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Summary

Recent, increasingly accurate measurements of the properties of bio-relevant molecules challenge our
understanding of macromolecules as having well-defined, fixed shapes that determine their function.
The equilibrium distribution of their conformations is described by the Boltzmann distribution, which
combines two terms: the influence of the temperature of the solvent and the potential energy of a given
configuration, which in turn captures the elastic properties of the molecules. The behavior of elastic
macromolecules is thus shaped by the competition of these two physical phenomena—whenever the
valleys of the potential energy landscape are shallow in comparison to a typical thermal fluctuation, a
wide variety of conformations are present; conversely, when they are deep, only small deviations from
the energy-minimizing configurations can be observed.

The doctoral thesis presents a theoretical description of the conformational variability of elastic
macromolecules and its effect on diffusion. The first part of the thesis provides an overview of theoretical
fundamentals required for building coarse-grained models, which form the core of this work. It also delves
into the theoretical underpinnings of the experimental methods used to validate simplifying assumptions
made in the former. The second part of the thesis comprises a series of thematically linked publications
and preprints in which we demonstrate methods for dealing with and taking advantage of both extremes
of the elasticity spectrum.

Starting from molecules with very large persistence length compared to their size, we demonstrate
how to model the approach of a very short DNA segment towards a nanopore and provide an analysis
of the influence of wall interaction and hydrodynamic anisotropy in the nanopore capture process. By
considering a rod-like molecule with uniformly distributed charge, we establish theoretical criteria for
determining when and where the inclusion of wall corrections is necessary. Secondly, we investigate the
impact of negative supercoiling and curvature on the hydrodynamic properties of 336 bp and 672 bp DNA
minicircles. Utilizing linear elasticity theory and hydrodynamic calculations, we predict DNA shapes
and diffusion coefficients. Our results show a favorable comparison with experimental data on diffusion
and sedimentation coefficients obtained using analytical ultracentrifugation. For intermediate values of
persistence length, we determine the range of lengths and g-forces under which sedimentation of a flexible,
looped filament remains stable to buckling. Our analysis, based on linear elasticity theory combined with
resistive force theory, yields a stability criterion reliant on a single dimensionless parameter.

In a more general case where both thermal fluctuations and elastic forces are significant, we pro-
pose a numerical approach. This approach is based on a stochastic differential equations integrator we
developed, combined with hydrodynamic interactions based on the Rotne-Prager approximation. Addi-
tionally, we present a suite of Python packages designed to make small Brownian Dynamics simulations
both fast to develop and fast to simulate, thanks to hardware acceleration.

We demonstrate that for intrinsically disordered proteins (IDPs), which represent the opposite ex-
treme of the elasticity spectrum as compared to very stiff DNA, excluded volume interactions are the key
factor determining the equilibrium conformational ensemble. We introduce the Globule-Linker model for
generating conformations and combine it with the Minimum Dissipation Approximation to predict their
hydrodynamic size. Using the comparison of the coarse-grained approach with the largest set of experi-
mental values collected to date, we show that our first-principles approach outperforms phenomenological
fits available in the literature.

Finally, we deal with the theoretical problem of equilibrium distributions of molecules with both very
stiff degrees of freedom and comparatively free ones (such as the bond length and inter-bond angles,
respectively, in molecular models). We identify the important details of the constraining potentials
overlooked in earlier works and demonstrate a method of their computation, both in general and through
specific examples.

Our results, which span a spectrum of possible elastohydrodynamic regimes, demonstrate the rich
diversity of phenomena that arise from the competition of structural rigidity, viscous stresses and thermal
fluctuations. In order to facilitate the analysis of such systems, we have created a number of open-
source numerical tools, which have been published with documentation. The applicability of these
tools was tested directly in relatively stiff biopolymers—the circular DNA—and soft structures of IDPs.
Additionally, they provide an insight into the intermediate stiffness regimes, where thermal fluctuations
compete with intramolecular interactions, and can be used for a better understanding of microscale
elastohydrodynamic phenomena.



Streszczenie

Nowe, coraz doktadniejsze pomiary wlasciwosci istotnych biologicznie czasteczek podwazaja nasze
rozumienie makromolekut jako czasteczek o dobrze okreslonych, stalych ksztaltach okreslajacych ich
funkcje. Rozklad réwnowagowy ich konformacji opisuje rozktad Boltzmanna, ktory taczy dwa efekty:
wplyw temperatury rozpuszczalnika oraz energie potencjalng danej konfiguracji, ktéra z kolei opisuje
wlasciwosci elastyczne czasteczki. Zachowanie elastycznych makromolekul jest zatem okreslone przez
wspolzawodnictwo dwoch zjawisk fizycznych: gdy studnie potencjatu sa plytkie w poréwnaniu z ty-
powymi fluktuacjami termicznymi, wystepuje szeroka gama konformacji; z drugiej strony, gdy sa one
glebokie, mozna zaobserwowaé jedynie niewielkie odchylenia od konfiguracji minimalizujacych energie
makromolekuly.

W niniejszej rozprawie doktorskiej przedstawiono teoretyczny opis zmiennosci konformacyjnej elasty-
cznych makromolekut i jej wplywu na ich dyfuzje. Pierwsza czes¢ rozprawy zawiera przeglad podstaw
teoretycznych wymaganych do budowy modeli gruboziarnistych, ktére stanowia istote rozprawy oraz
teoretyczne podstawy metod eksperymentalnych stosowanych do weryfikacji upraszczajacych zatozer,
wykorzystanych do konstrukeji modeli. Druga czesé¢ rozprawy skltada si¢ z szeregu powiazanych tematy-
cznie publikacji i preprintéw, w ktorych prezentujemy metody modelowania makromolekul w szerokim
zakresie ich sprezystosci.

Zaczynajac od czasteczek o dalekim zasiegu korelacji elastycznych (tzn. o duzej dlugosci persys-
tencji, ang. persistence length) w poréwnaniu z ich rozmiarem, pokazujemy jak modelowaé zblizanie sie
krotkiego fragmentu DNA do nanoporu. Analizujemy przy tym wplyw $cianek i anizotropii hydrodynam-
icznej makroczastki w procesie wychwytywania czastek przez nanopory. Okreslamy teoretyczne kryteria
dla przypadkéw, w jakich konieczne jest uwzglednienie oddzialtywania hydrodynamicznego czasteczek ze
$ciankami, modelujac ksztalt czastki jako pret z rownomiernie roztozonym tadunkiem elektrycznym. W
kolejnych pracach badamy wplyw ujemnego trzeciorzedowego skrecenia (ang. supercoiling) i krzywizny
DNA na wtasciwosci hydrodynamiczne minipetli DNA o dtugosci 336 i 672 par zasad. Wykorzystujac
liniowa, teorie elastycznosci 1 modele hydrodynamiczne, przewidujemy ksztalty DNA i ich wspoétczyn-
niki dyfuzji w roztworze w zaleznosci od stopnia skrecenia. Pomiary eksperymentalne wspotczynnikéw
dyfuzji i sedymentacji uzyskane za pomoca ultrawirowania analitycznego wykazuja dobra, zgodnosé z
naszymi przewidywaniami teoretycznymi. Dla posrednich wartosci zasiegu korelacji elastycznych wyz-
naczamy zakres dlugosci i skale sit zewnetrznych, przy ktérym sedymentacja elastycznej, cienkiej petli po-
zostaje stabilna na wyboczenia. Nasza analiza, oparta na liniowej teorii elastycznosci potaczonej z teoria
lokalnego oporu hydrodynamicznego, wyznacza kryterium stabilno$ci zalezne od pojedynczego bezwymi-
arowego parametru. W bardziej ogolnym przypadku, gdy istotne sa zaréwno fluktuacje termiczne, jak i
sity sprezyste, prezentujemy podej$cie numeryczne. Opiera sie ono na algorytmie catkowania stochasty-
cznych réwnan rézniczkowych, potaczonym z modelem oddzialtywan hydrodynamicznych opartym na
przyblizeniu Rotne-Pragera. Powyzsze metody zostaly udostepnione jako zbiér paczek w Pythonie za-
projektowanych w celu szybkiego programowania i wykonywania symulacji dynamiki Brownowskiej.

W przypadku biatek nieustrukturyzowanych (ang. intrinsically disordered proteins, IDP), ktore
reprezentuja przeciwny biegun spektrum elastycznosci w poréwnaniu z bardzo sztywnym DNA i moga
by¢ rozpatrywane jako bardzo wiotkie, determinanta ich konformacji w rozktadach réwnowagowych jest
wykluczona objetosé. Do modelowania biatek IDP, proponujemy model konformacji GLM (ang. globule-
linker model), ktory w potaczeniu z hydrodynamicznym przyblizeniem minimalnej dyssypacji pozwala
obliczyé¢ wielko§é hydrodynamiczna takich bialek. Poréwnujac nasze gruboziarniste podejscie teorety-
czne z najwiekszym jak dotad zmierzonym zbiorem danych eksperymentalnych pokazujemy, ze nasze
podejscie jest skuteczniejsze niz dopasowania fenomenologiczne dostepne w literaturze. W ostatnim
artykule rozwazamy teoretyczny problem rozkladow réwnowagowych czasteczek o wielu stopniach swo-
body, z ktorych czesé jest silnie zwigzana (jak na przyklad dlugosci wiazan chemicznych). Pokazujemy,
ze istotne detale potencjaléw realizujacych wiezy zostaly przeoczone we wczesniejszych pracach oraz
proponujemy wladciwag, scista matematycznie metode ich uwzglednienia.

Nasze wyniki, obejmujace szeroki zakres korelacji elastycznych, pokazuja réznorodnosé zjawisk
wynikajacych z wspotwystepowania elastycznosci, sit lepkich i fluktuacji termicznych. Aby utatwié¢ anal-
ize takich ukltadow, stworzyliSmy zbiér otwartych narzedzi numerycznych, ktore zostaly opublikowane
wraz z dokumentacja. Mozliwosé¢ zastosowania powyzszych narzedzi przetestowaliémy bezposrednio w
stosunkowo sztywnym biopolimerze (minikotka z DNA) i w miekkich strukturach bialek nieuporzad-
kowanych (IDP). Przedstawione narzedzia daja wglad w posrednie rezimy sztywnosci, w ktorych
fluktuacje termiczne konkuruja z oddzialywaniami wewnatrzczasteczkowymi. Liczymy, ze proponowane
modele mogg poshuzy¢ do lepszego zrozumienia zjawisk elastohydrodynamicznych w mikroskali.
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Introduction

1.1 Mesoscopic world of macromolecules

A fundamental technique for assessing the relative importance of different physical mechanisms within
a theoretical framework, originating in the domain of fluid mechanics (cf. Reynolds, [7]), involves the
consideration of dimensionless numbers. Here, we follow the approach of Naegele [8], where he motivates
common approximations in colloidal physics by considering timescale ratios.

Colloidal hydrodynamics focuses on the properties of colloidal suspensions, which are mixtures of
very small objects (with sizes of the order of 0.1 um) and a solvent, typically water. At human-length
scale, water is easily treated as incompressible (for example, by considering volume changes at typical
pressures on the order of atmospheric pressure). However, this becomes less obvious at the microscopic
length scale where the granularity of matter becomes significant. The relevant bulk density relaxation
timescale 75 at the length scales relevant to the colloidal object of size a can be estimated from the speed
of sound in water, ¢, as 7s = a/c ~ 6 x 10~!s, which is much shorter than any experimentally relevant
timescale, prompting us to use the incompressible Navier-Stokes equations.

For a Newtonian fluid (such as water) of density p and viscosity 7, these equations describe the
evolution of the velocity field u in response to the pressure gradient Vp and body forces f acting on the
fluid as

0
p((;: +u~Vu) =-Vp+nAu+ f, (1.1)

together with the incompressible continuity equation
V-u=0. (1.2)

The Navier-Stokes equation (1.1) is famously nonlinear and further simplifications are necessary for
almost any problem of practical relevance. The relative importance of the nonlinear momentum advection
term compared to the viscous dissipation term is measured by the Reynolds number Re [7]. In quiescent
fluid, it can be estimated from the velocity of a colloidal particle V,, as

lpu-Vu| pV,L
Re = ~ . 1.3
©T Ayl U (13)

Taking a = 100 A and V, &~ lum/s we get Re ~ 10~7. Thus, we can disregard the nonlinear terms
and arrive at the time-dependent Stokes equation

)
pait‘ = —Vp+nAu+ f. (1.4)

By taking the curl of both sides of this equation, we arrive at the vorticity diffusion equation, for the
vorticity w =V x u

0
—w = ﬂAu,u (1.5)
ot P
which has a heat-kernel-type solution with characteristic momentum diffusion time of
2
pa
Tw = —. (1.6)
oo

It turns out that this timescale is of the same order as the Rayleigh particle velocity relaxation
timescale 75 (following the naming convention of van Kampen [9]) describing the exponential decay of



the velocity of a solid particle of radius a slowing down due to Stokes drag Fiiores = 6mnaV, = (V) as

shown by
M 2 (Pp>
TB=—=— =] T, (1.7)
¢ 9\p
where p, is the density of the colloidal particle, which is often neutrally buoyant.

Finally we can define the diffusive timescale 7p as the time required for a particle to move distance
comparable with its size while diffusing with coefficient of diffusion D

2

a
= —. 1.8
™ =5 (1.8)
Thus, for colloidal particles 7p > 7, ~ 75 and on experimentally relevant time scales ~ 7p we can
neglect time dependent terms of the Stokes equation (this is not always the case; for example, in the
motion of carpets of cilia or bacterial flagella the time dependent terms play a role [10]). Consequently,

we arrive at the Stokes equations

nAu — Vp+ f =0, (1.9)
V-ou=0. (1.10)

The Stokes equation (1.9) possesses important properties of linearity and instantaneous information
propagation throughout the domain. This means that the velocity at any moment is fully determined by
the fluid boundary conditions at the same time instance. These properties are vital for the construction
of mobility matrices discussed in the next section.

1.2 Mobility matrices

An immediate corollary of the linearity of the Stokes equation is the existence of so-called mobility
matrices — linear operators that provide particle velocities resulting from forces and torques acting within
a given configuration of colloidal particles. Unfortunately, closed-form expressions for these relationships
exist only in very simple geometries where flows can be easily computed, such as for a single sphere or
ellipsoid in a bulk fluid [11]. Even for highly symmetric shapes, such as a torus [12, 13], solutions are, at
best, expressed in terms of a series expansion. We can leverage the very simple solution for flow around
a sphere and construct an approximate solution for flow around multiple spheres. In this manner, we
can model many bodies of interest in a modular fashion by approximating them as a collection of small
spheres, connected either rigidly or through appropriate potentials. This construction is facilitated by
the method of mobility matrices, which we describe below.

Consider N spherical particles each of radius a located at R; for i € (1... N) moving with velocities
V; and angular velocities €2; under the influcence of external forces F; and torques T;. We seek the
matrix connecting these velocties to these forces. For convenience this section uses supervector notation,
here following convention of [8]. Let us denote a concatenated vector of particle velocities as V' =
(V1, Va,..., V)T, angular velocities and © = (£21,Qs,...,Q2x)7 and analogously for forces F; and
torques T;

From the linearity of the Stokes equation and the no-slip boundary conditions of the fluid velocity
at the surface of the colloids we know that they obey a linear relationship. We can introduce mobility

tensors p in the following fashion
vV tt tr F
(ﬂ) - - <ZT‘t er") : <T> . (111)

Often one is interested in a torque free case where only submatrix p!* plays a role and is referred to
as translational mobility matrix or grand translation mobility matrix (to emphasise that it captures
particle-particle interactions).

For a point force f acting on the fluid Green’s function of the Stokes equation is called the Oseen
tensor T° with fluid velocity satistying w(r) = T"(r).f. Said tensor is given by

_ 1
B 8mn|r|

T(r) (1 + 77). (1.12)

For multiple spherical colloids suspended in a quiescent fluid, the mobility matrices depend on the
relative positions of the spheres. In the lowest order approximation, it turns out that only pairwise



displacements R;; = R; — R; are required to compute them. It may be tempting to simply evaluate the
Oseen tensor at the centers of the spheres and use this as a mobility matrix; unfortunately, this approach
can lead to a matrix that is not positive definite, which physically corresponds to negative dissipation of
energy under some forcing. As a result, this approach is not just inaccurate but completely fruitless in
the case of Brownian Dynamics where square roots of mobility matrices are required at each simulation
step [8, 14]. Most methods for computing square roots (such as the Cholesky decomposition) are singular
for singular matrices. Thus, even a very small error in the components of the mobility tensor can lead
to arbitrarily large errors of the square root, unless positive definiteness can be guaranteed.

Perhaps the simplest positive-definite approximation can be constructed in the following manner.
Introducing R;; = |R;;|, we can determine the velocity of it" sphere exactly from the surface tractions
integral by combining Faxen’s law [15] with the Oseen tensor

N 2
Vi=—phF+> (1 + “Ai) / AS'TO(R; — ') - £ (¢). (1.13)
— 6 3.
J#i J

A direct use of equation (1.13) is not very practical, since it requires solving for surface traction
distribution. If we only take into account the average surface traction on each sphere, by taking f;s) (r') =
—F;/(4ma?), one obtains a relationship of the form (1.11). Next, one can approximate the integrand by
Taylor expanding it around the centres of spheres to second order (with the remainder term O((a/R;)?*)

because the integrals of all third-order terms vanish), and we get the lowest-order approximation in a
for the mobility tensors

N 2 2
Vir —pgFi =Y (14 %Ai)(l + %AJ)TO(R’L' - R;)- F; (1.14)
JF#i
N 2
~ Ut F, —Z(l—i—%Am)To(w:sz)-Fj (1.15)
JFi

because AiAjTO(RZ-j) =0.
Evaluating the Laplacians and rearranging the explicit formulae for mobility tensors can be obtained

p = gl (1.16)
3( a PN 1 a \* PN
tt,RP  __ t |2 R st — R ; ]
i = (4 (Rij) (1 + R”R,J) + 7 (|R”|> (1 3R”R”)> for i#j. (1.17)

The NZ-’RP approximation is the well-known Rotne-Prager approximation [8, 16, 11]. It turns out
that this approximation is always positive definite and thus a great candidate for Brownian Dynamics
applications. Moreover, it turns out that the tensor divergence of u!*:** is equal to zero (which is not true
for the exact solution p!?) eliminating another term—problematic for Brownian dynamics simulations—in
a self-consistent manner[14]. A completely analogous procedure can be applied to the tr and rr parts
of the mobility matrix. That and further improvements (such as differentiable continuation for overlaps
and extension to collections of spheres of different sizes) are discussed by Zuk, Cichocki, and Szymczak

[17]. In this work, we implemented the Rotne-Prager expressions in Python, as the pygrpy package.

1.3 Mathematical treatment of Brownian motion

Although the fundamentals of kinetic theory of gases had been established since the 1870s and Navier-
Stokes equations since the 1840s, the formulation of the earliest fluctuation-dissipation-type equation,
now known as the Stokes-Einstein relationship,

kgT
p- B

= 1.18
6mna ( )

for a spherical particle of radius a in a fluid of viscosity 7, first appeared in the contributions of Ein-
stein [18] and Smoluchowski [19]. Their theoretical insights were experimentally verified by Perrin [20],
culminating in his Nobel Prize in Physics in 1926. The conceptual challenge of merging two formerly
distinct branches of physics was further complicated by the necessity to develop new mathematical tools



capable of handling random functions describing the position and velocity of Brownian particles. The
physical heuristics devised to capture the probabilistic nature of temperature were later formalised into
what is now known as stochastic calculus. The applications of stochastic calculus found utility in the
economic context, where Merton and Scholes were awarded the Nobel Prize in Economics in 1997 for
their development of the Black-Scholes-Merton formula for option pricing. However, the misuse of their
results by the financial industry, coupled with inadequate regulation of the derivatives sector, led to the
2008 financial crisis [21].

We now turn to the technical details and outline the central complication of the stochastic
calculus—second-order terms in the equivalent of the chain rule—using a physically motivated example.
A more succinct description of this domain can also be found in Waszkiewicz et al. [4]. For simplicity,
we will again focus on just a single colloidal sphere. In the case of isotropic diffusion in a quiescent fluid
the problem is separable with each Cartesian direction being independent, in this simple case we can
just consider scalar velocty and displacement. In more complex cases (single sphere near a wall, or more
than one sphere, or any other shape) more care is needed because displecements in different directions
are no longer independent and often also dependent on angular displacements which complicates the
problem significantly. Following the notation of Ottinger [22], we will denote the time dependence in
subscripts such that the (time-dependent) velocity of such a sphere is V;. Historically, V; was modelled

by the Langevin equation
dV,
M—L=—¢V,+FP (1.19)
dt
with FP being a time dependent force arising from the bombardment of the colloid by the water
molecules.

Langevin’s heuristic solution of equation (1.19) ignored the unusual stochastic properties of F, to
obtain V; as a convolution of F}” with an appropriate Green’s function. Such a convolution is a linear
operator acting on (what we hope is) a Gaussian process and thus we should be able to compute variance
of the velocity (V;?), with (-) denoting the expected value by means of a double integral

1 t t
(V2 = W/o dt’/o dt” exp (—fw(%—t’—t“)) (FPEEB). (1.20)

Recall that the Brownian timescale is much longer than the fluid relaxation timescale 75 > 75 and
thus we postulate that the Brownian force has a singular correlation structure

(FBFRY =ago(t’ —t"), (1.21)

where § deontes the Dirac delta functional.
Evaluating the integral (1.20) we get

1

SM(V?) = Z—? {1 — exp <2A<4t>} . (1.22)

By applying equipartition principle to the result (1.22) we arrive at the necessary amplitude of the
Brownian fluctuations as
ap = QkBTC (123)

This is a form of the fluctuation-dissipation theorem [23, 22].
Furthermore, we can heuristically go to the limit of high damping M /¢ — 0 and obtain an equation
for the position of the particle

dX; 1 5
— = —F". 1.24
A proper treatment of the equation (1.24) is possible with the help of stochastic differential equations
(SDE). First, we define the standard Wiener process W; as a Gaussian martingale with the following
covariance structure

t1 to
(Wi, Wy,) = / dt’ dt"5(t' — ") = min(ty, t2) (1.25)
0 0

Note that, this time the covariance is non-singular and the usual theory of Gaussian processes is
directly applicable. Heuristically, we expect V; to be described by the following integral

V= %H/O exp (—]\i[(t — t')) dWy. (1.26)



Unfortunately, this integral cannot be performed path-wise because W; has infinite variation in every
interval, even though the issues of almost-surely nowhere differetniability of equation (1.24) are avoided.
We need some generalisation of the usual integration to formalise this notion.

These integrals turn out to be formally tractable for a class of processes called non-anticipatory. Any
such process (X, say) has the property, that for any time ¢, the future increments of the Wiener process
Wy — Wy and past values of the process Xy (¢t < t < t') are independent variables.

We begin the construction of the stochastic integral by considering non-anticipatory random step
functions — processes that are constant on finite intervals (denoted with the indicator function I) with
step heights given by random variables X; by

Xp =Y X;l(t € [tj-1,1]). (1.27)
j=1
For such processes, the stochastic (Ito) integral is simply defined as
tmax n ~
/ XodWy = > X; 1 (Wy, — Wy, ). (1.28)
0 -
Jj=1

There is a noticeable lack of symmetry in this expression — we evaluate the integrand at the left end
of each interval. As a result, X;_; and Wy, — Wy,_, are independent variables because of the non-
anticipatory nature of the process X;. This ’direction of anticipation’ asymmetry plays a central role in
the differences between Ito and classical calculus (and is notably absent in Stratonovich calculus).
Thanks to the non-anticipation property, we can immediately conclude two very useful lemmas for

random step functions (which are also true for general non-anticipating processes). First, Ito integrals

are martingales
tmﬂX
</ Xtth> =0. (1.29)
0

Second, the variance of an Ito integral can be computed with a standard (non stochastic) integral

<</0tmx Xtth>2> = /Ot (X2)dt, (1.30)

a result dubbed Ito’s lemma [24]. To complete the construction of Ito’s integral, we need an appropriate
limiting procedure whereby a sequence of approximating random-step-function processes is constructed
and the original integral is the limit of approximating integrals. It turns out that the correct notion
of the limit here is that of the mean square error, and that both the approximating processes and the
integral itself converge in that sense.

To show explicitly that this notion of integration is really fundamentally distinct from the usual
integration, consider a famous integral fot Wy dWyr. We can easily construct a sequence of approximating
step functions of W; by a uniform discretisation of a given interval with the mesh size approaching to
zero. By a straightforward calculation we obtain a surprising result

(W —1t). (1.31)

DN | =

t
/ Wy dW, =
0

The additional term —t/2 does not have a classical counterpart.

The fundamental advantage of using Ito’s calculus over Langevin’s heuristics (apart from being for-
mally sound and the lemmas (1.29) and (1.30)) are the transformation rules of Ito’s formula — the
stochastic counterpart to chain rule.

Suppose that dX; = A;dt+ B;dW, in the weak sense of Ito integral and Y; = f(X;,t). Then we know

that
of , of 1O*f o of
R A PR - ) 1.32
v (3t+8x t+26:c2Bt dt—’_@thth (1.32)
This equation allows for solution of the previous integral (1.31)
d(Wy)? = 2W,dW; + dt, (1.33)

but more importantly for the physics applications, it gives the change of coordinates rules which are vital
when trying to take advantage of symmetries of studied systems.



Summarising, we can see that integral (1.31) is not only of academic interest. Equation (1.33) shows
that this behavior exactly describes the square displacements, which play a central role in determining
the diffusion coefficient. Given an SDE describing trajectories of Brownian motion, we can proceed by
generating sample trajectories and attempt to estimate the diffusion coefficient from them. For a very
simple case of a spherical colloid in a quiescent fluid, estimating diffusion directly from the mean square
displacement works fine. However, for a molecule of arbitrary shape or an elastic one that changes shape
while diffusing, the convergence of this method is impracticably slow. Better approaches to estimating
the effective size are required, as outlined in the next section.

1.4 The hydrodynamic radius

Experiments such as Analytical Ultracentrifugation (AUC) observe macroscopic changes in the con-
centration field ¢ which evolves due to sedimentation and diffusion. In this Section, we discuss the notion
of hydrodynamic radius which emerges naturally in the interpretation of experimental data, such as AUC
but also in scattering techniques (FCS, DLS, SAXS), which we discuss later.

In the simplest case of isotropic diffusion, the concentration field evolves according to Fick’s equation
with macroscopic diffusion coefficient D

B,
50=V (DVo). (1.34)

In the case of dilute suspensions, the macroscopic D can be identified with the self-diffusion coefficient
of a single colloid. For a suspension of microscopic solid spheres of size a the celebrated Stokes-Einstein
relation (1.18) gives D in terms of viscosity and temperature, which we repeat below

 kpT
~ 6mna’

D (1.35)

Ceteris paribus, the relationship (1.35) captures all relevant properties of the fluid in which colloids are
suspended, which in biochemical context is referred to as the buffer. We can invert equation (1.35) to
define hydrodynamic radius Ry, for an arbitrary colloid as

kgT

= . 1.
B 671D (1.36)

We define Ry, as the size of a microscopic solid sphere with the same diffusion coefficient as the studied
macromolecule. Since Ry, is derived from the apparent diffusion coefficient D, it is influenced by surface
effects such as hydration layers. On the other hand, in simple cases, Rj can be treated as a property
of the molecule alone, disregarding colloid-solvent cohesion, and thus it can be computed in a more
convenient way.

The diffusion coefficient can be in principle estimated directly from the sample trajectories generated
from the SDEs knowing that (in 3 dimensions) the mean square of the displacement of a point on a
molecule R(t) — R(0) (for example one of its atoms) satisfies the asymptotic relationship

(IIR(t) — R(0)[|*) ~6Dt,  t— oo. (1.37)

Many software implementations try to estimate D from short trajectories using the instantaneous
diffusion coefficient Dy only defined by the limit

(IR(t) = R(0)||*) ~ 6Dst,  t—0. (1.38)

Considerations of the memory function show that Ds > D for any tracking point [25], thus picking a
tracking point with the minimal Dy reduces the estimation error (in some cases to zero).

For a rigid macromolecule, Ry, can be calculated from the trace of the mobility matrix by transforming
it to track the diffusion centre—a point which minimizes the short-time diffusion coefficient Dy [17]. If
another reference point is chosen rotational motion contributes to the instantaneous diffusion coefficient
leading to an overestimate of long term diffusion coefficient [26]. Note that the diffusion centre does not
necessarily coincide with the centre of mass of the molecule.

For a rigid macromolecule modelled as a conglomerate of spherical beads, we can derive the hydro-
dynamic radius from its grand mobility matrix by considering the collective translational and rotational
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motion of constituent beads around any given point [27]. Forces acting on individual beads can be
computed by first deriving the grand friction matrix from grand mobility matrix, then imposing rigid
body motion and then computing the total force and torque required for such motion, thus obtaining the
conglomerate friction matrix. The conglomerate friction matrix is then inverted to obtain the conglom-
erate mobility matrix, which is then used to find the diffusion centre and, finally, conglomerate mobility
matrix centred at that point as described in detail in Cichocki et al. [25].

An alternative method of computation of R, is based on a heuristic observation that the trace of the
Oseen tensor satisfies the Laplace equation and Monte Carlo methods of solution of Laplace’s equation
are then applied to solve a heat equation with constant temperature difference between the surface of the
molecule and the ambient fluid. Heat flux is then used to estimate the effective size of such a molecule,
as described by the authors of the Zeno package [28], which we used in Waszkiewicz et al. [3].

For an elastic macromolecule, there are more bounded degrees of freedom apart from the rotation.
Deformation can also affect the instantaneous diffusion coefficient and a judicious choice of the tracking
point can remove much of the spurious overestimation which comes from the approximation of long-time
diffusion coefficient D with the instantaneous diffusion coefficient Dy.

a) b)
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Figure 1.1: a) Representative configurations of an elastic molecule taken from a Brownian Dynamics
simulation. b) Mean square displacement of three different tracked locations: the small bead at the end
of the chain (blue), the large bead at the other end (orange) and the weighted average of all four beads
compared with similar simulation from Cichocki et al. [25] (dashed line). After a long enough time the
slope of the mean square displacement is the same regardless of the point tracked. Graphics CC BY
4.0[4]

We now outline the basic idea of estimation of R}, proposed by Cichocki et al. [25]. The crucial step
is the choice of a tracking point of a particle. An intuitive first guess is to track 'the middle’ or the
geometric average of the constituent parts of the molecule, whereas a slightly more refined approach is
to use the centre of mass — this is clearly not an optimal strategy, as shown by the exact result for the
rigid molecule. Location, or more specifically, the weights in the weighted average, have to be derived
from the hydrodynamic properties rather than from the hydrodynamically irrelevant mass. The need
for selection of a correct tracking point is highlighted by 1.1, here the short term diffusion coefficient
corresponds to the initial slope of the mean square displacement.

Treating the translational mobility u' as a tensor (with indices space, space, bead, bead) we can
define an inverse matrix of per-particle ensemble-average traces of mobility b as

by (<“tt>)jku = Ok (1.39)

where (-) denotes ensemble average. Then the hydrodynamic radius is estimated by

-1

1
Rh ~ % ZZb” . (140)

We called this approach the minimum dissipation approximation (MDA) as explained in Waszkiewicz
et al. [5]. A detailed derivation of the MDA method can be found in Cichocki et al. [25].

Clearly, the MDA method (and earlier, simpler and popular Kirkwood-Riseman method [29]) re-
quire estimating the ensemble averaged translational-grand-mobility matrix. Given the Rotne-Prager
approximations of Egs. (1.17), we require only the relative positions of the constituent elements of the
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molecule and their effective sizes. These should be drawn from the equilibrium distribution given by the
Boltzmannian

dp o exp <—U> dv. (1.41)

kT
There are two potential difficulties with computing this measure: determining the potential energy U
and determining the volume element dV. We discuss both of them in greater detail in Waszkiewicz and
Lisicki [6]. Both of these problems are more pronounced in coarse-grained models when very stiff springs
are used as models of bonds, leading to superficially paradoxical results such as the ’'trimer paradox’
discussed therein.

The methods discussed above have broad applicability, but now we turn our attention to specific
examples of molecules studied in this thesis to highlight their distinct physical properties. The stiffness of
different macromolecules varies significantly, spanning many orders of magnitude, which in turn motivates
the use of different modelling approaches in different cases. We will outline the methodology leading to
these diverse approaches in the following sections.

1.5 Elastic macromolecules

Soft matter as a discipline of physics evolved out of ’colloid suspensions science’ under the influence
of two ’fuel sources’ — bio-relevant measurements showing immediate applicability and a chase of obser-
vations of universal’ validity, with universal being interpreted as insensitive to bio-chemical details of
the molecules. A good example of intersection of these two currents are models of long polymeric chains
— first elastic macromolecules to be successfully modelled. These include some synthetic plastics but also
bio-molecules, such as the DNA or denatured proteins. A phenomenological approach to estimating the
properties of coarse-grained models of such polymeric chains started with representing them as chains
of N identical monomers, distributed randomly. A celebrated result of Rouse found the hydrodynamic
radius Rj, ~ N'/2 for a Gaussian chain with N elements [30]. It was later improved by Zimm by the
inclusion of excluded volume interactions [31] to yield Ry ~ N7 with v = 0.588. For a more detailed
overview the subject matter see Hermann and Gompper [16, chapter 3|. These scalings are valid un-
der the assumption of small persistence length P = EI/(kgT), which captures the ratio of elastic forces
(proportional to the bending rigidity E1, E being the Young’s modulus and I the area moment of inerial)
to Brownian forces (proportional to fluctuation energy kgT).

In reality, there are more forces influencing the conformation of macromolecules. Their relative
importance is easiest to compare using length scale ratios, which quantify the respective ranges of different
interactions within the molecule. In our case, the length scales of interest include the already mentioned
persistence length, the building block size (quantifying excluded volume interactions), and the Debye
length (quantifying electrostatic interactions, scaling with the inverse square root of the ionic strength C
of the buffer). Some values of these length scales, pertinent to the publications [3] and [5], are outlined
in Table 1.1. The need for assessing the relative values for each problem is apparent — there is a factor
of 160 difference in stiffness of protein linkers and DNA filaments.

Description Scaling IDP [A] DNA [A]
Length L 2000 1000
Persistence length P = EI/kgT 3 500
Building block 4 3
Debye length Rp ~ (C,)~1/? 1 1
Applicable limit hot cold(?)

Table 1.1: Relevant length scales for the two studied problems. Length row represents typical values.
Debye length computed for relevant (physiological) buffer conditions.

The first type of molecules investigated in this doctoral thesis are DNA minicircles, whose persistence
length is comparable to the length of the very short DNA minicircles under investigation by the group
of Professor Lynn Zechiedrich at Baylor College of Medicine, described in detail in [3]. Consequently,
their conformation is primarily determined by the minimization of elastic forces and is relatively stable.

The second type of molecule investigated in this thesis is intrinsically disordered proteins (IDPs),
analysed in [5]. Their persistence length is two orders of magnitude smaller and comparable to the
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building block size (the C,, distance between consecutive amino acids along the chain). This characteristic
leads to a large conformational variability in an equilibrium ensemble, making both measurement and
modelling challenging.

Much of the theoretical enthusiasm in developing complex models of IDPs, with a multitude of
interactions, is hampered by an insufficient quantity or quality of experimental calibration data necessary
for the determination of molecular "material constants". In polymer science domains where data is
plentiful, such as the area of globular proteins that can be readily measured by techniques like X-ray
crystallography, significant numerical progress has been made using machine learning techniques, leading
to celebrated examples like AlphaFold [32], which has achieved even popular science recognition.

Progress in the domain of IDPs is much more modest, even though they constitute a large proportion
of proteins [33] and play an important role in multiple bio-relevant processes, such as the functioning of
the COVID-19 virus [34] (to name just one example particularly resonant in 2024). In the opinion of
the author this progress is (at least in part) determined by the amount of readily available experimental
data; Compare over 200 thousand conformations available in the Protein Data Bank [35] with not even
50 high quality measurements of the diffusion coefficients of the IDPs we were able to extract from
published works [5], 118 proteins in the Small Angle Scattering Database [36], or 462 proteins in the
Protein Ensemble Database [37].

