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i czemu chciałbym poświęcić moje życie zawodowe.

Ponadto, chciałbym serdecznie podziękować mojej najbliższej rodzinie i przyjaciołom, którzy
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kieruję do moich rodziców, którzy od samego początku wierzyli we mnie i w sens moich działań.
Ich wiara, wsparcie duchowe i materialne były dla mnie nieocenione i pozwoliły mi na realizację
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mnie czystą przyjemnością.
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Abstract

This dissertation presents an in-depth study of the relativistic aspects of time in quantum me-
chanics, focusing on two primary themes: quantum time dilation and the concept of indefinite
temporal order, including the implications of temporal Bell inequalities.

The research investigates quantum time dilation, a phenomenon where time dilation, well-
known in relativity, also occurs at the quantum level. Our findings reveal that quantum time
dilation is universal, similar to classical time dilation, meaning it does not depend on the specific
mechanisms of the clocks used. This universality suggests that quantum time dilation is a
fundamental property of quantum systems, expanding our understanding of time in the quantum
realm. However, the dissertation also explores gravitational quantum time dilation and finds that
it is not universal. Different clocks experience varying amounts of time dilation due to gravity,
depending on their internal structures. This discovery mirrors the classical understanding of
gravitational time dilation and highlights the complex interplay between quantum mechanics
and gravity.

The second focus of this dissertation is the concept of indefinite temporal order. In classical
physics, events occur in a definite sequence, but in the quantum world, events can exist in a
superposition of different orders. This means that the sequence of events is not fixed and can
be indefinite. We developed a scenario where accelerating particles interact with quantum fields
to demonstrate this indefinite order. By using special relativistic time dilation, we established a
protocol that shows a violation of Bell’s inequalities, traditionally used to test definite temporal
order. Our results indicate that events can indeed occur in an indefinite order, challenging
classical perceptions of time.

Our research highlights that the assumptions necessary for proving Bell inequalities for tempo-
ral order are not always satisfied in practical scenarios. This insight led to a critical reassessment
of these assumptions, revealing the complexities of disentangling the free dynamics of a system
from local operations. These findings are significant for both theoretical and experimental in-
vestigations into the nature of time. To address these challenges, we propose using more general
operations that include measurements with classical outcomes. This approach facilitates the
direct examination of causal relationships between events without relying on specific theoretical
models.
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This dissertation advances our understanding of quantum time dilation and indefinite temporal
order. It challenges conventional notions of time and causality, providing new perspectives on
the fundamental nature of the universe. As research progresses in this field, the exploration
of quantum mechanics and the nature of time promises to remain a fascinating and profound
endeavor.
This doctoral thesis is based on four publications [1–4], two of which were first-authored [3, 4].
Furthermore, the writer of this thesis has contributed to several other articles that may provide
context for the present considerations [5–10].
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1 Introduction

For what is time? Who can easily
and briefly explain it? Who even in
thought can comprehend it, even to
the pronouncing of a word
concerning it? But what in speaking
do we refer to more familiarly and
knowingly than time? And certainly
we understand when we speak of it;
we understand also when we hear it
spoken of by another. What, then,
is time? If no one ask of me, I
know; if I wish to explain to him
who asks, I know not.

(St. Augustine [11])

This chapter provides a comprehensive exploration of the concept of time across different
scientific fields, including its philosophical foundations and recent theories in physics. The
dissertation aims to investigate various aspects of time and their implications. The research
topics include the nature of time, the role of time in classical mechanics, quantum mechanics,
and general relativity. Additionally, the structure of the dissertation will be presented,
outlining the specific areas of study and the organization of the research.

Not only is time one of the most fundamental quantities present in science, but also it is a
concept that we intuitively know from daily life. For physicists—and not only for them—it is
a mysterious phenomenon somehow connected with motion and space. Since antiquity, natural
philosophers have struggled to comprehend its true nature and provide a strict definition that
would satisfy everyone [12].

Throughout history, various civilizations have explored the relationship between time and
natural cycles. The Egyptians created calendars based on the regular flooding of the Nile River,
which helped them plan their farming activities [13]. Similarly, the Mayans, known for their
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advanced astronomy, built calendars that included celestial cycles and planetary movements [14].
These ancient civilizations understood time as something being linked to the natural rhythms of
the world [15].

Religious traditions have also played a significant role in shaping our understanding of time [16].
Ancient and indigenous belief systems, including Hinduism, Buddhism, and certain indigenous
cultures, embrace a cyclical perception of time [15]. Within these frameworks, time manifests
as a recurring cycle of creation, existence, and dissolution, symbolizing the cosmic rhythm [17].
Conversely, Christianity introduced a shift from cyclical time, emphasizing a linear progression
of history leading to the Second Coming of Christ and the ultimate fulfillment of God’s plan [16].
This shift in Christian thought influenced Western perspectives and initiated subsequent philo-
sophical discussions on the understanding of time [15]. One of the first scientific-like approaches
to the problem of time was initiated by Ancient Greek thinkers [18]. Philosophers such as Zeno
of Elea enriched the discourse on time with their paradoxes [19]. Zeno’s paradoxes, including the
Achilles and the Tortoise paradox and the Dichotomy paradox, presented profound challenges to
our intuitive understanding of time. These paradoxes probed the concepts of motion, continuity,
and the divisibility of time, stimulating contemplation on the fundamental nature of temporal
existence [20].

The idea of time has been a topic of analysis for many thinkers throughout the ages. One of
them was Immanuel Kant, the great eighteenth-century Prussian philosopher [21]. His works,
particularly the "Critique of Pure Reason", contain some of the most intriguing arguments re-
garding time as a fundamental element of human experience. Contrary to empiricist philosophers
like Locke, Kant argued that time is not a concept derived from experience but a form of our
sensibility that we impose on our experiences [20]. His theory of temporal idealism aimed to
resolve skeptical concerns about the possibility of scientific knowledge, demonstrating that the
organization of experiences in time is a necessary condition for coherent thought [22].

Even in more contemporary times, philosophers continue to engage with the complexities of
time. In the realm of more modern philosophy, Friedrich Nietzsche’s idea, first presented in the
work "The Gay Science" significantly contributed to our understanding of time [23]. Nietzsche
challenged the prevailing linear perception of time and emphasized the profound significance
of embracing the present moment. He criticized the excessive fixation on the past and future,
positing that genuine fulfillment and meaning reside solely in the immediate experience of life.
Nietzsche introduced the concept of the "eternal recurrence", proposing that time is cyclical, with
all past events infinitely repeating in the future [24]. This concept urges individuals to whole-
heartedly engage with each moment, recognizing its eternal repetition and extracting profound
meaning from the present experience [24, 25].

Moreover, the philosophical debate on the significance of time did not end with the close
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of the nineteenth century. New discoveries in quantum mechanics have shed light on existing
problems that touch upon philosophical issues related to time. For example, the discovery that
quantum mechanics is fundamentally an indeterministic theory has provided another opportunity
to explore the old philosophical problem of free will [20]. These questions have intrigued many
thinkers of the past, such as St. Augustine, St. Thomas Aquinas, Descartes, Spinoza, Leibniz,
and others [26, 27] but this is not the appropriate place for such a discussion. We need to focus
more on physical theories and the physical perception of time. However, the topic of determinism,
particularly the possibility of verifying the indeterminism inherent in quantum mechanics, will
reemerge, especially when we discuss the problem of indefinite temporal order arising from the
interplay of quantum mechanics and theory of relativity (see chapter 3).

1.1 Concept of time in physics

While the philosophical discourse on time flourished in the humanities, a parallel discussion de-
veloped within the field of physics. Physics, as a scientific discipline, investigates the fundamental
laws governing the physical world, and time plays a central role in this pursuit. The significance
of time in physics extends beyond philosophical contemplations; it serves as a crucial dimension
for describing and predicting physical phenomena.

Since the times of Newton and Leibniz, philosophers’ efforts to comprehend these concepts
have been seen as a conflict between the absolute concepts of space, time, and motion, and the
relational approach proposed by Leibniz [20]. The revolution in physics caused by Newton seemed
to solve the problem of an appropriate definition of time until the beginning of the twentieth
century. Physicists forgot about the subtleties related to this topic because everything in physics
seemed to work according to Newton’s classical dynamics.

The classical notion of reality began to collapse when Einstein introduced his theory of rela-
tivity [28]. He defined time as what is measured by a clock, as shown in this quote: [29]:

“[Time is] considered measurable by a clock (ideal periodic process) of negligible
spatial extent. The time of an event taking place at a point is then defined as the
time shown on the clock simultaneous with the event.”

As such, this notion of time was closer to the opinion presented by Leibniz, not Newton. More-
over, the special and general theories of relativity show that time is just one of the four coordinates
that can be transformed between different reference frames. The next great revolution in physics
was caused by quantum mechanics, which changed the classical point of view. Every measurable
quantity was now described by an operator acting on a Hilbert space [30]. Only the definition
of time that was introduced to the quantum mechanic stays the same as in the classical Newto-
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nian interpretation. Time in quantum mechanics is still only a scalar parameter that labels the
evolution of the system. Attempts to construct a time operator ended in failure, expressed in
Pauli’s famous objection [31].

He argues that the time operator would necessarily commute with the Hamiltonian of a given
system, and as such, they would share the same spectrum. The typical spectrum of the latter
is discrete and bounded from below, which stays in conflict with our expectations of time as
a continuous, real quantity. This simple argumentation meant that physicists got stuck with
classical time in a fully quantum theory.

Dealing with these contradictions is one of the crucial aims of modern theoretical physics.
Exploring phenomena lying at the boundary of the two great branches of physics: the theory of
relativity and quantum mechanics, can be an impulse to develop a better theory reconciling dif-
ferent points of view on the nature of time. Recent publications show a new way of treating time
in quantum mechanics. Based on Bridgman’s conception of physics expressed in the quote [32]:

“Einstein, in seizing on the act of the observer as the essence of the situation, is
actually adopting a new point of view as to what the concepts of physics should be;
namely, the operational view.”

One can try to extend the operational view to quantum theory. This extension has been
made, and now time can be understood through measurements of quantum systems serving
as clocks [33]. For example, this perspective on quantum clocks has been studied in the context
of quantum metrology [34–37].

Recently it was also shown how to construct time observables as positive-operator valued
measures (POVMs) that transform covariantly with respect to the group of time translations
acting on the employed clock system [38, 39]. What is even more important, such covariant
time observables not only can be used for a rigorous formulation of the time-energy uncertainty
relation [34–37], but also to avoid the above-mentioned Pauli’s objection [40]. Also, this way of
defining time in quantum mechanics plays an important role in the so-called relational quantum
dynamics [41–45]. Using this kind of quantum clock has significant consequences in the context
of the theory of relativity. It was shown that a quantum clock can simultaneously experience
different proper times if it spread along different trajectories. However, if it is well localized in
space, the rate of its ticking agree with special and general relativity, as examined in numerous
studies [46–53].

Quantum treatment of clocks no longer invites us to consider them as a background to some
dynamic evolution of a given system, but rather as an intrinsic part of a fully quantum setup.
As such, it is only natural to exploit the quantumness of the time measurement in order to ask
fundamental questions and introduce quantities that may work as a testbed for relativistic and
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quantum theories. Among many other proposals, we are most interested in two of them—the
phenomenon of quantum time dilation and indefinite temporal order.

The first one emerges after asking the question: What happens when a clock is in a quantum
superposition of two different velocities? It was demonstrated that, in addition to the classical
contributions from a mixture of two different time dilations, there is an additional effect that
arises solely due to quantum coherence. This effect is known as quantum time dilation [54].

The second issue involves the possibility that the order of two events could be in a superpo-
sition, similar to how we could have superpositions of different positions in quantum mechanics
[55–57].

We plan to work with these ideas in order to devise schemes that would test the relationship
of quantum and relativistic theories, uncovering phenomena that might provide us with further
insight into the interlayer between these frameworks.

Recent theoretical advancements in this field have sparked a rapidly growing interest. Re-
searchers are exploring a variety of fascinating topics. For example, some studies have investi-
gated whether a charged decaying particle can act as an ideal clock in the presence of a magnetic
field [58], and whether it is even possible to construct an ideal clock at all [59]. Other investiga-
tions have examined whether the time dilation on Earth is strong enough to cause decoherence
in micro-scale quantum systems [60]. Researchers have also studied how detectors behave when
they follow a quantum superposition of different accelerated paths in Minkowski spacetime [61].
Additionally, they have focused on establishing proper relational dynamics in quantum mechanics
[62] and ensuring that physical laws remain consistent across different quantum reference frames
[63].

Experimental efforts have also highlighted numerous regimes where the gravitational and quan-
tum worlds intersect. Some studies have shown that quantum interference effects allow two de-
tectors to gain information on field correlations that would otherwise be inaccessible [64]. Other
research has demonstrated how free-falling objects in a uniform gravitational field can be used to
test the equivalence principle [65, 66]. Moreover, a recent paper by Sougato Bose et al. proposed
an idea to test whether gravity is a quantum entity [67]. A similar idea was proposed by Chiara
Marletto and Vlatko Vedral, who suggested an experiment to observe the quantumness of the
gravitational field by examining the induced entanglement between two massive particles [68].

The author of this dissertation has also been involved in other research related to the aforemen-
tioned topics. His other work includes studies on quantum effects through the theory of Gaussian
states in uniformly accelerated frames [5], which, for example, was used to demonstrate the effect
of relativistic acceleration on tripartite entanglement in Gaussian states [6]. Additionally, he has
studied the Casimir-Polder potential with Unruh-DeWitt detector excitations [7], as well as the
Casimir effect in conformally flat spacetimes [8].
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Recently, the author has also worked on the theory of hypothetical superluminal particles.
This research culminated in the theory of relativity for superluminal observers in 1+3 spacetime
[9], and the quantum version of the theory of tachyons [10].

While all these topics are indeed fascinating, they are not directly related to the subject of
this dissertation, and thus, will not be elaborated upon further.

1.2 Structure of this work

This dissertation is structured as follows: In Chapters 2 and 3, we present the original results
of this research based on four publications [1–4]. Consequently, all the plots presented in this
dissertation are sourced from these references, although each plot will not be individually cited.
Chapter 2 focuses on the properties of quantum time dilation, while Chapter 3 explores indef-
inite temporal order without gravity. At the start of each chapter, we will introduce the basic
theories that underpin our work, such as the concept of quantum time dilation and indefinite
temporal order. These introductions will set the stage for the key topics of this dissertation,
like the universality of quantum time dilation and other related subjects. Additionally, Chapter
4 contains conclusions drawn from this dissertation. It also presents possible future research
directions based on these findings.
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2 Quantum time dilation

[Time is] considered measurable by
a clock (ideal periodic process) of
negligible spatial extent. The time
of an event taking place at a point
is then defined as the time shown
on the clock simultaneous with the
event.

(Hermann Weyl [69])

This chapter delves into the phenomenon of quantum time dilation, focusing on the definition
put forth by Alexander Smith and Mehdi Ahmadi [70]. The impact of this concept is explored
through the study of a clock interacting with an electromagnetic field. We examine the
consistency of spectral measurements with theoretical predictions based on the time operator.
Additionally, a quantum clock model, represented by a two-level system, is employed to
investigate both kinematic and gravitational time dilation effects, demonstrating significant
alignment with theoretical expectations derived from the more abstract analysis of the time
operator. The chapter concludes by confirming the non-coincidental nature of the observed
effects and identifying the conditions under which the universality of quantum time dilation
occurs.
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2.1 Useful tools

In this section, we will introduce the fundamental concepts used in this chapter. These theories
and ideas serve as an introduction to the topic of further considerations that are the focus of this
work.

2.1.1 Quantum time dilation - time operator approach

The superposition principle is a fundamental aspect of quantum mechanics. When combined
with relativistic effects, it leads to various intriguing phenomena and theories like communica-
tions without definite causal structure [57], decoherence due to gravitational time dilation [47],
gravitationally induced entanglement between particles [68], Bells’s theorem for temporal order
[71] or Unruh effect for detectors in superposition of accelerations [61], as we mentioned in the
introduction. Consequently, a natural question arises: does quantum mechanics contribute to
the observed time dilation of a clock moving in a superposition of relativistic speeds? This ques-
tion has been investigated in various scenarios, such as modified twin-paradox situations with
one twin in a superposition of motions [72], analogue twin-paradox scenarios in superconduct-
ing circuits [73], interferometry experiments where a clock experiences a superposition of proper
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2.1 Useful tools

times [52, 53, 74, 75], and sequential boosts of quantum clocks emulating twin-like scenarios,
leading to nonclassical effects in ion trap atomic clocks [76].

Recently, a probabilistic formulation of relativistic time dilation observed by quantum clocks
has been developed [54]. It has been demonstrated that a clock moving in a localized momentum
wave packet, on average, observes classical time dilation in accordance with special relativity.
However, when a clock moves in a coherent superposition of two momentum wave packets, it
experiences quantum corrections to the observed time dilation compared to a classical clock
moving in a probabilistic mixture of the same wave packets. This quantum time dilation effect
has been established within an idealized model of a clock. However, the question of whether
quantum time dilation is universal, analogous to how classical time dilation affects all clocks
uniformly, remains an open question, one of the main topic of this dissertation.

The original goal of this work is to demonstrate the universality of quantum time dilation and
to provide conditions under which it occurs. However, before delving into the discussion of the
results obtained by the author of this dissertation, it is necessary to present a precise description
of the phenomenon of the quantum time dilation.

To illustrate the quantum time dilation measured by a quantum clock, we can examine a rela-
tivistic particle with an internal degree of freedom. This internal degree of freedom is described
by a Hamiltonian, which captures the particle’s dynamics and interactions within the framework
of quantum mechanics

Ĥ =

√
p̂2c2 + M̂2c4, (2.1)

where the momentum of the particle is represented by p̂, and the mass operator is defined as
M̂ ≡ m+ Ĥ clock/c

2. The mass operator combines the particle’s rest mass m with the dynamical
mass Ĥ clock/c

2, which arises from the energy associated with the internal degree of freedom
governed by the Hamiltonian Ĥclock.

The internal degree of freedom of the particle can function as a clock that measures the par-
ticle’s proper time. This is achieved through a time observable T̂clock that undergoes covariant
transformations with respect to the group generated by Ĥclock. The time observable T̂clock is de-
fined as a positive operator valued measure with effect operators Ê(t) satisfying the covariance
condition Ê(t+ t′) = e−it

′ĤclockÊ(t)eit
′Ĥclock [35, 37, 40]. It is assumed that this time observable

is sharp and can be associated with a self-adjoint operator T̂clock.

Let us consider the particle prepared in a superposition of momentum wave packets, which
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2 Quantum time dilation

can be expressed, up to normalization, as

|ψ⟩ ∝ cos θ
∣∣φp̄1

〉
+ eiϕ sin θ

∣∣φp̄2

〉
, (2.2)

where θ ∈ [0, π2 ), ϕ ∈ [0, π), and ⟨p|φp̄i⟩ = e−(p−p̄i)
2/2∆2

/π1/4
√
∆ with ∆ being the spread of the

wave packet in momentum space. Consider a clock characterized by the Hilbert space L2(R),
where the Hamiltonian is given by Ĥclock = cP̂clock and the covariant time observable satisfies
the commutation relation [T̂clock, Ĥclock] = iℏ. The average time measured by the clock, denoted
as ⟨T̂clock⟩, when observed by an observer relative to whom the Hamiltonian in (2.1) generates
an evolution corresponding to a time t, can be shown to be equal to [54]

⟨T̂clock⟩ =
(
γ−1
C + γ−1

Q

)
t, (2.3)

where to leading relativistic order

γ−1
C ≡ 1− p̄2

1 cos
2 θ + p̄2

2 sin
2 θ −∆2/2

2m2c2
, (2.4)

is associated with the classical time dilation of a clock moving in a statistical mixture of momenta
p̄1 and p̄2 with probabilities cos2 θ and sin2 θ, and

γ−1
Q ≡

cosϕ sin 2θ
[
(p̄2 − p̄1)

2 − 2
(
p̄2
2 − p̄2

1

)
cos 2θ

]
8m2c2

[
cosϕ sin 2θ + e

(p̄2−p̄1)
2

4∆2

] , (2.5)

quantifies the deviations from classical time dilation that arise due to the coherence between
the momentum wave packets associated with the internal clock. It can be considered as a
generalization of the classical time dilation formula, taking into account the potential motion
of the clock in nonclassical states and accounting for non-zero γ−1

Q that leads to quantum time
dilation effects.

The previous discussions were centered around an ideal clock model, where the proper time
of the clock was associated with an operator that was canonically conjugate to the specific clock
Hamiltonian Ĥclock. However, it remains uncertain whether quantum time dilation is a universal
phenomenon that affects all clocks in a similar manner, as observed in classical time dilation.

2.1.2 Rindler coordinates

In the further sections of this dissertation, we will employ Rindler transformations to simulate
the behavior of a clock in the presence of a gravitational field. At this point, let us recall the
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2.1 Useful tools

basic facts about Rindler coordinates.
An accelerating frame of reference can be described using the following coordinate transformation
[77]

ct = χ sinh
(gτ
c

)
, z = χ cosh

(gτ
c

)
, (2.6)

where (ct, z) are Minkowski coordinates, τ is the Rindler time, χ is the Rindler distance, and
g is a reference proper acceleration corresponding to an observer measuring proper time τ . For
simplicity, we will focus on positive Rindler distances. In this case, observers with fixed Rindler
coordinates χ experience constant proper acceleration c2/χ, and their proper times can be related
to the parameter g through the expression gχ

c2
τ . We restrict our considerations only to the region

of spacetime with z > |ct|, i.e. to one Rindler wedge. The inverse transformation can be written
as [77]

cτ =
c2

g
atanh

(
ct

z

)
, χ =

√
z2 − c2t2. (2.7)

It is also convenient to use the so-called radar coordinates (cτ, ξ) with ξ defined by the relation
χ = c2

g e
gξ/c. These new coordinate system is especially useful to quantization procedure of the

electromagnetic field as was shown in [78].

2.1.3 Post-Newtonian approximation

In the further sections of this dissertation, we will use Schwarzschild coordinates to investigate
the behavior of a clock in the presence of a gravitational field. Let us now examine the so-called
post-Newtonian expansion of the metric.
Let us consider the standard Schwarzschild metric in Schwarzschild coordinates, which corre-
sponds to a set of stationary observers. The metric is given by

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dΩ2, (2.8)

where dΩ2 = dθ2 + sin2 θdϕ2.
To simplify the metric and make the spatial component isotropic, we can reparameterize the

radial coordinate as r(ϱ) = ϱ
(
1 + GM

2ϱc2

)2
. This leads to the metric

ds2 =

(
1− GM

2ϱc2

1 + GM
2ϱc2

)2

︸ ︷︷ ︸
g00(ϱ)

c2dt2 −
(
1 +

GM

2ϱc2

)4 (
dϱ2 + ϱ2dΩ2

)
. (2.9)

In these coordinates, the spatial part (ϱ, θ, ϕ) is proportional to the Euclidean metric.
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2 Quantum time dilation

Next, we introduce a reparameterized temporal coordinate τ0 that corresponds to the proper
time measured by a stationary ideal clock placed at ϱ0. We have dτ0 =

√
g00(ϱ0)dt, and the

metric in these new coordinates becomes

ds2 =

(
1− GM

2ϱc2

1 + GM
2ϱc2

)2(
1− GM

2ϱ0c2

1 + GM
2ϱ0c2

)−2

c2dτ20 −
(
1 +

GM

2ϱc2

)4 (
dϱ2 + ϱ2dΩ2

)
. (2.10)

To further analyze the metric, we perform a post-Newtonian expansion by assuming that the
distances ϱ and ϱ0 are larger than GM/c2 or, equivalently, that the dimensionless parameters
GM/ϱc2 and GM/ϱ0c

2 are small. The resulting expansion is

ds2 ≈

(
1− 2

GM

ϱc2
+ 2

(
GM

ϱc2

)2
)(

1 + 2
GM

ϱ0c2
+ 2

(
GM

ϱ0c2

)2
)
c2dτ20

−

(
1 + 2

GM

ϱc2
+

3

2

(
GM

ϱc2

)2
)(

dϱ2 + ϱ2dΩ2
)
. (2.11)

This approximate form of the metric (2.86) will be used in our study.
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2.2 Quantum time dilation in atomic spectra

2.2 Quantum time dilation in atomic spectra

The objective of this section is to provide the example supporting the hypothesis that quantum
time dilation is a universal phenomenon that can be observed within the standard formulation
of quantum mechanics without taking into account time operators and any others unorthodox
physics. To achieve this, we propose considering the lifetime of an excited hydrogen-like atom
as a clock [33] and demonstrate that when such an atom moves in a coherent superposition of
momenta, its lifetime undergoes the same quantum time dilation as the clocks studied in [54].
This offers a spectroscopic signature of a clock experiencing a superposition of proper times,
which serves as an alternative to previous interferometry proposals aiming to observe a decrease
in interference visibility [52, 53, 74, 75].

Observations of spectroscopic signatures of classical time dilation have been made for atoms
moving at speeds as low as 10 m/s [79]. Nonclassical effects in emission spectroscopy due to
the coherent spreading of the atomic center-of-mass wave function were first investigated in the
early 1990s[80–83], and the effect of center-of-mass superposition was recently studied in a scalar
field model [84]. In our work, we demonstrate the exact quantum time dilation effect described
in [54] by observing the spontaneous decay rate of an atom moving in a coherent superposition of
relativistic momenta. This finding paves the way for a new class of spectroscopic measurements
that are sensitive to relativistic effects arising from quantum coherence.

Additionally, we highlight a novel correction to the classical Doppler shift that modifies the
shape of the atomic emission spectrum. This correction becomes prominent when measuring the
spectrum along the direction of the atom’s motion. Conversely, when the spectrum is measured
perpendicular to the motion, first-order momentum-dependent effects vanish, and second-order
relativistic corrections emerge. This is evident from the angular distributions of radiation emitted
by moving atoms, which we present. These distributions indicate the emission directions most
affected by motion and suggest the optimal approach for measuring quantum time dilation.

Moreover, we analyze potential experimental scenarios in which both the quantum Doppler and
quantum time dilation effects can be measured. Based on the current state-of-the-art techniques
involving atomic ion clocks and setups with large momentum exchanges, we argue that the
required parameter regimes can be reached. Previous spectroscopic experiments have successfully
observed classical time dilation in atoms moving at speeds as low as 10 m/s [79], and we anticipate
further advancements in this field.

Subsequently, we provide evidence supporting the hypothesis that quantum time dilation is
a universal phenomenon for clocks moving in superpositions of inertial trajectories. To achieve
this, we introduce an alternative clock model based on the lifetime of an excited atom. Through
our investigation, we demonstrate that this atom-based clock exhibits quantum time dilation
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2 Quantum time dilation

in accordance with (2.5). This finding brings quantum time dilation effects closer to experi-
mental verification by showcasing their manifestation in a realistic clock model grounded in the
phenomenon of spontaneous emission, which is the underlying mechanism behind atomic clocks.

