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Abstract

Quantum theory provides us with a mathematical framework to understand nature at
the microscopic level. It explains phenomena that classical physics could not account
for. A deeper understanding of these non-classical phenomena (e.g., entanglement and
quantum coherence) is not only of a foundational interest, but also paves the way to-
wards potential technological advancements. Developments in the field of quantum
information showed that such quantum features help us to perform operational tasks
which would be impossible in the framework of classical physics. Therefore, these
quantum phenomena can be viewed as resources which help us to go beyond the re-
strictions imposed by classical physics. Inspired by this, the mathematical framework
of quantum resource theories was developed. Each resource theory singles out a par-
ticular quantum resource by setting the states which contain no resource as free states.
Furthermore, the set of free operations are defined such that they do not generate re-
source states out of free states. An important problem in any resource theory is to
understand how different resources transform into each other under the action of free
operations. This problem of state transformation will be the main focus of this thesis.
We will start by studying the notion of deterministic transformations, where one aims
to achieve a target state without a chance of failure. We will explore the connection be-
tween deterministic transformations and the problem of quantification of resources. We
will then go further and concentrate on transformations which allow for a probability of
failure, and study the fundamental restrictions imposed on the achievable error and the
probability of success. Finally we will explore the idea of catalytic transformations,
where we allow for an ancillary quantum system which increases the transformation
power while remaining invariant in the process. For the resource theory of entangle-
ment, we will give a full solution for this problem when the target state is pure and the
initial state is distillable. Finally, we discuss potential applications of catalysis to the
problem of sending quantum information through noisy channels.
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Streszczenie

Teoria kwantowa zapewnia nam matematyczne ramy do zrozumienia natury na poziomie
mikroskopowym. Wyjasnia ona zjawiska, ktérych fizyka klasyczna nie byla w stanie
wyjasni¢. Glebsze zrozumienie tych nieklasycznych zjawisk (np. splatania i spdjnosci
kwantowej) ma nie tylko fundamentalne znaczenie, ale takze toruje droge do potencjal-
nych postepéw technologicznych. Rozw6j w dziedzinie informacji kwantowej pokazat,
ze takie cechy kwantowe pomagaja nam wykonywac¢ zadania, ktére bytyby niemozliwe
do wykonania w ramach fizyki klasycznej. Dlatego tez zjawiska kwantowe mozna
postrzegaé jako zasoby, ktére pomagaja nam wyjS¢ poza ograniczenia narzucone przez
fizyke klasyczna. Inspirujac sie tym, opracowano matematyczne ramy kwantowych
teorii zasobow. Kazda teoria zasobéw wyodrebnia konkretny zaséb kwantowy, ustaw-
iajac stany, ktére nie zawieraja zadnego zasobu, jako stany wolne. Co wiecej, zbiér
wolnych operacji jest zdefiniowany w taki sposéb, ze nie generuja one stanéw zawier-
ajacych zasoby ze stanéw wolnych. Waznym problemem w kazdej teorii zasobow jest
zrozumienie, w jaki sposob rézne zasoby przeksztatcaja sie w siebie nawzajem pod
wptywem operacji swobodnych. Ten problem transformacji stanéw bedzie gtéwnym
tematem niniejszej rozprawy. Zaczniemy od zbadania pojecia transformacji deter-
ministycznych, w ktérych dazy sie do osiagniecia stanu docelowego bez mozliwosci
niepowodzenia. Zbadamy zwiazek miedzy transformacjami deterministycznymi a prob-
lemem kwantyfikacji zasobéw. Nastepnie skoncentrujemy sie na transformacjach, ktére
dopuszczaja mozliwo$¢ niepowodzenia, 1 zbadamy podstawowe ograniczenia natozone
na osiagalny btad i prawdopodobiernistwo sukcesu. Na koniec zbadamy idee transfor-
macji katalitycznych, w ktérych dopuszczamy pomocniczy system kwantowy, ktory
zwieksza moc transformacji, pozostajac niezmiennym w procesie. Dla zasobowe;j teorii
splatania podamy pelne rozwiazanie tego problemu, gdy stan docelowy jest czysty, a
stan poczatkowy mozna destylowaé. Na koniec oméwimy potencjalne zastosowania
katalizy w problemie przesylania informacji kwantowych przez zaszumione kanaty.
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Notations

We shall use the following notation:

Symbol  Definition

H Hilbert space

Hy Hilbert space of dimension d

D set of density matrices

Dy set of density matrices of dimension d

F set of free states

Fs set of separable states

F, set of real states

o set of free operations

xT transposition of operator X in the computational basis

X* complex conjugation of operator X in the computational basis

Xt complex conjugation and transpose of operator X in the computational basis
X7 partial transposition of operator X in the computational basis of subsystem A
I Identity matrix

I, Identity matrix of dimension d

I¢) Identity operator

® Tensor product

H Von Neumann entropy

Table 1: Table of notation
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Chapter 1

Introduction

The first quantum revolution was a time in the early twentieth century when scientists
began to formulate the basic concepts of quantum mechanics. It was an important
turning point in our understanding of the behavior of matter and energy at the micro-
scopic level (DMO2). Werner Heisenberg’s formulation of matrix mechanics in 1925
(Hei25), Erwin Schrodinger’s discovery of wave mechanics (Sch26)) and Heisenberg’s
uncertainty principle (Hei27) established a new way of comprehending the probabilis-
tic character of our nature at a microscopic level.

The ongoing wave of advancements and applications in quantum science and tech-
nology that has developed during the late twentieth century is referred to as the sec-
ond quantum revolution (DMO02)). While the first quantum revolution laid the theo-
retical groundwork for quantum mechanics, the second quantum revolution focuses
on applying those principles in real-world applications. Quantum computing (Val05)),
quantum communication (Che21)), quantum cryptography (GRTZ02), quantum sensing
(DRC17), and quantum metrology (GLM11)) are all associated with the second quan-
tum revolution. It entails manipulating and controlling quantum systems in order to
take advantage of their distinctive features, such as superposition and entanglement,
for a variety of applications.

Quantum entanglement (HHHHQ9)), for example, is a quantum phenomenon where
two or more sub-systems become correlated in such a way that the state of individual
systems cannot be considered independently of the other systems. It has been found
that quantum entanglement becomes necessary for various tasks like quantum telepor-
tation (BBC*93a)), super-dense coding (BW92), and quantum cryptography (GRTZ02).
This inspired the development of a mathematical framework to understand the ultimate
limitations on the manipulation of quantum resources. The notion of a resource theory
was formalized, providing a rigorous framework to study the limitations and possibili-
ties under specific constraints (CG19a). Over time, this framework expanded to include
other resources beyond entanglement such as coherence (SAP17), asymmetry (MS13)),
and more, as it became clear that many quantum technological tasks are based on such
resources.

Each resource theory focuses on a particular quantum property (or quantum re-
source) and defines a set of free operations that can be performed without consuming
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the considered resource. Quantum sates which can be prepared via free operations,
without consuming the given resource, are called free states. All the other states which
are called resource states or simply resources. Precisely speaking, a quantum resource
theory is a tuple of free states and free operations, with the constraint that the set of
free states is closed under the action of free operations. This captures the intuition that
resources cannot be created for free. Quantum resource theories also provide a rigor-
ous and operationally meaningful way to quantify the amount of resource present in
a quantum state (CG19a). However, in general, there is no unique resource quantifier
which encompasses all aspects of a resource theory. Depending on the problem under
study, different quantifiers might be suitable (DGKS23)).

Once a resource theory is defined, one of the important problems is to understand
how various resource states can be transformed into each other via free operations. The
motivation for looking into this problem comes from the fact that different operational
tasks require different resource states for optimal performance. As an example, tasks
like quantum teleportation and quantum dense coding require maximally entangled
states for optimal performance (BBC"93a; BW92). In the ideal case one would like
to obtain the target state exactly. But this often impossible to achieve. Various ways
have been considered, through which one can overcome such limitations. At a single
copy level (i.e., when one has access to only one copy of the initial state and aims to
transform it into a single copy of the target state), one tries to achieve the target state
probabilistically aiming to maximise the probability of success (Reg21). Alternatively
one can also try to maximise the achievable fidelity (a measure of closeness between
quantum states) to the target state such that there is no probability of failure (KDS22).

Another approach to the problem of state transformation is to consider multiple
copies of the same state. By taking into account many copies of the state, one can
overcome the constraints existing at single copy level (CG19a). In case of asymp-
totic transformations one considers infinitely many copies of the initial state and tries
to optimize the rate of achieving the target state per copy of the initial state (via free
operations) (CG19a; [ BBPS96a; BBP*96)). This asymptotic regime allows for an under-
standing of the manipulations of quantum resources in scenarios where large numbers
of copies are involved.

Catalytic state conversion is yet another way to overcome some of the limitations
imposed by free operations at the single copy level. Inspired by catalysis in chemistry,
quantum catalysis was first proposed by (JP99) in the resource theory entanglement. In
chemistry, the term catalyst refers to a necessary substance which remains unchanged
in the chemical process. Without this additional substance, the reaction would not be
possible (Ber35; [vSvIL.MA99). Analogous to chemical catalysts, the authors in (JP99))
showed that an additional entangled system, which remains unchanged in the procedure
can be used to accomplish state transformations which would not be possible otherwise.
Later this notion of catalytic transformations has been studied in various other resource
theories (DKMS22a; LBWN23)).



1.1 Entanglement theory: a prototype resource theory

Our classical understanding of nature leads us to believe that certain characteristics of
entangled quantum systems appear to be at odds with our intuition (HHHHO9). Even
Einstein found some of the effects of entanglement perplexing, coming to the con-
clusion that quantum theory cannot be complete (EPR35). Entangled quantum sys-
tems are currently being extensively investigated as a key component of the forthcom-
ing quantum technologies (HHHHOQ9). This includes establishing a provably secure
key for communication between distant parties (quantum key distribution) (Eke91) and
quantum teleportation (BBC*93b)), which uses shared entanglement and classical com-
munication to convey the state of a quantum system to a distant partner.

This motivated the study of entanglement as a resource (HHHHO9)), thus leading to
the development of resource theory of entanglement. It has been noted that, when Alice
and Bob are spatially separated and are only allowed for local quantum operations and
classical communication (LOCC), they cannot create entangled states. Entangled states
so become a useful resource, enabling the distant parties to carry out tasks that would
not be possible without them. Formally speaking, a quantum state p® does not contain
entanglement (separable state) if it can be written in the following way (HHHHO09)

pr = Zpio“f ®T,B where p; > 0 Vi ande,- =1. (1.1)

Here, 0'? and TlB are quantum states acting on the Hilbert spaces of Alice (A) and Bob
(B) respectively. In order to rigorously introduce LOCC maps, let us first look at 1-way
LOCC maps. A CPTP ma[ﬂ A7 is a 1-way LOCC map from Alice to Bob if it can be
expressed as

Ayp() = Z M, ® Ni(), (1.2)

where Mg are completely positive and trace non-increasing maps (corresponding to
outcomes of a quantum measurement) and N are CPTP maps (deterministic quantum
operations). Note that we additionally require }}; M, to be a CPTP map. Physically,
this corresponds to

o Alice performs a quantum measurement locally, whose measurement outcomes
are denoted by i.

e Alice then communicates the outcome of the measurement to Bob via classical
channel.

e Bob then performs local deterministic quantum operation (Ng) conditioned on
the outcome of Alice.

Similarly, one can also define a 1-way LOCC map from Bob to Alice (Aj;). A LOCC
map is a composition of finite number (n) of 1-way LOCC maps

Agy() = Ao Ao 0ADT () o A (. (1.3)

"Here, CPTP refers to completely positive and trace preserving. All the maps in this thesis are linear
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It is easy to see that, a 1-way LOCC map (see Eq. (I.2)) acting on a separable state
produces another separable state. Since any LOCC map is a finite composition of 1-
way LOCC maps, it follows that LOCC operations cannot create entanglement out
of separable states. One can also generalise LOCC operations to include quantum
measurements by defining stochastic LOCC (SLOCC). This can be done by performing
a partial sum in Eq. (I.2Z)) (this defines a 1-SLOCC map from Alice to Bob) and then
concatenating such 1-SLOCC maps in the same way as in Eq. (I.3). One can again
easily see that such SLOCC operations map separable states to separable states, up to
normalisation. This central observation is key to the idea of quantum resource theories,
which will be described in the section below.

1.2 Quantum resource theories

It was observed that many quantum mechanical tasks rely on other quantum resources
such as coherence (SAP17) and contextuality (KS67; [BCG*21). This motivated the
development of general (quantum) resource theories (CG19b). Following the same
intuition as earlier, one defines the set of free states # and free operations O, which
correspond to quantum states and quantum transformations that are simple to establish
or carry out in a given setting. An important feature of free operations is the fact that
they do not create resource states from free states, i.e.,

Alpl € F (1.4)

for any free state p € F and free operation A € O (CG19b). Note that the condition
in Eq. (I.4), is not a sufficient condition. One can define a resource theory by defining
the set of free operations as a strict subset of operations defines by Eq. (I.4). For
example, in the resource theory of entanglement, certain quantum processes do not
create entanglement (satisfy Eq.(T.4)) but cannot be carried out using LOCC (CCLI2).
Making Eq. the single prerequisite for a free operation results in the maximal
set of free operations i.e, any operation outside of this set will necessarily convert
some free state into a resource state. This set of free operations is called resource non
generating operations (RNG) (CG19b). Note that, such a set of free operations might
create resources when acted upon a part of free state. In order to avoid such scenarios,
one can define completely resource non generating operations (CG19b). A quantum
operation A3, is said to be completely resource non generating operation iff for every
free state p5'S the following holds

IS @AS[pSS1eF. (1.5)

Here, p5'S is a state of the system S’®S and I8 is an identity map acting on the system
S’. One can also extend Eq. (1.4)), to probabilistic (stochastic) quantum operations. A
stochastic free operation (&) necessarily satisfies the following condition (Reg22a))

Elpl/ TrElpl € F Vp e F. (1.6)

where E[p] = 3; K ij; with a (possibly incomplete) set of Kraus operators {K;}. The
transformation probability is then given by p = Tr&[p] > 0. This make sure that &
does not create resources out of free states, with any non-zero probability.
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1.3 State transformations in quantum resource theo-
ries

It is well known that, many quantum information tasks require maximally entangled
states, to achieve their optimal performance (Eke91; IBBC*93b)). Such an observa-
tion has also been made in other resources like coherence (NKG*22), imaginarity
(WKR*21a) etc. Therefore, it is important to develop optimal protocols to convert
a less useful state into one which is potentially more useful. Knowing if a given state
p can be converted into o via free operations, turns out to be one of the fundamental
problems in any resource theory. There are various settings in which such a problem
can be studied. We now start with the setting of single copy transformations.

1.3.1 Single copy transformations

Here, one aims to convert a single copy of a quantum state p into one copy of target
state o via deterministic free operations. One of the first results in this direction was
presented in (Nie99), where the authors completely characterise bipartite pure state
transformations via LOCC. In general resource theories, one define the transformation
fidelity between p and o, in the following way:

F(po — o) =sup F(Alp], 0), (L.7)
A

where the supremum is taken over all free operations A and F(p, o) = [Tr(+jpo jp)'/*]?
is the Uhlmann fidelity between p and 0. A quantum state p can be transformed into o
via deterministic free operations iff

F(o — o) =supF(Alpl,o0) = 1. (1.8)
A

Note that, an equivalent definition of deterministic operations is as follows. A quantum
state p can be deterministically transformed into o via free operations iff for every
& > 0, there exists a free operation Ay s.t

||Af(p)—0'||1 <e (1.9)

This is due to the fact that, for a pair of states p and o, the following inequalities hold
(Fuchs-van de Graaf inequalities) (Fvd(G99)

1
1 - F(p,0) < S llo = ol < VI=F(p, o). (1.10)

In fact, pairs of states always exists in any nontrivial resource theory, between which
no deterministic free conversion is feasible. In such cases, the transformation fidelity
serves as an operational metric for the extent to which a particular transformation can
be achieved (HHH99). Closed expressions for the transformation fidelity have been
noted for various resource theories, for examples, entanglement (VJNOOa)), coherence
(LS22) etc.



Practical protocols often use measurement-based techniques that are fundamentally
probabilistic, due to the difficulties in realising deterministic transformations (HHHHO9;
CTV17). Therefore it becomes an important problem to extend resource theoretic
approach to characterise probabilistic (non-deterministic) transformations (Reg22al).
Here, the state p is transformed to o with some nonzero probability. In such cases, the
maximum probability for such a probabilistic conversion is given by

.8l _

P — o) sgp{Tr(S[p]). T @) 0'}, (1.11)
and the maximum is taken over all free probabilistic transformations &. Even though
determining the best conversion probability is difficult in general, in a number of quan-
tum resource theories closed expression for certain settings have been found (Reg22aj
Vid00a; [Vid99a).

Note that the probabilistic conversions (in Eq. (I.T1)) aim to transform states with
zero error, in contrast to approximate conversions (in Eq. (I.7)), which transforms a
state with unit probability. Both represent specific instances of a more general transfor-
mation. In order to study the intermediate regime, one can define fidelity for stochastic
approximate state conversion, which quantifies the optimal fidelity for the transforma-
tion from p to o~ with a conversion probability at least p:

lpl

F,(op » o) =su {F(—,O'):Tr(a 1> } (1.12)
»(o SP Te(Elp)) lp p

Here, the supremum is taken over all stochastic free operations . In the same way,

one can also define probability for stochastic approximate state conversion, capturing

the optimal transformation probability for a transformation with fidelity at least f:

Elpl
Prp— o) =su {Tr(S ]):F(—,O’)Z } (1.13)
o up lp Tr @) f
Again the supremum is taken over all free probabilistic transformations &. Closed
expression for these quantities have be been found for various scenarios in (KDS22;
Reg22b).

1.3.2 Many copy transformations

In this subsection, we review several kinds of state transformations involving multiple
copies of both initial and final states. We start with the notion of multi-copy exact
transformations. We say that p can be converted into o exactly at a rate r, if for any
0 > 0 there exist integers m, n, deterministic free operation A such that

A(p®") = o, (1.14a)
rssr (1.14b)
n

The supremum over all such rates will be called exact transformation rate R°(p — o).
Such transformations have been studied in entanglement (WW23; |APEO3; BRS02;
DFYO03), purity (GMN*15)) etc.



One can also define multi copy transformations, which are not exact. In other
words, the final state in not exactly the target state. Therefore, there is an error in the
transformation. But this error can be made arbitrarily low by choosing large enough
copies of the state. These transformations are called asymptotic transformations. We
say that a asymptotic transformation from p to o is possible with rate r, if for any £ > 0
and any 6 > O there exist natural numbers m, n and a deterministic free operation A
such that

A(p®”) =515, (1.15a)
”’us,...sm _ 0'®'"”1 <e, (1.15b)
%+6>r. (1.15¢)

Here, ||All; = Tr VA'A is the trace norm of a linear operator A and 515 is a state of
the system § | ®S,®---®S . Note that each S; is a copy of the system S . The supremum
of r fulfilling these properties will be called asymptotic transformation rate R(p — o).
Asymptotic transformations have been first studied in entanglement theory (BBP*96;
LP99) and then have been extensively studied in various other resource theories, for
example see (Mar22;[WY16; BaHO* 13)

One can also define a variant of asymptotic transformations, called marginal asymp-
totic transformations. We say that a marginal asymptotic transformation from p to o is
possible with rate r, if for any & > 0, 6 > 0 there exist integers m, n, and free operations
A such that the following equations hold for all i < m:

A(p®") =251-5n, (1.16a)
|75 - o], <& (1.16b)
%+6>r. (1.16¢)

Here, 751-5» is a state of the system on the Hilbert space S| ® S, ® --- ® S, where
each §; is a copy of the system §. The supremum of r fulfilling these properties will
be called marginal transformation rate R(p — o). Note that the final state has m
marginals and each marginal is e-close to the target. It is worth noting the difference
between asymptotic transformations and marginal asymptotic transformations. The
main difference comes from Eq. (.80b) and Eq. (I.16b). Eq. (4.80b) demands the
final state to be e-close to m-copies of o as a whole. This condition is more stringent
compared to Eq. (I.16b), as it requires each of the marginals to be e-close to o-. These
marginal asymptotic transformations have been studied in (FLTP23; IGKS23)).

