∫ ∞

0
dte−st

∫ ∞

−∞
dxeikxY(x, t), (3.11)

przy czym Y(x, t) jest dowolną funkcją od zmiennych niezależnych x oraz t.

Można teraz wypisać równanie dla n-krokowego progatora Pn(x, t) w
następującej postaci,

P0(x, t) = δ(x − x0)Ψ(t − t0),

Pn(x, t) =
∫ ∞

−∞
dxn−1 . . .

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

p(x1 − x0, t1 − t0)p(x2 − x1, t2 − t1) . . . p(x − xn−1, tn − tn−1)

Ψ(t − tn), n = 1, 2, . . . , (3.12)
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gdzie prawdopodobieństwo przetrwania w dowolnym miejscu przez okres
czasu od 0 do t jest dane wzorem:

Ψ(t) =
∫ ∞

t
dt′ψ(t′). (3.13)

gdzie

ψ(t′) =
∫ ∞

−∞
dx′p(x′, t′) (3.14)

Dokonując w równaniu (3.12) transformacji Fouriera względem zmiennej
x − x0 oraz Laplace’a względem zmiennej t − t0 otrzymujemy:

P̃0(k, s) = Ψ̃(s),
P̃n(k, s) = Ψ̃(s)[ p̃(k, s)]n, n = 1, 2, . . . . (3.15)

Korzystając z równań (3.15) i (3.10) otrzymujemy, że propagator jest sumą
nieskończonego szeregu geometrycznego o ilorazie | p̃(k, s)| ≤ 1 postaci:

P̃(k, s) =
Ψ̃(s)

1 − p̃(k, s)
=

1 − ψ̃(s)
s

1
1 − p̃(k, s)

, (3.16)

gdzie w drugiej równości wykorzystaliśmy transformatę Laplace’a równania
(3.13) postaci:

Ψ̃(s) =
1 − ψ̃(s)

s
. (3.17)

Jak widać, bazowym rozkładem kanonicznego formalizmu CTRW jest
transformata Fouriera-Laplace’a, p̃(k, s), lokalnego rozkładu p(∆x, ∆t).
Zatem, można stwierdzić, że lokalne własności procesu CTRW pozwalają
wyznaczyć charakterystyki globalne tego procesu. Wynika to z tego, że
rozpatrujemy układ znajdujący się w stanie równowagi statystycznej, co nie
wyklucza jednak istnienia w układzie nawet gigantycznych fluktuacji. Jest
to wykorzystywane przeze mnie w podrozdziałach 3.5.1 – 3.5.6 do ilościowej
analizy stochastycznego procesu Weierstrassa.

Równanie (3.16) jest ogólną, kanoniczną formułą formalizmu CTRW
uwzględniającą sprzężenie dynamiczne pomiędzy zmiennymi losowymi,
które tutaj jest wyrażone w domenie Fouriera-Laplace’a.

W przypadku braku wspomnianego powyżej sprzężenia ma miejsce
faktoryzacja rozkładu bazowego, p̃(k, s) = ψ̃(s)h̃(k), co prowadzi do
następującej, uproszczonej formuły:

P̃(k, s) =
1 − ψ̃(s)

s
1

1 − ψ̃(s)h̃(k)
. (3.18)
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Jak wiadomo, propagator stanowi kluczową wielkość procesu stocha-
stycznego (tutaj dany ogólnym wzorem (3.16)), gdyż możemy na jego
podstawie wyznaczyć inne charakterystyki procesu, takie jak np. momenty,
a w tym zwłaszcza momenty centralne i absolutne, a z nich kolejne miary,
w tym m.in. kurtozy oraz autokorelacje. Miary te są konieczne zarówno
do uzyskania niezbędnej wiedzy o procesu, jak też do opisu faktów
empirycznych.

3.4 Charakterystyki formalizmu CTRW

3.4.1 Momenty

Ważnymi wielkościami opisującymi własności procesów stochastycznych są
jego momenty mj(t), które możemy wyznaczyć wprost z propagatora w na-
stępujący sposób:

mj(t) = ⟨xj(t)⟩ =
∫ ∞

−∞
xjP(x, t)dx, j = 1, 2, 3, . . . (3.19)

Z drugiej strony, można je otrzymać dysponując transformatą propagatora
P̃(k; s) jako jego odpowiednie pochodne w punkcie k = 0:

m̃j(s) = i−j ∂jP̃(k; s)
∂kj

∣∣∣
k=0

, j = 1, 2, 3, . . . ,

mj(t) = L−1[m̃j(s)]. (3.20)

Występują też przypadki, gdy całka we wzorze (3.19) jest nieokreślona lub
rozbieżna. Wówczas nie możemy przypisać j-emu momentowi skończonej
wartości.

Wielkością często wykorzystywaną w kontekście drugiego i czwartego
momentu jest, oprócz wariancji, nadmiarowa kurtoza, zwana także eks-
cesem, zdefiniowana jako κ(t) = µ4(t) − 3µ2(t), gdzie µj, j = 2, 4, są
momentami centralnymi, odpowiednio, stopnia drugiego (wariancja) i
czwartego. Oczywiście, momenty centralne są równe zwykłym jeżeli w
procesie nie występuje dryf, gdyż wówczas znikają wszystkie zwykłe
momenty stopnia nieparzystego. Ponieważ kurtoza nadmiarowa rozkładu
normalnego znika, więc jeśli w procesie występuje niezerowa kurtoza,
możemy określić go jako proces niegaussowski. Przy czym znikanie kurtozy
nie determinuje gaussowskiego charakteru procesu – do tego potrzebne jest
również znikanie wszystkich wyższych kumulant procesu, czyli stopnia
wyższego niż czwarty [97]. W rozdz. 3.5 analizuję własności procesów wy-
korzystując właśnie drugą i czwartą kumulantę pod nieobecność kumulant
nieparzystych.
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Skrót G nG
B B-G B-nG

nB nB-G nB-nG

Tabela 3.1: Tabela przedstawia generyczną klasyfikację proce-
sów dyfuzji: B oznacza proces Browna, nB oznacza proces nie-
brownowski, G oznacza proces Gaussa, nG oznacza proces nie-

gaussowski.

Pożyteczną, generyczną klasyfikację procesów dyfuzji przedstawiłem w
tabeli 3.1. Użyłem w niej następujących skrótów:

– B oznacza proces Browna,

– nB oznacza proces niebrownowski,

– G oznacza proces Gaussa,

– nG oznacza proces niegaussowski.

Mówimy, że proces dyfuzji jest typu Browna jeżeli jego wariancja jest
asymptotycznie liniową funkcją czasu. Niebrownowski proces dyfuzji jest
jego zaprzeczeniem. Natomiast mamy do czynienia z dyfuzyjnym proce-
sem Gaussa jeżeli wartości procesu podlegają rozkładowi Gaussa. Proces
niegaussowski jest jego zaprzeczeniem. Zauważmy, że proces typu B-G jest
odpowiednikiem Centralnego Twierdzenia Granicznego (CTG) – dotyczy
czasu ciągłego a nie dyskretnego jak to ma miejsce w CTG. Pierwszy wiersz
w tabeli 3.1 definiuje dyfuzję normalną (nie mylić z rozkładem normalnym),
czyli brownowską, a ostatni wiersz w tej tabeli definiuje dyfuzję anomalną,
czyli niebrownowską. Ponadto, pierwsza kolumna tabeli dotyczy dyfuzji
gaussowskiej, a druga niegaussowskiej.

Klasyfikacja przedstawiona w tabeli 3.1 dotyczy zarówno procesów
typu przelotów/lotów (ang. flights), czyli skokowych, jak też spacerów
(ang. walks) zachodzących w czasie ciągłym. Porównanie ich dyfuzyjnych
diagramów fazowych (czyli ich asymptotycznych w czasie własności)
przedstawiłem w rozdz. 3.5 na bazie "uniwersalnych" procesów Weier-
strassa.

3.4.2 Autokorelacje

Ważną wielkością charakteryzującą proces stochastyczny jest zależna od
czasu autokowariancja prędkości procesu COVv(t) oraz standaryzowana
autokowariancja, czyli zależna od czasu autokorelacja prędkości procesu
ACFv(t). Dla stacjonarnego procesu stochastycznego autokowariancję
prędkości procesu można wyznaczyć z dwóch pierwszych momentów
procesu:

COVv(t) =
d2m2(t)

2dt2 −
(

dm1(t)
dt

)2

. (3.21)
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Autokorelację możemy otrzymać dzieląc autokowariancję przez począt-
kową wariancję prędkości σ2

v (t = 0) = ⟨[v(t = 0)]2⟩ − ⟨v(t = 0)⟩2. Wtedy,
ACFv(t = 0) = 1. Prędkość procesu stochastycznego definiujemy za pomocą
następującego ilorazu różnicowego:

v(t) def.
=

∆x
∆t+

=
x(t + ∆t+)− x(t)

∆t+
. (3.22)

Oznaczenie ∆t+ mówi, że iloraz różnicowy jest liczony w czasie wprzód,
natomiast ∆x należy rozumieć jako jednokrokowe przemieszczenie procesu
(skokowe lub nie) w czasie wprzód. Dobrze to ilustruje rysunek 3.2 na
przykładach procesów Weierstrassa (opisanych w rozdz. 3.5).

Należy rozróżniać autokowariancję/autokorelację czasową i autokowa-
riancję/autokorelację krokową. W autokowariancji/autokorelacji krokowej
argumentem jest liczba kroków (równa liczbie punktów zwrotnych) o jaką
przesuwamy się w szeregu czasowym. Oznacza to średniowanie po zespole
statystycznym szeregów czasowych przy ustalonej liczbie kroków a nie
przy ustalonym czasie – w różnych szeregach czasowych czas potrzebny
na wykonanie ustalonej liczby kroków może być różny. Natomiast w auto-
kowariancji/autokorelacji czasowej przedział czasu jest ustalony a zmianie
może ulegać liczba kroków, jaka miała miejsce w tym przedziale czasu.

3.5 Przeloty oraz spacery

Rozdział ten oparty jest na wynikach publikacji [13] i dotyczy własności for-
malizmów CTRW typu ’przelotów’ oraz ’spacerów’. Tego typu dychotomia
jest typową klasyfikacją trajektorii błądzeń losowych, dlatego badanie jej
konsekwencji jest tak ważnym elementem niniejszej rozprawy. Zbudowanie
trajektorii błądzenia losowego w czasie ciągłym dla obu wspomnianych
typów polega na określeniu jej kolejnych punktów zwrotnych – zdarzeń
losowych. Punkty te pojawiają się w wyniku losowania kolejnych zmian
procesu i odpowiadających im przedziałów czasu.

Procesy stochastyczne typu przelotów są dobrze widoczne w wewnątrz-
dziennych szeregach finansowych. Cena (zgodnie z definicją podaną w
rozdz. 2.2) pozostaje przedziałami stała, a zmienia się "natychmiastowo" ini-
cjując realizację nowej transakcji. W przypadku procesu stochastycznego
typu spacerów, zamiast natychmiastowo przeskakiwać do nowej lokalizacji
po upływie losowego czasu wyczekiwania, proces wędruje przez cały ten
okres czasu ze stałą prędkością. Czyli ma miejsce budowanie trajektorii
procesu za pomocą losowych odcinków łączących punkty zwrotne. Tego
typu proces CTRW nadaje się do modelowania np. położenia ptaków (np.
albatrosów [98], [99]) czy samolotów, podróżujących pomiędzy różnymi
miejscami docelowymi.

Porównanie trajektorii przelotów i spacerów znajduje się na rysunku
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3.2. Niektóre różnice, jakie niosą ze sobą te dwie metody budowania pro-
cesu, zaprezentowane zostały m.in. w pracy [100]. W tym rozdziale używam
procesu hierarchicznego błądzenia Weierstrassa, aby porównać obydwa
rodzaje błądzeń (przeloty ze spacerami). Błądzenia Weierstrassa cechują się
sprzężeniem pomiędzy zmianą wartości procesu a odpowiadającym mu
czasem realizacji, z którego wynikają odmienne charakterystyki przelotów
oraz spacerów Weierstrassa. Wybór procesów Weierstrassa wynika z
faktu, że można je wykorzystywać jako reprezentantów dowolnej klasy
uniwersalności poprzez odpowiedni wybór parametrów procesów. Jest
to wielce przydatna własność kategoryzująca w badaniu wspomnianych
powyżej sprzężeń. Jest o tym mowa w dalszej części rozprawy. W roz-
prawie porównuję dyfuzyjne diagramy fazowe przelotów Weierstrassa
(ang. continuous-time Weierstrass flight, CTWF) z odpowiadającym im
spacerom Weierstrassa (ang. continuous-time Weierstrass walk, CTWW).
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Rysunek 3.2: Porównanie trajektorii (czarne ciągłe linie) jed-
nowymiarowych przelotów, czyli CTWF oraz spacerów, czyli
CTWW, na przykładzie procesów Weierstrassa. Niebieskie
kropki reprezentują punkty zwrotne, które łączone są odpo-
wiednimi trajektoriami. Dla CTWF wartość procesu jest prze-
działami stała, a w przypadku wystąpienia nowego zdarzenia
pojawia się natychmiastowy skok położenia (przelot) do nowej
lokalizacji. Natomiast w przypadku CTWW prędkość procesu
jest przedziałami stała przez cały okres czasu upływający po-

między kolejnymi punktami zwrotnymi.

3.5.1 Ilościowe definicje przelotów oraz spacerów Weier-
strassa

Podstawową własnością wyróżniającą procesy Weierstrassa jest zgeome-
tryzowana hierarchiczna stochastyczna struktura zdarzeń. Każde kolejne
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pokolenie tej hierarchii oznacza zdarzenie występujące z mniejszą często-
tliwością, ale większe zarówno co do absolutnej zmiany wartości procesu,
jak też długości przedziału czasu potrzebnego na realizację tego zdarzenia.
Procesy Weierstrassa można zdefiniować poprzez (wielopokoleniowy)
rozkład p(∆x, ∆t) kolejnego przemieszczenia ∆x oraz czasu ∆t potrzebnego
na jego pokonanie. W ramach każdego pokolenia z osobna zmiany te, w
przypadku przelotów, są statystycznie niezależne od poprzednich, jednak
sumarycznie rzecz biorąc ma miejsce dla obu typów sprzężenie pomiędzy
∆x oraz ∆t. Zatem, rozkład p(∆x, ∆t) w ogólności nie rozkłada się na osobne
czynniki przestrzenny i czasowy, czyli p(∆x, ∆t) ̸= h(∆x)ψ(∆t).

W świetle powyższego, dla zadanego poziomu hierarchii j formalizmu
CTWF można zaproponować wyrażenie postaci:

pF
j

(
∆x
b0bj ,

∆t
τ0τ j

)
=

1
b0bj

1
τ0τ j ϕ

(
∆x
b0bj ,

∆t
τ0τ j

)
, (3.23)

gdzie b0, b > 1, τ0 oraz τ > 1 są parametrami procesu, a ϕ(·, ·) jest
znormalizowaną funkcją skalującą niezależną od poziomu j, czyli∫ ∞

0 dϑ
∫ ∞
−∞ dyϕ(y, ϑ) = 1. Dodatkowo, zakładam symetryczność funkcji

ϕ ze względu na przestrzenną zmienną y, co powoduje, że rozważany pro-
ces nie posiada dryfu. Przyjmuję dla przelotów i spacerów, że przestrzeń jest
izotropowa a czas jednorodny. Wszystkie wielkości związane z przelotami
będą posiadały górny indeks F, natomiast ze spacerami W . Powyższy wzór
można interpretować następująco: wielkości skoków zarządzane są przez
wielkość iloczynu b0bj, który w oczywisty sposób zależny jest od poziomu
hierarchii j, natomiast czasy wyczekiwania są niezależne od wielkości
skoków i również zarządzane są poziomem j poprzez wartość iloczynu τ0τ j.
Przy czym, im wyższy poziom w hierarchii, z tym (średnio rzecz biorąc)
większymi skokami i czasami wyczekiwania mamy do czynienia.

Analogiczna definicja dla spacerów Weierstrassa jest następująca:

pW
j

(
∆x

v0vj∆t
,

∆t
τ0τ j

)
=

1
v0vj∆t

1
τ0τ j ϕ

(
∆x

v0vj∆t
,

∆t
τ0τ j

)
, (3.24)

gdzie v0, v > 0 to parametry procesu. W przypadku spacerów rysunek 3.2
(prawy panel) dobrze ilustruje zdefiniowane powyższym wzorem sprzęże-
nie pomiędzy pojedynczym przemieszczeniem procesu a czasem potrzeb-
nym na jego pokonanie. Występuje tutaj prędkość pokoleniowa v0vj z jaką
porusza proces w przedziale czasu ∆t. Parametry procesów są dobrane w
sposób naturalny, tzn. tak aby w każdym pokoleniu (na każdym poziomie
hierarchii) zachodziły równości:

b0bj = v0vj ⟨∆t⟩j , ⟨∆t⟩j = τ0τ j, b0 = v0τ0, b = vτ, (3.25)

gdzie ⟨∆t⟩j jest średnim czasem wyczekiwania dla pokolenia j. Jak widać,
w przypadku spacerów, proces jest przedziałami liniową funkcją czasu.
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Występuje tutaj liniowa zależność czasoprzestrzenna na każdym poziomie
hierarchii.

Każdy kolejny poziom w hierarchii występuje z mniejszą wagą – mniejszą
częstotliwością. Przyjmujemy przypadek najprostszy, gdy stosunek tych
wag w kolejnych pokoleniach jest stały. Prowadzi to do następującego
wyrażenia:

w(j) =
(

1 − 1
N

)
1

N j , N > 1, (3.26)

definiującego rozkład geometryczny sterowany parametrem N, który okre-
śla stosunek kolejnych wag w(j+1)

w(j) = 1
N niezależnie od j. Jest to zgodne z

geometrycznym charakterem vj, τ j oraz bj.

W tym miejscu warto wprowadzić parametry złożone typu wykładni-
ków fraktalnych β =

log N
log b oraz α =

log N
log τ . To właśnie te dwa parametry

α i β charakteryzują asymptotyczne własności procesów Weierstrassa i
definiują ich przynależność do określonej dyfuzyjnej klasy uniwersal-
ności. Wykazuję poniżej, że są to podstawowe wykładniki pozwalające
budować dyfuzyjne diagramy fazowe zarówno dla procesu typu CTWF, jak
też CTWW.

W oparciu o rozważania przeprowadzone w niniejszym podrozdziale
definiuję jednokrokowe rozkłady postaci:

pF (∆x, ∆t) =
∞

∑
j=0

w(j)
1

b0bj
1

τ0τ j ϕ

(
∆x
b0bj ,

∆t
τ0τ j

)
,

pW (∆x, ∆t) =
∞

∑
j=0

w(j)
1

v0vj∆t
1

τ0τ j ϕ

(
∆x

v0vj∆t
,

∆t
τ0τ j

)
,

(3.27)

stanowiące uogólnione (hierarchiczne) rozkłady Weierstrassa. W dalszym
ciągu wprowadzę jawną postać funkcji skalowania ϕ wspólna dla dla prze-
lotów i spacerów.

3.5.2 Rozkład skoków oraz ich sprzężenie z czasami wycze-
kiwania

Aby pokazać różnicę pomiędzy przelotami i spacerami, wyznaczam drugi
moment pojedynczych skoków – w przypadku spacerów uwzględniam jesz-
cze losowość czasu wyczekiwania. Dla ustalonego poziomu j można ze wzo-
rów (3.23) i (3.24) łatwo wyznaczyć zależność:

⟨∆x2⟩W
j = ⟨∆x2⟩F

j
⟨y2ϑ2⟩
⟨y2⟩ , (3.28)
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gdzie moment ⟨ynϑm⟩ =
∫ ∞

0 dϑϑm ∫ ∞
−∞ dyynϕ(y, ϑ), n, m ≥ 0, przy czym y =

∆x
v0vj∆t a θ = ∆t

τ0τ j oraz w oparciu o wyrażenie (3.23) otrzymuję:

⟨∆x2⟩F
j = b2

0b2j ⟨y2⟩ , (3.29)

gdzie
〈
y2〉 jest momentem brzegowym bezwymiarowej zmiennej losowej y.

W przypadku, gdy funkcja skalująca ϕ faktoryzuje się (co ma miejsce
poniżej - patrz wzór (3.32)), zachodzi ⟨ynϑm⟩ = ⟨yn⟩ ⟨ϑm⟩ a stąd równanie
(3.28) upraszcza się do postaci:

⟨∆x2⟩W
j = ⟨ϑ2⟩ ⟨∆x2⟩F

j , (3.30)

gdzie ⟨ϑ2⟩ jest drugim momentem bezwymiarowej zmiennej losowej ϑ.
W powyższej relacji współczynnikiem proporcjonalności jest wariancja
zmiennej losowej ϑ, która wzbogaca fluktuacje przemieszczenia spaceru (w
stosunku do przelotu) na sposób multiplikatywny.

Powyższe wyrażenie w połączeniu z wzorami (3.27) wyznacza związek po-
między sumarycznymi (ważonymi/hierarchicznymi) drugimi momentami
pojedynczych przemieszczeń dla spacerów i przelotów. Mianowicie,

⟨∆x2⟩W
=

∞

∑
j=0

w(j) ⟨∆x2⟩W
j = ⟨∆x2⟩F ⟨ϑ2⟩ = b2

0Y ⟨y2⟩ ⟨ϑ2⟩ ,

Y =

{
1−1/N
1−b2/N > 1 dla β > 2,

∞ dla β < 2.

(3.31)

Jak widać, zakres zmienności parametru β określa przedział, w którym
istnieje drugi moment pojedynczych przemieszczeń dla obydwu procesów
Weierstrassa, bądź nie istnieje (tzn. jest nieskończony). Powyższe wyrażenie
jest interesujące, gdyż pomimo istnienia zależności pomiędzy zmiennymi
losowymi ∆x oraz ∆t ma miejsce faktoryzacja wariancji jednokrokowego
przemieszczenia na część przestrzenną i czasową.

Aby dokładniej zobrazować różnice występujące pomiędzy przelotami
a spacerami, przyjmę prostą postać ϕ, której będę używać też w dalszych
obliczeniach w tym rozdziale:

ϕ(y, ϑ) =
1
2
[δ(y − 1) + δ(y + 1)] exp(−ϑ). (3.32)
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Wstawiając konkretne postaci ϕ oraz w(j) do równań (3.27) otrzymuję jawne
postaci łączonych rozkładów przemieszczeń ∆x i odpowiadających im prze-
działów czasu ∆t:

p (∆x, ∆t) =
1
2

(
1 − 1

N

) ∞

∑
j=0

N−j [δ(x − zj) + δ(x + zj)
] 1

τ0τ j exp
(
− ∆t

τ0τ j

)
ozn.
=

{
pF (∆x, ∆t) , dla zj = b0bj,
pW (∆x, ∆t) , dla zj = v0vj∆t.

(3.33)

Histogramy tych rozkładów przedstawiłem na rysunku 3.3. Na tym wy-
kresie dobrze widać (prawy panel) sprzężenie pomiędzy wartościami
przemieszczeń a czasami potrzebnymi na ich pokonanie. Lewy panel
ilustruje brak takiego sprzężenia.
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Rysunek 3.3: Przedstawienie składowych pokoleniowych łącz-
nego rozkładu dla przelotów (lewy panel) oraz spacerów
(prawy panel), zgodnie ze wzorem (3.33) dla wartości N =
1.05, τ = 1.3, b = 1.4 i ν = 1.4. Poszczególne linie na obu
panelach są indeksowane poziomem j, opisując składowe po-
koleniowe obu rozkładów. Wzrost intensywności szarości pik-
sela odpowiada większej wartości rozkładu – jest ona tłu-
miona czynnikiem wykładniczym. Prawy panel dobrze ilu-
struje sprzężenie wartości czasu wyczekiwania z wartością

skoku.
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Ze wzoru (3.33) łatwo otrzymam rozkłady brzegowe postaci:

ψF (∆t) = ψW (∆t) =
(

1 − 1
N

) ∞

∑
j=0

N−j 1
τ0τ j exp

(
− ∆t

τ0τ j

)
,

hF(∆x) =
1
2

(
1 − 1

N

) ∞

∑
j=0

N−jδ(|∆x| − b0bj),

hW(∆x) =
1
2

(
1 − 1

N

) ∞

∑
j=0

N−j exp
(
−|∆x|

b0bj

)
,

(3.34)

które używam poniżej do wyznaczenia propagatorów.

3.5.3 Propagatory spacerów oraz przelotów

Propagatory zestacjonaryzowane ze względu na warunki początkowe wyra-
żone są następująco ogólnymi wzorami w domenie Fouriera-Laplace’a [101]:

P̃W,F
st (k, s) = Ξ̃W,F(k, s) + χ̃W,F(k, s)P̃W,F(k, s), (3.35)

gdzie dla spacerów:

Ξ̃W(k, s) = τ0

(
1 − τ

N

) ∞

∑
j=0

(
τ2

N

)j

Θ̃W
j (k, s),

χ̃W(k, s) =
(

1 − τ

N

) ∞

∑
j=0

( τ

N

)j
Θ̃W

j (k, s),

P̃W(k, s) =
Ψ̃W(k, s)

1 − p̃W(k, s)
= τ0

∑∞
j=0
(

τ
N
)j Θ̃W

j (k, s)

∑∞
j=0

(
1
N

)j (
1 − Θ̃W

j (k, s)
) ,

Θ̃W
j (k, s) =

sτ0τ j + 1
(sτ0τ j + 1)2 + (kb0bj)2 ,

(3.36)

natomiast dla przelotów:

Ξ̃F(k, s) = τ0

(
1 − τ

N

) ∞

∑
j=0

(
τ2

N

)j

Θ̃F
j (k, s),

χ̃F(k, s) =
(

1 − τ

N

) ∞

∑
j=0

( τ

N

)j
Θ̃F

j (k, s),

P̃F(k, s) =
Ψ̃F(k = 0, s)
1 − p̃F(k, s)

= τ0
∑∞

j=0
(

τ
N
)j Θ̃F

j (k = 0, s)

∑∞
j=0

(
1
N

)j (
1 − Θ̃F

j (k, s)
) ,

Θ̃F
j (k, s) = cos(kb0bj)Θ̃W

j (k = 0, s),

(3.37)
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przy czym indeks st oznacza stan stacjonarny. Pierwszy składnik po prawej
stronie równania (3.35) opisuje przetrwanie procesu stacjonarnego (spaceru
lub przelotu) w początku układu, a pierwszy czynnik w drugim składniku
stacjonarny rozkład pojedynczego przemieszczenia (spaceru lub przelotu).
Stan stacjonarny uzyskuje się tutaj poprzez takie średniowanie stanu nie-
stacjonarnego po warunku początkowym, które prowadzi do niezależności
od wyboru chwili początkowej. Dzięki temu uzyskuje się kluczową relację
(3.35) pomiędzy stacjonarnymi i niestacjonarnymi propagatorami, zarówno
dla procesu przelotów jak i spacerów. W dalszym ciągu wykorzystuję klu-
czowy wzór (3.35) do analizy zestacjonaryzowanych parzystych momentów
przestrzennych.

3.5.4 Momenty spacerów

Zgodnie z wynikami zawartymi w pracach [102], [103], drugi moment pro-
cesu spacerów można zapisać jako sumę części regularnej i singularnej:

⟨x(t)2⟩W
st = ⟨x(t)2⟩Wreg

st + ⟨x(t)2⟩Wsing
st . (3.38)

Wyraz regularny odpowiada brownowskiemu (liniowemu) wzrostowi wa-
riancji z czasem:

⟨x(t)2⟩Wreg
st = 2DW

st t =
⟨∆x2⟩W

⟨∆t⟩ t. (3.39)

Natomiast część singularna jest równa:

⟨x(t)2⟩Wsing
st =

2DW f
st

Γ(η1 + 1)

(
t

τ0

)η1

,

DW f
st = b2

0
τ0

⟨∆t⟩
1 − 1/N

log N
πα

| sin(π(η1 − 1))| ,

η1 = 1 + α

(
2
β
− 1
)

, η1 ̸= 1, η1 < 2,

(3.40)

gdzie Γ(·) to funkcja gamma Eulera. Przechodząc do funkcji autokorelacji
prędkości procesu, korzysta się, oczywiście, jedynie z części singularnej:

CW
st (t) =

1
2

d2

dt2 ⟨x(t)2⟩W
st =

1
2

d2

dt2 ⟨x(t)2⟩Wsing
st =

1
τ0

η1 − 1
Γ(η1)

DW f
st

(
t

τ0

)−(2−η1)

,

(3.41)



3.5. Przeloty oraz spacery 39

gdzie η1 < 2. W podobny sposób można przeanalizować czwarty moment,
dla którego również zachodzi:

⟨x(t)4⟩W
st = ⟨X(t)4⟩Wreg

st + ⟨x(t)4⟩Wsing
st ,

⟨x(t)4⟩Wreg
st = 12

(
DW

st

)2
t2 = 12

(
DW

st

)2
t2,

⟨x(t)4⟩Wsing
st =

12D2 f W
st

Γ(η2 + 1)

(
t

τ0

)η2

,

D2 f W
st = b4

0
τ0

⟨∆t⟩
1 − 1/N

log N
πα(η2 − 2)(η2 − 3)

sin(π(η2 − 1))
,

η2 = 1 + α

(
4
β
− 1
)

, η2 < 4,

(3.42)

gdzie D2 f W
st jest fraktalnym współczynnikiem super-Burnetta. Wyprowadze-

nie powyższych wzorów wraz z zakresem ich stosowalności zamieściłem w
dodatku C.

3.5.5 Dyfuzyjny diagram fazowy procesu spacerów

Połączenie równań (3.40) i (3.42) pozwala na zbudowanie wygodnych dyfu-
zyjnych diagramów fazowych procesu spacerów Weierstrassa w zmiennych
1
α oraz 1

β za pomocą drugiego (MSD) i czwartego (MSQD) momentu pro-
cesu. Diagramy te zostały zbudowane dla asymptotycznie długich czasów
t ≫ τ0τ (stąd przymiotnik "dyfuzyjne"). Odpowiednie obliczenia zawarłem
w dodatku C. Na rys. 3.4 wyróżniłem sześć osobnych faz, które omówiłem
poniżej (w oparciu o wcześniejszą publikację [13]).

Pierwszy poziom klasyfikacji (drugorzędowy) wynika z zachowania
drugiego momentu i dzieli diagram na trzy zasadnicze obszary.