2.2.1 Spectroscopy of moving atoms

Consider a two-level atom with mass m, where the ground state |g⟩ and excited state |e⟩ are
separated by an energy difference ℏΩ in the atom’s rest frame. The dynamics of the atom, as
well as the electromagnetic fields Ê and B̂, are described by the Hamiltonian

Ĥ = Ĥatom + Ĥfield + Ĥaf, (2.12)

where the free Hamiltonian of the atom to leading relativistic order in the atom’s center-of-mass
momentum p̂/mc (e.g. [85]) is

Ĥatom =
p̂2

2m
− 1

8

p̂4

m3c2
+ ℏΩ

(
1− 1

2

p̂2

m2c2

)
|e⟩⟨e| , (2.13)

and the electromagnetic field Hamiltonian is Ĥfield =
∑

k,ξ ℏωkâ
†
k,ξâk,ξ, which is a mode sum

over the wave vector k and polarization index ξ with the corresponding eigenfrequencies ωk = kc

and annihilation operators âk,ξ. The atom interacts with the electromagnetic field through the
interaction Hamiltonian [86–90]

Ĥaf = −d̂ · Ê⊥ − 1

2m

[
p̂ ·
(
B̂ × d̂

)
+
(
B̂ × d̂

)
· p̂
]
, (2.14)

where the first term represents the dipole interaction given by the dipole operator
d̂ = d (|g⟩ ⟨e|+ |e⟩ ⟨g|) in the laboratory frame, and the second term represents the Röntgen term,
which takes into account the Lorentz-transformed electromagnetic field experienced by the atom
in motion.1 The Röntgen term is a consequence of the vectorial nature of the electromagnetic
field, and thus would not appear in an analogous scalar field model [84, 99]. It is important
to note that all the operators entering the Hamiltonian (2.12) are expressed in the laboratory

1This term, known as the Röntgen term, has been known since the 19th century [91]. However, it was initially
omitted in early works on light-matter interactions. Its incorporation into the formalism dates back to the
works of Babiker in the 1980s [92]. It was later rigorously shown in the early 2000s that this term is necessary
to achieve agreement with special relativity [87, 93, 94]. Nowadays, it is routinely used in studies of atom-field
interactions involving moving bodies [89, 95–98].
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2.2 Quantum time dilation in atomic spectra

frame.2 The electromagnetic fields appearing in (2.14) are given by

Ê⊥(r) = −i
∑
k,ξ

√
ℏωk
2ϵ0V

ϵk,ξâk,ξe
ik·r̂ + H.c., (2.15)

B̂(r) = i
∑
k,ξ

√
ℏ

2ϵ0V ωk
(k × ϵk,ξ) âk,ξe

ik·r̂ + H.c., (2.16)

where ϵ0 is the vacuum permittivity and V the quantization volume, while ϵk,ξ is the polarization
vector perpendicular to the wave vector k. By employing the rotating wave approximation [87,
89], the interaction Hamiltonian (2.14) can be expressed as

Ĥaf = −iℏ
∑
k,ξ

√
ℏωk
2ϵ0V

ĝk,ξe
ik·r̂ |e⟩ ⟨g| âk,ξ + H.c., (2.17)

where the coupling constant depends on the momentum of the atom

ĝk,ξ = ϵk,ξ · d+
1

mωk

(
p̂− ℏk

2

)
· [(k × ϵk,ξ)× d] , (2.18)

and is an operator itself with eigenvalues gk,ξ.

It is important to mention that the Hamiltonian Ĥaf in (2.17) explicitly depends on the center-
of-mass position operator r̂, which is treated as a quantum degree of freedom. This Hamiltonian
establishes a coupling between the internal energy levels of the atom and its center-of-mass
motion, leading to a recoil effect when the atom undergoes decay. The presence of the second
term in (2.18) arises directly from the Röntgen term in (2.14).

Let us now examine the energy scales associated with the system under consideration, specifi-
cally the energy of the atom’s internal degree of freedom ℏΩ, its rest energy mc2, and its kinetic
energy ⟨p̂2/2m⟩. In the subsequent analysis, we will focus on regimes where the internal energy
of the atom is much smaller than both its rest energy and its kinetic energy. This condition
allows for a valid first-order expansion in terms of both ℏΩ/mc2 and ℏΩ/⟨p̂2/2m⟩.

Let’s consider an atom initially prepared in an excited state, characterized by a center-of-mass
wave function ψ(p), while the electromagnetic field is in a vacuum state. We can represent the
initial state of the system as |Ψ(0)⟩ =

∫
dp, ψ(p) |e,p, 0⟩. The composite system undergoes an

2For example, the dipole moment is connected to its rest value d′ by a Lorentz transformation d = d′ − d′·v
v2 v+

d′·v
v2 v/

√
1− v2/c2, where v is the velocity of the moving atom.
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2 Quantum time dilation

Figure 2.1: a) Angular dipole distribution of emitted photons from a decaying atom at rest (p =
0) with respect to the center of mass momentum p and dipole momentum d. b) Linear
motion correction: Angular distribution modifications due to the linear momentum
of the atom, c) Quadratic motion correction: Angular distribution modifications due
to the quadratic momentum of the atom. Positive corrections are depicted in red,
while negative corrections are shown in blue.

evolution over time, leading to the resulting state

|Ψ(t)⟩ =
∫

dpα (p, t) |e,p, 0⟩+
∑
k,ξ

∫
dpβk,ξ (p, t) |g,p− ℏk, 1k,ξ⟩ , (2.19)

which has been expanded in the energy eigenstates |e,p, 0⟩ and |g,p− ℏk, 1k,ξ⟩, associated re-
spectively with the energies

ℏωe(p) =
p2

2m
− p4

8m3c2
+ ℏΩ

(
1− 1

2

p2

m2c2

)
, (2.20)

ℏωg(p,k) =
(p− ℏk)2

2m
− (p− ℏk)4

8m3c2
+ ℏωk. (2.21)

The time-dependent coefficients in |Ψ(t)⟩ can be determined by solving the corresponding
Schrödinger equation using a Laplace transform, as commonly employed in Wigner-Weisskopf
theory [100]. By employing a single pole approximation [81], we obtain the following expressions
for the coefficients

α (p, t) = e−iωe(p)te−
Γ(p)
2
tψ (p) , (2.22)

βk,ξ (p, t) =

√
ℏωk
2ϵ0V

gk,ξ(p)ψ (p)
e−iωe(p)te−

Γ(p)
2
t − e−iωg(p,k)t

i [ωe(p)− ωg(p,k)] + Γ(p)
2

, (2.23)
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2.2 Quantum time dilation in atomic spectra

where Γ(p) is the total transition rate of the spontaneous decay of the atom moving with mo-
mentum p

Γ(p) =
∑
k,ξ

ωk
8π2ℏϵ0c3

g2k,ξ(p)δ [ωe(p)− ωg(p,k)] . (2.24)

Then, the total transition rate in the long-time limit is

Γ= lim
t→∞

d

dt

∑
k,ξ

∫
dp |βk,ξ (p, t)|2=

∫
dp |ψ (p)|2 Γ(p), (2.25)

where the results of [93, 94] are recovered when ψ (p) is a momentum eigenstate.
As described in Appendix 2.6.2, the angular distribution of the emitted radiation can be

obtained by omitting the angular integration in (2.25), resulting in the following expression

Γ(Θ,Φ)

Γ0
= Ξ0(Θ,Φ)

(
1− 3

2

ℏΩ
mc2

)
+

1

mc
Ξ1(Θ,Φ)

∫
dp p|ψ(p)|2 + 1

2m2c2
Ξ2(Θ,Φ)

∫
dp p2|ψ(p)|2,

(2.26)

where Θ and Φ are the azimuthal and polar angles of k vector relative to p, respectively, Γ0 =
Ω3d′2

3πϵ0ℏc3 is the total decay rate of a standing atom ignoring recoil effects (i.e., ℏΩ≪ mc2), and we
have assumed that the atom moves only along the z axis, perpendicular to the dipole moment
vector d.

Hence, ψ(p) should be interpreted as a marginal distribution of a complete center-of-mass wave
function, where |ψ(p)|2 represents the integrated probability density over the x and y momentum
directions, while being well localized along the z axis.

The term Ξ0(Θ,Φ) corresponds to the standard angular distribution of dipole radiation, and
it depends on the polar angle Θ and azimuthal angle Φ

Ξ0(Θ,Φ) =
3

8π

(
1− sin2Θcos2Φ

)
, (2.27)

while

Ξ1(Θ,Φ) =
3

4π
cosΘ

(
1− 2 sin2Θcos2Φ

)
, (2.28)

Ξ2(Θ,Φ) =
3

16π

[
6 cos 2Θ + 5 cos2Φ (cos 4Θ− cos 2Θ)

]
, (2.29)

are first and second order corrections in p/mc to the dipole distribution appearing due to the
motion of the atom [87]. The motional corrections to the angular distribution of radiation are
universal, meaning they occur regardless of the atom’s motion, except when the atom is at
rest. These corrections exhibit a consistent shape that is unaffected by the specific form of the
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momentum wave function ψ(p) (as shown in Fig. 2.1).

By integrating over the polar angle Θ and azimuthal angle Φ, the familiar formula [87, 89, 93,
94] can be recovered.

Γ = Γ0

(
1− 3ℏΩ

2mc2
− 1

2m2c2

∫
dp p2|ψ(p)|2

)
. (2.30)

When the atom moves along a classical trajectory with momentum p̄, the momentum wave
function takes the form |ψ(p)|2 = δ(p − p̄). In this case, the transition rate Γ is related to the
transition rate in the atom’s rest frame Γ0

(
1− 3ℏΩ

2mc2

)
through a Lorentz factor. Specifically,

we have Γ = Γ0

(
1− 3ℏΩ

2mc2

)√
1− v2/c2 ≈ Γ0

(
1− 3ℏΩ

2mc2
− p̄2

2m2c2

)
. This expression agrees with

(2.30) and ensures consistency with special relativity.

Figure 2.2: The plot depicts the difference in the total emission rate between a superposition
and a classical mixture of two momentum wave packets of an atom. It shows how
this difference depends on the momentum difference, relative phase, and weight of the
wave packets. Panel a) corresponds to an equal-weighted superposition with θ = π/4.
Panels b) and c) represent fixed relative phases of ϕ = 0 and ϕ = π, respectively.
The red line indicates the maximum value of the effect for a given relative phase or
weight, while the red circles mark the maximum and minimum values across the entire
plot. A nonzero value for a finite momentum difference signifies the phenomenon of
quantum time dilation.
Each panel assumes a momentum spread of ∆ = 0.01mc for each wave packet, and
the sum of their average momenta is p̄1 + p̄2 = 0.05mc.

Furthermore, by analyzing the expressions in (2.22), it is possible to derive the shape of an
emission line. This emission line can then be easily converted to an absorption spectrum using
the Einstein coefficients. The probability of an atom emitting a photon with momentum ℏk can
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be determined as follows

P (k) = lim
t→∞

∑
ξ

∫
dp |βk,ξ (p, t)|2 . (2.31)

Under the assumption of a large mass m, motion along the z axis, and a dipole moment perpen-
dicular to the motion, we can deduce the specific characteristics of a transition line for photons
emitted in the direction of motion (a detailed analysis of these characteristics is presented in
Appendix 2.6.2)

P∥(ω) =
3

8π

∫
dp |ψ (p)|2

(
1 + 3 p

mc

)
Γ0/2π[

ω − Ω
(
1 + p

mc

)]2
+

Γ2
0
4

(
1 + 2 p

mc

) , (2.32)

and perpendicular to both the dipole moment and to the direction of motion

P⊥(ω) =
3

8π

∫
dp |ψ (p)|2

(
1− 3

2
p2

m2c2

)
Γ0/2π[

ω − Ω
(
1− 1

2
p2

m2c2

)]2
+

Γ2
0
4

(
1− p2

m2c2

) . (2.33)

It is important to note that both P∥(ω) and P⊥(ω) have been expanded up to the leading
relativistic order, taking into account the center-of-mass momentum distribution |ψ(p)|2 inte-
grated against a Lorenz distribution. When observed in the direction of motion, the transition
line experiences a Doppler shift, as the Lorenz distribution is linearly shifted in momentum by
an amount Ω → Ω(1 + p/mc). Conversely, for light emitted or absorbed perpendicular to the
motion, the Doppler shift is absent, and the dominant relativistic corrections cause a shift in the
center of the Lorenz distribution by an amount Ω→ Ω(1−p2/2m2c2), which is quadratic in mo-
mentum. These findings highlight the distinct effects of Doppler shift and relativistic corrections
in the emission and absorption spectra of the system.

Each of the quantities of interest, namely the angular distribution of radiation, the total decay
rate, and the shape of the emission line, are routinely measured in various experiments [101].
These experimental measurements provide valuable insights into the behavior of atoms and their
interactions with electromagnetic fields. Having established how these observables depend on
the center-of-mass momentum distribution, we are now equipped to utilize nonclassical center-
of-mass motion in such experimental scenarios as a direct probe of quantum time dilation. This
opens up exciting opportunities to experimentally investigate and verify the effects of quantum
time dilation, providing further support for the universal nature of this phenomenon.
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2.2.2 Spectroscopic signatures of quantum time dilation

To begin our analysis, we will investigate the transition rate Γ for atoms existing in coherent su-
perpositions and incoherent classical mixtures of localized momentum wave packets. This allows
us to examine the differences in the behavior of these two scenarios. Analogously to the quantum
clock model described in 2.1.1, an atom is considered to be either in a superposition (2.2) with
a momentum distribution given by

ψsup(p) = N
(
cos θ ⟨p|φp̄1⟩+ eiϕ sin θ ⟨p|φp̄2⟩

)
, (2.34)

where

N ≡
[√

π∆

(
1 + cosϕ sin 2θ e−

(p̄1−p̄2)
2

4∆2

)]−1/2

(2.35)

or in a classical mixture such that

Pcl(p) = cos2 θ |⟨p|φp̄1⟩|
2 + sin2 θ |⟨p|φp̄2⟩|

2 (2.36)

of momentum wave packets.

For simplicity, let us assume that p̄1 and p̄2 are collinear. By evaluating equation (2.25), we
obtain the relative difference in the total emission rates between these two scenarios

Γsup− Γcl

Γ0
=

1

2m2c2

∫
dp p2

(
|ψsup(p)|2 − Pcl(p)

)
γ−1
Q , (2.37)

which corresponds to the quantum correction to the classical time dilation contribution, as
specified in Equation (2.5) and derived in the work by Smith and Ahmadi [54]. It is remarkable
to find that the clock model employed in this study, which is based on the spontaneous decay of an
atom, exhibits the identical quantum time dilation effect as the quantum clock model investigated
in [54] and discussed in Section 2.1.1. This observation lends support to the hypothesis that
quantum time dilation, in the context of constant velocities, is universally applicable and impacts
all clocks in a consistent manner.

The disparity γ−1
Q in the transition rate between a coherent superposition and classical mixture

of momentum wave packets can assume positive or negative values, contingent upon the relative
phase ϕ and relative weight θ of the two wave packets (refer to Fig. 2.2). Specifically, for an
equally weighted superposition, the expression in Equation (2.37) is independent of the sum of
the wave packets’ momenta. It takes on a positive value when the relative phase is less than
ϕ = π/2, and it becomes negative when the relative phase exceeds this threshold. Notably, the
quantum contribution showcases a prominent peak at a specific relative phase ϕ. When ϕ = 0,
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this peak emerges at a finite momentum difference of p̄2− p̄1 ≈ 2∆. Conversely, when the relative
phase is ϕ = π, the position of the peak shifts closer to p̄2 − p̄1 ≈ 0.

This behavior can be comprehended by examining the structure of the wave packets in momen-
tum space. When the wave packets nearly completely overlap, their relative phase becomes cru-
cial. In the limit where the separation between the wave packets in momentum space approaches
zero, the distinction between the coherent superposition and incoherent classical mixture dis-
appears since the two wave packets become indistinguishable. However, as the relative phase
approaches π, the real part of the center-of-mass wave function approaches zero, highlighting the
significance of the imaginary part, which is an antisymmetric function. This is in contrast to the
classical mixture, where the density remains single-peaked.

Surprisingly, an equally weighted superposition does not maximize the effect of quantum time
dilation, as it saturates at −∆2/2m2c2 for a relative phase equal to ϕ = π. The global maximum,
on the other hand, is attained for ϕ = π with a slightly unbalanced superposition, θ ≈ π/4 ±
(p̄2 − p̄1)/2

√
2∆.

If the wave packets have average momenta much larger than their spreads, i.e., (p̄1+p̄2)/∆≫ 1,
then the maximum becomes proportional to the sum of the momenta, ±

√
2∆|p̄1 + p̄2|/4m2c2.

This indicates that the effect of quantum coherence on the emission rate increases as the average
momenta of the wave packets increase.

Note that the quantum correction γ−1
Q to the observed time dilation through the atom’s decay

rate is a second-order effect in the atom’s average momentum, as seen in (2.5) and (2.37),
similar to the classical time dilation contribution governed by γ−1

C . However, linear effects, such
as the Doppler shift, can also be influenced by momentum coherence. These effects can be
characterized by comparing the first moments of the momentum distributions associated with a
coherent superposition and an incoherent classical mixture

δQ ≡
1

mc

∫
dp p

(
|ψsup(p)|2 − Pcl(p)

)
=

cosϕ sin 4θ (p̄2 − p̄1)

4mc

[
cosϕ sin 2θ + e

(p̄2−p̄1)
2

4∆2

] . (2.38)

The behavior of δQ exhibits distinct characteristics compared to γ−1
Q . Notably, δQ vanishes

when the superposition of symmetric wave packets is equally weighted. However, due to its linear
dependence on momentum, δQ is easier to measure as its absolute magnitude is inherently larger
than the second-order quantum time dilation effect described by γ−1

Q . Further analysis of δQ is
presented in Appendix 2.6.1.

If one examines the angular distribution of emitted photons from the decaying atom, as given
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by equation (2.26), the difference between the coherent and incoherent cases can be expressed as

Γsup(Θ,Φ)− Γcl(Θ,Φ)

Γ0
= Ξ1(Θ,Φ) δQ + Ξ2(Θ,Φ) γ

−1
Q . (2.39)

It is important to note that the angular distribution of radiation can be linearly affected
by the atom’s momentum coherence. In particular, the contribution stemming from momentum
coherence is most pronounced for photons emitted in the direction of the atom’s motion, as shown
in Figure 2.1(b). However, it should be emphasized that this quantum correction will vanish if
the atom’s center-of-mass is prepared in an equally weighted superposition of momentum wave
packets.

In contrast, the emission of photons perpendicular to both the dipole moment and the di-
rection of motion is not linearly affected by the atom’s momentum. Moreover, as depicted in
Figure 2.1(c), the second-order contribution is largest in this direction, suggesting that detecting
photons in this direction is optimal for measuring quantum time dilation.

Similar to the total emission rate and the angular distribution, the shape of a transition line is
also affected by the nonclassicality of the center-of-mass state, as shown in (2.32) and(2.33). That
is, the emission spectrum of an atom in a coherent momentum superposition is distinct from that
of an incoherent classical mixture. As suggested by the analysis of the angular distribution of
radiation, we will focus on two cases: photons emitted parallel and perpendicular to the atom’s
motion. Experimentally, both scenarios can be realized by emission and absorption spectroscopy,
with the latter producing an absorption line shape that can be derived from the emission shape
via the Einstein coefficients. To keep the discussion simpler, we will discuss only the emission
line.

First, the photons emitted in the direction of motion experience the classical Doppler effect,
which leads to a linear shift of the transition line center with respect to p/mc. This behavior is
distinct from the relativistic effects, which result in quadratic shifts with respect to p/mc. Similar
to quantum time dilation, the correction arising from momentum coherence to the Doppler shift
can be referred to as the quantum Doppler shift.

It is important to highlight that the quantum Doppler effect does not alter the total emission
rate, but rather modifies the shape of the emission spectrum. In contrast, the total emission rate
is influenced by quantum time dilation. The quantum Doppler effect smoothens the contrast
between the two transition rate peaks associated with the two different Doppler-shifted emission
lines, as illustrated in Fig.2.3(a)-(b). The distinction between the quantum and classical Doppler
shifts is most prominent between the emission peaks, indicating that postselection of the atom’s
final momentum may further enhance the effect. A detailed quantitative analysis elucidating how
the quantum Doppler effect alters the shape of the emission line is provided in Appendices2.6.1

28



2.2 Quantum time dilation in atomic spectra

20 40 60 80
0
1
2
3
4
5

20 40 60 80
0
1
2
3
4
5

-150 -100 -50 0
0
1
2
3
4
5

-150 -100 -50 0
0
1
2
3
4
5

Figure 2.3: Emission line shape P(ω) of the spontaneous decay of an atom that is initially
prepared in a coherent superposition (Psup) and in a classical mixture (Pcl) of two
momentum wave packets sharply peaked at different momenta, p̄1 = 2 · 10−8mc
and p̄2 = 4 · 10−8mc (velocities achievable for ion clocks [102] or momentum cat
states [103]). The emission line is measured parallel, P∥(ω) or perpendicular, P⊥(ω)
to the motion of the wave packets and is normalized to the maximum probability
for a single stationary wave packet in a given case, Pmax. In the former case, the
dominant shift of the transition peak comes from the Doppler shift, while for the
latter case—from the time dilation. Note that transverse emission in suppressed
compared to parallel emission. Panels a) and b) are calculated for a broad transition,
Ω/Γ0 ≈ 1.5 · 109 (e.g. hydrogen 2P − 1S transition), while panels c) and d) are
associated with the extremely narrow Ω/Γ0 ≈ 1.5 · 1017 (e.g. aluminium 1S0 − 3P 0

transition). It showcases the fact that quantum relativistic effects can be probed even
for broad transitions, if the Doppler shift is affected. If the spread of the momentum
wave packets is much smaller than their separation, ∆ ≪ |p̄2 − p̄1|, coherent and
incoherent cases are almost indistinguishable, with two sharp shifted peaks clearly
visible (panels (a) and (c), ∆/mc = 6 · 10−9). Note the broadening of structures
due to a finite spread of momentum (i.e., a homogeneous Doppler effect). If the
momentum spread becomes larger and the overlap of the two wave packets increases
(panels (b) and (d), ∆/mc = 8·10−9), interference effects become visible, manifesting
direct confirmation of quantum relativistic effects in the atomic spectrum. (Both the
plots and their captions are sourced from the work co-authored by the author of this
dissertation [1]. This choice is made to maintain the readability and conciseness of
the description.)
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and 2.6.2.

In the scenario where emission occurs perpendicular to the direction of motion, the classical
Doppler shift, which is linear in p/mc, is not present. Instead, the center of the transition
line is shifted quadratically in p/mc, indicating the emergence of relativistic effects. These
relativistic corrections, which can be measured in advanced experiments [79], are also influenced
by momentum coherence in a similar fashion to the quantum Doppler shift, as depicted in
Fig. 2.3(c)-(d).

2.2.3 Experimental considerations

Since de Broglie’s initial prediction of wave-particle duality, atomic interferometry has made
remarkable progress both conceptually and technologically [104]. Particularly, the develop-
ment of large momentum beamsplitters has allowed for the creation of superpositions of atomic
beams traveling along distinct trajectories [105–108]. This breakthrough has paved the way for
quantum-based alternatives to classical gravimeters, gradiometers, and accelerometers [53, 109–
113]. In these experimental setups, the main focus is typically on suppressing radiation losses as
they can disrupt the phase relations between different arms of an interferometer [108].

In contrast to traditional approaches, our proposal aims to investigate the nonclassical behav-
ior of center-of-mass motion through spectroscopic measurements. As demonstrated earlier, a
coherent superposition of relativistic momenta has an impact on the spontaneous emission rate
that goes beyond classical time dilation effects, providing a spectroscopic signature of quantum
time dilation. Spectroscopic techniques offer a wide range of possibilities for observing similar
quantum-relativistic effects, including stimulated absorption and emission spectroscopy, as well
as methods involving the Mössbauer effect and Rydberg states [104]. Notably, atomic clocks
serve as a natural testbed for relativistic theories due to their exceptional precision [102, 114,
115]. These clocks have already been utilized to observe classical time dilation at velocities as
low as a few meters per second [79].

To effectively measure quantum time dilation, experimental setups must address the challenges
associated with the interplay of different time scales. The lifetime of the excited atom needs
to be sufficiently long to enable the creation of significant momentum separation and precise
excitation of the atomic beam. However, it cannot exceed the coherence time of the center-of-
mass superposition. Fortunately, advancements in phase imprinting techniques in atomic systems
now allow for the engineering of initial states that maximize the quantum contribution [116, 117].

There are promising experimental configurations that offer the required level of accuracy to
observe quantum-relativistic effects. Notably, quantum clocks based on aluminum ions have
achieved remarkable precision surpassing leading relativistic corrections [79, 102, 115]. In these
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setups, an aluminum ion is trapped in a quadrupole trap, creating an effective harmonic potential.
Through advanced cooling techniques, the ion is prepared close to its zero-point motion energy.
Perturbations are then applied to induce coherent-state-like oscillatory motion. Spectroscopic
measurements allow for the resolution of frequency shifts due to the ion’s motion at levels below
10−18Ω, significantly surpassing the leading relativistic correction of 10−15Ω [102].

To observe quantum time dilation in an ion-based system, it is necessary to prepare a coherent
momentum superposition, commonly referred to as a momentum Schrödinger cat state. This
task itself represents a state-of-the-art challenge, but recent advancements have demonstrated
significant progress in this direction [103, 109, 118, 119]. Notably, experiments have success-
fully prepared ytterbium ions in mesoscopic superpositions of motional states, showcasing the
feasibility of creating coherent momentum superpositions in trapped ion systems [103].

In order to observe the quantum time dilation effect, it is crucial to work with an ion that
exhibits a narrow transition line. This is necessary to resolve the associated frequency shift, which
is second order in the average momenta of the wave packets. In practice, the mean velocity of a
trapped ion, which can be easily resolved in an ion clock laboratory, is typically around 5m/s.
This corresponds to a coherent state |α⟩ with a magnitude of |α| ≈ 12. State-of-the-art techniques
have achieved separations between coherent states of up to |α| ≈ 24 [103], demonstrating that
coherent superpositions of momenta can be achieved within the spectroscopic resolution required
for observing quantum time dilation effects.

In atomic clock experiments, the measurement of a transition line plays a central role. The
observed difference in the shape of the transition line between a coherent superposition and
an incoherent classical mixture of momentum wave packets, as illustrated in Figs. 2.3(c)-(d),
would provide confirmation of the presence of quantum time dilation. This difference is most
pronounced at a frequency corresponding to the average of the mean momenta of the superposed
wave packets.

In optimized scenarios, the upshift of the transition probability due to momentum coherence at
this specific frequency can reach up to 40%, as depicted in Fig.2.3(d). Such changes in transition
line shape are routinely measured in state-of-the-art experiments involving ion clocks [79, 102].

In order to observe a clear signature of quantum time dilation, it is crucial to find the right
balance between the ability to create a superposition of momentum wave packets and the precision
of a given ion clock. While obstacles such as excess motion, secular motion, the quadratic Zeeman
effect, and deviations from harmonic trapping [115] exist, they are typically well resolved in
atomic clock experiments. However, further work is required to fully characterize these effects
in the presence of relativistic momentum coherence and to determine the optimal experimental
conditions for observing quantum time dilation.

Experiments involving large momentum transfer between light and atomic beams offer an
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alternative approach for measuring quantum time dilation [106, 108, 120–122]. In these exper-
iments, the limitations imposed by excited state decay can actually work to their advantage.
While such experiments have not yet been realized for narrow transitions at the level of atomic
clocks, there is ongoing research to develop this capability, as it is seen as a crucial component
for gravitational wave detectors [121] and dark matter detectors [123]. Progress in this direction
could enable the measurement of quantum time dilation in these setups, as the use of narrower
transitions would enhance the spectroscopic precision.

The current momentum separation achieved in experiments involving large momentum transfer
is approximately 140 ℏk for the strontium transition 1S0 -3P1, where k is the magnitude of the
wave vector of the incident light [108]. This corresponds to a velocity difference of approximately
1m/s between two clouds of atoms. However, larger momentum transfers are expected in the
future, with experimental proposals aiming for up to 1000 ℏk [108].

The widths of these momentum wave packets are relatively small for detecting quantum time
dilation, with an rms Doppler width of 25 kHz, which corresponds to a velocity width of approx-
imately 0.02m/s [108]. At present, the maximal value of quantum time dilation, which scales
as ∆

mc
p2−p1
mc Γ0, is still too small to be measured in these experiments. However, as the interest

in large momentum transfer grows, particularly for the study of quantum gravitational effects
at low energies, it may be possible to engineer a quantum time dilation experiment in the near
future. This could be achieved either by increasing the momentum spread of a single wave packet
or by increasing the momentum separation between different momentum wave packets.

In addition to the superposition of momentum wave packets, quantum effects can also manifest
in atoms in spatial superpositions [81–84, 124]. Experimental studies in this area have been
particularly useful for analyzing phase coherence in Bose-Einstein condensates interacting with
light [124]. These systems provide a clean and controllable environment for studying atomic
systems, allowing for fine-tuning of interactions and spatial geometry. Therefore, they offer
potential platforms for experiments with coherent superpositions of momentum wave packets,
such as studying non-equilibrium dynamics in double-well traps [125].