1.4 Catalytic transformations
The phenomenon of catalysis was first observed in chemistry by Jacob Berzelius (Ber35).
He noticed that several chemical reactions required an additional substance, which does

not change in the chemical process. He defined this peculiar feature as catalysis, whose
roots go back to Greek and can be translated as “loosen” (Ber35; vSVLMA99)). In the

7



current day and age, chemical catalysis is widely used in many industries. Quantum
catalysis has a conceptual similarity to chemical catalysis. Here, instead of “chemi-
cal reaction”, we have “quantum state transformations” and the quantum catalyst is an
additional quantum state which enables an otherwise impossible state transformation.
The phenomenon of catalysis in quantum physics was first introduced by (JP99) in the
context of entanglement theory. As an example, the authors show that the following
two states:

) = V0.4100) + V0.4|11) + VO.1]22) + V0.1133), (1.17)
lp) = V0.5100) + V0.25|11) + V0.25[22). (1.18)

cannot be converted from one to another via deterministic LOCC transformations.
Surprisingly, if the two parties share an additional entangled state [7) = V0.6]00) +
V0.4 [11), then they can perform the transformation

1) @[y — 1) ® Im) (1.19)

with certainty via LOCC (Nie99; JP99). Note that, after the transformation the state
|7) remains unchanged and can be used again for the same procedure. Therefore, the
state |i7) acts as a catalyst and enables a transformation that wouldn’t be possible other-
wise. Following this intuition, we now define exact catalysis (DKMS22al)) for general
resource theories as follows.

A quantum state p° can be transformed into o via exact catalysis iff there exists a
free operation A and a catalyst state 7€ such that [’

Alp* ® 71 =0’ ® €. (1.20)

Note that, from the above equation, we can see that the catalyst is not only unchanged
but also remains uncorrelated by the end of the transformation.

Another notion of catalysis assumes that the catalyst remains unchanged but allows
of correlations between the system and the catalyst. We call such transformations as
correlated catalysis (DKMS22a). Formally, a quantum state p° can be transformed
into o via correlated catalysis iff for every & > 0, there exists a free operation A and
a catalyst state 7€ such that

ITrc [A(® @ 7)) = oIl <&, (1.21)
Trg [A (0° ®TC)] =€, (1.22)

where ||A||; = Tr VATA is the trace norm of a linear operator A. Here the condition

Try [A(pS ® TC)] = 7€ makes sure that the catalyst is unchanged and || Tr¢ [A(ps ® TC)]—

oS|li < & ensures that the final state of the system is &-close to 0. Recently, in

(KDS21) the authors suggested the notion of approximate catalysis. This framework
allows for correlations between the system and catalyst, requiring that the correlations

2Here, S denotes the system and C denotes the catalyst.



can be made arbitrarily small. Precisely, p° can be transformed into o~ via approxi-
mate catalysis iff for every & > 0 there exists a catalyst 7€ and a free operation A such
that

”A (ps ®TC) -0 ®TCH1 <eg, (1.23)
Tr [A (ps ® TC)] =1°, (1.24)

Note that, the above definition allows for correlations between the system and the cat-
alyst in the final state. However, due to Eq. @D, these correlations can be made
arbitrarily small (because the final state is e-close to a product state), by choosing an
appropriate catalyst 7€ and free operation A. Furthermore, the condition in Eq. (T.24)
implies that the catalyst remains unchanged. An alternative definition for approximate
catalysis has been proposed in (RW20; [SS21; Mul18). Eq. (I.23) ensures that the cor-
relations can be made arbitrarily small as quantified by the trace norm. In principle, it
is possible to formulate such a condition by choosing a different correlation measure
such as mutual information I*#(p*%) = H(p") + H(p?) — H(p"P | Using this, the
approximate catalysis can be defined in the following way. A quantum state p5 can be
transformed into 0% via approximate catalysis iff there exists a free operation A and a
catalyst state 7€ such that for every £ > 0 and § > 0

HTrc [A (pS ® TC)] - O'SH1 <eg, Trg [A (ps ® Tc)] =7 and I5°¢ (A (ps ® TC)) < 6.
(1.25)

In (RT224) the authors showed that both the above mentioned definitions for approxi-
mate catalysis are equivalent.

1.4.1 Catalytic embezzling

In various notions of catalysis defined in the previous subsection, we always imposed
the constraint that the catalyst is left unchanged at the end of the transformation. We
now motivate this constraint by discussing a counter intuitive phenomenon called cat-
alytic embezzling. The first observation of embezzling was in (vDHO3)), in which the
authors studied entanglement catalysis, allowing for an arbitrarily small change in the
final state of the catalyst. Using this, the authors in (vDHO3)) showed that for a family
of pure entangled states |u,) and any bipartite entangled state |y) there exists a LOCC
operation A such that

Allpn) {pnl) = 1) (Ul © lwn) {wnl with [lln) (ptal = lwn) {wnll; < & (1.26)

Here, £ — 0% as n — co. Note that from Eq. (1.26), it follows that any two bipartite
entangled states |i/) and |p) can be transformed into each other via catalysis, if we allow
for an arbitrarily small change in the catalyst. Therefore, this would allow us to extract
unbounded number entangled states from the shared catalyst, making the problem of
transforming states trivial.

3H(p) = - Tr[p log, pl, is the von Neumann entropy of a quantum state p.
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1.5 Summary of results

These notions of state transformations show us that the study of such transformations
is incredibly rich and has a broad applicability. We will explore them in detail in the
following chapters.

In Chapter[2] we discuss the idea of resource monotones. These are functions which
assign non-negative real numbers to quantum states and they do not increase under
free operations, thus providing necessary conditions on deterministic transformation
of quantum states. We then address the question of complete set of monotones for
deterministic transformations and show that there does not exist a finite set of resource
monotones which completely determines all deterministic transformations. We also
present the idea of totally ordered resource theories, in which every pair of quantum
states is capable of undergoing a free transformation. Finally we demonstrate that
totally ordered resource theories allow free transformations between all pure states and
are equivalent to theories with a single resource monotone.

Chapter |3| deals with the intermediate regime between probabilistic and approxi-
mate transformations. We establish bounds on both the fidelity and the probability of
state transitions, which are valid in all quantum resource theories. We then show how
these bounds imply non-trivial constraints on the asymptotic rates for various classes of
states. Finally, we close this chapter by completely solving the question of stochastic-
approximate state transformations in various settings for the resource theory of entan-
glement (LOCC) and the resource theory of imaginarity.

Chapter [ studies catalytic transformations, particularly focusing on correlated and
approximate catalysis in bipartite entanglement theory (LOCC). We start by completely
characterising pure state transformations under approximate catalysis. We then go
ahead by showing the equivalence between correlated catalysis and marginal asymp-
totic transformations, for distillable states. Using this result, we show that using an
entangled catalyst cannot increase the asymptotic singlet distillation rate of a distil-
lable quantum state. We end this chapter by investigating the role of catalysis for
quantum communication over noisy channels, providing tools to estimate the optimal
communication rates in these settings.

10



Chapter 2

Deterministic transformations
and complete set of monotones

2.1 Introduction

One of the fundamental problems in any quantum resource theory is to quantify the
amount of resource in a quantum state (CG19a)). Resource measures allow us to quan-
tify the resource in a given state. A resource measure is a function f which maps
quantum states to non negative real numbers (f : D — Rg). Usually, depending on
the setting of interest, one would like the resource measures to satisfy various other

properties, some of which are defined below.

e Monotonicity: A function f is said to be a “monotone”, if it does not increase

under free operations.

f(p) = R(As(p)) ¥ Ay €O.

If all the free states are inter-convertible into each other via free operations, Eq.

(2.1) implies
Fo9) = F0) ¥ pr.p)y € F

e Faithfulness: A function f is faithful if the following holds

fo)=0 &= peTF.

e Strong-monotonicity: “Strong-monotonous” functions do not increase on aver-
age under the action of stochastic free operations. Precisely, the following holds

Di(p)

T, )]

@>Zﬁwwm

for all quantum states p and stochastic free operations {®;}. Where }; ®; is

completely positive and trace non increasing and Tr[®;(p)] > 0
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Convexity: A function f is convex if the following holds for every state p and
every probability distribution {p;}

ﬂZmMSmem 2.5)

Weak-additivity: A function f is said to be weakly-additive if the following holds
for any quantum state p

f@®™) =n-p. (2.6)

Sub-additivity: A function f is sub-additive if the following holds for any two
states p and 1.

fle®t) < flp) + f(7). 2.7

Additivity: A function is said to be additive if the following holds for any two
states p and 7

fle®1) = flp) + f(2). (2.8)
One can easily see that this property implies weak-additivity [2.6]

Strong super-additivity: A function f satisfies strong super-additivity if for any
state 5152 acting on the Hilbert space S| ® S, the following holds

F@52) = f@) + F@). (2.9)
Here, %t = Trs, [p%152] and p*> = Trg, [p°152].

Continuity: Let p and o be two states acting on a Hilbert space with dimension
d. A function f is said to be continuous if V & > 0 there exists a 6 > 0 s.t

o=l <6 = |f(p) - flo)l <& (2.10)

Asymptotic continuity: A function f is asymptotically continuous if the following
holds for any two states p and o acting on a Hilbert space with dimension d.

If (o) = f(o)l < Kllp = ol log d + g(llo = orll). 2.11)

Here, K is some constant and g(x) is a continuous function such that g(x) con-
verges to zero as x — 0.

From now on in this chapter, we focus on deterministic transformations between

quantum states and show that the problem of state transformations and the problem of
resource quantification are indeed interconnected. Let us note that, we say that p can
be deterministically transformed into o via free operations iff for every £ > 0 there
exists a free operation A s.t

[Ar0) = o), <& (2.12)

We will assume that the resource measures satisfy monotonicity under free operations
(see Eq. (2.1)) for the definition of monotonicity). This is a well motivated assumption

12



as it captures the intuition that resources cannot increase under free operations. Addi-
tionally we will assume that the resource measures are continuous (see Eq. (2.10) for
the definition of continuity), to make sure they behave smoothly, without any abrupt
jumps. In (TR19a), the authors show that a quantum state p can be transformed into o
via free operations iff R(p) > R(o") for all continuous monotones R. It is important to
note that this set of all continuous monotones is not finite. If R’(0) > R’(c) holds for
a certain continuous monotone R’, there is no guarantee that p can be transformed into
o via free operations. It might still be true that there exists a finite set of continuous
monotones {R;} which completely characterise all possible state transformations i.e,

p— o iff Ri(p) > Ri(o) ¥ i. (2.13)

Such a complete set of continuous monotones have been proposed for pure states in
bipartite entanglement theory (N1e99). In fact, it has been shown that such a complete
finite set of continuous monotones do not exist for bipartite entanglement theory when
transformations between general mixed states are considered (Gou05)).

2.2 Finite complete set of resource monotones

One of the main results of this chapter is that for a large class of resource theories, no
finite complete set of continuous monotones exist. To prove this fact, we make use
of an additional assumption that the continuous monotones are faithful (see Eq. 2.3).
This are very common assumption fulfilled by a large number of resource measures
(CG19a). Additionally, we also use the following standard assumptions:

o The set of free states is convex and closed.
e The identity operation is free.
e Any free state can be obtained from any state via free operations.

Note that, the set of free states (7)) is said to be convex if for any two free states p; and
0> the following holds

po1+ (1 =ppreF (2.14)
for every 0 < p < 1. The set free states (¥) is said to be closed if for every p ¢ ¥

pifIgL_”pf -p|, > 0. (2.15)

Roughly speaking, Eq. makes sure that no resource state can be approximated
arbitrarily well by any sequence of free states. The last assumption implies that all
resource monotones attain the minimal value and are constant for all free states (see
Eq. 2.2)).

We now show that, it is not possible to transform a full rank state to a resourceful
pure state via free operations, in any resource theory. This result was first shown in
(FL20a; RBTL20)

Lemma 2.1. (FL20a; IRBTL20) In any resource theory, a full rank state p cannot be
converted into a pure resource state ) via free operations.
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Proof. We prove this by contradiction. Let’s assume that there exists a free operation,
transforming p into |y) i.e, for any & > O there exists a free operation Ay such that

As0) = 1wy W), < e (2.16)

Let’s recall Fuchs-van de Graaf inequalities, which state that for a pair of states p and
o, the following inequalities hold (FvdG99)

1
1 - F(p,o) < 5 llo = ol < VI =F(p, o). (2.17)

Here F(p, o) = [Tr(+jpo yp)'/*]* is the fidelity between quantum states p and . Using
Eq. (2.16) and Eq. (2.17), we arrive at

F(Aslpl. ) wl) = Wl Ar[p] ) 2 (1 - ;)Z (2.18)
Let pmin be the minimum eigenvalue of p. Therefore we know that,
P Z Pminl (2.19)
This implies the following holds,
£ = Pmin@ = Pmin T—0) >0V o € D,. (2.20)

Here, D, represents the set of quantum states of dimension d. Since puyin < 1/d < 1,
we can define the state

o= P_P—mina" 22D
1- Pmin
such that Eq. (2.20) can be equivalently expressed as
P = Pmin0 + (1 - pmin)o—h (222)

where pmi, is the smallest eigenvalue of p. From Eq. (2.22), it follows that

WIAf [P ) = puin W A [0110) + (1 = prin) W As [0 1)
< 1= (pmin (1 = W As [T 1)) 2.23)
Together with Eq. (2.18) we obtain

2
1-(1-%)

WIAflollY)y 21 - ———— Y o e D, (2.24)

Note that here £ > 0 can be chosen arbitrarily small. Therefore for any state o € Dy,

can be converted arbitrarily close to [iy). Since o can also be chosen to be a free

state, using the fact that the set of free states is closed (see Eq. ), we arrive at a

contradiction. |

Using Lemma [2.1] we will now show that a finite complete set of continuous and
faithful resource monotones do not exist for any non trivial resource theory containing
free pure state.
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Theorem 2.1. (DGKS23) For any non trivial resource theory containing free pure
states, a finite complete set of continuous and faithful resource monotones do not exist.

Proof. Assume, there exists a complete set of resource monotones {R;} which are con-
tinuous and faithful. Let p be a full rank state which is not free. We will now construct
[¥¢), a pure state given by

We) = VI—glos) + Velp). (2.25)

Here, |gof> is a free pure state, |¢) is a resourceful (not free) pure stateand 0 < & < 1. It
is important to note that there always exists a resourceful pure state (like |¢)), because
if all the pure states are free, by convexity all quantum states would be free, making the
theory trivial. By choosing |ga f> to be on the boundary of the free states, we make sure
[/, is not free for all small & > 0. From Eq. (2.25)), one can show that

e wel = L) (e, < V. (2.26)
From continuity of {R;}, one can choose a small enough & such that

Ri(p) = Ri(lre)) V¥ i. (2.27)

Since, {R;} is a complete set of monotones, p can be converted into |i.) via free oper-
ations. Note that |i,) is a resourceful pure state and p is a full rank state. Therefore,
from lemma 2.1} we know this is not possible, arriving at a contradiction. m|

The previous theorem is applicable to the resource theory of entanglement in both
bipartite and multipartite settings. Furthermore, the resource theories of coherence(W Y 16)),
asymmetry (MS13)), and imaginarity (HG18) contain resource-free pure states, making
our theorem applicable to these theories as well.

2.3 Surpassing the limitations

2.3.1 Discontinuous monotones

The result of theorem [2.1] does not take into account discontinuous monotones. By
considering discontinuous monotones one can find complete set of finite monotones
in various resource theories (which contain free pure states). Below we give some
examples without going into the details of the underlying resource theories.

(i) For the resource theory of coherence, all qubit transformations are completely
characterised by the robustness of coherence Cgr and the A-robustness of coherence
Car, which are given as (NBC"16; PCB™16a;ICG16b; [CG16a; [CG17; [SRBE17)

CR(p):min{s20zp+ST€I}, (2.28)

T 1+s

Cax(p) = min {s >0. 275 ¢ I}, (2.29)
Alo]=A[p] 1+s
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where 7 is the set of incoherent states, i.e., states which are diagonal in a reference
basis and A(-) is a qubit channel which satisfies

A(p) = diag(p) ¥ p € Ds. (2.30)

Here, diag(p) is a quantum state achieved by putting the off diagonal elements (in the
reference basis) of p to zero and D, represents the set of qubit states. For any qubit
state p, both these measures have an analytical expression given by (NBC*16;/CG16a}
CGI17)
Cr(p) = 2lpo,1 (2.31)
and
Car() = lpoal/ Vieo.op1.1- (2.32)
Here, p;; = (ilplj). From Eq. (2.32), we see that Cog(p) = 1 for all coherent pure
states and Ca g(p) = O for all incoherent states. Therefore, Cx g is not continuous.
(i1) In the resource theory of imaginarity, the complete set of monotones for qubit
states are given in terms of bloch coordinates (ry, ry, r;) as

Li(p)=r;, (2.33)
2

h(p) = = (2.34)

+

r2—r2
In (WKR*21a; WKR*21b), it has been shown that both the above mentioned quanti-
ties do not increase under real quantum operations, therefore are monotones under real
operations. Note that, from Eq. (2.34), one can see that I,(p) = 1 for all imaginary
pure states and I,(p) = O for all real states. This shows that I, is not continuous.

(iii) Complete set of monotones for single qubit states have also been provided for
the resource theory of asymmetry (GSO08; MS14; I[LKJR1S). For an initial state p, a
target state o is achievable iff,

loro.1] < lpo,il Vs (2.35)

where y = min{o0/p0,0, (1 — 00,0)/(1 — poo)}. Using Eq. (2.35)), one can construct
complete set of monotones given by

loo.1

Ap) = , 236
1(0) N (2.36)
Ay = —Eo (2.37)

V=ros

One can easily check that both these (above mentioned) monotones are not continuous.
In order to see this, consider a pure state with

po1 =&Vl —&2 and poy = &%, (2.38)

where &£ > 0. Note that, A;(p) is equal to zero for free states whereas it converges to
one in the limit € — 0. Therefore, it is a discontinuous monotone. In a similar way, by
taking into account a pure state with

poi =eVl—g2and p,; = &, (2.39)

one can check that A,(p) is discontinuous.
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2.3.2 Infinite set of resource monotones

An alternative way to surpass the limitations set by theorem is by considering in-
finite sets of continuous monotones. In fact, for any quantum resource theory, such
complete set of continuous monotones can be obtained as follows. Consider the quan-
tity, given by

Ry (p) = inf [[Ar 11 =] - (2.40)

where v is a quantum state which serves as a parameter of the monotone R,. One can
easily show that R, is a resource monotone. In order to prove this, consider A rtobea
free operation such that R,(p) > IIIN\f[v] —plli — € for some & > 0. Consider an arbitrary
free operation Ay, we have

R, (p) > ”[\f [v] —,0”1 —&2 ”Af oAs[vl- Ay [p]”1 -
> R, (Ar[p]) - &, (2.41)

Here, we used the fact that trace norm does not increase under CPTP maps. Since the
above equation holds for any & > 0, it follows that

R, (p) = R, (As[p]) (2.42)

for all v and Ay. The continuity of R, trivially follows from the continuity of trace
norm. Therefore in any resource theory, the set of all continuous monotones is com-
plete. In other words, a state p can be transformed into o iff R(p) > R(o) for all con-
tinuous monotones R. Note that, in (TR19b), authors provide an alternative complete
set of monotones for any resource theory.