1. Dla 1
β < 1

2 mamy do czynienia z obszarem (składającym się z faz pół-
regularnych SRD1 i SRD2 oraz fazy regularnej RD), które charaktery-
zują się liniową zależnością drugiego momentu (MSD) od czasu t oraz
subliniową zależnością składowej singularnej MSD od czasu. Innymi
słowy, składowa regularna ⟨x(t)2⟩Wreg

st dominuje tutaj nad składową
singularną ⟨x(t)2⟩Wsing

st . Ta druga stanowi podstawę potęgowego zani-
kania w czasie funkcji autokorelacji prędkości procesu. Różnice pomię-
dzy tymi fazami są widoczne dopiero na poziomie MSQD – jej składo-
wej singularnej oraz nadmiarowej kurtozy.

2. Kolejny obszar diagramu fazowego leżący pomiędzy czerwonymi li-
niami prostymi zadanymi równaniami 1

β = 1
2 oraz 1

β = 1
2 +

1
2α (składa-

jący się z dwóch faz ED1 i ED2), jest scharakteryzowany superliniową
zależnością składnika singularnego ⟨x(t)2⟩Wsing

st od czasu t (wykładnik
η1 przyjmuje tutaj wartości pomiędzy 1 a 2). Oznacza to, że MSD jest
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Rysunek 3.4: Diagram z sześcioma fazami dyfuzyjnymi dla
stacjonarnego procesu CTWW. Dokładny opis znajduje się w
głównym tekście w rozdziale 3.5.5. Użyte tutaj skróty: MSD
(ang. stationary mean-square displacement) =⟨x(t)2⟩W

st , MSQD
(ang. stationary mean-square quadratic displacement)= ⟨x(t)4⟩W

st .
(Uwaga: κ oznacza tutaj skrótowo wartość absolutną kurtozy.)

skończone, ale rośnie szybciej niż liniowo (superliniowo), z wykładni-
kiem η1, przy czym jego granicą górną dla tego obszaru jest wartość
η1 = 2 odpowiadającą dyfuzji balistycznej.

3. Dla obszaru odpowiadającego ostatniej części diagramu fazowego le-
żącego powyżej górnej czerwonej linii, MSD jest rozbieżne ⟨x(t)2⟩W

st =
∞, dla t > 0. Jest to faza dyfuzji Lévy’ego (LD).

Jak widać, dyfuzyjny diagram fazowy przedstawiony na rys. 3.4 wprowadza
zasadniczą klasyfikację procesu Weierstrassa, scharakteryzowaną asympto-
tycznym (w czasie) zachowaniem drugiego (MSD) i czwartego (MSQD) mo-
mentu. Teraz omawiam wkłady do charakterystyki poszczególnych dyfuzyj-
nych faz diagramu, jakie daje ten drugi, czyli do charakterystyki na poziomie
czwartego rzędu.

1. Faza leżąca poniżej dolnej niebieskiej linii prostej (zdefiniowanej przez
wartość wykładnika η2 = 2) jest scharakteryzowana przez liniową za-
leżność MSD ∼ t oraz brak nadmiarowej kurtozy κ = 0 (czyli znika-
nie kumulanty, tzn. półzmiennika czwartego rzędu), a ponadto przez
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czwarty moment (MSQD) rosnący kwadratowo z czasem, ⟨x(t)4⟩W
st ∼

t2. Jest to faza dyfuzji regularnej RD. Jednak nie wiemy czy wyższe ku-
mulanty znikają w tej fazie, co oznacza, że nie wiemy czy należy tą fazę
traktować jak gaussowską. Zatem, możemy na nią patrzeć co najwyżej
jak na dyfuzję brownowską. Innymi słowy, procesy należące do tej fazy
trzeba lokować w trzeciej kolumnie i drugim wierszu (element B-nG)
tabeli 3.1.

2. Dla faz diagramu (SRD1 i ED1) znajdującymi się pomiędzy niebieskimi
(ukośnymi) liniami prostymi odpowiadającymi wartościom wykładni-
ków (dolna linia) η2 = 2 a (górna) η2 = 4, istnieje skończona nadmia-
rowa kurtoza, a czwarty moment procesu rośnie w czasie szybciej niż
kwadratowo, z wartością wykładnika η2 ograniczoną od góry warto-
ścią równą 4.

3. Fazy leżące pomiędzy górnymi liniami prostymi: niebieską i czerwoną
(czyli SRD2 i ED2) są scharakteryzowane rozbieżną nadmiarową kur-
tozą wynikającą z rozbieżności MSQD.

4. Natomiast obszar powyżej górnej czerwonej linii prostej stanowi fazę
LD.

Jak widać, mamy tutaj do czynienia z sześcioma fazami: RD, SRD1, SRD2,
ED1, ED2, LD. Pięć spośród tych faz (czyli za wyjątkiem fazy LD) charakte-
ryzują się długozasięgowym (potęgowym) zanikiem autokorelacji prędkości
procesu z wykładnikiem zaniku równym 2 − η1, gdzie η1 < 2 . Z punktu
widzenia skończonej wartości MSD, fazy te ograniczone są od góry dyfu-
zją balistyczną. Zauważmy jeszcze, że wspomnianych pięć faz zajmuje 3/4
obszaru diagramu fazowego (pozostałe 1/4 obszaru dotyczy fazy LD).

3.5.6 Charakterystyka procesu przelotów

Z technicznego punktu widzenia, analiza stacjonarnego procesu CTWF
jest analogiczna do tej dla procesu CTWW. Jednakże na skutek tego, że
prędkości procesu pomiędzy punktami zwrotnymi są nieskończone (proces
jest typu skokowego), faza LD zajmuje znacznie większy obszar (3/4 całego
diagramu fazowego) w porównaniu z pozostałymi fazami (patrz rys. 3.5).
W tych pozostałych fazach składowa singularna jest zdominowana przez
liniowe zachowanie drugiego momentu w funkcji czasu (gdyż η1 < 1).
Prowadzi to z jednej strony do procesu brownowskiego, a z drugiej do
potęgowego zaniku funkcji autokorelacji prędkości procesu.

Na diagramie fazowym linie rozdziału faz dla procesu CTWF nie prze-
cinają się w przeciwieństwie do procesu CTWW. Obszar diagramu poniżej
czerwonej linii jest rozdzielony niebieską linią, odpowiadającą dwóm fazom,
w których czwarty moment procesu zachowuje się różnie. Powyżej niej
znajduje się półregularna dyfuzja SRD2 z nieskończoną kurtozą κ = ∞
należąca do fazy oznaczonej w tabeli 3.1 przez element B-nG. Poniżej jest
obszar dyfuzji regularnej RD; jednak podobnie jak w przypadku procesu
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spacerów, jest to obszar fazy brownowskiej, ale niegaussowskiej (także
B-nG).

Fakt, że diagram fazowy dla stacjonarnego procesu CTWW jest bogat-
szy (posiada większą liczbę faz) od analogicznego dla procesu CTWF
nie dziwi. Proces CTWW dostarcza więcej możliwości, gdyż pojedyncze
przemieszczenie w tym procesie jest (dodatkowo) bezpośrednio zależne od
czasu (w przeciwieństwie do procesu stacjonarnego CTWF). Dokładniejsza
analiza zachowania momentów dla procesu przelotów (podobnie jak dla
spacerów) jest zawarta w dodatku C.
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Rysunek 3.5: Diagram z trzema fazami dyfuzyjnymi dla stacjo-
narnego procesu CTWF. Jak widać, faza LD zajmuje trzykrotnie
większy obszar niż pozostałe fazy razem wzięte – odwrotnie

jak ma to miejsce dla procesu CTWW (patrz rys. 3.4).

3.5.7 Podsumowanie

W niniejszym podrozdziale przedstawiłem wpływ hierarchicznego sprzę-
żenia czasoprzestrzennego na dyfuzję. W przypadku CTWW zaprezento-
wałem to, jak na dyfuzję oddziałują: zhierarchizowana prędkości procesu,
średni czas relaksacji oraz dodatkowe sprzężenie powstałe ze względu na
czasy elementarnych (jednokrokowych) przemieszczeń pomiędzy punktami
zwrotnymi trajektorii błądzenia. W przypadku CTWF, w którym nie wy-
stępuje wspomniane dodatkowe sprzężenie, ukazałem zależności między
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dyfuzją a zhierarchizowanymi elementarnymi przemieszczeniami tego
procesu.

Kluczowym, nowatorskim wynikiem tego rozdziału, wynikającym z wymie-
nionych powyżej sprzężeń, są diagramy fazowe dla procesu spacerów (rys.
3.4) i przelotów (rys. 3.5), wykazujące różnorodność procesów Weierstrassa.
Zasadniczo można wyróżnić trzy główne cechy tych diagramów fazowych,
a mianowicie:

(i) Powód istnienia większej liczby faz w przypadku diagramu dla pro-
cesu CTWW, w porównaniu z tym dla CTWF, ma charakter fluktu-
acyjny., co determinuje też zachowania zarówno MSD, jak i MSQD.
Dynamika stochastyczna wyrażona w postaci elementarnego, pojedyn-
czego przemieszczenia procesu CTWW v0vj∆t zależy zarówno od v0vj,
jak też od fluktuującej zmiennej losowej ∆t, podczas gdy dla CTWF
tylko od b0bj. Zatem dla procesu CTWW mamy do czynienia (w ramach
równań dynamiki stochastycznej) z dwiema zmiennymi losowymi (j
oraz ∆t), podczas gdy dla procesu CTWF tylko z jedną (j).

(ii) W przypadku obu procesów fazy zdefiniowane skończoną wartością
MSD dla skończonego czasu, są ograniczone przez dyfuzję balistyczną
(scharakteryzowaną wykładnikiem η1 = 2). Pokonanie tego ograni-
czenia i przejście do obszaru superbalistycznego (hiperdyfuzji) byłoby
możliwe w przypadku procesu CTWW pod warunkiem zastąpienia ru-
chu jednostajnego w pojedynczym przemieszczeniu procesu (w dyna-
mice stochastycznej) przez jednostajnie przyspieszone przemieszczenie
(czyli zamiast wyrażenia v0vj∆t wzięcie a0aj(∆t)2/2).

(iii) Dla obu procesów występuje faza LD, przy czym dla procesu CTWW
zajmuje ona obszar 1/4 diagramu fazowego, podczas gdy dla procesu
CTWF jest to obszar 3/4 diagramu.

Warto zdać sobie sprawę, że technicznie rzecz biorąc, granice istnienia faz
różnych od fazy LD, są zdefiniowane po prostu warunkami określającymi
zbieżność (nieskończonych) szeregów definiujących momenty typu (C.1)
oraz (C.3). Odpowiednie obliczenia dotyczące tego aspektu przedstawiłem
w dodatku C. Zauważmy również, że analiza diagramów fazowych (czyli de
facto momentów) rzędów wyższych niż czwarty (m > 4) została wstępnie
przeprowadzona w mojej pracy [13], a także naszkicowana w dodatku C.
Jednak w niniejszym rozdziale skupiłem się przede wszystkim na diagra-
mach typu dyfuzyjnego (m = 2, 4). Analiza wyższych momentów procesu
pokazuje znaczącą różnicę pomiędzy procesami spacerów i przelotów.
Spacery, poprzez uwzględnianie dodatkowego (w stosunku do przelotów)
sprzężenia czasoprzestrzennego, są procesem znacznie bardziej złożonym.

Proces przelotów posiada kurtozę albo znikającą, albo nieskończoną.
Ponadto, drugi moment tego procesu jest albo liniową funkcją czasu, albo
jest rozbieżny. Rozróżnione zostały tutaj trzy fazy: 1) dyfuzji Lévy’ego (LD),
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2) dyfuzji półregularnej (SRD2) z nieskończoną kurtozą oraz 3) brownow-
skiej i niegaussowskiej dyfuzji regularnej (RD). Te dwie ostatnie fazy należą
do kategorii oznaczonej w tabeli 3.1 jako B-nG.

Natomiast w przypadku drugiego momentu dla spacerów: 1) drugi
moment może rosnąć liniowo w czasie, 2) może występować superdyfuzja,
aż do dyfuzji balistycznej lub 3) daje się zaobserwować dyfuzję Lévy’ego.
Fazy, o których mowa w pkt. 1), należą do kategorii B-nG (patrz tabela
3.1), natomiast wspomniane w pkt. 2) do kategorii nB-nG. Ponadto dla
procesu spacerów zachodzą bardziej złożone zachowania dla czwartego
momentu. Występuje tutaj: 1) faza bez nadmiarowej kurtozy (RD), trzy-
krotnie obszerniejsza niż dla procesu przelotów, 2) faza (ED1) z czwartym
momentem rosnącym szybciej niż kwadratowo w czasie, z wykładnikiem
2 < η2 ≤ 4 oraz 3) faza (ED2) z nieskończoną nadmiarową kurtozą. Przejście
pomiędzy fazami o skończonej (SRD1 i ED1) oraz nieskończonej (SRD2 i
ED2) nadmiarowej kurtozie rozdziela na dwie części granica faz w postaci
niebieskiej linii prostej zadanej równaniami: 1

β = 1
4 +

3
4α oraz η2 = 4.

Powyższe wyniki pokazują obiecujące możliwości modelowania róż-
nych rodzajów dyfuzji, a w tym zwłaszcza dyfuzji anomalnej, za pomocą
procesu Weierstrassa – procesu, który za pomocą jednej formuły i zmien-
nych wartości parametrów sterujących jest w stanie opisać prawie wszystkie
rodzaje dyfuzji ujęte w tabeli 3.1. W tym w szczególności także dyfuzję
typu nB-G, czyli fraktalnego (ułamkowego) ruchu Browna (ang. fractional
Brownian motion, fBm) zdefiniowanego przez Kołmogorowa w kontekście
badań nad turbulencją, a następnie wprowadzonego do szeroko rozumia-
nych finansów przez Mandelbrota oraz Van Nessa. Jak widać, błądzenie
Weierstrassa w istotny sposób rozszerza fBm.
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Rozdział 4

Modele błądzenia losowego w
czasie ciągłym w modelowaniu
finansowych szeregów czasowych

W niniejszym rozdziale przedstawię przykłady zastosowań procesów
błądzenia losowego w czasie ciągłym (CTRW) w modelowaniu danych
finansowych. Na przykładzie modelu z jednokrokową pamięcią po-
między sąsiednimi zmianami, zaproponowanego w [14], pokażę rolę
czasów wyczekiwania w autokorelacji prędkości procesu. Następnie,
poprzez symulacje wykonane w oparciu o dane empiryczne wykażę, że
niezbędne i kluczowe jest uwzględnienie zależności między okresami
międzytransakcyjnymi. Wyniki te przedstawiłem w pracy [15]. Są one
podstawową motywacją do stworzonego w rozdziale 5 modelu CTRW ze
skorelowanymi czasami wyczekiwania.

Na początku XXI wieku zaczęto stosować modele błądzenia losowego
w czasie ciągłym do opisu dynamiki cen walorów finansowych. Metodo-
logia ta przyjęła się i rozwinęła. Obecnie istnieje kilka prac przeglądowych
opisujących zastosowania CTRW w modelowaniu danych finansowych
[8], [79], [86], [104], [105]. Pierwsze prace skupiały się na zmianach ceny,
konkretnie na dużych skokach [75]. Zaproponowany model wykazywał
dyfuzję anomalną dla krótkich czasów. Kolejne publikacje skupiały się
nad rozszerzeniem metod analizy danych. Zauważono, że opis jedynie
zachowania się wariancji procesu jest niewystarczający. W danych empi-
rycznych obserwowano pamięci dalekozasięgowe, nieliniowe korelacje
(między innymi autokorelację modułów zmian), rozkłady gruboogonowe
czy multifraktalność. Okazało się, że również czasy międzytransakcyjne
posiadają podobne, nietrywialne charakterystyki [106], co można zauważyć
pracując na niezagregowanych danych tickowych, bądź transakcyjnych.

Jeśli przyjmiemy definicję ceny jako cenę ostatniej transakcji, od razu
widać podobieństwo wykresów przebiegu ceny oraz trajektorii CTRW
odpowiednio z rysunków 2.3 oraz 3.1. W kontekście rozdziału 3.5 porów-
nującego spacery z przelotami, oznacza to, że słusznym podejściem będzie
zastosowanie formalizmu przelotów. Zatem, żeby opisać cenę za pomocą
błądzenia losowego w czasie ciągłym, uznajemy, że wartość procesu odpo-
wiada cenie (a dokładnie zlogarytmowanej cenie) instrumentu finansowego.
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Wydarzeniami zmieniającymi natychmiastowo cenę waloru, a przez to też
wartość procesu, są transakcje. Okresy pomiędzy transakcjami to czasy
wyczekiwania, kiedy wartość procesu jest stała.

Wiadomym jest, że empiryczny rozkład logarytmicznych zmian h(∆x)
jest niegaussowski, jednak w większości prac przyjmuje się istnienie dwóch
pierwszych momentów tego rozkładu. Z jednej strony zgadza się to dobrze
z danymi empirycznymi (opisane jest to szerzej w akapicie dotyczącym
rys. 2.5), a z drugiej strony skończone wartości ⟨∆x⟩ i ⟨∆x2⟩ pozwalają na
analizę wariancji i autokorelacji zmian procesu. Podobnie dobrze zbadane są
odstępstwa empirycznego rozkładu czasów międzytransakcyjnych ψ(∆t) od
rozkładu wykładniczego. Jednym z proponowanych rozkładów jest rozkład
wykładniczy Weibulla (patrz wzór 2.2), którego dopasowania przedsta-
wione są na rys. 2.7 i 2.8. W dalszej części pracy pozostawię dowolną postać
rozkładu ψ(∆t), jednak założę istnienie wszystkich jego momentów ⟨∆tn⟩.

4.1 Pamięci krótkozasięgowe w finansowych mo-
delach CTRW

Jednym z pierwszych i istotniejszych modeli CTRW uwzględniających jed-
nokrokową pamięć pomiędzy sąsiednimi zmianami ceny jest model zapro-
ponowany przez Montero i Masolivera [87], [107]. Skupiono się w nim na
zależności między kolejnymi przyrostami ceny, zakładając, że czasy wycze-
kiwania są niezależne. Same zmiany ceny były zamodelowane w bardzo pro-
sty sposób, jako dwustanowy rozkład skoków (w górę i dół) lub trzystanowy,
gdzie z pewnym prawdopodobieństwem wartość procesu nie ulegała zmia-
nie. Odpowiada to sytuacji, gdzie cena zmienia się o najmniejszą możliwą
wartość, czyli pojedynczy tick, co jest bardzo częstą sytuacją w danych em-
pirycznych. W dalszej części pracy autorzy postulują ogólny wzór na jedno-
krokową pamięć, będący konkretną postacią wzoru (3.4):

p(∆xn, ∆tn|∆xn−1, ∆tn−1; ∆xn−2, ∆tn−2; . . . ; ∆x1, ∆t1) = h(∆xn|∆xn−1)ψ(∆tn),
h(∆xn|∆xn−1) = h(∆xn) [1 + ϵ sgn(∆xn)sgn(∆xn−1)] ,

(4.1)

gdzie −1 ≤ ϵ ≤ 1 jest parametrem opisującym siłę tej zależności, a sgn(·)
to funkcja signum. Dla ujemnego ϵ w modelu występuje ujemne sprzężenie
zwrotne.

Celem tak zdefiniowanego procesu było opisanie zjawiska bid-ask bo-
unce przedstawionego w rozdziale 2.3.3, w tym krokowej autokorelacji z
rys. 2.12. Model ten następnie został rozszerzony przez Gubca i Kutnera
do dowolnych symetrycznych rozkładów skoków oraz pamięci jedno-,
dwu- oraz wielo-krokowej pomiędzy kolejnymi skokami [30], [31]. Dzięki
temu skutecznie udało się zamodelować i wyjaśnić autokorelację prędkości
obserwowaną w danych empirycznych. Jednak próby wytłumaczenia
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autokorelacji modułów zmian przy użyciu krótkozasięgowych zależności
pomiędzy skokami okazały się kompletnie nieskuteczne. W pracy [14]
wyprowadziłem między innymi analityczny wzór na postać funkcji autoko-
relacji dla dwueksponencjalnego rozkładu czasów wyczekiwania. Rozkład
ten ma postać ψ(∆t) = w

τ1
exp

(
− t

τ1

)
+ 1−w

τ2
exp

(
− t

τ2

)
, gdzie w, τ1, τ2 to

parametry. Otrzymana funkcja autokorelacji to:

ACF|∆x|(t) = δ(t) + A0 exp(−v0t) + A1 exp(−v1t) + A2 exp(−v2t),

wi = τ−1
i ,

v = ww1 + (1 − w)w2,
v0 = ww2 + (1 − w)w1,

vi =
1
2

[
w1 + w2 − ϵv − (−1)i

√
(w1 + w2 − ϵv)2 − 4w1w2(1 − ϵ)

]
,

A0 = 2
M
v0

w (1 − w)(w1 − w2)
2,

Ai = (−1)i 2ϵ (1 − M)

v1 − v2
[w1w2 − vvi],

i ∈ {1, 2}.
(4.2)

Szczególnie ważna jest różnica w sposobie zaniku tych pamięci - empi-
ryczna autokorelacja zanika w sposób potęgowy, natomiast teoretyczna
eksponencjalnie. Praca ta dostarczyła kilku niezwykle istotnych podpowie-
dzi. Po pierwsze, autokorelacja zmian zależy również od rozkładu czasów
wyczekiwania. W szczególności autokorelacja zmian może być niezerowa
dla zmian o niezerowej średniej, nawet przy braku jakichkolwiek zależności
pomiędzy skokami. Dzieje się tak, kiedy rozkład czasów wyczekiwania
nie jest wykładniczy. Jest to też klarowna przesłanka za tym, że również
zależności pomiędzy czasami wyczekiwania mogą być istotnym elementem
w modelowaniu czasowej autokorelacji modułów zmian. Drugim istotnym
wynikiem jest rys. 4.1. Pokazuje on, że początkowo wartość krokowej auto-
korelacji szeregu modułów zmian jest większa niż analogiczna wartość dla
szeregu czasów wyczekiwania ACF|∆x|(n = 1) > ACF∆t(n = 1). Pomimo
to, dla dużych przesunięć (n > 10) ta relacja odwraca się i to korelacje
pomiędzy czasami wyczekiwania są silniejsze. Powyższe dwa punkty są
przesłanką, aby zbadać istotność roli czasów międzytransakcyjnych i
zależności w ich szeregu w zjawisku klastrowania zmienności.

4.2 Pamięci dalekozasięgowe w finansowych mo-
delach CTRW

Skutecznym sposobem zobrazowania zjawiska klastrowania zmienności
jest wyznaczenie autokorelacji modułów zmian ceny, co przedstawiłem w
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Rysunek 4.1: Porównanie empirycznych autokorelacji kroko-
wych szeregu okresów międzytransakcyjnych (niebieski) i mo-
dułów logarytmicznych zmian ceny (zielony). Wykresy przed-
stawione są w skali logarytmicznej, obie autokorelacje zanikają
potęgowo. Pomimo, że dla pierwszego punktu (n = 1) au-
tokorelacja modułów skoków przyjmuje większą wartość, to
potem zanika szybciej i dla dużych przesunięć to pamięci po-
między okresami międzytransakcyjnymi są istotniejsze. Jest to
przesłanka do uwzględnienia w modelu pamięci silniejszej w
długim terminie, czyli pamięci w szeregu czasów wyczekiwa-

nia.

rozdziale 2.3.3. Kluczowe pytanie dotyczy tego, która zależność jest waż-
niejsza w zrozumieniu tego efektu: zależność pomiędzy kolejnymi skokami
czy pomiędzy czasami wyczekiwania? W celu uzyskania odpowiedzi na to
pytanie przeprowadziłem symulacje w oparciu o dane empiryczne. Wyniki
tej symulacji przedstawione są na rys. 4.2 oraz w publikacji [15]. Czasowa
korelacja modułów zmian narysowana jest niebieską linią. Zanika w sposób
potęgowy z małym wykładnikiem. Z poprzednich prac wiemy, że wpływ na
nią mogą mieć rozkład czasów międzytransakcyjnych, korelacje pomiędzy
tymi czasami, korelacje pomiędzy modułami zmian oraz między czasami
a zmianami. Aby sprawdzić sam wpływ rozkładu czasów, muszę usunąć
zależności w procesie. Mogę to zrobić poprzez wyznaczenie z danych em-
pirycznych szeregu czasów wyczekiwania ∆t1, ∆t2, . . . oraz szeregu skoków
∆x1, ∆x2, . . ., a następnie całkowicie losowemu przemieszaniu elementów w
każdym z szeregów. Wtedy każdy szereg nie będzie posiadał autokorelacji.
Z takich przemieszanych szeregów ∆tn i ∆xn buduję ponownie proces cen
i liczę czasową autokorelację modułów zmian. Jest ona przedstawiona na
wykresie jako czerwona linia. Jest dodatnia, ale szybko zanika i staje się
nieistotna. Podobną procedurę mieszania mogę wykonać tylko na jednym
szeregu, przykładowo na szeregu okresów międzytransakcyjnych. Wtedy
wszystkie zmiany zostają niezmienione, a więc w szczególności korelacje
pomiędzy nimi zostają takie same jak w szeregu empirycznym. Wynik tej
symulacji przedstawiony jest jako linia pomarańczowa. O ile dla krótkich
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czasów amplituda wyników jest zbliżona do danych empirycznych, a sam
zanik autokorelacji jest potęgowy, to autokorelacja zanika szybciej niż dla
danych empirycznych. Pokazuje to, że nawet perfekcyjne zamodelowanie
zależności jedynie w szeregu zmian, nie może tłumaczyć w pełni zjawiska
klastrowania zmienności. W ostatniej symulacji sprawdzam wpływ jedynie
pamięci pomiędzy czasami wyczekiwania, czyli z przemieszanym szere-
giem skoków. Wynikiem jest zielona linia praktycznie równoległa do linii
empirycznej. Pokazuje to, że uwzględnienie jedynie pamięci pomiędzy
okresami międzytransakcyjnymi jest kluczowe w poprawnym zamo-
delowaniu wykładnika potęgowo zanikającej czasowej autokorelacji
modułów zmian. Poprzez usunięcie wszelkich zależności pomiędzy sko-
kami (czyli też korelacji pomiędzy modułami zmian) oczywiście otrzymamy
autokorelację o mniejszej amplitudzie. Jednak w zrozumieniu efektu klastro-
wania zmienności kluczowe jest zrozumienie przyczyny powolnego zaniku
autokorelacji. Powyższa symulacja jest główną motywacją empiryczną tej
części niniejszej rozprawy doktorskiej, która dotyczy modeli błądzenia
losowego w czasie ciągłym.
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Rysunek 4.2: Wykres znormalizowanej autokorelacji czasowej
modułów zmian dla czterech szeregów czasowych: dane em-
piryczne (niebieski), empiryczne zmiany cen oraz przemie-
szane czasy międzytransakcyjne (pomarańczowy), przemie-
szane zmiany cen oraz empiryczne czasy międzytransakcyjne
(zielony), niezależnie przemieszane zmiany cen oraz czasy mię-
dzytransakcyjne (czerwony). Rozważenie jedynie empirycz-
nych zależności w szeregu okresów międzyzdarzeniowych od-

wzorowuje wykładnik zaniku empirycznej autokorelacji.

Literatura dotycząca modeli z długozasięgową pamięcią pomiędzy
czasami wyczekiwania nie jest zanadto rozbudowana i posiada braki,
również w części bezpośredniego zastosowania do modelowania danych
empirycznych. Jednak wyniki powyższej analizy wprost sugerują, że
zbadanie tych zależności może być kluczowe w zrozumieniu przyczyn
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występowania klastrowania zmienności. Popularne podejście uwzględ-
nienia jedynie zależności pomiędzy skokami nie jest i nigdy nie będzie
wystarczające w tym przypadku. Dlatego jednym z najistotniejszych
elementów mojej rozprawy doktorskiej jest autorski model CTRW
przedstawiony w następnym rozdziale, uwzględniający dalekozasięgowe
zależności pomiędzy czasami wyczekiwania, który ma na celu między
innymi odwzorowanie potęgowego wykładnika zaniku autokorelacji
modułów zmian w finansowych szeregach czasowych.
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Rozdział 5

Model błądzenia losowego w
czasie ciągłym z pamięcią w
szeregu czasów wyczekiwania

Wnioski z analiz zaprezentowanych we wcześniejszych rozdziałach wska-
zują na to, że odpowiednim modelem do zbadania efektów klastrowania
aktywności i zmienności na rynkach finansowych, będzie model błądzenia
losowego w czasie ciągłym, uwzględniający zależności pomiędzy okre-
sami międzytransakcyjnymi w formalizmie przelotów. W niniejszej części
rozprawy wprowadzę oraz rozwiążę kluczowy autorski model CTRW z
pamięcią w szeregu czasów wyczekiwania, opublikowany w [15]. Zapro-
ponowana metoda jest ogólna i pozwala na rozważenie różnych pamięci,
jednak skupię się na rozwiązaniu modelu z dalekozasięgowymi (zanika-
jącymi potęgowo) zależnościami. Przeanalizuję charakterystykę modelu
poprzez jego pierwsze dwa momenty, wariancję oraz autokorelację zmian,
a w szczególności ich zachowanie w granicy długich czasów. Otrzymane
wyniki (wykładniki przy potęgowym zaniku krokowej autokorelacji czasów
oraz czasowej autokorelacji zmian i modułów zmian) porównam z danymi
empirycznymi.

5.1 Proces czasów

Zgodnie z definicją, do skonstruowania trajektorii CTRW potrzebne są
szeregi wartości zmian procesu oraz czasów pomiędzy zmianami. Najpierw
rozważę oddzielnie szereg czasów wyczekiwania ∆t1, ∆t2, . . ., ∆tn, . . .,
jako że model skupiać się będzie na występujących w nim zależnościach.
Podstawową własnością, którą musi spełniać ten szereg, jest możliwość
uwzględniania zależności pomiędzy kolejnymi czasami wyczekiwania,
a w szczególności pozytywnej krokowej autokorelacji tych czasów, czyli
korelacji pomiędzy np. dwoma kolejnymi czasami wyczekiwania. Zapro-
ponowany proces powinien być również rozwiązywalny analitycznie,
przynajmniej w granicy długich czasów. Po pierwsze pozwoli to na znacznie
głębsze zbadanie jego właściwości, zachowania jego charakterystyk oraz
ogólnego zrozumienia zachodzących w nim zjawisk, a po drugie wyróżni
ten model względem obecnie istniejących modeli. Wykorzystana w pracy
inspiracja do stworzenia takiego szeregu zaskakująco prosto wynika wprost
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z własności procesów błądzenia losowego w czasie ciągłym, co zostało
dokładnie opisane poniżej.