It is worth noting that, unlike ion clocks, experiments involving large momentum transfer or
trapped ultracold gases have not yet achieved the necessary velocities to be sensitive to relativistic
motion of particles. However, these experiments have the advantage of utilizing large ensembles
of atoms, which leads to a stronger signal that scales proportionally to the number of particles
involved. This can potentially compensate for the lower velocities and enable the detection of
quantum-relativistic effects.
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2.3 Quantum time dilation in a gravitational field

In this section, we will analyze the quantum effects in gravitational time dilation. As previously
explained (see 2.1.1), relativistic quantum time dilation occurs when examining the behavior of a
quantum clock experiencing time dilation. In the previous section, we studied kinematical time
dilation. Now, we will focus on the impact of the superposition principle on gravitational time
dilation using a simple clock: a decaying two-level atom. We aim to investigate how placing
such an atom in a superposition of positions affects the quantum contributions to classical time
dilation, with a particular emphasis on spontaneous emission. Our goal is to demonstrate that
the emission rate of an atom in a coherent superposition of wave packets in a gravitational field
significantly differs from that of an atom in a classical mixture of these packets. Moreover, we
will analyze how this nonclassical effect manifests as a fractional frequency shift in the atom’s
internal energy. We aim to show that this quantum contribution is within the detectable range
of current atomic clocks, opening up new possibilities for experimental verification of quantum
effects in gravitational field. Additionally, we will investigate the influence of spatial coherence
on the emission spectrum of the atom. By characterizing the spectral line shape of the emitted
radiation, we aim to gain insights into how the nonclassical nature of the superposition impacts
the overall dynamics of the system.

+

z

|ψclock〉 ∝ cos θ|ψ1〉+ e
iϕ sin θ|ψ2〉

Figure 2.4: A visual depiction of the setup where a clock is positioned in a superposition of
different heights within a gravitational field, as described in (2.41).

As it was shown in the previous section (see 2.2) the quantum time dilation effect arises for
a clock model based on the spontaneous emission rate of an excited atom interacting with the
electromagnetic field [1]. This effect leads to a frequency shift on the order of δν/ν0 ∼ 10−15 and
is accompanied by modifications to the atomic spectrum due to the quantum coherence among
the momentum wave packets. This raises the expectation that similar spectroscopic signatures
would emerge when an atom is in a spatial superposition in a gravitational field, as depicted in
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Fig. 2.4, experiencing a superposition of gravitational time dilation.

Indeed, an analogous nonclassical gravitational time dilation effect has been demonstrated for
a quantum clock in a spatial superposition at different heights within a gravitational field [126],
and has been interpreted within the formalism of quantum reference frames [127]. In particular,
the average time measured by such a clock exhibits similarities to (2.3), but with γ−1

Q representing
quantum corrections arising from gravity. In a manner similar to (2.3), the average time observed
by the quantum clock comprises two terms. The first term corresponds to a classical contribution
associated with a statistical mixture of time dilation observed by clocks localized at the mean
position of each wave packet forming the superposition. The second term represents a correction
arising from the quantum nature of the clock’s spatial degrees of freedom. These quantum
corrections have been studied in various models, including scalar field theory [128, 129] and full
quantum electromagnetism [1, 81], considering different contributions to the clock’s Hamiltonian
such as nonrelativistic kinetic energy [1, 54, 81, 126, 128, 129], special relativistic corrections [1,
54, 126, 128, 129], and general relativistic corrections [126]. These corrections have been shown
to manifest in physically relevant observables, such as total transition rates [1, 81, 128, 129],
emission line shapes [1, 81], and well-defined time observables [54, 126].

While reference [126] considers a superposition of wave packets in a gravitational field, it also
incorporates additional contributions to the clock’s Hamiltonian, such as nonrelativistic kinetic
energy and a special relativistic correction. Consequently, quantum corrections beyond the an-
ticipated gravitational quantum time dilation effect are observed. However, it is still possible to
isolate and extract the gravitational quantum time dilation contribution (see Appendix 2.6.5).
This allows us to determine the specific effect arising solely from the gravitational field, leading
to the expected gravitational quantum time dilation

γ−1
Q =

g

4c2
(z2 − z1) cosφ sin 4θ

cosφ sin 2θ + e
(z2−z1)

2

4∆2

. (2.40)

Here, g represents the local magnitude of the gravitational field at the reference height z = 0.
The clock’s external degrees of freedom are prepared in the state

|ψclock⟩ ∝ cos θ |ψ1⟩+ eiφ sin θ |ψ2⟩ , (2.41)

where |ψi⟩ denotes a Gaussian wave packet of width ∆ localized around zi.

The primary goal of this section is to illustrate that the quantum correction to the time
observed by a clock in a spatial superposition within a gravitational field, represented as γ−1

Q ,
also appears in the spontaneous emission rate of an excited atom. Additionally, we investigate
the influence of spatial coherence on the atom’s emission spectrum.
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Our focus in this section is on the phenomenon of spontaneous emission as it serves as a
suitable platform for demonstrating the quantum gravitational time dilation effect. This process
exemplifies a quantum clock and provides a clean framework for analysis. However, it is important
to note that the quantum gravitational time dilation effect is expected to manifest in various
setups, including ions in Paul traps or many-particle systems in optical lattices.

We commence by examining the spontaneous emission rate of a two-level atom with quantized
center-of-mass degrees of freedom that is placed in a spatial superposition in a gravitational
field. We show that the spontaneous emission rate exhibits the nonclassical gravitational effect
described in [126]. To achieve this, we quantize the electromagnetic field in an accelerating
frame and use the equivalence between uniformly accelerating observers and those at rest in a
gravitational field. By doing so, we establish the consistency of this nonclassical effect, char-
acterized by γ−1

Q , with the equivalence between the effects of a constant gravitational field and
uniform acceleration. Furthermore, we provide an estimate of the magnitude of γ−1

Q and con-
clude that this quantum time dilation effect is within the realm of observability with current
technology. Additionally, we explore how spatial coherence in a gravitational field gives rise to
distinct nonclassical features in the emission spectrum of the atom.

2.3.1 Model

The analysis of composite quantum systems in gravitational fields is of great theoretical interest,
particularly as experimental investigations are entering regimes where a description based solely
on adding a background Newtonian gravitational potential to the Schrödinger equation is insuf-
ficient [130, 131]. The coupling between internal and center-of-mass degrees of freedom in such
systems lacks a classical analogue and gives rise to phenomena such as gravitationally induced
quantum dephasing [132–134], interferometric gravitational wave detection [135], quantum tests
of the classical equivalence principle [136], and proposals for quantum versions of the equivalence
principle [65, 66, 137], as it was mentioned in the introduction.

In general, the inclusion of relativistic corrections in the description of light-matter interactions
is typically achieved by incorporating classical physics effects, such as second-order Doppler shifts,
velocity-dependent masses, and time dilation resulting from relative motion or gravitational
effects. However, such approaches can be problematic as they do not guarantee self-consistency
and often rely on classical concepts, such as worldlines or redshift. An example of the challenges
arising in this context is the issue of spurious "friction" experienced by a moving and decaying
atom [89], which was later resolved through a proper relativistic treatment [90].

For the case without gravity, the atom-field interaction has been rigorously derived up to
leading relativistic order [90], while its extension to include gravity was initially accomplished
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by Marzlin in 1995 [138]. However, the complete first-order post-Newtonian expansion was only
recently presented by Schwartz and Giulini [139]. This derivation has also been extended to
systems with non-zero total charge and used to obtain relativistic frequency shifts of ionic clocks
in a rigorous manner [140].

These approaches assume that the atom is treated as a composite system and that the en-
ergy scales involved are below the threshold for pair production of any of the massive particles
within the system. This assumption allows for a simplified relativistic analysis by performing
quantization after placing the classical system in a fixed particle sector. For a simple atomic
model consisting of two charged, massive, and moving particles interacting via Coulomb forces
and embedded in electromagnetic and weak gravitational fields, the effective atomic Hamiltonian
was derived in [139, 141]. Under the assumption of a heavy atom (or equivalently, that the effects
due to the gravitational field dominate over the velocity spread of the atom), the Hamiltonian
takes on the expected form

Ĥ =Mc2

(
1 +

ϕ(R̂)

c2

)
+ ℏΩ

(
1 +

ϕ(R̂)

c2

)
|e⟩⟨e|+ ĤL − d̂ · Ê, (2.42)

where M is the mass of the atom, ϕ(R̂) is the scalar gravitational potential in a post-Newtonian
expansion, R̂ is the center-of-mass position of the atom, ℏΩ is the energy gap of the relevant
transition in the atom, |e⟩ corresponds to the excited state of the atom, ĤL is the Hamiltonian
of the electromagnetic light in the presence of the gravitational field, and the last term describes
the dipole coupling between the atom and electric field Ê.

The dipole interaction term in the Hamiltonian retains its standard form when all the quantities
involved (dipole moment d̂ and electric field Ê) are expressed as measured quantities with respect
to the proper time of an observer at position R [138, 139, 142]. The second term in Equation
(2.42) can be interpreted as the Hamiltonian of mass defect, which describes the relativistic
coupling between the center of mass and the internal degrees of freedom [132, 133, 137, 140,
141]. Consequently, it can be absorbed into the Hamiltonian of the center of mass (the first term
in Equation (2.42)), effectively correcting the mass by accounting for the mass defect.

In the case of a homogeneous gravitational field, it is advantageous to describe the system in
a uniformly accelerated frame known as Rindler coordinates. This coordinate system allows us
to analyze a spectroscopic measurement that is performed close to the Earth’s surface, with the
atomic cloud coherently delocalized in a gravitational field. By expressing the total Hamiltonian
in these Rindler coordinates, we simplify the calculations and interpretation of the results. Based
on the Rindler transformation introduced in 2.1.2 here we present a heuristic derivation of the
total Hamiltonian in this frame.
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2.3.2 The Hamiltonian

We are now set to formulate the Hamiltonian that represents a two-level atom interacting with
the electromagnetic field in the context of Rindler coordinates, effectively simulating a constant
gravitational field. Initially, devoid of gravitational considerations, the Hamiltonian pertaining
to an atomic entity of mass M , distinguished by a ground state |g⟩ and an exctited state |e⟩,
separated by an energy interval quantified as ℏΩ, is defined as

Ĥ(0) = Ĥ
(0)
atom + Ĥ

(0)
field + Ĥ

(0)
af , (2.43)

The components in this formula represent the atomic Hamiltonian, the Hamiltonian of the elec-
tromagnetic field, and the coupling between the atom and the field. These elements are all
precisely defined within the framework of the Jaynes-Cummings model, as referenced in the
cited literature [81, 143–145]

Ĥ
(0)
atom =Mc2 + ℏΩ |e⟩ ⟨e| ,

Ĥ
(0)
field =

∑
k,λ

ℏωkâ
†
k,λâk,λ,

Ĥ
(0)
af = −d̂ · Ê.

(2.44)

Here â†k,λ and âk,λ symbolize the creation and anihilation operators for a photon carrying a wave
vector k (the eigenfrequency ωk) and polarization λ. The atom’s dipole operator is denoted as
d̂ = d(|e⟩ ⟨g| + |g⟩ ⟨e|), while Ê represents the electric field operator. The atomic Hamiltonian
has been recalibrated to include the rest mass energy of the atom.

Next, we aim to identify the corresponding terms translated into Rindler coordinates. Initially,
we focus on the atom’s rest energy (denoted as the Ĥ(0)

atom term). Owing to the adoption of
Rindler coordinates, the metric tensor gµν exhibits a diagonal structure, with the g00 component
being the only significant element. Given coordinates

(
x0, xi

)
and the proposed metric tensor

gµν = g00δµ0δν0− δµiδνjδij , we can express the Lagrangian of a free particle in classical terms as
follows

L = −H(0)
atom

√
gµν ẋµẋν = −H(0)

atom

√
g00 − ˙̄x2, (2.45)

where H(0)
atom is the classical counterpart of Ĥ(0)

atom, ẋµ = dxµ

dx0
, and ˙̄x2 = δij

dxi

dx0
dxj

dx0
. It’s important

to note here that ˙̄x is not actually the velocity of the particle; rather, it represents the velocity
divided by c, as the coordinate x0 is expressed in terms of length. In the case of a static metric,
namely when g00 is independent of x0 (as is the case with the Rindler metric, for instance), the
following quantity, which is the Hamiltonian, remains conserved, as outlined in the referenced

37



2 Quantum time dilation

literature [141]

Hatom =
∂L
∂ẋi

ẋi − L =
H

(0)
atomg00√
g00 − ˙̄x2

. (2.46)

In this context, ẋi are treated as functions of the canonical momenta, defined as pi = ∂L
∂ẋi

.
Ultimately, if the particle is stationary, its energy is defined by Hatom = H

(0)
atom
√
g00. We can

derive a quantum analogue of this equality by replacing the classical Hamiltonians on both sides
with their respective operators, yielding Ĥatom = Ĥ

(0)
atom
√
g00. In further considerations, we

restrict our calculations to the stationary case.

Returning to the exploration of the Rindler metric, which is defined by g00 =
(gχ
c2

)2, we
incorporate a new parameter, z. This parameter represents the distance between the particle
and the reference hyperbola, determined by χ = c2

g + z. Given this, the conserved Hamiltonian
can be rewritten in the following way

Ĥatom = Ĥ
(0)
atom

gχ

c2
= Ĥ

(0)
atom

(
1 +

ϕ(z)

c2

)
, (2.47)

where ϕ(z) = gz is the linear gravitational potential. Consequently, the atomic energy scales
by a factor of 1 + ϕ(z)

c2
. It is important to note that this result aligns with [140], supporting

the validity of our simplified approach, which treats gravity purely kinematically using a Rindler
frame of reference. We draw attention to the fact that this scaling factor emerges organically
within our computations, requiring no supplemental logic. One observes that the inclusion of
this factor links the internal clock degrees of freedom with the motional degrees of the atom
through the term Ĥ

(0)
atomϕ(z)/c

2, which accounts for the gravitational time dilation experienced
by the clock [132, 133, 137, 141].

Emphasizing the general structure of the atomic Hamiltonian, it should contain a kinetic
term P 2/2M , where P represents the total momentum of the atom [54, 133]. Nevertheless,
we posit that the atom carries considerable mass, rendering the kinetic energy pertaining to
both the system’s total momentum and its dispersion negligible when compared to other energy
forms encapsulated by the Hamiltonian. This infers that we will dismiss any movement of
the center of mass. Thus, we will discard all terms dependent on either the velocity or its
derived dispersion as per [126]. We further justify this exclusion by approximating the magnitude
of individual time dilation effects drawn from [126]. We undertake such an approximation in
Appendix 2.6.5, demonstrating that, for the parameter range considered, corrections due to
motion are indeed significantly smaller than the purely gravitational one, hence validating our
simplifying assumptions.
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The Hamiltonian of the electromagnetic field in curved spacetime was deduced in [78]. We only
consider one (right) Rindler wedge in this context, consequently omitting all terms containing
ladder operators from the left Rindler wedge. Hence, we will use the following Hamiltonian

Ĥfield =
∑
λ=1,2

∫ ∞

−∞
dk ℏωk b̂†Rk,λb̂

R
k,λ, (2.48)

where b̂†Rk,λ and b̂Rk,λ are, respectively, the raising and lowering operators in the right Rindler
wedge, and k = |k| is the wavenumber.

We’ll proceed under the assumption that the atom is situated within an optical cavity, which
permits photons to propagate solely in the direction of the gravitational field. As a result, we con-
fine our problem to a single spatial dimension, simplifying the quantization scheme considerably,
as detailed in [78].

To recast the atom-field interaction term in Rindler coordinates, we only need to express the
electric field in these coordinates. The absence of the √g00 term in this interaction Hamiltonian
results from our use of the so-called coordinate components of the electric field [139]. To facilitate
this, we define the electric field as [78]

Ê = i
∑
λ=1,2

∫ ∞

−∞
dk

√
ℏωk
4πε0

[
eikξ b̂Rk,λ + H.c.

]
êλ. (2.49)

Once more, we have omitted the terms incorporating ladder operators from the left Rindler
wedge. Observe that, in contrast to [78], we operate within the Schrödinger picture, resulting
in the electric field operator having no explicit time dependence. By applying the rotating wave
approximation, the interaction term can be simplified as follows

Ĥaf = −d̂ · Ê = −iℏ
∑
λ=1,2

gk,λ

∫ ∞

−∞
dk
(
eikξ b̂Rk,λ|e⟩⟨g|+ H.c.

)
, (2.50)

where
gk,λ =

√
ωk

4πℏε0
(d · êλ) (2.51)

is the coupling constant governing the strength of the atom-light interaction.

Comparing the final Hamiltonian in Rindler coordinates

Ĥ = Ĥatom + Ĥfield + Ĥaf (2.52)

with the simplified version of the Hamiltonian in post-Newtonian gravity (2.42), one concludes
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that they are essentially the same.

As a result, our investigation focuses on spontaneous emission within a uniformly accelerating
reference frame. We anticipate that the findings derived from this study will be in alignment
with the outcomes from a post-Newtonian gravitational analysis.

2.3.3 Spontaneous emission in the gravitational field

Our analysis focuses on a context where a two-level atom remains stationary at a specific altitude
above the ground level z = 0 (χ = c2

g ), subjected to a gravitational field. By applying Rindler
coordinates, the reference hyperbola is selected to be at ground level, suggesting that the time
coordinate τ is equivalent to the proper time experienced by an observer at z = 0. We propose
that the phenomena occur strictly within a single (right) Rindler wedge, a substantial distance
away from the Rindler horizon.

The state of the system will be represented by a state vector that contains information about
the atom’s position (z), its internal state (either the ground state |g⟩ or the excited state |e⟩), and
the number of photons in mode k with polarization λ (nk,λ) within the specific Rindler wedge
under consideration. Initially, the atom is in an excited state and exists in an electromagnetic
vacuum

|Ψ(0)⟩ =
∫

dz ψ(z) |z, e, 0⟩ . (2.53)

Since the deexcitation of the atom can yield only a single photon, the overall state of the system
at the Rindler time τ can be expressed as follows

|Ψ(τ)⟩ =
∫

dz α(z, τ) |z, e, 0⟩+
∑
λ=1,2

∫ ∫
dk dz βk,λ(z, τ) |z, g, 1k,λ⟩ , (2.54)

which has been expanded in the energy eigenstates |z, e, 0⟩ and |z, g, 1k,λ⟩, associated respectively
with energies

ℏωg(z) =Mc2
(
1 +

gz

c2

)
ℏωe(z) =

(
Mc2 + ℏΩ

) (
1 +

gz

c2

)
.

(2.55)

The integrals over z in (2.53) and (2.54) are originally defined to range from z = − c2

g (where the
position χ = 0 corresponds to the event horizon) to z = ∞. However, due to the assumption
that the atom is situated far from the Rindler horizon, we can extend these integrals to z = −∞.
It is important to note that by omitting the kinetic term P 2/2M in the Hamiltonian (2.52),
we eliminate any momentum-dependent terms, allowing us to focus exclusively on the position
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2.3 Quantum time dilation in a gravitational field

Figure 2.5: The deviation in the total emission rate between a superposition and a classical
mixture of two Gaussian wave packets, centered around z1 and z2, as a function of
the difference z2 − z1, the relative phase φ, and weight θ: (a) the wave packets have
unequal weights (θ = π/8), (b) the relative phase remains constant at φ = 0, (c) the
relative phase remains constant at φ = π. In every graph, the dispersion of position
along the z axis remains fixed at ∆ = 0.01c2/g.

representation. This simplifies the analysis significantly.

The lifetime of the atom is expected to be influenced by gravitational time dilation, leading
to a dependence on the initial state’s distribution along the z direction. This should be reflected
in the dependence of the transition rate

Γ = − d

dτ

∫
dz |α(z, τ)|2 (2.56)
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Figure 2.6: Comparison of the emission line shape, P(ω), for an atom initially in a coherent
superposition (Psup) and in a classical mixture (Pcl) of wave packets situated at
different heights z1 and z2. The transition is extremely narrow Ω/Γ0 ≈ 1.5×1017 (as
in the aluminium 1S0− 1P0 transition). Graph (a) is calculated for z1 = −z2 = −2×
10−18c2/g, (b) for z1 = −z2 = −6× 10−18c2/g, and (c) for z1 = −z2 = −10−17c2/g.
In these scenarios, the wave packets’ spread equals ∆ = (z2 − z1)/2. For graph (d),
with z1 = −z2 = −10−17c2/g, the spread is ∆ = (z2 − z1)/4.

on the initial wave function ψ(z).

In Appendix 2.6.3, the coefficients α(z, τ) and βk,λ(z, τ) are determined by solving the Schrödinger
equation using the Hamiltonian (2.52). The obtained expressions are as follows

α(z, τ) = ψ(z) exp

[(
−iωe(z)−

Γ(z)

2

)
τ

]
, (2.57)

βk,λ(z, τ) =
gk,λψ(z)e

−i(ωg(z)+kξ)

1
2Γ(z) + i

(
Ω
(
1 + gz

c2

)
− ωk

) [e−(
iΩ

(
1+ gz

c2

)
+ 1

2
Γ(z)

)
τ − eiωkτ

]
, (2.58)

where Γ(z) =
(
1 + gz

c2

)
Ωd2

2ℏcε0 ≡
(
1 + gz

c2

)
Γ0 represents the transition rate of the atom localized at

height z. Then, the overall transition rate for Γ0τ ≪ 1 is given by (see Appendix 2.6.4)

Γ =

∫
dz, |ψ(z)|2Γ(z), (2.59)
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2.3 Quantum time dilation in a gravitational field

which represents a weighted average of transition rates at various heights. Furthermore, as
demonstrated in Appendix 2.6.4, the normalized standard deviation of the transition rate related
to the spatial extent is

σΓ
Γ

=
gσz
c2

, (2.60)

where σz is the standard deviation of the wave function ψ(z) in position space. By comparing
the values of Γ for specific initial states, we can examine whether there exist any distinctions
in the observed gravitational time dilation between atoms in coherent superpositions and those
in classical mixtures of position wave packets. In the former case, the initial wave function is
defined as follows

ψsup(z) = N
[
cos θe−

(z−z1)
2

2∆2 + eiφ sin θe−
(z−z2)

2

2∆2

]
, (2.61)

where
N =

[√
π∆

(
1 + cosφ sin 2θe−(z1−z2)2/4∆2

)]−1/2
, (2.62)

whereas in the second case, the probability distribution reads

Pcl(z) =
1√
π∆

[
cos2 θe−

(z−z1)
2

∆2 + sin2 θe−
(z−z2)

2

∆2

]
. (2.63)

We evaluate equation (2.59) and derive the following formula for the relative difference in the
total emission rate between these two cases

Γsup − Γcl

Γ0
=

∫
dz
(
1 +

gz

c2

) (
|ψsup(z)|2 − Pcl(z)

)
=

g

4c2
cosφ sin 4θ(z2 − z1)

cosφ sin 2θ + e
(z2−z1)

2

4∆2

= γ−1
Q . (2.64)

We now establish the universality of the obtained result. As an illustration, the work by [140]
scrutinized an ion clock setup, investigating fractional frequency shifts of internal energy levels
that encompassed both relativistic and gravitational effects. Following their rationale (refer
to (37) in [140]), the operator representing the fractional frequency shift δν̂

ν0
for a two-level

system in a gravitational field comprises two components: the center-of-mass kinetic energy and
a contribution originating from gravity. Under the approximation adopted in our study, wherein
the atom’s rest mass energy vastly surpasses its center-of-mass kinetic energy, this operator can
be expressed as follows

δν̂

ν0
=
gẑ

c2
. (2.65)

Consequently, the discrepancy between the anticipated fractional frequency shifts in the coherent
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and incoherent scenarios is determined by the following expression〈
δν̂

ν0

〉
sup
−
〈
δν̂

ν0

〉
cl
= γ−1

Q , (2.66)

which precisely represents the contribution to the quantum gravitational time dilation effect.

It is important to note that the analysis of any specific system would involve a comprehensive
examination of all experimental frequency shifts, dynamics leading to different effective condi-
tional states, and other relevant factors. Such an analysis goes beyond the scope of this work,
which primarily aims to provide a proof-of-principle description of the quantum gravitational
time dilation effect.

Let us now discuss some fundamental properties of this result. Firstly, γ−1
Q vanishes when

θ = 0, π
4 , or π

2 . If θ = 0 or θ = π
2 , there is no difference between the coherent superposition

and the classical mixture, so it is expected for (2.64) to vanish. Secondly, the quantity (2.64)
also vanishes for φ = π

2 . In this case, the probability distribution corresponding to the coherent
superposition matches the probability distribution of the classical mixture. Finally, (2.64) also
vanishes for |z2 − z1| ≫ ∆, indicating that the states are placed far apart compared to their
spread, rendering the interference effects in the coherent superposition negligible. The correction
(2.64) is depicted in Fig. 2.5 for fixed values of θ and φ. It is noteworthy that γ−1

Q can be either
positive or negative, depending on the relative phase φ and relative weight θ.

The quantity (2.64) may appear extremely small due to the factor g
c2
(z2 − z1), which is on

the order of ∼ 10−18 for a height difference of the wave packets z2 − z1 ∼ 1cm. However,
it is worth noting that the same factor appears in classical gravitational time dilation—the
difference in time measured by two clocks situated at heights z2 and z1 is also proportional
to g

c2
(z2 − z1). Therefore, if the spread of the wave packets is comparable to the distance

between them, the effect of quantum time dilation can be of the same magnitude as classical
gravitational time dilation. The spatial extent of a non-Gaussian wave function introduces an
additional source of uncertainty in estimating the transition rate (or fractional frequency shift)
compared to the scenario of a well-localized atom. This correction to the overall uncertainty can
be approximated to leading order using (2.60) and is typically reduced in common experimental
setups through multiple interrogations N , making its contribution scale as ∼ σΓ/

√
N . Generally,

the total uncertainty depends on the specific experimental implementation and includes various
contributions, such as projection noise. For instance, a detailed analysis in [140] for trapped-ion
optical clocks demonstrated that the spatial extent of the Gaussian wave packet has a subleading
effect on overall precision.

In the case we consider here, the variance in the spatial probability distribution of a superpo-
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sition of two Gaussian wave packets is given by

σ2z =
1

4
(z2 − z1)2 +

1

2
∆2 + σ2Q, (2.67)

where

σ2Q = −(z2 − z1)2

4

cosφ sin 2θ

e
(z2−z1)

2

4∆2 + cosφ sin 2θ

(2.68)

is an additional quantum correction due to the coherent superposition. As discussed earlier, the
regime |z2 − z1| ∼ ∆ provides a favorable setting for observing the effect, leading to σz ∼ ∆

overall, and more generally,
σΓ/Γ ∼ γ−1

Q . (2.69)

This implies that if experimental accuracy allows resolving γ−1
Q , the effect of the spatial spread

of the wave function will remain a subleading factor in the total uncertainty.
Additionally, from (2.58), we can extract information about the shape of the emission line.

