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Abstract

Quantum technologies, a diverse and rapidly expanding field, are at the forefront
of a modern scientific revolution. Harnessing the intrinsic properties of quantum
mechanics, these technologies have the potential to revolutionize many fields
apart from physics, such as cryptography and computer science.

Among these new features, the capability of quantum matter to be in a
superposition of states is certainly the furthest from a classical physical intuition.
Turns out that a computer whose logical bits are made from quantum particles,
i.e. a quantum computer, can exploit this property to hasten certain algorithms
by a significant amount.

Another property fundamentally connected with the quantum world is en-
tanglement, a phenomenon where the quantum states of two or more particles
become correlated in such a way that the state of one particle is dependent
on the state of another, even when they are physically separated. This feature
too is a key part of many quantum algorithms. Those are the reasons why
these properties are regarded as "resources" to perform computations or other
technological tasks.

Unfortunately, these very valuable features for technological applications are
very fragile if the systems exhibiting them are not isolated, and there is no such
thing in the physical reality as an isolated system. When a quantum computer is
exposed to its environment, for example, interactions with external particles or
radiation can disturb the delicate superposition of states, turning a quantum bit
into a classical one, only able to assume values 0 or 1 in a deterministic fashion.
This phenomenon is called decoherence and it constitutes the main cause of
errors and performance degradation of quantum algorithms. The entangled
particles must remain isolated from external influences too, to preserve their
unique entangled states. Unlike classical computers, which are relatively robust
and resilient to external influences, quantum computers are then highly sensitive
to their surroundings due to the delicate quantum states they rely on. This
sensitivity has significant implications for the design and operation of quantum
computing systems.

In order to extend the lifespan of quantum states and enable longer com-
putation times, quantum computers must be then shielded from decoherence-
inducing factors, such as temperature fluctuations, electromagnetic radiation,
and vibrations, or must operate in a highly controlled and isolated environment.

The first attempts to protect a quantum machine from the noise induced by
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the environment are quantum error correction codes, where, using extra qubits,
it is possible to recover part of the information lost due to the noise. In this
thesis, we will provide other protocols or scenarios in which it is possible to
preserve or enhance quantum resources stored in noisy quantum systems. The
work will be structured as follows:

In Chapter 1, we will describe a general framework to study various quantum
resources in a unified way, the so-called Quantum Resource Theories.

In Chapter 2, we will describe the way a quantum system interacts with its
environment and how this interaction leads to the loss of coherence, putting
the accent on a particular property of the reduced dynamic of the system, the
so-called Markovianity.

In Chapter 3, we will first show that, for longer times, Markovian dynamics
always destroy correlations between a system in evolution and an isolated qubit
ancilla, a very valuable resource in informational tasks, and that the best way
to preserve those correlations is to consider a dynamics which is non-Markovian
at any time.

In Chapter 4, we will study a kind of map that helps preserve resources if
applied as pre-processing before the noise acts, i.e. the dilution map.

In Chapter 5 we will answer a slightly different question, i.e what the optimal
protocol to generate resource is if we equip a resource theory with a resource-
generating map.
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Streszczenie

Technologie kwantowe stanowią różnorodną i dynamicznie rozwijającą się dziedz-
inę, będąc kluczowym elementem współczesnej rewolucji naukowej. Wykorzys-
tując szczególne właściwości mechaniki kwantowej, technologie te mają potenc-
jał zrewolucjonizowania wielu dziedzin poza fizyką, takich jak kryptografia czy
informatyka.

Spośród tych szczególnych właściwości zdolność materii kwantowej do zna-
jdowania się w superpozycji stanów jest z pewnością najbardziej odległa od
klasycznej intuicji fizycznej. Komputer, którego bity logiczne są zbudowane z
cząstek kwantowych, a więc komputer kwantowy, może wykorzystać tę właści-
wość do przyspieszenia działania pewnych algorytmów w znacznym stopniu.

Inną właściwością fundamentalnie związaną z kwantowym światem jest splą-
tanie – zjawisko, w którym kwantowe stany dwóch lub więcej cząstek stają
się skorelowane w taki sposób, że stan jednej cząstki zależy od stanu innej,
nawet gdy są one fizycznie oddzielone. Ta cecha również stanowi kluczowy el-
ement wielu algorytmów kwantowych. Ze wskazanych powodów właściwości te
są uważane za „zasoby” konieczne do przeprowadzania obliczeń lub innych zadań
technologicznych.

Niestety te bardzo wartościowe dla zastosowań technologicznych właściwości
są bardzo delikatne, jeśli systemy je wykazujące nie są izolowane – w rzeczywis-
tości fizycznej zaś nie istnieje coś takiego jak izolowany system. Gdy kom-
puter kwantowy jest wystawiony na oddziaływanie z otoczeniem, na przykład
interakcje z zewnętrznymi cząstkami lub promieniowaniem, może to zakłócić
delikatną superpozycję stanów, zamieniając kwantowy bit w klasyczny, zdolny
jedynie przyjmować wartości 0 lub 1 w sposób deterministyczny. To zjawisko
nazywane jest dekoherencją i stanowi główną przyczynę błędów i ograniczenia
wydajności algorytmów kwantowych. Splątane cząstki również muszą pozostać
izolowane od zewnętrznych oddziaływań, aby zachować swoje szczególne splą-
tane stany. W przeciwieństwie do komputerów klasycznych, które są stosunkowo
odporne na oddziaływania zewnętrzne, komputery kwantowe są bardzo wrażliwe
na swoje otoczenie ze względu na trudne do utrzymania stany kwantowe, na
których są opatrte. Ta wrażliwość ma istotne implikacje dla projektowania i
działania systemów obliczeń kwantowych.

Aby przedłużyć żywotność stanów kwantowych i umożliwić dłuższe czasy
obliczeń, komputery kwantowe muszą być chronione przed czynnikami wywołu-
jącymi dekoherencję, takimi jak fluktuacje temperatury, promieniowanie elektro-
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magnetyczne i drgania, lub muszą działać w wysoce kontrolowanym i izolowanym
środowisku.

Pierwsze próby ochrony urządzeń kwantowych przed szumem wywołanym
przez otoczenie stanowią algorytmy korekcji błędów kwantowych, w których
za pomocą dodatkowych kubitów można odzyskać część informacji utraconej z
powodu zakłóceń. W tej pracy przedstawimy inne protokoły i metody, umożli-
wiające zachowanie lub zwiększenie zasobów kwantowych przechowywanych w
systemach kwantowych w obecności zakłóceń. Struktura pracy jest następująca:

W Rozdziale 1 opisujemy ogólną metodykę opisywania różnych zasobów
kwantowych w jednolity sposób, czyli tzw. teorie zasobów kwantowych.

W Rozdziale 2 opisujemy sposób, w jaki system kwantowy oddziałuje ze
swoim otoczeniem i jak ta interakcja prowadzi do utraty koherencji, kładąc
nacisk na szczególną właściwość zredukowanej dynamiki systemu, tzw. własność
Markowa.

W Rozdziale 3 najpierw wykazujemy, że dla dłuższych czasów dynamika
markowowska zawsze niszczy korelacje między ewoluującym układem a izolowanym
kubitem pomoczniczym, bardzo przydatnym zasobem w procedurach kwan-
towych, oraz że najlepszym sposobem na zachowanie tych korelacji jest branie
pod uwagę procesów niemarkowowskich w każdej chwili czasu.

W Rozdziale 4 badamy pewien rodzaj przekszatałcenia pomagającego za-
chować zasoby, jeśli zostanie zastosowane do przygotowania układu przed dzi-
ałaniem szumu, czyli tzw. „rozcieńczanie zasobu”.

W Rozdziale 5 odpowiemy na trochę inne pytanie, tj. jaka jest optymalna
procedura generowania zasobów, jeśli wyposażymy teorię zasobu w przekształce-
nie generujące dany zasób.
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Chapter 1

Quantum Resource Theories

The theoretical research in quantum physics has recently moved from questions
about the fundamental laws of nature to ones related to useful practical ap-
plications in various contexts such as information and communication science.
More precisely, in a real laboratory there are often restrictions to the operations
we can perform. These restrictions can arise, for example, from technological
limitations or from locality in a distributed scenario and divide the space of
the physical quantum states (the Hilbert space) into free states that can be
generated easily and non-free states that represent a resource.

The value of resourceful states lies not only in their rarity but most impor-
tantly in the fact that one can consume them to overcome these limitations,
justifying us to call them resources.

Resource theories aim to provide a general underlying mathematical frame-
work describing the majority of these real-life scenarios. Before presenting this
structure, we will introduce the physical scenario regarding the most famous
of these: the protocol of quantum teleportation and how this leads to the re-
source theory of entanglement. This example will be the term of comparison
to build the general structure of a resource theory. Then, after going into the
mathematical details of a resource theory, we will discuss the problems of state
convertibility and how to quantify a resource, then proceed to list a few relevant
examples.

1.1 Physical scenario of entanglement theory: LOCC
operations

Consider two distant laboratories A and B, the first operated by Alice, the
second by Bob. Both of them can perform any type of quantum operation in
their respective laboratories, acting on the systems that are contained inside
those laboratories.

We will now briefly review the basics of the mathematical formalism which
describes quantum states and operations. The state of a quantum system is
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14 CHAPTER 1. QUANTUM RESOURCE THEORIES

described by a positive semidefinite matrix of trace 1 that we will denote by ρ,
i.e. ρ ≥ 0 and Tr[ρ] = 1. Such a matrix will be called a density matrix. A
quantum operation acting on a quantum system ρ is a completely positive map,
meaning it has to preserve the positivity of ρ, the density matrix of system A,
even in the presence of another system B. In other words, a positive map Λ is
such that

ρ ≥ 0 =⇒ Λ(ρ) ≥ 0 (1.1)

and a completely positive map is defined by the property

ρAB ≥ 0 =⇒ ΛA ⊗ IB(ρAB) ≥ 0 (1.2)

An operation that is completely positive and trace preserving (CPTP map)
possesses an operator-sum representation, i.e.

Λ(ρ) =
∑
j

KjρK
†
j . (1.3)

The operators Kj are called Kraus operators and they satisfy
∑

j KjK
†
j = I

[NC11].
A quantum operation does not need to preserve the trace of a quantum

state. This condition can indeed be relaxed to trace non-increasing, and one
can consider the action of each single Kraus operator KjρK

†
j , as a trace non-

increasing map.
This is the structure of the operations that both Alice and Bob can perform

locally in their respective laboratories, like this ΛA ⊗ ΛB(ρ
AB). It is forbidden

for them to transfer any quantum system or subsystem between the laborato-
ries, but they can send and receive information through classical signals before
and after any round of quantum operations. The protocols which follow the
above described rules are called LOCC (Local Operations and Classical Com-
munication). See [HHHH09] for more details about this setting.

Let us now focus on the states that Alice and Bob can manipulate with those
operations. A bipartite quantum state ρAB is said to be separable if it can be
written as

ρAB =
∑
k

pkρ
A
k ⊗ ρBk (1.4)

with ρAk local systems of A and ρBk local systems of B, and pk probabilities
summing up to 1. Any other state that is not possible to write in that form is
said to be entangled. It is clear that local quantum operations cannot turn a
separable state into an entangled one. If we consider entanglement an intrinsic
property of certain bipartite quantum states, we say that LOCC cannot create
entanglement. The initial amount of entanglement given to Alice and Bob can
only be manipulated, sometimes in order to achieve tasks otherwise impossible.

We will now describe a protocol showing such a practical application of an
entangled state, called quantum teleportation [BBC+93].
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1.1. PHYSICAL SCENARIO OF ENTANGLEMENT THEORY: LOCC

OPERATIONS

Figure 1.1: Scheme of Alice and Bob’s laboratories and, on the left, the ini-
tial configuration of their systems in the teleportation protocol. In Alice’s
lab is present a particle ΨC , whose state she wishes to transfer to Bob’s lab-
oratory, plus another particle that belongs to a maximally entangled state
Φ+

AB together with a particle owned by Bob. The total initial state is then
|ABC⟩ = |ΨC⟩ ⊗ |Φ+

AB⟩. Alice and Bob can perform local operations (LO) and
classical communications (CC) to share information about the outcomes of those
operations. On the right, after the teleportation protocol, entanglement between
the two laboratories is destroyed and the state of Ψc is successfully transferred
to Bob’s particle, meaning the total final state is |ABC⟩ = |Φ+

AC⟩ ⊗ |ΨB⟩, with
ΨB = ΨC .

1.1.1 Quantum teleportation

Alice and Bob share a singlet or maximally entangled state, i.e. a pure
two-qubit bipartite state of the form

|Φ+
AB⟩ =

|00⟩+ |11⟩√
2

. (1.5)

Moreover, Alice possesses a generic pure qubit state

|ΨC⟩ = α |0⟩+ β |1⟩ . (1.6)

The goal of the task would be to transfer this state into the qubit in Bob’s lab,
by the mean of some LOCC protocol.

The overall state can be written as

|ABC⟩ = |ΨC⟩ ⊗ |Φ+
AB⟩ =

1√
2
(α |0C⟩+ β |1C⟩)⊗ (|0A⟩ ⊗ |0B⟩+ |1A⟩ ⊗ |1B⟩) =

=
1√
2
(α |00CA⟩ ⊗ |0B⟩+ α |01CA⟩ ⊗ |1B⟩+ β |10CA⟩ ⊗ |0B⟩+ β |11CA⟩ ⊗ |1B⟩)

(1.7)
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16 CHAPTER 1. QUANTUM RESOURCE THEORIES

At this point, we will change the basis in CA from computational to Bell.

|00⟩ = 1√
2
(|Φ+⟩+ |Φ−⟩) (1.8)

|11⟩ = 1√
2
(|Φ+⟩ − |Φ−⟩) (1.9)

|01⟩ = 1√
2
(|Ψ+⟩+ |Ψ−⟩) (1.10)

|10⟩ = 1√
2
(|Ψ+⟩ − |Ψ−⟩) (1.11)

Obtaining

|ABC⟩ = 1

2
(|Φ+

AC⟩ ⊗ (α |0B⟩+ β |1B⟩) + |Φ−
AC⟩ ⊗ (α |0B⟩ − β |1B⟩)+

+ |Ψ+
AC⟩ ⊗ (α |1B⟩+ β |0B⟩) + |Ψ−

AC⟩ ⊗ (α |1B⟩ − β |0B⟩)) =

=
1

2

3∑
i=0

|Φi⟩AC ⊗ σi |ΨB⟩

(1.12)

Where |Φi⟩ are the different Bell states in Eq. 1.8-1.11. This means that the
following protocol transfers the state |Ψ⟩ to Bob’s lab:

1. Alice performs a local PVM (Projective Valued Measurement) in the Bell
basis on AC projecting the state in one of the above four terms.

2. She sends the outcome with a classical signal to Bob.

3. Bob performs a conditional local unitary depending on the outcome he
receives, in order to undo the σi’s, being then able to perfectly "recreate"
the state |ΨC⟩ (which originally belonged to Alice) in his particle |ΨB⟩,
assisted by Alice.

Notice that:

1. Only LOCC operations were used in the protocol.

2. The entire procedure was possible by consuming an entangled state shared
between A and B, which makes entanglement a resource for teleportation.

1.1.2 Imperfect quantum teleportation and entanglement
distillation

Let us now consider a shared state that is not perfectly entangled, but it is a
noisy maximally entangled state mixed with a maximally mixed state.

ρ = p |Φ+⟩ ⟨Φ+|+ (1− p)
I4

4
(1.13)

with 0 ≤ p ≤ 1.
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1.1. PHYSICAL SCENARIO OF ENTANGLEMENT THEORY: LOCC

OPERATIONS

It was shown in [HHH99], that the performance of a general teleportation
protocol ΛT (|Ψ⟩ ⟨Ψ|), where |Ψ⟩ is the input state we wish to teleport, measured
through the average fidelity over all possible input states:

F̄ (ρ) =

∫
⟨Ψ|ΛT (|Ψ⟩ ⟨Ψ|) |Ψ⟩ dΨ (1.14)

can attain a maximum proportional to the singlet fraction:

F (ρ) = max
i

⟨Φi| ρ |Φi⟩ (1.15)

maximized over all possible Bell states. Between F̄ (ρ) and F (ρ) there is
the linear relation F⃗ = 2F (ρ)+1

3 . Then this simple example shows that the
performance is given by the linear relation:

F̄ (ρ) = p+
1− p

2
(1.16)

which is maximum where the shared state is maximally entangled and mono-
tonically decreasing otherwise. Then the Bell basis measurement protocol per-
formed by Alice can never perfectly recreate the original qubit |Ψ⟩. So the
performances of the teleportation protocol are a function of the mixing coeffi-
cient of the shared state between Alice and Bob, suggesting there is a property
we can quantify that plays the role of a resource in this operation. This function
must reach its maximum in correspondence of |Φ+⟩ and decrease for any other
bipartite state.

Before performing a quantum teleportation Alice and Bob would then desire
to share a maximally entangled state. Now if they possess only one copy of a
pure bipartite state |ΨAB⟩ it is impossible to convert it to |Φ+⟩ by means of
any LOCC operation as stated by Nielsen theorem [Nie99], which we will briefly
review in the following.

Consider two normalized vectors of dimension d, v⃗ and w⃗ whose components
are ordered in a decreasing manner. It is said that v⃗ ≻ w⃗ if

k∑
i=1

vi ≥
k∑

i=1

wi (1.17)

∀k ∈ 1, ..., d− 1.
Nielsen theorem states that |Ψ⟩ can be converted to |Φ⟩ through LOCC iff the

vector of the Schmidt coefficients of |Φ⟩ majorizes the vector of the coefficients
of |Ψ⟩.

The Schmidt coefficients [NC11] are a decomposition of a pure bipartite
quantum state. For a general dimension d of the Hilbert spaces of both local
systems A and B

|Ψ⟩AB
=

d∑
i=1

√
λi |i⟩A ⊗ |i⟩B (1.18)
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18 CHAPTER 1. QUANTUM RESOURCE THEORIES

where {|i⟩A} and {|i⟩B} are two orthogonal basis of system A and B respectively,
and λi are called Schmidt coefficients.

It is easy to see that both reduced states ρA(B) will have the form

ρA(B) = TrB(A)[|Ψ⟩ ⟨Ψ|AB
] =

d∑
i=1

λi |i⟩ ⟨i|A(B) (1.19)

On the other hand, any other pure bipartite state |ΨAB⟩ can be created
starting from |Φ+⟩.

Suppose otherwise that they have multiple copies of a less entangled state.
For example, they share two copies of the bipartite state |ΨAB⟩ = a |00⟩+b |11⟩,
meaning they share the state

|ΨAB⟩⊗2
= a2 |00AB⟩⊗2

+ b2 |11AB⟩⊗2
+ ab(|00AB⟩⊗ |11AB⟩+ |11AB⟩⊗ |00AB⟩)

(1.20)
Alice can perform a Bell measurement in her lab to project this state into a

state proportional to a singlet |Ψ−⟩ = |01⟩+ |10⟩ with probability (ab)2. Notice
that this state differs from |Φ+⟩ just by a rotation of one qubit. In the limit
of many shared copies, there exists a procedure called entanglement distilla-
tion or concentration (see Appendix and [BBPS96]) which allows converting
n copies of Ψ into m copies of Φ+, provided n is very large. Moreover, the
probability of successful conversion goes to 1 as n → ∞. In this asymptotic
setting, it is then possible to concentrate the resource called entanglement and
store it for application in future tasks.

There are many other features of quantum systems that have or might have a
useful technological application in communication cryptography or computing.
Then there is the need to formalize all these situations in a unique mathemat-
ical framework called quantum resource theories, which we will present in the
following section.

1.2 Resource theories
The main reference for the next three sections is the review by E. Chitambar
and G. Gour [CG19].

As described above, the first approach in a resource theory is the identifi-
cation of a set of free operations Fop in the space of CP (completely positive)
maps acting on quantum states.

The most basic properties that every resource theory should satisfy are

1. The do nothing operation I is included in the set of free operations, i.e.
I ∈ Fop

2. The set of free operations is closed under composition

∀Λ1,Λ2 ∈ Fop,Λ1 ◦ Λ2 ∈ Fop (1.21)

18



19 1.2. RESOURCE THEORIES

Analogously we define a set of free states inside the Hilbert space. A free
operation must be resource-non-generating (RNG), even if applied repeatedly
to a free state.

ρ ∈ Fs,Λ ∈ Fop =⇒ Λ(ρ) ∈ Fs (1.22)

This is usually referred to as the golden rule of quantum resource theories.
Moreover, resource theories are usually equipped with a tensor product struc-

ture, in the following sense:

1. Free operations can act on a subsystem

Φ ∈ Fop(HA → HB) =⇒ IC ⊗ Φ ∈ Fop(HC ⊗HA → HC ⊗HB) (1.23)

where in parenthesis we denote the input and output Hilbert space of the
operation.

2. Appending free states is a free operation.

3. Discarding systems, i.e. the trace, is a free operation.

In particular, the first property, combined with composition, implies that
one can perform local operations independently in different laboratories, in the
following way: Φ′ ⊗ Φ = (Φ′ ⊗ I) ◦ (I⊗ Φ). In other words if Φ,Φ′ ∈ Fop, then
Φ⊗Φ′ ∈ Fop. The properties second and third imply that preparing a free state
is a free operation

Φ(X) = Tr[X]σ (1.24)

when σ ∈ Fs. Consequently, any state can be converted into a free one. More-
over, other direct implications of properties 2 and 3 are that the set of free states
is closed under tensor product and partial trace.

ρ ∈ Fs(HA), σ ∈ Fs(HB) =⇒ ρ⊗ σ ∈ Fs(HA ⊗HB) (1.25)

ρAB ∈ Fs(HA ⊗HB) =⇒ ρA ∈ FS(HA) and ρB ∈ Fs(HB) (1.26)

In some cases, a resourceful state can be used to execute an operation that
normally is not allowed. For example, having access to the state |Φ+

AB⟩ allows
us to implement a teleportation channel with LOCC. We will now write this
statement in a more formal way: A state σ /∈ Fs can be used to implement
Λ /∈ Fop if there exists Φ ∈ Fop such that ∀ρ Φ(ρ⊗ σ) = Λ(ρ).

Before moving on we want to mention one last desirable property for a
resource theory, which is convexity of the set of free states, meaning that, if
ρ, σ ∈ Fs, then any convex combination

pρ+ (1− p)σ ∈ Fs (1.27)

is still a free state for all p ∈ [0, 1].

19



20 CHAPTER 1. QUANTUM RESOURCE THEORIES

1.2.1 Different classes of free operations
Now let us review typical ways to construct the set of free operations from the
free states. The main ones are

• Taking the maximal set of operations that maps free states to free states,
we obtain the set of resource non-generating maps. In this case, the
request is that overall this map does not generate any resource.

• Adding the freedom of acting on a system correlated with an ancilla, these
kinds of maps will be called completely resource non-generating.

• The resource non-generating condition can be strengthened, imposing that
each of the trace non-increasing maps KjρK

†
j do not take a free state out

of its set, i.e. ∀ρ ∈ Fs, j = 1, ..., r

KjρK
†
j

Tr[KjρK
†
j ]

∈ Fs (1.28)

where r is the Kraus rank of the operation. We will call this kind of maps
stochastically resource non-generating.

• Finally, we can consider a smaller set of free operations which are the
maps that destroy any form of resource from any state. We will denote
this sort of map by the symbol ∆, call it resource destroying map, and
we will assign the two properties

– it maps every free state to itself, i.e. ∀ρ ∈ Fs, ∆(ρ) = ρ

– it maps every state to a free state.