Simultaneously, a variety of biochemical insights into both folded and disordered protein behaviour in-
vite phenomenological models with many covariates to explain the hydrodynamic size of these molecules.
A specific example of such insight could be the relative rigidity of polyhistidine fragments and tags. Their
presence (or, more simply, the share of histidines in the totality of amino acids forming a molecule) is
sometimes used as an explanatory variable in the process of phenomenological modelling [38, 39].

As data concerning the hydrodynamic properties of IDPs is scarce, and a direct intervention in the
protein sequence can be prohibitively expensive, since the synthesis of each new protein construct can
take months, we encounter an issue more familiar to social scientists than physicists. The available infor-
mation essentially forms an observational study where correlation is difficult to separate from causation?.
Even if we perform all statistical analyses correctly and observe a statistically significant correlation be-
tween, for example, the presence of a his-tag and an increase in hydrodynamic size, how can we be sure
that it is not simply a case of a confounding cause? One can easily imagine a scenario where compact
proteins containing a his-tag are simply harder to synthesize, leading to a distorted sample (selection
bias) and forming our phenomenological conclusion based on biased data. Correlations estimated this
way can even have the opposite sign to the real causal effect, which is what we are really trying to esti-
mate. A comprehensive and approachable overview of the discrepancies between causal and correlational
findings in observational studies can be found in Cinelli, Forney, and Pearl [40]. For a more introductory
exposition, we refer to Neal [41].

Until and unless we have a very large dataset of hydrodynamic properties of a bias-free, representative
subset of IDPs, first-principles theoretical models should take precedence over phenomenological models.
This is not just because of their precision, as demonstrated in Waszkiewicz et al. [5], but also because
they correctly model the causal dependency between the covariates of interest and hydrodynamic size.

1.6 Diffusion coefficients in hot and cold limits

First-principles models of elastic molecules come in two flavors: atomistic and coarse-grained. Atom-
istic methods, as outlined by Karplus and Petsko [42], can be utilized, albeit with certain challenges.
These methods either involve the explicit simulation of surrounding water molecules, demanding sig-
nificant computational resources, or employ an implicit solvent scheme, both of which pose notable
numerical difficulties [43]. Even if simulations are theoretically feasible, generating 10-100 millisecond
long trajectories for the direct computation of long-time diffusion coefficients, using this method requires
great computational power.

On the other hand, coarse-grained methods utilize larger units, typically amino acid residues for
proteins, or base pairs for the DNA, as building blocks for conformation prediction schemes. These units
are integrated with a separate hydrodynamic model to predict diffusion coefficients.

Addressing the problem directly, even within a coarse-grained perspective, still presents numerical
challenges. Furthermore, the identification of a minimal model capable of reproducing experimentally

1This is in contrast to a typical physics experiment, akin to a randomized controlled trial in a social setting, where the
experimenter is free to choose the value of the control variable and measure the outcome. In the example study of his-tag
influence, we cannot simply randomly separate proteins into two groups and add or remove his-tags as required.
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observed variations in diffusion coefficients holds an intrinsic value, offering a direct interpretation of
observed variability through a restricted set of molecular mechanisms. In this context, two different
minimal models, termed the “cold limit” and “hot limit,” (inspired by the naming conventions such as
[44, 45]) were employed to simulate the conformations of two classes of molecules: DNA minicircles and
Intrinsically Disordered Proteins (IDPs).

A comparison of persistence length to the minicircle length and a visual examination of CryoEM
figures from Irobalieva et al. [46], alongside equilibrium configurations of twisted beams as described
by Coleman and Swigon [47] suggested that thermal fluctuations might exert only a minor influence on
the overall behaviour of these molecules. Consequently, the problem was modelled in the “cold limit”
(cf. Table 1.2), where thermal fluctuations were neglected, and only equilibrium configurations were
computed, akin to operating at negligible absolute temperature. Subsequently, these configurations were
treated as rigid bodies when determining the hydrodynamic radius, as detailed in Waszkiewicz et al. [3].
The influence of thermal fluctuations was further investigated using the pychastic package [4] which we
developed post-publication.

The second type of molecules investigated in this study was the intrinsically disordered proteins
(IDPs). These molecules exhibit much smaller stiffness, with a persistence length as small as 3 A
and an elastohydrodynamic length scale (873EI/(L?gp)) of approximately 2000 A, comparable to the
molecule’s length. This characteristic further justifies our initial concern regarding the potential influence
of buckling forces arising in sedimentation on the hydrodynamic sizes in AUC measurements. Fortunately,
the group led by Prof. Anna Niedzwiecka at the Institute of Physics, Polish Academy of Sciences, who
provided experimental data for our joint publication [5], employs fluorescence correlation spectroscopy
(FCS) instead of AUC, which does not introduce large force gradients on the molecule. Given that
the persistence length is comparable to the building block size, we decided to focus on the hot limit
of the problem, where elastic forces are disregarded relative to thermal fluctuations. However, the
excluded volume interactions do not vanish at high temperatures; thus, this approach can be treated
as a limit 7' — oo approximation, hence the name. More precisely, bending forces arising from the
distribution of Ramachandran angles were neglected, while the forces governing bond length were taken
to be infinitely strong. This approach requires care when handling bond-angle distributions, and some
apparently paradoxical results can arise, as discussed in Waszkiewicz and Lisicki [6]. We show there that
the intuitive distribution ’uniform on a sphere’ indeed arises as a limit in the case of linear filaments
(notably, a different distribution arises for molecules with loops as shown therein).

Manuscript Elasticity Thermodynamics Hydrodynamics

DNA [3,2] . v
IDP [5, 6] v v
Pychastic [4] Vv v v

Table 1.2: Three domains of interest for the study of elastic molecules. Very high and very low stiffness
of DNA and IDPs respectively allowed us to use simplified models. The numerical package Pychastic
provided an additional tool to explore intermediate regimes where all three factors have to be incorpo-
rated.

The two experimentally inspired problems, even though solvable to a satisfactory degree within the
presented approximations, leave a desire to assess the size of the error introduced by these particular
simplifications. These error estimates can be compared either to the precision of the experimental
data or to the estimates of other approximation errors in the model, such as approximations of the
hydrodynamic mobility tensors. This can guide the effort in further improvements to the numerical
method; For example, should we first work on including thermal fluctuations to the conformations or
rather improve hydrodynamic mobility tensor approximations?

When the mobility tensors are simply modeled with the Rotne-Prager approximation (such as the
tensors of the pygrpy package), the errors introduced there are of the order of 2% [17]. Assessing errors
introduced by approximate conformer generation, whether in the hot (T — oo) or cold (7" — 0) limit,
necessitates simulating the ensemble at finite temperatures.

Various methods can be employed for this purpose, but a simulation grounded in physical principles
holds particular appeal. To achieve good performance, the Brownian Dynamics method was selected.
This approach relies on formulating the dynamical equation governing conformational changes in the
form of an SDE.

Surprisingly, in 2022, the authors found that the only high-quality SDE integration package available
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was differentialequations.jl in Julia [48]. Since Julia is still not very popular among physicists
(or at least not inside the soft-matter community), this resulted in frequent re-implementation of SDE
integration methods for each problem and often re-implementation of the hydrodynamic interaction
tensors as well, possibly due to the fact that the Rotne-Prager-Yamakawa tensors most frequently used
in our group were originally implemented in Fortran [17].

We addressed this issue by ensuring that the packages pychastic (for SDE integration) and pygrpy
(for Rotne-Prager-Yamakawa tensors) are easily accessible, with single command installation and com-
patibility across various operating systems including Linux distributions, MacOS, and (as of 2023) even
Windows 10 [49]. Additionally, substantial effort was invested in creating straightforward yet realistic
examples in the documentation. This not only simplifies the learning curve but also aims to encourage
a wider adoption of our integration package. For a comprehensive understanding of implementation and
usage, we refer to the detailed information provided in Waszkiewicz et al. [4].

The specific implementation of pychastic further streamlines the development of similar models by
eliminating the need for explicit force specification. Instead, users can now simply define the energy,
and the forces can be derived programmatically using jax.grad without compromising the speed and
precision. This feature proved particularly advantageous in simulating shear-relaxed dynamics of DNA
minicircles in [3], where the energy depends on the non-local quantity of writhe (Wr).

The answer to the correct development direction (in the opinion of the author) lies in future exper-
imental data with resolutions capable of probing inaccuracies of the force-fields used or showing clear
dependencies on buffer conditions such as temperature or ionic strength. Such measurements are in
progress, and early results provide insights into future DNA models [50].

1.7 Experimental techniques

For the author, the experimental challenges of studying biomacromolecules have been an eye-opening
lesson in patience. The excellent work on biosynthesis by the groups at Baylor College of Medicine
(Houston, Texas, USA) and the Institute of Physics of the Polish Academy of Sciences (Warsaw, Poland)
should not be underestimated. These two collaborations provide an overview of many experimental chal-
lenges: from the success or failure of initial biosynthesis, obtaining correct concentrations, to purification
from by-products of biosynthesis and the stability of the resultant molecular constructs, to practical
obstacles such as replacing discontinued lab equipment and cross-border shipping.

Even in the fortunate scenario, when one obtains a good sample of the molecule to study, the measure-
ment itself is a demanding task. Both AUC and FCS methods rely on time-series analysis of an optical
signal. In that sense, they are both indirect methods requiring model fitting within the experimental
procedure. This complicates the analysis of direct measurement error (uncertainty of a single measure-
ment), with the current Monte Carlo-based AUC analysis method providing no uncertainty estimates for
samples of high purity. However, the single-measurement error is not the only, and not even the leading,
source of uncertainty in the measurements of diffusion (and sedimentation) properties of the molecules.
Since buffer conditions, concentration, and even the time from synthesis [51] affect the final outcome,
these factors must be incorporated into the error analysis to arrive at a comprehensive confidence interval
for the measurements. Unfortunately, some authors do not provide any error estimates [52, 53], and most
of them do not discuss multiple sources of error.

The following Subsections describe the theoretical underpinnings of the experimental methods rele-
vant to the publications included in this Thesis.

1.7.1 Analytical Ultracentrifugation

Analytical Ultracentrifugation (AUC) is one of the oldest techniques in the domain of colloidal science,
having been developed by T. Svedberg in 1923, who received a Nobel prize in 1926 for his contributions
to colloid chemistry. In AUC, a colloidal suspension is put inside a rapidly rotating centrifuge to increase
the sedimentation rate of the molecules: urrent centrifuges spin with G-forces as large as 10’000G. Inside
the centrifuge rotor, a small window allows for optical measurements of either absorption or transmission
(in recent models involving multiple wavelengths) which change as a result of concentration variation.

Changes of concentration inside the container are governed by the Lamm equationthat describes the
temporal variation of the local concentration field ¢ and that contains the divergence of two currents:
diffusive — proportional to concentration gradient and sedimentation — proportional to the local outward
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Figure 1.2: a) Rotor from an ultracentrifuge. b) Haemoglobin concentration profiles from an early AUC
experiments with rotor spinning at 42’000rpm or 104’000 G. Profiles derived from photographs taken at
30 minute intervals are compared with Lamm equation predictions (dashed). Reprinted with permission
from [54]. Copyright 1927 American Chemical Society.
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% =V (DV¢+ sw’R¢), (1.42)

where D is the diffusion coefficient, and D is the sedimentation coefficient. Derivation of the values of
s and D from experimental, time-dependent concentration profiles is done via a fitting procedure which
requires efficient solution schemes for the PDE (1.42) [55, 56]. The finite element method combined
with nonlinear least-squares techniques and Monte-Carlo based error estimation gives both values and
uncertainties of the values of s and D that can be used to determine other molecular parameters, such
as Ry, or molecular mass.

1.7.2 Fluorescence Correlation Spectroscopy

The overview of the Fluorescence Correlation Spectroscopy (FCS) technique follows that of Tompson
[57] and Gregor and Enderlein [58]. The FCS method, introduced about 50 years after invention of
AUC, relies on the temporal analysis of fluorescence signal to determine the properties of the studied
sample. These include the hydrodynamic size (relevant to this work), but it is also possible to determine
adsorption or reaction kinetics using this method.

In the case of diffusion constant measurements, a very dilute sample of a studied molecule (typically
marked with an added fluorophore) is illuminated by a laser inside a confocal microscope. An excited
fluorophore then emits light back through the microscope but at a slightly shorter wavelength (due to
the Stokes shift) which reaches the detector shielded from laser light with a dichroic mirror (cf Fig. 1.3).

The recorded fluorescence signal F'(t) is time dependent, since the number of molecules inside the
laser beam changes in time due to diffusion. FCS experiments perform best when at each moment
the expected number of excited molecules is close to one giving the largest relative fluctuations of the
fluorescence signal.

The frequency of the fluctuations due to diffusion can be quantified (and thus used to derive the
diffusion coefficient) by considering the signal autocorrelation function G(7) given by

G(r)=(F({t)F(t—T1)) (1.43)

with (-) denoting time average. This function is composed of two terms — a constant background (in
the case of non-interacting molecules) term due to photons coming from two different molecules, and a
delay-dependent term quantifying the probability of detecting a photon from the same molecule again.
For simplicity of this overview, we focus only on the last term.

Suppose that a position-dependent probability of excitation describing the shape of the excitation
volume can be approximated by an axisymmetric Gaussian profile U(r), given by

U(r) = kexp (_a22 (®+9%) - 1)22,22) , (1.44)

with r = [z, y, 2] and & is some overall constant.
If we now consider the Green’s function g(p, 7) of the diffusion problem given by
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where p is the distance, and 7 is the time, we can express the autocorrelation function according to

G(7)

//U(r + p)g(p, T)U(r)drdp (1.46)

3/2 2
=T a’b (1.47)

8 (1+4D7/a2)\/1+4D7/b?’

which expresses thae fact that the particle has travelled the distance rho during a time interval 7. Since
the parameters a and b cannot be known a priori, one typically fits a simplified expression

G(r) = G(0) ((1 + ;) (1 + 7;) 1/2) B +G(o0), (1.48)

where 7 quantifies the aspect ratio of the excitation volume and 7p characteristic time of the diffusion.
We can obtain the diffusion coefficient D from the residence time by comparing a reference sample of
known D and computing a ratio.

1.7.3 Small Angle X-ray Scattering

This section follows the notation of Hermann [59]. Another experimental technique is based on the
analysis of the X-ray scattering on the colloidal particles as a function of the beams deflection vector g
defined as a difference between incoming wave vector k; and scattered wave vector k.

Figure 1.4: Phase shifts in Born approximation.
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For colloidal particles, the Born approximation of single-event scattering (as show in Fig. 1.4) is a
sufficient description to model experimental data. Within this approximation, the scattering pattern is
computed as an interference pattern of the scattered signals from different scattering sites due to phase
shift A® resulting from the difference in the length of the optical path

AD = Ri]‘ . (ks — kz) = Rij - q. (149)

We can express the complex amplitude of the scattered wave A(q) as a Fourier transform of the
scattering intensity distribution p(r) as

A(q) = Ao/p(r) exp(iq - r)dr. (1.50)

Since the observed intensity on the screen I is proportional to the squared absolute value of the wave
amplitude I(q) oc |A(q)|?, we can express I(q) as a double integral

AlQP = A4 (1.51)
= A%//p*(r’)p(r”) exp(iq - (v —7"))dr'dr". (1.52)

If we assume that the scattering sites are point-like, we can express the scattering density distribution
as a sum of Dirac distributions § centred at the locations of scattering sites s;

p(r) = pid(r — s;), (1.53)
i
where p; gives scattering intensity on site i. The integral (1.52) reduces then to a double sum

1a) = 433" pips explia - (si — 5,)) (154

? J

Inside the colloid, the distribution of orientations of the macromolecules with respect to the lab frame is
invariant under action of rotations. For a vector v = s; — s; this simply implies v distributed uniformly
on a sphere and its projection onto the vector q being distributed uniformly on an interval according to
the orange slicing theorem? giving

1@) = 4033 pios [ explias)L(s] < [s: - 5;])ds (1.55)
= A()ZZPinSinC(WHSi—3j|) (1.56)

40323 pupy sine(lgl | Ry ), (157)

z J

where the sinc function is defined as sincz = sinz/x. Thus, the prediction of the scattering intensity in
a SAXS measurement of a colloidal suspension reduces to the computation of the distance matrix R;;
between the scattering sites, given the values of scattering intensities p;(g). In the case of elastic macro-
molecules, the scattering signal is simply averaged over an ensemble of possible molecular conformations.
With the aid of tabulated values of scattering intensities of each amino acid obtained by Tong, Yang,
and Lu [60], a Python package, saxs_single_bead, was developed. This package facilitates a simple
computation of SAXS profiles in the one-bead-per-residue approximation. It serves as a complement to
our ensemble generation schemes operating within this coarse-graining resolution.

2the orange slicing theorem: if you slice an orange into slices of equal thickness each slice has the same share of the
orange peel
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Software packages

Most of the source code utilized in the preparation of this thesis has been made available in public
repositories on GitHub. Furthermore, considerable effort was invested in structuring the software into
Python packages with structured documentation to facilitate ease of use, as detailed in Table 2.1.

The package pychastic, described in detail in Ref. [4], was initially conceived as a tool for generating
equilibrium configurations and studying memory effects in the diffusion of macromolecules, an ongoing
research project of the group. It is capable of simulating Stochastic Differential Equations, including the
equations of Brownian Dynamics. Formulating the full equations of Brownian Dynamics requires the
computation of mobility tensors, which can be evaluated using components of the pygrpy package. This
package can also compute the hydrodynamic size of rigid molecules based on the same grand mobility
matrices.

Another package, glm_mda_diffusion, relies on pygrpy and serves as the Pythonic counterpart
to the publication by Waszkiewicz et al. [5]. It can compute the hydrodynamic size of Intrinsically
Disordered Proteins (IDPs) using an annotated amino acid sequence from conformers generated by the
sarw-spheres package. The sarw-spheres package generates self-avoiding random walks consisting of
tangent spheres of variable size. Its recursive implementation allows for very fast sampling compared to
naive sphere-by-sphere randomization.

Finally, the saxs-single-bead package provides methods for computing Small-Angle X-ray Scatter-
ing (SAXS) profiles from the locations of amino acids in both rigid cases and ensembles (for example,
generated using the sarw-spheres package).

Package Description GitHub Docs
pychastic SDE solver [61] [62]
PYETPY Rotne-Prager mobility tensors [63] [64]
glm_mda_diffusion GLM-+MDA diffusion calculator [65]
sarw-spheres Globule-linker conformer generator [66]
saxs-single-bead  One site per amino-acid SAXS engine [67] [68]
pywrithe Computing writhe of a curve [69] [70]

Table 2.1: Software packages developed in the course of preparation of this doctoral Thesis.
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Main results of the Thesis

The main results of this Thesis are a series of six research papers, four of which already published
in international academic journals. Four papers contain theoretical and numerical results related to
the modelling of elastic macromolecules in various settings or the development of practical tools for
modelling. The remaining two manuscripts contain results of experiments, along with theoretical models
that aim to interpret and rationalise the measured quantities.

Paper 1

Paper I1

Paper III

Paper IV

Paper V

The publication, titled Hydrodynamic Effects in the Capture of Rod-like Molecules by a
Nanopore [1], co-authored by Maciej Lisicki, provides an analysis of the influence of wall
interaction and hydrodynamic anisotropy in the process of capture by a nanopore, relevant
to short DNA fragments and a method of their sequencing. A theoretical consideration of
a rod-like molecule with uniformly distributed charge provides simple scaling-based criteria
for determining when and where inclusion of the wall corrections is required.

The article, titled Stability of Sedimenting Flexible Loops [2], co-authored by Piotr Szymczak
and Maciej Lisicki, provides a linear stability analysis of elastic loops within the resistive-
force theory framework coupled with elastic forces modeled with Euler-Bernoulli equation.
We were able to establish a semi-analytic stability criterion and re-derive the dimensionless
quantity governing the buckling instability for this and similar problems.

The publication, titled DNA Supercoiling-induced Shapes Alter Minicircle Hydrodynamic
Properties [3], co-authored by Maduni Ranasinghe, Jonathan M. Fogg, Daniel J. Catanese
Jr, Maria L. Ekiel-Jezewska, Maciej Lisicki, Borries Demeler, Lynn Zechiedrich, and Piotr
Szymeczak, is a result of theoretical-experimental collaboration with the team based at Baylor
College of Medicine and Rice University (JMF, DJC, and LZ; experts in biosynthesis, DNA
properties, and sample preparation) and the team based at the University of Lethbridge (MR
and BD; experts in AUC measurements) with a theoretical collaboration between the Insti-
tute of Fundamental Technology Research, Polish Academy of Sciences (MLEJ), and a team
at the University of Warsaw (RW, PS, and ML). In this publication, we have determined
the impact of negative supercoiling and curvature on the hydrodynamic properties of DNA
by subjecting 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC).
We then utilised linear elasticity theory and hydrodynamic calculations to predict the DNA
shapes and diffusion coefficients.

The publication, titled Pychastic: Precise Brownian Dynamics using Taylor-Ito Integrators
in Python, co-authored by Maciej Bartczak, Kamil Kolasa, and Maciej Lisicki, is a result of
work on the implementation of efficient stochastic differential equations solvers capable of
convenient treatment of Brownian Dynamics (BD) problems. By expressing BD equations
as Ito integrals, we can leverage the classical methods of truncated Taylor-Ito integrators.
As part of the documentation of the pychastic package, we show how to deal with common
BD obstacles: calculations of the divergence of the mobility tensor in the diffusion equation
and discontinuous trajectories encountered when working with dynamics on $? and SO(3).
With a vectorization-oriented implementation, we have achieved performance comparable to
earlier implementations in lower-level programming languages.

The manuscript, titled Minimum Dissipation Approximation: A Fast Algorithm for the Pre-
diction of Diffusive Properties of Intrinsically Disordered Proteins, co-authored by Agnieszka
Michas, Michal K. Biatobrzewski, Barbara Klepka, Maja Cieplak-Rotowska, Zuzanna Stasza-
tek, Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna Niedzwiecka, is the result of
an experimental-theoretical collaboration between the team based at the Institute of Physics
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Paper VI

of the Polish Academy of Sciences (AM, MKB, BK, MCR, ZS, and AN; experts in protein
biosynthesis and FCS experiments) and the theory team at the University of Warsaw (RW,
BC, ML, and PS). In our study, we demonstrate a fast numerical method combining simple
conformational sampling and approximate hydrodynamic interactions to estimate the diffu-
sion coefficients of intrinsically disordered proteins (IDPs), even in the presence of structured
do- mains, with a precision surpassing the classical Kirkwood-Riseman approximation. With
a new collection of diffusion coefficient measurements, we can quantitatively compare our pre-
dictions with multiple models present in the literature (such as power-laws and power-laws
with sequence-dependent corrections).

The manuscript, titled The trimer paradox: the effect of stiff constraints on equilibrium dis-
tributions in overdamped dynamics, co-authored by Maciej Lisicki, deals with the problem of
very stiff constraints and limiting bond-angle distributions arising from those constraints in
coarse-grained spring-bead models of macromolecules in the diffusive regime. It shows that
even though the solution of the paradox was elucidated as early as 1984 by van Kampen, ex-
plicit (and correct) treatment of this limit was missing from well-known books such as those
by Frenkel [71]. By a careful treatment of singular distributions, we show that a combination
of metric properties of the constraining manifold and the Hessian of the constraining field
are required for the correct determination of bond angles, and that 'uniform on a sphere’
distributions for harmonic constraining potentials are not universal, with potentially large
deviations for small cyclic molecules. These results establish theoretical foundations for the
globule-linker model and should guide further work on the minimum dissipation approxima-
tion.

The aim of the presented work was twofold: to address the immediate needs of the experimental groups we
have been collaborating with, but also to establish robust 'null hypothesis’ models, which are easy enough
to use and incorporate all of the fundamental interactions required for the modelling of diffusion, but
not more. As such, deviations from these models can be used as quantitative indicators of a significant
contribution of new physical phenomena (for example, electrostatic interactions or the formation of
transient bridges between distant parts of the molecules).
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3.1 Paper I: Hydrodynamic effects in the capture of rod-like
molecules by a nanopore

PAPER I

“Hydrodynamic effects in the capture of rod-like molecules by a nanopore”

Radost Waszkiewicz and Maciej Lisicki

COMMENTARY

Translocation of biomolecules through nanopores lies at the heart of many biological processes, such
as cell signalling. It is a significant element of modern nanotechnology and sequencing techniques which
give access to the structure of DNA or RNA in small quantities. Thus, it enables low-cost genotyping and
testing without the need to resort to PCR amplification or chemical labelling. In a relevant experimental
setup for DNA analysis, the efficiency of sequencing hinges on two critical factors: the translation speed
through the nanopore and the capture radius of the nanopore.

The complex process of translocation is now understood in great detail and has been studied exten-
sively to assess the importance of multiple contributing factors. However, the process of approach and
capture by a nanopore still poses a challenge. Existing capture models mostly neglect hydrodynamic
interactions, which might play an important role when the DNA fragment is sufficiently close to the
nanopore. This work aimed to fill this gap by discerning and examining the time scales associated with
different modes of motion — rotational and translational — induced by different types of forces present in
the system: Brownian fluctuations, electrostatic attraction to the pore, and hindering effects of hydrody-
namic interaction with the wall. By the analysis of different regimes, we successfully identified the pore
distance at which wall interaction terms exert a dominant influence and therefore should be accounted
for in quantitative models.

To perform the analysis, we constructed a simple coarse-grained model of an anisotropic, rod-shaped
particle, representing the elongated nature of a DNA filament of a length short compared to its persistence
length. In this case, a molecule can be treated as a rigid body, for which an approximate form of
the mobility tensor in the presence of a wall has been proposed [72]. In this work, we performed
scaling analysis to identify the regimes where different types of forces are dominant. We calculated
the trajectories of a model nanorod near a wall in Mathematica, incorporating the near-wall corrected
mobility tensor, which takes into account both the anisotropy of the particle itself, and its coupling to
the wall. We then formulated criteria as to where the inclusion of hydrodynamic interactions with the
bounding surface could prove beneficial for quantitative modelling of the capture process.

In this study, the PhD candidate: co-developed the scaling analysis and the theoretical description,
implemented the near-wall corrections to the mobility tensors and generated all numerical results and
visualisations presented, participated in the analysis of results, prepared all figures, wrote the first draft
and edited all subsequent versions.
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Abstract

®

CrossMark

In the approach of biomolecules to a nanopore, it is essential to capture the effects of
hydrodynamic anisotropy of the molecules and the near-wall hydrodynamic interactions which
hinder their diffusion. We present a detailed theoretical analysis of the behaviour of a rod-like
molecule attracted electrostatically by a charged nanopore. We first estimate the time scales
corresponding to Brownian and electrostatic translations and reorientation. We find that
Brownian motion becomes negligible at distances within the pore capture radius, and
numerically determine the trajectories of the nano-rod in this region to explore the effects of
anisotropic mobility. This allows us to determine the range of directions from the pore in
which hydrodynamic interactions with the boundary shape the approach dynamics and need to

be accounted for in detailed modelling.

Keywords: diffusion, nanopore, hydrodynamic interactions, hydrodynamic mobility

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanopore sequencing is now a well-established technique for
the determination of structure of biomolecules [1, 2], such as
DNA [3], RNA [4], or proteins [5]. The molecules, which are
typically slender filaments, are electrophoretically transported
to the nanopore and then translocated through an orifice. The
process of passage or threading, controlled by a combination
of electric [6, 7], electrokinetic [8], entropic [9], osmotic [10,
11] and mechanical forces [12], is now well understood and
explored.

However, the approach to the pore is described in less detail.
Available models characterise the dynamics of the molecule by
its diffusion coefficient D and electrophoretic mobility p.. This
simplified approach has proved useful to establish the general
properties of the system. In reference [13], Grosberg and Rabin
determined the concentration of DNA near the pore using the
Smoluchowski equation formalism. Qiao et al defined the cap-
ture radius of the pore [14], being the distance at which thermal
fluctuations become comparable to the electrostatic potential
energy, which bounds the region of attraction of the pore. In the

* Author to whom any correspondence should be addressed.

1361-648X/20/104005+8$33.00

following works, they extended this notion by introducing the
orientational capture radius [15], being the range at which the
electric field strongly orients the colloidal rods. These mod-
els, however, neglect the anisotropy of the particles, and of the
hydrodynamic interactions with the wall which hinder diffu-
sion at close distances. Hydrodynamic effects are known to
alter the trajectories of close sedimenting particles [16, 17]
by coupling to their inherent shape anisotropy and lead to a
general slow-down of colloidal dynamics [18].

In this contribution, we fill this gap by formulating a
detailed theoretical approach which accounts for anisotropic
diffusivity of a model nano-rod both due to its non-isotropic
shape and due to the particle-wall flow-mediated interactions.
We first use this model to determine the time scales cor-
responding to the subsequent phases of motion of a nano-
rod approaching a pore: purely Brownian motion far from
the pore, electric field-induced translation and reorientation,
and the wall influence region. Then we provide a quanti-
tative insight by solving the equations of motion numeri-
cally for a collection of initial positions and orientation. We
describe the resulting trajectories and mechanisms shaping
the motion. This allows us to determine the wall influence
region.

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Sketch of a nanorod close to a nanopore denoted by a red
dot. The pore generates a radial electric field, modelled by a point
charge placed in its location at the origin. The configuration of the
rod is given by its position r and orientation u, which corresponds to
an inclination angle 6. In addition, we denote by « the polar angle at
which the rod is seen from the pore.

We focus on microparticles which can be modelled as
stiff rods. This is appropriate for biomolecules of length L
shorter than their persistence length L,. Examples of such
nano-rods include dsDNA shorter than L, ~ 50 nm (or ca
150bp) or fd-viruses [19], with L = 880nmand L, = 2.8 jum,
translocating through solid-state pores [20]. For longer
molecules, the effects of elasticity and changing conformation
can lead to coiling [21] or knotting [12, 22] and must be taken
into account for proper modelling.

The paper is organised as follows. First, we describe the
general model in section 2.1, specifying the form of elec-
trostatic interactions in section 2.2 and hydrodynamic inter-
actions in section 2.3. The following section 3 presents our
results, divided into scaling insights in section 3.1, and a
numerical analysis of the trajectories in section 3.2. We sum-
marise our conclusions in section 4.

2. Model

2.1. Motion of the nanorod

We consider an ellipsoidal rod of length L with its centre
located at a point r, as sketched in figure 1. The aspect ratio
of the rod is p = 10. The director of the rod is a unit vector
u. The nanopore is at the centre of a Cartesian lab coordi-
nate system, with the z axis being normal to the wall, defined
by the xy plane. Thus, the rod is at a distance H =r - e,
from the wall and its inclination angle 6 is determined by
cosf =u-e,.

The rod is charged and moving in an electric field gener-
ated by the nanopore. The field exerts an electrostatic force,
F. and torque, T, on the rod. On the other hand, the sus-
pending fluid reacts to the motion of the particle by exerting a
frictional force, Fy,, and torque, T',. Because the flow is charac-
terised by a small Reynolds number, the lack of inertia yields
the following equations of motion of the particle

F.+F, =0, ey
T.+Ty=0, @)

which determine the translational and rotational velocity of the
particle, V and €2, respectively. These are then used to evaluate
the trajectory and orientation according to

ou
s Q xu. 4

2.2. Electrostatic interactions with a nanopore

Following previous works [15], we model the interaction
between a pore and a rod using the Coulomb potential from
a point source. We assume that in the capture process rods
are uniformly charged with an effective electrophoretic charge
0 [13]. We will measure the strength of the electric field by
the capture radius A.: a distance where the potential energy
QV of the rod is comparable to the thermal fluctuations, so
QVU(Ae) = kgT, with kg being the Boltzmann constant and 7
the temperature. In this setting, the electric field at a location r
can be written as

kpT e 1
BQ : 5 (5)

where the hat denotes a unit vector. The potential energy of the
particle in the electric field is given by an integral along the rod

E(r) = —

 ksT A /L/2 ds

\I/ VN
¢ L) ppr@s)

(6)
where r(s) represents distance from the pore to the rod element
s. From this we can obtain exact integral expressions for the
force F. and torque T, acting on the rod by appropriate differ-
entiation. Since in the remainder of the paper we will be inter-
ested in intermediate particle—pore distances, when L/r < 1,
we expand them and to leading order we find

F. - —kBTAeg L oL/, )

_kBT)\eL2 (F.u)(# < u)

T. = ) o +OL/. ®)

The force is radially attracting the rod and falls off as r—2.
When rod is oriented at an angle to the direction towards the
pore, uneven force distribution generates a torque which reori-
ents the rod, forcing it to point towards the pore. This torque
is proportional to the electric field gradient, thus it scales
as r=3.

2.3. Near-wall mobility of a rod-like particle

On the colloidal length and time scales, relevant for nanopore
experiments, the flow field v(r) around a particle is described
by the stationary Stokes equations [23]

nV2u(r) — Vpr) = —f(r), Vo) =0, (9

where f(r) is the force density the particle exerts on the fluid,
and p(r) is the modified pressure field. If a particle is moving
in a quiescent fluid, the frictional force and torque are linearly
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related to its translational and angular velocities, V and €2, via
the friction (or resistance) tensor [23, 24]

Fh B Cll Ctr V
@) (& &)fa)
The indices tt and 1r above denote the translational and rota-
tional parts, respectively, while the tensors ¢" and ¢" describe
the translation—rotation coupling.
If a particle is moving under the action of a known force

and torque, a complementary problem is formulated using the
mobility tensor ;¢ which is an inverse of the friction tensor

B Mtt utr B Cu Clr *1_ »
p’_<urt MIT)_(Crt Crr) =¢ .

Finally, the mobility tensor is related to the diffusion matrix D
by the fluctuation—dissipation theorem

(10)

Y

D = kgTp. (12)
Thus, the diffusive properties of the particle are completely
determined by its hydrodynamic mobility.

For an axisymmetric particle, the friction (and mobility)
tensors have a high degree of symmetry. In a bulk system, the
configuration of a particle is given by its axial unit vector u,
and the friction tensor can be explicitly written as

¢t = (ﬁuu + ¢\ (A — uw), (13)
¢" = (uu+ ¢ (1 —uun), (14)
Ctr — Crl — 0’ (15)

using only four coefficients. For ellipsoids, analytical formu-
lae are available for the bulk diffusion tensor and are listed in
appendix A. Otherwise, efficient schemes for the calculation of
bulk hydrodynamics properties of macromolecules modelled
as collections of beads, such as Hypro++ [25, 26], GRPY
[27], or HYDROMULTIPOLE [24, 28] are also available.

The presence of a confining boundary changes this situa-
tion, since the hydrodynamic tensors now depend both on the
distance to the boundary, and on the orientation of the nano-rod
with respect to the surface. The friction tensors of a near-wall
particle, ¢,,, may be written as:

Cw = CO + ACU}’ (16)

where ¢ is the bulk resistance tensor, and the last term is a
wall-induced correction. An analytical leading-order approxi-
mation to A(,,, with the expansion parameter L/H being the
ratio of the size of the particle, L, to the wall—particle distance
H, was derived previously by some of us [29]. Earlier works
provide the components of the diffusion tensor for very slender
filaments close to walls only for particular alignments [30, 31].
The treatment proposed in reference [29] allows for an efficient
calculation of the diffusion tensor of a slender rod-like particle
for moderate and large wall—particle distances. By inverting
¢,, from equation (16), we arrive at a convenient approxima-
tion to the near-wall mobility p,, = ¢ ;1, which will serve as

the starting point for present work. The correction terms have
the following form

A A

w4l -3

ALY = 5t QHY + OH), (17)
B

ALY = ~GHR + OH?), (18)
T

Al = “ame t OH™), (19)

AT = TR +OHM. (20)

The tensors A, B, C above are derived from the multipole
expansion of the Blake tensor [32] (Green’s function for the
wall-bounded geometry) and they depend on the bulk com-
ponents of the friction tensor of a rod-like particle and its
orientation angle ¢ but not on the wall—particle distance. For
completeness, we write them explicitly in appendix B.

