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Abstract

All in all, it’s just another brick in the wall

Pink Floyd, Another Brick in the Wall, Pt. 2

In modern physics, there are few field theories more versatile and ubiquitous
than the O(/N) models. For several decades they have proven invaluable in de-
scribing a myriad of physical phenomena. Despite being conceived many years
ago, the O(N) models are still subjects of significant developments. This thesis
describes a few of the most recent discoveries regarding the classical, bulk phase
transitions of the O(N) models and their anisotropic extensions.

The topics discussed in this thesis can be broadly classified as relating to the
pure O(N) models or their anisotropic extensions. Regarding the pure O(N) mod-
els, we reexamine an old perturbative analysis by Cardy and Hamber [1]| predicting
a fixed-point collision scenario leading to exotic consequences. Above two dimen-
sions, the collision is expected to induce nonanalytic behavior of critical exponents,
while below two dimensions it constitutes a mechanism for the disappearance of
the phase transition at the lower critical dimension. We revisit their perturbative
analysis and showcase some of its poorly appreciated consequences. We confront
these predictions with the results of our nonperturbative renormalization group
calculations at the O(9?) order of the derivative expansion. Our calculations con-
firm the presence of the fixed-point collision below two dimensions and offer robust
arguments against the collision scenario above two dimensions. The discussion of
this subject, presented in Chapter [3] is based on two articles: Analyticity of crit-
ical exponents of the O(N) models from nonperturbative renormalization |2| and
Low-temperature behavior of the O(N) models below two dimensions [3].

The other area explored in this thesis concerns the effects of weak cubic per-
turbations in the O(2) model. We investigate how the leading scaling exponent of
the anisotropic field y4 varies with the dimension. We offer an accurate determina-
tion of y4 in three dimensions and, subsequently, observe the evolution of y, while
reducing the dimension towards two. In the vicinity of two dimensions, we observe
y4 approaching zero marking the onset of the nonuniversal behavior related to the
Kosterlitz-Thouless physics. We also discuss how the comparative performance
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of two alternative approaches to the derivative expansion varies with the dimen-
sion. These topics are explored in Chapter [] based on the article Zs-symmetric
perturbations to the XY model from functional renormalization |4]. This article is
a product of a collaboration with Carlos A. Sanchez-Villalobos, Pawel Jakubczyk,
and Nicolas Wschebor; in the conclusion of the chapter, we disclose the authors’
contributions.



Streszczenie

We wspoélczesnej fizyce istnieje niewiele teorii pola bardziej uniwersalnych i wsze-
chobecnych niz modele O(N). Od kilkudziesieciu lat stanowia one nieocenione
narzedzie wykorzystywane do opisu niezliczonych zjawisk fizycznych. Pomimo
wielu lat, ktore uptynely od ich utworzenia, modele O(N) pozostaja przedmiotem
badan. Niniejsza rozprawa opisuje kilka najnowszych odkryé¢ dotyczacych klasy-
cznych przejs¢ fazowych w modelach O(N) i ich anizotropowych rozszerzeniach.

Tematy rozwazane w tej rozprawie podzielone sa na dwie kategorie: czystych
modeli O(N) oraz ich anizotropowych rozszerzeri. W obszarze czystych modeli
O(N) weryfikujemy starg analize perturbacyjna Cardy’ego i Hambera |1 przewidu-
jaca zderzenie punktow stalych grupy renormalizacji. Cardy i Hamber twierdza,
ze powyzej dwoch wymiaréw to zderzenie wywotuje nieanalityczne zachowanie
wyktadnikéw krytycznych, natomiast ponizej dwoéch wymiaréw stanowi ono mech-
anizm zaniku przej$cia fazowego w dolnym wymiarze krytycznym. W pierwszej
kolejnosci odtwarzamy ich rozumowanie perturbacyjne, podkreslajac jego mato
znane konsekwencje. Nastepnie konfrontujemy ich przewidywania z wynikami
naszych obliczen opartych o nieperturbacyjna grupe renormalizacji w rozwinieciu
w pochodnych do rzedu O(9?). Nasze obliczenia potwierdzaja obecnos$é zderzenia
punktow stalych w wymiarach ponizej dwoch i dostarczaja silnych argumentow
przeciwko scenariuszowi zderzenia w wymiarach powyzej dwoch. Nasza analiza
scenariusza Cardy’ego i Hambera, przedstawiona w Rozdziale [3, oparta jest o dwa
artykulty: Analyticity of critical exponents of the O(N) models from nonperturba-
tiwe renormalization |2| oraz Low-temperature behavior of the O(N) models below
two dimensions |3].

Drugi obszar poruszany w tej rozprawie dotyczy efektéw stabych perturbacji
kubicznych w modelu O(2). Badamy, w jaki sposob wiodacy wyktadnik skalowania
pola anizotropowego y, zmienia si¢ wraz z wymiarem. Precyzyjnie wyznaczamy
warto$é y, w trzech wymiarach, a nastepnie obserwujemy jego ciggla ewolucje
pomiedzy trzema i dwoma wymiarami. W poblizu dwoch wymiaréw obserwujemy,
ze y, zbliza sie do zera, prowadzac do nieuniwersalnych zjawisk zwiazanych z fizyka
Kosterlitza-Thoulessa. Badamy réowniez jak precyzja dwoch alternatywnych im-
plementacji rozwiniecia w pochodnych zmienia si¢ wraz z wymiarem. Powyzsze

Vil
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zagadnienia omoéwione sa w Rozdziale [} przedstawione w nim wyniki pochodza z
artykutu Zs-symmetric perturbations to the XY model from functional renormal-
ization [4]. Ten artykul powstal we wspolpracy z Carlosem A. Sanchez-Villalobos,
Pawlem Jakubczykiem i Nicolasem Wschebor; w podsumowaniu rozdziatu prezen-
tujemy wktad autorow artykutu.
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Notation and conventions

All models discussed in this thesis are formulated in a d-dimensional Euclidean
space. Number N always refers to the number of components of the scalar order
parameter.

Position and momentum spaces Letters p, q, r are reserved to denote vectors
in momentum space; letters x, y, z correspond to the position-space parameters.
We introduce the shorthand notation for integrals in position and momentum

spaces respectively:
dd
/::/ddaz, /::/ qd. (1)
x q (27)

Fourier transform We adopt the following convention for the Fourier trans-
form:

f(w) = / fact®, fy = / f@)ee. )

The real- and Fourier-space components of the same field share the same symbol.
They are distinguished by either the position variable in the bracket, e.g. ¢(x), or
the momentum in the subscript for the Fourier-space components, e.g. ¢q.

Functional derivatives The momentum space functional derivative is defined
through a chain rule via the position space functional derivative:

O [og(x) & [T 4
0 '_/m Spq O0(x) /m (2m)d 6g(z) (3)

X1
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List of Abbreviations

BZJ Brézin and Zinn-Justin
CH Cardy and Hamber

DE derivative expansion

FP fixed point

IR infrared

KT Kosterlitz-Thouless

LCE large charge expansion

LPA local potential approximation

LRO long-range ordered

MC Monte Carlo

MW Morris-Wetterich

NF Nelson and Fisher

NPRG nonperturbative renormalization group
NR Newton-Raphson

PMC  principle of maximal conformity
PMS principle of minimal sensitivity
PT perturbation theory

QFP quasi-fixed point

QLRO quasi-long-range ordered

RG renormalization group
RK Runge-Kutta
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Chapter 1

Introduction

Far, far, far away, way
People heard him say, say
I will find a way, way
There will come a day, day
Something will be done

Pink Floyd, Let There Be More Light

1.1 The O(N) models

Symmetries count among the most fundamental concepts in modern physics. They
are employed to impose strict constraints on the dynamics and statistics of mod-
els, which makes them absolutely indispensable tools in almost every branch of
physics. In statistical physics, symmetry is one of the key factors defining the
nature of phase transitions allowed to occur in a given model. For this reason,
the universality classes (UCs) are typically categorized by symmetry groups, along
with spatial dimension and the range of interactions.

A class of symmetry groups that remains ubiquitous in both statistical physics
and high-energy physics is the family of N-dimensional orthogonal groups. Models
characterized by these symmetries often called the O(N) models, were originally
designed to describe phase transitions occurring in ferromagnetic crystals. These
early formulations include the Ising model belonging to the O(1) UC, the XY model
of the O(2) UC, and the Heisenberg model of the O(3) UC. Nowadays, thanks to
the principles of universality, we know that the O(/N) UCs describe many more
phenomena, inter alia the polymer problem for N = 0, the liquid-vapor phase
transition for N = 1, the helium superfluid transition for N = 2 and the chiral
phase transition in quantum chromodynamics in the limit of two quark flavors
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for N =4 [517]. In addition to their wide physical relevance, the O(N) models
feature a remarkably simple formulation which has provided a fertile ground for
the development of many renormalization group (RG) and conformal field theory
techniques [8-10].

Although widely studied for many years, the O(/N) models remain subjects of
interesting developments. In recent years, an old topic of boundary universality of
the three-dimensional O(/N) models has received renewed attention due to a dis-
covery of a new boundary UC called “extraordinary-log”. This new UC is believed
to persist for 2 < N < N, with N, =~ 5, though the precise value of N, remains
unsettled [11H14]. Another important discovery concerns a class of previously un-
known multicritical fixed points (FPs) of the O(N) models. These FPs share an
unusual characteristic - they develop nonanaliticities [cusps| in the N — oo limit,
thus not lending themselves to the perturbative large- N description. This discov-
ery showcases the limitations of a powerful method which is the large- N expansion
[15, |16]. It is also important to mention the advancements in the precision of the
determination of universal quantities, such as the critical exponents and the uni-
versal amplitude ratios. The recent years saw development of various methods
such as conformal bootstrap, Monte Carlo (MC) and functional renormalization
group to produce the most precise values |17-27].

As confidence intervals for the values of the critical exponents shrink, some-
times estimates from different methods become incompatible with each other. A
prime example of this was the so-called “O(2) controversy”. The three-dimensional
O(2) UC was studied with many methods including a superfluid *He space-shuttle
experiment [28], MC simulations [29], and perturbative RG methods [30]. While
the RG results remained compatible with the rest, the results from the two former
methods were in a staggering ~ 8¢ tension with each other. Conformal bootstrap
is a novel tool that offers resolution for such incompatibilities. Unlike the other
methods, conformal bootstrap provides strict bounds within which the critical
exponents have to be confined. As for the O(2) controversy, a recent conformal
bootstrap study has been able to reject the experimental estimate in support of
the MC results [31].

1.1.1 Perturbative methods

It is commonly agreed that the UCs of the basic bulk critical transitions in the
O(N) models with sufficiently short-range interactions can be parametrized with
just two variables: the spatial dimension d and the number of order-parameter
components N. The physical realizations of these UCs typically only occur for
integer pairs (d, N). However, it has proven useful and convenient in the studies
of critical phenomena to treat d and N formally as continuous parameters. The
exact meaning of models with noninteger values d or N is a somewhat involved
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topic often brushed aside without a detailed explanation. Thanks to path-integral
formalism and dimensional regularization, the formulation of field theories in a
generic dimension is now well-established and widely employed [10]. In contrast,
the rigorous mathematical formulation for models with generic N has been pre-
sented only very recently via the language of Deligne categories [32].

Even with the rigorous formulation, it is still difficult to simulate models with
generic d and N, e.g. on a lattice. There has been, however, some effort in en-
gineering systems with noninteger values of effective dimension. This includes
attempts to simulate systems of nontrivial topology [33, 134] and systems on frac-
tal lattices 35} 36]. The latter, somewhat worryingly, suggests that the critical
properties depend on more geometric details than just the Hausdorff dimension of
a fractal. The generic values of N have been investigated in a Monte Carlo study
of the O(N) loop model [37], and noninteger values of d and N have been recently
explored in conformal bootstrap studies [38, |39]. However, the most notable ex-
amples of treating d and N as continuous variables include the perturbative RG
methods: the 4 — € expansion, the 2 + ¢ expansion, and the large-/N expansion.
These perturbative approaches have long been employed to predict the values of
the critical exponents and played an invaluable role in the development of the
general theory of RG |[8] (10, [40].

The three aforementioned perturbative techniques all seek to capture the crit-
ical behavior of nontrivial theories by expanding them around the strictly soluble
theory with respect to a formally continuous small parameter. The 4 — € expansion
describes the ¢* model close to its upper critical dimension. The O(N )-symmetric
¢* model is a field-theory of an unconstrained N-component scalar field ¢(x)
governed by the action:

so= [[ata{ 5@+ (@) + 5 D00} (1)

In the limit d — 47, the quartic coupling of the critical FP vanishes and the critical
FP collides with the Gaussian fixed point. This allows for the RG g functions to
be calculated in a simultaneous expansion in the coupling v and € = 4 — d in
terms of Gaussian expectation values. We note that the 4 — € expansion can be
applied not only to the models characterized by the O(N) symmetry but also to
the models with discrete symmetry groups, e.g. exhibiting cubic anisotropy. We
elaborate on this point in the Sec. [[.2]

The 2+¢ expansion, first proposed by Polyakov [41] and Brézin and Zinn-Justin
[42], is a variant of a low-temperature expansion for the nonlinear-o model near
two dimensions. It describes how interactions between the Goldstone modes lead
to the decay of the long-range order. In the O(N)-symmetric nonlinear-o model,
unlike in the ¢* model, the N-component order parameter is constrained to a unit
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length ¢?(x) = 1. The action of the nonlinear-o model reads simply:

(%m:/w@%@@mw, (1.2)

where ¢ is the spin-wave coupling. Typically, the order parameter is decomposed
as ¢(x) = (o(x), (x)) into the longitudinal o field and N —1 transversal 7 fields.
Using the constraint ¢(x)?> = 1 the action is expressed in terms of the 7 fields

only:
&mjﬁ%%{MMm%”ﬁiﬁgﬁ}- (1.3

This form of the action shows explicitly, how nontrivial interactions between the
transversal 7 fields are generated by the constraint imposed on the order parame-
ter.

For weak coupling g |at low temperatures|, the dominant contributions to the
partition function come from the field configurations satisfying |mw(z)| = O(,/9)
and |0,7(x)| = O(,/g). This means that the interaction term in Eq. becomes
of higher order in g than the gradient term. One then formulates a diagrammatic
expansion around the Gaussian theory [g = 0]. A generic BELS function of the
2 + € expansion takes the form:

Bt = —eg + (N = 2)f(g,N), (1.4)

where € = d — 2 and the function f(g,N) = % + O(g?) is deduced perturbatively.

Finally, the large-N expansion is an expansion around the limit N — oco. In
this limit, the O(V) universality class contains the analytically soluble Berlin-Kac
[spherical] model [43, |44]. Around the exact solution, the partition function and
the correlation functions can be evaluated through the steepest-descent method.
This yields the quantities of interest, such as the critical exponents, expressed as
a power series in the parameter % Importantly, the large-N expansion can be
formulated for either the O(N)-symmetric ¢* model and the nonlinear-o model.
Moreover, it predicts the same universal properties for both models to any order
in + [40]. This fact, along with a shared symmetry of the interactions, leads to a
widespread belief that these models belong to the same universality class. Most
certainly, if the two differ in some way, the nature of that difference would have to
be nonperturbative in the large-N limit.

Although the historical significance of these perturbative approaches is difficult
to overstate, they are not without their pitfalls. Firstly, the formally small and
continuous expansion parameter is typically not small and only formally continu-
ous. Most often, these expansions are employed to access the critical properties of
three-dimensional models where ¢ = € = 1. The expansion series are often asymp-
totic or even divergent and one has to resort to resummation techniques. Secondly,
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by definition, the perturbative approaches cannot describe the nonperturbative ef-
fects. These include the role of the vortices in the Kosterlitz-Thouless transition or
the multicritical FPs becoming nonanalytical in the N — oo limit. Problems with
perturbative expansions call for the development of nonperturbative techniques.

Nonperturbative renormalization group (NPRG) methodology based on the
Kadanoff-Wilson coarse-graining is not a new idea. The first implementations of
NPRG go back as far as the 1970s [45]. The late 1980s and early 1990s saw a
revival of the ideas of NPRG with the so-called “effective average action approach”
at the forefront. This technique is based on the exact RG-flow equation called the
Morris-Wetterich equation [46, |47].

Like the earlier formulations of NPRG, the Morris-Wetterich equation typi-
cally cannot be solved exactly and requires some approximate treatment. One
particularly successful and widely adopted approximation scheme is the derivative
expansion (DE). Although quite accurate even at low expansion orders, for a long
time the DE has lacked a method for estimating error bars and its convergence has
been questioned. This has changed only very recently with strong arguments being
presented for a very rapid convergence of the DE [23, 48] along with techniques for
error estimation [21]. A detailed discussion of the effective average action approach
and the derivative expansion is relegated to Chapter [2]

1.1.2 Phases and phase transitions

In general, the O(N) models can support three distinct types of phases: disor-
dered, long-range ordered (LRO), and quasi-long-range ordered (QLRO). A disor-
dered phase features a vanishing order parameter and an exponential decay of the
correlation function

G(r) o exp(—r/§), (1.5)
where ¢ denotes the correlation length. This phase occurs at any dimensions and
for any N at sufficiently high temperatures.

A LRO phase is characterized by a nonvanishing order-parameter expectation
value. In accord with the Mermin-Wagner theorem [49], in models with continuous
symmetry group [N > 1], long-range order at nonzero temperatures can exist only
above two dimensions. For N < 1, finite-temperature LRO persists down to the
lower critical dimension d.(N), which for N = 1 takes the value d.(1) = 1. In
the O(NN) models, the second-order ordered-disordered phase transition is always
governed by an isolated critical RG FP and therefore it is always characterized by
universal, (d, N)-dependent critical exponents.

A QLRO phase, alike a disordered phase, features a vanishing order parameter,
but the corresponding correlation function decays as a power-law of the distance

G(r) oc 2741, (1.6)
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where 7 is the anomalous dimension. This correlation structure is related to a
divergent correlation length and arises when the RG flow converges towards a finite-
temperature FP in the infrared limit. In the O(/V) models, this phase can be found
only in a region of the (d, N) plane delimited by 1 < N <2 and d.(N) < d < 2,
where d.(N) is the lower critical dimension. Notably, a QLRO phase can only
occur for values of (d, N') for which the finite-temperature LRO is prohibited. The
lower critical dimension as a function of N varies smoothly from d.(2) = 2 to
d.(1) = 1 and is discussed in detail in Chapter

With the exception of the Kosterlitz-Thouless (KT) transition, the phase tran-
sition between QQLRO and disordered phases is a continuous phase transition con-
trolled by an isolated critical FP. This again means that the critical exponents are
universal. A QLRO phase, except for the KT low-temperature phase, is controlled
by an isolated stable RG FP giving rise to the universal anomalous dimension 7
land the associated correlation function exponent d — 2+ 7| of the low-temperature
phase which is typically different from the critical anomalous dimension.

1.1.3 Kosterlitz-Thouless transition and topological excita-
tions

One of the most famous universality classes admitting the quasi-long-range order is
the Kosterlitz-Thouless UC. In the O(N) models with short-range interactions, it is
realized only in a single point (d, N) = (2,2). This exotic UC is widely recognized
for the role of topological excitations in the phase transition and its experimental
relevance in the context of the helium superfluid transition, superconductivity,
liquid crystals, and melting of two-dimensional solids [6].

For the two-dimensional O(2) model, the Bé\ILS of the 2+¢€ expansion vanishes for
any value of the coupling g. This means that for every value of g, we find a stable
RG FP and an infinite correlation length. The two-point correlation function, as
predicted by the 2 4 € expansion, is characterized by a power-law decay

G(r) o r~ 3%, (1.7)

with the value 3= in Eq. describing the temperature dependent anomalous
dimension 7. These are the defining features of a QLRO phase.

In the nonlinear-oc model, the QLRO phase persists at all temperatures for
(d, N) = (2,2). This is somewhat surprising since one should expect that at high
temperatures the model becomes disordered with exponential decay of correlations.
Corresponding lattice models show exactly that behavior. The difference between
the two arises from vortices. These topological excitations are present in the lattice
models but remain absent in the nonlinear-oc model as a vortex core would carry

infinite energy.
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Kosterlitz and Thouless proposed a resolution of this problem [50], for which
they were awarded the 2016 Nobel Prize. They have shown that the O(2) Hamilto-
nian can be decomposed into two decoupled parts: one describing spin waves and
the other describing vortex interactions, which incidentally are identical to that
of the two-dimensional Coulomb gas. Based on that observation, they devised the
RG recursion relations in terms of the spin-wave coupling g and the vortex fugacity

y:
Byt =4r’y? + O(y?), (1.8a)

Bt = (4 — 25) v+ O(yh). (1.8b)

These equations admit a line of FPs stretching for all values of g at y* = 0. The
FPs with 0 < g < 7 are attractive and control the low-temperature QLRO phase,
while the FPs with g > 7 are repulsive. The point g = 7, y?> = 0 marks the
marginal K'T' FP controlling the phase transition.

Fig. visualizes the RG flows governed by Egs. . The flows originating in
the shaded region, below the dashed separatrix, converge to the line of FPs. This
leads to a finite renormalized coupling gr and vanishing renormalized fugacity
y% = 0. In this QLRO phase, all the vortices bind to each other and their effects
can be fully absorbed into a redefinition of the spin-wave coupling g. Due to the
Coulomb gas analogy, this phase is sometimes called the insulating phase since all
the charged particles [vortices| are bound into neutral molecules. At large length
scales, y — 0 and one can apply the nonlinear-c model analysis to calculate the
anomalous dimension 7 = 22 [with the renormalized spin-wave coupling]. Most
notably, at the FP controlling the KT phase transition the anomalous dimension
takes the universal value ngr = . On the other hand, in the disordered [metallic|
phase, large vortex fugacity allows vortices to proliferate freely which leads to
the destruction of the QLRO. A detailed derivation of the KT equations and an
extensive discussion of this model can be found in [6].

Topological excitations play an important role in phase transitions in many
models of the O(N) family besides the two-dimensional XY model. In the three-
dimensional XY model, vortex excitations do exist and play a central role in the
phase transition, just like in two dimensions. One significant difference between the
three- and two-dimensional models is that the vortex cores take the form of strings
or loops rather than points. Some MC simulations indicate that suppressing the
vortices, in the three-dimensional XY model, inhibits the transition and the model
remains ordered at all temperatures [51]. The same conclusion can be reached via
an analysis of the nonlinear-o model. The KT analysis based on the vortex-spin-
wave decoupling was generalized to the three-dimensional model [52|. Somewhat
surprisingly, this generalization yields quite accurate predictions for the correlation
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Figure 1.1: RG flows governed by the KT equations . The orange line marks the
line of KT fixed points, the six-pointed star denotes the transition fixed point g = 5

and the dashed line denotes a separatrix between the shaded QLRO [insulating|
phase and the disordered [metallic| phase.

length exponent v.

Another interesting example of topological excitations can be found in the
three-dimensional Heisenberg model in the form of so-called “hedgehogs”. In the
Monte Carlo simulations of the Heisenberg model, in which the hedgehog configu-
rations have been artificially suppressed, the phase transition was either completely
absent [53] or belonged to a different UC than the three-dimensional O(3) UC |54,
55]. Ref. |55] emphasizes a degree of ambiguity related to how the topological
excitations are suppressed, which might explain the differences between various
studies. They also claim that the transition in the model with hedgehogs sup-
pressed belongs to the noncompact C'P! universality class, clearly distinct from
the O(3) UC. We are not aware of any further study that supports or disproves
this claim.

1.1.4 Cardy-Hamber analysis

In 1977, Nelson and Fisher (NF) extended the Kosterlitz-Thouless equations (|1.8])
into dimensions d = 2 + € [56|. It turns out that, for small y? and e, it is sufficient
to only include the dimension of the coupling g in the function §,. The modified
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equations read:

BN = —eg + 4my* + O(y*), (1.9a)

g

2w
=t = (1= Z) 2+ 000 (19b)

Interestingly, the function 5} bears some resemblance to the Y5 of the 2 + e
expansion. Cardy and Hamber (CH) used this observation to construct a unified
set of B functions for the O(N) models that captures the second order transitions
for d > 2 and the KT transition at (d, N) = (2,2). They proposed:

BQCH = —eg+ (N —=2)f(g,N) + 4> + O(y*), (1.10a)

2m
Bt =Bt = (4 — ?) y* + O(y?). (1.10b)

This set of equations reduces to the Nelson-Fisher and Kosterlitz-Thouless equa-
tions in the limits N — 2 and (d, N) — (2,2) respectively. It also reproduces the
BN function of the 2+ ¢ expansion when the vortices are suppressed i.e. when the
vortex fugacity vanishes y> — 0. It is important to note, that for generic values
of (d, N), the Coulomb gas analogy for the vortices breaks down and the physical
interpretation of y becomes somewhat ambiguous.

The CH analysis of Egs. is performed in the vicinity of the KT point
(d, N) = (2,2). Therefore e = d—2, N—2, and y? are all treated as small quantities
of the order no higher than O(e). Importantly, the following reasoning does not
require the knowledge of the exact shape of f(g, N), only the assumption that
f(g,2)/g is a monotonic increasing function for small values of g. We introduce a
parameter:
T
2
which determines the existence and stability of the fixed points. In general, equa-
tions admit two families of nontrivial fixed-point solutions:

T 9 A
9NF—§+O(€)7 yNF_4_7T37

which can be seen as an extension of the FP solution to the Nelson-Fisher Egs. (1.9))
to N # 2, and

A:eg—(N—2)f< ,N> +O(e), (1.11)

(1.12)

egpzy = (N = 2) f(gBz3, N) + O(€*),  ypyy = O(¢?) (1.13)

identical to the solution of the 2 + ¢ expansion of Brézin and Zinn-Justin (BZJ).
The line A = 0, from now on called the CH line, marks the locus of collisions
between NF and BZJ fixed-point families. The physics associated with the collision
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is quite different depending on whether d > 2 or d < 2 so the two cases need to be
discussed separately. For d > 2 and A > 0, the NF FP is critical and the BZJ FP
is tricritical - it has two unstable perturbations. When A crosses zero, the NF FP
ceases to be physical as y escapes to the complex domain and the BZJ FP becomes
critical. Upon crossing the CH line the critical fixed point changes and the critical
exponents are expected to exhibit a nonanalyticity yet remain continuous.

The picture is quite different for d < 2. When A > 0 the NF FP again
serves as a critical fixed point. The BZJ FP, on the other hand, is stable - it
has only irrelevant perturbations. This means that the low-temperature behavior
is controlled by finite-temperature FP, which leads to quasi-long-range ordering.
This important observation has not been made in the original CH paper and
mentioned only much later [57] [see also [58]]. For A < 0, the NF FP disappears
while the BZJ FP becomes arguably nonphysical meaning that no phase transition
can occur in this region. This indicates that the lower critical dimension d.(N)
[or conversely N.(d)| can be identified with the CH line below two dimensions. A
sketch of the (d, N) plane along with the CH line is presented in Fig. |1.2

AN 3
3- | BZcritical
=[ RO 6@@‘*
No phase E ,\2\"%&\0&
transition = »(/3‘6?@‘@
=\ - e (\0
24 e 4 KT critical
-7 LRO
Q). -"
C> 7 KT critical -
.- Kosterlitz - Thouless d
.- QLRO
1+= +>»
1 2 3

Figure 1.2: Schematic representation of the (d, N) plane in the vicinity of the
Kosterlitz-Thouless point (2,2). The Mermin-Wagner line [d = 2, N > 1] sepa-
rates the systems that support the LRO in nonzero temperatures from those that
do not. Below two dimensions, for sufficiently small values of N [N < N,(d)] the
low-temperature phase is characterized by QLRO, while for N > N.(d) the sys-
tem remains disordered for any nonzero temperature. Below two dimensions, the
Cardy-Hamber line coincides with N.(d), while above two dimensions it is a locus
of the hypothetical nonanalyticity of the critical exponents predicted within the
framework of Ref. [1].
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1.1.5 This thesis

In this thesis, we aim to provide a better understanding of the CH scenario for
the fixed-point collision. Firstly, we provide a detailed perturbative CH-style anal-
ysis and lay out its consequences. In particular, we calculate the critical expo-
nents using the fifth-order S function of the 2 + € expansion combined with
the KT equations in a CH-style reasoning. Subsequently, we compare them with
the fixed-point solutions and the associated critical exponents obtained within a
nonperturbative framework across the (d, N) plane.

Above two dimensions, we find agreement between the CH-style perturbative
predictions and the NPRG results, except for the direct vicinity of the supposed CH
line. In this region, we observe no obvious nonanalyticity of the critical exponents.
We do observe a pronounced cross-over behavior in the region where the CH line
should be located yet only in dimensions not far from two. This indicates some
form of smoothed merging of the FP solutions. Moreover, we present arguments
to rule out any fixed-point collision within the NPRG approach, except for the
dimensions very close to two.

Below two dimensions, our NPRG results align with the CH predictions. We
identify both the critical NF FP and the stable BZJ FP and follow them until the
lower critical dimension where we observe their collision. Further, we calculate
the critical exponents as functions of (d, N) and show a good agreement with the
perturbative calculations. We also obtain the correlation function exponent of the
QLRO phase - a result never achieved before with any method. Finally, we present
the line of lower critical dimensions d.(V).

1.2 Anisotropic extensions of the O(N) models

In physical systems, the pure O(N) symmetry is oftentimes broken by interactions
characterized by a lower-order symmetry. Symmetry-breaking fields or anisotropies
can have several effects on the model’s behavior ranging from introducing signifi-
cant corrections to scaling to altering the universal properties or even changing the
order of the phase transition. Thus, understanding the response of isotropic fixed
points to anisotropic perturbations becomes a very important area of research.

1.2.1 Dangerously irrelevant operators

In the RG theory, the perturbations to a fixed point are classified as either relevant,
marginal, or irrelevant. Relevant perturbations increase in magnitude during the
RG flow. If the anisotropic perturbation is relevant in the O(N)-symmetric FP
it implies that either the phase transition becomes first order or there exists an
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anisotropic FP that controls the critical phase transition. Marginal perturbations
do not change in magnitude upon the RG transformations [up to quadratic terms
around the FP] and induce logarithmic corrections to scaling. These are typically
associated with a FP collision or the existence of a line of FPs.

The last type of perturbation is called irrelevant. The magnitude of these
perturbations decreases with the RG flow. The conventional wisdom dictates that
irrelevant operators do not change the universal properties except for inducing
additional corrections to scaling and can be neglected sufficiently close to criticality.
However, some exceptional couplings break this rule. The irrelevant couplings,
which cannot be neglected even very close to criticality are called dangerously
irrelevant.

Many prominent examples of dangerously irrelevant couplings can be found
in the anisotropic extensions of the O(N) models. Most likely, every irrelevant
coupling to the O(N) models characterized by a discrete symmetry group can be
classified as dangerously irrelevant for N > 2 and 2 < d < 4, as they gap the Gold-
stone mode. These kinds of models are very much relevant from the experimental
point of view, since in real magnetic crystals the spherically symmetric interactions
are often supplemented by weak discrete fields reflecting the crystalline symmetry
[59].

The effects of the dangerously irrelevant operators due to anisotropies were,
to our best knowledge, first addressed by Nelson in Ref. [60]. He argued that the
presence of such couplings gives rise to two distinct exponents v, and y_ controlling
divergence of the magnetic susceptibility above and below the critical temperature.
Later it was also shown that below 7, such a model exhibits two correlation lengths:
¢ - the correlation length of the amplitude mode [similar to that of the pure model]
and & connected to the anisotropic field. The latter correlation length & arises
due to the instability of the low-temperature Nambu-Goldstone FP with respect to
the anisotropic perturbation and indicates the scale at which the order-parameter
probability distribution becomes strongly anisotropic.