In the next section, we will discuss the problem of state convertibility.

1.3 Convertibility
One important question studied in quantum resource theories is whether it is
possible to convert two arbitrary states into each other through free operations.
In particular, we would like to manipulate the resource we possess in order
to maximize the performance of informational tasks like the above-mentioned
teleportation.

Mathematically, free operations induce a pre-order on the Hilbert space, i.e.
a relation between two states which is reflexive and transitive. We will write

ρ
Φ→ σ if ∃Φ ∈ Fop : σ = Φ(ρ) (1.29)

Physically this means that, if we can transform ρ to σ, then σ does not contain
more resource than ρ. Because free operations are closed under composition we
have transitivity, i.e.

ρ
Φ→ σ, σ

Φ→ γ =⇒ ρ
Φ→ γ. (1.30)

20



21 1.3. CONVERTIBILITY

Figure 1.2: Schematic picture of the concepts of exact and approximate state
conversion. In the exact process, a quantum state ρ is exactly converted into σ,
without any error. In the approximate process, we are content to send ρ inside
a ball of radius ε around σ.

If both ρ
Φ→ σ and σ

Φ→ ρ hold, we say that ρ
Φ
≈ σ, meaning ρ is equivalent (in

terms of resources) to σ.
There are many variants of this question, depending on the specific restric-

tions on the tasks one is allowed to perform, the most notable being:

• Single-shot: the task is to convert one copy of the initial state ρ to one
copy of the final state σ. This scenario has many subcategories:

– Exact 1.2: we require that the conversion is achieved with zero error,
i.e.

Φ(ρ) = σ. (1.31)

We will denote this by
ρ

Φ→ σ (1.32)

– Stochastic 1.3: the task is achieved probabilistically.

Φ(ρ) =
∑
j

Φj(ρ)⊗ |j⟩ ⟨j| (1.33)

A probabilistic map is applied to ρ and an outcome is selected by
measuring an observable on some ancillary system, whose eigenvec-
tors are {|j⟩}. We say that the conversion is successful if there is a
non-zero probability pj = Tr[Φj(ρ)] > 0 that Φj(ρ)

pj
= σ is the desired

21



22 CHAPTER 1. QUANTUM RESOURCE THEORIES

Figure 1.3: Stochastic state conversion: a map Φj is applied on ρ depending on
the outcome of a random variable and the target state σ is reached only one of
the possible outcomes, occurring with probability Tr[Φj(ρ)].

state we want to generate. We can denote it by

ρ
Φj→ σ (1.34)

– Approximate 1.2: We do not require to obtain the state σ exactly
after the conversion but we are satisfied with a state inside a ball of
fixed radius ε in fidelity, centered around σ. In other words

Φ(ρ) = σ′ (1.35)

with F (σ, σ′) ≥ 1− ε. We will denote this process by

ρ
Φ→ε σ (1.36)

• Asymptotic 1.4: We have access to multiple copies of the initial state ρ⊗n

and we would like to convert them to multiple copies of the final state
σ⊗m. Typically, we are interested in rates of conversion, meaning the
ratio m/n that is achievable in such a conversion. We will say that a ratio
R is achievable if ∀R′ < R and ε ∈ [0, 1], ∃n:

ρ⊗n Φ→ε σ
⊗nR′

(1.37)

Finally, the optimal rate of conversion R(ρ→ σ) is the supremum over all
the achievable rates.

We say that an asymptotic process is reversible if R(ρ→ σ)R(σ → ρ) = 1,
i.e. there are no copies of ρ lost performing a conversion to σ and going
back, in the limit n→ ∞.

Reversible processes establish equivalence classes between quantum states,
after the identification of a special state all the states in a certain class can be
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23 1.4. RESOURCE QUANTIFIERS

Figure 1.4: Asymptotic state conversion: from n copies of the initial state to m
of the final state. The interesting quantity is the rate m/n in the limit n→ ∞.

converted into and which can generate back all the states in this class. A natural
choice for this state is the one that contains the maximal amount of resource
(according to one of the quantifiers we will list ahead). For example, in the
resource theory of entanglement restricted to the class of pure bipartite states
every conversion rate can be expressed as R(Ψ → Φ) = R(Ψ → Φ+)R(Φ+ → Φ),
with |Φ+⟩ = 1√

d

∑d
i=1 |i⟩

A⊗|i⟩B maximally entangled state. The two quantities
R(Ψ → Φ+) and R−1(Φ+ → Φ) are called respectively distillable entanglement
and entanglement cost of ρ. See [BBPS96] and section 1 of Appendix.

We will now introduce a new class of operations, which becomes free only
when acting in the asymptotic limit of many copies, that is, the asymptotically
resource non-generating operations. A conversion under this set of operations
is denoted by

ρ⊗n Φn→ε σ
⊗nR′

(1.38)

where Φn can generate εn amount of resource, but this must vanish in the
limit of a great number of copies of ρ, i.e. limn→∞ εn = 0. We will see that the
optimal rate R under this class of operations is connected to entropic quantities.

1.4 Resource quantifiers

As it is evident by the quantum teleportation example, another desirable tool
a resource theory should have are functions of quantum states which faithfully
return a value proportional to the content of resource that the state contains,
so one can classify the usefulness of states in performing certain tasks.

A resource quantifier of states should be a function from the Hilbert space
to the non-negative real axis f : H → R≥0. Where we used the convention
that the minimum of the quantifier achieved on the free states is 0. Using an
axiomatic approach we would first like to list a series of desired properties of
these functions.
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24 CHAPTER 1. QUANTUM RESOURCE THEORIES

1. Faithfulness: ∀ρ ∈ Fs, f(ρ) = 0.

It is not obvious that f(ρ) = 0 =⇒ ρ ∈ Fs because there might be a task
for which some resource state is still useless, making the corresponding
quantifier zero. For example, we cannot extract singlets from any bound
entangled state [HHH98].

2. Monotonicity: ∀Φ ∈ Fop f(ρ) ≥ f(Φ(ρ)).

3. Strong Monotonicity: f(ρ) ≥
∑

i pif(σi) with ρ Φi→ σi, σi =
Φi(ρ)
pi

, Φi(ρ) =

KiρK
†
i some stochastic map and pi = Tr[KiρK

†
i ] [Vid00].

We can show that any function that is convex linear on quantum-classical
states

∑
i piσi⊗|i⟩ ⟨i|, i.e. f(

∑
i piσi⊗|i⟩ ⟨i|) =

∑
i pif(σi⊗|i⟩ ⟨i|), mono-

tonic, and is unchanged by attaching and discarding a classical flag is also
strongly monotonic [Vid00].

f(ρ) ≥ f(
∑
i

piσi ⊗ |i⟩ ⟨i|) =
∑
i

pif(σi ⊗ |i⟩ ⟨i|) =
∑
i

pif(σi) (1.39)

Strongly monotonic functions can be used to obtain a bound on the max-
imal probability of obtaining outcome σ from stochastic transformations
[Vid00]:

Pmax
ρ (σ) ≤ f(ρ)

f(σ)
(1.40)

4. Convexity: f(
∑

i piρi) ≤
∑

i pif(ρi)

5. Subadditivity: f(ρ ⊗ σ) ≤ f(ρ) + f(σ). When equality holds we say the
function is additive. A technique called regularization allows the creation
of additive quantifiers on many copies of the same state.

f∞(ρ) = lim
n→∞

1

n
f(ρ⊗n) (1.41)

6. Asymptotic continuity:

|f(ρ)− f(σ)| ≤ kε log d+ c(ε) (1.42)

with ε = 1
2 ||ρ−σ||1 trace distance between ρ and σ, c a function such that

c(ε)
ε→0→ 0, and k a constant. This property assures that, in the asymptotic

limit, two evaluations of the functions are close when the corresponding
states are similar in trace distance.

Now we will show that asymptotically continuous functions bound the achiev-
able rates in asymptotic convertibility [HOH02]. As mentioned before R is an
achievable asymptotic conversion rate if ∀ε > 0 ∃n and Φ ∈ Fop: ρ⊗n Φ→ σn,
with F (σn, σ⊗nR) > 1− ε.
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25 1.4. RESOURCE QUANTIFIERS

Thanks to the Fuchs-Van der Graaf inequality

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2 (1.43)

with D(ρ, σ) = 1
2 ||ρ − σ||1, we can say this corresponds to 1

2 ||σn − σ⊗nR||1 <√
2ε in terms of trace distance. Then, if f is asymptotically continuous and a

monotone
f(ρ⊗n) ≥ f(σn) ≥ f(σ⊗nR)− k′

√
εnR log d− c(ε) (1.44)

Now let’s divide both sides of this inequality by n and take the limit n→ ∞

f∞(ρ) ≥ Rf∞(σ)−O(
√
ε) (1.45)

This bound is saturated for a reversible process.

1.4.1 Contractive divergences
Now we will review some common constructions of resource quantifiers. An im-
portant construction of quantifiers is through the use of a contractive divergence,
i.e. functions that satisfy

d(ρ, σ) ≥ d(Φ(ρ),Φ(σ)) (1.46)

for any Φ, CPTP map. We define the quantifier by taking the minimum distance
with the set of free states, i.e.

Rd(ρ) = min
σ∈Fs

d(ρ, σ) (1.47)

This quantifier will be automatically monotonic since

Rd(Φ(ρ)) = inf
τ∈Fs

d(Φ(ρ), τ) ≤ inf
σ∈Fs

d(Φ(ρ),Φ(σ)) ≤ inf
σ∈Fs

d(ρ, σ) = Rd(ρ)

(1.48)

In addition, the following property, known as joint convexity, guarantees that
the resulting quantifier Rd(ρ) will be convex:

d

(∑
i

piρi,
∑
i

piσi

)
≤
∑
i

pid(ρi, σi) (1.49)

An important class of such contractive functions is given by entropies.

1.4.2 Entropic measures
In this thesis, we will mainly refer to two families of functions after which many
relevant entropies are derived. These are:

• Quantum relative Renyi Entropies

Dα(ρ||σ) =

{
+∞ if α /∈ (0, 1) ∧ supp(ρ) ̸⊂ supp(σ)
1

α−1 log(Tr[ρ
ασ1−α]) otherwise

(1.50)
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26 CHAPTER 1. QUANTUM RESOURCE THEORIES

• Sandwiched Renyi entropies or divergencies

D̃α(ρ||σ) =

{
+∞ if α /∈ (0, 1) ∧ supp(ρ) ̸⊂ supp(σ)
1

α−1 log(Tr[σ
1−α
2α ρσ

1−α
2α ]) otherwise

(1.51)

∀α ∈ (0,+∞)− {1}. [Pet86].
Then, if supp(ρ) ⊂ supp(σ)

•
D0(ρ||σ) = lim

α→0
Dα(ρ||σ) = − log(Tr[Πρσ]) (1.52)

with Πρ projector into the support of ρ.

• Quantum relative entropy

lim
α→1

Dα(ρ||σ) = lim
α→1

D̃α(ρ||σ) = S(ρ||σ) = −Tr[ρ(log σ − log ρ)] (1.53)

• Max relative entropy

lim
α→+∞

D̃α(ρ||σ) = Dmax(ρ||σ) = inf{λ : ρ ≤ 2λσ} (1.54)

One can also set σ = I to obtain

• Reiny entropy

Sα(ρ) = −Dα(ρ||I) = − 1

α− 1
log(Tr[ρα]) (1.55)

•
Hmin(ρ) = −Dmax(ρ||σ) = − log ||ρ||∞ (1.56)

where ||ρ||∞ is the infinity norm, i.e. the largest eigenvalue of ρ.

• Von Neumann entropy

S(ρ) = −S(ρ||I) + log d = −Tr[ρ log ρ] (1.57)

•
Hmax(ρ) = −D0(ρ||I) = log rank(ρ). (1.58)

See [MLDS+13] for more details. Since Reiny entropies are contractive (we speak
about Data Processing inequality) in the range α ∈ [0, 2] and the divergencies
for α ∈ [1/2,+∞), we can use them to define the resource measures in these
ranges.

Rα(ρ) = inf
σ∈Fs

Dα(ρ||σ) (1.59)

R̃α(ρ) = inf
σ∈Fs

D̃α(ρ||σ) (1.60)
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27 1.4. RESOURCE QUANTIFIERS

Setting α = 1 we obtain the relative entropy of the resource

Rrel(ρ) = inf
σ∈Fs

S(ρ||σ) (1.61)

This is asymptotically continuous whenever Fs is convex and contains the max-
imally mixed state [DH99].

Entropic quantities are also connected to the hypothesis testing problem.
We recall that in this scenario we want to distinguish between two states, ρ
and σ, using a two-outcome POVM {T, I − T}, with probabilities of making a
mistake:

α(T ) = Tr[(I− T )ρ] (1.62)
β(T ) = Tr[Tσ] (1.63)

The task of minimizing one error probability under the constrain that the other
is smaller than ε can be connected to the hypothesis testing relative entropy
[WR12]:

Dε
H(ρ||σ) = sup

0≤T≤I,α(T )≤ε

− log β(T ) (1.64)

Its regularization gives the usual relative entropy

lim
n→∞

1

n
Dε

H(ρ⊗n||σ⊗n) = S(ρ||σ) (1.65)

It is known that [BBG+], if

lim
ε→0

lim
n→∞

1

n
min

σn∈F⊗n
s

Dε
H(ρ⊗n||σn) = R∞

rel(ρ) (1.66)

where F⊗n
s is the set of free states in the Hilbert space of dimension dim(ρ)n,

the corresponding resource theory is reversible under asymptotically resource
non-generating operations and the asymptotic rate of conversion is given by:

R(ρ→ σ) =
R∞

rel(ρ)

R∞
rel(σ)

(1.67)

See also [BaG15]. This applies in particular to the resource theory of coher-
ence, as shown in [BBG+], the resource theory of thermodynamics ([BHO+13]),
and the resource theory of entanglement restricted to pure bipartite states, see
Appendix 7.1. Unfortunately, even if they have this nice contractive property,
the entropies cannot be used as a proper metric because triangle inequality
doesn’t hold for them.

Special cases of these rates are the ones towards the maximally resourceful
state RD(ρ) = R(ρ → Φ+), namely the distillable resource of ρ, or how many
Φ+ we can extract per unit of copies of ρ in an asymptotic conversion, and from
it R−1

C (ρ) = R(Φ+ → ρ), the resource cost, or how many copies of Φ+ we need
to spend per unit of copy of ρ we generate. These quantities are computed using
the convention R∞

rel(Φ
+) = 1.

Now follow a few other examples of noteworthy resource theories.
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28 CHAPTER 1. QUANTUM RESOURCE THEORIES

1.5 Other examples of resource theories

1.5.1 Thermodynamics

This is a theory about energy exchange between systems [NW18].

• The free operations consist in putting a physical system in contact with a
thermal bath at a fixed temperature β = 1/(kBT ) and letting them evolve
(exchange heat) through an energy-preserving unitary [U,HS +HB ] = 0,
in formulas

Φ(ρ) = TrB [U(ρ⊗ γB)U
†] (1.68)

Such operations are also called thermal.

• The Gibbs state γ = e−βH

Tr[e−βH ]
is the free state of this theory, defined to

be at thermal equilibrium with the bath. The Gibbs state is the only
Completely passive state [AF13]. A passive state is such that no work can
be extracted from it, meaning

Tr[UρU†HS ] ≥ Tr[ρHS ] (1.69)

∀U unitaries. ρ is completely passive if ρ⊗n is passive ∀n.

Any other state is then specified by the couple (ρ,H), including its Hamiltonian
H.

An important subclass of thermal operations is given by the noisy operations,
when the Hamiltonians involved are fully degenerate, i.e. proportional to the
identity [GMN+15]. In this case, the free state is the maximally mixed state.
Operations that preserve such state are called unital and they have the same
power as unitaries mixtures, i.e. maps whose Kraus operators are given by
unitaries. The resource theory of thermodynamics under noisy operations is
usually called purity.

Now we will list the main quantifiers used in this theory, connected to single-
shot or asymptotic state transition.

• The criterion for single-shot state transition when the target state is di-
agonal is called thermo-majorization [HO13] and it consists in plotting
{
∑k

i=0 e
−βEi ,

∑k
i=0 pi}, where pi are the diagonal elements of ρ in the en-

ergy eigenbasis and Ei are the eigenenergies of the Hamiltonian. These
coordinates are such that the product pie−βEi is in increasing order. If
the plot of ρ is above the plot of σ we say that ρ thermomajorises σ
and is possible to convert ρ into σ via thermal operations. The classical
version of this fact is that there exists a stochastic matrix M such that
diag(ρ) =Mdiag(σ).

In the case of noisy operations, this criterion reduces to the usual ma-
jorization for the eigenvalues of ρ and σ.
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29 1.5. OTHER EXAMPLES OF RESOURCE THEORIES

• Since there is only one free state the asymptotic quantifier of this theory
is given by

R(ρ) = S(ρ||γ). (1.70)

Notice that is already additive, so it doesn’t need regularization. States
that maximize this distance would be the maximally resourceful ones. For
example, in the resource theory of noisy operations, pure states play this
role.

1.5.2 Coherence
The possibility to create superpositions of states is one of the unique features of
quantum mechanics. The resource theory of coherence aims to define and quan-
tify this feature [SAP17]. This theory is special because it is basis-dependent.
There are different approaches to characterize the free states

• Usually, one takes the eigenbasis of some observable T , {|i⟩} and defines
free states, also called incoherent, as the ones diagonal in this basis or,
alternatively, if T is nondegenerate, we define free states as the ones who
commute with T.

ρf =

d−1∑
i=0

ρii |i⟩ ⟨i| (1.71)

[ρf , T ] = 0 (1.72)

• Another characterization of the free states is that they do not change
after the application of the Resource Destroying Map of this theory, the
completely dephasing map in the eigenbasis of T , i.e.

∆(ρ) =

d−1∑
i=0

⟨i| ρ |i⟩ |i⟩ ⟨i| (1.73)

ρf = ∆(ρf ) (1.74)

In the resource theory of coherence, there are several ways to define free
operations, depending on the physical scenario.

• The first class of incoherent operations we will define are the Translation-
ally covariant Incoherent Operations (TIO), i.e. all maps that commute
with a unitary evolution whose generator is given by T , i.e., for any s we
have:

[Φ, U ] = Φ ◦ U − U ◦ Φ = 0 (1.75)

with U = e−iTs. (1.76)

Note that the free states of this class are also the ones that commute with
U .
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• The second class, representing the maximal set of Resource Non-Generating
operations is made by the Maximally Incoherent Operations (MIO).

An example of an operation which is MIO, because it doesn’t change the
total amount of coherence, i.e. the amplitude of off-diagonal elements, but
is not TIO is the following

1√
2
(|0⟩+ |1⟩) → 1√

2
(|0⟩+ |2⟩) (1.77)

In fact the unitary U in the definition of TIO might apply a different phase
to the ket |1⟩ with respect to the ket |2⟩, meaning this operation won’t
commute with it.

• After that we can list the Stochastically Resource Non-Generating Oper-
ations, called Incoherent Operations (IO) as the ones that commute with
the dephasing map for each of their Kraus operator

Kj∆(ρ)K†
j = ∆(KjρK

†
j ) (1.78)

∀j = 1, ...,Kraus rank. This property is satisfied by the following form of
Kraus operators

Kj =

d−1∑
k=0

cjk |f(k)⟩ ⟨k| (1.79)

with f(k) any function acting on the eigenvectors labels. If the Kraus
operators are unitaries

U =

d−1∑
k=0

eiφk |π(k)⟩ ⟨k| (1.80)

with π any permutation of the eigenvectors.

• If a map arises from Incoherent unitaries in a Stinespring dilation (see
next chapter), it is called Strictly Incoherent Operation (SIO).

• If a map overall commute with the dephasing map

Φ(∆(ρ)) = ∆(Φ(ρ)) (1.81)

it is said Dephasing Covariant Incoherent Operation (DIO).

There is an entire class of Maximally Coherent states, generated as the orbit
of

|+⟩ = 1√
d

d−1∑
i=0

|i⟩ (1.82)

under the action of incoherent unitaries U |+⟩.
Coherence gives metrological advantage in phase estimation tasks, i.e. if we

want to estimate the phase φ of the unitary U = e−iHφ it is better to use a
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probe state which has some coherence in the eigenbasis of H, since such a state,
after the application of U will have φ encoded as a relative phase, which is
physically observable opposite to the global phase we will end up if we use an
incoherent state. More precisely the ultimate bound on the variance of φ after
repeating this experiment N times is given by

∆2φ ≥ 1

NI(ρ,H)
(1.83)

with

I = 2
∑
k,l

(λk − λl)
2

λk − λl
| ⟨k|H |l⟩ |2 (1.84)

Quantum Fisher Information, λk and |k⟩ eigenvalues and eigenvectors of the
density matrix ρ. This function is non-zero if the Hamiltonian has some non-
zero off-diagonal elements or, equivalently, if the probe state ρ contains some
coherence. Moreover, if the state ρ is higher dimensional and contains some
entanglement, the scaling of the bound can be improved to N−2 [MLS04].

• The most simple quantifier of coherence one can provide is the so-called
l1-norm of coherence [BCP14], consisting in the sum of the magnitude of
the off-diagonal elements of a density matrix ρ =

∑d
i,j=1 ρij |i⟩ ⟨j|, written

in the incoherent basis. That is

Cl1 =
∑
i̸=j

|ρij | (1.85)

• ∆(ρ) also provides the minimizer for the asymptotic quantifier of distillable
coherence [WY16], even under MIO, meaning

CD(ρ) = S(ρ||∆(ρ)) = S(∆(ρ))− S(ρ) (1.86)

The theory became reversible for pure states under Incoherent Operations,
making this quantity equal to coherence cost.

A connection between coherence and entanglement has been explored in
[SSD+15]. For example, the CNOT unitary gate which flips a qubit if the
control is |1⟩ and does nothing if the control is |0⟩ cannot create coherence
from an incoherent target qubit and ancilla. Nevertheless, it can convert the
coherence of one of the two qubits into entanglement, i.e.

UCNOT (|+⟩ ⊗ |0⟩) = |Φ+⟩ (1.87)

Having presented the theory of quantum resources, in the next chapter, we will
describe the formalism of quantum open system and show an example of how
the interaction with an environment can lead to the loss of coherence. Moreover,
we will characterize an important class of dynamics called Markovian, having
the property that the evolution at every time step is independent of the past
times.
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Chapter 2

Quantum Non-Markovian
processes

This chapter is based on the review papers by Ángel Rivas, Susana F. Huelga
and Martin B. Plenio [RHP14] and [RH12].

Closed systems are an idealization and all the quantum systems in nature
are open, meaning they are interacting with some environment. Usually, such
interactions destroy the resources described in the previous chapter. In fact,
this field is connected to the problem of why we don’t observe the features of
quantum mechanics in macroscopic objects even if these are made by many
quantum particles. In other words, how does the transition from quantum to
classical happen? [Sch19] Connected to this issue in the next chapter we will
prove that a Markovian type of noise, which will be defined in this chapter,
always destroys correlations between two qubits when applied locally to one of
them. No matter how advanced our laboratories are, the presence of an envi-
ronment is unavoidable. It follows that the formalism we are going to introduce
in the next section is the proper way of describing them.

After that, in section 2.2 we will review the classical theory of stochastic
processes with an emphasis on Markovian processes.