Notably, there are other strategies for tackling the problem
of near-wall mobility or various levels of accuracy, such as
boundary integral equations [33] or finite element method sim-
ulations [34]. Approximate bead-model numerical schemes on
a similar level of accuracy to the analytical correction above
supplemented by lubrication treatment of close configurations
have been introduced by Swan and Brady [35]. More accu-
rate multipole expansion approaches have also been developed
[36]. However, comparisons of the analytical correction pre-
sented above in equations (17)—(20) with accurate bead-model
HYDROMULTIPOLE scheme [36] for a rod of aspect ratio p = 10
have shown the validity of the correction for distances up to
H/L ~ 1, provided that the rod is far from touching the wall,
in which case lubrication corrections become important. Thus,
in this contribution we will use the approximate correction,
bearing in mind that the analysed model has been developed
for moderate particle-nanopore distances. Here, we restrict our
attention to the semi-analytical scheme presented above, since
the dynamics occur mostly in the range of wide separations of
the particle and the wall.

3. Results

3.1. Scaling analysis

The length of the particle is L. For dsDNA the length of
L = 100 bp corresponds to ca 34 nm. Another length scale
in the problem is the electrostatic capture radius ., which
at room temperature is in the range of micrometers [15], so
Ae/L > 1.

The interplay between different time scales in the problem
determines the ranges in which different mechanisms of cap-
ture dominate. We list them all for convenience in table 1.
Far enough from the pore, the dynamics are purely Brownian,
and the relevant time scale is 75 ~ L? /(DY) =~ 6mnL? /kgT,
where (D') is the average diffusion coefficient of the nano-rod.
Rotational Brownian motion occurs on the same time scale
1/ (D") ~ 87nL?/kgT. Inthe presence of an electrostatic force
(7) driving the translational motion, the velocity scales as V ~
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Table 1. Time scales in the system.

Symbol Scaling Description

T 6mnL* /kgTAe Basic time scale

B 6mnl? kT Brownian (diffusive) time

7t 6mnL?r?/kgT).  Electrostatic translation time
TS 67177Lr3 JkTAe Electrostatic rotation time
Tw 6mnH*r? /kgT).  Wall-induced rotation time

(DY N\e/1* ~ kpTA./6mnLr*. Thus the relevant translational
time scale is 7% ~ L/V ~ 6mnL?*r* /kgT .. The electrostatic
torque falls off quicker with distance, so the relevant rota-
tion time scale derived from it becomes 7% ~ 67nL*r? /kpT .
By comparing the Brownian and electrostatic rotational time
scale, we recover the scaling for the orientational capture
radius defined in reference [15]. We note that in the mobility
(or diffusion) matrix p, the translational elements scale as 1L,
the coupling terms as L2, and the rotational terms as L3, This
scaling changes close to the wall, where an additional length
scale, the wall—particle distance H, comes into play. When the
rod comes close to the wall, reorientation due to hydrodynamic
interactions with the boundary becomes important, with the
relevant time scale 7,, derived from the scaling form of the
equation Q = p" - F. + p™ - T,.. By comparing different time
scales we determine four general regimes of motion, sketched
in figure 2. The furthest region is Brownian, but closer to the
pore when 75 ~ 7¢, translational motion is driven by electro-
static forces but rotational motion remains Brownian. Moving
even closer, electrostatic torque dominates over thermal reori-
entation. The boundaries between these regions are determined
by the radial distance from the pore. However, in the vicinity
of the wall, the diffusivity and hence mobility are generally
hindered by hydrodynamic interactions with the wall, which
become the dominant driving mechanism. We thus conclude
that for the analysis of the behaviour of a field-driven nano-
rod, since we focus on the dynamics in the range L < r < A,
Brownian motion may be neglected, as it would only influ-
ence the initial orientations with which the rod would enter
the area dominated by electrostatic interactions. It is essential,
however, to retain the hydrodynamic anisotropy of the rod, as
it influences both the translational and rotational motion in the
presence of a strong electric field.

For quantitative calculations, we choose dimensionless
units with the basic length L. In the presence of an elec-
tric field, the more appropriate time unit is 7 = 7pL/\e =
67r77L4 /kgT).. For dsDNA mentioned above, this time scale
is of the order of 10~7 s. With this choice, we can write the
force and torque acting on the rod as

r _(i‘~u)(i'><u)

T. = 21

73

3.2. Discussion of trajectories

Before focussing on the numerical solutions of the full set of
equations, it is informative to consider a very simple case of
an anisotropic particle subject to a central force without the
wall influence and with no external torque. In this case, the

n
o

—_
[¢)]

Electrostatic translations
Brownian rotations

—_
o

Electrostatic

Away from wall [particle size]
[6)]

Wall interaction
10 20 30 40
Along the wall [particle size]

0

Figure 2. The division of near-pore space into regions coloured by
dominant terms determining the dynamics of the rod. The pore is
located at the origin, and the wall coincides with the bottom border
of the graph. Closest to the surface, wall interaction terms are the
most important. When the particle is moving further away from the
wall, we expect concentric regions of electrostatically determined
dynamics, electrostatic translations with Brownian rotations, and
fully Brownian respectively. This corresponds to the intuition that
electrostatic torque decays faster than force when moving away
from the pore. The boundaries between subsequent regions are
obtained by comparing the respective times scales of motion.
Expressions used to determine the time scales are collected for
convenience in table 1. For this calculation we assumed A\, = 103L.

particle’s mobility tensor has the form as in equation (13),
with two coefficients 1, pt, . For very slender rods, we have
By~ 24

We can describe such a situation by taking a coordinate sys-
tem centred at the pore, and oriented with the principal axes of
the body (||, L). Within this parametrisation, the equations of
motion of the centre of the rod (r, r,) are

or F(r)
—(%” =M= (22)
ory F(r)
—8t = ML —r rL (23)

By displaying the equations in this form, it is immediately clear
that the function F(r) only influences the time dependence
and has no bearing on the trajectory. For bounded F, there
is a hyperbolic fixed point at the origin with two important
trajectories intersecting at it: ) = 0 and r; = 0. The first cor-
responds to slower, sideways motion and the second to faster,
axial motion. We conclude that a particle with different values
of the drag coefficients along different axes will almost always
approach the fixed point along the slowest axis, which in the
case of a rod-like colloids means that the particles would most
often approach the pore broadside. This conclusion holds sway
whenever the torques acting on the rod are negligible and thus
it concisely describes the initial dynamics when starting far
enough from the pore. Approaching the slow rectilinear trajec-
tory is accomplished by hydrodynamic ‘gliding’ effect where
velocity stays at an angle to the force in the initial stages of
motion. Moreover, we predict the existence of two types of tra-
jectories—concave and convex—depending on whether rod
initially points towards or away from the wall compared to the
pore direction.
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Figure 3. Trajectories of the particle centre depending on the initial
orientation of the particle. Due to differences of drag coefficients in
the direction along and across the particle, the velocity is never
aligned with the drag force. This leads to gliding, either higher
above the wall or closer to the wall depending on the orientation,
importantly ruling out a straight path towards the pore.

To explore the dynamics driven by the interplay between
electrostatic and hydrodynamic forces acting on the nanorod,
we integrate the deterministic equations of motion numeri-
cally. As argued before, we neglect the influence of Brown-
ian motion in the range of distances under consideration. The
equations of motion for the system are

() = (7)

which together with equations (3) and (4) allow us to calculate
the trajectories of nano-rods. We consider an ellipsoidal
rod of aspect ratio p = 10. We integrated the equations of
motion using NDSolve command of Mathematica 12.1
with Method -> {“EquationSimplification”
-> “Residual”} option enabled to deal with
algebraic-differential nature of the equations.

We present the resulting trajectories in figure 3, starting
from a pointry = (35, 25) above the wall, thus seen at an angle
ap = 27 /9 from the nanopore. Rods starting at different ori-
entations glide sideways with respect to the field direction
due to their shape (and therefore also mobility) anisotropy.
For the initial angle 6y < «y, the trajectories are convex and
they approach the vicinity of the pore from below the direc-
tion oy = 0y. The initial inclination 6, > « leads to a con-
cave path gliding above the ry direction. The shape of the
trajectories is also dependent on the aspect ratio of the nano-
rod, which determines the parallel and perpendicular fric-
tion (mobility) coefficients. At large distances, the wall does
not influence the observed dynamics. A closer look into the
particles’ orientations, sketched in figure 4 for four chosen ini-
tial orientations (6 = km /36, withk = 3, 11,22, 34),reveals a
strong alignment with the field lines, predicted by earlier works
neglecting hydrodynamic anisotropy [15]. The time depen-
dence of the rods’ orientation shows a systematic change, the
rate of which increases when approaching the pore due to the
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Figure 4. Top: four sample trajectories with the particle orientation
sketched at equal translation intervals. The particles start from an
initial position (35, 25) at four different initial orientations

(0o = km /36, with k = 3, 11,22, 34), depending on which they
follow convex or concave gliding trajectories. Bottom: inclination
angles corresponding to the trajectories plotted above against
normalized time. Reorientation rapidly accelerates in the later stages
of motion because the initial offset due to the sideways glide close to
the starting point has an increasingly larger effect on the approach
angle.

increasingly strong attractive force and aligning torque. At the
considered separations from the pore, we see no pronounced
effect of the translation—rotation coupling due to the wall,
which in this case is too weak to compete with field-driven
motion. It would come into significance at near-touching con-
figurations where we also expect the detailed geometry of the
pore to matter.

To test how strong the alignment with the field lines is, in
figure 5 we present the results of numerical simulations for a
spectrum of initial orientation angles 0, for rods released far
away from the pore at three representative values of the polar
angle «p. For each starting configuration, we determine the
final orientation ¢ and plot the final angle to the local field
line, |y — 6, at the final position of the particle. For most
initial values of the approach angle, conclusions are similar to
those from models neglecting wall interaction terms—the final
deviation angle from the field lines direction is typically of the
order of 7/50. For small angles «vy, however, the relationship



J. Phys.: Condens. Matter 33 (2021) 104005

R Waszkiewicz and M Lisicki

afom
A

& &8

n
@3 &3 «
1 13 |

o |y

Final angle to field line |6s-ay|

Initial inclination 6,

Figure 5. The final angle between the rod and the field line plotted
against the initial inclination angle at different starting positions far
away from the pore with different polar angles: vy = 7/8—close to
the wall, ap = 7/4—intermediate, ooy = 37/8—far from the wall.
Trajectories with 6y < «y are convex and initially glide towards the
wall, and trajectories with 6y > « are concave and initially glide
away from the wall. Importantly, when the two angles are similar,
0 =~ «y, a straight trajectory is unstable because of drag anisotropy
and leads to relatively large values of the final angle between the
field lines and the rod, |§ — «/|. Additionally, for small « this
relationship is asymmetric due to wall influence where the
hydrodynamic torque from wall drag competes with electrostatic
reorientation in the late stages of movement.

between the initial inclination and the final angle to field lines
is asymmetric due to wall interactions, which increase the off-
set to the field lines. For example, we observe angles greater
than /16 in the region (—7 /8, 7/8). When interpreting this
result, it is notable that in 3D under uniform distribution of
charged particles over the hemisphere of possible initial direc-
tions, small angles oy occur much more often (proportionally
to cos ay), meaning that such effect can hinder the capture of
a substantial number of particles. The area of the region with
ap < /8 accounts for nearly 40% of the considered hemi-
sphere. Thus it remains important in a high percentage of cap-
ture events to properly resolve hydrodynamic interactions with
the confining boundary.

Notably, we have chosen the initial orientations to lie within
the xz plane. By solving the full, three-dimensional equations
of motion (3), (4) and (24), we confirm that the qualitative
characteristics of motion remain unchanged even when the
initial orientation of the rod has an out-of-plane component.
The reorientation in the region far away from the wall remains
mostly Brownian, while in the near-pore region the strong
alignment mechanism brings the dynamics to a plane to which
we restrict our attention from the beginning. We thus do not see
any changes as compared to the axisymmetric configurations
analysed here.

4. Conclusions

We have presented an analysis of motion of a colloidal nano-
rod driven by the electric field of a nanopore in a viscous
fluid with a particular focus on the inclusion of hydrody-
namic interactions and a detailed analysis of the different
regimes of motion. The nanopore is modelled as a point charge

which attracts a uniformly charged rod-like particle. Basing on
scaling arguments, we identified the various time scales of
motion and demonstrated that far away from the pore the
motion of the particle is purely Brownian but as soon as it
reaches the electrostatic capture radius ) it is systematically
attracted towards the pore. Its initial dynamics are then gov-
erned by an electrostatic force driving its translational motion,
with the velocity resulting from the balance of this force and
the fluid drag force. Since the latter is anisotropic, and depends
on the orientation of the particle, the motion resembles side-
ways gliding towards the pore. At closer distances, the elec-
trostatic torque becomes pronounced and strongly aligns the
rods with the electric field lines, as reported previously [15].
However, earlier studies neglected the role of hydrodynamic
interactions both on the level of the particle anisotropy, and
the wall-induced increase of friction.

In this contribution, we have outlined a theoretical approach
which takes into account both the anisotropy of the parti-
cle and the wall hindrance effect. Supported by scalings, we
explored the trajectories at intermediate distances, when Brow-
nian motion can be neglected, but the rod is far enough from the
pore to disregard the field and flow effects of the pore geom-
etry. At large and moderate distances, we have employed an
approximate analytical scheme, in which the friction tensor of
a colloid close to the wall can be decomposed into its bulk
value, encoding the particle anisotropy, and a wall-induced
correction. This allowed us to formulate a deterministic system
of equations which can be solved for arbitrary initial position
and orientation of the nano-rod.

For starting points at a large polar angle «, we find that
gliding trajectories are governed by the shape anisotropy of
the rod, and the wall plays no significant role. However, for
smaller approach angles, hydrodynamic interactions with the
wall significantly alter the angle at which the rod approaches
the near-pore region. We have shown the extent of this region
to be as large as 7 /8 which accounts for nearly 40% of spher-
ical area in 3D, thus signifying the importance of wall effects
in the proper modelling of dynamics in confined geometry.

Our work shows, basing on a scaling analysis, that it is jus-
tified to neglect the role of Brownian motion in the near-pore
region. Previous works on a similar system included Brownian
motion on the level of translational motion only, by imposing
a constant diffusion coefficient of the particle [15]. However,
in order to properly resolve the question of Brownian dis-
placements and rotations, one should account for two facts:
(a) the non-spherical shape of the rod which makes its diffu-
sion anisotropic even in a bulk system, and (b) the presence
of the wall which renders the anisotropic diffusion tensor of
the particle a wall—particle distance-dependent and introduces
translation—rotation coupling. Even then, we would expect the
effect of Brownian motion to be pronounced outside the near-
pore region which is dominated by electrostatic interactions.
Including these effects would be an interesting direction of
future research.

The analysis of trajectories close to the pore remains a sep-
arate issue, since its non-planar geometry has a significant
influence on the trajectories, both by changing the structure
of the electric field, which can no longer be modelled by a
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point charge, and by the different character of hydrodynamic
interactions, where the pore opening shapes the lubrication
flow and friction landscape for the colloid. For an insight into
these dynamics, detailed models of the pore structure should
be implemented.
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Appendix A. Bulk friction tensors of an ellipsoid

The elements of the bulk friction tensor for an ellipsoidal col-
loid are known analytically [23]. For a prolate spheroid with
a long axis a = L/2 and a short axis ¢, corresponding to an
eccentricity e = va? — ¢?/a, the bulk friction coefficients in
¢, can be written as

¢ = (67r17a)§e3 [<2e+ (1+6) 07, (A.1)

¢ = (67ma)13—6e3 [2e+ (32— 1) ], (A2)

= (87r17a3)ge3(1 —H2e—(1-¢)d], (A3)
¢ = (87”7613)%63(2 — M) [-2e+ (1+2) 1],

(A4)

¢ = (7r17a3)13—6e5 [~2e+ (1+€2) €], (A.5)

Ezlog(iii). (A6)

The last coefficient, ¢V, links the stresslet (symmetric dipole
moment) on the spheroid with the rate-of-strain tensor of an
external flow.

Appendix B. Wall correction terms

The correction terms are described in detail in reference [29]. It
is most convenient to specify the components of the near-wall
friction tensor in a body-fixed frame of reference. It is defined
by a set of basis vectors {u,u1,u 5}, where u is the director
along the long axis of the nano-rod, u,; = (e; X u)/ |e; X u|
is parallel to the wall and perpendicular to the particle axis, and
u > = u,; X ucompletes the orthonormal basis. We can write
the tensors in equations (17)—(20) explicitly in the body-fixed
frame RW. For convenience, we define the following shorthand
notation

¢ =cosf.

s = sin 6, (B.1)

For the translational part (17), we find the correction’s angular
dependence as

5 [CPa+ 0 (s
Al =g 0 (P 0 :
TN —¢icise 0 DA+
(B.2)
Ape— 2 %H AO A(H)l (B.3)
2 = ) 11 .
256m*n AL 0 Ap
with the coefficients
A=), (B.4)
A=Y A+ A+ CL)s*e, (B.5)
A= (D + 57 + (CDs*e, (B.6)
AL = =G+ A+ A+ s)lse. (B.T)
The translation—rotation coupling part reads
3cdr 0 Ch(l + CZ)S 0
B= 0 CLe (B.8)
N0 1+ 0

Finally, the rotational part C in equation (20) has the form

L (€G3 0 3] ¢se
C=— 0 5(¢1)? 0
T T AT T
T\ 3¢¢se 0 (XG5 -38)
0 0 (lsc
dr Il
+ 1364 0 —2(1—-2¢ 0
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“Stability of sedimenting flexible loops”

Radost Waszkiewicz, Piotr Szymczak, and Maciej Lisicki

COMMENTARY

Analytical Ultracentrifugation, a method for the determination of hydrodynamic radius and effective
density of molecules, involves applying extremely high centrifugal forces to a colloidal suspension. This
well-established technique has been successfully used to measure various colloidal particles, however, its
application to flexible macromolecules raises concerns over the influence of large forces (or, more precisely,
large force gradients) imposed on the molecule. In extreme cases the high values of compressional tension
along the sedimenting particle can lead to buckling during sedimentation. To understand when this might
happen, we focused on an idealised problem involving the sedimentation of a circular fibre, aiming to
eliminate end-corrections from the buckling consideration.

Earlier studies of sedimenting flexible rings using bead-model approach [73] showed complex dynamics
with a wide variety of periodic orbits depending on setup parameters and initial conditions. Assessing
which parts of this complexity are attributable to hydrodynamic interaction, which to bead-model dis-
cretisation and which are intrisic to similar setups was a secondary goal of this investigation.

To determine the cases where buckling may occur, we performed linear stability analysis within the
Resistive Force Theory approximation under which hydrodynamic drag is a local quantity. Under this
simplification the tension inside the loop at each moment can be computed from an ordinary differential
equation.

We calculated the evolution of the conformation of a sedimenting loop using a custom numerical
integrator based on a truncated Fourier series. These results were compared with a linear stability
analysis of the initial circular configuration, thus providing a near-analytical stability boundary. We
obtained good agreement between numerical and analytical approaches and favourable comparison with
earlier work.

In this study, the PhD candidate: co-developed the theoretical description, conducted a stability
analysis of the shape evolution equation of the fibre and computed the stability criterion using the pro-
posed matrix method, generated all numerical results and visualisations presented, prepared all figures,
wrote the first draft and edited all subsequent versions. Additionally they are a corresponding author.
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We study the behaviour of circular flexible loops sedimenting in a viscous fluid by
numerical simulations and linear stability analysis. The numerical model involves a local
slender-body theory approximation for the flow coupled to the Euler—Bernoulli elastic
forces for an inextensible fibre. Starting from an inclined circle, we simulate the dynamics
using truncated Fourier modes to observe three distinct regimes of motion: absolute
stability, two- and three-dimensional dynamics, depending on the relative importance of
the elastic and gravitational forces. We identify the governing parameter and develop
a simple semi-analytic stability criterion, which we verify numerically. In all cases,
sedimenting loops converge to stable, planar shape equilibria with one free parameter
related to the initial conditions and material properties of the fibre.

Key words: slender-body theory, Stokesian dynamics, microfluidics

1. Overview

Biological processes are one of many inspirations of elastohydromechanics (Shelley &
Ueda 2000; Schoeller et al. 2021). Slender biological objects emerge in multiple contexts,
motivating detailed investigation. Starting from the sub-cellular level, examples include
DNA and protein folding dynamics (Goldstein & Langer 1995), lipids usually forming
cell walls assembling into long filaments (Rudolph, Ratna & Kahn 1991) or microtubules
helping healing by contracting wounds (Ehrlich, Grislis & Hunt 1977). Another large area
of interest is motility — cells moving inside a fluid environment or cells inducing motion
of a fluid. An iconic example of such motion is sperm cells. On closer investigation
it turns out that flexibility plays an important role in their motion, and the interplay
between elasticity and viscous forces causes changes to the beating pattern in response
to the changing environment (Cosentino Lagomarsino, Capuani & Lowe 2003; Fauci &
Dillon 2006; Gaffney et al. 2011). Biological ‘optimisation’ for viscosity gradients can
also be found in mucus transport inside the lungs where the correct length, stiffness
and active deformation of cilia provide the necessary movement of multiple layers of
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fluid with varying viscosity, essential for healthy respiration (Fulford & Blake 1986). On
larger length scales, bacterial complexes were observed joining into elongated structures
exhibiting a complex dynamics because of elastohydrodynamic effects (Mendelson et al.
1995; Goldstein, Powers & Wiggins 1998).

Most of these examples are set in a microscale context, and thus the observed dynamics
1s dominated by the viscous interactions with the surrounding fluid (Lauga & Powers
2009).

Flexible fibres with free ends have been studied in multiple settings, including their
sedimentation, both experimentally (Herzhaft & Guazzelli 1999) and numerically (Li et al.
2013). The free-end configuration was investigated first, because methods of producing
slender filaments were already developed, and because it is of interest for both industrial
applications and biological settings. Further, the one-dimensional structure provides a
particularly elegant, treatable and successful way of modelling (Wiggins et al. 1998).

In the case of low Reynolds number flows in such settings, elastic elongated filaments
can be modelled using various simulation methods, for example: the immersed boundary
(IB) method (Peskin 2002), regularised singularity methods (Cortez, Fauci & Medovikov
2005), bead-spring models (Kuei er al. 2015; Stowicka, Wajnryb & Ekiel-Jezewska
2015; Schoeller et al. 2021) and discrete and continuous variants of slender-body theory
(SBT) (Tornberg & Shelley 2004; Saintillan, Darve & Shaqfeh 2005). The reduced
dimensionality of the filament offers a computational advantage, which has been used
in variants of the IB technique to study the whirling instability of spinning filaments (Lim
& Peskin 2004) and hydrodynamic bundling of bacterial flagella (Lim & Peskin 2012).
A combination of SBT and the regularised Stokeslet method has also been formulated
by Cortez & Nicholas (2012) and profitably applied e.g. to explain the motion of flagella
in dinoflagellates (Hguyen er al. 2011). See Nguyen, Cortez & Fauci (2014) for a review
of this approach. On the other hand, in methods which treat the filament as fundamentally
one-dimensional, such as SBT, one faces problems when the mesh along the filament is too
fine (small in comparison with the reduced length scale), even when smoothing the integral
kernels, as discussed by Tornberg & Shelley (2004). Finally, any numerical scheme for
the time evolution of elastic filaments must address the stiffness of the equations caused
by presence of high-order spatial derivatives in the equations of motion responsible for
bending rigidity. Due to the very high rate at which disturbances of small wavelength
are damped, the issue of stiffness becomes even more pronounced with finer mesh sizes.
Practically all numerical works to date use an implicit integration scheme, while here we
present a different approach.

We focus on a different configuration — looped filaments with no free ends. The
dynamics of microscale loops in viscous flows was previously analysed in the context
of growing smectic-A liquid crystals, which were modelled by Shelley & Ueda (2000)
using SBT, and for circular filaments with a non-zero inherent twist and bend, explored
using a variant of the IB method by Lim et al. (2008) in the context of over- and
underwinding of DNA leading to dynamic transitions of shapes. Our work is motivated
by the experimental work of Alizadehheidari et al. (2015) on circular DNA confined to
nanofluidic channels (and in particular its breaking), and that of Koche et al. (2020) linking
extrachromosomal circular DNA properties with neuroblastoma, and partly inspired by
previous numerical work using bead-spring hydrodynamic models (Gruziel-Stomka et al.
2019). Electrophoretic and ultracentrifugation measurements of mobility pose questions
about what constitutes a flexible regime, correct values of drag coefficients and the stress
distribution along the filament.

The inclusion of elasticity is necessary to analyse the aforementioned systems. It was
observed experimentally for red blood cells (Jay & Canham 1972) and numerically for
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flexible chains of beads (Gruziel et al. 2018; Gruziel-Stomka et al. 2019) that high
flexibility leads to a change in orientation (and sometimes shape) of sedimenting objects,
affecting their sedimentation speed. Independently, in the case of linear filaments, Reichert
& Stark (2005) observed that including elasticity can change the behaviour qualitatively
when looking at bundling vs non-bundling flagella. Even for a fixed shape, a change in
orientation can alter the sedimentation velocity by 25 %, as shown by Tchen (1954) and
in further analytical solutions for sedimenting tori (Cox 1970; Majumdar & O’Neill 1977;
Johnson & Wu 1979). Furthermore, as noted by Box et al. (2020) and Kodio, Goriely &
Vella (2020), dynamical buckling can occur in similar settings, resulting in significant
shape changes of the filaments. In bead-spring models, Gruziel-Stomka ez al. (2019)
observed the existence of an elasticity threshold beyond which flexible loops undergo
significant changes in sedimentation dynamics. While stiff loops were seen to attain almost
planar, oval shapes and sediment vertically or at an acute angle to gravity, depending on
their stiffness, more flexible fibres exhibited a complex shape evolution. Our work aims to
explore this stability threshold in slender-body dynamics, both analytically and in terms of
numerical simulations.

In this work, we analyse the dynamics of slender elastic loops by linear stability analysis
in a coupled elastohydrodynamic model, and by numerical simulations introducing a new
method based on Fourier expansions. The mathematical elegance of the periodic boundary
conditions allows us to simplify the theoretical analysis and gain an analytical insight into
the stability question. Our results contribute to the explanation of horizontal sedimentation
preference. We also derive explicit expressions for tension distribution along the filament,
which comply with the work of Alizadehheidari et al. (2015) on DNA loops in microfluidic
channels, where typical locations of ruptures correspond to the highest tension in our
model.

2. Qualitative description

We focus on a thin, inextensible, looped elastic filament, settling in a viscous fluid
under gravity. The filament has a length L and bending stiffness A. We consider the
dynamics in the Stokesian regime of low Reynolds numbers, where the fluid drag forces are
proportional to the local velocity of the filament. Solutions for the terminal velocity for a
rigid loop were known even before the development of the SBT (Tchen 1954; Majumdar &
O’Neill 1977) and were tested experimentally in some cases (Amarakoon et al. 1982). The
distribution of shear forces from the fluid acting on toroidal particles in these solutions
1s not uniform and thus has to be balanced by an equal and opposite force from the
particle. For loops that are not perfectly stiff, these forces may partially arise from elastic
deformation.

The presence of elastic forces can give rise to a complex dynamics of the sedimenting
loop. To understand the stability of sedimenting circular loops, we first consider a simpler
case. A classical example of beam instability under external compression has a solution
known since the mid-eighteenth century (Euler 1759). Buckling under internal forcing
(a heavy column buckling under its own weight) was revisited later by Greenhill (1881).
For a beam of length L under the action of an external force F, stability results from a
competition of this forcing with the stiffness of the beam. Because the bending rigidity is
quantified by the product A = EI, with E being the Young’s modulus of the beam material,
and / being its cross-sectional moment of inertia, the relevant dimensionless quantity is
EI/FL?, capturing the stiffness to external force ratio, and there exists a critical threshold
value of this quantity above which the initial shape becomes unstable.
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Figure 1. A three-dimensional sketch of the studied system. The direction of gravity go, angle of inclination 6
and the arc length variable s are highlighted. Additionally, the colour indicates the tension in the beam, either
positive (aft or trailing side) or negative valued (fore or leading side). Such a tension distribution is possible
when the dimensionless gravity-to-stiffness ratio and inclination angle are large enough to cause compression
due to drag anisotropy.

We thus expect that a large enough compression is sufficient to destabilise an elastic
filament. On the other hand, when we compute forces on a straight beam bent into the
shape of a circle, we find that bending forces are balanced by the tension (negative
compression, or stretching) in the beam of value T = EI/R?, where R is the radius of
the circle. Hence, in the absence of the fluid, we have two mechanisms which stabilise the
shape against perturbations: the negative compression rate in the beam and the forces that
resist bending. The presence of a fluidic environment introduces additional hydrodynamic
forces that may be responsible for a local compression of the sedimenting loop.

Uniform drag would not lead to any compression, so even for a qualitative explanation of
hydrodynamic buckling it is necessary to include the dependence of the drag force density
on the location on the loop. The intuition that the drag is larger in the areas where the
filament is perpendicular to the flow is exemplified by a known result of local SBT: that the
ratio of the drag coefficients of a slender body in the directions parallel and perpendicular
to the centreline of the body is 1/2 (Guazzelli & Morris 2012, p. 79) up to O(€), where
€ K 1 1s the slenderness parameter of the body, or the filament aspect ratio. Consider now
a sedimenting loop of circular shape, as in figure 1. The local gravitational force density is
uniform on the circle, but we expect the drag forces to be higher at the top and the bottom in
comparison with the sides, which results in the front of the circle being hydrodynamically
compressed and its back being stretched. The compression can be destabilising, leading
to a spontaneous shape change at the fore side of the loop — in sedimentation this is the
lowest point of the loop — which can then lead to reorientation and further deformation. For
stiff loops, the global balance of hydrodynamic, elastic and gravitational forces suggests
that the hydrodynamic forces are proportional to the total weight of the loop only via a
geometric, dimensionless factor. Because the flow field around stable configurations of
flexible loops has to be identical to that around stiff loops of the same shape, we expect
this scaling to hold for flexible loops as well. Recalling the stability threshold form to
be EI/FL?, and with the force scaling as mass times gravity, this reasoning finally hints at
EI/((prgL)L?) being the dimensionless number governing this set-up, similarly to simpler
buckling examples (here, py, is the fibre linear density corrected for buoyancy).
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3. Local slender-body equations

We model the fibre as a slender elastic beam of length L in a viscous fluid. To account
for hydrodynamic interactions, we use a local SBT which is a far-field approximation of
the Stokes flow due to an obstacle with a very small aspect ratio (Batchelor 1970; Cox
1970; Johnson 1980), allowing for shape parametrisation using the centreline position x(s),
where s € [0, L] is the arc length.

The Stokes approximation is valid if two dimensionless constants are very small: the
Reynolds and Stokes numbers, measuring the relative importance of viscous to advective
and viscous to inertial terms in the Navier—Stokes equation, respectively. In this case, we
neglect the inertial and time-dependent terms in the Navier—Stokes equations, and arrive at
the Stokes equations describing the flow field u of an incompressible fluid with viscosity
w under external body force density g

uViu=vVp-—g, (3.1)
V.eu=0, (3.2)

where p denotes pressure. These equations are linear and thus admit the Green’s
fundamental solution, also called the Stokeslet, which reads

(11 + %) f, (3.3)

us(r) =
8rur
where I denotes a unit tensor and r = |r|. The Stokeslet is associated with a point force
f acting on the fluid at the origin. Notably, its derivatives are also solutions to the Stokes
equations. One of particular importance is the Stokes doublet, which has a dipolar flow

character (Blake & Chwang 1974) and decays faster (~ 1/ r?) than the Stokeslet solution.

The SBT solves for the flow around a slender object of radius r and length L, with
a typical aspect ratio (slenderness parameter) € = r/L < 1, by approximating the force
density on its surface by a distribution of Stokeslets and Stokes doublets along the
centreline.

This is motivated by the idea that distributing the singularities should be sufficient to
model the flow at distances large in comparison with the typical radius of the filament.
Matching the ‘inner’ expansion of the flow field with the ‘outer’ flow produced by the
body as a whole, and taking into account the boundary conditions on the surface of the
rod, allows for expression of the centreline velocity of the filament, u(s), in terms of two
linear operators A and K acting on the force density applied to the filament as

u(s) = —A[f1(s) — K[f1(s). (3.4)
The operators take the form
Alf1(s) = [(c + DI+ (¢ — 3)0sx 8sx] - f(s), (3.5)
L % N T /
KIf1(s) = / LHRODRGS) oy - LY p) 0y, G
0 |R(s, ") s — |

where R(s,s') = x(s) — x(s'), R(s,s’) =R(s,s)/|R(s,s’)| and c¢= —2log(e) is a
function of the slenderness parameter. This method was initially developed by Batchelor
(1970) and later improved by Cox (1970), Keller & Rubinow (1976) and Johnson (1980).
The non-local contribution (K[ f] together with the c-independent part of A[f]) vanishes
on comparison with the local one at a rate o(1/1og(€)). In this contribution, we shall take
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advantage of this asymptotic behaviour by neglecting K[ f] entirely. For slender fibres,
neglecting the non-local term is a great simplification towards an analytical treatment of
the resulting equations and leads to the local SBT, also known as resistive-force theory
(RFT) introduced by Gray & Hancock (1955), in which the local velocity (in a quiescent
fluid) is related to the local hydrodynamic drag force on the filament, f, by

U(s) = ——— (14 3y 5x) « £(5). 3.7)
8T

More recently, RFT has been increasingly popular as a modelling technique in biological
fluid dynamics and the analysis of the motion of slender filaments, leading, e.g. to a general
qualitative agreement with experimental observations of deforming flagella (Lauga &
Eloy 2013), or giving insights into the buckling (De Canio, Lauga & Goldstein 2017)
and swirling instabilities (Stein et al. 2021) in the microtubule cytoskeleton. In fact,
high-precision tracking of swimming sperm revealed that RFT can quantitatively predict
the complex trajectory of a sperm cell (Friedrich et al. 2010). Even in the case when the
slender filaments come close together, RFT has proven to be useful in predicting their
bundling behaviour (Man, Koens & Lauga 2016). In Stokes flow, the forces acting on a
suspended body balance out to zero. In our case, this involves elastic forces, gravity and
hydrodynamic drag on the filament, so the no-net-force condition can be written as

Ja+Sg+fn=0. (3.8)

We model the elastic forces f,; according to the Euler-Bernoulli beam theory, which takes
into account only the local curvature of the filament and the longitudinal tension (Tornberg
& Shelley 2004; Euler, Fellmann & Mikhai 2016). The elastic force density is then given
by

S o1 = El Og555x — 05(T (5)95x), (3.9

where EI is the flexural (bending) rigidity and 7'(s) is the tension of the filament. The
second term imposes a constant length of the filament with 7 acting as a Lagrange
multiplier.

The tension is determined by the inextensibility equation |dsx| = 1, which can be
rewritten as a condition on the filament velocity by taking the time derivative

0 = 18;|05x|> = dgx - dyx = dyu - dyx, (3.10)

and noting that it is satisfied initially. One problem that arises due to this treatment is the
lack of a correcting mechanism in cases when the length changes slightly due to numerical
errors. We implement the solution proposed by Tornberg & Shelley (2004) by introducing
a numerical stabilisation term, recasting (3.10) as

0 = dsx « dgu — w(l — 05X + 05X), (3.11)

with w controlling the absolute extension penalty.

The force balance condition, (3.8), governs the dynamics. The hydrodynamic force
density on the filament is determined by the sum of the gravitational and elastic forces
(as in (3.9)), which is then used to compute the velocity of the filament centreline via
(3.7). Equation (3.10) closes the system by imposing the filament inextensibility. We
now rescale these equations to arrive at a dimensionless system. Firstly, we choose the
dimensionless arc length to have a domain s € [0, 27t] for additional convenience when
expanding in Fourier series. This results in the characteristic length L/27 scaling for x.
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Secondly, we introduce L3/(873EI) as the force scale. Finally, we rescale the time by
choosing 2uL? /(EIc) as our velocity scale. This leads to equations in the form

f = —Ogg5sX + (05x05 + 0gx)T'(5) — gOéz, (3.12)
u=f+ (dsx -+ f)osx, (3.13)
0= 04x - dsu — w(l — dsx + 05X), (3.14)

with a single dimensionless parameter gg = L3gpr/(8T3ED), analogous to (the inverse
of) that used by Gruziel-Stomka er al. (2019) for the bead-spring model. Here,

oL = 72 (Pbeam — Pfuia) 1s the mass per unit length of the fibre corrected for buoyancy,
with ppeam and pguiq being the densities of the beam material and the fluid, respectively.
We note that w is merely a numerical stabilisation constant having no influence on the
solutions under exact evolution.