The correlation length ¢ diverges with the exponent v of the pure model while
&' diverges with the exponent v/, the value of which depends on the scaling dimen-
sion of the anisotropic field y,. The relation between v and v/ was addressed in
several studies, mostly but not exclusively, based on Monte Carlo methods [61-68].
Recently, there seems to be an agreement on a scaling relation in the form [

y’:y(l—i—w), (1.14)

p

with p = 2 for classical ferromagnets with irrelevant discrete anisotropies, although
it should be noted that Ref. |64] argues for p = 3.

!Since the considered anisotropic coupling is irrelevant its scaling dimension is negative [y, <
0]. For clarity, y, is always presented in absolute value |yq|.
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In a relatively recent paper, Léonard and Delamotte [65] consider the problem
of dangerously irrelevant anisotropies from the perspective of the NPRG. Within
that framework, they confirm the scaling relation (|1.14)) with p = 2. Additionally,
below the critical temperature, they find two distinct exponents v, and 7 con-
trolling the divergence of longitudinal and transverse susceptibilities respectively.
Finally, they derive the scaling relations for the + exponents:

Y+ =v(2—mn), (1.15a)

Yr = Y+ = V|Yal, (1.15b)
4—d

V= W = Vel 5 (1.15¢)

where Eq. can be recognized as the typical scaling relation derived from the
regularity of the correlation function. Although derived specifically for O(2) model
with hexagonal anisotropies, Eqgs. are most likely valid for any irrelevant
discrete perturbation to any O(N) model for any N > 2 in dimensions 2 < d < 4.

Interestingly, the difference between the high- and the low-temperature expo-
nents becomes more pronounced the more irrelevant the perturbation. This led
many MC studies to focus on more irrelevant higher-order anisotropies, e.g. hexag-
onal rather than cubic, as this makes the separation between length scales ¢ and
¢ easier to observe. This might seem counter-intuitive since, typically, the more
irrelevant the perturbation the weaker its effects become.

We also note that the relations have not been verified with any methods
besides the NPRG. It is somewhat surprising that with the exceptions of Refs. [60,
65|, to our best knowledge, none of the studies investigating the relation between
v and v/ have addressed the v exponents of magnetic susceptibility. It would be
particularly interesting to see if predictions of Ref. [65] can be confirmed with the
MC methodology.

1.2.2 Cubic perturbations in the O(N) models

An anisotropic extension of the O(N') models that received particularly significant
attention involves the so-called “cubic interactions”. Cubic interactions, as sug-
gested by the name, possess the symmetry of an N-dimensional cube, meaning
that they are invariant with respect to the transformations:

¢ —¢" and ¢ +—— ¢, (1.16)

where i, j € {1,2,..., N} are the order-parameter indices. Like with other discrete
anisotropies, it is expected that such interactions might arise in magnetic crystals
as a manifestation of the symmetry of either crystalline lattice or cell structure;
cubic anisotropies are therefore prevalent in cubic crystals [59].
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In three dimensions, the effects of cubic perturbations in the O(N) models,
to a large extent, can be understood via the perturbative framework of the 4 — ¢
expansion. In this approach, the lowest-order action involving cubic interactions
reads:

. u [ 2 N

cubic d 2 7 2

= [dz ¢ (x) + — T
ve— [ate L8 @) 4![;¢<>

+ %Z ¢'()" + % Dup(@))” ¢,

i=1

(1.17)

where wu is the isotropic quartic coupling and v describes the strength of the
anisotropic interaction. Note that cubic symmetry admits a unique quadratic
term ¢? which is also characterized by the O(N) symmetry. The lowest-order
cubic term which is not O(N)-symmetric is the quartic S~ | ¢'(z)* term.

The upper critical dimension of the models characterized by the action (1.17)
is equal to four [d,. = 4], similarly to the isotropic variant [v = 0]. Close to the
upper critical dimension, one can formulate the perturbative expansion around
the Gaussian FP [10, 69]. In this case, the perturbative framework involves two
[ functions expanded simultaneously in 3 variables: € = 4 — d, u = O(€), and
v = O(é). To the leading order, the RG equations read:

4 1 (N+8
¢4 ~ 1 3 2
pY = —ev+ = 2uv + Jv ) (1.18Db)

Below four dimensions, these [ functions admit four distinct fixed-point solu-
tions:

Gaussian FP: ug =0, vg =0, (1.19a)
1672¢
Decoupled Ising FP: u; =0, v = ;T 6, (1.19b)
4872
O(N)- tric FP: = — =0 1.19
(N)-symmetric uo) = 3 et VO(N) , (1.19¢)
1672 167%(N — 4)é
ic FP: = = 1.1
Cubic Uc N Ve N (1.19d)

The name of the decoupled Ising FP comes from the fact that for u = 0, the
action decouples into N copies of the Ising model. The decoupled Ising
FP is tricritical below four dimensions and shares most universal properties of
the Ising UC. Interestingly, the decoupled Ising FP, to our best knowledge, has
never been identified in lattice models and its domain of attraction outside of the
field-theoretic framework remains unclear.
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Both the O(N)-symmetric and the cubic FPs can be either critical or tricritical
depending on d and N. The function N.(d) describes the line in the (d, N') plane
where these two FPs collide and swap roles as the operator associated with the
cubic symmetry becomes marginal. For N < N.(d) the isotropic FP is critical and
the cubic FP tricritical and vice versa for N > N.(d). The schematic RG flows
between the four FPs are presented in Fig. [1.3]

Gaussian

Cubic
(a) N < N.(d)

Figure 1.3: Schematic representation of the RG flows of the O(N) models with
cubic anisotropies in the (u,v) plane in dimensions 2 < d < 4 [70].

Although the line N.(d) has been a subject of studies for over 40 years, not
much is known about its exact shape. Until very recently the value of N,(3)
remained elusive, with early estimates ranging between 2.3 and 3.38 [70]. Crucially,
there was a disagreement about whether N.(3) is larger or smaller than three. In
other words, it was unclear whether the isotropic FP of the three-dimensional
Heisenberg model is stable with respect to cubic anisotropy and therefore controls
the critical behavior of realistic magnetic crystals with cubic symmetry. This
question was apparently resolved by a conformal bootstrap study [71]. It shows
that for N = d = 3, the cubic anisotropy is relevant at the isotropic FP and
consequently N.(3) < 3. This agrees with the most recent 4 — € expansion results
[70, 72| and was later corroborated by the Monte Carlo calculations [73].

The value of N,(2) remains somewhat unclear. It is sometimes stated that the
line N.(d) crosses the point (d, N) = (2,2) [4} 70, 74]. This statement is based on
the fact that the cubic anisotropy is marginal with respect to the FP controlling
the Kosterlitz-Thouless transition |75, 76]. There exists, however, quite a simple
argument claiming that N.(d) has to be strictly larger than two. To our best
knowledge, this reasoning has been first fully articulated in Ref. [71], although
parts of it can be found much earlier [see e.g. Ref. [70]].

The case N = 2 is quite unique among O(N) models with cubic perturbations,
as it possesses a symmetry between the decoupled Ising and the cubic FPs absent
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for generic N. For any integer N, the minima of the cubic action (1.17)) are 2V-fold
degenerate for v > 0 - pointing to the vertices of N-dimensional hypercube, and
2N-fold degenerate for v < 0 - pointing to the faces of the hypercube. For N = 2,

action minima are 4-fold degenerate both for v > 0 and v < 0. Under a 7 rotation:

(P1,02) — %(qﬁl + @2, P1 — B2). (1.20)

the minima of the action map onto the maxima and vice versa. Moreover, this
transformation preserves the form of the action (1.17]) with a redefinition of the
quartic couplings:

v =u+-v, v =-v. (1.21)

Such mapping can exist only for N = 2 due to the same degree of minima degen-
eracy.

Importantly, the rotation interchanges the cubic and the decoupled Ising
FPs, which means that the two FPs share all critical exponents. Moreover, the
symmetry between the two FPs requires that a collision between the cubic and
the O(N)-symmetric FPs is also a collision with the Ising FP. Such a collision,
however, can occur only at the Gaussian FP where the four FP families
intersect, which happens only in the upper critical dimension. Moreover, the
decoupled Ising FP and the cubic FP were found isolated from the KT line of fixed
points in the two-dimensional O(2) model with cubic anisotropies [77]. Therefore,
the collision between the cubic and the O(N)-symmetric FPs most likely does not
take place for N = 2 below four dimensions. This implies that N.(d) should be
strictly larger than two in any dimension.

1.2.3 Cubic perturbations in the two-dimensional O(2) model

As discussed in Sec. [L.1.3] the long-range order cannot survive in the two-dimensional
O(2) model at finite temperatures due to the Mermin-Wagner theorem [49|. De-
spite that, the model still admits a phase transition - the vortex unbinding KT
transition between a disordered phase and a QLRO phase. The situation changes
when we consider symmetry-breaking interactions such as cubic anisotropies. The
explicit O(2) — Z4 symmetry-breaking allows for the formation of the LRO, which
leads to a question of the stability of the QLRO in the presence of weak discrete
perturbations.

This topic was addressed in the seminal paper by José et al. [75]. Working
with the generalized Villain model and employing brilliant duality relations, they
devised the RG equations for the O(2) universality class with Z,-symmetric per-
turbations for any integer ¢ > 1. Here, we will focus only on ¢ = 4 describing
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the cubic perturbations. The recursion relations derived by José et al. describe
RG flow of three couplings: ¢ - the spin-wave coupling, y, - related to the vortex
fugacity and y, - the Zs-symmetric anisotropic field. The proposed RG equations
read:

By = 2m’y; exp <—%2) — 819’y exp (—4g) (1.22a)
—2
Byo = (g - g) (7) Yo- (1.22b)
4
Py = (g - g) —Ys- (1.22¢)

When the anisotropy vanishes [yy = 0], Egs. reduce to the KT recursion
relations after the substitution y? = y2exp(—n?/g). We note that these
equations are valid only to the leading order in y, and y,.

Egs. admit two lines of fixed points:

Isotropic KT FPs: ¢ € [0, +o0], Yo = ys = 0, (1.23a)
Anisotropic FPs: ¢ = g + 05, v), Ya = %Yo, (1.23b)

intersecting at the point of the KT transition g = 7, yo = y4 = 0. The eigenvalue
analysis shows, that the cubic perturbation is relevant at the isotropic FPs below
the KT transition point [g < 7| and irrelevant above [g > 7|. This means that the
KT QLRO phase is unstable towards arbitrarily weak Z,-symmetric fields in favor
of the LRO. The phase diagram deduced by José et al. is presented in Fig. [I.4]

The existence of the anisotropic line of FPs and the associated nonuniversality
of the critical exponents have been confirmed by later studies using either fixed-
dimension perturbative expansion [74] or MC methods [78]. However, the MC
based Ref. [79] raises some questions about the correspondence between the lattice
models used in MC simulations and the generalized Villain model employed by José
et al. The authors of Ref. |79 report a “bubble” of the KT QLRO phase present
in the phase diagram of the XY model for weak Z,-symmetric fields. This stands
in contrast to the claims of José et al. that the QLRO phase can occur only when
the cubic field vanishes [see Fig. [1.4].

This disagreement was apparently resolved in Ref. [77]. They show that for
weak anisotropic fields, one observes a cross-over between KT-like and critical
behaviors. The length scale associated with this cross-over diverges very quickly
with the diminishing strength of the anisotropic field. It is postulated that for
weak anisotropic fields, the cross-over scale is already beyond the reach of the MC
simulations which might give rise to an apparent presence of the KT QLRO phase.



18 CHAPTER 1. INTRODUCTION

AYa &
4
ordered 'é’l’ disordered
phase N phase
o 1
a1
‘—]—’ gl' KT transition
. . I
| _ KT fixed points_ _ 4_4{_ >
wn 1
X8 :
Y
ordered 2 disordered
phase %\‘ isordere
X phase
N
AY

Figure 1.4: Projection of the phase diagram of the two-dimensional O(2) model
with cubic perturbations onto the (g, y4) plane according to Ref. |75]. The second-
order order-disorder phase transitions are controlled by the anisotropic FPs. The
KT QLRO phase is confined to a line y, = 0.

There have been many attempts at experimental verification of the picture
presented by Ref. |75]. Taroni et al. [80] present an exhaustive overview of ex-
perimental studies of phase transitions in two-dimensional materials attributed to
a wide variety of universality classes ranging from 3- and 4-states Potts to Ising,
XY, and XY with cubic anisotropies (XY+Z,). They collect and analyze the dis-
tribution of the reported values of the 5 exponent, controlling the behavior of the
order parameter near the transition.

Taroni et al. show that the experimental values for the [ exponent cover a
wide range from roughly 0.1 up to 0.25 which they call a “universal window”.
The presented distribution of the  exponent is bimodal with strong peaks at
b ~ 0.12 and § ~ 0.23. The former peak is interpreted as related to the two-
dimensional Ising universality class. Importantly, it is argued that materials of
the XY+Z, UC can display scaling similar to that of the Ising UC for sufficiently
strong anisotropies.

The presence of the latter peak is even more interesting. It has been shown that
the pure two-dimensional XY model is subject to very strong finite-size effects. In
the QLRO phase, the magnetization vanishes as slowly as

(m) ~ L5, (1.24)

where L denotes the linear extent of the system and K is the renormalized spin-
wave stiffness taking values larger than Kz > 2 [81) 82]. The small value of the
exponent in Eq. ([1.24])) means that finite-size effects remain very much relevant even
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in the macroscopic systems. Interestingly, the magnetization near the transition
temperature in finite systems [to some extent| seems to follow a power-law with
an effective exponent S ~ 0.23 [82-84]. Even more surprising is the fact that
this effective exponent seems to take a universal value. Taroni et al. interpret the
second peak of the 8 exponent distribution as a manifestation of that finite-size
effect.

One more important point raised in Ref. [80] is that the theory of José et
al. predicts that the 3 exponent should diverge as  ~ ;' and therefore its
distribution is presumably unbounded. The experimental data, however, remains
strangely confined to the small universal window. Taroni et al. argue that the
apparent contradiction might arise due to the presence of strong finite-size effects.
As the true exponent S describing the magnetization in the thermodynamic limit
increases, the importance of the finite-size corrections magnifies rapidly. It is thus
conceivable, that in the experiments the finite-size effects overshadow the true
exponent of the XY+7Z, UC and that the observed scaling is related to the effective
finite-size exponent.

1.2.4 This thesis

In this thesis, we employ the nonperturbative renormalization to offer a new per-
spective on the O(2) model with cubic anisotropies. We begin by addressing the
three-dimensional model for which, so far, the NPRG estimates for the scaling
dimensions were quite far off compared to the values obtained by most other
methods. We identify the problem lying in the previous approaches and offer an
estimate standing in agreement with most estimates given in the literature.

Subsequently, we continuously lower the dimension and observe how the scaling
dimensions of several dominant operators evolve between three and two dimen-
sions. In this manner, we observe that the dominant cubic perturbation changes
its character from irrelevant to marginal as the dimension approaches two.
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Chapter 2

Nonperturbative Renormalization
Group

So, so you think you can tell
Heaven from hell?

Blue skies from pain?

Can you tell a green field
From a cold steel rail?

Pink Floyd, Wish you were here

In the introduction, we outlined the major perturbative renormalization group
(RG) schemes and emphasized their undeniable impact on the fields of statistical
and high-energy physics. These methods, however, are not without their pitfalls,
calling for the development of an alternative approach. The idea of formulating a
renormalization group approach not relying on any sort of perturbative expansion
is not a new one. In fact, it can be traced as far back as the 1970s to the exact RG
scheme proposed by Wilson and Kogut [85]. They derived an exact RG equation
governing the flow of interactions based on the idea of gradually integrating out
the degrees of freedom in the momentum space. In the following years, several al-
ternative exact approaches have been formulated, including the Wegner-Houghton
differential generator [86] and the Wilson-Polchinski (WP) approach [87].

However, for around 20 years the nonperturbative renormalization group (NPRG)
methods have seen limited use. Some approximate schemes have been developed
to provide descriptions of wetting |88, 89] and unbinding transitions [90]. How-
ever, for bulk critical phenomena those early approaches were quite inaccurate
when compared to popular methods such as perturbative RG and Monte Carlo
[91-94], except for the exact results obtained mostly in the perturbative regimes
[45, 185, 186, |95]. The main problem of the early NPRG methods was that the exact
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equations were almost always insoluble, while the approximation schemes were not
well-supported and were often seen as uncontrolled. Moreover, the perturbative
RG methods were tremendously successful at the time and the NPRG techniques
often seemed unnecessary.

A sort of revival of Wilson’s idea came about in the 1990s in the form of the so-
called effective average action approach, also known as the Morris-Wetterich (MW)
approach. This method, put forward independently by Wetterich [46], Morris [47],
and Bonini et al. [96], describes the flow of the effective average action I'y [the
generator of the infrared (IR) cutoff vertex functions|. This stands in contrast
with the WP approach, which describes the flow of the generator of the IR-cutoff
connected correlation functions Wy. A priori, it is not obvious why this change
should make a difference. After all, both the MW equation and the WP equation
are exact, they describe the same underlying physics, and both are analytically
insoluble. However, judging by the significant attention the MW equation has
recently attracted, it seems to be a significantly more practical method than the
WP approach. Over the last 30 years, the NPRG methods have been developing
rapidly and have been employed in many fields of modern physics ranging from
statistical mechanics and quantum many-body physics to gravity and high-energy
physics [7,197499).

Throughout this chapter, we explain the methodology of the effective average
action approach to the NPRG employed in this thesis. In Sec. we define the ef-
fective average action and derive the Morris-Wetterich equation governing its RG
flow. Sec. introduces the approximation scheme of the derivative expansion
and explains how the RG-flow equations are derived. In Sec. 2.3 we discuss the
role of the infrared regulator. We introduce the most common choices for this
function, and how to reduce the dependence of the estimates of the physical quan-
tities on the spurious parameters introduced by the regulator choice. Further, we
discuss the topics of convergence of the derivative expansions and the techniques
for error bar estimation. Finally, in Sec. 2.4] we discuss specific applications of
the derivative expansion and the challenges involved therein. We show, how the
derivative expansion can be used to capture the Kosterlitz-Thouless (KT) transi-
tion, the difficulties appearing in the studies of the low-temperature phase, and
the methodological modifications required in the studies of the anisotropic models.

2.1 Effective Average Action

The effective average action approach follows Wilson’s idea of gradually integrating
out the degrees of freedom. For a given momentum scale k, the order-parameter
degrees of freedom are divided into the rapid, “active” modes [with momentum
|g| > k| and the slow, “frozen” modes [with momentum |g| < k|]. The thermal
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fluctuations of the frozen modes are suppressed, while the fluctuations of the active
modes are taken into account. In this picture, the RG flow takes the form of
“gradually activating” the modes within a shell £ ~ |g|. This is implemented
by introducing a family of functionals I';[¢] called the effective average action.
At the ultraviolet (UV) scale k = A, the effective action takes the form of the
microscopic action. As the scale shifts down towards IR limit & — 0, progressively
all fluctuations become accounted for and the effective action approaches the Gibbs
free energy.

To define T'y, we first introduce the scale-dependent IR-cutoff partition func-
tion:

240 = [ Doep {514 - Rl + / bahoa 21)

where S[p] is the microscopic action of the scalar order parameter ¢ and Ry[y]
is the IR regulating term responsible for damping the fluctuations of the frozen
modes. The proper choice of Ry is central to this scheme. We want the IR-
regulating term to be a quadratic functional of the field that provides a large |or
infinite] mass to the slow modes, leaving the rapid modes essentially unchanged.
For an arbitrary field ¢, we define:

1
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where R is the IR regulator function, on which we impose two essential require-
ments: Ri(q®> < k%) > ¢* and Ri(q®> > k?) < ¢ In practice, it is often
convenient to choose a large, but finite mass Ry(q* < k?) oc Z,k? with Zj, denot-
ing the order-parameter renormalization factor which we shall define later. Such
a choice secures two important limits:

e In the UV limit, Rx(q?) > ¢* for any q; the regulator provides large mass
to all the modes and effectively freezes all order-parameter fluctuations and
the scale-dependent effective function takes the bare value [up to an additive
factor].

e In the IR limit, limy_,o R(q?) — 0 for any q; all fluctuations are restored
and the scale-dependent partition function reaches the exact value.

In the exact treatment, the universal quantities should not depend on the choice of
the regulator function. This, however, is no longer true when approximations are
performed. We relegate the discussion of the regulator dependence and the typical
choices of regulators to Sec. where we discuss our approximation scheme.
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We now define the IR-cutoff Helmholtz free energy Wi [h] = log (Zx[h])] The

effective average action is its Legendre transform with a subtracted regulator term:

Duld] + Wilh / bah—q — Rild), (2.3)
with SWilh 5T
Pq = (5hk[ ] and  hq = 5¢k[¢] + Ri(q%)¢q- (2.4)

We emphasize a distinction between the fields ¢ and ¢. The former is the fluc-
tuating order parameter and the functional integration variable in Eq. . The
latter, on the other hand, is the IR-cutoff thermal average of the order parameter
and an argument of I'j.

Having defined I'y we again inspect the IR and UV limits. Recovering the IR
limit is straightforward since all the regulator terms vanish identically. Wj[h] is by
definition the Helmholtz free energy, and I'y[¢] its Legendre transform - the Gibbs
free energy. Calculating the UV limit, however, is somewhat more involved. Let
us take the definition of h4 from Eq. and insert it into Eq. . We find:

0Tk (0]
ddq

We subsequently exponentiate both sides and substitute exp (Wy[h]) = Zi[h] from
Eq. (2.1)) to obtain:

oxp (-13lo) =owp { ~Rafel - [ T} (2.6)

/ Dy exp { —Slp] = Rl + /q {61(;;[(?] Pq + Rk(q2)¢q¢—q} } :

With a shift of the integration variable A = ¢ — ¢, Eq. (2.6) can be further

reorganized into:

exp ( /DAeXp{ Slp+A] — R[A]+[15§;E¢]Aq}. (2.7)

In the UV limit, the regulator function diverges [or almost diverges| for any g
sharpening the regulator term Rx[A] to [almost| a functional Dirac delta function
d[A]. This means that, in the UV limit, the effective action is |[almost| equal to
the microscopic action up to an additive constant 'y [¢] ~ S[¢] + C. The equality
becomes exact if the regulator truly diverges Ry (g?*) = oo.

T[] = Welh(6)] — Rald] / ba. (2.5)

1Up to a —kgT factor which plays no role in what follows.
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At this point, it becomes obvious why the regulator term Ry[¢] had to be
subtracted in the definition of I’y [see Eq. (2.3)]. In the UV limit, Ry[¢] does not
vanish; on the contrary - it becomes very large. Had it not been subtracted we
would not have recovered the [approximate| equality I's[¢] ~ S[¢] + C' in the UV
limit.

2.1.1 Morris-Wetterich Equation

The essential role in any RG scheme is played by the flow equations or the so-called
[ functions. The flow equation for the effective average action I'y, can be quite
straightforwardly derived following the steps presented e.g. in Ref. [100]. We first
act with the derivative with respect to scale (k0|,) on the IR-cutoff Helmholtz
free energy to find:

ko, Wilh] = 55 [ o / RO @) ) * (23)

exp {—S [p] = Ralee] + /q soqh—q}

) (/ R ) 2
_q S2Wilh]  SWi[h] 5Wk[h]),

_ = 2 _

2 q9.p

where we introduced Ry(q?) := kdpRy(g?). Since Wi[h] is the Legendre transform
of I'y[¢] + Ri[¢] we have:

SWalh] 52 Wi[h]] [62Tl0)
“ohy  Yma ond / [MPMJ [5@5%

+0(r + Q)Rk(qQ)} =i(p+q).

(2.9)
With these observations, we can rewrite the flow equation for W, as:

o Wilt] = = [ Rula) (14 1) | <o) 20

where F,(f) is the second functional derivative of I';, and the inverse is understood
in the operator sense.
To obtain the flow equation for the effective average action we act with the

(kOk|,) operator on the Legendre transform equation (£2.3). We find:

RO (04l + W) = [ |y = Rula?)0n) (K04, 6-) = S0l)on0-a).
(2.11)
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After substitution of the flow of Wy[h] from Eq. (2.10)), Eq. (2.11)) becomes:

-1

1 .
oul, Tule) = 5 [ Rula?) (0 4 ) b [ (g = Bala?)oa) (k] 0-0).
q "~ q
(2.12)
The differentiation with respect to scale in Eq. (2.12)) is taken keeping the source
h fixed. We need to change the variables so that the derivative is taken keeping
the order parameter ¢ fixed. On the left-hand side of Eq. (2.12)), we perform the

replacement:

KOu, T4l6] = Koul, Tulo) + [ (ko 6-0 oL (7) (2.13)

a 06—

Recalling the value of %}? from Eq. (2.4) we get a cancellation that simplifies

Eq. (2.12) to:

i ~1
WOTulo] = 5 [ e (0 + B) (2.14)
g 4,-9q
Equation known as the MW equation was independently derived in Refs. [46],
96, [101].

The derivation presented above was specific to a single-component scalar field
theory. It can, however, be easily generalized. The main modifications lies in the
way the regulator term Ry is constructed [see Eq. (2.2)] and how it relates to
the derivatives with respect to sources [see Eq. ] For example, in theories
of N-component real scalar fields, with which we work in this thesis, the proper
regulator term takes the form:

Ril@] = %/Rk(q2)2¢;¢iq- (2.15)

This requires that in Eq. (2.8]) [and all subsequent steps| the indices of the field
are traced over. The more general form of the Morris-Wetterich equation reads:

1 : -1
RO = 5 Th {Rk <[‘](€2) n Rk) } , (2.16)

with the trace operator involving integration over internal momenta and summa-
tion over internal indices.

Among other NPRG schemes, the MW equation is distinguished by several
properties that make it a convenient basis for approximations not relying on per-
turbation theory. These include:
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e One-loop structure - the trace in the MW equation always involves only
a single momentum integral. Moreover, one can often take advantage of
the rotational invariance to reduce this single integral to a one-dimensional
integral, which greatly simplifies the calculation complexity. A diagrammatic

representation of Eq. ([2.16]) is shown in Fig. 2.1

e One-Particle Irreducible (1PI) structure - only the 1PI diagrams con-
tribute to the flow equations for the effective action as well as for all the
vertex functions.

e Decoupling of short- and long-range physics - thanks to the regulator
term Ry in the MW equation only momenta ¢ < k contribute to the flow at
any scale k. This ensures that the RG flow is regular and does not suffer
from UV divergences.

e Infrared regularity - at any finite scale k the infrared regulator Ry provides
the order parameter with a finite mass. In this way, the theory is safe
from IR divergences. At the same time, the singularities of I'y, expected
when studying phase transitions, appear only in the limit £ — 0. At finite
scales, however, I'y remains regular which allows for the development of
approximation schemes based on the series expansion of the effective action.

<F§f) n Rk) Y

1
koI, = =
« . * Kk =5

Figure 2.1: Diagrammatic representation of the Morris-Wetterich equation ([2.16]).
~1
The continuous lines with arrows denote the “dressed propagator” (F,(f) + Rk>

and the asterisks denote the scale derivative of the regulator Ry,.

The Morris-Wetterich equation has provided a fertile ground for research in
statistical physics and far beyond. It has been used in quantum theories involving
both bosons and fermions, as well as gauge theories and even gravity. A wide
range of applications of the MW equation based NPRG is thoroughly discussed in
Ref. [99].

2.2 Derivative Expansion

The MW equation is exact but seldom can it be solved analytically. Thus, it
requires an approximation scheme. The common approximations for the NPRG
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rely on imposing some parametrization on the effective action I'y, and solving the
MW equation in the restricted functional space. One such approach called the
derivative expansion (DE), relies on the observations of the previous section.

Let us recall that the structure of the MW equation ensures that at any given
scale only the slow modes |¢ < k| contribute to the flow. Thus, when developing
an approximation scheme, we mostly focus on the low-momentum structure of the
vertex functions. This is the essential idea behind the derivative expansion; it is
an expansion of the effective action |and consequently the vertex functions| in the
momentum of the order-parameter modes. One expects such an expansion to be
well-behaved as long as I'y is regular. Conveniently, thanks to the presence of the
IR regulator, regularity of I'j is secured at any finite scale k.

In practice, the DE is performed by imposing a specific ansatz on I'y including
terms with no more than a specified number of differential operators 9, = a%
acting on the order parameter. The form of the ansatz differs between models
since at any given order one should include all the symmetry-allowed terms. As
an example, we present the most general ansétze for the three leading orders of
the DE for the O(N) models with generic V:

PLPA /m {U(p) + % (aﬂgbi)Q}, (2.17a)

iy = [{v+ 52 @0+ 202 0,00 (27b)
N / {le(p) (0.0,6) + 22 3,0, (2:17¢)
FW()0,00,00,0,0" + N 59, 60,000,0,0

. s (,;) = 0,p0,0,0,6' + if ?) [(0,0) ] Wz(p) (0,0°0,6)°

W()

N

¢18 ¢za a NI A A W( ) ( quz) ( ) + WlO(p> [(8up)2]2 }
In Egs. (2.17)), we used p to denote the O(N) invariant ¢¢'/2 and, to simplify
the notation, we suppressed the scale dependence of the parametrizing functions
U, Z,, Z,, and W; as well as the position dependence of the fields ¢ and p.

The derivative expansion reduces the incredible complexity of a general func-
tional I'y and recasts it into just a couple of single-parameter functions. However,
the simplicity of the ansétze can be almost deceptive. While at the leading
and next-to-leading orders the flow equations, which shall be discussed shortly,
are manageable, their complexity grows extremely rapidly with each subsequent
order. The leading order - the local potential approximation (LPA) involves just
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one function - the local potential, while the flow equation fits in a single line. At
the order O(9?), we are dealing with three functions, and the flow equations fit on
a single page. At order O(9%), the flow equations for the thirteen parametrizing
functions can only be derived on a computer and become too long for a human to
read. The order O(9°) has never been implemented except for N = 1 |21, [23].

In some particular cases, the effective action ansatz as well as the flow equations
can be greatly snnphﬁed For example, when studying the Ising universality class
(UC) [N =1], ( #gbl) and (9,,p)° terms in T’y become proportional and the function
Z.(p) decouples from physms and can be removed from the parametrization. For
N =1 at the order O(d"), there are only three independent four-derivative terms
instead of ten present for generic N. Thanks to the reduction of the I'; ansatz,
the DE up to the order O(9°) has been employed to study the Ising UC in three
dimensions [21]. Similar reduction, although not as spectacular, can be achieved
for higher integer values of N, e.g. for N = 2 at the order O(9*), just one function
can be removed from the ansatz without loss of generality.