Proponowane rozwiązanie omówionego problemu stanowi szereg z
powtarzającymi się wartościami czasów wyczekiwania ∆t1, ∆t2, . . ., ∆tn, . . .
(oznaczonymi indeksami górnymi), gdzie każda z tych wartości powtórzona
jest odpowiednio ν1, ν2, . . . , νn, . . . razy. Każda z wartości ∆tn jest niezależna
od poprzedniej i wszystkie pochodzą z tego samego rozkładu ψ(∆tn).
Przykładowo (co jest też zobrazowane na rys. 5.1), jeśli pierwsza wartość
okresów ∆t1 jest powtórzona raz (ν1 = 1), druga wartość ∆t2 trzy razy
(ν2 = 3), a trzecia wartość ∆t3 dwa razy (ν3 = 2), da nam to wypadkowo
następujący szereg czasów wyczekiwania we właściwym procesie:

∆t1 = ∆t1, ∆t2 = ∆t3 = ∆t4 = ∆t2, ∆t5 = ∆t6 = ∆t3, . . . (5.1)

O procesie czasów można myśleć jako o dyskretnym procesie wygenerowa-
nym przez równomierne próbkowanie wartości z trajektorii błądzenia loso-
wego w czasie ciągłym. W kanonicznym CTRW wartość procesu jest repre-
zentowana jako zmienna przestrzenna, natomiast czas jest ciągły. Aby dosto-
sować taki proces do roli podrzędnego procesu czasów wyczekiwania, na-
leży przyjąć, że wartość procesu ∆tn reprezentuje czas wyczekiwania, nato-
miast podrzędny czas n jest dyskretny. W kanonicznym przypadku wartość
procesu błądzenia losowego jest stała przez cały czas wyczekiwania. Ozna-
cza to, że w dyskretnym przypadku analogiem kanonicznego czasu wycze-
kiwania jest liczba powtórzeń νn tej samej wartości procesu ∆tn. Dodatkowo,
przy zmianie wartości w dostosowanym procesie, nowa wartość ∆tn jest nie-
zależna od poprzedniej ∆tn−1. Przykładowa trajektoria tak dostosowanego
CTRW jako podrzędnego procesu czasów wyczekiwania jest przedstawiona
na rys. 5.1.

Do zbudowania właściwego procesu CTRW potrzebujemy, aby wartości pro-
cesu czasów wyczekiwania ∆tn w dyskretnym podrzędnym czasie n, pocho-
dziły z rozkładu ψ(∆tn) (∆tn > 0) ze skończoną średnią ⟨∆t⟩. Rozkład warto-
ści procesu czasów, a przez to też w szczególności jego średnia, jest taki sam
jak rozkład czasów wyczekiwania właściwego procesu ψ(·), który może być
dowolnym rozkładem czasów ze skończoną średnią. Następnie każdy czas
wyczekiwania ∆tn jest powtórzony νn razy. Te liczby powtórzeń, osobno lo-
sowane dla każdego z czasów wyczekiwania, pochodzą z rozkładu ω(νn)
oraz są niezależne od siebie. Rozkład ω(νn) wynika wprost z zadanych wła-
sności procesu czasów, ale w ogólności może to być dowolny rozkład. To
pokazuje wszechstronność zaproponowanej metody, gdyż w zależności od
użytego rozkładu ω(νn) w modelu możemy uzyskać brak pamięci (przykła-
dowo dla ω(νn) równej delcie Kroneckera dla wartości 1), pamięć krótko-
zasięgową (przykładowo gdy ω(νn) jest rozkładem geometrycznym) bądź
dalekozasięgową w szeregu czasów wyczekiwania.
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Rysunek 5.1: Przykładowa trajektoria procesu czasów wycze-
kiwania, którego wartości odpowiadają czasom wyczekiwania
∆tn użytym do skonstruowania właściwego procesu CTRW.
Wartości podrzędnego procesu to ∆t1, ∆t2, . . . , ∆tn, . . ., gdzie
każda wartość jest powtórzona odpowiednio ν1, ν2, . . . , νn, . . .
razy. Liczba powtórzeń νn pochodzi z rozkładu liczby powtó-
rzeń ω(νn). W powyższym przykładzie daje nam to ν1 =
1, ν2 = 3, ν3 = 2, . . . oraz ∆t1 = ∆t1, ∆t2 = ∆t3 = ∆t4 =

∆t2, ∆t5 = ∆t6 = ∆t3, . . ..

5.1.1 Pamięć dalekozasięgowa

Aby odtworzyć potęgową krokową autokorelację czasów wyczekiwania,
będę rozpatrywać gruboogonową postać rozkładu liczby powtórzeń. Użyję
jednego z najprostszych dyskretnych rozkładów potęgowych, mianowicie
rozkładu zeta z parametrem ρ:

ωρ(ν) = ν−ρ/ζ(ρ); ζ(ρ) =
∞

∑
i=1

i−ρ, ρ > 1, (5.2)

gdzie ζ(ρ) to funkcja zeta Riemanna. Wartość oczekiwana takiego rozkładu
jest równa ⟨ν⟩ = ζ(ρ−1)

ζ(ρ)
dla ρ > 2, natomiast wariancja jest ograniczona dla

ρ > 3. Ponieważ skupię się jedynie na rozkładach ze skończonym pierwszym
momentem ⟨ν⟩, to w dalszym ciągu rozważać będę jedynie przypadki ρ > 2.
Dystrybuanta rozkładu wyrażona jest wzorem Hν,ρ

ζ(ρ)
, gdzie Hν,ρ = ∑ν

i=1 i−ρ

jest uogólnioną liczbą harmoniczną. Dodatkowo wprowadzę prawdopodo-
bieństwo przetrwania:

Ω(ν) =
∞

∑
i=ν

ω(i), (5.3)

które w przypadku rozkładu zeta przyjmuje wartość Ω(ν) = 1 − Hν−1,ρ
ζ(ρ)

.

Propagator procesu czasów wyczekiwania P(∆t; n|∆t0; 0), zdefiniowany
wcześniej przez równanie (3.8), jest warunkowym prawdopodobieństwem
tego, że czas wyczekiwania, który na początku (dla n = 0) miał wartość ∆t0,
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jest równy ∆t po n krokach. Możemy go zapisać jako:

P(∆t; n|∆t0; 0) = δ(∆t − ∆t0)Ωfirst(n) + [1 − Ωfirst(n)]ψ(∆t), (5.4)

gdzie Ωfirst(n) stanowi prawdopodobieństwo przetrwania otrzymane z
ωfirst(n), będącego zestacjonaryzowanym rozkładem liczby powtórzeń
pierwszego czasu wyczekiwania:

ωfirst(n) = ∑n′=1 ω(n + n′)

∑n′′=0 ∑n′=1 ω(n′′ + n′)
=

∑n′=1 ω(n + n′)

∑n=1 nω(n)
=

∑n′=n+1 ω(n′)

⟨ω⟩ ,

Ωfirst(n) = ∑i=n ∑n′=i+1 ω(n′)

⟨ω⟩ =
∑i=1 iω(i + n)

⟨ω⟩

=
⟨ω⟩ − nΩ(n + 1)− ∑n

i=1 iω(i)
⟨ω⟩ .

(5.5)

Pierwszy człon prawej strony wzoru (5.4) dotyczy sytuacji, w której nie
zachodzi zmiana wartości procesu (z wartości ∆t0) w przeciągu n skoków.
W przeciwnym wypadku, który występuje z prawdopodobieństwem
1 − Ωfirst(n), wartość procesu się zmieni. Będzie ona pochodziła z rozkładu
ψ(∆t) oraz będzie całkowicie niezależna od poprzedniej wartości.

W szczególnym przypadku, kiedy ω(n) jest w postaci rozkładu zeta,
otrzymamy:

Ωfirst(n) = 1 − n
⟨ω⟩ +

nHn,ρ

ζ(ρ − 1)
−

Hn,ρ−1

ζ(ρ − 1)
, (5.6)

co po wstawieniu do wzoru (5.4) pozwoli nam na otrzymanie wprost propa-
gatora procesu czasów.

5.1.2 Krokowa autokorelacja czasów wyczekiwania

Krokowa autokowariancja czasów wyczekiwania ∆tn, zgodnie z definicją z
akapitu pod wzorem (2.3), zadana jest jako:

COV∆t(n) = ⟨∆ti∆ti+n⟩ − ⟨∆ti⟩ ⟨∆ti+n⟩ = ⟨∆ti∆ti+n⟩ − ⟨∆t⟩2 , (5.7)

gdzie symbol ⟨·⟩ oznacza uśrednianie. Dla spełnionego założenia z ostat-
niego akapitu ze wstępu rozdziału 4 o istnieniu wszystkich momentów roz-
kładu ψ(∆t), autokorelacja krokowa będzie zawsze skończona. Łatwo można
zauważyć, że czas wyczekiwania ∆ti+n będzie równy wcześniejszemu ∆ti z
prawdopodobieństwem p = Ωfirst(n), gdyż będą pochodzić z tej samej se-
rii powtórzonych czasów. Natomiast z prawdopodobieństwem przeciwnym
1 − p czas wyczekiwania ∆ti będzie pochodził z innej serii powtórzeń i bę-
dzie całkowicie niezależny. Te obserwacje pozwalają zapisać równanie:

COV∆t(n) = p ⟨∆t2⟩+ (1 − p) ⟨∆t⟩2 − ⟨∆t⟩2 = σ2
∆t p = σ2

∆tΩ
first(n). (5.8)
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Szczególnie istotna będzie postać asymptotyczna tej autokorelacji dla n ≫ 1.
Używając przybliżenia (Twierdzenie 12.21 z [108]):

ζ(ρ)− Hn,ρ ≈ n1−ρ

ρ − 1
, (5.9)

mogę otrzymać znormalizowaną funkcję krokowej autokorelacji czasów wy-
czekiwania:

ACF∆t(n) =
COV∆t(n)
COV∆t(0)

≈ n−(ρ−2)

ζ(ρ − 1)(ρ − 2)(ρ − 1)
. (5.10)

Krokowa autokorelacja czasów wyczekiwania zanika potęgowo z wykładni-
kiem ρ − 2. Potęgowy zanik odpowiada dokładnie pamięciom obserwowa-
nym w danych empirycznych (przedstawionym między innymi na rys. 2.10),
dzięki czemu model spełnia postawione wobec niego wymagania. W tym
miejscu należy przypomnieć, że rozważam jedynie przypadki, dla których
ρ > 2, co jest warunkiem istnienia skończonej średniej liczby powtórzeń.
Mimo to łatwo zauważyć, że w przedstawionym modelu można uzyskać
dowolny wykładnik potęgowego zaniku autokorelacji krokowej czasów
wyczekiwania. Dzięki tej własności zaproponowane podejście jest uniwer-
salne i może znaleźć zastosowanie przy modelowaniu szerokiego spektrum
danych empirycznych.

5.1.3 Krokowa autokorelacja czasów pomiędzy zdarzeniami
ekstremalnymi

W kontekście danych empirycznych, szczególnie często analizie poddawane
są czasy pomiędzy wydarzeniami ekstremalnymi, takimi jak np. odpowied-
nio duże spadki ceny rozważanego instrumentu finansowego [109], [110].
W przypadku procesu CTRW możemy je zdefiniować jako zdarzenia, które
występują średnio co ⟨N⟩ wydarzeń w szeregu zmian procesu ∆xi. Pracując
na danych historycznych, jest to równoważne z definicją zdarzenia ekstre-
malnego jako kwantylowi zmian rzędu 1

⟨N⟩ . Również w tym przypadku
mogę wyprowadzić wzór na autokorelację krokową szeregu czasów między
zdarzeniami ekstremalnymi.

Czasy pomiędzy zdarzeniami ekstremalnymi będę oznaczał jako ∆Ti.
Każdy taki czas będzie się składał z odpowiednio Ki zwykłych czasów
wyczekiwania ∆Ti = ∑Ki

l=1 ∆tl. Przyjmując, że elementy szeregu zmian
∆xi są niezależne i losowane z tego samego rozkładu (szczegółowy opis
tego założenia znajduje się w kolejnym podrozdziale 5.2), to z powyższej
definicji zdarzenia ekstremalnego wynika, że wielkości Ki będą pochodziły
z ujemnego rozkładu dwumianowego NB(k; 1) (nazywanego też rozkła-
dem Pascala). W ogólności ten rozkład zadany jest dla k prób dających n
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Rysunek 5.2: Wykresy krokowej autokorelacji czasów wyczeki-
wania dla zaproponowanej metody generowania szeregu cza-
sów wyczekiwania. Kolorowe linie ciągłe odpowiadają wyni-
kom symulacji komputerowych dla różnych parametrów ρ.
Przerywane czarne linie to odpowiadające im przybliżenia za-
dane wzorem (5.10). Widać, że nawet już po kilku krokach po-
dane przybliżenie jest praktycznie równe wynikom symulacyj-

nym.

sukcesów z prawdopodobieństwem sukcesu zadanym jako 1
⟨N⟩ :

Pr(K = k) = NB(k, n) =
(

k − 1
n − 1

)(
1

⟨N⟩

)n (
1 − 1

⟨N⟩

)k−n
, k ≥ n ≥ 1.

(5.11)
Ponieważ każdy czas ∆Ti zadany jest jako suma podstawowych czasów
wyczekiwania, to autokowariancja tych czasów będzie zadana jako od-
powiednia suma autokowariancji podstawowych czasów wyczekiwania.
Dokładne obliczenia, w których wyznaczam kolejne wartości autoko-
wariancji czasów pomiędzy zdarzeniami ekstremalnymi znajdują się w
dodatku D.

Rozpatrując przypadek n = 0, czyli wariancję szeregu czasów pomię-
dzy ekstremalnymi zdarzeniami, dla ustalonego K = K1 mogę zapisać:

COV∆T(0)
∣∣∣
K=K1

=
K1

∑
i=1

K1

∑
j=1

COV∆t(|i − j|), (5.12)
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gdzie COV∆t(·) jest autokowariancją czasów wyczekiwania, zdefiniowaną
wzorem (5.7). Następnie, uwzględniając losowość K pochodzącego z roz-
kładu ujemnego dwumianowego binarnego, otrzymam:

COV∆T(0) = ⟨N⟩
∞

∑
j=0

COV∆t(j)
(

1 − 1
⟨N⟩

)j
. (5.13)

W podobny sposób mogę zapisać wzór analogiczny do (5.12) dla autokowa-
riancji sąsiednich czasów pomiędzy wydarzeniami ekstremalnymi (sytuacji
odpowiadającej n = 1) dla ustalonych wartości K1 oraz K2:

COV∆T(1)
∣∣∣
K1,K2

=
K1

∑
i=1

K2

∑
j=1

COV∆t(j + i − 1). (5.14)

Wtedy generalizacja uwzględniająca losowość wartości K1 oraz K2 wygląda
następująco:

COV∆T(1) =
∞

∑
j=1

(
1 − 1

⟨N⟩

)j−1

j COV∆t(j). (5.15)

W ogólnym przypadku, dla n ≥ 2, pomiędzy czasami ∆Ti oraz ∆Ti+n będzie
występowało n − 1 czasów pomiędzy zdarzeniami ekstremalnymi. Oznacza
to, że wzór na autokowariancję należy zmodyfikować do postaci:

COV∆T(n)
∣∣∣
K1,K2,Wn−1

=
K1

∑
i=1

K2

∑
j=1

COV∆t(j + i − 1 + Wn−1), n ≥ 2, (5.16)

gdzie Wn−1 pochodzi z rozkładu NB(k, n − 1) i oznacza liczbę podstawo-
wych czasów wyczekiwania ∆ti pomiędzy rozważanymi czasami ∆Ti oraz
∆Ti+n. Zatem ogólny wzór będzie wyglądał następująco:

COV∆T(n) =
(

1
⟨N⟩

)n−1 ∞

∑
j=0

(
1 − 1

⟨N⟩

)j
COV∆t(j + n)

(
j + n

n

)
. (5.17)

Na podstawie wyników ze wzorów (5.13) i (5.15), powyższy wzór (5.17) jest
poprawny również dla n = 1 oraz n = 0.
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Kolejnym krokiem będzie policzenie Z transformaty, zdefiniowanej po-
niżej:

ĈOV∆T(z) = Z {COV∆T(n)} :=
∞

∑
n=0

z−nCOV∆T(n)

=
∞

∑
n=0

∞

∑
j=0

z−n
(

1
⟨N⟩

)n−1(
1 − 1

⟨N⟩

)j
COV∆t(j + n)

(
j + n

n

)

= ⟨N⟩ ĈOV∆t

 1
⟨N⟩−1
⟨N⟩ + 1/⟨N⟩

z

 .

(5.18)

Dzięki tej operacji otrzymamy autokowariancję czasów pomiędzy ekstremal-
nymi zmianami, daną wprost jako autokowariancję czasów wyczekiwania w
domenie po Z transformacji. Teraz mogę wstawić konkretną postać autoko-
wariancji COV∆t(n) z równania (5.8):

COV∆t(n) =
1

ζ(ρ − 1)
[
ζ(ρ − 1)− Hn,ρ−1 − n[ζ(ρ)− Hn,ρ]

]
≈ n−(ρ−2)

ζ(ρ − 1)(ρ − 2)(ρ − 1)
,

Z{ζ(ρ − 1)} =
z

z − 1
ζ(ρ − 1),

Z{Hn,ρ−1} =
z

z − 1
Liρ−1,z−1 ,

Z{nζ(ρ)} =
z

(z − 1)2 ζ(ρ),

Z{nHn,ρ} =
z

(z − 1)2 Liρ,z−1 +
z

z − 1
Liρ−1,z−1 ,

(5.19)

co po połączeniu daje:

ĈOV∆T(z) =
1

ζ(ρ − 1)
z

(z − 1)2

[
(z − 1)ζ(ρ − 1)− ζ(ρ) + Liρ,z−1

]
, (5.20)

gdzie Liρ,z−1 = ∑∞
j=1 z−j j−ρ jest funkcją specjalną nazywaną polilogaryt-

mem. Podstawiając do powyższego wzoru z = exp(s) można wykazać,
że najważniejszym potęgowym wyrazem jest człon z sρ−3, który po
powróceniu do przestrzeni kroków n odpowiada potęgowemu zanikowi
COV∆T(n) ∼ n−(ρ−2), analogicznemu jak we wzorze (5.10). Zatem w zapro-
ponowanym modelu autokorelacja krokowa czasów pomiędzy zdarzeniami
ekstremalnymi zanika z tym samym wykładnikiem, co autokorelacja czasów
wyczekiwania.
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Rysunek 5.3: Wykresy krokowej autokorelacji czasów pomię-
dzy wydarzeniami ekstremalnymi dla zaproponowanej me-
tody generowania szeregu czasów wyczekiwania. Kolorowe li-
nie ciągłe odpowiadają wynikom symulacji komputerowych
dla różnych parametrów ρ. Przerywane czarne linie to od-
powiadające im funkcje potęgowe o wykładniku równym
−(ρ − 2). Widać, że nawet już po kilku krokach podane przy-

bliżenie jest praktycznie równe wynikom symulacyjnym.

5.2 Właściwy proces

Zaproponowana metodologia tworzenia szeregu czasów spełniła oczekiwa-
nia i w szczególności generuje potęgowo zanikającą krokową autokorelację
czasów wyczekiwania. Teraz mogę wprowadzić właściwy proces błądzenia
losowego w czasie ciągłym wykorzystujący czasy wyczekiwania z zapropo-
nowanego szeregu. Autorski model CTRW z powtarzającymi się czasami
wyczekiwania jest w pełni zdefiniowany przez podanie dwóch składni-
ków:

• zmian wartości procesu ∆xn, które definiuję jako niezależne zmienne
losowe pochodzące z tego samego rozkładu h(∆xn). Dodatkowo za-
kładam, że rozkład ten posiada skończoną wariancję σ2

∆x i w związku z
tym skończony pierwszy ⟨∆x⟩ i drugi moment ⟨∆x2⟩;

• czasów wyczekiwania ∆tn, które pochodzą z procesu czasów opisa-
nego w poprzedniej sekcji. W szczególności ich rozkład posiada skoń-
czone wszystkie momenty.

Warto tutaj podkreślić, że nie rozważamy żadnych pamięci w szeregu zmian
procesu. Co więcej, ich rozkład może być dowolny, o ile posiada skończoną
wariancję. Zostawiam też dowolność rozkładu czasów wyczekiwania,
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z jednym zastrzeżeniem dotyczącym istnienia jego momentów. Dzięki
takiemu zdefiniowaniu modelu możliwe będzie dokładne zbadanie
konsekwencji występowania dalekozasięgowych zależności pomiędzy
czasami wyczekiwania. Prezentowane w dalszej części pracy różnice po-
między własnościami analizowanego procesu a kanonicznymi własnościami
CTRW, będą skutkiem wyłącznie wprowadzenia do modelu pamięci do
szeregu czasów międzyzdarzeniowych. Podstawową wielkością opisującą
proces stochastyczny jest propagator P(x, t), zdefiniowany przez równanie
(3.9). Znając propagator procesu, możemy łatwo wyznaczyć wartości jego
momentów, a na ich podstawie autokorelację prędkości procesu, czyli
autokorelację przyrostów. Zatem pierwszym krokiem do poznania wła-
ściwości modelu CTRW z powtarzającymi się czasami wyczekiwania jest
wyznaczenie jego propagatora.

5.2.1 Propagator procesu

Poniższa analiza ma na celu wyznaczenie propagatora omawianego procesu.
Jest ona pierwszym z dwóch kluczowych elementów analitycznych części
mojej rozprawy doktorskiej dotyczącej autorskiego modelu CTRW z pa-
mięcią w szeregu czasów wyczekiwania. Do wyznaczenia propagatora pro-
cesu P(x, t) wykorzystam formalizm przelotów, gdzie w chwili t istotna jest
liczba skoków n do tej chwili oraz wartość procesu po ostatnim skoku, opi-
sana wzorem (3.9). Standardowo propagatora poszukuje się w przestrzeni
Fouriera-Laplace’a (patrz wzór (3.11)), także docelowo będę szukał wartości:

P̃(k, s) = F{L{P(x, t)}} = F
{
L
{

∞

∑
n=0

Pn(x, t)

}}
=

∞

∑
n=0

F {L {Pn(x, t)}}

=
∞

∑
n=0

P̃n(k, s).

(5.21)

Na początku rozważę przypadek n = 0. Do dalszych obliczeń przyda się
prawdopodobieństwo przetrwania Ψ(·) rozkładu czasów wyczekiwania
ψ(·) zdefiniowane jako:

Ψ(t) =
∫ ∞

t
ψ(τ)dτ, (5.22)

czyli prawdopodobieństwo, że wylosowany czas wyczekiwania będzie
większy niż t. Jest ono równoważne z prawdopodobieństwem przetrwania
w stanie po ostatnim skoku przez okres co najmniej t. Prawdopodobieństwo
P̃0(k, s) może być wyznaczone jako transformata Fouriera-Laplace’a P0(x, t),
natomiast samo P0(x, t) obliczę wprost z definicji jako iloczyn prawdopodo-
bieństw tego, że nie został wykonany jeszcze żaden skok oraz początkowego
punktowego rozkładu położenia, czyli:

P0(x, t) = P0(t)δ(x) = Ψ(t)δ(x),

P̃0(k, s) = P̃0(s)F{δ(x)} = Ψ̃(s) · 1 = Ψ̃(s) =
1 − ψ̃(s)

s
.

(5.23)



5.2. Właściwy proces 61

Następnie przechodząc do n ≥ 1 należy pamiętać, że zgodnie z definicją
procesu przyrosty są całkowicie niezależne. Oznacza to, że rozważane n-
krokowe prawdopodobieństwo Pn(x, t) mogę rozłożyć jako iloczyn dwóch
niezależnych prawdopodobieństw: prawdopodobieństwa wykonania n sko-
ków do czasu t oraz rozkładu prawdopodobieństwa położenia x po n sko-
kach. W przestrzeni Fouriera-Laplace’a mogę zapisać to jako:

P̃n(k, s) = P̃n(s)h̃(k)n, n ≥ 1. (5.24)

Zatem do poznania propagatora zaproponowanego procesu niezbędne bę-
dzie jeszcze wyznaczenie P̃n(s). Dla przypadku, kiedy wystąpi co najmniej
jedno wydarzenie (n ≥ 1),liczba wydarzeń w procesie może być dokładnie
opisana poprzez:

• dotychczasową liczbę serii powtórzeń k,

• szereg czasów wyczekiwania w każdej serii powtórzeń ∆t1, . . . , ∆tk,

• liczbę powtórzeń ν1, . . . , νk w każdej z serii.

Dokładniejszy opis tych wielkości znajduje się w rozdziale dotyczącym pro-
cesu czasów, w szczególności powyższe elementy opisane są na rys. 5.1. Zde-
finiowanie procesu przez podanie takich liczb narzuca kilka ograniczeń.

1. Każda liczba powtórzeń νi musi wynosić co najmniej 1, skąd wynika,
że całkowita liczba serii k nie może być większa niż liczba wszystkich
wydarzeń n: 0 < k ≤ n.

2. Suma wszystkich wydarzeń we wszystkich seriach musi być równa cał-
kowitej liczbie wszystkich skoków n: ν1 + ν2 + · · ·+ νk = n.

3. Wszystkie rozważane skoki muszą wystąpić przed momentem t, zatem
całkowity czas potrzebny do zrealizowania wszystkich skoków musi
być mniejszy niż t: ν1∆t1 + ν2∆t2 + · · ·+ νk∆tk ≤ t. Różnicę czasu po-
między ostatnim skokiem, a chwilą t oznaczmy jako:

δt = t −
k

∑
i=1

νi∆ti ≥ 0. (5.25)

Wzór na Pn(t) może być wyznaczony wprost z definicji procesu. W chwili t
proces jest podczas k-tej serii powtórzeń, gdzie wystąpiło νk powtórzeń czasu
wyczekiwania ∆tk. W ogólności proces może być w jednej z dwóch sytuacji.
Albo właśnie rozpoczęła się kolejna k+ 1-sza seria albo proces może być dalej
w trakcie k-tej serii powtórzeń. Oznacza to, że prawdopodobieństwo Pn(t)
możemy zapisać jako sumę dwóch czynników.

1. Właśnie zakończyła się k-ta seria powtórzeń z czasami wyczekiwania
równymi ∆tk. Następny czas wyczekiwania będzie już pochodził z ko-
lejnej, k+ 1-szej serii. Prawdopodobieństwo pojedynczego zdarzenia w
tym przypadku jest zadane jako iloczyn:
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(a) prawdopodobieństw ψ(∆ti), że w i-tej serii czas wyczekiwania
wynosił ∆ti, dla każdej z serii 1, . . . , k;

(b) prawdopodobieństw ω(νi), że w i-tej serii liczba powtórzeń wy-
nosiła νi, dla każdej z serii 1, . . . , k;

(c) prawdopodobieństwa Ψ(δt), że kolejny czas wyczekiwania ∆tk+1

jest większy niż obecny czas oczekiwania na wydarzenie δt;

(d) prawdopodobieństwa Ω(0) = 1, że liczba powtórzeń νk+1 w ko-
lejnej serii wynosi co najmniej 1. Z definicji podanej wzorem (5.3),
to prawdopodobieństwo jest równe 1.

Aby wyznaczyć całościowe prawdopodobieństwo tego przypadku, na-
leży rozważyć zagregowane prawdopodobieństwo wszystkich możli-
wych zdarzeń pojedynczych. Oznacza to, rozpatrzenie wszystkich do-
puszczalnych zestawów k, νi, ∆ti. Aby tego dokonać, należy zsumować
prawdopodobieństwa pojedynczych zdarzeń po k i νi oraz scałkować
po ∆ti dla wszystkich dopuszczalnych wartości, czyli takich spełniają-
cych ograniczenia podane na początku rozdziału.

2. Proces jest dalej w trakcie k-tej serii powtórzeń, czyli kolejny czas wy-
czekiwania będzie kolejnym - νk + 1-szym powtórzeniem czasu wycze-
kiwania równego ∆tk. Prawdopodobieństwo pojedynczego zdarzenia
w tym przypadku może być zapisane jako iloczyn:

(a) prawdopodobieństw ψ(∆ti), że w i-tej serii czas wyczekiwania
wynosił ∆ti, dla każdej z serii 1, . . . , k;

(b) prawdopodobieństw ω(νi), że w i-tej serii liczba powtórzeń wy-
nosiła νi, dla każdej z serii 1, . . . , k − 1;

(c) prawdopodobieństwa Ω(νk), że wystąpi jeszcze co najmniej jedno
powtórzenie w obecnej k-tej serii. Oznacza to, że liczba powtórzeń
w tej serii jest większa niż zaobserwowane dotychczas νk.

W tym przypadku, analogicznie jak w poprzednim, należy zsumować i
scałkować wszystkie pojedyncze prawdopodobieństwa, aby otrzymać
prawdopodobieństwo całościowe tego przypadku. Jednak tutaj docho-
dzi jeszcze jedno ograniczenie. Czas oczekiwania na kolejne zdarzenie
δt, musi być mniejszy niż czas wyczekiwania ∆tk aktualnej k-tej serii.
W przeciwnym przypadku skok powinien się już wydarzyć przed roz-
ważanym czasem t.
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Łącząc w całość wzory wynikające w powyższych rozważań, dla n ≥ 1 mogę
zapisać ogólny wzór na prawdopodobieństwo liczby zdarzeń w rozważa-
nym modelu jako sumę dwóch składowych An(t) oraz Bn(t):

Pn(t) =

=
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

∫
∆t1,...,∆tk

0<δt

ψ(∆t1) . . . ψ(∆tk)Ψ(δt)ω(ν1) . . . ω(νk) d∆t1 . . . d∆tk

+
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

∫
∆t1,...,∆tk

0<δt<∆tk

ψ(∆t1) . . . ψ(∆tk)ω(ν1) . . . ω(νk−1)Ω(νk) d∆t1 . . . d∆tk

=An(t) + Bn(t).
(5.26)

Powyższe równanie zadające prawdopodobieństwo Pn(t) jest kluczowym
równaniem tego rozdziału. Rozwiązanie go przy zastosowaniu wzorów
(5.24) oraz (5.21) pozwoli na otrzymanie propagatora procesu. Analityczna
postać propagatora (dająca możliwość dalszej matematycznej analizy wła-
ściwości procesu) jest niezwykle ważnym naukowym wkładem w zrozu-
mienie istotności oraz roli skorelowanych czasów międzyzdarzeniowych
w kształtowaniu charakterystyk procesów, takich jak między innymi śred-
nia, wariancja czy autokorelacja zmian. W równaniu skrótowe oznaczenie∫
∆t1,...,∆tk

0<δt

oznacza całkowanie po takich wartościach ∆ti, których δt zadana

wzorem (5.25) jest dodatnia, czyli suma ∑k
i=1 νi∆ti jest mniejsza niż t. Jest

to całkowanie po wnętrzu k-wymiarowego sympleksu posiadającego wierz-
chołki w punktach (0, 0, 0, . . . , 0, 0), (t/ν1, 0, 0, . . . , 0, 0), (0, t/ν2, 0, . . . , 0, 0),
(0, 0, t/ν3, . . . , 0, 0), . . ., (0, 0, 0, . . . , t/νk−1, 0) i (0, 0, 0, . . . , 0, t/νk). Zapisując
to wprost:∫

∆t1,...,∆tk

0<δt

d∆t1 . . . d∆tk

≡
∫ t−ν1∆t1−...−νk−1∆tk−1

νk

0
. . .
∫ t−ν1∆t1−ν2∆t2

ν3

0

∫ t−ν1∆t1

ν2

0

∫ t
ν1

0
d∆t1d∆t2d∆t3 . . . d∆tk

=
∫

Rk+1
+

δ(δt − [t − ν1∆t1 − ν2∆t2 − . . . − νk∆tk]) d∆t1d∆t2d∆t3 . . . d∆tkdδt,

(5.27)

gdzie δ(x) to delta Diraca. Podobne oznaczenie
∫

∆t1,...,∆tk

0<δt<∆tk

dokłada dodatkowy

warunek, aby obecny czas oczekiwania na kolejne wydarzenie δt był mniej-
szy niż poprzedni czas wyczekiwania ∆tk. Możemy to zapisać używając
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funkcji skokowej Heaviside’a Θ(∆tk − δt):∫
∆t1,...,∆tk

0<δt<∆tk

d∆t1 . . . d∆tk

≡
∫

Rk+1
+

δ(δt − [t − ν1∆t1 − . . . − νk∆tk])Θ(∆tk − δt) d∆t1 . . . d∆tkdδt.