2.3.3 Catalytic transformations

Another interesting way to surpass the restrictions imposed by theorem[2.1} is to extend
the notion of deterministic transformations to catalytic transformations (DKMS22a)).
As defined in the introductory chapter, a quantum catalyst is an ancillary quantum
system which does not change in the procedure. Here we particularly focus on so-called
approximate catalysis, where correlations are allowed to build up between system and
catalyst assuming that these correlations can be made arbitrarily small. Recalling from
the introductory chapter, p5 can be transformed into o= via approximate catalysis iff
for every & > 0 there exists a catalyst 7€ and a free operation A such that (KDS21};
DKMS22b; [RT22a;, [ DKMS22a)

A (0 @) - 07 <, (2.43)
Trg [Af (pS ®TC)] = 7%, (2.44)

Surprisingly, (see theorem below) catalytic transformations in the resource theory of
coherence are completely characterised by the relative entropy of coherence C(p) =
H(Alp])— H(p). Therefore, a single monotone completely characterises catalytic trans-
formations in the resource theory of coherence. Before presenting the theorem, let us
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briefly describe the resource theory of coherence (SAP17). In order to formulate the
resource theory of coherence, one has to fix a reference basis. For a d dimensional
Hilbert space H,, let us denote the reference basis as {|i)};=1.. 4. Quantum states di-
agonal in this basis are considered to be free (incoherent states). Therefore every free
(incoherent) state of dimension d takes the following form

d
pr= > pili)il. (2.45)

Here, {p;} is a probability distribution. The dephasing operation A in the reference basis
is given by
d

A() = Z URIUAE (2.46)

L

Note that, a quantum state py, is incoherent if
Alpr) = pr. (2.47)
A quantum operation A is said to be dephasing covariant if
AoA(p)=AoAlp) VYpeDy (2.48)

From Eq. and Eq. (2:47), one can see that dephasing covariant operations (DIO)
map incoherent states to incoherent states. Therefore dephasing covariant operations
can be considered as a possible set of free operations in the resource theory of coher-
ence. Note that the largest set of (deterministic) quantum operations which preserve the
set of incoherent states are known a maximally incoherent operations (MIO) (Abe06).
It is known that DIO ¢ MIO (CG16c). With this background we go ahead and present
our result about catalytic transformations in coherence theory.

Theorem 2.2. (DGKS23) A quantum state p can be transformed into another quantum
state o via DIO and approximate catalysis iff

Clp) > C(0). (2.49)

Proof. In Lemma [4.1] (from chapter ), we will show that if p can be asymptotically
converted into o~ with a rate one (see Eq. (I.13)), then p can be converted into o~ via ap-
proximate catalysiﬂ From (Chil8) we know that, using DIO, p can be asymptotically
converted into o~ with rate whenever Eq. is satisfied. This implies that Eq.
is a sufficient condition for p to be transformed into o~ via DIO with approximate catal-
ysis.

We will now show that the following condition is necessary if p is converted into v
via DIO with approximate catalysis

C(p) = C(0). (2.50)

lLemmaLis presented for LOCC operations, but can be trivially extended to DIO (see the discussion
below the proof of lemmaf.T).
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Note that the relative entropy of coherence in bipartite systems fulfills strong super-
additivity (XLF15)
C(p"*®) > C(p™) + C(p?). (2.51)

Additionally equality holds whenever p*8 = p# ® pB. Here, p* = Trp[p*®] and p? =
Tra[p??] (we will use this notation throughout this thesis). From the definition of
approximate catalysis, we know that for any & > 0 there exists a catalyst state 7€ and a
DIO A acting on system and the catalyst S C such that

“Trc A ©1)] -0 H1 <s (2.52)
Trs [A(p® @ 79)] = €. (2.53)

Now we use the properties of the relative entropy of coherence to obtain

C(Ap* & 7)) < C(p*)+C(7°) (2.54)
and also
C(A* ®19)) 2 C(Trc[Alp® @ 79)]) + C(7°). (2.55)
Eqgs. (#.26) and imply
C(p*) 2 C(Tre [A(e® @79))). (2.56)

Since ||Tre[A(e® @76)]-0°||; < & for every € > 0, the continuity of the relative entropy
of coherence (WY16) implies C(p5) > C(c™%). This completes the proof. O

2.4 Single complete resource monotone and total order

In this section we will study resource theories having a single complete continuous
monotone. This means for any two states p and o, there exists a free operation trans-
forming p into o iff R(p) > R(o) for a single continuous monotone R.

Let us now define fotal order. A resource theory is said to have total order ift, for
any two states p and o, there always exists a free operation transforming either p into
o or o into p. In the below theorem we connect both the above definitions.

Theorem 2.3. (DGKS23) A resource theory has a total order if and only if it has a
single complete continuous monotone.

Proof. 1t is straightforward to see that if a resource theory has a single complete con-
tinuous monotone, then for any two states p and o, there always exists a free operation
transforming p into o (if R(p) > R(0)) or o into p (if R(p) < R(07)). Therefore, this
induces a total order among the set of states.

In order to prove the converse, let us first define a continous monotone R given by

R(p) = min [lo - . (2.57)
HeF
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Here ¥ denotes the set of free states. From the following argument, one can see that
R(p) > R(Alp]), for all free operations A (monotonicity).

R(p) = Igégl llo = wlly = lle =vll; = IAlp] = AVl = R(A[p]) (2.58)

Here v is considered to be the free state which achieves the minimisation for R(p). The
first inequality follows from the fact that trace norm does not increase under CPTP
maps and the last inequality trivially follows from the definition of R. Additionally
continuity of R follows from the continuity of trace norm. Therefore, we showed that
the quantity R, defined in Eq. (2.58), is indeed a continuous monotone.

We will now show that R is a complete monotone if the theory has a total order i.e,
we will show that, for any pair of states p and o, there exists a free transformation from
p to o, whenever R(p) > R(0).

For any two states, p and o, if R(p) < R(0), from monotonicity of R it follows that
p cannot be transformed into o via free operations. But since the resource theory has
total order, a transformation from o into p has to be possible. The remaining case is
when R(p) = R(0). Now we define o, = (1 — )0 + sy, where s € F is a closest free
state to o~ (see Eq. (2.57)). We then have

R(os) < ||os = iy, = A = &) |jo = ]|, = A = &R(0). (2.59)

Therefore, R(o.) < R(p) for all € > 0. Since the theory has a total order, there exists a
free transformation converting p into o, for all € > 0. Also note that, ||o; — o|; can be
made arbitrarily small by choosing a small enough &. This completes the proof. O

The above theorem shows that the existence of a single complete continuous mono-
tone is equivalent to the resource theory having a total order. Using this, we will show
that in any totally ordered theory, all pure states have to be inter-convertible under free
operations.

Lemma 2.2. (DGKS23) In a resource theory with total order, any two pure states can
be transformed into each other via free operations.

Proof. Firstly, consider the resource monotone from Eq. (2.57). From Theorem[2.3] it
follows that for a totally ordered resource theory, state transformations are determined
by this monotone. Therefore, it suffices to prove that

R(¥)) = R(l¢)). (2.60)

holds for all pure states [i) and |p). Let us assume that there exist a pair of pure states
such that R(|¢)) > R(l¢)) > 0. Now, one can construct a full rank state

I
pe =0 =) W) Wl+e7 (2.61)
with 0 < & < 1. Continuity of R implies that, there exists a small enough £ > 0 such

that R(p.) > R(|¢)). Since R is a complete monotone which fully determines all state
transformations, there should exist a free transformation transforming p, into |¢). From
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lemma@ we know that, a full rank state cannot be transformed into a pure resource
state, arising at a contradiction. This shows that for any two pure state [/) and |¢),

R(¥)) = R(lo)). (2.62)

Since R is a complete monotone determining all state transformations, from Eq. (2.60)
it follows that any pair of pure states can be transformed into each other via free oper-
ations. This completes the proof. O

Using these results, we will now completely characterise all totally ordered theories
for d = 2 (qubits). In order to do this, we will first characterise the set of free states.
For any two qubit states p and o with corresponding bloch vectors r and s respectively,
it holds that

llo = olli = Ir —sl. (2.63)
Recalling R(p) = mi{lp llo — ull;, from Eq. (2.60) it follows that, all pure states have to
e

be equidistant (in trace distance) from the set of free states. Therefore, the set of free
states has to be a ball around the maximally mixed state (%2). If the radius of the ball is
t, the set of free states can be given as:

I,

ﬁz{“”‘f‘a

< t} , (2.64)
1

where ¢ € [0, 1]. Eq. @]) serves as a necessary condition for the set of free states,
if the theory has a total order. We will now provide a necessary condition for the state
transformations, in a totally ordered qubit theory. Note that, for a fixed ¢, the resource
monotone R for any state p can be evaluated as:

R(p) = max{|r| —1,0}. (2.65)

Here, r is the bloch vector of p. Since R is a complete monotone, from Eq. @ it
follows that in a single qubit totally ordered resource theory all state transformations
characterised by the Bloch vector i.e, for any pair of resource states p and o with
respective Bloch vectors given by r and s, p — o is possible via free transformations if
and only if |r| > |s|. Additionally, when o is a free state (i.e |s| < ¢), the transformation
p — o is always possible whenever |s| < ¢.

We will now see that both the above mentioned necessary conditions are also suffi-
cient. Let us note that the resource theory of purity (HHOO3;|GMN*15)) is an example
of a totally ordered qubit resource theory (corresponds to the case when ¢t = 0). In
this theory, the free operations are unital operations (CPTP maps preserving %2). From
(GMNT™15), we know that a qubit state p can be transformed into another qubit state o
via unital operations if and only if |[r| > |s|. We will now generalise this for any given
t € [0, 1], by defining the set of free operations as follows

b

e All operations satisfying A[F] = %’ (unital operations).

o All fixed-output operations satisfying A[p] = o with o € 7.
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One can easily see that this set of free operations preserves the set of free states given by
Eq. (2.64). Since, a qubit state p can be transformed into another qubit state o~ via unital
operations if and only if |r| > |s| (GMNT13)), one can see that the free operations defined
above give rise to a totally ordered resource theory with single complete monotone
given in Eq.(2.63). Note that this construction is based the fact that unital operations
induce a total order. However this is not true for higher dimensions (d > 3). Therefore,
this construction cannot be generalised to dimensions more than 2.

2.5 Conclusions

In this chapter we have introduced various properties satisfied by commonly known
resource measures and defined the notion of resource monotones. In generic quantum
resource theories, we studied the idea of having a complete set of monotones. Using
only the most basic assumptions, such as faithfulness, monotonicity and continuity, we
have demonstrated that a complete finite set of monotones do not exist if a resource
theory comprises free pure states. This result applies to the theories of entanglement
in bipartite and multipartite situations. However, we show that such complete set of
monotones can be found by allowing discontinuity, considering infinite sets and allow-
ing for catalytic transformations. We then provided examples of such complete sets
in several resource theories. We also looked at resource theories in which state tran-
sitions are dictated by a single continuous monotone. We demonstrated that any such
theory must be totally ordered, with any pair of states allowing free transformation in
(at least) one direction. We then showed that any totally ordered theory must allow
for free transformations between any pair of pure states (in both directions). We then
completely characterise all qubit resource theories with total order.

22



Chapter 3

Stochastic approximate state
conversion

3.1 Introduction

In this chapter, we primarily deal with state transformations involving single copy of
a quantum state. We focus on the regime in between probabilistic and approximate
transformations. Very few results have been known so far for this regime (FL20b;
RT21; Reg21; [EW22). Here the goal is to convert a quantum state p into a target state
o with the optimal probability, while allowing for a small error in the transformation.
This kind of transformations are motivated from various entanglement manipulation
scenarios where a small probability of failure is allowed and the optimal achievable
fidelity is considered in the case of success (DP22; RmkST*18; NFB14; BBP*96;
DEJ"96; [ZPZ01:; [YKIOT). For example, in quantum networks, the trade off between
fidelity and probability has been found to be very relevant (DLCZO0I; BKOS). As
noted in the introductory chapter, one can define fidelity for stochastic approximate
state conversion, which quantifies the optimal fidelity for the transformation from p to
o with a conversion probability at least p:

Elpl )
F,(o » o) =su F( ,o|: Tr(&[p]) = } 3.1)
p(o SP{ Te(Elp)) lp p
In the same way, one can also define probability for stochastic approximate state con-
version, capturing the optimal transformation probability for a transformation with fi-
delity at least f:

. _ , Elp]
Pip—> o) = stép {Tr (ElpD) : F(—Tr (a[p]),O') > f}. (3.2)

Both in Eq. (3.1) and Eq. (3.2) and the supremum is taken over all free probabilistic
transformations &. In this chapter we also consider a more general kind of state trans-
formations, where one allows for maps (A.) which can generate at most & amount of
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resource (according to some resource measure M). Therefore,

M( Adlp]
Tr A lp]

) < ¢ for all free states p. (3.3)

We name these kind of operations as e-resource generating operations. If the mea-
sure M is faithful, then free operations correspond to the case when € = 0. One can
generalise the quantities in Eqs. (3.I) and (3.2)), to the case of e-resource generating
operations as follows

Aclp]
Fﬁlf(p - 0) = II/I\Z:X {F(’IT(A—M’O—) s Tr(Aglp]) = p}. (3.4
and A
Pst(p - o) = max {Tr (AglpD) : F(W[p[]]o]),a) > f}. (3.5)

Let us now introduce three resource measures, which will be used in this chapter.
These three resource measures will be geometric resource measure G, the generalised
resource robustness R and the standard robustness S, given by

G(p) = 1 - max F(p, ) (3.6)
O€
K(p) = min{s LS ?} and 3.7)
T - 1+s
_ . .p+STf
S(p)—rrrg_l{szo. — esf}. (3.8)

Note that all these three quantities are non-negative, faithful, vanish for all free
states and non-increasing under free operations(CG19a). G, R and S were first intro-
duced in the context of resource theory of entanglement (VT99; [Ste03; [HNO3}; [Shi95}
BLO1; WGO03; ISKB10) and later found applications in various other resource theories
(TRB*19; [TR19b; INBC*16; ISSD*15). It’s worthwhile to note that R and G can be
alternatively written as

E1(p) = —log,(1 = G(p)) = —1ogy Frmax(p), and Emax(p) = log,(1 + K(p))  (3.9)

where E}; and Ey, are given by
Ey2(p) = min Dy (pllo), Emax(p) = min Dy (ollo). (3.10)
oef oef

Note that, D12(pllo") = Dga=1,2(pllor) and Dyax(pllo) = lim D, (pllo), where D, is the
a—00

sandwiched Rényi relative entropy (see section 7.5 of (KW20) for extensive discussion
on sandwiched Rényi entropies). From monotonicity property of sandwiched Rényi
relative entropies, it follows that

D,(pllo) < Dy (pllo) forall @ < o’. (3.11)

Additionally, sandwiched Rényi relative entropies satisfy the data processing inequality
fora € [%, o) i.e, for every CPTP map A and a € [%, 00)

Dy(pllo) < Do(A(p)I|A(0)). (3.12)
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From Eq. (3.T1), it follows that
D1px(pllo) < Dmax(pllor). (3.13)
Assuming D, (pllo”) = mingeF Dmax(pllo), we get the following inequalities
I;'TIEITQ D (pllo) < Dipp(pllo’) < Diax(pllo’) = frnel%l Dinax(pllor). (3.14)
Therefore for any state p,

El/Z(p) < Emax(p)o (3]5)
The above inequality can be equivalently written as

Glo)

K(p)zl_G(p).

(3.16)

3.2 Single copy bounds for general resource theories

Using these tools, we will now provide bounds on F fU”” (o — o) and Plyg (p - o),
which hold for any quantum resource theory. We will present these bounds in the
following theorem.

Theorem 3.1. (KDS22)) For any quantum resource theory and any two states p and o
the following inequalities hold:

FYe(p— o) < min{% [1+K(p)] x FM: (o), 1}, (3.17)
P]”fa (p — o) < min {le [1+ K(p)] x F¥: (o), 1} ) (3.18)
Here, ng;x(a') = max F(o,o0,).

ooM(op)<e
Proof. From the definition of generalised robustness, we know that there exists a state
7, such that
p+ Kt
T P
1+ K(p)

Here, py € . Let & be a stochastic e-resource generating operation. Applying & both
sides of the Eq. (3.19) gives

(3.19)

K@ . .
TK(p)S(p) + ma(‘r) =&(py). (3.20)

Here, we assume Tr E(p) > 0. This is because we are interested in transformations with
non zero probability. Therefore,

L _8p ., _Kp) & _ 8py) G

1+ K@) Tr&(py) 1+ K@) Tr&py)  Trépy)
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We now evaluate the fidelity between E(oy)/ Tr[E(poy)] and o~

Epy) Ep) &(1)
F =F 1- 22
(Tra(pf)"f) (qTrS(p) D7) 3.22)
where &)
T
= 3.23
= T &Il + Kip)] 23
nd Tr 80K ()
r&(t
l-¢g= . 3.24
17 Tr&pil + Kp)] 629
Using concavity of fidelity (KW20) in Eq. (3.22) we obtain
Elpy) &p)
F ,O| 2 gF | /—=5—=, 7). 3.25
(Trsmf) ") I (Tr8<p> 7 G-
Let us recall that,
FM: (o) = max F(0,7) s.t M(1) < & (3.26)
T
and & is an e-resource generating operation. Therefore,
&) M,
F <F.: 2
(TrS(p)’O-) < Frx(o) (3.27)
Let us now substitute Eq. (3.23) and recall that Tr E(p) = p. Therefore,
Tr E(p) Ep)
1+K Fle (o) > 2
[+ K] Pl )= e (20 o] 6.28)
&)
> .
- pF(TrS(p)’“)
Here, also used Tr &(py) < 1. This completes the proof. O

Theorem [3.1] holds for general resource theories, providing upper bounds on the
achievable fidelity and probabilities for stochastic approximate state conversion. For
the special case of & = 0 (free operations), the bounds in theorem [3.1|can be written as

Fp(p— o) < Lmin{2bmb-bin 1) (3.29)
Pi(p— o) <4min {2Ema@r-Era@) 1}, (3.30)

For the cases of deterministic conversion with p = 1 and exact probabilistic conversion

with f = 1, Egs. (3.29) and (3.30) reduce to
F(p = o) < min {2Em@-E1p() 1} (3.31)
P(p > o) < min {2Em®~Ea) 1}, (3.32)

Note that, the above bounds are non-trivial iff Enx(p) < E1/2(0).
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Whenever the set of free states is convex, En,x (generalised robustness) and E|
(geometric measure) can be posed as convex optimization problems. Additionally, if
the set of free states is SDP representable, which is the case for many resource theories
like imaginarity, coherence, asymmetry (PCB*16b; [ WKR*21a) both Ey.x and Ej » can
be posed as semidefinite programs (SDP).

Note that these bounds (see Eq. (3.31)) and Eq. (3.32)) are not tight in general and
for specific setups, tighter bounds can be obtained (see the proposition below).

Proposition 3.1. (KDS22) For a two-qubit state p*B, the optimal fidelity of achieving

AnB A1B
a singlet (|<pﬁ3> = %) via SLOCC, for a given probability p is given by

Fp(pAB—>|¢ﬁB>)Smin{ (pAB) o 1} (3.33)

Proof. The optimal fidelity of achieving a singlet (deterministically) via LOCC from a
bipartite two qubit state p*2 is given by (VV03)

1 + K(p"B)
Ag}(&_l))éCF(A(pAB) 1)) = — (3.34)

Here, K(p"?) is the robustness of entanglement of pA8(VT99). Firstly, note that one
can always make a trace-preserving LOCC operation out of a SLOCC operation, by
preparing a separable state in the case of failure. The optimal LOCC protocol (see Eq.
(3:39)) can be described as follows (VVO3):

1. Alice and Bob perform a SLOCC protocol producing a state p/2, with a probability
of success p,.

2. In the case of failure, Alice and Bob prepare a pure separable state |OAOB ><0AOB |
Therefore,

max F (A, [¢4%) = po (#7087 [e2) + 2522 (200
- LK) Kz(pAB)- (3.35)

Let us now denote F, = (Po , |¢AB>) and use the fact that ‘<¢AB|OAOB>| = 1. The
above equation can be equivalently written as

1 1 1+K(@*®
Po (Fo - E) 3T (3.36)
K 1
This implies, F, = _(p) + —. (3.37)
2p, 2

If a SLOCC protocol has a success probability p, then the optimal achievable fidelity
to singlet must satisfy the following inequality

Fp(pAB_>|¢ﬁB>)3min{ (p;B) 5 1} (3.38)
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This is because, if a SLOCC protocol violates the above bound, then one can construct
a LOCC protocol by preparing a (separable) state |0AOB > 0408 | in the case of failure.