The difficulties related to the rapidly increasing complexity of the flow equa-
tions are counteracted by the fact that the DE converges quite rapidly and is
surprisingly accurate even at low orders of the expansion. Already at the next-
to-leading order, the DE becomes one-loop exact in three distinct perturbative
regimes: 2+ € [for N > 2|, 4 — € and N — oo [102, |103|. This suggests that the
DE offers a reasonable interpolation between the perturbative regimes. Moreover,
thanks to their one-loop 1PI structure, the flow equations can be very efficiently
implemented numerically. Even the highly complex flow equations of the O(9*)
level can be integrated with a fairly limited numerical effort when compared with
other methods such as conformal bootstrap or Monte Carlo, leading to results
of comparable accuracy. We shall expound on the subject of convergence and
accuracy of the DE in Sec. [2.3]

2.2.1 Flow equations

Once the effective action ansatz has been adopted, the flow equations are read-
ily derived by calculating the flow of the vertex functions and expanding them
in momenta. This is done by acting on the MW equation with the functional

derivatives:
1. 0n (T +R)
kak kleh inDn = §TI' Rk 5¢’Ll gbln . (218)
p1 -

Each functional derivative either acts on a “dressed propagator” generating a new
re vertex or on an existing vertex raising its order. Thus, the flow equations
for the I'™ functions can be elegantly represented by one-loop 1PI diagrams. For

example, the flow equation for F/,(C Z)p ;_p function can be found by evaluating two
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diagrams presented in Fig. 2.2

AN

kyipj—p — i,p

LP )P
Figure 2.2: Diagrammatic representation of the flow equation for the F,(jgp’j_p
function. The continuous lines with arrows denote the “dressed propagator”

71 .
(1";{2) + Rk> , the asterisks denote the scale derivative of the regulator R, and

the dots with n lines denote the n-point vertex functions. The external legs of the
diagram are labeled with corresponding field indices and momenta.

At this point, it becomes important to discuss two alternative approaches to
deriving the flow equations in the DE. The first is realized by directly following the
steps outlined above. It is sometimes called the “ansatz” approach because it relies
on extracting the equations directly from the effective action ansatz. The second
approach is based on an interpretation of the DE as an expansion of the vertex
functions in the external momenta. The prescription of this scheme is to calculate
all necessary vertex functions keeping track of the neglected corrections. When we
plug the vertex functions into the flow equations, we find that some terms coming
from products of vertices are of the same order in momenta as the corrections
neglected by the imposition of the effective action ansatz. We therefore should
neglect these higher-order terms to keep the momentum expansion consistent. This
approach is sometimes called “strict” because it strictly controls the momentum
expansion.

It might be argued, however, that the name “strict” is a misnomer and may
lead to confusion as it suggests some form of exactness. On the contrary, the whole
idea of this approach is to truncate the terms that would appear if we adopted
the equations coming from the ansatz at face value. To avoid confusion we will
adopt the more neutral names: “ansatz” and “truncated”, when referring to the
respective schemes.

The advantage of the truncated approach lies in the reduction of the flow equa-
tions. At the order O(9?%), the difference between the two schemes is minor, but
at the order O(d*) the truncated scheme equations become many times shorter
than the ansatz scheme equations. The price to pay for the reduction lies in the
accuracy of the calculations, but its severity varies with the dimension. In three
dimensions, the difference between the predictions of the two variants of the DE is
negligible both at the O(9*) and O(9?) orders. We note that the DE calculations
at the order O(9") [O(0%) for N = 1 of Refs. |20, 21} 23] were performed only in



2.2. DERIVATIVE EXPANSION 31

the truncated variant. As will be discussed in detail in Sec. [£.3] the truncated ap-
proach performs significantly worse than the ansatz approach when the dimension
approaches two. In particular, the truncated scheme does not recover the onset of
the KT physics as accurately as the ansatz scheme.

After calculating the flow of the vertex functions we evaluate them in a uniform
field configuration |¢q = ¢dq 0| and expand it in powers of the external momenta to
obtain the flow of the parametrizing functions. At this point, it becomes convenient
to specify the basis in the order-parameter space. In the O(N)-symmetric theory,
without loss of generality, we can select

¢*(x)* =2p(x) and ¢'(x)=0for1l<i < N. (2.19)
In this basis, one identifies the § functions:

ﬁg(p) = kakUk(p) = kakr[d)]lUniform? (220&)

1

8%, (p) = kdwZs(p) = 55 Dol (koT,0,) . (2.20b)
1

52 (p) = kOpZx(p) = 24 Ap‘p:() (kakri(j%p,g_p) uiform” (2.20¢)

with A, = Z?Zl 812)2_ denoting the Laplacian operator in the momentum space. A
similar, though much more involved procedure holds for the terms of higher order
in the DE [21].

The $ functions of Eq. contain the most important physical information
and could be used to obtain the renormalized quantities but are not yet suitable
for the analysis of RG fixed points. For this purpose, we need to transform them
into a dimensionless form. This is achieved by multiplying each quantity X by
the scale raised to the power of its canonical dimension X = Xk . At the O(8?)
order of the DE, the rescaling takes the form:

§ = PRI 04(5) = U™, ZoaP) = Zow K™, Zaa(5) = Zna(p)k™.
(2.21)
In Eq. , we introduced two new quantities: the “running anomalous di-
mension” 7, and the “renormalization time” t = —log (k/A). The former is the
logarithmic derivative of the order-parameter renormalization 1, = —k0dy log(Zy)
and serves as a precursor for the fixed-point anomalous dimension. To close the
set of equations, we choose an arbitrary constant p, and impose

Zni(Pn) = Zng(py)/ 21 =1 (2.22)

defining Z;ﬂ. The renormalization time is introduced to transform the flow equa-
tions into a stationary form. After the rescaling the equation for any parametrizing

2When studying the critical fixed points, either of the functions Z, and Z, can be used in
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function F}(p) takes the form:
OFi(p) = drFi(p) = (d = 2+ m) pF{(5) = Br () (2:23)

with Sg(p) = k=9 8% (p) denoting the dimensionless loop contribution to the flow.
The superscript denoting the scale-dependence in 3 has been dropped since the
dimensionless § functions are only implicitly RG-time dependent.

2.2.2 Fixed points and critical exponents

Some universal quantities such as critical exponents can be extracted from the
fixed point solutions to the RG-flow equations or their direct vicinity. It is thus
beneficial to develop methods for finding the fixed-point solutions. In the DE, it
is tremendously difficult to obtain analytical fixed point (FP) solutions without
additional approximations and outside of the perturbative regime; we are unaware
of any such achievements. The typical choice is to resort to numerical analysis.

In the so-called “functional approach” to the DE, we attempt to solve the dis-
cretized form of the set of flow equations of the form (2.23). This is achieved by
representing the functions on a finite grid spanned on the interval [0, pyax] and
approximating the p derivatives of parametrizing functions by finite differences.
We thus transform a small set of nonlinear partial differential equations into a
large set of ordinary differential equations suitable for numerical treatment. The
details of the numerical methods employed in this thesis are discussed in Appendix
Bl Typically, the loop integrals cannot be performed analytically and are approx-
imated with finite sums. The Gauss-Legendre quadrature rules used to perform
the momentum integrals in the calculations of the present thesis are discussed in
Ref. [104].

From this point, one can follow one of two routes: integrate the flow equations
or search for the FP solutions. To integrate the flow equations one first needs
to specify the initial condition for the effective action. When studying only the
universal properties of the critical transitions, it is typical to select a microscopic
action with a “Mexican-hat” potential’}

Uop

raigl = 5iol = [ [0 (@ - i) + 5 @07 220

Eq. to define the order-parameter renormalization. This is no longer true when investigat-
ing the low-temperature behavior. In this case, models with N > 1 require the renormalization
factor to be defined via Z,, while for N = 1 one has to use Z, since it is the only of the two
functions retaining the physical significance.

3We note that for our purpose the specific form of the microscopic action has no impact on
the results.
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Subsequently, one needs to numerically integrate this initial value problem from
the microscopic scale k = A [t = 0] until all the couplings become renormalized. In
this thesis, we employ the adaptive step Runge-Kutta-Fehlberg method described
in Appendix [B.4]

One could ask why not integrate the equations down to the limit & — 0. This,
however, turns out to be numerically infeasible and, luckily, unnecessary. The
flow equations are easiest to implement numerically in terms of the dimensionless
quantities. In these terms, the limit £ — 0 corresponds to infinite renormalization
time ¢ — oo and the limit itself is often singular. In practice, it is sufficient to
integrate the flows to the scale at which all the dimensionful quantities become
renormalized and their flow is negligible. This corresponds to integrating the flow
down to some finite scale kyp, significantly lower than the inverse correlation length
kMin < 5_1‘

Once the integration method is implemented, the ¢, parameter of the initial
condition can be tuned over consecutive flow simulations to approach the
critical manifold. From the flows passing sufficiently close to the FP, one can di-
rectly extract the information about the anomalous dimension 7, the correlation
length exponent v and leading corrections to scaling exponents [if the employed
method offers a sufficient precision|. The flow integration method also presents
access to nonuniversal information; it can be used inter alia to draw the phase dia-
gram, calculate the renormalized quantities, and observe the cross-over behaviors.
In the studies of multicritical points [FPs with two or more relevant directions],
flow integration can become burdensome as it requires fine-tuning of several pa-
rameters.

The approach alternative to the flow integration is the fixed point search. It
relies on directly solving the fixed point equation

o, [¢] = 0. (2.25)

At this point, it becomes convenient to introduce a symbol F;(p) denoting a di-
mensionless vector of all parametrizing functions, e.g. at the order O(9?) we have

F(0) = {00). 24(p). Z+(5) |- (2.26)

In terms of F, the FP equation takes just as simple form
O F*(p) = 0. (2.27)
In the functional form, Eq. describes a set of nonlinear ordinary differen-

tial equations. After the discretization outlined above, they reduce to a very large
set of algebraic equations. These equations can be quite easily solved by several
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methods. In this thesis, we employ the Newton-Raphson method explained in
Appendix B.3]

The FP search method is a very efficient way to obtain values of the critical
exponents. The anomalous dimension 7 is itself encoded in the FP solution while
the other critical exponents are extracted from the linearization of the RG flow
around the FP. We write:

OF = @+M(P) (F—=F)+0(F-F)), (2.28)

where M is the matrix of first derivatives of the flow equations:

0 (0 Fap.)

2.29
OFy, (2.29)

M(F)apbp; =

also known as the Jacobian. When evaluated at a fixed point, the matrix M is
often called the stability matrix. In the definition (2.29)), indices a, b enumerate
the functions in F while the indices p;, p; refer to the points on the discrete p
grid. The matrix does not contain the rows and columns corresponding to
values fixed by external constraints, e.g. the row and the column corresponding to
Z(p,) are absent because the value Z,(j,) = 1 is fixed in the rescaling procedure
to define the anomalous dimension. Similarly, the regularity of the effective action
requires that the functions Z,(p) and Z,(p) take the same value in the limit 5 — 0,
and thus the values Z,(0) and Z,(0) should be treated as a single parameter when
calculating the stability matrix.

The eigenvalues e; of the stability matrix describe the scaling dimensions of
the eigenoperators of the RG transformation. In our sign convention, the positive
eigenvalues correspond to the relevant operators, and the negative to the irrelevant.
For the critical FP, enumerating the eigenvalues in the descending order we identify
the correlation length exponent v = 1/e; related to the dominant eigenvalue, and
the correction to scaling exponents w; = |e;41| [105]. The stability matrix is not
symmetric and therefore some of its eigenvalues may take complex values. The
complex eigenvalues always appear as conjugate pairs: e and é.

The fixed point search approach is a very efficient and precise method to identify
the critical exponents. It requires substantially less computational effort than the
flow integration and has the capacity for the calculation of an arbitrary number of
the RG eigenvalues without worrying about the nonlinear corrections that could
spoil the estimation of the critical exponents from the flow. The disadvantage of
this method lies in the limited number of quantities that it allows to calculate,
which are essentially restricted to the critical exponents. Even some universal
quantities such as the universal amplitude ratios cannot be extracted from the
fixed point alone.
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We emphasize that the stability matrix is defined after the discretiza-
tion. However, the stability matrix M (F*) has a functional counterpart stability
operator M(F*), which describes the true linearization of the RG equation around
the functional solution to the FP equation. Its kernel is defined as:

5 (OF4(7))

M(f>aﬁ,bﬁ' = 6-7'};(,5/)

(2.30)

We are unaware of any studies investigating the stability operator M(F*) or its
spectrum, though there is no lack of pressing questions. Physical arguments tell
us that the spectrum of M(F*) should be bounded from above and, at least
partially, discrete. Yet it remains unclear, why this should be the case from the
mathematical point of view.

More importantly, however, the notion of convergence of the stability matrices
to the stability operator upon tightening and expanding the grid has not been well
defined and certainly not fully understood. Many modern DE studies rely on the
assumption that the several lowest eigenvalues [in absolute value| of the stability
matrix converge to the several lowest eigenvalues of the stability operator when the
grid spacing goes to 0 and the grid size pyrax goes to infinity. This belief is founded
on strong, yet only phenomenological arguments and crucially lacks a proof based
on mathematical principles.

2.2.3 Further approximations

The DE can be very efficiently implemented numerically, but it is still quite de-
manding, especially at higher orders or when applied to models with symmetries
more complex than O(N). This can be circumvented by performing additional
approximations on top of the DE.

One such approximation is the so-called LPA’ scheme. It is essentially an in-
termediate step between the LPA and O(9?) orders of the DE. In this approach,
the function Z, x(p) is reduced to a flowing constant, and Z, x(p) is either reduced
to a flowing constant or assumed equal Z, j(p) depending on the implementation.
Typically, at the LPA’ level, the normalization point p,, used in the normaliza-
tion condition Z(j,) = 1, is set equal to the minimum of the dimensionless local
potential.

The advantage of the LPA’ approach lies in a spectacular reduction of the
numerical complexity. Not only does it remove the effort required to calculate the
[ functions for Z, and Z, at each point of the grid, but also allows the momentum
integrals to be calculated analytically when a particularly convenient IR regulator
is employed. Despite its simple formulation, LPA’ properly captures many aspects
of long-distance physics on the qualitative level [99], including even some signatures
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of the KT transition [106]. We also note, that the LPA’ is sufficient to reproduce
exactly the one-loop predictions from 2 + ¢, 4 — € and large-N expansions.

Another route for simplifying the flow equations relies on truncating the parametriz-
ing functions in powers of the order parameter. This allows us to reduce a complex
functional structure of the parametrizing functions to a small set of parameters.
The expansion is typically performed around p = 0 or around the minimum of the
local potential py, with the latter showing better performance in three dimensions
[107]. Convergence of the field truncation was also analyzed in Refs. [108, 109).
Already 20 years ago, this method was used to obtain the critical exponents of
the three-dimensional O(N) models at the order O(9?) [110] and of the three-
dimensional Ising UC [N = 1] at the order O(9*) [111]. Only very recently have
the field truncated calculations been extended to the O(9*) order for N # 1 [112]
lalso in three dimensions].

The field truncated approach is not new and its fairly rapid convergence in
three dimensions and above is well-documented. It turns out, however, that in the
case of the O(N) models below dimension d < 2.5, this type of expansion does
not reproduce the expected critical behavior when carried out beyond the lowest

sensible order:
Uz

Ulp) == (p—m)"- (2.31)

Worryingly, the range of dimensions where this problem occurs seems to grow
with the employed order of the field truncation. An interesting exception lies in
the perturbative regime d — 2 < 1, N > 2 where the field truncation seems to
converge properly. The reasons for the inadequacy of the high-order field expansion
in low dimensions remain unclear to us and require future clarifying studies.

2.3 Infrared Regulator

So far, we have barely discussed the IR regulator function Ry and the regulator
dependence of the results. In the exact treatment, our results should not depend
on the choice of the regulator but this property becomes spoiled by approxima-
tions such as the DE. It is therefore necessary to develop a consistent method for
minimizing the dependence on the nonphysical parameters.

Introducing the effective average action approach we have required that the
regulator function has to take large values for low momenta |Ry(q* < k?) > ¢
and vanish rapidly at large momenta |[Ry(g? > k?) ~ 0]. We also suggested that
it might be convenient to separate the dimensionful and the dimensionless parts
of the regulator; we write

Ri(a@*) = Zik*r (¢* /), (2.32)
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where r is a dimensionless function of a single dimensionless parameter q*/k?.
The regulator r should take a finite value at q?/k®* = 0 and vanish quickly for
q*/k* > 1.

The constraints imposed on the regulator are not very restrictive and there
are many candidates for that role. Through the years, several different candidate
functions were tried and tested. Nowadays, the most commonly used regulators
include:

Y

TWetterich(y) = Oéey _ (233&)
rExponential(Z/) = aexp(—y), (233b>
TLitim—n(y) = a (1 — )" O(1 — y). (2.33¢)

2.3.1 Principle of Minimal Sensitivity

The true physical result should not depend on the scheme through which it has
been calculated; in particular, it should be independent of the employed regula-
tor function. However, the approximate results, e.g. coming from the derivative
expansion, typically show some level of regulator dependence which has to be in-
vestigated and understood to offer an accurate estimate of the physical quantity
in question. This problem can be, to some extent, ameliorated by employing the
principle of minimal sensitivity (PMS).

The PMS is a method designed to optimize the estimate of a physical quantity
within a single regulator family. Each regulator function presented in Eq.
carries a free parameter « that has to be fixed. To determine an optimized estimate
of the quantity @) we first calculate the functional profile Q(«). Subsequently, we
select the value Q(apys) corresponding to the stationary point:

0Q(a)

APMS

The PMS has proven very useful, often significantly improving the estimates of
the DE calculations |21, 23,110, |111]. Interestingly, the PMS-optimized quantities
not only lie closer to the physical values of said quantities but also show a smaller
spread across the regulator families - strongly reducing the regulator dependence
of the results |21, 23|. It has to be noted, however, that in some rare cases, the
function Q(«) features none or more than one stationary point, and the PMS
becomes insufficient as a regulator-fixing tool.

Early on, the PMS was also criticized as an ad hoc solution without a phys-
ical foundation. This changed recently after the PMS was linked to the minimal
breaking of the conformal symmetry. In the exact theory, the fixed point solutions
should fulfill the conformal Ward identity. When approximations are employed,
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however, this identity becomes broken. In a recent study [48|, Balog et al. for-
mulated the principle of maximal conformity (PMC), stating that the regulator
should be selected in such a way that the breaking of the conformal Ward identity
is minimal. They also showed that for the three-dimensional O(1) UC the PMC
and the PMS yield almost the same optimized regulator suggesting that the PMS
can be treated as an effective substitute for the PMC [PMS being significantly
easier to implement in practice than PMC|. This is particularly important for the
cases in which the PMC cannot be implemented, e.g. at the LPA and O(9?) or-
ders of the DE. Moreover, the PMC could be used to optimize regulators when the
PMS fails, e.g. when the quantity of interest has more than one stationary point.
Discussion of the rationale for the PMS and fixing regulator dependence has been
continued in Ref. [113].

The results presented in this thesis, unless explicitly stated otherwise, were
obtained with the Wetterich regulator (12.33al).

2.3.2 Convergence of Derivative Expansion and Error Bars

Since its inception, the DE has faced criticism based on the fact that it does not
have a manifest small parameter controlling the series expansion. It was noted,
that the DE accuracy seems to be better when the anomalous dimension 7 becomes
small. This led to a phenomenological postulate that the small parameter of the
DE should be connected to n [100]. This postulate, however, was not supported
by any fundamental arguments.

Similarly to the physical rationale for the PMS, this question has been resolved
in a recent push for a more foundational understanding of the DE [23]. Balog et al.
showed that the small parameter of the derivative expansion can be identified by
investigating the universal structure of the two-point function I'®. Furthermore,
they argued that the dispersion of the PMS-optimized results should decrease by a
factor of between 4 and 9 with each subsequent order of the derivative expansion.

Based on those findings, De Polsi et al. formulated a technique for estimating
error bars in the DE [21]. This technique relies on a comparison between consecu-
tive orders of the DE. Let us consider a physical quantity Q. The dispersion AQ®
at the order O(0°) is calculated via a simple procedure:

e We find the PMS values at the order of our calculation QS&IS and the preced-

ing order QS\Z?. The necessity for comparison with the lower order means
that the error bars cannot be estimated at the LPA order with this method.

e If we employ different families of regulators, we can improve the estimates
at each order by adopting ngas corresponding to the central value across
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families of regulators. The value Qg&ls is the basic estimate for () at order

0(8°).

e The error bars are calculated from the fact that the distance between the
DE estimate folz/[s and the true value should reduce by a factor of between
4 and 9 with each subsequent order. Assuming the pessimistic case we write

) Q)
(s) PMS PMS
AQY = y . (2.35)

The steps outlined above lead to very conservative estimates for the error bars
that can often be improved upon. Typically, the consecutive orders of the DE
yield alternating results. By alternating we mean that at the order O(9°72) the
PMS value corresponds to a minimum |[maximum|, while at the order O(9°) the
PMS value corresponds to a maximum |minimum]| lying below [above| the results
of the previous order. In such cases, these PMS values can be thought of as the
upper and the lower bounds for the quantity of interest respectively. This means
that half of the range of the error bars lez/ls + AQ® lies outside of our bounds.
Thus, it makes sense to shift the central estimate by half of AQ® and divide the
dispersion by half. This yields an improved estimate:

iy 70 L A2
O = 20N ; Qs (2.36a)

~(s ~(s—2

L et ot
AC2Improved = N (236b)

The procedure for determination of the error bars is visualized in Fig. 2.3

Most often, this procedure leads to proper estimation of the error bars. Some-
times, however, the two consecutive orders of the DE coincidentally yield very
similar results and the error bars become artificially reduced. In such a case, some
ad hoc method has to be developed to restore the estimated dispersion to a rea-
sonable range. In Ref. [21] this kind of “crossing” of the critical exponents was
showcased for w in three dimensions around N = 4. Based on the fact that the
DE is exact in the large-/NV limit, De Polsi et al. postulated that the dispersion
should be monotonously falling with N. This allowed them to interpolate the error
bars to the cases where the raw estimates were too narrow.

Another drawback of this method becomes apparent when different regulator
families yield significantly different results [which sometimes happens at higher
orders of the DE|. In those cases, one has to factor in the error coming from
the choice of the regulator function A,(). For more details on the error bar
estimation, we refer to Ref. [21].
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Figure 2.3: Visualization of the error bar estimation procedure for the critical
exponent y4 [the definition and discussion of this exponent are relegated to Chap-
ter . Circles and squares denote the results of two consecutive orders of the DE
- O(0?) and LPA respectively with vertical lines indicating the PMS values. The
dotted line denotes the lower bound of the conservative error bars. The results
from consecutive orders are alternating so the improved estimates are employed
[see Eq. (2.36))]; the dashed lines denote the improved error bars and the solid line
denotes the improved central value. The lower improved bound passes through
the PMS value of the O(9?) level and the upper improved bound coincides with
the conservative upper bound.

2.3.3 Near-Optimal Regulator

In recent studies, the significance of the PMS in the precise evaluation of critical
indices has been emphasized, particularly upon increasing the truncation order
[21, |48]. However, the benefits of employing PMS remain somewhat limited at
the O(9?) order of the DE, with notable improvements primarily observed in the
immediate vicinity of two dimensions. Additionally, it is important to note that
employing the PMS significantly inflates the required computational resources.
As a result, researchers focused on qualitative analysis, rather than striving for
high-precision estimates, may find it advantageous to opt for a fixed, near-optimal
regulator and forego further fine-tuning.

Within this section, we choose the O(2) model as a reference point to determine
a near-optimal value for a for the Wetterich regulator [see Eq. (2.33a)] for the O(N)
models in dimensions between two and three. Our analysis is illustrated in Fig.[2.4]
which showcases the variation of the PMS value of o as determined for either the
correlation length exponent v or the anomalous dimension 7 as the dimension
changes. A substantial increase in the variability of apyg in lower dimensions is
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evident, with no PMS value found in the immediate vicinity of two dimensions.
More importantly, the chart indicates that o = 2 approximates the “average” value
of appg for this model in this range of dimensions.

To gain further insights, we explore the disparity between the PMS-optimized
critical exponents and the near-optimal exponents calculated using o = 2. Fig.
provides a side-by-side comparison of the values of anomalous dimensions as com-
puted with the optimal and near-optimal regulators. Except for dimensions very
close to two, the differences between the two scenarios are negligible. This discrep-
ancy is further highlighted in the subsequent illustration in Fig. [2.6] which portrays
the relation between n and « for a series of dimensions in proximity to two. It
becomes apparent why the PMS value of o cannot be determined in dimensions
very close to two, specifically for d < 2.01.

An alternate approach for optimizing the regulator, designed specifically for
the KT transition, was introduced in Ref. [114]. Details of this procedure will be
discussed in Sec. 2.4.1] For now, it is worth noting that Ref. [114] identified an
“optimal” value of a,p ~ 2.0. Importantly, this “optimal” value, similar to apws,
exhibits weak dependence on the renormalization point p,. This provides further
support for the proposition that critical exponents’ near-optimal values can be
derived from calculations using the Wetterich regulator with o = 2.

In certain sections of this thesis, we obtain results by keeping the regulator
fixed at a = 2.0 rather than employing the PMS procedure. We deem it essential
to emphasize that the differences between the PMS values of critical exponents
[when apys can be determined| and the values obtained at o = 2 are relatively
minor. Moreover, our validation confirms that the key findings obtained with
the near-optimal regulator remain unchanged even when PMS regulators are used
[where applicable, specifically in dimensions significantly separated from two|.

2.4 Applications of the Derivative Expansion

2.4.1 Kosterlitz-Thouless Transition

The Kosterlitz-Thouless transition is a famously unusual and elusive phase tran-
sition. The presence of topological excitations and the essential singularity of the
correlation length make it notoriously difficult to capture. Despite these diffi-
culties, many important characteristics of the KT transition have been properly
described within the DE framework. However, there also remain significant chal-
lenges, inter alia the failure of the PMS to determine the critical exponents such
as the anomalous dimension. Since the KT transition plays a central role in this
thesis it is important to discuss in detail the performance of the DE concerning
that transition.
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Figure 2.4: Evolution of the PMS values of the regulator parameter o depending
on dimension d for N = 2. A substantial increase in its variation occurs when the
dimension approaches two. No PMS value is found in the immediate vicinity of
two dimensions. Figure from Ref. [2].
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Figure 2.5: Comparison of the anomalous dimension 1 of the O(2) model as func-
tion of dimension calculated for o = 2 and apygs. Figure from Ref. [2].

At the LPA order, we find no transition at all for (d, N) = (2,2).

Improving the truncation to the LPA’ level, we find a significant change.
Strictly speaking, no phase transition occurs for (d, N) = (2,2), but some sig-
natures of the KT transition can be identified. As we mentioned before, the DE at
the LPA’ order recovers exactly the one-loop results of the 2 + € expansion. This
can be easily seen in the field truncated approach. One finds that the Bﬁo function
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Figure 2.6: Variation of the anomalous dimension 71 of the O(2) model depending
on « for a sequence of dimensions in the close vicinity of two. No PMS value is
found in sufficiently low dimensions. Figure from Ref. |2].

for the flow of the dimensionless minimum of the potential py reads
Bro = epo + C(N = 2) + 05, ) (2.37)

in a double expansion around large gy and small € [106]. In Eq. (2.37)), C' denotes
a constant that can take any positive value under a proper rescaling. One easily
verifies that the B,;O function is equivalent to the leading order S, function of the
2 + € expansion ([1.4) with the potential minimum proportional to the inverse
temperature j, "  g.

At the KT point (d, N) = (2,2), the 5’,30 function vanishes up to terms of
order O(p~?) [115]. At low temperatures, the RG flows [regardless of the initial
condition| converge to a line characterized by a very slow RG flow. Since the flows
are slow, yet not exactly static, this line is often called a line of quasi-fixed points
(QFPs). During the drift along the line of QFPs, the temperature g, and the
anomalous dimension 7 slowly increase up to a point of an abrupt cross-over. After
the cross-over, the flow becomes very rapid and quickly ends up in a disordered
phase. The cross-over point has been identified with an anomalous dimension
n ~ 0.24 very close to that of the KT transition nxr = 1/4 [106]. This result,
however, has to be treated with caution since no analysis of regulator dependence
was performed in that study.

Another important finding concerns the role of the longitudinal fluctuations in
the KT transition. To understand it, Jakubczyk and Metzner [116] employed the
DE at the LPA’ with the minimal field truncation [see Eq. (2.31)]. They found
that by discarding the longitudinal fluctuations one may recover many properties
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of the KT low-temperature phase including a finite spin-wave stiffness, a vanishing
order parameter, and an algebraic decay of the order parameter with the exponent
1 proportional to the temperature at low temperatures.

More quantitative agreement between the NPRG and the KT theory can be
found when the O(9?) order of the DE is employed. This scheme was used to
recover the line of QFPs with an even slower drift along the line [114} 115]. Im-
portantly, Ref. |[114] identifies a true FP at the endpoint of the line of QFPs with
1 =~ 0.24 and the universal jump of spin-wave stiffness AKg =~ 0.64. These results
stand in very good agreement with the results of the KT theory with nxr = 1/4
and AKgr = 2/m =~ 0.637.

One of the obstacles in capturing the KT transition at the order O(9?) arose
from the failure of the PMS. Thus, an alternative method for fixing the regulator
dependence had to be proposed. At the order O(9?), the drift along the line of
QFPs is so slow that its direction could be reversed just by tuning the free parame-
ter a of the regulator function. For low temperatures 7', the optimal value ap (1)
is therefore selected such that the drift stops and the flow reaches a true fixed
point [114]. The transition temperature Tkt is then determined as the highest
temperature for which the regulator can be optimized in this way. The endpoint
of the line of QFPs can be then extracted from the flow at the transition temper-
ature Tt with the optimized regulator. Importantly, if the regulator tuning is
abandoned, the transition takes the form of an extremely sharp cross-over into a
phase characterized by an enormously large (but finite) correlation length which
would be practically indistinguishable from infinite in an experiment or simulation
[114, [115]. Further studies also showed that the DE at the order O(9?) can be
used to accurately recover nonuniversal properties of the KT transition such as
entropy and specific heat [117].

For further reading on the KT transition studied with various truncations of
the functional RG, we refer to Refs. [118-123].

2.4.2 Low-temperature behavior

The critical state is far from being the only area of interest in equilibrium statistical
physics. Another important area of study concerns the low-temperature properties
such as the equations of state. Finding these, often nonuniversal, quantities is nec-
essary to gain a full understanding of a given model. However, low-temperature
behavior is notoriously difficult to capture with both perturbative and nonpertur-
bative methods.

The DE-based NPRG is no different in this regard. The problem of describing
low-temperature behavior with the functional approach lies in the structure of the
flow equations. Let us recall that the equations take the form of one-loop 1PI
diagrams with lines representing “dressed propagators”, which at the O(9?) level
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of the DE take the form:

G, (p.q) =U'(p) + 2pU" (p) + ¢* Z+(p) + R(¢*), (2.38)
G, (p.q) =U'(p) + ¢ Z(p) + R(¢°).

Both propagators and consequently all terms in the § functions, suffer from poles
in momentum ¢. At finite scales, these poles remain on the imaginary axis, however
as we approach the infrared limit in the low-temperature phase, U’(0)+ R(0) — 0
taking the poles closer to the real axis. Ref. [124] delves deep into the subject
of the ordered phase singularities and finds the analytical solutions close to the
singularities at the LPA level. So far, at the O(9?) level of the DE, no analytical
solution has been proposed and one has to employ numerical methods. However,
the computational cost of achieving any given precision diverges as the pole of the
propagator approaches the real axis.

One possible cure for the low-temperature divergences was employed in Ref. [125|
[see also |126]]. In the long-length-scale part of the flow, the p grid was no longer
considered on the interval [0, puax], focusing instead on a close vicinity of the min-
imum of the local potential [py — 0pmin, Po + Pmax|- This approach is similar to
the field expansion described in Sec. since it focuses only on a direct vicinity
of the minimum of the local potential, but retains more information and seems to
be better-controlled. Despite discarding some physical information, this approach
seems stable and reliable, and it can be used to capture renormalized quantities
in the ordered phase.