(5.28)

Natomiast oznaczenie sumowania po liczbach powtórzeń νi można rozpisać
wprost jako:

∑
ν1,...,νk

ν1+...+νk=n

1 =
∞

∑
νk=1

∞

∑
νk−1=1

· · ·
∞

∑
ν2=1

∞

∑
ν1=1︸ ︷︷ ︸

k

δν1+...+νk,n, (5.29)

gdzie δa,b to delta Kroneckera.

Następne rozważane przeze mnie przekształcenia są operacjami linio-
wymi, dlatego wykonywać je będę osobno na każdej z części propagatora
An(t) oraz Bn(t). Operacje wykonywane na obydwu członach oraz ich
kolejność są takie same, dlatego bardziej złożone obliczenia dotyczące
drugiej części przeniosłem do dodatku E, aby zwiększyć czytelność tekstu.
W pierwszym kroku policzę transformatę Laplace’a (t → s), dla której
zachodzi P̃n(s) = Ãn(s) + B̃n(s).

Ãn(s) = L{An(t)} =
∫ ∞

0
e−st An(t)dt

=
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n∫
∆t1,...,∆tk,δt

e−s∆t1ν1ψ(∆t1)ω(ν1)d∆t1 . . . e−s∆tkνk ψ(∆tk)ω(νk)dtke−sδtΨ(δt)dδt

= Ψ̃(s)
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

ψ̃(sν1) . . . ψ̃(sνk)ω(ν1) . . . ω(νk).

(5.30)
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Przy przejściu z pierwszej do drugiej linii równości wykorzystałem fakt, że:∫ ∞

0
e−st

(∫
Rk+1

+

δ(δt − [t − ν1∆t1 − . . . − νk∆tk])d∆t1 . . . d∆tkdδt
)

dt

=
∫

Rk+2
+

e−stδ(δt − [t − ν1∆t1 − . . . − νk∆tk])d∆t1 . . . d∆tkdδtdt

=
∫

Rk+1
+

e−s(ν1∆t1+...+νk∆tk+δt)d∆t1 . . . d∆tkdδt

=
∫

∆t1,...,∆tk,δt

e−s(ν1∆t1+...+νk∆tk+δt)d∆t1 . . . d∆tkdδt

(5.31)

oraz zamieniłem kolejność całkowania i sumowania.

Kolejnym krokiem będzie przejście z otrzymanej postaci P̃n(s) do peł-
nej postaci propagatora P̃n(k; s), uwzględniającej wymiar przestrzenny.
Łącząc równania (5.21), (5.24) oraz (5.26) otrzymamy:

P̃(k; s) =
∞

∑
n=0

P̃n(k; s) = P̃0(k; s) +
∞

∑
n=1

P̃n(s)h̃(k)n

= Ψ̃(s) +
∞

∑
n=1

Ãn(s)h̃(k)n +
∞

∑
n=1

B̃n(s)h̃(k)n.
(5.32)

Dwie sumy w powyższym równaniu przypominają jednostronną transfor-
matę Z (n → z), dlatego w kolejnych obliczeniach używać będę podstawie-
nia z = h̃(k)−1. W obydwu składnikach Ãn(s) oraz B̃n(s) występują te same
sumy. Zobaczmy jak zadziała na nie sumowanie po n:

∞

∑
n=1

n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

=
∞

∑
k=1

∑
ν1,...,νk

∣∣∣∣∣
n=ν1+...+νk

=
∞

∑
k=1

∞

∑
νk=1

∞

∑
νk−1=1

· · ·
∞

∑
ν2=1

∞

∑
ν1=1︸ ︷︷ ︸

k

∣∣∣∣∣
n=ν1+...+νk

.

(5.33)
Teraz mogę wyznaczyć pozostałe składniki transformaty Z:

Ãz(s) =
∞

∑
n=1

z−n Ãn(s)

= Ψ̃(s)
∞

∑
k=1

∑
ν1,...,νk

ψ̃(sν1)ω(ν1) . . . ψ̃(sνk)ω(νk)z−(ν1+...+νk)

= Ψ̃(s)
∞

∑
k=1

∑
ν1,...,νk

z−ν1ψ̃(sν1)ω(ν1) . . . z−νk ψ̃(sνk)ω(νk)

= Ψ̃(s)
∞

∑
k=1

[
∞

∑
ν=1

z−νψ̃(sν)ω(ν)

]k

.

(5.34)
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Przed dalszymi obliczeniami, w ramach uproszczenia zapisu wprowadzę
oznaczenia:

f̃ (z; s) =
∞

∑
ν=1

z−νψ̃(sν)ω(ν),

F̃(z; s) =
∞

∑
ν=1

z−νψ̃(sν)Ω(ν).
(5.35)

Ponieważ | f̃ (z; s)| < 1, mogę zapisać:

Ãz(s) = Ψ̃(s)
∞

∑
k=1

f̃ (z; s)k = Ψ̃(s)
f̃ (z; s)

1 − f̃ (z; s)
. (5.36)

Łącząc powyższy wynik z wartością wyznaczoną dla członu B̃z(s) (patrz do-
datek E) i ponownie podstawiając z = h̃(k)−1, otrzymuję:

P̃(k, s) =
1
s

1 + F̃(h̃(k)−1; s)− zF̃(h̃(k)−1; s)− z f̃ (h̃(k)−1; s)
1 − f̃ (h̃(k)−1; s)

(5.37)

Powyższy wzór na propagator rozważanego błądzenia losowego w cza-
sie ciągłym z powtarzającymi się czasami wyczekiwania jest kluczowym
elementem dalszej analizy, gdyż na jego podstawie wyznaczę zachowanie
momentów procesu oraz autokorelacji zmian.

5.2.2 Momenty procesu

Znając propagator procesu w przestrzeni Fouriera-Laplace’a, mogę wyzna-
czyć jego charakterystykę, a w szczególności jego dwa pierwsze momenty,
jako odpowiednie pochodne:

m̃1(s) = −i
∂P̃(k; s)

∂k

∣∣∣
k=0

,

m̃2(s) = −∂2P̃(k; s)
∂k2

∣∣∣
k=0

,
(5.38)
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które pochodzą z ogólnego wzoru (3.20). Po zastosowaniu ich do propaga-
tora zadanego wzorem (5.37) otrzymam:

m̃1(s) =
1
s
⟨∆x⟩ (F̃(1; s) + f̃ (1; s))

1 − f̃ (1; s)
,

m̃2(s) =− 1
s

1
(1 − f̃ (1; s))2

×
[
2i ⟨∆x⟩ (F̃(1; s) f̃ ′(1; s)− f̃ (1; s)F̃′(1; s) + F̃′(1; s) + f̃ ′(1; s))

+ (2 ⟨∆x⟩2 − ⟨∆x2⟩)(1 − f̃ (1; s))(F̃(1; s) + f̃ (1; s))
]

=− 2i ⟨∆x⟩
s

f̃ ′(1; s)(F̃(1; s) + f̃ (1; s))
(1 − f̃ (1; s))2

− 1
s

2i ⟨∆x⟩ (F̃′(1; s) + f̃ ′(1; s)) + (2 ⟨∆x⟩2 − ⟨∆x2⟩)(F̃(1; s) + f̃ (1; s))
1 − f̃ (1; s)

,

(5.39)

gdzie oznaczenie ′ jest skrótowym oznaczeniem pochodnej po k w punkcie

k = 0, czyli przykładowo f̃ ′(1; s) = ∂
∂k f̃ (h̃(k)−1; s)

∣∣∣
k=0

. Do wyznaczenia po-

wyższego wzoru wykorzystałem pochodne rozkładu skoków h̃(k) w punk-
cie k = 0:

h̃(0) = 1,
∂

∂k
h̃(k)

∣∣∣
k=0

= h̃′(0) = i ⟨∆x⟩ ,

∂2

∂k2 h̃(k)
∣∣∣
k=0

= h̃′′(0) = − ⟨∆x2⟩ ,

∂

∂k
h̃−1(k)

∣∣∣
k=0

= −i ⟨∆x⟩ ,

∂2

∂k2 h̃−1(k)
∣∣∣
k=0

= ⟨∆x2⟩ − 2 ⟨∆x⟩2 .

(5.40)

Następnie przyjrzę się wartościom f̃ (1; s), f̃ ′(1; s), f̃ ′′(1; s), F̃(1; s) oraz
F̃′′(1; s) wykorzystując oznaczenia:

jn(s) =
∞

∑
ν=1

νnψ̃(sν)ω(ν),

Jn(s) =
∞

∑
ν=1

νnψ̃(sν)Ω(ν).
(5.41)
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Wszystkie wielkości wyznaczane są w punkcie k = 0:

f̃ (h̃(k)−1; s)
∣∣∣
k=0

= f̃ (1; s) =
∞

∑
ν=1

1−νψ̃(sν)ω(ν) =
∞

∑
ν=1

ν0ψ̃(sν)ω(ν) = j0(s),

∂

∂k
f̃ (h̃(k)−1; s)

∣∣∣
k=0

=
∂

∂k

∞

∑
ν=1

h̃(k)νψ̃(sν)ω(ν)
∣∣∣
k=0

=
∞

∑
ν=1

νh̃′(0)h̃(0)ν−1ψ̃(sν)ω(ν)

= i ⟨∆x⟩
∞

∑
ν=1

νψ̃(sν)ω(ν) = i ⟨∆x⟩ j1(s),

∂2

∂k2 f̃ (h̃(k)−1; s)
∣∣∣
k=0

= (⟨∆x⟩2 − ⟨∆x2⟩)j1(s)− ⟨∆x⟩2 j2(s),

F̃(h̃(k)−1; s)
∣∣∣
k=0

=
∞

∑
ν=1

ψ̃(sν)Ω(ν) = J0(s),

∂

∂k
F̃(h̃(k)−1; s)

∣∣∣
k=0

=
∞

∑
ν=1

i ⟨∆x⟩ νψ̃(sν)Ω(ν) = i ⟨∆x⟩ J1(s).

(5.42)

Dzięki temu momenty procesu możemy zapisać jako:

m̃1(s) =
⟨∆x⟩

s
J0 + j0
1 − j0

,

m̃2(s) =
2 ⟨∆x⟩2

s
j1(J0 + j0) + (1 − j0)(J1 + j1 − J0 − j0)

(1 − j0)2 +
⟨∆x2⟩

s
J0 + j0
1 − j0

=

=
2 ⟨∆x⟩2

s
j1

1 − j0
J0 + j0
1 − j0

+
2 ⟨∆x⟩2

s
J1 + j1
1 − j0

+
−2 ⟨∆x⟩2

s
J0 + j0
1 − j0

+
⟨∆x2⟩

s
J0 + j0
1 − j0

,

(5.43)

gdzie dla krótszego zapisu ominąłem argument s funkcji jn(s) ≡ jn oraz
Jn(s) ≡ Jn. Jest to ogólny wzór na zachowanie się momentów zadanego pro-
cesu w przestrzeni Laplace’a.

5.2.3 Przybliżenie dla małych s

Zbadam zachowanie momentów procesu w granicy długich czasów
(t → ∞). W szczególności główny nacisk kładę na funkcyjne zachowanie się
momentów w zależności od czasu t, sama wartość amplitudy nie jest tutaj
kluczowa. Aby poznać asymptotyczne zachowanie momentów procesu w
takim przypadku, należy ich transformatę Laplace’a rozwinąć w szereg
potęgowy dla s → 0. Wykorzystam w tym celu równanie (5.43), które
jest podane dla dowolnego rozkładu powtórzeń czasów wyczekiwania
ω(ν). Dopiero teraz rozważę konkretną postać pamięci w szeregu czasów
wyczekiwania, wprowadzoną w rozdziale 5.1.1. Użyję najprostszego dys-
kretnego rozkładu potęgowego, czyli rozkładu zeta (Zipfa) z parametrem ρ:
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ω(ν) = ν−ρ

ζ(ρ)
, ρ > 2, jako że na podstawie wniosków z analizy danych em-

pirycznych postanowiłem skupić się na modelowaniu dalekozasięgowych
zależności.

Najpierw rozpatrzę jn(s) dla n = {0, 1} < (ρ − 1):

jn(s) =
∞

∑
ν=1

νnψ̃(sν)ω(ν) =
1

ζ(ρ)

∞

∑
ν=1

ψ̃(sν)ν−(ρ−n)

=
sρ−n−1

ζ(ρ)

∞

∑
ν=1

ψ̃(sν)(sν)−(ρ−n)s︸ ︷︷ ︸
I(s)−ψ̃(s)s−(ρ−n−1)

, (5.44)

gdzie I(s) jest powyższą sumą bez pierwszego wyrazu.
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Rysunek 5.4: Oszacowanie wartości I(s) opisane wzo-
rami (5.45) i (5.46). Kształt funkcji wynika z następu-
jących faktów: ψ̃(0) = 1; z definicji ψ̃(x) jest malejące;
ρ > n ⇒ limx→0+ x−(ρ−n) = +∞; x−(ρ−n) jest malejące dla

x > 0.

Wartość szukanej sumy I(s) jest równa polom zakreślonych prostokątów z
rys. 5.4 (niebieskich oraz czerwonych). Te pola można oszacować całkami.
Zauważmy że pole prostokątów zakreślonych na niebiesko jest mniejsze niż
całka od s funkcji przedstawionej czarną linią na rys. 5.4, natomiast pole
prostokątów zakreślonych na czerwono jest większe niż analogiczna całka
z dolną granicą równą 2s. Oznacza to:

I1(s) < I(s) < I2(s), I1(s) =
∫ ∞

2s
ψ̃(x)x−(ρ−n)dx, I2(s) =

∫ ∞

s
ψ̃(x)x−(ρ−n)dx.

(5.45)
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Przyjrzyjmy się zachowaniu I2(s) dla małych s. Możemy podzielić całkę na
dwie części:

I2 =
∫ a

s
ψ̃(x)x−(ρ−n)dx︸ ︷︷ ︸

I∗2

+
∫ ∞

a
ψ̃(x)x−(ρ−n)dx︸ ︷︷ ︸

const

, s < a ≪ 1. (5.46)

Zgodnie z założeniami przedstawionymi we wstępie rozdziału 4, rozwa-
żamy jedynie rozkłady czasów posiadające wszystkie momenty, to znaczy
takie, dla których możemy zapisać:

ψ̃(x) = 1 − ⟨∆t⟩ x +
1
2
⟨∆t2⟩ x2 − 1

6
⟨∆t3⟩ x3 + · · · (5.47)

Stąd wiemy, że I∗2 będzie postaci:

I∗2 = const − s−ρ+n+1

−ρ + n + 1
+ ⟨∆t⟩ s−ρ+n+2

−ρ + n + 2
− ⟨∆t2⟩

2
s−ρ+n+3

−ρ + n + 3
+

+ · · · − (−1)k ⟨∆tk⟩
k!

s−ρ+n+k

−ρ + n + k
+ · · · .

(5.48)

Rozpatrując I1 dostaniemy rozwinięcie z takimi samymi potęgami i zależ-
nościami od momentów rozkładu ψ jak w przypadku I2; to samo dotyczy
pierwszego wyrazu nieuwzględnionego w sumie. Jednak znaki dla obu
przypadków nie są konsystentne, co ostatecznie daje nam zachowanie I dla
małych s postaci:

I = const0 + const1 · s−ρ+n+1 + const2 · s−ρ+n+2 + const3 · s−ρ+n+3 + · · · .
(5.49)

Wstawiając powyższy wynik do jn(s) otrzymamy jego rozwinięcie dla ma-
łych s:

jn(s) = Cnsρ−n−1 + C0
n + C1

ns + C2
ns2 + C3

ns3 + · · · . (5.50)

Znane są też zależności powyższych współczynników względem rozkładu
czasów. Współczynnik Cn jest dodatni i zależy od całego rozkładu czasów:
0 < Cn ∼ ψ(·). Natomiast współczynniki Ck

n nie zależą od całego rozkładu
czasów, a jedynie od jego konkretnych momentów: Ck

n ∼ ⟨∆tk⟩. W szcze-
gólności oznacza to, że zerowy wyraz C0

n nie zależy od rozkładu czasów:
C0

n ≁ ψ(·). Samo rozwinięcie jn(s) – oprócz standardowego analitycznego
rozwinięcia z całkowitymi dodatnimi potęgami – posiada również jeden wy-
raz potęgowy. W przypadkach, gdy s występuje jedynie w dodatnich potę-
gach (ρ ≥ n + 1), możemy łatwo z definicji wyznaczyć wyraz stały:

C0
n = jn(0) =

1
ζ(ρ)

∞

∑
ν=1

ν−(ρ−n) =
ζ(ρ − n)

ζ(ρ)
≥ 1. (5.51)

W pozostałych przypadkach jn(0) = ∞, przez co nie możemy wyznaczyć
C0

n w taki sposób. Zauważmy za to, że ze sposobu rozwinięcia I2 wynika
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zależność:

Ck
n ∼ −

(∫
(−1)k ⟨∆tk⟩

k!
x−ρ+n+kdx

)
(s). (5.52)

Daje nam to możliwość wyznaczania wartości ilorazów postaci Ck1
n1/Ck2

n2 , dla
n1 + k1 = n2 + k2. W szczególności:

C0
1

C1
0
=

−1
⟨∆t⟩ , (5.53)

W podobny sposób możemy podejść do rozwinięcia Jn(s):

Jn(s) =
∞

∑
ν=1

νnψ̃(sν) Ω(ν)︸ ︷︷ ︸
∑∞

k=ν+1 ω(k)

=
sρ−n−2

ζ(ρ)

∞

∑
ν=1

(sν)nψ̃(sν)s
∞

∑
k=ν+1

(sk)−ρs. (5.54)

Podobnie jak poprzednio, możemy tę wielkość oszacować całkami:

Jn(s) =
sρ−n−2

ζ(ρ)

∫ ∞

s
xnψ̃(x)dx

∫ ∞

x
y−ρdy =

sρ−n−2

ζ(ρ)

∫ ∞

s
x−(ρ−n−1)ψ̃(x)dx =

= Dnsρ−n−2 + D0
n + D1

ns + D2
ns2 + D3

ns3 + · · ·
(5.55)

Wyraz stały możemy przy odpowiednich warunkach (ρ > n + 2) wyznaczyć
w podobny sposób jak wcześniej:

D0
0 =

ζ(ρ − 1)
ζ(ρ)

− 1 = C0
1 − C0

0 , D0
1 =

ζ(ρ − 2)− ζ(ρ − 1)
2ζ(ρ)

=
C0

2 − C0
1

2
.

(5.56)
W szczególności analogicznie zachodzi: 0 < Dn ∼ ψ(·), D0

n ≁ ψ(·),
Dk

n ∼ ⟨∆tk⟩.

5.2.4 Momenty procesu w granicy długich czasów

Aby analitycznie zbadać zachowanie dwóch pierwszych momentów procesu
w granicy długich czasów, należy do wzorów (5.43) wstawić uzyskane przy-
bliżenia z poprzedniego podrozdziału. Na podstawie przybliżeń ze wzoru
(F.1) umieszczonego w dodatku F, możemy poznać analityczne zachowanie
pierwszego momentu:

m̃1(s) ≈
⟨∆x⟩

s

(
C0

1 + D0sρ−2
) −1 + C0

C1
0
sρ−2

sC1
0

=
⟨∆x⟩

s2
−C0

1

C1
0

− ⟨∆x⟩
s4−ρ

D0 −
C0C0

1
C1

0

C1
0

,

(5.57)
uwzględniając wyrazy rosnące w czasie (sα, α > 1): analityczne i wiodący
potęgowy. Przechodząc do przestrzeni czasu oraz korzystając ze wzoru
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(5.53), otrzymujemy:

m1(t) = L−1 {m̃1(s)}

≈ ⟨∆x⟩
⟨∆t⟩ t − ⟨∆x⟩

D0 +
C0
⟨∆t⟩

C1
0Γ(4 − ρ)

t3−ρ =
⟨∆x⟩
⟨∆t⟩ t − ⟨∆x⟩ α{ψ}

Γ(4 − ρ)
t3−ρ,

(5.58)

dla ρ ∈ (2; 5), gdzie α{ψ} jest funkcjonałem rozkładu czasów wyczekiwa-
nia, co oznacza, że zależy od rozkładu ψ, jednak w szczególności nie za-
leży od czasu t. W rozwinięciu pierwszego momentu, oprócz najważniej-
szego standardowego liniowego wyrazu, widzimy także subliniowy człon
dla ρ ∈ (2; 3), przedstawiony przerywanymi liniami przy wynikach od-
powiadających symulacji na prawym wykresie rys. 5.5. Powyższa aproksy-
macja pierwszego moment procesu porównana jest z momentami wyzna-
czonymi poprzez symulacje komputerowe (opis w rozdziale 5.3) na lewym
wykresie rys. 5.5. Rozwinięcie (5.58) jest elementem kluczowych wyników
analitycznych dotyczących zaproponowanego modelu. W podobny sposób
przeanalizowany będzie drugi moment, wariancja oraz autokorelacja pro-
cesu.
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Rysunek 5.5: Wykresy estymat charakterystyk procesu z sy-
mulacji komputerowych dla różnych wartości parametru ρ w
skali logarytmicznej. Po lewej stronie przedstawiony jest pierw-
szy moment procesu. Dla wszystkich wartości parametru ρ
rośnie on liniowo w czasie. Po prawej stronie przedstawiony
jest pierwszy moment z odjętym kanonicznym członem ⟨∆x⟩

⟨∆t⟩ t.
Zgodnie ze wzorem (5.58), widzimy rosnące potęgowe człony
dla parametru ρ < 3. Przerywane linie obrazują funkcje potę-

gowe o wykładniku 3 − ρ.

Obliczenia dla drugiego momentu również umieszczone są w dodatku F.
Bazując na równaniu F.6 i przechodząc do przestrzeni t w granicy dużych
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czasów, drugi moment możemy przybliżyć jako:

m2(t) ≈

≈⟨∆x2⟩
⟨∆t⟩ t − ⟨∆x⟩2 1

C1
0 ⟨∆t⟩2

[
4C2

0 + 3C1
0 ⟨∆t⟩+ 2C1

1 ⟨∆t⟩+ 2D1
0 ⟨∆t⟩+ C0

2 ⟨∆t⟩2
]

t

+
⟨∆x⟩2

⟨∆t⟩2 t2 − ⟨∆x⟩2 2
Γ(5 − ρ)C1

0 ⟨∆t⟩

(
D0 + C1 − D1 + 2

C0

⟨∆t⟩

)
t4−ρ, ρ ∈ (2; 5).

(5.59)

Można to zapisać łatwiej używając funkcjonałów rozkładu czasów wyczeki-
wania β{ψ} oraz γ{ψ}:

m2(t) ≈ ⟨∆x⟩2
(

t
⟨∆t⟩

)2

+σ2
∆x

t
⟨∆t⟩ + ⟨∆x⟩2 β{ψ} t

⟨∆t⟩ + ⟨∆x⟩2 γ{ψ}
Γ(5 − ρ)

t4−ρ

dla ρ ∈ (2; 5). (5.60)

Drugi moment procesu (analityczne przybliżenie oraz symulacje kompute-
rowe) przedstawiony jest na lewym wykresie rys. 5.6. We wzorze (5.60) po-

nownie pojawia się standardowa część drugiego momentu ⟨∆x⟩2
(

t
⟨∆t⟩

)2
+

σ2
∆x

t
⟨∆t⟩ . Dokładne jego zachowanie najlepiej będzie zbadać przechodząc do

wariancji procesu.

5.2.5 Wariancja

Wariancja procesu w dziedzinie czasu zadana jest jako:

σ2(t) = m2(t)− m2
1(t). (5.61)

Na podstawie wniosków z poprzednich podrozdziałów mogę zapisać przy-
bliżenie zawierające wyrazy analityczne oraz wiodący wyraz potęgowy:

σ2(t) ≈
(

σ2
∆x + ⟨∆x⟩2 β{ψ}

) t
⟨∆t⟩ + ⟨∆x⟩2 γ{ψ}

Γ(5 − ρ)
t4−ρ, ρ ∈ (2; 5). (5.62)

Dla ρ ∈ (2; 3) najważniejszy człon wyrażenia (5.62) to drugi człon potęgowy.
W procesie obserwujemy wtedy superdyfuzję, w granicznym przypadku do-
chodzącą do dyfuzji balistycznej. Dla ρ > 3 występuje dyfuzja normalna. Jest
to niezwykle ciekawy wynik, pokazujący, jak znacząco mogą zmieniać się
podstawowe własności procesu (takie jak rodzaj dyfuzji), jedynie w efekcie
uwzględnienia odpowiednio silnych zależności pomiędzy czasami międzyz-
darzeniowymi. Ten wynik, pokazujący możliwości opisu dwóch światów
przez autorski model, zarówno dyfuzji normalnej, jak i superdyfuzji, jest
kolejnym istotnym wynikiem analitycznym mojej rozprawy doktorskiej.
Wariancja procesu wyznaczona z symulacji komputerowych wraz z granicz-
nymi przypadkami (dyfuzja normalna i balistyczna) przedstawiona jest na
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prawym wykresie rys. 5.6.
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Rysunek 5.6: Wykresy estymat charakterystyk procesu z symu-
lacji komputerowych dla różnych wartości parametru ρ w skali
logarytmicznej. Po lewej stronie przedstawiony jest drugi mo-
ment procesu. Dla wszystkich wartości parametru ρ rośnie on
kwadratowo w czasie. Po prawej stronie przedstawiona jest
wariancja procesu. Zgodnie ze wzorem (5.62) dla parametru
ρ < 3 najważniejszym członem jest wyraz potęgowy t4−ρ, a
funkcja rośnie szybciej niż liniowo. Natomiast dla ρ > 3 domi-
nującym członem wariancji jest człon liniowy. Przerywane linie

obrazują funkcje potęgowe o skrajnych wykładnikach 1 i 2.

5.2.6 Autokorelacja prędkości procesu

Znając dwa pierwsze momenty stacjonarnego procesu, mogę wyznaczyć
jego autokorelację prędkości, czyli autokorelację zmian procesu COV∆x(t).
Korzystając ze wzoru (3.21) i wstawiając wartości z równań (5.58) i (5.60),
mogę otrzymać przybliżenie autokorelacji zmian dla rozważanego modelu
CTRW:

COV∆x(t) =
1
2

d2m2(t)
dt2 −

(
dm1(t)

dt

)2

⇒ COV∆x(t) ≈ ⟨∆x⟩2 κ{ψ}
Γ(3 − ρ)

t2−ρ

dla ρ ∈ (2; 4), (5.63)

gdzie κ{ψ} =
(

γ{ψ}
2 − 2α{ψ}

⟨ψ⟩

)
. Powyższe przybliżenie uwzględnia naj-

ważniejszy niezerujący się człon ze wzorów na pierwszy i drugi moment
procesu. W tym miejscu warto też dodać, że w powyższych wzorach (5.58),
(5.60), (5.62), (5.63) wyraz potęgowy istnieje również w przypadku, kiedy
ρ wykracza poza przyjęty zakres i cechuje się on taką samą zależnością
od ⟨∆x⟩ oraz tym samym wykładnikiem czasowym. Jednak zależność am-
plitudy od rozkładu czasów wyczekiwania ψ oraz parametru ρ przyjmuje
bardziej złożoną postać.

Zobaczmy niezwykle ciekawe własności powyższego wzoru. W przy-
padku rozkładu skoków o zerowej średniej ⟨∆x⟩ = 0 ten wzór się zeruje, co
jest spójne z wynikiem dla kanonicznego CTRW. Natomiast dla niezerowego
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pierwszego momentu zmian ⟨∆x⟩ ̸= 0 w granicy t → ∞, czasowa autokore-
lacja zmian zanika potęgowo z wykładnikiem ρ − 2. Zobrazowane to zostało
na rys. 5.7, gdzie ponownie porównuję przybliżony wzór analityczny z
symulacjami komputerowymi. Oznacza to, że powtarzające się czasy wy-
czekiwania wywierają najsilniejszy wpływ na błądzenia losowe z dryfem.
Powyższy wynik obserwować możemy dla nieliniowych autokorelacji
zmian w procesie z zerowym dryfem. Przykładowo dla takiego procesu
możemy rozważyć autokorelację modułów zmian. Wtedy faktycznie li-
czymy autokorelację zmian procesu zbudowanego na podstawie bazowego
procesu bez dryfu, jednak z bezwzględnymi wartościami zmian w miejsce
zmian procesu bazowego. Oczywiście powstały proces modułów zmian jest
procesem niemalejącym, którego rozkład zmian jest nieujemny i posiada
dodatni pierwszy moment. Oznacza to, że dla procesu z powtarzającymi się
czasami wyczekiwania o zerowym dryfie nie obserwujemy autokorelacji
zmian, jednak autokorelacja modułów zmian będzie zanikać potęgowo.
Jest to kolejny kluczowy analityczny wynik mojej rozprawy doktorskiej.
Dodatkowo wykładnik potęgowego zaniku czasowej autokorelacji zmian
ρ− 2 jest taki sam, jak wykładnik potęgowego zaniku krokowej autokorelacji
czasów wyczekiwania.
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Rysunek 5.7: Wykresy estymat autokorelacji prędkości procesu
z niezerowym dryfem z symulacji komputerowych dla różnych
wartości parametru ρ w skali logarytmicznej. Przerywane linie
obrazują funkcje potęgowe o odpowiadających wykładnikach

−(ρ − 2).