In section 2.3 we will extend the definition of Markovianity to the quantum
realm and in sections 2.4 and 2.5 we will characterize this property and provide
some famous measures of it.

2.1 Open systems dynamics
It is known that an isolated quantum system evolves following a unitary dy-
namic, i.e. Λt1,t0(ρt0) = U(t1, t0)ρ(t0)U

†(t1, t0). Now we will review the usual
way to model the evolution of an open system. The physical picture is that the
system is interacting and becoming entangled with some big environment, i.e.
constituted by a large number of degrees of freedom. We will denote the system
by S and the environment by E. The first step is then to define the total SE
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34 CHAPTER 2. QUANTUM NON-MARKOVIAN PROCESSES

Figure 2.1: Schematic description of an open quantum system evolution through
three steps: 1. An assignment map transforms the state of the system ρS into
one of the composite system plus environment ρSE . This map must be reversible
by tracing out the environment and uniquely defined. The standard choice is
then a product map ρS → ρS ⊗ ρE , with a fixed ρE = e−βHE

Tr[e−βHE ]
, usually the

Gibbs state at thermal equilibrium of the environment, with β = 1
kT . 2. The

system and environment interact and evolve unitarily as a closed system. 3.
The environment is traced out after the interaction, leading to the effective
map Λ(ρS).

system starting from a state of the system S at time t0, ρS(t0). This is done
through the so-called assignment map ρS(t0) → ρSE(t0). The assignment
map must be invertible, in the sense that TrE [ρSE(t0)] = ρS(t0). In the second
step ρSE will evolve driven by the coupling between the two subsystems. In
particular, since SE is a closed system it will evolve according to some unitary
U(t0, t1) from the initial time t0 to a final time t1. Remember that we have only
access to the dynamic of one of the subsystems, S. For this reason, after letting
SE evolve for some time we will discard the environment E by the operation of
partial trace. Formally

Λt1,t0(ρS(t0)) = ρS(t1) = TrB [U(t1, t0)ρSE(t0)U
†(t1, t0)] (2.1)

See fig. 2.1. Up to this point ρSE(t0) can contain correlations between the
system and the environment. We will give an example to show why correlations
are undesirable to model the evolution of the system. Let us start with an
initial maximally mixed state ρS(t0) = IS/dS . This can be obtained in two ways
through the assignment map, by tracing out E from a product state ρSE(t0) =
IS
dS

⊗ IE
dE

or from a maximally correlated state ρSE(t0) = |Φ+
SE⟩ ⟨Φ

+
SE |. In general,

these two initial states of SE give different dynamics for the reduced state ρS(t1),
when put into eq. 2.1, even though the initial state of S is still IS/dS . This
means that if we allow for correlations between S and E at time 0, the map 2.1
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35 2.1. OPEN SYSTEMS DYNAMICS

might be not uniquely defined. Moreover, if the assignment map has to preserve
mixtures, in the sense that pρ1S+(1−p)ρ2S → pρ1SE+(1−p)ρ2SE it can be shown
that system and environment must be initially uncorrelated

ρSE(t0) = ρS(t0)⊗ ρE(t0) (2.2)

where ρS(t0) and ρE(t0) are marginals of ρSE(t0). ρE is fixed and it’s usually
given by the Gibbs state of the environment at thermal equilibrium, ρE(t0) =

e−βHE

Tr[e−βHE ]
, with β = 1

kT . If one allows for correlations in the initial state the
map 2.1 is not even positivity preserving for all ρS(t0). See [Pec94] for more
details. With this assumption the map 2.1 is usually referred to as Stinespring
dilation [NC11].

Let us now consider an eigendecomposition of ρE(t0) =
∑

i λi |Ψi⟩ ⟨Ψi|.
Then we can write the map 2.1 as

ρS(t1) = TrB [U(t1, t0)ρS(t0)⊗ ρE(t0)U
†(t1, t0)]

=
∑
i

λiTrB [U(t1, t0)ρS(t0)⊗ |Ψi⟩ ⟨Ψi|U†(t1, t0)]

=
∑
α

Kα(t1, t0)ρS(t0)K
†
α(t1, t0)

(2.3)

with α = {i, j} and Kα =
√
λi ⟨Ψj |U(t1, t0) |Ψi⟩ Kraus operators, which obey∑

α

Kα(t1, t0)K
†(t1, t0) = I (2.4)

i.e. they preserve the trace of ρS(t0). The existence of these operators
guarantees that the Stinespring dilation generates a completely positive map.

The most simple example of a map based on such a dilation procedure is
given by

Λ(t1,t0)(ρS(t0)) = Tr2[USWAP ρS(t0)⊗ ρS(t1)U
†
SWAP ] = ρS(t1), (2.5)

where USWAP exchange systems 1 and 2. This means that there always exists
a completely positive map connecting two arbitrary time points t0 and t1 with
t0 ≤ t1.

Before to proceed with the theory of Markovianity, we will show a simple
model which can explain the loss of coherence when a quantum system is put
in contact with an environment.

2.1.1 A simple decoherence model
A simple model can show that the interaction with the environment destroys
coherence in quantum states, a phenomenon called decoherence.

Consider a qubit coupled with an environment with an interaction tailored
such that the environment assumes the state |E1⟩ when the qubit is in the state
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36 CHAPTER 2. QUANTUM NON-MARKOVIAN PROCESSES

Figure 2.2: Double slit experiment. From https://en.wikipedia.org/wiki/
Double-slit_experiment: a beam of electrons is sent into a barrier with two
slits. Interference patterns typical of waves behavior appear on the screen after
the barrier if the path of the electrons is not measured.

|0⟩ and |E2⟩ when the qubit is in the state |1⟩. For the moment, we assume
that |E1⟩ and |E2⟩ are not necessarily orthogonal. The qubit is also initially
prepared in a superposition of |0⟩ and |1⟩ in the following way:

|Ψ⟩S = α |0⟩+ β |1⟩ (2.6)

with α and β complex numbers such that |α|2 + |β|2 = 1. Its density matrix
will be

ρS = |Ψ⟩ ⟨Ψ|S = |α|2 |0⟩ ⟨0|+ |β|2 |1⟩ ⟨1|+ αβ∗ |0⟩ ⟨1|+ α∗β |1⟩ ⟨0| (2.7)

with non-zero off-diagonal elements. Notice that those are the ones that produce
the interference pattern in experiments like the double slit one (see Fig. 2.2),
where |0⟩ is associated with for example the left slit path of a particle and |1⟩
with the right path.

In fact, writing the two associated wave functions as Ψ1(x) = ⟨x|0⟩ and
Ψ1(x) = ⟨x|1⟩, the probability of finding the particle in position x is

p(x) = Tr[ρS |x⟩ ⟨x|] = ⟨x| ρS |x⟩ = |α|2|Ψ1(x)|2+|β|2|Ψ2(x)|2+2Re[αβ∗Ψ∗
1(x)Ψ2(x)

∗]
(2.8)

where the last term is the interference one and it is proportional to the off-
diaonal elements of ρS .

Let us now write the total system-environment state after the interaction.
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37 2.2. CLASSICAL STOCHASTIC PROCESSES

|Ψ⟩SE = α |0⟩ ⊗ |E1⟩+ β |1⟩ ⊗ |E2⟩ (2.9)

Notice that this state is entangled between system and environment. The
reduced density matrix of the system will be

ρS = TrE [|Ψ⟩ ⟨Ψ|SE ] = |α|2 |0⟩ ⟨0|+|β|2 |1⟩ ⟨1|+αβ∗ |0⟩ ⟨1| ⟨E2|E1⟩+α∗β |1⟩ ⟨0| ⟨E1|E2⟩
(2.10)

Notice that if the states of the environment would be orthogonal, the off
diagonal elements of the reduced density matrix would disappear, meaning that
would not be no longer possible to observe interference fringes in a double slit
experiment. In fact, computing the probability p(x) in this case leads to

p(x) = |α|2|Ψ1(x)|2 + |β|2|Ψ2(x)|2 + 2Re[αβ∗Ψ∗
1(x)Ψ2(x)

∗ ⟨E2|E1⟩] (2.11)

This is an example in which an interaction with the environment kills a very
unique feature of quantum mechanics such us superposition.

We will now make an excursus on the classical Markovian theory to have a
better understanding of the matter.

2.2 Classical stochastic processes
A classical random variable X is a function from the triple (Ω,Σ, p) to the triple
(R, B, p), where:

• Ω is the set of all the possible outcomes. For the sake of simplicity, we
will restrict to the case in which card(Ω) = N , i.e. the set is finite and
countable.

• Σ is the subset of all the possible partitions of Ω including the empty set
∅ and the entire Ω itself. This is usually referred to as σ-algebra.

• p: function Σ → [0, 1], with the property, called σ-additivity, that, if two
sets are disjoint, i.e. Σ1

⋂
Σ2 = 0, then p(Σ1

⋃
Σ2) = p(Σ1) + p(Σ2).

Moreover p(Ω) = 1 (see also Kolmogorov laws). This function will repre-
sent the probability of the realizations corresponding to Σ.

• The conditional probability of event Σ1 conditioned to event Σ2 is defined
as p(Σ1|Σ2) =

p(Σ1
⋂

Σ2)
p(Σ2)

.

• B is the Borel set, i.e. the union of all the open sets in R.

See also [BP07], Chapter 1. Now we can define a classical stochastic process
as a family of random variables, parametrized by a single real value parameter,
i.e. {X(t), t ∈ I ⊂ R}. We will sample discrete time points tn from the interval
I and denote with xn a realization of the random variable X(tn). Then we
will define p(xn, tn|xn−1, tn−1; ...;x0, t0) as the probability that event xn occur,
conditioned on all the previous events from t0 to tn−1.
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Definition 2.1. A stochastic process is said to be Markovian if:

p(xn, tn|xn−1, tn−1; ...;x0, t0) = p(xn, tn|xn−1, tn−1) (2.12)

∀t ⊂ I with tn ≥ tn−1 ≥ ... ≥ t0.

This means that the conditional probability of the stochastic event at time
tn, providing all the previous events have occurred, depends only on the imme-
diately previous event at time tn−1. That is the reason a Markovian process is
also called memoryless. Notice that for a non-Markov process then two points
conditional probabilities p(xn, tn|xn−1, tn−1) are not well defined.

An important property of such processes is the following:

p(x3, t3;x2, t2;x1, t1) = p(x3, t3|x2, t2;x1, t1)p(x2, t2;x1, t1) =
p(x3, t3|x2, t2;x1, t1)p(x2, t2|x1, t1)p(x1, t1) =
p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

(2.13)

where p(A;B) = p(A|B)p(B) is the joint probability of events A and B, which
by definition is equal to the probability of the event A conditioned to the event
B times the absolute probability of the event B.
Now we sum over x2 and we divide by p(x1, t1):

1

p(x1, t1)

∑
x2

p(x3, t3;x2, t2;x1, t1) =

1

p(x1, t1)
p(x3, t3;x1, t1) =

1

p(x1, t1)
p(x3, t3|x1, t1)p(x1, t1) =

1

p(x1, t1)

∑
x2

p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

(2.14)

p(x3, t3|x1, t1) =
∑
x2

p(x3, t3|x2, t2)p(x2, t2|x1, t1) (2.15)

which is known as Chapman-Kolmogorov equation, or divisibility prop-
erty.

Now we will introduce the concept of transition matrix. A transition matrix
T (x1, t1|x0, t0) is such that connects two one-point probabilities of a stochastic
process in the following way

p(x1, t1) =
∑
x0

T (x1, t1|x0, t0)p(x0, t0) (2.16)

since all the outcomes at time t1 are complete, i.e.
∑

x1
p(x1, t1) = 1, a de-

sired property of the transition matrix is that
∑

x1
T (x1, t1|x0, t0) = 1 and

since probabilities are positive quantities, i.e. p(x1, t1) ≥ 0 it follows that
T (x1, t1|x0, t0) ≥ 0. These two properties define what is called a stochastic
matrix.

Now from the initial time t0 the quantity p(x1, t1|x0, t0) is well defined and we
can do the association T (x1, t1|x0, t0) = p(x1, t1|x0, t0). This follows from the
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definition of conditional probability p(x1, t1;x0, t0) = p(x1, t1|x0, t0)p(x0, t0),
which implies p(x1, t1) =

∑
x0
p(x1, t1|x0, t0)p(x0, t0). Starting from any other

initial time t1 of a general stochastic process unfortunately will not yield the
same equality, i.e. T (x2, t2|x1, t1) ̸= p(x2, t2|x1, t1) simply because p(x2, t2|x1, t1)
is not well defined. Remember in fact that in general events happening at
time t2 depend on both t0 and t1 times. In a Markovian process, though
p(x2, t2|x1, t1;x0, t0) = p(x2, t2|x1, t1) and we can write T (x2, t2|x1, t1) = p(x2, t2|x1, t1)
for every t2 ≥ t1.

This means that for a Markovian process, the transition matrices obey the
Chapman-Kolmogorov equation derived above. In summary, they have to obey
the three properties

∑
x1

T (x1, t1|x0, t0) = 1 (2.17)

T (x1, t1|x0, t0) ≥ 0 (2.18)

T (x3, t3|x1, t1) =
∑
x2

T (x3, t3|x2, t2)T (x2, t2|x1, t1) (2.19)

In particular, the last equation means that the evolution from time t1 to time
t3 can always be expressed as a composition of two single-step processes, one
from time t1 to time t2 and the other from time t2 to time t3. Such a property
is also called divisiblity and the entire process will be called divisible.

Notice that it is always possible to satisfy Eq. 2.17 and 2.19 in the following
way:

T (x2, t2|x1, t1) =
∑
x0

T (x2, t2|x0, t0)T (x0, t0|x1, t1) =∑
x0

p(x2, t2|x0, t0)[p(x1, t1|x0, t0)]−1
(2.20)

but the problem is to ensure Eq. 2.18.
An important characterization of divisible processes is given by a property

called contractivity under L1-norm, which we will present in the following sec-
tion.

2.2.1 Contractive property

Let us consider a random variable X that can have two possible associated
probability distributions, p1(x) and p2(x), respectively drawn out with proba-
bility q and 1− q. Then the minimal probability of failing to guess the correct
distribution is given by:

Pmin(fail) =
1− ||w||1

2
(2.21)
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where ||v||1 =
∑

x |v(x)| is the L1-norm of a vector, and w(x) = qp1(x) − (1 −
q)p2(x).

We will provide a proof of the quantum case of this theorem later on, which
includes the classical one as a particular case.

Now the L1-norm has a very important property called contractivity under
divisible processes, which is formulated in the following way:

Theorem 2.1. A transition matrix belongs to a divisible process if and only
if it contracts the trace norm of every vector, meaning ∀v and t1, t2 such that
t1 ≤ t2:

||v(x2)||1 = ||
∑
x1

T (x2, t2|x1, t1)v(x1)||1 ≤ ||v(x1)||1 (2.22)

Proof. The first implication to prove is that if T (x2, t2|x1, t1) is a stochastic
matrix, then it is also a contraction of v(x1)

||
∑
x1

T (x2, t2|x1, t1)v(x1)||1 =
∑
x2

|
∑
x1

T (x2, t2|x1, t1)v(x1)| ≤

≤
∑
x1,x2

T (x2, t2|x1, t1)|v(x1)| = ||v(x1)||1.
(2.23)

Where we used the triangle inequality for the modulus and the properties of a
stochastic matrix.

The opposite implication is, assuming any vector v(x1) is contracted by the
action of T (x2, t2|x1, t1), then T (x2, t2|x1, t1) ≥ 0. We just need this property
since we already shown Eq. 2.17 and 2.18 are easily satisfied. We will consider
a probability vector, i.e. v(x) = p(x) ≥ 0 and

∑
x p(x) = 1. We will also assume

that
∑

x2
T (x2, t2|x1, t1) = 1 is true.

||p(x1)||1 =
∑
x1

p(x1) =
∑
x1,x2

T (x2, t2|x1, t1)p(x1) ≤
∑
x2

|
∑
x1

T (x2, t2|x1, t1)p(x1)| =

=
∑
x2

|p(x2)| ≤ ||p(x1)||1

(2.24)

Meaning∑
x1,x2

T (x2, t2|x1, t1)p(x1) =
∑
x2

|
∑
x1

T (x2, t2|x1, t1)p(x1)| (2.25)

which is only possible if the transition matrix is positive.

It follows that, for Non-Markovian stochastic processes the probability of
distinguishing two distributions can grow again at a certain time t1 ≥ t0. This
is what is called backflow of information. Consider the task of distinguishing
the two probability distributions p1(x) and p2(x). Then if we are in the presence
of a Markov process it is better to sample them as soon as possible. On the
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contrary, for a non-Markov process, it might be better to wait more time before
performing the sampling.

After presenting the main points of the classical Markovian theory we are
ready to discuss its generalization to the quantum case.

2.3 Quantum scenario
In the quantum case, it is impossible to sample a system at different times with-
out perturbing it, so we have to restrict the theory to one-point probabilities,
for which markovianity and divisibility coincide.
Consider an initial density matrix decomposed in some eigenbasis:

ρ(t0) =
∑
x

pi(x, t0) |x⟩ ⟨x| (2.26)

This state evolves in such a way that only the eigenvalues change, not the
eigenvectors.

ρ(t) =
∑
i

pi(x, t) |x⟩ ⟨x| (2.27)

This is equivalent to a classical stochastic process.
Then we can think about these eigenvalues being transformed by stochastic

matrices
p(x1, t1) =

∑
x0

T (x1, t1|x0, t0)p(x0, t0) (2.28)

and if the matrices satisfy the divisibility property we speak about a Markov
process.

This process can be written in terms of a linear quantum map bringing the
state from t0 to t1.

ρ(t1) = Λt1,t0(ρ(t0)) =
∑
x0

p(x0, t0)Λt1,t0(|x0⟩ ⟨x0|) =∑
x1,x0

T (x1, t1|x0, t0)p(x0, t0) |x1⟩ ⟨x1|
(2.29)

since T (x1, t1|x0, t0) is a stochastic matrix this map preserves positivity and
trace of ρ(t0). Now we want to bring ρ(t1) from time t1 to time t3.

ρ(t3) = Λt3,t1(ρ(t1)) =
∑
x1

p(x1, t1)Λt3,t1(|x1⟩ ⟨x1|) =∑
x3,x1

T (x3, t3|x1, t1)p(x1, t1) |x3⟩ ⟨x3| =∑
x3,x1,x2

T (x3, t3|x2, t2)T (x2, t2|x1, t1)p(x1, t1) |x3⟩ ⟨x3| =∑
x1

p(x1, t1)Λt3,t2(Λt2,t1(|x1⟩ ⟨x1|))

(2.30)
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Where the last steps are valid if the divisibility property of the process holds.
Then we can say the dynamical map obeys the following composition law:

Λt3,t1 = Λt3,t2 ◦ Λt2,t1 (2.31)

This is usually also referred to as divisibility property. Notice that each of the
composed maps is physical, i.e. positivity and trace-preserving ∀t1 ≤ t2 ≤ t3.
A two-point map Λt3,t2 = Λ−1

t3,t2 ◦ Λt3,t1 from any intermediate time to the
final is called propagator. If the propagator is positive we call the dynamic
P-divisible. If it’s completely positive we speak of CP-divisibility. A much
stronger property is the semigroup one, i.e. Λt1+t2,0 = Λt1,0 ◦ Λt2,0. Finally,
in the general quantum setting, we require these properties to hold even when
the eigenbasis of the density matrix is not preserved during the dynamics. We
will now provide a simple physical model for a Markovian quantum dynamic.

2.3.1 Collisional model
In this model, we consider an environment consisting of many identical particles
ρ⊗N
E , with N very large. The interaction between the system and environment

is discretized in time steps t1, ..., tn, and it happens with only one particle of
the environment per time. The n-th interaction is of the form:

ρS(tn+1) = TrE [U(tn+1, tn)ρS(tn)⊗ ρEU
†(tn+1, tn)] = Λ(tn+1,tn)[ρS(tn)]

(2.32)
Notice that, after having interacted with the system, the interacting particle of
the environment is thrown away. In the next step, the system interacts with
another identical particle ρE through the unitary U(tn+1, tn+2), and so on. See
Fig. 2.3 and [CLGP22].

It is easy to see that the total dynamics from t1, ..., tn is a concatenation of
all these completely positive dynamics, making it Markovian then.

ρS(tn+2) = Λ(tn+2,tn+1)Λ(tn+1,tn)[ρS(tn)] (2.33)

In the limit tn+1 − tn → 0, for every n, it is possible to recover a contin-
uous dynamics obeying a Lindblad master equation (see next section). We
will now review the main approaches to characterize or quantify quantum non-
Markovianity.

2.4 Characterization of quantum Markovianity
The characterization of quantum Markovian dynamics we will now present is
based on the property of being differentiable.

Definition 2.2. A quantum dynamics is differentiable if the generator

Lt := lim
ε→0

Λ(t+ε,t) − I
ε

(2.34)

is well-defined. A sufficient condition for the existence of the generator is the
semigroup one.
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Figure 2.3: [RHP14] Collisional model: at each step, the system is put in contact
in an uncorrelated way with a big environment ρE , it interacts through the
unitary U(tn, tn+1), the environment is thrown away and it is reset to the initial
state ρE for the next step.

A closed expression for the equation of motion of open quantum systems is
known only in the case of Markovian dynamics.

Theorem 2.2. A quantum dynamics is Markovian iff the master equation
[Pea12]

dρ(t)

dt
= Lt(ρ(t)) = −i[H(t), ρ(t)]+

∑
k

γk(t)(Vk(t)ρ(t)V
†
k (t)−

1

2
{V †(t)V (t), ρ(t)})

(2.35)
can be written with positive decoherence rates γk(t) ≥ 0, ∀k.

Proof. We will prove the implication: Markovian dynamics =⇒ positive Lind-
bladian.

Let’s write the evolution between two generic times t1 and t2 in Kraus de-
composition

Λ(t2,t1)(ρ) =
∑
α

Kα(t2, t1)ρK
†
α(t2, t1) (2.36)

Let {Fj , j = 1, ..., N2} be a complete orthonormal basis of operators with
respect to the Hilbert-Schmidt norm: (Fi, Fj)HS = Tr(F †

j Fk) = δjk, such that
FN2 = I√

N
and the rest are traceless, i.e. Tr(Fj) = 0 ∀j = 1, ..., N2 − 1.