This LOCC protocol would violate the bound given in Eq. . Notice that for p < 1,
the above bound (see Eq. (3.33) is tighter than the bound given in Eq. (3.29). ]

3.3 Asymptotic bounds for general resource theories

In this section, we will study the asymptotic behaviour of the single copy bounds pre-
sented in theorem [3.1] We will show that these single copy bounds from theorem [3.1]
imply upper bounds on the asymptotic rates of transformations. Let us first note that,
the asymptotic rate for a transformation between p and o can also be defined as

R(p — o) = sup{r - lim inf [[A (o™ - o™/, = 0}, (3.39)
n—eo Af

Infimum in the above equation is over the set of deterministic free operations (Ay).
Let us now generalise the above definition to the probabilistic case, allowing for a sub-
exponential (in the number of copies) decay in the probability of success. Additionally,
here we also allow for the generation of sub-exponential (in the number of copies of
the state) amount of resource, quantified by M. In such a scenario, we can define
asymptotic rates as follows

A&'u(p®n) _ ®lm]

Tr Agn (P®n) - 0} (340)

M _ . . .
R, (p — o) = sup{r: lim inf

n—o Ag,

1

Here, A, are g,-resource generating operations i.e, M(A,, (o)) < &, for all py € F,
n
lim loii = 0 (sub-exponential resource generation) and lim _W+W = 0 (sub-

n—oo n—oo

exponential decay of probability of success). We will now provide upper-bounds for
these asymptotic rates for general resource theories.

Theorem 3.2. (KDS22) For any quantum resource theory and any two states p and o,
such that Ey ,(0®") = n - Ey5(0), it holds that

Emax(p)

RM - 0) < ,
p® Eip(0)

(3.41)

where M can be R (generalised robustness) or S (standard robustness).

Proof. When M is chosen to be generalised robustness (R) or standard robustness (S ),
the following inequality holds

FY: (0) < Frax(0)(1 + &). (3.42)

This is because any state T with robustness (generalised or standard) at most &, can be
expressed as follows
T+er

l1+e&

= Tfree (343)
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When ¢ is standard robustness (S), 7’ has to be a free state. Note that, 7" does not need
to be a be free state if € is generalised robustness. Now, using concavity of fidelity, one
can show that

F(o,7) < F(0, Tiee)(1 + &) £ Frax(0)(1 + &). (3.44)

Eq. (3:42) follows from the fact that the above inequality holds for every 7 such that
Eq. (3.43) is true. Therefore the fidelity bound (from theorem [3.1)) can be written as

&p) (1+¢)
F(W,U)S(1+K@))Fmax(0') o (3.45)

Here, p = Tr&(p). Let us now use the following definitions to rewrite Eq. (3.45))
Enax(p) = I’I[])il‘l Dmax(p’pf)a Emax(p) = logz(] + K(,O)) and El/Z(O—) = - 10g2 Fmax(0).
f

(3.46)
Rewriting Eq. (3.45), gives us
& 1+
F (T . ,U) < 2Empr-Fipton L E), (3.47)
18(p) P
Note that we assume
E12(0®") = nEy(0). (3.48)
Also note that E,y is sub-additive (DatQ9) i.e,
Enax(0™") < nEmax (0) (3.49)
Therefore, from Eq. (3.47] [3.48]and [3.49) it follows that
n
BT i) L g0 lmlE (o) Ue (3.50)
Tr&p®)’ = P '
< Z(nEmux(p)_(r”_I)EI/Z(U—))% (3.51)
— 2(”Emax(ﬂ)_rnEl/2(()')+E1/2((7'))(l;_g") (3.52)

Here p, = Tr E(0®"). Second inequality is due to the fact that | x| > x — 1. We will now

choose r = ?“‘*(p) + 0, where § > 0.
1/2(0)
F 8(p®n) O_I_rnj < 2(1—6-n)E1/2((r)(1+8n) (3.53)
Tr E(p®") ’ - Pn ’

For every ¢ > 0, 20-9ME12(@) gpes to zero exponentially in n. Therefore (assuming & >
0), whenever &, does not increase exponentially and p, does not decay exponentially,
we can choose a large enough n such that the upper bound on the fidelity can be made
arbitrarily small. This completes the proof. O

In fact, whenever we try to achieve any rate r > ?I“/‘ZX(((’;; , the fidelity of transformation

exponentially goes down with n (this can be seen from Eq. (3.53)). Also note that the
assumption E| 2(0®") = n-Ey2(07) (additivity of E| ;) is true for many classes of states,
in various quantum resource theories. For example, all monotones E, are additive in
the resource theory of coherence (ZHC17) and in the resource theory of entanglement,
additivity of E, holds for all bipartite pure, GHZ, maximally correlated, Bell diagonal,
isotropic, and generalized Dicke states (RT22b).
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3.4 Resource theory of bipartite entanglement

3.4.1 Pure state transformations

The definition F, and Py in Eqs. (I.12) and (T.T3) might suggest that an analytical
expression for these quantities is out of reach in many settings. In this section, we will
see that analytical expressions are indeed achievable in various interesting setups. Pre-
viously in the literature, bipartite state transformations (via SLOCC) for deterministic
approximate (see Eq. (I.7)) (VINOOD) and probabilistic exact (see Eq. (I.11))) (Vid99b)
settings have been presented. However, one can go beyond these settings and consider
an interplay between achievable fidelity and probability. In the theorem below, we pro-
vide a complete solution for single-copy transformations between bipartite pure states.
Before going into more details, let us first note that for every bipartite pure state |sz3 >
(A and B are Alice’s and Bob’s systems respectively), there exist Schmidt coefficients
({ v/;}) and orthonormal vectors {|v}“>} and {|yf >} such that

Sch(y)

) = D) Nail)e luf). (3.54)

Here, a; > 0 and Sch(y) is the Schmidt number of |1//AB > Without loss of generality,
a;’s are assumed to ordered decreasingly. Let us consider another bipartite pure state
|¢A'B/> with Schmidt coefficients { 4/8;} and Schmidt number Sch(¢). We will now de-
fine n = max{Sch(y¥), Sch(y)}. {@;} and {B;} (squared Schmidt coefficients in decreasing
order) can both be treated as n-dimensional column vectors, by adding n—Sch(y) zeros
to {a;} if Sch(y) < n and by adding n — Sch(yp) zeros to {5;} if Sch(¢) < n. For brevity,
from now on we drop the labels of the systems of Alice and Bob, for example we will
use i) instead of |wAB>.

Theorem 3.3. (KDS22) A bipartite pure state ) can be converted into another state
l@) via SLOCC with a probability p and an optimal fidelity given by

2.

ENY
Fp() = l¢y) = min 1—4(Ef—7]] , (3.55)

where E;ﬁ =21 Ef = 2%, Bi and {a;), (Bi} are the squared Schmidt coefficients of
[y and |p) in decreasing order.

Proof. Let us denote the set of states which can be achieved from i) with at least a
probability p as § ,. Therefore the following holds

Fp(ly) — 1)) = max {plple). (3.56)

S

We will now prove that the closest state (optimal fidelity) to |¢) in S, can always be
chosen to be a pure state. Let us first define

EV = Za,- and Ef = Zﬁi. (3.57)
i=l i=l
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Here, {a;}, {B;} are the squared Schmidt coefficients of |) and |¢) in decreasing order.
|y can be transformed into an ensemble of quantum states {g;,p;} via LOCC if and

only if there exists a pure state ensemble {g;ry, ;, |l,0k’ j>}, satisfying (VINOOb)

E! > quE)" forall I (3.58)
k.j

where pr = X j |1,//k, j> <l,0k!_,'|. Therefore, |y) can be transformed into o with a proba-
bility p iff the following inequality is satisfied for at least one pure state decomposition
{pk, lur)} of the state p:
E;" > prkE;‘k for all 1. (3.59)
k

Let the squared Schmidt coefficients (in decreasing order) of |u;) be {yf}. We will
prove that

n 2 n 2
f=lpley< ) e (Z \/yfﬂi] < [Z meﬁ,-] : (3.60)
k i=1 i=1 k

The first inequality follows from the fact that the fidelity between any two pure states
(with fixed Schmidt coefficients) is maximum when they have the same Schmidt basis
(VINOOb). Second inequality follows from the concavity of fidelity. In order to see
this, we define diagonal matrices 7, 7, and 7,, with diagonal elements as the squares
of ordered Schmidt coefficients of |¢), |1y and |y) (will be defined below) respectively.
We define 7, as

Tx = Zkaﬂk' (3.61)
k
Using concavity of fidelity,

D PeF () < Flry,T,), (3.62)
k

We define a pure state |y), whose Schmidt coefficients are square-roots of the diagonal
elements of 7,

by =" [> vt liain) (3.63)
i=1 k

Note that, |i4ip) are the same Schmidt basis as |¢). Therefore, one can see that

1 k k i=l k

i=

Computing the inner product of |y) and |¢) we get,

2
[} =[Z prﬁ‘ﬁi] : (3.65)
i=1 k
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The above quantity coincides with the upper bound on f (see Eq. (3.60)). From Eq.

(3.59) and Eq. (3.64), it follows that

E!>p ) piEf = pEf forall L (3.66)

This is because the Schmidt coefficients of |y) are square-roots of the diagonal elements
of 7. Therefore, from (Vid99b) we know that |i/) can be transformed into [y) with a
probability p via SLOCC. This proves that the closest state to |¢) can always be chosen
to be pure. Below, we construct a pure state (in S ,) which optimises the fidelity with
).

Let us note that, a bipartite pure state |i/) can be transformed into |¢) via LOCC
iff the reduced states ¥ and ¢ satisfy the following majorisation condition (4 <
¢ (Nie99).

Zaisz,& forall 0<n<d-1, (3.67)
i=0 i=0

Here, {@;} and {B;} are the squared Schmidt coefficients (in decreasing order) of |y)
and |¢) respectively and d = min{da, dp}, with d4 and dp being the dimensions of
the Hilbert spaces of Alice and Bob, respectively. For a probability distribution ﬁ
(decreasing order and dimension n), one can define steepest d-approximation of E as

ﬁl+§ for i=1
> f f l<i<lI"+1
=1 ot (3.68)
1—x for i=0"+1

0 for i>0"+1

with x = 8; + g + Zf;z Bi. From (HOS18)), we know that ﬁ6 majorizes every other ,8_7
whenever HB— ﬁ 1 < ¢ > 0 (6-ball). Note that whenever (1,0,...,0) lies inside the

5-ball, # = (1,0,...,0).
Using this along with Eq. || one can construct a pure state l(pf,) from |p) as

n

|¢%) = D B liain) (3.69)

1

where, 6 = 4/1 — fi. By construction, the fidelity between |<p§1> and |p) is f; and every
pure state which has a fidelity at least f; (with |¢)) can be converted (deterministically)
to |cp‘§t> via LOCC. This implies, F () — |¢)) equals to the maximum value of f;, such

Vi-/i
t

Ps
|)) is the maximum value of fj satisfying (Vid99b)),

that

> can be achieved from |y) with a probability p. Equivalently, F,(l) —

2

p-max{Zﬂi— Vl_ﬁ,O}SZaiforl:z,-u,n. (3.70)
i=l i=l
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We can drop the “max” from the above inequality because «;’s are all non-negative.
Therefore, we have

Vi-A

p(Ef - 5 )< E/ forl:2,- ,n. (3.71)
Solving the above equation gives
o2
f1s1—4[Ef——l] forl:2,--- ,n. (3.72)
p
This implies
E'Y
Fp) = lg)) = min 1~ 4[Ef - —l] forl:2,--- ,n. (3.73)
p

Using the results from (Vid99b)), one can also provide an expression for Py(|yr) —
|¢)). In this case, the optimal transformation can be achieved by transforming [) into

1-f
Pt .

Pr(ly) = lo)) = P(Ilﬂ) -

=min{ 1, min
1

)

(3.74)
where / ranges from 2 to n. O

Theorem [3.3]provides a complete solution for the stochastic approximate transfor-
mations for bipartite pure states. As cases of special interest, by considering p = 1 in
Eq. one gets back the known result for deterministic approximate transforma-
tions given in (VINOOb) and by putting f = 1 in Eq. (3.74), we get back the result
about probabilistic exact transformations given in (Vid99b) respectively.

3.4.2 Entangled states of two qubits

In this subsection, we consider a setting where the initial state is a pure bipartite state,
but the final state is a two qubit mixed state. Even in this scenario, one can obtain
analytical expressions for F/, and P;. Before, we present the main theorem, we will
now present tight continuity bounds for geometric measure of entanglement for two
qubits. This will be used later in the derivation of F, and Py. Note that the geometric
measure of entanglement G of a state p is given by

Glp) = 1 - max F(p,0). (3.75)

Here, F; is the set of bipartite separable states. For a bipartite pure state i),

G(ly)) = Ao, (3.76)

33



where Ay is the square of the largest Schmidt coefficient of |i/). This can be extended
to any mixed state p in the following way (SKB10)

{pislei

Glp) = mg}Zp,-G(uo» (@i (3.77)

Here the minimisation is performed over all the pure state decompositions of p. With
this information, we present the continuity bounds for geometric measure of entangle-
ment.

Lemma 3.1. (KDS22) For a two-qubit state p consider a set of states S,y such that
F(p,p") = f forall p’ € S, 5. The minimal geometric entanglement in S, r is given by

min G(p') = sin” (max {sin™' yG(p) - cos™ v/, 0}). (3.78)

p'ES

For pure two-qubit states |\), the maximal geometric entanglement in S y ¢ is given by

max G(p’) = sin’ (min {sin‘1 VGW) + cos™! \/?, z}), 3.79)
PESy s 4

where W = Y ){Y| denotes a projector onto a pure states ).

Proof. In this proof we will make sure of the following distance measure called Bures

angle
D(p. o) = cos™ (F(p, o). (3.80)

It is important to note that Bures angle satisfies the triangle inequality (KW20). For
any two-qubit state, the geometric measure of entanglement G is between 0 and 1/2.
Therefore, for any two states p and p” € S, it is possible to introduce {«, 5} € [0, /4]
and k € [0, /2] such that the following equations hold.

G(p) = sin’ @, (3.81a)
G(p') = sin’ B, (3.81b)
f = cos’ k. (3.81¢c)

Let us assume pj; is the closest separable state to p and p’, is the closest separable state
to p” with respect to the Bures angle. Therefore, from Eq. (3.81a)) one can see that

D(p.py) = cos™ (VF(p.p,)) = cos™ (V1= G(p)) = . (3.82)
Similarly,

D(p'.p) = B, (3.83)
D(p,p)) < k. (3.84)

Last inequality follows from the fact that p” € S, y. We now use the triangle inequality
and the fact that the closest separable state to p is p;

@ = D(p.py) < D(p.pl) < D(p.p') + Dip, p}) < k +B. (3.85)
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This implies,
B = max{e -k, 0}. (3.86)
Using Eqgs. (3.81b)) and (4.140), one can give a lower bound on G(p’) as

G(p') > sin*(max{a — k, 0}). (3.87)

We will now find a lower bound to G(p’). Again using the triangle inequality and the
fact the the closest separable state to p” is p',, we get

B =D, py) <D, ps) < D(p,p") + D(p, ps) (3.88)
<k+a.
This implies
B < min{a + k, /4}. (3.89)
Using Egs. and (3.89), the upper bound on G(p’) can be give as follows
G(p') < sin*(min{a + k, 7/4}). (3.90)

We will now show that the lower bound in Eq. is achievable. Firstly, let us
note that for every two-qubit state p, there exists a pure state decomposition such that
p = 2 pilyiXyi| and G(¥;) = G(p) for all i (Woo98a; [VidOOb; WGO03). This implies
that each of the states |y;) from the pure state decomposition can be written as

i) = cosala)lb;) +sinalat)|b}), (3.91)

where (a/lat) = (bilb} ) = 0. We will now define ppin as

Pmin = ), qi @)l (3.92)
with
o) = cosBlag) by + sinf |a ) b1 ). (3.93)
Here,,@ € [0, /4] and
Ao 12
_ _plwiled| o)

T X e B

Since geometric measure of entanglement is convex,
G(pmin) < sin’ . (3.95)

Using joint concavity of root-fidelity (Will/)), we obtain

VE.p) = " Npidi (il |

= /Z pililgi) > = | cos(a — B)I. (3.96)
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Therefore,
F(p, pmin) > cos*(a — p). (3.97)

Let us now choose, 8 = max{a — k, 0}. For this choice Eq. (3.97) becomes
F(p, pmin) > cos? (min{k, @}) > cos’ k. (3.98)

The last inequality follows from the fact that, min{k, &’} € [0, /4] and cos? is a mono-
tonically decreasing function that interval. This shows that pyi, € S, ;. From Eq. 1}
we obtain

G (Pmin) < sin’ (max{e — k, 0}). (3.99)
Since pmin € S5, from Eq. (3.99) and Eq. (3.87) it follows that
G(pmin) = sin’(max{e — k, 0}). (3.100)

This shows that the lower bound in Eq. is achievable. Hence, the minimum
geometric measure within the set S,  is given by

min G(p’) = sin® (max{a — &, 0}) (3.101)

PESpf
sin’ (max {sin_1 VG(p) — cos™ \/]_‘, O}) .

Let us now focus on the case where p is a pure state, i.e.,

¥) = cosaa) |b) + sinaja®) [p*). (3.102)

We will now show that the upper bound given in Eq. (3.90) is achievable as well.
Choose

[Wmax) = cos(min{a + k, w/4}) |a) |b) (3.103)
+ sin(min{« + k, w/4}) |aL> |bl> .
Note that
G(Wmax) = Sin2(min{a' + k,m/4}). (3.104)

Also note that x
F(, Wmay) = COS° (min {k, i a}) > cos” k. (3.105)

The above inequality holds because min{k, /4 — @} € [0,7/4] and cos? is a mono-
tonically decreasing function in this interval. Therefore, |max) € Sy s and has the
maximum possible geometric entanglement

max G(o’) = sin® (min{a + k, /4}) (3.106)

PESy s

sin’ (min {sin*1 VGW) + cos™H/f, 7r/4}) )

This completes the proof. O
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Using lemma [3.1] we will now provide a complete solution for the stochastic ap-
proximate state conversion for two-qubit systems if the initial state is pure.

Theorem 3.4. (KDS22) A pure state ) can be transformed into a two-qubit state p
via SLOCC with a fidelity f and a maximal probability given by

1 for m; >0
e = therwi (3.107)
Sinz(smil \/G_(ﬂ)—COS’l \/}) otherwise,

where my = sin™' \JG()—sin™! \[G(p)+cos™" \[f and y = Y| denotes a projector

onto a pure states |y).

Proof. From (VidOOb), we know that the optimal probability of transforming /) into
p via SLOCC is given by

GW)
G(p)’

Here, G is the geometric measure of entanglement. From Eq. (3.108) and the defini-
tions of Py and S, it follows that

P(ly) — p) = min{

1. (3.108)

G
Py(w) = p) = min(—————— S("/’)G oy (3.109)
P'ESp.f
From lemma 3.1} we know that
min G(p') = sin’ (max {sin™' y/G(p) - cos ™ /. 0}). (3.110)

PES,s

Let us consider,

my = sin~! \JG@) —sin™! \/G(p) + cos™! /. (3.111)

Therefore m; > 0 is equivalent to

sin™' /G(p) — cos™! \/f < sin”! \JGW). (3.112)
It holds that

sin™! \/G(p) — cos™! \[f € [-n/2,7/4] and sin”' \/G(¥) € [0, 7/4]. (3.113)

Therefore, we have

max {sin™! y/G(p) - cos™ /f,0} < sin™! /G (3.114)

Using the above inequality, we obtain
min G(o') = sin’ (max {sin™! /G(p) — cos™" +/f.0}) (3.115)
P'ESps
< sin’(sin”! \/GW)) = GW).
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Therefore, whenever G(i) > 0, the following holds

GW)
minyes, G = (3.116)

This implies if m; > 0 then P¢(ly) — p) = 1 . Now we consider the case m; < 0,
equivalently expressed as

sin™! /G(p) — cos™! \/f > sin™! \/G(y) > 0. (3.117)
Therefore, for this case (m; < 0) we have
G)
Pr(ly) — p) = i (3.118)
! sin’(sin"! \/G(p) — cos~! /)
This completes the proof. O

Theorem [BE] provides a closed expression for P,. In fact one can also obtain a
closed expression for F,. Note that, when p < v <, Eq. (3.108|implies F,(y —

G(p)
p) = 1. For the case when 1 > p > W the optimal fidelity can be obtained by solving

G(p)’
Eq. 3.118) for f, which gives

sin™! y/G(p) — sin™! 1 ,?