5.3 Symulacje komputerowe

Część z analitycznych wyników wyprowadzonych w poprzednim roz-
dziale 5.2 jest asymptotycznymi przybliżeniami w granicy dużych czasów
(t → ∞). Przeprowadziłem symulacje komputerowe procesów, aby na ich
podstawie otrzymać estymacje badanych statystyk. Dzięki temu, mogłem
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porównać jak szybko przybliżenia analityczne stają się zbieżne z wynikami
symulacyjnymi, co przedstawiłem na rysunkach 5.2, 5.3, 5.5, 5.6, 5.7.

Pierwszym krokiem do przeprowadzenia symulacji omawianego pro-
cesu było wygenerowanie dwóch szeregów: czasów wyczekiwania oraz
zmian wartości procesu. Tworząc szereg okresów międzyzdarzeniowych,
najpierw losowałem wartość ∆ti z rozkładu wykładniczego o średniej 1 s,
a następnie powtarzałem ją νi razy, gdzie νi pochodziło z rozkładu zeta
o zadanym parametrze ρ. Natomiast szereg zmian wartości w większości
przypadków powstawał w oparciu o losowanie z rozkładu normalnego o
jednostkowej średniej i wariancji. Zgodnie z definicją procesu, szereg ten
był niezależny od szeregu czasów wyczekiwania. W symulacjach czasowej
autokorelacji modułów zmian, w celu ułatwienia obliczeń numerycznych,
użyłem szeregu jedynek jako szeregu modułów zmian. Następnie z tak
wyznaczonych szeregów tworzona była właściwa trajektoria procesu CTRW.

Korelacje krokowe byłby estymowane na podstawie symulacji szeregów o
długości 228 = 268435456. Natomiast w przypadku tworzenia trajektorii
procesu, rozważałem procesy o długości 220 s = 1048576 s. Przy wyznacze-
niu każdej wielkości, symulacje były wielokrotnie powtarzane (co najmniej
100 razy), a wynik prezentowany na wykresach jest ich uśrednieniem.

5.4 Porównanie z danymi empirycznymi

Motywacja do stworzenia modelu ze skorelowanymi czasami wyczekiwa-
nia w dużym stopniu pochodziła wprost z analizy danych empirycznych, a
konkretniej danych z rynków finansowych. W zaproponowanym modelu –
zgodnie z definicją z rozdziału 5.2 oraz własnościami danych przedstawio-
nymi w rozdziale 2.3 – powinny zachodzić następujące prawidłowości:

• Wartość procesu odzwierciedla logarytm ceny instrumentu finanso-
wego. Zatem zmiany wartości procesu ∆x to logarytmiczne zmiany
cen, a czasy wyczekiwania ∆t to czasy między transakcjami.

• Rozkład logarytmicznych zmian h(∆x) posiada zerową średnią ⟨∆x⟩ =
0.

• Rozkład czasów wyczekiwania ψ(∆t) posiada wszystkie momenty.

• Rozkład liczby powtórzeń to rozkład zeta z parametrem ρ > 2.

W efekcie tak zdefiniowany model posiada następujące własności porów-
nane z danymi empirycznymi:

• czasowa autokorelacja zmian jest zerowa COV∆x(t) = 0.

• obydwie czasowa autokorelacja modułów zmian COV|∆x|(t) oraz
krokowa autokorelacja czasów wyczekiwania COV∆t(n) zanikają
potęgowo z tym samym wykładnikiem ρ − 2.
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Dla czasów większych niż kilka średnich czasów międzytransakcyjnych
pierwsza własność jest faktem stylizowanym na rynkach finansowych.
Natomiast porównanie wykładników autokorelacji z drugiej własności
przedstawione jest w poniższej tabeli 5.1. Uwzględnia ona 5 najbardziej
płynnych spółek z rozważanego przedziału czasowego. Ponadto przy-
kładowa czasowa autokorelacja modułów zmian dla spółki PKNORLEN
zobrazowana jest na rys. 5.8. Widzimy, że (z dokładnością do kilkunastu
procent) uzyskane wykładniki są zgodne z danymi empirycznymi. Pokazuje
to, że korelacje pomiędzy czasami międzytransakcyjnymi są kluczowe w
modelowaniu i zrozumieniu zarówno zjawiska klastrowania aktywności,
jak i zmienności.
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Rysunek 5.8: Wykres empirycznej czasowej autokorelacji mo-
dułów logarytmicznych zmian ceny dla PKNORLEN dla da-
nych z czasami międzytransakcyjnymi zestacjonaryzowanymi
ze względu na wewnątrzdzienną niestacjonarność. Autokore-
lacja ta jest dodatnia i zanika w sposób potęgowy z małym wy-

kładnikiem, bliskim 0.2.

5.5 Podsumowanie

W powyższym rozdziale rozpatrzyłem autorski model błądzenia losowego
w czasie ciągłym z powtarzającymi się czasami wyczekiwania. Stanowi
on ogólny model CTRW umożliwiający uwzględnienie skorelowanych
czasów międzyzdarzeniowych. Zaproponowana metodologia jest ogólna i
poprzez odpowiednie dobranie rozkładu liczby powtórzeń wartości czasów
wyczekiwania może modelować różne (krótko- i dalekozasięgowe) zależ-
ności pomiędzy okresami międzyzdarzeniowymi; w moich rozważaniach
skupiłem się na pamięciach dalekozasięgowych. Dzięki prostocie modelu
udało się go rozwiązać i analitycznie zbadać jego właściwości statystyczne
w granicy długich czasów. Dodatkowo jego parametry (między innymi
rozkład zmian h(∆x), czasów wyczekiwania ψ(∆t) czy wykładnika potę-
gowej autokorelacja czasów wyczekiwania 2 − ρ) są łatwo interpretowalne
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Spółka Krokowa ACF ∆t Czasowa ACF |∆x|
PKNORLEN −0.175 ± 0.005 −0.203 ± 0.010

KGHM −0.207 ± 0.010 −0.237 ± 0.006
PKOBP −0.263 ± 0.011 −0.225 ± 0.006

PZU −0.265 ± 0.017 −0.238 ± 0.005
PGE −0.268 ± 0.014 −0.253 ± 0.007

Tabela 5.1: Tabela z dopasowanymi wykładnikami empirycz-
nych autokorelacji zestacjonaryzowanych danych: krokowej
czasów wyczekiwania ACF∆t(n) oraz czasowej modułów loga-
rytmicznych zmian ACF|∆x|(t) dla 5 najpłynniejszych spółek z
GPW w rozważanym okresie. Użyte przedziały do estymacji
to 100.5 ≤ n ≤ 102.5 dla ACF∆t(n) oraz 101 ≤ t ≤ 103.5 dla
ACF|∆x|(t). Obydwa wykładniki dla poszczególnych spółek są
sobie bliskie. Przykładowe wykresy samych autokorelacji wraz
z dopasowanymi wykładnikami znajdują się w dodatkach (ry-

sunki B.8 oraz B.10).

i można je ustawiać niezależnie. Umożliwia to ich łatwą estymację na pod-
stawie danych empirycznych. Dzięki temu potencjalny zakres użyteczności
przedstawionego modelu jest znacznie szerszy niż przykładowa aplikacja
zaprezentowana w niniejszej rozprawie.

Ponieważ własności statystyczne modelu były inspirowane między innymi
danymi rynkowymi, można go używać jako prostego modelu dynamiki
ceny. Oczywiście jest to model, który w założeniu skupia się głównie na
jednym efekcie – zjawisku klastrowania aktywności, przejawiającym się
silnie skorelowanymi czasami międzytransakcyjnymi. Celem tego modelu
nie jest uwzględnienie wszystkich znanych faktów stylizowanych obser-
wowanych w danych transakcyjnych, takich jak gruboogonowe rozkłady
zwrotów logarytmicznych [7], multifraktalność [111], [112] czy ogólne
prawa skalowania czasów pomiędzy ekstremalnie dużymi skokami [109],
[110]. Głównym zamierzeniem było stworzenie prostego, rozwiązywal-
nego modelu, dzięki któremu będzie można lepiej poznać podstawy oraz
współzależności efektów klastrowania aktywności i zmienności. Wyniki
modelu pokazały, że faktycznie rola czasów międzytransakcyjnych może
być kluczowa w zrozumieniu powstawania efektu klastrowania zmienno-
ści. Model tłumaczy wykładniki zaniku zarówno autokorelacji czasów
wyczekiwania, jak i modułów zmian, uwzględniając jedynie zależności
pomiędzy czasami międzytransakcyjnymi, nie modelując w ogóle za-
leżności pomiędzy zmianami ceny czy modułami zmian ceny. Pokazuje
to, że na podstawowym poziomie pojedynczych transakcji, to zależności
pomiędzy okresami między transakcjami są istotniejsze niż zależności
pomiędzy samymi wartościami zmian ceny czy ich modułami. Co więcej,
aby zweryfikować uniwersalność wyciągniętych wniosków, symulacyjnie
sprawdziłem inne metody generowania skorelowanych szeregów czasów
wyczekiwania, w tym metodę filtrowania w przestrzeni Fouriera (przykła-
dowo zastosowaną w [113]). Okazało się, że nie miało to wpływu na główne
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wnioski z analizy: wykładniki autokorelacji krokowej szeregu czasów
wyczekiwania i autokorelacji czasowej modułów zmian również były takie
same. Ta weryfikacja pokazuje, że wnioski wyciągane z modelu są ogólne,
niezależne od szczególnego źródła wprowadzania zależności w szeregu
czasów wyczekiwania.

Obecnie najbardziej popularnym modelem dotyczącym klastrowania
zmienności jest model GARCH (ang. Generalized AutoRegressive Conditional
Heteroskedasticity), który operuje na szeregu czasowym i skupia się na
uwzględnieniu zależności pomiędzy wariancją kolejnych skoków. Jednak
niezwykle ciekawy wynik otrzymany dla modelu rozważanego w tej rozpra-
wie pokazuje, że istnieje potrzeba rozwijania alternatywnych metodologii do
standardowych podejść. Rzutowanie procesu istniejącego w czasie ciągłym
na szereg czasowy może być nieodpowiednią metodą, gdyż to właśnie
zależności w przestrzeni czasów mogą pozwolić na prawdziwe zrozumienie
zjawiska, a przez to umożliwić w przyszłości powstanie dokładniejszych
i bardziej precyzyjnych modeli klastrowania zarówno aktywności, jak i
zmienności.
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Rozdział 6

Multifraktalna analiza aktywności

Istota procesów opisujących aktywności układów złożonych jest przedmio-
tem intensywnych badań. Przykładami rozważanych układów mogą być
wieloatomowe układy fizyczne, złożone układy biologiczne (w tym homo
sapiens), czy też te nadzwyczaj istotne dla społeczności ludzkich (takie jak
rynki finansowe czy sieci infrastrukturalne). Nieliniowe oddziaływania
pomiędzy elementami tworzącymi układ (np. typu sprzężeń zwrotnych),
obecność w układzie długookresowej pamięci oraz niestacjonarności, są
źródłem złożonej struktury aktywności układów. W niniejszej rozprawie
skupiłem się na mechanizmach mogących stanowić klucz do głębszego zro-
zumienia zasad funkcjonowania wielu układów złożonych. Prominentnym
przykładem może być, opisana w rozdziale 5.5, zasadnicza rola zależności
pomiędzy czasami międzytransakcyjnymi w powstawaniu zjawiska klastro-
wania zmienności na giełdzie.

Skomplikowana aktywność układu może przejawiać się w wielu cha-
rakterystykach układu, takich jak niewykładniczy rozkład czasów mię-
dzytransakcyjnych, potęgowe korelacje w wielu skalach czasowych (czyli
niezmienniczość ze względu na skalowanie) oraz korelacje wyższych rzę-
dów a w tym korelacje nieliniowe. Analiza aktywności układu musi być w
stanie uwzględnić powyższe konsekwencje. Nowoczesną, zaawansowaną
metodą spełniającą ten warunek jest analiza multifraktalna, zwana też
wielofraktalną. W niniejszym rozdziale omawiam autorską metodę analizy
multifraktalnej [16]. Metoda ta polega na zdefiniowaniu, w różnych skalach
czasowych, lokalnych średnich czasów międzytransakcyjnych (co stanowi
analogię do podejścia typu coarse graining). Oznacza to zasadniczą różnicę
w stosunku do standardowego podejścia. W wyniku przeprowadzenia
procedury skalowania podstawowych charakterystyk czasów między-
transakcyjnych, otrzymałem niemonotoniczne zachowanie uogólnionego
wykładnika Hursta h(q) oraz Höldera α(q) w funkcji rzędu fluktuacji
q. Dzięki zastosowaniu transformaty Legendre-Fenchela (subtelniejszej
od powszechnie używanej w tym kontekście transformaty Legendre’a),
otrzymałem wielogałęziowe widmo (spektrum) f (α) stanowiące zasadniczą
charakterystykę multifraktalności.
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6.1 Analiza multifraktalna

Analiza multifraktalna jest metodą analizy układów złożonych i nieli-
niowych systemów dynamicznych [111], [114], [115], która w ostatniej
dekadzie wyraźnie zyskała na popularności. Multifraktale to obiekty, które
skalują się analogicznie do fraktali, jednak skalowanie ich charakterystyk
może być różne dla różnych części multifraktali. W tym sensie analiza
multifraktalna stanowi rozszerzenie kanonicznej analizy fraktalnej. Obecnie
udokumentowane są dwa źródła pochodzenia multifraktalności: gruboogo-
nowe rozkłady i/lub dalekozasięgowe zależności [111], które prowadzą
do hierarchicznej organizacji w wielu skalach. Dużym wyzwaniem jest
zidentyfikowanie prawdziwej multifraktalności. Szumy, niektóre korelacje
krótkookresowe, a także zbyt mała długość szeregu mogą prowadzić do
multifraktalności pozornej [116], [117].

Jednak pomimo trudności technicznych, analiza multifraktalna znaj-
duje coraz szersze zastosowania. Na przykład, w medycynie [118] a
zwłaszcza w neuronauce [119] i elektrografii [120]–[122]. Używana jest
do opisu aktywności sejsmicznej (zwłaszcza w wulkanologii) [123], [124],
zjawiskach turbulencji w atmosferze [125], a nawet rozrostu miast w urba-
nistyce [126]. Powszechnie stosowana jest w analizie rynków finansowych
[112], [127]–[130], przede wszystkim w analizie procesu ceny, a nie samej
aktywności. Prace rozważające multifraktalność aktywności, koncentrowały
się bezpośrednio na szeregach czasów międzytransakcyjnych [106], [131],
[132]. Rozwinięta przez mnie metoda opiera się na innej, niż dotychczas
stosowana, mierze aktywności, a mianowicie na lokalnych średnich cza-
sach międzytransakcyjnych, przy czym aktywność jest do nich odwrotnie
proporcjonalna.

Dotychczasowe metody analizy multifraktalnej można podzielić na
dwie główne kategorie: a) opierające się na analizie odchyleń od trendu
(podejście fluktuacyjne) oraz b) transformacji falkowej maksimów modułów
(ang. wavelet transform modulus maxima) (podejście transformacyjne). Jednak
pokazano, że metoda (b) jest często mniej stabilna, dlatego nie jest prefe-
rowana do analizy danych których cechy multifraktalne nie są wcześniej
znane [114]. Przy stosowaniu metody wymienionej w punkcie (a), można
uzyskać wykorzystywany w tej metodzie trend przez dopasowanie krzywej
wielomianowej do danych w oparciu o technikę DFA (ang. detrended fluc-
tuations analysis) bądź posłużyć się średnią kroczącą (ang. detrended moving
average). Jednak w przypadku danych posiadających niestacjonarności, w
tym wewnątrzdziennych niestacjonarności, które występują w przypadku
używanych przeze mnie danych (zobacz rys. 2.9), znacznie lepiej jest
posłużyć się techniką DFA.
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6.2 Analiza multifraktalna średnich czasów mię-
dzyzdarzeniowych

W tym rozdziale przedstawiam wyniki autorskiej analizy multifraktalnej
średnich czasów międzytransakcyjnych. Metoda oparta jest na kanonicz-
nej analizie multifraktalnej zdetrandowanych fluktuacji (ang. multifractal
detrended fluctuations analysis, MFDFA), jednak posiada dwie istotne mo-
dyfikacje. Po pierwsze w niestandardowy sposób definiuję wielkość, na
której wprost przeprowadzona jest analiza multifraktalna. Zamiast używać
szeregu czasów międzytransakcyjnych, wyznaczam lokalne średnie czasy
międzytransakcyjne, co definiuję poniżej w paragrafie 6.2.1. Po drugie,
otrzymawszy niemonotoniczny wykładnik Höldera, używam transfor-
macji Legendre-Fenchela, zamiast zwykłej transformaty Legendre’a, co
pozwala na uzyskanie wielogałęziowego spektrum (widma) singularności
(osobliwości). Opisałem to w paragrafie 6.2.4.

6.2.1 Wewnątrzdzienne fluktuacje średnich czasów między-
transakcyjnych

Dane są w naturalny sposób podzielone na Nd dni handlowych, każdy o
długości T, tutaj jest to Nd = 1741 oraz T = 7 h 50 min = 28 200 s. Ponieważ
systematyczna składowa aktywności jest powiązana przede wszystkim z
wewnątrzdzienną niestacjonarnością (przedstawioną w postaci wyrazistego
"uśmiechu" zmienności na rys. 2.9), dlatego nie łączę dni w jeden długi
szereg czasowy. Dodatkowo, ogólna liczba transakcji zmienia się znacząco
w zależności od dnia (patrz rys. 2.11). Zamiast tego, każdy dzień traktuję
osobno, dzięki czemu otrzymuję zespół statystyczny złożony z Nd dni
(replik statystycznych) umożliwiający uśrednianie po tym zespole. Połą-
czenie takiego podejścia z elementami metody MFDFA, pozwolą pozbyć
się niestacjonarności zarówno wewnątrzdziennych, jak i tych w dłuższym
okresie.

Następnie każdy dzień handlowy dzielę na s rozłącznych okienek czasu o
jednakowej długości ∆, przy czym zachodzi T = s∆. Zatem w przedstawio-
nym podejściu s definiuje skalę. Dla każdego takiego okienka, i′ = 1, . . . , s,
definiuję lokalny średni czas międzytransakcyjny, ∆tν

i′ , jako iloraz długości
okienka ∆ przez liczbę ni′ transakcji zaobserwowanych w okienku (plus 1,
co pozwala uniknąć dzielenia przez 0 w przypadku, gdy n = 0):

∆tν
i′ =

∆
ni′ + 1

(6.1)

(takie podejście jest uzasadnione wtedy, gdy n ≫ 1, co najczęściej ma miej-
sce dla spółek o dużej płynności). Zatem, dla każdego dnia ν = 1, . . . , Nd,
otrzymuję szereg o długości s, składający się z lokalnych średnich czasów
międzytransakcyjnych ∆tν

i′ . Przykładowy pojedynczy szereg przedstawiony
jest na wykresie (a) rys. 6.1. Odwrotności tak zdefiniowanych średnich
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czasów przyjmuję jako miarę aktywności na giełdzie. Czasy te są punktem
wejścia analizy multifraktalnej przedstawionej w niniejszej rozprawie.

W kolejnym kroku, dla każdego dnia ν oraz zadanej skali s definiuję profil
Uν jako sumę kroczącą lokalnych średnich czasów międzytransakcyjnych:

Uν(i) =
i

∑
i′=1

∆tν
i′ , 1 ≤ i ≤ s. (6.2)

Zatem profil ma kształt dodatniej monotonicznie rosnącej krzywej, zdefinio-
wanej dla skali s. Aby usunąć główną niestacjonarność, czyli zdetrendować
profil (i móc dalej analizować jedynie odchylenia od trendu), należy użyć
wielomianu co najmniej trzeciego stopnia. Wynika to z konieczności od-
tworzenia punktu przegięcia empirycznej niestacjonarności przedstawionej
na wykresie (b) na rys. 6.1 oraz omówionej wcześniej w paragrafie 2.3.2
(tzw. ’efektu lunchu’), jak również ze skumulowanego charakteru tej wiel-
kości. Dzięki temu usuwam z danych niestacjonarność wewnątrzdzienną.
Ponadto, ponieważ dla każdego dnia dobieram wielomian niezależnie, to
detrendowanie ma tutaj charakter indywidualny. Stąd, usuwane są także
inne niestacjonarności, nawet długoterminowe (wielodniowe), gdyż w takiej
procedurze używam zindywidualizowanego, najlepszego dla każdego dnia
dopasowania.

Dla każdego dnia definiuję wielomian detrendujący stopnia M:

yν(i) =
M

∑
m=0

Am
ν iM−m, M ≥ 0, 1 ≤ i ≤ s, 1 ≤ ν ≤ Nd. (6.3)

W poniższych rozważaniach wystarczy dobrać stopień wielomianu M = 3
(jednakowy dla każdego dnia). Przykładowy profil dla pojedynczego dnia
oraz dopasowany wielomian detrendujący pokazałem na wykresie (b) rys.
6.1. Natomiast wartości bezwzględne odchyleń profilu empirycznego od
tego wielomianu pokazałem na wykresie (c). Widać na nim, że poprawnie
usuwamy wewnątrzdzienną strukturę aktywności, zostawiając dobrze wi-
doczne grupy dużych odchyleń. Dzięki temu wybrana procedura pozwala
na analizę klastrowania się fluktuacji (w tym przypadku odpowiadających
zmienności aktywności).

Zdetrendowaną funkcję fluktuacyjną drugiego stopnia definiuję dla każdego
dnia ν i zadanej skali s, jako średnie odchylenie kwadratowe profilu od
dopasowanego wielomianu:

F2(ν, s) =
1
s

s

∑
i=1

[Uν(i)− yν(i)]2. (6.4)
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Rysunek 6.1: Wykresy wewnątrzdziennych charakterystyk sze-
regów czasowych dla przykładowo wybranego dnia 6-go maja
2019 r (ν = 1505) dla ustalonej wielkości okna czasowego ∆ =
5 min, odpowiadającego skali s = 96, prezentujące efekt kla-
strowania aktywności. (a) Wykres podstawowej wielkości wy-
znaczonej z empirycznych danych transakcyjnych, czyli śred-
nie czasy międzytransakcyjne ∆tν

i , i = 1, . . . , s. Widać na nim
efekt klastrowania aktywności – zarówno długie średnie czasy
międzytransakcyjne odpowiadające spokojnym okresom (o ni-
skiej aktywności), jak i krótkie odpowiadające okresom o du-
żej aktywności skupiające się w gronach. Ponadto, widać we-
wnątrzdzienną niestacjonarność – okresy najmniej aktywne ob-
serwuje się w środku dnia, a okna z największą liczbą transak-
cji występują na początku i końcu sesji. (b) Empiryczny, mo-
notonicznie rosnący wykres (dodatniego) profilu Uν(i) (poma-
rańczowe kropki) posiadający punkt przegięcia wraz z dopa-
sowanym trendem yν(i), czyli wielomianem trzeciego stopnia
(czarna ciągła linia). (c) Wykres bezwzględnych odchyleń od
trendu |Uν(i) − yν(i)|, których uśredniony kwadrat definiuje
zdetrendowaną funkcję fluktuacyjną drugiego stopnia. Dobrze

widoczny jest efekt klastrowania fluktuacji.

Tego rodzaju dwuczynnikowa funkcja (określona indywidualnie dla każ-
dego dnia) ilustruje rozmiary fluktuacji średnich czasów międzytransakcyj-
nych w stosunku do znormalizowanego trendu. Warto zaznaczyć, że niniej-
sza analiza różni się od standardowych wariantów metody MFDFA używa-
nych dotychczas [112], rozpatrujących wielodniowy szereg danych jako je-
den szereg. W moim podejściu nie zajmuję się bezpośrednio samymi czasami
międzytransakcyjnymi, ale ich lokalnymi średnimi. Ponadto, szeregi danych
reprezentujących pojedyncze dni handlowe były rozpatrywane osobno (po-
nieważ łączenie danych nie jest procedurą określoną precyzyjnie). Zatem
dla ustalonego ν, funkcja F2(ν, s) jest funkcją od skali s. Kolejne charakte-
rystyki danych będą definiowane za pomocą zbioru zdetrendowanych funk-
cji fluktuacyjnych w liczbie Nd. Należy podkreślić, że w takim przypadku
skalowanie nie wykracza poza pojedynczy dzień handlowy, czyli badane są
zależności wewnątrzdzienne. Mimo tego, że operuję krótszymi szeregami,
możliwe jest zaobserwowanie prawa skalowania funkcji fluktuacyjnej do-
wolnego rzędu q (gdyż wprowadzam dodatkowe średniowanie po zespole
statystycznym dni handlowych), które szerzej omawiam poniżej.
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6.2.2 Uogólniona suma statystyczna

Uogólniona suma statystyczna definiowana jest następująco:

Zq(s) =
Nd

∑
ν=1

[p(ν, s)]q, (6.5)

gdzie dla zadanej skali s funkcja p(ν, s) jest prawdopodobieństwem wystą-
pienia konkretnej wielkości fluktuacji (a dokładnie pierwiastka średniego
kwadratowego odchylenia od trendu) dla rozważanego dnia ν. Przy zastoso-
waniu funkcji fluktuacyjnej drugiego stopnia można zdefiniować tą wielkość
w postaci:

p(ν, s) =
[F2(ν, s)]

1
2

Norm(s)
, Norm(s) =

Nd

∑
ν=1

[F2(ν, s)]
1
2 . (6.6)

Na podstawie warunku normalizacji otrzymujemy średnią wartość tego
prawdopodobieństwa:

⟨p(s)⟩ = 1
Nd

Nd

∑
ν=1

p(ν, s) =
1

Nd
, (6.7)

a także sumę statystyczną dla q = 0:

Zq=0(s) = Nd. (6.8)

Jest to konsekwencja stworzenia zespołu statystycznego z szeregów czaso-
wych podzielonych na dni handlowe.

Następnie mogę sformułować kluczową hipotezę skalowania fluktuacji:

Nd

∑
ν=1

[F2(ν, s)]
q
2 ≈ Nd Aqsqh(q). (6.9)

Podobnie jak w kanonicznym podejściu, zakładam (weryfikowaną poniżej)
potęgową zależność od skali s lewej strony wyrażenia (6.9), z wykładnikiem
równym qh(q), gdzie h(q) to uogólniony wykładnik Hursta. Podstawa
potęgi to jedyne miejsce zależne od skali s, tzn. współczynnik Aq oraz
uogólniony wykładnik Hursta h(q) nie zależą od s. Co więcej, podstawiając
q = 0 otrzymuję, że Aq=0 ≈ 1.

Kluczowym elementem analizy multifraktalnej jest sformułowanie hi-
potezy skalowania. Wyznaczanie kolejnych wielkości ma miejsce na jej
bazie. W związku z tym, ważne jest zweryfikowanie tego twierdzenia w
oparciu o dane empiryczne. Szczegółowy opis tego procesu zawarty jest w
rozdziale 6.2.3. Trzeba jednak zaznaczyć, że hipoteza skalowania użyta w
niniejszej rozprawie różni się od jej standardowej formy opartej na pełnej
uogólnionej sumie statystycznej. Zaproponowane przeze mnie podejście
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opiera się na wykorzystaniu parcjalnej (częściowej) sumy statystycznej
pozwalające ominąć trudności, jakie generuje użycie pełnej uogólnionej
sumy statystycznej. Szczegóły tego podejścia są wyjaśnione w dodatku G.

6.2.3 Hipoteza skalowania

W tym podrozdziale przeprowadzam analizę multifraktalną na konkretnym
przykładzie danych empirycznych. Wydarzeniami są pojedyncze transakcje
na spółce PKNORLEN z okresu 15-04-2013 do 15-04-2020, tworzące zespół
Nd = 1741 dni handlowych. (Dokładniejszy opis używanych danych em-
pirycznych zamieściłem w dodatku A.) W tym celu wprowadzam (ogólną)
funkcję fluktuacyjną:

Fq(s) =

{
N−1

d

Nd

∑
ν=1

[F2(ν, s)]
q
2

} 1
q

, q ̸= 0, (6.10)

pozwalającą wyrazić hipotezę skalowania (6.9) w postaci:

Fq(s) ≈
[

Aqsqh(q)
] 1

q . (6.11)

Definicję (6.10) należy uzupełnić o przypadek q = 0, dla którego funkcję
fluktuacyjną można wyznaczyć wprost przechodząc w (6.10) z q → 0:

F0(s) = exp

[
1

2Nd

Nd

∑
ν=1

log
(

F2(ν, s)
)]

. (6.12)

W dalszym ciągu warto zlogarytmować stronami równanie (6.10) ze
względu na jego potęgowy charakter:

logFq(s) ≈ h(q) log s + B(q), B(q) = q−1 log Aq. (6.13)

W następnym kroku mogę przystąpić do bezpośredniej weryfikacji hipotezy
skalowania. W rzeczywistości może ona być spełniona tylko w ograniczo-
nym przedziale skal. Kluczowym krokiem jest poprawne określenie tego
przedziału. Na podstawie konkretnej realizacji Fq(s), przedstawionej na
rysunku 6.2 dla kilku reprezentatywnych wartości q, wyznaczam przedział
skal, w którym zaobserwowano zgodność z hipotezą skalowania. Dla ma-
łych skal, np. s = 10, co odpowiada oknu o długości ∆ = 2820 sek = 47 min,
mam do czynienia ze zbyt małą liczbą okienek. Procedura detrendowa-
nia oznacza dopasowanie wielomianu trzeciego stopnia do małej liczby
punktów – w tym wypadku 10 – co powodować może zbyt dokładne dopa-
sowanie i eliminację zdetrendowanych fluktuacji. Przeciwny przypadek to
zbyt duża skala, kiedy to okienka są zbyt krótkie, co powoduje powstanie
niereprezentatywnego szeregu lokalnych średnich czasów międzytran-
sakcyjnych ∆tν

i . Przykładowo, dla skali s = 940 długość okienka wynosi
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Rysunek 6.2: Wykres empirycznej funkcji Fq(s) (kolorowe
punkty) w skali log-log dla wybranych reprezentatywnych
wartości q z przedziału [−10; 10]. Przedział ten jest na tyle sze-
roki, że pozwala na wyodrębnienie obu asymptot (dla ujem-
nych i dodatnich wartości q) wykładnika Rényi’ego τ(q) zde-
finiowanego równaniem 6.14, którego przebieg przedstawi-
łem na rys. 6.6 poniżej. Ciągłe linie na niniejszym wykre-
sie to proste dopasowane regresją liniową oddzielnie dla każ-
dego q do punktów empirycznych w zadanym zakresie skal.
Pionowe przerywane linie zaznaczają wybrany zakres skali
s ∈ [15; 150] odpowiadający zakresowi okien czasowych ∆ ∈
[188 sek; 1880 sek]. Jest to odpowiednio szeroki przedział z naj-
mniejszymi błędami względnymi i bezwzględnymi dopaso-
wań. Widać, co jest nadzwyczaj ważne, że nachylenia prostych
zależą w sposób niemonotoniczny od q. Wspomniane błędy do-
pasowań są tutaj na tyle małe, że pozwalają na analizę tej sub-

telnej, ale wyraźnej niemonotoniczności.