The probability of the atom emitting a photon with energy ωk is given by

P(ωk) = lim
τ→∞

∑
λ=1,2

∫
dz|βk,λ(z, τ)|2. (2.70)

Under the assumption Ω/Γ0 ≪ 1, we obtain the following expression for the transition line, as
outlined in Appendix 2.6.4

P(ωk) =
∫

dz
1

2π

(
1 + gz

c2

)
|ψ(z)|2Γ0

1
4Γ

2
0

(
1 + gz

c2

)2
+
(
Ω
(
1 + gz

c2

)
− ωk

)2 . (2.71)

Thus, P(ωk) is proportional to the height distribution |ψ(z)|2 integrated with a Lorentz dis-
tribution. The transition line is gravitationally blue- or red-shifted depending on the position
of the atom, as the Lorentz distribution is shifted by Ω → Ω

(
1 + gz

c2

)
. For double-peaked wave

functions with peaks at significant distances from each other, the transition line splits into two.
The difference in the emission line shape between a coherent superposition, (2.146), and a clas-
sical mixture, (2.148), of wave packets is shown for specific configurations of ψsup(z) and Pcl(z)

in Fig. 2.6.
Note that the difference in the spectrum shape gradually diminishes as the difference in heights

z2 − z1 decreases for a given Ω/Γ0, and when the ratio |z2 − z1|/∆ increases. This behavior is
consistent with the previously described behavior of γ−1

Q , where the quantum time dilation effect
vanishes when the spatial separation of the wave packets becomes significantly larger than their
spatial extent.
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2.4 Universality of quantum time dilation

In previous sections, we examined various approaches to the problem of quantum time dilation.
We referenced the definition proposed by Smith and Ahmadi [70], which describes the effect in
relation to the properties of the time operator. Then, in section 2.2 and 2.3, we demonstrated
that the same effect can be observed in a real-life example of an atom interacting with an
electromagnetic field. Now in this section, we will undertake a comprehensive exploration of the
phenomenon of quantum time dilation and our main goal is to show to what extent quantum
time dilation is a universal effect and what this concept actually means.
First let us recall the basic properties of the classical time dilation known from the theory of
relativity. Classical time dilation is usually defined as the difference in measured time between two
clocks that either exhibit different velocities or are exposed to varying gravitational potentials.
Such effects are typically correlated with classically delineated trajectories, marked by parameters
of position, momentum, and acceleration.

Nonetheless, we venture into scenarios where spatial degrees of freedom are handled through
a quantum perspective, enabling the clock to exist in a coherent superposition of either two
momenta or two heights. This manipulation introduces quantum amendments to the classical
time dilation, known as kinematic and gravitational quantum time dilations, correspondingly.

We aim to demonstrate that akin to its classical version, kinematic quantum time dilation
maintains universality across all clock mechanisms. Conversely, gravitational quantum time di-
lation does not uphold this trait. Our examination also intends to show that, despite both effects
boiling down to the incoherent averaging of diverse classical time dilation contributions, there is
an existence of an additional quantum time dilation effect, absent in the classical realm. This
quantum peculiarity can be derived from higher-order corrections to the system’s Hamiltonian.

In this section, we delve into the concept of universal time dilation experienced by all types
of clocks - be it pendulum clocks, atomic clocks, or otherwise - when they move at a steady
velocity. By "universal," we refer to the notion that the time dilation effect is independent of
the unique construction of a given clock. This universality is a direct implication of the prin-
ciple of relativity, stating that motion at a consistent velocity is relative. It logically follows
that a situation involving two diverse clocks moving at the same speed relative to an observer
is equivalent to a situation where both clocks remain stationary while the observer moves in the
opposite direction. In the latter scenario, both clocks must undergo identical effects as neither
holds precedence, leading to a universal time dilation independent of the clock mechanism.

However, this reasoning does not apply to motion with non-uniform velocities, resulting in
non-universal time dilation effects [77]. For example, the impact of acceleration on different
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types of clocks varies based on their mechanisms. A pendulum clock’s reaction to acceleration
differs from that of an atomic clock. Moreover, it has been shown [146–148] that no physical
clock can remain unaffected by acceleration due to the Unruh effect [149], which implies the
non-existence of ideal clocks. An ideal clock, as defined by the postulates of special relativity,
would accurately measure proper time, which depends solely on instantaneous velocity and is
not influenced by factors such as acceleration.

The study and use of an idealized clock as a theoretical model continue to be important in
physics. Additionally, the relational formulation of quantum mechanics [150], particularly the
investigation of the properties of quantum clocks [70, 132, 151–159], is emerging as one of the
most promising approaches for understanding the nature of time.

2.4.1 Universality of kinematic quantum time dilation

In this section, we will derive the connection between the energy, denoted by E, and momentum,
symbolized by p, of a classical particle with point-like characteristics. The particle of mass m is
positioned at r in a gravitational field gµν that remains stationary, and for which g0i = 0. The
expression delineating this relationship is as follows

E =
√
g00(r)

√
(mc2)2 − gij(r)pipjc2. (2.72)

To bring quantum mechanics into our classical system, we look at a general setup characterized
by the Hilbert space Hcm⊗Hclock that includes the center-of-mass movements of the clock (Hcm),
and its internal parts (Hclock) that are responsible for actual timekeeping. When these elements
interact, it can cause the clock’s "ticking" speed to change due to motion or the effect of gravity.

To get a quantum version of our model, we need to change the Hamiltonian, which describes
the system’s energy, into an operator based on the classical energy expression. Also, we need
to link the internal degrees of freedom of our system, or "clock," with its external motion. So,
instead of just the mass of the clock, we consider the energy of the clock’s internal structure,
thanks to the idea from relativity theory that energy and mass are equivalent.

So, if we let Ĥclock stand for the Hamiltonian of the clock’s internal structure and Ĥ represent
the total Hamiltonian, the first step in "quantizing" the relation (2.72) gives us this expression
for the total Hamiltonian

Ĥ =
√
g00(r̂)

√(
mc2 + Ĥclock

)2
− gij(r̂)p̂ip̂jc2, (2.73)

Throughout this paper, we will employ the Weyl symmetric ordering for the position and mo-
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mentum operators r̂ and p̂, which function in the Hilbert space Hcm. This is symbolized by
W
: · W

: in our discussions. Nevertheless, other methodologies for ordering are also viable. For
instance, by using an order parameter, denoted as λ, we can define this alternative ordering as
: p̂x̂ :≡ λp̂x̂+(1−λ)x̂p̂. In the quantum description of physical systems, determining the precise
sequence of non-commuting operators is not predetermined. While the practice of using Weyl’s
ordering is widespread, it’s important to stress that this choice is arbitrary and lacks a concrete
physical justification. Consequently, we have initiated an investigation to ascertain whether a
different definition would uphold consistent results within the context of our model.

In the subsequent section, we will be addressing the more general scenario where both kinematic
and gravitational effects are significant. However, in this section, we focus on the kinematic
time dilation where the gravitational field is absent, allowing us to substitute g00(r̂) → 1 and
gij(r̂)→ −δij into equation (2.73). Our investigation will be centered on determining if quantum
time dilation is a universal phenomenon. Universality, in the context of classical clocks, implies
that the magnitude of time dilation is independent of the clock’s underlying mechanism. When
considering quantum clocks, this universality is defined by the independence of the time dilation
effect from the Hilbert space Hclock or the clock’s internal Hamiltonian Ĥclock.

In the subsequent discussion, we will solely consider the interaction part of the dynamics,
since local terms are not relevant for discussing time-dilation effects and can always be effectively
eliminated by shifting to the interaction picture description. Let’s consider the clock prepared
in the initial state as follows

|Ψ(0)⟩ =
∫

d3p, ψ(p) |p⟩ ⊗ |0⟩ , (2.74)

where |p⟩ ∈ Hcm denotes a well-defined momentum state, ψ(p) represents the momentum
representation of the normalized wave function, and |0⟩ ∈ Hclock is an initial internal state of the
clock. When relativistic effects are considered as corrections to nonrelativistic dynamics, and
⟨Ĥclock⟩, |⟨cp̂⟩| ≪ mc2 [139], the expanded Hamiltonian (2.73) can be approximated as

Ĥ ≈ p̂2

2m
− p̂4

8m3c2
+ Ĥclock

(
1− p̂2

2m2c2

)
, (2.75)

where the term multiplying Ĥclock is the leading term of the Lorentz factor responsible for
classical time dilation. The dynamics are governed by the Schrödinger equation, iℏ∂t |Ψ(t)⟩ =
Ĥ |Ψ(t)⟩, without explicitly requiring the covariant Tomonaga-Schwinger equation [160]. The
wave function can be expressed as

|Ψ(t)⟩ =
∫

d3pψ(p) |p⟩ ⊗ |ϕ(p, t)⟩ , (2.76)
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where all time dependence is absorbed into |ϕ(p, t)⟩, which is the evolved internal state of the
clock associated with the motional state |p⟩. The parameter t represents the physical time
governing the system’s evolution. However, our interest lies in the operational definition of
time, corresponding to the measurement outcome τ performed on the clock’s internal degrees of
freedom.

The distinction between physical time and clock-measured time is crucial, as the aim of this
work is to investigate the relativistic properties of time in quantum systems that act as clocks.
Due to the Pauli objection [161, 162], constructing a time operator within quantum mechanics is
not feasible. Thus, the authors adopt an operational definition of time, essentially positing that
time is what can be measured by a clock—a physical system undergoing some form of evolution.

Consequently, the clock undergoes an evolution described by the passage of time t, which
remains inaccessible to an observer who can only measure time through a quantum clock. The
measurement of the quantum clock is the focus of our investigation. Let us denote the set of
measurement operators providing the time readout τ as {Ê(τ)}. This measurement is performed
on a clock system to estimate the value of time according to the operational definition, which
seeks to determine the time value without directly relying on any quantum measurement form.

The goal is to achieve the most accurate time estimation using the operational definition,
without explicit reference to a specific quantum measurement. However, the distribution
⟨ϕ(p, t)| Ê(τ) |ϕ(p, t)⟩ should be peaked at τ and serve as an unbiased estimator for classical time
dilation ∫

⟨ϕ(p, t)| Ê(τ) |ϕ(p, t)⟩ dτ ≈ t
(
1− p2

2m2c2

)
. (2.77)

Constructing such operators in the context of quantum metrology has been an ongoing research
topic [70, 163–169]. As the measurement is performed solely on the internal degrees of freedom,
we can trace out the center-of-mass degrees of freedom and use the reduced density matrix
ρ̂clock(t) ≡ Trcmρ̂(t), representing the clock’s internal state

ρ̂clock(t) =

∫
d3p |ψ(p)|2 |ϕ(p, t)⟩ ⟨ϕ(p, t)| . (2.78)

Thus, the probability P(τ) to obtain the measurement result τ is given by

P(τ) = Tr
(
Ê(τ)ρ̂clock(t)

)
=

∫
d3p |ψ(p)|2 ⟨ϕ(p, t)| Ê(τ) |ϕ(p, t)⟩ . (2.79)

From this expression, it is clear that the phase of the momentum representation wave function
ψ(p) does not influence the clock’s readouts. Only the probability density of the wave function
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matters. Therefore, instead of using the initial state of the system given by (2.74), we could use
a density matrix involving a classical mixture of definite momentum states

ρ̂(0) =

∫
d3p |ψ(p)|2 |p⟩ ⟨p| ⊗ |0⟩ ⟨0| , (2.80)

which is a state with erased coherences between different momentum eigenstates in (2.74), and
the result (2.79) would remain identical. In other words, the effective time dilation of the clock
is equal to a weighted average, with weights |ψ(p)|2, of time dilations of clocks characterized by
well-defined momenta. These classical time dilations are universal, i.e., independent of the clock
mechanism, so the weighted average (2.79) of universal time dilations must also be universal.
This argument completes the proof of the universality of kinematic quantum time dilation for
the case of an arbitrary quantum state of the clock ψ(p).

2.4.2 Quantum time dilation for classical states

Throughout the preceding section, we presented an analysis of time measurement employing a
quantum clock for a given quantum state described by a wave function. This provides an excel-
lent opportunity to delve into the fundamental aspects of the quantum time dilation effect and
contemplate whether it can be generalized in a manner that cannot be mimicked by classical
states alone.

Our elementary analysis offers a fresh perspective on the interpretation of quantum time
dilation studied in previous works [1, 54]. It is important to note that the result (2.79), which
characterizes quantum time dilation, can be obtained using the state (2.80). This state represents
a classical mixture of definite momentum states, implying that it can be considered completely
classical. This raises a question regarding the nature of the "quantum" time dilation described
by (2.79) and explored in [1, 54]. To gain a better understanding, let us revisit the reasoning
presented in those works.

Consider two different motional states of the clock, |ψ1⟩ and |ψ2⟩ ∈ Hcm, represented by
Gaussian wave packets that correspond to the clock traveling at two distinct average speeds.
Now, let the initial clock state be a coherent superposition given by

|ψ⟩ = N
(
cos θ |ψ1⟩+ sin θeiφ |ψ2⟩

)
∈ Hcm, (2.81)

where θ represents the respective weights and φ is the relative phase between the superposed
states. It is important to introduce the normalization factor N when dealing with nonorthogonal
superposed states.
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The momentum representation wave function ψ(p) ≡ ⟨p |ψ⟩ for the state (2.81) can be ex-
pressed as

ψ(p) = N
(
cos θ, ψ1(p) + sin θeiφ, ψ2(p)

)
, (2.82)

If ψ1(p) and ψ2(p) are nonorthogonal, it is clear that variations in the phase φ will impact
the corresponding momentum density distribution |ψ(p)|2 appearing in (2.79). As a result, the
effective time dilation will depend on the phase φ. This dependence on the relative phase φ is
considered a signature of the quantum nature of the observed time dilation effect.

To quantify the magnitude of the effect, the authors of [1, 54] compute the difference between
the clock rate evaluated for the initial superposed state |ψ⟩ ⊗ |0⟩ and its classical counterpart,
which is evaluated for a classical mixture of the two wave packets |ψ1⟩ and |ψ2⟩

ρ̂(0) = N ′ (cos2 θ |ψ1⟩ ⟨ψ1|+ sin2 θ |ψ2⟩ ⟨ψ2|
)
⊗ |0⟩ ⟨0| . (2.83)

The resulting difference quantifies the amount of quantum time dilation. Therefore, this
quantum time dilation can be viewed as an effect of state discrimination procedure between a
quantum-superposed clock state (2.81) and a classical mixture (2.83).

It is worth noting that an alternative approach would be to consider the classical counterpart
as (2.80) instead of (2.83). In this case, the difference in clock rates would always be zero. This
is because the expression (2.79) depends solely on the diagonal elements of the density matrix in
momentum space. Such a construction would result in no quantum contribution to classical time
dilation. Therefore, the magnitude of quantum time dilation relies on an arbitrary convention
regarding which classical state should be chosen as a reference.

This ambiguity arises from the nonorthogonality of the wave packets ψ1(p) and ψ2(p). This
ambiguity could be eliminated by using orthogonal wave packets. However, in that case, no
quantum time dilation would be observed. Unlike the double-slit experiment, which reveals
the quantum nature of interference between orthogonal states, quantum time dilation crucially
depends on the nonorthogonality of the modes ψ1(p) and ψ2(p). It is evident that one can de-
compose the initial state (2.81) in such a way that the two terms in the decomposition correspond
to overlapping wave functions. Therefore, adding a relative phase between these terms leads to
a change in the momentum distribution appearing in (2.79). However, this should be viewed
more as an artifact resulting from choosing a specific decomposition of the state rather than a
manifestation of a fundamental effect.

Let us delve deeper and explore a discrimination procedure that involves a superposition and
a mixture of two states, resulting in quantum time dilation, but with an alternative pair of
states. To illustrate this, consider the example of two coherent states |α⟩, |β⟩ ∈ Hcm of the
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center-of-mass degree of freedom. Decompose |α⟩ in a basis 1√
2
(|α⟩ ± |β⟩) as follows

|α⟩ = 1

2
(|α⟩+ |β⟩) + 1

2
(|α⟩ − |β⟩). (2.84)

According to the aforementioned discrimination procedure, the classical counterpart of the state
(2.84) in this case is defined as the following classical mixture

ϱ̂ ≡ N
2
(|α⟩+ |β⟩)(⟨α|+ ⟨β|) + N

2
(|α⟩ − |β⟩)(⟨α| − ⟨β|) = N (|α⟩⟨α|+ |β⟩⟨β|). (2.85)

In general, both states have different momentum distributions, and therefore, the measure used
to quantify the amount of quantum time dilation for the state (2.81) yields a nonzero value for
the classical state (2.84).

2.4.3 Combined kinematic and gravitational quantum time dilation

In previous sections, we explored how kinematic time dilation affects a clock moving along a
superposition of trajectories. Our analysis was extensive, made possible by the straightforward
form of the interaction Hamiltonian. This simplicity highlighted the momentum eigenbasis within
theHcm space, resulting in the clock’s reduced density matrix becoming a mixed state of different
clock states. Each state corresponded to a distinct momentum of the center-of-mass degree of
freedom (2.78). Our current endeavor is to adjust our perspective and evaluate a situation
that includes both kinematic and gravitational time dilation. In this situation, the interaction
Hamiltonian does not distinguish a specific basis in the Hcm space.

Consider a scenario with a point-like clock positioned in a Schwarzschild gravitational field
at a specific position r0. Near the clock, the Schwarzschild metric, expressed through the local
proper time at the position r0 and the proper length r, can be approximated in a post-Newtonian
framework as derived in 2.1.3

g00(r) ≈
(
1 +

2GM

r0c2
+

2G2M2

r20c
4

)(
1− 2GM

rc2
+

2G2M2

r2c4

)
, (2.86)

gij(r) ≈ −δij
(
1 +

2GM

rc2
+

3G2M2

2r2c4

)
.

The expansions (2.86) are now incorporated into the Hamiltonian (2.73), and we choose the x axis
to align with the local gravitational field at r0. This leads us to the subsequent approximation
of the total Hamiltonian of the clock (2.73)

Ĥ ≈ Ĥclock + Ĥcm(r̂, p̂) + Ĥint. (2.87)
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Here, the individual terms are derived by dismissing higher-order contributions to the total
energy, which are significantly smaller than the rest energy mc2.
More specifically, ⟨Ĥclock⟩, |⟨cp̂⟩|, |⟨mgx̂⟩|,mgr0, GMm

r0
≪ mc2. We find

Ĥcm ≡ mc2 +
p̂2

2m
+mgx̂+

3g

2mc2
W
: p̂2x̂

W
: , Ĥint ≡ Ĥclock

(
− p̂2

2m2c2
+
gx̂

c2
− 3g

2m2c4
W
: p̂2x̂

W
:

)
︸ ︷︷ ︸

V̂1

+ Ĥ2
clock

(
p̂2

2m3c4
+

3g

2m3c6
W
: p̂2x̂

W
:

)
︸ ︷︷ ︸

V̂2

, (2.88)

where g ≡ GM/r20 denotes the gravitational acceleration at r0, x̂ is the position operator in the
direction of the gravitational field at r0 measuring the proper distance from that point, and the
symbol W

: · W
: signifies Weyl’s symmetric ordering. In relation to the parameter λ introduced in

the prior section, for the most general form of the ordering operator, it can be stated that Weyl’s
ordering is consistent with λ = 1/2.

In order to understand the evolution of the system, we apply the von Neumann equation for
the density matrix ρ̂I(t) of the total system in the interaction picture (represented by the I
superscript), wherein the interaction Hamiltonian is expressed by
ĤI

int(t) ≡ e
i
ℏ (Ĥclock+Ĥcm)tĤinte

− i
ℏ (Ĥclock+Ĥcm)t

iℏ
∂

∂t
ρ̂I(t) =

[
ĤI

int(t), ρ̂
I(t)
]
. (2.89)

The approximate solution to (2.89) can be found in the first order of the Dyson series by
assuming that the initial state of the system shows no correlations between the kinematic and
internal degrees of freedom: ρ̂(0) ≡ ρ̂cm(0)⊗ ρ̂clock(0). After reverting to the Schrödinger picture
we can compute the reduced density matrix of the clock’s internal state by tracing out the
kinematic degrees of freedom ρ̂clock(t) ≡ Trcm ρ̂(t). The calculations are detailed in Appendix
2.6.6, and the final result is given by

ρ̂clock(t) ≈ ρ̂0clock(t)−
i

ℏ

([
Ĥclock, ρ̂

0
clock(t)

]
Tr
(
V̂ 1ρ̂cm(0)

)
+
[
Ĥ2

clock, ρ̂
0
clock(t)

]
Tr
(
V̂ 2ρ̂cm(0)

))
t.

(2.90)

Here, ρ̂0clock(t) ≡ e
− i

ℏ Ĥclocktρ̂clock(0)e
i
ℏ Ĥclockt describes the evolution of the clock’s internal degrees

of freedom in the absence of coupling with the kinematic degrees of freedom. Let us compare
(2.90) with the previously obtained special case (2.78) involving only the kinematic time dilation.
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In that specific case, we could express the result as a classical mixture of final states correspond-
ing to definite values of momentum. Similarly, for purely gravitational time dilation without
kinematic effects, the result (2.94) involves a mixture of final states corresponding to definite
positions of the clock. Our general result (2.90) surpasses that. Note that the terms involving
the operator V̂1 contain elements that mix up position and momentum operators 3g

2m2c4
W
: p̂2x̂

W
: ,

as seen in (2.88). For this reason, our general result (2.90) cannot be replicated using a classical
mixture of definite position or momentum final states. The terms appearing in (2.90) have the
form

Tr
[

W
: p̂2x̂

W
: ρ̂cm(0)

]
=

1

3
Tr
[(
p̂2x̂+ p̂x̂p̂+ x̂p̂2

)
ρ̂cm(0)

]
=

∫
dpdxdx′

3xp2 − iℏp
6πℏ

e−
i
ℏp(x−x

′)⟨x|ρ̂cm(0)|x′⟩. (2.91)

The introduction of more advanced terms in our calculations has led to the discovery of a
relativistic modification in the evolution of a clock. This modification is associated with the
combined distributions of position and momentum operators, which makes our results more en-
compassing than those presented in the earlier sections. In general, there is no classical equivalent
to the state referenced as (2.80) that could generate non-classical components of the form (2.91).
These components depend on both position and momentum, which do not commute, meaning a
straightforward substitution of quantum averaging with classical weighted averaging over states
with well-defined positions and momentum is not feasible.

Importantly, the result expressed in (2.91) is influenced by the type of ordering applied in
the Hamiltonian (2.88). Different orderings, other than Weyl’s ordering, may result in varying
outcomes. Consequently, making direct measurements of these higher-order terms can be a
method to validate the types of ordering employed in specific physical systems.

This novel contribution of ours is not yet documented in the existing literature on quantum
effects due to gravitational time dilation [2, 126, 159, 170–172]. We achieved it by transcending
the limitations of second-order perturbation theory and delving into more complex, higher-order
terms as seen in (2.90). The term proportional to (2.91) has no classical parallel and can thus
be recognized as a uniquely quantum effect.

Finally, this work demonstrates that the inclusion of both kinematic and gravitational degrees
of freedom can reveal new quantum effects that do not hinge on a particular discrimination
procedure. This underscores the significance of the noncommutative nature of the position and
momentum operators in these phenomena.
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2.4.4 Nonuniversality of gravitational quantum time dilation

Let us now consider a scheme involving gravitational time dilation only. For this purpose, we
will utilize the expansion (2.88) in the limit of high values of m, where the kinematic degrees of
freedom become negligible, resulting in the omission of momentum-dependent terms

Ĥcm ≈ mc2 +mgx̂, (2.92)

Ĥint ≈ Ĥclock
gx̂

c2
. (2.93)

This approach leads to a gravitational analog of (2.78), where the momentum p̂ is replaced by
the position r̂ of the clock in a gravitational field

ρ̂′clock(t) =

∫
d3r |ψ′(r)|2

∣∣ϕ′(r, t)〉 〈ϕ′(r, t)∣∣ , (2.94)

where ψ′(r) ≡ ⟨r|ψ⟩. This suggests that the effective time dilation is equivalent to the classical
weighted average of time dilations measured by clocks distributed in space according to the
probability distribution |ψ′(r)|2. At first glance, the analogy between (2.78) and (2.94), and thus
between kinematic and gravitational time dilation, appears complete, implying that gravitational
quantum time dilation should also be universal. However, this conclusion is incorrect. A critical
assumption in our derivation is that the clock Hamiltonian Ĥclock in (2.87) does not depend on
p̂ and r̂. The independence of p̂ follows directly from the Lorentz invariance of the theory, as
the clock’s Hamiltonian must be identical in all inertial frames. However, the independence from
r̂, implying that the clock’s mechanism is unaffected by the gravitational field’s strength, is not
valid.

Specifically, it is established that every physical system responds differently to proper ac-
celeration: for example, a pendulum clock and an atomic clock will be affected differently by
acceleration. It has been shown that no "ideal clock," which is entirely insensitive to proper
acceleration, can exist [146–148]. Similarly, due to the equivalence principle, where the effects of
proper acceleration are indistinguishable from gravitational effects, no realistic clock can measure
proper time accurately in a gravitational field. Therefore, deviations from the standard gravita-
tional time dilation formula (based on √g00 for a static field) can be expected for any realistic
system. The rate of a pendulum clock or any other time-measuring device thus depends on
the gravitational field’s strength, reflecting that the clock’s design inherently depends on proper
acceleration. This effect has been demonstrated even for the most robust clocks in existence:
unstable elementary particles [146–148]. Consequently, even classical gravitational time dilation
cannot be universal, let alone its quantum-superposed counterpart. The fundamental reason for
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this is that only motion with constant velocity is relative; acceleration is absolute, not relative,
and the principle of relativity does not apply to accelerated motions. Therefore, the effect of
acceleration or gravity on a clock’s rate must fundamentally depend on the clock’s mechanism.
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2.5 Conlusions of the chapter

In the section 2.2, we presented a spectroscopic signature of quantum time dilation, observed
in the spontaneous emission rate or lifetime of an excited atom moving in a superposition of
relativistic momentum wave packets. Our analysis shows that the total transition rate is signifi-
cantly influenced by the momentum coherence in the atom’s center-of-mass state. Interestingly,
the quantum contribution to the observed time dilation can be either positive or negative, de-
pending on the relative phase between the superposed momentum states. Importantly, these
quantum effects are within the reach of existing experimental setups, such as optical clocks [79,
105–108].

Furthermore, we observed a notable correspondence between quantum time dilation in the
atomic lifetime, as described by (2.37), and quantum time dilation observed by an ideal clock
in a different physical system [54, 157]. This result indicates the universality of quantum time
dilation, suggesting that it affects all clocks similarly, regardless of their underlying mechanisms.

The effects of quantum time dilation on atomic spectra complement the growing body of re-
search on relativistic clock interferometry. While clock interferometry explores the effects of
clock superpositions experiencing different proper times due to relativistic effects, our spectro-
scopic approach focuses on the role of coherence across relativistic momentum wave packets. By
probing proper time superpositions in this regime, our proposal offers a unique perspective on
the interplay between quantum theory and relativity.

We further investigated the presence of a quantum Doppler effect arising when an atom’s
center-of-mass is in a superposition of momentum wave packets. This effect manifests in the
shape of the emission spectrum, resulting in a modification of its structure. Specifically, the
quantum Doppler effect smooths the contrast between the characteristic Doppler-shifted peaks
typically observed in the spectrum.

In the following section 2.3, we have presented an example of a realistic scenario where quantum
time dilation in a gravitational field is expected to occur. By analyzing the spontaneous emission
process of a two-level atom at rest in an external gravitational field, modeled as an accelerated
frame of reference according to the equivalence principle, we demonstrated that the atom’s
spontaneous emission rate depends on its wave function in position space. Specifically, this
rate is nontrivially influenced by the presence of spatial coherence in the atom’s center-of-mass
state. Our findings align with those of [126] for a realistic clock model, further demonstrating
that quantum time dilation occurs in practical scenarios. This provides additional evidence that
quantum time dilation is not merely a theoretical construct but can be observed in real-world
situations. Moreover, by utilizing the equivalence principle to describe the effect of gravity on the
clock, we arrived at the same conclusions as would be expected from a post-Newtonian analysis.
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This suggests that our findings can be interpreted as a confirmation of the equivalence principle
applied to quantum systems.

Our analysis leads to a method for detecting the effect of quantum time dilation: placing a
decaying particle in a superposition of heights and monitoring the dependence of the decay rate on
the particle’s initial state. Similarly, a spectroscopic method for detecting quantum time dilation
involves setting a clock (either ionic or atomic) in a superposition of heights and measuring
either the spontaneous decay or, more commonly, the fractional frequency shift. According
to our results, the coherence effect should become noticeable when the spread of two position
wave packets is comparable to the distance between them. The quantum correction to classical
time dilation can be of the same order of magnitude as the classical gravitational time dilation
factor for appropriately chosen state parameters. Therefore, if gravitational time dilation can be
detected for such distances, the quantum time dilation effect should also be observable.