3.5 Resource theory of imaginarity

Fo(l¢) — p) = cos? . (3.119)

We will now use the techniques developed in proving theorem3.4] to provide analytical
expressions Py and F, in the resource theory of imaginarity (HG18)), when the initial
state is pure. Before we go into further details, let us first present the motivation behind
imaginarity as a resource, then we will introduce the resource theory of imaginarity
along with some background about relevant imaginarity measures and state transfor-
mations.

Complex numbers are widely used in various branches of classical physics, to allow
for an elegant mathematical formulation of various phenomena. In fact, one can math-
ematically describe these phenomena just by using real numbers. Therefore, complex
numbers are just used for the sake of mathematical simplicity and elegance, and are
not necessary. Since the inception of quantum mechanics, complex numbers have also
played an indispensable role in describing the properties of quantum systems. One can
then ask the question, is the use of complex numbers necessary to describe quantum
physics?

One way to approach this question is to use the standard laws of quantum physics,
but to restrict all the states and measurement operators to be real matrices. Then one can
aim to find physical phenomena which are possible in standard quantum physics but
impossible in this restricted version of (real) quantum physics. Thus showing the ne-
cessity of complex numbers in the standard laws of quantum physics. We will describe
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one such phenomenon in the setting of local state discrimination (BCCL80; [W0090).
Let us consider the following pair of bipartite real quantum states shared between Alice
and Bob (WKR"21a)

1
P = 2 Xl + X)),
1 (3.120)
P2" = 5 (el + XD,

where |p.) = (|00) = |11))/ V2, and W) = (101) = [10))/ V2. Alice and Bob can
perfectly distinguish these two states via LOCC. In order to see this, we rewrite the
above states as follows:

1
p?B = Z(H4 + Oy ® O_y)»
(3.121)

1
pﬁ‘B = Z(L -0y, ®0,y).

Here, I is an identity matrix of dimension 4 and o, is the Pauli-y matrix. Let us now
consider a two outcome measurement with Kraus operators (each corresponding to an
outcome) given by
M, =
M, =

+

b}

B He B FH [P
PEH® ||+ [P
where |+) = (|0) + i|1))/ V2 and 2 =0y — 1))/ V2. These Kraus operators can

be implemented by an LOCC protocol as follows: Both Alice and Bob perform a local
measurement in the {l-?-) , |i>} basis and Alice shares her measurement outcome with

® |:> (¢

® [F)(+

(3.122)
+

Bob. If both their outcomes are correlated, then their shared state is pr . On the other
hand, if their outcomes are anti-correlated, then their shared state is p/z‘B . This shows
that the quantum states from Eq. (3.120) can be perfectly discriminated via LOCC.
Now let us note that, Tr[S o] = O for any real symmetric 2 X 2 matrix S. This implies,
for any POVM element M; = 3y A ® Bj; such that A are real symmetric matrices,
the following holds

1
Tr(M,0}?) = Te(M ;055) = 1 Tr(M)). (3.123)

Therefore, the bipartite states from Eqs (3.120) are indistinguishable when Alice and
Bob are restricted to real quantum operations. This shows the necessity of complex
numbers in local state discrimination and motivates the role of imaginarity as a resource
(overcoming the limitations of real quantum mechanics). With this motivation, we will
now present the basics of the resource theory of imaginarity.

In the resource theory of imaginarity (HG18)), one defines the set of free states (real
states F,) as quantum states with real matrix elements (in a reference basis {|m)})

Fr=lp : (mloln) € R}. (3.124)

Note that a quantum state which is real in the reference basis is not necessarily real with
respect to another basis. Therefore, similar to resource theory of coherence (SAP17),
resource theory of imaginarity is a basis dependent theory. We consider the set of real
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operations as the set of free operations in this theory. A quantum operation A is said
to be a real operation if it can be represented in the following way (HG18)

Alp] = Z KipK| Vp e D, (3.125)

where K;’s (kraus operators) are real matrices (i.e, <m|K j|n> € R). In order to make
sure that A is trace preserving, we additionally demand the following condition

Z KK =1 (3.126)

In (HG18), the authors show that the set of real operations coincides with the set of
completely non-imaginarity creating operations. We say a quantum operation A’ is
completely non-imaginarity creating if the following holds for every real state p*S

IS @ AS[pSS1 e F,. (3.127)

Here, p%' is a state of the system S’ ®S and I®" is an identity map acting on the system
S’. Moreover, in (HG18)), the authors also show that a quantum operation A’ is a real
operation if and only if it has a real dilation. Note that, a quantum operation A’ is said
to have a real dilation if there exists a real orthogonal matrix O and a real state p5" such
that

AS() = Trg[0(-®p%) O"1. (3.128)

Here, T denotes the transpose operator. One can define stochastic version of real oper-
ations by relaxing the condition in Eq.(3:126)), in the following way

ZKjK,- < (3.129)

Let us now define

Ly = (3.130)
Since K;’s are real matrices, it follows that Ly is also a real matrix satisfying
L3L0+ZKITK,- =1 (3.131)

This shows that every set of incomplete real kraus operators (K;) can be completed with
real kraus operators (Lg).

One of the counter-intuitive features of the resource of imaginarity is existence of
a infinite resource state (|3r)) Here, [+) = % (I0y + i [1)) is also called an im-bit. With
one im-bit at hand, one can simulate arbitrary quantum operations or measurements via
real operations. Let’s say we wish to implement a quantum operation A (of dimension
d) with Kraus operators {K}}, satisfying 3’ ; K;K j = P < I,. Here, I; is the identity
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matrix of dimension d. Let us now construct a real operation (A,) with Kraus operators

given by {K; ® |+) (+| + Kj*. ® |i) (%|}. Here, |=) = % (10y = i|1)). One can see that
Ar(p®]#)(3]) = Ay @ [+) (4] (3.132)
and
UK @8y 3|+ KT @ |2 (G © |2 (H + Ki @]y (2] = Pe ) (3] + P e [) (2
J

<L ®Il,. (3.133)

The above inequality follows from the fact that P < I; <= PT < 1,. This proves that
one im-bit is sufficient to implement any quantum operation. Note that the im-bit is a
qubit state, which can be used to implement any quantum operation of arbitrarily large
dimension. In the lemma below, we show any pure state in this theory is equivalent to
some qubit state.

Lemma 3.2. (WKR*21b) There exists a real orthogonal matrix O, for any pure state

[y such that
O, 1) = /1 +|<;ﬁ*|lﬁ>| 0y + i /1 —I(;ﬁ*l%l . (3.134)

Proof. Firstly, note that any pure state |y/) can be written as

) =aly1) +iblys). (3.135)

Therefore,

") =aly) —iblya). (3.136)
Here, |y;) and |y,) are real vectors and {a, b} are real numbers. Also note that for any
two real states |y;) and |y,), there exists a real orthogonal matrix O, such that

O, ly1) =10y, (3.137)
O, |y2) = cos6|0) +sinf|1), (3.138)

where cos 6 = (y1ly2). Now, we apply O, to [). This gives us
O, ¥) = (a+ibcosh)|0) + ibsinf|1). (3.139)

This shows that O, |) is effectively a single-qubit state. Therefore we can associate a
Bloch vector r with O |¢), with coordinates given by

re = b? sin(26),
ry = 2absin(f), (3.140)
r, = a* + b? cos(20).

We now perform another real orthogonal transformation Oy, such that 0,0, ) lies in
the positive y-z plane. The coordinates of O..0, |y (s) can be given as follows:

sy =0, Sy = |r_v|a (3.141)

s;= A/l = r)z, = V1 - 4a2b? + 4a2b? cos? h.
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From Eq. (3:133)) and Eq. (3.136)), we obtain

alyy = 2210, (3.142a)
bly,) = W);ﬂ (3.142b)
i
Therefore, we can express a® and b? as
@ =[P = S + v, (3.143)
Y
p =[] = - ww - wwn, (3.144)
2i 4
Recall that cos 8 = (y,|y,). Using this we arrive at
1
abcost = ab (yily2) = E(W*Itﬂ) = Wl). (3.145)

Simplifying Eq. (3.141) using Eq. (3.143), Eq. (3.144) and Eq. (3.143) and gives us

the following
se=0, sy = A1=[W WP s =W W) (3.146)

The Bloch vector s corresponds to a pure state given by Eq. (3.134). This completes
the proof. O

3.5.1 Geometric measure of imaginarity

For the resource theory of imaginarity, the geometric measure can be defined as

G (p) = 1 - max F (p.p,) (3.147)

PrEF;

Here, F, refers to the set of real states. This quantity will be later used to provide a
complete solution for single-copy transformations, when the initial state is pure. We
will now calculate this quantity for general pure states.

Lemma 3.3. (WKR*21b) For a pure state |\y) the geometric measure of imaginarity is
given as

L= [y |

G(ly)) = >

(3.148)

Proof. From lemma|[3.2] it follows that

l * l_ *
G(|w>>=G[\/M|0>+i\/'<+"”'u>). (3.149)

Consider any state of the form

lu) = ao |0) + iay |1) (3.150)
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with ap > a; > 0 and a% + a% = 1. Let [v) = X, b;|j) be a arbitrary real state. Then we
have

| (V) > = laobo + iayb1|* = a3l + atbi < a3, (3.151)

The inequality is due to the fact that 3} ; b? = 1. Since | (Olu) |* = a(z), it follows that

max | (Viu) |* = a2, (3.152)
[V)eF;
and thus G(|u)) = a%. This completes the proof. O

Since any real state can be expressed as a convex combination of pure real states,
from (SKB10), it follows that

Pr€S {p

Glp) = 1 - max F (p.p,) = m|i¢n>}ijG(|t//j>). (3.153)
»Yi j

Here that minimisation is performed over all pure state decompositions of p, i.e, {p;, lw j> :

2 Dj |a,//j> <1//j| = p}. Note that, from Eq. , we see that G is convex:

GO pip) < D piGloy. (3.154)
J J
In lemma (3.3)), we gave analytical expression for G for arbitrary pure states. We will
now extend this result to any arbitrary quantum state.
Theorem 3.5. (KDS23) For a quantum state p, the geometric measure of imaginarity

is given by
1 - F(p,pT
1= VEp.p) (3.155)

Gp) = > ,

Proof. From lemma|[3.3] we know that

L U 21 I VEWW1, )y

Gy = —— >

(3.156)

Let us assume {pj, |1// j>} be the ensemble of p, achieving the minimisation in Eq.
(3.153). We will now use the joint concavity property of root-fidelity (Will7) to find
the following

VE@.p) = > p \/F(Idfj> (Wil ;) {ih
J
- VFo) 3 Al—\/F(|¢f><‘/’f|"/’§><¢’§)
-5 = 4 Pj 2
- G (3.157)
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This gives the following lower bound of geometric measure of imaginarity

1 - VF(p.p)

G(p) > 5 (3.158)
From Eq. (3.153), we know
G(p) = min Z PG, (3.159)
pilwi)

where the minimisation is over all the pure state ensembles of p. One can equivalently
write Eq. (3.158) as
max D pl{u) | < VFo.D. (3.160)
PplVip

We will now construct a pure state decomposition which saturates the above bound.
Note that any other pure state ensemble of p (let’s assume {g;, |¢;)}) relates to the pure
state ensemble {p;, |¢/ j>} as follows

Vailgy = D UL Bi ) - (3.161)
i

Here U j; correspond to the matrix elements of a unitary matrix U. Additionally, without
loss of generality, we assume {g, |<p j>} to be the eigenvalues and eigenstates of p. From,

Eq. (3.161), it follows that
NGiq; (eile’) = (UAUT ), (3.162)

where A;; = \/Dip; (w;|¢/j.>. The singular values of A correspond to the square roots of
eigenvalues of AAT(= AA*). Note that,

AAY = " pepip; (wilwy) (wilw)) (3.163)
k

= pip; Wil p” |w)) (3.164)

= Wil Npe" Vplvi)- (3.165)

Hence, the matrix (AA*);; is yjop! +jp expressed in the eigenbasis of p. Therefore, the
singular values of (A);; (matrix) are the eigenvalues of N \/ﬁpT vp. Let us note that,
for any symmetric matrix S, there exists a decomposition of the form (BGGS88)

s =007, (3.166)

where X is a positive diagonal matrix and Q is a unitary matrix. Eqgs. (3.162) and
(3.166) imply that there exists a pure state decomposition of p (say {4;, |u;)}) such that

VA (il = 64D, (3.167)
where D; is the j” eigenvalue of [ yop” yp. This decomposition saturates the bound
in This completes the proof. |
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We will now show that geometric measure of imaginarity is a strong imaginarity
monotone. For the definition of strong monotonicity see Eq. (2.4). This strong mono-
tonicity property helps us to provide upper bounds on transformation probabilities in
general resource theories. Precisely, from (WTX*20), we know that for any resource
quantifier R, which is convex and strongly monotonic under free operations, the fol-
lowing holds:

R(p)

R(o)’
Here, P(p — o) is the optimal probability of transforming p into o via stochastic free
operations.

P(p — 0) < min 1. (3.168)

Lemma 3.4. (WKR"21b)) Geometric measure of imaginarity (G) is a strong imaginar-
ity monotone.

Proof. Let us first prove strong monotonicity for pure states. From lemma it is
sufficient to prove it for states of the following form

|y = cosa|0) +isina|l), (3.169)

with @ € [0,7/4]. The geometric measure of imaginarity of this state is given by
G(la)) = sin® @. Proving strong monotonicity for pure states reduces to proving the
inequality
Z max | {gjIK le) > > cos*a, (3.170)
YeF,

les s

where {K} is a set of real Kraus operators. Let us first note that

2

Here we introduced

|{OIKT K jla) |
max {eKjla) P = " % (3.171)

|‘PJ j
s; = (0IKTK;10). (3.172)
J Jj
Let us recall that all the Kraus operators K are real. Using Eq. (3.169), we obtain
1{0IKT K jl} I = | {0IKT K;10) P cos® @ (3.173)
+1{0IK] K;j|1) [ sin” @
> [(0IK] K10} cos” ar.
Eq. (3.171) and Eq. (3.173) imply
| O|KTK 10} |
> max [{gilKjla) P> Y ~———— > cos a. (3.174)
J

I |e)e

Definition of s; (see Eq. (3.172)) along with the fact that }}; K TK; = 1, gives us the
desired inequality (3.170).
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The above arguments show that G satisfies strong monotonicity for all pure states.
We consider an optimal decomposition of a mixed state p = }; p; |z,0 j><¢ j| to extend
this result to mixed states.

Gp) = ), piG (). (3.175)
J

We will now introduce s = <¢k|KjTKj|ka> to obtain

T
Z‘]] [ JPK) qu (ZpkKWk)(lMK]

K; [yl KT

_E qj (::pks.]k J ijkk J]

K W)yl K7
<Zpk51k [ ¢ ¢ ]

S jk
< ijG(iwj =G(p). (3.176)
J

where the first inequality follows from the fact that G is convex. This completes the
proof of strong monotonicity of geometric measure of imaginarity for all mixed states.
O

3.5.2 Stochastic approximate state conversion

Using the tools developed above, we will now provide a complete solution for single
copy transformations via real operations, starting from a pure state. Below we will
provide the optimal probability of transforming a pure state into another pure state via
real operations. We will then generalise this result to arbitrary target states and then
extend it to the regime of stochastic-approximate transformations.

Lemma 3.5. (WKR*21b)) The maximum probability for a pure state transformation
[y — |@) via real operations is given by

1 _ *
P(I) = Io)) = min{—' L ',1}. (3.177)
L=1<¢" ) |
Proof. Since G is a strong imaginarity monotone
G
P(p — o) < min{ ®) , 1), (3.178)
G(o)
When initial and target states are pure, proposition implies
=Y
P(Y) — |o)) < mm{#, 1. (3.179)
1 - el |
We will consider the case when
[ | > 1"l |, (3.180)
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and show the existence of a real operation saturating the bound (3.179). In order to
show this, we will first apply a real orthogonal transformation to |¢) to bring it into the
following form (see lemma|3.2))

1 * 1_ *
'y = \/MI@+M/M|I), (3.181)

Consider a real quantum operation with the following Kraus operators

KO=(3 ?) K = -2, (3.182)

where a is given by

L= 1@ 1+l
= . 3.183
“ \/1—|(¢*|90>| Tl G189

Eq. 3:I80) implies that @ < 1. By inspection, one can see that the Kraus operator Ky
transforms ") into the following state

1 * 1_ *
o) = ‘/M'OHMM”)’ (3.184)

with a probability (p) given by

- Lol
1= [¢*le) |
Up to a real orthogonal transformation, |¢") is equivalent to the desired state |¢) (see

lemma [3.2). For the case when, | (4"} | < |{¢*|¢) |, the transformation [) — |¢) can
be achieved deterministically (unit probability) (HG18)). O

(3.185)

Let us now generalise this result to arbitrary target states.

Theorem 3.6. (KDS23) A pure state ) can be transformed into a quantum state p via
real operations, with a maximum probability given by

G
P(ly) = p) = min[M 1]. (3.186)

Glp) ’

Proof. From strong monotonicity of geometric measure, we know that the ratio of
geometric measures gives the upper bound for the optimal achievable probability of
transforming o to p

G(0)
Gp)’
From lemma [3.5] we know that this inequality is saturated for pure to pure transforma-
tions,

P(o — p) < min[ 1]. (3.187)

G(y))

,1 3.188
Glen™ ! (5-188)

P(ly) — le)) = min[
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Now we will show that Eq. is saturated whenever the initial state is pure (o
}>} is the ensemble of

= |¢) (¥|) and for arbitrary target states. Let us assume { p;.,
’|, achieving the minimisation in Eq. (3.153). We will now

Y]

choose a purification of p given by,

lo) = ® 1iyA, (3.189)

where A is an ancillary system. One can easily notice that

G(lp)) = G(p). (3.190)
Therefore from Eq. (3.188), we can say that
Gy Gy
P(l¢) — Ip)) = min{—"==, 1} = min{——==, 1}. (3.191)
ol G’ G
The desired transformation is achieved by first converting [i/) to |o) with probability
given in Eq. (3.191)) and then discarding the ancilla. This completes the proof. i

The result of theorem [3.6]is analogous to the result in bipartite entanglement theory
(see Eq. (3.108)), where the optimal probability of transforming a pure state into a
2-qubit mixed state via SLOCC is given by the ratio of geometric measure of entangle-
ment of the initial and final states. Therefore using similar techniques used in section
[3.4.2]we can extend the result of theorem[3.6]to stochastic-approximate regime. As we
did in lemma [3.1] we first provide tight continuity bounds for the geometric measure
of imaginarity. The proof of the following lemma is similar to the proof provided for

lemma[3.11

Lemma 3.6. (KDS23) For a state p consider a set of states S, y such that F(p,p") > f
forall p’ € S, s. The minimal geometric imaginarity in S , ¢ is given by

min G(p") = sin (max {sin_l \G(p) — cos™! \/]_‘, O}) (3.192)

PESyy

For a pure state |\), the maximal geometric imaginarity in S y is given by
m?x G(p’) = sin (min {sin‘1 VG(¥)) + cos™! \/]_‘, ;—r}), (3.193)
P'ESy s

From theorem [3.6] we know that the optimal probability of transforming ) into p
via real operations is given by

Py = p) = min{ S 4y, (3.194)

G(p) ’
Here, G is the geometric measure of imaginarity. From Eq. (3.194) and the definitions
of Py (see Eq. (3.2) and S, ; it follows that

G(¥))
mingcs, , G(p')’
This allows us provide an analytical expression Py in the case of initial pure states. The
proof of this theorem will again be analogous to the proof of theorem

Py(l) — p) = min{ 1}. (3.195)
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Theorem 3.7. (KDS23) A pure state ) can be transformed into a two-qubit state p
via real operations with a fidelity f and a maximal probability given by

1 for my >0
e o therwi (3.196)
sinz(sin’] G(p)—cos™! \/17) otherwise,

where my = sin™' \/G()) — sin™' \/G(p) + cos™! /.