In this thesis, besides the critical state, we are investigating the quasi-long-
range order. Such phases are controlled by regular, stable RG fixed points. There-
fore, we are not dealing with true nonanalyticities that might arise in the long-
range ordered phase and do not need to resort to schemes such as those proposed
in Refs. |124-126]. For most of our purposes, it turns out sufficient to adopt
extremely precise numerical algorithms.

An alternative route for avoiding the singularities of the 3 functions relies on
the expansion of the parametrizing functions into the Taylor series around the
minimum of the local potential described in Sec. In Sec. [3.4] we employ the
power-series expansion as a supplementary tool to outline the expected results and
to describe the parts of the (d, N') plane that we were not able to access within the
functional scheme. To avoid the instabilities in low dimensions, we refrain from
employing high orders of the expansion settling for the minimal truncation with
Zy(p) and Z,(p) reduced to flowing constants and the local potential parametrized
as: u

Ulp) = = (p = po)”. (2:39)
Henceforth, we shall refer to the scheme relying on the field expansion as the
“minimal truncation” [in contrast to the functional scheme described earlier].
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2.4.3 Anisotropic Models

The discussion of the DE was so far mostly restricted to models with the O(N)
symmetry. To describe the models with anisotropic interactions we need to in-
troduce some generalizations. The following reasoning will be specifically de-
voted to models characterized by a two-component scalar order parameter and
cubic anisotropies but we will also mention possible generalizations to higher-order
anisotropies and larger values of N.

We first need to promote the O(N)-symmetric anséitze to the most gen-
eral form invariant upon the cubic symmetry transformations:

P —¢' and @' «—— @7 (2.40)

The only difference between the ansétze at the LPA level takes the form of pro-
moting the local potential to the Z,-symmetric function of ¢. At the O(9?) level,
however, a new term appears; the O(2)-symmetric term (9,p)* is split into two
independent Z4-symmetric terms:

¢'620,0'9,¢° and [(¢1)2 - (¢2)2} [(aml)2 - (am?)Q] . (2.41)
The full Zs-symmetric LPA and O(9?) level ansitze take the form:
1 )
A = /w {U(¢1,¢2) +35 (9,6)" } (2.42a)
2 Z(o', 8 |
Iz, = / v+ w (0:0)" + 70", 6")91020,010,62  (2.42D)
W 1, 2
+ DD (692~ (62)7] [0 - (3u6)’] ).

where U, Z, T, and W are functions invariant with respect to transformations
(2.40)). The O(2) symmetry of the action is restored when all the parametriz-
ing functions become rotationally invariant and, at the O(9?) level, when T'(¢!, ¢?) =
W(¢h, ¢°).

The cubic symmetry constraints on the vector of parametrizing functions F
can be imposed in many ways. The direct parametrization via the field ¢ =
(¢!, ¢?) is one of the less efficient ones. We shall introduce two more convenient
parametrizations involving either the polar decomposition or representation via
invariants.

The polar decomposition relies on introducing two fields: p and 6 via the
conditions

¢'(x) = V2p(x) cos(0(x)), ¢*(x) = /2p(x)sin(0(x)). (2.43)



2.4. APPLICATIONS OF THE DERIVATIVE EXPANSION 47

The field p is defined identically to that of the O(2)-symmetric case. As we shall
see, this parametrization makes the symmetry constraints quite simple, although
it also requires careful treatment. When the order parameter ¢ vanishes, polar
coordinates become degenerate. In the isotropic models, this is not a problem since
by definition the effective action has no polar dependence. With the anisotropies
present, we have to keep in mind the fact that when the order parameter vanishes,
the anisotropic interactions vanish as well. More specifically, the lowest order cubic
term reads g Y

(e ;b L 8”12 (26) (2.44)

Therefore to preserve the regularity of F (¢!, $?), we need to impose that at small
p the vector of parametrizing functions F behaves as:

Do F (p,0) = F2sin(40)p* + F>sin(40)p” + O(p*), (2.45)

where F2 and F? are vectors of constants. Although Eq. looks straight-
forward, its numerical implementation might present a challenge and has to be
meticulously performed.

In the (p,#) parametrization, any Z, symmetry [for integer p| is imposed by
requiring that for any p the parametrizing functions fulfill:

F(p,0)=F(p,2r/p+6) and F(p,0)=F(p,2n/p—0). (2.46)

An efficient way to implement these constraints is to represent F on a strip p €
[0, +o0[, 0 € [0, 7/p] with the boundary conditions

9o F (p,0)lg—g = OaF (p, 0)|9:7r/p =0. (2.47)

The polar representation is a convenient choice for functional treatment. The
domain of the parametrizing functions has a rectangular shape, which can be
straightforwardly implemented. The numerical calculations, however, have to be
performed on a two-dimensional field grid, which greatly increases the computa-
tional effort. As a consequence, there have been only a few successful attempts at
implementing the NPRG retaining the full functional dependence with respect to
two invariants [127, [128], with the full O(9?) order DE calculation performed only
very recently [4].

A major drawback of the polar representation relates to the care required for
the treatment of the boundaries. Typically, the general expressions for the flow
equations cannot be numerically evaluated at the boundaries due to spurious non-
analyticities. To avoid these problems, one needs to find the boundary expressions
analytically which requires significant effort. These issues might be, to some extent,
ameliorated by replacing the polar angle 6 with the variable £ = cos (pf) € [—1, 1].
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In this alternative parametrization, both the symmetry constraints (2.46)) and the
boundary conditions (2.47)) become naturally fulfilled.

An approach alternative to the polar decomposition relies on parametrizing
F in terms of the invariants of the symmetry transformations. For any even
anisotropy Z, in the O(2) model, there are just two algebraically independent
invariants. It is common to select: p = ¢'¢'/2 - the O(N) invariant and 7, -
the p™ order Z,-symmetric polynomial of the order parameter. For the cubic
symmetry, we shall use

(¢1g’2>2, (2.48)

where subscript 4 was dropped for brevity. We note that in the O(N) models with
cubic perturbations, there are N independent cubic invariants, of which 7, after
promotion to 7' = 37 (¢'¢’ )? /2, represents the one of the lowest order.

In the (p,7) parametrization, the boundary problems arising in the polar
parametrization are mostly absent. The flow equations are manifestly regular,
except for the limit p — 0 which is not particularly difficult to resolve. This
parametrization is therefore particularly useful for the field-truncated approach.
The functional approach, on the other hand, does present a serious technical chal-
lenge in this parametrization. The domain of the parametrizing functions takes the
form of a wedge p € [0, +oc[, T € [0, p>/2], which is nontrivial from the numerical
perspective.

Most NPRG studies of discrete anisotropies so far relied on the expansion in
both p and 7 invariants |65, 77}, 129} [130]. While this approach seems to be well-
suited for the three-dimensional models, close to two dimensions the field expan-
sion seems not to converge properly even in the isotropic models. Additionally, it
seems that to properly recover the KT transition, present in two dimensions when
anisotropies vanish, one needs to retain the functional dependence with respect to
the O(2) invariant p [106} [114H117, [121, [122]. We therefore introduce an interme-
diate scheme, in which we truncate F in powers of 7 and treat p on the functional
level.

The truncation in 7 reduces the dimension of the domain of F for a price of
increasing the number of the parametrizing functions. The LPA and O(9%) DE
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ansétze for the T-expanded approach at the O(7) order read:

[LPA _ / [U() +7040) + 5 (0,6 }, (2.492)
re - / {U(p) U (p) 4 22 J;Tz‘i (o) (0,6')° (2.49b)
Zoy(p) — Zn 71Z,(p) = Z4 1 22 2 1\2
_ (p) (p) +4p[ (p) (»)] [(¢ 8u¢) +(¢ (9qu) }
+ T(P)¢1¢23u¢10u¢2}-

The subscript E of the effective action I'g stands for “expanded”. The O(2) sym-

metry is restored to the ansitze when the functions U', Z!, Z! vanish identically
and T' = Z"Q;pz“.

A further improvement of the numerical efficiency might be achieved by a re-
placement T — T" + Z"Q;/)Z” in the ansatz . In this way, we separate the
isotropic and anisotropic contributions to the flow of the effective action. The Sr
function contains both isotropic and anisotropic contributions, while 7+ - vanishes
in the isotropic models. Thus, S contains the redundant information already car-
ried in the 8z, and fz_; removing that redundancy should lead to some reductions
in the flow equations. Moreover, having a purely anisotropic 7+ safeguards against
the anisotropies being accidentally generated by numerical errors in the integration
of the RG flow.

In Chapter [4] we investigate the character of the cubic perturbations to the
O(2)-symmetric model in varying dimensions. Apart from the physical questions,
a significant part of the discussion therein will be devoted to a comparison of the
efficacy of the fully functional approach in the polar decomposition (p, ) repre-
sentation and the T-expanded approach.
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Chapter 3

Cardy-Hamber scenario revisited

Thunder in the other course of heaven
Things cannot be destroyed once and for all

Pink Floyd, Chapter 2/

In this chapter, we discuss our contributions to reassess and verify the scenario
put forward by Cardy and Hamber (CH). In Sec. we offer a detailed reexami-
nation of the perturbative CH-style analysis. We attempt to offer a better intuition
about the fixed-point collision by charting the trajectories followed by the fixed
points upon shifting dimension. We highlight the fact, that the CH scenario im-
plies the existence of a quasi-long-range ordered (QLRO) low-temperature phase
below two dimensions for N.(d) < N < 2 and show that the universal anomalous
dimension 7 of the low-temperature phase can be calculated perturbatively. This
section constitutes a, hopefully, more pedagogical, restatement of the original CH
analysis [1] with an emphasis placed on insights drawn from later contributions |3,
57, 58]

In Sec. we address some possible concerns about the suitability of our
methodology for investigating the CH scenario. First, we gauge the capacity of
the derivative expansion (DE) to detect nonanalyticities. To that end, we compare
the results of our calculations with the exact expressions for the critical exponents
featuring nonanalyticities, but in a context distinct from the CH scenario. Sub-
sequently, we discuss the role of topological excitations in the CH scenario and
whether they can be captured within the framework of the DE. The results of this
section were originally presented in Ref. [2].

Sec. addresses the CH claims in the top-right quadrant of the (d, N) plane
[d > 2, N > 2]|. Contrary to the perturbative analysis, the nonperturbative
calculations show no apparent nonanalyticity of several critical exponents. We
do, however, note a cross-over in the behavior of the critical exponents occurring

o1
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close to the presumed position of the supposed line of nonanalyticities. These
cross-overs are also associated with the rapid departure of the nonperturbative
renormalization group (NPRG) results from the predictions of the 2+ ¢ expansion.
Finally, our analysis of the subdominant renormalization group (RG) eigenvalue
excludes the possibility of the fixed point (FP) collision occurring in the manner
outlined by Cardy and Hamber, except perhaps for dimensions very close to two.
The results and conclusions presented in this section come from Ref. [2].

Sec. is devoted to the consequences of the CH scenario in the bottom-left
quadrant of the (d, N) plane [d < 2, N < 2|. In this region, our results align
with the CH scenario. We identify the two FP solutions and track their critical
exponents across the quadrant. As expected, close to two dimensions, the critical
exponents stand in good agreement with the prediction of the 2 + € expansion.
Finally, we chart the line N.(d) and show how it compares to the predictions of
CH and of Ref. [58]. This section discusses the results originally published in
Ref. [3].

In Sec. 3.5, we conclude this chapter with a summary of our findings and a
brief discussion.

We emphasize that this chapter is not concerned with obtaining the most ac-
curate estimates of the critical exponents across the (d, N) plane. Our goal is to
understand the general trends in the behavior of the critical exponents, verify the
predictions of the CH scenario, and estimate the shape of the CH line. For this
reason, throughout the present chapter, we do not employ the methodology for
estimating the error bars and often refrain from optimizing our estimates via the
principle of minimal sensitivity (PMS).

The NPRG flow equations used in the calculations described in this chapter
are presented in Appendix [A]

3.1 Perturbative analysis

The CH reasoning is based on the assumption that the RG equations of the O(N)
models should be analytical in the (d, V) plane. If that is true, then we should be
able to derive a unified set of RG equations valid in the entire plane. Of course,
we should not hope to recreate the exact RG functions for the entire plane, but we
could combine the perturbative § functions to widen their range of applicability.

The idea of combining insights from different perturbative schemes has been
applied in several different contexts. Ref. [131] uses the fact, that the 2+ ¢ and the
large- N expansions overlap to any order in a double expansion to obtain the O(e*)
coefficients of the critical exponents. Ref. [132], on the other hand, combines the
2 + € and the 4 — € expansions to perform a variational resummation aiming to
extract the critical exponents in three dimensions.
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A similar, and notably earlier, approach to combining the perturbative g func-
tions came from Cardy and Hamber [1]. They proposed to combine the RG equa-
tions of the 2 + ¢ expansion [see Eq. (L.4)] with the Kosterlitz-Thouless (KT)
recursion relations E| [see Eq. (L.8)]. The universal behavior described by such a
system of equations should, in principle, be physical in the vicinity of the KT point
(d, N) = (2,2) in the (d, N) plane. This is a substantial improvement compared
to the KT theory restricted to the KT point and the 2 + € expansion valid only
for % < 1.

The equations proposed by CH read:

BSH = —eg+ (N —2)f(g,N) + 47°y + O(y*), (3.1a)
Byt = <4 — %ﬁ) y? + O(y"). (3.1b)

Importantly, the function f(g, N) in Eq. so far has only been studied per-
turbatively in powers of g. We emphasize that the following reasoning is fairly
general and does not require the knowledge of the exact shape of f(g, N), only
the assumption that f(g,2)/g is a monotonic increasing function for small values
of g. However, later on, we are going to exploit the expansion of f to the highest
known order [131]:

9 9N +2)

472 3273

(N2 — 18N((3) — 22N + 54¢(3) + 34)
19274

floN) =L+ 32)
7 +0(g").

We also note, that while the spin-wave coupling g retains a clear physical inter-
pretation in the entire (d, N) plane, this is not true for y>. At the KT point
[(d,N) = (2,2)], y* describes the vortex fugacity, but its physical interpretation
becomes somewhat ambiguous for other values of d and N. In specific contexts, pa-
rameters analogous to y? may retain their physical meaning in different dimensions
[52, (133} |134].

Due to their perturbative nature, Eqgs. have to be analyzed in the di-
rect vicinity of the KT point. In the following reasoning, N — 2 and y? will be
treated as small quantities of order not larger than O(e). With that assumptions,
Eqgs. admit two families of nontrivial fixed-point solutions. One of the fami-
lies is identical to that of the 2+ € expansion of Brézin and Zinn-Justin (BZJ) |41,
42'7

cgpzs = (N —2)f(gBzs, N) + O(%), Yy = O(%). (3.3)

IThe KT recursion relations are derived perturbatively to the leading order in the vortex
fugacity y2.
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It exists whenever ¢ = ¢/(N — 2) is positive and not too large. Assuming the form
(3-2) of the function f, the condition can be satisfied by several nontrivial
solutions, of which all but one can be discarded as nonphysical artifacts of the ¢
expansion. From now on, we shall use the term BZJ FP to describe the solution
to with the lowest positive value of ggyzj, which is the only physical. When
the BZJ FP exists, the spin-wave coupling is found perturbatively in terms of é€:

gBzy = 2mE + O(éz) (34)

The second fixed-point family reads

T A
gnp =5+ O(e), Y= 5 (3.5)
where . .
_ = - - 2
A=eZ—(N 2)f<2,N>+O(e). (3.6)

The CH Egs. in a form restricted to N = 2 were first derived by Nelson
and Fisher (NF) in Ref. [56] [see Eq. (1.9)]. The solution (3.5) is essentially an
extension of the solution to the NF equations to IV # 2, hence we call this family
the NF FPs. The NF FP does exist only in the subset of the (d, N) plane where
A is positive.

The parameter A plays an essential role in the following analysis, as its sign
determines the existence and stability of the fixed-point solutions to Egs. (3.1).
Moreover, the condition A = 0 defines the Cardy-Hamber line at which the two
families of FPs collide. A sketch of the (d,N) plane including the CH line is
presented in Fig. 3.1}

The CH analysis predicts a widely different physical behavior for N above and
below two. For N > 2, the FP collision should lead to a nonanalyticity of the
critical exponents across the CH line, while for N < 2 the FP collision marks the
lower critical dimension d.(NN) [or conversely N.(d)|. These two cases are discussed
separately in the following sections.

3.1.1 N larger than two

We first analyze the top halfplane [N > 2| of the (d, N) plane [see Fig.[3.1]. In this
setting, below two dimensions there are no nontrivial FP solutions and the zero-
temperature FP [¢g* = 0] is unstable; there is no phase transition. We therefore
focus only on the top-right quadrant |[d > 2, N > 2].

Fig. shows how the FP solutions to the CH Egs. for N = 2 and
N = 2.5 evolve with the shifting dimension. When N = 2, the picture is fairly
simple. In two dimensions, we find the KT line of FPs with the relevancy of the
vortex fugacity y? changing at the point g* = 7/2, while in higher dimensions
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Figure 3.1: Schematic representation of the (d, N) plane in the vicinity of the
Kosterlitz-Thouless point (2,2). The Mermin-Wagner line [d = 2, N > 1] sepa-
rates the systems that support the long-range order at nonzero temperatures from
those that do not. Blue shading denotes the region of the (d, N) plane where
the parameter ¢ = % is small and positive. The brown dashed line marks the
Cardy-Hamber line A = 0. For d < 2, the CH line coincides with N.(d), while
for d > 2 it is a locus of the hypothetical nonanalyticity of the critical exponents.

Figure from Ref. [3].

there is just one critical FP that springs from the point at which the vortices are
marginal.

When N is larger than two, there are no lines of FPs. In low dimensions, A is
negative [see Eq. ] which leads to an imaginary value of ynyr and a nonphysical
character of the NF FP. We, therefore, only find the critical BZJ FP. With the
growing dimension A increases until it reaches zero and the NF FP springs from
the BZJ FP. Then the NF FP takes the role of the critical FP, as the BZJ FP
develops a second unstable direction and becomes tricritical.

To develop a better intuition about the collision, it is useful to look at the
evolution of the RG eigenvalues upon shifting the dimension. The two dominant
eigenvalues of the BZJ and the NF FPs as functions of dimension are presented
in Fig. [3.3l This chart also visualizes two important implications of the CH sce-
nario: nonanalyticity of the critical exponents, and vanishing of the subdominant
eigenvalue at the CH line. In the perturbative picture, the nonanalyticity takes
the form of discontinuity of the first derivative of the eigenvalues. We note that in
the exact picture, the nonanalyticity could take the form of discontinuity of any
higher derivative. Possibly, it could even be avoided altogether if the collision is
smooth enough. On the other hand, the vanishing of the subdominant eigenvalue
is a necessary condition for the fixed-point collision to occur.
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Figure 3.2: Fixed-point spin-wave coupling ¢g* solutions to Eq. as functions
of dimension. The N = 2 solutions [solid lines| are divided into three families:
the critical FPs [blue|, y-attractive FPs of the KT line of FPs [green|, and y-
repulsive FPs of the KT line of FPs [orange|. The N = 2.5 solutions |dashed lines|
are similarly divided into three families: the critical NF FPs [blue|, the critical
BZJ FPs [green|, and the tricritical BZJ FPs [orange|. Stars denote the points
of collision between the NF and BZJ FP families. Both the blue horizontal lines
correspond to g* = 7/2 and were separated slightly for clarity.
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Figure 3.3: RG eigenvalues of the FP solutions to Eq. as functions of di-
mension for N = 2.5. The dominant eigenvalues of each FP are marked by solid
lines, and the subdominant eigenvalues by the dashed lines. Graph presents the
eigenvalues of three families of FP solutions distinguished by colors: the critical
NF FPs - blue, critical BZJ FPs - green, and the tricritical BZJ FPs - orange.
Stars denote the values of the eigenvalues upon the FP collision.

3.1.2 N smaller than two

A different picture presents itself in the bottom-left quadrant of the (d, N') plane
[see Fig. [3.1]. The CH paper notes that the NF FP is critical and controls the
phase transition when A > 0 and that there is no phase transition for A < 0.
However, Cardy and Hamber also state that only the NF FP is real for N < 2.
It is nonetheless rather evident from Eq. , that the BZJ FP also exists in
this quadrant, and, as we argue below, controls the low-temperature phase present
in the A > 0 part of the (d, N) plane below two dimensions. This fact was first
explicitly stated in Ref. [57] and alluded to earlier in Ref. [58].

For negative values of €, the zero-temperature trivial fixed point [¢* = 0] is
unstable, which prevents the formation of the long-range order at any finite tem-
peratures, in accord with the Mermin-Wagner theorem. However, at the same
time, a new infrared stable FP appears. Specifically, for e < 0 and A > 0, the BZJ
FP is a stable finite-temperature FP which emerges from the zero-temperature FP
as € crosses zero. In this region, the NF FP controls the transition between the
disordered and the QLRO phases.

Let us note, that at the BZJ FP the vortex fugacity vanishes. This means,
that at this FP the condensation energy of a vortex diverges and the model can
be described solely by spin waves. As a consequence, many properties of this FP,



58 CHAPTER 3. CARDY-HAMBER SCENARIO REVISITED

including the leading RG eigenvalue e; = v~! and the anomalous dimension 7,
are identical to those predicted by the nonlinear-o model, which opens a way to
calculate the structure of correlations in the QLRO phase via the perturbative
means of the 2 + ¢ expansion. This remark was first presented in Ref. |3].

Above the CH line [see Fig. , when A becomes negative, the NF FP ceases
to exist. At the same time, the BZJ FP attains a single relevant direction while
its attraction domain shrinks to a subset of the y? = 0 line. This fixed point does
not control any phase transition. This is because, as we deduce from Eq. (3.1,
the RG flows cannot cross between the regions y? = 0 and y? > 0. The difference
between these two regions concerns the presence of vortex-like excitations, which
can appear when y? > 0, but cannot appear when y?> = 0. For this reason, the
models corresponding to those two regions are subject to very distinct physics.
This thesis primarily focuses on the models with y? > 0. From this perspective
BZJ FP acts simply as a repulsive FP for A < 0. We, therefore, expect that no
phase transition takes place for A < 0 and consequently that the condition A = 0
defines the line of lower critical dimensions [in the bottom-left quadrant of the
(d, N) plane]. The CH scenario for the fixed-point collision for N < 2 is illustrated
in Fig. 3.4

To complete the picture we also present the RG eigenvalues of different FP
solutions. The two dominant eigenvalues of the BZJ and the NF FPs as functions
of dimension are presented in Fig. The chart shows that, for N < 2, it is the
dominant eigenvalue that vanishes upon the FP collision. Since the collision marks
the lower critical dimension, there is no nonanalyticity of the critical exponents
associated with the collision.

We emphasize the contrast between the physical implications of the CH sce-
nario above and below N = 2. For N > 2, the collision takes place between the
critical and the tricritical FPs. The second-order phase transition takes place be-
tween the disordered and the long-range ordered phases, and the critical exponents
exhibit [within this approach| nonanalyticities at the line of the collisions [A = 0].
For N < 2, on the other hand, the critical FP collides with the FP controlling the
low-temperature behavior. The phase transitions take place between the disor-
dered and the QLRO phases, and the line of the collisions marks the lower critical
dimensions d.(N) [or conversely N.(d)].

3.2 Suitability of the NPRG

Let us briefly depart from the discussion of the CH scenario. Since the derivative
expansion is an approximation, there might be some objections regarding its suit-
ability to analyze the exotic physics of the CH scenario. It is important to note,
that the DE yields quite accurate values of the critical exponents for the O(N)
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Figure 3.4: Fixed point spin-wave coupling ¢* solutions to Eq. as functions
of dimension. The N = 2 solutions [solid lines| are divided into three families: the
critical FPs [blue|, y-attractive FPs of the KT line of FPs [green|, and y-repulsive
EFPs of the KT line of FPs [orange|. The N = 1.5 solutions [dashed lines| are
similarly divided into three families: the critical NF FPs [blue|, the infrared stable
BZJ FPs [green|, and the critical [nonphysical] BZJ FPs [orange|. Stars denote the
points of collision between the NF and BZJ FP families. Both the blue horizontal
lines correspond to g* = m/2 and were separated slightly for clarity.
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Figure 3.5: RG eigenvalues of the FP solutions to Eq. as functions of di-
mension for N = 1.5. The dominant eigenvalues of each FP are marked by solid
lines, and the subdominant eigenvalues by the dashed lines. Graph presents the
eigenvalues of three families of FP solutions distinguished by colors: the critical
NF FPs - blue, stable BZJ FPs - green, and the critical [nonphysical] BZJ FPs -
orange. Stars denote the values of the eigenvalues upon the FP collision.

models with integer value (d, N) even at low orders of the expansion. Nevertheless,
it remains unclear whether some important aspects of the O(/N) models’ physics
are not suppressed in this approach. In the present section, we address two signif-
icant concerns regarding its capacity for detecting nonanalyticities and capturing
the effects of vortices.

3.2.1 Detecting nonanalyticities

The derivative expansion of NPRG is an approximate scheme based on numerical
calculations. It is not immediately obvious that such a methodology is suitable to
detect a nonanalytic behavior of the critical exponents, such as that predicted by
the CH analysis. For this reason, we find it instructive to benchmark our method
against an exact result predicting nonanalyticities. Such an exact reference point
is provided by Ref. [135] presenting the exact values of the critical exponents in
the two-dimensional models with —2 < N < 2. Crucially, in the limit N — 2,
both the inverse correlation length exponent ! and the anomalous dimension 7
feature square-root-like nonanalyticities. In this section, we calculate these two
critical exponents at the O(9?) order of the DE and compare our results with the
exact ones to gauge the capacity of our methodology to detect nonanalyticities.
In two dimensional O(N) models, the exact critical exponents are as follows
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[135]:
vl =42t n=2—1t/2—3/(21), (3.7)

with ¢ defined through N = —2cos(27/t) on a branch ¢ € [1,2]. For N close to
two, the exponents are readily expanded in terms of 6 =2 — N as follows:

= %\/5+0(5), n:}iﬁu)(ay (3.9)

These expressions reveal a manifest divergence of the first derivatives of the critical
exponents in the limit N — 27 providing a benchmark for our results.

The exponents ! and 7 as obtained in our DE calculations are compared
to their exact values in Fig. [3.6, Our results for ! oscillate around the exact
values, being underestimated close to N = 2 and overestimated for lower values of
N. Our results for the anomalous dimension 7 as a function of N take shape very
similar to the exact behavior with two exceptions. Our results are systematically
overestimated by around 0.04 for most of the inspected values of N and feature
a drop around N = 2 much more substantial than that observed in the exact
behavior. Despite the differences, our results exhibit a manifest singularity of the
first derivatives of the critical exponents in the limit N — 27 in the form closely
resembling the exact behavior.

To inspect this point further we performed a power-law fit for both critical
exponents around N = 2. For v~! the fit yields an exponent of 0.45 fairly close
to the exact value of 1/2. For the anomalous dimension, our results feature a
drop significantly more rapid than the exact expression leading to a significantly
overestimated exponent of around 0.77.

A mixed performance of the O(d?)-order DE in this case calls for a comment.
We believe, that the inaccuracies of our calculations stem mostly from two factors.
Firstly, the presented results are not PMS-optimized; they were obtained with the
near-optimal regulator [see Sec. . Employing the PMS could offer particular
improvement to our estimation of 7, as in the O(N) models at the O(9%) order
the PMS value of n typically corresponds to the minimum as a function of « [see
Fig. and Ref. [21]], and therefore our results can be expected to lie above the
PMS-optimized value.

The second, and arguably more significant, factor is the relatively low order of
the DE employed in our calculations. We emphasize that the DE is known to be the
most accurate when the dimension d is high and the anomalous dimension 7 is low
[21}, 123}, 48, 199|]. Thus, the two-dimensional O(N) models [for N < 2| constitute a
particularly unfavorable case for our methodology and a significant overestimation
of 1 is to be expected. Despite the noted inaccuracies, our results unambiguously
demonstrate that the O(9%) DE is capable of capturing the nonanalyticities of the
critical exponents.
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Figure 3.6: The critical exponents v~! and 7 as functions of N in two dimensions.
The singular first derivatives at N = 2 are clearly visible. Figure from Ref. [2].

3.2.2 The role of vortices

The FP collision is not the only phenomenon predicted to occur at the CH line.
The CH scenario also indicates that the relevance [in the RG sense| of vortex-like
excitations changes upon crossing the CH line. Below the CH line [high dimensions,
low N| vortices are supposedly relevant, while above the CH line [low dimension,
high N| they become irrelevant.

The central role of the topological excitations raises a question about the capac-
ity of the DE to capture the consequences of the CH scenario. Indeed, vortices |or
other topological excitations| do not enter the DE description as separate degrees
of freedom and it is not immediately obvious whether their effects are captured by
our methodology. To explore this question we recall the discussion of the topologi-
cal excitations in Sec.[I.1.3] In that section, we introduced several studies showing
that in the absence of the topological excitations, some phase transitions would be
either absent or belong to a completely different universality class. More precisely,
when the topological excitations are suppressed:

e the KT transition of the two-dimensional XY model does not take place and
the algebraic phase extends to arbitrarily large temperatures;

e the three-dimensional XY model remains ordered at any finite temperature
and the phase transition does not take place [51];

e the phase transition in the three-dimensional Heisenberg model is either ab-
sent or belongs to a different universality class characterized by a very large
anomalous dimension 7 = 0.6 [53-55].

As discussed in Sec. [2.4.1], the KT transition is fully captured with the DE only
when the fine-tuned IR regulator is employed; when an arbitrary regulator is used,
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the transition takes the form of an extremely sharp cross-over. Nevertheless, the
picture presented by the O(9%) DE is clearly distinct from that of the spin-wave
description expected for the model with suppressed vortices.

The picture presented by the two other examples is even more transparent.
The DE calculations for these models show the behavior as expected of the models
admitting the topological excitations, very accurately reproducing the expected
values of the critical exponents [21]. This indicates that the relevant excitations
are indeed captured within our methodology.

3.3 Analyticity of the critical exponents

In this section, we discuss the CH scenario in the top-right quadrant of the (d, N)
plane [d > 2, N > 2| within the framework of the NPRG. We search for the CH line
addressing three distinct phenomena predicted by the CH scenario: nonanalyticity
of the critical exponents e; = v~! and 7, vanishing of the subleading RG eigenvalue
e and nonanalyticity of the fixed-point profiles [as functions of (d, N)].

In an attempt to detect the CH line, we identify a [functional| fixed point cor-
responding to (d, V) located far away from the expected nonanalyticity. This can
be done by integrating the flow; tuning the initial condition so that the system
flows sufficiently close to a fixed-point solution. We subsequently study the evo-
lution of ¥~ and 7 as either d or N varies towards the region where the CH line
should be found. In practice, we either gradually decrease d or increase N. The
fixed point at (d, N) serves as the initial condition for the fixed-point equations at
(d—dd,N) or (d, N + 6N), which [after discretization| are solved using standard
algebraic routines. We were able to scan the (d, N) plane and extract numerically
the functions 7(d, N) and v~!(d, N) traversing the region where the CH line is
expected.