Typically, experimental measurements of gravitational time dilation involve comparing two
clocks at different heights, as demonstrated in tabletop experiments [173], flight-based clocks
[174], or clocks separated by hundreds of meters [175]. For these approaches, future advance-
ments are already planned: satellite-based experiments that will improve accuracy by orders of
magnitude [176, 177]. Recent developments with optical lattice clocks have also shown that re-
solving the gravitational redshift within a single sample on a sub-millimeter scale is possible [178,
179]. Specifically, a frequency change consistent with the linear gravitational field was measured
along a system consisting of 100,000 strontium atoms [178], where the atoms were uncorrelated
to suppress corrections due to quantum coherence across the sample.

We have shown that for an optimally prepared state in the simplest spectroscopic system, the
gravitational quantum time dilation effect is comparable to the gravitational redshift induced by
a millimeter-sized height difference near Earth’s surface. In the most favorable setup with two
overlapping wave packets of opposite relative phase, the change in the total emission rate scales
as g∆

4c2
Γ0, where ∆ is the spatial spread of the wave packets. In the case of micrometer-scale su-

perpositions [180–183], this results in a 10−23 change in the total emission rate, or equivalently,
the same change in the fractional frequency shift. Although current measurements of atomic
lifetimes and emission rates lack the precision to detect such a correction—they are typically
determined up to tenths of a percent [184–186]—the correction to the fractional frequency shift
is just below the precision of state-of-the-art measurements, which are sensitive to gravitational
time dilation on millimeter scales [178, 179, 187, 188]. Increasing the scale of the spatial super-
position of the atomic species from micrometers to millimeters would result in a correction of
the order of 10−20, which is within the reach of current technology. Given recent experimental
progress with optical clocks, the natural next step is to devise a scheme to prepare the optimal
superposition state in this setting and examine how to unambiguously observe quantum time di-
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Figure 2.7: a) A pair of arbitrary clocks moving together along a superposition of two different
trajectories, observed from a classical inertial frame; b) a pair of resting clocks ob-
served from a quantum reference frame moving at a superposition of two different
velocities.

lation with present-day technology, as the magnitude of the effect is within current experimental
precision.

Finally, in the section 2.4, we demonstrated that while kinematic quantum time dilation is uni-
versal, gravitational quantum time dilation is not. Our proof of universality provides a necessary
condition for quantum reference frames to be well-defined [189]. Consider the scheme presented
in Fig. 2.7a) where a pair of arbitrary clocks moving along a superposition of two different tra-
jectories is observed from a classical inertial frame. In Fig. 2.7b), we show an analogous scheme,
where the pair of clocks is at rest, but they are observed from a quantum reference frame moving
at a superposition of velocities. In the latter case, both clocks must experience time dilation
in exactly the same way. Therefore, if both schemes a) and b) are to be equivalent, then the
quantum time dilation observed in case a) must be universal.

We also argued that the definition of quantum time dilation relies on an arbitrary choice of
the classical reference state, and for other, equally justified choices, the effect vanishes. However,
we derived an alternative quantum time dilation effect that manifests itself with higher-order
coupling terms between translational and internal degrees of freedom. In this case, the quantum
noncommutativity of the involved position and momentum operators guarantees that the effect
has no classical analog. Our findings clarify the current understanding of quantum time dilation,
providing statements about its universality and underlying nature.
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2.6 Appendices

2.6.1 Momentum wave packets and signatures of coherence

Here, explicit forms of momentum wave packets from the main text are presented. It is assumed
that the atom in consideration moves along the z-direction with its momentum distribution in
perpendicular directions well localized around px = py = 0. Moreover, we consider the atom to
be either in a coherent superposition of two Gaussian wave packets

ψsup(p) = N
[
cos θe−

(p−p̄1)
2

2∆2 + eiϕ sin θe−
(p−p̄2)

2

2∆2

]
, (2.95)

where N = [
√
π∆(1 + cosϕ sin 2θe−(p̄1−p̄2)2/4∆2

)]−1/2, or in an incoherent mixture described by
the momentum distribution

Pcl =
1√
π∆

[
cos2 θe−

(p−p̄1)
2

∆2 + sin2 θe−
(p−p̄2)

2

∆2

]
. (2.96)

The difference between coherent superpositions and classical mixtures of momentum wave packets
can be characterized by the difference in moments associated with their respective momenta
distributions

Kj ≡
1

j!mjcj

∫
dp pj

[
|ψsup (p)|2 − Pcl (p)

]
. (2.97)

In case of Gaussian wave packets considered above, K1 and K2 take the explicit form

K1 =
cosϕ sin 4θ (p̄2 − p̄1)

4mc

[
cosϕ sin 2θ + e

(p̄2−p̄1)
2

4∆2

] = δQ,

K2 =
cosϕ sin 2θ

[
(p̄2 − p̄1)2 − 2

(
p̄22 − p̄21

)
cos 2θ

]
8m2c2

[
cosϕ sin 2θ + e

(p̄2−p̄1)
2

4∆2

] = γ−1
Q . (2.98)

Analysis of K2 is presented in Fig. 2.8 and of K1 in Fig. 2.9.

Note that K1 vanishes for an equally weighted superposition θ = π/4. Let us show that this
feature is a common feature of all symmetric wave packets. Let φ(p) be a normalized wave
packet symmetric with respect to p = 0. Then, we can write an equally weighted, coherent
superposition of two momentum wave packets as

φsup(p) =
N√
2

[
φ(p− p1) + eiϕφ(p− p2)

]
, (2.99)
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with N 2 =
[
1 + cosϕ

∫
dp φ(p− p1)φ(p− p2)

]−1. For the corresponding classical mixture, the
momentum distribution takes the form

Pcl =
1

2

(
φ2(p− p1) + φ2(p− p2)

)
. (2.100)

Then, by an explicit evaluation, one finds that

2mc

N 2
K1 =

2

N 2

∫
dp p

[
|φsup (p)|2 − Pcl (p)

]
= − cosϕ

[(∫
dp φ(p− p1)φ(p− p2)

)(∫
dp p

(
φ2(p− p1) + φ2(p− p2)

))
− 2

∫
dp pφ(p− p1)φ(p− p2)

]
. (2.101)

The term in the third row of (2.101) equals p1+ p2, because φ(p− p1,2) are normalized and well
localized around p1,2. By substituting p→ p− (p1 + p2)/2 and utilizing the fact that expression
φ(p− p′)φ(p+ p′) is an even function of p, one finds that

2

∫
dp p φ(p− p1)φ(p− p2) = (p1 + p2)

∫
dp φ(p− p1)φ(p− p2). (2.102)

Substituting these two results into (2.101) it is seen that that K1 = 0. The only necessary
condition is for φ(p) to be an even function with respect to p = 0.

2.6.2 Derivation of the emission rate and spectrum shape

Let us focus on the angular distribution of the emitted radiation. The angular distribution can
be obtained by omitting angular integration in (2.25). Note that such an approach does not
explicitly utilize the photon distribution that comes from an integration over the probabilities
|βk,ξ|2. However, as shown in [87] this approach is consistent with the special relativity, repro-
ducing dipole pattern of radiation in the comoving frame. Writing explicitly (2.25) gives (see
(9)-(11) in [89] for a derivation)

Γ= lim
t→∞

d

dt

∑
k,ξ

∫
dp |βk,ξ (p, t)|2

= 2π

∫
dp |ψ (p)|2

∑
k,ξ

ωk
2ℏϵ0(2πc)3

g2k,ξ(p)δ

(
Ω− ωk +

1

m
k · (p− ℏk/2)

)
. (2.103)
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Figure 2.8: Fig. 2.2 from the main text; shown in Appendix for a purpose of comparison with
Fig. 2.9. The difference in total emission rates between a superposition and a classical
mixture of two momentum wave packets of an atom as a function of the wave packets’
momentum difference and their relative phase and weight. The red line marks the
maximum value of the effect for a given relative phase or relative weight, while the
red circles signify maximum and minimum values across the given subplot. a) equal
weighted superposition of momentum wave packets, θ = π/4. b) Relative phase fixed
at ϕ = 0. The red line is not continuous at the point θ = π/4, and it sharply ends
at (p̄2 − p̄1)/∆ = 2

√
1 +W0(1/e) ≈ 2.261, where W0 is the principal branch of the

Lambert W function. c) Relative phase fixed at ϕ = π. It can be seen that two
extrema exist for small values of (p̄1 − p̄2)/∆ and θ ≈ π/4. One can show that
these extrema are placed at θ = π

4 −
1
4
p̄2−p̄1
p̄2+p̄1

(1 ±
√
1 + 2(p̄2 + p̄1)2/∆2) and their

corresponding values are ±∆2(
√
1 + 2(p̄1 + p̄2)2/∆2 − 1)/4m2c2. Nonzero value for

a finite momentum difference signifies the phenomenon of quantum time dilation. In
each of the panels, the momentum spread of each of wave packets is ∆ = 0.01mc and
the sum of their average momenta is equal to p̄1 + p̄2 = 0.05mc.

By taking a continuous limit of the summation over k,

∑
k

→
∫

dκ

∫
dω ω2 sin θ, (2.104)

where κ = kc
ω = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) and

∫
dκ =

∫ π
0 dΘ

∫ 2π
0 dΦ, we can omit the

integral over direction κ to get the angular distribution

Γ(Θ,Φ) =
π

ℏϵ0(2πc)3

∫
dp |ψ (p)|2

∑
ξ

∫ ∞

0
dω ω3 sinΘg2k,ξ(p) δ

(
Ω− ω +

1

m
k · (p− ℏk/2)

)
.

(2.105)
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Figure 2.9: The difference in first moments K1 = δQ of the momentum distributions associ-
ated with a superposition and a classical mixture of two momentum wave packets as
a function of the wave packets’ momentum difference and their relative phase and
weight, which quantifies the difference in magnitude of angular distribution of emis-
sion: a) unequal weighted superposition of momentum wave packets, θ = π/8, b)
Relative phase fixed at ϕ = 0, c) Relative phase fixed at ϕ = π. The red line marks
the maximum value of the effect for a given relative phase or a relative weight, while
the red circles signify maximum and minimum values across the whole plot. Nonzero
values for a finite momentum difference signifies the phenomenon of quantum time
dilation. In each of the panels, the momentum spread of each of the wave packets is
∆ = 0.01mc and the sum of their average momenta is equal to p̄1 + p̄2 = 0.05mc.

Note we are now working in the continuous limit and so the sum over ωk has been replaced with
an integral over ω.

Under the assumption that the atom is heavy the coupling constant g2k,ξ(p) can be expanded
to first order in ℏΩ/mc2 and to second order in p2/m2c2

g2k,ξ(p) ≈ (d · ϵk,ξ)2 +
2

mc
(d · ϵk,ξ)

(
p− ℏωkκ

2c

)
· [(κ× ϵk,ξ)× d] +

1

m2c2
(p · [(κ× ϵk,ξ)× d])2 .

(2.106)

Making use of the vector equalities∑
ξ

(d · ϵk,ξ)2 = d2 − (d · κ)2 , (2.107)

∑
ξ

(d · ϵk,ξ)A · [(κ× ϵk,ξ)× d] = (d · κ) (A · d)− d2 (A · κ) , (2.108)

∑
ξ

(A · [(κ× ϵk,ξ)× d])2 = d2 (A · κ)2 +A2 (d · κ)2 − 2 (A · κ) (d · κ) (A · d) , (2.109)
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with A = 2
mcp−

ℏ
mck, it follows that

∑
ξ

g2k,ξ(p) ≈ d2
[
κ2⊥

(
1 +

ℏωk
mc2

)
− 2

mc
p · κ⊥ +

1

m2c2
(p · κ)2 − 2

m2c2
(p · κ)κ∥p∥ +

1

m2c2
p2κ2∥

]
,

(2.110)

where ⊥ and ∥ indicate projections perpendicular and parallel to the vector d.

We now go back to the angular distribution, in which we have to compute the following integral

∑
ξ

∫ ∞

0
dω ω3 sinΘ g2k,ξ(p) δ

(
Ω− ω +

1

m
k · (p− ℏk/2)

)
. (2.111)

Again, supposing that the atom moves in the z-direction with its momentum distribution in the
perpendicular directions given by delta functions centered at px = py = 0. Thus we can consider
p = (0, 0, p). We will also suppose that d = (d, 0, 0) points in a direction perpendicular to p.
Then, (2.111) simplifies to

d2
∫ ∞

0
dω η(ω)δ (λ(ω)) = d2

η(ω0)

|λ′(ω0)|
, (2.112)

where

η(ω) ≡ ω3 sinΘ

[(
1− sin2Θcos2Φ

)(
1 +

ℏω
mc2

)
− 2p

mc
cosΘ +

p2

m2c2
(
cos2Θsin2Φ+ cos2Φ

)]
,

λ(ω) ≡ Ω− ω + ω
p

mc
cosΘ− ω2ℏ

2mc2
,

ω0 ≡ Ω

(
1 +

p

mc
cosΘ +

p2

2m2c2
cos 2Θ− ℏΩ

2mc2

)
. (2.113)

The denominator can be expanded up to first order in ℏΩ/mc2 and up to the second order in
p2/m2c2 yielding

1

|λ′(ω0)|
≈ 1 +

p

mc
cosΘ +

p2

m2c2
cos2Θ− ℏΩ

mc2
, (2.114)

and finally

η(ω0)

|λ′(ω0)|
≈ 8π

3
sinΘ

[
Ξ0(Θ,Φ)

(
1− 3

2

ℏΩ
2mc2

)
+ Ξ1(Θ,Φ)

p

mc
+ Ξ2(Θ,Φ)

p2

2m2c2

]
, (2.115)

64



2.6 Appendices

Figure 2.10: A comparison between shapes of the emission spectrum P∥(ω) associated with a co-
herent superposition (Psup) and an incoherent classical mixture (Pcl) of momentum
wave packets a) The transition line for an atom initially prepared in a superposi-
tion of two momentum wave packets as a function of emitted photon’s frequency
and difference between wave packets’ momenta. The two-peak structure stemming
from two distinct Doppler shifts is clearly visible. b) Absolute difference of emission
probabilities between a superposition and a classical mixture of momentum wave
packets as a function of the frequency of the emitted photon and difference between
wave packets’ momenta. The difference is most pronounced in regimes where wave
packets overlap. c) Relative difference of emission probabilities between a super-
position and a classical mixture of momentum wave packets as a function of the
frequency of emitted photon and difference between the wave packets’ momenta. It
can be seen that the quantum contribution is largest in between the two transition
peaks. This suggests that a postselection of final measured states of center-of-mass
motion may increase the general visibility of the quantum Doppler effect.

where

Ξ0(Θ,Φ) ≡
3

8π

(
1− sin2Θcos2Φ

)
, (2.116)

Ξ1(Θ,Φ) ≡
3

4π
cosΘ

(
1− 2 sin2Θcos2Φ

)
, (2.117)

Ξ2(Θ,Φ) ≡
3

16π

[
6 cos 2Θ + 5 cos2Φ (cos 4Θ− cos 2Θ)

]
. (2.118)
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Substituting this expression into (2.105) yields the angular distribution

Γ(Θ,Φ)

Γ0
= Ξ0(Θ,Φ)

(
1− 3

2

ℏΩ
mc2

)
+

1

mc
Ξ1(Θ,Φ)

∫
dp p|ψ(p)|2

+
1

2m2c2
Ξ2(Θ,Φ)

∫
dp p2|ψ(p)|2. (2.119)

The difference between coherent and incoherent cases is then given by

Γsup(Θ,Φ)− Γcl(Θ,Φ)

Γ0
= Ξ1(Θ,Φ) δQ + Ξ2(Θ,Φ) γ

−1
Q . (2.120)

Integrating Γ(Θ,Φ) over Θ and Φ yields the total transition rate

Γ = Γ0

(
1− 3ℏΩ

2mc2
− 1

2m2c2

∫
dp p2|ψ(p)|2

)
. (2.121)

If ψ(p) is a wave packet well localized at p0, then

Γ = Γ0

(
1− 3ℏΩ

2mc2
− p20

2m2c2

)
. (2.122)

One can also immediately see that the quantum time dilation manifests in the total transition
rate

Γsup − Γcl

Γ0
= γ−1

Q . (2.123)

The first term in (2.119) corresponds to the distribution of dipole radiation for an atom at rest
which when integrated over Θ and Φ gives the transition rate Γ0. The second term is a correction
linear in p that associated with a Doppler shift. This term vanishes when integrated over Θ and
Φ, ensuring consistency with special relativity as the total transition rate is Γ = Γ0/γ(p), which
when expanded in p is seen to have zero contribution linear in momentum.

However, terms linear in momentum modify the angular distribution of radiation, manifesting
as a pattern distinctively different than that of the dipole radiation distribution. The magnitude
of this quantum correction depends onK1 (i.e. δQ), which is an explicit function of the parameters
characterizing the atomic wave functions and surprisingly vanishes if the atom moves in an equally
weighted superposition.

Also of interest is how momentum coherence affects the shape of the atomic emission line,
which can be probed through spectroscopic methods. For a plane wave characterized by a wave
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vector k, the probability of emission is given by

P (k) = lim
t→∞

∑
ξ

∫
dp |βk,ξ (p, t)|2 , (2.124)

which utilizing (2.113) can be cast into form

P (k) =
3Γ0

16π2

∫
dp |ψ (p)|2

∑
ξ

g2k,ξ(p)/d
2

λ2(ω) + Γ2(p)/4
. (2.125)

By expanding λ(ω), g2k,ξ(p)/d
2 and Γ2(p) up to second order in momentum, under the assumption

that the emission line is measured perpendicular to the direction of motion, one finds

P⊥(ω) =
3

8π

∫
dp |ψ (p)|2

(
1− 3

2
p2

m2c2

)
Γ0/2π[

ω − Ω
(
1− 1

2
p2

m2c2

)]2
+

Γ2
0
4

(
1− p2

m2c2

) . (2.126)

On the other hand, in the case of photons measured parallel to the direction of motion, one
obtains

P∥(ω) =
3

8π

∫
dp |ψ (p)|2

(
1 + 3 p

mc

)
Γ0/2π[

ω − Ω
(
1 + p

mc

)]2
+

Γ2
0
4

(
1 + 2 p

mc

) . (2.127)

In Fig. 2.10 we compare the parallel emission spectrum P∥(ω) for coherent superposition and
incoherent classical mixtures of momentum wave packets.

2.6.3 Evolution of the system

In this Appendix we analyze the evolution of the atomic system in Rindler coordinates making
use of the Hamiltonian

Ĥ = Ĥatom + Ĥfield + Ĥaf. (2.128)
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We need to solve the Schrödinger equation with the above Hamiltonian and the state (2.54)

iℏ

∫ dz α̇(z, τ) |z, e, 0⟩+
∑
λ=1,2

∫ ∫
dk dz β̇k,λ(z, τ) |z, g, 1k,λ⟩


=

∫
dz

(Mc2 + ℏΩ
) (

1 +
gz

c2

)
α(z, τ)− iℏ

∑
λ=1,2

∫
dk gk,λe

ikξβk,λ(z, τ)

 |z, e, 0⟩
+
∑
λ=1,2

∫ ∫
dk dz

((
Mc2

(
1 +

gz

c2

)
+ ℏωk

)
βk,λ(z, τ)− iℏgk,λe−ikξα(z, τ)

)
|z, g, 1k,λ⟩ .

(2.129)

Here, the dot denotes the derivative with respect to the coordinate time τ . The infinite set of
equations implied by this Schrödinger equation reads

α̇(z, τ) =− iωe(z)α(z, τ)−
∑
λ=1,2

∫
dk gk,λe

ikξβk,λ(z, τ),

β̇k,λ(z, τ) =− i (ωg(z) + ωk)βk,λ(z, τ)− gk,λe−ikξα(z, τ),
(2.130)

with

ωg(z) =
Mc2

ℏ

(
1 +

gz

c2

)
and ωe(z) =

(
Mc2

ℏ
+Ω

)(
1 +

gz

c2

)
. (2.131)

The initial conditions are the following

α(z, 0) = ψ(z), βk,λ(z, 0) = 0. (2.132)

We perform the Laplace transform and find

ωα̃(z, ω)− ψ(z) =− iωe(z)α̃(z, ω)−
∑
λ=1,2

∫
dk gk,λe

ikξβ̃k,λ(z, ω),

ωβ̃k,λ(z, ω) =− i (ωg(z) + ωk) β̃k,λ(z, ω)− gk,λe−ikξα̃(z, ω).
(2.133)

These equations lead to the following formulas for α̃(z, τ) and β̃k,λ

α̃(z, ω) =
ψ(z)

H(ω)
, β̃k,λ(z, ω) =

−gk,λe−ikξα̃(z, ω)
ω + i (ωg(z) + ωk)

, (2.134)
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where

H(ω) = ω + iωe(z)−
∑
λ=1,2

∫
dk

g2k,λ
ω + i (ωg(z) + ωk)

. (2.135)

We return to the time domain using an inverse Laplace transform with integration contour Υ

going from negative imaginary infinity to positive imaginary infinity, closed by a large semicircle
to the left of the imaginary axis

α(z, τ) =
1

2πi

∫
Υ
dω

eωτψ(z)

H(ω)
, (2.136)

and use the single pole approximation H(ω) = ω − ω0 with

ω0 = −iωe(z) + δ, δ =
∑
λ=1,2

∫
dk

ig2k,λ(
ωk − Ω

(
1 + gz

c2

))
− iε

. (2.137)

Using the Sochocki-Plemelj formula

lim
ϵ→0+

1

x− iε
= iπδ(x) + P

(
1

x

)
, (2.138)

we transform it to

ω0 = −iωe(z)−
Γ(z)

2
, Γ(z) = 2π

∑
λ=1,2

∫
dk g2k,λδ

(
Ω
(
1 +

gz

c2

)
− ωk

)
. (2.139)

We note that ∑
λ=1,2

êλ,iêλ,j = δi,j −
kikj
k2

, (2.140)

and assume that the dipole moment of the atom is perpendicular to the direction of light prop-
agation (direction of the gravitational field), to finally compute Γ(z)

Γ(z) =

∫
dωk

ωkd
2

2ℏcε0
δ
(
Ω
(
1 +

gz

c2

)
− ωk

)
=
(
1 +

gz

c2

) Ωd2

2ℏcε0
=
(
1 +

gz

c2

)
Γ0. (2.141)

Here Γ0 = Ωd2

2ℏcε0 is the transition rate of the atom in absence of gravity, whereas Γ(z) is the
transition rate of a particle localized at height z in a gravitational field.

With (2.141) in hand, we can calculate the amplitude α(z, τ) in the single pole approximation

α(z, τ) = ψ(z) exp(ω0τ) = ψ(z) exp

[(
−iωe(z)−

Γ(z)

2

)
τ

]
. (2.142)
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Now we substitute ψ(z)
ω−ω0

for α̃(z, ω) in the formula for β̃k,λ(z) (2.134), and perform the inverse
Laplace transform to obtain

βk,λ(z, τ) =
gk,λψ(z)e

−i(ωg(z)+kξ)

1
2Γ(z) + i

(
Ω
(
1 + gz

c2

)
− ωk

) [e−(
iΩ

(
1+ gz

c2

)
+ 1

2
Γ(z)

)
τ − eiωkτ

]
. (2.143)

2.6.4 Derivation of the emission rate and spectrum shape

Using the results from Appendix 2.6.3, one can compute the probability that the atom stays in
the excited state until coordinate time τ∫

dz|α(z, τ)|2 =
∫

dz|ψ(z)|2 exp (−Γ(z)τ) . (2.144)

The transition rate is defined as the time derivative of this probability

Γ = − d

dτ

∫
dz|ψ(z)|2 exp [−Γ(z)τ ] =

∫
dz|ψ(z)|2Γ(z) exp [−Γ(z)τ ] ≈

∫
dz|ψ(z)|2Γ(z).

(2.145)

Here in the last line we made an assumption that the time τ is much shorter than the lifetime
of the excited state in the absence of gravity τ ≪ (Γ0)

−1, and we consider only the cases with
gz/c2 ≪ 1 in the range of non-vanishing ψ(z).

We are interested in computing the transition rate of an atom in a coherent superposition of
two wave packets, Γsup, and comparing it with the transition rate of an atom in a probabilistic
mixture of these wave packets, Γcl. We assume that in the first case the initial wave function is
given by

ψsup(z) = N
[
cos θe−

(z−z1)
2

2∆2 + eiφ sin θe−
(z−z2)

2

2∆2

]
, (2.146)

with
N =

[√
π∆

(
1 + cosφ sin 2θe−(z1−z2)2/4∆2

)]−1/2
, (2.147)

whereas in the second case the probability density reads

Pcl(z) =
1√
π∆

[
cos2 θe−

(z−z1)
2

∆2 + sin2 θe−
(z−z2)

2

∆2

]
. (2.148)

In order to compare these two transition rates we compute the ratio

Γsup − Γcl

Γ0
=

∫
dz
(
1 +

gz

c2

) (
|ψsup(z)|2 − Pcl(z)

)
=

g cosφ sin 4θ(z2 − z1)

4c2
[
cosφ sin 2θ + e

(z2−z1)
2

4∆2

] .
(2.149)
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The quantum superposition (2.146) and classical mixture (2.148) differ not only in the total
transition rate but also in the shape of the associated emission spectrum. In order to check this
we must compute the probability that the atom ultimately emits a photon with energy ℏωk

P(ωk) = lim
τ→∞

∑
λ=1,2

∫
dz|βk,λ(z, τ)|2 =

∑
λ=1,2

∫
dz

g2k,λ|ψ(z)|2

1
4Γ(z)

2 +
(
Ω
(
1 + gz

c2

)
− ωk

)2 . (2.150)

Substituting g2k,λ = ωk
4πℏε0 (d · êλ)

2, and performing the sum over the polarizations, we obtain

P(ωk) =
∫

dz
ωk
2πΩ

|ψ(z)|2Γ0

1
4Γ

2
0

(
1 + gz

c2

)2
+
(
Ω
(
1 + gz

c2

)
− ωk

)2 . (2.151)

Usually the transition rate Γ0 is several orders of magnitude smaller than the resonant light
frequency Ω. Therefore, the integrand vanishes when the value of ωk differs significantly from
Ω
(
1 + gz

c2

)
, and we can replace ωk in the numerator of the integrand by Ω

(
1 + gz

c2

)
. The expres-

sion we are left with reads

P(ωk) =
∫

dz
1

2π

(
1 + gz

c2

)
|ψ(z)|2Γ0

1
4Γ

2
0

(
1 + gz

c2

)2
+
(
Ω
(
1 + gz

c2

)
− ωk

)2 , (2.152)

which, plotted for the quantum superposition and mixed state (see Fig. 2.6), reveals the difference
between these two cases.

2.6.5 Approximated results from [Khandelwal et al., Quantum 4, 309 (2020)]

In [126] it was shown that a quantum clock moving with mean velocity v0 and described by a
superposition of two Gaussian wave packets with different mean heights, i.e.,

|ψ⟩ = 1√
N

(√
α |ψ1⟩+ eiφ

√
1− α |ψ2⟩

)
, (2.153)

where |ψ1⟩ and |ψ2⟩ are Gaussian states differing only in the value of mean height ⟨ẑ⟩ (the first
one is localized around z1, and the second one around z2), reads the average time

⟨T̂ ⟩sup(t) = ⟨T̂ ⟩mix(t) + Tcoh(t), (2.154)

where t is the proper time of an observer at rest at the ground level z = 0, ⟨T̂ ⟩mix is the average
time read by the clock described by the classical mixture of the same two Gaussian states |ψ1⟩
and |ψ2⟩, and T̂coh is the contribution due to coherence between these two states. According to
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[126], this second contribution is equal to

Tcoh(t) =
N − 1

2N

[(
z2 − z1
2σz

)2 σ2v
c2
− g(z2 − z1)

c2
(1− 2α)− 2

ℏ
σ2v
c2

(z2 − z1)(p̄−mgt) tanφ

]
t.