4. Linear stability analysis of the planar circle solution

We now use the equations of motion to study the sedimentation dynamics of looped
filaments with the initial condition that they are perfectly circular and inclined at an
angle 6y to the horizontal plane, as in figure 1. A rigid circle solution (including
full hydrodynamics with non-local terms) was already known previously (Tchen 1954;
Majumdar & O’Neill 1977; Johnson & Wu 1979) and serves as the starting point for our
stability analysis.

Equations (3.12)—(3.14) admit a translating (d;u = 0) solution with a single parameter
6o as

xo(s, t) = [sins, cos Oy cos s, sin Oy cos 5| + upt, “4.1)
in 6
Tos) = 1 + 202070 o, 4.2)
in 26 7 — 20
o — [0’ 20 Sl;l 0. go( gOS 0)} . 43)

Note that, for go(sin6p)/3 > 1, there appears an area of negative tension (compression) in
the beam, also the tension is largest on the aft side of the loop, explaining the observations
of Alizadehheidari et al. (2015) that such flexible loops of DNA tend to break near fore or
aft more frequently than in between — we propose that this effect is compounded by the
higher curvature, as noted in the mentioned work.

Similarly to a sedimenting slender rod, this solution exhibits a lateral drift due to the
friction anisotropy. The maximal settling angle (the angle between the sedimentation
velocity and gravity) is ymax = tan~1(1/(4+/3)) & 8.2° (as compared with y,,qc ~ 19.47°
for a thin rod (Guazzelli & Morris 2012, p. 83)). It is relatively small, because some parts
of the circle contribute to the downwards force, while not contributing to the sideways
force at any chosen angle.

We perturb the solution (4.3) by taking

x(s) = x0 + ¥+ O(*), (4.4)

where a tilde over a symbol denotes the perturbation function. A general form of the
perturbation turns out to be analytically intractable due to the complexity of the coupled
equations for tension perturbation, so further simplifying assumptions are necessary. Here,
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Figure 2. Diagram of the considered initial perturbation ¢ (s). Presented linear stability analysis focuses only
on the perturbation in the direction perpendicular to the plane in which the unperturbed solution lies.

we consider specific perturbations in the direction perpendicular to the circle’s plane, as
in figure 2, so that X is of the form

X = £(s)[0, — sin Oy, cos 6p]. 4.5)

The presented method gives rise to two problems when trying to expand to in-plane
perturbations. Firstly, taking a dot product with an in-plane vector instead of a normal
vector leads to significantly more complex equations. The second complication is that
in-plane perturbations are inherently two-dimensional and cannot be described by just
a single scalar function. Choosing only specific normal perturbation is justified by the
intuitive insight that comes from the tractable form of the resulting linear stability analysis
problem.

Assuming that the associated perturbation of tension T is O(7), we neglect quadratic-
and higher-order terms in ¢. Then the force f in the perturbed system is of the form

f:fo—|—fwhere

80 sin 6

So=

[sin 2s, cos 2s cos 6, + cos 2s cos 9()] , (4.6)

sin 6y

F = =055 + 05T0 95X + 5T 050 + T dgsx0 + To dgs X 4.7)

Finally, we get a linear resulting perturbation to the velocity u = ug + u with

it =f + (f - ,x0)dsx0 + (f - 3s%)dsx0 + (f - 8%0) X 4.8)

This can be put into the inextensibility condition dsu - dgx = 0. With dsug = 0 and
dsu - 0x being a second-order term, the inextensibility equation for the perturbed shape
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Figure 3. (a) Largest eigenvalues of the linear operator £ depending on the stability parameter ¢ (dark blue
lines) describing the linearised stability problem. At g approximately 14.5 the largest eigenvalue crosses
zero, which corresponds to the appearance of an unstable solution of the time-dependent equation. (b) The
critical value of g computed for various values of the truncation frequency n. For n < 4 the behaviour of L is
completely different, but for n > 4 the critical value of the stability parameter changes by a very small fraction.
This is possible because the most unstable mode is dominated by low-frequency oscillations.

is simply

0 = 05 + 35x0. 4.9)
It could be in principle solved for the tension perturbation. Instead, a more convenient way
of proceeding is to note that

M [(35¢) sin s+ (958 ) €cO8 8] — 5558 = L[],

. (4.10)
which has all the information needed to analyse the evolution of perturbation in the
direction of the initial perturbation. The perturbation dynamics is now governed by a single
parameter only

0; =u - [0, — sin Oy, cos Oy] = 0s5¢ +

q = 38osin 6. (4.11)
Equation (4.10) can be rewritten as a diffusion-like equation of the form
at§ = _assss{ + as(TOBSC)- (4.12)

This highlights the essential role of negative tension in the development of shape
instability, which takes the role of the diffusion coefficient in (4.12) and the only other
term is dsg55¢, Which has an additional stabilising effect. To determine the stability of the
linear partial differential equation (4.12), we examine the eigenvalues of the linear operator
L on the right-hand side. The value of the initial tension To(s) = 1 + gcos s gives rise to
a simple analytical form of this operator

L = —0g555 + g5 + g((sin s) 0y + (cOS 8) ys). (4.13)

The periodicity of ¢ can be enforced by analysing £ action on {sin ks, cos ks} basis on
L*(S1). We note that

L[sinks] = —(k* + k*) sinks + %kq(k + 1)sin(k — 1)s + %kq(k — 1) sin(k + 1)s,
(4.14)
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and similarly for cos ks. Therefore, to find the eigenvalues of L, it is sufficient to consider
linear combinations of the sine and cosine parts of the Fourier expansion separately, as £
maps the span of either one to itself. Moreover, on each of the subspaces, the restricted
maps are the same and thus have identical eigenvalues.

The operator £ on span[sin(kx)] has the following matrix representation:

-2 —3q
0 —20 —6g
—q —90 —10q
L= —3q =272 : (4.15)
—6g . —qgk(k+1)/2
—k> — k*
—qgk(k —1)/2

We can obtain approximations to £ by truncating at a desired n. For a given n the
condition that ¢ is critical translates to £ having one eigenvalue equal to zero, which
can be expressed as det £ = 0, which is a polynomial equation in g. Such equations
have fast numerical solvers, allowing for computation of the critical value with high
accuracy. We examined this for n € (1, 2, ...60) to verify that the highest eigenvalue of
L was determined with satisfactory precision — the convergence is extremely fast (at least
exponential), as illustrated in figure 3. We find that the critical value of ¢ = go(sin6p)/3 is
14.56105439107. Above this critical value the largest eigenvalue is positive, as illustrated.

5. Numerical method

In order to verify the predictions of the theoretical model and the simplified linear
stability analysis, we solve the equations of motion numerically. Because all the functions
characterising the elastic loop are periodic, we represent them in the form of (truncated)
Fourier series. More precisely, an approximation to a function f(s) is numerically
represented by a complex valued 2n-dimensional vector f, such that

fo)~ ) faexplias). (5.1)

a=—n

For a smooth f, such series converge exponentially. We simulate the equations of motion
by computing truncated series approximations to the position x, velocity u, and tension T
up to a fixed order n.

The governing equations can be coded as three affine maps (of type x — Ax + b) as
follows:

T Euler—Bernoulli equation f local SBT u inextensibility equation ‘. (5.2)

(D () 3)
These correspond to the Euler—Bernoulli theory (map (1) — (3.9)) allowing for
computation of the force density given the tension 7, local SBT mapping force density
f to the local velocity u (map (2) — (3.7)) and the inextensibility equation mapping the
local velocity to local length creation, the error term &, which we try to minimise in the
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simulation (map (3) — (3.11)). Maps (1), (2) are approximated by matrix equations of
dimension corresponding to the truncation order n. This is chosen in order to keep x and
u expanded to the same order. Nevertheless, it is essential to compute the inextensibility
equation map (3) including higher-order (2n) terms. These three maps are combined to
obtain a relationship between the coefficients of the Fourier expansion of the tension
distribution 7" and the local filament length creation &, which should be as close to zero
as possible. Because there are more terms in the expansion of the local length creation
than in the tension distribution, we can only attempt to make them as close to zero
as possible. The combined affine map from the tension 7 to the error term ¢ therefore
induces an overdetermined system of linear equations. These are solved for 7 by L? error
minimisation, which is the same as solving the ordinary least squares (OLS) problem
(Fourier basis is orthonormal) with an additional restriction that 7'(s) is real valued. It
might be tempting to simplify this procedure by using the same truncation order on the
error terms as on the tension expansion, leading to an exact solution for 7 instead of
an optimisation problem, but if we leave out the highly oscillatory terms in the error
map (3), then the solver is oblivious to the filament length increase due to oscillations
with frequencies higher than n/2 in the tension expansion, resulting in an exponential
explosion of high-frequency vibrations. Such behaviour comes from the terms in the
equations where two functions are multiplied (such as 9,7 d;x); there two terms of a given
wavenumber can combine to one term with double the wavenumber. Additional care needs
to be taken to ensure that the trajectories remain real valued (the error can accumulate in
the complex-valued x Fourier expansions). This was achieved by projecting the solution
onto the allowed subspace at each time step.

Equations (5.2) for the tension 7 are solved at each evaluation of u, and this value of
tension is used to compute the velocity in an explicit integration scheme with a variable
time step of the Runge—Kutta—Feldberg (fifth-order) method. This algorithm, however, is

at best O(n°) in the truncation frequency (because the OLS minimiser is O(n?)) and in
reality even slower, as more degrees of freedom necessitate a decrease of the time step.
For n = 6, our implementation was running at a speed of 40 dimensionless time units
per hour for typical values of parameters on one thread of a typical 2.5 GHz processor;
for n = 8, the speed decreased to 5 dimensionless time units per hour (giving a very crude
estimate for complexity of approximately O(n”)). This makes investigations of large values
of n impractical. For our calculations, we choose n = 6. We discuss this choice further in
§ 6.1. Most of the simulations were run with the help of GNU Parallel software (Tange
2011).

6. Sedimentation modes

Motivated by the linear stability analysis performed above for circular loops, we now
explore numerically the evolution of elastic rings starting at arbitrary inclination angles for
a range of the elastohydrodynamic parameter gg. We thus choose similar initial conditions
to those used by Gruziel-Stomka et al. (2019). In the simulations, we observe three distinct
sedimentation regimes (corresponding to terminal shapes) depending on the stiffness of
the loop. They are demonstrated in figure 4 with top and in-plane views of the terminal
sedimentation shapes. For very stiff loops, characterised by low values of go, marked in
purple in the figure and referred to as stable, we observe stable sedimentation of a circular
shape. The dynamics is then given by the translating solution of (4.3) — we see no change
in the shape or the sedimentation angle. When the elasticity of the loop is increased, we
observe a different terminal regime referred to as in-plane dynamics, where the shape of
the loop evolves in a two-dimensional plane defined by the initial angle (cases marked in
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Figure 4. Selection of terminal shapes for varying values of forcing (inverse stiffness) gop with an
initial angle 6y = 30° and n = 6 coloured by trajectory type: stable (dark purple), in-plane dynamics
(green-blue), three-dimensional dynamics (yellow). The left panels (a,c,e,g,i,k,m,0,q,s,u,w) show side views
(sedimentation downwards) with a unit circle and initial tilt plane marked by dashed lines; black arrows indicate
the direction of gravity. When the terminal shape aspect ratio is 1, regardless of the terminal inclination angle,
the projection fits inside the unit circle. The right panels (b,d.f,h,j,l,n,p,r,t,v,x) show the shape within the
final sedimentation plane aligned with the principal axes of the loop. Lowest points on the respective loops are
located on the left side of panels (b,d.f,h,j,l,n,p,r,t,v,x). Dashed unit circle is plotted for reference. Note that for
sufficiently large values of gg (highly flexible filaments) the terminal tilt angle changes erratically with initial
conditions.

green—blue) — we only see changes of the shape, while the inclination angle of the loop
remains unchanged. The circular state is then unstable and evolves into a prolate loop.
When the stiffness is reduced further, for high values of gg, we observe three-dimensional
evolution (marked in yellow and referred to as three-dimensional dynamics) with a change
in the angle of the terminal sedimentation plane with respect to the initial inclination.
In the three-dimensional dynamics regime the loop leaves the initial plane essentially
immediately — it does not go through dynamics similar to the in-plane regime. Deviations
from a circular shape are necessary but not sufficient for a change in the inclination angle,
as exemplified by the existence of the in-plane dynamics regime. For the three-dimensional
dynamics regime in each simulation we observe in-plane and out-of-plane perturbations
appearing spontaneously every time, and the inclination angle always changes.

In order to test the stability criterion derived in § 4, we plot the observed sedimentation
modes depending on the dimensionless gravity go and the initial sedimentation angle 6
in figure 5. Clearly, the stability criterion with g & 14.5 (solid line) divides the regions
of absolute stability (with purple markers) and full three-dimensional dynamics (yellow
markers), with the planar evolution states in between. All instances of stable behaviour are
inside the predicted stability region. The initially unstable behaviour — yellow points to the
right of the stability curve — involves a complex transient evolution that finally settles on a
stable configuration at a smaller inclination angle. Even though the final shape in figure 4
is planar (prolate or circular), an example of the full shape transition in figure 6 shows
significant bending with a complete deviation from the initial plane and the establishment
of a new ellipsoidal shape in a different plane, essentially always at an angle smaller than
the initial 6y, and followed by a relaxation to the final shape. In most cases, the trajectory
consists of three phases. Firstly, the loop folds in half starting with the fore side of the loop
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Figure 5. Sedimentation regimes showing stable translation (dark purple), in-plane dynamics (green-blue)
and three-dimensional dynamics (yellow), observed in simulations for truncation frequency n = 6. Solid line
represents the linear stability analysis prediction (¢ & 14.5); dashed lines are empirical in-plane dynamics
boundaries (¢ ~ 10.5 and g ~ 18.5) presented as eye guides.
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Figure 6. Sample of three-dimensional time evolution dynamics. Three-dimensional rendering (a), side view
(b), top view (c¢). Images show shape evolution when starting in an unstable equilibrium. Snapshots are taken
at regular time intervals with changing colour: initial light yellow to final dark purple. The loop starts at initial
angle 6y = 60° subject to a gravitational force of dimensionless value gg = 150. The fore side of the loop folds
upwards leading to the formation of two lobes and an ellipsoidal shape (best visible in top view). At long times,
the loop converges to a near-horizontal plane to finally (after a very slow dynamics) relax to a perfect circle
(not shown in the figure).

falling faster than the centre of mass and immediately after being ‘blown’ backwards by
the drag force. This is related to the loop deforming towards a more prolate shape. With
the increasing fore—aft distance, and the centre of mass position remaining symmetrically
in the middle of the loop, it is necessary for the fore side to move faster than the centre of
mass during this stage. We regard this as the primary reason for the different behaviours of
flexible rods and loops. In the initial stages of motion a loop extends in plane, elongating
its long axis, while a rod retains its constant length. We note, however, that this effect
lasts for a very short period of time, and is present only at the early stages of the evolution.
Secondly, the two lobes formed by the fold relax towards the terminal plane. The dynamics
then becomes very slow and the loop attains the terminal shape within the terminal plane.
Notably, this behaviour is different from the case of a free-end filament, in which the
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Figure 7. (a) A comparison between the initial and the final values of the stability parameter in all simulations.
Linear stability analysis prediction (solid line at ¢ ~ 14.5) is marked together with estimated in-plane regime
boundaries of g ~ 10.5 and g = 18.5 (dashed lines). The points are coloured by the type of trajectory:
stable (dark purple), in-plane dynamics (green-blue), three-dimensional dynamics (yellow). () A comparison
between the initial and the final values of tilt angle. The stable (darkest) and the in-plane dynamics (medium)
points were shifted 1° in (a,b) respectively, for clarity. The unordered scatter of the three-dimensional dynamics
points (yellow) shows that the final tilt is difficult to predict, but in the vast majority of cases it is smaller than
the initial tilt angle.

lowest part of the filament initially sediments slower than the centre of mass (Li et al.
2013), leading to a different shape evolution path.

Lastly, the green—blue points span across the stability boundary in figure 5. This type
of behaviour is not taken into account by our simplistic linear stability analysis, because
of the assumption of a normal direction of perturbation, while here the loop stays in
the initial plane. Nevertheless, this type of dynamics is observed in the vicinity of
the predicted stability boundary and can be regarded as an intermediate stage between
complete instability and the complete lack of shape change. A vast majority of such
trajectories are bounded by 10.5 < (gosinfy)/3 < 18.5. This region closely follows the
stability curve in a wide range of the control parameter values and has boundaries that
appear to have a similar functional form to the analytical predictions.

To further analyse the relationship between the initial and final sedimentation planes,
in figure 7 we plot the initial stability parameter g = go sinfy/3 vs the final parameter
(calculated as gosin6/3) for all the cases investigated. The stability threshold is again
marked with a solid line, together with the empirical strip of two-dimensional evolving
shapes between the dashed lines. For stiff loops, at low values of g, the evolution does not
affect the sedimentation angle, and thus we see the expected linear correlation, which
persists for the semi-stable states which still remain in the initial plane. For unstable
loops of high flexibility, we see no apparent correlation between the initial and the final
sedimentation angles, as seen clearly in figure 7(b). Although the transition from stable to
unstable dynamics is quite accurately grasped by our estimates, we note that the detailed
evolution in this mode of motion is sensitive to the initial conditions, as discussed further.

In figure 8, we explore the deviation from a circular shape vs the final stability parameter.
To this end, we plot the aspect ratio of the final shape for all our data, defined as the ratio of
the highest to the middle eigenvalue of the spatial covariance matrix. The absolutely stable
loops remain circular, and once we enter the unstable region, in the vicinity of the stability
criterion we see a continuous increase of the aspect ratio. For unstable loops undergoing
the full three-dimensional evolution, we do not see a systematic trend, but the final aspect
ratios remain within the trend seen for stiffer loops, confirming that these configurations
are globally stable solutions of the loop evolution equations. In addition, we see that the
planar evolution is governed solely by the stability parameter g = go sin6/3, also in the
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Figure 8. Aspect ratio of the terminal centreline shape plotted against the terminal value of stability parameter
go(sin#)/3. Large aspect ratios refer to highly elongated loops. A functional relationship confirms that
the in-plane dynamics depends only on the stability parameter. The final shape is determined by the final
sedimentation angle (and vice versa). Regime boundary between stable and the in-plane dynamics is clearly
visible on this graph as the point where medium shade points reach the aspect ratio = 1 line. When the initial
stability parameter is greater than ¢* ~ 9, loops move from a stable to an in-plane dynamics regime. Note that
for the stable and in-plane dynamics trajectories (darkest and medium points) the initial and the final tilt are the
same, but for the three-dimensional dynamics the terminal tilt angle is smaller than the initial one (explaining
lightest points with aspect ratios of unity). Regardless of the initial configuration and parameters, it is sufficient
for the terminal stability parameter to be smaller than ¢* to ensure the terminal configuration takes the shape
of a circle. Dashed line shows the unstable branch of the solutions.

cases where the final value of 6 is very small and the initial three-dimensional dynamics
converges to a perfectly circular equilibrium shape, the same shape as in the case of stable
sedimentation modes.

6.1. Influence of truncation order

All the presented summaries of simulations are results of a numerical scheme terminated
at t = 10 of the dimensionless time, which corresponds to a sedimentation distance of the

order of 103 in terms of loop radius for moderate values of stiffness, upon confirming
no further shape evolution. This is long enough for all the simulated shapes to attain
the final configuration. In most cases, all rapid changes in shape (each at time scales of
approximately 0.5) are finished when ¢ reaches approximately 3, then the terminal angle
1s selected. A much slower relaxation of shape within the terminal plane follows with the
characteristic time of # ~ 1.

In the section above, we studied the stability of initial configurations and the attraction
to a stable shape for different values of the initial angle 6y and the truncation orders
n = 6. Numerical investigation of the eigenvalues of the truncated L operator shows
that the stability boundary should be largely independent of the truncation order n. Even
though the initial rate at which the instability develops will be independent of n (in an
unstable equilibrium it is the numerical noise that initiates movement), we should expect
quantitatively similar behaviour for the terminal motion of the loops.

In figure 9, we redraw the stability diagram, figure 5, for different truncation order of n =
4 (a) and n = 8 (b). Regardless of the initial angle and the truncation order, the stability
region is correctly predicted by the simplified linear stability analysis. Moreover, when the
loops are initially in an unstable position, they eventually reach the terminal angles, which
are constrained by the stability region. However, the truncation order changes the exact
behaviour predicted for a particular stiffness and initial sedimentation angle. Notably, for
very small values of n the intermediate regime of in-plane dynamics cannot be observed.
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Figure 9. Comparison of regimes of sedimentation observed in simulation for truncation frequency n = 4 (a)
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It is possible that this effect appears because the loop is unable to attain configuration
close enough to the terminal shape of the in-plane dynamics, due to the small number
of degrees of freedom. For a larger number of truncation modes, we see that the extent
of the two-dimensional evolution region decreases, with more unstable states close to the
stability criterion, but nevertheless the clear division between the modes remains in place,
rendering the simplistic criterion a useful tool for assessing the loop stability.

Far from the stability boundary, the dynamics of the loop follows the qualitative
conclusions derived from the analytical treatment, and the lower boundary (stable to
in-plane dynamics) is weakly sensitive to the truncation frequency — additional simulations
for n = 10 on a restricted set of initial angles confirm that a lower stability boundary
shows no further change with inclusion of higher-order terms in expansions. We note,
however, that the upper boundary (in-plane to three-dimensional dynamics) is a fragile
one, and the selection of one attractor over the other is sensitive to the details of numerical
implementation. The discussed discrepancies can be of three origins: (i) change in stability
due to the truncation of high frequencies, (i1) change in perturbation power spectrum
due to the change of dimensionality or (iii) change in perturbation due to the change in
numerical stability of the OLS minimiser procedure. The presented analysis of truncation
order in figure 3 gives us confidence that the high-frequency modes make negligible
contributions to the stability problem due to the extremely high damping by elastic dggqs
terms. Therefore, our expectation is that effects (ii) and (iii) are the primary reasons for
the observed differences between the smallest and largest values of the truncation order.

7. Conclusions

In this contribution, we modelled the behaviour of elastic loops sedimenting under gravity.
To this end, we combined the local SBT with the Euler—Bernoulli beam theory to develop
analytical insights into the dynamics and proposed a Fourier basis expansion method for
effective numerical implementation. Our approach takes advantage of the periodicity of
all the relevant functions in this setting, complementing our analytical treatment.

In simulations, when starting from an inclined circle, we identified three distinct regimes
of motion, depending on the relative importance of gravity and loop stiffness, combined
into a single dimensionless parameter gg. For stiff loops, or low values of gp, we see no
effect of elasticity and the loops sediment as circular rings. When increasing the softness,
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sedimenting loops remain oriented in the initial plane but attain elongated and slightly
asymmetric shapes. For even softer filaments, the loops exhibit a transient instability,
undergoing a three-dimensional shape evolution, where the fore edge of the loop is bent
and leaves the initial plane, but the dynamics eventually settles on a planar shape at an
angle different from the original. The said terminal angle is hard to predict and under
fixed go determines whether the final configuration will be circular or prolate. Small
enough angles corresponding to terminal stability parameter g = gg sin 6 /3 smaller than
approximately ¢* = 9 always result in an eventual circular shape.

To explain the transition between these regimes, we propose a simple theory based on
linear stability analysis, with a further assumption that perturbation is taken in the direction
perpendicular to the initial plane. This specific choice of perturbation leads to an analytical
insight into the dynamics which we doubt to be possible with an arbitrary perturbation.
To circumvent this difficulty, we additionally perform numerical simulations to provide
a description for arbitrary initial conditions. Under the chosen simplification we identify
the most important parameter controlling the motion as the initial stability parameter g =
gosinfp/3, and perform a near-analytic determination of the stability boundary at g &~
14.5.

The results of numerical simulations are in satisfactory agreement with the simplistic
approach of the linear stability analysis, thus confirming the validity of our approach for
finding the stability threshold. Both the absolutely stable and the unstable regimes fit
entirely within the domains predicted by the theory. The intermediate regime of planar
shape evolution appears in close proximity of the stability boundary. We conclude that
such a simplified linear stability analysis is a useful tool in both the three-dimensional
dynamics case as well as for in-plane dynamics because it correctly predicts both scaling
and approximate values of the stability parameter of regime transitions. For sufficiently
stiff loops, we compare our numerical codes to the existing analytical results of Johnson
& Wu (1979) and Tchen (1954) for stiff loops. We confirmed the expected agreement
both qualitatively (translation without change of orientation) and quantitatively in terms
of translation velocity asymptotics for very slender rods. Below the stability threshold,
however, we see differences from the bead-spring model (Gruziel-Stomka et al. 2019),
where sufficiently stiff sedimenting loops attained vertical or tilted oval shapes, in
contrast to loops sedimenting without a change of orientation in our model. Increasing
the flexibility leads to a deviation from the initial shape, resulting in an approach to a
different equilibrium circle. Beyond the stability threshold, we also find that the details
of intermittent evolution of more flexible fibres differ between the bead-spring results of
Gruziel-Stomka ef al. (2019) and slender-body models. This might be partly due to the lack
of non-local terms in our resistive-force SBT and due to the different geometric details of
both systems, i.e. a slender filament vs a chain of beads. In particular, we note that the
stable circular configuration found in the RFT approximation is no longer a solution when
the full hydrodynamics is included. However, the shape of the final tilt angle vs stiffness
curve is similar in the bead-spring and RFT models.

The presented approach shows an attractive interpretation of the compression (negative
tension) on the fore side of sedimenting objects as a negative diffusion coefficient in the
governing equation of the linear stability analysis. This gives intuitive grounding to the
experimental results such as those of Jay & Canham (1972) where red blood cells show
a preference for horizontal sedimentation when their flexibility is increased, or Gruziel
et al. (2018) where the preference for horizontal sedimentation was seen for knotted elastic
fibres. It also provides support for the interpretation of experiments of the DNA loop
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rupture dynamics (Alizadehheidari et al. 2015), in which the loops break in locations
corresponding to the maximal tension in our description.

The conclusion that vertically oriented loop configurations are forbidden due to their
instability is a general physical observation applicable in similar elastohydrodynamic
settings. The presented results show that observations of instability from free-end
simulations (Li et al. 2013) are applicable only to some extent: circular configuration
gives rise to a tension offset which substantially improves stability in comparison with
the free-end configuration.

We look forward to additional experimental verification of the conclusions of this paper,
either in the microscale with biological fibres or in macroscopic experiments such as those
with knotted bead chains of Gruziel et al. (2018).
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COMMENTARY

Bio-relevance of the DNA requires little introduction. Even though the basic structure of the DNA
is well understood at least since the 1950s, understanding the secondary structure of the DNA filament
remains an important but challenging task. Since the overall 3D conformation of the DNA can influence
gene expression and is known to affect biological affinity, understanding the forces governing its elasticity
is crucial. By using a selection of small DNA loops which differ only in the linking number, we were
able to measure conformational changes of the DNA via its hydrodynamic properties in the diffusive
measurements.

Earlier works such as that of Coleman and Swigon [47] established the correct energy density func-
tional to model slender loops subject to torsional stress. Unfortunately, the original code giving piecewise
analytical solutions for the problem is lost and thus re-implementation of the solver was required. That
work used DNA loops as inspiration but was never directly tested against experimental results. On the
other hand, a variety of software packages are capable of predicting hydrodynamic radius given the shape
of a rigid molecule (Zeno, US-Somo, GRPY), but as far as we know, they were not yet used for prediction
of hydrodynamic properties of DNA loops.

This study emerged from the collaborative efforts of three distinct groups. The first group, specialising
in theoretical modelling, comprised the PhD candidate, Maciej Lisicki, and Piotr Szymczak from the
Faculty of Physics, Univeristy of Warsaw and Maria L Ekiel-Jezewska from the Institute of Fundamental
Technological Research, Polish Academy of Sciences. The second group, responsible for the biosynthesis
of DNA minicircles, included Jonathan M Fogg, Daniel J Catanese Jr, and Lynn Zechiedrich from the
Department of Pharmacology and Chemical Biology at Baylor College of Medicine and Rice Univeristy.
The third group, overseeing the AUC measurements, included Maduni Ranasinghe and Borries Demeler
from the Department of Chemistry and Biochemistry at the University of Lethbridge.

The choice of DNA minicircles topoisomers as the subject of collaboration proved strategic. For the
therory group, the shared hydration properties among different topoisomers and their loop structure, as
opposed to rods, facilitated a more straightforward modelling process. The biosynthesis group leveraged
their prior experience in preparing these molecules, coupled with an interest in understanding the physical
origins of changes in the bio-activity of writhed DNA. Lastly, for the AUC group, the remarkable sample
stability of DNA minicircles allowed for numerous repetition of experiments. Using the selected approach,
we were able to calibrate the hydrodynamic thickness of the DNA filament against measurements of the
configurations which adopt a toroidal shape and to use that value to predict the hydrodynamic radius
of all topoisomers that were experimentally measured.

In this study, the PhD candidate: proposed and implemented a numerical method to obtain equilib-
rium configurations of the supercoiled DNA minicircles. They computed the hydrodynamic properties of
these configurations using GRPY, pygrpy, and Zeno software (with only Zeno being included in the pub-
lished manuscript); wrote the first draft and edited all subsequent versions of the manuscript, produced
all graphs and visualisations incorporated in the manuscript.
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ABSTRACT

DNA in cells is organized in negatively supercoiled
loops. The resulting torsional and bending strain al-
lows DNA to adopt a surprisingly wide variety of
3-D shapes. This interplay between negative super-
coiling, looping, and shape influences how DNA is
stored, replicated, transcribed, repaired, and likely
every other aspect of DNA activity. To understand
the consequences of negative supercoiling and cur-
vature on the hydrodynamic properties of DNA, we
submitted 336 bp and 672 bp DNA minicircles to an-
alytical ultracentrifugation (AUC). We found that the
diffusion coefficient, sedimentation coefficient, and
the DNA hydrodynamic radius strongly depended
on circularity, loop length, and degree of negative
supercoiling. Because AUC cannot ascertain shape
beyond degree of non-globularity, we applied linear
elasticity theory to predict DNA shapes, and com-
bined these with hydrodynamic calculations to inter-
pret the AUC data, with reasonable agreement be-
tween theory and experiment. These complemen-
tary approaches, together with earlier electron cry-
otomography data, provide a framework for under-
standing and predicting the effects of supercoil-
ing on the shape and hydrodynamic properties of
DNA.

INTRODUCTION

Nearly seventy years after Rosalind Franklin’s meticulous
work that led to the first description of the structure of
DNA (1), we are still working to understand how this re-
markable molecule is organized, stored, activated, and seg-
regated into daughter cells (2-9). It is becoming increas-
ingly apparent that negative supercoiling (the underwind-
ing of the DNA double helix) provides a secondary or ‘hid-
den code’ that contributes to the three-dimensional (3-D)
organization of the genome (10) that can be used by cells as
a ‘molecular servomechanism’ to detect and regulate gene
expression (11).

We recently discovered that the degree of curvature, dic-
tated by DNA loop length, additionally tunes supercoiling-
mediated effects and promotes mechanical crosstalk to ex-
pose DNA bases at specific distant sites (12). Exposed DNA
bases drastically increase DNA flexibility to change the 3-
D structure of DNA, which, conversely, influences the loca-
tion and frequency of the disruptions to base pairing (12).
Therefore, 3-D shape and base exposure are manifestations
of supercoiling and looping (13). These findings underscore
how supercoiling-dependent conformational changes may
allow DNA to be an active participant in its transactions
(13,14).

We previously used minicircles of a few hundred base
pairs and defined supercoiling to determine how super-
coiling and looping modulates the 3-D structure of DNA
(13). DNA loops in this length range are found in na-
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ture, e.g., wrapped around the nucleosome, and are involved
in gene regulation (15-18). Human topoisomerase Ila re-
laxes supercoiled DNA minicircles (13), demonstrating that
they are biologically active. Thus, minicircles are biologi-
cally relevant and mimic DNA loops naturally occurring in
cells.

We previously determined how supercoiling modulates
the shapes of minicircles using electron cryotomography
(cryoET) (13). Although informative, these assays are labo-
rious and only limited DNA sequences and buffer condi-
tions have been explored (12,13,19). CryoET provides 3-D
information on individual DNA minicircles of defined su-
percoiling (DNA topoisomers) (13), but the approach re-
quires skill in the art, is time-consuming and the result-
ing structures are of low resolution. Increasingly powerful,
atomic force microscopy (AFM) can show the helical repeat
of DNA as well as areas of base pair disruption (19), but the
sequence is unidentifiable and the technique requires that
DNA is adsorbed onto a flat surface. Not only might this
adsorption distort DNA conformations but it means that
they are visualized as 2-D projections with limited 3-D in-
formation.

Computational modeling would be of great value in help-
ing predict DNA negative supercoiling and looping be-
havior, but thus far fails to account for supercoiling- and
looping-mediated site-specific base exposure or resulting
conformational changes. For example, most efforts at un-
derstanding looping (20) or cyclizing of DNA (21) ignore
supercoiling. Therefore, new modeling efforts are needed,
including the parameters of supercoiling and degree of cur-
vature (dictated by DNA loop length). Before this model-
ing can be improved, however, detailed parameters of su-
percoiled loops of DNA must be determined.

Whereas cryoET is impractical to use for multiple con-
ditions, AUC and electrophoresis rapidly assess properties
in solution, and can be used to test multiple conditions si-
multaneously. Toward the goal of understanding how DNA
sequence and 3-D shape are affected by negative supercoil-
ing and looping, here we combined state-of-the-art AUC
(22) with mathematical modeling to determine hydrody-
namic parameters of supercoiled DNA minicircles. We de-
rived partial specific volume (PSV) and anisotropy, and
measured the sedimentation and diffusion coefficient for
minicircle DNA of different degrees of negative supercoil-
ing and lengths. With these values, we determined the den-
sity of DNA. We discovered that DNA length and super-
coiling strongly affect the sedimentation properties of mini-
circle DNA but have either no or only a minimal effect on
the PSV.

We generalized the continuum elastic framework to ac-
curately predict the previously observed DNA minicir-
cle 3-D shapes (13). This generalization provides addi-
tional and complimentary information that will allow us
to interpret supercoiling- and curvature-dependent DNA
structural alterations. Emboldened by this accomplish-
ment, we then combined the measured elastic and hydro-
dynamic properties of DNA minicircles using bead mod-
els and considering force and hydrodynamic effects to com-
pute the hydrodynamic sedimentation and diffusion coeffi-
cients. These modeling results compared favorably to AUC
measurements.

MATERIALS AND METHODS
Chemicals and reagents

Msel, Nb.BbvCl, Proteinase K, T4 DNA Ligase, low
molecular weight DNA ladder, and 100 bp DNA lad-
der were purchased from New England Biolabs (Ipswich,
MA, USA). Adenosine triphosphate (ATP), antifoam 204,
dithiothreitol (DTT), ethidium bromide, and RNase A
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Acrylamide, ampicillin, chloroform, and sodium chloride
were purchased from Fisher Scientific (Pittsburgh, PA,
USA). All other chemicals were purchased from VWR In-
ternational (West Chester, PA, USA).

Generation and purification of minicircle DNA

Plasmid pMC336 (13) was used to generate both the 336 bp
and 672 bp minicircles via N-integrase-mediated site-specific
recombination as described (23). Double-length 672 bp
minicircles contain two copies of the 336 bp minicircle se-
quence in tandem orientation and are generated by the re-
combination used to generate 336 bp minicircle DNA.