We note, that the procedure of finding the fixed point becomes progressively
harder when the dimension approaches two and the step in the (d, V) plane must
then be tiny. This is [at least partially| related to the fact that, at low dimensions,
the profile of the fixed-point effective potential acquires increasingly strong varia-
tion at large p. For selected choices of (d, N'), we checked the results against those
obtained by integration of the flow. We note that for N > 2 we were not able to
solve the fixed-point equations in dimensions arbitrarily close to two, but anyway
significantly lower than the anticipated position of the CH line.

Sections [3.3.1| and [3.3.2] are devoted to the analysis of the inverse correlation
length exponent v~! and the anomalous dimension 1 along horizontal and vertical
trajectories in the (d, N) space respectively. In a region where the CH line is
expected, we note a cross-over behavior sharpening as the dimension becomes
close to two, yet without direct indications of true nonanalytic behavior. In Sec.
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[3.3.3] we investigate the subleading RG eigenvalue e, along vertical trajectories in
the (d, N) plane; es shows no signs of nonanalyticity and stays widely separated
from zero. Finally, Sec. explores the functional profiles of the RG FPs. We
again identify a cross-over behavior, sharpening upon approaching two dimensions
but without explicitly nonanalytic behavior.

The results presented in this section are obtained with the near-optimal reg-
ulator [Wetterich regulator with o = 2], rather than optimized via the PMS [see
Sec. [2.3.3]. We verified the independence of our conclusions with regard to this
choice.

3.3.1 d-dependence

Fig. presents the dependence of the inverse correlation length exponent v—!
and the anomalous dimension 7 for a sequence of values of N. The left panel
of the figure, presenting the exponent v~!, shows a clear distinction between the
case of N = 2 and the cases of N > 2. In high dimensions, all curves [except
that for N = oo| follow a similar trajectory. Upon decreasing the dimension, one
by one, they rapidly transition from the low-N-like [high-dimension-like| behavior
to the large-N-like behavior. This transition occurs for any finite N > 2 upon
crossing some characteristic dimension JC(N ). The curve corresponding to N = 2
does not feature this kind of transition. Instead of vanishing smoothly, it tends to
zero nonanalytically in a square-root-like fashion in agreement with the CH-style
analysis. The behavior of v~! is reminiscent of the CH scenario, however, the
observed transition between the low-N-like and the large- N-like behaviors takes
the form of an apparently smooth cross-over rather than the nonanalytic cusp
predicted in the CH scenario [see Fig. [3.3].

A similar picture can be seen in the right panel of Fig. presenting the
anomalous dimension 1 as a function of the dimension. In high dimensions, all
the curves follow a similar trajectory which might be understood as the low-N-like
behavior. Upon crossing some characteristic dimension JC(N ) each of the curves
corresponding to N > 2 detaches from this trajectory to approach zero in the
limit d — 2. In this case, however, the corrections to the N = oo value are more
substantial than for v=!. We note that in low dimensions, our results for the
anomalous dimension align very well with the predictions of the 2 + ¢ expansion
Note = €+ 0 (¢%) with € = £=%. The only curve not aligned with the predictions of
the 2 + € expansion is, as expected, the one corresponding to N = 2. In the limit
d — 2, the anomalous dimension reaches a nonzero value n(d — 2, N = 2) ~ 0.27
in an apparently nonanalytical fashion.

The transition between the low-N-like and the large- N-like behavior presents
a picture quite similar to that of the CH scenario and it might be tempting to
associate the characteristic dimension d,(N) with the CH line. It is immediately
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obvious that d.(N) increases with N, and takes the value d.(2) = 2 in agreement
with the CH-style analysis. Furthermore, the line JC(N ) seems situated quite
closely to the predicted position of the CH line. However, we emphasize that the
observed transition is smooth [or at least of the C? type| and does not provide any
signs of the FP collision. On the contrary, it indicates a smooth transition between
the regimes controlled by the 2 4 ¢ and 4 — € expansions.
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Figure 3.7: The critical exponents v~! and 7 as functions of d for a sequence of

values of N. The lines corresponding to N = oo present the exact results of the
large-N expansion: v~ !(d, N = o0) = d — 2, and n(d, N = o0) = 0. Figure form
Ref. [2].

3.3.2 N-dependence

An analysis similar to that of the previous section can also be performed along
vertical lines in the (d, N) plane. The N-dependence of the v~! and 7 exponents
calculated in a sequence of dimensions is shown in Fig. [3.8] We first note, that the
data marked by the blue circles was introduced in Sec. where we compared
the DE results to the exact expressions of Ref. [135]. Let us recall that in two
dimensions both exponents feature a square-root-like nonanalyticity in the limit
N — 27. When the dimension is raised, the square-root-like nonanalyticity is
progressively smoothed into a cross-over. At the large-N side of the cross-over, our
results precisely match the predictions of the 2 + € expansion |131]. Interestingly,
the divergence between the 2 4 € expansion and our results is extremely rapid and
occurs very closely to the spot of the cross-over.

At this point, we are ready to offer a phenomenological definition of the position
of the cross-over line N,(d). Let us note that, at the KT point [(d, N) = (2,2)],
n(d = 2, N) is discontinuous while v=}(d = 2, N) features a discontinuity of the first
derivative with respect to N. Although the discontinuity of n becomes smoothed
above two dimensions, it leaves a fingerprint in the form of a very large [negative|
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value of the first derivative dyn. On the same note, the discontinuity of v 1,
leaves a fingerprint in the form of a large [positive| value of the second derivative

O%v~". Thus, the extrema of 03~ and dyn should indicate the line of the cross-
overs N.(d).
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Figure 3.8: The critical exponents »~! and 7 as functions of N in a sequence of
dimensions. Continuous lines denote the 2 + € expansion predictions; the lines
corresponding to d = 2.5 were removed to avoid obscuring the illustration. The
stars indicate our estimate of N.(d) [see the main text|. Figure from Ref. [2].

These derivatives, along with the associated cross-over points, are plotted as
functions of N in Fig. [3.9] The values at the extrema diminish [in absolute value]
upon increasing dimension indicating progressive smoothing of the cross-overs be-
tween the low-/N-like and the large- N-like behaviors. In fact, between dimensions
d = 2.75 and d = 3, the maximum of 9%v~! disappears altogether. We empha-
size that these derivatives seem to diverge only at the KT point and provide no
indication of nonanalyticities of any kind except at that point.

In Fig. |3.10, we sketch the line of cross-overs obtained by tracing the extrema
of 93v~1 and dxn. Our two criteria for Nc(d) precisely align with each other sug-
gesting their common origin and possible physical implications. We also compare
the obtained line of cross-overs N,(d) to the CH line as calculated in Ref. |1]. We
find that in the vicinity of the KT point (d, N) = (2,2), the two curves lie very
close to each other, although the inclination of Nc(d) is slightly larger than that
of the CH line. We relegate the discussion of this slight discrepancy to Sec. [3.4.3]

3.3.3 Subdominant eigenvalue

The perturbative CH-style analysis, at the highest available order of the pertur-
bative expansion, predicts that the nonanalyticity of the critical exponents takes
the form of discontinuity of first derivatives of the RG eigenvalues. In Sec. [3.1.1],
however, we emphasized that in the exact picture, this nonanalyticity might be



3.3. ANALYTICITY OF THE CRITICAL EXPONENTS

67
2.0 2.5 3.0 5 25 3
10 c*’ O - :‘\' N
5 T ek -0.1 \ e
LYV T T 1T Y YPPPN —02 b *‘
0' ¢ e Oy v N ... -!
_ 5 ®oe® _03 '*...
. d=2.1 ., d=2.15 . d=2.2 % N(d) . d=2.1 ., d=2.15 . d=2.2 % N(d)
(a) Ojv~! (b) Onn

Figure 3.9: The derivatives of the critical exponents as functions of NV in a sequence

of dimensions. The stars indicate the maxima/minima, which serve as our defining
property of the N.(d) line. Figure from Ref. |2].
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Figure 3.10: Loci of the maxima of 937! and the minima of dyn compared to
the CH line |as calculated in Ref. [1]]. Figure from Ref. [2].

smoothed and take a different form or even be avoided altogether. Thus, the fact
that our calculations do not reveal any obvious nonanalyticity of the critical expo-

nents is not a sufficient argument to reject the CH scenario in the top-right [d > 2,
N > 2| quadrant of the (d, N) plane.

In this section, we attempt to observe a phenomenon being a necessary con-
sequence of the FP collision as predicted by the CH scenario in this part of the
(d,N) plane. A collision of RG FPs is always associated with a vanishing of an
RG eigenvalue corresponding to the eigenvector connecting the colliding FPs. In
our case, we expect the subdominant RG eigenvalue €5, connected with the leading
correction to scaling exponent w, to vanish identically on the CH line in dimensions
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above two.

The results of our O(9?)-order DE calculations for e, are presented in Fig. [3.11]
The eigenvalue is calculated as a function of NV in a sequence of dimensions d > 2.
The figure shows that e, remains substantially separated from zero in the entire
investigated region of the (d, N) plane. Furthermore, we can expect that the
eigenvalue does not vanish at any larger value of N since our results converge
quickly to the predictions of the large- N expansion [40)].

There is an important deficiency in our methodology that has to be acknowl-
edged at this point. The O(9?) order of the DE does not properly reproduce
the vanishing of the subdominant eigenvalue at the KT transition in the two-
dimensional O(2) model. For this reason, we opted to only present the fully re-
liable data corresponding to dimensions sufficiently distant from two [d > 2.25],
keeping in mind that the accuracy of the DE is expected to increase with increasing
dimension and N.

We further note that in three dimensions our results can be treated as fully
accurate. As a point of comparison for our results, we have shown the estimates of
the O(9*) order DE from Ref. [21]. The results of Ref. [21] are entirely compatible
with the best estimates for e; from other methods, such as the most recent Monte
Carlo (MC) calculations, and were chosen as a reference due to the abundance
of data points available for comparison. We emphasize that, in three dimensions,
the differences between our results and those of Ref. [21] are almost negligible.
Moreover, these more accurate results are even a bit further separated from zero
than ours.

Our results indicate that the subdominant eigenvalue e, is substantially sepa-
rated from zero in dimensions d 2 2.2 for any value of N. As a consequence, the
FP collision envisaged by Cardy and Hamber can only possibly take place in di-
mensions close to two, meaning that the CH line would have to either terminate at
some point (d;, Ny) or become vertical reaching the limit N — oo in some finite di-
mension. Neither of these possibilities can be supported by available perturbative
arguments or any of our findings. This leads us to believe that the CH prediction
for the FP collision is not realized in the top-right [d > 2, N > 2| quadrant of the
(d, N) plane.

Rejecting the CH scenario, however, we are left with an intriguing question
regarding the mechanism of the changing relevance of vortices. As argued in
Sec. and reiterated in Sec. [3.2.2] suppression of vortices and hedgehogs in the
three-dimensional O(2) and O(3) models changes the universality class (UC) of
the transition indicating the RG-sense relevance of these topological excitations.
Our results properly capture the vortex-dominated physics of these models and
reproduce the predictions of the vortex-suppressing 2 + € expansion below the line
of the cross-overs. This suggests that vortices should be relevant above the cross-
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over line and irrelevant below. This is further supported by Ref. |136] arguing
that the 2 + € expansion continued to three dimensions should describe the C P!
UC [clearly distinct from the Heisenberg UC|. With the CH scenario rejected,

the mechanism of the changing relevance remains unknown and calls for future
clarification.
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Figure 3.11: The subdominant eigenvalue e, as function of N in a sequence of
dimensions. The continuous lines denote the predictions of the large-N expansion
[40], and the stars denote the results of derivative expansion at order O(9?) for
the three-dimensional models from Ref. |21]. Figure from Ref. |2].

3.3.4 Fixed-point profiles

In the CH scenario, we can identify entities suffering from nonanalyticities other
than just critical exponents. Recalling Fig. we can observe that the spin-wave
coupling ¢* of the critical FP exhibits a nonanalyticity upon the FP collision. A
similar behavior can be expected to occur in different RG schemes describing the
same UC. Although the FP structure is not a universal feature, its exploration
might offer us a better understanding of the physics underlying the cross-over
observed in the behavior of critical exponents.

Fig. presents the evolution of the functions parametrizing the FP action
upon shlftmg dimension. In three dimensions, the form of the effective potential
U is almost identical to the “mexican-hat” potentlall while the fluctuation sup-
pressors Z, and Z, only negligibly differ from unity. In other words, the effective

20bserve that the right panel of Fig. [3.12| presents the first derivative of the effective potential

U'(p). The derivative U’(p) is essentlally hnear in p = ¢'¢'/2 meaning that the potential itself
is of order 4 in terms of the order parameter ¢.
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action very much resembles the action of the ¢* model with a weak quartic cou-
pling, highlighting the accessibility of the three-dimensional model to perturbative
description via the 4 — € expansion.

Upon lowering the dimension we observe slow evolution - the minimum of the
local potential U* becomes more pronounced, while the value of Z,. around the
minimum becomes relatively low. Z, remains relatively static until the CH [cross-
over| line is reached. Below the cross-over line, Z, begins to grow rapidly, strongly
suppressing longitudinal fluctuations of the order parameter. The structure of the
FP in dimension d = 2.05 characterized by a steep local potential and suppressed
longitudinal fluctuations, effectively trapping the order parameter in the vicinity
of the local potential’s minimum, is reminiscent of the nonlinear-c model. Let
us note that topological excitations such as vortices and hedgehogs induce strong
longitudinal fluctuations of the order parameter. Therefore, our results suggest
a decreasing proliferation of such excitations in the critical state with the lower-
ing dimension. Furthermore, the evolution of the FP structure implies that the
observed cross-over line might be interpreted as a rapid yet smooth transition
between the perturbative regimes of the 2 + ¢ and the 4 — € expansions.
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Figure 3.12: Critical fixed points for N = 2.5 in a series of dimensions. The
left panel shows the fluctuations suppressors: longitudinal Z,(5) [main plot] and
transverse Z,(p) [inset]. Particularly visible is the drastic [but smooth]| increase of
Z,(p) upon crossing the CH line located slightly below d = 2.2. The right panel
shows the derivative of the local potential U’(5). The axes were rescaled, so that
the minimum of the local potential always lies at p = 1. Figure from Ref. |2].

Let us explore further the FP structure around the minimum of the local poten-
tial po. Fig. presents the dimension dependence of the fluctuation suppressors
Z, and Z, as Well as the second derivative of the local potential U” evaluated
at po. Like in Fig 3.7, we observe the curves corresponding to different values of
N follow a common trajectory in high dimensions and detach from it one by one
upon crossing some characteristic dimension. The cross-over dimensions, defined
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by the local maxima of U” (), the local minima of Z, (), as well as the inflec-
tion points of Z,(f), lie very close to each other and coincide with the CH line
of cross-overs described in Sec.3.3.2l This shows that the unusual behavior of the
critical exponents is also reflected by the changing structure of the FPs. Impor-
tantly, the investigated quantities show no indication of nonanalyticity providing
further evidence against the FP collision predicted in the CH scenario.

Fig. [3.12] can also serve to illustrate the numerical difficulties encountered in
our calculations. The first problem is related to the propagator poles and was
discussed in more detail in Sec. 2.4.2 The right panel of Fig. shows how
the minimal value of U’ (p) steadily converges to —a as the dimension approaches
tW As this happens, the propagator poles, located close to ¢ = —a — U’ (p),
approach the real axis greatly inflating the numerical effort necessary for accurate
resolution of the momentum integrals in the S functions.

The second problem is related to the accuracy of the employed discretization
scheme. The error of the discretization is bounded by the magnitude of high-order
derivatives of the discretized function. In Fig. we observe that U’, Z,, and
to a lesser extent Z, develop more complex shapes as the dimension approaches
two. As a consequence, their derivatives grow in magnitude and increase the
discretization errors. Further discussion of the discretization scheme is presented

in Appendix [B.1]
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right panel shows the second derivative of the local potential U”(j). Figure from
Ref. [2].

3In the present calculation o = 2.
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3.3.5 Summary

In this section, we have explored the CH scenario in the top-right |[d > 2, N >
2| quadrant of the (d, N) plane from the NPRG perspective. Firstly, we have
investigated the evolution of the inverse correlation length exponent ! and the
anomalous dimension 7 across the quadrant. Our calculations have provided no
indication of the nonanalytic behavior of these exponents except at the KT point
(d,N) = (2,2). Instead, we have observed a smooth cross-over between two clearly
distinct regimes of exponents’ behavior. Curiously, the cross-over closely coincides
with the departure of our results from the predictions of the 2 + ¢ expansion and
occurs in close proximity to the expected position of the CH line. It might be
argued that the cross-over line is related to the changing relevance of the vortices,
although a mechanism through which this might occur remains unclear.

Further, we have analyzed the behavior of the subdominant RG eigenvalue ey
across the top-right quadrant of the (d, N) plane. Knowing that the FP collision
predicted by the CH-style analysis cannot take place without vanishing ey, we
have searched for a domain in the quadrant where e = 0. Our results present e
widely separated from zero in dimensions d 2 2.2 for any value of N. Although
our methodology did not allow for an accurate resolution of the subdominant
eigenvalue in dimensions very close to two, our calculations unambiguously exclude
the possibility of the CH-predicted FP collision. We cannot rule out that the CH
scenario does take place in a narrow strip around two dimensions. However, such
a phenomenon is supported by neither the CH-style analysis, our results, nor the
2 + € and large-N expansions. On the other hand, it is also possible that the FP
collision is an artifact of the perturbative expansion, and that it disappears in the
exact treatment or when higher-order terms are included.

Finally, we have examined the evolution of the functional profiles of the FP
profiles upon shifting the dimension. The structure of the FP effective action
interpolates between the forms resembling the ¢* model in high dimensions and
the nonlinear-o model in dimensions close to two. Importantly, the FP structure
presents no indication of nonanalyticity anywhere in the investigated region. How-
ever, some FP couplings do exhibit a smooth cross-over behavior coinciding with
the cross-overs of the critical exponents.

In summary, our NPRG calculations stand in strong disagreement with the
CH scenario. Although we do observe cross-over behaviors in close vicinity of the
predicted position of the CH line, our results clearly reject the FP-collision scenario
except possibly in dimensions very close to two. Furthermore, our results indicate
that the CH line, although possibly physically relevant, is just a line of cross-overs
that sharpen to a true nonanalyticity only in the limit (d, N) — (2,2).
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3.4 QLRO low-temperature phase

In the previous section, we have shown that our NPRG calculations do not support
the CH scenario for the nonanalyticity of the critical exponents in the d > 2, N > 2
quadrant of the (d, N) plane. In this section, we turn our attention to the bottom-
left quadrant |d < 2, N < 2|. There, CH scenario predicts that a low-temperature
phase takes the form of the QLRO rather than the long-range order. Moreover, we
search for the universal exponents characterizing the critical point and the QLRO
phase, and for the line of the lower critical dimensions N,(d).

In the bottom-left quadrant of the (d, N) plane, the FP collision scenario is
strongly supported by the NPRG calculations. This is clearly shown in Fig.
presenting the evolution of the anomalous dimensions of the critical and the
QLRO[] RG FPs upon decreasing the dimension. For 1 < N < 2, the two anoma-
lous dimensions rise slowly with the decreasing dimension and converge rapidly
upon the FP collision at the lower critical dimension d.(/N). The data presented
in Fig. has been obtained at the LPA’ level with a minimal field truncation
[see Sec. [2.2.3]. Throughout this section, this minimal scheme will serve a sup-
plementary role to the functional O(9%)-order DE scheme whenever the functional
results could not be obtained. The rest of the present section provides a detailed
description of this phenomenon from the NPRG perspective with a direct compar-
ison to the predictions of the CH scenario. Results regarding the critical exponents
presented throughout this section have been optimized according to the PMS [see

Sec. .

3.4.1 Critical exponents

To explore the FP-collision scenario, we first analyze the inverse correlation length
exponent ! and the anomalous dimension 7. of the critical FP. This analysis is
analogous to that of Sec. Firstly, we identify an approximation of the critical
FP in three dimensions by integrating the flows. Subsequently, we gradually de-
crease the dimension and solve the FP equation using the FP of dimension d + dd
as a guess in dimension d.

Fig. presents the dependence of the leading RG eigenvalue e¢; = v~! on
the dimension calculated for several values of N close to two. Once again, at high
dimensions, we observe a similar trajectory followed by all the curves. However,
the cross-over behavior observed for N > 2 is absent for N < 2. All the curves
corresponding to N < 2 behave quite similarly approaching the lower critical
dimension d.(N) |defined by e; = 0] in a singular fashion. The picture provided

4The name “QLRO FP” refers to the stable, finite-temperature FP controlling the QLRO,
low-temperature phase in parts of the bottom-left quadrant of the (d, N) plane.
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Figure 3.14: The dependence of the anomalous dimension of the critical and the
QLRO fixed points on the dimension for a sequence of values of N within the
minimal truncation. The points denote the anomalous dimension of the QLRO
FP and the lines - the critical FP. The stars mark the collision of the FPs at the
lower critical dimension as obtained within the minimal truncation. Figure from

Ref. [3].

by our results for N below two is fully consistent with the CH-style analysis.

In Fig. 3.15] our results are juxtaposed with the predictions of the CH-style
analysis. Attention should be paid to a remarkable agreement between the two cal-
culations. We particularly emphasize, the agreement in the determination of the
lower critical dimension in the direct vicinity of two dimensions. This is somewhat
surprising taking into account the relatively low order of expansions employed in
both calculations. However, we do note some quantitative differences. In partic-
ular, the CH scenario predicts a square-root-like behavior of e; in the vicinity of
the lower critical dimension. The behavior of our results, although clearly nonan-
alytical, exhibits a decay with an exponent of around 0.5 only for N = 2, which
then falls rapidly to around 0.3 for N = 1.8 and 0.2 for N = 1.2.

Let us now turn our attention to the anomalous dimension of the critical FP 7..
We emphasize, that the CH-style analysis does not offer any predictions for .. In
Fig. we compare the dimension dependence of the critical anomalous dimen-
sion as calculated by the functional scheme at the O(9?) order of the DE and the
minimal scheme. Interestingly, the results of the functional approach show much
weaker N-dependence than the minimal truncation and do not feature a sudden
drop in 7. close to the lower critical dimension. The figure also highlights the
well-established fact, that the minimal scheme tends to significantly overestimate
the anomalous dimension; for our calculation, the minimal scheme inflates 7. by a
factor between 1.5 and 2 compared to the functional approach.
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Figure 3.15: The dependence of the leading RG eigenvalue e; = v~! on the dimen-
sion for a series of values of N. The points denote our results from the functional
calculation and lines - the predictions from the CH-type analysis. The red line
corresponding to N = 2.5 features a discontinuity of the first derivative predicted
by the CH-type analysis [1], notably absent in the corresponding NPRG calcula-
tions [see Sec. [3.3]. Figure from Ref. [3].
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Figure 3.16: The dependence of the anomalous dimension of the critical FP 7. on
the dimension for a series of values of N. The points denote the results from the
minimal truncation and the lines - the data from the functional calculation. The
values at the N-dependent lower critical dimensions 7.(d.(N)) are marked by the
stars: five-pointed for the functional calculations and six-pointed for the minimal
truncation. Figure from Ref. .
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3.4.2 Low-temperature phase

The QLRO FP is somewhat elusive; it cannot be extracted from the perturbative
regime of the 4 —¢€ like the critical FP. The QLRO FP is subject to the perturbative
description of the 2 + € expansion, however, this expansion is performed around
the zero-temperature FP which takes a nonanalytical form in the functional ap-
proach to the NPRG. Thus, the functional structure of the QLRO FP cannot be
inferred perturbatively within the framework of the DE, and capturing it requires
an alternative strategy.

The QLRO FP is infrared stable, meaning that the low-temperature RG flows
converge to it in the limit & — 0 [t — oo]. We can use this fact to extract the
QLRO FP from the flow. Although, in principle, capturing this FP should be
relatively straightforward as it does not require fine-tuning of the initial condition,
it turns out to be substantially more difficult. The difficulties with capturing the
QLRO FP have numerical origins and are mostly caused by two factors. The
first factor is connected to the poles of the propagators and has been discussed in
detail in Sec. [2.4.2] It can only be mitigated by adopting a very precise method
for performing the momentum integrals.

The second problem arises due to the rapidity of the RG flow in the transient
regime in between the critical and the QLRO FPs, which may cause numerical
instabilities. A direct solution is to adopt a more precise flow-integration method,
but this requires a highly inflated numerical effort. An interesting alternative
is to fine-tune the initial condition very close to, but slightly below, the critical
temperature. Such an initial condition leads to an RG flow spending long RG time
in the proximity of the critical FP and, in our experience, a significantly improved
stability in the transient regime of the flow.

An example of an RG flow allowing for the extraction of the QLRO FP is
presented in Fig. [3.17] The figure overlays flows of two quantities: the dimension-
less potential minimum py and the anomalous dimension 7 for (d, N) = (1.75,1.3)
slightly below the critical temperature. The presented flow features two distinct
plateaus related to the two RG FPs.

Having identified the critical and the QLRO FPs we can compare their struc-
tures. The functions parametrizing the two FPs in the point (d, N) = (1.75,1.3)
are plotted in Fig. Both qualitatively resemble the KT FP [(d, N) = (2, 2)]
presented in Ref. [114] recovered in the same approximation scheme [after a neces-
sary reparametrization| and are broadly similar. This should not come as a surprise
since the two FPs evolve smoothly across the (d, V) plane and collide in the lower
critical dimension. Nevertheless, we observe several key differences between the
two FPs. Compared to the critical FP, the QLRO FP is characterized by a larger
value of the local potential’s minimum p, and significantly steeper potential barrier
beyond the minimum. The QLRO FP also features a very small difference between
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Figure 3.17: Flow of the dimensionless potential minimum py [left axis, blue circles|
and the anomalous dimension 7 [right axis, orange squares| for (d, N) = (1.75,1.3)
slightly below the critical temperature calculated within the functional scheme.
The red vertical lines roughly demarcate the scales at which the flow is controlled
by the critical and the QLRO FPs. Figure from Ref. .

U'(0) and —a which, as discussed earlier, complicates the numerical computation.
We, finally, highlight the relatively complex shape of the Z, function of the QLRO
FP featuring two maxima. The physical consequences of the FP structure remain
somewhat unclear and this field requires further investigation.

(a) Critical FP (b) QLRO FP

Figure 3.18: The fixed-point functions for (d, N) = (1.75,1.3). The red horizontal
line marks —« corresponding to the propagator pole. Upon decreasing N towards
1, the local potential of the QLRO FP builds up a singularity as the range of values
of p where U'(p) is close to —c increases. Figure from Ref. .

In the present setting, the QLRO phase is characterized by an algebraic decay
of correlation function with a universal exponent d — 2 4 nqrLro Where nqrro is
the anomalous dimension of the QLRO FP. In the analysis of the QLRO FP, we
were faced with a difficulty; close to two dimensions, we were unable to recover the
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functional QLRO FP due to its proximity to the nonanalytic, zero-temperature
FP. In this regime, however, the results of the minimal scheme coincide with the
2 + € expansion at the one-loop level. Thus, in the regime where the functional
results are unavailable, the minimal scheme is the most accurate and can serve
as a useful supplement. Our results regarding the correlation function exponent
d — 24 nqLro are presented in Fig. The figure shows a staggering agreement
between the predictions of the 2 + € expansion and the results of the functional
scheme in all dimensions. The results of the minimal scheme, on the other hand,
significantly deviate from the perturbative predictions except for the very close
proximity of two dimensions.

At this point, a question could be asked about how the NPRG results behave in
the relatively well-understood limiting cases of the two-dimensional models [d = 2]
and the Ising universality class [N = 1|. In two dimensions [for 1 < N < 2],
the QLRO FP and the zero-temperature FP overlap. As a consequence, the low-
temperature phase is characterized by a vanishing anomalous dimension. This fact,
along with more exact information about the direct proximity of two dimensions,
is captured by the 2 + € expansion. We once again emphasize that the O(9?)
order of the DE is one-loop exact in d = 2 4 ¢ and therefore exactly recovers
the expected behavior in two dimensions [for 1 < N < 2 and N > 2|. The
comparison with the Ising UC, on the other hand, cannot be performed as easily.
Due to the lack of the transverse mode [or at least its fraction| the Ising UC is
governed by completely different physics than the O(N) models with N > 1. More
technically, for N > 1 the proper low-temperature behavior can only be recovered
if the order-parameter renormalization is defined through Z, as Z, = Z. x(p,). For
N = 1, however, the transverse mode is absent. As a consequence, Z, becomes
decoupled from physics and to recover the proper low-temperature behavior the
order-parameter renormalization has to be defined through Z,. We note that this
distinction comes about due to eccentricities of the low-temperature phase and
that in the investigation of the critical behavior either of the functions can be
used to define the the order-parameter renormalization. Due to the significant
differences between the O(NN) models with N > 1 and the Ising UC, we refrain
from comparison between them throughout this section.

Let us now investigate the FP collision. Fig. presents how the correla-
tion function exponents d — 2 4+ n of the QLRO and the critical FPs vary across
the (d,N) plane. Analogously to Fig. [3.19] this figure uses the data from the
functional scheme whenever available and supplements it with the results of the
minimal truncation close to two dimensions. The figure presents a picture of the
FP collision similar to the one obtained within the minimal scheme [see Fig. [3.14].
However, the collision presented here seems sharp, with a clear cusp, aligning well
with the picture of the CH scenario [see Fig. [3.4], whereas the minimal scheme
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Figure 3.19: The dependence of the correlation function exponent of the QLRO
FP on the dimension for a series of values of N. The filled points denote the
results from the functional scheme, empty - from the minimal truncation and the
lines - the predictions of the 2 + € expansion |[Ref. [131]]. The stars mark the
lower critical dimensions: five-pointed as obtained in the functional scheme and
six-pointed from the CH scenario. The lines are extended to dimensions below the
point of the FP collision [where the BZJ FP is no longer infrared stable| along the
prediction 2 + € expansion. Figure from Ref. [3].

predicts an almost smooth merging of the two FPs. We note that, due to limited
numerical accuracy, the functional scheme predicts slightly different values of the
lower critical dimension as defined through the analysis of either the critical or the
QLRO FP.

3.4.3 Lower critical dimension

Finally, we turn our attention to the line of lower critical dimensions d.(N). Let us
recall that below two dimensions, the zero-temperature FP becomes unstable and
the low-temperature behavior is controlled by the QLRO FP. The mechanism for
the disappearance of the phase transition, as presented by the CH-style analysis
and confirmed by our NPRG calculations, is based on a collision and disappearance
of the critical and the QLRO FPs taking place at the lower critical dimension.

In the NPRG calculations, the lower critical dimension as defined by the FP
collision is subject to a substantial regulator dependence. To minimize this effect
we optimized the lower critical dimension in the spirit of the PMS. In practice,
this was achieved by defining d.(IV) as the lowest dimension in which the PMS-
optimized value of e; can be identified’] Various estimates for the shape of the line

5This definition is in fact equivalent to optimizing the lower critical dimension d.(N, ) with
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Figure 3.20: The correlation function exponent d — 2+ n of the critical and QLRO
FPs as functions of dimension for a series of values of N. The points denote the
exponent of the QLRO FP: filled - from the functional scheme, empty - from the
minimal truncation, and the lines denote the exponent of the critical FP. The
stars mark the lower critical dimensions from the analysis of the critical FPs in
the functional scheme. Figure from Ref. [3].

of lower critical dimensions d.(/V) are compared in Fig. The figure shows how
our results relate to the real-space RG calculations of Ref. [58|, and two alternative
estimates from the perturbative CH-style analysis. We recall from Sec. that
the CH line is defined by:

O:A:eg—(N—Q)f (gN> +O(e). (3.9)
The first estimate for the CH line follows the original reasoning of Cardy and
Hamber which is based on an additional postulate that f(g = 7/2, N =2) =2/7n
ﬁ. In the alternative estimation, we employ the perturbative expansion of f(g, N)
presented in Eq. .