For the special case of f = 1, we recover the result stated in Eq. (3.I91). The
optimal fidelity for a given probability can also be found easily:

G(¥)
1 for p < o)

F =
p() = p) cos2 [sin_l VJG(p) - sin™! ,/@] otherwise.

Theorem [3.7] provides a closed expression for Py. In fact one can also obtain a closed

expression for F,. Note that, when p < v -, Eq. (3.191) implies F,(y — p) = 1.

G(p)
g(—(/'fi, the optimal fidelity can be obtained by solving

(3.197)

For the case when 1 > p >

Eq. for f, which gives

G(y))

F,() — p) = cos® {sm-l VG(p) — sin™! — | (3.198)

3.6 Conclusions

In this chapter, we studied the regime in between probabilistic and approximate trans-
formations. For general resource theories, we give upper bounds on the achievable
probability and fidelity for single copy transformations in this regime. We show that
these single-copy bounds imply upper bounds on asymptotic transformation rates, for
various classes of quantum states. We then focus on bipartite entanglement theory,
solving the question of stochastic-approximate state conversion via SLOCC for pure
states of arbitrary dimension and when the target state is an arbitrary two-qubit state
(initial state considered to be pure). We then move to resource theory of imaginarity,
providing an analytical expression for geometric measure of imaginarity and proving
some important properties of it. We use these results to provide complete solution to
stochastic-approximate state conversion via real operations, when the initial state is
pure.
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Chapter 4

Catalytic transformations

4.1 Introduction

Catalysis is a phenomenon widely used in chemical processes (vSYLMA99). William
Ostwald’s definition of catalysis says “Catalysis is the acceleration of a slow chemi-
cal process by the presence of a foreign substance” (Ost94). For thousands of years,
humans have been using catalysts in fermentation processes (vSvLMA99). Quantum
catalysis, on the other hand, has some conceptual similarities to chemical catalysis, but
differs in various aspects. A quantum catalyst is a quantum state which helps us realise
an otherwise impossible state transformation, while remaining unchanged by the end
of the transformation. The first example of quantum catalysis was provided in (JP99)) in
the context of bipartite entanglement theory. Before showing the example of quantum
catalysis, let us again recall that a bipartite pure state |y) can be transformed into |p)
via LOCC iff the reduced states ¢ and ¢ satisfy the following majorisation condition
WA < ¢*")([Nie99).

Zaiﬁz,& forall 0<n<d-1, 4.1)
i=0 i=0

Here, {@;} and {B;} are the squared Schmidt coefficients (in decreasing order) of |y)
and |p) respectively and d = min{d,, dg}, with d4 and dp being the dimensions of the
Hilbert spaces of Alice and Bob, respectively. See the discussion around Eq. for
details about Schmidt decomposition and Schmidt coefficients.

Now let us consider the following pair of states, in their respective Schmidt decom-
position

W) = V0.4100) + V0.4[11) + V0.1[22) + V0.1133), (4.2)
lpy = V0.5100) + V0.25[11) + V0.25[22). (4.3)

From the family of inequalities given in Eq.(4.1)), one can easily see that

y* £ ot and ot Ayt (4.4)
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Therefore, neither |iy) can be transformed into |p) nor |¢) can be transformed into
[). Let us now consider a catalyst system in a bipartite pure state ) = V0.6|00) +
V0.4]11). Again using the majorisation inequalities (given in Eq. ), one can see
that

W) & ) =25 o) @ ) - 4.5)

Note that, the state of the catalyst (|)) is unchanged in the process and can be reused
to perform a similar transformation. After this example of entanglement catalysis was
provided, major efforts were made to characterize catalytic transformations between
any two bipartite states ) and |¢). When there exists a pure catalyst |7) enabling
the transformation from |) and |p), we say “|y) is trumped by (<7) |¢)”. In other
words |y) <r |¢) iff there exists a finite dimensional pure entangled state |5) such that
[Wy®|n) < le)y®In). In (K1107; Tur07), the authors completely characterise the trumping
relation between bipartite pure entangled states. Precisely, they show that |y) <7 |¢) is
equivalent to (TurQ7; K1107)

fil@ > fiB) V k € (—o0, 00), (4.6)

where @ and ﬁ are the squared Schmidt coefficients of the states |y) and |¢) respectively
and for a d-dimensional probability distribution (), f;(x) is given by

Inyd xk (k> 1)
>4 oxilnx (k= 1)
i) =4-In¥L, 2 (0<k<1) 4.7)
-39, Inx; (k=0
Inyd, x  (k<0).

Note, that this is not a complete characterisation of catalytic transformations between
pure entangled states, as mixed state catalysts are not considered. Another problem
with this solution is that for a given pair of pure states, in general, one needs to check
infinitely many inequalities to conclusively show the existence of trumping rela-
tion between them. In order to solve both these problems, we will introduce the idea
of approximate catalysis, where we allow for arbitrarily small amount of correlation
between system and the catalyst. Formally, a bipartite state p° can be transformed into
oS via approximate catalysis iff for every &£ > 0 there exists a catalyst 7€ and a LOCC

operation A such that
[A(ef 7€) - 07 <. (48)
Trg [A (pS ® TC)] =175, 4.9)

Note that Eq. makes sure that the catalyst remains unchanged and Eq. (#.8)
implies (because trace norm does not increase under partial trace)

”Trc [A (o ®7)] - oSH] <e. (4.10)
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This shows that the final state of the system is e-close to 0. Additionally, Eq.
also says that the final state of the system and catalyst (A (ps ®TC)) is e-close to a
product state. Therefore, the correlations between the system and the catalyst can be
made arbitrarily small.

4.2 Catalytic transformations between pure entangled
states

We will now use the above mentioned notion of approximate catalysis and completely
characterise the catalytic transformations between pure entangled states. Let us first
recall the notion of asymptotic transformations.

We say that a asymprotic transformation from p to o is possible with rate r, if for
any € > 0 and any 6 > O there exist natural numbers m, n and a LOCC operation A
such that

A(p®n) =yS1-Sm, (4.11a)
H,us"“s’" _ o-®’"||1 <s, (4.11b)
%+6>r. (4.11¢)

Here, p51-5» is a state of the system S| ® S, ®-- - ®S,,. Note that each §; is a copy
of the system S . The supremum of r fulfilling these properties will be called asymp-
totic transformation rate R(p — o). We say that p can be asymptotically converted
into o if R(p — o) > 1. Inspired by techniques introduced within quantum thermo-
dynamics (SS21)), we will now connect this notion of asymptotic transformations to
approximate catalysis.

Lemma 4.1. (KDS21) If p5 can be asymptotically converted into o> then p° can be
converted into o5 via approximate catalysis.

Proof. Let a LOCC protocol A converts n copies of p into I
r=Alp™]. 4.12)

Here, I acts on the system §1 ® S, ® - ® S, where every §; is a copy of §. We will
denote I'; as the reduced state of Ton §1 ® S, ® --- ® S; and [y = 1. Additionally, FEJ)
denotes the reduced state of I'; on S ; for j <.

From the definition of asymptotic transformations, we know that if p is asymptot-
ically convertible into o then for every € > 0 and 6 > O there exist natural numbers
m < n such that

[T = o®"||, <. (4.13a)
% +6>1 (4.13b)
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We will now construct a catalyst 7 transforming p into o~

1 n
= Z PPV T, ® kYK . (4.14)
k=1

The catalyst C acts on S,...S, ® K. Here K is an ancillary system held by Alice. K
has a dimension of n with basis {|k) , k € [1, n]}

Let us now perform the following LOCC protocol on the system and the catalyst:

(i) Alice measures K in the basis |k) (rank one projective measurement) and com-
municates the measurement outcome to Bob. If the measurement outcome is n, Alice
and Bob perform the LOCC protocol A (see Eq. @#.12)) on S, ® S, ®---®S,,. For all
the other outcomes of Alice’s measurement, both the parties do nothing.

(i1) Alice applies a unitary on K which converts |[n) — |1) and |i) — i + 1).

(iii) A SWAP unitary is applied by both the parties on their parts of (S;, ;1) and
(S, S,) totransform §; —» S;;;and S, — S;.

Note that the initial state of the system along with the catalyst is given by

1 n
pPOT = —Zp®k®Fn_k®Ik)(kl. (4.15)
n k=1

After step (i), p ® T transforms into

n—1

o 1
po==> p*eT, @) (K +-T®n)n. (4.16)
n =l n

Step (ii) transforms g into p, where

n

| ~
W= ™ el kK. (4.17)
n

k=1
If we trace out S, from ', the resulting state is the initial state of the catalyst 7 (see
Eq. (4.14)). Therefore, step (iii) transforms " into x°C, satisfying Trs [¢*€] = 7. This
shows that the state of the catalyst is invariant in this protocol.
We will now show that ||,uS C-oS® TCHI can be made arbitrarily small. Note that
w5€ and ' are equivalent up to a cyclic SWAP. Therefore,

SC

115€ = o5 @ 7€ = Ik = ylli, (4.18)

where
n

PZ @ Tty ® kK. (4.19)
k=1

’y:

S |-

Here T is constructed from I by putting o at S;, without any correlations with I';_;.
That is, I'; = (Trs,I';) ® o (up to the order of the components in the tensor product:
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S1985,®---®S;®C). Using this, we get

’ [N i
I =yl ;ZHFnH_k—an—k”l
k=1

n

1 1
= Z Ty 1-k = Uit + p Z T 1-k = Dnr1llt
=1

k=n—m+1
n-m 1 < .
< 2 + - Z T 1k = D1kl
n n
k=n—-m+1
1 & n+l—k 1 - n+l-k T
< 20+ - Z ||Fn+1—k -0 ”1 + - Z ”0- - F’H'l_k”l
k=n-m+1 " k=n—m+1
< 20+e+e=2(0+e). (4.20)

Here, the first inequality follows from the fact that ||p — o||, < 2, for any two quantum
states p and 0. Second inequality follows from Eq. (4.13b). Third inequality due to
triangle inequality and in the last inequality we use Eq. (4.13a)). Finally note that both
€ and ¢ can be made arbitrarily small. This completes our proof. O

Note that, even though lemma@]is in the context of LOCC, the same result holds
for many other resource theories. One can easily see that, lemma .1 holds for any set
of free operations, which include (T'S22)

e Relabelling of a classical register
o free operations conditioned on the classical register.

We will also make use of an entanglement quantifier, called squashed entanglement
(CWO04). The squashed entanglement of a bipartite quantum states p*? is defined
as (CWO04)

1
E (pAB) = inf{EI(A; BIE) : p*BE extension of pAB} , 4.21)

where
I(A; BIE) = H (0*F) + H (0"F) - H (0**F) - H (p") (4.22)

is the quantum conditional mutual information of p*#£ and the infimum is taken over

all quantum states p*8€ with pA% = Try (pABE). Squashed entanglement satisfies the
following properties (CW04)

e Non-increasing under LOCC operations (monotonicity)

o Strong-superadditivity (Eq (0"42%) 2 Eyq (p*) + Esq (0/))
o Additive (E,, (0" ® p"'") = Ey, (0"%) + Ey (0"%))

o Continuity
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e For a pure state [y)*? squashed entanglement is equal to the entanglement en-
tropy, i.e., the entropy of the reduced state: Eg, (|¢/)AB) =H (z,bA)

Using these properties, we will now show that squashed entanglement does not increase
under approximate catalysis.

Lemma 4.2. (KDS21)) If p*B can be transformed into v\ via approximate catalysis,
then the following holds

Ey(p"*) 2 Eq (/7). (4.23)
Proof. If p"B can be transformed into v*Z via approximate catalysis, then for any &£ > 0
there exists a catalyst 74'%" and an LOCC operation A s.t, the final state o488 =
A" @ T8 satisfies
HTrA,B, [of*A’BB’],v‘“BH1 <s (4.24)
Tryp |85 | = 47 (4.25)
Using monotonicity and additivity of squashed entanglement, we find

Eq (M) < Ey (") + Eog (+*). (4.26)

From strong-superadditivity of squashed entanglement, it follows

Eq (™) 2 Ey (Trap [V ]) + Ey (7). (4.27)
Combining Egs. and (#.27), we get
Eyy (p"?) 2 Eyq (Trap |57 ]). (4.28)

Note that, from definition of approximate catalysis, it follows that Try [O'AA/BB/]
can be made arbitrarily close to v*2 in trace distance. Therefore from continuity of

squashed entanglement (AF04), we get Ey, (pAB) > Ey, (VAB). This completes the
proof. ]

Using lemmafd.T|and lemma[4.2] we present the following result, which completely
characterises pure state transformations via approximate catalysis and LOCC.

Theorem 4.1. (KDSZ1) ()2 can be transformed into |p)*® via approximate catalysis
if and only if
H(y*) 2 H(¢"). (4.29)

Proof. Note thatif H (W‘) >H (gpA), then |)*8 can be asymptotically transformed into
|<p)AB via LOCC (BBPS964). Therefore, from lemma if follows that if H (I/IA) >

H (t,oA), then [)*® can be transformed into |p)*? via approximate catalysis. In order
to show the opposite direction, we use the fact that squashed entanglement does not
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increase under approximate catalysis (lemma4.2). Therefore, [1)*Z can be transformed
into |¢)*? via approximate catalysis, then

Eq (") 2 Eyy (19)**). (4.30)

Note that for every bipartite pure state )", squashed entanglement is equal to the
entanglement entropy H(y*). This completes the proof. O

This shows that catalytic transformations between pure entangled states are com-
pletely characterised by entanglement entropy. This gives an operational meaning to
entanglement entropy in the single copy regime.

4.2.1 Dimension of the catalyst

Theorem [.1] provides necessary and sufficient conditions for approximate catalytic
transformations between pure entangled states, in terms of entanglement entropy. We
will now show that such catalytic transformations, in general, require a catalyst with
an unbounded dimension. In order to show this fact, we will make use of logarithmic
negativity, given by (1dZHSL98; [VW02)

En(p) = log, o™ 1, (4.31)

where T, is the partial transpose with respect to system A and p = p® is a bipartite
quantum state. Let us note that logarithmic negativity is additive (VWO02)

En(p®0) = Ex(p) + En(0). (4.32)
We will now construct a pair bipartite pure states |/) and |¢) such that

E(jy)) = E(lg)), (4.33a)
En(ly)) < Ex(l)). (4.33b)

In order to do this, let us define a 2-qutrit pure state [¥') as
|[¥) = sina@ cos B|00) + cos @ cosB|11) + sinB[22) . (4.34)

We will define |y) and |¢) by choosing the value of the parameters as @ = 1.3; 8 = 0.75
and @ = 0.7; 8 = 1, respectively. One can easily verify that

E(y)) = 1.195, E(lpy) = 1.157, (4.352)
En(w)) = 1.324, En(lp)) = 1.361. (4.35b)

Therefore |) and |¢) satisfy Egs. (£.33). Let us note that there does not exist a pair of
2-qubit pure states satisfying Eqs. (@.33). In other words, E and Ey impose the same
ordering for any pair of 2-qubit pure states. Before we present the main argument, let
us show that logarithmic negativity is continuous.
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Lemma 4.3. (DKMS22b)) For any two bipartite quantum states p and o of dimension
d’

d
|En(p) — En(0)] < %IIP — ol (4.36)

Proof. We will now show that for any two bipartite states p and o~ which are arbitrarily
close in trace distance, the difference of logarithmic negativities is arbitrarily small.
We will make use of the fact that the trace norm and the Hilbert-Schmidt norm satisfy

Ml < IMIly < VrlIM]L, (4.37)

1/2
for all matrices M. Here r is the rank of M. Also note that ||[M|, = (Zi,j |Mij|2) / ,

where M;; are the matrix elements of M. Therefore, ||M|, is invariant under partial
transpose i.e, || M||, = ||M"4||,. From Eq. (4.37), we get

llo = oll2 < llo = ol (4.38)

Using the fact that Hilbert-Schmidt norm does not change under partial transpose, we
have
o™ = "ll2 = llo = ll2 < llp = . (4.39)

Note that | ||All; —||Bl];| < ||A — B|; for any two matrices A and B. Using this fact, along

with Eq. (.37) gives us,
T, T Ty _ T Ty _ T
o™l =Nl 11l < llo™ = o™l < Vrllp™ = o1l < Vrllp = s

Using the definition of logarithmic negativity, we see that

T,
T llo™ 111
My = 1o
TR T,
10g2(1+ \/7|IpT— 0‘||1)S Vrllp —Trflh
llo T4l In2||o 4|y
Vdllp - ol - Vd

o =i 4.40
oo < el el (4.40)

En(p) — En(0) log, llo™ [l = log, llo

IA

Here we assume ||p”*||; > |lo7]|;. In the second line, we use [jo™* —a4|l; < rllo—alli,
along with the relation In(1 + x) < x for x > —1. For the third like, we considered

r<dand|lc?|; > 1. Here d represents the dimension of the total bipartite state. By
considering the opposite i.e, [[o”||; < ||lo74||;, one gets

Vd
En(o) = En(p) < 1 Sllo = ol (4.41)
This completes the proof. O

We will now use the above lemma to show that an approximate catalytic transfor-
mation from [) to |¢) would require a catalyst with unbounded dimension. We will
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prove this by contradiction. Let us assume |¢/) can be transformed to |p) via an approx-
imate catalytic transformation, such that the catalyst dimension is bounded. Therefore,
for every &€ > 0, there exists a LOCC operation A and a catalyst state 7 such that

1A () Wl ©7) - Iy (o &7 <, (4.42)
Trs [A (1) wi* @ 7€)] = 7€, (4.43)

Here, 7 is a catalyst with a bounded dimension. Let us recall that [/) and |p) satisfy the
conditions in Egs. (#.33). Since logarithmic negativity does not increase under LOCC
operations, we have

Ex(¥) @l ® 1) > Ey(AllY) (Y] @ T]). (4.44)

Note that, ||A(Y) (Y] ® 7) — @) {¢| ® 7|} can be made arbitrarily close to zero. If the
dimension of the catalyst is finite, from lemma [4.3] it follows that the logarithmic
negativity of A(Jy) (¢|®7) is arbitrarily close to the logarithmic negativity of |¢) (¢|®T.
Therefore,

Ex() (Yl 1) 2 Ex(le) (¢l ® T) = En(l¥)) = En(l¢)). (4.45)

Here we used additivity of logarithmic negativity. Thus we arrived at a contradiction
with Eq. (@336).

Using similar arguments, we will now show that for a catalytic transformation from
[¥) to |¢), non-zero correlations between the system and catalyst are required if the
states fulfill Eqs. (4.33). In order to show this, consider Eq. (#.42) and assume that
there exists a &’ > 0 such that for any & satisfying &’ > £ > 0, the system and catalyst are
in a product state (no correlations) i.e., A([y) (y|®7) = p’®T, where ||p" — |¢) (@lll;, < &.
Again using continuity and additivity properties of logarithmic negativity, we arrive at
the condition: Ey(l/)) > En(l¢)), which is contradiction with Eq. (#.33b). Therefore,
for any pair of states fulfilling Eqgs. (4.33) the correlations between the system and the
catalyst cannot vanish. But these correlations can be made arbitrarily small.

4.3 Catalytic-asymptotic equivalence

Catalytic and asymptotic transformations may look like very distinct concepts, but
lemma [4.1] provides evidence for possible connection between these two concepts. In
this section, we will explore this connection and show a complete equivalence between
these two kinds of transformations. In order to do this, we need to slightly change the
definitions of approximate catalysis and asymptotic transformations.

We will start by introducing a variant of approximate catalysis called correlated
catalysis. The main difference between correlated catalysis and approximate catalysis
is that, correlated catalysis allows for correlations between system and catalyst, while
in the case of approximate catalysis we ensure that correlations can be made arbitrarily
small. Formally speaking, we say a quantum state p5 can be transformed into o via
correlated catalysis iff for every &, there exists a LOCC protocol A and a catalyst state
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7€ such that
1€ = AG* &7,

C

(4.46)
I’ =l <& u€ =7

Note that ||us — 09|, < &, makes sure the the final state is e-close to 0. It is impor-
tant to note that, we allow for correlations between system and the catalyst. One can
also extend this definition to general resource theories by replacing LOCC with free
operations. In fact, when the target state is pure, both the notions of approximate and
correlated catalysis coincide. In other words, if a quantum state p can be transformed
into a pure state |/) via correlated catalysis, then p can be transformed into |) via
approximate catalysis. This can be seen from the proposition below.