Generation of different DNA topologies

The ‘supercoiled’ samples are the 336 bp or 672 bp mini-
circle products of the purification process. These were ana-
lyzed without further manipulation. To make nicked DNA,
the minicircles were nicked at a single site using the nicking
endonuclease Nb.BbvClI according to the manufacturer’s
protocol. The 672 bp minicircle contains two copies of the
BbvCl site and was thus nicked at both locations. Follow-
ing nicking, the DNA was subsequently incubated at 80 °C
for 20 minutes to inactivate Nb.BbvClI. Linear 336 bp was
generated by incubating supercoiled 336 bp minicircle with
Msel according to the manufacturer’s protocol. The lin-
earized DNA was subsequently incubated at 65 °C for 20
minutes to inactivate the enzyme. ‘Relaxed’ 336 bp minicir-
cle DNA was generated by incubating the nicked minicir-
cles with T4 DNA ligase in 50 mM Tris-Cl pH 7.5, 10 mM
MgCl,, 1 mM ATP, and 10 mM DTT overnight at room
temperature. ‘Hypernegatively supercoiled’ 336 bp was gen-
erated in an identical manner as ‘relaxed’, except for the ad-
dition of ethidium bromide (6.5 pg/ml) to the ligation re-
action. Ligations were subsequently extracted with butanol
(to both reduce the volume and to remove the ethidium
bromide), extracted with chloroform, then precipitated with
ethanol. The nicked, linearized, and supercoiled minicircle
samples were also subjected to butanol and chloroform ex-
traction, and ethanol precipitation in a similar manner to
both remove the enzymes and to ensure that any differences
observed could not be attributed to differences in how the
samples were made. Following ethanol precipitation, DNA
was resuspended in 50 mM Tris-Cl pH 8.0, 150 mM NacCl,
and 10 mM CaCl,. DNA samples were subsequently sub-
jected to multiple rounds of buffer exchange in the same
buffer using an Amicon 0.5 ml centrifugal filter to ensure
that buffer conditions were equal across all samples. DNA
concentrations were determined using a Nanodrop spec-
trophotometer.
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Geometry and topology of DNA minicircles

DNA supercoiling is defined by the linking number (Lk),
the total number of times the two single DNA strands coil
about one another (24). Lk is, thus, an integer number by
construction if both strands are covalently closed. If one or
both of the strands is not covalently closed, e.g., for nicked
and linear DNA, Lk can adopt non-integer values. Another
quantity determining the shape of DNA is the equilibrium
helical repeat 2 defined as the number of base pairs between
two locations where the backbones are aligned and is mea-
sured in base pairs per turn. The value of / is buffer depen-
dent and is ~10.42 bp/turn in 10 mM CaCl, (13). Using 4,
we can calculate the angle between terminal base pairs of
a straight linear DNA segment of a given length L, which
gives us the reference value Lko= L/h. Because /4 can, in
principle, take any value, Lk is not restricted to integer val-
ues and usually has a fractional part. For relaxed 336 bp
minicircles, we get Lky=32.2 while for 672 bp Lk, =64.4.
Therefore, the deviation from the most relaxed DNA struc-
ture is measured by the difference between Lk, and Lk de-
noted by ALk = Lk — Lk, which for the relaxed configu-
ration of the 336 bp minicircle yields ALk =—0.2. ALk is
typically scaled to the DNA length to give the superhelical
density o = ALk/Lky.

Because Lk is constrained to integer values, it is sufficient
to report ALk rounded to the nearest integer to uniquely
identify experimental configurations, as used in Ref. (13).
For the relaxed 336 bp minicircle, we round —0.2 to 0. For
simplicity, we follow this convention when reporting exper-
imental values in this work. At the same time, we keep track
of the fractional parts to accurately compute the elastic
properties of the minicircles.

Gel electrophoresis

DNA samples were analyzed by electrophoresis through
5 % (for 336 bp and 672 bp samples) or 4 % (for 672 bp
samples) polyacrylamide gels (acrylamide:bis-acrylamide
= 29:1) in Tris-acetate buffer (pH 8.2) containing either
150 mM NaCl and 10 mM CaCl, (5 % gels) or 10 mM
CaCl, (4 % gels) at 125 V (~6 V/cm) for 8 hours. Buffer
was continuously recirculated during electrophoresis. DNA
samples were also analyzed by electrophoresis through
1.5 % and 3 % agarose gels (Seakem LE agarose, Lonza,
Rockland, ME) in TAE (Tris-acetate + | mM EDTA) buffer
at 100 V for 3 hours. Gels were subsequently stained with
SYBR Gold (ThermoFisher Scientific, Waltham, MA),
then visualized using a FOTO/ANALYST Investigator
imaging system (Fotodyne, Hartland, WI, USA) with quan-
titation using ImageQuant TL, version 8.1 (GE Healthcare
Life Sciences, Marlborough, MA, USA).

Analytical ultracentrifugation

Linearized, nicked, relaxed, supercoiled, and hypernega-
tively supercoiled 336 bp minicircles, and supercoiled and
nicked 672 bp samples, were measured by sedimentation ve-
locity using an ANS50Ti rotor in a Beckman Coulter Op-
tima AUC at the Canadian Center for Hydrodynamics at
the University of Lethbridge in Alberta, Canada. For de-
tails of minicircles used, see Supplementary Table S1.
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All samples were measured in 50 mM Tris-Cl pH 8.0,
150 mM NacCl, and 10 mM CaCl,. 460 pl of each sample at
an absorbance (A) of 0.6 at 260 nm were loaded into cells fit-
ted with sapphire windows and 12 mm double channel epon
charcoal centerpieces (Beckman Coulter, Indianapolis, IN,
USA). Data were collected in intensity mode at 260 nm, and
at 20 °C at five different rotor speeds of 10, 14, 25, 35, and
45 krpm. After data collection at each speed was completed,
AUC cells were thoroughly shaken to redistribute the mini-
circle DNA uniformly. Depending on minicircle topology
and length, at 10 krpm, pelleting occurred between 559—
770 scans, requiring 50-70 hours. At 45 krpm, pelleting oc-
curred after 88-159 scans, requiring 2-4 hours. The density
and viscosity of the buffer, estimated with UltraScan, was
1.00682 g/ml and 1.02667 cP, respectively.

AUC data analysis

All data were analyzed with UltraScan-III, version 4.0
(6345) (22), using the UltraScan data acquisition mod-
ule (25). UltraScan fits experimental data to finite ele-
ment solutions of the Lamm equation, deriving distribu-
tions for sedimentation and diffusion coefficients (26,27).
Optimization is achieved by parallel distributed data analy-
sis, which was performed on the UltraScan Science Gateway
using XSEDE resources (Expanse, Bridges 2, Stampede),
and high-performance computing clusters at the University
of Montana and University of Lethbridge. The optimiza-
tion process proceeds through a series of model refinement
steps, which employs the two-dimensional spectrum anal-
ysis (2DSA) (28). This refinement process removes system-
atic noise contributions contained in the raw data and ob-
tains exact boundary conditions (the radial positions at the
meniscus and the bottom of the cells) as described in (29).
The final 2DSA refinement result is used to initialize a ge-
netic algorithm analysis (GA) (30), which is followed by a
Monte Carlo GA analysis (31). The total concentration de-
termined from each speed between identical samples was
also compared to ensure no material was lost due to aggre-
gation or degradation, and samples were comparable across
all speeds for a global analysis. The Monte Carlo GA results
from identical samples and different speeds were combined
to initialize a global GA analysis over all speeds. UltraScan
supports simultaneous fitting to datasets from multiple ex-
periments performed at different speeds. A global analysis
benefits from the enhanced signal of the diffusion coeffi-
cient at low speeds and the improved sedimentation signal
at higher speeds (32,33). This feature also enhances signal-
to-noise ratios and improves the confidence limits for the
determined hydrodynamic parameters. The global fitting al-
gorithm in UltraScan is further explained in (22).

Hydrodynamic properties

Translational diffusion coefficient. The translational diffu-
sion coefficient D is inversely proportional to the transla-
tional frictional coefficient f,

D=—"-, (1)
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where kg is the Boltzmann constant, and 7 the absolute
temperature. In this work, diffusion occurs at very low con-
centrations of solute, which allows the analysis of transport
coefficients in terms of single-particle properties only. For
microscopic solid spheres of radius R suspended in a liquid
of temperature 7" and viscosity n the Stokes-Einstein rela-
tionship reads

p= feT )

6mnR

This relationship can be generalized to non-spherical
molecules by introducing the effective hydrodynamic radius
Ry, defined as

kT

Ry 6rnD’ 3
In aqueous solvents, macromolecules are typically hy-
drated, which adds to their apparent size and friction. The
value of Ry, derived from measured D includes these effects.
The hydrodynamic anisotropy of the DNA minicircles
was characterized by the frictional ratio f/fy, being the ra-
tio of the measured frictional coefficient f'and the frictional
coefficient f; of a spherical particle of the same volume. The
anisotropy equals 1.0 for a spherical molecule and exceeds

1.0 for non-spherical molecular shapes.

Sedimentation coefficient. The sedimentation coefficient s
depends on the molar mass M, the translational frictional
coefficient f, and the buoyancy of the particle, which is a
function of its PSV, v, and solvent density p,
M1 —v
5 = M, (4)
Nf

where N is Avogadro’s number. The Svedberg equation de-
scribes the ratio of the two parameters measured in a sedi-
mentation velocity experiment, s and D, and provides a way
to estimate the molar mass A, if the PSV is known:

s M —vp)

— = —. 5
D NkpT ©®)

Apparent PSV. Eq. (5) considers a two-component
system—an analyte with anhydrous molar mass M and a
solvent with density p. However, our experimental solu-
tion also contains buffer components and ions that may be
bound to the analytes. The degree of counterions bound to
the analyte is dependent on solvent conditions and the ionic
strength of the solvent, particularly for charged molecules
(34). PSV is defined as the change in volume when one
gram of analyte is added to the solvent, and is typically re-
ported in units of ml/g. Because we do not know the precise
amount of counterions bound to the analyte, we consider an
apparent partial specific volume #’, which can only be con-
sidered constant for a single solvent at a constant temper-
ature and pressure. Rearranging the Svedberg equation al-
lows the determination of the apparent PSV, provided the
molar mass and the solvent density are known and the sed-
imentation and diffusion coefficients have been determined
experimentally from a sedimentation velocity experiment

5’=1<1_ NSkBT). (6)
P MD

In our case, the molar masses are 207.576 kDa for
the 336 bp minicircle and 415.152 kDa for the 672 bp
minicircle, as calculated from the sequence (12) using
molbiotools.com/dnacalculator. UltraScan automatically
estimates the solvent density and viscosity from the buffer
composition, and adjusts the experimental s, p and Dz p
values to standard conditions (water at 20 °C) using the den-
sity and viscosity estimates from the buffer components, see

((35), p. 117)
(I =9p)ow nr1.B

= ) 7
20w =S8 (1 =vp)rB N20.w @
T nrtB
Doy, = DT,B7 — )]
20,w

where sz p is the observed sedimentation coefficient at
experimental conditions (temperature 77=293.15 K and
buffer B). However, for the s, ,, corrections, the partial spe-
cific volume of DNA at standard conditions is required, but
itis not known to us and impossible for us to measure. While
literature values are reported for NaDNA (0.54-0.55 ml/g)
(36,37), topoisomers here were studied in 10 mM calcium,
which has a higher binding affinity to DNA than Na (38).
Hence, we report here the experimentally measured values
of sand D for all topoisomers, and the apparent partial spe-
cific volume under experimental conditions, ¥, calculated
by Eq. (6) and assuming a two component system.

Finding equilibrium shapes of loops

To model the shapes of DNA minicircles with a given Lk, a
variant of the Kirchhoff beam theory for inextensible rods
(39) was used, which describes the twisting and bending of
a uniform elastic filament of constant steric thickness d,
which was set to 20 A in all computations. The helical repeat
of the DNA yields a reference value of Lky = L/h for a given
length L.

To model a DNA minicircle with a given Lk (and ALk),
we used an elastic beam representation in which a (closed)
beam is characterized by two constants: bending rigidity 4
and geometric torsional stiffness w (describing the cross-
sectional shape, equal to 2/3 for circular cross sections). The
energy density has quadratic contributions from the resid-
ual excess twist density 2 and local curvature «. The total
energy is thus given by

2

where €2 is computed from Lk and the shape of the filament
centerline with the help of the Calugareanu theorem (40)

Frod = / Ak + 0Q?) ds, )

Lk = Tw+ Wr, (10)
where twist (7w) is defined as
1 L
Tw=Lko+f/ Qds, (11)
2 0

and writhe (Wr) is defined in the standard way (41). Scal-
ing by k3T, the energy function can be made dimensionless,
leaving the (width-to-length) aspect ratio d;/L and w as the
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only parameters of the model. This approach was used by
Coleman and Swigon (42) to categorize equilibrium shapes
of looped filaments for a single aspect ratio d;/L =382 x
1073 (corresponding to a DNA minicircle of length 718 bp
and d, =20 A), which constitutes a benchmark for our com-
putations. Coleman and Swigon began by solving the prob-
lem of a free beam segment subject to boundary conditions
at each end, and two beams in contact along a contact line.
Such solution fragments can be glued together at contact
points to form a looped solution, subject to gluing con-
ditions that ensure the continuity of the first two deriva-
tives and appropriate jump conditions to account for beam-
beam steric forces. This approach uses the same expression
for the beam energy but addresses the energy minimization
in a different way—either by solving an ordinary differen-
tial equation subject to appropriate boundary conditions
when no contact forces are needed or by direct minimiza-
tion subject to no-overlap constraint when contact forces
are present.

Determination of critical ALk

The stability of a computed minicircle shape depends on
its ALk (42,43). For sufficiently small IALKI, a flat circu-
lar configuration is the only equilibrium solution. Upon in-
creasing |IA Lkl at a thickness-dependent threshold value of
critical (minimal) Lk, a figure-8 solution becomes admis-
sible and the flat circular and figure-8 shapes coexist. Su-
percoiling further, above the thickness-independent thresh-
old of Lk = V3 /w, the flat circular shape is no longer
a solution and only writhed configurations exist (43). For
the prediction of Lk for initial writhing of a minicir-
cle, an approach based on solving an ordinary differen-
tial equation for centerline shape was used. The minimal
value of IA Lkl required for writhing can be characterized by
the existence of a configuration with a single contact point
but with zero contact force. An ordinary differential equa-
tion was written for the beam centerline with minimum en-
ergy in a Cartesian parametrization subject to the bound-
ary condition of a single contact point and no contact force
and solved numerically using Mathematica, where bound-
ary value problems are solved by the shooting method with
conjugate gradient descent. For any given separation of the
centerline at the self-contact location, one value of residual
twist density was found. The relationship between the two
was used to derive Lkit(ds/L).

Energy minimization of DNA minicircle shapes

Having determined the range of IALkl for which writhed
configurations can be stable, the space of admissible config-
urations was examined and those configurations that min-
imized the elastic energy were investigated. Here, because
of the presence of contact forces, a different numerical
method was used. Representing the centerline shape with
periodic cubic splines, direct energy minimization was per-
formed over all possible shapes without self-intersections.
Curves with 16 nodal points with enforced dihedral sym-
metry were subjected to a Monte Carlo minimization pro-
cedure. The bending energy was calculated directly from
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curvature using the adaptive Simpson’s algorithm and tak-
ing advantage of the twice continuously-differentiable na-
ture of the cubic splines. The precise estimation of Wr, re-
quired to compute 7iv, was performed by approximating
the curve by 200 linear segments and using an algorithm
proposed by Levitt (44) to deal with the singularities of
the Gauss formulation. Steric interaction was introduced by
tracking self-intersections through a large number (20 L/dy)
of sample points along the curve and a suitable steric en-
ergy penalty. Length constraint was imposed by comput-
ing the apparent length at each optimization step using
the adaptive Simpson’s method and by imposing an energy
penalty for the deviation from the prescribed length. Multi-
ple sets of different control parameters for numerical opti-
mization were tested to ensure both fast convergence and
satisfactory precision. All final computations were done
with identical discretization and penalty characteristics. For
final values of penalty parameters, Monte Carlo proce-
dure parameters, and initial conditions, see data availability
section.

Models for hydrodynamic radius

Solutions for Stokes flow around a slender toroidal object
were developed by Johnson (45) that provide an asymp-
totic approximation in terms of slender-body theory. A fully
analytical approach based on toroidal harmonics used by
Goren and O’Neill (46) allows exact computations of all
elements of the mobility matrix for a torus with an ar-
bitrary aspect ratio. For a rigid, axially symmetric parti-
cle of a given length L and hydrodynamic thickness d,
the mobility coefficients for translation along the symme-
try axis and perpendicularly to it, w,(L, d;) and w.(L,
dy), respectively, are sufficient to compute the hydrody-
namic radius R, by taking the inverse of the arithmetic
mean

1 3
R = a (2I/Lx(Lv dy) + n-(L, dh)) . (12

To theoretically determine R, for an arbitrarily shaped
molecule, a rigid bead model of its structure was con-
structed and its hydrodynamic radius was calculated using
the ZENO software package (47,48). In our case, the con-
figuration of a minicircle was represented by 400 spheri-
cal and overlapping beads placed on the shape centerline,
with diameters corresponding to the hydrodynamic thick-
ness of the DNA molecule and the distance between over-
lapping beads summing up to the length of the molecule.
This structure was then used to evaluate Ry, for the compos-
ite particle. The diffusion coefficient at a given 7" and 7 is
calculated from the definition of R, in Eq. (2). The sedimen-
tation coefficient is obtained from the Svedberg relation,

eq. (5).

RESULTS
Rationale

The study of DNA supercoiling and curvature has benefited
from multiple complementary theoretical and experimental
approaches. The combination of multiple approaches takes
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Figure 1. Electrophoretic mobility of minicircle DNA. (A) DNA samples were analyzed by polyacrylamide gel electrophoresis (5 % polyacrylamide)
in 150 mM NaCl and 10 mM CacCl, (the same conditions used in analytical ultracentrifugation). Mr: 100 bp DNA ladder, lanes 2-8: 336 bp minicircle
topoisomer markers (Lk as indicated), lanes 9-13: 336 bp minicircle DNA samples (Sc: ‘supercoiled,” N: nicked, R: relaxed, H: ‘hypernegatively supercoiled,’
L: linear), lanes 14-15: 672 bp DNA samples (Sc: ‘supercoiled,” N: nicked). (B) Determination of topoisomer identity in 672 bp samples. DNA samples
were analyzed by electrophoresis on a 4 % polyacrylamide gel in the presence of 10 mM CaCl,. Mr: 100 bp DNA ladder, lanes 2-8: 672 bp minicircle
topoisomer markers (Lk as indicated), lanes 9-10: 672 bp DNA samples (Sc: ‘supercoiled’ as isolated from the bacteria, N: nicked).

advantage of the knowledge gained from each approach
while helping shore up their individual limitations.

We previously (13) used 336 and 672 bp minicircles to
study the effect of supercoiling and looping on DNA struc-
ture and have extensive 3-D structural data. AUC requires
more material than cryoET (13), AFM (19), or other bio-
chemical and biophysical analyses (12). A wide range of su-
percoiling was explored by testing relaxed, nicked, super-
coiled, and hyper-negatively supercoiled minicircle samples.
Supercoiled minicircle DNA was obtained from bacterial
cells and, therefore, approximates the steady-state level of
supercoiling in bacteria. Hypernegatively supercoiled sam-
ples have been further manipulated to increase the level of
supercoiling and allowed us to determine whether AUC can
distinguish different topoisomers from each other. To deter-
mine the effect of circularity, linearized DNA samples were
also analyzed.

We characterized the minicircle samples by gel elec-
trophoresis, which allows the topoisomer distribution of
each sample to be precisely determined. Polyacrylamide gel
electrophoresis effectively separates minicircle topoisomers
and provides some insight into the conformational differ-
ences, although the theory underlying the differential mi-
gration is not fully understood.

We then applied advanced theoretical modeling to see
whether it can explain the previously observed 3-D confor-
mations of these minicircles (13). It was reasonably success-
ful, and these advanced mathematical models could then be
used to help analyze and interpret AUC data. Algorithms
used elsewhere to interpret AUC data approximate shape
as a sphere to a line, but because of the diversity of shapes
of DNA, in this paper a theoretical model was constructed
to determine specific shapes and use them to evaluate diffu-
sion and sedimentation coefficients.

Electrophoretic characterization of DNA minicircles

DNA minicircles were analyzed by polyacrylamide gel elec-
trophoresis. Both the helical repeat and conformation of
DNA are sensitive to solution conditions (49,50). Here
we used the same conditions used in analytical ultra-
centrifugation experiments (150 mM NaCl and 10 mM
CaCly).

Supercoiled topoisomers migrated much more rapidly on
the polyacrylamide gel than relaxed topoisomers (Figure 1).
In comparison, the different topologies had relatively simi-
lar mobilities on an agarose gel (Supplementary Figure S1).
This difference in migration on polyacrylamide gels can be
at least partially explained by the relative compactness of
supercoiled minicircle conformations (13). The nicked and
relaxed topoisomers had near-identical migration, suggest-
ing that the single-strand break in the nicked minicircle does
not significantly affect the global conformation. The lack of
difference is explained by the number of helical turns in the
336 bp minicircle studied being close to a perfect integer
value of 32 (under these conditions), resulting in the base
pairs flanking the nick site being in close rotational align-
ment, allowing for favorable base stacking across the nick
(12). We previously showed that when the rotational align-
ment is out of phase (i.e., when the number of helical turns
deviates from a perfect integer value), the effect of a nick
on polyacrylamide gel migration is much more pronounced
(12).

The topoisomer distribution for the samples taken
through to AUC analyzes was measured from quantifica-
tion of digital images of the fluorescently stained gels using
image analysis software. The ‘supercoiled’ 336 bp sample
contained primarily ALk = -3 (48 %), ALk=-2 (41 %),
and ALk=—1 (7 %) topoisomers. The sample also con-
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Table 1. Apparent partial specific volume for DNA minicircle topoiso-
mers in the buffer

Partial specific volume?® in mg/1

Sample 336 bp 672 bp
Linear 0.479 ND
Relaxed 0.470 ND
Nicked 0.469 0.495
Supercoiled 0.488 0.494
Hypernegatively 0.479 ND
supercoiled

Average value” 0.482 +0.011

4Determined by global sedimentation velocity analysis using the known
molar masses. ®For all the 336 bp and 672 bp minicircle DNA species. ND,
not determined.

tained trace amounts of nicked 336 bp (1 %) and super-
coiled 672 bp (3 %) minicircle DNA. The topoisomer dis-
tribution obtained (mean o ~ —0.08) reflects the supercoil-
ing level in the bacterial strain used to generate the mini-
circles. The ‘hypernegatively supercoiled’ sample contained
primarily ALk =—6 (61 %) and ALk =—5 (33 %) topoiso-
mers, with trace amounts of nicked 336 bp (4 %) and su-
percoiled 672 bp (3 %) minicircle DNA. This sample (with
mean o ~ —0.15) is representative of the very high levels
of dynamic supercoiling generated transiently during tran-
scription.

The supercoiled 672 bp sample contained primarily
ALk=—-4 (63 %), ALk=-5 (24 %), ALk=—6 (6 %)
topoisomers, and trace amounts of nicked 672 bp (2 %),
ALk=-2 (4 %) and ALk=-3 (2 %) topoisomers. The
identity of the topoisomers present in the supercoiled
672 bp sample was determined on a separate gel with 672 bp
topoisomer markers. The topoisomer distributions of each
sample are compiled in Supplementary Table S1.

Analytical ultracentrifugation of DNA minicircles

Apparent PSVs obtained from a global multispeed genetic
algorithm-Monte Carlo analysis for each minicircle sam-
ple are summarized in Table 1. The derived PSV values did
not show any apparent pattern that would indicate a de-
pendence of the PSV on topoisomer conformation, and re-
sulted in a near constant value of 0.482 + 0.011 ml/g over
all tested minicircles (see Table 1). The average PSV for
336 bp minicircles was 0.477 ml/g while the average PSV
for 672 bp minicircles was 0.494 ml/g.

Using the determined average PSV value of 0.482 ml/g,
a frictional ratio f/fy was derived from the sedimentation
and diffusion coefficients obtained in the global analysis.
Plots of the frictional ratio as a function of sedimenta-
tion coefficient and the diffusion coefficient as a function of
the sedimentation coefficient are shown in Figure 2. DNA
topology had a significant effect on sedimentation and dif-
fusion coefficients. In contrast to polyacrylamide gel elec-
trophoresis, for which linear migrates fastest (Figure 1), cir-
cular molecules (nicked, relaxed, supercoiled, and hyper-
negatively supercoiled) all sedimented faster than linear.

AUC was additionally able to differentiate relaxed, super-
coiled, and hypernegatively supercoiled samples. The super-
coiled or hypernegatively supercoiled samples containing a
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mixture of topoisomers behaved as single species in AUC.
This result can be rationalized by noting that the topoiso-
mers in experiments differ in Lk by 1 only. While the differ-
ence between nicked and supercoiled minicircles is clearly
seen, it may be difficult to resolve by AUC minicircle topoi-
somers differing by only one or a few Lk.

Predicted shapes of DNA minicircles

Before employing our mathematical models to predict the
effect of supercoiling and curvature on the hydrodynamic
properties of DNA, we needed to first test how well these
models predicted known equilibrium 3-D minicircle shapes.
We adopted the strategy of building a coarse-grained repre-
sentation of the equilibrium shapes of the minicircles ob-
tained using our energy minimization codes. These models
are reduced representations of macromolecules still capable
of retaining key physical aspects (51). This approach has
been highly successful in calculations of biomolecule prop-
erties in solution (52). Having found the shapes of DNA
minicircles, we calculated the hydrodynamic radius for each
conformation. The hydrodynamic radius was used to cal-
culate the sedimentation and diffusion coefficients. We also
tested our models against the 3-D structures of these mini-
circles, previously observed experimentally (13). Our aim
was to develop a practical predictive theoretical framework
to determine the measured transport coefficients.

Electrostatic screening and Brownian contributions. DNA
molecules have substantial charge, which can be exploited,
e.g., in electrophoretic measurements of DNA of different
lengths. A qualitative comparison of the elastic and electro-
static forces is possible by considering scaling arguments.
The Debye-Hiickel equation is a well-established model of
electrostatic interaction in a buffer containing counterions
(53). In this approach, the interaction potential decays ex-
ponentially with separation due to screening. The decay
rate is quantified by a characteristic distance, the Debye
length (Rp). Comparing Rp with the typical distances be-
tween base pairs gives a crude estimation of the influence
of electrostatic forces. We estimated Ry for our setup to be
1.45 A from the ionic strength of 230 mM using an ionic
strength-based estimate Ry,' = kg+/Cy, where C is the mo-
lar salt concentration in moles per liter and «y = 0.329
A=11'"2mol~'/2, as reported by Lim et al. (54). Thus the
Debye length is much smaller than an average distance be-
tween different segments of the DNA molecule. Notably,
this value of Rp was also much lower than that of earlier
work, such as 30 A in Ref. (55) for different buffer condi-
tions.

The persistence length P of polyelectrolytes is the sum of
two contributions,

P = Pin + Pe]’ (13)

where P, is an intrinsic persistence length due to the rigid-
ity of the backbone, and P is an electrostatic persistence
length, which accounts for buffer-dependent repulsion be-
tween neighboring ionic sites (56). The latter can be related
to the Debye length as P = Rp(4lg)~", with Iz being the
Bjerrum length, according to the Odijk-Skolnick-Fixman
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theory (57-59). For linear or relaxed double-stranded DNA
at room temperature, the persistence length in 0.1 M NaCl
is approximately 500 A (150 bp) (60). Based on persistence
length, one can define effective bending and twisting ener-
gies for a circular shape as

and (14)

P
Ebend = 4712kBTz = 47T2%

Aeff
15
SR

which, via eq. (13), include both elastic and electrostatic
contributions. Here, A.if = kgTP is the effective bending
rigidity of the DNA. The remaining long-ranged electro-
static contribution £}, can be estimated as the interaction
energy between N equal charges ¢ at a typical distance com-
parable to the radius of the loop, L/2x, which amounts to

2
q-N L
B exp (- : 16

! 2eLeXp< 271RD) (16)

P
Etwist = 6772kB T(A Lk)2 z = 67T2(A Lk)z

where € is the dielectric permittivity of the buffer. Note
that these estimates do not take into account short-range
electrostatic interactions between distant parts of the DNA
that may come close together when supercoiled. For a cir-
cular loop with ALkl =2 and equivalent length of 336 bp,
we found Epenqg & 17 kpT, Ewist = 105 kg T, and a negligible
value of Ej.. The effective bending and twisting energies
considerably exceed the typical energy of thermal fluctu-
ations, kg7, which is somewhat surprising given that the
minicircles are longer than P. This result may be a conse-
quence of the relatively high energy stored in the form of
bending energy Epend, Which renders the circular configu-
ration less prone to Brownian shape disturbances than a
torsional-stress-free linear DNA. We therefore use the stiff
beam approximation to describe minicircle shapes.

Critical ALk for writhing. The shape of a DNA minicir-
cle depends primarily on |A Lkl and the width to length ra-
tio dy/L. To predict 336 bp and 672 bp minicircle confor-
mations for ALk = 0 to IALkl = 5, we developed a theo-
retical framework that assumed that DNA can be modeled
by a continuous elastic beam of ALk with the steric thick-
ness dy and stiffness A4 as determined by the inter-phosphate
distance and persistence length, respectively. The previous
theoretical study of Coleman and Swigon (42) focused on
a circularized 718 bp DNA fragment and determined the
structure of possible stable configurations, describing the
contact diagrams in great detail. Our results were consis-
tent with their findings for a particular thickness to length
ratio (d;/L = 0.0082) but were applied to an arbitrary aspect
ratio.

In Figure 3A we present the shapes obtained by our min-
imization procedure. Close to ALk =0, circular configura-
tions were stable. At a critical value of IALKl, a figure-8
shape became energetically favorable, and the loop writhed
to relax excess twist. For higher IALkl, the number of self-
contacts increased, leading to a more writhed configuration.
In this process, regions of high and low curvature emerged
along the loop, as sketched in Figure 3B, with higher cur-
vature present for higher values of IALkl, as expected in-
tuitively. For open configurations, the curvature was nearly
constant and equal to 27/ L. The position along the loop
changed from 0 to 1 and was measured from the point of
contact or (in the case of multiple contacts) from the cen-
ter of symmetry. With increasing |A Lkl, regions of increased
curvature appear far away from self-contact points.

For larger IALKl, increased curvature was present even
at points close to the contact line. The variation of curva-
ture along the loop centerline, shown in Figure 3C, might
hint at sites of potential base pair instability or other con-
figurational changes. The effect of localized curvature re-
gions would be further compounded by the transmission
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for larger values of ALk (>2.2), continuous contact is observed. (B) Curvature distribution along the supercoiled loop centerline in shapes corresponding
to panel (A). The position along the loop is measured from the point of contact (or the center of symmetry in multiply touching configurations). (C) Lkt
above which a writhed configuration can be stable, plotted as a function of the beam aspect ratio (steric diameter to length, ds/L). Solid line shows
the approximation of eq. (17). (D) Minimal radius of curvature along the loop as a function of ALk for the 336 bp minicircle. This radius decreases
monotonically with ALk, leading to increasing bending stresses. (E) Writhe of energy-minimizing shapes as a function of the aspect ratios dy/L = 0.018,
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deformation. Our results are shown next to the continuum model predictions of Coleman and Swigon (42) and atomistic MD simulations of Pyne ez al.

(19).

of mechanical stress along the DNA backbone to pro-
mote DNA kinking and base pair disruption at distant sites
(13,19,61,62) as reported by Fogg et al. (12).

The value of Lk for the open circle-figure-§ transition
depends on the aspect ratio d;/L. In Figure 3C, we show the
dependence of Lk on the aspect ratio numerically, show-
ing that for thicker beams a transition to writhed configu-
rations required an increased negative supercoiling. A very
thin filament can be stably writhed for almost any value
of IA Lkl greater than 1. However, for beams with a larger
thickness, more torsional stress was required to stabilize
writhed configurations and prevent them from unwrithing
to a circular, open configuration.

For increased values of d;/ L, we also empirically found a
convenient approximate expression for

/ ds
Lkerit = 1+23'1f’ (17)

which we show in Figure 3C. To further characterize the
writhed shapes, in Figure 3D we plotted the minimal ra-
dius of curvature of a twisted beam as a function of |A Lkl.
For low values of IALKl, the constant value reflected the
purely circular equilibrium. Above Lk, the loop be-
came writhed, with an increased curvature at the apices.
The monotonic decrease of radius of curvature with |A Lkl
showed that increasingly supercoiled beams tended to have
tighter bends and, therefore, stored larger bending energy.
Finally, in Figure 3E, we present the writhe of the resulting

configuration, calculated with our method as a function of
|ALKl. The values were calculated for both lengths—336 and
672 bp. For comparison, we also plotted the results of com-
putations of Coleman and Swigon (42) for L = 718 bp as
a solid line, and results of base pair-resolution MD simu-
lations of Pyne et al. (19) for a 339 bp minicircle, confirm-
ing the observed trend. The total Wr as a function of A Lkl
seemed to be weakly dependent on the minicircle length.
Writhing, therefore, emerged as a universal mechanism of
stress release for twisted loops.

Shape and stability of supercoiled configurations. Al-
though purely elastic considerations suggest a plethora of
possible writhed configurations, we mostly observed the
simple minicircle conformations in the cryoET measure-
ments of Irobalieva ez al. (13), rather than the more intricate
shapes. The latter have higher energies and are thus less fre-
quently realized (42). For a given A Lk and at low tempera-
tures, the shapes associated with higher energies were unfa-
vorable compared to the ground state solution determined
by our energy minimization procedure.

Equilibrium shapes measured in cryoET experiments in
Ref. (13) were divided into eight groups termed open circle,
open figure-8, figure-8, racquet, handcuffs, needle, rod, and
other. For a quantitative comparison, we reduced the com-
plexity by distinguishing only between contact-free (cor-
responding to open minicircle configurations) and self-
touching (corresponding to writhed minicircle configura-
tions) solutions. Using the elastic beam framework, we de-
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termined the regions of stability of these solutions in terms
of ALk for a given DNA loop length. We present them in
Figure 4A. The orange-shaded region close to ALk =0 fa-
vors an open circle as the stable configuration. For under-
twisted configurations, we identified a region of multistabil-
ity, where we found both open circular and figure-8 shapes.
Finally, when the inherent ALk was large enough, marked
by the blue shading in the figure, the self-touching shapes
became the only stable energy minimum. The stable circular
shape region narrowed down from IALkl < 1.1 for 336 bp
minicircles to IA Lkl < 1.2 for 672 bp and 718 bp minicircles.

For the particular length of L =336 bp, in Figure 4B
we compared the theoretical predictions to the cryoET
data (13). We measured the fractions of open and self-
touching configurations in the population of minicircle
shapes. For ALk close to zero, we saw that most of the
shapes were open loops, with only a fraction of about
10 % showing self-contact. This situation changed with
increased ALk. In the predicted region of multistability,
we saw that the fractions of writhed configurations in-
creased, but there was still a pronounced population of
open circular shapes that vanished almost completely when
increasing |ALkl. This observation is in excellent agree-
ment with our prediction for the new stability region at
IALkl > 2.6. In particular, the most relaxed state (clos-
est to ALk = 0) was slightly undertwisted (ALk < 0). For
configurations with ALk= —0.2 and ALk= 0.8, only
open configurations were predicted while for ALk= —2.2,
—1.2 and 1.8, we observed large conformational variabil-
ity corresponding to two solutions in the uniform elastic-
ity model. For ALk = —4.2, —3.2, and 2.8, open configu-
rations were no longer permitted by the uniform elasticity
theory and these open configurations were largely absent in
the prior cryoET measurements for these topoisomers. In-
terestingly, an outlier at ALk = —1.2 was observed in the
cryoET data, where we saw a surprising lack of open cir-
cular configurations, which could not be simply explained
by our coarse-grained model. One potential explanation for
this puzzling observation has been postulated that involves

a coupling of limited base pair disruption with writhing

(12).

Predictions of hydrodynamic radius of DNA minicircles with
different ALk

Non-writhed configurations. Configurations with small
values of A Lk adopt toroidal conformations; for those con-
figurations, we have found a convenient expression for the
hydrodynamic radius, consistent with asymptotic solutions
by Johnson and Wu (45) and Johnson (63)

R, — £+@ 727 (1em + 1) x
“\27r 2 ) 25x+6(11x+8)log8x + 16’

with x = L/md,. Here, log denotes the natural logarithm.
Notably, Eq. (18) agrees with the numerical results of Goren
and O’Neill (46) even for non-slender tori. For more slen-
der tori, when L/dj, > 30, a simpler expression can be fitted
without loss of accuracy, given by

11 2L -
Rh=L<6log(dh>+l.l3> (19)

as obtained by Adamczyk et al. (64) from the numerical
results of the bead model shape approximations. Qualita-
tively, Ry, is of the same order of magnitude as the experi-
mental DNA lengths and thus it approximately scales with
the mass of the DNA molecule. This scaling for approxi-
mating DNA is in contrast with globular models used for
some proteins that scale with the cubic root of their mass
instead.