Our results align well with those of Ref. [58] across a wide range of N as well as
with the predictions of the CH-style analysis close to two dimensions. Interestingly,
the CH line of lower critical dimensions merges smoothly with the line of cross-
overs obtained in the previous section around the KT point (d, N) = (2,2). We find
it instructive to analyze the slope of the CH line around the KT point. Various
estimates of the slope are shown in Table 3.1, The results of our calculations
are situated in between the predictions of other methods. We also observe that
the perturbative CH prediction varies strongly with the employed order of the ¢

respect to a and is somewhat more practical.
6This postulate was introduced to satisfy the analytic form for the first RG eigenvalue con-
jectured by the authors.
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expansion of the function f and could be not sufficiently converged at the present
order.
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Figure 3.21: Comparison of different estimates of the shape of the line of the lower
critical dimension. The lines denote two different ways of charting the CH line
based on the perturbative RG calculations. The points denote the results of our
calculations and from Ref. [58]. The NPRG points for d > 2 mark the position of
the CH line estimated within the functional RG scheme in Sec. [3.3] where it was
obtained in a form of a cross-over. Figure from Ref. [3].

Calculation aj\é;d(d) s
CH - original %4 ~ 25
CH - perturbative 3.1
NPRG 4.3
Ref. [58] 5.8

Table 3.1: Different estimates of the slope of the CH line at the KT point (d, N) =
(2,2). Table from Ref. [3].

3.4.4 Summary

In this section, we addressed the CH scenario for the bottom-left [d < 2, N < 2]
quadrant of the (d, N) plane from the perspective of the NPRG. We traced the
behavior of the correlation length exponent v~!, the anomalous dimension 7, of
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the critical FP, and the anomalous dimension 7grro of the QLRO FP throughout
the quadrant. We emphasize that our results present the first time these expo-
nents were calculated in this part of the (d, V) plane. Whenever possible we have
compared our results with the perturbative predictions of the CH scenario show-
ing a surprisingly good agreement between the approaches near two dimensions.
Particularly noteworthy is the agreement between the results of 2 + € and our cal-
culations at the O(9?) order of the DE regarding the 7qLro exponent in the entire
range of dimensions d.(N) <d < 2 [for 1 < N < 2].

Our NPRG results firmly support the CH scenario in the bottom-left quadrant
of the (d, N') plane. In this region, we were able to identify two nontrivial RG FPs:
the critical FP, and the stable QLRO FP. We have discussed the differences in the
structure of the two FPs and have shown how they collide upon approaching the
lower critical dimension d.(N). Finally, we have charted the line of lower critical
dimensions. In the vicinity of two dimensions, our estimates align fairly well with
the predictions of the CH scenario and show quite a good agreement with the
results of Ref. [58].

3.5 Conclusion

Throughout this chapter, we explored the topic of the critical phase transitions
in the O(NN) models. We delved deeply into the perturbative analysis of Cardy
and Hamber [1] predicting that quite unusual phenomena should occur in certain
regions of the (d, N) plane. In the quadrant d > 2, N > 2, the CH scenario predicts
nonanalyticity of the critical exponents, while in the quadrant d < 2, N < 2, it
describes the shape of the line of the lower critical dimensions and predicts the
presence of a QLRO phase characterized by a universal anomalous dimension. To
verify the CH scenario in a nonperturbative setting, we employed the functional
RG and the derivative expansion at the order O(9?).

Strikingly, our NPRG results imply that the CH scenario does take place in the
bottom-left quadrant [d < 2, N < 2] and does not occur in the top-right quadrant
[d > 2, N > 2|. For N > 2, we have found no indication of nonanalyticities of
the critical exponents consistent with the CH picture of the FP collision. Instead,
we identified a smooth cross-over between two distinct regions of the (d, N) plane.
On the other hand, we recover a sharp FP collision for N < 2 and a QLRO phase
as predicted by the CH analysis. We find it somewhat puzzling that our analysis
agrees with the CH scenario in one region of the (d, N) plane and disagrees in
another. We do, however, emphasize several arguments in favor of the picture
provided by our NPRG results.

Firstly, the CH scenario for the nonanalyticity of the critical exponents requires
that the subdominant RG eigenvalue ey vanishes. This seems highly unlikely ex-
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cept for the direct vicinity of two dimensions. In three dimensions, the critical
exponents of the O(N) models have been calculated to great precision, not only
with the NPRG but also with other methods. We are not aware of any study
showing even an indication that e; could be close to zero for any N > 2 in three
dimensions. Therefore, the FP collision envisaged by Cardy and Hamber could
only take place in dimensions lower than and largely separated from three, with
the CH line becoming very steep and reaching some finite dimension in the limit
N — o0.

Secondly, the presence of the QLRO phase predicted by the CH scenario for
N < 2 has been confirmed not only by the NPRG calculations but also the real-
space RG [58]. Moreover, the shape of the line of the lower critical dimensions
N.(d) as predicted by the CH scenario does agree quite well both with our results
and those of Ref. [58]. Finally, the CH scenario seems to be fairly accurate in
predicting the leading RG eigenvalue [see Fig. [3.15]. This is true also for N > 2
everywhere except for the direct vicinity of the supposed FP collision [see the red
curve of Fig. [3.15]. If the CH analysis is fundamentally wrong, the achieved level
of accuracy would have to be purely coincidental.

We, finally, observe that the line N.(d) obtained below two dimensions merges
smoothly at the KT point (d, N) = (2,2) with the line of cross-overs of the critical
exponents found above two dimensions. Based on the ample evidence, it seems
reasonable to conclude that the FP collision observed for N < 2 becomes smoothed
when crossing the KT point and survives only as a cross-over for N > 2.

A resolution of this apparent contradiction might be possible to reach by con-
sidering higher-order terms in the CH analysis. At the present order, the CH
equations harbor a subtle symmetry between the bottom-left and top-right quad-
rants of the (d, V) plane, which leads to a prediction of an almost identical collision
for N <2 and N > 2. This symmetry, however, becomes broken when the higher-
order terms are taken into account. Possibly, with this symmetry broken, the
CH analysis would align with the results found with other methods. Obtaining
these higher-order terms, however, is an arduous [and maybe impossible| task as
it would require performing the KT style analysis in 2 4+ ¢ dimensions for 2 + 9
order-parameter components.
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Chapter 4

O(2) model with cubic perturbations

And what exactly is a dream
And what exactly is a joke

Pink Floyd, Jugband Blues

In the present chapter, we shift our attention away from the isotropic O(N)
models and investigate weak cubic perturbations to the O(2) model. Of our pri-
mary interest is the leading renormalization group (RG) eigenvalue associated with
an anisotropic perturbation to the O(2)-symmetric fixed point. We analyze this
eigenvalue in three dimensions and subsequently follow its evolution upon contin-
uously decreasing the dimension from three towards two, where it is expected to
vanish - marking the onset of nonuniversal critical behavior. This chapter is based
on the results originally published in Ref. [4].

In Sec. 1.1} we analyze the three-dimensional model. The previous best non-
perturbative renormalization group (NPRG) estimate for the leading anisotropic
exponent 4 of this model underestimates its value by a factor of over two. Using
the derivative expansion (DE) at the order O(9?) we aim to improve this estimate.
Applying the error estimate methodology developed in Refs. |20} 21] and summa-
rized in Sec. we obtain the value of y, and the error bars fully compatible with
the most accurate results obtained with various methods. In Sec. 4.2 we move
to dimensions lower than three. We analyze the evolution of several leading RG
eigenvalues upon shifting the dimension. Upon approaching two dimensions, we
capture the approach of the anisotropic eigenvalue towards zero and the emergence
of the Kosterlitz-Thouless (KT) physics.

In addition to providing a better understanding of the physics of the investi-
gated model, this chapter presents important advancements for the NPRG method-
ology and aims to assess the accuracy of popular simplified approaches to the DE.
In our calculations, we employ two alternative schemes described in detail in Sec.

85
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2.4.3] The first of the schemes, hereafter referred to as “full” or the I'r approach,
retains the full functional dependence on the polar coordinates p and 6 defined via

¢ = /2pcos (0), ¢o=+/2psin(h). (4.1)

The effective action ansitze imposed in the full approach at the local potential
approximation (LPA) and the O(9?) levels of the DE read

FﬁAzé{wmm+%@%w2} (4.22)
Iy = / {ve6)+ Z(’;’ D (0,6%)? + T(p.0)61020,10,00 (4.2b)
0D Ty (6] [0,0) - (0077 ).

and the parametrizing functions are represented on a two-dimensional grid p €
[0, pmax), @ € [0,7/4]. The implementation of the discretization in this scheme
involves imposing the symmetry constraints in a manner described in Sec. [2.4.3]
We emphasize that this work presents the complete O(9?) order of the derivative
expansion successfully implemented in a functional setting on a two-dimensional
grid for the first time.

The alternative scheme is based on an expansion of the parametrizing functions
in the anisotropic invariant 7 = (¢1¢2)2 /2 up to the linear terms while retaining
the full functional dependence on the isotropic invariant p = ¢¢'/2. The effective
action ansétze for this scheme read:

i = [ {v6) + 700+ 5 (0,07, (4:30)
i - | {U<p> 4701 (p) + 2D T2 (5, gy (4.3b)
Zs — Zn T Z; - Z71r 1 2)2 2 1\2
| 22l =20 20 = 0 [, 1 (0,6
+ T(p) ' 620,61 0,6° }

This scheme, called the “expanded” or the I'y approach, is expected to perform
reasonably well, since we are considering only the infinitesimally weak anisotropic
perturbations around the isotropic models and, crucially, offers a huge decrease in
numerical complexity. We compare the two truncations described above [the full
and expanded schemes| and point out that while in three dimensions their predic-
tions are practically equivalent, important differences appear in lower dimensions.
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In Sec. we address the ansatz and the truncated variants of the DE dis-
cussed in Sec. [2.2.1] We calculate several critical exponents of the O(2) model
with cubic anisotropies as functions of dimension in each of the approaches. The
comparison of the two variants shows that while in three dimensions the differ-
ences between them are completely negligible, they grow in lower dimensions. In
particular, the truncated variant does not properly recover the onset of the KT
physics in two dimensions.

The NPRG flow equations employed in the present chapter appear very lengthy
and rather useless for a human reader. We refrain from quoting them in the text.
They are available online in Ref. [137].

4.1 Three dimensions

We first address the cubic anisotropy in the three-dimensional model. The several
leading RG eigenvalues as calculated with the O(0?) order DE are plotted in Fig[d.]
as functions of the regulator parameter a. The eigenvalues presented in the figure
are divided into two categories. The isotropic eigenvalues, labeled with the super-
script “iso”, are associated with perturbations conserving the O(2) symmetry and
can be found in the isotropic model. The anisotropic eigenvalues, labeled with the
superscript “aniso”, are associated with perturbations explicitly breaking the O(2)
symmetry into Z, symmetry and consequently are present only in the anisotropic
model. Fig. compares the predictions of the I'r and I'g schemes. The chart ex-
hibits no visible differences between the two schemes regarding either the isotropic
or the anisotropic eigenvalues. We emphasize that the two schemes are equivalent
in their treatment of the isotropic eigenvalues and any possible discrepancies arise
solely due to differences between their numerical implementations.

The eigenvalues presented in Fig. are connected to the observable critical
exponents. e is the inverse correlation length exponent v, while the subsequent
isotropic eigenvalues are connected to the correction to scaling exponents present
in the pure O(2) model. All the anisotropic eigenvalues are connected to the
correction to scaling exponents, as well, but these corrections can be observed
only in the anisotropic models. Importantly, the e eigenvalue can be identified
with y4 - the leading exponent of the cubic field. The value of 3, predicted by the
O(0?%) order of the DE lies much closer to the results of other methods [y, ~ —0.11]
compared to the previous NPRG results [y, = —0.044]. Let us, finally, note that,
although most of the leading eigenvalues are real, some are complex and appear as
pairs of complex conjugates. Throughout this section, whenever a pair of complex
eigenvalues is encountered, only its real part is plotted and the pair is labeled with
a double subscript, e.g. e§ in Fig. .

Let us focus on the leading cubic eigenvalue €™ = y,. Fig. presents
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Figure 4.1: The leading stability matrix eigenvalues obtained at the order O(9?)
displayed as function of the cutoff parameter o in three dimensions. The results
obtained within the I'r and I'g schemes are represented by lines and points re-
spectively. The relevant eigenvalue €' determines the correlation length exponent
v. The leading irrelevant eigenvalue y; = €i"° emerges due to the anisotropy;
the dominant irrelevant isotropic eigenvalue e° is significantly further from zero
as compared to €2, The results obtained within the two schemes practically

coincide. Figure from Ref. [4].

the dependence of y4 on the regulator parameter a at the LPA and the O(9?)
levels of the DE in the full and m-expanded schemes. The figure shows substantial
differences between the results of the two subsequent orders of the DE. Particularly
noteworthy is the fact that at the LPA level y, changes sign at low enough «. At the
scale of the plot, the differences between the estimates of the full and 7-expanded
schemes can hardly be observed and they are completely negligible in comparison
with the error bars of the DE.

The final estimate for y, and the associated error bars presented in Fig. are
calculated according to the prescriptions of Sec. As a consequence of the
substantial spread between the LPA values of y4 at the subsequent orders of the DE
the [most likely very conservative| error bars are quite wide. Table compares
our estimate for y, with those obtained by other methods, including perturbation
theory, Monte Carlo (MC) simulations, and the large charge expansion. Our results
lie in between the other estimates are remain compatible with all of them [except
for the outlying estimate of LPA’|. Note a significant tension present between the
large charge expansion and the remaining methods, in particular with the estimate
of the perturbation theory.
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Figure 4.2: The dependence of 3,4 on the regulator parameter a,, comparing the LPA
and the O(9?) DE orders in the full and T-expanded schemes in three dimensions.
The vertical dashed lines indicate the principle of minimal sensitivity (PMS) values
corresponding to the four sets of data. The bold line indicates our final estimate of
ys = —0.111 at the order O(9?) and is accompanied by the error bars [horizontal
dashed lines|. Figure from Ref. [|4].

Methodology Y4
PT |6 loop| - Ref. [70] | -0.103(8)
MC - Refs. [66], 138 | -0.108(6)
LCE - Ref. |139] -0.128(6)
MC / RG - Ref. [67] | -0.114(2)

LPA’ DE - Ref [65] | -0.042
O(9?) DE - This work | -0.111(12)

Table 4.1: Comparison of the values of y; obtained within different theoretical
and simulation approaches including perturbation theory (PT), MC simulations,
and large charge expansion (LCE). Note a substantial spread of the values, in
particular the differences between the LCE and MC / PT predictions. Table from
Ref. [4].

We finally point out that an accurate parametrization of the momentum depen-
dencies is crucial for an accurate computation of y, within the NPRG methodology.
While the accuracy of our results obtained at order O(9?) is comparable to the
other approaches listed in Table [£.1| one may expect that a calculation reaching
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the order O(9*) would surpass in accuracy all the estimates currently available.

4.2 Below three dimensions

Having established a well-controlled result in the three-dimensional model we turn
our attention to lower dimensions. The procedure for the fixed point (FP) search
is analogous to that of the previous chapter; we gradually decrease the dimension
using the FP in the dimension d as a guess in the dimension d — dd. In fact, since
our analysis is only performed around the O(2) symmetric FPs, the equations
used to obtain the FPs are identical to those of the previous chapter [taking N =
2|. The anisotropic RG-flow equations are only used later to obtain the stability
matrices and extract the RG eigenvalues. Although we were able to recover the
F'Ps in the entire range d € [2, 3], the eigenvalues in Fig. are presented only for
the dimensions larger than two. This choice is dictated by a failure of the PMS
related to the physical existence of the line of FPs in two dimensions. Although
an alternative method for fixing the regulator in two dimensions was proposed in
the literature [see Sec. and Ref. [114]], we refrain from employing it in this
chapter so as not to obscure the picture.

Fig. compares the evolution of several leading, PMS-optimized RG eigenval-
ues as calculated within the 7-expanded and full schemes. The two schemes remain
in complete agreement regarding the isotropic eigenvalues, demonstrating the fact
that they treat the isotropic sector in an equivalent manner. The figure shows
the leading isotropic eigenvalue e*° approaching zero for d — 2+ marking the on-
set of the KT physics characterized by the essential singularity of the correlation
length [6]. € exhibits a square-root-like nonanalyticity upon approaching two
dimensions in agreement with the perturbative predictions of Ref. [56]. The figure
also reveals a known deficiency of the O(9?) order DE; the subleading isotropic
eigenvalue, predicted to vanish in two dimensions by the KT theory [75], reaches
a finite value e5°(d = 2) ~ —0.5.

In the anisotropic sector, the I'g and the I'r approaches completely agree close
to three dimensions. Significant differences arise around dimension d = 2.5. In
that dimension, the eigenvalues e3™* and 3™ calculated within the I'r scheme
collide and become complex Conjugate{]. The eigenvalues in the I'y scheme also
exhibit several crossings, which could lead to significant physical consequences.
The exponent of the anisotropic field y4 is defined as the leading anisotropic eigen-
value. Due to crossing this exponent will be associated with various eigenvalues

'Due to crossing of the eigenvalues their order changes. The labels e;so/ 9 are imposed
on the eigenvalues according to their order in three dimensions. Upon crossing the labels are
determined in the way that the eigenvalues and the associated eigenvectors remain continuous
as functions of the dimension.
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depending on dimensions which implies its nonanalytic [yet continuous| behavior.
However, not observing any such crossings in the I'r scheme we presume their
presence in the I'g scheme to appear as an artifact of the field expansion.

In both schemes, the leading anisotropic eigenvalue ei"° exhibits nonmonotonous
behavior, increasing in absolute value when lowering dimension before approaching
zero in the limit d — 27. However, below the dimension d ~ 2.4, the predictions
of the two schemes differ substantially. In the 7-expanded scheme, e3"° reaches
the minimal value in dimension d ~ 2.2 and approaches zero in a smooth fashion.
In the full scheme, the situation is different. The minimal value is reached just
above two dimensions [d ~ 2.03] and in the lowest dimensions in which we were
able to apply the PMS [d = 2.01|, y4 takes the relatively large value of around
—0.25. This, however, represents a sudden and significant rise from y, >~ —0.4 in
d = 2.03. Additionally, in two dimensions, we find that y, vanishes for the value
of a corresponding to n ~ 1/4. Taking into account the significant uncertainties
around two dimensions, which we discuss in the following section, we are confident
to conclude that the full scheme predicts that y, approaches zero on an apparently

nonanalytic trajectory as d — 2T,
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(a) Results of the I'g scheme. (b) Results of the I'r scheme.

Figure 4.3: Comparison between the leading, PMS-optimized RG eigenvalues as
obtained within the I'r and I'g schemes, varying the dimension between three and
two. Figure from Ref. [4].

To comprehend the entire picture, let us explore the behavior of the eigenvalues
before the PMS optimization. Fig.[1.4] presents the leading anisotropic eigenvalues
as functions of the regulator parameter « in several dimensions d €]2, 3]. The figure
allows us to better appreciate the differences arising between the two schemes. In
three dimensions, the two schemes practically coincide, and down to d = 2.5 the

aniso

differences between them, particularly concerning e™*°, remain relatively modest.
Below d = 2.5, however, the two schemes begin to substantially diverge. In the
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T-expanded scheme for d = 2.2 and below, we can observe the crossing of the
eigenvalues, notably absent in the full scheme. We reiterate that in two dimensions
the PMS cannot be employed in the usual manner and, to avoid obscuring the
picture, we present the results in dimension d = 2.01.

Fig. showcases the degradation of the accuracy control of our approach.
The differences between the results of the I'r and the I'g truncations indicate
that, at the employed order, the T-expansion is not yet converged. We should
note, however, that a similar problem arises with the order-parameter expansion
in the isotropic models; in three dimensions the expansion converges quickly, while
below it becomes divergent [see Sec. . It is, therefore, not obvious if includ-
ing the higher-order anisotropic terms would actually improve the quality of the
T-expanded scheme. Nevertheless, we emphasize that both schemes capture the
subtle effects of marginal operators arising in two dimensions, standing as a hall-
mark of the KT transition. This, together with the accurate resolution of y4 in
three dimensions constitutes a significant improvement as compared to the previ-
ous NPRG studies of this system.

4.3 Ansatz and truncated variants of the deriva-
tive expansion

In Sec. 2.2.T] we introduced two different ways of implementing the DE: the “ansatz”
variant, and the “strict” or “truncated” variant. The flow equations of these two
approaches are not identical and it remains unclear to what extent the results
they yield are equivalent. As is well known, both variants yield very accurate, and
consequently similar, critical exponents of the three-dimensional O(N) models.
However, we are not aware of any analysis of the differences between the variants
and their comparative precision below three dimensions. In this section, we address
this point at the order O(9?) in the O(2) model for dimensions between three and
two for both isotropic exponents and for Z,-symmetric perturbations.

Before discussing the results, we offer a brief reminder of the two variants. Let
us recall that the DE flow equations take the form of one-loop 1PI diagrams [see e.g.
Fig. . These diagrams consist of vertices representing the n-point functions and
lines representing the “dressed” propagators obtained from the 2-point functions:

Gula) = (T2(a) + Ru(a)6,) (1.4

Thus, to deduce the flow equations we first construct the appropriate diagrams
and subsequently translate them into expressions by plugging in the appropriate
n-point functions. This is the prescription of the ansatz approach - the vertex
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Figure 4.4: The leading stability matrix eigenvalues related to the anisotropy
obtained at the order O(9?) displayed as a function of the cutoff parameter « in
a sequence of dimensions. The results obtained within the I'r and I'g schemes
are exhibited with the lines, and the points respectively. For d = 2.2 the leading,

anisotropic eigenvalue 34 corresponds to €™ within the I'r scheme, and to e3%=

within the I'g scheme. In dimensions approaching two, the PMS value of 3, = e3nis
becomes very close to zero. In Figs. [4.4(d)|and 4.4 (e)|two of the eigenvalues are real
and take distinct values near the PMS but cross and become complex conjugates
far from the PMS. This results in some bifurcations in the curves in these figures.

Figure from Ref. .
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functions are directly extracted from the ansatz and no further truncations are
imposed.

(2) o F(3)
kyip,j—p i, p

kO, I

LP @I P
Figure 4.5: Diagrammatic representation of the flow equation for the F,(f.gp ip
function. The continuous lines with arrows denote the “dressed propagator”

—1 .
(F f) + Rk> , the asterisks denote the scale derivative of the regulator R and

the dots with n lines denote the n-point vertex functions. The external legs of the
diagram are labeled with corresponding field indices and momenta.

Recently Balog et al. [23| proposed an alternative procedure relying on the
interpretation of the DE as a truncation of the n-point functions in the external
momenta. From this perspective, the ansatz prescription is not consistent, since
the flow equations contain contributions of the same order in momenta as the terms
already truncated due to imposition of the ansatz. For example, at the order O(9?),
the “bubble” diagram [see Fig. [4.5] contains contributions of order O(q*) coming
from the product of the two I'®) vertices. However, the terms of order O(g*) were
already truncated in the ansatz. Thus, a prescription of the truncated scheme is
to remove such higher-order contributions from the flow equations.

Each of the approaches comes with its advantages. The ansatz approach is
arguably more aesthetic and easier to implement since tracking all the higher-
order terms can be quite an arduous task, especially at the order O(9*) and above.
Moreover, treating the effective action ansatz in the same way for all vertices
automatically ensures the satisfaction of all relations coming from symmetries
or relations between response functions and correlation functions. On the other
hand, the truncated approach leads to flow equations of reduced complexity. At
low orders of the expansion the gain is modest, the two variants even yield the
identical flow equations at the LPA level. However, at the order O(9%), there is
a huge amount of higher-order terms and their truncation leads to flow equations
many times shorter than in the ansatz variant.

The existence of the two versions of the DE raises the question of their com-
patibility. Implementing one of the variants, we should make sure that the other
yields the equivalent results [within the corresponding error bars|. The comparison
between the two versions of the DE was previously performed in three dimensions
at the order O(9?) for the O(N) models and at the order O(9?) for the N = 1 case
[21]. In Ref. [112], the O(d*) DE equations in the ansatz variant are truncated in
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powers of the order parameter and yield results fully compatible with those pre-
viously obtained in the truncated variant without the field expansion. All these
comparisons indicate that, in three dimensions, the difference between the two
variants of the DE is considerably smaller than the error bars estimated to a given
order and allow us to conclude that the two procedures are essentially equivalent
for the purpose of studying universal properties of the three-dimensional O(N)
models.

In our calculations regarding the three-dimensional model, we confirm the pre-
viously reported [21] compatibility between the ansatz and the truncated variants
for the isotropic exponents v and 7. Furthermore, we reach a similar conclusion
for the anisotropic exponent y;. In Table [4.2] we present the comparison of the
PMS optimized values of gy, as calculated within ansatz or truncated variants. In
addition, the table shows how the y, estimate depends on the regulator family and
the scheme for the treatment of the anisotropy. Clearly, in three dimensions the
difference between the truncated and the ansatz variant of the DE is well below the
margin of error. Moreover, in that dimension, the truncation in the anisotropic
invariant [at the order indicated in the equation Eq. (4.3)] or the choice of the
regulator family] also have effects below the margin of error.

Version | Field truncation | Regulator Y4
Ansatz Full Wetterich | —0.111 +0.012
Ansatz Full Exponential | —0.112 £ 0.012
Truncated Full Wetterich | —0.113 £0.012
Truncated Full Exponential | —0.114 + 0.012
Ansatz Expanded Wetterich | —0.114 4+ 0.012
Truncated Expanded Wetterich | —0.114 +0.012

Table 4.2: Comparison of the values of y4 obtained within different versions of the
DE at the order O(9?) in three dimensions. The field truncation refers to either
the fully functional approach treating both variables p and € on a functional level
or the expanded scheme retaining the functional dependence on the p variable but
involving an expansion in the cubic invariant 7. Table from Ref. [4].

Below three dimensions we observe a general trend of deteriorating accuracy of
various approximate schemes in the NPRG. Let us recall that, in the isotropic case,
the expansion in powers of the order parameter becomes unstable around dimen-
sion d < 2.5 [see Sec. [2.2.3], the results of the T-expanded approach significantly
deviate from the results of the fully functional scheme below dimension d ~ 2.5

20One must, however, stress that the dependence on the regulator is higher if the results are
not optimized via the PMS.
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see Sec. [£.2], and the DE itself becomes less accurate as the dimension decreases.
The last point is visualized in Fig. showing the dimension dependence of the
O(9?)-order DE estimates for several critical exponents along with the estimated
error bars. In the dimensions approaching two, the error bars become very large
due to an increasing spread between the results of the consecutive orders of the
DE. Below the dimension d = 2.1 |[d = 2.2 in Fig. [4.6(c)|, the error bars are not
displayed because we were unable to identify the fixed-point solution at the LPA
level required in our error bar estimation procedure.

It is, therefore, expected that the spread between the results of the ansatz
and the truncated variants should increase with the decreasing dimension. This is
confirmed in Fig. comparing the estimates and the error bars for the critical
exponents: 7, v and y; as calculated with the two variants. Let us note that,
except for the direct vicinity of two dimensions, the differences between the results
of the two variants remain relatively small and the estimates of the two variants
remain compatible within the error bars.

The increasing differences in low dimensions can be attributed to the increasing
importance of the terms of the higher order in derivatives. In fact, the difference
between the ansatz and the truncated variants should be of order O(9?) in deriva-
tives. Thus, one might argue, that the increasing discrepancy is a manifestation
of the fact that the effects induced by the higher orders of the DE become much
more significant in the dimensions d < 2.5.

Nevertheless, it should be noted that the ansatz variant captures the KT
physics in two dimensions [including the effects of the cubic anisotropy| not only
qualitatively but largely also quantitatively. In the truncated approach, on the
other hand, the leading isotropic and anisotropic RG eigenvalues do not vanish
in two dimensions. As a consequence, the lines of FPs - the hallmark of the KT
physics cannot be reproduced even qualitatively in the truncated variant of the
DE. The difference in the quality of the results obtained in two dimensions indi-
cates an apparent superiority of the ansatz approach. This topic requires further
clarifying studies.

Although, at the moment, we do not have a conclusive explanation, we permit
ourselves to conjecture a possible reason for this substantial difference in quality
between the two variants of the DE close to two dimensions. As mentioned before,
the ansatz variant has the property of exactly preserving the generalized response-
fluctuation relations, as well as the Ward identities for the O(2) symmetryf] The
truncated variant, by treating each vertex independently, satisfies these relations
only up to corrections of the higher order in the momentum expansion. Such

3Ward identities and response-fluctuation relations depend only on the existence of an ansatz
with symmetry from which all vertices are extracted; it does not require that the ansatz provides
an accurate description of the physics.
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relationships are key in the study of the broken phase in the presence of continuous
symmetry. Although, strictly speaking, the isotropic O(2) model does not exhibit
the symmetry-broken phase in two dimensions, the line of KT FPs springs from the
zero-temperature FP [controlling the symmetry-broken phase|. We do believe that
the proximity to the zero-temperature FP might be causing the underperformance
of the truncated variant due to the violation of the generalized response-fluctuation
relations. The resolution of this point calls for an extension of the present study

to the order O(9%).
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Figure 4.6: The dependence of several critical exponents on the implementation of
the DE as functions of the dimension. The lines represent the raw values from the
ansatz and truncated variants of the DE at the order O(9?). The marked regions
represent O(9?) confidence intervals for each implementation. Figure from Ref. [4].
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4.4 Conclusion

In very recent years, the derivative expansion of the NPRG has been shown to pro-
vide a computational tool capable of delivering accurate and highly precise results
with controllable error estimates for the universal properties of the O(/N) models
in three dimensions. In the present chapter, we have presented an extension of this
approach to a model involving discrete Zs-symmetric perturbations, dangerously
irrelevant at the isotropic O(2)-symmetric fixed point. An accurate treatment of
such a model within nonperturbative RG requires substantial methodological ad-
vancements as compared to the isotropic case since the effective action depends in
an essential way on two field variables.

We have provided an accurate estimate of the leading RG eigenvalue related
to the discrete anisotropy y4 in three dimensions. Our result represents the first
NPRG estimation of y, compatible [within the error bars| with the values calcu-
lated with other methods. We emphasize that such a feat required a systematical
implementation of the DE up to order O(9?). In the anisotropic models, it seems,
it is not sufficient to consider the dependence of the parametrizing functions on
two parameters |as has been previously done|, the effective action ansatz itself has
to be promoted to the most general anisotropic form. In our case, the promotion of
the ansatz relied on splitting the O(2)-symmetric (0, p)2 term into two independent
Z4-symmetric terms:

6'00,0'0,6° and [(0)" ~ ()] [(00")" ~ ()] (45)

each associated with a separate parametrizing function in the ansatz. Our results
indicate, that accurately capturing the anisotropic eigenvalues requires introducing
the anisotropic structure not just in the local potential, but also in the momentum-
dependent parts of the two-point function. Interestingly, this is not the case for
the leading usotropic eigenvalues, which can be quite accurately calculated already
at the LPA order of the DE where the momentum dependence of the two-point
function is greatly simplified. The nature of the relation between the momentum
structure of the correlation functions and the anisotropic couplings presents an
interesting area for future research.