∆ = 30 sek. Jest ona porównywalna ze średnim czasem międzytransakcyj-
nym dla tej spółki (wynoszącym około 20 sek). Oznacza to, że zdecydowana
większość okienek nie będzie zawierała żadnej transakcji albo jedną lub
co najwyżej dwie (wyższa liczba transakcji jest mało prawdopodobna). W
konsekwencji, otrzymany szereg lokalnych średnich czasów międzytran-
sakcyjnych będzie się składał przede wszystkim z niemal takich samych
wartości, uniemożliwiając analizę zdetrendowanych fluktuacji.

Na rysunku 6.2 widać, że dla dużych wartości s i q nie występuje skalowa-
nie, jednak w przedziale środkowym (pomiędzy pionowymi przerywanymi
liniami prostymi) wartości funkcji fluktuacyjnej rosną liniowo (w skali log-
log) wraz ze wzrostem s dla wszystkich wartości q. Dla ujemnych wartości q
przedział skalowania jest dłuższy, jednak mój cel to zlokalizowanie uniwer-
salnego (wspólnego dla wszystkich wartości q) zakresu s, dla którego ma
miejsce skalowanie. Zakres s powinien obejmować przynajmniej jeden rząd
wielkości danych empirycznych o wystarczająco małym rozproszeniu staty-
stycznym. Innymi słowy, wyznaczony uogólniony wykładnik Hursta h(q),
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czyli w tym przypadku współczynnik przy wyrazie liniowym (otrzymany
z regresji liniowej opartej na wzorze (6.13)), powinien mieć małą wartość
względnych błędów dopasowania. Tym poszukiwanym przedziałem jest
[15, 150], odpowiadający zakresom okien czasowych ∆ ∈ [188 sek, 1880 sek].
Istotnym jest też tutaj wybranie odpowiedniego zakresu q – w tym przy-
padku jest on szerszy niż zwykle używany i wynosi −10 ≤ q ≤ 10, co
pozwala na wyodrębnienie asymptot ukośnych wykładnika Rényi’ego τ(q)
(danego wzorem (6.14) poniżej, którego zależność od q przedstawiłem na
rysunku 6.6).

W rozważanym przedziale skali wyznaczyłem uogólniony wykładnik
Hursta h(q). Jego interesujący przebieg przedstawiłem na rysunku 6.3. Po
pierwsze warto zauważyć dużą rozpiętość wartości wykładnika Hursta,
który dla −10 ≤ q ≤ 10 przyjmuje wartości od 0.22 do 1.08. Dobrze widać
też niemonotoniczność h(q) – osiąga on maksymalną wartość dla q = −1.31.
Zieloną linią przedstawiłem wynik dla symulowanego procesu Poissona o
długości szeregu i średnim czasie międzytransakcyjnym odpowiadającym
danym empirycznym. Jego wariancja (nieprzekraczająca grubości krzywej
w kolorze zielonym) oraz zmienność (nieprzekraczająca 0.07) są niewielkie,
co pokazuje, że wpływ skończonego rozmiaru empirycznego szeregu cza-
sowego jest do zaniedbania. Rzuca się w oczy drastyczna różnica pomiędzy
przebiegami h(q) dla obu procesów zarówno co do jego rozpiętości, jak
i kształtu. Wygodną miarą tego jest różnica ∆h(q) = h(−q) − h(q) – jej
zależność od q dla obu procesów przedstawiłem na rysunku 6.4. Ważnym
aspektem tego porównania jest fakt, że proces Poissona nie jest samoskore-
lowany. Zagadnienia związane z autokorelacjami omawiam w dodatku H.

Z regresji liniowej, na podstawie której wyznaczany jest wykładnik Hursta,
otrzymuje się też niezależny od skali s składnik B(q) (patrz wzór (6.13)).
Jego zachowanie, zaprezentowane na rysunku 6.5, jest bardziej złożone niż
w przypadku procesu Poissona, co jest kolejnym sygnałem wskazującym na
złożoność struktury aktywności w analizowanych danych empirycznych.

Następną, omawianą w rozprawie wielkością jest wykładnik skalowania
Rényi’ego τ(q) zdefiniowany jako:

τ(q) = qh(q)− h(q = 1). (6.14)

Dokładne wyprowadzenie, a w szczególności wyjaśnienie obecności wyrazu
stałego h(q = 1), zamieściłem w dodatku G. W przypadku monofraktali,
dla których wykładnik Hursta nie zależy od q, τ(q) jest po prostu funkcją
liniową. Widać to dobrze dla nieskorelowanego procesu Poissona. W przy-
padku danych empirycznych, widzimy zmianę asymptotycznego nachyle-
nia dla ujemnych i dodatnich q. Dodatkowo w otoczeniu q = 0 występuje
niewielkie, ale wyraźne falowanie. To jest właśnie (mówiąc ogólnie) sygna-
turą niemonotonicznej multifraktalności. Aby zbadać dokładniej ta subtel-
ność, należy wziąć pod uwagę pochodną dτ(q)

dq , czyli wykładnik Höldera.
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Rysunek 6.3: Wykres empirycznego uogólnionego wykładnika
Hursta h(q) (niebieska krzywa) wraz z jego błędami dopaso-
wań (punkty wokół tej krzywej; pochodzą one z błędów wcze-
śniejszych dopasowań przedstawionych na rysunku 6.2). Na
tym oraz kolejnych wykresach zielone krzywe są wynikiem
symulowanego procesu Poissona – dla nieskończenie długich
danych powinna być horyzontalna. W przypadku symulacji o
długości równej długości danych empirycznych, jest ona tylko
nieznacznie wygięta. Pozwala to twierdzić, że wpływ skoń-
czonego rozmiaru szeregu czasowego, w tym szeregu empi-
rycznego, jest znikomy. Co ważniejsze, widoczna znaczna roz-
piętość uogólnionego wykładnika Hursta oznacza, że analizo-
wane dane empiryczne przejawiają silne własności multifrak-
talne. Niemonotoniczność uogólnionego wykładnika Hursta,
która popchnęła mnie do dalszych badań, była już wcześniej
opisywana w sposób inspirujący przez autorów prac [116],
[133], [134]. Zauważyli oni, że udekorowanie autokorelacji dłu-
gookresowych (np. korelacjami krótkookresowymi, addytyw-
nym szumem, czy okresowym trendem) może prowadzić do
niemonotoniczności h(q). Jednakże ta obserwacja jest niepełna
– np. wciąż nie jest znana odpowiedź na pytanie dotyczące
roli długookresowych autokorelacji wyższych rzędów (wielo-
punktowych) w wywoływaniu tego typu niemonotoniczności,
tzn. jakie ich klasy mogą do niej prowadzić. W niniejszej roz-
prawie skupiam się na badaniu konsekwencji występowania
wspomnianej niemonotoniczności, nie odpowiadając na pyta-

nie o jej źródła.
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0 2 4 6 8 10
q

0.0

0.2

0.4

0.6

0.8
h(

q)

Rysunek 6.4: Wykres empirycznej funkcji nieparzystości wy-
kładnika Hursta ∆h(q) = h(−q)− h(q) (linia niebieska) w po-

równaniu z analogiczną dla procesu Poissona (linia zielona).
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Rysunek 6.5: Wykres empirycznej funkcji tła B(q) (występującej
w równaniu (6.13)) w porównaniu z analogiczną dla procesu

Poissona.
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Rysunek 6.6: Wykres wykładnika skalowania Rényi’ego τ(q) w
zależności od q. W przypadku monofraktali (tak jak dla przy-
kładowo wybranego symulowanego procesu Poissona ozna-
czonego zieloną linią) τ(q) jest funkcją liniową. W danych
empirycznych (linia niebieska) oprócz zmiany nachylenia, w
części środkowej występuje także niewielkie, ale wyraźne za-
falowanie. Właśnie to subtelne zafalowanie jest zasadniczym

przedmiotem analizy w niniejszym rozdziale.
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6.2.4 Multifraktalność wielogałęziowa

Kluczowymi wielkościami multifraktalnymi są wykładnik Höldera α(q),
który jest lokalnym wymiarem fraktalnym oraz jego rozkład f (α). W
przypadku monofraktali wykładnik skalowania Rényi’ego jest linią prostą.
Odstępstwa od tej liniowości wygodnie jest badać, biorąc pod uwagę jego
pochodną po q, czyli wykładnik Höldera. Zmienność tej funkcji jest oznaką
multifraktalności analizowanych danych. Wykładnik α(q) oraz jego rozkład
f (α) otrzymać można poprzez transformację Legendre-Fenchela (L-F).
Pomimo, że równania definiujące te wielkości są formalnie takie same jak
dla transformacji Legendre’a, to podejście z użyciem transformacji L-F
pozwala na uzyskanie rozwiązania wielogałęziowego. Dokładniej opisałem
to w dodatku I.

Wykładnik Höldera definiowany jest jako pochodna wykładnika skalo-
wania τ(q) po q:

α(q) ≡ dτ(q)
dq

, (6.15)

a jego rozkład f (α) definiuję za pomocą transformacji L-F:

f (q) ≡ qα(q)− τ(q). (6.16)

Kluczowym wynikiem jest tutaj duża zmienność wykładnika α(q) oraz
jego niemonotoniczne zachowanie. Funkcja ta najpierw jest stała, następnie
maleje i dla q = −3.06 osiąga lokalne minimum. Następnie wzrasta i osiąga
maksimum w punkcie q = −0.83. Kolejne lokalne minimum jest osiągane
przez wykładnik α(q) w punkcie q = 4.58. W dalszych rozważaniach
empirycznych skupiam się na przedziale q ∈ [−5; 10], gdyż dla mniejszych
wartości q wykładnik Höldera nie zmienia się istotnie zmniejszając jedynie
czytelność wyników empirycznych.

Podejście kanoniczne stosujące transformację Legendre’a nie pozwala na
otrzymanie spektrum f (α) w postaci wielogałęziowej. Jednakże, dzięki
zastosowaniu transformacji L-F otwiera się możliwość zdefiniowania i
otrzymania wielogałęziowego spektrum multifraktalnego.

Każda z czterech monotonicznych części wykładnika Höldera odpowiada
innej gałęzi na wykresie spektrum przedstawionym na rysunku 6.8. Główna
gałąź spektrum multifraktalnego f (α) jest wypukła oraz styczna do prze-
rywanej cienkiej linii o nachyleniu 1 (opisałem to dokładniej w dodatku I).
Boczne gałęzie łączą się z nią w sposób gładki. Oznacza to, że pochodne obu
gałęzi w miejscu styku są sobie równe. Zatem odwzorowanie α w f (α) jest
wszędzie różniczkowalne. Formalnie, każda pojedyncza gałąź definiowana

jest jako segment spektrum, dla którego druga pochodna d2 f (α)
dα2 jest ciągła.

Punkty nieciągłości drugiej pochodnej definiują końce pojedynczych gałęzi,
pozwalając otrzymać widmo wielogałęziowe (omawiam to dokładnie w
podrozdziale 6.2.5. Na rysunku 6.9 przedstawiłem powiększenie fragmentu
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Rysunek 6.7: Wykres empirycznego wykładnika Höldera α(q)
w zależności od q. Kolorem niebieskim oznaczyłem (monoto-
nicznie rosnące) przedziały tego wykładnika. Kluczowym jest
tutaj jego zmienność oraz niemonotoniczne zachowanie. Wynik
dla (referencyjnego) symulowanego procesu Poissona przed-
stawiłem (jak zwykle) za pomocą zielonej krzywej. Punkty A,
B i C, odpowiadające lokalnym ekstremom wykładnika, ozna-
czają miejsca przemian fazowych, które omówiłem w podroz-
dziale 6.2.5 poniżej. Jak widać, struktura wykładnika Höldera
zawarta jest w przedziale nie większym niż (z dobrym przy-
bliżeniem) α ∈ [−5.0, 5.0]. Szerszy przedział q wziąłem pod
uwagę dlatego, aby możliwie precyzyjnie wyznaczyć zakresy,

w których τ(q) jest liniową funkcją q.

spektrum dla wykładników Höldera większych od 0.98.

Niestety z niespełnienia warunków styczności dla (q = 1) zadanych wzo-
rami (I.2) dla bocznych gałęzi f (α) oraz niestandardowego przesunięcia
niektórych wielkości multifraktalnych (przykładowo τ(q) – dokładny opis
w dodatkach G i I) wynika brak jednoznacznego wyznaczenia położenia
spektrum.
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Rysunek 6.8: Wykres empirycznego wielogałęziowego spek-
trum f (α) w funkcji α. Główna gałąź przedstawiona jest za po-
mocą czarnej monotonicznie rosnącej krzywej ciągłej. Przery-
wana czarna, cienka linia prosta jest styczna w punkcie (α(q =
1), f (α(q = 1)) do głównej gałęzi spektrum i jak powinna prze-
chodzi przez punkt (0, 0). Punkt C oznacza jedno z miejsc prze-
miany fazowej, opisanej w podrozdziale 6.2.5. Aby nie zaciem-
niać wykresu, pozostałe dwa punkty zwrotne A i B przedsta-
wiłem na rysunku 6.9. Warto w tym miejscu podkreślić, że gdy-
byśmy f interpretowali jako rozkład wykładnika α, to ujemna
wartość f wskazywałaby na to, że odpowiadający jej przedział
α definiuje fizycznie niedostępny obszar przestrzeni fazowej

układu.
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Rysunek 6.9: Powiększony wycinek wykresu pełnego widma
f (α) przedstawionego powyżej na rysunku 6.8. Punkty
zwrotne A i B lokalizują miejsca przemian fazowych opisane

w podrozdziale 6.2.5.
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6.2.5 Przemiany fazowe

Do pogłębionej analizy wyników uzyskanych na bazie danych empirycz-
nych, można wykorzystać kanoniczne metody termodynamiczne. Jest to
standardowe podejście do analizy własności multifraktalnych. Celem okre-
ślenia analogonów faz termodynamicznych (w dalszym ciągu nazywane
po prostu fazami) z jakimi ma się do czynienia w przypadku struktury
multifraktalnej, można użyć analogonu ciepła właściwego [135]. Zatem,
analogon ciepła właściwego układu (w dalszym ciągu nazywam go krótko
ciepłem właściwym) mogę zdefiniować następująco:

c(q) =
dα(q)

d(1/q)
= −q2 dα(q)

dq
. (6.17)

Jego wykres przedstawiłem na rys. 6.10.
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Rysunek 6.10: Wykres empirycznego ciepła właściwego c(q).
Fazy niestabilne, dla których zachodzi c(q) < 0 oznaczone są
kolorem niebieskim. Fazy stabilne (c(q) ≥ 0), w tym główna

gałąź spektrum, oznaczone są kolorem czarnym.

W układzie obserwuję istnienie dwóch obszarów stabilnych z nieujemnym
ciepłem właściwym. Pierwszy dla q ≤ −3.08. Drugi, tworzący główną ga-
łąź spektrum f (α), dla q ∈ [−0.85, 4.56]. W dwóch pozostałych przedziałach
q ciepło właściwe jest ujemne, co oznacza, że są to fazy niestabilne. Miejsca
styku faz na rysunkach 6.7, 6.8, 6.9, 6.10 i 6.11 zaznaczone są jako punkty
zwrotne A, B i C. W nich występują ciągłe przemiany fazowe (co jest spójne
z zerową wartością ciepła właściwego w tych punktach, rys. 6.10). Dalszą
analizę przemian fazowych kontynuuję z wykorzystaniem wykresu pierw-
szej i drugiej pochodnej spektrum f , przedstawionego na rysunku 6.11.

Prowadzona poniżej analiza przemian fazowych bazuje na klasyfikacji Man-
delbrota/zmodyfikowanej Ehrenfesta [136], która tutaj jest oparta na spek-
trum wykładnika Höldera f (α). Jak to przedstawiam na rysunkach 6.8 i 6.11,
zarówno f jak i jej pochodna d f /dα są funkcjami ciągłymi. Dopiero druga
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Rysunek 6.11: Wielogałęziowy wykres pierwszej (krzywa
czarno-niebieska) oraz drugiej (krzywa czerwona) pochodnych
widma (spektrum) wykładnika Höldera f (α). Pierwsza po-
chodna jest ciągła, w przeciwieństwie do drugiej. Punkty A, B
i C lokalizują przemiany fazowe – ich położenia wyznaczają
wartości α, w których występują osobliwości (singularności)

drugiej pochodnej.

pochodna d2 f /dα2 jest nieciągła, złożona z czterech osobnych gałęzi. Punkty
osobliwości drugiej pochodnej definiują granice gałęzi w tym wielogałęzio-
wym spektrum. Główna gałąź pierwszej pochodnej (zaznaczona kolorem
czarnym) rozciąga się pomiędzy punktami C i A. Odpowiadająca jej gałąź
drugiej pochodnej przyjmuje wartości ujemne i na końcach (czyli w punk-
tach C i A) jest rozbieżna do −∞. Pozostałe trzy części drugiej pochodnej od-
powiadają trzem bocznym gałęziom spektrum. Dwie (boczne) gałęzie o war-
tościach dodatnich odpowiadają fazom niestabilnym (dotyczą ich niebieskie
części pierwszej pochodnej: rozciągająca się pomiędzy punktami A i B oraz
ta zaczynająca się w punkcie C). Trzecia (boczna) gałąź drugiej pochodnej o
ujemnych wartościach jest stabilna posiadając osobliwość w punkcie B. Aby
dokładniej zbadać zachowanie pochodnej f (α) w punktach A, B i C, rozwi-
jam wykładnik Höldera używając dwóch pierwszych niezerowych wyrazów
szeregu Taylora:

α(a) ≈ α(qextr) +
1
2
(q − qextr)

2 d2α(q)
dq2

∣∣∣
q=qextr

, (6.18)

gdzie qextr to wartości parametru q odpowiadające lokalnym ekstremom
funkcji α(q) (równoważne punktom A, B i C). Przechodząc do pochodnych
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f w tych punktach otrzymuję:

d f
dα

≈ ±

√
2
∣∣∣∣α − αs

α̈s

∣∣∣∣+ qextr,

d2 f
dα2 ≈ ± 1√

2|α̈s|
1√

|α − αs|
,

αs = α(qextr),

α̈s =
d2 f
dα2

∣∣∣
q=qextr

.

(6.19)

Wzory te uzyskuje się wykorzystując fakt, że q = d f [α(q)]
dα , wynikający z rów-

nania (6.15). Powyższe równania potwierdzają na drodze analitycznej, że w
rozpatrywanych punktach zachodzą przemiany fazowe drugiego rodzaju.
Dalej korzystając z przybliżenia wykładnika Höldera (6.18), mogę zbadać za-
chowanie ciepła właściwego:

c(q) ≈ −q2(1 − qextr)α̈s, (6.20)

które w otoczeniu punktów przemian fazowych zanika liniowo do zera (co
jest oczekiwane).

6.3 Podsumowanie

W niniejszym rozdziale podjąłem tematykę analizy długookresowych
zależności i długookresowych pamięci występujących w procesach opisu-
jących aktywność układów złożonych. W szczególności formalizm analizy
multifraktalnej dostosowałem do charakterystyki układów, w których
można wyróżnić pojedyncze zdarzenia. Wtedy miarą aktywności mogą
być odwrotności czasów pomiędzy zdarzeniami. Użyłem danych transak-
cyjnych jako reprezentatywnych danych empirycznych ze względu na ich
dostępność w wystarczającej ilości. Aby upewnić się, że otrzymane wyniki
multifraktalnych własności danych empirycznych nie są multifraktalnością
pozorną (wynikającą np. ze skończonej długości szeregów czasowych),
przeprowadziłem dodatkowo analizę dla symulowanego, referencyjnego
procesu Poissona, który traktuję jako przykład procesu monofraktalnego.

Wyniki przedstawione w niniejszym rozdziale poszerzają tematykę
analizy multifraktalnej. Pierwszym, autorskim elementem przedstawionej
zmodyfikowanej multifraktalnej analizy zdetrendowanych fluktuacji, jest
zastosowanie nowej miary aktywności w postaci lokalnych średnich czasów
międzytransakcyjnych. Kolejnym autorskim, kluczowym elementem było
wykorzystanie transformaty Legendre-Fenchela, co pozwoliło mi na otrzy-
manie i analizę wielogałęziowego spektrum multifraktalnego w zależności
od (niemonotonicznego) wykładnika Höldera. Nowym wynikiem jest
również zaobserwowanie tej własności w danych empirycznych – w szeregu



6.3. Podsumowanie 99

czasów międzytransakcyjnych. Wreszcie, poprzez analizę ciepła właściwego
określiłem fazy stabilne i niestabilne układu oraz rodzaje przemian fazo-
wych pomiędzy nimi.

Wyniki przedstawione w tym rozdziale oraz w dodatkach G – J mają
na celu pokazanie, że omawiana w rozprawie, niemonotoniczna multifrak-
talność może być powszechną cechą spółek giełdowych z różnych sektorów
rynku. Przypuszczam, że wspomniane niemonotoniczności nie pochodzą
od niestacjonarności, wpływu dodatkowych szumów, autokorelacji krótko-
okresowych czy niekontrolowanych artefaktów, gdyż (aby zminimalizować
te niekorzystne wpływy) dokonuję w moim podejściu sześciostopniowej
filtracji wyników. Przez filtrację rozumiem tutaj procedurę eliminującą
zanieczyszczenie szeregu czasowego.

(i) Pierwszy etap filtrowania wynika z definicji zespołu statystycznego,
składającego się z kolejnych dni roboczych. Rozpatrując osobno dane
z różnych dni uwzględniam przede wszystkim zachowania wewnątrz-
dzienne. Mimo to, obserwuję własności multifraktalne. Sugeruje to, że
autokorelacje wielodzienne (leżące u podstaw zachowań multifraktal-
nych) mogą mieć swoje źródło w autokorelacjach wewnątrzdziennych.

(ii) Drugi filtr tłumi dodatkowe szumy addytywne czasów międzytransak-
cyjnych, dzięki podejściu gruboziarnistemu, wykorzystującemu nieza-
leżnie średnie czasów międzytranskcyjnych w każdym pojedynczym
oknie czasowym (czyli lokalne średnie).

(iii) Trzeci filtr ma charakter standardowy – dokonuje po prostu detren-
dowania szeregów składających się ze wspomnianych powyżej lokal-
nych średnich czasów międzytranskcyjnych. Wykorzystuję w tym celu
najniższy z możliwych stopień wielomianu detrendującego (w moim
przypadku był to stopień trzeci).

(iv) Czwarty filtr odcina niepotrzebne tło multiplikatywne oraz resztkowe
multiplikatywne zanieczyszczenia wspomnianego powyżej szeregu
czasowego za pomocą funkcji tła B(q) występującej w równaniu (6.13).

(v) Piąty filtr odcina niepotrzebny wpływ monofraktalny za pomocą funk-
cji Zlin

q (s) występującej w dodatku G w drugiej równości w (G.4).

(vi) Szósty filtr w postaci (referencyjnego) procesu Poissona pokazuje ist-
nienie długofalowych oscylacji w funkcji autokorelacji w dyskretnym
czasie, niemal identycznych do tych obecnych w analogicznej funkcji
autokorelacji dla danych empirycznych (rysunek 8 w publikacji [16]).
Mogę przypuszczać, że ich wpływ na proces realny jest nieistotny, po-
nieważ oscylacje nie zmieniają własności multifraktalnych procesu Po-
issona (jest on nadal monofraktalny). Muszę zaznaczyć, że nie zbada-
łem źródła tych oscylacji (np. skończona długość szeregu czasowego),
a jedynie fakt, że ich wpływ na proces jest do zaniedbania. Zatem, np.
detrendowanie wielomianami wyższych rzędów nie jest już tutaj ko-
nieczne.
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Warto jeszcze dodać, że sformułowane przeze mnie (w dodatku I) i
udowodnione twierdzenie o standaryzacji wskazuje na równoważność
zestandaryzowanego i niezestandaryzowanego widma osobliwości. Wielo-
gałęziowość tego widma może wynikać z samej struktury funkcji τ, a nie ze
wspomnianych powyżej przyczyn.

Obecnie, wciąż nie są w pełni rozpoznane wszystkie możliwe źródła
multifraktalności. Przedstawiony w rozprawie rozbudowany proces filtracji
danych określa podejście bardziej odporne na różnorakie zanieczyszczenia i
artefakty danych niż kanoniczna metoda MFDFA. Jednak nie jest to uniwer-
salny proces filtracji, zagadnienie stworzenia kompletnej filtracji w analizie
multifraktalnej wciąż pozostaje otwarte. Tym bardziej, ciężko jednoznacznie
rozpoznać przyczynę niemonotonicznej multifraktalności zaobserwowanej
w danych empirycznych, nawet pomimo wyeliminowania wspomnia-
nych powyżej potencjalnych źródeł pozornej multifraktalności. Jednak na
pierwszy plan potencjalnych źródeł niemonotonicznej multifraktalności
wysuwają się autokorelacje wyższych rzędów (czyli wielopunktowe) oraz
ich relacje z fluktuacjami wyższych rzędów, czyli odpowiedniki twierdzeń
fluktuacyjno-dysypacyjnych wyższych rzędów. Innym kierunkiem przy-
szłych badań może być poszukiwanie fizycznych modeli przejawiających
niemonotoniczną multifraktalność. Podsumowując, formalizm rozwinięty
w niniejszym rozdziale pozwolił mi wydobyć i opisać niemonotoniczną
multifraktalność, podkreślając potencjalną wagę jaką może ona odegrać w
badaniach układów złożonych.
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Rozdział 7

Zakończenie

W niniejszym rozdziale skupiam się na wynikach przedstawionych w mojej
rozprawie doktorskiej. Najpierw podsumowuję uzyskane rezultaty, a następ-
nie dokonuję ich oceny i prezentuję wynikające z nich wnioski.

7.1 Podsumowanie uzyskanych wyników

We wstępie do mojej rozprawy przedstawiłem wprowadzenie do tematu
pracy, jej główne cele i tezy oraz jej układ. Metodologiczna istota rozprawy
oparta jest na porównaniu przewidywań modeli teoretycznych zapropono-
wanych w rozprawie z danymi empirycznymi. Dlatego w rozdziale 2 omó-
wiłem dane empiryczne, z których korzystałem, czyli dane transakcyjne po-
chodzące z polskiej Giełdy Papierów Wartościowych. Na ich przykładzie
przedstawiłem fakty stylizowane, a zwłaszcza własności różnych funkcji au-
tokorelacji. Mianowicie, w danych empirycznych obserwujemy:

• długookresową autokorelację czasów międzytransakcyjnych,

• długookresową autokorelację modułów logarytmicznych zmian,

• istotną dla kilku początkowych kroków czasowych autokorelację loga-
rytmicznych zmian cen.

W kolejnym rozdziale 3 zdefiniowałem proces błądzenia losowego w
czasie ciągłym (ang. skrót CTRW) oraz omówiłem metody jego analizy. W
szczególności porównałem formalizmy przelotów i spacerów Weierstrassa,
gdzie część ważnych wyników pochodzi z publikacji [13]. Dodatkowo
przedstawiłem motywację teoretyczną dla zbudowania formalizmu CTRW
uwzględniającego zależności pomiędzy czasami wyczekiwania. Obecne
najpopularniejsze metody modelowania zależności pomiędzy czasami
międzyzdarzeniowymi w szeregach czasowych to procesy ACD (ang.
Autoregressive Conditional Duration) i Hawkesa. Jednak ich formalizmy nie są
przystosowane do bezpośredniego uwzględnienia wartości procesu i jego
właściwości takich jak wariancja procesu czy autokorelacja zmian procesu.
Z tego punktu widzenia znacznie lepszym formalizmem jest błądzenie
losowe w czasie ciągłym. Jednak w tym przypadku napotykamy trudność
związaną z koniecznością uwzględnienia skorelowanych czasów wycze-
kiwania. Uwzględnienie tego typu czasów wyczekiwania w formalizmie
CTRW było jednym ze zrealizowanych celów teoretycznych mojej rozprawy.
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Dotychczasowe wysiłki innych autorów w tym kierunku znajdowały się
dopiero na etapie początkowym [79].

W rozdziale 4 dokonałem wprowadzenia do tematu modelowania da-
nych finansowych za pomocą błądzenia losowego w czasie ciągłym. Oprócz
tego przedstawiłem kluczową motywację dla zbudowania modelu CTRW
z silnie skorelowanymi czasami wyczekiwania, bazującą na danych em-
pirycznych a pochodzącą z publikacji [14]. Jej podstawę stanowią wyniki
symulacji, które wykazały, że uwzględnienie jedynie zależności pomiędzy
czasami międzytransakcyjnymi, może być już wystarczające do odtworzenia
wartości wykładnika potęgowego zaniku funkcji autokorelacji absolutnych
zmian logarytmicznych cen.

Kolejny, 5 rozdział zawiera wyprowadzenie właściwego formalizmu
CTRW ze skorelowanymi czasami wyczekiwania. Formalizm ten jest sfor-
mułowany ogólnie, bez wprowadzenia konkretnych postaci rozkładów
przeskoków, czasów wyczekiwania, jak też pamięci tkwiącej w szeregu cza-
sów międzyzdarzeniowych. Bazując na wynikach empirycznych z rozdziału
4, skupiłem się w obliczeniach na przypadku pamięci długookresowej.

Najpierw rozpatrywałem tylko (teoretyczny) proces czasów wyczeki-
wania, dla którego siłę korelacji opisuje parametr ρ > 2, gdzie autokorelacja
krokowa szeregu czasów wyczekiwania zanika potęgowo z wykładnikiem
ρ − 2. Taki wynik otrzymałem też rozpatrując jedynie czasy pomiędzy
zdarzeniami ekstremalnymi (popularnie zwanymi "czarnymi łabędziami").
Wskazuje to na kluczową rolę czasów międzyzdarzeniowych w procesie.

Następnie przeszedłem do właściwego procesu błądzenia losowego,
który zdefiniowałem poprzez wyprowadzenie wzoru na jego (pełny czaso-
przestrzenny) propagator. Ponadto, w granicy długich czasów wyznaczyłem
podstawowe statystyki procesu, a w szczególności:

• wariancję procesu, która oprócz składnika liniowego posiada także
składnik potęgowy proporcjonalny do ⟨∆x⟩2 t4−ρ. Zatem, dla procesów
z dryfem oraz silną pamięcią między czasami międzyzdarzeniowymi,
czyli dla ⟨∆x⟩ ̸= 0 oraz 2 < ρ < 3, w procesie występuje superdyfuzja,
dochodząca do dyfuzji balistycznej (dla ρ bliskiego 2). W pozostałych
przypadkach wiodącym wyrazem jest wyraz liniowy w t.