Clearly, the Kraus operators can be expanded in such a basis

Kα(t2, t1) =

N2∑
i=1

cαi (t2, t1)Fi (2.37)

cαi (t2, t1) = (Fi,Kα(t2, t1))HS (2.38)

Λ(t2,t1)(ρ) =

N2∑
i,j=1

∑
α

cαi (t2, t1)(c
α
j )

∗(t2, t1)FiρF
†
j (2.39)

with cαi (t2, t1) continuous and differentiable. The matrix
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cij =
∑
α

cαi (t2, t1)(c
α
j )

∗(t2, t1) (2.40)

is positive semidefinite.
Let’s choose t1 = t and t2 = t+ ε. Then we can write the generator as

Lt(ρ) = lim
ε→0

N2∑
i,j=1

cij(t+ ε, t)FiρF
†
j − I

ε
= lim

ε→0

[
1

N

cN2N2(t+ ε, t)−N

ε
ρ

+
1√
N

N2−1∑
i=1

(
ciN2(t+ ε, t)

ε
Fiρ+

cN2i(t+ ε, t)

ε
ρF †

i

)
+

N2−1∑
i,j=1

cij(t+ ε, t)

ε
FiρF

†
j


(2.41)

and defining

aN2N2(t) = lim
ε→0

cN2N2(t+ ε, t)−N

ε
(2.42)

aiN2(t) = lim
ε→0

ciN2(t+ ε, t)

ε
, j = 1, ..., N2 − 1 (2.43)

aij(t) = lim
ε→0

cij(t+ ε, t)

ε
, i, j = 1, ..., N2 − 1 (2.44)

F (t) =
1√
N

N2−1∑
i=1

aiN2(t)Fi (2.45)

G(t) =
aN2N2

2N
I+

1

2
(F † + F (t)) (2.46)

H(t) =
1

2i
(F † − F (t)) (2.47)

Lt(ρ) = −i[H(t), ρ] + {G(t), ρ}+
N2−1∑
i,j=1

aij(t)FiρF
†
j (2.48)

The map preserves the trace so

0 = Tr(Lt(ρ)) = Tr

2G(t) + N2−1∑
i,j=1

aij(t)F
†
i Fj

 ρ
 (2.49)

∀ρ which implies that

G(t) = −1

2

N2−1∑
i,j=1

aij(t)F
†
i Fj (2.50)
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Then

Lt(ρ) = −i[H(t), ρ] +

N2−1∑
i,j=1

aij(t)[FiρF
†
j − 1

2
{F †

i Fj , ρ}] (2.51)

Being aij(t) another positive semidefinite matrix because of the positivity of cij ,
it can be diagonalized by a unitary transformation∑

i,j

umi(t)aij(t)u
∗
nj(t) = γmδmn (2.52)

with γm ≥ 0. Then with the new set of operators

Vk(t) =
N2−1∑
j=1

u∗kjFj (2.53)

Lt(ρ) = −i[H(t), ρ] +

N2−1∑
k=1

γk(t)[VkρF
†
k − 1

2
{V †

k Vk, ρ}] (2.54)

For a first quantitative measure of non-Markovianity one can then define the
functions

fj(t) := max{−γj(t), 0} (2.55)

which monitors the signs of the single decay rates. The total non-Markovianity
measure inside the time interval I will be

N =

∫
I

f(t)dt (2.56)

with f(t) =
∑d2−1

j=1 fj(t). We will provide other two equivalent measures in the
next section.

2.5 Measures of quantum Non-Markovianity
The first measure we will propose uses an important characterization of com-
pletely positive maps called Choi-Jamiolkowski isomorphism [Cho75], stat-
ing that a quantum map Λ is Completely Positive iff the matrix

Λ⊗ I(|Φ+⟩ ⟨Φ+|) ≥ 0 (2.57)

is positive semidefinite, where |Φ+⟩ = 1√
d

∑
i |ii⟩ is the maximally entangled

state. Using this characterization we can say that

||Λ(t,t1) ⊗ I(|Φ
+⟩ ⟨Φ+|)||1 =

{
1 iff Λ(t,t1) is CP
> 1 otherwise.

(2.58)
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Then we define the function

g(t) := lim
ε→0+

||Λ(t+ε,t) ⊗ I(|Φ+⟩ ⟨Φ+|)||1 − 1

ε
(2.59)

and study the sign of it over a certain time interval to determine if the map is
CP divisible or not.

If the process is differentiable we can write

g(t) = lim
ε→0+

||[I+ ε(Lt ⊗ I)](|Φ+⟩ ⟨Φ+|)||1 − 1

ε
(2.60)

The second measure we will propose makes use of the contractivity property
of a positive map, a property that holds in the quantum case too.

2.5.1 Contractivity

Theorem 2.3. A trace-preserving linear map is positive iff it is a contraction
[PGWPR06] for the trace norm ||A||1 = Tr(

√
A†A).

Proof. First, we will prove the only if implication.
Let us split our operator into two orthogonal positive parts

σ = σ+ − σ− (2.61)

||σ||1 = ||σ+||1 + ||σ−||− (2.62)

with σ+ containing the positive eigenvalues of σ, and σ− the negatives, but with
changed sign. Trace preservation implies ||Λ(ρ)||1 = ||ρ||1 on positive operators
ρ. Then, since the map can mix the orthogonal subspaces of the supports of σ+

and σ− we will use triangular inequality of the trace norm

||Λ(σ)||1 ≤ ||Λ(σ+)||1 + ||Λ(σ−)||1 = ||σ+||1 + ||σ−||1 = ||σ||1 (2.63)

For the other implication

||ρ||1 = Tr(ρ) = Tr(Λ(ρ)) ≤ ||Λ(ρ)||1 ≤ ||ρ||1 (2.64)

Then
Tr(Λ(ρ)) = ||Λ(ρ)||1 (2.65)

for every ρ, making the map positive.

This implies that the inverse of a map, even if it might exist mathematically,
is never physical unless we are talking of a unitary, since an invertible physical
map must basically leave the trace norm invariant. We refer once again to the
review [RH12] for the complete proof of this fact. An invertible physical map is
called reversible.

The trace norm has a very important physical application, connected to the
single shot distinguishability of two quantum states in a similar fashion that the
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L1 norm was connected to the distinguishability of two probability distributions
[Hel69]. We will now give the proof of the quantum version of this fact.

The task will be to distinguish two quantum states by means of a binary
quantum measurement (POVM) {T, I− T}, the outcome of T meaning we are
observing ρ1 and the outcome of I − T signaling the presence of ρ2. The state
ρ1 is prepared with probability q and the state ρ2 with 1− q.

Theorem 2.4. The minimum error probability in the one-shot state discrimi-
nation task between ρ1 and ρ2 is given by

Pmin(fail) =
1− ||∆||1

2
(2.66)

where ∆ = qρ1 − (1− q)ρ2.

Proof. The average probability of failing the discrimination task is given by:

P (fail) = qTr(ρ1(I− T )) + (1− q)Tr(ρ2T ) (2.67)

at this point we need to minimize among all possible binary POVMs, then
Pmin(fail) can be rewritten as:

Pmin(fail) = q −max0≤T≤ITr(∆T ) = q − Tr(∆+) (2.68)

where ∆ = qρ1 − (1− q)ρ2.
Notice that we used the fat that Tr(∆T ) is upper bounded by Tr(∆+), with ∆+

the positive part of the matrix ∆, meaning the matrix with only the positive
eigenvalues of ∆. In fact, this can be decomposed in ∆ = ∆+ − ∆−, with
∆+,∆− ≥ 0, ∆− containing the negative eigenvalues of ∆ with opposite sign.
Moreover combining the 2 relations:

Tr(∆) = Tr(∆+)− Tr(∆−) = 2q − 1 (2.69)

||∆||1 = Tr(∆+) + Tr(∆−) (2.70)

and solving for

Tr(∆+) =
||∆||1 + 2q − 1

2
(2.71)

Substituting in 2.68 we obtain 2.21.

The classical case is retrieved when the two states are diagonal in the same
basis and the binary measurements commute.

Then we can define a second measure of non-Markovianity based on the
contractivity of the map in the presence of an ancilla:

lim
ε→0+

||∆(t+ ε)||1 − ||∆(t)||1
ε

(2.72)

where ∆(t0) = qρ1A + (1 − q)ρ2A is the enlarged Helstrom matrix and ∆(t) =
Λ(t,t0)⊗I(∆), which takes into account the presence of an inert ancillary system.
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48 CHAPTER 2. QUANTUM NON-MARKOVIAN PROCESSES

Figure 2.4: [RHP14] Evolution of the distinguishability between two states ρ1
and ρ2 undergoing two different dynamics. Red curve: Overall the dynamic is
positive so the map will be contractive, but there is an intermediate time such
that the derivative of ||∆(t)||1 can be positive. That is a signature of a negative
propagator, i.e. non-Markovianity. Blue curve: The dynamic is positive and
positive-divisible, hence it is always contractive.

In other words, we are imagining a state discrimination task as the one
defined in Theorem 2.4, but with time-dependent states ρ1(t) and ρ2(t). De-
pending on the type of dynamic (Markovian or not) they are subject to, the
probability of distinguishing them can only decrease or at a particular time t∗
can increase. See figure 2.4. In the non-Markovian case is then convenient to
wait for this time t∗, but in the Markovian one, the experimenter should perform
the measurement as fast as possible.

Having equipped ourselves with the theories of quantum resources and open
systems we are now ready to present the original results of this thesis in the
next two chapters.
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Chapter 3

Preserving quantum resources
with non-Markovian
dynamics

In this chapter, based on the original results published in the work [MWS+22],
we show that there is an advantage of non-Markovian types of noises over Marko-
vian ones in preserving resources such as quantum correlations or coherence.
The family of noises we will study does not have to reduce to a trivial uni-
tary evolution at any time, hence we will consider a decoherence matrix always
separated from 0.

In the next section, we will review the basics of qubit dynamics and we will
prove a statement about correlations between two qubits when one is subject to
a Markovian noise and the other plays the role of an ancillary system, i.e. their
correlations inevitably decay exponentially in time. In particular, our setting is
made explicit in Fig. 3.1: a qubit is prepared in a correlated state with another
two-level particle, eventually in a maximally correlated state. Moreover, the
same qubit is put in contact with an environment that generates the noise. We
wish to study the behavior of the correlations between the two qubits over time
when the environment is such that induces Markovian dynamics.

In section 3.2 we will describe the covariant maps, a particular class of maps
that arise naturally when a specific basis is fixed.

In section 3.3 we allow those maps to be non-Markovian and show an example
in which a map that is always non-Markovian is the best choice for preserving
the initial correlations. Then we proceed, in section 3.4, to study the evolution
of different correlations and resource measures under this dynamic and give a
practical scenario of an application in quantum metrology.

Finally, in section 3.5 we will present the setup and results of an experiment
that simulates this optimal example using single photons interacting with a
quartz crystal.
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Figure 3.1: Setting studied in this chapter: a qubit is prepared in a correlated
state with another two-level particle, eventually in a maximally correlated state.
Moreover, the same qubit is put in contact with an environment that generates
the noise.

3.1 Qubit dynamics
For d = 2, the Lindblad jump operators are given by the Pauli matrices σi
i = 1, 2, 3. They are given by, expressed in the computational basis {|0⟩ , |1⟩}:

σ1 =

(
0 1
1 0

)
(3.1)

σ2 =

(
0 −i
i 0

)
(3.2)

σ3 =

(
1 0
0 −1

)
(3.3)

and they obey the commutation and anti-commutation relations

[σi, σj ] = 2iεijkσk (3.4)
{σi, σj} = 2δijI (3.5)

σiσj = δijI+ iεijkσk (3.6)

The Lindbladian reads

Lt(ρ) =
1

2

3∑
i,j=1

γij(t)

(
σiρσj −

1

2
{σiσj , ρ}

)
(3.7)

We make use of the Bloch vector representation of a qubit density matrix

ρ(t) =
1

2

(
I+

3∑
i=1

ri(t)σi

)
(3.8)

with ||r⃗(t)|| ≤ 1. Putting this form into eq. 3.7 and using the commutation
relations
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Lt(ρ) =
1

2

3∑
i,j=1

{[
1

2
(γij(t) + γji(t))− γii(t)

]
rj(t) + ξj(t)

}
σj (3.9)

where ξk(t) = i
∑3

i,j=1 εijkγij(t) is a vector given by the antisymmetric part
of the decoherence matrix and representing a non-unital shift of the Bloch vector.

This means that the corresponding differential equations for the Bloch vector
components are

˙⃗r(t) = (γS(t)− Tr[γ(t)]I)r⃗(t) + ξ⃗(t) (3.10)

with γS(t) = 1
2 (γij(t) + γji(t)) symmetric part of the decoherence matrix.

We remember that the solution of an inhomogeneous differential equation of
the first order [HC80]

y′ + p(t)y = f(t) (3.11)

is given by a solution of the homogeneous equation y′ + p(t)y = 0, i.e.
y(t) = AeP (t), with P (t) = −

∫ t

0
p(t′)dt′, plus a particular one of the 3.11, i.e.

y(t) = v(t)eP (t), with v′(t) = e−P (t)f(t).
In other words, all solutions have the form

y(t) = v(t)eP (t) +AeP (t) (3.12)

Analogously, if Xt is the solution to the homogeneous differential equation
˙⃗r(t) = Atr⃗(t), with At = γS(t) − Trγ(t)I, meaning d

dtXt = AtXt, then the
solution to the inhomogeneous equation is given by

r⃗(t) = Xtr⃗0(t) +Xt

∫ t

0

X−1
s ξ⃗(s)ds (3.13)

Note that the second term of the solution is independent of the initial con-
dition.

Let us now consider a full rank decoherence matrix γ(t) ≥ cI, ∀t ≥ T , with
c > 0. This assumption guarantees that the evolution never became a trivial
unitary, even at large time scales. Moreover, the positivity of γ(t) implies that
Lt(ρ) is the generator of a Markovian evolution Λt(ρ). Then we can prove the
following property:

Proposition 1

min
σA⊗σB

||Λt ⊗ I(ρAB)− σA ⊗ σB ||1 ≤ 2e−2ct (3.14)

Proof. Since γ ≥ cI, it follows that Tr[γ] ≥ c, and we can rewrite the differential
equation as

˙⃗r(t) = (A′
t − 2cI)r⃗(t) + ξ⃗(t) (3.15)
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with A′
t = γSt − Tr(γ)I+ 2cI ≤ γSt + cI ≤ 0. The solution to this equation is

r⃗(t) = e−2ctX ′
tr⃗0 + e−2ctX ′

t

∫ t

0

e2cs(X ′
s)

−1ξ⃗sds (3.16)

with d
dtX

′
t = A′

tX
′
t. Defining

η⃗(t) = e−2ctX ′
t

∫ t

0

e2cs(X ′
s)

−1ξ⃗sds (3.17)

it is true that |r⃗(t)− η⃗(t)| ≤ 2−ct|r⃗0|, which means that

||Λt(ρ0)− ρ̃(t)||1 ≤ e−2ct (3.18)

with ρ̃(t) = 1
2 (I+ η⃗(t) · σ⃗), for all initial states ρ0.

This implies that the distance between the two maps Λt and Φt(ρ) = Tr(ρ)ρ̃(t),
||Λt − Φt|| = minρ ||Λt(ρ)− Φt(ρ)||1 is also exponentially bounded

||Λt − Φt|| ≤ e−2ct (3.19)

Finally, using the relation

||Λ1 ⊗ Id − Λ2 ⊗ Id|| ≤ d||Λ1 − Λ2|| (3.20)

with the substitution Λ1 = Λt and Λ2 = Φt, and noticing that

Φt ⊗ I(ρAB) = Φ(ρA)⊗ ρB (3.21)

we end up with

||Λt ⊗ I(ρAB)− Φt(ρ
A)⊗ ρB || ≤ 2e−2ct (3.22)

Every two-qubit state is then sent exponentially close to a product one by
the action of a Markovian, never ending evolution, if we wait for a sufficiently
long time. This means that any form of correlation is destroyed by a Markovian
noise acting locally on one qubit.

Before moving on to the problem of preserving quantum resources we will
now describe the class of maps we will focus on in this chapter.

3.2 Covariant maps
One of the quantum resources we wish to preserve is given by quantum coher-
ence. Since, as we saw in Chapter 1, this is a basis-dependent quantity, we focus
our attention on covariant dynamical maps [FGL20],[SKanHDDan16], i.e. maps
with the property

Λt(UρU
†) = UΛt(ρ)U

† (3.23)

52



53 3.2. COVARIANT MAPS

of commuting with a unitary, that, without loss of generality, we will fix to be
a rotation around the z-axis of the Bloch sphere U = e−iσzφ. This definition is
basically equivalent to the one of TIO.

The most general form of a Lindbladian for such maps is given by the fol-
lowing decoherence matrix, written in the Pauli basis

γ(t) =

 a(t) ix(t) 0
−ix(t) a(t) 0

0 0 f(t)

 (3.24)

with eigenvalues γ±(t) = a(t)± x(t) in the σ± = 1
2 (σx ± σy) basis and f(t)

in σz basis.
The diagonal form of the Lindbladian is then given by

Lt(ρ) = γ+(t)

(
σ+ρσ− − 1

2
{ρ, σ−σ+}

)
+ γ−(t)

(
σ−ρσ+ − 1

2
{ρ, σ+σ−}

)
+

γz(t)(σzρσz − ρ)

(3.25)

with γ+(t) being a gain rate, γ−(t) a dissipation and γz(t) a dephasing one.
Let’s write 3.10 in this case.

γS − Tr(γ)I =

−(a(t) + f(t)) ix(t) 0
−ix(t) −(a(t) + f(t)) 0

0 0 −2a(t)

 (3.26)

ξ⃗(t) =

 0
0
x(t)

 (3.27)

ṙ1(t) = −(a(t) + f(t))r1(t) (3.28)
ṙ2(t) = −(a(t) + f(t))r2(t) (3.29)
ṙ3(t) = −2a(t)r3(t)− 2x(t) (3.30)

with solutions

r1(t) = e−A(t)−F (t)r1(0) (3.31)

r2(t) = e−A(t)−F (t)r2(0) (3.32)

r3(t) = e2A(t)r3(0)− lz(t) (3.33)

with A(t) =
∫ t

0
a(τ)dτ , F (t) =

∫ t

0
f(τ)dτ and lz(t) = 2e−A(t)

∫ t

0
x(τ)e4A(τ)dτ .

Calling λ(t) = e−A(t)−F (t) and λz(t) = e−2A(t) the effective evolution of a
generic initial density matrix will be

Λt(ρ) =
1

2
(I+ λ(t)(r1(0)σ1 + r2(0)σ2) + (λz(t)− lz(t))r3(0)σz) (3.34)
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Decoherence rates and lastly defined factors are connected through the re-
lations

γ±(t) =
λz(t)

2

d

dt

(
1± lz(t)

λz(t)

)
(3.35)

γz(t) =
1

4

d

dt
ln
λz(t)

λ2(t)
(3.36)

Those have to be all positive for a CP-divisible dynamic.
Let’s write the Choi matrix of this dynamic. This will correspond to our

setting of Fig. 3.1 in which we prepare an initial maximally entangled state of
the system and the ancilla and the noise acts locally on the qubit system.

ΩΛt
= Λt ⊗ I(|Φ+⟩ ⟨Φ+|) = 1

4

1∑
i,j=0

Λt(|i⟩ ⟨j|)⊗ |i⟩ ⟨j| =

1

4


1 + λz(t) + lz(t) 0 0 2λ(t)

0 1− λz(t)− lz(t) 0 0
0 0 1− λz(t) + lz(t) 0

2λ(t) 0 0 1 + λz(t)− lz(t)


(3.37)

The conditions for the positivity of this matrix, then the complete positivity
of the map are

λz(t) + |lz(t)| ≤ 1 (3.38)

4λ2(t) + l2z(t) ≤ (1 + λz(t))
2 (3.39)

The Bloch ball is contracted into an ellipsoid with axes λ, λ, λz and shifted
by lz along the z-axis 3.3. As long as these conditions are satisfied the matrix
γ(t) doesn’t have to be positive semidefinite if we don’t want to impose CP-
divisibility. In the next section, we will relax the CP-divisibility condition,
allowing the γ(t) matrix to be negative and search among this class of evolutions
for the one that best preserves quantum correlations.

3.3 Preserving quantum correlations
The first condition for complete positivity 3.38 means that the image space of
the Bloch vector will never be outside the Bloch sphere. This implies, from
the differential equation 3.30 for the coordinate r3(t), that x(t)

a(t) ≤ 1, and by
definition of γ±(t) = a(t) ± x(t), the only possible negative eigenvalue of the
decoherence matrix γ(t) can be f(t).

The condition for the separability of the Choi state is given by the Peres
criterion [Per96]., which for a two-qubit state is necessary and sufficient. It
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states that a bipartite state ρ =
∑

ijkl ρijkl |i⟩ ⟨j|
A ⊗ |k⟩ ⟨l|B is separable iff

ρTB ≥ 0 (3.40)

where
ρTB =

∑
ijkl

ρijkl |i⟩ ⟨j|A ⊗ |l⟩ ⟨k|B (3.41)

is the partial transposition of ρ with respect to the system B. This condition
applied to the Choi state reads:

ΩTB

Λt
=

1

4

1∑
i,j=0

Λt(|i⟩ ⟨j|)⊗ |j⟩ ⟨i| =

1

4


1 + λz(t) + lz(t) 0 0 0

0 1− λz(t)− lz(t) 2λ(t) 0
0 2λ(t) 1− λz(t) + lz(t) 0
0 0 0 1 + λz(t)− lz(t)

 ≥ 0

(3.42)

which leads to

−λz(t) + |lz(t)| ≤ 1 (3.43)

4λ2(t) + l2z(2) ≤ (1− λz(t))
2 (3.44)

The first condition is automatically true if the first condition for complete
positivity is true. Violating the second we guarantee that the map is not en-
tanglement breaking at that time. Together, the violation of condition 3.44 and
the condition 3.39, read (see Fig. 3.2)

(1− λz(t))
2 < 4λ2(t) + l2z(t) ≤ (1 + λz(t))

2 (3.45)

Then by saturating the CP condition, we obtain the dynamic that best preserves
quantum correlations among this family.

We now give an explicit solution for the simple, but didactical case of a(t) = a
and x(t) = x constants.

The evolution factors became

λ(t) = e−at−
∫ t
0
f(t′)dt′ (3.46)

λz(t) = e−2at (3.47)

lz(t) = e−2at

∫ t

0

e2at
′
xdt′ =

x

a
(1− e−2at) (3.48)

The saturated CP condition reads
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sinh(at)2

cosh(at)2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
at

0.5

1.0

1.5

2.0

Figure 3.2: In green a generic f(t) fulfilling the condition (1−λz(t))2 < 4λ(t)2+
lz(t)

2 ≤ (1 + λz(t))
2, which converge to one function as t → ∞. In blue and

orange lower and upper bounds of the condition.

4e−2ate−2
∫ t
0
f(t′)dt′ +

x2

a2
(1− e−2at)2 = (1 + e−2at)2 (3.49)

e−2
∫ t
0
f(t′)dt′ = cosh2 at− x2

a2
sinh2 at = h(t) (3.50)

f(t) = −
˙h(t)

2h(t)
= −1

2
a

(
1− x2

a2

)
sinh 2at

cosh2 at− x2

a2 sinh
2 at

(3.51)

This optimal eigenvalue of the decoherence matrix is always negative, then
it gives rise to an eternally non-Markovian dynamics. Notice that γ(t)
once again never crosses 0, meaning the evolution never stops. Particular cases
of this are the unital one, for x = 0, which is known in the literature as Hall
dynamic [HCLA14], and x = a which is the amplitude damping, i.e. the entire
Bloch sphere being mapped on one pole.

In the next section, we will proceed to analyze the behavior of different
quantum resources over time, under the action of this simple example.

3.4 Resources behaviour
With the optimal choice of f(t) 3.51 the factor λ(t) becomes:

λ(t) =
1

2

√
(1 + e−2at)2 − x2

a2
(1− e−2at)2 (3.52)

This is connected with the l1-norm of coherence since for a qubit this is given
by
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Figure 3.3: Bloch sphere evolution for x = 0, the final image is a disk inside
the ellipsoid described by the complete positivity condition 4λ(t)2 + lz(t)

2 ≤
(1 + λz(t))

2.