Furthermore, we have demonstrated that a truncation in the 7Z, invariant
T = %(¢1¢2)2 including just the terms up to the order O(7) yields results prac-
tically equivalent to those obtained within the complete O(9%) DE approach in
three dimensions. This is, however, no longer the case in lower dimensions. The
results obtained from the 7 expansion deviate significantly from the fully functional
calculation below dimension d < 2.5, suggesting a failure of the order-parameter
truncation similar to that observed in the isotropic O(N) models.

We have analyzed the dependence of y, and subsequent irrelevant eigenvalues
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on the dimension. The exponent y, has a nonmonotonous character as a function
of the dimension, reaching a minimal value in a dimension slightly above two.
After reaching its minimal value, y, rapidly approaches zero when the dimension
reaches two, marking the onset of nonuniversal critical behavior. Previous NPRG
studies, while providing the correct resolution of the interplay between the different
fixed points and the rich and interesting cross-over behavior of the system, did not
deliver the accurate eigenvalues describing the cubic perturbation [neither in three
nor in two dimensions|. Our present study demonstrates how this is achieved via
a systematic implementation of the derivative expansion.

Finally, we have discussed and compared the different implementations of the
DE [the ansatz and the truncated variants|. While in the vicinity of three dimen-
sions these yield practically identical results, substantial differences occur in lower
dimensions. We do note, however, that the two variants remain compatible, in
every dimension for which the error bars could be provided. The crucial differ-
ence occurs very close to two dimensions, where only the ansatz variant correctly
accounts for the divergence of the correlation length exponent accompanying the
onset of the KT physics. This discrepancy calls for further clarifying studies, going
beyond the O(9?) truncation level.

The results discussed in this chapter also point to the fertility of the method-
ology developed recently in Refs. [20] 21}, 23| 48| in situations reaching beyond the
paradigm of the isotropic O(N) models. It would be very interesting to extend the
present study to the order O(d*) of the DE. We expect that in three dimensions
this would allow for obtaining the estimate of y, with an accuracy better than in
all the studies performed so far. On the other hand, in two dimensions we an-
ticipate that the O(9") calculation might be capable of capturing the KT physics
fully accurately and, in any case, would provide a stringent test of the NPRG er-
ror estimate methodology developed recently. Such calculation would additionally
shed more light on the differences between the ansatz and truncated variants of
the DE approximation scheme.
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Appendix A

Functional RG flow equations

I've got a bike, you can ride it if you like

It’s got a basket, a bell that rings

And things to make it look good

I’d give it to you if I could, but I borrowed it

Pink Floyd, Bike

In this section, we present the renormalization-group equations that were used
in the calculations of Chapter[3] To simplify the expressions we denote the “dressed
propagators” as follows:

> >
\BH

Go(p) = [U'(p) +20U" (p) + Z,(p)® + R(g®)] ", (
Ga(p) = [U'(p) + Za(p)d* + R(@®)] . (

Additionally, we introduce the following notation:
R(¢®) = kR (), R () =0pR(¢?), R'()=02R(¢), (A3)

and we suppress the k& dependence to simplify the notation. The g functions
employed in the functional calculation read:

Bur(p) = kU (p)
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82, () = KO Za(p) = (@) [408 = 00Go)! [ 2200 + V" (0]
{~[F(a )+Z<>] {<d+4> *Zr(p) +dU" (p)] — 2q2R”( ) [¢°Z:(0) + U (0)] }
+4(N = 1)Gr(p)* {d[Z5(p) = Ze(p)] [€*Z1(p) + U (0)] + ¢*pZ1(p)*}

+ 4pGa(p)4 [qQZé(p) +2pU ‘ )(p) +3U ”(p)} —dGo(p)* [Z5(p) + 2025 (p)]
( — [R'(¢°) + Zs(p)] {(d +4)¢*Z}(p) + d [2PU ®)(p) + 3U"(p)} }
—2°R" (%) | Z4(p) + 20U (p) + 3U" ()| )

+49Go () Z4(p) |24+ 1)@ Z(p) + 4dpU ™ (p) + 64U” (p)|

+16(N — 1)pGr(p)® [R (%) + Z=(p)]” [ ZL(p) + U" (p)]?
+164%0Go (p)” [R (¢2) + Zo ()] |24 (p) + 20U (p) + 3U" (p)] i

—d(N = 1)p™'G(p)? [pZ,(p) — Zs(p) + Zx(p)] ] ; (A.5)
B2, (0) = kdkZo(p) = {4 )+ Zo(0)]?
p)?{ —d[(N -1 pZ’ +2R’ (¢%) + 2Zx( } —4q2R”( %)

—4q2G()[R'() pZ}(p (0)] [R' (¢%) + pZL(p) + Zx(p)] }
+Go(p)* {~d[2R (g )+2P Z”( )+5PZ’( )+ Zo(p) + Zr(p)] — 4°R" (¢*) }

+ Gx(p) ( o(p) {4d [R' (¢°) + pZ(p) + Zx(p)] + 84 R" (¢°) }
+46°Go(p)* [R' (¢®) + pZ7(p) + Zx(p)] [=R' (¢°) + pZ7(p) — 2Z5(p) + Zx(p)] >

+44%G(p)* [R (¢%) + Z(p)]” |. (A-6)



Appendix B

Overview of numerical techniques

Hello
Is there anybody in there?
Just nod if you can hear me

Pink Floyd, Comfortably Numb

B.1 Finite grid representation for functions

The functional approach to the nonperturbative renormalization group (NPRG)
described in Chapter [2] relies on the numerical treatment of partial and ordinary
differential equations. The numerical analysis cannot be, however, performed in
a continuous space. Thus, developing a well-controlled discretization procedure
becomes a crucial step in implementing the NPRG.

In the DE treatment of the O(/N) models, every parametrizing function f is a
real function of a nonnegative real parameter p

R 2p— f(p) €R. (B.1)

Therefore, there are two steps to discretization: restricting the p domain to a
compact set and discretizing the domain. The first step relies on selecting some
value pyax and restricting the domain of f to a set p € [0, pyax]. Our analysis
shows that the performance of the NPRG treatment is very weakly dependent on
PMax Provided that % o < puvax S 1090, where pg is the minimum of the fixed-point
local potential.

The second step is substantially more involved. The domain of the function
[ is further reduced to an N,-element discrete grid p € {po,p1, ..., pn,~1}. It is
typical and convenient, although not necessary, to work with an equispaced grid

103
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p; = i€ with €(N, — 1) = pyax. Such representation reduces differential equations
to algebraic equations making them suitable for numerical analysis. However, on
a finite grid, we do not have access to the analytically calculated p derivatives and
they have to be approximated by finite differences.

The idea of a finite difference approximation for derivatives follows from the
Taylor series expansion. The lowest-order finite difference formula can be derived
as:

flet = 1)+ et 0@ = =0T o0 B

The error associated with that expression, however, is of order O(¢e) which is often
unsatisfactory. To find a formula with a lower truncation error we need to use
more evaluation points

.....

the grid points that will be involved in the derivative calculatlon We write:

n—1 mem (m)
flotse=>" +|(x) L O (). (B.3)
m=0 ’

To calculate the d-th order derivative f(®(x) we want to find a linear combination
> cgd) f(x 4 s;e) such that the largest possible number of corrections is cancelled

out. We find that:

n—1 —1
Zc(d)f(x+se Zc +ef'(x Zc S; + Qf” Z
= n—1 mf(m n—1 B

=

Using the matrix notation Eq. (B.4) can be rewritten as

Zc ST 4+ O(e). (B.4)

o

1

n—1
S s = [O@Y 0@ . e ).
i=0

0 0 0
50 S5i n—1 Cod
50 51 Sp_1 c§ ) n
: + O(€"). (B.5)
n—1 n—1 n—1 (d
S S ... S

To find the expression for f((z) we need to cancel contributions from all of
the derivatives f@(z) but f((z) in Eq. (B.5). We achieve that by solving a set
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of linear equations

0 0 0 (d)
5(1) s% 3711_1 c(()d) 50,d
S S S _ c 014
0 1 n—1 1 ,
. = d! (B.6)
n—1 n—1 n—1 d
So 51 Sp—1 el _)1 On-14

(@)

()

Having found the coefficients cgd) from Eq. we can express the derivative

as:
n—1 (d) .
f(d)(x) _ dic0 Gi EJ;(x + €si) 1 O(en—d)' (B.7)

for the coefficients ¢

If the stencil s is symmetric [taking the form {—k, —(k —1),...,0,...,k — 1, k}]
the corrections to the finite difference approximation (B.7)) can be of an order
higher than O(e"~?). The algorithm outlined above along with the finite differ-
ence coefficients for calculating derivatives with various stencils can be found in
Ref. [140].

To check the accuracy of our discretization scheme we calculate the two leading
renormalization group (RG) eigenvalues of the three-dimensional O(2) model at
the O(9?) order of the DE with different numbers of stencil points and varying
grid spacing €. In Fig. we present the absolute value of the deviation Ae; =
’ei - efef’ as a function of the number of grid points [for constant x| calculated
with 3—, 5—, 7—, and 9—point p derivatives. As the reference value ei*f we chose
the intersection of the two asymptotic lines for the 9—point derivative calculation
at N, = 76.

We find that for very low grid sizes, the discretization error follows the power
laws and slowly flattens as N, increases. The error profile is very similar for both
the leading and the subleading eigenvalue, but the associated best-fit power-laws
somewhat differ; the low- N, asymptotic power-law fits are presented in Table
As expected, the power-law exponents increase in absolute value with the increas-
ing number of points used to calculate the derivatives, but interestingly they do
not take integer values. This primarily shows that the discretization error prop-
agates in a nonlinear fashion to the error in the eigenvalue calculation. We also
note, that even on very sparse grids N, ~ 20 the 9—point calculations yield a
precision of 6 digits, which is often sufficient for most purposes.

When the grid becomes too tight the error starts to increase at a staggering rate
of N /}6. This is probably due to the rounding errors occurring in the calculation of
the characteristic polynomial of very large matrices. We note that the number of
nonzero entries in the stability matrix is almost exactly proportional to the number
of points used in the calculation of p derivatives. It is therefore expected that the
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rounding errors will be more severe in the calculations involving more points in
the derivative approximation. We further note that the eigenvalue calculation was
performed with the “Eigenvalues” function of Wolfram Mathematica [141]. We
emphasize that point because Mathematica allows for arbitrary machine precision
in the calculation. When a finite-precision C-++ library “Eigen” |142| was employed
the rounding errors were much more severe, even when the 80-bit “long double”
precision was employed.

The results of the present section can serve to both reassure and caution. On
one hand, our results indicate a rapid convergence of our discretization scheme
on very sparse grids. Moreover, we see that even when the derivatives are ap-
proximated on the crude 3—point stencil the leading eigenvalue can be obtained
with a reasonable precision. Simultaneously, we show that the finite floating-point
precision can have severe consequences and has to be treated with care. Finite
machine precision leads to rapid degradation of the eigenvalue precision on very
dense grids. For this reason, N, cannot be increased indefinitely, and a compre-
hensive convergence analysis of the discretization scheme should be performed for
each calculation. We finally note that the error seems to grow quite rapidly with
each subsequent eigenvalue, which can become a significant issue when studying a
large number of eigenvalues, e.g. in investigations of multicritical points.
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(a) Error of the dominant eigenvalue. (b) Error of the subdominant eigenvalue.

Figure B.1: Absolute deviation of the leading RG eigenvalues from the reference
values Ae; = ’ei — e°f| as a function of the number of grid points N,. Series of data
correspond to calculations using varying numbers of points in approximations of p
derivatives. Lines denote the best power-law fits for low- and large-N, asymptotic

behaviors. The charts feature a logarithmic scale on both axes.
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n, 9 7 5 3
Aey O.2Np_5'1 0.6 - 10_2]\7,0_3'3 0.4- 10_3Np_1'8 0.03]\/p_1'7
Aes 2Np—5-1 O.O3Np—3-0 0.2 10—2Np—1-4 0.6Np—1-9

Table B.1: Low-N, asymptotic power-law fits to the absolute deviation of the
leading RG eigenvalues from the reference values ‘ei — eﬁef‘ for different numbers
of points used in approximations of p—derivatives n,,.

B.2 Finite difference approximation for the Jaco-
bian

In section 2.2.2] we defined the Jacobian - the matrix of the first derivatives of the
flow equations:
9 (0uFap,)

M(‘F)aﬁi,bﬁj = 0F 5
Pj

(B.8)
We recall that F stands for a vector of dimensionless functions parametrizing the
effective action I'y. The indices a, b enumerate the functions and p;, p; enumerate
the discrete grid points. We stress that when some constraints are imposed on
the function F. at some point p; the corresponding row M (F).s .. and column
M(F)..cp, are removed from the matrix. Examples of such constraints include
Z(py) = 1 and Z,(0) = Z.(0).

The expression for the Jacobian defined in Eq. can be given analytically.
Let us recall Eq. for the dimensionless form of the flow equations:

8tfa(ﬁ) = dafa(ﬁ) - (d -2 + Uk)ﬁ]:é(ﬁ) - Ba(ﬁ)’ (Bg)

with d, denoting the canonical dimension of the function F, and Ba denoting the
dimensionless loop contribution to the flow of F,. With that in mind, the Jacobian
can then be expressed as:

. aﬂa(ﬁz)
OFu, |

M(F)apiss, = das (dabppy — (d =2+ m)5id} ;) (B.10)

where 0 denotes the discrete counterpart of the Dirac delta - the Kronecker delta
and ¢’ denotes the discrete counterpart of the derivative of the Dirac delta. The
form of ¢’ depends on the employed discretization scheme [see Appendix [B.1] and

can be written as:
n—1

! 1
0ij = Z C/(f )5i+Sk,j (B.11)
k=0
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where c,(:) are the finite difference coefficients and s; are the stencil points used to

calculate the discretized approximation of the first derivative [see Eq. (B.7)).

The expressions for the derivatives 885;—1? can be found analytically and later
evaluated numerically. The exact expressijons, however, heavily depend on the
employed discretization scheme due to the presence of derivatives of the Dirac
delta function. Additionally, the expressions for the functional derivatives of the (8
functions become very lengthy. This approach can be efficiently implemented with
software for symbolic calculations, e.g. in Mathematica [141], where the derivatives
can be calculated analytically after the discretization is performed. In purely nu-
merical calculations, on the other hand, it is much more convenient to approximate
the derivatives involved in calculating the Jacobian by finite differences.

The finite difference approximation in the functional space is applied similarly
to that in the p grid. We just need to define the stencil points s; and the per-
turbation parameter e. To find the entry of the matrix M (F)qz,45,, We first need
to perturb the entry J3;, of the parametrization by the value es; for each of the
stencil points s;. We define a family of perturbed actions:

.Fk’bpj == faﬁi + 681{35(171)651',5]" (B12)

ap;

Then, we calculate the (ap;) component of the time derivative for each member of
the family F*%i. Finally, the derivative is found from Eq. (B.7):

1 5
M(Flagos, == >0 (Fa” ) + 0 (7). (B.13)

The expression (B.13]) can seem somewhat convoluted at first but its implementa-
tion is easier than an analogous discretization in the p space. This is due to the
fact, that in the functional space, there are no boundaries so we can always choose
the same symmetric stencil which allows for a straightforward implementation and
oftentimes yields an improved precision.

The finite difference approximation of the Jacobian relies on a small parameter
€. It is therefore necessary to assess the quality of the approximation and find the
optimal value for e. In Fig. we compare the performance of 9— 7—, 5—, and
3—point derivative approximations in the calculation of the Jacobian. Like in sec.
B.1] we look at the absolute differences of the leading RG eigenvalues from the
reference values Ae; = ‘ei — e where e*f is found at the intersection of the two
asymptotic behaviors; in this analysis we find e!*f at € ~ 5-107%. The calculations
are performed at the O(9?) level of the DE in the three-dimensional O(2) model.

We find that for large e, the accuracy of the eigenvalue calculation follows
the same asymptotic behavior as the theoretically expected accuracy of the finite
difference derivatives; the power-laws read €%, €%, ¢*, and € for 9— 7—, 5—, and
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3—point derivatives respectively. As for the small ¢ asymptotics, there seems to
be a universal line ~ ¢! that serves as a lower bound for the possible eigenvalue
accuracy. This behavior is related most likely to the rounding errors and the finite
numerical precision. We also note a significant, approximately 10 times, drop in
precision between the first and the second eigenvalue.

In Eq. we used the same value of € at every point F,;,. There is, however,
no fundamental reason to do that. Moreover, a drawback of that approach lies in
the fact, that when the functions F span many orders of magnitude a perturbation
suitable for at one point might be too large or too small at another. One of the
alternative approaches is to introduce a proportional parameter e,; = €|Fqz].
Such a method has to be implemented with a threshold value eyn, such that €,
does not become too small when F,; becomes too close to zero. We have tested
the approach with €3, proportional to the value of the parametrizing function and
observed no significant change in the precision of the calculated RG eigenvalues as
compared to the fixed value of e.
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(a) Error of the dominant eigenvalue. (b) Error of the subdominant eigenvalue.

Figure B.2: Absolute deviation of the leading RG eigenvalues from the reference
values Ae;, = ‘ei — e’;ef as a function of the perturbation € used in the finite
difference approximation of the Jacobian [see Eq. ] Series of data correspond
to calculations using varying numbers of points in the finite difference method.
Lines denote the best power-law fit with integer exponents. The charts feature a

logarithmic scale on both axes.

As in the previous section, our analysis indicates that our methodology can
reach appropriate precision in a wide range of numerical parameters. However,
whenever an arbitrary parameter appears in the methodology, a comprehensive
analysis of its effects should be performed and caution is advised. Our results
clearly show that too small a value of € leads to a degradation of precision just
as a value too large does. Interestingly, in the analysis of the finite-difference
approximation of the Jacobian, there is no obvious disadvantage of using a larger
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stencil [9—point vs 3—point| besides a slight increase in the required numerical
effort. We once again emphasize that the subleading eigenvalue is determined with
precision substantially worse than the leading one and that this trend continues
with subsequent eigenvalues.

B.3 Newton-Raphson method

The Newton-Raphson (NR) method is a root-finding algorithm characterized by
quick convergence and a straightforward formulation. It is very widely known and
implemented in all areas of numerical analysis. In the NPRG context, the NR
method is used in a search for RG fixed points.

Suppose we have a function f : R® — R™ and we are searching for a good
approximation of its root f(x*) = 0. We begin the search with a guess vector x.
From the Taylor series expansion, we have

f(xo) = f(x*) +M(x*) Az + O (Axj) , (B.14)
0
where o1 ()
N i\T
MGy = 5| (B.15)

is the Jacobian matrix and Axy = xy — x* is the distance between the guess and
the root. Inverting this relation to find Axy we find

Axzy = M(x*) " f(xo) + O(Az?). (B.16)

Not knowing the root * we are unable to calculate the Jacobian M (x*). We note,
however, that

(M(zo)™' = M(z*)™") f(z0) = O(Ax?) (B.17)

so we can replace M (x*)~! with M (x,)~" in Eq. (B.16]) without altering the order
of the correction.
We thus formulate an iterative scheme

Ty = @, — M(x,) f(2,). (B.18)
Tracking the quadratic correction from the Taylor series one easily finds that
1
Az, 1| = §‘M(mn)_1 (AxlH(x,)Az,)| + O(Az)) (B.19)

where H(x,) denotes the tensor of second derivatives of f. Eq. (B.19) implies a
rapid, quadratic convergence of the NR algorithm when the three conditions are
met:



B.4. RUNGE-KUTTA METHODS 111

1. Az, is sufficiently small - @,, is not too far from the root;
2. M(x,)"! is finite - the Jacobian is not singular or near-singular
3. H(ax,) is small enough - the system is not too stiff.

The NR method, though very effective, can sometimes suffer from poor conver-
gence. This can happen due to several reasons, the most severe of which include:
poor initial guess, overshooting, and singularity of the Jacobian.

A good initial guess is not difficult to find in the NPRG context. A very
simple approach is to start the fixed point (FP) search sufficiently close to the
upper critical dimension. In the perturbative regime, the critical action can be
well approximated by the perturbative action. Thus, the initial guess can also be
inferred from perturbative calculations. From the upper critical dimension one
can slowly lower the dimension, taking the FP of the dimension d as the initial
condition in dimension d — dd.

The problem of overshooting is not difficult to overcome either. Most often,
it occurs when the initial guess is too far from the root, and the higher-order
corrections in Eq. cannot be neglected. In those cases, it is convenient to
introduce a “damping coefficient” o < 1 and modify the NR method as follows:

X1 = @, —aM(x,) " f(x,). (B.20)

The value of o cannot be found from first principles and has to be determined
phenomenologically. Typically, this is done by performing a series of calculations
with varying « in a search for the value yielding the best improvement in f.

On the other hand, the singularity of the Jacobian is a very severe issue. Typ-
ically, such situations call for the adoption of different numerical methods. In the
NPRG context, the Jacobian can become singular when some coupling is close to
marginality. This happens primarily close to a critical dimension [lower or upper|
and when the relevance of some operator changes. One can expect, that numerical
treatment of the FP search will be particularly difficult in studying such problems
and additional effort will be necessary. It might prove fruitful to identify root-
finding methods that might offer better convergence in the NPRG applications in
situations in which the NR method fails.

For more details on NR method and other numerical techniques, we refer to
Ref. [104].

B.4 Runge-Kutta methods

Methods of the Runge-Kutta (RK) family are techniques for finding numerical
solutions to ordinary differential equations. Similarly to the discretization scheme
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. &
T =1 j:]2 i=3 i

1] 0 1/6
21l 1/2 | 1/2 1/3
312 o 1/2 1/3
4 1 0 0 1 | 1/6

Table B.2: Coeflicients of the RK4 method.

discussed in sec. they rely on the Taylor expansion to find solutions that are
correct up to some power of the small discretization parameter h.
Let us consider an initial value problem with an ODE of form

Owx(t) = f(t,x), x(to) = xo, (B.21)

where f : R ® R" — R" is real-vector valued smooth function. In the RK type
methods, a discrete step @(t) — @(t+ h) is calculated through consecutive evalua-
tions of the function f at several intermediate points and linearly combining them
in a way that cancels the corrections of low-order in h. Let n denote the number
of intermediate points.

The RK methods involve three families of coefficients: the intermediate time-
increment coefficients 7;, the intermediate position-increment coefficients &;;, and
the final position-increment coefficients I;. The general formula for the position
after the time increment reads

x(t+h) =x(t) + hi Lk;, (B.22)

where k; denotes the time derivative f calculated at the intermediate position x;

ki=f(t+hm,x;), x=x(t)+ hz&jkj- (B.23)

j<i

One of the most popular and widely employed methods of the RK family is the
4—step method often called the RK4 method. The coefficients of the RK4 method
are presented in Table[B.2l The RK4 method is subject to a local truncation error
of order O(h®) and a total accumulated truncation error of order O(h*).

Besides precision, efficiency is one of the most important considerations for a
numerical algorithm. In a fixed-step RK method discussed above, the truncation
error can vary significantly during the simulation; in more steady periods the
truncation error will be comparatively low, and in volatile periods - comparatively
high. This leads to inefficiencies since the gain in precision achieved in the steady
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periods is overshadowed by the loss in precision incurred in the volatile periods,
typically by orders of magnitude.

A relatively simple solution is to adjust the time step h at each step in a way
that keeps the truncation error approximately constant throughout the simulation.
This idea lies at the center of the adaptive RK methods. In the adaptive methods,
the position after a time increment is calculated identically to the fixed-step meth-
ods based on Egs. and . The adaptive methods, however, feature a
truncation error estimator Er based on an additional family of coefficients Fj:

Er=h)Y_|Eiki], (B.24)
i=1

where ||-|| refers to a norm on R™.

After each step, a new value of the time increment is calculated according to

the formula:
Er 1/q

hNew =h (W) fSafetyy (B25)
where EY®* is the predefined maximal accepted truncation error and ¢ is the order
of the error estimator. The safety factor fsafety is introduced so that the error will
be acceptable in the next step with high probability. Typically, fsasety is set equal
to 0.8, 0.9, 0.25"7 or 0.38"¢ [143]. If Er > EM** the step is repeated with a new,
lower value of the time increment; if EFp < E%/Iax the step is completed and hyeyw
is accepted as the time increment for the next step.

Typically, the adaptive RK methods are embedded - the points (¢t + h7;, x;)
used to calculate the new position feature in methods of two consecutive orders.
Thus, the difference between the two methods can be used as an error estimator
with a minimal number of evaluations of the time derivative f. The Runge-
Kutta-Fehlberg method employed in this thesis is a fourth-order method with
an embedded fifth-order error estimator [143|. Its coefficients are presented in
Table B3

For further discussion of the Runge-Kutta methods, we refer to Refs. [143,|144].
We also note that implementations of the RK methods are easily accessible via

open-source numeric libraries such as Boost [145] for C++ and SciPy for Python
[146].
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gij
(A Ti ]z Ez
J=117=2|7j=3|j=4]7=5
16 1
1 0 135 360
1 1

2| & ! 0 0
31 3 3 9 6656 128
8 32 32 12825 4275
4 12 1932 __ 7200 7296 28561 2197
13 2197 2197 2197 56430 75240

439 3680 845 9 1

5 1 216 8 513 4104 50 50

6 1 8 2 3544 1859 1 2 2

2 27 2565 4104 40 55 55

Table B.3: Coefficients of the adaptive step Runge-Kutta-Fehlberg method.



Bibliography

1J. L. Cardy and H. W. Hamber, “O(n) Heisenberg model close to n=d=2", Phys.
Rev. Lett. 45, 499-501 (1980).

2A. Chlebicki and P. Jakubczyk, “Analyticity of critical exponents of the O(N)
models from nonperturbative renormalization”, SciPost Phys. 10, |10.21468/
SciPostPhys.10.6.134 (2021).

3A. Chlebicki and P. Jakubczyk, “Low-temperature behavior of the O(N) models
below two dimensions”’, Physical Review E 107, 10 . 1103 /PhysRevE . 107 .
014121/ (2023).

4A. Chlebicki, C. A. Sanchez-Villalobos, P. Jakubczyk, and N. Wschebor, “Z,-
symmetric perturbations to the XY model from functional renormalization”,
Phys. Rev. E 106, |10.1103/PhysRevE. 106.064135 (2022).

°N. Goldenfeld, Lectures on phase transitions and the renormalization group, 1st
Edition (CRC Press, Boca Raton, 1992).

6P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics
(Cambridge University Press, Cambridge, 1995).

7J. Berges, N. Tetradis, and C. Wetterich, “Non-perturbative renormalization
flow in quantum field theory and statistical physics”, [Phys. Rep. 363, 223-386
(2002).

8D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group,
and Critical Phenomena (World Scientific, 2005).

9J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge Uni-
versity Press, Apr. 1996).

103, Zinn-Justin, Phase Transitions and Renormalization Group (Oxford Univer-
sity Press, July 2007).

HUF. Parisen Toldin, “Boundary Critical Behavior of the Three-Dimensional Heisen-
berg Universality Class”, Phys. Rev. Lett. 126, 135701 (2021).

12M. Hu, Y. Deng, and J.-P. Lv, “Extraordinary-Log Surface Phase Transition in
the Three-Dimensional XY Model”, Phys. Rev. Lett. 127, 120603 (2021).

115


https://doi.org/10.1103/PhysRevLett.45.499
https://doi.org/10.1103/PhysRevLett.45.499
https://doi.org/10.21468/SciPostPhys.10.6.134
https://doi.org/10.21468/SciPostPhys.10.6.134
https://doi.org/10.21468/SciPostPhys.10.6.134
https://doi.org/10.21468/SciPostPhys.10.6.134
https://doi.org/10.1103/PhysRevE.107.014121
https://doi.org/10.1103/PhysRevE.107.014121
https://doi.org/10.1103/PhysRevE.107.014121
https://doi.org/10.1103/PhysRevE.107.014121
https://doi.org/10.1103/PhysRevE.106.064135
https://doi.org/10.1103/PhysRevE.106.064135
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/PhysRevLett.126.135701
https://doi.org/10.1103/PhysRevLett.127.120603

116 BIBLIOGRAPHY

BF. Parisen Toldin and M. A. Metlitski, “Boundary Criticality of the 3D O(N)
Model: From Normal to Extraordinary”, Phys. Rev. Lett. 128, 215701 (2022).

147, Padayasi, A. Krishnan, M. A. Metlitski, I. A. Gruzberg, and M. Meineri,
“The extraordinary boundary transition in the 3d O(N) model via conformal
bootstrap”, SciPost Phys. 12, 10.21468/SciPostPhys.12.6.190 (2022).

15S. Yabunaka and B. Delamotte, “Surprises in O(XN) Models: Nonperturbative
Fixed Points, Large N Limits, and Multicriticality”, Phys. Rev. Lett. 119,
191602 (2017).

16S. Yabunaka and B. Delamotte, “Why Might the Standard Large N Analysis
Fail in the O(N) Model: The Role of Cusps in Fixed Point Potentials”, Phys.
Rev. Lett. 121, 231601 (2018).

17V, Abhignan and R. Sankaranarayanan, “Continued Functions and Perturbation
Series: Simple Tools for Convergence of Diverging Series in O(n)-Symmetric ¢*
Field Theory at Weak Coupling Limit”, J. Stat. Phys. 183, 1-29 (2021).

18S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and
A. Vichi, “Solving the 3d Ising Model with the Conformal Bootstrap II. c¢-
Minimization and Precise Critical Exponents”, J. Stat. Phys. 157, 869-914
(2014).

YE. Kos, D. Poland, and D. Simmons-Duffin, “Bootstrapping mixed correlators
in the 3D Ising model”, J. High Energy Phys. 2014, 10.1007/JHEP11(2014) 109
(2014)!

20G. De Polsi, G. Hernandez-Chifflet, and N. Wschebor, “Precision calculation of

universal amplitude ratios in O(N) universality classes: Derivative expansion
results at order O(9%)”, Phys. Rev. E 104, 064101 (2021).

21G. De Polsi, I. Balog, M. Tissier, and N. Wschebor, “Precision calculation of
critical exponents in the O(N) universality classes with the nonperturbative
renormalization group”, Phys. Rev. E 101, 1-24 (2020).

22M. Hasenbusch, “Monte Carlo study of an improved clock model in three di-
mensions”, Phys. Rev. B 100, 1-19 (2019).

21. Balog, H. Chaté, B. Delamotte, M. Marohni¢, and N. Wschebor, “Convergence
of Nonperturbative Approximations to the Renormalization Group”, Phys. Rev.
Lett. 123, 240604 (2019).

24M. V. Kompaniets and E. Panzer, “Minimally subtracted six-loop renormaliza-
tion of O(N)-symmetric ¢? theory and critical exponents”, Phys. Rev. D 96,
1-26 (2017).