Proposition 4.1. (GKS23) For any quantum state 15€,
1 = lexel* |, <& (4.47)
implies
15€ ~ o)l @i, <e+6 @ (4.48)

Proof. Fuchs-van de Graaf inequalities (see Eq. (2.17)) along with Eq. implies
the following

1
F (i 1o)el®) 2 \/1 = 5 b = lexel®,

&
> 1= 5 (4.49)

Note that fidelity F(p, o) = Tr \/ yjoo y/p. Let ° has a purification given by
ST = LIS 1) (4.50)
Here 2; are the Schmidt coefficients in decreasing order.Therefore Eq. (4.49) implies

Ao > L[1- 4.51)

&
5

Let now consider the purification of ,uS € to be |V>S €D Notice that, |v)SCD can be written
as

L =" 431 )P, (4.52)

with 4; being the same Schmidt coefficients as in Eq. (4.50). {|@;)} is an orthonormal
basis on CD. Let us note that

F ()P 10X0F @ laro)aol“?) = Ao, (4.53)
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and the fact that the fidelity can not increase under partial trace. Using this we obtain

the following
&
F (15, 10)0F° & Trp [leo)(ao|P]) > /1 - 5 (4.54)

Using again Eq. (2.17)), we get

2 5 ~100F @ oy [lany el < \/g . (4.55)

Let us also note that trace norm does not increase under partial trace. Therefore

H,f ~Trp [|a/0><a0|CD]”1 <2 \/g . (4.56)

Let us now use the triangle inequality for trace norm, arriving at

15 = 1000 @w], < [} = 10)OI° @ Trp [laoanl ]|
+ [ 030 & T [lao)@ol | - 0)0F & ]|, <4 \/g : 4.57)

Using again Eq. (4.55) we find

[l® = 10)0F*]], < 2\@, (4.58)

which together with Eq. and triangle inequality implies that

£
Xt = 10)OP]|, < &+2 \E 4.59)
We make use of the triangle inequality to obtain the following

e = toxel® @ Y|, < [ ~ 10X @ €|,
+ 1008 ® 1€ ~ le)el® @ x|, <& +6 \@ (4.60)

This completes the proof. O

The above proposition shows that achieving a pure state via correlated catalysis im-
plies decoupling between the system and catalyst. Therefore, showing the equivalence
between approximate catalysis and correlated catalysis, when the target state is pure.

Let us also introduce a variant of asymptotic transformations, called marginal
asymptotic transformations. We say a state p is marginally reducible to o if for ev-
ery £,0 > 0, there exists a LOCC protocol A and natural numbers n, m such that

A(p®") = s
| = ||, < eVi, (4.61)

Mis>1.
n
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Here, y,, is a state on m subsystems, each of them shared by Alice and Bob, and ;15,",)
is the reduced state of y,, on i-th subsystem. This notion of marginal asymptotic trans-
formations was first studied in the context of continuous variable systems in (FLTP23)).
Let us now discuss the difference between asymptotic transformations and the notion
of marginal reducibility. The former is requires that the final state y, is e-close to m
copies of 0. While the later only requires the marginals 1 are e-close to o-. Note that
||/Jm - ®’”“1 < g implies ||/Jf,’1) - 0'“1 < gV, because trace distance does not increase
under partial trace. Therefore, if p can be asymptotically converted into o then p is
marginally reducible to o

With these definitions in mind, we will now show that marginal reducibility implies

correlated catalysis. We will use the same technique used in lemma4.1]

Lemma 4.4. (GKS23) If o5 is marginally reducible onto o5 then p5 can be converted
into 05 via correlated catalysis.

Proof. Let a LOCC protocol A converts n copies of p into I"
r=Alp™]. (4.62)

Here, I acts on the system §| ® S, ® --- ® S, where every §; is a copy of §. We will
denote I'; as the reduced state of Ton S1® S, ® --- ® S; and 'y = 1. Additionally, 1"51)
denotes the reduced state of I'; on S ; for j < i.

From the definition of marginal reducibility, we know that if p is marginally re-
ducible onto o then for every € > 0 and ¢ > 0 there exist natural numbers m < n and
an LOCC protocol A such that

Hry) - a“l <& (4.632)

% +6>1 (4.63b)

for all j € [1,m].
We will now construct a catalyst 7 transforming p into o
1 n
== Z 02D @ T, @ kYK (4.64)
i
The catalyst C acts on S,...S, ® K. Here K is an ancillary system held by Alice. K
has a dimension of n with basis {|k) , k € [1, n]}
Let us now perform the following LOCC protocol on the system and the catalyst:
(i) Alice measures K in the basis |k) (rank one projective measurement) and com-
municates the measurement outcome to Bob. If the measurement outcome is n, Alice
and Bob perform the LOCC protocol A (see Eq. #.62)) on S ® S, ®---®S,. For all
the other outcomes of Alice’s measurement, both the parties do nothing.
(ii) Alice applies a unitary on K which converts [n) — |1) and [i) — [i + 1).
(iii)) A SWAP unitary is applied by both the parties on their parts of (S;, S;+1) and
(Sy,S,) totransform S; - S, and S, — §;.
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Note that the initial state of the system along with the catalyst is given by

l n
pPOT = - E PO , @Ik (k. (4.65)
=l

After step (i), p ® 7 transforms into

n—1

1 1
W== > p™ @, @) (ki + T @) nl. (4.66)
n £ n
Step (ii) transforms g into p, where

e
W= p* el ek . (4.67)
k=1

If we trace out S, from ¥, the resulting state is the initial state of the catalyst 7 (see
Eq. (4.64)). Therefore, step (iii) transforms p into 1€, satisfying Trs[15€] = 7. This
shows that the state of the catalyst is invariant in this protocol.

Note that 4 can be written as follows

1< 1 & 1 ©
LIS NI (4.68)
k=1 k=1 k=m+1

We will now show that “,us s ”1 can be made arbitrarily small. Egs. 1} along
with Eq. (@.68) imply the following

b=l -3 |5 =) 4
= 1
<! i(r}(")—aj)‘l
n k=1 1
+1 Zn: (F,(f)—as)
k=m+1 1
< @8+2n—m < e+ 26.
n n

Note that € > 0 and 6 > 0 can be chosen arbitrarily small. This completes the proof. O

In order to show the full equivalence, it is remaining to show that correlated catal-
ysis implies marginal reducibility. The following lemma shows this fact, for distillable
states. Let us note that distillable entanglement (Ep) of pA5, is asymptotic transforma-
tion rate of transforming p*? into l(pj‘_3> i.e, Ep(p"®) = (R (pAB - |¢/:B>)). A state pA8
is said to be distillable if Ep(p*8) > 0.

Lemma 4.5. (GKS23) If p5 is distillable and can be converted into o via correlated
catalysis, then p’ is marginally reducible onto 0.
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Proof. Let 7€ be the state of the catalyst such that the following holds

1€ = Ap® ®7°), (4.70a)

|* =S|, <6, u=2¢ (4.70b)

for some ¢ > 0. Since p is a distillable state, it is possible to distill some singlets from
a finite number of copies of p via LOCC. This allows us to approximate any state 7

via LOCC. Precisely speaking, for any & > 0, there exists is a natural number k and a
LOCC map A’ such that the following holds

|

From now on,we call 7, = A’(p®) as e-approximation of the catalyst.
We will now perform the following protocol on p®":

A (p™) - T||1 <e 4.71)

. The last k copies of the state p®" are transformed into 7, (approximately) via LOCC,

i.e.,
LOCC
P = pPr b g T, 4.72)

. Making repeated use of the state 7.,we transform each of the remaining n — k copies of
p into the desired state.

Let us now analyse step 2 more carefully. Using the e-approximation of the catalyst
(7€), Alice and Bob transform the first state p5! to obtain u; ® p®"*=D_ where y; is
given by

u'C = Ao @1f). (4.73)

Note that A is the same LOCC protocol as in Eqs. (4.70). Since trace norm does not
increase under CPTP maps, we obtain

b =€l < [l™ @75 - p* @ 7|, <. (4.74)
Recall that u© = 7€. Using Eq. (4.74)), we obtain the following inequalities

S1_ S
1 1
[ =], <& (4.75)
,uC -7 <e. 4.76)
1 1

Therefore, ,ulc is also a e-approximation of the catalyst state. This allows Alice and Bob
to carry out this procedure for other copies of p as well. Therefore (after performing
step 2) we arrive at a state v5'*S+ on S;...S,_, such that the reduced states on S;
satisfy the following condition

V5 = 1], <& @.77)
Using Egs. (4.70) along with the triangle inequality of trace norm, we find that

| =al|, <+ (4.78)
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From the above arguments we can see that for every € > 0 and ¢ > 0, we can transform
p®" into vS1-S++ fulfilling Eq. . It is important to note that k only depends on &
and ¢ and the integer n does not depend on neither € nor 6. Therefore, we can choose
n large enough such that making (n — k)/n is arbitrarily close to 1. This proves p is
marginally reducible onto . This completes the proof. O

Using lemma[4.4]along with .5 we arrive at the following result.

Theorem 4.2. (GKS23) Marginal reducibility and correlated catalysis are fully equiv-
alent for any pair of distillable states p and .

Note that all 2-qubit entangled states are distillable (HHH97)). Therefore Theo-
rem.2]implies a full equivalence between correlated catalysis and marginal reducibil-
ity for all two-qubit states. When we consider states beyond two qubits, Theorem 4.2]
applies even if the target o is not a distillable state.

4.4 Catalytic distillable entanglement

We will now use the tools developed in the previous sections to show that catalysis
does not increase the distillable entanglement of a distillable state (GKS23)). At a single
copy level, this result implies that approximate catalytic transformations are completely
characterised by distillable entanglement, if the target state is pure and the initial state
is distillable. This extends the result in theorem 1] to distillable initial states.

Let us write down the following definitions which will be used in this section.

o We say that a asymptotic transformation from p to o is possible with rate r, if for
any € > 0 and any ¢ > O there exist natural numbers m, n and a LOCC operation

A such that
A (p®n) =yS1-Sm, (4.79a)
Hﬂsl"'sm _ O.oz»m”1 <e, (4.79b)
% +6>r (4.79¢)

The supremum of r fulfilling these properties will be called asymptotic transfor-
mation rate R(p — o)

e We say that a marginal asymptotic transformation from p to o is possible with
rate r, if for any € > 0 and any 6 > O there exist natural numbers m, n and a
LOCC operation A such that

A(pB) =pfr-Sn, (4.80a)
|’ o, <eVi<m, (4.80b)
% 46> (4.80¢)

The supremum of r fulfilling these properties will be called marginal transfor-
mation rate R(p — o).
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e We say that p can be transformed into o via correlated catalysis at rate r, if for
any & > 0 and any § > O there exist natural numbers m, n, a catalyst 7° and a
LOCC operation A such that

A (p®n ® Tc) = Ilsl'"s’”c, (4.823)
”'usl...s,,, _ 0®m”1 <e, (4.82b)
u€ =1, (4.82¢)

m
— 46> (4.82d)

n

The supremum of r fulfilling these properties will be called catalytic transfor-
mation rate R.(p — o).

o We say that a marginal asymptotic transformation with correlated catalysis from
p to o is possible with rate r, if for any € > 0 and any 6 > 0 there exist natural
numbers m, n and a LOCC operation A such that

A (p®n ® TC) — #Sl-usmc, (4.83a)
“'us,» _ 0.“1 <eVi<m, (4.83b)
u€ = 1€, (4.83c)

m
- +o>r. (4.83d)

The supremum of r fulfilling these properties will be called marginal catalytic
transformation rate R.(p — o).

Eq. and Eq. (#.80) define asymptotic transformation rate R and marginal trans-
formation rates R respectively. Catalytic versions of asymptotic transformation rate
and marginal transformation rate are defined in Eq. and Eq. respectively.
By definition, it follows that

R.(p = o) > R(p = ) > R(p — o), (4.84)
R.(p = o) > R.(p = o) > R(p = 0). (4.85)

One can also easily see that
R.(p = o) = max{R(p — 0),R(p = 0),R.(p = 7),R.(p = o)}. (4.86)

for any pair of states p and 0.

Before going to the main result, we will now give an upper bound on these rates in
terms of squashed entanglement (see Eq. ). Since R, is the largest among these
rates, its sufficient to provide an upper bound for R,..

Proposition 4.2. (GKS23) For any two bipartite states p and o, R, is bounded as
follows:

(4.87)



Proof. First, we will introduce squashed transformation rate. We say that a bipartite
state p can be converted into o with rate r if the following inequalities are fulfilled for
allg,6 > 0:

A (p®n ® Tc) = (S1-SnC (4.88a)
|Eqq®) = Egg(0)| < & Vi< m, (4.88b)
u€ =1°, (4.88c¢)

% +6> 7. (4.88d)

The squashed transformation rate is the maximal such rate, and it will be denoted by
R,4. By continuity of squashed entanglement (AF04), it is clear that Ry, (0 — o) >
Rc(p - 0).

Let us now consider a LOCC map A and a catalyst 7 as in Egs. (4.88). We will use
the properties (additivity, monotonicity (under LOCC) and strong super-additivity) of
squashed entanglement (CWO04) to find

nEy, (p) + Egy (1) = Eyy (0™ @ 7°) 2 Ey (1%57€) (4.89)
> i“Ew (1) + Eg ().
Therefore, _
nEg, (p) > Zm: Ey(1). (4.90)

i=1

Let us use the above inequality along with Egs. (4.88) to obtain
nEs (p) > m|Egy (o) - ] (4.91)

Therefore,
m < E sq (,O)

 “Eo— (4.92)

We will again use Eqgs. (4.88) to arrive at

_Exq®) +4 (4.93)

< .
d Ey(o)—¢

Since 9, € > 0 can be made arbitrarily small, we can say that

Esq (0)
Ry (p— o) < =L, (4.94)
(0 £y (@)
Since Ry,(p — o) > R.(p — o), the proof is complete. O

We will now show the main result of this section, which can be mathematically
phrased as the following theorem.
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Theorem 4.3. (GKS23) For any bipartite pure state |¢) and any bipartite distillable
state p, the following holds

Re(p = 1p) = Rp = 1p)) = Re(p — 1¢)) (4.95)
_ _ Ep(p)
=R — o)) = High)'

As a special case, if we fix the target pure state to be a singlet |¢, ), theorem [4.3]
implies that catalysis cannot increase the distillable entanglement of a distillable state.
In order to prove theorem [.3] we will first show that

Rlo—o)=R.(p— o) (4.96)

holds for any bipartite distillable state p. We will then show that

R(pA’B’ N |¢AB>) — R(pA'B’ R |¢AB>). (4.97)
holds for any pure target state |<,0AB>. Eq. , along with Eq. and Eq.

prove theorem [4.3]
Let us now prove the fact in Eq. (4.96).

Lemma 4.6. (GKS23) For any bipartite distillable state p, the following holds for any
bipartite state o
R(p—>o)=R.(p— o). (4.98)

Proof. From the proof of lemma4.3] we know that the catalyst 7 can be approximated
by performing a LOCC on a finite number (k) of copies of p, i.e., 7o = A’(p®) and
llre — 7ll1 < €. Therefore, we call 7, as the &’-approximation of 7.

Similar to the proof of lemma 4.5] consider the following LOCC protocol, now
acting on n + k copies of p. In the first step, k copies of p are transformed into 7 via
LOCC. The total state is now given by p®" ® 7. In the second step, Alice and Bob
apply the LOCC protocol from Eqs. (#.83). We will denote the resulting state by u;,
which can be written as

w5 = A(p™ @ 15). (4.99)
Due to the data-processing inequality of trace norm, the following holds
H,uf""s’"c —/JS"“S”’CHl < ||p®" ®Ty —p*' ® ‘z'g”l <é. (4.100)

This implies the following pair of inequalities

e} = %), < & (4.101)
[lu§ =€), < & (4.102)

The second inequality shows that 4 is also a &'-approximation of 7. Using Egs. (4.83)
along with the triangle inequality of trace norm, we obtain

[y =, <e+& (4.103)
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for all i < m.

We will now extend this analysis to 2n + k copies of p. As earlier, we transform k
copies of p into 7-. The results in a total state given by p®' ® p®" ® 7». As described
above in this proof, the first n copies of the state p together with 7. are transformed into
u1. This results in a total state given by uf""s”‘c®p®". We now transform the remaining
n copies of p via the LOCC protocol given in Eqgs. 4.83]), using /JIC as the catalyst. Let
us recall that ,ulc is a &’-approximation of 7€, which is the same as for 7,,. Therefore

the total state of the systems S+ ...S2, Will be given by ,u‘;’"*‘“'s mC = A(®" ® ul
where (using the same arguments as above),

b == <, (4.104)
|5 =, <e+e (4.105)

foralli e [m+1,2m].
By repeating the above procedure / times, we can transform the state p into
VS-S satisfying |V — ofl; < & + & for all i € [1,Im]. Note that this procedure
works for any natural number /. By choosing a large enough /, allows us to make ln v
arbitrarily close to %', therefor~e arbitrarily close to R. (p — o). This shows that p can
be converted into o~ with rate R, (p — o) via marginal asymptotic transformations. O

ln+k

We are now left to prove Eq. (#.97). In order to prove this, we will need the fol-
lowing proposition, which shows the strong-super additivity of asymptotic rates (when
the target state is pure).

Proposition 4.3. (GKS23) For any pure state |)>* and any state 11552, we have
R(IuSIS2 N |90)S3)2R( |¢>S*)+R< |90>S;) (4.106)

Proof. We will proceed as follows. For any two real numbers {r;, r,}, satisfying r; <
R(,uS‘ N |¢p>s3) and r, < R(ps2 - |tp)S3), we will show that r; + r, is a feasible rate
for the transformation 5152 — |@)53. Therefore, we will show that for any &,6 > 0,

there exist natural numbers m, n, and a LOCC protocol A such that

H 3152 ” |¢)(¢|®’"1<s, (4.107a)

M s> r+n. (4.107b)
n

Let us now fix an arbitrary €, > 0. We assume € < 1 (without any loss of generality)
and denote S ‘?" as S;, where i € {1,2}. Note that since r; (i € {1,2}) are feasible, there
exists natural numbers m;, n and LOCC protocols A; such that the following holds

2

Si @n _ ®m; £ f
HAi ((u ) ) lp) Cel™™ < To0 <72’ (4.108a)
Mo ri. (4.108b)
n 2
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Here, A; is a LOCC map actingon S; = § ?"", where i € {1,2}. From proposition
and Eq. (4.108a), it follows that

'Al®H2((ﬂS1S2)®n)_|‘p><<P|®ml®(lls2)®” <2 L6t
1100 4200
&
< —.
2

Since trace norm does not increase under CPTP maps, the following holds

il o)

Now we use Eq. (4.108a) along with the triangle inequality of the trace norm, arriving
at

<eg/2.

®n
HA] ® A ((us 152) )—Iw) Gt |

<

o) e )

®n
+ oy (oo™ @ A (1)) = ) gepem e |
<& (4.109)
From Eq. (.108D), it follows that
+
LT S (4.110)
n

Eqgs. (#.107) can be fulfilled by choosing m = m; + my, A = A ® A,. This implies,
R (,usl - |¢p>s3) +R (,uSZ - |¢)S3) is a feasible rate for 5152 — |)5*. This completes
the proof. O

With this, we are now ready to prove the fact in Eq. (4.97).

Lemma 4.7. (GKS23) For pure target states, the standard transformation rate coin-
cides with the marginal transformation rate :

R = ) = RO ) @t

Proof. If the target state is not entangled, both R (pA'B/ - |¢AB >) and R (pA/B/ - lgaAB >)
diverge to infinity. Therefore, we assume that the target state is entangled.