• autokorelację zmian procesu zanikającą jak ⟨∆x⟩2 t2−ρ.

Rozpatrywany model przedstawiłem w publikacji [15].

Prezentację kluczowych wyników rozprawy kontynuowałem w rozdziale 6.
Zawiera on pogłębioną analizę aktywności układu metodą multifraktalnej
analizy zdetrendowanych fluktuacji (ang. skrót MFDFA). Następnie to
kanoniczne podejście zmodyfikowałem w dwóch miejscach w opisany
poniżej sposób.
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• Odwrotność aktywności inwestorów zmierzyłem poprzez średnie lo-
kalne czasy międzytransakcyjne – im dłuższy ten czas, tym mniejsza
aktywność. Czasy te wyznaczałem kolejno dla każdego z niepokry-
wających się okien czasowych, których rozmiar jest zależny od rozpa-
trywanej skali. Dla tak zadanej miary zaobserwowałem skalowanie się
funkcji fluktuacyjnej (rysunek 6.2).

• Dane empirycznie (tutaj odpowiednio zagregowane czasy międzytran-
sakcyjne) przejawiają wyraźne własności multifraktalne. Zbadałem
je korzystając z narzędzi takich jak uogólniony wykładnik Hur-
sta h(q), uogólniony wykładnik skalowania Rényi’ego τ(q) jak też
uogólniony wykładnik Höldera α(q). Zaobserwowałem niemonoto-
niczną zależność między innymi empirycznego wykładnika Höldera
od q. Aby wyznaczyć jego spektrum zastosowałem transformatę
Legendre-Fenchela (L-F), dzięki czemu otrzymałem wielogałęziowe
spektrum f (α). Ten nowy wynik wymagał dalszej analizy. Poprzez
wyznaczenie ciepła właściwego układu, byłem w stanie każdej ga-
łęzi spektrum przypisać fazę termicznie stabilną bądź niestabilną.
Dodatkowo określiłem przemiany pomiędzy fazami jako drugiego
rodzaju. Trzeba powiedzieć, że niemonotoniczne zachowania wykład-
ników Hursta i Höldera nie mają swojego źródła w autokorelacjach
krótkookresowych.

Metoda i metodologia analizy multifraktalnej prezentowane w tej części roz-
prawy zostały opublikowane [16].

7.2 Ocena kluczowych wyników

Autorski model CTRW przedstawiony w rozdziale 5 jest wprowadzeniem do
nowej rodziny błądzeń losowych w czasie ciągłym. Warianty modelu z cza-
sami wyczekiwania o wartościach powtarzających się w sekwencjach loso-
wej długości pozwalają odtworzyć różne zależności występujące w szeregu
czasów międzyzdarzeniowych. Model ten posiada następujące zalety.

• W definicji modelu podstawowe rozkłady czasów wyczekiwania
ψ(∆t) oraz skoków h(∆x) są niezależne od siebie i mogą być za-
dawane osobno lub osobno wyznaczone z danych empirycznych.
Ułatwia to znacząco porównywanie przewidywań modelu z danymi
empirycznymi.

• W modelu możemy dowolnie zadać rozkład ω(ν) liczby powtórzeń ν
danej wartości czasu wyczekiwania. Możemy przez to modelować za-
leżności zarówno krótkozasięgowe (gdy ω(ν) jest rozkładem geome-
trycznym), jak i dalekozasięgowe (gdy ω(ν) jest rozkładem potęgo-
wym). Możliwość ta pokazuje, że wprowadzona rodzina błądzeń lo-
sowych jest szeroka i może być zastosowana do bardzo różnych da-
nych empirycznych. W niniejszej rozprawie skupiłem się szczególnie
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na przykładzie dalekozasięgowych zależności w szeregu czasów mię-
dzyzdarzeniowych. W takim przypadku czasy wyczekiwania posia-
dają potęgowo zanikającą autokorelację krokową z dowolnym wykład-
nikiem. Dzięki temu przewidywania modelu można łatwo porówny-
wać z dowolnymi danymi z potęgowo zanikającymi pamięciami po-
między czasami międzyzdarzeniowymi.

• Kolejną, szczególnie istotną zaletą modelu jest jego rozwiązywalność
analityczna. W rozprawie znajduję analityczną postać propagatora pro-
cesu oraz podaję zachowanie asymptotyczne jego charakterystyk staty-
stycznych w granicy długich czasów, co dodatkowo wyróżnia zapropo-
nowany model.

• Dzięki wynikom analitycznym mogłem w prosty sposób zbadać bezpo-
średni wpływ pamięci występującej w szeregu czasów wyczekiwania
na momenty procesu i autokorelację prędkości. W szczególności uzy-
skałem ciekawy wynik dla autokorelacji prędkości. Dla modelu bez
dryfu autokorelacja skoków jest zerowa, natomiast autokorelacja mo-
dułów zmian zanika potęgowo.

• Powyższą własność modelu skonfrontowałem bezpośrednio z własno-
ściami danych finansowych. Zgodnie z faktami stylizowanymi przed-
stawionymi w rozdziale 2.3, nie powinniśmy obserwować autokorela-
cji logarytmicznych zmian ceny, natomiast powinniśmy obserwować
efekt klastrowania zmienności, reprezentowany przez potęgowo zani-
kającą autokorelację modułów logarytmicznych zmian cen. Efekt ten
jest dobrze odtwarzany przez model.

• Dodatkowo w modelu autokorelacja szeregu czasów wyczekiwania
również zanika potęgowo, z tym samym wykładnikiem co autokore-
lacja modułów zmian. Zostało to zweryfikowane w oparciu o dane
empiryczne (wyniki przedstawiłem w tabeli 5.1). Zgodność wyników
jasno pokazuje, że zależności pomiędzy czasami wyczekiwania są
kluczowym składnikiem odpowiadającym za efekt klastrowania
zmienności, a dokładniej za wykładnik w powolnym, potęgowym
zaniku autokorelacji modułów logarytmicznych zmian cen.

Zaproponowany w pracy model nie może być traktowany bezpośrednio
jako model dynamiki ceny. Nie odtwarza on (bądź jego możliwości w tym
zakresie nie zostały przeanalizowane) innych faktów stylizowanych, jak
korelacja w szeregu modułów zmian, czy multifraktalność procesu. Nie-
mniej jednak, zbudowany model spełnił zasadnicze wymagania. Należy go
postrzegać jako ogólny model CTRW, dzięki któremu możemy dokładniej
zrozumieć bezpośredni wpływ skorelowanych czasów międzyzdarzenio-
wych na statystyki procesu. Dodatkowo, przedstawione wnioski można
rozciągnąć na inne metody generowania skorelowanego szeregu czasów
wyczekiwania. Stwierdziłem to dzięki użyciu symulacyjnej analizy sytuacji,
gdy pamięć w szeregu czasów wyczekiwania kreowana jest, na przykład,
metodą filtrowania z użyciem transformaty Fouriera. Uzyskane w ten
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sposób wykładniki autokorelacji szeregu czasów międzyzdarzeniowych i
modułów zmian okazały się takie same jak odpowiadające im w przypadku
modelu bazowego.

W kontekście danych finansowych pokazałem, że zjawisko klastrowania
aktywności przekłada się bezpośrednio na efekt klastrowania zmienności.
Zgodnie z modelem, potęgowo zanikające autokorelacje w obydwu typach
charakterystyk powinny zanikać z tym samym wykładnikiem. Jest to ważny
wynik, dzięki któremu można lepiej zrozumieć istotę tych efektów. Najczę-
ściej obecnie stosowane modele dotyczące klastrowania zmienności operują
na szeregach czasowych ze stałym krokiem czasowym i skupiają się na
dokładnym zamodelowaniu zależności pomiędzy modułami zmian procesu
bądź ich wariancjami. W niniejszej rozprawie pokazałem, że kluczowym
elementem są tutaj nie absolutne wartości skoków, a czasy pomiędzy nimi.
Otwiera to drogę do dalszych badań w tej tematyce, które być może pozwolą
na jeszcze lepsze jej zrozumienie oraz stworzenie bardziej precyzyjnych
modeli zjawiska klastrowania zmienności.

Przedstawione powyżej wyniki pozwoliły mi na kontynuowanie analizy
aktywności układów, a w szczególności analizy czasów międzyzdarze-
niowych. W tym celu w rozdziale 6 stworzyłem modyfikację kanonicznej
metody MFDFA, dostosowaną do operowania na czasach międzyzdarzenio-
wych. Otrzymane wyniki oceniam poniżej.

• Zaproponowane przeze mnie nowatorskie podejście do używania śred-
nich lokalnych czasów międzyzdarzeniowych jest rozwinięciem obec-
nie istniejących metod. Metodologia jest ogólna i może być zastoso-
wana do danych empirycznych różnego typu (tzn. pochodzących rów-
nież ze źródeł innych niż rynki finansowe).

• Zastosowanie w tym kontekście transformaty Legendre-Fenchela do
otrzymania wielogałęziowego spektrum/widma wykładnika Höldera
f (α) jest moim oryginalnym wkładem w tematykę analizy multifrak-
talnej. Takie podejście nie było wcześniej w ten sposób rozważane w
kontekście danych empirycznych. Stąd, kolejne otrzymane rezultaty są
także nowymi.

• Analizowałem w dalszym ciągu otrzymane powyżej wielogałęziowe
widmo f (α). Poprzez wyznaczenie (analogonu) ciepła właściwego
układu, każdą gałąź spektrum zbadałem pod względem stabilności
termicznej. Przykładowo główna gałąź spektrum jest w fazie stabilnej.
Zachowanie układu przeanalizowałem też w brzegowych punk-
tach gałęzi, gdzie zachodzi przemiana pomiędzy fazami stabilną i
niestabilną. Jest to przemiana ciągła (drugiego rzędu).

• Oprócz podstawy teoretycznej, wyniki tej części rozprawy w znacz-
nej mierze opierają się na konkretnych rezultatach analizy przeprowa-
dzonej na danych empirycznych. Niezwykle ważne są tutaj uzyskane
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wyniki dla danych finansowych. Zaobserwowanie niemonotonicznego
przebiegu wykładnika Höldera dla danych empirycznych jest rezul-
tatem jedynie pobieżnie sygnalizowanym w dotychczasowej literatu-
rze przedmiotu. Jak pokazuję w tej rozprawie, jednym z możliwych
rozwinięć jest dalsze badanie lokalnych średnich czasów międzytran-
sakcyjnych oraz implikacji wynikających z faktu wystąpienia niemo-
notonicznego wykładnika Höldera. W kontekście danych empirycz-
nych jest to kluczowe zagadnienie, gdyż nie jest wywołane krótkoza-
sięgowymi/krótkookresowymi autokorelacjami. Kontynuując wyniki
z pierwszej części rozprawy, aktywność układu wpływa bezpośrednio
na wiele z jego charakterystyk. Zależności pomiędzy okresami mię-
dzytransakcyjnymi mogą być więc kluczowe w zrozumieniu i lepszym
wytłumaczeniu zjawiska klastrowania zmienności. Pokazuje to, że opi-
sanie i zamodelowanie procesów rządzących czasami międzyzdarze-
niowymi w układzie pozwoli na lepsze zrozumienie nie tylko samej
aktywności układu, ale także jego ogólnego zachowania oraz innych
obserwowanych właściwości.

• Upewniłem się, że wyniki otrzymane przeze mnie na bazie danych
empirycznych nie zawierają multifraktalności pozornej, która mogłaby
wynikać z niedoskonałości procedury, istnienia autokorelacji krótkoza-
sięgowych bądź skończonej liczebności danych (ang. finite-size effect).
Wszystkie wielkości wyznaczone były z odpowiadającymi im niepew-
nościami. Dla porównania moją procedurę przykładowo przetestowa-
łem w drodze symulacji monofraktalnego procesu Poissona. Procedura
nie wyprodukowała żadnych artefaktów typu multifraktalnego. Testy
potwierdziły, że otrzymane wyniki są poprawne i istotne statystycznie.

7.3 Ogólne wnioski

Podsumowując ogólnie ocenę wyników mojej rozprawy doktorskiej mogę
stwierdzić, że spełnione zostały wszystkie jej cele oraz udowodnione posta-
wione tezy. W niniejszej pracy rozwinąłem zarówno metodologię i metody
modelowania, jak i analizy stochastycznych sprzężeń dynamicznych wystę-
pujących w układach złożonych. Wprowadzone podejścia zastosowałem do
opisu empirycznych danych finansowych uzyskując wymagane zgodności
pomiędzy przewidywaniami teoretycznymi a wspomnianymi danymi
empirycznymi. Po pierwsze, stworzyłem formalizm wprowadzający nową
rodzinę błądzeń losowych w czasie ciągłym, która umożliwia modelowanie
skorelowanych czasów wyczekiwania. Po drugie, rozwinąłem metodologię
analizy multifraktalnej aktywności układów. Po trzecie sformułowałem
asymptotyczną (dyfuzyjną) klasyfikację błądzeń losowych w tym anomal-
nych, w oparciu o zależne od czasu błądzenie Weierstrassa.

Pomimo, że moja rozprawa odpowiedziała na postawiane pytania, to
warto byłoby badania kontynuować. Na przykład, metodologia CTRW
otwiera możliwość odpowiedzi na pytanie o wpływ skorelowania czasów
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wyczekiwania (międzyzdarzeniowych) na inne statystyki procesu, a w tym
na przykład na wyższe momenty. Ponadto, można zastosować formalizm
do zbadania wpływu różnego rodzaju pamięci zawartej w szeregach czasów
międzyzdarzeniowych, jak też uzyskać wyniki dla konkretnych rozkładów
skoków i czasów pomiędzy skokami. W kontekście danych finansowych
podejście zaproponowane w rozprawie można traktować jako inspirujący
punkt wyjścia do zbudowania teorii opisującej wszystkie fakty stylizowane,
czyli teorii dynamiki cen na giełdzie.

Przedstawione w rozprawie rozszerzenie analizy multifraktalnej można
wykorzystać do pogłębionego badania przemian fazowych na rynkach
finansowych, zwłaszcza w kontekście krachów rynkowych i recesji. Na
przykład, zbadać reakcje poszczególnych gałęzi widma wymiarów f (α) na
takie sytuacje. Pozwoliłoby to nie tylko lepiej zrozumieć reguły dynamiki
rynków finansowych, lecz także mogłoby mieć praktyczne przełożenie na
zarządzanie ryzykiem rynkowym. Jak wiadomo, kanoniczna analiza mul-
tifraktalna jest także wykorzystywana w innych obszarach nauki. Ciekawe
mogłoby być użycie metodologii zaproponowanej w niniejszej rozprawie do
subtelniejszej analizy sygnałów biomedycznych.
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Dodatek A

Opis danych empirycznych

Dane dotyczące cen transakcji na akcjach na Giełdzie Papierów Wartościo-
wych w Warszawie pobieram ze strony Domu Maklerskiego Banku Ochrony
Środowiska [21]. Są to sekundowe świeczki OHLCV (ang. Open, High, Low,
Close, Volume), czyli zagregowane dane transakcyjne, zawierające informację
o cenach pierwszej, najwyższej, najniższej i ostatniej w danej sekundzie
oraz łączny wolumen transakcji (liczba akcji). Dane zapisywane są tylko
dla sekund, w których wystąpiła co najmniej jedna transakcja. Używam
danych z sesji ciągłej (dokładniejszy opis w rozdziale 2.1) od 15 kwietnia
2013 roku, kiedy była zmiana harmonogramu sesji, do 15 kwietnia 2020
roku. Poniżej w tabeli A.1 przedstawionych jest pierwszych 10 wierszy dla
spółki PKNORLEN z dnia 2013-04-15.

Czas Open High Low Close Volume
09:00:01 51.30 51.30 51.30 51.30 1642
09:00:35 51.00 51.00 51.00 51.00 461
09:00:36 51.00 51.00 51.00 51.00 16
09:00:44 51.00 51.00 51.00 51.00 1000
09:00:55 51.00 51.00 51.00 51.00 398
09:01:20 51.10 51.10 51.10 51.10 11
09:01:25 51.10 51.10 51.10 51.10 1
09:02:38 51.01 51.01 51.01 51.01 5
09:03:09 51.10 51.10 51.10 51.10 1199
09:03:20 51.20 51.20 51.20 51.20 11

Tabela A.1: Tabela przedstawiająca 10 pierwszych sekundo-
wych świeczek OHLCV dla spółki PKNORLEN z dnia 15 kwiet-

nia 2013. Dokładny opis kolumn znajduje się w tekście.

W powyższych danych widać, że w wielu sekundach nie obserwujemy
transakcji. Średni okres między transakcjami dla PKNORLEN dla całych
danych to około 20 sekund. Dodatkowo w ponad 80% świeczek wszystkie
ceny OHLC są sobie równe. Rzadkie transakcje i te same ceny pozwalają
sugerować, że te świeczki opisują pojedyncze transakcje. Dodatkowo, poje-
dyncze zlecenie może technicznie zostać zrealizowane jako kilka transakcji.
Ceny tych transakcji powinny być monotoniczne. Dla rozważanej spółki
jedynie niecałe 3.6% świeczek nie spełnia tej zależności. Pozwala to uznać,
że używanie ostatnich cen z sekundowych świeczek jest wystarczającym
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przybliżeniem niezagregowanych danych transakcyjnych dla polskiej giełdy
w rozważanym okresie, którego używam w mojej rozprawie.
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Dodatek B

Empiryczne przykłady faktów
stylizowanych

W tym dodatku przedstawiam wyniki analizy danych empirycznych ana-
logiczne jak w rozdziałach 2.3 oraz 5.4 dla kolejnych najbardziej płynnych
spółek z GPW. Wszystkie Wykresy w tym dodatku odpowiadają kolejno
spółkom: górny wiersz po lewej KGHM i po prawej PKOBP, dolny wiersz
po lewej PZU i po prawej PGE. Wyniki pokazują uniwersalność faktów sty-
lizowanych, jak również metod analizy zaproponowanych w tej rozprawie.
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Rysunek B.1: Wszystkie wykresy w tym dodatku odpowiadają
kolejno spółkom: górny wiersz po lewej KGHM i po prawej
PKOBP, dolny wiersz po lewej PZU po prawej PGE. Rysunek
przedstawia empiryczne rozkłady h(r∆t) analogiczne do rys.

2.4.
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Rysunek B.2: Wykresy dopełnień empirycznych dystrybuant
modułów odchyleń od średniej 1 − H(r − ⟨r⟩) analogiczne do

rys. 2.5.
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Rysunek B.3: Wykresy empirycznych rozkładów modułów od-
chyleń logarytmicznych stóp zwrotu od średniej dla jednomi-
nutowego kroku czasowego h(r − ⟨r⟩), analogiczne do rys. 2.6.
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Rysunek B.4: Empiryczne rozkłady czasów międzytransakcyj-
nych ψ(∆t) w skali półlogarytmicznej wraz z dopasowanymi
rozkładami wykładniczego Weibulla, analogiczne do rys. 2.7.
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Rysunek B.5: Empiryczne rozkłady czasów międzytransakcyj-
nych ψ(∆t) w skali logarytmicznej wraz z dopasowanymi roz-

kładami wykładniczego Weibulla, analogiczne do rys. 2.8.
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Rysunek B.6: Wykresy średniej, minimalnej oraz maksymalnej
dziennej liczby transakcji dla każdego z rozpatrywanych mie-

sięcy, analogiczne do rys. 2.11.
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Rysunek B.7: Wykresy przedstawiające średnią liczbę transakcji
w poszczególnych okienkach czasowych oraz ich przykładową

jednorazową realizację, analogiczne do rys. 2.9.
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Rysunek B.8: Wykresy krokowych autokorelacji szeregu cza-
sów wyczekiwania pomiędzy zmianami ceny w skali logaryt-
micznej (czarne) wraz z potęgowymi dopasowaniami (czer-

wone). Tak wyznaczone wykładniki użyte są w tabeli 5.1.
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Rysunek B.9: Wykresy empirycznych autokorelacji krokowych
szeregu logarytmicznych zmian ceny, analogiczne do rys. 2.12.
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Rysunek B.10: Wykresy czasowych autokorelacji modułów lo-
garytmicznych zmian cen w skali logarytmicznej (czarne) wraz
z potęgowymi dopasowaniami (czerwone). Tak wyznaczone

wykładniki użyte są w tabeli 5.1.
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Dodatek C

Momenty procesu spacerów i
przelotów Weierstrassa

Zgodnie ze wzorami (3.20), do wyznaczenia momentów można posłużyć
się propagatorami w przestrzeni Fouriera-Laplace’a i ich odpowiednimi po-
chodnymi w punkcie k = 0. Z powodu symetrii przestrzennej rozważa-
nych procesów (tzn. brak dryfu), omawiam jedynie parzyste momenty prze-
strzenne. Co więcej, można wykazać, że wiodącym składnikiem propaga-
tora, z którego wyznaczamy wartości oraz przedziały zbieżności momentów
procesów, są składowe Ξ̃W,F(k, s). Dla spacerów otrzymuję:

d2m

dk2m Ξ̃W(k, s)
∣∣∣
k=0

= (−1)m2m! (b0)
2mτ0

(
1 − τ

N

)
×

∞

∑
j=0

(
τ2b2m

N

)j [
Θ̃W

j (k = 0, s)
]2m+1

, (C.1)

gdzie Θ̃W(k = 0, s) = 1
sτ0τ j+1

na podstawie czwartego równania w (3.36).
Stąd:

d2m

dk2m Ξ̃W(k, s)
∣∣∣
k=0

= (−1)m2m! (b0)
2mτ0

(
1 − τ

N

)
×

∞

∑
j=0

(
τ2b2m

N

)j ( 1
sτ0τ j + 1

)2m+1

. (C.2)

Natomiast dla przelotów uzyskujemy prostszą postać:

d2m

dk2m Ξ̃F(k, s)
∣∣∣
k=0

= τ0

(
1 − τ

N

) ∞

∑
j=0

(
τ2b2m

N

)j

Θ̃F
j (k = 0, s)

= τ0

(
1 − τ

N

) ∞

∑
j=0

(
τ2b2m

N

)j 1
sτ0τ j + 1

, (C.3)

przy czym skorzystaliśmy tutaj z równości Θ̃F(k = 0, s) = Θ̃W(k = 0, s),
która zachodzi na podstawie czwartego równania w (3.36) i (3.37).

Właśnie ta różnica w wykładniku potęgi w ostatnich czynnikach obu
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wzorów (C.2) i (C.3) jest matematyczną przyczyną istotnych różnic w
rozmiarach przedziałach zbieżności przestrzennych momentów procesu
spacerów i przelotów.

Na przykładzie spacerów, kontynuuję obliczenia poprzez zastąpienie

wyrazu
(

1
sτ0τ j+1

)2m+1
w równaniu (C.2) odwrotną transformatą Mellina.

Stąd otrzymuję:

d2m

dk2m Ξ̃W(k, s)
∣∣∣
k=0

= (−1)m2m! (b0)
2mτ0

(
1 − τ

N

) ∞

∑
j=0

(
τ2b2m

N

)j

× 1
2πi

∫ c+i∞

c−i∞
dzτ−zj π

sin(πz)
(sτ0)

−z
(

z − 1
2m

)
, (C.4)

przy czym ostatni czynnik stanowi uogólniony czynnik binomialny (New-
tona) oraz warunek zbieżności całki ma postać 0 < c = ℜ(z) < 2m + 1.
W ramach tego warunku, kolejność sumowania i całkowania może być za-
mieniona o ile (dodatkowo) operacja sumowania jest zbieżna. Po zamianie,

otrzymujemy szereg geometryczny składający się z wyrazów
(

τ2−zb2m

N

)j
, j =

0, 1, 2, . . ., który jest zbieżny jeżeli τ2−cb2m

N < 1 ⇐⇒ 1
β < 1

2m + c−2
2m

1
α . Używa-

jąc górnej granicy wartości c = 2m+ 1 otrzymamy ogólny wzór na zbieżność
powyższego szeregu:

1
β
<

1
2m

+
2m − 1

2m
1
α

. (C.5)

Dalej, dopuszczając warunki zbieżności otrzymuję prostsze wyrażenie:

d2m

dk2m Ξ̃W(k, s)
∣∣∣
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= (−1)m2m! (b0)
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(
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(C.6)

Powyższą całkę można już wykonać standardową metodę residuów
(bardziej szczegółowy rachunek został przeprowadzony w pracy [13])
poprzez wybranie odpowiedniego prostokątnego konturu obejmującego
bieguny pochodzące z wyrażeń 1

sin(πz) : z0(n) = 0,−1,−2, . . . , oraz
1

1−b2mτ2−z N−1 : z1(n) = 2 + α
(

2m
β − 1

)
± 2πi n

log(τ) , n = 0, 1, 2, . . . . W
granicy długich czasów, czyli dla |s| ≪ 1, istotny wkład dają jedynie
bieguny z0(0) = 0 oraz z1 = z1(0) = 2 + α

(
2m
β − 1

)
. Stąd, ostateczny wynik
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przyjmuje postać:

d2m

dk2m Ξ̃W(k, s)
∣∣∣
k=0

= (−1)m2m! (b0)
2mτ0

(
1 − τ

N

)
×

[
1

1 − b2mτ2

N

+
1
N

πα

sin(πz1)
(sτ0)

−z1

(
z1 − 1

2m

)]
.

(C.7)

Dla procesu przelotów można przeprowadzić analogiczną procedurę, jed-
nak z powodu różnic pomiędzy wzorami (C.2) i (C.3) we wzorze na zbież-
ność szeregu wystarczy użyć c = 1. Dlatego, ograniczenie analogiczne do
warunku (C.5) wygląda następująco:

1
β
<

1
2m

− 1
2m

1
α

. (C.8)
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Dodatek D

Autokowariancja procesu czasów

W tym dodatku znajdują się bardziej szczegółowe obliczenia dotyczące wy-
znaczenia autokowariancji czasów pomiędzy zdarzeniami ekstremalnymi
COV∆T(n) dla n = 0, n = 1 oraz pozostałych n ≥ 2.

W szczególności dla n = 0 mogę wzór (5.13) rozpisać jako wzór (5.12)
gdzie K pochodzi z rozkładu ujemnego dwumianowego NB(K; 1):
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∞
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(D.1)
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W podobny sposób rozważam wzór (5.15) dla sąsiednich czasów wyczeki-
wania:
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(D.2)
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Następnie przechodzę do pozostałych n ≥ 2:
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COV∆t(j + i + W − 1){
∆1 = K1 − i, ∆2 = K2 − j

}

=
∞

∑
W=n−1

∞

∑
∆1=0

∞

∑
∆2=0

∞

∑
i=1

∞

∑
j=1(

W − 1
n − 2

)(
1

⟨N⟩

)n+1(
1 − 1

⟨N⟩

)W+∆1+∆2+i+j−n−1

COV∆t(j + i + W − 1)

=
∞

∑
W=n−1

∞

∑
i=1

∞

∑
j=1

(
W − 1
n − 2

)(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)W+i+j−n−1

COV∆t(j + i + W − 1)

=
∞

∑
W=n−1

∞

∑
m=1

(
W − 1
n − 2

)(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)W+m−n
m COV∆t(m + W)

=
∞

∑
W=n−1

∞

∑
m=1

(W − 1)!
(n − 2)!(W − n + 1)!

(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)W+m−n
m COV∆t(m + W)

(D.3)

Niech w = W − n + 1:

COV∆T(n)

=
∞

∑
w=0

∞

∑
m=1

(w + n − 2)!
(n − 2)!w!

(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)w+m−1

m COV∆t(m + w + n − 1)

=
∞

∑
w=0

∞

∑
m=0

(w + n − 2)!
(n − 2)!w!

(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)w+m
(m + 1) COV∆t(m + w + n)

(D.4)
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Niech x = w + m oraz y = w − m:

COV∆T(n)

=
∞

∑
x=0

x

∑
y=−x

co drugi

( x+y
2 + n − 2)!

(n − 2)! x+y
2 !

(
1

⟨N⟩

)n−1(
1 − 1

⟨N⟩

)x (x − y
2

+ 1
)

COV∆t(x + n)

=
1

(n − 2)!

(
1

⟨N⟩

)n−1 ∞

∑
x=0

(
1 − 1

⟨N⟩

)x
COV∆t(x + n)

×
x

∑
y=−x

co drugi

( x+y
2 + n − 2)!

x+y
2 !

(
x − y

2
+ 1
)

=
1

(n − 2)!

(
1

⟨N⟩

)n−1 ∞

∑
x=0

(
1 − 1

⟨N⟩

)x
COV∆t(x + n)

x

∑
q=0

(q + n − 2)!
q!

(x − q + 1)

=
1

(n − 2)!

(
1

⟨N⟩

)n−1 ∞

∑
x=0

(
1 − 1

⟨N⟩

)x
COV∆t(x + n)

(x + n)(x + 1)
n(n − 1)

(x + n − 1)!
(x + 1)!

=

(
1

⟨N⟩

)n−1 ∞

∑
x=0

(
1 − 1

⟨N⟩

)x
COV∆t(x + n)

(x + n)!
n!x!

=

(
1

⟨N⟩

)n−1 ∞

∑
x=0

(
1 − 1

⟨N⟩

)x
COV∆t(x + n)

(
x + n

n

)
.

(D.5)

Ostatnim obliczeniem będzie wyznaczenie Z transformaty ze wzoru (5.18)
przy podstawieniu q = j + n:

ĈOV∆T(z) = ⟨N⟩
∞

∑
q=0

COV∆t(q)
q

∑
n=0

(
1

z ⟨N⟩

)n (
1 − 1

⟨N⟩

)q−n (q
n

)
= ⟨N⟩

∞

∑
q=0

COV∆t(q)
(

1
z ⟨N⟩ +

⟨N⟩ − 1
⟨N⟩

)q

= ⟨N⟩
∞

∑
q=0

COV∆t(q)
(

z ⟨N⟩
z ⟨N⟩ − z + 1

)−q

= ⟨N⟩ ĈOV∆t

(
z ⟨N⟩

z ⟨N⟩ − z + 1

)
= ⟨N⟩ ĈOV∆t

(
⟨N⟩

⟨N⟩ − 1 + 1
z

)

= ⟨N⟩ ĈOV∆t

 1
⟨N⟩−1
⟨N⟩ + 1/⟨N⟩

z

 .