Cl1(ρ) =
√
r21 + r22 = λ(t)

√
r21(0) + r22(0) (3.53)

i.e. the distance to the z-axis. The evolution of this quantifier is then given by

Cl1(t) = Cl1(0)
1

2

√
(1 + e−2at)2 − x2

a2
(1− e−2at)2 (3.54)

In the limit t → ∞ the Bloch sphere approaches a flat disk of radius
1
2

√
1− x2

a2 with center in x
a around the z-axis (see Fig. 3.3). This means this

family of non-Markovian evolutions preserves coherence of a qubit even at infi-
nite times, the maximum of coherence being preserved for the unital version of
it, i.e. x = 0.

This preserved coherence can be exploited in a quantum metrological task
as follows.

Let us suppose we want to estimate the frequency of precession of a spin 1/2
around the z-axis, evolving according to our non-Markovian dynamic and the
unitary which commutes with it, i.e. U = e−iσz

ω
2 t. Quantum metrology tells

us that the ultimate bound on the precision of this estimation is given by the
Cramer-Rao Bound

∆2ω ≥ 1

F (UΛt(ρ)U†)
(3.55)

where F (ρ) is the quantum Fisher information of the state in which the
parameter we want to estimate is encoded. There is a closed formula for it for
qubits [ZSM+13]
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F (ρ) = | ˙⃗r|2 + (r⃗ · ˙⃗r)2

1− r2
(3.56)

with ˙⃗r = ∂r⃗/∂ω. The scalar product r⃗ · ˙⃗r = 0 is vanishing for a phase covari-
ant dynamics such as the one in consideration and ˙⃗r = ωCl1(t)(cosωt,− sinωt, 0),
implying that | ˙⃗r|2 = ω2C2

l1
. Then the quantum Fisher information is propor-

tional to the l1 norm of coherence and preserving the latter implies preserving
the first. This means that the noise we are considering is the best to perform a
phase estimation of a unitary along the z axis.

Let us now look at the negativity [VW02] of the Choi state to study the
behavior of the entanglement between the qubit noisy system and the ancilla

E(ΩΛt
) =

||ΩTB

Λt
||1 − 1

2
=

1

2
e−2at (3.57)

The entanglement of this state is finite for every finite time and dies for
t→ ∞.

The mutual information I(ΩΛt
) = S(TrB [ΩΛt

]) + S(TrA[ΩΛt
]) − S(ΩΛt

),
instead is non vanishing at infinity, being

lim
t→∞

I(ΩΛt
) =

h(p)

2
(3.58)

with h(p) = −p log2 p− (1− p) log2(1− p) the binary entropy of p = 1+ x
a

2 .
Part of these correlations are also quantum, in the form of quantum discord

[ACB16], which is defined as the difference between mutual information and
purely classical information.

Q(ρAB) = I(ρAB)− C(ρAB) (3.59)

So we need to quantify C(ρAB) in order to determine Q(ρAB), based on
[ARA10].

Sending the reader to the appendix for further details, we obtain that the
quantum discord at infinite time is given by

lim
t→∞

Q(ΩΛt
) =

h
(

1+ x
a

2

)
2

+ h

1 +

√
1− x2

a2

2

2

− 1 (3.60)

In fig. 3.4 one can see all the different correlations of the Choi state at
infinity.

In the next section, we will describe a possible experimental implementation
of the evolution so far studied, showing that is possible to practically realize it
in a laboratory.
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I
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Q
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Figure 3.4: Plots of the different correlations included in the Choi state at
infinite time as a function of p =

1+ x
a

2 . In blue, mutual information, in orange
classical correlations and in green quantum correlations. Notice that I = C+Q.

3.5 Experimental implementation of the non-Markovian
dynamic

The unital version of the eternally non-Markovian dynamic, obtained for x = 0,
was implemented experimentally using a photon whose vertical and horizontal
polarization states {|V ⟩ , |H⟩} plays the role of the computational basis {|0⟩ , |1⟩}
and the environment is simulated through the many degrees of freedom of its
frequency distribution:

|ΦE⟩ =
∫
g(ω) |ω⟩ dω (3.61)

the distribution g(ω) is chosen to be a Gaussian with standard deviation δ
and centered in ω0

|g(ω)|2 =
1√
2πδ

e−
(ω−ω0)2

2δ2 (3.62)

the two "systems" interact via a quartz crystal which couples them while
the photon travels inside, through the effective unitary

U(t) =

∫
dω |ω⟩ ⟨ω| ⊗

(
e−inHωt |H⟩ ⟨H|+ e−inV ωt |V ⟩ ⟨V |

)
(3.63)
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Figure 3.5: Scheme of the experiment proposed in this section: an entangled
photon pair is generated in the state preparation section. One of them is sent to
a state tomography apparatus to the left, and the other is sent to a simulation of
our theoretical eternally non-Markovian dynamics, performed, among the others
through a quartz crystal which couples the polarizations degrees of freedom of
the photon with its frequency spectrum. Finally, after the evolution, the second
photon is tomographied too.

where nH and nV are the refraction indexes of light inside the crystal cor-
responding to the two different polarizations.

This Stinespring-like interaction leads to an effective decoherence factor
|k(t)| with

k(t) =

∫
dω|g(ω)|2e−i∆nωt = e−

∆n2δ2t2

2 −i∆nω0t (3.64)

with ∆n = nH −nV . One can always convert time t into distance l traveled
through the crystal via the relation t = l

c , with c speed of light inside the crystal.
In Fig. 3.5 we can observe a detailed scheme of the experimental setup:

first an entangled photon pair is prepared, then one of the photons is processed
through optical plates and the quartz crystals in a way that leads to the density
matrix:

Λt(ρ) =
1

2
(I+ |k(t)|z0σz) +

1

2
(1 + |k(t)|)(x0σx + y0σy) (3.65)

Finally, the decoherence factor is measured by evaluating the spectrum of
the process matrix Fij = Tr[σiΛt(σj)], which is

|λi| =
(
1,

1

2
(1 + |k(t)|), 1

2
(1 + |k(t)|), |k(t)|

)
(3.66)

The first component of this vector corresponds to the center of the Bloch
sphere and the last three components to the ones of the Bloch vector of a density
matrix undergoing this evolution. As expected by our theoretical results the x
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Figure 3.6: The dots represent the experimental values of the components of the
vector 3.65 or the Bloch sphere components versus time. x and y component
in green and yellow, z component in red and in blue the center of the Bloch
sphere. In continuous lines are plotted the theoretical values of λ(t), λz(t) and
1− lz(t), for x = 0. The match is inside the error bars.
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and y components of the density matrix converge to 1/2, the z component to 0,
and the center stays constant. See in Fig. 3.6 the plot of these factors over time
or optical path of the photon inside the crystal. Thus we can conclude that
the setup described, successfully simulates the unital version of the eternally
non-Markovian dynamics.

3.6 Conclusions
In conclusion, in this chapter, we showed that Markovian dynamics inexorably
depletes any form of correlation between a noisy qubit and its ancillary system.
We then proceed to study a particular but relevant class of dynamics called
covariant maps, important in scenarios where one basis is fixed, like the resource
theory of coherence. Allowing these sorts of maps to have a negative decoherence
matrix we showed that the best possible noise one can choose to preserve those
correlations is an eternally non-Markovian one, meaning the decoherence matrix
keeps at least one negative eigenvalue forever. We also provided an example in
which part of the preserved correlations are quantum discord and coherence is
kept different from 0 at infinite time too, having an important application in
the field of quantum metrology. Finally, an experimental implementation of this
example was described in the last section, showing a practical realization of the
eternally non-Markovian dynamics on an optical table.
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Chapter 4

Advantage of dilution

The original results presented in this chapter are extracted from the paper
[MSFAS24].

As seen in previous chapters distillation is a procedure to extract maximally
resourceful states from many copies of less resourceful ones. The inverse proce-
dure, in which imperfect states are created starting from an ensemble of golden
ones, is called dilution. Distillation of maximally resourceful states is often use-
ful since they are the states that most tasks need. However, it is unclear how
dilution can be useful. In the following, we give an example in which dilution
provides an advantage in terms of protecting some resource from some noise.

Let us try to formulate a general framework before going to the particular
examples.

We start with n copies of a maximally resourceful state, which we know will
be subject to noise, i.e. a resource-degrading map Λ. For our purposes the
definition of resource-degrading map will be: for any resource measure R and
any input state of the map Ψ it holds that

R(Λ(Ψ)) < R(Ψ) (4.1)

with a strict inequality. We are allowed though to pre-process and post-process
these copies before and after the noise with free maps Φ1 and Φ2 and then try
to distill back as many golden states as we can. In formulas

F (Λ, n, k) = max
Φ1,Φ2

F (Φ2(Λ
⊗m(Φ1(|Φ+⟩ ⟨Φ+|⊗n

))), |Φ+⟩ ⟨Φ+|⊗k
) (4.2)

The biggest rate r = k
n such that this fidelity goes to 1 in the limit of large

n will be the resource protection rate, i.e

Rp(Λ) = sup{r : lim
n→∞

F (Λ, n, ⌊rn⌋) = 1} (4.3)

We will propose a procedure in which the pre-processing Φ1 is given by the
dilution protocol (see Fig. 4.1) into the state Ψ, which lower bounds Rp(Λ).
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Figure 4.1: Two different scenarios of a collection of maximally resourceful states
Φ+ subject to local noise Λ. In picture a) no pre-processing is applied to the
ensemble and only distillation as post-processing. In Figure b) dilution is exe-
cuted as a form of pre-processing and still distillation as post-processing. We
will show that the scenario b) is advantageous in preserving more Φ+ states per
unit of initial ones in the limit n→ ∞.

For reversible resource theories, the resource protection rate of this protocol is
given by

R(Φ+ → Ψ)R(Λ(Ψ) → Φ+) =
RD(Λ(Ψ))

RC(Ψ)
=
R∞

rel(Λ(Ψ))

R∞
rel(Ψ)

(4.4)

We remember in fact, that these rates are given by the regularized relative
entropy of the resource.

R(ρ→ σ) =
R∞

rel(ρ)

R∞
rel(σ)

(4.5)

with R∞
rel(ρ) = limn→∞

Rrel(ρ
⊗n)

n and Rrel(ρ) = infσ∈F S(ρ||σ). Finally
R∞

rel(Φ
+) = 1. Even in some cases where the theory is not reversible, it is

possible to apply a similar formula for the protection rate, while the measure
will not be given anymore by a relative entropy. We will see an example of this
situation in entanglement theory (section 5.2), where the noise will bring our
initial pure state into mixed.

We will say there is an advantage of using dilution in protecting resource
from noise if for any other target state of the dilution Ψ it holds

R∞
rel(Λ(Ψ))

R∞
rel(Ψ)

>
R∞

rel(Λ(Φ
+))

R∞
rel(Φ

+)
(4.6)

We will now provide a series of examples in which this condition is verified.
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4.1 Resource theory of thermodynamics and pu-
rity

As mentioned in Chapter 1, in resource theory of thermodynamics the system
is defined by a density matrix ρ and a Hamiltonian HS . The free state is the
one in thermal equilibrium with a bath at temperature T , i.e. the Gibbs state
γS = e−βHS

Tr[e−βHS ]
. Free operations are thermal and are implemented by letting

the system interact with the bath through an energy-preserving unitary, i.e.

Λ(ρ) = TrB(U(ρ⊗ γB)U
†) (4.7)

with [U,HS+HB ] = 0. Being the set of free state of dimension 0, the regularized
relative entropy is given by R∞

rel(ρ) = S(ρ||γ) = Tr(ρ log2 ρ)−Tr(ρ log2 γ). This
quantity also gives the asymptotic rate of conversion

R(ρ→ σ) =
S(ρ||γ)
S(σ||γ)

(4.8)

For simplicity, we will now focus on the qubit case. Let us consider a qubit
Hamiltonian H = E0 |E0⟩ ⟨E0|+ E1 |E1⟩ ⟨E1|. We are in possession of n qubits
initialized in the excited eigenstate of the Hamiltonian |E1⟩. The thermal noise
we choose is of the form

Λ(ρ) = pγS + (1− p)∆(ρ) (4.9)

with ∆(ρ) =
∑1

i=0 ⟨Ei| ρ |Ei⟩ |Ei⟩ ⟨Ei| completely dephasing map in the en-
ergy eigenbasis and 0 ≤ p ≤ 1.

The resource protection rate is given by S(Λ(ρ)||γ)
S(ρ||γ) and dilution into ρ provides

an advantage with respect to do nothing before the noise whenever

S(Λ(ρ)||γ)
S(ρ||γ)

>
S(Λ(|E1⟩ ⟨E1|)||γ)
S(|E1⟩ ⟨E1| ||γ)

(4.10)

Since ∆(ρ) destroys any coherence we might as well dilute into a diagonal
state in the energy eigenbasis

ρ = (1− q) |E0⟩ ⟨E0|+ q |E1⟩ ⟨E1| (4.11)

so that ∆(ρ) = ρ. In Fig. 4.2 it is shown, for the case of noise parameter
p = 0.9 and temperature of the bath T = 0.3, that the diluted state which
maximizes the resource protection rate corresponds to q ≈ 0.82. Notice that
at this value of q the rate is higher than at q = 1, the value corresponding
to the no dilution scenario, meaning there is an advantage for a certain range
of q since the function is continuous. In further examples, it will occur that
the optimal state to dilute in order to maximize the resource protection rate
should be as close as possible to the free one. This is not true for the resource
theory or thermodynamic, since the Gibbs state in this scenario corresponds to
a parameter q ≈ 0.03.
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Figure 4.2: Resource protection rate as a function of the dilution parameter q
of the target state ρ = (1− q) |E0⟩ ⟨E0|+ q |E1⟩ ⟨E1|. The noise parameter is set
to p = 0.9 and the temperature of the bath is T = 0.3. The best performance
is achieved for q ≈ 0.82, where the rate is higher than the no dilution case
for q = 1, confirming an advantage in performing it. Moreover notice that the
parameter for the Gibbs state is q ≈ 0.03, meaning the optimal state is quite
far from it.
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Figure 4.3: Purity protection rate as a function of the parameter q of the diluted
state in Eq. 4.14. The noise parameter is set to p = 0.5. It is visible that the
maximum is attained for q → 1/2, i.e. for diluting the least pure state possible.

A particular but relevant case of the resource theory of quantum thermody-
namics is the one of purity, obtained when the Hamiltonians are degenerate, i.e.
proportional to the identity. The free Gibbs state becomes then the maximally
mixed one Id

d , the free operations are unital ones and the resource protection
rate is

S(Λ(ρ)||Id/d)
S(ρ||Id/d)

(4.12)

with S(ρ||Id/d) = −S(ρ) + log2 d.
Let us first, once again for the sake of simplicity, consider the qubit case

(d = 2). The noise in consideration will be depolarizing

Λ(ρ) = p
I

2
+ (1− p)ρ (4.13)

the states we dilute into will be a mixture of the pure states of the compu-
tational basis

ρ = (1− q) |0⟩ ⟨0|+ q |1⟩ ⟨1| (4.14)

We see from the plot 4.3, where we set the noise parameter to be p = 0.5, that
diluting always brings an advantage in protecting purity from depolarizing noise,
since the no dilution scenario is obtained for q = 0. Moreover, the maximum
protection rate is attained in the limit q → 1/2, i.e. a maximally mixed state,
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meaning the more we dilute purity the better. We give the analytical formula
of the protection rate 4.12 for completeness

1 + 1
2

[
( 32 − q) log2

1
2 (

3
2 − q) + ( 12 + q) log2

1
2 (

1
2 + q)

]
1 + q log2 q + (1− q) log2(1− q)

(4.15)

We can also prove this result for general dimension d, i.e.

sup
ρ

S(Λ(ρ)||I/d)
S(ρ||I/d)

= lim
ρ→I/d

S(Λ(ρ)||I/d)
S(ρ||I/d)

(4.16)

Let us think of the noise as a semigroup

ρt = Λt(ρ0) = ptρ0 + (1− pt)
I

d
(4.17)

with, for example, pt = e−γt. Then S(Λt(ρ)||I/d) = log2 d − S(Λt(ρ)) is a
monotonically decreasing and convex function of t. For t → ∞ it goes to the
maximally mixed state, i.e. I

d . We give the expression when ρ0 = |0⟩ ⟨0|, so it
can be verified

ρt =

 1+pt(d−1)
d 0 ...

0 1−pt

d ...

... ... 1−pt

d

 (4.18)

f(t) = S(ρt||I/d) = log2 d+

d∑
i=1

λi(t) log2 λi(t) = log2 d

+
1

d

(
(pt(d− 1) + 1) log2

pt(d− 1) + 1

d
+ (1− pt)(d− 1) log2

1− pt
d

) (4.19)

where λi(t) are the eigenvalues of ρt, i.e. 1+pt(d−1)
d with multiplicity 1 and

1−pt

d with multiplicity d− 1.
Because of monotonicity it holds that f(t) > f(t + δ) for any δ > 0 and

because of convexity d
dtf(t)|t <

d
dtf(t)|t+δ. Then the function

f(t+ δ)

f(t)
=
S(ρt+δ||I/d)
S(ρt||I/d)

=
S(Λδ(ρt)||I/d)
S(ρt||I/d)

(4.20)

which is nothing that the purity protection rate, is monotonically increasing
in the maximally mixed state direction ∀ δ and it attains its maximum there.
In the last passage, we used the semigroup property of the depolarizing noise
ρt+δ = Λδ(ρt). That is because its derivative is strictly positive

d

dt

f(t+ δ)

f(t)
=

df
dt |t+δf(t)− df

dt |tf(t+ δ)

f2(t)
> 0 (4.21)
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4.1.1 Correlations do not help
Is it better to dilute into correlated pure states |Ψk⟩ of dimension 2k instead of
a collection of k product states |Ψ⟩⊗k of dimension 2? To answer this question
we write the purity protection rate

S(Λ⊗k(Ψk)||I2k/2k)
S(Ψk||I2k/2k)

= 1− S(Λ⊗k(Ψk))

k
(4.22)

where we used the fact that S(Ψk||I2k/2k) = k. We want to maximize
this rate, meaning minimizing S(Λ⊗k(Ψk)). According to [Kin02] the minimal
output entropy of two local unital channels Λ1 ⊗ Λ2 is additive. This means
that there exist two pure qubit states |Φ1⟩ and |Φk−1⟩ such that

S(Λ⊗k(Ψk)) ≥ S(Λ(Φ1)) + S(Λ⊗k−1(Φk−1)) = S(Λ⊗k(Φ1 ⊗ Φk−1)) (4.23)

We iterate the procedure until

S(Λ⊗k(Ψk)) ≥ kS(Λ(Φ)) (4.24)

so the maximal purity protection rate under local unital noise is achieved for
product states and no correlations in the diluted state are needed to improve
the protocol.

4.1.2 Finite copies
In this section and the next, we present some original results which are not yet
published.

So far all the results we obtained work in the asymptotic limit. One can ask
if there is some finite number of diluted copies N such that diluting still would
provide an advantage in protecting resources from noise. For the advantage to
appear in the asymptotic limit, such a finite number must exist. It turns out
this number is not N = 2. Before starting with the proof we provide a useful
theorem which we are going to use later.

Let’s call Kk(ρ) the function which returns the sum of the k largest eigen-
values of the density matrix ρ, i.e.

Kk(ρ) = max
τ

Tr[ρτ ] (4.25)

where τ are all the possible rank k projectors, with the properties Tr[τ ] =
k, τ2 = I, τ ≥ 0.

It can be proven that this is a convex function,i.e.

Kk(A+B) ≤ Kk(A) +Kk(B) (4.26)

To do this let us assume ρ = A+ B, τ ′ is the optimal projector for A+ B,
and σ and γ are respectively the ones for A and B. Then it follows:

Kk(A+B) = Tr[(A+B)τ ′] = Tr[Aτ ′]+Tr[Bτ ′] ≤ Tr[Aσ]+Tr[Bγ] = Kk(A)+Kk(B)
(4.27)
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this proves convexity of Kk(ρ).
The following theorem also holds.

Theorem 4.1. Let ρAB be a bipartite state living in the Hibert space HdA
⊗HdB

.
Then ∀k1, k2 ∈ N, with k1 ≤ d1 and k2 ≤ d2

ρAk1
+ ρBk2

− Tr[ρAB ] ≤ ρAB
k1k2

(4.28)

with ρk sum of the k largest eigenvalues of the matrix ρ.

Proof. We will write ρAk1
= Tr[ρAτ ] and ρBk2

= Tr[ρBσ], with Tr[τ ] = k1, τ
2 =

I, τ ≥ 0 and Tr[σ] = k2, σ
2 = I, σ ≥ 0. Moreover I− τ = Pτ and I− σ = Pσ

ρAk1
+ ρBk2

− Tr[ρAB ] = Tr[τ ⊗ IρAB ] + Tr[I⊗ σρAB ]− Tr[I⊗ IρAB ] =

= Tr[I⊗σρAB ]−Tr[Pτ⊗IρAB ] = Tr[τ⊗σρAB ]+Tr[Pτ⊗σρAB ]−Tr[Pτ⊗IρAB ] =

= Tr[τ ⊗ σρAB ]− Tr[Pτ ⊗ Pσρ
AB ] ≤ Tr[τ ⊗ σρAB ] ≤ ρAB

k1k2
(4.29)

We will also need to slightly modify the general protocol of purity protection
to adapt it to the finite copies regime.

Our protocol starts with n pure states |Ψ⊗n⟩ (in Hilbert space S), to which
we attach m− n ancillas I

d

⊗(m−n) (in Hilbert space E). We then (pre-)process
this with a unital operation Λ1, apply the noise ΛN , which is also unital but
resource degrading, and post-processing with a third unital Λ2, such that the
following quantity, i.e. the fidelity between the post-processed state and the
original pure state, is optimized

P (ψ, n) = max
Λ1,Λ2

⟨Ψ⊗n|TrE

[
Λ2 ◦ ΛN ◦ Λ1

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I

d

)⊗(m−n)
)]

|Ψ⊗n⟩

(4.30)
Let ΛN ◦ Λ1

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I
d

)⊗(m−n)
)
= ρSE and dm−n = dE . We now show

that
max
Λ2

⟨Ψ⊗n|TrEΛ2(ρ
SE) |Ψ⊗n⟩ = ρSE

dE
(4.31)

where ρk denotes the sum of the k-largest eigenvalues of the density matrix ρ.
Firstly, note that

max
Λ2

⟨Ψ⊗n|TrEΛ2(ρ
SE) |Ψ⊗n⟩ ≤ (TrEΛ2(ρ

SE))1. (4.32)

From 4.1, by setting k1 = 1 and k2 = dE it follows that:

(TrEΛ2(ρ
SE))1 ≤ (Λ2(ρ

SE))dE
≤ ρSE

dE
(4.33)

The second inequality follows from majorization. Putting together 4.32 and
4.33,

max
Λ2

⟨Ψ⊗n|TrEΛ2(ρ
SE) |Ψ⊗n⟩ ≤ (TrEΛ2(ρ

SE))1 ≤ (Λ2(ρ
SE))dE

≤ ρSE
dE

(4.34)
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All the above inequalities can be saturated by choosing post-processing unital
(Λ2) to be a unitary, such that the eigenvectors corresponding to first "dE
largest" eigenvalues (of Λ2(ρ

SE)) are as follows:

|Ψ⊗n⟩ ⊗ |φi⟩ , i : 1 −→ dE . (4.35)

Here, |φi⟩ are arbitrary orthogonal basis of the Hilbert space E. Therefore, the
optimisation in 4.30, reduces to the following optimisation

P (ψ, n) = max
Λ1

(
ΛN ◦ Λ1

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I

d

)⊗(m−n)
))

dE

(4.36)

Moreover, using the fact that we can express the unital map Λ1 as a convex
combination of unitaries Λ1(ρ) =

∑
i piUiρU

†
i , because they have the same

conversion power:

P (ψ, n) = max
Ui,pi

(∑
i

piΛN

(
Ui

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I

d

)⊗(m−n)
)
U†
i

))
dE

(4.37)

≤ max
U1

(
ΛN

(
U1

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I

d

)⊗(m−n)
)
U†
1

))
dE

(4.38)

where we used convexity of the function KdE
(ρ) and majorized everything with

U1, the unitary which makes the initial state the most resilient to the noise, in
the sense that the eigenvalues will be preserved. Then the whole maximization
can be done considering only unitaries.