(2.155)

Here σz and σv are the standard deviations in position and velocity of |ψ1⟩ and |ψ2⟩, respectively,
p̄ is the mean momentum, and the normalization factor N is equal to

N = 1 + 2 cosφ
√
α(1− α)e−

(
z2−z1
2σz

)2

, (2.156)

(notice that with such a normalization factor, the state is normalized to ⟨ψ|ψ⟩ =
√
π∆). Let

us estimate the order of magnitude of individual terms from (2.155) for parameters used to
plot Fig. 2.6. For instance, if we take the difference of heights z2 − z1 ∼ 10−18c2/g, the height
dispersion σz ∼ 10−18c2/g, the mass of the atom m ∼ 1u ∼ 10−27kg, use the fact that σzσp ∼ ℏ,
and recall that σp = mσv, we get

σ2v
c2
∼ ℏ2

m2c2σ2z
∼ 10−26. (2.157)

The first term in the bracket in (2.155) is then of the order ∼ 10−26, whereas the second one is
∼ 10−18. To estimate the third term we recall that we consider a resting atom, i.e., p̄ = 0, and
we compute the transition rate at times much smaller than a spontaneous emission lifetime of the
excited state in the absence of gravitational field t≪ Γ−1

0 . Typically we have Γ−1
0 ∼ 10−8s, which

means that the factor multiplying tanφ in the third term cannot be greater than ∼ 10−26. We
should stress that the tangent function appearing in the last term do not lead to any infinities for
φ→ π/2, because for such φ the factor multiplying the whole bracket vanishes, and the overall
result is finite and relatively small (compared to the value at φ = 0 or φ = π). Therefore we can
neglect both the first and the third term to obtain

Tcoh(t) =
N − 1

2N

g(z2 − z1)
c2

(2α− 1)t =
g cosφ

√
α(1− α)(2α− 1)(z2 − z1)

c2
(
2 cosφ

√
α(1− α) + e

(
z2−z1
2σz

)2) t ≡ γ−1
Q t. (2.158)

The omission of the terms proportional to σ2v/c
2 in this paper can be traced back to the fact

that we omitted all the kinetic terms in the atomic Hamiltonian (2.47), so that we completely
neglect any motion of the atom, and concentrate on the purely gravitational effect. The esti-
mation presented above can be treated as a justification of this omission for considered range of

72



2.6 Appendices

parameters.

Let us rewrite (2.158) in a slightly different notation, as used in the present paper. We
substitute α→ cos2 θ, and σz → ∆, to get

γ−1
Q =

g
√

cos2 θ(1− cos2 θ)(2 cos2 θ − 1)(z2 − z1)

c2
(
e

(
z2−z1
2∆

)2

+ 2 cosφ
√
cos2 θ(1− cos2 θ)

) =
g

4c2
cosφ sin 4θ(z2 − z1)

cosφ sin 2θ + e
(z2−z1)

2

4∆2

. (2.159)

This is the same expression that appears in (2.64).

2.6.6 Evolution of the density matrix

The approximate solution to (2.89) can be obtained in the first order of the Dyson series

ρ̂I(t) ≈ ρ̂(0)− i

ℏ

∫ t

0
dt′
[
ĤI

int(t
′), ρ̂(0)

]
. (2.160)

Returning to the Schrödinger picture, where ρ̂(t) ≡ e−
i
ℏ (Ĥclock+Ĥcm)tρ̂I(t)e

i
ℏ (Ĥclock+Ĥcm)t, we can

compute the reduced density matrix of the clock’s internal state by tracing out the kinematic
degrees of freedom ρ̂clock(t) ≡ Trcm ρ̂(t)

ρ̂clock(t) ≈ e−iĤclocktρ̂clock(0)e
iĤclockt − i

ℏ

∫ t

0
dt′Trcm

(
e−i(Ĥclock+Ĥcm)t

[
ĤI

int(t
′), ρ̂(0)

]
ei(Ĥclock+Ĥcm)t

)
.

(2.161)

The first term in (2.161), e−
i
ℏ Ĥclocktρ̂clock(0)e

i
ℏ Ĥclockt, describes the evolution of the internal de-

grees of freedom of the clock in the absence of coupling with the kinematic degrees of freedom. We
will denote this term as ρ̂0clock(t). To evaluate the second term, we assume that the initial state
of the system exhibits no correlations between the kinematic and internal degrees of freedom:
ρ̂(0) ≡ ρ̂cm(0) ⊗ ρ̂clock(0). The relation between the interaction picture and the Schr"odinger
picture for the interaction Hamiltonian (2.88) is given by

ĤI
int(t

′) = e
i
ℏ (Ĥclock+Ĥcm)t′

(
ĤclockV̂1 + Ĥ2

clockV̂2

)
e−

i
ℏ (Ĥclock+Ĥcm)t′ . (2.162)

By substituting Equation (2.162) into Equation (2.161) and utilizing the fact that[
Ĥclock, Ĥcm

]
= 0, we can rephrase Equation (2.161) as follows
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ρ̂clock(t) ≈ ρ̂0clock(t)−
i

ℏ

[
Ĥclock, ρ̂

0
clock(t)

] ∫ t

0
dt′Trcm

(
e

i
ℏ Ĥcmt′ V̂ 1e−

i
ℏ Ĥcmt′ ρ̂cm(0)

)
− i

ℏ

[
Ĥ2

clock, ρ̂
0
clock(t)

] ∫ t

0
dt′Trcm

(
e

i
ℏ Ĥcmt′ V̂ 2e−

i
ℏ Ĥcmt′ ρ̂cm(0)

)
. (2.163)

Next, we can employ the Baker–Campbell–Hausdorff formula, eX̂ Ŷ e−X̂ = Ŷ +
[
X̂, Ŷ

]
+ . . .,

to determine the exact form of the operators present in the trace from Equation (2.163)

e
i
ℏ Ĥcmt′ V̂ 1e−

i
ℏ Ĥcmt′ ≈ V̂1

i

ℏ
t′
[
Ĥcm, V̂1

]
, e

i
ℏ Ĥcmt′ V̂2e

− i
ℏ Ĥcmt′ ≈ V̂2 +

i

ℏ
t′
[
Ĥcm, V̂2

]
, (2.164)

where we neglect quadratic contributions in t′ that are irrelevant in the short-time limit con-
sidered in this section. Substituting the result from Equation (2.164) into Equation (2.163)
ultimately yields Equation (2.90).

74



3 Indefinite temporal order without
gravity

Time, space and causality are only
metaphors of the knowledge by
which we interpret all things

(Friedrich Nietzsche [190])

According to the general theory of relativity, the flow of time can vary depending on the
configuration of massive objects, thereby influencing the temporal order of events. When
combined with quantum theory, this gravitational effect can lead to events with an indefinite
temporal order if a massive object is prepared in an appropriate quantum state. It has been
proposed that this could enable a theory-independent test of non-classical order of events
by violating Bell-type inequalities for temporal order. However, we demonstrate that the
theory-independence of this protocol is problematic: one of the auxiliary assumptions in the
aforementioned approach is crucial and explicitly theory-dependent.
To illustrate this issue, we construct a comprehensive scenario where accelerating particles
interacting with optical cavities result in a violation of temporal Bell inequalities. Due to the
Equivalence Principle, the same issue arises in the gravitational context, necessitating theory-
dependent additional assumptions to interpret a violation of Bell inequalities for temporal
order as evidence of indefinite temporal order.
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3.1 Useful tools

In this section, we will introduce the fundamental concepts used in this chapter. These theories
and ideas serve as an introduction to the topic of further considerations that are the focus of this
work.

3.1.1 Indefinite temporal order and Bell-type inequalities for time

The task of integrating two different theories, namely quantum mechanics and the theory of
relativity, presents an additional problem when it comes to the concept of time. In quantum
mechanics, time is treated in a classic way, meaning events happen in a fixed, predictable order.
However, in the general theory of relativity, the order of events in time can be affected by how
matter is distributed. The interesting part arises when we try to merge these two theories. If we
ask for a quantum-level explanation of matter, we end up with a situation where there can be a
mix - or superposition - of different matter distributions. This combination of theories suggests
that the order of events in time, as understood in quantum mechanics, could also be affected.
As a result, a successful merger of quantum mechanics and the theory of relativity might result
in a time structure that is non-classical, or indefinite [191, 192].

The physical implications of an indefinite causal structure are still not well understood. Many
quantum gravity theories aim to create a comprehensive theoretical framework [193, 194]. How-
ever, these theories often fail to clearly explain the non-classical causal relationships they describe.

A recent study introduced a thought experiment aiming to directly elucidate the physical
implications of the non-classicality of temporal order, without relying on the specifics of a com-
prehensive quantum theory of gravity [71]. The central premise posits that a superposition of
mass configurations will induce a non-classical time dilation on any system that might serve as
a "clock" to identify spacetime events, effectively generating a superposition of time-like event
sequences.
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By using a specific protocol, it is possible to accomplish tasks like violating a Bell inequality,
which would be impossible with a classical causal structure. This allows us to certify the non-
classical nature of causal structures without relying on a particular theory, showing how the
superposition principle applies to general relativity. The authors of [71] have developed new
ways to test theories that combine relativity and quantum mechanics. This is similar to how
Bell inequalities provided a method to test fundamental assumptions of quantum mechanics. It
is now well-established that Bell inequalities can be violated within quantum mechanics [195,
196], and many recent experiments have confirmed these violations [197–200].

In our investigation, we plan to make a slight modification to the main premise from [71].
Therefore, we will explain the core concept of Bell inequalities for temporal order in the following
sections of this dissertation.

The foundations of quantum theory and general relativity are fundamentally different. In
quantum theory, systems generally do not have definite physical properties until they are mea-
sured. However, operations occur within a fixed background spacetime where causal relations
between events—whether space-like or time-like—are determined independently of any operation
or physical process. In contrast, general relativity does not have preset causal relations, as the
geometry depends on the distribution of mass-energy. Therefore, it is expected that combining
these two theories will result in a non-classical or indefinite causal structure [191, 192].

The physical interpretation of such an indefinite causal structure, however, remains elusive.
The quantum switch, introduced in [201], provided the first instance of an indefinite causal
structure. This demonstrated that quantum degrees of freedom, which govern the sequence of
operations, can facilitate evolution that cannot be represented within a conventional quantum
circuit.

While many quantum gravity strategies endeavor to formulate a comprehensive theoretical
framework—including, among other aspects, the depiction of non-classical spacetimes and their
origins [193, 194]—they typically do not offer a direct physical interpretation of such non-classical
causal structure.

A recent study proposed a thought experiment to directly interpret the physical implications
of non-classical temporal order, without relying on the complex details of a full quantum theory
of gravity [71]. The key idea is that a superposition of mass configurations would cause non-
classical time dilation in any system used as a "clock" to mark spacetime events. This would
create, for example, a superposition of different sequences of time-like events. It was argued
that, using a specific protocol, one could achieve something—violating a Bell inequality—that
would be impossible if the temporal order of events were classical. This protocol is claimed to
provide a theory-independent proof of the non-classical nature of the temporal order among a
set of events.
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Gravitational implementation of an indefinite temporal order

Recent methods for studying causal structures are based on gravitational time dilation [71].
However, Bell’s theorem on temporal order considers time dilation more broadly. This leads
to the question: can a similar experiment be done using only special relativity? We propose
to delve into a scenario where the mass back-action on spacetime is minimal, but the relative
motion induces clock desynchronization among moving clocks. Additionally, we hypothesize
that a special relativistic execution of the experiment could be less stringent, offering a potential
direction for future laboratory implementations.

In our research, we aim to employ a strategy where accelerating particles, represented as Unruh-
DeWitt detectors, interact with optical cavities at specified times dictated by their internal
clock degrees of freedom (DoFs). By allowing the particles to evolve in superposition along
suitable accelerating trajectories, we plan to demonstrate that the interaction events recreate
the "entanglement in time order" identical to that observed in the gravitational scenario.

Ultimately, we aim to use measurements on the particles to violate the "Bell inequalities for
temporal order" as detailed in [71]. This research would constitute a significant stride towards the
potential of testing the indefinite temporal order of events. We aim to demonstrate that indefinite
temporal order can not only be achieved but also theoretically scrutinized in experiments that
incorporate effects familiar from special relativity.

This outcome could pave a potential path for testing indefinite temporal order, without the
need to grapple with gravity at the quantum level.

In our research, we plan to expand upon the theory discussed in [71]. The original theory was
designed for large objects that can influence the order of events. However, in our research, we aim
to use a quantum system to control the order of these events. To do this, it makes sense—and
is easier—to use a fully quantum-based approach where each part of the process uses quantum
measurements. To present our original idea let us firstly summarise the idea of Bell inequalities
for temporal order introduced in [71].

For future reference, we will briefly review the key aspects of the protocol introduced in [71].
The protocol aims to create four events, A1, B1, A2, B2, with pair-wise orders that are ‘entangled’:
A1 is in the causal past/past lightcone of B1, denoted A1 ≺ B1, when A2 ≺ B2, and A1 is in the
causal future/future lightcone of B1, denoted A1 ≻ B1 when A2 ≻ B2. An exemplary depiction of
two eventsA andB being in the relationA ≺ B orA ≻ B can be seen in Fig. 3.1. The full scenario
is designed such that this entanglement leads to correlations that cannot be explained by a local
classical framework, analogous to Bell-like scenarios for local classical properties. Importantly,
an “event” here is operationally understood as “something that happens at a particular time and
place” and is thus defined by some physical reference system. Similarly, for a fixed event A, the
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relation A ≺ B operationally defines future events B that are reachable by a photon or a massive
particle sent at event A.

In the proposed protocol, the reference systems are four clocks, a1, b1, a2, b2, while the
events are associated with quantum operations performed on an additional system when the
corresponding clock reaches a specified proper time: A1 occurs (an operation is performed) when
a1 reaches time τ∗, B1 occurs when b1 reaches time τ∗, and so on.

In flat spacetime, if the clocks are initially synchronized (in an arbitrarily chosen reference
frame), all events are space-like separated. However, introducing a massive body closer to some
clocks than others causes differential time dilation, which can ‘push’ some events into the future
light-cone of other events. Thus, the position of the mass provides control over the time order
of events, see Fig. 3.1.

Figure 3.1: Position of a mass as a control of time order. Two identical clocks, a, b, are
synchronized (with any source-mass sufficiently far away). Events A,B are defined
by the location and fixed proper time τ∗ of the corresponding clock. In the absence of
any source mass, events A,B are space-like. However, if a massive object is initially
(just after synchronization) placed closer to clock a than to b, event A can be in the
future light cone of B (for sufficiently large τ∗), denoted B ≺ A. Conversely, if the
mass is closer to b, event A can be in the past light cone of B, denoted A ≺ B.

If the control mass is prepared in a semiclassical configuration denoted KA, event Aj , j = 1, 2

is in the past of Bj , while in a different configuration, KB, event Bj is in the past of Aj . Thus,
Aj is time-like from Bj for each mass configuration, but their order is interchanged. Moreover,
for both mass configurations, the pair A1, B1 is space-like separated from A2, B2.

The full protocol also includes two additional systems on which the operations are performed,
S1 and S2, referred to as ’targets’. The operations at events A1 and B1 are applied only to the
target system S1, while those at A2 and B2 are applied only to S2. The two target systems
are initially in a product state, |ψ⟩S1 |ψ⟩S2 , and the considered operations are unitary: ÛA1 is
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applied to S1 at event A1, and so on. Operations applied to the target systems S1 and S2 are
referred to as ’wing’ 1 and 2, respectively, of the experiment. By preparing the control mass in
a superposition state, |K⟩ = 1√

2
(|KA⟩+ |KB⟩), the final state is

∣∣Ψfin〉 = 1√
2

(
|KA⟩ ÛB1ÛA1 |ψ⟩S1 ÛB2ÛA2 |ψ⟩S2 + |KB⟩ ÛA1ÛB1 |ψ⟩S1 ÛA2ÛB2 |ψ⟩S2

)
. (3.1)

Next, the control mass is measured in the basis |±⟩ = 1√
2
(|KA⟩ ± |KB⟩), leaving the target

system in

∣∣Ψpost〉 = 1√
2

(
|ψA⟩S1 |ψA⟩S2 ± |ψB⟩S1 |ψB⟩S2

)
, (3.2)

where |ψA⟩ = ÛBÛA |ψ⟩, |ψB⟩ = ÛAÛB |ψ⟩. We use the same unitaries in the two ’wings’, i.e.,
for A1 and A2: ÛA1 = ÛA2 ≡ ÛA, and for B1 and B2: ÛB1 = ÛB2 ≡ ÛB.

In general,
∣∣Ψpost〉 is an entangled state unless |ψA⟩ = |ψB⟩ (and it is straightforward to find

examples of unitaries ÛA, ÛB where this is not the case). In the final step of the protocol, the
entangled state is measured in appropriate bases, leading to a violation of a Bell inequality.

Assumption Explanation
Local state The initial state of the whole system is separable
Local operations All transformations performed on the systems are local
Classical order The events at which operations (transformations and measurements) are per-

formed are classically ordered
Space-like separation Events (A1, B1) are space-like separated from events (A2, B2).

Additionally, the measurement of a control mass is space-like separated from
both ’wings’

Free-choice The measurement choices in the Bell measurement are independent of the rest
of the experiment

Table 3.1: Assumptions of Bell’s Theorem for Temporal Order (see [71]).

The argument presented in [71] is that, given the initial product state of the target systems,
local operations performed in a definite order would not produce entanglement, even after con-
ditioning on the control system. Therefore, if certain conditions are met, a violation of Bell
inequalities implies that the operations were not performed in a definite order (for more details,
see Table 3.1).

Another auxiliary assumption introduced in [71], which becomes a focal point of this work,
is that any additional evolution of the target systems (including their free evolution) between
the events of interest can be neglected. In this work, we examine the consequences of this
additional assumption. We construct a scenario where neglecting the free evolution of the target
is not feasible. We argue that this is a general feature and that finding exceptions where the
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assumption holds requires theory-dependent analysis. For completeness, we start by presenting
a scenario that can generate a violation of Bell inequalities and then discuss the possibility of
verifying the existence of indefinite temporal order solely due to the violation of these inequalities.

3.1.2 Unruh-DeWitt coupling

In this section we define the interaction between a two-level system, the ‘detector’, and the scalar
field inside the cavity via the pointlike Unruh-DeWitt Hamiltonian [202, 203]. We first discuss
key properties of the field operators. We consider a scalar field of a mass m governed by the
Klein-Gordon equation 1, (

□+m2
)
ϕ = 0, (3.3)

in a cavity of length L fulfilling Dirichlet boundary conditions, ϕ(x = 0) = ϕ(x = L) = 0. The
field has the following mode solutions

un(x, t) =
1√
ωnL

sin (knx)e
−iωnt ≡ un(x)e−iωnt, (3.4)

where ωn =
√
k2n +m2, kn = nπ

L , n ∈ N. Using these modes, the field operator ϕ̂ can be
decomposed as

ϕ̂(x) =
∑
n

[
â†nun(x) + ânun(x)

]
, (3.5)

where ân and â†n are annihilation and creation bosonic operators satisfying the canonical com-
mutation relations,

[
ân, â

†
k

]
= δnk and [ân, âk] =

[
â†n, â

†
k

]
= 0. For the detector we consider a

two-level system, the simplest model of an atom, with an energy gap Ω, and position parameter
denoted xd, (where the subscript d hereafter stands for the ‘detector’). The full Hamiltonian
consists of the free Hamiltonians of the scalar field and the detector, and an interaction Hamilto-
nian. One of the simplest choices of the interaction between a scalar field and a two-level system
is the pointlike Unruh-DeWitt (UDW) Hamiltonian which in the Schrödinger picture has the
following form

ĤUDW = λ χd(t) µ̂S ϕ̂(xd), (3.6)

where λ is a dimensionless coupling constant; the real function χd(t) is equal to 0 when the
detector does not interact and 1 for any other time and is commonly referred to as the switching
function; µ̂S is the monopole operator µ̂S = σ̂+ + σ̂− = |g⟩ ⟨e| + |e⟩ ⟨g|, where |g⟩ is the ground
state of the two-level system and |e⟩ is its excited state. The Hilbert space spanned by |g⟩ and
|e⟩ will be called the internal Hilbert space of the detector. Finally, ϕ̂(xd) is the field operator

1For generality, we write everything for arbitrary m, although in the numerical calculations below we set m = 0.
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evaluated at the position of the detector. As mentioned above, the full Hamiltonian includes
also the time-independent free Hamiltonian of the field and of the two-level system, which reads
Ĥ0 =

∑
n ωnâ

†
nân ⊗ 1 + 1 ⊗ Ωσ̂+σ̂−. Thus, the evolution of the state of the full system in the

Dirac picture (also called the interaction picture) is here given by the unitary of the form

Û = T exp

{
−i
∫ ∞

−∞
dtĤ

(D)
UDW(t)

}
, (3.7)

where (D) stands for the Dirac picture and T is the time-ordering operator. It can be shown
that [204]

Ĥ
(D)
UDW(t) = χ(t) λ µ̂(D) ϕ̂(D), (3.8)

where

µ̂(D) =
(
eiΩtσ̂+ + e−iΩtσ̂−

)
, (3.9)

ϕ̂(D)(xd) =
∑
n

(
â†nun(xd)e

iωnt +H.c.
)
. (3.10)

The evolution operator (3.7) can be expanded into the Dyson series. For sufficiently small value
of the coupling constant λ we can limit this series to the first order term. We further show in
Appendix 3.4.1 that the next contributing term is λ3. Thus, in the above approximation

Û = 1− iλ
∫ ∞

−∞
dt χd(t)

(
eiΩtσ̂+ + e−iΩtσ̂−

)
×
∑
n

(
â†nun(xd)e

iωnt + ânun(xd)e
−iωnt

)
. (3.11)

3.2 Protocol without gravity

In this section, we describe a setup where accelerating particles interact with quantum fields via
their own internal clock degrees of freedom (DoFs). This approach uses only special relativity
and does not require additional assumptions, as the effect on spacetime by the matter involved is
minimal. A superposition of the clock states of motion induces the corresponding non-classical
time dilation, as first investigated in [205]. By allowing particles to move in superposition
along accelerating paths, we show that the interactions between particles and fields replicate the
“entanglement of temporal order” observed in the gravitational case [71].

Remarkably, our study reveals that a violation of Bell inequalities persists even when the en-
tangled events are space-like, challenging the interpretation that the protocol uniquely identifies

82



3.2 Protocol without gravity

non-classical temporal order of necessarily time-like events. We find that this is due to the failure
of one of the auxiliary assumptions made in [71]—specifically, that the superposed amplitudes
differ only in event order, while all local evolutions are trivial, including the free evolution of the
systems measured to reveal the violation of Bell inequalities. We argue that this assumption’s
failure is ubiquitous and would occur in a generic dynamical context, including a gravitational
implementation of the protocol. We also propose an interpretation of the Bell inequality viola-
tion in scenarios where the non-classicality of temporal order cannot possibly explain the results
(e.g., for space-like separated events mentioned above).

Our findings reveal a loophole in the previous theory i.e. [71], indicating that in realistic
scenarios involving specific implementations of the protocol for violating Bell inequalities for
temporal order, it is impossible to satisfy all the mathematical assumptions of the original theory
(we will discuss it later in 3.2.6). While it is possible in principle, each system requires its own
assumptions, making the procedure less universal than initially thought (detailed discussion
of this issue will be the topic of 3.2.7). This raises a fundamental question: can we develop
an operational scenario that clearly distinguishes the non-classicality of the causal structure of
spacetime from the dynamical effects inherent in its physical implementations or other laboratory
implementations of quantum causal structures [206–212]? We discuss potential extensions to the
original protocol that might be necessary to achieve this goal.

Furthermore, a flat spacetime version of the protocol may allow for a laboratory implementa-
tion and provide further insights into the requirements of the original, gravitational argument.
Finally, it seems likely that the quantum indeterminacy of spacetime structures is at the heart
of the still unknown quantum theory of gravity [213, 214], and comparing special relativistic
and gravitational schemes could also offer insights into potential violations of the equivalence
principle due to quantum effects.

This part of the dissertation is structured as follows: First we focus on reproducing the gravi-
tational protocol using special relativistic time dilation. We present an operational setting that
incorporates the dynamics of all relevant degrees of freedom (DoFs), particularly those involved
in realizing the four unitaries ÛA and ÛB. In 3.2.6, we discuss our main finding: entanglement
can be generated and Bell inequalities for temporal order can be violated even if the tempo-
ral order is classically defined. We attribute this to the failure of the additional assumption
mentioned earlier, that target systems have trivial evolution apart from the unitaries marking
the four spacetime events of interest. In 3.2.7, we provide a simplified example demonstrating
the importance of free evolution. In 3.3, we discuss the implications of our results, including
the fundamental question of how to isolate quantum features of a causal structure from other
non-classical effects.
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3.2.1 General setup

Figure 3.2: General scheme of our protocol for a violation of Bell inequalities for
temporal order. In each ’wing’ of the experiment we have a quantum field in a
cavity, and two composite ’molecules’. After following entangled pairs of trajectories
the molecules interact with the fields at a fixed proper time of their internal clocks.
Due to time dilation, entangled state of motion gets transferred to the order of the
interaction events (as well as to other degrees of freedom of the molecules and the
cavities).

Instead of using a massive object to control the spacetime geometry—and thus temporal order
via gravitational time dilation—here we want to control the trajectories of particles so as to
induce special-relativistic time dilation. For clarity of this scheme, we decided to provide a
simple comparison between our approach and the original one presented in [71] in the form of
tab. 3.2. The protocol involves several degrees of freedom, which can be best thought of as
multiple particles ‘glued’ together (up to the moment when we need to break them apart, as
detailed later). We will refer to a bunch of joined particles as a ‘molecule’, although the details
of what binds the particles together are irrelevant to the discussion.

Our protocol involves four molecules going through two optical cavities (two molecules per
cavity). In further consideration, we will refer to everything that happens to these two cavities
as two ’wings’ of the protocol because they will play the same role as the ’wings’ described in the
previous section. Moreover, each molecule is composed of three particles: a ‘clock’, a ‘detector’,
and a ‘control’. Figure 3.2 presents a general scheme of our protocol.

The clock is simply a particle with some time-evolving internal state; if the molecule evolves
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along a classical trajectory, the internal state evolves at a rate proportional to the trajectory’s
proper time. The role of the clock is to trigger an interaction between the detector and the
cavity at the desired proper time. Thanks to the universality of time dilation, the protocol does
not depend on the particular mechanism by which the clocks evolve—all we need is that the
clock reaches two different orthogonal states depending on the two proper times involved in the
protocol (see, e.g., Refs. [132, 215]). We decided to employ this particular realization of our idea
to underscore the relativistic aspect of our study. One could propose an alternative mechanism to
achieve a delay between two interactions, but such a mechanism would require external entities to
manipulate the atoms and position them at specific times. Although this alternative mechanism
could yield similar results, it would lack the relativistic nature. However, we would like to
emphasize that the specifics of our model are not the focal point of our study. Our main goal is
to demonstrate that the violation of Bell inequalities is not always an unambiguous consequence
of the indefinite temporal order of interactions.

The detector is a particle with two internal energy levels that (at the proper time specified
by the clock), interacts with a quantum field confined in a cavity. We use the Unruh-DeWitt
detector model for the interaction; see 3.2.3 below and 3.1.2 for the details of the coupling.
Finally, the control is a spin-12 particle, with its two orthogonal spin states, |↑⟩ and |↓⟩, defining
the molecules’ trajectories (refer to [216] for an example of coherent spin-dependent trajectories
that could be utilized here). Although each detector interacts with the cavity at the same proper
time according to its local clock, special-relativistic time dilation ensures that these interactions
occur at different coordinate times based on the molecule’s trajectory, which is determined by
the spin.

In this protocol, the detectors in each molecule are initially prepared in their ground state |g⟩,
and the clocks are synchronized at a reference starting time τ0. The spins of different molecules
are prepared in an appropriate entangled state (defined below). Each molecule then follows a
spin-dependent trajectory into a cavity. The clock triggers an interaction between the detector
in the molecule and the field, creating entanglement between them. The proper time for the
interaction is chosen so that the molecule remains in the cavity for either trajectory. At this
stage, the molecule is ‘broken apart’: the detector and the clock remain next to the respective
cavity, while all controls are brought together at a central location. A joint measurement on
the controls prepares an entangled state of the remaining systems, enabling a violation of a Bell
inequality.