(18)

Writhed configurations. Configurations with intermediate
values of IALkl adopted either toroidal or writhed shapes.
To generate hydrodynamic predictions for DNA minicircles
with larger values of A Lkl, we combined elastic energy min-
imization with hydrodynamic bead models. To this end, we
used equilibrium shapes obtained for each |A Lkl within the
elastic beam model described before, and produced their
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Figure 5. Hydrodynamic radius of DNA minicircles. (A) Hydrodynamic (hyd.) radius R; of open-circular DNA, scaled by the geometric radius L/2m
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minicircles with 336 bp and 672 bp yields the fitted (common) hydrodynamic thickness d, = 29.4 A. We note that ZENO approximation yields high-
precision results for toroidal particles (48). This value was used in all subsequent computations. Circular sketches representing molecules preserve both
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15 % smaller than that of an open circle. For larger values of |A Lkl, the theoretical approach seems to correctly grasp R;, of the resulting highly compact
conformers. (C) Absolute values of the R, for minicircles from (B), with the same symbols.

representation as a collection of 400 rigidly attached and
overlapping spherical beads arranged such that the length
and thickness of the DNA molecule were left unchanged.
The bead model was then used to calculate the hydrody-
namic mobility of the conglomerate within the ZENO pack-
age (47). We estimated the error of our predictions of the
hydrodynamic radius to be about 5 % by comparing the re-
sults of bead-model calculations to known analytical solu-
tions for highly symmetric shapes of model molecules.

Our modeling approach reduced the problem of finding
diffusion and sedimentation coefficients to the computation
of the hydrodynamic radius R;. Once calculated theoreti-
cally, R, was used to predict the diffusion coefficient from
the Stokes-Einstein relation, Eq. (2), provided that the vis-
cosity of the environment  is known. The presented results
were adjusted for the buffer viscosity. The prediction of R,
for DNA of any shape required additionally the knowledge
of the hydrodynamic thickness of the loop dj,. To determine
the effective thickness of the molecules (related to the ex-
istence of a hydration layer), we assumed that, as a local
property, it does not depend on the shape. Then, we used
the measured AUC data for nicked and relaxed (A Lk =0)
336 bp and 672 bp minicircles, which we assumed to be
toroidal. Knowing the dependence of the DNA R; on the
molecule aspect ratio from the ZENO software tool, we
compared it to the AUC results for the R, of the 336 bp
and 672 bp DNA minicircles, and we fitted the same value
of dj, to both minicircles to reproduce their experimental
Rj,. The dependence of R;, on the aspect ratio is presented
in Figure 5A, together with the two measured values. Fit-
ting the theoretical curve to these two data_points yielded
the hydrodynamic diameter of d, = 29.4 A (correspond-
ing to dj,/L = 2.6 x 1072 for the 336 bp minicircles and
dy/L = 1.3 x 1072 for the 672 bp minicircles). We used this
value for all subsequent calculations. We note, however, that
the estimation of d, from diffusion measurements cannot
be precise due to the logarithmic dependence of hydrody-
namic parameters on this value, so the fitted value should

be treated as more approximate than the number of digits
provided.

The value of excess thickness over inter-phosphate dis-
tance was significantly larger than that reported by Fernan-
des et al. (65) (22.8 A)—without the details of the solvent
ionic strength; however, as argued by Penkova et al. (66),
the hydration shell can be as thick as 16 A, corresponding
to diameters as large as 40 A. This value is sensitive not only
to the ionic strength of the solvent, but also to the details of
ion composition (67). Moreover, small deviations from the
toroidal shape of the nicked and relaxed DNA shapes are
expected, as caused by Brownian motion.

Figure 5B demonstrates that the difference of shapes with
different IA Lkl is significant and similar in theory and ex-
periments. We present therein the hydrodynamic radius for
writhed configurations calculated for the two investigated
DNA lengths with the same thickness (d, = 29.4 A). The
plot shows the radius relative to that of a toroidal parti-
cle of the same dj, denoted by R;. We normalized theoret-
ical results by calculations at ALk =0, while experimental
data are rescaled by respective results for a nicked/relaxed
configuration of a minicircle of a given length. Open circles
and triangles in the graph mark theoretical results. For the
336 bp minicircle, two experimental values were available,
namely that of a nicked and relaxed configuration. In these
cases, we rescaled the experimental data by the mean of the
two radii. The values of the relative radii are equal to unity
for ALk = 0 by definition, but even the non-zero A Lk sim-
ulations predicted a region of stable circular configurations
with unchanged R;,.

Increasing |IA Lkl led to the emergence of highly writhed
configurations, which tended to be more compact and there-
fore had a smaller R; than the open circular configura-
tions seen at low |A Lkl. We predict that topological writhing
could reduce R;, by about 15 % in experimentally relevant
conditions as shown in Figure 5B.

We additionally plotted available experimental results for
relaxed and supercoiled minicircles, which compared fa-
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Table 2. Comparison of predicted and measured diffusion and sedimentation coefficients in the buffer

D (um?/s) 5(5)
Sample IA Lk predicted measured predicted measured
336 linear not applicable 14.7+0.7 14.5 6.4+0.3 6.40
336 relaxed 0 17.24+0.9 16.2 7.5+04 7.26
336 nicked 0 172+ 0.9 16.1 £ 0.4 7.5+04 7.25+0.02
336 supercoiled® 3,2, 1 20.5+1.0 19.0 9.0+0.5 8.28
336 hypernegatively 6,5 219+ 1.1 20.1 £0.2 9.6 £0.5 8.89
supercoiled
672 nicked 0 99+0.5 10.3 8.7+04 8.77
672 supercoiled® 4,56 1244+ 0.6 12.5 109 +0.5 10.72

apredictions done for the dominant species in the mix (A Lk = —3) highlighted in bold. PPredictions done for the dominant species in the mix (A Lk = —6).
“Predictions done for the dominant species in the mix (A Lk = — 4). Where experimental errors are not shown, the confidence limits from the global Monte
Carlo analysis of the AUC data were exactly 0. We roughly estimated the errors of theoretical values as 5 %. Sedimentation coefficients are measured in
svedbergs, with 1 S = 10~13 s. Experimental confidence limits are reported only when the last digit of the result would be affected.

vorably with theoretical predictions. The theory seems to
correctly determine R, obtained from AUC measurements,
which opens an efficient route to calculate the hydrody-
namic transport coefficients also for highly writhed con-
formations. In Figure 5C we also presented the same re-
sults in absolute terms. Because the fitted value of hydro-
dynamic thickness in Figure 5A lies between the estimates
based on 336 bp and 672 bp only, we see the value of R;,
for ALk = 0 to be slightly overestimated by the simula-
tion for 672 bp and underestimated for 336 bp. We em-
phasize that this difference is an effect of the thickness fit-
ting procedure. This systematic difference can be caused
by slightly non-toroidal DNA shapes caused by Brownian
motion.

Our AUC data, together with the theoretical mod-
eling shown in Figure 5, yield a length-invariant
observation—the ratio of Rj, of open circular (nicked
or relaxed) minicircle topoisomers to the R; of compact
(supercoiled) topoisomers is approximately 5:4. This value
holds true for both 336 bp and 672 bp minicircles, even
though the length L is longer than the persistence length P
for 672 bp minicircles, with L~ 4P. This length-invariant
ratio of 5:4 holds true as long as thermal effects are
negligible. This theoretical result is particularly robust
because it is independent of the viscosity of the buffer or
the minicircle length. We attributed this robustness to the
logarithmic dependence of the hydrodynamic models on
the thickness of slender bodies. Additionally, the ratio of
Ry, of 336 bp linear to R;, of 336 bp nicked is approximately
7:6.

These results can also be viewed in absolute rather than
relative terms (Figure 3), where the theoretical predictions
for the values of the sedimentation and diffusion coefficients
are displayed together with the experimental results. We ob-
tained a good agreement for the larger of the two minicircles
(672 bp) and for linear, relaxed, and nicked samples of the
smaller minicircle (336 bp). For highly writhed configura-
tions of the smaller minicircle, however, theoretical predic-
tions suggest a more compact conformation than observed.
This result could be attributed to the limits of applicabil-
ity of the linear elasticity theory to the very tight bend radii
necessary for energy minimization in these configurations,
or to a rough estimate of shapes and width of nicked and
relaxed minicircles.

336 bp linear <
336 bp relaxed/nicked —

336 bp supercoiled (>‘<2
336 bp hypernegatively (~

supercoiled

672 bp nicked - =
672 bp supercoiled (L= <= e w_ue—

Figure 6. Sketches of model shapes in a given minicircle configuration used
for hydrodynamic simulations with ALk specified in the caption of Table
2. The sketches have realistic aspect ratios (dj,/L) and preserve the relative
size.

To test the effectiveness of our modeling approach, in Ta-
ble 2 we compared the measured and predicted values of D
and s. To compute D, data from nicked samples were used as
a calibration of the only fitting parameter: the effective hy-
drodynamic diameter of the DNA molecule. With the use
of dj, all the D values were purely theoretical predictions
based on the DNA length and the value determined in sep-
arate experiments.

Because supercoiled and hyper-supercoiled samples con-
tain mixtures of minicircles with different ALk, theoretical
predictions are given for the most common species in a mix-
ture. These configurations are sketched in Figure 6. To cal-
culate s, we used the approximately constant value of the
PSV determined from the AUC experiments. In all cases,
the deviation between theory and experiment was below
8 %. The simplified hydroelastic model provides practical
estimates of the experimentally accessible quantities, and
thus may be used to discern populations of minicircles dif-
fering in ALk.

Our modeling experiments reveal that the change of ALk
by one turn (for example from ALk = —4 to ALk = —5)
changes the frictional ratio by ~2 % —a value similar to
theory-experiment deviations and similar to the noise level
coming from the Monte Carlo optimizations of energy min-
imizing shapes. Such small gradients could be the reason
why AUC measurements cannot distinguish topoisomers
that differ in ALk by only a single turn, especially if the
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concentrations of the different topoisomers in the mix dif-
fer. The samples analyzed by AUC contained a mixture of
topoisomers that behaved as a single species because the
major species in each sample were within one ALk of each
other.

DISCUSSION

Methods that measure the hydrodynamic radius Ry, such
as gel electrophoresis and diffusion-sedimentation AUC
experiments, can be qualitatively described as sorting
molecules by their size. Unlike for gel electrophoresis, how-
ever, when assessing diffusion via AUC, size contributions
can be separated from viscosity, temperature, and PSV by
the appropriate scaling, which yields Rj,.

In electrophoresis, molecules squeeze their way through
pores in the gel matrix. One of the major differences be-
tween agarose and polyacrylamide is the average pore size,
with agarose gels typically having larger sized pores (68).
In typical electrophoresis experiments, the primary deter-
minant of the migration speed is the molecular weight and
charge of the molecule. Here, the DNA molecule of a given
length has a fixed charge and molecular weight, but the
speed of migration through the matrix of small pores like
the polyacrylamide gel varies greatly when the shape of the
molecule is changed (although charge, and thus cations and
hydration shell may be altered with negative supercoiling
(Randall 2006; Randall 2009)). Comparing gel results to the
AUC data allows us to confidently say that knowing the R,
is insufficient to predict its electrophoretic mobility as the
gel electrophoresis and AUC separated the minicircle topoi-
somers differently. Supercoiling influences minicircle elec-
trophoretic mobility much more than hydrodynamic mobil-
ity (as measured by AUC); the same change in supercoiling
increases electrophoretic mobility by 400 % while increas-
ing mobility only by 20 %. Differences between the methods
can be even more dramatic. The linearized 336 bp minicir-
cle showed 600 % increase of electrophoretic mobility, while
at the same time (in the AUC measurements) having a 14 %
smaller hydrodynamic mobility as compared to nicked or
relaxed form.

Introducing circularization presents a significant obsta-
cle to extending quantitative electrophoresis methods, such
as one proposed by Ziraldo er al (69). Calibrating gel
electrophoresis measurements with a ladder of relaxed or
nicked circular DNA of different lengths would be insuffi-
cient because the contribution of the degree of supercoil-
ing strongly affects the apparent DNA mass derived from
that method (at least by a factor of two). These difficul-
ties are further compounded by the dependence on the ab-
solute value of applied electrophoretic-mediated force, as
reported by Iubini et al. (70). For large electrophoretic-
mediated forces, linear DNA is expected to migrate faster
than the circular form, which is opposite to what occurred
in AUC, while for small forces, the circular form migrates
faster than the linear, which is the same as in AUC. One pos-
sible explanation for the differences between electrophore-
sis and AUC is that as the DNA is pulled through the pores
of the gel matrix, it has to change its shape (this would be
most significant for the ALk =0 samples) whereas there is
no sieving in AUC. AUC, therefore, better reflects the so-
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lution properties of DNA, while gel electrophoresis offers
higher resolution for separation by means we do not yet
fully understand.

Diffusion-sedimentation measurements provided by
AUC allow accurate hydrodynamic modeling. To elucidate
the shapes and properties of DNA minicircles, we proposed
a coarse-grained model that represents the DNA as an
elongated, uniform elastic beam. By minimizing the elastic
energy of a beam with a given superhelical density, we
were able to find equilibrium shapes of the minicircles.
We note that our coarse-grained models of minicircles are
oblivious to their sequence and do not exploit information
on sequence-dependent elastic properties. However, the
uniform beam model of DNA elasticity presented here
predicts shapes of DNA minicircles (shown in Figures 3A
and 6) that compare favorably with the direct observations
of 336 bp minicircles (13) (shown in Figure 4B).

Our theoretical model predicts a very weak dependence
of the shapes of DNA minicircles with a few hundred
base pairs on the aspect ratio d;/L, as shown in Fig-
ure 4A. According to the model, the change in ALk,
alone, gives sufficient information to describe basic fea-
tures of the minicircle configuration: ALk=0 is an open
circle; IALkl==+ 1 is at the transition between open cir-
cle and writhed conformations; |A Lkl = 2 is multi-stable;
and IALkl > 3 always exhibits self-contact (compare with
the corresponding shapes in Figures 3A and 6). This re-
sult means that no matter whether the minicircle was 336
or 672 bp, the loss of three helical turns was enough
to disallow the open circle conformation as an energy-
minimal solution. These results suggest that it is the ab-
solute value of ALk and not the superhelical density
o = ALk/Lky that governs the conformational landscape
of small DNA minicircles (with the length having a small
influence via the d;/L ratio). This finding provides an im-
portant input to future models of circularized polymers.

Incorporating torsional interactions is more difficult than
just bending interactions and is often neglected when con-
structing models of circularized molecules (71-74). Because
the torsional forces play a role even when ALk is close to
zero, care must be taken when generalizing such models for
the context of supercoiled DNA. We have shown here that
regardless of the length of the DNA molecule the torsional
forces are of the same order of magnitude as pure bending
forces.

While both bending and shearing forces remain compa-
rable in magnitude even for longer minicircles, the relative
importance of thermal fluctuations increases proportion-
ally to the length. For the short minicircles considered here,
thermal effects are not strong enough to push them out
of their global energy minimum corresponding to the pre-
sented shapes. The results of Coleman and Swigon (42),
however, show that mechanically stable branched plectone-
mic configurations exist that correspond to local energy
minima of higher elastic energy. These high energy states
can be accessed provided that the forces from thermal mo-
tion exceed the elastic forces, which is the case for mini-
circles of lengths much longer than the persistence length.
For the minicircles studied here, we assumed that the min-
imal elastic energy shape was rigidly maintained through-
out an experiment. To predict hydrodynamic properties of
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longer DNA circles, prone to conformational flexibility due
to Brownian effects, one has to use different modeling tech-
niques, e.g., such as those inspired by models of intrinsically
disordered proteins (75).

The elastic-energy minimizing centerline shapes were
found for minicircles with different ALk with hydrody-
namic thickness determined by calibration based on AUC
experimental data. These shapes were then used to con-
struct hydrodynamic models to compute Ry, which, in turn,
was used to compare the theoretical diffusion and sedi-
mentation coefficients with the AUC measurement. The
comparison (Table 2) shows general agreement, which is
satisfactory given the simplicity of the underlying coarse-
grained model. These results confirm the predictive ca-
pabilities of uniform elasticity models, combined with a
hydrodynamic calculations package (ZENO) to interpret
and guide AUC measurements. We expect that the pro-
posed modeling strategy could be beneficially employed
to similar problems in the dynamics of DNA and per-
haps extended further to account for sequence-specific ef-
fects and modified intramolecular interactions. One way
forward would be to introduce local, sequence-dependent
elasticity by allowing the bending stiffness of the elastic
beam model to vary along the centerline of the minicir-
cle. This extension should aid the studies of localized kink-
ing, seen in earlier experiments (61), and the formation of
bubbles in DNA minicircles under negative supercoiling
(12).

This work represents significant progress in under-
standing and modeling the sedimentation of a biological
molecule with a complex and dynamic conformation. Sedi-
mentation of roughly spherical molecules (e.g., many pro-
teins) is fairly well understood, but linear and minicircle
DNA do not adopt a spherical conformation. Using 336 bp
minicircles as a model system we are now able, for the
first time, to fully test the theoretical models. We antici-
pate that this testing will allow us to further improve these
models and expand the use of AUC to include a larger
repertoire of important and complex biological molecules.
We have successfully applied two stage modeling (combi-
nation of energy minimization to find the shape then ap-
plying hydrodynamic modeling for rigid configurations) to
find hydrodynamic properties of a DNA molecule. Our ap-
proach developed here yielding the prediction of shape and
hydrodynamic properties is applicable to other complex
biomolecules.

CONCLUSION

The work presented here is a step toward understanding
how supercoiling and curvature affect DNA shape and
hydrodynamic properties, which in turn affect important
DNA activities. The DNA solvation shell and counterions
as well as DNA shape all affect DNA structure to influence
how the DNA code is protected, accessed, modified, and
activated. It will take a combination of approaches to fully
understand this remarkable molecule.

DATA AVAILABILITY

The UltraScan software used to analyze the AUC data is
open source and freely available from Github repository.

The AUC data itself is available upon request from the Ul-
traScan LIMS server at the Canadian Center for Hydrody-
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The algorithm for finding minimal energy shapes, initial
conditions, and final configurations can be found in the
Zenodo repository 7501673 (76).

Lk-Wr pairs computed from energy minimal shapes as
well as hydrodynamic radii computed using the ZENO soft-
ware can be found in the Zenodo repository Zenodo repos-
itory 7501675 (77).
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3.3.1 Thermal Effects on the Shapes of DNA Minicircles

The model presented in this publication [3] has a limited assessment of the influence of thermal
fluctuations on the shape and hydrodynamics of DNA loops. This was caused by lack of readily available
tools for Brownian Dynamics simulation under non-local force fields—such as the energy functional
depending on writhe, which is a generically non-local quantity.

Using the later developed pychastic package or Ref. [4], we conducted simulations to explore the
shapes of DNA minicircles at finite (room) temperatures and computed their apparent diffusion coefficient
using the Minimum Dissipation method derived by Cichocki et al. [25].

In these simulations, we assumed that torsional stresses in the DNA are relaxed. Consequently, the
total elastic energy E.; of such a minicircle is given by

E., = ;/OL EI (rﬁ +w <27r(LkLWT)>2> dl, (3.1)

with the notation explained in Ref. [3]. Both x and Wr can be computed from the shape of the centreline
alone (or a suitable discretisation thereof), thus reducing the dimensionality of the problem, as compared
to an approach where both the position and orientation of filament segments are simulated. It is worth
noting that simulating rotational dynamics, even of a single body, is a complex task, as outlined in
Waszkiewicz et al. [4]. Given that Wr is a nonlocal quantity, the computation of forces from E.; can
be cumbersome. Fortunately, this task can be accomplished with the assistance of jax.grad, which is
compatible with the SDE solver pychastic.

We thus get a further insight into the intermediate region of linking numbers (1 < Lk < 2.5) where
the DNA minicircles have multiple stable configurations at absolute zero temperature. We discussed the
zero temperature limit in Waszkiewicz et al. [3].

1.00 JoNONONONONONOROROH = without thermal effects
B with thermal effects

0.95
0.90
0.85 H

0.80 1 -l..

Relative hydrodynamic radius (Rn/Ry )

0.75 A

0 1 2 3 4 5
Linking number (Lk)

Figure 3.1: Hydrodynamic radius relative to Lk = 0 configuration of the 336bp minicircle as a function
of the linking number.

It turns out that the effect of thermal fluctuations on the overall hydrodynamic radius outside of the
intermediate region are negligible, as shown in Fig. 3.1. Moreover, the range of values of Lk for which
the equilibrium ensemble contains both open configurations and configurations with self-contact is very
small—less than 0.2 turns. This contrasts starkly with CryoEM data of Irobalieva et al. [46], where a
multitude of conformations were observed for a wide range of Lk values. One possible explanation for
this discrepancy lies in the temperature dependence of the geometric properties of DNA, as hinted at by
the results of Ranasinghe et al. [50].

The example above highlights our motivations for the development of the pychastic package which
is described in detail in the next publication.
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PAPER IV

“Pychastic: Precise Brownian dynamics using Taylor-Ito integrators in
Python”

Radost Waszkiewicz, Maciej Bartczak, Kamil Kolasa, and Maciej Lisicki

COMMENTARY

This paper focuses on the novel implementation of numerical integration schemes for Brownian Dy-
namics simulations. The major theoretical limitation in our earlier studies revolved around an incomplete,
approximate treatment of Brownian motion. In Ref. [1], we simplified the dynamics to a 2D case due to
Mathematica’s inability to handle full SO(3) dynamics, as outlined in the publication below. Similarly,
in Ref. [3], the challenges arose from the nature of the Writhe quantity, leading to a non-local force
field that made assessing the effects of thermal fluctuations on the shape of minicircles exceptionally
challenging.

Addressing the treatment of Brownian motion through stochastic differential equations presented a
well-posed mathematical problem, with a range of solutions described for example in Ref. [74]. However,
surprisingly, there was no readily available, easy-to-use software solution, such as the package described
in the publication below.

We took advantage of the modern Python features such as introspection and metaprogramming,
which allowed efficient automatic differentiaion of functions combined with the package jax for just-in-
time compilation of Python code to machine code for performance. The resultant package, pychastic,
is now available to instal via pip or directly from GitHub [61].

In this study, the PhD candidate: conceptualised the problem, led a small programming team, which
included the author, Maciej Bartczak, and Kamil Kolasa, co-developed a Python package complete with
documentation, examples, and tests, created test cases and debugging tools that facilitated the correction
of multiple typos found in existing literature (outlined in the publication). He co-designed illustrative
examples showcasing concrete applications of the tools developed during the Thesis preparation. Addi-
tionally, he wrote the first draft and edited all subsequent versions of the manuscript.
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In the last decade, Python-powered physics simulations ecosystem has been growing
steadily, allowing greater interoperability, and becoming an important tool in numerical
exploration of physical phenomena, particularly in soft matter systems. Driven by the
need for fast and precise numerical integration in colloidal dynamics, here we formulate
the problem of Brownian Dynamics (BD) in a mathematically consistent formalism of the
Ito calculus, and develop a Python package to assist numerical computations. We show
that, thanks to the automatic differentiation packages, the classical truncated Taylor-
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of the coefficient functions beforehand. Furthermore, we show how to circumvent the
difficulties of BD simulations such as calculations of the divergence of the mobility ten-
sor in the diffusion equation and discontinuous trajectories encountered when working
with dynamics on S? and SO(3). The resulting Python package, Pychastic, is capable of
performing BD simulations including hydrodynamic interactions at speeds comparable
to dedicated implementations in lower-level programming languages, but with a much
simpler end-user interface.

Copyright R. Waszkiewicz et al. Received 12-09-2022 )
This work is licensed under the Creative Commons Accepted 30-01-2023 ek o
Attribution 4.0 International License. Published 03-04-2023 updates
Published by the SciPost Foundation. doi:10.21468/SciPostPhysCodeb.11

This publication is part of a bundle: Please cite both the article and the release you used.

DOI Type
doi:10.21468/SciPostPhysCodeb.11 Article
doi:10.21468/SciPostPhysCodeb.11-r0.2 Codebase release

Contents

1 Introduction 2

2 Three vantage points: Langevin, Fokker-Planck, and Ito 3

3 Pychastic: description of the package 4



SCll SciPost Phys. Codebases 11 (2023)

3.1 Available numerical integration packages 4
3.2 Implementation details 5
4 Examples of usage 7
4.1 First passage problems, polar random walk 7
4.2 Rotational Brownian motion, step_post_processing function 10
4.3 Bead models with hydrodynamic interactions, pygrpy package integration 13
5 Conclusion 15
A Appendix: Typos in integration schemes in Ref. [18] 16
B Appendix: Rotational Brownian motion 16
References 17

1 Introduction

The dynamics of soft and colloidal matter systems is of importance for numerous technological
and industrial processes, such as food products, pastes, creams, and gels [1]. Another impor-
tant example are biological systems which involve aqueous suspensions of colloids, macro-
molecules, polymers, and cells. The diversity of the constituent elements, together with the
tunability of their direct interactions, and the presence of hydrodynamic interactions (HI) me-
diated by the suspending fluid [2], gives rise to a multitude of complex dynamic phenomena,
which can only be explored using appropriate numerical techniques [3,4].

The choice of a suitable method derives from the characteristic time scales of the investi-
gated dynamics [5]. In the context of macromolecules, when short-time effects are of interest,
Molecular Dynamics (MD) simulations are a popular choice [6]. Short times may be compa-
rable to the solvent relaxation time scale, which for a fluid of kinematic viscosity v and speed
of sound c scales as v/c?. For water, this time is of the order of 107! s. The idea behind MD
simulations is to solve Newtonian equations of motion for atoms or molecules, which are a
set of second-order ODEs with effective interaction potentials. In this case, HI can be resolved
using either explicit solvent methods that resolve the molecular structure of the solvent or
more approximate implicit solvent models. However, the typical time scales of colloidal mo-
tion are much longer; the velocity relaxation time for colloidal particles of size a and density
comparable to that of the fluid is approximately a®/ v, amounting to ca. 1078 s for a 100 nm
colloid. On coarser time scales, the colloidal velocity relaxes multiple times, and the Rayleigh
description in terms of velocity becomes irrelevant [5, 7]. Instead, the description in terms of
the position of a Brownian particle becomes possible on diffusive time scales, during which a
particle diffuses over a distance of its own radius. This time scale is a?/D ~ na®/kz T, where
7 is the dynamic viscosity of the fluid, kp is the Boltzmann constant, and T is the temperature.
For the aforementioned particle, this time scale is ca. 107 s, and corresponds to the minimal
time resolution of typical light scattering and microscopy experiments. Thus, the description
of the dynamics on such coarse scales is made solely using the position of the particle. The
clear separation of discussed time scales, combined with the numerical stiffness of Newton’s
equations, renders MD simulations not applicable to explore diffusive dynamics.

Instead, BD simulations present a convenient alternative, building on models suitable for
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diffusive time scales, and involving accordingly long time steps for numerical computations.
Since the velocity of particles varies very rapidly on such time scales, the position becomes a
random variable whose properties are dictated by the fluctuation-dissipation theorem [7].

The development of a suitable theoretical description to explain the Brownian motion and
its subsequent experimental verification at the beginning of the 20th century were a ground-
breaking step that confirmed the atomic structure of matter [8]. Early works by pioneers such
as Einstein [9], Smoluchowski [10], Fokker [11], and Planck [12], led to the description of
diffusive processes through the underlying probability density functions (PDFs) for the posi-
tions of the particles and their temporal evolution, rather than representations of individual
trajectories. The realisation that the path of a Brownian particle resembles a nowhere dif-
ferentiable function paved the route for a different approach, now called stochastic calculus,
with the classical works of Kolmogorov [13], Wiener, and finally Ito [14]. With these tools,
the problem of Brownian motion can be recast in the form of stochastic differential equations
(SDEs), which offer a practical route for numerical simulations.

In this contribution, we present our approach to the implementation of such Brownian dy-
namics. Our goal was to show how modern programming techniques available in Python: re-
flective and functional programming paradigms allow one to develop concise implementations
of physically relevant problems. These constitute relatively recent developments in computer
modelling, and we follow this trend to facilitate faster modelling of diffusive phenomena.

First, in Sec. 2 we review three popular ways of describing the Brownian motion using
the Langevin equation, the Fokker-Planck equation, and Itd equation. We then provide an
overview of available numerical integration packages for SDEs in Sec. 3.1. Next, we present
our new package, Pychastic, in Sec. 3, along with three examples (in Sec. 4) of problems in
which the packages greatly facilitate numerical computations. We conclude the work in Sec. 5.

2 Three vantage points: Langevin, Fokker-Planck, and Ito

Perhaps the most popular approach to modelling the trajectories of Brownian particles dates
back to Langevin’s work of 1908 [15]. The Langevin equation can be rationalised as an ex-
tension of Newtonian mechanics to include the effects of fluctuations by adding a stochastic
force, F,, acting on a particle. We write it below for a particle with a constant friction coeffi-
cient {. The average value of the force is zero, while its covariance at temperature T is given
by the fluctuation-dissipation theorem [7], (F,(¢t)F,(t")) = 2kgT{&(t — t’), with kg being the
Boltzmann constant. The equation of motion of the particle in the presence of a deterministic
force F reads then

m¥ =—{x+F(x,t)+F,(t). (1)

For the case of a spherical particle of radius a in Stokes flow the friction coefficient is 67tna,
71 being the dynamic viscosity. We note that even though x(t) is not differentiable once, and
certainly not differentiable twice at any point even in the usual distributional sense (because
the Lebesgue integral requires finite variation and realisations of the Wiener process have
infinite variation), Eq. (1) can be given a proper interpretation by transforming it into an
integral form. However, the above equation proved practical for numerical calculations, e.g.
using an integration scheme analogous to the Euler-Maruyama method.

An alternative description via the Fokker-Planck equation circumvents the difficulties of
interpreting the dynamics on a single trajectory in the Langevin equation by focussing on a
probabilistic description. On the Brownian time scale, the position of a particle is now treated
as a random variable, and the probability density function (PDF) P(x, t) of finding the particle
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at a location x at a time t evolves according to the partial differential equation

OP(x,t) 92P(x,t)
at ox2 ’

with the diffusion coefficient defined by D = kzT/{. The problem is now well-posed mathe-
matically, and the tools of mathematical analysis of PDEs can be employed to study the evo-
lution of the underlying probability distribution, e.g. by examining its moments. However,
questions involving individual trajectories become less straightforward: problems involving
first passage time have to be dealt with with a careful treatment of the boundary conditions
(e.g. substances vanishing in chemical reactions). Moreover, from the point of view of numer-
ical simulations, this approach becomes impractical for large systems. Using finite-difference
methods, for N particles in a 3D simulation box of size L and mesh size Ax, we typically
require (L/Ax)®N points to track the PDE which may become prohibitively large.

The mathematical difficulties of the Langevin equation are absent in the proper treatment
of SDEs in the Ito formalism. If now dX denotes the position increment of a particle in a time
interval dt, we can write it as

=2 (F(x, )P(x, ) + D @
Jdx

dX =Fdt+ v2DdwW , 3

where Fdt denotes the systematic drift of the particle and v2DdW denotes the stochastic
(diffusive) component of motion (provided that D is constant and the metric tensor is constant
as well). This equation is meant in the distributional sense with respect to the It0 integral, that
is

T T T
X(T):f dxzf F(X,t)dt+J v2DdW . )
0 0 0

Here, all integrals are taken in the Ito sense. Such a trajectory-focused formulation effectively
deals with the ill-defined derivatives in the Langevin equation. Using It6’s lemma imposes
formal rules of transformation of the coefficients, freeing us from a canonical coordinate de-
scription. Finally, the estimation of observable quantities such as expected values, correlation
functions or equilibrium distributions of low-dimensional projections of evolving variables can
be recovered using a Monte Carlo approach, which for M simulations converges as /M, re-
gardless of dimensionality. The constant of proportionality of this convergence is controlled
only by the variance of the variable of interest, which is often independent of the dimensional-
ity of the equation. For example, in the problem of diffusion of a single particle in a semidilute
suspension, the variance of the mean squared displacement of the tracer is weakly dependent
on the number of particles in the simulation volume.

3 Pychastic: description of the package

3.1 Available numerical integration packages

Only a few SDE integration packages have been made available in recent years. Two notable
examples are DifferentialEquations.jl for Julia and ItoProcess being a part of Mathe-
matica. Now, we present Pychastic for Python, which takes advantage of the popularity of
this language. Our package source code is available on Github, up-to-date documentation on
ReadTheDocs and ready to install via pip via Python Package Index. As a preliminary com-
parison, we note that DifferentialEquations.jl has the largest variety of integrators (for
example, many options for stiff equations), while Mathematica’s ItoProcess and Pychastic
contain essentially the same algorithms. However, the biggest drawback of ItoProcess is the
lack of step post-processing. When working with SDEs defined on manifolds whose universal
cover is not R", such as a sphere S2 or the space of rigid rotations SO(3), any parameterisation

4
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Table 1: Available SDE integration packages.

Package DifferentialEquations.jl ItoProcess | Pychastic
Language Julia Mathematica Python
License MIT proprietary MIT

Codebase open closed open

scalar SDEs yes yes yes

vector SDEs yes yes yes

strong convergence up to order 1.5 up to order 1.5 | up to order 1.5
weak convergence  up to order 2.0 up to order 2.0 | up to order 2.0
supports events yes no yes

of R" will contain singularities, thus an integrator which cannot handle discontinuous paths
cannot reproduce, e.g. 3-dimensional rotational dynamics [16]. Table 1 contains a synthetic
comparison of the three mentioned packages.

3.2 Implementation details

Pychastic contains implementations of three numerical integration schemes based on the
Taylor-Ito expansion. They are the schemes of strong order 1/2, 1, and 3/2 which in the
package are referred to as Euler, Milstein, and Wagner-Platen schemes, respectively.

The basis for these integration schemes is the Taylor-Ito expansion [ 18] which generalises
the deterministic Taylor expansion to SDEs. We write it here for a one-dimensional problem
driven by a Wiener process W

dX = a(X)dt + b(X)dW . (5)

Following the notation of Kloeden & Platen [18], the Taylor-Itd expansion up to strong order
3/2 for a scalar function X has the form

X(T)=X(0)+aA + bAW
1
+ Ebb’((AW)2 —A)
1 1 6
+a’bAZ+—(aa’+—b2a”)A2 ©)
2 2
1 1 1
+ (ab’ + 5be“) (AWA—AZ)+ Eb (bb” +(b")?) (E(AW)Z - A) AW,
where

rT

A= dt=T, 7

J
;’T
AW = dW =W(T)—Ww(0), (8)
J
FT S
AZ = f dw(s)ds. )
Jo Jo

The stochastic Euler scheme is based on the first line of this expansion, with three terms only.
The Milstein scheme includes the next term, namely the second line of Eq. (6). Finally, the
Wagner-Platen scheme includes all the terms mentioned above. We note from this expansion
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that even the simplest schemes require correct computation of coefficients multiplying prin-
cipal Wiener integrals (A, AW, AZ, and others in the multidimensional case) and sampling
from correct distributions corresponding to these integrals. Importantly, an analogous expan-
sion for vector quantities is considerably more complex, and other Wiener integrals arise, as
detailed in [18]. For brevity, we do not write this expansion here explicitly, but we have im-
plemented the vector Taylor-Ito expansion in Pychastic to enable simulations of both scalar
and vector processes.