P (ψ, n) = max
U1

(
ΛN ◦ U1

(
|Ψ⟩ ⟨Ψ|⊗n ⊗

(
I

d

)⊗(m−n)
))

dE

(4.39)

Now we will use these results to check if diluting into two qudits, i.e. m =
2 and n = 1, with the new setting designed for finite copies, provides any
advantage.

4.1.3 Dilution into 2 qudits
Let’s consider a depolarizing noise:

ΛN (ρ) = pρ+ (1− p)
Id

d
(4.40)

we will need to play a bit with its definition to obtain a more useful form for
our purposes:

Λ(ρ) = p
∑
i,j

⟨i| ρ |j⟩ |i⟩ ⟨j|+ 1− p

d
Tr[ρ]

∑
i

|i⟩ ⟨i| =

= p
∑
i ̸=j

⟨i| ρ |j⟩ |i⟩ ⟨j|+
∑
i

p ⟨i| ρ |i⟩+ 1− p

d

∑
j

⟨j| ρ |j⟩

 |i⟩ ⟨i| (4.41)
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So for the matrix elements |i⟩ ⟨j|, if i ̸= j ,Λ(|i⟩ ⟨j|) = p |i⟩ ⟨j|, and if i = j,
Λ(|i⟩ ⟨i|) = p |i⟩ ⟨i|+ 1−p

d Id.
which means

Λ(|i⟩ ⟨j|) = p |i⟩ ⟨j|+ 1− p

d
δijId (4.42)

Now we can study its action on a general 2-qdit state:

ρAB =

d−1∑
i,j,k,l=0

ρijkl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| (4.43)

which is

Λ⊗ Λ(ρAB) = p2ρAB + p(1− p)

∑
i,j,k

ρijkk |i⟩ ⟨j| ⊗
I

d
+
I

d
⊗
∑
i,j,k

ρkkij |i⟩ ⟨j|

+

+(1− p)2
I

d2
= p2ρAB + p(1− p)

(
ρA ⊗ I

d
+
I

d
⊗ ρB

)
+ (1− p)2

I

d2

(4.44)

Now we are interested in the sum of the d largest eigenvalues, i.e. the function
Kd(ρ). Using convexity and theorem 1 (||ρA||∞ + ||ρB ||∞ ≤ ||ρAB ||∞ + 1):

Kd(Λ⊗ Λ(ρAB)) ≤ p2 + p(1− p)(||ρA||∞ + ||ρB ||∞) +
(1− p)2

d
≤

p((1− p)||ρAB ||∞ + 1) +
(1− p)2

d

(4.45)

If ρAB = U(|Ψ⟩ ⟨Ψ| ⊗ Id
d )U

†, with |Ψ⟩ ⟨Ψ| ⊗ Id
d = 1

d

∑ d−1
2

i=0 |i⟩ ⟨i|, and U the
unitary pre-processing, on the right-hand side we have that ||U(ρAB)||∞ ≤
|| |Ψ⟩ ⟨Ψ| ⊗ Id

d ||∞ = 1
d , because unitaries cannot increase the highest eigenvalue

of a density matrix, leading to the bound 1+p(d−1)
d . But this bound is saturated

exactly when the pre-processing is an identity operation. In fact on the left-hand
side:

Λ(|Ψ⟩ ⟨Ψ|)⊗ Λ

(
Id

d

)
=(

p |Ψ⟩ ⟨Ψ|+ (1− p)
Id

d

)
⊗Id
d

=

(
1 + p(d− 1)

d
|Ψ⟩ ⟨Ψ|+ 1− p

d
|Ψ⊥⟩ ⟨Ψ⊥|

)
⊗Id
d

(4.46)

which implies the sum of the d largest eigenvalues of the initial, not pre-
processed, noisy state is also 1+p(d−1)

d . This means that is not possible to
improve the fidelity with the initial pure state by diluting in just two qudits.
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73 4.2. ENTANGLEMENT

4.2 Entanglement

In this setting, two spatially separated parties, Alice and Bob share n singlets
|Ψ−⟩ = (|01⟩ − |10⟩)/

√
2 which they want to preserve from Bob’s local noise in

his lab. As before they first dilute them into n/S(ΨA) copies of a less entangled
state |Ψ⟩ = cosα |00⟩+ sinα |11⟩ with

ΨA = TrB [|Ψ⟩ ⟨Ψ|] =
(
cos2 α 0

0 sin2 α

)
(4.47)

then this state becomes noisy, i.e. σ = I ⊗ Λ(|Ψ⟩ ⟨Ψ|), and finally they can
distill back nED(σ)/S(ΨA) singlets from it. All of this in the limit of large n.
The noise protection by dilution is effective if

ED(σ)

S(ΨA)
> ED(I⊗ Λ(|Ψ−⟩ ⟨Ψ−|)) (4.48)

We can choose Λ(ρ) = K0ρK
†
0 +K1ρK

†
1 as qubit phase damping with Kraus

operators

K0 =

(
1 0

0
√
1− λ

)
(4.49)

K1 =

(
0 0

0
√
λ

)
(4.50)

with 0 < λ < 1, or, an equivalent description of this noise is

Λ(ρ) = (1− p)ρ+ pσzρσz (4.51)

with p = 1
2 (1−

√
1− λ). With this choice of the noise, σ will be a maximally

correlated state of the form σ =
∑1

i,j=0 σij |ii⟩ ⟨jj|. In particular

σ =


cos2 α 0 0

√
1− λ cosα sinα

0 0 0 0
0 0 0 0√

1− λ cosα sinα 0 0 sin2 α

 (4.52)

with eigenvalues (0, 0, 12 −
√

2λ cos(4α)−2λ+4

4 , 12 +

√
2λ cos(4α)−2λ+4

4 ).
For this kind of states ED(σAB) has a closed expression [LDS18] which is

ED(σAB) = S(TrB [σ
AB ])− S(σAB) =

= h(cos2 α)− h

(
1

2
+

√
2λ cos(4α)− 2λ+ 4

4

)
(4.53)
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Figure 4.4: The solid line shows the entanglement protection rate R =
ED(σ)/S(ΨA) as a function of the dilution parameter α of the target state
|Ψ⟩ = cosα |00⟩ + sinα |11⟩ and for the noise parameter λ = 0.5. The dotted
line corresponds to the no-dilution scenario. Any value of the dilution param-
eter brings an advantage to the entanglement protection rate, with maximum
protection achieved in the limit of a separable target state.

and S(ΨA) = h(cos2 α). In fig. 4.4 is shown the plot of the entanglement
protection rate R = ED(σ)/S(ΨA) as a function of the dilution parameter α and
for the choice of the noise parameter λ = 0.5. Any choice of α is advantageous in
preserving entanglement with respect to the no pre-processing scenario. The less
entanglement the diluted state contains, the more protection rate is achieved.
In the next section, we compare our protocol of pre-processing through dilution
with a more famous one, the 3-qubit error correction code.

4.2.1 Comparison with error correction
We will review the standard 3-qubit error correction protocol [Rof19]. This is
designed to be effective against a bit-flip noise. We will then initialize our singlet
in the {|+⟩ , |−⟩} basis, with |±⟩ = |0⟩±|1⟩√

2
, because σz |±⟩ = |∓⟩. In this way

|Φ+⟩ = |++⟩+|−−⟩√
2

.
First, we will attach two additional qubits, initialized in the same way, in

Bob’s lab

|Ψenc⟩ =
1√
2
(|+A(+ + +)B⟩+ |−A(−−−)B⟩) (4.54)

Then the phase flip noise will act locally on this state, producing
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75 4.2. ENTANGLEMENT

I⊗ Λ⊗3(|Ψenc⟩ ⟨Ψenc|) = (1− p)3 |Ψenc⟩ ⟨Ψenc|+ p(1− p)2
4∑

i=2

σi
z |Ψenc⟩ ⟨Ψenc|σi

z

+p2(1− p)
∑

2≤i<j≤4

σi
zσ

j
z |Ψenc⟩ ⟨Ψenc|σi

zσ
j
z + p3σ2

zσ
3
zσ

4
z |Ψenc⟩ ⟨Ψenc|σ2

zσ
3
zσ

4
z

(4.55)

The next step is to measure the observables σ2
xσ

3
x and σ3

xσ
4
x in Bob’s lab,

and apply conditional recovery unitaries R depending on the outcome of these
measurements, according to the table 4.2.1.

After this procedure, the density matrix will have the form

ρrec = ((1− p)3 + 3p(1− p)2) |Ψenc⟩ ⟨Ψenc|+
(3p2(1− p) + p3)σ2

zσ
3
zσ

4
z |Ψenc⟩ ⟨Ψenc|σ2

zσ
3
zσ

4
z

(4.56)

This procedure is able to correct only a single phase flip per time, not a
simultaneous flip of more than one qubit, or, equivalently, the encoded state is
recovered up to order p. In fact, after discarding the ancillary qubits, we obtain

ρdec = ((1− p)3 + 3p(1− p)2) |Φ+⟩ ⟨Φ+|+
(3p2(1− p) + p3)σ2

z |Φ+⟩ ⟨Φ+|σ2
z

(4.57)

This state is maximally correlated, so the number of singlets we can distill
back is

ED(ρdec) = S(TrB [ρdec])− S(ρdec) = 1− h((1− p)3 + 3p(1− p)2) (4.58)

In order to compare this procedure with the dilution we choose to dilute into
the same number of extra qubits, i.e. our dilution rate must be 3 1/S(ΨA) = 3,
attained setting α = 0.25. We see from Fig. 4.5 that the error correction proce-
dure achieves a better distillable entanglement than the entanglement protection
rate studied in the previous section.

(σ2
xσ

3
x, σ

3
xσ

4
x) R

(+1,+1) I
(+1,−1) σ4

z

(−1,+1) σ2
z

(−1,−1) σ3
z

Table 4.1: Table of the conditional recovery unitaries, conditioned on the out-
comes of σ2

xσ
3
x and σ3

xσ
4
x, that Bob has to perform in order to obtain 4.56 from

4.55.
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Figure 4.5: Plot of different distillation rates against the noise parameter p.
Green: after error correction protocol, i.e. 4.58. Orange: after dilution, i.e. the
entanglement protection rate for α = 0.25. Blue: no pre-processing.

4.3 Coherence
We start with a collection of n maximally coherent states |+⟩⊗n, in the fixed
incoherent computational basis, i.e. |+⟩ = |0⟩+|1⟩√

2
. The noise will be given by

the ampliutude damping channel Λ(ρ) = K0ρK
†
0 +K1ρK

†
1 , with

K0 =

(
1 0
0

√
1− γ

)
(4.59)

K1 =

(
0

√
γ

0 0

)
(4.60)

The coherence protection rate will be

CD(Λ(µ))

CD(µ)
(4.61)

with advantage when

C(Λ(µ))

C(µ)
> C(Λ(|+⟩ ⟨+|)) (4.62)

with C(ρ) = S(ρ||∆(ρ)) = S(∆(ρ)) − S(ρ) asymptotic distillable coherence
rate and ∆(ρ) =

∑d
i=1 ⟨i| ρ |i⟩ |i⟩ ⟨i| completely dephasing map in the incoherent

basis.
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Figure 4.6: Coherence protection rate when the diluted target state is a pure
state |Ψ⟩ = cosα |0⟩+ sinα |1⟩ (solid line) or a mixed state µ = sin2 α |+⟩ ⟨+|+
cos2 α I

2 (dashed line) plotted against the dilution parameter α. No dilution is
plotted in a straight dotted line. There is an advantage in both cases for certain
ranges of α, but mixed states perform better.

We will dilute into two different types of target states, pure µ = |Ψ⟩ ⟨Ψ|
with |Ψ⟩ = cosα |0⟩ + sinα |1⟩ and mixed µ = sin2 α |+⟩ ⟨+| + cos2 α I

2 . In Fig.
4.6 are shown the performances of pure states, in the solid curve, and mixed
state, dashed curve, against the dilution parameter α. The straight dotted line
represents the no-dilution scenario. The plot shows that dilution in both pure
and mixed states provides an advantage in protecting coherence from amplitude-
damping noise, but perhaps surprisingly mixed states perform even better in this
task.

4.4 Conclusions

To summarize, in this chapter we proposed a general protocol to protect quan-
tum resources from noise. First, we defined such a protocol. Then we showed
that a kind of operation whose usefulness in a quantum technological task was
never pointed out, dilution into less resourceful states, turns out to be deci-
sive in preserving those resources from some particular choices of noise models
if applied as pre-processing to many copies of a maximally resourceful state.
Moreover, for the resource theory of purity and entanglement, it seems that the
less resource is contained in the diluted state, the better the protection perfor-
mances, and in the resource theory of coherence, mixed states perform better
than pure ones. We also provided a comparison with the most famous protocol
to fight noise in a quantum computer, i.e. error correction. The latter still
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seems to show better performances.
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Chapter 5

Resource Generation

The original results presented in this chapter are mainly uploaded to the arxiv
at the link: [SNS24]. Here, we will study the possibility of generating resources
for a finite amount of time t, through a resource generating map Λt and we will
study how to optimize the resource production, i.e. which kind of maps and
input states are best suitable for this task. We will still restrict ourselves to
quantum dynamical semigroups, i.e. CPTP maps with the property:

Λt+s(ρ) = Λs ◦ Λt(ρ), ∀ρ, t, s ≥ 0. (5.1)

A resource-generating map is such that, for any amount of time t ≥ 0 and
any resource measure R, it exists at least one input state ρ such that:

R(Λt(ρ)) ≥ R(ρ). (5.2)

In particular, the question we will attempt to answer is the following: what
is the best way to generate resources if we have access to such a map for a
finite amount of time and to an infinite collection of any input state, including
resourceful states? We underline we work in the limit of many identical and
independent copies of states. In order to preserve this setting, the resource
generation map will be applied locally to each of the states of the collection.
The relevant resource quantifier will be the distillable resource, i.e. the rate
R(ρ) = RD(ρ) = R(ρ → Φ+). Moreover, we will restrict to reversible resource
theories, for which the following holds:

R(ρ→ Φ+)R(Φ+ → ρ) =
RD(ρ)

RC(ρ)
= 1. (5.3)

We remind that, under such an assumption, the rate of resource distillation
is given by the following minimization of the quantum relative entropy

RD(ρ) = min
σ∈Fs

S(ρ||σ) (5.4)

with S(ρ||σ) = Tr[ρ log ρ]−Tr[ρ log σ] and the minimization performed over the
set of free states.
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In the next section, we will introduce the resource-generating power and show
that it is equivalent to a more practical quantity to compute, the derivative of the
resource quantifier evaluated a t time 0 and maximized over all possible initial
states. The consideration that the amount of resource of a state is equivalent
to the time needed to generate will follow.

In Section 5.2, we will present an operational interpretation of the resource-
generating power. In the following sections, we will consider the particular
examples of resource theories of coherence, entanglement, and purity.

5.1 Resource-generating power
We formalize the resource-generating power as follows:

P (Λt) = max
ρi,t

R(Λt(ρi))−R(ρi)

t
. (5.5)

Here, we maximize over all the initial states ρi, even resourceful ones, and
time t ≥ 0. This quantity takes inspiration from the coherence-generating power
introduced in [TRS21]. Essentially, it quantifies the maximum resource gain per
unit of time after applying the map Λt. We assert that the maximization over
time can be subsumed within the maximization over the initial state and that
this quantity is equivalent to the derivative of the resource quantifier computed
at time t = 0 and maximized over all possible initial states. In fact, according to
the Lagrange or mean value theorem, if R(Λt(ρ)) is continuous and differentiable
in t, there exists a t0 ∈ [0, t] such that:

R(Λt(ρi))−R(ρi)

t
=

d

dt
R(Λt(ρi))

∣∣∣
t=t0

. (5.6)

Furthermore, by leveraging the semigroup property of the map:

d

dt
R(Λt(ρi))

∣∣∣
t=t0

= lim
∆t→0

R(Λt0+∆t(ρi))−R(Λt0(ρi))

∆t
=

= lim
∆t→0

R(Λ∆t(Λt0(ρi))−R(Λt0(ρ))

∆t
=

d

dt
R(Λt(Λt0(ρi)))

∣∣∣
t=0

.

(5.7)

Thus, the maximization over time t is encapsulated in t0, allowing us to
regard Λt0(ρi) as a new initial state µ. Notice that, since ρi spans the entire
set of density matrices, also does µ, simply by choosing Λt0 = I as the identity
map. Consequently, we can express P (Λt) as:

P (Λt) = sup
µ

d

dt
R(Λt(µ))

∣∣∣
t=0

. (5.8)

We have just shown that the resource-generating power maximized over all
possible times t is equivalent to the resource-generation rate computed at time

80



81 5.2. OPERATIONAL INTERPRETATION

t = 0 and maximized over all possible initial states µ. This means that the
resource generated after an application of the map for time T is upper bounded
by:

R(ΛT (ρ))−R(ρ) ≤ d

dt
R(Λt(µ

∗))

∣∣∣∣
t=0

T (5.9)

where µ∗ is the state that maximizes the right-hand side of Eq. 5.8. From now
on, this will be the primary quantity of interest in this chapter. In the next
section, we suggest a protocol for extracting resources from the optimal state
µ∗—the one maximizing 5.8—whose performance is characterized by the same
quantity.

5.2 Operational Interpretation
Let us assume we start with an ensemble of the optimal state µ∗ maximizing
5.8. In general, this state will cost some amount of resource, but we will show
that this is negligible compared to the resource we can generate. Then, we can:

1. Apply the resource-generating map locally to each of these replicas for a
duration δt on the initial state, yielding Λδt(µ

∗).

2. In the distillation stage, employing free operations, expend a portion of
the resource within the ensemble of states Λδt(µ

∗) to reset the replicas to
their initial state µ∗. This involves utilizing RC(µ

∗) = RD(µ∗) = R(µ∗)
amount of resource. The remaining amount, R(Λδt(µ

∗))−R(µ∗), is stored
in a resource battery. The time used to implement this stage is irrelevant
since only free operations are involved.

3. We restart the cycle from point 2.

The assembly of states µ∗ may potentially contain some amount of resource.
Nevertheless, we can demonstrate that repeating the cycle numerous times es-
sentially renders the resource cost of µ∗ negligible. The total resource gain per
unit of time after point 2. will in fact be:

R(Λδt(µ
∗))− 2R(µ∗)

δt
. (5.10)

where the second R(µ∗) is due to the resource we spend to create µ∗ at the
beginning of the cycle. We repeat this procedure N times, with N → ∞,
obtaining

lim
N→∞

R(Λδt(µ
∗))−R(µ∗)− R(µ∗)

N

δt
=
R(Λδt(µ

∗))−R(µ∗)

δt
, (5.11)

making the initial time of preparation T negligible. Finally, we also take the
limit of short time δt → 0, obtaining the derivative of the resource quantifier
computed at time t = 0

dR(Λt(µ
∗))

dt
|t=0. (5.12)

81



82 CHAPTER 5. RESOURCE GENERATION

Figure 5.1: Schematic depicture of the resource generation protocol described
in 5.2. 1. We start with a collection of µ∗ states which maximize the rate 5.8.
2. We apply the resource-generating map locally, to each of the copies µ∗, for a
time δt and obtain Λδt(µ

∗). 3. We spend part of the resource of this last state
to generate back the state µ∗, with a free operation, spending R(µ∗) amount of
resource. We then save the difference R(Λδt(µ

∗))−R(µ∗) in a resource battery
and restart the cycle from point.

Remember that µ∗ is the state which maximizes this rate. Thus, we can interpret
the resource-generating power P (Λt) as the optimal charging rate of a resource
battery in this task. In Fig. 5.1 we present a scheme of the protocol we just
described.

Let us now find the optimal initial state and resource-generating map in three
particular cases: the resource theory of coherence, entanglement, and purity.

5.3 Resource theory of coherence

We recall that the quantifier of coherence in the asymptotic limit, i.e. when we
have access to many copies of the same state is the regularized relative entropy
of coherence

R(ρ) = S(ρ||∆(ρ)) = S(∆(ρ))− S(ρ) (5.13)

82



83 5.3. RESOURCE THEORY OF COHERENCE

with

∆(ρ) =

d∑
i=1

⟨i| ρ |i⟩ |i⟩ ⟨i| (5.14)

completely dephasing channel in the fixed incoherent basis {|i⟩} of the Hilbert
space of dimension d, with i = 1, ..., d. Moreover S(ρ) = −λi log λi is the Von
Neumann entropy of ρ, wtih λi its eigenvalues. This quantifier operationally
represents the optimal rate of asymptotic conversion from an ensemble of states
ρ to another ensemble of maximally coherent states |+⟩ = 1√

d

∑d
i=1 |i⟩.

A seamless method for establishing coherence involves aligning the state with
a coherent basis, whose eigenvectors are of the form

|+i⟩ =
1√
d

d∑
j=1

eiφj |j⟩ (5.15)

where each vector |+i⟩, with i = 1, ..., d has different set of phases {φj}, such
that the |+i⟩ are mutually orthogonal. Consequently, we opt for a resource-
generating map in the form of a unitary evolution, denoted as Ut = e−iHt,
where H represents a Hamiltonian and our evolved state will be ρt = UtρU

†
t .

This unitary will keep the eigenvalues of ρ constant, therefore

dS(ρt)

dt

∣∣∣∣
t=0

= 0 (5.16)

and
dR(ρt)

dt

∣∣∣∣
t=0

=
dS(∆(ρt))

dt

∣∣∣∣
t=0

(5.17)

Before moving on we prove an important identity for the derivative of the von
Neumann entropy, i.e.

d

dt
S(ρ) = −Tr[ρ̇ ln ρ] (5.18)

Let us use the decomposition of the density operator in its eigenbasis:

ρ =
∑
i

λi |λi⟩ ⟨λi| (5.19)

ρ̇ =
∑
i

λ̇i |λi⟩ ⟨λi|+
∑
i

λi(|λ̇i⟩ ⟨λi|+ |λi⟩ ⟨λ̇i|) (5.20)

ln ρ =
∑
i

lnλi |λi⟩ ⟨λi| (5.21)

ρ ln ρ =
∑
i

λi lnλi |λi⟩ ⟨λi| (5.22)

d

dt
Tr[ρ ln ρ] = Tr[

d

dt
ρ ln ρ] (5.23)

83



84 CHAPTER 5. RESOURCE GENERATION

d

dt
ρ ln ρ =

∑
i

(
λ̇i lnλi |λi⟩ ⟨λi|+

+λ̇i |λi⟩ ⟨λi|+ λi lnλi( ˙|λi⟩ ⟨λi|+ |λi⟩ ˙⟨λi|)
) (5.24)

Please observe that the second term traced out is essentially Tr[ρ̇] = 0. Addi-
tionally, the third term is also eliminated through tracing out because:

⟨λi|λ̇i⟩+ ⟨λ̇i|λi⟩ =
d

dt
⟨λi|λi⟩ = 0 (5.25)

So, finally:
d

dt
S(ρ) = −

∑
i

λ̇i lnλi = −Tr[ρ̇ ln ρ] (5.26)

where ρ̇ = dρ
dt . This equation was also known in Lemma 1 of [BN88]. In the

following, we give more details about the last equality:

ρ̇ ln ρ =
∑
i

λ̇i lnλi |λi⟩ ⟨λi|+
∑
i

λi lnλi |λ̇i⟩ ⟨λi|+∑
i,j

λi lnλj |λi⟩ ⟨λ̇i|λj⟩ ⟨λj |
(5.27)

Tr[ρ̇ ln ρ] =
∑
i

λ̇i lnλi +
∑
i

λi lnλi(⟨λi|λ̇i⟩+ ⟨λ̇i|λi⟩) =∑
i

λ̇i lnλi
(5.28)

At this point, we have:

dR(ρ)

dt
= −

d∑
i=1

ρ̇ii ln ρii = −Tr

[(
d

dt
∆(ρ)

)
ln∆(ρ)

]
=

= −Tr[∆(ρ̇) ln∆(ρ)].