In our setup, the ‘target’ system on each side, such as S1, includes the field in the cavity and
the two detectors passing through it. Crucially, the field-detector interaction does not affect the
clock or control. This is essential to ensure that each operation UA, UB acts solely on the target
system. Without this assumption, one could entangle each target system with an additional
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Figure 3.3: Trajectories of the molecules in one cavity leading to the required time
dilation. x1, x2 represent the initial positions of the molecules. Each molecule’s
trajectory is determined by the spin of its ‘control’ particle. For spin |↑⟩, the trajec-
tory follows the proper acceleration A↑, and similarly for spin |↓⟩. Dots along the
trajectories divide each curve into four geometrically identical hyperbolic segments.
The trajectories of the molecules in the second cavity are analogous.

degree of freedom (DoF), such as an extra particle, bring these extra particles together, and,
by measuring them, induce entanglement in the two target systems. This would be a form
of entanglement swapping [217] that does not require any control of time ordering or control
systems.

Furthermore, since the control DoF passes through the cavity along with the rest of the
molecule, it is crucial to trust the involved devices to ensure that local operations leave the
control unaffected. This necessity means that such a test for indefinite temporal order cannot
be formulated in a device-independent manner (as in the gravitational protocol of [71], see also
the discussion therein).

Gravity Cavity
Control system massive body spin- 12 particles (one per molecule, two in each wing)
Target system a single 2-level system (e.g., a spin- 12 particle) Optical cavity mode and two detectors
Local operations unitaries on each system Interaction between cavity and detectors

Table 3.2: Comparison between the degrees of freedom involved in the gravitational
scheme and ours. Here we only consider the main scheme from [71] (variations of
the scheme involve multiple control systems or different target DoFs.)
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3.2.2 Trajectories

In this section, we will describe the trajectories of the molecules mentioned previously. Building
on the concept presented in 3.1.1, we have decided to use the same trajectories in both wings
of the experiment. This allows us to focus on one wing and its two molecules, simplifying the
analysis of the trajectory’s specific form in the overall protocol.

Each molecule has two possible trajectories depending on the spin state. The specific trajec-
tories we propose for one wing of the experiment are shown in Fig. 3.3, with identical choices for
the other wing. Each molecule always starts and ends its trajectory at the same events, which
are identical for both possibilities. However, the proper time elapsed along the two trajecto-
ries is different. Both trajectories are constructed by joining four identical hyperbolic segments,
characterized by proper accelerations A↑ and A↓ for spin up, |↑⟩, and spin down, |↓⟩, respectively.

These segments are rotated or flipped according to Fig. 3.3, so that the acceleration for each
trajectory switches signs three times. Let’s assume that the acceleration for the spin |↑⟩ is
greater than the acceleration for the spin |↓⟩. Knowing the value of proper time along a generic
hyperbolic trajectory (see, e.g., [77]), we can determine the difference between the proper times
measured at the common endpoint of one such pair of trajectories

∆τ =
4

A↓
asinh(

A↓TA
4

)︸ ︷︷ ︸
τ↓

− 4

A↑
asinh(

A↑TA
4

)︸ ︷︷ ︸
τ↑

, (3.12)

where τ↑/↓ is the proper time measured along the trajectory of a ↑ / ↓ spin, and TA is the
total travel time in a common inertial frame of reference, such as the frame used to initially
synchronize the clocks. Note that it is possible to achieve a large value of ∆τ with a small value
of proper acceleration. For a large value of TA, we have

∆τ = 2

 log

(
A2

↓
4

)
A↓

−
log

(
A2

↑
4

)
A↑

+ 4

(
1

A↓
− 1

A↑

)
log(TA) +O

(
1

T 2
A

)
. (3.13)

This indicates that we can achieve the required ∆τ (to make the events defined by such time-
dilated pair of clocks timelike) by accelerating for a sufficiently long time, even with arbitrarily
small accelerations.

Finally, by taking the initial state of the spin of the two molecules to be entangled, one of the
two clocks in each cavity will "age" more than the other in a correspondingly correlated manner.
Thus, the order of operations, controlled by the clocks, will also be "entangled," as a direct result
of the initial spin entanglement and time dilation. In this scenario, the joint spin state of the two
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molecules acts as the control, analogous to the position of a massive object in the gravitational
case [71]. Table 3.2 summarizes the differences between the gravitational and our cavity-based
implementation of the protocol in terms of control systems, target(s), and local operations.

3.2.3 One Cavity - Two Molecules

Before discussing the full protocol, let’s consider the interaction between one cavity and a pair
of molecules, focusing on one wing of the protocol. Each molecule contains a clock, a control
spin, and a two-level detector that interacts with the cavity via the Unruh-DeWitt (UDW)
Hamiltonian, which in the Schrödinger picture has the following form (see also 3.1.2)

ĤUDW = λ χd(t) µ̂S ϕ̂(xd), (3.14)

where λ is a dimensionless coupling constant; the real function χd(t) is zero when the detector is
inactive and one otherwise, commonly referred to as the switching function; µ̂S is the monopole
operator µ̂S = σ̂+ + σ̂− = |g⟩ ⟨e| + |e⟩ ⟨g|, where |g⟩ is the ground state and |e⟩ is the excited
state of the two-level system. The Hilbert space spanned by |g⟩ and |e⟩ is called the internal
Hilbert space of the detector. Finally, ϕ̂(xd) is the field operator evaluated at the position of the
detector.

At the beginning of the protocol, the cavity field is in the vacuum state, denoted |0⟩, and the
two detectors are in their respective ground states. We synchronize the clocks, preparing them
in the same state |τ0⟩, and prepare the two control spins in the entangled state 1√

2
(|↑↓⟩+ |↓↑⟩).

After applying the spin-dependent accelerations described in 3.2.2, the joint state of the cavity
and molecules is

1√
2
(|τ↑τ↓⟩ |↑↓⟩+ |τ↓τ↑⟩ |↓↑⟩) |gg⟩ |0⟩ , (3.15)

where
∣∣τ↑/↓〉 is the state of the clock after evolving for time τ↑/↓. For convenience, we have

grouped the degrees of freedom by type (clock, spin, detector), rather than by molecule. For
example, instead of

|τ↑⟩ |↑⟩ |g⟩︸ ︷︷ ︸
1st molecule

⊗ |τ↓⟩ |↓⟩ |g⟩︸ ︷︷ ︸
2nd molecule

, (3.16)

we write |τ↑τ↓⟩ |↑↓⟩ |gg⟩, where within each ’ket’ symbol, we first write the state relative to
molecule 1 and then to molecule 2.

From (3.15), it is clear that after the spin-dependent accelerations, the clocks become entangled
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3.2 Protocol without gravity

with the remaining systems. This can be problematic because the final protocol aims to observe
entanglement in the target systems (detectors and cavities) after projecting the control onto
an appropriate state. Any correlation with the target, including the clocks, would degrade
entanglement. We can circumvent this by re-synchronizing the clocks after they have passed
through the cavity. This can be achieved, for example, by flipping the molecules’ spins and
applying accelerations identical to those in the first phase, ensuring all trajectories accrue equal
proper times (similar to the decorrelation of clocks in the gravitational scenario discussed in [71]).
This procedure allows us to ignore the clocks in the final state. The role of the clock is crucial to
ensure events occur "at a given time" in the molecule’s reference frame so that any conclusion
about the order of events can be attributed to an intrinsic definition of events, similar to the
gravitational case2. It is only after ensuring that the clock decorrelates from the rest of the system
that we can remove it from the description. After tracing out the clock degrees of freedom, we
simplify the notation and map

∣∣τ↑/↓〉 |↑ / ↓⟩ → |↑ / ↓⟩, allowing us to denote the state (3.15) as

∣∣Ψ1
0

〉
=

1√
2
(|↑↓⟩+ |↓↑⟩) |gg⟩ |0⟩ , (3.17)

where the subscript 0 indicates that this is the initial state of the system (before the detectors
and cavity interact) and the superscript 1 indicates the state of the field and two molecules in
wing 1 (see Fig. 3.2).

According to the scheme presented above, the state |↑↓⟩ corresponds to the case when the
detector at position x2 interacts first with the cavity (the spin of the molecule interacting earlier
is ↓). Similarly, for the state |↓↑⟩, the detector at x1 interacts before the detector at x2. In
further calculations, we assume that the duration T of each detector’s interaction with the
cavity is shorter than the time dilation between the two trajectories, i.e., T ≤ ∆τ , to ensure that
the two detectors do not interact simultaneously from the perspective of the cavity’s reference
frame.

The interaction between each detector and the cavity is described by (3.7) from Appendix
3.1.2. Since the order of interactions is determined by the molecule’s spin, we can write the final
state as

∣∣Ψ1
〉
=

1√
2

(
|↑↓⟩ Û1Û2 |g⟩ |g⟩ |0⟩+ |↓↑⟩ Û2Û1 |g⟩ |g⟩ |0⟩

)
. (3.18)

Here, operators Û1 and Û2 act on the internal states of the first (left) and the second (right)

2One could also define the time of events relative to a common laboratory clock and correlate the time of
each event with a control degree of freedom. This would effectively simulate time dilation by directly de-
synchronizing clocks. However, here we are interested in a relativistic definition of events and event order.
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3 Indefinite temporal order without gravity

detector, respectively. For ease of notation, we define the state |ψR⟩ := Û1Û2 |g⟩ |g⟩ |0⟩, where the
subscript R denotes that the right (2nd) detector interacts before the left (1st) one, and similarly
define |ψL⟩ := Û2Û1 |g⟩ |g⟩ |0⟩. Thus, we have

∣∣Ψ1
〉
=

1√
2
|↑↓⟩ |ψR⟩+

1√
2
|↓↑⟩ |ψL⟩ . (3.19)

Using the evolution operator given by (3.7) from Appendix 3.1.2, we find the explicit form of
|ψR⟩ and |ψL⟩ up to leading order in the interaction parameter λ using (3.11) from Appendix
3.1.2. The results of this calculation are

|ψR⟩ = Û1Û2 |g⟩ |g⟩ |0⟩ = |gg⟩ |0⟩+ |ge⟩
∣∣ϕRge〉+ |eg⟩ ∣∣ϕReg〉+O(λ2), (3.20)

|ψL⟩ = Û2Û1 |g⟩ |g⟩ |0⟩ = |gg⟩ |0⟩+ |ge⟩
∣∣ϕLge〉+ |eg⟩ ∣∣ϕLeg〉+O(λ2), (3.21)

where
∣∣∣ϕL/Rge

〉
and

∣∣∣ϕL/Reg

〉
are first order in λ, describing field states containing a single excitation

(see Appendix 3.4.1 for their explicit expression).

3.2.4 Two Cavities - Four Molecules

We now proceed to the complete protocol aimed at explicitly demonstrating indefinite temporal
order. We consider two ’wings’ of the experiment, where each wing involves two operations (see
Fig. 3.2). The objective is to correlate the order of each pair of operations with a control system
and, after measuring the control, produce an entangled state between the two wings, which would
not be possible if the operations were realized in a definite order.

The target systems comprise the fields in both cavities and the detectors (two per cavity),
while the four spin-12 particles serve as the control. The full protocol involves four molecules
(two in each wing), each containing a clock, a detector, and a spin-12 particle. Initially, the state
of these molecules is

|τ0τ0τ0τ0⟩
1√
2
(|↑↓↑↓⟩+ |↓↑↓↑⟩) |gggg⟩ , (3.22)

where |τ0⟩ is the initial state of one clock, synchronizing all four clocks, and each detector is in
its ground state, while the spins are entangled.

This state is constructed so that the four molecules can be divided into two identical pairs,
with analogous trajectories in each wing. These pairs are then accelerated as described in 3.2.2.
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After acceleration, the state of all four molecules is

1√
2
(|τ↑τ↓τ↑τ↓⟩ |↑↓↑↓⟩+ |τ↓τ↑τ↓τ↑⟩ |↓↑↓↑⟩) |gggg⟩ . (3.23)

Due to time dilation, after acceleration, one clock from each pair of molecules will be older than
the other from the same pair. We cannot determine which one because the initial state of spins
is a superposition of two different possibilities. Next, each pair of molecules enters a cavity. The
first pair is placed in cavity 1 at positions x1 and x2 relative to the boundary of this cavity at
x = 0. The second pair is placed in cavity 2 at analogous positions relative to that cavity. The
field in each cavity is initially in the vacuum state. As discussed in the previous section, we
can decorrelate the clock degrees of freedom by re-synchronizing the clocks after the molecules
interact with the cavities. The role of the clocks is crucial to ensure events occur "at a given
time" in the molecule’s reference frame. After re-synchronization, the initial state of the total
system including the two cavities is

∣∣Ψtot
0

〉
=

1√
2
(|↑↓↑↓⟩+ |↓↑↓↑⟩) |gg⟩ |0⟩︸ ︷︷ ︸

∈S1

⊗ |gg⟩ |0⟩︸ ︷︷ ︸
∈S2

, (3.24)

where we use ⊗ to separate states from the two cavities and indicate which degrees of freedom
comprise the targets S1 and S2 introduced in 3.1.1.

After the interactions between the detectors and the cavity fields, the state of the system is

∣∣Ψtot
〉
=

1√
2
(|↑↓↑↓⟩ |ψR⟩ ⊗ |ψR⟩+ |↓↑↓↑⟩ |ψL⟩ ⊗ |ψL⟩) , (3.25)

where the detectors and cavity states,
∣∣ψL/R〉, are as defined in (3.20) and (3.21).

Next, the molecules are ’broken apart’. All spins are sent to a common location where, at an
event labeled D, they are jointly measured in the basis 1√

2
(|↑↓↑↓⟩ ± |↓↑↓↑⟩). This measurement

prepares the remaining systems—cavities and detectors (which stay next to their cavities)—in
the state

∣∣Ψ±〉 = 1√
2
(|ψR⟩ ⊗ |ψR⟩ ± |ψL⟩ ⊗ |ψL⟩) , (3.26)

where the sign ± depends on the measurement outcome. This state is entangled as long as
|ψL⟩ ≠ |ψR⟩.

To determine whether the final state is entangled, we can consider a measurement on each
detector pair in a basis that includes the vector 1/

√
2(|ge⟩ + |eg⟩). The resulting conditional

91



3 Indefinite temporal order without gravity

states of the fields (from (3.20) and (3.21)) are

1√
2
(⟨ge|+ ⟨eg|) |ψR⟩ =

1√
2

(∣∣ϕRge〉+ ∣∣ϕReg〉)+O(λ3), (3.27)

1√
2
(⟨ge|+ ⟨eg|) |ψL⟩ =

1√
2

(∣∣ϕLge〉+ ∣∣ϕLeg〉)+O(λ3), (3.28)

where the order of this result, O(λ3), is explained in Appendix 3.4.3.

To summarize this method: one can measure each pair of detectors in the basis 1/
√
2 (|ge⟩+ |eg⟩)

to obtain the field state given in (3.27) and (3.28), and then follow the previously described pro-
cedure by measuring the control. Upon measuring the control in the entangled basis, 1√

2
(|↑↓↑↓⟩±

|↓↑↓↑⟩), the joint state of the two cavities consists only of the field states because all other degrees
of freedom were measured. This state of the fields, up to the leading order in λ, is

∣∣∣Ψ̃±
〉
∝
(∣∣ϕRge〉+ ∣∣ϕReg〉)︸ ︷︷ ︸

|ΦR⟩

⊗
(∣∣ϕRge〉+ ∣∣ϕReg〉)︸ ︷︷ ︸

|ΦR⟩

±
(∣∣ϕLge〉+ ∣∣ϕLeg〉)︸ ︷︷ ︸

|ΦL⟩

⊗
(∣∣ϕLge〉+ ∣∣ϕLeg〉)︸ ︷︷ ︸

|ΦL⟩

. (3.29)

The conditional state of the fields,
∣∣∣Ψ̃±

〉
, is entangled as long as |ΦR⟩ ̸= |ΦL⟩, which is easier

to verify than the condition |ψR⟩ ̸= |ψL⟩. We also note that the measurement on the detectors
can result in different outcomes, not all of which lead to entangled field states. However, if the
original state across S1 and S2 was a product state, all local detector measurements would yield
product states of the fields. Thus, obtaining an entangled state for any outcome is sufficient to
prove that the original state was entangled.

In conclusion, we have shown that using two cavities, four molecules, and the fundamental
effects of special relativity, we can achieve the state given in (3.29). If this state is entangled, the
next steps of the protocol can use this entanglement to violate Bell inequalities, thereby proving
that the detector-field interaction events were not classically ordered.

3.2.5 Entanglement of the Final State

We now proceed to demonstrate that the state in (3.29) can indeed be entangled by showing
that there exist parameters for which |ΦR⟩ ̸= |ΦL⟩. The scalar product between these states is
given by

⟨ΦR|ΦL⟩ =
∑

k
e−i∆τ(ωk+Ω)

(ωk+Ω)2
[1− cos (T (ωk +Ω))]

(
uk(x1) + ei∆τ(ωk+Ω)uk(x2)

)2
2
∑

n
sin2

T (ωn+Ω)
2

(ωn+Ω)2
[un(x2)2 + 2un(x2)un(x1) cos (∆τ(ωn +Ω)) + un(x1)2]

. (3.30)
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The explicit derivation is presented in Appendix 3.4.2. There, we further show how to choose pa-
rameters for which the states are not just different but orthogonal. To summarize this procedure,
the parameters that have to be chosen are:

1. The length L of each cavity and the positions x1, x2 of the molecules relative to their
respective cavity.

2. The energy gap Ω of the detectors.

3. The duration T of the interaction between each detector and the cavity field.

4. The time dilation ∆τ between clocks within each pair of molecules (within each cavity),
arising from the different accelerations A↑/↓.

Remarkably, it is also possible to find parameters such that |ΦR⟩ ̸= |ΦL⟩ even when the two
field-detector interactions within each cavity are space-like separated, as shown in Fig. 3.4. This
implies that it is possible to obtain an entangled state even when, in some reference frame, the
relevant operations are performed in the same temporal order. From the perspective of such a
reference frame, the operations would occur over four different coordinate regions, maintaining
the same order in each amplitude. Therefore, the entanglement generated in this scheme cannot
be solely attributed to non-classical temporal order. We discuss the implications and argue for
the generality of this result in the following sections.

3.2.6 Ambiguity in the signature of indefinite temporal order

We have specifically modeled a special-relativistic variant of a protocol in which gravitational time
dilation and quantum superposition result in an indefinite temporal order of events, as discussed
in [71]. This protocol was designed in the context of a ’Bell inequality for temporal order.’ The
objective was to develop a protocol wherein operations conducted in a definite sequence would
not produce an entangled state, given that a suitable set of assumptions is met. The final phase
of the protocol necessitates measurements on the state to violate a Bell inequality and confirm
the entanglement. The goal was to establish a test for temporal order that is theory independent,
based on the observation that violating a Bell inequality would demonstrate indefinite temporal
order without presuming that the final state is governed by quantum mechanics. In this section,
we revisit the assumptions made in [71] and illustrate that the claim of theory-independence is
problematic.

Initially, we note that the issue identified does not occur if we accept the validity of quantum
mechanics, i.e., if we aim to provide experimental evidence for non-classical temporal order
assuming the involved states and transformations are accurately described by quantum theory.
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3 Indefinite temporal order without gravity

Figure 3.4: Spacetime diagrams of interacting detectors. Spacetime diagram showing the
regions where the detector-field interactions lead to an entangled state, (3.29). The
diagrams are for one cavity – the interaction regions are identically defined for the
second cavity. The first row shows space-like separated regions which nevertheless
yield entanglement. The second row shows time-like separation which yields maximal
entanglement. The columns correspond to the two amplitudes of the process that are
superimposed using the control (spin) state. See Appendix 3.4.2 for the supporting
calculations.

In this scenario, even the one-cavity part of our protocol, as described in 3.2.3, or its gravitational
equivalent, suffices. This is because, at an abstract level, these protocols implement a "quantum
switch" [201] – a setup where two local operations, represented by unitary operators ÛA and
ÛB, act on a target system in an order dictated by a control system prepared in a superposition,
thus yielding a final state of the form

|ψfin⟩ =
1√
2

(
|0⟩ ÛAV̂0ÛB + |1⟩ ÛBV̂1ÛA

)
|ψ⟩ . (3.31)

Here, |0⟩ and |1⟩ are two basis states of the control, and |ψ⟩ is the initial state of the target system.
V̂0 and V̂1 are two arbitrary unitary operators representing the target’s evolution between the two
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operations. Although most descriptions of the switch omit the intermediate evolution, we will
demonstrate its importance in our context3. Given a realization of the switch, by performing
suitable final measurements for a set of appropriately selected operations ÛA and ÛB, it is
possible to prove that the operations are not executed in a definite sequence. This procedure is
referred to as measuring a causal witness [218, 219], and it could, in principle, be incorporated into
a single-cavity variant of our protocol to demonstrate that, assuming the quantum description
of the experiment is accurate, the cavity-detector interactions do not occur in a definite order.

Returning to the Bell inequality approach, it essentially becomes an ‘entangled’ version of the
switch, resulting in the final state given by

|ψfin⟩ =
1√
2

(
|0⟩ ÛA1 V̂0Û

B1 |ψ⟩ ⊗ ÛA2 V̂0Û
B2 |ψ⟩ + |1⟩ ÛB1 V̂1Û

A1 |ψ⟩ ⊗ ÛB2 V̂1Û
A2 |ψ⟩

)
.

(3.32)

To use such a state to refute classical temporal order among ÛA and ÛB, the state must arise
under conditions satisfying all assumptions used to derive the Bell inequality for temporal order,
except for the classical order assumption itself. The assumptions used in Ref [71] to derive the
inequality are: the initial state of the target systems S1 and S2 is separable; transformations
on the targets are local (i.e., operations on target Sj act as the identity on other degrees of
freedom); the events/spacetime regions where transformations and measurements occur are ap-
propriately separated: both interaction events in one wing are spacelike separated from both
interaction events in the other wing, and event D is spacelike from the events where Bell mea-
surements are performed (which, as usual in Bell inequalities, are assumed to be spacelike from
each other); the choice of bases for Bell measurements is independent of all other aspects of the
experiment (often called the ’free choice’ assumption); and finally, the assumption that events
where transformations and measurements are performed are classically ordered.

The unexpected result identified in 3.2.5 is that entanglement is produced while all the above
assumptions, including the classical order assumption, are met. Clearly, some other assumption
was made to derive the inequality and is violated in our implementation. Indeed, as previously
mentioned, the additional implicit assumption made in [71] is that the target systems do not
undergo non-trivial evolution aside from the transformations ÛA and ÛB. Below, we explain
why this assumption is violated in the present implementation, and in 3.2.6, we argue that this
will remain true in a generic dynamical implementation. As a result, our considerations apply
to any generic scheme attempting to verify the indefinite temporal order of events implemented
in a fully quantum mechanical manner.

3For the sake of completeness, one can also include a control-dependent initial state, but this is unnecessary for
our analysis.
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To see where the assumption of no free evolution comes into play and why it is the cause, it
is sufficient to examine one wing of our setup. Comparing a single-cavity scenario, (3.18), and a
generic quantum switch, (3.31), one finds that the evolution operators Û1 and Û2 in (3.18) do
not directly represent the local operations ÛA and ÛB. The reason is that Û1 and Û2 are written
in the Dirac (interaction) picture, which necessarily includes time evolution with respect to the
free Hamiltonian (starting from an initial time established in a common reference frame). By
unraveling this time evolution, one finds precisely a state of the form (3.31), where V̂0 and V̂1

represent the free evolution of the targets (i.e., cavity and detectors) between the interactions.
Note that the time intervals between events, and thus intervals of free evolution, are equal in the
reference frame of the cavity, meaning that in that frame V̂0 = V̂1. On the other hand, ÛA and
ÛB describe only the field-cavity interactions in the Schrödinger picture4.

This is relevant because if the free Hamiltonian does not commute with the interaction, the
free evolution does not commute with ÛA and ÛB, which explains the presence of entanglement
in the state in (3.32) in a frame where V̂0 = V̂1 and the events are spacelike separated. Note that
in that case, there is a reference frame where Aj ≺ Bj for both states of the control; however,
as mentioned above, in that frame necessarily V̂0 ̸= V̂1 since the time intervals of free evolution
along the worldlines of molecules 1 and 2 are necessarily different. In such a frame, the final
state in the two-wing scenario becomes

|ψfin⟩ =
1√
2

(
|0⟩ ÛB1 V̂0Û

A1 |ψ⟩ ⊗ ÛB2 V̂0Û
A2 |ψ⟩ + |1⟩ ÛB1 V̂1Û

A1 |ψ⟩ ⊗ ÛB2 V̂1Û
A2 |ψ⟩

)
,

(3.33)

and the presence of entanglement is thus interpreted as due to overall different dynamics de-
pending on the control, ÛBi V̂0Û

Ai ̸= ÛBi V̂1Û
Ai i.e., in that frame while the order of operations

is common, when they take place relative to periods of free dynamics, and thus the overall evo-
lution, depends on the control. Crucially, in this case, temporal order among events cannot even
be defined as it depends on the reference frame.

Further discussion of the role played by free evolution in this protocol is presented in the next
section.

In fact, if free evolution and the applied operations do not commute, even simpler scenarios
can illustrate the issue. Consider that one of the operations is trivial, say ÛB = Î, so in fact only
one operation is applied. The non-commutativity between ÛA and V̂ = V̂0 = V̂1 (we are in the
reference frame of the cavity) would again result in different final states depending on when ÛA

4Strictly speaking, we should add free-evolution operators also before and after the two local unitaries—not
only in between. However, free evolution acts trivially on the vacuum state (our initial state), while the final
evolution can be absorbed into the definition of the measurement basis.
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is applied relative to V̂ . This would again lead to an entangled final state in a two-wing scenario,
even though in this case, there is no time order of events to speak of.

Finally, we note that in all quantum switch scenarios, including the entangled switch, there
is an assumption that each local operation is performed ‘only once’. This condition is, however,
naturally satisfied in relativistic implementations such as ours, as each operation is performed
at a specific time on a local clock.

We have focused so far on a particular realization of the entangled switch protocol—with two-
level ‘detectors’ and cavity-confined quantum field modes as targets, and the position degrees
of freedom of the detectors as the control. However, our main result and its explanation apply
to any physical realization of the protocol. Indeed, we have shown that entanglement can be
generated for spacelike separated operations and identified that this is due to the free evolution
of the targets. For any physical implementation of the protocol, if the applied operations do
not commute with the free evolution, the final state will generally be entangled regardless of
the commutation relations between the operations themselves, and thus also regardless of their
temporal order. Entanglement can arise even if only one operation is applied, as discussed in the
previous section.

3.2.7 Entanglement Generation for Spacelike Events and Its Implications

The results from the previous section demonstrate that Bell inequalities for temporal order can
be violated even when the interaction events are spacelike separated. This statement seems
paradoxical because for spacelike separated events, their temporal order cannot be defined—it
depends on the reference frame. Here, we examine the compatibility of this fact with the locality
of evolution.

Consider the cavity and two molecules placed near its boundaries. We know that entanglement
at spacelike separation appears for a short interaction time and small time dilation (see Fig. 3.4).
By definition, in such scenarios, information about the interaction with the field cannot be
transferred from the first to the second detector before the latter interacts with the field. To
illustrate the problem with this situation, we can divide the whole cavity into three parts (see
Fig. 3.5). Let us denote these as FL, F , and FR. The field FL refers to the part of the cavity
near the left detector, and similarly, FR describes the right part of the cavity. The field F refers
to the middle segment of the entire cavity. The lengths of each part are chosen to ensure that
information about the interaction with the left/right molecule can be localized only within the
left/right part of the cavity. This division allows us to capture the two alternative orders of
events as follows.

For one order, the left molecule interacts first, L ≺ R; for the other, the right molecule interacts
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Figure 3.5: Spacetime diagram of a cavity interacting with two detectors. Operators
Û1 and Û3 describe the evolution of the system according to the interaction, and Û2

is an operator of the free evolution that occurs between interactions. FL and FR
are parts of the cavity that can interact with the detector in some finite time. F is
a middle segment of the cavity that evolves only due to the free evolution operator
between interactions.

first, R ≺ L. The entire evolution Û of the system containing the two molecules and three parts
of the cavity can then be represented as Û = Û3 Û2 Û1, where:

• Û1 – interaction of the left (right) molecule with FL (FR) and free evolution of the remaining
parts.