Although expressions for these coefficient functions can be written explicitly in principle,
in Pychastic we take advantage of functional programming tools, which results in a greatly
simplified implementation. First, by introducing the £° and £’ operators (again using the
Kloeden & Platen notation), we can express all coefficient functions by repeated application of
the £ operators to the a and b functions. Using the jax.grad functionality, this is implemented
directly as

1 def tensordotl(a, b):

2 return jax.numpy.tensordot(a, b, axes=1)

3

4 def tensordot2(a, b):

5 return jax.numpy.tensordot(a, b, axes=2)

6

7 # Taylor-Ito expansion operators

s def L_t_operator(f,problem):

9 @wraps (f)

10 def wrapped(x):

11 b_val = problem.b(x)

12 val = tensordotl(jax.jacobian(f) (x), problem.a(x)) + 0.5 * tensordot2(

13 jax.hessian(f) (x), tensordotl(b_val, b_val.T)

14 )

15 return val[:, jnp.newaxis,...] #indexing convention [spatial, time,
= noiseterms/time]

16

17 return wrapped

19 def L_w_operator (f,problem) :

20 @wraps (f)

21 def wrapped(x):

22 val = tensordotl(jax.jacobian(f)(x), problem.b(x))[:,jnp.newaxis,...]

23 return jnp.swapaxes(val,1,-1)[:,...,0] # indexing convention [spatial,
noiseterms, ... = noiseterms/time]

24

25 return wrapped

Second, different integration methods — Euler, Milstein, and Wagner-Platen — were imple-
mented following the book by Kloeden & Platen [18]. These methods make use of samples of
the principal Wiener integrals listed above. Unfortunately, the text contains typographic errors,
which were found by examining the mean, variance and covariance properties of fundamen-
tal multiple Ito and Stratonovich integrals using a testing suite that is part of the Pychastic
package. The errors we found were corrected appropriately and are listed in the Appendix A.

Finally, using the jax.lax.scan functionality of the package jax, we can generate many
trajectories in parallel by programmatically vectorising the code representing a and b provided
by the user.
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4 Examples of usage

In the following, we show a few examples of usage that take advantage of various functional-
ities of Pychastic.

4.1 First passage problems, polar random walk

In nearly all physical applications of Brownian Dynamics, the simulated properties of the sys-
tems are observed via their moments rather than individual realisations of the underlying
stochastic process. In fact, in many situations with random forcing, the paths of the process
are only a model of reality and cannot be directly observed, as opposed to their statistical effect.
For a smooth quantity g observed through its expected value E in thermodynamic equilibrium,
it is the weak convergence rate that controls the error of E(g(X,)) at fixed t. With this in mind,
it is tempting to dismiss methods with a high strong order of convergence as impractical.

A natural candidate for a counterexample are first passage times, where the answer re-
quires a more subtle reasoning. Since the first passage problem is path-dependent, it would
seem that strong convergence is important. However, the theorem regarding the first passage
times established by Whitt [17] shows that the weak convergence of the process approxima-
tions X,, — X implies a weak convergence of the first passage times T(X,) — T(X). In con-
clusion, for all popular physical applications, the weak order of convergence is the important
one. In consequence, the Milstein scheme is never a good choice, since it is equivalent to the
Euler scheme in terms of weak order of convergence, but is more computationally intensive
and harder to implement. We illustrate the surprising result of [17] by numerical simulation
in a familiar setting.

A simple analytically solvable case of the first passage problem is a two-dimensional diffu-
sion process in the (X, Y) plane with constant drift velocity v and constant diffusion coefficient
o2 in a system with an absorbing barrier at Y = Y;, = 2. The problem admits an exact solution,
in which the probability density function for the hitting time ty,;, = argmin, (Y, > V) is given

by
Y, (Y —vy1)?
P, (T) = —=——exp (——j , (10)
' 2mo213 2047

and so E[ty; ] =1/2.

Numerically, we calculate the sample of the first passage times and locations for
v = (vy,v,) = (0,4) with stopping condition Y = ¥}, = 2 and initial condition (X,Y) = (2,0).
The 1to equations for the two-dimensional diffusion driven by Wiener processes W and W’
with drift velocities [v,, v, ] take the form of

dX = vdt +odW,, (11)
dy = v,dt +odw/, (12)

where o is a parameter that describes the strength of the noise compared to the drift. We first
transform this problem into a different set of coordinates, for which we choose polar coordi-
nates. While we retain the analytical solution, we acquire non-linear terms in the governing
equations, which will help us study the convergence issues which arise when noise and drift
terms are generally dependent on the position. Eq. (12) transformed into polar coordinates
(r, @) is expressed as

dr = (%+vysinqb+vxcos¢)dt +0cos¢th+asin¢th’, (13)
dp = %(vycosqb +v,sing)dt —amdwt+acos¢dwt’. (14)
r r



Scil SciPost Phys. Codebases 11 (2023)

The transformed equations are nonlinear, coupled, with nondiagonal, noncommutative
noise terms. Vector equations in the package Pychastic are defined by providing both the
drift vector a and the noise matrix b as callable to the SDEProblem constructor. Denoting the
configuration by q = (r, ¢ ), we write

import jaq.numpy as jnp

1

2

3 y_drift = 4.0
4 sigma = 1

s y_barrier = 2
6

7

8

9

def drift(q):
return jnp.array(
[1/ (2 * q[0]) + y_drift * jnp.sin(q[1]), y_drift * jnp.cos(q[1]) / ql
011
10 )

12 def noise(q):

13 return sigma * jnp.array(

14 [[jnp.cos(q[1]), jnp.sin(q[11)], [-jnp.sin(q[1]) / q[@], jnp.cos(qlll)
/ ql0]]1]

15 )

16

17 problem = pychastic.sde_problem.SDEProblem(

18 a=drift,

19 b=noise,

20 x0=jnp.array([2.0, 0.0]),

21 tmax=2.0,

22 )

The jax.numpy package is a functional cousin of numpy [19], which is the fundamental
package for scientific computing with Python [20]. The functional focus of jax.numpy enables
automatic differentiation, and thus facilitates the use of the high-order method without the
need for numerical differentiation, which can be imprecise and computationally costly. We
obtain the trajectories using the solve method of SDESolver.

1 solver = pychastic.sde_solver.SDESolver(dt=2**(-5), scheme= )
2 solution = solver.solve_many(problem,n_samples, seed=0)

Pychastic supports simulating many trajectories simultaneously with the solve_many
method. Our strategy allows for concurrency in computation of random variables and equa-
tion coefficients thanks to the jax package we use as back-end (which in turn relies on vec-
torised mathematical operations provided by the XLA supporting architecture of most modern
processors). The jax package is a fusion of three capabilities: numpy-like API for array-based
computing, functional transformations (such as vectorisation, parallelisation and automatic
differentiation), and modular back-end, allowing developers to test their work with just CPU
and deploy the same code later on a GPU (or TPU) capable hardware. Furthermore, we avoid
notoriously slow Python loops by using jax.lax.scan routines, taking advantage of just-in-
time compilation and asynchronous dispatch, avoiding the problem of global interpreter lock,
which cripples imperatively coded Python programmes. A more detailed guide on the advan-
tages (and common pifalls) of jax package can be found in its documentation on ReadTheDocs.

Importantly, even though the Milstein and Wagner-Platen schemes require the values of
spatial derivatives of noise and drift terms, we did not have to provide them explicitly. They
were calculated using an automatic differentiation procedure from the coefficient functions
provided in the SDEProblem constructor.

We compare the results obtained with different solvers and time steps in Fig. 1. Sample

8
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Figure 1: a) Four sample trajectories generated from Eq. (14) using the Euler al-
gorithm together with the barrier rsin¢p = y = 2. b) Distribution of hitting times
for two different step sizes in the Euler algorithm together with the analytic solu-
tion of the problem, given by Eq. (10). Large step sizes typically overestimate the
hitting time. ¢) Strong (path-wise) error of the hitting time for different step sizes
and solvers together with power-law eye guides: dt!/4, dt'/2, dt. d) Error of the
expected value of the first passage time together with eye-guides: dt'/2, dt. Con-
trary to the strong error case, here Euler and Milstein algorithms coincide by Whitt’s

theorem.

trajectories starting from the point (r, ¢) = (2,0) are shown in Fig. 1a. The barrier at y = 2
becomes a curve in polar parameterisation. In Fig. 1 we present the resulting distribution of
hitting times measured from an ensemble of N = 1000 trajectories with two different time-
step sizes and compared to the exact solutions. Choosing a too large step size can lead to an
overestimation of the typical hitting time. Having implemented three stochastic integration
algorithms, we compare the strong error of estimation of the hitting time in Fig. 1c. Itis a
measure of the numerical error per trajectory, defined as (|7 — 7|), where 7 is the numerical
estimate of hitting time and 7 is actual hitting time that can be computed using the exact solu-
tion and a particular realisation of the Wiener process. The average is taken over an ensemble
of realisations of the Wiener process. For different schemes, the strong error scales differently
with the step size — from the linear dependence on dt'/# for the Euler scheme, through d¢!/2
for the Milstein algorithm, to dt for Wagner-Platen. We note that these exponents are different
(smaller) than for strong convergence at a fixed time [18]. Similarly, in Fig. 1d we present the
weak error of estimation of the average value of the hitting time. The weak error is defined
as |(T) — (7)|, and reflects the difference between the ensemble average value of hitting time
estimate and the true ensemble average hitting time (computed directly from the theoreti-

9
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cal distribution). This quantity highlights the lack of difference between Euler and Milstein
schemes, in agreement with Whitt’s theorem [17] stating the dependence of the expected first
passage time on the weak convergence rate of the scheme only. The power laws for conver-
gence — dt'/# for Euler and Milstein algorithms and dt for the Wagner-Platen scheme — again
have smaller exponents than for those for weak convergence at a fixed time.

4.2 Rotational Brownian motion, step_post_processing function

To highlight the ease-of-use features of the Pychastic package, we present the problem of
rotational Brownian diffusion simulations. General BD simulations that involve rigid bodies
require the application of finite rotations to diffusing objects. The resulting algorithms are
widely applied to study problems in physics and biology. While resolving translational motion
is straightforward, e.g. with the standard Ermak-McCammon (Euler) algorithm [21], the ro-
tational part is more involved to simulate, because the domain of rotational motion is SO(3)
and this has to be taken into account when solving the equations of motion. One difficulty lies
in the commonly used rotational coordinate systems, such as Euler angles [22], which contain
strong singularities around the polar orientations. When curvilinear coordinates are used to
describe the motion, the metric tensor gives rise to nontrivial additional terms in the equations
of motion, the so-called metric or drift terms, which are frequently overlooked in rotational
BD algorithms. For a summary, see Ref. [23].

To overcome these limitations, we reimplement the problem following the rotation-vector-
based formulation of Evensen et al. [24]. We describe the angular position of the particle by
the angle of rotation ® around a unit vector 6 collinear with the axis of rotation. Generalised
coordinates are encoded in the vector ¢ = ®0. The rotational mobility matrix of the particle
in the body-fixed frame is U,,q,- We transform it into the laboratory frame by

u=0" - tpogy - 2, (15)

where Q is the relevant rotation matrix. We also define a velocity transformation matrix Z to
further introduce the transformed mobility t by

p=g2-u-2". (16)

Now we can write the Ito SDE corresponding to the evolution of the generalised coordinates
as

dg =i (%logv)dtJrkBT(% ~a)dt+ V2kgTOY? - dwW . (17)

Here, V is the density of the volume element (SO(3) Haar measure) with respect to the
Lebesgue measure on R, In the literature d logV/@q is often called the metric force F(™,
Explicit expressions for 2, Q and logV are given in Appendix B.

Since the evolution equation depends on the divergence of a product of two orientation-
dependent matrices, writing Eq. (17) explicitly is quite cumbersome. Earlier works of [24]
and [26] avoid this difficulty by approximating the gradients by sampling the transformed
mobility matrix at nearby locations in the phase space. We can address this problematic term
directly thanks to the automatic differentiation capabilities of the jax package.

1 def metric_force(q):
# Metric force, providing the Boltzmann distribution in equilibrium.
phi = jnp.sqrt(jnp.sum(q ** 2))
scale = jax.lax.cond( # Taylor expansion for the polar orientations.
phi < 0.01,
lambda t: -t / 6.0,
lambda t: jnp.sin(t) / (1.0 - jnp.cos(t)) - 2.0 / t,

N o o~ woN
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Figure 2: a) Distribution of rotation angles & after a long time in N = 10* simulations
compared with the SO(3) symmetric distribution P¢¢(®) given by Eq. (18). b) Com-
parison of the time-dependent correlation structure arising from equation (17) for a
spherical particle. Dashed lines show exact predictions from Ref. [25] and Eq. (19).
Solid, colored lines show average values of 10° simulations (blue line corresponds
to equation (17) and orange trajectories correspond to Ref. [24] containing a typo in
their Eq. 12). Note that even though equilibrium distributions coincide, time depen-
dent correlation structure is different.

8 phi,

9 )

10 return jax.lax.cond(

1 phi > 0.0, lambda: (q / phi) * scale, lambda: jnp.array([0.0, 0.0, 0.0
D

12 )

13

14 def t_mobility(q):

15 # Mobility matrix transformed to rotation vector coordinates.

16 Return transformation_matrix(q) @ mobility @ (transformation_matrix(q).T)

17

18 def drift(q):

19 # jax.jacobian has the differentiation index last (like mu_ij d_k) so
divergence is contraction of the first and last axis.

20 return (

21 t_mobility(q) @ metric_force(q)

22 + jnp.einsum( , jax.jacobian(t_mobility) (q))

23 )

First, including the divergence of the mobility matrix in the new coordinate system is as
simple as adding a correct contraction of jax.jacobian of the mobility tensor. To obtain this,
we use the convenient jnp.einsum tool. This function, similarly to its analogue np.einsum,
takes in a tensor, represented in the memory by an array of arrays of arrays etc. with the
number of levels corresponding to the tensor rank, and performs contraction described sym-
bolically by the index notation. In our case means ‘contract the first index with the
last index of a rank-3 tensor to produce a vector.’

Second, the domain of the equation is SO(3), which is not covered by R*® (since
m1(SO(3)) = Z, [16]). As a result, some trajectories, continuous in SO(3), will necessar-
ily be discontinuous in the R® parameterisation. We adopt the method proposed by Ref. [24],
where after each step of integration we project on the principal value of the rotation angle. In
pychastic, we achieve this using the step_post_processing capability.

11
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1 def canonicalize_coordinates(q):

2 phi = jnp.sqrt(jnp.sum(q ** 2))

3 max_phi = jnp.pi

4 canonical_phi = jnp.fmod(phi + max_phi, 2.0 * max_phi) - max_phi
5 return jax.lax.cond(

6 phi > max_phi,

7 lambda canonical_phi, phi, gq: (canonical_phi / phi) * q,

8 lambda canonical_phi, phi, q: q,

9 canonical_phi,

10 phi,
1 a,
12 )

13 solver = pychastic.sde_solver.SDESolver(dt=0.01)
14 trajectories = solver.solve_many (

15 problem,

16 step_post_processing=canonicalize_coordinates,
17 n_trajectories=1000

18 )

The simulations were validated by checking the equilibrium properties and the time-
dependent correlation structure. The equilibrium distribution P*I(®) for the rotation angle
® is given by

Ped(d) = 1—cos® .

(18)
To characterise the time evolution, we use the components of the modified rotation vector
components Auy(t) = —%ei jk€2;5(t), for which exact theoretical predictions were derived by
Cichocki et al. [25] for an arbitrarily shaped molecule. For a spherical particle, the correlation
functions are given by

(B (O = 5 = e+ ze e |, a9)
where 6 is the Kronecker delta. The diffusion coefficient for a sphere is D, = kzT/nnd>,
where d is the diameter of the particle.

In Fig. 2, we present a comparison between the results obtained with an algorithm based
on Eq. (17) (blue lines), and a similar method based on equations (5-12) from Ref. [24] (or-
ange). Fig. 2a shows the equilibrium distribution of the rotation angle ®, together with the
analytical prediction of Eq. (18). We note that although the equilibrium distribution predicted
by both algorithms shows exact agreement with the theoretical predictions, the transforma-
tion matrix Z in Eq. (12) of Ref. [24] contains an error. We corrected this typographical error
and present the proper formulation of the equations of motion matrices in the Appendix B.
The discrepancy is visible in the time-dependent correlation function in Fig. 2b. Although at
long times the system tends to the same equilibrium solution for both approaches, we see the
agreement of our algorithm with the theoretical predictions of Eq. (19) (dashed line) and the
deviation of the orange lines. This discrepancy highlights the need for better test cases that
reliably test all properties of the simulated equation, and not solely the equilibrium distribu-
tion.

As mentioned above, the algorithm based on Ref. [24] is singularity-free, contrary to ap-
proaches based on Euler angles, which contain strong singularities around the polar orienta-
tions. However, it should be noted that the implementation of the code may still face some
limitations, such as the computational inability to calculate sin®/® for & — 0. For these nu-
merically restricted cases, we implemented the Taylor expansion of E, Q and logV, based on
Ref. [26]. However, we also report some typos in this publication. Therefore, in Appendix B
we provide correct formulations of the Taylor-expanded terms.

12
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4.3 Bead models with hydrodynamic interactions, pygrpy package integration

Hydrodynamically interacting beads (with and without springs) have been used successfully in
modelling the properties of elastic macromolecules [21,27-31]. Some questions about elastic
macromolecules can be answered by computing the equilibrium ensemble of conformations
(with methods such as Markov Chain Monte Carlo [32]). Simulations involving hydrodynamic
interactions can, on the other hand, provide access to the dynamics and answer questions, e.g.,
about time scales of conformational change [33], mechanisms of protein association [34],
pore translocation [35-37], near-wall hindered diffusion [38], and many other dynamical
processes.

The starting point is often the Hamiltonian, which describes intramolecular interactions
between the constitutive subunits of the molecule, modelled by a collection of beads. The
potential energy landscape can then be used to compute the interaction forces. Thanks to the
jax autograd capabilities, the forces arising from many-body mechanical interactions can be
automatically calculated from the potential energy of the system.

The computation of hydrodynamic interactions, encoded in the mobility tensors of the
respective macromolecules is a more involved task. Numerous methods are available, vary-
ing in scope, degree of precision, and complexity. For a review of popular methods applied
to macromolecules, see Ref. [39]. For completeness, we supplemented pychastic with the
package pygrpy for the calculation of grand mobility tensors in the Rotne-Prager-Yamakawa
(RPY) approximation [40,41], generalised to beads of different sizes [42]. The procedure
is a Python port of the GRPY package [39]. The Python package pygrpy simplifies the imple-
mentation of similar bead-spring simulations, both stochastic and deterministic. Furthermore,
pygrpy is compatible with the jax functional paradigm and allows automatic differentiation
and vectorisation.

The RPY approximation is by far the most popular method of accounting for hydrodynamic
interaction in numerical models of soft matter systems [43]. The mobility tensors calculated
in this way preserve positive definiteness and are divergence-free, significantly simplifying the
BD algorithm [21]. In essence, RPY is a far-field approximation that includes all terms that
decay slower than the inverse third power of the interparticle distances, but is less accurate
at smaller distances. When the particles come close together, it is necessary to include higher-
order terms of the multipole expansion [44] and lubrication corrections [45]. However, as
shown by Zuk et al. [42], the RPY approximation can be generalised to overlapping particles,
and thus it can also be used to model complex-shaped particles as conglomerates of rigidly
glued overlapping spheres, in particular to calculate hydrodynamic properties of biological
macromolecules, as in the GRPY method [39].

To highlight the ease of use and interoperability of pychastic and pygrpy, we implement
a benchmark problem proposed by Cichocki et al. [46]. It concerns the diffusion coefficient of
an elastic "macromolecule" composed of 4 beads of radii r; € {3,1,1,1} joined into a string,
as shown in Fig. 3a. Here, the length scale is the radius of a small bead a. The neighbouring
beads interact directly via harmonic potentials, with the equilibrium distance d; = 4 and the
spring constant k = 5.5 k3 T /a, and indirectly through hydrodynamic interactions.

We determine the diffusion coefficient D by tracking the mean square displacement
((x(t) —x(0))?) (MSD) of a point x of the molecule. If the observation time is long enough,
MSD =~ 6Dt. However, for shorter times, the coefficient of proportionality in the MSD(t)
curve is different and depends on the choice of the reference point on the molecule. Although
biophysical experiments typically measure the long-time diffusion coefficient, numerical sim-
ulations have easier access to short-time diffusivity. To minimise the difference, one should
choose a particular point, called the centre of diffusion, which can be constructed as a weighted
average of the positions of beads with weights determined from the hydrodynamic mobilities
of an ensemble of equilibrium configurations of the elastic molecule [46].

13
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Figure 3: a) Representative configurations of four co-diffusing beads connected with
harmonic springs at time (bottom to top) t/74; = 2, 2000, 4000, 6000. b) Mean
square displacement of three different tracked locations: the small bead at the end
of the chain (blue), the large bead at the other end (orange) and the weighted aver-
age of all four beads with weights corresponding to the effective centre of diffusion,
defined according to Ref. [46]. The dashed line corresponds to numerical results re-
ported in [46] based on an extremely long, single-trajectory simulation.

We use this system to test our algorithm. In Fig. 3b, we show the temporal evolution of the
MSD when different reference points on the elastic molecule are chosen: the small terminal
bead, the large bead, and the centre of diffusion. The time is scaled by 74 = nnd>/kzT. We
computed hydrodynamic interactions using the package pygrpy, which allows computations
of mobility tensors for macromolecules composed of unequally sized and possibly overlapping
spherical beads in the Rotne-Prager-Yamakawa approximation. The dashed line is the numer-
ical result of [46] where the diffusion coefficient was estimated using a single very long BD
trajectory. Indeed, we see that tracking the centre of diffusion provides a good estimate of
the long-time behaviour of the MSD. When one chooses to track one of the smaller beads or
one of the beads further away from the middle of the molecule, precision decreases primarily
because rotational diffusion plays a bigger role in the motion of such tracers. The strength of
our algorithm is that we use many trajectories instead of a single long one, thus avoiding the
need for a more complex method of calculating the diffusion coefficient, involving recursive
subdivisions of the simulation interval described by Frenkel and Smit [47].

1 radii = jnp.array([3.0,1.0,1.0,1.0]) # sizes of spheres used
2 n_beads = len(radii)

3 equilibrium_dist = 4.0

4 spring_constant = 5.5

5

6 def pot_ene(x): # potential energy

7 locations = jnp.reshape(x, (n_beads,3))

8 distance_ab = jnp.sqrt(jnp.sum((locations[@] - locations[1])**2))
9 distance_bc = jnp.sqrt(jnp.sum((locations[1] - locations[2])**2))
10 distance_cd = jnp.sqrt(jnp.sum((locations[2] - locations[3])**2))
1 ene = 0.5*spring_constant*jnp.sum(

12 ([distance_ab,distance_bc,distance_ca] - equilibrium_dist)**2

13 )

14 return ene

14
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15

6 def drift(x):

[

17 locations = jnp.reshape(x, (n_beads,3))

18 mu = pygrpy.jax_grpy_tensors.muTT(locations,radii)
19 force = -jax.grad(pot_ene) (x)

20 return jnp.matmul (mu, force)

21
22 def noise(x):

23 locations = jnp.reshape(x, (n_beads,3))
24 mu = pygrpy.jax_grpy_tensors.muTT(locations,radii)
25 return jnp.sqrt(2)*jnp.linalg.cholesky (mu)

26
27 problem = pychastic.sde_problem.SDEProblem(

28 drift,

29 noise,

30 x0 = jnp.reshape(jnp.array([
31 [-2.,0.,0.],

32 [2.,0.,0.],

33 [6.,0.,0.],

34 [10.,0.,0.]

35 1), (3*n_beads,)),

36 tmax = 10000.0)

5 Conclusion

We developed a novel Python package pychastic dedicated to efficient numerical solutions
of SDEs. The package implements the classical truncated Taylor-Itd integrators up to strong
order O(dt3/?) providing a precise treatment of both weak (e.g. equilibrium distributions,
diffusion coefficients) and strong problems. We included a set of simple test cases that pro-
vide exact reference points for testing future stochastic integration algorithms. The analysis of
three-dimensional rotational Brownian motion benchmarks is particularly important because
it encompasses many of the difficult aspects of SDE approaches to Brownian dynamics: di-
vergence terms in the evolution equation, handling discontinuous trajectories (unavoidable in
the case of SO(3)), and spurious agreements when testing only the equilibrium distribution.
We hope that pychastic will ease future studies of Brownian dynamics problems, especially
problems that involve hydrodynamic interactions. The project is open source, and we hope to
encourage collaboration and its further development.
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A Appendix: Typos in integration schemes in Ref. [18]

In the book: Numerical solution of stochastic differential equations by Peter E. Kloeden and
Eckhard Platen in equation 5.8.11 we have found the following typos:

1. In the definition of Df1, joj3t the fourth summand should read {; ;13,4 instead of j1.

2. In the definition of b;: there is a 1/7 factor missing before sum.

3. In the definition of Cﬁ’jz: second term should be +1/rn;; 1y, instead of —/r.

B Appendix: Rotational Brownian motion

In equation (17) we recall the equations of rotational Brownian motion, formulated in Ref.
[24]. Angular orientation is described by the vector a = (a;,a,,as) = ®6, where & is the
angle of rotation around a unit vector 6, which corresponds to the axis of rotation. Because the
expressions in Ref. [24] contain typos, here we present the proper expressions for coordinate
transformation and rotation matrices 2 and £:

$sind _
. a;a; a4, a;ds T—cosd as az
] ( 1 Slnq) ) + 1 dsind (20)
BE= —=————— || a2a; asay asas — as = —a;
®2  28(1—cosd) 2 l=cos® e |
asd; dasda, dasds —dy a; T—cos®
‘I>2 cos® —a3<I> Sin@ Clz@ Sin@ 1 cos® Cl]_a]_ a1a2 a1a3
Q=—| az®sin® d%cos® —a;Psin® |+ ———| aya; aya, azaz |. (21)
d2 . . 2 $2
—a,$sin® a;$sind ®“cosd asa; dsd; dsds

The matrix E transforms the velocities from the Cartesian coordinate system to the one
described by a. The matrix € is a simple rotation matrix. These two matrices combined allow
transformation of the body-fixed mobility matrix 44, to the lab-fixed, a-described mobility
matrix, given as =2 Q" - Uyoqy - 2B

The term (% log V) from Eq. (17) can be associated with the metric force FU™ which
guarantees the Boltzmann distribution in equilibrium and is given as

Kol sin(®) 2)
I —plm _ _ ) 2
(aqlogV) F kBT(l—cos(cb) > (22)

Due to the numerical limitations, it is sometimes inevitable to perform the Taylor expansion
of the above quantities, as presented in Ref. [26]. However, we also found typos in this case.
Therefore, we provide the correctly expanded matrices 2 and Q for ® — 0,

1 a,a; aa, a;das 1 2 —das as
E=—|aya; asay, asas |+=| as 2 —a;, |+0(3?), (23)
12 asa; dasds dasds 2 —as a, 2
1 —ds (e5)) 1 a,a; a;a, a;das
Q=| a; 1 —a; |+=|aay aya, ayas |+0(8?). (24)
—as a, 1 2 asa; dasdy dasds

The Taylor-expanded metric force around & — 0 becomes

(0]
Fim = kBTgé +0(9%). (25)
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PAPER V

“Minimum dissipation approximation: A fast algorithm for the prediction
of diffusive properties of intrinsically disordered proteins”

Radost Waszkiewicz, Agnieszka Michag, Michat K. Biatobrzewski,
Barbara Klepka, Maja Cieplak-Rotowska, Zuzanna Staszatek,
Bogdan Cichocki, Maciej Lisicki, Piotr Szymczak, and Anna NiedZwiecka

COMMENTARY

Intrinsically Disordered Proteins (IDPs) constitute a large class of bio-relevant elastic macromolecules.
They typically consist of approximately rigid folded domains connected with flexible linkers. This type
of molecules comprises up to a third of proteins in eukaryotes, yet it remains understudied because it
cannot be easily analysed using crystallographic techniques due to their ever changing conformations.
Determining the relative importance of different physical processes that determine the conformations of
IDPs and the role of flexible linkers in interactions between their domains remains an open problem.

To the best knowledge of the authors, this is the first publication comparing a first-principles approach
(in contrast to many phenomenological attempts such as Ref. [38, 75]) to prediction of hydrodynamic
size of IDPs with experimental data. Earlier approaches to the prediction of the protein hydrodynamic
radius (for example Ref. [76]) generally focus on techniques which approximate the protein as a rigid
body. From a modelling perspective, intrinsically disordered proteins differ significantly from, e.g. short
strands DNA we focused on before. While IDPs consist of globular fragments connected with linkers,
where the former are essentially rigid, and the latter are almost ideally flexible. Such proteins are ideal
subjects for the application of the Minimum Dissipation Approximation [25], specifically designed for the
fast computation of diffusion coefficients for molecules that exhibit substantial conformational variability
and possess parts of different sizes.

This study emerged from the collaborative efforts of two distinct groups. The first group, specialising
in theoretical modelling, included the PhD candidate, Bogdan Cichocki, Maciej Lisicki and Piotr Szym-
czak from the Faculty of Physics, University of Warsaw. The second group that focused on synthesis and
FCS measurements of IDPs, comprised Agnieszka Michas, Michal K. Bialobrzewski, Barbara P. Klepka,
Maja K. Cieplak-Rotowska, Zuzanna Staszatek, and Anna Niedzwiecka from the Institute of Physics of
the Polish Academy of Sciences.

We were able to obtain a favourable comparison with experimental data on the level of hydrodynamic
radius Ry, with a substantially better agreement than all prior phenomenological models selected for
comparison, and noticeably better agreement than a simple power law fit. The resulting code was
packaged into an easy to use python library and command line tool called glm_mda_diffusion ready to
install via pip and available directly on GitHub.

In this study the PhD candidate: co-conceptualized the modelling approach, investigated the available
conformer generation schemes, implemented the Python port pygrpy of the generalised Rotne-Prager
mobility tensors (originally implemented in Fortran [17]), implemented the globule-linker conformer
generation scheme, performed numerical calculations and statistical analysis to assess deviations between
theory and experiment. Additionally, they wrote the first draft and edited all subsequent versions of the
manuscript.

90



bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578612; this version posted February 8, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Hydrodynamic Radii of Intrinsically
Disordered Proteins: Fast Prediction by
Minimum Dissipation Approximation and

Experimental Validation

Radost Waszkiewicz, 8 Agnieszka Michas, % Michat K. Biatobrzewski *
Barbara P. Klepka,! Maja K. Cieplak-Rotowska,*Y Zuzanna Staszatek,?

Bogdan Cichocki, Macie; Lisicki,T Piotr Szymczak,*'T and Anna Niedzwiecka™*

TInstitute of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura
5, 02-093 Warsaw, Poland
IInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668
Warsaw, Poland
S present address: IMol Polish Academy of Sciences, Flisa 6, PL-02247 Warsaw, Poland

§ These authors have contributed equally to this work and share first authorship

E-mail: piotrek@fuw.edu.pl; annan@ifpan.edu.pl



bioRxiv preprint doi: https://doi.org/10.1101/2024.02.05.578612; this version posted February 8, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Abstract

The diffusion coefficients of globular and fully unfolded proteins can be predicted
with high accuracy solely from their mass or chain length. However, this approach
fails for intrinsically disordered proteins (IDPs) containing structural domains. We
propose a rapid predictive methodology for estimating the diffusion coefficients of
IDPs. The methodology uses accelerated conformational sampling based on self-
avoiding random walks and includes hydrodynamic interactions between coarse-
grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa
approximation. To estimate the hydrodynamic radius, we rely on the minimum
dissipation approximation recently introduced by Cichocki et al. Using a large set
of experimentally measured hydrodynamic radii of IDPs over a wide range of chain
lengths and domain contributions, we demonstrate that our predictions are more
accurate than the Kirkwood approximation and phenomenological approaches. Our
technique may prove valuable in predicting the hydrodynamic properties of both

fully unstructured and multidomain disordered proteins.
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Intrinsically disordered proteins (IDPs) constitute an extensive class of biological
macromolecules, and their role in the homeostasis of a living cell has been increasingly
recognized in recent decades.!? The frequency of long intrinsically disordered regions
(IDRs) in proteins differs significantly between the kingdoms of life, ranging from 2 %
in archaea to 33 % in eukaryotes.® The IDP molecules display different degrees of struc-
tural disorder. Their chains can encompass either several folded globular domains, or
supersecondary structures connected by flexible linkers, sparse secondary structural ele-
ments, or can be completely natively unstructured. Disordered proteins exhibit a notable
characteristic — the absence of a stable, well-defined relative spatial arrangement of their
fragments. Instead, their equilibrium properties can be described through a broad set of
rapidly inter-converting conformers, posing a challenge for analysis, particularly in the
context of long chains.*

The average geometric properties of IDPs, including their shape and size, are deter-
mined by the equilibrium ensemble of conformational states. This equilibrium state is in-
tricately influenced by environmental conditions,” such as temperature,® ionic strength -,
osmolality,” crowding!?, post-translational modifications®!, and the presence of specific

molecular binding partners!2.

The formation of transient or more stable non-covalent
complexes introduces another non-trivial dependence of the IDP equilibrium geometry
on environmental factors.

Because the shape and availability of the binding sites necessary for the interaction

of IDP with ligands, other proteins, and nucleic acids are greatly influenced by the en-

vironment, IDPs often act as higher-order regulators in key cellular processes such as

11,13 4

gene expression signaling®!'*, or extracellular biomineralization'®. It is the differ-
ent conformations of these flexible proteins, which enable IDPs to perform their mul-
tiple functions®. In particular, it is worth emphasizing the important roles of IDPs in

health and disease, e.g., the role of the p53 protein as a tumour suppressor ¢

, mutations
of which are often responsible for human cancers, the function of 4E-BPs in the inhi-
bition of eukaryotic translation initiation!!!"19 the significance of GW182 protein in

the recruitment of the multi-protein machinery necessary for microRNA-mediated gene
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silencing , or the importance of Tau, FUS, and a-synuclein proteins in neurodegen-

erative diseases?3?4.

Since the elastic properties of these biomolecules are responsible
for the proper functioning of IDPs in the cellular context, i.e. for the association of
complexes and the formation of biomolecular condensates via liquid-liquid phase separa-

tion such as, e.g., RNA-processing membraneless organelles?*26

much attention is paid
to the hydrodynamic properties of IDPs. Experimental techniques, such as analytical
ultracentrifugation (AUC), size exclusion chromatography (SEC), pulsed-field gradient
nuclear magnetic resonance (PFG-NMR), dynamic light scattering (DLS), and fluores-
cence correlation spectroscopy (FCS), offer insights into hydrodynamic parameters (as
reviewed in?7). However, due to the distinct limitations of each experimental approach,
ongoing research aims to devise phenomenological methods for calculating the hydrody-
namic radius (Ry,). These methods may involve deriving R, from the radius of gyration

28,29

determined by small-angle X-ray scattering (SAXS) or exploiting the conformational

backbone propensity of IDPs.3:3!
Simultaneously, significant effort is being invested in developing numerical models
that extract the characteristics of IDPs from conformational ensembles obtained using

molecular dynamics (MD) simulations or energy minimization algorithms?3?-4!

. However,
the molecular flexibility of IDPs introduces substantial complexities when determining
their hydrodynamic properties. Two main issues here are the large number of degrees of
freedom and the long timescales of relaxation of the internal coordinates of the molecules.
These factors prohibit direct calculation of the experimentally relevant long-time diffu-
sion coefficient from either molecular or Brownian dynamics trajectories. One popular
approximation that circumvents this difficulty is to assume that the macromolecule is
rigidly frozen in one of a large number of possible conformations. Transport properties
are then calculated by treating the molecule as a rigid body, and the results are averaged
over an equilibrium ensemble** . Nevertheless, the validity and accuracy of this approx-
imation remain uncertain. Additionally, the generation of conformational ensembles can

be a bottleneck for long chains (beyond approximately 300 amino acid residues) because

it requires time-consuming MD simulations and/or the construction of new databases of
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short peptide conformations.

There is, therefore, a strong need to develop a numerically efficient solution that
would enable reliable calculation of the long-time diffusion coefficient of any long-chain
IDP, such as one with 1000 amino acid residues, solely based on its sequence information.

In this study, we introduce a new theoretical approach to both generating conforma-
tional ensembles of IDPs and calculating their hydrodynamic properties. This method
enables a swift estimation of the diffusion coefficient for long IDPs in a matter of minutes,
with superior accuracy compared to existing methods. This assertion is substantiated
through rigorous testing of the model on a diverse set of experimental results obtained
for 43 proteins. The dataset includes both literature data and R, values measured for a
set of new IDP constructs using FCS under mild conditions (see Supporting Information).