%D, Simmons-Duffin, “The lightcone bootstrap and the spectrum of the 3d Ising
CFT”, J. High Energy Phys. 2017, 10.1007/JHEP03(2017) 086/ (2017).


https://doi.org/10.1103/PhysRevLett.128.215701
https://doi.org/10.21468/SciPostPhys.12.6.190
https://doi.org/10.21468/SciPostPhys.12.6.190
https://doi.org/10.1103/PhysRevLett.119.191602
https://doi.org/10.1103/PhysRevLett.119.191602
https://doi.org/10.1103/PhysRevLett.121.231601
https://doi.org/10.1103/PhysRevLett.121.231601
https://doi.org/10.1007/s10955-021-02719-z
https://doi.org/10.1007/s10955-014-1042-7
https://doi.org/10.1007/s10955-014-1042-7
https://doi.org/10.1007/JHEP11(2014)109
https://doi.org/10.1007/JHEP11(2014)109
https://doi.org/10.1007/JHEP11(2014)109
https://doi.org/10.1103/PhysRevE.104.064101
https://doi.org/10.1103/PhysRevE.101.042113
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1103/PhysRevLett.123.240604
https://doi.org/10.1103/PhysRevLett.123.240604
https://doi.org/10.1103/PhysRevD.96.036016
https://doi.org/10.1103/PhysRevD.96.036016
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086

BIBLIOGRAPHY 117

A, C. Echeverri, B. von Harling, and M. Serone, “The effective bootstrap”, J.
High Energy Phys. 2016, 10.1007/JHEP09(2016)097 (2016).

2'F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, “Precision islands in the
Ising and O(N) models”, J. High Energy Phys. 2016, [10.1007/JHEP08(2016)
036/ (2016).

2], A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and T. C. P. Chui,
“Specific heat of liquid helium in zero gravity very near the lambda point”,
Phys. Rev. B 68, 174518 (2003).

29M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, “Theoretical es-
timates of the critical exponents of the superfluid transition in *He by lattice
methods”, Phys. Rev. B 74, 144506 (2006).

30R. Guida and J. Zinn-Justin, “Critical exponents of the N-vector model”, J.
Phys. A. Math. Gen. 31, 8103-8121 (1998).

31S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and
A. Vichi, “Carving out OPE space and precise O(2) model critical exponents”,
Journal of High Energy Physics 2020, [10.1007/JHEP06(2020) 142 (2020).

32D. J. Binder and S. Rychkov, “Deligne categories in lattice models and quantum
field theory, or making sense of O(N) symmetry with non-integer N”, .J. High
Energy Phys. 2020, 117 (2020).

330. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, “Quantum simulation of
an extra dimension”, Phys. Rev. Lett. 108, 133001 (2012).

340. Boada, A. Celi, J. Rodriguez-Laguna, J. I. Latorre, and M. Lewenstein,
“Quantum simulation of non-trivial topology”, New J. Phys. 17, 045007 (2015).

35H. Yi, “Quantum critical behavior of the quantum Ising model on fractal lat-
tices”, Phys. Rev. E 91, 012118 (2015).

367. Zhou, X.-F. Zhang, F. Pollmann, and Y. You, “Fractal Quantum Phase Tran-
sitions: Critical Phenomena Beyond Renormalization”, pre-print, 1-15 (2021).

37Q. Liu, Y. Deng, T. M. Garoni, and H. W. Bléte, “The O(n) loop model on a
three-dimensional lattice”, Nucl. Phys. B 859, 107-128 (2012).

38S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A.
Vichi, “Conformal Field Theories in Fractional Dimensions”, Phys. Rev. Lett.
112, 141601 (2014).

39]. Henriksson, “The critical O(N) CFT: Methods and conformal data”, Phys.
Rep. 1002, 1 72 (2023),

40M. Moshe and J. Zinn-Justin, “Quantum field theory in the large N limit: A
review”, Phys. Rep. 385, 69228 (2003).


https://doi.org/10.1007/JHEP09(2016)097
https://doi.org/10.1007/JHEP09(2016)097
https://doi.org/10.1007/JHEP09(2016)097
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1103/PhysRevB.68.174518
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1007/JHEP06(2020)142
https://doi.org/10.1007/JHEP06(2020)142
https://doi.org/10.1007/JHEP04(2020)117
https://doi.org/10.1007/JHEP04(2020)117
https://doi.org/10.1103/PhysRevLett.108.133001
https://doi.org/10.1088/1367-2630/17/4/045007
https://doi.org/10.1103/PhysRevE.91.012118
http://arxiv.org/abs/2105.05851
https://doi.org/10.1016/j.nuclphysb.2012.01.026
https://doi.org/10.1103/PhysRevLett.112.141601
https://doi.org/10.1103/PhysRevLett.112.141601
https://doi.org/10.1016/j.physrep.2022.12.002
https://doi.org/10.1016/j.physrep.2022.12.002
https://doi.org/10.1016/S0370-1573(03)00263-1

118 BIBLIOGRAPHY

41 A Polyakov, “Interaction of goldstone particles in two dimensions. Applications
to ferromagnets and massive Yang-Mills fields”, Phys. Lett. B 59, 79-81 (1975).

2. Brézin and J. Zinn-Justin, “Renormalization of the nonlinear o model in 2-+¢
dimensions-application to the Heisenberg ferromagnets”, [Phys. Rev. Lett. 36,
691-694 (1976).

43T, H. Berlin and M. Kac, “The Spherical Model of a Ferromagnet”, Phys. Rev.
86, 821-835 (1952).

Y“H. E. Stanley, “Spherical model as the limit of infinite spin dimensionality”,
Phys. Rev. 176, 718-722 (1968).

4], F. Nicoll, T. S. Chang, and H. E. Stanley, “Approximate renormalization
group based on the Wegner-Houghton differential generator”, Phys. Rev. Lett.
33, 540-543 (1974).

46C. Wetterich, “Exact evolution equation for the effective potential”, Phys. Lett.
B 301, 90-94 (1993).

47T, R. Morris, “The exact renormalization group and approximate solutions”,
Int. J. Mod. Phys. A 09, 2411-2449 (1994).

481, Balog, G. De Polsi, M. Tissier, and N. Wschebor, “Conformal invariance in the
nonperturbative renormalization group: A rationale for choosing the regulator”,
Phys. Rev. E 101, 062146 (2020).

4N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic Heisenberg models”, Phys. Rev.
Lett. 17, 1133-1136 (1966).

50J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase tran-
sitions in two-dimensional systems”, J. Phys. C Solid State Phys. 6, 1181-1203
(1973).

°1G. Kohring, R. E. Shrock, and P. Wills, “Role of vortex strings in the three-
dimensional O(2) model”, Phys. Rev. Lett. 57, 1358-1361 (1986).

52S. R. Shenoy, “Vortex-loop scaling in the three-dimensional XY ferromagnet”,
Phys. Rev. B 40, 5056 5068 (1989).

M.-h. Lau and C. Dasgupta, “Numerical investigation of the role of topological
defects in the three-dimensional Heisenberg transition”, Phys. Rev. B 39, 7212
7222 (1989).

M. Kamal and G. Murthy, “New O(3) transition in three dimensions”, Phys.
Rev. Lett. 71, 1911 1914 (1993).

0. I. Motrunich and A. Vishwanath, “Emergent photons and transitions in the
O(3) sigma model with hedgehog suppression”, Phys. Rev. B - Condens. Matter
Mater. Phys. 70, |10.1103/PhysRevB.70.075104 (2004).


https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1103/PhysRev.86.821
https://doi.org/10.1103/PhysRev.176.718
https://doi.org/10.1103/PhysRevLett.33.540
https://doi.org/10.1103/PhysRevLett.33.540
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1103/PhysRevE.101.062146
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.57.1358
https://doi.org/10.1103/PhysRevB.40.5056
https://doi.org/10.1103/PhysRevB.39.7212
https://doi.org/10.1103/PhysRevB.39.7212
https://doi.org/10.1103/PhysRevLett.71.1911
https://doi.org/10.1103/PhysRevLett.71.1911
https://doi.org/10.1103/PhysRevB.70.075104
https://doi.org/10.1103/PhysRevB.70.075104
https://doi.org/10.1103/PhysRevB.70.075104

BIBLIOGRAPHY 119

%D, R. Nelson and D. S. Fisher, “Dynamics of classical XY spins in one and two
dimensions”, Phys. Rev. B 16, 49454955 (1977).

5"M. Tissier and G. Tarjus, “Unified picture of ferromagnetism, quasi-long-range
order, and criticality in random-field models”, Phys. Rev. Lett. 96, 12-15 (2006).

%M.-h. Lau and C. Dasgupta, “Critical behavior of the n-vector model for 1 <
n < 27, Phys. Rev. B 35, 329-332 (1987).

R. Skomski, P. Manchanda, and A. Kashyap, “Anisotropy and Crystal Field”, in
Handbook of magnetism and magnetic materials, edited by J. M. D. Coey and
S. S. Parkin (Springer International Publishing, Cham, 2021), pp. 103-185.

%D, R. Nelson, “Coexistence-curve singularities in isotropic ferromagnets”, Phys.
Rev. B 13, 22222230 (1976).

61A. V. Chubukov, S. Sachdev, and J. Ye, “Theory of two-dimensional quantum
Heisenberg antiferromagnets with a nearly critical ground state”, Phys. Rev. B
49, 11919-11961 (1994).

62S. Miyashita, “Nature of the Ordered Phase and the Critical Properties of the
Three Dimensional Six-State Clock Model”, |J. Phys. Soc. Japan 66, 3411-3420
(1997).

63M. Oshikawa, “Ordered phase and scaling in models and the three-state antifer-
romagnetic Potts model in three dimensions”, Phys. Rev. B - Condens. Matter
Mater. Phys. 61, 3430-3434 (2000).

64J. Lou, A. W. Sandvik, and L. Balents, “Emergence of U(1) symmetry in the
3D XY model with Z, anisotropy”, Phys. Rev. Lett. 99, 207203 (2007).

65F. Léonard and B. Delamotte, “Critical Exponents Can Be Different on the
Two Sides of a Transition: A Generic Mechanism”, Phys. Rev. Lett. 115, 200601
(2015).

66T, Okubo, K. Oshikawa, H. Watanabe, and N. Kawashima, “Scaling relation
for dangerously irrelevant symmetry-breaking fields”, Phys. Rev. B - Condens.
Matter Mater. Phys. 91, 174417 (2015).

67H. Shao, W. Guo, and A. W. Sandvik, “Monte Carlo Renormalization Flows in
the Space of Relevant and Irrelevant Operators: Application to Three-Dimensional
Clock Models”, Phys. Rev. Lett. 124, 080602 (2020).

%8P, Patil, H. Shao, and A. W. Sandvik, “Unconventional U(1) to Z, crossover in
quantum and classical g-state clock models”, Phys. Rev. B 103, 1-24 (2021).

89A. Aharony, “Critical behavior of anisotropic cubic systems”, Phys. Rev. B 8,
42704273 (1973).


https://doi.org/10.1103/PhysRevB.16.4945
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevB.35.329
https://doi.org/10.1007/978-3-030-63210-6_3
https://doi.org/10.1103/PhysRevB.13.2222
https://doi.org/10.1103/PhysRevB.13.2222
https://doi.org/10.1103/PhysRevB.49.11919
https://doi.org/10.1103/PhysRevB.49.11919
https://doi.org/10.1143/JPSJ.66.3411
https://doi.org/10.1143/JPSJ.66.3411
https://doi.org/10.1103/PhysRevB.61.3430
https://doi.org/10.1103/PhysRevB.61.3430
https://doi.org/10.1103/PhysRevLett.99.207203
https://doi.org/10.1103/PhysRevLett.115.200601
https://doi.org/10.1103/PhysRevLett.115.200601
https://doi.org/10.1103/PhysRevB.91.174417
https://doi.org/10.1103/PhysRevB.91.174417
https://doi.org/10.1103/PhysRevLett.124.080602
https://doi.org/10.1103/PhysRevB.103.054418
https://doi.org/10.1103/PhysRevB.8.4270
https://doi.org/10.1103/PhysRevB.8.4270

120 BIBLIOGRAPHY

70J. Manuel Carmona and A. Pelissetto, “Component Ginzburg-Landau Hamilto-
nian with cubic anisotropy: A six-loop study”, Phys. Rev. B - Condens. Matter
Mater. Phys. 61, 15136-15151 (2000).

"1S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, and
A. Vichi, “Bootstrapping Heisenberg magnets and their cubic instability”, Phys.
Rev. D 104, 105013 (2021).

H. Kleinert and V. Schulte-Frohlinde, “Exact five-loop renormalization group
functions of #*-theory with O(N)-symmetric and cubic interactions. Critical ex-
ponents up to €”, Phys. Lett. B 342, 284-296 (1995).

M. Hasenbusch, “Cubic fixed point in three dimensions: Monte Carlo simulations
of the ¢* model on the simple cubic lattice”, Phys. Rev. B 107, 24409 (2023).

™P. Calabrese and A. Celi, “Critical behavior of the two-dimensional N-component
Landau-Ginzburg Hamiltonian with cubic anisotropy”, Phys. Rev. B 66, 184410
(2002).

5J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, “Renormalization,
vortices, and symmetry-breaking perturbations in the two-dimensional planar
model”, Phys. Rev. B 16, 1217-1241 (1977).

G. Delfino and N. Lamsen, “Critical points of coupled vector-Ising systems.
Exact results”, J. Phys. A Math. Theor. 52, 10.1088 /1751 -8121/ab3055
(2019)).

""A. Chlebicki and P. Jakubczyk, “Criticality of the O(2) model with cubic anisotropies
from nonperturbative renormalization”, Phys. Rev. E 100, 052106 (2019).

E. Rastelli, S. Regina, and A. Tassi, “Monte Carlo simulation of a planar rotator
model with symmetry-breaking fields”, Phys. Rev. B 69, 174407 (2004 ).

™E. Rastelli, S. Regina, and A. Tassi, “Monte Carlo simulation for square planar
model with a small fourfold symmetry-breaking field”, Phys. Rev. B 70, 174447
(2004).

80A. Taroni, S. T. Bramwell, and P. C. Holdsworth, “Universal window for two-
dimensional critical exponents”, |J. Phys. Condens. Matter 20, 275233 (2008).

81]. Tobochnik and G. V. Chester, “Monte Carlo study of the planar spin model”,
Physical Review B 20, 3761-3769 (1979).

825, T. Bramwell and P. C. W. Holdsworth, “Magnetization and universal sub-
critical behaviour in two-dimensional XY magnets”, J. Phys. Condens. Matter
5, L53-L59 (1993).

83S. T. Bramwell and P. C. W. Holdsworth, “Magnetization: A characteristic of the
Kosterlitz-Thouless-Berezinskii transition”, Phys. Rev. B 49, 8811-8814 (1994).


https://doi.org/10.1103/PhysRevB.61.15136
https://doi.org/10.1103/PhysRevB.61.15136
https://doi.org/10.1103/PhysRevD.104.105013
https://doi.org/10.1103/PhysRevD.104.105013
https://doi.org/10.1016/0370-2693(94)01377-O
https://doi.org/10.1103/PhysRevB.107.024409
https://doi.org/10.1103/PhysRevB.66.184410
https://doi.org/10.1103/PhysRevB.66.184410
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1088/1751-8121/ab3055
https://doi.org/10.1088/1751-8121/ab3055
https://doi.org/10.1088/1751-8121/ab3055
https://doi.org/10.1103/PhysRevE.100.052106
https://doi.org/10.1103/PhysRevB.69.174407
https://doi.org/10.1103/PhysRevB.70.174447
https://doi.org/10.1103/PhysRevB.70.174447
https://doi.org/10.1088/0953-8984/20/27/275233
https://doi.org/10.1103/PhysRevB.20.3761
https://doi.org/10.1088/0953-8984/5/4/004
https://doi.org/10.1088/0953-8984/5/4/004
https://doi.org/10.1103/PhysRevB.49.8811

BIBLIOGRAPHY 121

84S, T. Bramwell, P. C. Holdsworth, and J. Rothman, “Magnetization in ultrathin
films: Critical exponent [ for the 2D XY model with 4-fold crystal fields”, Mod.
Phys. Lett. B 11, 139-148 (1997).

8K. G. Wilson and J. Kogut, “The renormalization group and the € expansion”,
Phys. Rep. 12, 75 199 (1974).

86T, J. Wegner and A. Houghton, “Renormalization group equation for critical
phenomena”, Phys. Rev. A 8, 401-412 (1973).

87]. Polchinski, “Renormalization and effective lagrangians”, Nucl. Physics, Sect.
B 231, 269 295 (1984).

8D. S. Fisher and D. A. Huse, “Wetting transitions: A functional renormalization-
group approach”, Physical Review B 32, 247-256 (1985).

8R. Lipowsky and M. E. Fisher, “Scaling regimes and functional renormalization
for wetting transitions”, Physical Review B 36, 21262141 (1987).

PR. Lipowsky and S. Leibler, “Unbinding Transitions of Interacting Membranes”,
Physical Review Letters 56, 2541-2544 (1986).

91G. R. Golner and E. K. Riedel, “Renormalization-group calculation of critical
exponents in three dimensions”, Physical Review Letters 34, 856-859 (1975).

92K. E. Newman and E. K. Riedel, “Cubic N-vector model and randomly dilute
Ising model in general dimensions”, Phys. Rev. B 25, 264-280 (1982).

3K. E. Newman and E. K. Riedel, “Critical exponents by the scaling-field method:
The isotropic N-vector model in three dimensions”, Physical Review B 30, 6615—
6638 (1984).

9A. Hasenfratz and P. Hasenfratz, “Renormalization group study of scalar field
theories”, Nuclear Physics B 270, 687-701 (1986).

%K. E. Newman, E. K. Riedel, and S. Muto, “Q-state Potts model by Wilson’s
exact renormalization-group equation”, Physical Review B 29, 302-313 (1984).

%M. Bonini, M. D’Attanasio, and G. Marchesini, “Perturbative renormalization
and infrared finiteness in the Wilson renormalization group: the massless scalar
case”, Nuclear Physics B 409, 441-464 (1993).

9P, Kopietz, L. Bartosch, and F. Schiitz, Introduction to the Functional Renor-
malization Group, 1st ed. (Springer Berlin, Heidelberg, 2010).

%BH. Gies, “Introduction to the functional RG and applications to gauge theories”,
in Lect. notes phys. Vol. 852, edited by A. Schwenk and J. Polonyi (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 287-348.


https://doi.org/10.1142/s0217984997000190
https://doi.org/10.1142/s0217984997000190
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevA.8.401
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1103/PhysRevB.32.247
https://doi.org/10.1103/PhysRevB.36.2126
https://doi.org/10.1103/PhysRevLett.56.2541
https://doi.org/10.1103/PhysRevLett.34.856
https://doi.org/10.1103/PhysRevB.25.264
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1016/0550-3213(86)90573-0
https://doi.org/10.1103/PhysRevB.29.302
https://doi.org/10.1016/0550-3213(93)90588-G
https://doi.org/10.1007/978-3-642-27320-9_6

122 BIBLIOGRAPHY

9N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier,
and N. Wschebor, “The nonperturbative functional renormalization group and
its applications”, Phys. Rep. 910, 1-114 (2021).

1008, Delamotte, “An introduction to the nonperturbative renormalization group”,
in |Renormalization group and effective field theory approaches to many-body
systems), edited by A. Schwenk and J. Polonyi (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012), pp. 49-132.

01T R. Morris, “Derivative expansion of the exact renormalization group”, Phys.
Lett. B 329, 241-248 (1994).

1027 Berges and D. Mesterhazy, “Introduction to the nonequilibrium functional
renormalization group”, Nucl. Phys. B - Proc. Suppl., Lecture Notes in Physics
228, 37-60 (2012).

1038, Delamotte, D. Mouhanna, and M. Tissier, “Nonperturbative renormalization-
group approach to frustrated magnets”, Physical Review B - Condensed Matter
and Materials Physics 69, 10.1103/PhysRevB.69.134413 (2004).

104E | Siili and D. F. Mayers, An Introduction to Numerical Analysis (Cambridge
University Press, Aug. 2003), p. 433.

105 A Pelissetto and E. Vicari, “Critical phenomena and renormalization-group
theory”, Physics Reports 368, 549-727 (2002).

106M. Griter and C. Wetterich, “Kosterlitz-Thouless Phase Transition in the Two
Dimensional Linear o Model”, Physical Review Letters 75, 378-381 (1995).

W7TK -1. Aoki, K. Morikawa, W. Souma, J.-I. Sumi, and H. Terao, “Rapidly Con-
verging Truncation Scheme of the Exact Renormalization Group”, Progress of
Theoretical Physics 99, 451-466 (1998).

185 _B. Liao, J. Polonyi, and M. Strickland, “Optimization of renormalization
group flow”, Nuclear Physics B 567, 493-514 (2000).

19D, F. Litim, “Critical exponents from optimised renormalisation group flows”,
Nuclear Physics B 631, 128-158 (2002).

HOT, - Canet, B. Delamotte, D. Mouhanna, and J. Vidal, “Optimization of the
derivative expansion in the nonperturbative renormalization group”, Physical

Review D 67, 065004 (2003).

HIT, Canet, B. Delamotte, D. Mouhanna, and J. Vidal, “Nonperturbative renor-
malization group approach to the Ising model: A derivative expansion at order
0%’ Physical Review B 68, 064421 (2003).

127 Péli, “Derivative expansion for computing critical exponents of O(N) sym-
metric models at next-to-next-to-leading order”, Physical Review E 103, 032135
(2021).


https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1103/PhysRevB.69.134413
https://doi.org/10.1103/PhysRevB.69.134413
https://doi.org/10.1103/PhysRevB.69.134413
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevLett.75.378
https://doi.org/10.1143/PTP.99.451
https://doi.org/10.1143/PTP.99.451
https://doi.org/10.1016/S0550-3213(99)00496-4
https://doi.org/10.1016/S0550-3213(02)00186-4
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevB.68.064421
https://doi.org/10.1103/PhysRevE.103.032135
https://doi.org/10.1103/PhysRevE.103.032135

BIBLIOGRAPHY 123

U3G. D. Polsi and N. Wschebor, “Regulator dependence in the functional renor-
malization group: A quantitative explanation”, Physical Review E 106, |10 .
1103/PhysRevE. 106.024111 (2022).

HAp . Jakubezyk, N. Dupuis, and B. Delamotte, “Reexamination of the nonpertur-
bative renormalization-group approach to the Kosterlitz-Thouless transition”,
Phys. Rev. E 90, 062105 (2014).

U5G. v. Gersdorff and C. Wetterich, “Nonperturbative renormalization flow and
essential scaling for the Kosterlitz-Thouless transition”, Physical Review B -
Condensed Matter and Materials Physics 64, 0545131-0545135 (2001).

H6p - Jakubczyk and W. Metzner, “Longitudinal fluctuations in the Berezinskii-
Kosterlitz-Thouless phase”, Phys. Rev. B 95, 085113 (2017).

7P, Jakubezyk and A. Eberlein, “Thermodynamics of the two-dimensional XY
model from functional renormalization”, Physical Review E 93, 062145 (2016).

185 Nagy, I. Nandori, J. Polonyi, and K. Sailer, “Functional Renormalization
Group Approach to the Sine-Gordon Model”, Phys. Rev. Lett. 102, 241603
(2009).

19A. Rangon and N. Dupuis, “Higgs amplitude mode in the vicinity of a (2 + 1)-
dimensional quantum critical point”, Phys. Rev. B 89, 180501 (2014).

120 A Rancon and N. Dupuis, “Kosterlitz-thouless signatures in the low-temperature
phase of layered three-dimensional systems”, Phys. Rev. B 96, 214512 (2017).

1217 Krieg and P. Kopietz, “Dual lattice functional renormalization group for the
Berezinskii-Kosterlitz-Thouless transition: Irrelevance of amplitude and out-of-
plane fluctuations”, Phys. Rev. E 96, 042107 (2017).

122N. Defenu, A. Trombettoni, I. Nandori, and T. Enss, “Nonperturbative renor-
malization group treatment of amplitude fluctuations for |¢|* topological phase
transitions”, Physical Review B 96, 10.1103/PhysRevB.96.174505 (2017).

1231 Maccari, N. Defenu, L. Benfatto, C. Castellani, and T. Enss, “Interplay of
spin waves and vortices in the two-dimensional XY model at small vortex-core
energy”, Phys. Rev. B 102, 104505 (2020).

124M. Peldez and N. Wschebor, “Ordered phase of the O(N) model within the
nonperturbative renormalization group”, Phys. Rev. E 94 10.1103/PhysRevE.
94.042136 (2016).

I25F. Rose and N. Dupuis, “Nonperturbative functional renormalization-group ap-
proach to transport in the vicinity of a 2+ 1-dimensional O(/V)-symmetric quan-
tum critical point”, Phys. Rev. B 95, 014513 (2017).


https://doi.org/10.1103/PhysRevE.106.024111
https://doi.org/10.1103/PhysRevE.106.024111
https://doi.org/10.1103/PhysRevE.106.024111
https://doi.org/10.1103/PhysRevE.106.024111
https://doi.org/10.1103/PhysRevE.90.062105
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevB.64.054513
https://doi.org/10.1103/PhysRevB.95.085113
https://doi.org/10.1103/PhysRevE.93.062145
https://doi.org/10.1103/PhysRevLett.102.241603
https://doi.org/10.1103/PhysRevLett.102.241603
https://doi.org/10.1103/PhysRevB.89.180501
https://doi.org/10.1103/PhysRevB.96.214512
https://doi.org/10.1103/PhysRevE.96.042107
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevB.96.174505
https://doi.org/10.1103/PhysRevB.102.104505
https://doi.org/10.1103/PhysRevE.94.042136
https://doi.org/10.1103/PhysRevE.94.042136
https://doi.org/10.1103/PhysRevE.94.042136
https://doi.org/10.1103/PhysRevE.94.042136
https://doi.org/10.1103/PhysRevB.95.014513

124 BIBLIOGRAPHY

126G, von Gersdorff, Zweidimensionale O(N)-symmetrische systeme im formalis-
mus der exakten renormierungs-gruppe (MSc thesis) (Heidelberg University (un-
published), 2000).

127M. Tissier and G. Tarjus, “Nonperturbative functional renormalization group
for random field models and related disordered systems. IV. Supersymmetry
and its spontaneous breaking”, Physical Review B 85, 104203 (2012).

1228, Delamotte, M. Dudka, D. Mouhanna, and S. Yabunaka, “Functional renor-
malization group approach to noncollinear magnets”, Physical Review B 93,
064405 (2016).

129N, Tetradis, “Renormalization-group study of weakly first-order phase transi-
tions”, Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 431, 380-386
(1998).

130M. Tissier, D. Mouhanna, J. Vidal, and B. Delamotte, “Randomly dilute Ising
model: A nonperturbative approach”, Physical Review B 65, 140402 (2002).

BIW . Bernreuther and F. J. Wegner, “Four-Loop-Order Function for Two-Dimensional
Nonlinear Sigma Models”, Phys. Rev. Lett. 57, 1383—-1385 (1986).

1321 Kleinert, “Variational resummation for e-expansions of critical exponents of
nonlinear O(n)-symmetric o-model in 2 + € dimensions”, Phys. Lett. Sect. A
Gen. At. Solid State Phys. 264, 357-365 (2000).

1331, F. Herbut, “Critical behavior at superconductor-insulator phase transitions
near one dimension”, Phys. Rev. B 58, 971-981 (1998).

1341 F. Herbut, “Critical exponents at the superconductor-insulator transition in
dirty-boson systems”, Phys. Rev. B 61, 1472314726 (2000).

135B. Nienhuis, “Exact critical point and critical exponents of O(N) models in two
dimensions”, Phys. Rev. Lett. 49, 1062-1065 (1982).

136 A Nahum, J. T. Chalker, P. Serna, M. Ortuiio, and A. M. Somoza, “Deconfined
Quantum Criticality, Scaling Violations, and Classical Loop Models”, Phys. Rev.
X 5, 041048 (2015).

13T A. Chlebicki, C. A. Sanchez-Villalobos, P. Jakubczyk, and N. Wschebor, Z/-

symmetric perturbations to the XY model from functional renormalization, (2022)
https://doi.org/10.18150/MNMJAQ.

138M. Hasenbusch and E. Vicari, “Anisotropic perturbations in three-dimensional
O(N)-symmetric vector models”, Phys. Rev. B - Condens. Matter Mater. Phys.
84, 125136 (2011).

139D, Banerjee, S. Chandrasekharan, and D. Orlando, “Conformal Dimensions via
Large Charge Expansion”, Phys. Rev. Lett. 120, 61603 (2018).


https://doi.org/10.1103/PhysRevB.85.104203
https://doi.org/10.1103/PhysRevB.93.064405
https://doi.org/10.1103/PhysRevB.93.064405
https://doi.org/10.1016/S0370-2693(98)00575-9
https://doi.org/10.1016/S0370-2693(98)00575-9
https://doi.org/10.1103/PhysRevB.65.140402
https://doi.org/10.1103/PhysRevLett.57.1383
https://doi.org/10.1016/S0375-9601(99)00833-6
https://doi.org/10.1016/S0375-9601(99)00833-6
https://doi.org/10.1103/PhysRevB.58.971
https://doi.org/10.1103/PhysRevB.61.14723
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.18150/MNMJAO
https://doi.org/10.1103/PhysRevB.84.125136
https://doi.org/10.1103/PhysRevB.84.125136
https://doi.org/10.1103/PhysRevLett.120.061603

BIBLIOGRAPHY 125

M0B . Fornberg, “Generation of finite difference formulas on arbitrarily spaced
grids”, Mathematics of Computation 51, 699-706 (1988).

WIW. R. Inc., Mathematica, Version 13.3, Champaign, IL, 2023.

2] Benoit and G. Guennebaud, Figen C++ Library, https://eigen.tuxfamily .
org/dox/, Last accessed 2023-08-07, 2021.

U3E, Hairer, G. Wanner, and S. P. Ngrsett, Solving ordinary differential equations
I, Vol. 8 (Springer Berlin Heidelberg, 1993).

1447, C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley,
July 2016).

Y5 Boost C++ Library, https://www.boost.org/, Last accessed 2023-08-14.

6P Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.
Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.
Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”, Nature Methods 17, 261-272 (2020).


https://doi.org/10.1090/S0025-5718-1988-0935077-0
https://eigen.tuxfamily.org/dox/
https://eigen.tuxfamily.org/dox/
https://www.boost.org/
https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	Streszczenie
	Acknowledgements
	Notation and conventions
	List of Abbreviations
	Introduction
	The O(N) models
	Perturbative methods
	Phases and phase transitions
	Kosterlitz-Thouless transition and topological excitations
	Cardy-Hamber analysis
	This thesis

	Anisotropic extensions of the O(N) models
	Dangerously irrelevant operators
	Cubic perturbations in the O(N) models
	Cubic perturbations in the two-dimensional O(2) model
	This thesis


	Nonperturbative Renormalization Group
	Effective Average Action
	Morris-Wetterich Equation

	Derivative Expansion
	Flow equations
	Fixed points and critical exponents
	Further approximations

	Infrared Regulator
	Principle of Minimal Sensitivity
	Convergence of Derivative Expansion and Error Bars
	Near-Optimal Regulator

	Applications of the Derivative Expansion
	Kosterlitz-Thouless Transition
	Low-temperature behavior
	Anisotropic Models


	Cardy-Hamber scenario revisited
	Perturbative analysis
	N larger than two
	N smaller than two

	Suitability of the NPRG
	Detecting nonanalyticities
	The role of vortices

	Analyticity of the critical exponents
	d-dependence
	N-dependence
	Subdominant eigenvalue
	Fixed-point profiles
	Summary

	QLRO low-temperature phase
	Critical exponents
	Low-temperature phase
	Lower critical dimension
	Summary

	Conclusion

	O(2) model with cubic perturbations
	Three dimensions
	Below three dimensions
	Ansatz and truncated variants of the derivative expansion
	Conclusion

	Functional RG flow equations
	Overview of numerical techniques
	Finite grid representation for functions
	Finite difference approximation for the Jacobian
	Newton-Raphson method
	Runge-Kutta methods