We will now introduce a new kind of asymptotic transformation. Here, we say that
PP is transformed into |¢*? > with rate r if for any &, > 0 there exist natural numbers
m, n and a LOCC protocol A such that

A(p*e) = pfrS, (4.1122)
|Ep() — HeY)| < & Vi <m, (4.112b)
s> (4.112¢)

n
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The supremum of such achievable rates will be denoted as R (pA/B', |<pAB >) Here,
we are transforming p asymptotically into a state with marginals having distillable
entanglement close to Ep ( |o"® >) = H(¢"). Note that the distillable entanglement can

be bounded as follows (Rai01; [DWO0S)
Hp") - Hp"?) < Ep(o"?) < Hp"). (4.113)

This implies that Ej is continuous near any pure state. Therefore R, (pA/B/, |90AB >) >
R (pA’B' - |¢AB>). Note that, for pure target states, that following holds (BBPS96b),

s
R(pA’B' N |¢AB>) — %. (4.114)

Now we will consider an LOCC protocol achieving Eqs. #.112). Using Eq. #.114)
along with the properties of distillable entanglement (see Proposition we find the
following

Ep(o"'®) Ep (pA’B’®n) Ep ('us]..,sm)
—n -

nR(p"% - |48 = = > (4.115)
e =) = = —Hem H(g")
1 m
>—— S Ep (u%).
H((pA) ; D( )
Using the above inequality along with Egs. (#.112)), we obtain
£
nR (p — | ))>m(l——). (4.116)
el H")
Therefore we get
R
g L}"”. “.117)
o T
We will use Egs. (4.112)) once again to arrive at the following
R
r ROl s (4.118)

&
1- H(eh)

Note that £, 6 > 0 can be made arbitrarily small. Therefore, we conclude that Rm(p, @) <
R(p — ¢). Putting the above arguments together, we get

Rin(p, 1)) = R(p — 1¢)) = R(p = |9)) = Run(p, |))- (4.119)

This shows that all these inequalities are equalities. This completes the proof. O

4.4.1 Single copy transformations

In this subsection, we will extend theorem @ to allow for arbitrary initial states (dis-
tillable) and show that distillable entanglement completely characterises approximate
catalytic transformations, when the target state is pure. This will completely charac-
terise single copy approximate catalytic transformations when the target state is pure.
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Proposition 4.4. (GKS23) For any bipartite distillable state p and any bipartite pure
state |p), p can be converted into |¢) via approximate catalysis iff

Ep(p) = Ep(l¢)) = H(¢") (4.120)

Proof. Theorem[d.2]shows that marginal reducibility and correlated catalysis are equiv-
alent when p is a distillable state. Furthermore, since the target is a pure state, lemma
shows that marginal reducibility and asymptotic transformation are equivalent. Us-
ing these two facts, we can deduce that an asymptotic transformation exists from p to
|} iff p can be transformed into |¢) via correlated catalysis. From (BBP*96), we know
that an asymptotic transformation exists from p to |} iff Ep(p) > H(¢?). Finally, we
use proposition which says that, when the target state is pure, correlated catalysis
is equivalent to approximate catalysis. This completes the proof. O

Recently, in (LRS23)), the authors showed that if a bipartite quantum state p is not
distillable i.e, Ep(p) = 0, then it cannot be converted into any bipartite state o with
Ep(o) > 0 via correlated catalysis. Note that, for any bipartite entangled pure state |y),
Ep(ly)) > 0. This result along with proposition[4.4] show that distillable entanglement
completely characterises approximate catalytic transformations, if the target state is
pure.

4.5 Entanglement catalysis for noisy channels

Quantum capacity of a noisy channel (A) corresponds to the optimal rate at which a
sender can faithfully send qubits via A, to a receiver (L1097; ISN96; [HHHOO). This
quantity has a close relation with the so-called coherent information of a channel A,
given by (SN96; [L1097)

I(p. A) = H(Alp]) - HAL® A|w, )| 4.121)

where |Lpp> is a purification of p. Quantum capacity of A can be expressed in terms of
coherent information as (L1097;Sho02; Dev05)):

1
O(A) = lim - max I(p,, A®"). (4.122)
n—e 1 py

This notion of quantum capacity has been explored for various classes of quantum
channels like low noise channels (LLS18), symmetric side channels (SSWOS)), Pauli
channels (Cer00), arbitrarily correlated noise channels (BD10) and bosonic channels (HWO1}
WPGGO7). The central assumption in the study of quantum capacity, is that the parties
have access to many copies of the quantum channel. Here we drop this assumption and
assume that the parties (Alice and Bob) have access to the quantum channel only once,
but have access to infinite rounds of classical communication. Additionally, we will
assume that Alice and Bob have access to a quantum catalyst 742 [1_1

In this setting, Alice and Bob also possess registers A” and B’, of the same dimen-
sion dy4 = dp. Let the initial states of these registers be |O)(O|A’ and |0)(0|B’. The goal

!n this section the catalyst system will be called AB, and the primary system will be denoted by A’B’.
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of this protocol is to entangle A’ and B’ using a carrier particle C which will be sent
from Alice to Bob via the noisy channel A. Without loss of generality, we assume the
carrier particle is initialized in [0)(0|°. Therefore, the full initial state is given by

o = cABAEC = 4B 10301 ® [0)0]F ® |0)(0]° . (4.123)
Let us now consider the following protocol, consisting of three steps:

e LOCC pre-processing: Alice and Bob perform a LOCC operation on o, trans-
forming it into v,,.

e Alice sends the carrier particle to Bob via the quantum channel A€, resulting in
the state y, = A€[v,]. Note, that the particle C is with Bob now.

o Post-processing: Alice and Bob perform a LOCC protocol on y/,, transforming
it into p,,.

We constraint the final state y, to satisfy the following property, for each n:

Trap [ﬂABA'B’] =B, (4.124)

n

Eq. (#.I24) makes sure that the catalyst is unchanged and can be reused. We also
require that the catalyst decomposes with A’B’ in the limit of large n i.e,
: ABA'B' B AP
lim [ ®4F — 3 @7 | = 0. (4.125)
Eq. (@.I29) restricts the correlations between two different systems, if they both are
transformed using the same catalyst.

The above mentioned protocol, is the most general protocol performed by Alice
and Bob, if they have access to single use of a quantum channel A and additionally,
have access to a quantum catalyst 748, As a special case, one can consider u'%" to be
close to maximally entangled state of m qubits i.e,

lim

n—oo

|“'H - 0. (4.126)

o = 7" @3l |

Note that |¢;> can be used to teleport m qubits. Therefore, Alice and Bob can use this
procedure to send m qubits with arbitrary accuracy, by a single use of quantum channel
A. We will say that the channel A can transmit m qubits, if Eq. holds for some
natural number m > 1.

4.5.1 Catalytic quantum capacity

We will now define catalytic quantum capacity Q. of a channel A as the maximum
number of qubits the channel can faithfully transmit. Formally, let {TﬁB} and {u,} be a
sequence of catalysts and final states respectively, such that Eqs. #.124) and (#.126)
are satisfied for some natural number m > 1. Catalytic quantum capacity of the channel
A, is the maximum possible m.

0.(A) = max {m : lim

o - @ les el |, = 0} . 4.127)
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If Eq. is not satisfied for any m > 1, then catalytic quantum capacity of A is
Zero.

The key differences between the catalytic quantum capacity and standard quantum
capacity are the following:

o Infinite amount of classical communication is allowed in the definition of cat-
alytic quantum capacity, while the definition of standard quantum capacity does
not allow for any classical communication.

o Catalytic quantum capacity assumes a single use of the quantum channel, whereas
the standard quantum capacity is defined in the limit of infinite parallel uses of
the channel.

Let us now consider a concrete example. We will here assume the system A to
be a qubit and the carrier C to be a qutrit. Note that, the carrier particle is initially
with Alice. Alice uses the LOCC pre-processing step to entangle the carrier C with
an addmonal qutrit system A", locally creating a two-qutrit maximally entangled state

|gog> . Then carrier C is sent to Bob through the noisy quantum channel A. Now
Alice and Bob end up with a shared two-qutrit state given by
£=To Ao )] (4.128)

Note that ¢ is also called the Choi state of the channel A. Until now, Alice and Bob
did not use the catalyst. They will make use of the catalyst in the post-processing
step, to convert ¢ into a Bell state. From proposition #.4] we know that this is possible
whenever Ep(¢) > 1, i.e, Alice and Bob obtain a state u, (satisfying Eq. (4.124)), such
that

I el =0 (4.129)

This allows Alice and Bob to share a maximally entangled state (with arbitrary small
error) between them.
Using the procedure mentioned above, Alice can faithfully transmit a qubit to Bob,
whenever
Ep(TeAlef)ef]]) 2 1 (4.130)
It is important to note that, the use of maximally entangled state is not necessary in this
protocol. Alice can locally create some other 2-qutrit state p, instead of |<,o§’><g0§ | The
procedure would still work if Ep (I® A[p]) > 1. Therefore, using the same argument,
Alice can transmit m-qubits to Bob via the noisy channel A if there exists a 2-qutrit
state p such that
Epd®Alp]) = m. (4.131)

Note that the distillable entanglement of any bipartite state p*® can be lower bounded
by the so-called hashing bound given by: (DWO03)

Ep(p*?) > H(p") - H(p"?) (4.132)

Eq. @.131) along with Eq. (#.132)) imply that a d-dimensional quantum channel A can
transmit m-qubits if

H(1® A||es N ei]]) < log,d - m. (4.133)
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In the case when d = 3, Eq. (4.133) says that any qutrit channel satisfying
HI® A[|e3 )¢5 < 0.58 (4.134)

can transmit a qubit faithfully.
Let us study the implications of Eq. (#.133) more closely. A quantum channel A
acting on a part of bipartite state p can be expressed as follows

k
1® A(p) = Z(]I ® K)p®K)), (4.135)

i=1

where k is the minimal number of Kraus operators of the map A and Zfz | KJ'Ki =L
Note that, the final state T ® A(p) can also be written as

I®Alp) = Z Pitli. (4.136)

Here, y; are quantum states and p; are the probabilities given by

pi=Tr[I&K)pI®K))], (4.137a)
I® K)p(l®K'
= Lo koplek;) ®K)£F oK) (4.137b)

Letp = |go:;><go}|. In this case, all y; are pure states, given by

H(1e A llegXesl]) < H). (4.138)

Here H(p) = — 2 pilog, pi. Eq. (4.133), along with Eq. (4.138) implies that a channel

A can transmit n;-qubits if
H(p) <log,d — m. (4.139)

Therefore we obtain a lower bound on the catalytic quantum capacity given by
0.(A) > |log,d — H(p)|. (4.140)

Eq. (4.140) implies that any quantum channel A of dimension d > 4 which can be
decomposed into at most 2 Kraus can transmit at least one qubit.
For example consider the following channel

Alpl = (1 = p)p + pUpU". (4.141)

Here U is an arbitrary unitary and p € [0, 1/2]. Above discussion shows that, A can
transmit m qubits if:

—plog, p— (1 = p)log,(1 — p) <log,d — m. (4.142)

For the case when d = 3 and m = 1, this condition is satisfied whenever p € [0, 0.1403].
From the above discussion, we also see that, when d > 4 and m = 1, any such channel
can perfectly transmit a single qubit.
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Let us now focus on the converse, providing necessary conditions a channel A must
satisfy in order to send m-qubits perfectly. We will make use of squashed entanglement
(see Eq. (@.21)) in order to give such conditions. Let us now define the amount of
transmitted entanglement by a quantum channel A as:

AE,(A) = sup {EZPC(AC[p"PCT) - EACP(0259)). (4.143)
pABC

Here the supremum is taken over all tripartite states o€, We are now prove the fol-
lowing theorem, using these tools.

Theorem 4.4. (DKMS22b) For a channel A, the catalytic quantum capacity is upper
bounded as follows
Qc(A) < AEg(A). (4.144)

Proof. In order to show this upper bound, we will consider the most general procedure
Alice and Bob could perform (see below Eq. (.123)). In the pre-processing step, Alice
and Bob perform a LOCC protocol on ¢, transforming it into v,,. Note that a general
LOCC protocol allows Alice and Bob to attach local systems. Therefore, we denote
v, by vABC€ Here A and B include AA” and BB’ respectively, additionally including the
particles that Alice and Bob attached locally. Using the fact that squashed entanglement
does not increase under LOCC operations, we get

EAB(y,) < EAVCBE (i), (4.145)

Next, Alice sends the carrier particle C via a quantum channel A to Bob, resulting in
the state Y4B = AC[v}5C]. It is important to note that, the squashed entanglement
(between Alice and Bob) can increase in this step. The increase can be upper bounded

by AEs,(A): (see Eq. (#.143))
ENPC(y,) — EACB(y,) < AE,,(A). (4.146)

Finally, Alice and Bob perform LOCC post-processing on ,\/fBC, converting it into .
Note that in this post-processing step, Alice and Bob trace out all the systems except
AA’BB’. Therefore u, = u4'55’. Since squashed entanglement does not increase under
LOCC operations, we have

EAVIBE (1) < ENFC(y,). (4.147)

Therefore the total increase of squashed entanglement in this procedure is upper bounded
by

EL P () = ERY O () < EPC O — EXP0n)
< AEg(A). (4.148)

Note that u8 = 748 (catalyst remains unchanged in the procedure). Using strong
super-additivity of squashed entangled, we get

E?;'lBB’(#ﬁA’BB’) > E,;\(;B(#/:B) + E?q/lB/(lJﬁ/B/) (4.149)
— E/?;B(TQB) + E‘?I;lB/(H;?/Bl) (4150)
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Also, since o, = O'ﬁBA/B/C =mt® 10)O0[*" ® [0)(0]® & |0)(0|°, its easy to see that

EY B (o) = ELE ()P (4.151)
Using Eq. @.148), along with Eq. #.150) and Eq. (#.15T)) we obtain
ELP ) < AE(A). (4.152)

A'B’

+© can be

If m qubits can be faithfully transmitted via the channel A, then the state u

made arbitrarily close to |<p;> Since squashed entanglement is continuous (AF04), we
get m < AEg,(A). This completes the proof. O

Note that, evaluating AEy,, is a very challenging task. However we will provide
analytical upper bounds on catalytic quantum capacity, for qubit Pauli channels. Let us
consider single qubit Pauli channel given by

3
Aplp] = Z DiTipT; (4.153)
i=0

Here {o;} are the Pauli operators. Theorem 8§ in (SADL15) shows that the best way to
distribute entanglement is to send one half of a Bell state through the channel. Since
AE,, quantifies the optimal amount entanglement that can be distributed via a given
quantum channel A, it follows that

AEy, (Ay) = Ey (I® A, [[e3)e3]]).- (4.154)

More generally, for any channel which is a tensor product of Pauli channels (possibly
different), the optimal entanglement distribution procedure is to send one half of a
maximally entangled state (SADL15). As a special case, for any two-qubit channel
given by A, ® A, the following holds

AEq (Ap® A,) =2E,, (T® A, s Xe3]])- (4.155)

Note that the the entanglement of formation E; is a upper bound on the squashed
entanglement (CWO04)). Entanglement of formation for pure states is the entanglement
entropy (Ef(lzp)AB ) = H(y™)) and for mixed states E is defined as the minimal average
entanglement entropy of the state (BDSW96):

Ef(p) = min ) piEp(l)). (4.156)

Here the minimisation is over all pure state decompositions of the state p. Therefore,
from Eq. (@.155) we see that

AEy (A, ®A,) < 2B (To A, [|o3Xei]])- (4.157)

Theorem [4.4]implies that for a two-qubit channel A, ® A, the catalytic quantum ca-
pacity vanishes if

E¢(1®A,|lesXei]]) < % (4.158)
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Note that, for 2-qubit states, the entanglement of formation has a closed expression
(Wo098b). Therefore, it is easy to check whether a given Pauli channel satisfies
Eq. or not. Since I® A, Htp&’)(tp;” is diagonal in the Bell basis, the entan-
glement of formation is given by (BDSW96))

{Ef (oA [les)esll) = 2 (3 + VomaT=pme)  forpmax>1/2 o

Ef=0 otherwise.

Here pmax = max{p;}. Using Eq. (4.158) and Eq. (4.159), one can see that Q.(A, ®
A,) = 0, whenever pp,, < 0.813.

4.6 Conclusions

In this chapter, we first introduced various notions of catalytic transformations in the
context of entanglement theory. For the case of pure states, we show that entanglement
entropy characterises catalytic transformations when we allow for arbitrarily small cor-
relations between the system and the catalyst. We then show that such catalytic trans-
formations between pure entangled states require (in general) an unbounded catalyst.
Going further, we studied the connection between catalytic transformations and asymp-
totic transformations. For distillable states, we show that both these settings are equiv-
alent. Using this equivalence we show that distillable entanglement of a distillable state
cannot be increased by allowing for catalysis. As a consequence, this result implies that
distillable entanglement completely characterises single copy catalytic transformations
when the target state is pure and the initial state is distillable. We then study the role
of catalysis in transmitting quantum information via a noisy channel. We show that
entangled catalysts allow us to faithfully send quantum information through a noisy
quantum channel. Our results show that, as long as its not too noisy, any quantum
channel can faithfully transmit qubits. Precisely speaking, we show that it is possible
to faithfully transmit m qubits via a d-dimensional quantum channel whenever the von
Neumann entropy of its Choi state is no more than log, d — m. We then introduced the
notion of catalytic capacity of a quantum channel, quantifying the number of qubits
which can be faithfully transmitted via a noisy channel, when we allow for entangled
catalysis. We then provide lower and upper bounds on the catalytic capacity.
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Chapter 5

Summary and outlook

In this final chapter, we summarize the key findings and contributions of this thesis and
offer suggestions for future research.

In this thesis, we studied how various resource states can be transformed into each
other via free operations. We started with the notion of deterministic transformations
and introduced the idea of resource monotones in Chapter [2] Resource monotones
provide necessary conditions for the existence of a deterministic between two quantum
states. We look at the problem of finding a finite complete set of resource monotones,
which completely characterise deterministic transformations. We prove that, for a wide
class of resource theories, such a set does not exist. However, we show that by allowing
discontinuity, considering infinite sets and allowing for catalytic transformations one
can overcome this restriction and provide a complete set of monotones.

We then go further and study theories with a single complete monotone. We show
that such theories are equivalent with theories having a total order i.e, there exists a
deterministic transformation transforming either p into o or ¢ into p, for all p and o
For such totally ordered theories, we show that all pure states are inter-convertible, via
free operations. We then completely characterise all qubit resource theories having a
total order. For higher dimensions (d > 3), it remains an open question to show the
existence of a totally ordered resource theory. Another open question corresponds to
extending the results from this chapter to resource theories of quantum channels, where
quantum channels are transformed via free super-channels.

In chapter 3] we extend this notion of state transformations, allowing for a probabil-
ity of failure. We study the trade-off between the success probability and the transfor-
mation error. For single copy transformations, we give upper bounds on the achievable
probability for a given fidelity of transformation and achievable fidelity for a given
probability of success. We then show that these single copy bounds provide non-trivial
constraints on asymptotic transformations, providing upper bounds on the achievable
rates.

We then focus on bipartite state transformations via SLOCC. For pure bipartite
states, we provide a complete solution for single-copy transformations. For 2-qubit
states, we again provide an analytical solution for stochastic-approximate state conver-
sion when the initial state is pure. We then extend these results to the resource theory
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of imaginarity, where we provide a complete solution for single-copy transformations,
when the initial state is pure. An important point to note is that all the analytical results
about single copy transformations assume a pure initial state. It would be an interest-
ing direction to extend these results to cases where the initial states can be potentially
mixed.

Chapter [4] deals with entanglement catalysis. Firstly, we show that the entangle-
ment entropy completely characterises catalytic LOCC transformations between bipar-
tite pure states, when we allow for arbitrarily small correlations between the system
and the catalyst. We then show an equivalence between catalytic setting and the setting
of marginal asymptotic transformations. Using this equivalence we prove that catalysis
does not help us distill singlets with a higher rate (asymptotically), assuming the initial
state is distillable. We then show that, at a single copy level, catalytic transformations
are completely characterised by the distillable entanglement, if the initial state is distil-
lable and the target state is pure. It is an open problem to show that catalysis offers no
advantage in increasing the asymptotic rate for arbitrary target states, when the initial
state in pure. We leave this question for future research.

We then developed various methods to estimate the number of qubits which can be
faithfully transmitted via a noisy channel. In this context we define catalytic quantum
capacity of a noisy channel, as the optimal number of qubits which the channel can
reliably transmit. We then provide nontrivial upper and lower bounds on the catalytic
quantum capacity.
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