(5.29)

where, in the last step, we have used the fact that we can move the derivative
directly to the density matrix:

d

dt
∆(ρ) =

d

dt

d∑
i=1

⟨i| ρ |i⟩ |i⟩ ⟨i| =
d∑

i=1

⟨i| dρ
dt

|i⟩ |i⟩ ⟨i| = ∆

(
dρ

dt

)
(5.30)

This is because the incoherent basis is fixed in our dynamics. In other words,
we have shown that the derivative and the dephasing operation commute. Now
we apply the von Neumann equation ρ̇ = −i[H, ρ], evaluated at time t = 0:

d

dt
S(∆(ρ))

∣∣∣∣
t=0

= iTr[∆([H, ρ]) ln∆(ρ)] (5.31)
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Notice that we do not want to write d
dt∆(ρ) = −i[H,∆(ρ)], since we are first

rotating the density matrix and then dephasing it, not the opposite. To com-
pute the maximum coherence generating power, we then maximize the following
quantity:

max
ρ,H

iTr[∆([H, ρ]) ln∆(ρ)] (5.32)

over the input density matrix ρ and a bounded Hamiltonian with respect to
the Hilbert-Schmidt norm. The Hamiltonian must be bounded to guarantee a
finite time of the application of the resource generating unitary U = eiHt. We
remember the definition of the Hilbert-Schmidt norm [GGK90] for an operator
A =

∑
i,j aij |i⟩ ⟨j| being

||A||2HS ≡ Tr[AA†] =
∑
i,j

|aij |2 (5.33)

Let us now show, before proceeding, that we can drop the dephasing op-
eration applied to [H, ρ] in the expression 5.32. This fact will simplify the
calculations

[H, ρ] =
∑
i,j,k

(Eikρkj − ρikEkj) |i⟩ ⟨j| (5.34)

∆([H, ρ]) =
∑
i,k

(Eikρki − ρikEki) |i⟩ ⟨i| (5.35)

ln∆(ρ) =
∑
i

ln ρii |i⟩ ⟨i| (5.36)

[H, ρ] ln∆(ρ) =
∑
i,j,k

(Eikρkj − ρikEkj) ln ρjj |i⟩ ⟨j| (5.37)

∆([H, ρ]) ln∆(ρ) =
∑
i,k

(Eikρki − ρikEki) ln ρii |i⟩ ⟨i| (5.38)

Tr[[H, ρ] ln∆(ρ)] =
∑
i,k

(Eikρki − ρikEki) ln ρii = Tr[∆([H, ρ]) ln∆(ρ)] (5.39)

where H =
∑

ik Eik |i⟩ ⟨k| and ρ =
∑

ik ρik |i⟩ ⟨k| are written in the incoher-
ent basis. So the expression to maximize is equivalent to

max
ρ,||H||HS≤1

iT r[[H, ρ] ln∆(ρ)] (5.40)

Moreover, using the cyclic property of the trace, we can further modify the
above expression by moving the commutator between H and ρ to ρ and ln∆(ρ):

Tr[[H, ρ] ln∆(ρ)] = Tr[Hρ ln∆(ρ)]− Tr[ρH ln∆(ρ)]

= Tr[Hρ ln∆(ρ)]− Tr[H ln∆(ρ)ρ] = Tr[H[ρ, ln∆(ρ)]]
(5.41)

At this stage, we can employ the Cauchy-Schwarz inequality formulated
for the Hilbert-Schmidt inner product [Yan95] between A =

∑
i,j aij |i⟩ ⟨j| and

B =
∑

i,j bij |i⟩ ⟨j|:
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|Tr[A†B]| = |
∑
i,j

a∗jibji| ≤ ||A||HS ||B||HS =

√∑
i,j

|aij |2
√∑

i,j

|bij |2 (5.42)

Applying this to our scenario, where A is the Hamiltonian H and B is the
commutator [ρ, ln∆(ρ)], we obtain:

Tr[H[ρ, ln∆(ρ)]] ≤ ||H||HS ||[ρ, ln∆(ρ)]||HS ≤ ||[ρ, ln∆(ρ)]||HS (5.43)

where we considered the constraint ||H||HS ≤ 1. Then, we seek the density
matrix that maximizes ||[ρ, ln∆(ρ)]||HS . The maximum of 5.43 is achieved when
H and [ρ, ln∆(ρ)] are proportional, implying H = α[ρ, ln∆(ρ)], or

Eij = αρij ln
ρii
ρjj

(5.44)

for all their matrix elements, with α being a constant of proportionality. We
will now show that this constant must be purely imaginary. First, we remember
that the commutator between two Hermitian matrices C = [A,B] = AB −BA
is anti-Hermitian:

C† = [A,B]† = B†A† −A†B† = BA−AB = [B,A] = −[A,B] = −C (5.45)

This means that it can be written as a Hermitian operator time the imaginary
unit, i.e. C = iAHerm. Now, if an anti-Hermitian operator C is proportional to
a Hermitian operator BHerm, i.e. BHerm = αC, it follows that

αC = BHerm = B†
Herm = α∗C† = −α∗C (5.46)

indicating that α = −α∗, i.e. α is purely imaginary.
The specific commutator in our case is C = [ρ, ln∆(ρ)] and the Hermitian

operator is BHerm = H. Considering ρij = |ρij |eiφij and Eij = |Eij |eiγij :

ei(γij−φij)|Eij | = α|ρij | ln
ρii
ρjj

(5.47)

Since the right-hand side is purely imaginary, it implies ei(φij−γij) = i =⇒
γij − φij = π

2 . In essence, the optimal evolution occurs in a plane or subspace
orthogonal to the Hamiltonian direction.

Explicitly writing the commutator [ρ, ln∆(ρ)]:

[ρ, ln∆(ρ)] =
∑
i,j

ρij(ln ρii − ln ρjj) |i⟩ ⟨j| (5.48)

The Hilbert-Schmidt norm of this commutator is given by:

||[ρ, ln∆(ρ)]||2HS =
∑
i,j

|ρij |2 ln2
ρjj
ρii

(5.49)
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This quantity is bounded using the positivity condition of the density ma-
trix. According to Sylvester’s criterion [HJ85], the density matrix ρ is positive
semidefinite if and only if all the minors satisfy:

∣∣∣∣ρii ρij
ρji ρjj

∣∣∣∣ = ρiiρjj − |ρij |2 ≥ 0 (5.50)

This bound is achieved for pure states. Specifically, considering a pure state
|Ψ⟩ =

∑d
i=1 ci |i⟩, the corresponding density matrix |Ψ⟩ ⟨Ψ| has diagonal and

off-diagonal elements given by ρii = |ci|2 and ρij = cic
∗
j . Consequently, the

quantity in Equation 5.49 is maximized when the state is pure. By renaming
the squared moduli of the coefficients |ci|2 as probabilities pi, our objective is
to maximize the function

F (p1, ..., pd) ≡ F (p⃗) = 2
∑
i>j

pipj ln
2 pi
pj

(5.51)

over all possible probability distributions p⃗ = (p1, ..., pd) such that
∑d

i=1 pi =
1. Given that the function F (p⃗) exhibits symmetry when i and j are inter-
changed and evaluates to 0 when i = j, it can be reformulated as follows:

F (p⃗) =
∑
i,j

pipj ln
2 pi
pj

(5.52)

We now state and prove the following lemma, connecting F (p⃗) with the
variance of the surprisal function I(p⃗) = − ln p⃗, which is equal to the surprisal
operator S = − ln∆(ρ):

Lemma 5.1.

F (p⃗)

2
=

d∑
i=1

pi ln
2 pi −

(
d∑

i=1

pi ln pi

)2

= ∆2S. (5.53)

with ∆2S variance of the surprisal function I(p⃗) = − ln p⃗.
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Proof. After some algebra we have:

∆2S =

d∑
i=1

pi ln
2 pi −

d∑
i=1

p2i ln
2 pi − 2

d∑
i>j=1

pipj ln pi ln pj =

=

d∑
i=1

pi(1− pi) ln
2 pi − 2

d∑
i>j=1

pipj ln pi ln pj

=

d∑
i=1

pi

 d∑
j ̸=i

pj

 ln2 pi − 2

d∑
i>j=1

pipj ln pi ln pj =

=

d∑
i>j=1

pipj(ln
2 pi + ln2 pj − 2 ln pi ln pj) =

d∑
i>j=1

pipj(ln pi − ln pj)
2

(5.54)

The maximum of this function is known from [RW15] to be attained for a
binary spectrum of probabilities with multiplicities 1 and d− 1.

In fact, employing the Lagrange multiplier method, we introduce the La-
grangian function and its gradient:

L =
1

2

∑
i,j

pipj ln
2 pi
pj

− λ

(∑
i

pi − 1

)
(5.55)

∂L

∂pk
=
∑
j

pj ln
pk
pj

(
2 + ln

pk
pj

)
− λ = 0 (5.56)

Let fk be defined as:

fk =
∑
j

pj ln
pk
pj

(
2 + ln

pk
pj

)
(5.57)

Equation 5.56 implies that all fk must equal a constant λ for every i =
1, ..., d. This equivalence implies that a single set of probabilities satisfies the
system of equations:

fi − fj = pi ln
pi
pj

(
2 + ln

pj
pi

)
+ pj ln

pi
pj

(
2 + ln

pi
pj

)
+

d∑
k ̸=i,j

pk

[
ln
pi
pk

(
2 + ln

pi
pk

)
− ln

pj
pk

(
2 + ln

pj
pk

)]
= 0

(5.58)

for all i = 1, ..., d. Notice that these equations are antisymmetric by swapping i
with j, but they are neither symmetric nor antisymmetric by swapping i with
k or j with k. Possible solutions include:
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• A trivial solution pi = pj = 1/d, for all i, j = 1, ..., d, resulting in all
equations being identities (0 = 0). This corresponds to the minimum of
the target function in 5.32, achieved with the maximally coherent state
|+⟩ = 1√

d

∑d
i=1 |i⟩.

• A set of probabilities with only two distinct values: p1 = γ/n1, occur-
ring n1 times and p2 = (1 − γ)/n2, occurring n2 times, forming a binary
spectrum for 0 ≤ γ ≤ 1. In this case, equations 5.58 reduce to a single
equation:

γ ln
n2
n1

γ

1− γ

(
2 + ln

n1
n2

1− γ

γ

)
+(1−γ) ln n2

n1

γ

1− γ

(
2 + ln

n2
n1

γ

1− γ

)
= 0

(5.59)
We can solve this equation graphically for all values of the multiplicities
n1 and n2 = d− n1. In particular, in Fig. 5.2 is shown the special case of
n1 = n2. Substituting this kind of spectrum in Eq. 5.51 we obtain

F (p⃗) = γ(1− γ) ln2
n2
n1

γ

1− γ
(5.60)

Then all these solutions are actually local maxima and the ratio of the
multiplicities n2/n1 must be maximized in order to find the biggest, i.e.
n1 = 1 and n2 = d− 1.

• No solution exists for Equation 5.58 with more than two distinct probabil-
ities. The lack of symmetry under the interchange of j with any of the k
implies that if a solution for fi−fj = 0 is (p∗1, ..., p∗i , ..., p∗j , ..., p∗k, ..., p

∗
d), the

solution for fi−fk = 0 must be (p∗1, ..., p
∗
i , ..., p

∗
k, ..., p

∗
j , ..., p

∗
d). This makes

it impossible for a single set of probabilities to solve the entire system of
equations. For instance, in the case of d = 3, consider two equations:

f1 − f2 = p1 ln
p1
p2

(
2 + ln

p2
p1

)
+ p2 ln

p1
p2

(
2 + ln

p1
p2

)
(5.61)

+p3

[
ln
p1
p3

(
2 + ln

p1
p3

)
− ln

p2
p3

(
2 + ln

p2
p3

)]
= 0

f1 − f3 = p1 ln
p1
p3

(
2 + ln

p3
p1

)
+ p3 ln

p1
p3

(
2 + ln

p1
p3

)
(5.62)

+p2

[
ln
p1
p2

(
2 + ln

p1
p2

)
− ln

p3
p2

(
2 + ln

p3
p2

)]
= 0

If a solution for f1 − f2 = 0 exists, denoted as (p∗1, p
∗
2, p

∗
3), with p∗1 ̸=

p∗2 ̸= p∗3, the solution for f1 − f3 = 0 must be (p∗1, p
∗
3, p

∗
2), as f1 − f3 = 0

results from f1 − f2 = 0 by swapping p2 with p3. Note that this solution
does not need to be unique. However, (p∗1, p∗2, p∗3) ̸= (p∗1, p

∗
3, p

∗
2), making it

impossible for one set of different probabilities to solve the entire system
of equations. Therefore, the only way to solve the system is to choose
p1 = p2, p2 = p3, or p3 = p1, leading to equations similar to 5.59 for
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Figure 5.2: Plot of the two terms of eq. 5.59 when n1 = n2. Intersections of
them give solutions of eq. 5.59. There are three of them, in this case, symmetric
around γ = 0.5, in general, even changing the ratio n1/n2 three solutions always
exist but are not symmetric around the center.

specific values, such as p1 = γ and p2 = 1−γ
2 . This argument extends

to cases with d > 3, as the additional terms in equations 5.3 retain the
symmetry property.

The optimal state for maximizing the coherence production rate is given by:

|Ψ⟩ =
√
γ∗ |0⟩+

√
1− γ∗ |+′⟩ (5.63)

where |+′⟩ = 1√
d−1

∑d
i=1 |i⟩, and γ∗ is the graphical solution of 5.59 for n1 = 1

and n2 = d − 1. Importantly, this solution is independent of the Hamiltonian,
which only determines the optimal subspace of the evolution, as mentioned. The
result emphasizes that a maximally coherent state is not advantageous in this
context for resource generation; instead, the optimal state always possesses a
finite amount of coherence.

In Fig. 5.2 and Fig. 5.3 are shown, respectively the two sides of Eq. 5.59,
i.e. the gradient condition, and the function 5.60 we wish to maximize for the
case n1 = n2. The intersections of the two graphs in 5.2 gives γ∗ and 1 − γ∗,
while in plot 5.3 we can see that those correspond to global maxima and the
maximally coherent state (γ = 0.5) correspond to a global minimum. In the
case n1 ̸= n2 the minimum shifts at n1

n2

γ
1−γ = 1 and only one maxima becomes

global.
In the accompanying Figure 5.4, the plot illustrates the variation of the

solution γ∗, of 5.59, as a function of the dimension d of ρ, considering the case
n1 = 1 and n2 = d− 1. The graph reveals that the optimal coherence increases
with the dimension d but never reaches the value of γ∗ = 1/2, corresponding to
the maximally coherent state.
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0.2 0.4 0.6 0.8 1.0
γ

0.1

0.2

0.3

0.4

F

Figure 5.3: Plot of the function 5.60 for n1 = n2. it is evident that γ∗ and
1−γ∗ correspond to global maxima and the maximally coherent state (γ = 0.5)
corresponds to a global minimum. In the case n1 ̸= n2 the minimum shifts at
n1

n2

γ
1−γ = 1 and only one maxima becomes global.

0 20000 40000 60000 80000 100000
d
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1 - γ*

Figure 5.4: Plot of the solution γ∗ of 5.59 for the case n1 = 1 and n2 = d − 1
over the dimension d of ρ. There is an asymptote for large dimensions but it is
not given by the maximally coherent state, corresponding to γ∗ = 1/2.
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The optimal Hamiltonian, as per 5.47, is the generator of rotations in the
two-dimensional space formed by |0⟩ and |+′⟩:

H = − i√
2
(|+′⟩ ⟨0| − |0⟩ ⟨+′|) (5.64)

The coefficients can be derived from Equation 5.47 by substituting the op-
timal state provided by Equation 5.63. This yields:

|E0+′ | = |α|
√
γ∗(1− γ∗) ln

γ∗

1− γ∗
= |E+′0|. (5.65)

Computing its norm:

||H||2HS = 2|α|2γ∗(1− γ∗) ln2
1− γ∗

γ∗
. (5.66)

We can then select |α|2 to equate the norm to a constant, for example 1.
In the special case of a qubit (d = 2), |+′⟩ = |1⟩. In this particular di-

mension, the Bloch sphere depiction becomes quite handy. Passing to spherical
coordinates γ = cos2(θ/2) and the function to maximize becomes:

F (θ) =
sin2 θ

4
ln

cos2(θ/2)

sin2(θ/2)
(5.67)

We can envision the optimal state residing within a plane perpendicular
to the Hamiltonian direction, along the y-axis, with an optimal angle θ∗ =
arccos (2γ∗ − 1) relative to the z-axis, irrespective of the Hamiltonian. See Fig.
5.5.

Additionally, as discussed in 5.1, the resource generation rate in 5.8 reduces
to the coherence-generating power studied in [TRS21] when choosing the appro-
priate coherence quantifier. The earlier study established that correlations with
an additional system not evolving during the protocol, i.e., an ancilla, do not
enhance the coherence-generating power of a channel. Therefore, this conclusion
is applicable in the present case as well.

In the next section, we tackle the same problem for the resource theory of
purity.

5.4 Resource Theory of purity

In the context of the resource theory of purity, the distillable purity, denoted as
P (ρ) is expressed by the equation:

P (ρ) = R(ρ→ |0⟩ ⟨0|) = log2 d− S(ρ) (5.68)

Here, d represents the dimension, and S(ρ) is the von Neumann entropy of
the state ρ. The set of free states is composed only of the maximally mixed
state Id

d . Notably, unitaries, being free operations, do not alter or influence the
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Figure 5.5: Schematic depiction of the optimal plane, orthogonal to the Hamil-
tonian σy, in which the optimal state 5.63 lives in the qubit case d = 2. This, in
blue, forms an optimal angle θ∗ = arccos (2γ∗ − 1) with the incoherent axis z.
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purity of the system. Therefore, a logical choice for a purity-generating map is
a non-unitary Lindbladian.

In the following, we will analyze the qubit case (d = 2). In this dimension,
the time derivative of the asymptotic quantifier is given by

d

dt
P (ρ)

∣∣∣∣
t=0

=
ṙ

2
ln

1 + r

1− r
(5.69)

where r is the length of the Bloch vector r⃗, such that the density matrix can
be expressed as follows ρ = I2+r⃗·σ⃗

2 , with σ⃗ = (σx, σy, σz), vector of the Pauli
matrices. In particular, we will make use of the vector identity

ṙ =
r⃗ · ˙⃗r
r

= ê · ˙⃗r (5.70)

with ê = r⃗
r , unit vector defining the direction of r⃗. Now, considering a

general Lindbladian, as we mentioned in Chapter 3 Eq. 3.10, the differential
equation governing the evolution of the Bloch vector is given by:

˙⃗r = Ar⃗ + b⃗ (5.71)

where A = γS − Tr[γ]I and bk =
∑

ij εijkγij , represent the symmetric and
antisymmetric part of the decoherence matrix γ of the Lindbladian, with i, j =
1, 2, 3. Since A is symmetric, it is diagonalizable with real eigenvalues denoted as
{a1, a2, a3}. The matrix represents a contraction of the Bloch sphere, therefore
its eigenvalues must be negative. Moreover, b⃗ gives the non-unital shift of the
center of the Bloch sphere.

Substituting 5.70 into 5.71 yields:

ṙ = rê ·Aê+ ê · b⃗ (5.72)

Substituting this result into Eq. 5.69, we obtain:

d

dt
P (ρ)

∣∣∣∣
t=0

=
(rê ·Aê+ ê · b⃗)

2
ln

1 + r

1− r
(5.73)

We can now express ê and b⃗ in terms of the normalized eigenvectors of the
symmetric matrix A, denoted as {â1, â2, â3}. That is, ê = e1â1 + e2â2 + e3â3.
Consequently Aê = e1a1â1 + e2a2â2 + e3a3â3. This leads to ê · Aê = e21a1 +

e22a2 + e23a3 and ê · b⃗ = e1b1 + e2b2 + e3b3.
To determine the optimal direction ê on the Bloch sphere, we seek the max-

ima of the Lagrangian:

L = rê ·Aê+ ê · b⃗+ λ(|ê| − 1) (5.74)

subject to the constraint |ê| = 1, where λ is the Lagrange multiplier. Using
the decomposition specified above:
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L = r

3∑
i=1

e2i ai +

3∑
i=1

eibi + λ(

3∑
i=1

e2i − 1) (5.75)

and the null-gradient equation to solve:

∂L

∂ei
= 2reiai + bi + 2λei = 0 (5.76)

with solution
ei = − bi

2(λ+ rai)
(5.77)

which can be rewritten in a compact form as

ê = −1

2
(λI3 + rA)−1⃗b (5.78)

Putting this solution back into the constrain |ê| = 1, we obtain a quadratic
equation in λ:

b21
(ra1 + λ)2

+
b22

(ra2 + λ)2
+

b23
(ra3 + λ)2

= 4, (5.79)

and back into the function we wish to maximize:

max
r,A,⃗b

ln
(
1 + r

1− r

) 3∑
i=1

(
r

4

aib
2
i

(rai + λ)2
− 1

2

b2i
(rai + λ)

)
(5.80)

In the special case where b⃗ = (0, 0, b3) is an eigenvector of A:

λ =
b3 − 2ra3

2
(5.81)

ê = (0, 0,−1) (5.82)

max
r,b3,a3

1

2
ln

1 + r

1− r
(ra3 − b3) (5.83)

Note that this instance provides an upper limit for the right-hand side of
Eq. 5.72. This can be demonstrated using the Cauchy-Schwarz inequality once
more, but this time applying the version suited for vectors to Eq. 5.72:

rê ·Aê+ ê · b⃗ ≤ r||Aê|| · ||ê||+ ||⃗b|| · ||ê|| = r||Aê||+ ||⃗b|| (5.84)

Here, we’ve utilized the fact that ||ê|| = 1.
Recalling that the conditions for reaching the limit set by Eq. 5.84 are:

Aê = αê (5.85)

b⃗ = βê (5.86)
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γ=-0.8

γ=-1

0.2 0.4 0.6 0.8 1.0
r

1

2
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Figure 5.6: Left side of Eq. 5.87, in green, and right sides for γ = −0.8, in blue,
and γ = −1, in orange. We can see that solutions exists only in this range of γ.

This implies that the optimal direction e⃗ must align either along the non-
unitary shift one or one of the eigenvectors of matrix A.