(D.6)
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Dodatek E

Rozwiązanie części Bn(t)
propagatora procesu

Pierwszym obliczeniem jest wyznaczenie transformaty Laplace’a drugiej
części propagatora Bn(t):

B̃n(s) = L{Bn(t)} =
∫ ∞

0
e−stBn(t)dt

=
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

∫
∆t1,...,∆tk

∆tk∫
0

e−sδtdδt e−s∆t1ν1ψ(∆t1)ω(ν1) . . . e−s∆tk−1νk−1ψ(∆tk−1)ω(νk−1)

× e−s∆tkνk ψ(∆tk)Ω(νk) d∆t1 . . . d∆tk−1d∆tk

=
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

ψ̃(sν1) . . . ψ̃(sνk−1)ω(ν1) . . . ω(νk−1)

∞∫
0

e−s∆tkνk ψ(∆tk)Ω(νk)
1 − e−s∆tk

s
d∆tk

=
1
s

n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

ψ̃(sν1) . . . ψ̃(sνk−1) [ψ̃(sνk)− ψ̃(s(νk + 1))]ω(ν1) . . . ω(νk−1)Ω(νk).

(E.1)

Kolejnym krokiem jest transformata Z:

B̃z(s) =
∞

∑
n=1

z−nB̃n(s)

=
1
s

∞

∑
k=1

∑
ν1,...,νk

z−ν1ψ̃(sν1)ω(ν1) . . . z−νk−1ψ̃(sνk−1)ω(νk−1)

× z−νk [ψ̃(sνk)− ψ̃(s(νk + 1))]Ω(νk)

=
1
s

∞

∑
k=1

f̃ (z; s)k−1
∞

∑
νk=1

z−νk [ψ̃(sνk)− ψ̃(s(νk + 1))]Ω(νk)

=
1
s

∑∞
ν=1 z−ν [ψ̃(sν)− ψ̃(s(ν + 1))]Ω(ν)

1 − f̃ (z; s)
.

(E.2)
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Zauważmy, że występującą sumę możemy rozpisać jako:

∞

∑
ν=1

z−ν [ψ̃(sν)− ψ̃(s(ν + 1))]Ω(ν)

=
∞

∑
ν=1

z−νψ̃(sν)Ω(ν)−
∞

∑
ν=1

zz−(ν+1)ψ̃(s(ν + 1))Ω(ν)

=F̃(z; s)− z
∞

∑
ν=1

z−(ν+1)ψ̃(s(ν + 1)) [Ω(ν + 1) + ω(ν + 1)]

=F̃(z; s)− z
[

F̃(z; s) + f̃ (z; s)− z−1ψ̃(s)[Ω(1) + ω(1)]
]

=F̃(z; s)− zF̃(z; s)− z f̃ (z; s) + ψ̃(s),

(E.3)

gdzie f̃ (z; s) i F̃(z; s) zostały zdefiniowane w równaniu (5.35).
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Dodatek F

Obliczenia momentów procesu w
granicy długich czasów

Najpierw obliczę rozwinięcia z najważniejszymi członami potęgowymi skła-
dowych momentów:

1 − j0 ≈ 1 −
(

1 + C1
0s + C0sρ−1 + C2

0s2 + C3
0s3
)
=

= −sC1
0

(
1 +

C0

C1
0

sρ−2 +
C2

0

C1
0

s +
C3

0

C1
0

s2

)
,

j1 ≈ C0
1 + C1sρ−2 + C1

1s + C2
1s2,

J0 + j0 ≈ C0
1 + D0sρ−2 +

(
D1

0 + C1
0

)
s + C0sρ−1 +

(
D2

0 + C2
0

)
s2,

J1 + j1 ≈ D1sρ−3 +

(
C0

1
2

+
C0

2
2

)
+ C1sρ−2 +

(
D1

1 + C1
1

)
s +

(
D2

1 + C2
1

)
s2,

sC1
0

1 − j0
≈ −1 +

C0

C1
0

sρ−2 +
C2

0

C1
0

s +
C3

0

C1
0

s2

−
(

C0

C1
0

)2

s2(ρ−2) +

(
C2

0

C1
0

)2

s2 +
2C0C2

0(
C1

0
)2 sρ−2s

+

(
C0

C1
0

)3

s3(ρ−2) +
3(C0)

2C2
0(

C1
0
)3 s2(ρ−2)s

−
(

C0

C1
0

)4

s4(ρ−2) +
4(C0)

3C2
0(

C1
0
)4 s3(ρ−2)s + · · ·

(F.1)

Następnie przeanalizuję zachowanie drugiego momentu, patrząc osobno na
współczynniki przy najważniejszych potęgach s. Zacznę od najniższej potęgi
s−3 razem z odpowiadającym mu wyrazem w przestrzeni czasów:

s−3 : 2 ⟨∆x⟩2

(
1

C1
0

)2 (
C0

1C0
1

)
=

2 ⟨∆x⟩2

⟨ψ⟩2 ⇒︸︷︷︸
L−1

⟨∆x⟩2

⟨ψ⟩2 t2. (F.2)
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Widać, że przy wyznaczeniu wariancji, ten wyraz wyzeruje się przy odejmo-
waniu podniesionej do kwadratu liniowej części pierwszego momentu.
Współczynnik przy wyrazie zawierającym s−2 oraz ⟨∆x⟩2:

⟨∆x⟩2 s−2 :

2

−1 + C2
0

C1
0
s

C1
0


2 [(

C0
1 + C1

1s
) (

C0
1 +

(
D1

0 + C1
0

)
s
)
−
(

C0
1

2
+

C0
2

2

)
C1

0s + C0
1C1

0s

]

→ 2
1 − 2C2

0
C1

0
s(

C1
0
)2

[(
C0

1 + C1
1s
) (

C0
1 +

(
D1

0 + C1
0

)
s
)
−
(

C0
1

2
+

C0
2

2

)
C1

0s + C0
1C1

0s

]

→ 2

(
1

C1
0

)2 [
D1

0C0
1 + C1

1C0
1 −

1
2

C1
0C0

2 +
3
2

C1
0C0

1 − 2
C2

0C0
1C0

1

C1
0

]
=

= − 1

C1
0 ⟨ψ⟩

2

[
4C2

0 + 3C1
0 ⟨ψ⟩+ 2C1

1 ⟨ψ⟩+ 2D1
0 ⟨ψ⟩+ C0

2 ⟨ψ⟩
2
]

(F.3)

Współczynnik przy wyrazie zawierającym s−2 oraz ⟨∆x2⟩:

⟨∆x2⟩
s2

−C0
1

C1
0

⇒︸︷︷︸
L−1

⟨∆x2⟩
⟨ψ⟩ t. (F.4)

Współczynnik przy najważniejszym wyrazie potęgowym sρ−5:

⟨∆x⟩2 sρ−5 :

2

−1 + C0
C1

0
sρ−2

C1
0

2 [(
C0

1 + C1sρ−2
) (

C0
1 + D0sρ−2

)
+
(

D1sρ−3
) (

−sC1
0

)]

→ 2

(
1

C1
0

)2(
1 − 2

C0

C1
0

sρ−2

) [
C0

1C0
1 +

(
C0

1D0 + C0
1C1 − C1

0D1

)
sρ−2

]

→ 2

(
1

C1
0

)2 [
C0

1D0 + C0
1C1 − C1

0D1 − 2
C0

C1
0

C0
1C0

1

]

= − 2
C1

0 ⟨ψ⟩

(
D0 + C1 + D1 ⟨ψ⟩+ 2

C0

⟨ψ⟩

)
.

(F.5)

Zobaczmy, że patrząc na zachowanie wariancji ten wyraz potęgowy jest
ważniejszy niż wyraz potęgowy z pierwszego momentu, ponieważ zachodzi
4 − ρ > 2(3 − ρ) dla q > 2. Łącząc to otrzymujemy przybliżenie drugiego
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momentu w przestrzenie Laplace’a:

m̃2(s) ≈
2 ⟨∆x⟩2

⟨ψ⟩2 s−3 − ⟨∆x⟩2 2
C1

0 ⟨ψ⟩

(
D0 + C1 − D1 + 2

C0

⟨ψ⟩

)
sρ−5

+
⟨∆x2⟩
⟨ψ⟩ s−2 − ⟨∆x⟩2 1

C1
0 ⟨ψ⟩

2

[
4C2

0 + 3C1
0 ⟨ψ⟩+ 2C1

1 ⟨ψ⟩+ 2D1
0 ⟨ψ⟩+ C0

2 ⟨ψ⟩
2
]

s−2.

(F.6)
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Dodatek G

Częściowa suma statystyczna,
wymiary Rényi’ego oraz
maksimum widma osobliwości

Postawiona przeze mnie w rozdziale 6.2.2 hipoteza skalowania pozwala wy-
razić uogólnioną sumę statystyczną Zq(s) w postaci skalującej. Mianowicie,
łącząc równania (6.5), (6.6) i (6.9) otrzymuję:

Zq(s) ≈
1

Nq−1
d

Aq

Aq
q=1

sq[h(q)−h(q=1)]. (G.1)

Następnie, porównując wyrażenie (6.9) z powyższym, przedstawiam Zq(s)
w wygodniejszej dla dalszych rozważań postaci:

Zq(s) ≈
1

Nq−1
d

Arel
q sqhrel(q) =

1

Nq−1
d

Arel
q sτrel(q) =

1

Nq−1
d

Arel
q s(q−1)Drel(q), (G.2)

gdzie względne wielkości multifraktalne zdefiniowałem następująco:

Arel
q ≡

Aq

(Aq=1)q ,

hrel(q) ≡ h(q)− h(q = 1),

τrel(q) ≡ qhrel(q),

Drel(q) ≡ τrel(q)
q − 1

.

(G.3)

Stąd, uogólniona suma statystyczna faktoryzuje się:

Zq(s) = Zlin
q (s)Z̃q(s), Zlin

q (s) =
1

Nq−1
d

Arel
q s−τlin

, Z̃q(s) = sτ(q), (G.4)

gdzie τlin = (q − 1)D(q = 0) oraz dla zachowania samozgodności formali-
zmu należy przyjąć, że:

D(q = 0) ≡ h(q = 1) oraz τ(q) = qh(q)− D(q = 0). (G.5)
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D
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Rysunek G.1: Przykładowy wykres empirycznych wymiarów
Rényi’ego D(q) dla spółki PKNORLEN (krzywa niebieska) po-
równany z wynikami symulowanego referencyjnego procesu
Poissona przedstawionymi za pomocą zielonej linii. Także i w
tym przypadku widoczny jest subtelny charakter niemonoto-

niczności.

Zauważmy jeszcze, że ma miejsce następująca wygodna standaryzacja
Zq=1(s) = Zlin

q=1 = Z̃q=1(s) = 1.

Zatem, uogólniona suma statystyczna jest iloczynem czynnika skalują-
cego się z wykładnikiem potęgi liniowo zależnym od q (nieistotnego z
punktu widzenia niniejszej rozprawy) oraz czynnika właściwego, w którym
zawarta jest poszukiwana przeze mnie multifraktalność. W szczególności,
taka faktoryzacja sumy statystycznej pozwala na otrzymanie z częściowej
sumy statystycznej Z̃q(s) uogólnionego wykładnika Hursta h(q) a dzięki
temu umożliwia dalszą analizę multifraktalną, którą przedstawiłem w
niniejszej rozprawie.

Wymiary Rényi’ego (kanoniczne i względne) definiuję za pomocą wy-
kładnika skalowania τ(q) następująco:

D(q) =
τ(q)
q − 1

,

Drel(q) = D(q)− D(q = 0),
(G.6)

gdzie przy wyprowadzeniu drugiej równości skorzystałem z drugiej równo-
ści w (G.5) oraz drugiej, trzeciej i czwartej równości w (G.3). Przykładowy
wykres D(q) w zależności od q przedstawiłem na rysunku G.1. Także i w
tym przypadku widoczny jest subtelny charakter niemonotoniczności D(q).

Na podstawie równania (6.16) oraz drugiej równości w (G.5) otrzymuję, że
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maksimum widma osobliwości:

f (α(q = 0)) = −τ(q = 0) = D(q = 0) = h(q = 1), (G.7)

czyli jest ono równe D(q = 0), które (w ogólności) jest różne od 1.

W kanonicznym podejściu MFDFA, z relacji skalowania uogólnionej
sumy statystycznej wynika, że D(q = 0) jest wymiarem Hausdorffa szeregu
czasowego (nośnika). Jednakże, opracowane przeze mnie podejście opiera
się na analizie częściowej sumy statystycznej (zdefiniowanej trzecią równo-
ścią w (G.4)). Definicja ta bazuje na wykładniku skalowania danym drugim
równaniem w (G.5), gdzie w ogólności D(q = 0) ̸= 1. Dlatego kanoniczna
interpretacja D(q = 0) nie jest tutaj brana pod uwagę. Po prostu, w moim
podejściu D(q = 0) może być traktowane jako parametr zdefiniowany przez
h(q = 1), czyli związany jedynie z informacją, a nie z topologią. Prowadzi
to do ogólniejszego ujęcia kanonicznego formalizmu multifraktalnego
(MFDFA).
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Dodatek H

Funkcja autokorelacji ⟨F2(j; s)⟩

Do zbadania zależności występujących w wewnątrzdziennych szeregach od-
chyleń od profilu, wprowadzam funkcję autokorelacji F2(j; ν; s) jako uogól-
nienie wzoru 6.4:

F2(j; ν; s) =
1

s − j

s−j

∑
i=1

|Uν(i)− yν(i)||Uν(i + j)− yν(i + j)|. (H.1)

Wielkość tą uśredniam po zespole dni handlowych ⟨F2(j; s)⟩ = 1
Nd

∑Nd
i=1 F2(j; i; s)

i przedstawiam na poniższym rys. H.1. Empiryczna autokorelacja,
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Rysunek H.1: Porównanie dwóch wewnątrzdziennych nieli-
niowych funkcji autokorelacji ⟨F2(j; s)⟩ w funkcji j dla ustalo-
nego s = 94, uśrednionych po zespole statystycznym wszyst-
kich dni. (a) Zanik empirycznej funkcji autokorelacji (linia cią-
gła) jest dobrze przybliżony zanikiem potęgowym (linia prze-
rywana). Górna pozioma linia przerywano-kropkowana jest na
wysokości ⟨(U − y)2⟩, podczas gdy dolna ⟨U − y⟩2. Kropko-
wana pozioma linia reprezentuje pionowe stałe przesunięcie
funkcji potęgowej. Przypuszczalnie, położenie tej linii znacz-
nie powyżej ⟨U − y⟩2 spowodowane jest istnieniem wzorców
w szeregu czasów międzyzdarzeniowych (przedstawionych na
rys. 6.1). Wykres (b) analogicznie pokazuje zanik funkcji au-
tokorelacji dla wygenerowanego procesu Poissona, opartego
na średnich empirycznych czasach międzyzdarzeniowych dla
każdego dnia oddzielnie. Zanik wykładniczy (linia przery-

wana) dobrze pasuje do danych.



136 Dodatek H. Funkcja autokorelacji ⟨F2(j; s)⟩

przedstawiona na części (a), zanika powoli z widocznym falowa-
niem. W znacznej mierze udaje się ją przybliżyć funkcją potęgową
⟨F2(j; s)⟩ ≈ A/(a + j)α + const z amplitudą A = 9027 ± 16600 oraz
stałą const = 5088 ± 133 > ⟨U − y⟩2 = 3358. Parametr przesunięcia jest
zadany jako a = A1/α(⟨(U − y)2⟩ − const)−1/α = 2.53 ± 2.20. Autokorelacja
zanika powoli do dodatniej wartości, czego bezpośrednią przyczyną jest
definicja, w której używam iloczynu wartości bezwzględnych fluktuacji. Na
podstawie obserwowanych oscylacji wnioskować mogę o istnieniu długo-
zasięgowej struktury fluktuacji. Można wnioskować, że to długozasięgowe
korelacje pomiędzy odchyleniami są przyczyną tej struktury.

Dla procesu Poissona (część (b)) autokorelacja zanika znacznie szyb-
ciej, przybliżona jest funkcją wykładniczą ⟨F2(j; s)⟩ ≈ A exp (−aj) + const
z parametrami A = 338.2 ± 2.4, a = 0.321 ± 0.017, const = 600.0 ± 2.4.
Kropkowana linia nie zbiega się z dolną kropkowano-przerywaną linią,
co spowodowane jest skończoną wielkością danych. Jednak względem
wartości dolnej linii ta różnica jest znacznie mniejsza, niż w przypadku da-
nych empirycznych. Na tej podstawie mogę wnioskować, że w przypadku
danych empirycznych efekt danych skończonej długości jest zaniedbywalny
w porównaniu do efektów wynikających z empirycznych zależności.
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Dodatek I

Jednowymiarowa transformata
Legendre-Fenchela

Jednowymiarowa transformata Legendre-Fenchela (L-F) jest rozszerzeniem
kanonicznej jednowymiarowej transformaty Legendre’a (L) poza dziedzinę
funkcji wypukłych (do których ograniczona jest transformata L) – np. na
dziedzinę funkcji wypukło-wklęsłych. Pozwala to na pogłębioną analizę
szeregów czasowych, a poprzez to na lepszy opis układów złożonych – w
szczególności na otrzymanie wielogałęziowego widma, f (α), wykładnika
Höldera α(q). Takie wykorzystanie transformaty L-F jest autorskim krokiem
w wielofraktalnej analizie szeregów czasowych.

Przypominam, że jednowymiarowa transformata L dla różniczkowal-
nej wypukłej funkcji τ(q) definiuje funkcję f (α) jako:

f (α) = αq − τ(q),

α = α(q) =
dτ(q)

dq
,

q = q(α) =
d f (α)

dα
, (I.1)

gdzie zmienne q oraz α są powiązane ze sobą za pomocą drugiego zestawu
równań poprzez funkcję τ lub trzeciego poprzez funkcję f .

Transformacja L-F rozszerza możliwość zastosowania tego przekształ-
cenia na funkcje wypukło-wklęsłe (oczywiście też na wklęsło-wypukłe),
korzystając odpowiednio przedziałami z równań (I.1). Dzięki temu można
otrzymać wielogałęziowe odwzorowanie f (α). Wynika to z niemonotonicz-
nej zależności wykładnika Höldera od zmiennej q, gdzie ustalonemu α może
odpowiadać kilka wartości q (rys. 6.7).

Dodatkowo, z równań (I.1) i warunków (G.5) wynika, że:

f (α(q = 1)) = α(q = 1),
d f (α(q))

dα(q)

∣∣∣
α(q=1)

= 1, (I.2)
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które definiują, a w tym lokalizują, główną gałąź spektrum f (α). Własności
(I.2) wykorzystuję przedziałami, analogicznie jak w przypadku równań
(I.1). Warunki (I.1) i (I.2) oznaczają, że prosta o współczynniku nachyle-
nia równym 1 jest styczna do krzywej f (α) w punkcie o współrzędnych
(α(q = 1), f (α(q = 1)) wychodząc z punktu (0, 0). Styczną tą przedstawiłem
na rysunku 6.8 w postaci cienkiej kropkowanej linii prostej.

Zastosowanie transformaty L-F przedstawiam na prostym, analitycz-
nym przykładzie funkcji τ(x) = −ax3 + cx, gdzie a, c > 0, przy czym
rozważam przypadek c ≥ a. Mianowicie dopuszczam, że funkcja τ(x)
określona na poddziedzinie zmiennej x, zawiera zarówno część wypukłą
(określoną na poddziedzinie [x1, 0[), jak i wklęsłą (określoną na poddzie-
dzinie [0, x2]). Przedstawiam ją na rysunku I.1, przy czym obu "ogonków"
funkcji τ, jednego dla x < x1 a drugiego dla x > x2, nie biorę tutaj pod
uwagę. Zamieściłem tam wykresy funkcji τ(x) i y(x) = αx oraz funkcji f (q)
dla takich wybranych wartości q dla których mam do czynienia zarówno
z supremum (kresem górnym) jak też infimum (kresem dolnym) funkcji
f (x). Pokrywają się one tutaj z ekstremami funkcji f (x), odpowiednio, z
maksimum i minimum. Można to zapisać (dla q ≥ 0) następująco:

f (z) =
{

sup0≤x≤x1
[y(x)− τ(x)], z = −q,

inf0≤x≤x2 [y(x)− τ(x)], z = q,
(I.3)

dla ustalonego α (≤ c) (dolny wykres na rysunku I.1). Pozwala to wyznaczyć
lokalizacje −q i q oraz wartości f (−q) i f (q). Mianowicie, z definicji (I.1)
wynika, że f (x) ≤ 0 dla x1 ≤ x < 0 oraz f (x) ≥ 0 dla 0 ≤ x ≤ x2, gdzie
ograniczyłem się do przedziału [x1, x2]. Jak widać, f (−q) i f (q) położone są
tutaj symetrycznie, gdzie ∓q wyznaczam z równania:

d f (x)
dx

∣∣∣
x=∓q

= 0 = 3aq2 − (c − α), (I.4)

z którego dla zadanego α, będącego współczynnikiem nachylenia prostej
y(x) = αx, otrzymuję:

q(α) = ±
√

c − α

3a
. (I.5)

Dzięki równaniu (I.4) można powiązać ze sobą dwie kluczowe wielkości: q
oraz α i traktować je jak zmienne sprzężne.

Jak wynika z równania (I.4) (lub równoważnie z równania (I.5)), współczyn-
nik c określa górną granicę wartości α, co pozwala wyznaczyć jego dozwo-
lone granice, tzn. 0 ≤ α ≤ c. Zmienna ∓q wskazuje wartości x, w których
funkcja f (x) ma swoje ekstrema. Wzór (I.5) można odwrócić uzyskując:

α(q) =
dτ(x)

dx

∣∣∣
x=∓q

= −3aq2 + c, (I.6)
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Rysunek I.1: Schematyczne wykresy wypukło-wklęsłej funkcji
τ(x) (linia ciągła), z zaznaczonymi na dolnym wykresie po-
łożeniami kresów (infimum i supremum) funkcji f (czerwone
strzałki) w punktach, odpowiednio, −q oraz q > 0. Należy się

tutaj ograniczyć do zakresu 0 ≤ α ≤ dτ(x)
dx

∣∣∣
x=0

= c.

a następnie, korzystając z pierwszego równania w (I.1), otrzymać dwugałę-
ziowe widmo:

f (α) = ±2a
(

c − α

3a

)3/2

. (I.7)

Przebieg tego widma przedstawiłem na rysunku I.2 w postaci krzywej prze-
rywanej.

Ponadto, na tym rysunku zamieściłem krzywą ciągłą przesuniętą do góry
o wielkość c − a, dzięki czemu to przesunięte widmo f (α) spełnia już za-
sadnicze wymagania analizy wielofraktalnej przedstawionej w dodatku G.
Mianowicie:

(i) τ(x) ⇒ τ(x)+ a− c = −ax3 + cx+ a− c, co powoduje, że (τ(q = 1)) =
0, a stąd zapewniona jest właściwa normalizacja częściowej sumy sta-
tystycznej Z̃q określonej trzecią równością we wzorze (G.4). Powyższe
przesunięcie nie zmienia ani q ani α.

(ii) Dzięki powyższemu otrzymuję, że D(q) = τ(q)
q−1 = − a(q3−1)

q−1 + c, czyli w
szczególności D(q = 0) = c − a oraz D(q = 1) = α(q = 1) = c − 3a.
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Rysunek I.2: Dwugałęziowe widma f (α) vs. α. Linia ciągła to
widmo przesunięte o D(q = 0) = c − a względem kreskowa-
nej linii – widma wyjściowego. W wyniku tego przesunięcia

otrzymałem punkt styczności pochodnej f (α)
dα

∣∣∣
α(q=1)

spełniający

relację f (α(q = 1)) = α(q = 1) = D(q = 1) = c − 3a, dla usta-
lonego q = 1. Należy zaznaczyć, że maksymalna wartość f (α)
wynosi f (α(q = 0)) = c − a i w ogólności może być różna od 1
– jak widać, równałaby się 1 wtedy i tylko wtedy gdyby c=a+1.
Poniżej, w przedostatnim akapicie, rozwijam to stwierdzenie.

Stąd, a = D(q=0)−D(q=1)
2 i c = 3D(q=0)−D(q=1)

2 . Zauważmy, że użyta tutaj
została ta nowa, przesunięta funkcja τ.

(iii) W dalszym ciągu, korzystając z przesuniętej funkcji τ oraz obu równo-
ści w (G.5), otrzymuję h(q) = τ(q)+D(q=0)

q = −aq2 + c. Stąd otrzymuję
pożyteczną równość h(q = 1) = D(q = 0).

(iv) Wynika stąd ostatecznie, że nowe widmo f (α) ⇒ f (α) + c − a, gdzie
wykorzystałem przesuniętą funkcję τ i definicję (I.3).

Trzeba podkreślić, że jest możliwa standaryzacja widma f , czyli znalezie-
nie takiego przekształcenia liniowego funkcji τ, aby w konsekwencji speł-
nione były trzy kluczowe wymagania: maksimum widma f (α(q = 0)) = 1,

f (α(q = 1)) = α(q = 1) oraz styczna d f (α)
dα

∣∣∣
α(q=1)

= 1. Łatwo sprawdzić, że
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Rysunek I.3: Dwuramienne wykresy α(q) (linia ciągła) oraz
h(q) (linia przerywana) dobrze ilustrują ich niemonotoniczny

charakter w zmiennej q.

poszukiwane przekształcenie liniowe jest postaci:

τ̃(x) = γτ(x) + β,
ỹ(x) = γy(x) + β.

(I.8)

Stąd:

α̃(x) = γα,

f̃ (z) =

{
sup0≤x≤x1

[ỹ(x)− τ̃(x)], z = −q,
inf0≤x≤x2 [ỹ(x)− τ̃(x)], z = q,

= γ f (z),
q̃ = q,

τ̃(q) = (q − 1)D̃(q),

h̃(q) =
τ̃(q) + D̃(q = 0)

q
. (I.9)

gdzie γ = 1
c−a oraz β = −1, gdyż po drodze wykorzystaliśmy warunki:

τ̃(q = 1) = 0 oraz f̃ (α̃(q = 0)) = −τ̃(q = 0)) = D̃(q = 0) = −β = 1.

W ogólności tego typu przekształcenie liniowe istnieje zarówno dla
transformacji L, jak też L-F i oznacza po prostu, że funkcje τ oraz τ̃ są sobie
równoważne. Oczywiście, odpowiednio do tego transformacji podlegają
częściowe sumy statystyczne określone w (G.4). Powyższą transformację
można rozszerzyć na przypadek nośnika o wymiarze różnym od 1 (w tym
celu wystarczy zamiast −β w równości w ostatnim wierszu poprzedniego
akapitu wstawić ten wymiar).
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Pragnę podkreślić, że zasadniczym celem niniejszego dodatku było po-
kazanie, na możliwie prostym przykładzie, w jaki sposób można i trzeba
wykorzystać transformację L-F, czyli jak postępować w przypadku, gdy
mamy do czynienia z funkcjami wypukło-wklęsłymi τ(x) (także wklęsło-
wypukłymi).
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Dodatek J

Wyniki analizy multifraktalnej dla
różnych spółek

W tym dodatku przedstawiam wyniki analizy multifraktalnej dla kolejnych
najbardziej płynnych spółek z GPW analogicznie jak to zrobiłem w rozdziale
6. Wykresy zamieszczone na kolejnych rysunkach J.1 – J.8 odpowiadają (w
następującym porządku) spółkom: górny wiersz po lewej KGHM a po pra-
wej PKOBP, dolny wiersz po lewej PZU a po prawej PGE. Wyniki przedsta-
wione w tym dodatku mają na celu pokazanie, że omawiana w rozprawie,
niemonotoniczna multifraktalność może być powszechną charakterystyczną
cechą spółek giełdowych.
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Rysunek J.1: Wykresy empirycznych funkcji Fq(s) (punkty) w
skali log-log dla wybranych reprezentatywnych wartości q z
przedziału [−10; 10]. Ukośne linie ciągłe stanowią do nich do-
pasowania za pomocą funkcji danych wzorami (6.12) (dla q =
0) i (6.13) (dla q ̸= 0). Pionowe przerywane linie pokazują wy-
brany zakres obszaru dopasowania (skali). Pragnę podkreślić,
że powyższe postępowanie jest wyjściowym elementem proce-

dury przedstawionej w rozdziale 6.
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10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
q

0.2

0.4

0.6

0.8

1.0

h(
q)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
q

0.4

0.6

0.8

1.0

h(
q)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
q

0.4

0.6

0.8

1.0

h(
q)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
q

0.4

0.6

0.8

1.0

h(
q)

Rysunek J.2: Wykresy empirycznych uogólnionych wykładni-
ków Hursta h(q) (niebieskie krzywe ciągłe) wraz z błędami do-
pasowań (niebieskie krzywe kropkowane). Widoczne są sub-
telne niemonotoniczności analogiczne do tej przedstawionej w

rozdziale 6 na rysunku 6.3.
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Rysunek J.3: Przebiegi empirycznych nieparzystości wykład-
ników Hursta, ∆h(q) w zależności od q, analogiczne do tego

przedstawionego w rozdziale 6 na rysunku 6.4.
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Rysunek J.4: Wykresy empirycznych funkcji tla B(q), analo-
giczne do przedstawionego w rozdziale 6 na rysunku 6.5.
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Rysunek J.5: Wykresy empirycznych wykładników skalowania
Rényi’ego τ(q); ich przebiegi są analogiczne do tego przedsta-

wionego w rozdziale 6 na rysunku 6.6.
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Rysunek J.6: Wykresy empirycznych funkcji D(q); ich przebiegi
są analogiczne do tego przedstawionego w dodatku G na ry-

sunku G.1.
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Rysunek J.7: Wykresy empirycznych niemonotonicznych wy-
kładników Höldera α(q), których przebiegi są analogiczne do

tego przedstawionego w rozdziale 6 na rysunku 6.7.
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Rysunek J.8: Wykresy empirycznych wielogałęziowych widm
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Grech i J. Miśkiewicz, red., Cham: Springer International Publishing,
2021, s. 55–88, ISBN: 978-3-030-56160-4.

[14] J. Klamut i T. Gubiec, „Directed continuous-time random walk with
memory,” The European Physical Journal B, t. 92, nr. 4, s. 69, 2019, ISSN:
1434-6036. DOI: 10.1140/epjb/e2019-90453-y.

[15] J. Klamut i T. Gubiec, „Continuous Time Random Walk with Correla-
ted Waiting Times. The Crucial Role of Inter-Trade Times in Volatility
Clustering,” Entropy, t. 23, nr. 12, 2021, ISSN: 1099-4300. DOI: 10.3390/
e23121576.

[16] J. Klamut, R. Kutner, T. Gubiec i Z. R. Struzik, „Multibranch multi-
fractality and the phase transitions in time series of mean interevent
times,” Phys. Rev. E, t. 101, s. 063 303, 6 2020. DOI: 10.1103/PhysRevE.
101.063303.

[17] R. Cont, „Empirical properties of asset returns: stylized facts and sta-
tistical issues,” Quantitative Finance, t. 1, nr. 2, s. 223–236, 2001. DOI:
10.1080/713665670.
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