• Û2 – free evolution of the entire cavity.

• Û3 – interaction of the right (left) molecule with FR (FL) and free evolution of the remaining
parts.

The two scenarios appear to differ solely by the order of events at which the detectors and
the field interact. If these events are spacelike, one would not expect any difference between
the two scenarios based on the original argument. However, the free evolution always includes
components that are timelike relative to one of the interaction events, and generally, the three
evolution operators do not commute.

Thus, despite the spacelike separation of the interaction events, the free part of the evolution
still influences the system, resulting in a different state of the targets for the two wings of the
protocol. This implies that for such a case, we cannot argue that the violation of Bell inequalities
signifies an indefinite order of events because we violate an additional assumption: there is an
extra part of the evolution of the target systems, and it is this evolution that causes a different
final state despite the spacelike separation of the events at which the interactions defining the
order occur.
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However, we contend that this assumption is unavoidable in a generic realization of the studied
protocol, including its gravitational version. Indeed, it is possible to identify implementations
where the assumption of no free evolution of the targets holds (e.g., with polarization or angular
momentum degrees of freedom of photons) or where the operations are performed within a
degenerate subspace of the Hamiltonian of the targets (and thus commute with free evolution),
making only the non-commutativity between the two local operations relevant. Such strategies
would lead to an entangled final state only if the local operations are timelike and applied in a non-
classical order. However, identifying such implementations requires a theoretical description of
the states and dynamics of the involved systems. In other words, theory-dependent assumptions
are needed to interpret a violation of the final Bell inequalities as a signature of indefinite temporal
order, while a theory-independent method to certify non-classical time order was one of the key
motivations of [71].

Furthermore, the above observation is not dependent on the special-relativistic setting studied
in this work and equally applies to gravitational protocols. Indeed, nothing in our argument
depends on how the time dilation of the clocks is achieved. For example, the position of a
massive body can determine—through gravitational time dilation—the time at which a single
operation occurs (relative to some mass-independent coordinates). This can lead to the same
situation described earlier: the creation of entanglement (in a two-wing scenario) even with a
single operation per wing. Again, theory-dependent assumptions would be required to ensure
that entanglement can only arise as a result of an indefinite order of events.

3.3 Conclusions of the chapter

In this section, we constructed a non-gravitational scenario where accelerating particles, inter-
acting with quantum fields according to their own internal clock degrees of freedom, can lead
to a violation of the temporal Bell inequalities similar to the gravitational case. In 3.2.1, we in-
troduced the formalism required to replicate the gravitational protocol using special relativistic
time dilation. We defined the kinematics of all particles involved in the protocol and the appro-
priate coupling between them and the quantum field. We discussed the complete protocol that
explicitly demonstrated a violation of Bell inequalities, which are claimed to test the indefinite
temporal order of events.

We described the procedure that would lead to the violation of Bell inequalities for the proposed
system, occurring even when the events responsible for the entanglement are spacelike, which we
interpreted as an ambiguity in the signature of indefinite temporal order. We found that this
surprising conclusion results from the failure of the additional assumption that target systems
have no other evolution except the one governed by unitaries applied in a specific time order.
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3 Indefinite temporal order without gravity

We presented a detailed discussion of this problem in the last two sections of our work.

We argued that to satisfy all assumptions of the Bell theorem for time order—including the
auxiliary one (of no free evolution of the targets)—it is essential to invoke theory-dependent
arguments. Moreover, in a generic implementation—including a gravitational version of the
protocol—this assumption is not met. The present work is the first in the existing literature to
investigate this assumption and its consequences. Our chosen model thus clarifies the overlooked
aspect of Bell inequalities for temporal order. Consequently, our conclusions hold significance
for any theoretical or experimental pursuit of indefinite temporal order.

Being able to describe and experimentally test entangled temporal order (i.e., even working
fully within quantum mechanics) is of interest in its own right. Our result, however, raises the
question of whether it is possible to formulate a stronger, theory-independent test of temporal
order. The insight from this study is that it is problematic to separate the effect of the free dy-
namics of the system from that of the local operations. A possible avenue to circumvent this is
to consider more general operations than the fixed unitaries discussed thus far: they can involve
a measurement of the system, producing a classical variable as the outcome. Furthermore, a
setting variable for each party can model a choice among different operations. In this manner,
one can consider directly the causal relations between parties—understood operationally as cor-
relations between settings and outcomes—without relying on a theory-dependent description of
the transformations. We leave further investigation of this possibility to future work.

3.4 Appendices

3.4.1 Details of calculations of the final state

Using the form of evolution operator (3.7) we can find that

|ψR⟩ = Û1Û2 |g⟩ |g⟩ |0⟩ = |g⟩ |g⟩ |0⟩ − iλ
∫

dt2χ2R(t2)
∑
k

1√
ωkL

ei(ωk+Ω)t2 sin

(
kπ

L
x2

)
|g⟩ |e⟩ â†k |0⟩

−iλ
∫

dt1χ1R(t1)
∑
k

1√
ωkL

ei(ωk+Ω)t1 sin

(
kπ

L
x1

)
|e⟩ |g⟩ â†k |0⟩+O(λ

2), (3.34)

where: χ1R–switching function for the first detector in the case that right detector interacts
before the left one, χ2R–switching function for the second detector in the case that right detector
interacts earlier. We assume that the interaction starts and ends rapidly, so that χ2R(t) = 1 for
t ∈ (0, T ) and χ2R(t) = 0 for any other time. Similarly, χ1R(t) = 1 for t ∈ (∆τ,∆τ + T ) and
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χ1R(t) = 0 for any other time. We can proceed with the same calculation for |ψL⟩

|ψL⟩ = Û2Û1 |g⟩ |g⟩ |0⟩ = |g⟩ |g⟩ |0⟩ − iλ
∫

dt2χ2L(t2)
∑
k

1√
ωkL

ei(ωk+Ω)t2 sin

(
kπ

L
x2

)
|g⟩ |e⟩ â†k |0⟩

−iλ
∫

dt1χ1L(t1)
∑
k

1√
ωkL

ei(ωk+Ω)t1 sin

(
kπ

L
x1

)
|e⟩ |g⟩ â†k |0⟩+O(λ

2), (3.35)

where: χ1L–switching function for the first detector in the case that right detector interacts
before the left one, χ2L–switching function for the second detector in the case that right detector
interacts earlier. In this case we have that χ1L(t) = 1 for t ∈ (0, T ) and χ1L(t) = 0 for any other
time. Similarly, χ2L(t) = 1 for t ∈ (∆τ,∆τ + T ) and χ2L(t) = 0 for any other time. It worth
noticing that χ1L = χ2R and χ2L = χ1R. After using this property describing relation between
switching functions, we have

|ψR⟩ = Û1Û2 |g⟩ |g⟩ |0⟩ = |g⟩ |g⟩ |0⟩ − iλ
∫

dt2χ2R(t2)
∑
k

1√
ωkL

ei(ωk+Ω)t2 sin

(
kπ

L
x2

)
|g⟩ |e⟩ â†k |0⟩

−iλ
∫

dt1χ1R(t1)
∑
k

1√
ωkL

ei(ωk+Ω)t1 sin

(
kπ

L
x1

)
|e⟩ |g⟩ â†k |0⟩+O(λ

2), (3.36)

|ψL⟩ = Û2Û1 |g⟩ |g⟩ |0⟩ = |g⟩ |g⟩ |0⟩ − iλ
∫

dt2χ2R(t2)
∑
k

1√
ωkL

ei(ωk+Ω)t2 sin

(
kπ

L
x1

)
|e⟩ |g⟩ â†k |0⟩

−iλ
∫

dt1χ1R(t1)
∑
k

1√
ωkL

ei(ωk+Ω)t1 sin

(
kπ

L
x2

)
|g⟩ |e⟩ â†k |0⟩+O(λ

2). (3.37)

For simplicity of further calculation, let us introduce the following notation

|ψR⟩ = Û1Û2 |g⟩ |g⟩ |0⟩ = |gg⟩ |0⟩+ |ge⟩
∣∣ϕRge〉+ |eg⟩ ∣∣ϕReg〉+O(λ2), (3.38)

|ψL⟩ = Û2Û1 |g⟩ |g⟩ |0⟩ = |gg⟩ |0⟩+ |ge⟩
∣∣ϕLge〉+ |eg⟩ ∣∣ϕLeg〉+O(λ2), (3.39)

where:
∣∣ϕLge〉–a state of a field when the left detector interacts first but the right detector is

excited,
∣∣ϕLeg〉–a state of a field when the left detector interacts first and the left detector is

excited,
∣∣ϕRge〉–a state of a field when the right detector interacts first and the right detector is

excited,
∣∣ϕReg〉–a state of a field when the right detector interacts first but the left detector is

excited as a consequence of the interaction between atoms and the field.
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3.4.2 Method of finding appropriate parameters

In this section we will find an appropriate set of parameters that orthogonalize |ΦR⟩ and |ΦL⟩
vectors

|ΦR⟩ = −iλ
∑
k

1√
ωkL

∫
dt

(
χ2R(t) sin

(
kπ

L
x2

)
+ χ1R(t) sin

(
kπ

L
x1

))
ei(ωk+Ω)tâ†k |0⟩

= −iλ
∑
k

∫
dt (χ2R(t)uk(x2) + χ1R(t)uk(x1)) e

i(ωk+Ω)tâ†k |0⟩

= −λ
∑
k

eiT (ωk+Ω) − 1

ωk +Ω

(
ei∆τ(ωk+Ω)uk(x1) + uk(x2)

)
â†k |0⟩ (3.40)

|ΦL⟩ = −iλ
∑
k

1√
ωkL

∫
dt

(
χ2R(t) sin

(
kπ

L
x1

)
+ χ1R(t) sin

(
kπ

L
x2

))
ei(ωk+Ω)tâ†k |0⟩

= −λ
∑
k

eiT (ωk+Ω) − 1

ωk +Ω

(
ei∆τ(ωk+Ω)uk(x2) + uk(x1)

)
â†k |0⟩ (3.41)

Figure 3.6: The analysis of an orthogonality between |ΦL⟩ and |ΦR⟩.The absolute value
of the scalar product as a function of the energy gap of the detector Ω.

Where the form of the state |ΦL⟩ we get by changing x1 ←→ x2. Now it is easy to see that
the scalar product can be written as:

⟨ΦR|ΦL⟩ ∼= λ2
∑
k

∣∣eiT (ωk+Ω) − 1
∣∣2

(ωk +Ω)2

(
e−i∆τ(ωk+Ω)uk(x1) + uk(x2)

)(
ei∆τ(ωk+Ω)uk(x2) + uk(x1)

)
∼= 2λ2

∑
k

e−i∆τ(ωk+Ω)

(ωk +Ω)2
[1− cos (T (ωk +Ω))]

(
uk(x1) + ei∆τ(ωk+Ω)uk(x2)

)2
(3.42)
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We have to remember that states |ΦL⟩ and |ΦR⟩ were not properly normalized so now we can
find the norm

∥|ΦR⟩∥ =
√
⟨ΦR|ΦR⟩ =

√√√√λ2
∑
k

∣∣eiT (ωk+Ω) − 1
∣∣2

(ωk +Ω)2
∣∣ei∆τ(ωk+Ω)uk(x1) + uk(x2)

∣∣2
= 2λ

√√√√∑
k

sin2 T (ωk+Ω)
2

(ωk +Ω)2
[uk(x1)2 + 2uk(x1)uk(x2) cos (∆τ(ωk +Ω)) + uk(x2)2] (3.43)

∥|ΦL⟩∥ =
√
⟨ΦL|ΦL⟩ = 2λ

√√√√∑
k

sin2 T (ωk+Ω)
2

(ωk +Ω)2
[uk(x2)2 + 2uk(x2)uk(x1) cos (∆τ(ωk +Ω)) + uk(x1)2]

(3.44)

We can notice that ∥|ΦR⟩∥ = ∥|ΦL⟩∥ and finally the scalar product has the following form

⟨ΦR|ΦL⟩ =
⟨ΦR|ΦL⟩

∥|ΦR⟩∥∥|ΦL⟩∥
=

∑
k
e−i∆τ(ωk+Ω)

(ωk+Ω)2
[1− cos (T (ωk +Ω))]

(
uk(x1) + ei∆τ(ωk+Ω)uk(x2)

)2
2
∑

n
sin2

T (ωn+Ω)
2

(ωn+Ω)2
[un(x2)2 + 2un(x2)un(x1) cos (∆τ(ωn +Ω)) + un(x1)2]

(3.45)

This function can be estimated as a finite sum. Let us denote the upper limits of these two sums
as Nn for the sum over n and Nk for the sum over k.

Figure 3.7: The analysis of an orthogonality between |ΦL⟩ and |ΦR⟩ for different pa-
rameters describing interaction.
An absolute value of the scalar product for two detectors standing at x1 = L/4 and
x2 = 3L/4. The energy gap Ω is chosen as one of the cavity frequencies. Scalar
product approximated as a finite sum of 30 modes i.e. Nk = Nn = 30.

Fig. 3.6 shows the absolute value of the scalar product as a function of the energy gap Ω plotted
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3 Indefinite temporal order without gravity

for different numbers of modes Nn and Nk. We can see that we can produce entanglement for
very short times ∆τ = T = L/10. Thus, it proves that there is an entanglement between two
cavities also for spacelike separated events of interaction.

Fig. 3.6 look quite random. Let us analyze the scalar product for the case of two detectors
standing in the positions x1 = L/4 and x2 = 3L/4. Fig. 3.7 show the absolute value of the scalar
product for different parameters ∆τ and T ≤ ∆τ for different values of the energy gap Ω. We
can notice that there are many parameters minimizing the scalar product between two states.

Based on Fig. 3.7 we can conjecture that point (∆τ, T ) = (3L, 2L) is a good candidate for
the orthogonalization of the states |ΦR⟩ and |ΦL⟩. To verify this hypothesis let us consider the
following calculation: Let L = 1, x1 = 1/4, x2 = 3/4, Ω = π, ∆τ = 3, T = 2 + ϵ, where ϵ ∈ R+

is a small parameter. Then

⟨ΦR|ΦL⟩ = −
∑

k
e−3ikπ

k(k+1)2
[cos ((1 + k)(2 + ϵ)π)− 1]

(
sin kπ

4 − e
3ikπ sin 3kπ

4

)2
2
∑

n
sin2

(n+1)πϵ
2

2n(n+1)2

[
(1 + 2(−1)n) cos nπ2 + cos 3nπ

2 − 4
] . (3.46)

Each of these sums can be done analytically for arbitrary ϵ. Then we expand the numerator and
denominator around ϵ = 0, to get

|⟨ΦR|ΦL⟩| =

∣∣∣∣∣ 1
2π (2 log 20 log(1− i)− log(1 + i)) ϵ2 +O(ϵ3)

1
6π (9 + log 8− 6 log π − 6 log ϵ) ϵ2 +O(ϵ3)

∣∣∣∣∣ ≈ log 8

9 + log 8− 6 log πϵ
. (3.47)

And we see that

lim
ϵ→0+

|⟨ΦR|ΦL⟩| = 0 (3.48)

3.4.3 Second order of the Dyson series

In this section, We will show that second-order Dyson expansion does not affect on |ΦR⟩ and
|ΦL⟩.

One can ask the question why (3.42) depends on λ2. Previously we limited our calculation only
to the first-order expansion of the Dyson series. We have to verify that second-order expansion
does not produce lambda square terms too. Otherwise, there is a possibility that results from
(3.42) will cancel out with these additional terms. Let us write the general evolution operator
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in the following form

Û = 1− iλ
∫ ∞

−∞
dt χd(t)

(
eiΩtσ̂+ + e−iΩtσ̂−

)∑
n

(
â†nun(xd)e

iωnt + ânun(xd)e
−iωnt

)
(3.49)

−λ2
∫ ∞

−∞
dt2

∫ t2

−∞
dt1 χd(t2)χd(t1)

(
eiΩt2 σ̂+ + e−iΩt2 σ̂−

) (
eiΩt1 σ̂+ + e−iΩt1 σ̂−

)
×
∑
n

(
â†nun(xd)e

iωnt2 + ânun(xd)e
−iωnt2

)∑
m

(
â†mum(xd)e

iωmt1 + âmum(xd)e
−iωmt1

)
,

where xd is a position of a detector and σ̂± acts on the internal state of this detector. In our case
we have two detectors and two Hilbert spaces of internal degrees of freedom. We can simplify
the notation to write operators of the evolution as

Û1 = 1− iλ
∑
n

(
Û+
1nσ̂

+
1 + Û−

1nσ̂
−
1

)
− λ2

∑
n,m

(
Û++
1nmσ̂

+
1 σ̂

+
1 + Û+−

1nmσ̂
+
1 σ̂

−
1 + Û−+

1nmσ̂
−
1 σ̂

+
1 + Û−−

1nmσ̂
−
1 σ̂

−
1

)
,

(3.50)

Û2 = 1− iλ
∑
n

(
Û+
2nσ̂

+
2 + Û−

2nσ̂
−
2

)
− λ2

∑
n,m

(
Û++
2nmσ̂

+
2 σ̂

+
2 + Û+−

2nmσ̂
+
2 σ̂

−
2 + Û−+

2nmσ̂
−
2 σ̂

+
2 + Û−−

2nmσ̂
−
2 σ̂

−
2

)
,

(3.51)

where U±
1n, U

±
2n are operators from the first-order order expansion and U±±

1nm and U±±
2nm are

operators from the second-order expansion of the Dyson series. σ̂±1 and σ̂±2 are operators σ̂±

acting on the internal space of the first or the second detector respectivly. To find contributions
proportional to the λ2 to the value of (3.42), we have to find new terms in the |ψR⟩ and |ψL⟩
proportional to |ge⟩ or |eg⟩. Knowing that |ψR⟩ = Û1Û2 |gg⟩ |0⟩, |ψL⟩ = Û2Û1 |gg⟩ |0⟩, σ̂− |g⟩ = 0

and σ̂+ |e⟩ = 0 we can write

|ψR⟩ =

[
1− iλ

∑
n

Û+
1nσ̂

+
1 − λ

2
∑
n,m

Û−+
1nmσ̂

−
1 σ̂

+
1

][
1− iλ

∑
n

Û+
2nσ̂

+
2 − λ

2
∑
n,m

Û−+
2nmσ̂

−
2 σ̂

+
2

]
|gg⟩ |0⟩ ,

(3.52)

|ψL⟩ =

[
1− iλ

∑
n

Û+
2nσ̂

+
2 − λ

2
∑
n,m

Û−+
2nmσ̂

−
2 σ̂

+
2

][
1− iλ

∑
n

Û+
1nσ̂

+
1 − λ

2
∑
n,m

Û−+
1nmσ̂

−
1 σ̂

+
1

]
|gg⟩ |0⟩ .

(3.53)

We can observe that second-order contributions from the same detector do not change the internal
state, i.e. σ̂−σ̂+ |g⟩ = |g⟩, while the product of first order terms from both detectors gives
σ̂+1 σ̂

+
2 |gg⟩ = σ̂+2 σ̂

+
1 |gg⟩ = |ee⟩. Thus, the second order terms do not have support on the

subspace spanned by the states |ge⟩ , |eg⟩. Note that the states |ge⟩ or |eg⟩ appear in this
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3 Indefinite temporal order without gravity

expansion at order λ3 or higher. This means that second-order terms from the Dyson series do
not affect the states |ΦR⟩ and |ΦL⟩ in our approximation.
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This dissertation has explored the relativistic aspects of time in quantum mechanics, divided into
two main areas: the study of quantum time dilation and the examination of indefinite temporal
order, including the implications of temporal Bell inequalities.

A major focus of this research was to understand how time dilation operates within the quan-
tum domain. Known from relativity, time dilation implies that time pases slower for objects
at high velocities or in strong gravitational fields. Our research showed that this well-known
phenomenon can be generalized to the case of an atom moving in a superposition of velocities
or in a superposition of positions in the case of gravitational time dilation. We also discovered
that kinematical quantum time dilation is universal, much like its classical counterpart. In this
context, universality means that it is independent of the type of mechanism used as a clock.

In section 2.2, we demonstrated a spectroscopic signature of quantum time dilation, observed
in the spontaneous emission rate or the lifetime of an excited atom moving in a superposition
of relativistic momentum wave packets. Our analysis indicated that the total transition rate is
significantly affected by the momentum coherence in the atom’s center-of-mass state. Notably,
the quantum contribution to the observed time dilation could be positive or negative, depending
on the relative phase between the superposed momentum states. These quantum effects are
accessible with current experimental setups, such as optical clocks [79, 105–108].

Additionally, we observed a correspondence between quantum time dilation in atomic lifetimes
and that observed by an ideal clock in a different physical system [54, 157]. This finding un-
derscores the universality of quantum time dilation, indicating that it affects all clocks similarly,
regardless of their underlying mechanisms.

Our spectroscopic approach highlighted the role of coherence across relativistic momentum
wave packets. By probing proper time superpositions in this regime, our study provided a
unique view of the interplay between quantum theory and relativity.

We also investigated the presence of a quantum Doppler effect, which arises when an atom’s
center-of-mass is in a superposition of momentum wave packets. This effect manifests in the shape
of the emission spectrum, particularly smoothing the contrast between the typical Doppler-shifted
peaks.
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In section 2.3, we examined a realistic scenario where quantum time dilation in a gravitational
field is anticipated. By analyzing the spontaneous emission process of a two-level atom at rest
in an external gravitational field, modeled as an accelerated frame of reference according to
the equivalence principle, we showed that the atom’s spontaneous emission rate depends on
its wave function in position space. Specifically, this rate is influenced by spatial coherence in
the atom’s center-of-mass state. Our findings, consistent with [126] for a realistic clock model,
confirm that quantum time dilation occurs in practical scenarios. This further substantiates that
quantum time dilation is not merely theoretical but can be observed in real-world conditions. By
applying the equivalence principle to describe the gravitational effect on the clock, we concluded
similarly to a post-Newtonian analysis, suggesting our results validate the equivalence principle
for quantum systems.

Our analysis proposed a method to detect quantum time dilation by placing a decaying particle
in a superposition of heights and observing the decay rate’s dependence on the particle’s initial
state. Similarly, a spectroscopic method involves positioning a clock (either ionic or atomic) in a
superposition of heights and measuring either the spontaneous decay or the fractional frequency
shift. According to our findings, the coherence effect becomes significant when the spread of two
position wave packets is comparable to the distance between them. The quantum correction to
classical time dilation can match the classical gravitational time dilation factor for appropriately
chosen state parameters. Thus, if gravitational time dilation can be measured at such distances,
the quantum time dilation effect should also be detectable.

Typically, experimental measurements of gravitational time dilation involve comparing two
clocks at different heights, as demonstrated in tabletop experiments [173], flight-based clocks
[174], or clocks separated by large distances [175]. Future advancements include satellite-based
experiments aimed at improving accuracy by orders of magnitude [176, 177]. Recent develop-
ments with optical lattice clocks have shown the potential to resolve gravitational redshift within
a single sample on a sub-millimeter scale [178, 179]. Specifically, a frequency change consistent
with the linear gravitational field was measured along a system of 100,000 strontium atoms [178],
with the atoms uncorrelated to suppress corrections due to quantum coherence across the sample.

We demonstrated that for an optimally prepared state in a simple spectroscopic system, the
gravitational quantum time dilation effect is comparable to the gravitational redshift caused by
a millimeter-sized height difference near Earth’s surface. In the best-case scenario, with two
overlapping wave packets of opposite relative phase, the change in the total emission rate scales
as g∆

4c2
Γ0, where ∆ is the spatial spread of the wave packets. For micrometer-scale superpositions

[180–183], this results in a 10−23 change in the total emission rate or the fractional frequency shift.
Although current measurements of atomic lifetimes and emission rates lack the precision to detect
such a small correction—typically determined up to tenths of a percent [184–186]—the correction
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to the fractional frequency shift is just below the sensitivity of state-of-the-art measurements,
which detect gravitational time dilation on millimeter scales [178, 179, 187, 188]. Increasing the
spatial superposition scale from micrometers to millimeters would result in a correction of the
order of 10−20, within the reach of current technology. With recent advances in optical clocks,
the next step is to develop a method to prepare the optimal superposition state and observe
quantum time dilation unambiguously using present-day technology.

Finally, in section 2.4, we demonstrated that while kinematic quantum time dilation is univer-
sal, gravitational quantum time dilation is not. Our proof of universality provided a necessary
condition for quantum reference frames to be well-defined [189]. We also argued that defining
quantum time dilation depends on an arbitrary choice of the classical reference state, and for
other equally valid choices, the effect disappears. However, we derived an alternative quantum
time dilation effect that appears with higher-order coupling terms between translational and
internal degrees of freedom. Here, the quantum noncommutativity of the involved position and
momentum operators ensures that the effect has no classical counterpart. Our findings clarify
the current understanding of quantum time dilation, offering insights into its universality and
fundamental nature.

The second major part of this dissertation, chapter 3, explored the concept of indefinite tem-
poral order. In classical physics, events occur in a definite sequence: one event happens before
or after another. In the quantum realm, however, events can occur in a superposition of different
orders, meaning the sequence of events is not fixed and can be indefinite.

We devised a non-gravitational scenario where accelerating particles, interacting with quantum
fields according to their own internal clock degrees of freedom, could lead to a violation of
temporal Bell inequalities similar to the gravitational case. In 3.2.1, we introduced the formalism
needed to replicate the gravitational protocol using special relativistic time dilation. We defined
the kinematics of all particles involved and the appropriate coupling between them and the
quantum field. We outlined the complete protocol that clearly demonstrated a violation of Bell
inequalities, which are intended to test the indefinite temporal order of events.

We described the procedure that would lead to the violation of Bell inequalities for the proposed
system, occurring even when the events responsible for the entanglement are spacelike, which we
interpreted as ambiguity in the signature of indefinite temporal order. We found this surprising
conclusion resulted from the failure of the assumption that target systems have no other evolution
besides the one governed by unitaries applied in a specific time order.

We argued that to satisfy all assumptions of Bell’s theorem for time order—including the
auxiliary assumption of no free evolution of the targets—it is crucial to use theory-dependent
arguments. Moreover, in a generic implementation—including a gravitational version of the pro-
tocol—this assumption is not satisfied. This work is the first to investigate this assumption and
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its implications in the existing literature. Our model clarifies an overlooked aspect of Bell in-
equalities for temporal order, making our conclusions significant for theoretical and experimental
pursuits of indefinite temporal order.

Describing and experimentally testing entangled temporal order within quantum mechanics is
intriguing. However, our results raise the question of whether it is possible to create a stronger,
theory-independent test of temporal order. The insight from this study shows that separat-
ing the free dynamics of the system from local operations is problematic. A possible solution
is to consider more general operations than the fixed unitaries discussed so far: these could
involve measuring the system, producing a classical variable as the outcome. Additionally, a
setting variable for each party could model different operational choices. This approach allows
for the study of causal relations between parties—understood as correlations between settings
and outcomes—without relying on a theory-dependent description of transformations. Further
investigation of this possibility is left for future work.

In summary, our findings revealed that the assumptions needed to prove Bell inequalities for
temporal order are not always met in practical scenarios. This prompted us to rethink these
assumptions and recognize the complexity of separating a system’s free dynamics from local
operations. These insights are vital for both theoretical and experimental studies on the nature
of time.

To address these challenges, we propose using more general operations that include measure-
ments producing classical outcomes. This method allows direct study of causal relationships
between different events without relying on specific theoretical models.

Finally, this dissertation opens new research opportunities, expanding our understanding of
time and causality in the quantum realm. Future studies could aim to develop more robust,
theory-independent tests of temporal order and practical methods to observe quantum time
dilation in experimental settings.

In conclusion, this dissertation challenges our understanding of quantum time dilation and
indefinite temporal order, questioning traditional views of time and causality. It provides new
insights into the universe’s fundamental nature. As research progresses in this field, exploring
quantum mechanics and the nature of time will continue to be an engaging and significant
endeavor.
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