Moreover, b3 > |a3|, for the map to be positive, i.e. the shift of the center
of the Bloch sphere must not overcome the speed of contraction. Renaming the
ratio of these two parameters as γ = a3

b3
, and computing the derivative respect

to r, we obtain the following transcendental equation:

ln
1 + r

1− r
=

(
1

γ
− r

)
2

1− r2
(5.87)

In Fig. 5.6 the two sides of this equation are plotted against r and for a
range of −1 ≤ γ ≤ −0.8, for which solutions exist. The optimal input state for
purity generation in this special case will then be:

ρ∗ =
I2 + r∗(γ)σ3

2
(5.88)

where r∗(γ) is the graphical solution of Eq. 5.87, function of γ. Notice that
γ = 1 corresponds to the amplitude damping map.

5.4.1 Addition of ancillas

Furthermore, we establish that the addition of ancillas does not enhance the
purity production scheme. Considering the evolution of one side of a bipartite
state ρAB , by applying the data processing inequality on mutual information,
we obtain:
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I(A : B) := S(ρA) + S(ρB)− S(ρAB) (5.89)
I(Λt(A) : B) ≤ I(A : B) (5.90)

This inequality implies:

S(Λt(ρ
A)) + S(ρB)− S(Λt ⊗ 1(ρAB)) ≤ S(ρA) + S(ρB)− S(ρAB) (5.91)

S(Λt(ρ
A))− S(ρA) ≤ S(Λt ⊗ 1(ρAB))− S(ρAB) (5.92)

indicating that adding ancillas to the system does not improve the purity
production rate, as P (ρ) = log d− S(ρ).

5.5 Resource Theory of entanglement
A parallel analysis can be conducted for the resource theory of entanglement
in bipartite settings, where Alice and Bob share a pure state and can only
implement local operations in their respective laboratories.

In this context, the free states are products of the form |ΨA⟩⊗|ΦB⟩, and the
maximally resourceful state is the maximally entangled one |Φ+⟩ = 1√

d

∑d
i=1 |ii⟩,

where d is the local dimension of the two laboratories.
The rate for asymptotic conversion of an iid ensemble of generic pure states

|Ψ⟩ into maximally entangled states is given by the distillable entanglement of
Ψ:

E(Ψ) = R(Ψ → Φ+) = S(TrB [|Ψ⟩ ⟨Ψ|]) = −Tr[ρA ln ρA] (5.93)

Here, ρA = TrB [|Ψ⟩ ⟨Ψ|] is the density matrix of Alice obtained by tracing
out Bob’s system [PV07]. This quantity remains invariant under the application
of local unitary operations (on Alice’s or Bob’s side). However, Alice and Bob
can enhance this rate by applying a global unitary operation, acting jointly on
the two laboratories. This type of operation will serve as our resource-generating
map in this setting.

The generator of this dynamics can be represented by an interaction Hamil-
tonian between the two laboratories:

d

dt
|Ψ⟩ ⟨Ψ|

∣∣∣∣
t=0

= −i[H, |Ψ⟩ ⟨Ψ|]. (5.94)

Our objective is to maximize the following quantity:

d

dt
E(Ψ)

∣∣∣∣
t=0

= −Tr[ρ̇A ln ρA] (5.95)

over the initial pure bipartite state |Ψ⟩ and the non-local bounded Hamiltonian
H, with ||H||HS = 1. Since tracing out Bob’s system and evolving the state are
commuting operations, we can write:

ρ̇A = −iT rB([H, |Ψ⟩ ⟨Ψ|]). (5.96)
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We choose to perform the computation in the Schmidt basis of |Ψ⟩, {|ei⟩}
for Alice and {|fi⟩} for Bob:

|Ψ⟩ =
d∑

i=1

√
λi |ei⟩ ⊗ |fi⟩ (5.97)

|Ψ⟩ ⟨Ψ| =
d∑

i,j=1

√
λiλj |ei⟩ ⟨ej | ⊗ |fi⟩ ⟨fj | (5.98)

ρA = TrB [|Ψ⟩ ⟨Ψ|] =
d∑

i=1

λi |ei⟩ ⟨ei| (5.99)

H =

d∑
i,j,k,l=1

Ekl
ij |ei⟩ ⟨ej | ⊗ |fk⟩ ⟨fl| (5.100)

Here the square of the Schmidt coefficients
√
λi sum up to one:

∑
i λi = 1. The

lower indices of Ekl
ij correspond to the basis of system A, and the upper indices

correspond to the basis of system B. In this form, Hermiticity corresponds to
swapping both upper and lower indices together Ekl

ij = (Elk
ji )

∗.
We can rewrite Eq. 5.95 as

d

dt
E(Ψ)

∣∣∣∣
t=0

= −Tr[ρ̇A ln ρA] =

= iTrA[TrB [[H,Ψ]] log ρA] = iTr[H[Ψ, log ρA ⊗ IB ]]
(5.101)

Using the Cauchy-Schwarz inequality for the Hilbert-Schmidt norm, we can
bound the quantity 5.95 with ||[Ψ, log ρA ⊗ IB ]||HS . Let us compute this com-
mutator:

[Ψ, log ρA ⊗ IB ] =
∑
i,j

√
λiλj(log λj − log λi) |ei⟩ ⟨ej | ⊗ |fi⟩ ⟨fj | (5.102)

Then:

||[Ψ, log ρA ⊗ IB ]||2HS =
∑
i,j

λiλj log
2 λi
λj

(5.103)

This expression is identical to the one found in the coherence case, with the
Schmidt coefficients replacing the diagonal elements of the density matrix. More-
over, the Cauchy-Schwarz bound is saturated when the two matrices H and
[ρ, log ρA ⊗ IB ] are proportional:

Eij
ij = α

√
λiλj log

λi
λj

(5.104)
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These results align with previous analyses by [DVC+01] and [Bra07], where
the optimal state and Hamiltonian for entanglement production rate 5.95 were:

|Ψ⟩ =
√
λ∗ |00⟩+

√
1− λ∗ |Φ+⟩ (5.105)

|Φ+⟩ = 1√
d− 1

d−1∑
i=1

|ii⟩ (5.106)

H = −i(|Φ+⟩ ⟨00| − |00⟩ ⟨Φ+|) (5.107)

In the two-qubit case, we can write the Schmidt coefficients as λ1 = cos2(θ/2)
and λ2 = sin2(θ/2) with θ ∈ [0, π]. Eq. 5.103 then becomes:

||[Ψ, log ρA ⊗ IB ]||2HS =
sin2 θ

2
log2

cos2(θ/2)

sin2(θ/2)
(5.108)

which is the same function we wished to maximize in the single qubit coherence
case, i.e. Eq. 5.67.

5.6 Conclusions
In this chapter, we explored a possible extension of resource theories, in which
the application of a resource-generating map is allowed for a finite time t. In this
enhanced setting we formulated a protocol to optimally extract resource from
an initial state ρ. In the specific contexts of the resource theory of coherence,
purity, and entanglement we answer the question: what is the optimal initial
state and resource-generating dynamic to utilize in the protocol? For coherence
and entanglement, where the dynamic taken into consideration is a unitary this
optimal state turns out to be a two-level system and the optimal Hamiltonian,
generator of the dynamic, is a rotation in the subspace where the system lives.
Moreover, the coefficient of the linear combination which gives the optimal state
is independent of the Hamiltonian, which only determines the best plane of
rotation. For the resource theory of coherence, the coherence-generating power
is not affected by the addition of an inert ancillary system. Finally, we analyzed
the same problem for the resource theory of purity in the case of a qubit (d = 2).
In this case, the optimal dynamic is a general Lindbladian and the optimal state
depends on its parameters, which in a special case we showed to be the speed
of contraction of the Bloch sphere and its non-unital shift. Moreover, we were
also able to prove the non-utility of an ancilla.
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Chapter 6

Summary and outlook

Here, we recap once again the main results of this thesis and we offer directions
for future investigations.

In this work, various ways to protect valuable resources for quantum tech-
nological tasks from environmental noise were analyzed.

In Chapter 3, we focused on which type of noise produced by the environment
could be optimal to preserve coherence in a qubit and various correlations with
an isolated ancilla. Our analysis outcome was that such an environment must
possess an infinite amount of non-Markovianity, i.e. always retain memory about
the information that the system exchanges with it. We also demonstrated that
is possible to simulate such a dynamic on an optical table. Apart from the
trivial extension to higher dimensions and more general types of noises more
research in this direction could be spent on developing a physical model for
such an eternal non-Markovian dynamic, leading then to practical applications
in the field of quantum computing.

In Chapter 4, we presented a general protocol that consists of applying free
maps on the system containing resource before and after the noise acts to destroy
it. We thoroughly investigated one type of such maps in the limit of many
identical copies of the system, i.e. the map that dilutes these copies in more
of a less resourceful state, called the dilution map. We provided examples that
show that in many resource theories and many different choices of noise such a
map can be successful in extracting more resource from the noisy state than the
situation when no pre-processing is done. Moreover in many of those situations,
the less resourceful the target diluted state the better the performance of this
task turns out to be. In one example, the one involving the resource theory
of coherence, we also showed that diluting into mixed states provides a better
coherence protection rate than diluting into pure states. Finally, we compared
our method with one of the most famous pre-processing maps in literature, the
error correction code, the latter performing better. The work of this chapter
can be extended in many directions, from generalizing noise and the dimension
of the states involved to finding the real optimal pre-processing map. Since all
these results are valid in the asymptotic limit a natural question that we just
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scratched in this work is whether is it possible to obtain similar results in the
finite copies regime. We investigated the case N = 2 but this analysis can be
generalized for N > 2 but still finite.

Finally, in Chapter 5 we analyzed a possible extension of a resource theory
in which the experimenter is allowed to generate resource for a finite amount of
time t, through the application of a map Λt on a previously prepared quantum
state ρ. In this scenario, we formulated a protocol to optimally extract quantum
resource from the prepared quantum state in the infinite copies regime, where
the resource quantifier is given by the distillable resource. Then, for the specific
resource theories of coherence purity and entanglement, we found the optimal
initial state and dynamic to utilize in this protocol, maximizing the resource
production rate. In the resource theory of coherence and entanglement, when
the resource-generating map is given by a unitary, the optimal state belongs to
a two-dimensional space and the coefficients of the linear combination between
the two basis vectors are independent of the Hamiltonian which generates the
dynamic. The latter only determines the optimal plane in which the evolution
happens. Moreover, for the resource theory of coherence adding ancillas doesn’t
improve the resource generation rate. In the context of the resource theory of
purity we analyze a qubit case when the resource-generating map is given by
a general Lindbladian. There we found that the optimal state depends form
the parameters of the Lindbladian, in particular the ratio between the speed of
contraction of the Bloch sphere along one direction, and the non-unital shift of
the center of the sphere along the same direction. In this case, as well additional
ancillary systems do not improve the protocol. A further direction where to
expand this line of research would be to find the optimal state as a function of
any given resource-generating dynamic. Moreover, it is still unclear if adding
ancillary systems enhances the entanglement generation rate.
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Chapter 7

Appendix

7.1 Entanglement cost and distillation
In this section, we give an overview on the two important asymptotic conver-
sion rates to and from the maximally resourceful state in the context of the
resource theory of entanglement, the distillable entanglement and the en-
tanglement cost respectively. We will only consider the problem for pure
state and for theat class we will prove reversibility, i.e. the two rates coin-
cide. We redirect the interested reader to Alexander Streltsov’s lecture notes
http://qot.cent.uw.edu.pl/teaching/.

7.1.1 Typical sequences
Consider a sequence of Independent and Identically Distributed random vari-
ables (IID) of length m {x1, ..., xm}. For example m launches of a coin with
head probability p. The probability of such a sequence is gonna factorize in the
following way p(x1, ...xm) = p(x1)...p(xm). Such a sequence is called ε-typical if

2−m(H(p(x))+ε) ≤ p(x1, ..., xm) ≤ 2−m(H(p(x))−ε) (7.1)

with H(p(x)) = −
∑

xi
p(xi) log2 p(xi) Shannon entropy of the probability dis-

tribution.
Two important theorems hold in the case of ε-typical sequences.

Theorem 7.1. ∀ε > 0 and δ > 0 ∃m′ : ∀m > m′∑
ε−typical

p(x1)...p(xm) > 1− δ (7.2)

Theorem 7.2. ∀ε > 0 and δ > 0 ∃m′ : ∀m > m′ the number N of ε-typical
sequences satisfies

(1− δ)2m(H(p(x))−ε) ≤ N ≤ 2m(H(p(x))+ε) (7.3)
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7.1.2 Entanglement Dilution

Asymptotic conversion from n copies of a maximally entangled state to m copies
of a generic pure state |Ψ⟩, with an asymptotically vanishing error εn, i.e.
|Φ+⟩⊗n LOCC→ εn |Ψ⟩⊗m with limn→∞ εn = 0.

The minimum ratio n/m in the asymptotic limit is called entanglement cost
of |Ψ⟩, i.e. minlimn→∞

n
m = EC(|Ψ⟩).

Theorem 7.3.
EC(|Ψ⟩) ≤ S(ρΨ) (7.4)

with ρΨ = TrB [|Ψ⟩ ⟨Ψ|].

Proof. The target state |Ψ⟩ can be written in Schmidt decomposition

|Ψ⟩ =
∑
x

√
p(x) |x⟩A ⊗ |x⟩B (7.5)

|Ψ⟩⊗m
=

∑
x1,...,xm

√
p(x1)...p(xm) |x1...xm⟩A ⊗ |x1...xm⟩B (7.6)

Let’s define the state

|Φm⟩ =
∑

ε−typical

√
p(x1)...p(xm) |x1...xm⟩A ⊗ |x1...xm⟩B (7.7)

this state is undernormalized. To make it so we divide by the overlap between
the two states

⟨Ψm|Φm⟩ =
∑

ε−typical

p(x1)...p(xm) (7.8)

in this way

|Φ′
m⟩ = 1√

⟨Φm|Ψm⟩
|Φm⟩ (7.9)

Because of theorem 1 of typical sequences, this overlap goes to 1 in the limit
of large sequences

lim
m→∞

 ∑
ε−typical

p(x1)...p(xm)

 = 1 (7.10)

meaning for large m the two states are basically equivalent.
To create the desired shared state Alice can prepare it locally and teleport

half of it to Bob, consuming ⌈log2 k⌉ singlets, with k Schmidt rank of |Φm⟩,
which classically correspond to the number of typical sequences. Because of
theorem 2 k ≤ 2m(S(ρΨ)+ε).
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7.1.3 Entanglement Distillation

The inverse process of entanglement dilution, i.e. |Ψ⟩⊗m LOCC→ εn |Φ+⟩⊗n,
maxm→∞

n
m = ED(|Ψ⟩)

Theorem 7.4.
ED(|Ψ⟩) ≥ S(ρΨ) (7.11)

Proof. Alice performs the projective measurement

Π0 =
∑

ε−typical

|x1...xm⟩ ⟨x1...xm| (7.12)

the probability of outcome being

p0 = Tr[(Π0 ⊗ I) |Ψm⟩ ⟨Ψm|] =
∑

ε−typical

p(x1)...p(xm) (7.13)

and the post measurement state

1
√
p0

(Π0 ⊗ I) |Ψm⟩ = |Φ′
m⟩ (7.14)

The largest Schmidt coefficient of |Φm⟩, by definition of typical sequences, is at
most

p(x1)...p(xm) ≤ 2−m(S(ρΨ)−ε) (7.15)

and the one of the normalized state |Φ′
m⟩, because of theorem 1 is at most

2−m(S(ρΨ)−ε)

1− δ
≤ 2−n (7.16)

where in the last equation we choose n to fulfill it. Then our state is majorized
by a singlet of rank 2n and by Nielsen theorem it can be converted into it, at a
rate bounded by Eq. 7.16.

7.1.4 Reversibility

Let’s suppose ∃LOCC : |Ψ⟩⊗m → |Φ+⟩⊗n, such that

n

m
≈ S ≳ S(ρΨ) (7.17)

This means that if Alice and Bob starts with k singlets, they can convert them
in m copies of a state |Ψ⟩ at a rate k

m ≈ S(ρΨ). If the first statement is true they
can convert back these states into n ≈ mS = k S

S(ρΨ) > k, which is impossible
by LOCC. Then cost and distillation must be equal to S(ρΨ) making the theory
reversible.
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7.2 X states

In this section we will present some calculations and formulas useful for the
understanding of chapter 3 results. We will start from properties of the X-shaped
bipartite states, to which, in particular, the class of Choi state of covariant maps
belongs:

ρX =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 (7.18)

positivity conditions

ρ22ρ33 ≥ |ρ23|2 (7.19)

ρ11ρ44 ≥ |ρ14|2 (7.20)

separability conditions

ρ22ρ33 ≥ |ρ14|2 (7.21)

ρ11ρ44 ≥ |ρ23|2 (7.22)

eigenvalues

λ0 =
1

2

[
(ρ11 + ρ44) +

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(7.23)

λ1 =
1

2

[
(ρ11 + ρ44)−

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(7.24)

λ2 =
1

2

[
(ρ22 + ρ33) +

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(7.25)

λ3 =
1

2

[
(ρ22 + ρ33)−

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(7.26)

The reduced states and corresponding entropies are

ρA =

(
ρ11 + ρ22 0

0 ρ33 + ρ44

)
(7.27)

ρB =

(
ρ11 + ρ33 0

0 ρ22 + ρ44

)
(7.28)

S(ρA) = − [(ρ11 + ρ22) log2(ρ11 + ρ22) + (ρ44 + ρ33) log2(ρ33 + ρ44)] (7.29)

S(ρB) = − [(ρ11 + ρ33) log2(ρ11 + ρ33) + (ρ44 + ρ22) log2(ρ22 + ρ44)] (7.30)
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7.2.1 Choi state of covariant maps

ρ11 =
1

4
(1 + λz(t) + lz(t)) (7.31)

ρ22 =
1

4
(1− λz(t)− lz(t)) (7.32)

ρ33 =
1

4
(1− λz(t) + lz(t)) (7.33)

ρ44 =
1

4
(1 + λz(t)− lz(t)) (7.34)

ρ23 = ρ32 = 0 (7.35)

ρ14 = ρ41 =
λ(t)

2
(7.36)

λ0(t) =
1

4

[
(1 + λz(t)) +

√
l2z(t) + 4λ2(t))

]
(7.37)

λ1(t) =
1

4

[
(1 + λz(t))−

√
l2z(t) + 4λ2(t))

]
(7.38)

λ2(t) = ρ22 (7.39)
λ3(t) = ρ33 (7.40)

S(TrB [ΩΛt ]) = 1 (7.41)

S(TrA[ΩΛt
]) = −

[
1 + lz(t)

2
log2

1 + lz(t)

2
+

1− lz(t)

2
log2

1− lz(t)

2

]
(7.42)

lim
t→∞

λ0(t) =
1

2
(7.43)

lim
t→∞

λ1(t) = 0 (7.44)

lim
t→∞

λ2(t) =
1 + x

a

4
(7.45)

lim
t→∞

λ2(t) =
1− x

a

4
(7.46)

lim
t→∞

S(ΩΛt) = 1 +
1

2
h

(
1 + x

a

2

)
(7.47)

7.2.2 Computation of the classical correlations of the Choi
state

Here we will provide details on the computation of the classical correlations and
subsequently of the quantum discord for the Choi state of covariant maps and
of the eternally non-Markovian dynamics. This section is based on the paper
[ARA10].

Let us introduce rank one projectors {Bk} which describe a local measure-
ment on Bob’s side. They have the properties of being complete

∑
k Bk = I,

Hermitian Bk = B†
k and idempotent B2

k = Bk.
They can be written as
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Bk = VΠiV
† (7.48)

with Π = |i⟩ ⟨i| projector along the computational basis element |i⟩ and V
unitary transformation in SU(2) when local dimension is 2

V = tI+ iy⃗ · σ⃗ (7.49)

with t2 + y21 + y22 + y23 = 1.
The post-measurement bipartite state is

ρk =
1

pk
(I⊗Bk)ρ(I⊗Bk) (7.50)

with pk = Tr[(I⊗Bk)ρ(I⊗Bk)].
The classical correlations contained in state ρ are then given by

C(ρ) = sup
{Bk}

I(ρ|{BK}) (7.51)

with I(ρ|{BK}) conditional mutual information.

I(ρ|{BK}) = S(ρA)− S(ρ|{Bk}) (7.52)

and S(ρ|{Bk}) conditional entropy

S(ρ|{Bk}) =
∑
k

pkS(ρk) (7.53)

When ρ is an X state, the post measurement ensamble {ρi, pi} with

p0 = (ρ11 + ρ33)k + (ρ22 + ρ44)l (7.54)
p1 = (ρ11 + ρ33)l + (ρ22 + ρ44)k (7.55)

can be carachterized by the eigenvalues of ρ0 and ρ1

v±(ρ0) =
1± θ

2
(7.56)

v±(ρ1) =
1± θ′

2
(7.57)

with
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θ =

√
[(ρ11 − ρ33)k + (ρ22 − ρ44)l]2 +Θ

[(ρ11 + ρ33)k + (ρ22 + ρ44)l]2
(7.58)

θ′ =

√
[(ρ11 − ρ33)l + (ρ22 − ρ44)k]2 +Θ

[(ρ11 + ρ33)l + (ρ22 + ρ44)k]2
(7.59)

Θ = 4kl[|ρ14|2 + |ρ23|2 + 2Re(ρ14ρ23)] + 16mRe(ρ14ρ23) + 16nIm(ρ14ρ23)
(7.60)

m = (ty1 + y2y3)
2 (7.61)

n = (ty2 − y1y3)(ty1 + y2y3) (7.62)

k = t2 + y23 (7.63)

l = y21 + y22 (7.64)
k + l = 1 (7.65)

The entropies of the post measurement states are then

S(ρ0) = −
[
1 + θ

2
log2

1 + θ

2
+

1− θ

2
log2

1− θ

2

]
(7.66)

S(ρ1) = −
[
1 + θ′

2
log2

1 + θ′

2
+

1− θ′

2
log2

1− θ′

2

]
(7.67)

and the conditional entropy we want to minimize over the unitary parameters
k, l,m, n

S(ρX |{Bk}) = p0S(ρ0) + p1S(ρ1) (7.68)

In the case of our Choi state

θ =

√
λ2z(t)(k − l)2 + 4klλ2(t)

[(1 + lz(t))k + (1− lz(t))l]2
(7.69)

θ′ =

√
λ2z(t)(k − l)2 + 4klλ2(t)

[(1 + lz(t))l + (1− lz(t))k]2
(7.70)

In the limit t→ ∞

θ =

√
kl(1− x2

a2 )

[(1 + x
a )k + (1− x

a )l]
2

(7.71)

θ′ =

√
kl(1− x2

a2 )

[(1 + x
a )l + (1− x

a )k]
2

(7.72)

The minimum of the conditional entropy is attained in one of these cases
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• k = l = 1/2

• k = 0 and l = 1

• k = 1 and l = 0

In the last two cases θ = θ′ = 0 and S(ρ0) = S(ρ1) = 1 which is the
maximum value, so not the one we search.

In the first case θ = θ′ =

√
1− x2

a2

2 = θmin. So

C(ΩΛ∞) = 1− S(ρ0)|θmin (7.73)

Then the quantum discord is equal to

lim
t→∞

Q(ΩΛt
) =

h
(

1+ x
a

2

)
2

+ h

1 +

√
1− x2

a2

2

2

− 1 (7.74)
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