We present our results in terms of the hydrodynamic radius of a molecule, Rj,. This
radius represents the size of a solid sphere that possesses the same translational diffusion
coefficient, D, as the given molecule under identical buffer conditions. Therefore, R;, =
kpT /6mnD, where T is the temperature and 7 is the viscosity.

An important observation by Fixman“®*" is that the diffusion coefficient of a flexible
macromolecule is time-dependent, with well-defined short- and long-time limits. The dis-
parity between the two is attributed to the effects associated with relaxation of the inter-
nal coordinates of the molecule, as well as rotation of the macromolecule as a whole. 46:48:49
The positivity of the dissipation rate in the system implies that the long-time diffusion
coefficient (D) is always smaller than the short-time diffusivity (Dj).4” The focus of the-
oretical approaches should be the determination of the former quantity, as it is the one
measured in experiments utilizing techniques like FCS, AUC, or DLS. Unfortunately, the
calculation of D; is significantly more challenging than that of Dy because it involves
the computation of time-dependent quantities, such as the memory function, which de-
scribes the relaxation effects. An additional point to keep in mind is that the value of the

short-time diffusion coefficient depends on the choice of the point that one tracks.*? 2 In

contrast, the long-time diffusivity is independent of the choice of reference point. >

The methods for predicting the diffusion coefficient can be broadly split into three
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categories: atomistic, phenomenological, and coarse-grained. For small proteins, high-
resolution, atomistic MD methods can be used,®® but they require either simulating the
surrounding water molecules explicitly, which is very computationally intensive, or an im-
plicit solvent scheme. In the case of implicit solvent methods, addressing hydrodynamic

55758 and thermalization®® pose signif-

interactions between distant parts of the molecule
icant challenges. Additionally, even for the smallest proteins, it is prohibitively difficult
to obtain statistically meaningful data over the 10-100 millisecond scale, which would
enable the direct computation of the long-time diffusion coefficient.

The other extreme are phenomenological models that predict Rj from the number of
residues N and possibly other parameters, such as total charge or amino acid composition.
Theoretical considerations of Rouse, who modelled a protein as a Gaussian chain® gave
foundation to the power law relationship Rj, ~ N'/2. The classical Rouse model employs
random displacements between the monomers. If we assume complete independence of
displacements between each consecutive pair of monomers, the central limit theorem
dictates that as IV approaches infinity, the squared end-to-end distance should conform
to a scaled x?(3) distribution. Consequently, the dimensions of such an idealized chain
are expected to scale with v/N. Later work of Zimm included the effect of excluded
volume®!, which resulted in the scaling R;, ~ N with v = 0.588.

Phenomenological size-length relationships that include other variables involve a num-
ber of fitting parameters. As a result, their range of applicability outside of the fitting
dataset is difficult to assess. An alternative phenomenological approach proposed by
Pesce et al.? employs the radius of gyration obtained from SAXS experiments to esti-
mate R;. This is substantiated by the observation that within the Kirkwood-Riseman
approximation® Rj, and R, share the same scaling relationship with N as long as the
pair-displacement distribution converges under appropriate scaling to a Gaussian for large
N.

Finally, coarse-grained models, like our method, employ larger units (typically one or
two per amino acid residue) as building blocks for the structure prediction scheme, along

with approximate interaction potentials between subunits, to simulate the equilibrium
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ensemble of configurations for a given molecule. These configurations are then combined
with an approximation of the hydrodynamic properties to compute the diffusion coeffi-
cient. Essentially, the computation of the latter for elastic macromolecules addresses two
interconnected challenges: predicting the conformations of molecules based on available
biochemical data and then using these conformations to predict hydrodynamic properties.

The different exponents in the power-law relationships of Rouse® and Zimm %' demon-
strate that even the most basic method for approximating configurations must take into
account, excluded volume interactions.

A software that can accommodate excluded volume interactions for a disordered chain
is Flexible Meccano (FM).?! In addition to volume exclusion, it considers the distribution
of Ramachandran angles determined from crystallographic protein structures when sam-
pling conformations. However, FM treats the entire chain as unstructured, so it cannot
be used to model proteins that possess both globular and unfolded segments, which are
in fact much more common than fully unstructured chains. Unfortunately, FM has a
closed license that precludes necessary modifications to accommodate folded regions of
proteins.

The complex angle distributions used by FM are crucial when computing NMR pa-
rameters that are sensitive to short-range details of the pair-distribution function, such as
residual dipolar couplings, paramagnetic relaxation enhancement, or J-coupling. How-
ever, upon closer examination, the pair-distance distribution generated by FM and a
simpler model presented in this paper, globule-linker model (GLM; described below),
become virtually identical for amino acids separated by more than 15 residues along the
chain.

The highly localized differences between structures at small sequential distances have
a minimal influence on the estimations of Ry. It is important to recall that for amino acid
residues separated by a distance 7, the dipolar coupling decays as r—3, while the decay
rate of hydrodynamic interactions (HI) is only r~!. Therefore, HI are long-range and less
sensitive to near-neighbor distributions, with contributions to the diffusion coefficient of

near-neighbors and far-neighbors being O(N) and O(N?77) = O(N'*), respectively.
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Figure 1. Construction of the coarse-grained globule-linker model (GLM) for an illus-
tratory IDP, Hg-SUMO-CNOT1(800-999), containing three ordered domains of different
sizes (no. 28 in Table S1). A) Sequence with highlighted ordered (orange) and disordered
(blue) segments, and domain boundaries marked by square brackets. B) Representative
full atom conformation generated by AlphaFold2 (for visualisation purposes only,?®%
beads with van der Waals radii, hydrogen atoms omitted for clarity); ordered clusters
(orange) form dense blobs connected with linkers (blue). C) Visualisation of a represen-
tative configuration generated using the GLM method where beads are displayed with
their hydrodynamic radii.

Guided by these considerations, we have implemented the simplest extension of Zimm’s
chain — the globule-linker model (GLM), designed to comprehensively represent IDPs
containing globular domains connected by unstructured fragments. In the model (Figure 1
A-C), we represented the protein as an assembly of spheres of different sizes. Disordered
segments of length IV were modeled as chains of N identical spheres, each with a diameter
equal to the C,-C, distance, while structured domains were represented by single spheres,
each of them described by their mass (m). The size of a sphere representing a structured
domain was computed as Ry, = (3m/ 47rpg10bular)1/ 4 Ahydration With Pgiobular = 0.52 Da /
A3 % and the single layer hydration shell taken to be anydration = 3 A thick. Within this
approach, information about domain boundaries in the protein sequence is sufficient to
construct an appropriate bead approximation of the IDP. The identification of protein
sequence fragments to be treated as ordered regions and mimicked by larger beads in the
GLM model was done using Disopred3.® The fragment was assumed to be ordered if
the disorder probability P was less than 50 % for at least three subsequent amino acid
residues, including loops linking such fragments but not exceeding 14 residues. %’

Using a recursive approach, it is possible to generate GLM conformations with a
time complexity of O(N'™), which provides a satisfactory ensemble for the largest of the

proteins considered here in under a minute using only a personal computer (a single thread
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at 1.8GHz). The speed of the recursive approach should be contrasted with an iterated
one where steps are simply added one by one, and intersecting chains are discarded. This
easier-to-implement method is characterized by a time complexity of O(exp(/N)), which
becomes prohibitively slow for chains with N > 20.

We have transformed the sampled conformations into a hydrodynamic model by in-
creasing bead sizes in the disordered fragments to Rgisorderea = 4.2 A, corresponding to
the median value for all aminoacids.®® In the resulting hydrodynamic model of linkers,
neighbouring beads show substantial overlaps, requiring a careful treatment of the mobil-
ity matrices (see® for details). Note that the value of Rgisordered has only a minor impact
on the final results, since the hydrodynamic radius of long slender filaments depends
logarithmically on their thickness.™ 73

To compute Ry, from the estimated ensembles we have implemented two algorithms:
the Kirkwood formula, and minimum dissipation approximation (MDA) method of Ci-

153

chocki et al.®® Within the first approach,™ the hydrodynamic radius of a macromolecule

LR )

i=1 j=lg#i \ Y

is approximated by

where N is the total number of beads in the IDP model, a; is the hydrodynamic radius of
bead i, r;; = |r; — r;| is the distance between beads i and j, and (-) denotes the average
over the equilibrium ensemble. One can show that this corresponds to the ensemble-
averaged short-time diffusion coefficient of the geometric center of the macromolecule,
r.=N"1! Zfil r;. Note that the geometric center fluctuates as the shape of the molecule
evolves and does not correspond to any fixed position within it. A simplified form of the

Kirkwood formula is often used 3?7276

_NLQ; 1]¢<U>’ (2)

where the single-bead terms 1/a; are dropped, as their contribution becomes negligible
in the large N limit. This is the form that we will also use in the present work.

A better estimate of Ry, corresponding to the long-time diffusion coefficient, requires
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a more in-depth description of the hydrodynamic interactions between the beads. To this
end, one introduces the mobility matrix p,*® which links the velocities of the beads with

the forces acting on them, according to
U; = Z miEj, (3)
J

where Uj is the velocity of bead ¢ whereas F; is the force with which bead j acts on the
fluid. Based on the mobility matrix, one defines a matrix A indexed by the bead labels
(i, j), Aij = 2mnTr (p;;) and its inverse B = A™'. One can then construct the MDA

for Ry, as

RYP* =3 "By, (4)
i

Note that the above formula is general, and can be used for different models of hydrody-
namic interactions - both simple models (e.g. Oseen or Rotne-Prager far-field approxi-
mation”) or in more sophisticated approaches, like the multipole expansion method ™.
In this work, we use the generalized Rotne-Prager approximation for the calculation of

80782 " This approximation is now also available as a

the mobility matrix, as described in
Python package, pygrpy.®® For non-overlapping beads, the elements of the matrix A have
then a particularly simple form: A;; = (1/r;;) for i # j, and A; = 1/a;. The formulas
for overlapping beads can be found in the Supporting Information.

The MDA corresponds to the calculation of the short-time diffusion coefficient of
the diffusion center of a molecule,®® which is a point inside the molecule where D; is
minimal. The position of the diffusion center is ry = le\il x,;r;, with the weights given by
T = Z Bi;/ Z By;. Since Dy is always larger than its long-time counterpart, D;, MDA
provid]es the lk)vést estimation for the long-time diffusion coefficient out of all methods that
utilize D, for this purpose. The MDA turns out to be more robust when dealing with large
differences in the sizes of beads used to model constituent parts of the macromolecule,
because in such cases the equal weights of the geometric center of the macromolecule

differ significantly from the optimal weights of the diffusion center.

We combined each method of generating conformers with each method of computing

10
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Figure 2. Examples of normalized FCS autocorrelation curves with raw fitting residuals
for an intrinsically disordered Hg-SUMO-GW182SD-mCherry (N = 809, R, = 66 £+ 6
A) (green) in comparison with apoferritin (N = 4200, R, = 58 + 3 A) (black). Crystal
structure of apoferritin (pdb id. code 2w00%!) and putative conformation of Hg-SUMO-
GW182SD-mCherry predicted by AlphaFold% are shown for illustration purposes, pre-
serving relative sizes of solvent accessible surfaces of atoms.

Ry, which resulted in four different theoretical approaches, the predictions of which (Table
S2) were then compared with experimental data. For this purpose, we have obtained 15
new IDP constructs covering a wide range of chain lenghts, folded domain contents and
charge states, and determined their R, using FCS (Figure 2 and S2, S3, S4, S5, S6; for
further experimental details see Supporting Information).

The experimental benchmark set (Table S1) was thus composed of both the new
FCS measurements, and R), selected from the literature based on the following criteria:
the proteins had sequences could be unambiguously identified in the literature or in
the UniProtKB database, were measured at well defined, mild conditions (temperature
of 20-26 °C, buffer of pH 7-8, ionic strength corresponding to 75-300 mM NaCl), and
their hydrodynamic radii were determined directly from appropriate experiments without
conversions from other experimental quantities, such as R,.?%%1%% This is, to our best
knowledge, the largest benchmark set encompassing experimental R, for 38 IDPs and 6
globular model proteins, measured at comparable conditions.

The results of tests performed for our four theoretical approaches against the bench-

11
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Figure 3. A) Experimental Ry, values plotted against number of amino acid residues in
the protein chain, NV, and power-law curve fitted to Rj of folded proteins (FP) together
with 95% confidence band. B) Direct comparison of the predicted vs. measured R,
values for all of the proteins modeled using the MDA -+GLM approach.

Table 1. Comparison of error statistics of various models.

model ng, RMSDIA|RMSRD[%]  R? R2, Q4F[A] QFP[%]
MDA + GLM 7.09 18.15 0.71 0.71 6.80 22.51
MDA + GLM(ND) 9.48 28.02 0.48 0.48 11.88 29.31

0
0
KR + GLM 0 1282 34.69 0.05 0.05 17.59 42.95
KR + GLM(ND) 0 9.25 27.31 0.50 0.50 11.11 29.44
random coil 1 9.60 27.71 0.47 045 10.28 33.69
power law 2 8.46 24.80 0.509 056  9.63 26.08
power law (lit.1%%) 2 1201 3694 0.16 0.12 1437 39.51
PPII-based (lit.*?) 3 1725 49.09 —-0.72 —0.86 20.62 59.54
sequence-based (1it.'19)7 22,90  50.78 —2.05 —2.66 19.59 58.32

ng, — number of fitting parameters, ND — no domain information, Q3 — 3" quartile

12
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Figure 4. Comparison of different methods of estimation of R;,. Boxes show interquartile
range with median confidence bands marked by notches. MDA with GLM ensemble
generation (A) performs best on the IDP benchmark set with standard errors of 18.15 %
and 7.09 A (compared to 24.80 % and 8.46 A for a simple power law). Methods based on
the Kirkwood-Riseman Rj, estimation (C,D) typically underestimate hydrodynamic size
of the molecule. Power law fits with one free parameter (E) and two free parameters (F)
evaluated using leave-one-out cross validation are compared with the formerly reported
power law!® (G) and a sequence-based model'®® (H) which takes into account total
charge of the molecule, and a model based on polyproline II structure propensities>’
(I). Methods with no knowledge about the presence of domains in the IDP (ND; B,C)
significantly overestimate the hydrodynamic size of the molecule. Domain data can be
incorporated into our ensemble generation engine leading to more accurate estimates of
Ry, (A). Note that experimental uncertainty also contributes to the errors presented above
and in Table 1.
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mark set are gathered in Table 1, and Figure 4 shows a visual comparison of the deviations

104,105 and power

between theory and experiment. Additionally, we provide power law fits
law fits of Marsh et al.1% for comparison of the prediction accuracy (Table S3).
We compare the accuracy of the previous and new model under six metrics (Table 1):

the square root of mean square deviation (RMSD), square root of the mean square relative

deviation (RMSRD), Pearson’s coefficient (R?), Pearson’s coefficient adjusted for fitting

2

adj), 3" quartile of the absolute error Q¥ and 3" quartile of the relative

parameters (R
error QEF. Whenever a fitting procedure is required, we use leave-one-out cross-validation
to compute error metrics. We have chosen to test the relative deviations as well in
order to reduce the undue weight given to the new, very long sequences in our dataset.
Similarly, outlier-robust metrics of the 3" quartile were included to reduce the impact of
a single sequence misprediction on the final comparisons. In all evaluation metrics, the
MDA-+GLM approach performs the best. Surprisingly, it is the only model that performs
better than the power law baseline in any of the evaluation metrics.

Although explicit intramolecular interactions of the amino acid residues are neglected
in MDA-+GLM approach, the main cause of discrepancies between the experimental and
predicted Ry, values (Figure S8) appeared to be the intrinsic properties of individual ex-
perimental methods, which suffer from typical errors or limitations and are usually not
taken into account when reporting the final experimental results. PGF-NMR measure-
ments are the most unambiguous and accurate, but their effective application is limited
to smaller proteins (up to 200-300 amino acid residues long) at high concentrations. It
is worth noting that the agreement of values of R; predicted by MDA+GLM with the
PGF-NMR results is excellent (Figure S8 C). FCS is the only method that addresses the
self-diffusion of molecules at the limit of low concentrations. Raw FCS measurements
can be refined to exclude possible oligomerization or aggregation during the experiment
based on the count-rates. However, it is impossible to avoid proteolytic instability of
proteins and, consequently, the appearance of impurities with a lower molar mass, which
may potentially result in apparently lower values of R, (Figure S8 B). On the other hand,

SEC is the easiest approach to remove lower mass impurities, but it involves diffusion of

14
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molecules at higher concentrations through a medium with pores of a specific shape under
the influence of pressure. An additional common disadvantage is calibration based on Ry,
of standard proteins determined in various conditions and the lack of appropriate prop-
agation of the calibration experimental uncertainty. Consequently, SEC measurements
can be highly scattered (Figure S8 D). The largest outlier in our analysis concerns Ry,
determined using SEC for fesselin without providing experimental uncertainty (Id. 43,
Tables S1, S2, Figure S7, S8 D). The DLS method is the most prone to overestimating
experimental values (Figure S8 E), since the presence of even a small number of aggre-
gates with a larger molar mass generates a huge contribution to the intensity of scattered
light. Finally, AUC yields sedimentation coefficients, and their interpretation in terms of
exact values of Ry requires some assumptions that are not obvious for IDPs, such as e.g.
partial specific protein volume.!°® The second largest outlier in our set is the OMM-64
protein (Id. 39, Tables S1, S2, Figure S7, Figure S8 F) with the R, value determined
using AUC, which is very close to the power function curve for completely denatured
proteins. 17

In conclusion, we have presented a simple, first principles model for the prediction
of R;, without any fitting parameters and achieved favourable comparison with a large
benchmark set. Moreover, due to the relative simplicity of the model, all of the calcula-
tions for a given protein can be performed in about a minute on a typical laptop, which
is contrasted with MD-based conformer generation methods that require supercomputers
and take many days. Furthermore, to our surprise, the GLM-MDA approach demon-
strates satisfactory convergence even with ensemble sizes as small as 40 conformers.

Our benchmark set, in which the previously known IDPs were complemented by
a set of newly obtained proteins, constitutes a significant step forward in predicting
hydrodynamic properties of IDPs. It includes a higher conformational variety, with a
stronger emphasis on multidomain proteins, longer chains, and a much wider range of
charge states compared to the reference sets used previously.3%1% This diversity allows
for more reliable testing of theoretical models.

Further developments of the MDA-+GLM model are needed to take into account the
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8 and the formation of complexes.

dependence of R;, on the environmental conditions®"
However, our results clearly demonstrate that the relatively simple globule-linker model
for conformational ensemble construction, in combination with the minimum dissipation
approximation, can serve as the starting point for developing further phenomenological
corrections. These improvements could incorporate factors such as amino acid sequence
composition, residue charge, and counterion binding. When using MDA+GLM, all ex-

cluded volume effects should be correctly accounted for, with any further deviations

hinting at interesting physical and chemical properties of the molecules.
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3.5.1 Comparing Conformations to SAXS Data

As detailed in Waszkiewicz et al. [5], computation of the diffusion coefficient for a given IDP requires
one to generate samples from the equilibrium ensemble. To this end, we proposed to use the Globule-
Linker Model, in which statistical variability was represented with a self-avoiding random walk. To assess
the quality of the conformer generation method independently of hydrodynamic modelling, we utilised
available SAXS data, not included in the final manuscript. One example of such a comparison is illus-
trated in Figure 3.2, where experimental data from Sicorello et al. [77] is compared with our implemen-
tation of the Globule-Linker Model (computed with sarw-spheres code; blue solid line) combined with
our implementation of the one-site-per-amino-acid scattering model (computed with saxs-single-bead
code; orange line). This model is based on form factors computed by Tong, Yang, and Lu [60].
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Figure 3.2: A Kratky plot of scaled scattering intensity, along with a comparison of our theoretical
predictions generated using saxs_single_bead, is presented against experimental data for ataxin-3
(pdb id 1yzb), as reported by Sicorello et al. [77]. Predictions based on conformers generated using the
globule-linker model (orange line) demonstrate good agreement for scattering vectors corresponding to
intramolecular distances larger than the C\, distance, which represents the coarse-graining resolution.
An even simpler conformer generation scheme based on self-avoiding random walk, which completely
disregards domain information (blue line), is capable of capturing only the initial slope of the scattering
curve.

The conformations used to predict the SAXS curve in Figure 3.2 were generated using the Globule-
Linker Model engine, with the globules replaced by crystallographic data retrieved from the Protein
Data Bank (PDB)[35]. The excellent agreement of the orange curve in the range of scattering vectors
corresponding to features larger than the C, distance (small values of ¢) is a result of the combination
of adequate modelling of both the rigid and flexible parts.

The treatment of the distribution in the Globule-Linker engine relies on the heuristic assumption
that bond vectors are uniformly distributed on a sphere (barring excluded volume interactions). The
theoretical basis of this approach relies on the treatment of the stiff spring limit in which bonds between
the constituent parts of a molecule are treated as arbitrarily rigid springs. We examine this limit in
greater detail to better inform the treatment and simulation of freely jointed chains.

The author would like to thank Dr. Bartosz Rozycki for his guidance regarding SAXS experimental
data.
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3.6 Paper VI: The trimer paradox: the effect of stiff constraints
on equilibrium distributions in overdamped dynamics

PAPER VI

“The trimer paradoz: the effect of stiff constraints on equilibrium
distributions in overdamped dynamics’

Radost Waszkiewicz and Maciej Lisicki

COMMENTARY

Feely jointed chains form the basis of many soft matter models and the determination of their sta-
tistical properties were amongst the earliest victories of the field, as demonstrated by the predictions of
end-to-end distances of Rouse and Zimm. Moreover, a freely jointed chain is a fundamental component of
globule-linker conformer generation scheme which used together with the Minimum Dissipation Approx-
imation (MDA, [25]), yielded predictions for the hydrodynamic radii of IDPs in [5]. On the other hand,
MDA assumes loose binding with short time diffusion along the bonds contributing to the short time
diffusion coefficient. In previous works, we computed hydrodynamic radii only in two extreme cases: very
loosely bound components (MDA) or completely rigid conglomerates (GRPY [17]), with the intermediate
regime not treated by either. A first step towards designing an extension of coarse-grained molecules
with rigid bond constraints but capable of reorientation is to understand the equilibrium distributions
in such cases.

The problem of a freely jointed trimer—three beads connected by flexible springs—in the limit of
infinitely stiff bonds was first approached by Fixman [78]. They identified some, but not all, of the
complications of the stiff limit. Further refinements of this work, outlined the correct treatment but only
in a low-dimensional setting and, to our best knowledge, no general treatment for larger systems was
presented. Moreover, no attention was given to the computational feasibility of the techniques outlined.

In order to fill this gap, in the following we have rephrased the stiff bonds limit in a mathematically
rigorous way. By examining the action of the limiting distribution on a smooth compactly supported
trial function, all the terms contributing to the limiting distribution arise naturally.

By examining a general parametrisation which separates soft from hard coordinates, we were able to
provide an efficient way of computing the confinement shape factor. We have thus bridged the gap in
previous works by providing an explicit treatment of cases with many degrees of freedom, and thus with
many constrains. By considering a cyclic tetramer, we have shown that the shape-factor corrections can
be arbitrarily large, even for molecular bonds modelled with identical harmonic springs.

In this study the PhD candidate: proposed the research question of the manuscript, performed the
calculation of the limiting distribution, performed the numerical simulations used in illustrations, wrote
the first draft and edited all subsequent versions of the manuscript.
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We reconsider the classical problem of a freely joined chain of Brownian particles connected by
elastic springs and study its conformational probability distribution function in the overdamped
regime in the limit of infinite stiffness of constraints. We show that the well-known solution by
Fixman is missing a shape-related term, later alluded to but not computed by Helfand. In our
approach, the shape term, also termed zero-point energy, arises explicitly from a careful treatment
of the distributional limit. We present a computationally feasible method of calculation of the shape
term and demonstrate its validity in a couple of examples.

I. INTRODUCTION

Molecular Dynamics and Brownian Dynamics simula-
tions are now standard tools for detailed modelling of
a plethora of molecular and mesoscopic systems, where
structural complexity poses a challenge to theoretical cal-
culations. Upon the introduction of a suitable coarse-
graining scheme to represent the composition of a given
molecule, its conformational space is prescribed by speci-
fying intramolecular interactions, such as chemical bonds
or electrostatic forces, between the subunits. The nature
of these interactions endows molecular models with flex-
ibility, which then in turn affects their conformational
variability, as well as their macroscopic and statistical
properties, such as rheology, diffusivity, and thermody-
namics, and also biological function.

A popular idealisation for a wide variety of systems
is purely mechanical, where the molecule is represented
by beads connected with springs, an idea which proba-
bly originated from Kramers [1], who built on concepts
of Kuhn, and termed it the pearl-necklace model. Vari-
ations of this idea are now the cornerstone of polymer
physics [2], but have also been used to describe other
classical many-body systems. Physically, the introduc-
tion of intramolecular interactions leads to constrained
dynamics with multiple time scales. Typically, the char-
acteristic time scales associated with internal vibrations
of molecular bonds are much shorter than those of trans-
lational and rotational motion or bond angle dynamics.
The disparity of time scale of relaxation of hard (or stiff)
degrees of freedom (such as bond lengths) in compari-
son to soft degrees of freedom (such as bond angles) is
a source of stiffness in the problem and hinders fast nu-
merical simulation of such systems [3].

In many applications, the dynamics of the hard de-
grees of freedom are of secondary importance, and one
method of circumventing this difficulty is to treat them
as fully constrained (i.e. rigid), thus eliminating the short

* radost.waszkiewiczQgmail.com
T mklis@fuw.edu.pl

timescale, and enabling faster calculation. This is the ba-
sis of many algorithms, such as SHAKE [4] and its further
extensions. During the development of such rigid mod-
els, a disconnect was discovered between the equilibrium
bond angle distributions in the rigid simulations and the
simulations with bonds modelled as very stiff springs.

The simplest example in which the complexity of the
constrained dynamics can be appreciated is the case of
a flexible trimer: a hypothetical molecule containing 3
subunits and 2 harmonic bonds, depicted in Fig. 2a.
The angle between the two bonds is denoted by . In
the classical textbook [3], Frenkel and Smit present an
apparently paradoxical result: the marginal distribution
of the bond angle in the case of rigid bonds dp,igiq and the
limiting distribution of spring-like bonds where the spring
stiffness k is taken to infinity dpx_ .. do not coincide.
More precisely, they report

dpr—seo = Nisiny dy (1)

2
Aprigia = Npsiny/1— 0054 ¥ dep (2)

for appropriate normalisation constants N; and Ns.
Qualitatively, distribution (1) corresponds to a spheri-
cally uniform distribution of the second bond direction
when the coordinates are aligned with the first bond,
while in Eq. (2) it seems that an additional force resists
bond alignment. In an early and widely cited work, Fix-
man [5] presented a derivation to argue that the ratio of
the two probability densities, Eqgs. (1) and (2), can be
computed with the knowledge of the constraining sur-
faces alone and does not require knowledge of the shape
of the confining potential. This presupposes that both
of these distributions are well defined whenever the con-
straint is given, which we argue is not the case.

In this contribution, we present a clear mathemati-
cal procedure leading to the aforementioned limits in
the overdamped regime when inertial effects can be ne-
glected. We show that the distribution given by Eq. (1)
is not completely determined by fixing the bond lengths.
To correctly predict the limiting distribution, knowledge
about the nature of confinement is needed and its struc-
ture survives in the final expression. Furthermore, we




demonstrate that Fixman’s expressions for the stiff limit
miss a term, which is important even in the case of har-
monic springs.

II. STIFF VS. RIGID CONSTRAINTS

The first calculations of the equilibrium properties
of flexible polymers can be traced to the papers by
Kramers [1], Go and Sheraga [6] and Fixman [5]. Results
of the latter paper were used essentially without changes
in works such as [7-10]. Early papers focused on the
treatment of constraints in the Lagrangian and Hamil-
tonian pictures, both classical and quantum-mechanical,
by defining the soft and stiff degrees of freedom and in-
tegrating out generalised coordinates corresponding to
the hard variables. The limiting distribution is then ob-
tained for infinitely stiff constraints when stiff variables
are eliminated.

Fixman [5] presented a purely classical calculation of
the limiting distribution, correctly writing the action of
the distribution on a test function but erroneously as-
suming that the constraining potential depends only on
the hard coordinates. As a result, details of the con-
fining potential cannot appear in his final expressions,
which contain only the projected phase-space volume el-
ement terms. Go and Sheraga [6] treated the problem
quantum-mechanically and correctly identified two con-
tributions to the equilibrium probability density of the
soft coordinates: the projected volume elements and the
zero-point energy of the vibrational motion of the hard
coordinates. However, they then stated that the zero-
energy contribution in typical molecular systems varies
only a little when changing the soft coordinates and may
be altogether neglected. We show in the following that
this is not necessarily the case in overdamped dynam-
ics. By focusing on a concrete classical two-dimensional
example with one constraint, Helfand [11] correctly iden-
tified the rigid-rod type distribution as a uniform distri-
bution on the constraining manifold and computed the
stiff-spring limit in a similar simple case. Unfortunately,
these results are not expressed in a form applicable to
higher-dimensional examples with multiple constraints.

Due to this lack of generality, later works such as
that of Hinch [8], cite Helfand as a reference to an er-
roneous claim that the bond angle distribution becomes
non-uniform in the case of rigid-rod system. The pitfall
lies in the assumption that the distribution should be
uniform under an action of a rotation matrix on a single
bond, presumably by analogy with a dimer. However,
there is a distinct difference between these two cases; In
the case of a dimer, the true physical symmetries of the
equations of motion — rigid body rotation of the whole
system and translations — act transitively on the space of
all possible configurations, thus the equilibrium distribu-
tion can be determined from symmetry arguments. More
generally, for a rigid body the rotation group SO(3) can
be treated as a topological manifold, resulting in a nat-

ural notion of uniformity, with the uniform distribution
given by the Haar measure. For the trimer, however, we
have configurations that are meaningfully distinct. There
is no symmetry that changes the bond angle 1. While
the equilibrium distribution for 6 out of the 7 degrees
of freedom can be determined from the six symmetries
of translation and rotation, the relative weight of con-
figurations with different ¢ has to refer to the physical
problem, not just geometric considerations.

Hinch [8] approached the problem differently, by ma-
nipulating the Langevin equations, which are notoriously
difficult to handle, and erroneously assumed that de-
tails of the confining potential are of little importance
to the equilibrium distribution of the constrained config-
urations. Van Kampen and Lodder [12] noted that the
approach of Helfand [11] is generally applicable to con-
strained systems and comment that the discrepancy be-
tween the stiff-spring and rigid-rod distributions in the
case of the trimer molecule is due to the fact that the
width of this gully is not the same everywhere [12]. How-
ever, they did not quantify the effect of this width in a
higher-dimensional case. As a result, the knowledge of
the influence of the shape of the constraining potential
appears to have been lost as multiple works (for exam-
ple, [3, 13, 14]) mention only the volume element densities
and omit the zero point energy or, equivalently, the po-
tential shape terms from their descriptions of constrained
dynamics, widely using the result of Fixman [5] as refer-
ence.

In the following, we show a way to compute the lim-
iting distribution by integrating out the hard degrees of
freedom in the overdamped limit. We explicitly find the
metric contribution arising from the transformation of
coordinates and the shape term that represents the de-
tails of the constraining potential and which remains im-
printed on the configurational distribution when the hard
coordinates are taken to be infinitely stiff.

III. THE STIFF SPRING LIMIT

We present a derivation of the limiting distribution
in the following setting, sketched in Fig. 1. Consider
a molecule (or a polymer) with a handful of subunits
(atoms, beads, or monomers) and N degrees of free-
dom in a heat bath at constant temperature T, with
B = 1/kgT. The conformation of the molecule is de-
scribed by an N-dimensional vector q. We parameterise
conformations by Cartesian coordinates of monomers g;
with ¢ € 1...N. The potential energy of the molecule
has two components: the conformation-dependent energy
U(q) and the confining (springs) potential kW (q) where
k is a large parameter describing the spring stiffness.
Note that k& here would correspond to the square root
of a harmonic spring constant. The probability density
pi of the equilibrium distribution of the system configu-
ration with respect to the Lebesgue measure dq is given
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FIG. 1. A flexible polymer with N degrees of freedom is
modelled as beads connected with springs. Conformations
of the polymer are described by a vector q. The potential
energy of the confining springs, k*W(q), attains a minimum
on a submanifold M. We define an orthonormal system of
coordinates on a compact neighbourhood of M, enclosed by
the red solid line, by introducing soft degrees of freedom r on
M and hard degrees of freedom s, which are normal to M
and correspond to the confining springs. The hard degrees of
freedom will be integrated out to find the limiting distribution
for stiff springs.

by the Boltzmann distribution

pe=N(k)exp{-B[U(q) + *W(q)]}.  (3)
J

with an appropriate normalising function N (k). Suppose
now that the spring potential is non-negative, W(q) > 0,
and attains a minimum for a configuration lying on a
smooth submanifold M of dimension M < N, so that
W(q) =0 < q € M. To determine the weak limit
of pg, we consider integrals Iy, for a compactly supported
smooth test function ¢(q) given by

I = / pr(@)6(@)dq. (4)

Since M is smooth, we can use the tubular embed-
ding theorem to define new orthonormal coordinates
qg— (r,s) = (r1,r2,...,7a,81,82,...) in the vicinity
of M, where ¢ € M <= s = 0. In other words, co-
ordinates r; represent the soft degrees of freedom and s;
represent the hard directions. Since the new coordinates
are orthonormal we know that the determinant of the
transformation (g;) — (r;,s;) equals 1. Additionally, I},
is finite by compactness of the support of ¢ and conti-
nuity of pg, so by Fubini’s theorem we can replace the
volume integral by an iterated one. Then, I} is given by

I, = //pk(r,s)(b(r,s)dsdr (5)

We proceed by expanding pi in a Taylor series with re-
spect to s = (s1, 82,...) to second order as W(r,s) =
sTH(r)s, where H(r) is the Hessian of W, evaluated at
s = 0. Note that the linear term vanishes, since at s =0
the potential W attains a minimum. We can thus write

I = // N (k) exp {—ﬂU(r, s) — Bk? [STH(T)S + O(HSHQ” } é(r, s)dsdr (©)

We now make a substitution ks = ¢ to arrive at

I = // N (k) exp {—5U(r, k) - B [tTH(r)t + |t||20(k2||t|2)} } o(r, k™ t)dtdr (7)

k

k=22

Whenever W increases sufficiently fast with the distance from the constraining manifold, we may take a limit inside
the integral by the dominated convergence theorem to arrive at the limiting value I = limy_, , I}, given by

I= / / <kli_>ngo N]ik)) exp [—BU(r,0) — Bt H(r)t] ¢(r,0)dtdr (8)

and, since H is full rank, perform the integral over ¢ to
arrive at

I=1 / M) Y2 exp [ BU(r, 0)] 6(r, 0)dr  (9)

(

with the constant
N(k)\/(2m)N-M
i )
being independent of the soft coordinates.

L = lim

k—o0



In a particular physical setting, finding the orthonor-
mal coordinates (7, s) may be prohibitively difficult, but
we can relax this strict requirement by considering an-
other parametrisation w such that ¢ = ¢*(w), and that
still separates soft from hard degrees of freedom by

qG./\/l<:>Vi>M:wi:§i, (11)

for a set of constants &. This parametrisation is not
necessarily orthonormal. For convenience, we define a
map ¢ : RM — RN such that ¢(wi,ws,...,wy) =
C*(wl, w2, ..., Whr, §M+17 §M+27 ce ,gN) which takes val-
ues of the soft coordinates and returns points on M. We
now change variables under the integral from r to w to
arrive at

s
_1 / TATECRG [—BU(C)] $(¢)dws ... dwnr, (12)

where J is the Jacobian of {(w). Note that ¢ : RM —
R¥, so the Jacobian is not a square matrix. We can
express the above using the Dirac-d distributions. Taking

N
S(w —¢) = H S(w; — &), (13)

i=M+1

the limiting integral is recast as

e &P (=AU) ¢(¢T (w))d(w' — &) dw

(14)
for an appropriate constant L, and since ¢ is arbitrary
we arrive at poo = limg_.oo P such that

32

o = L7 e [0V (E ()] -8 o, (15)

in the weak sense. We have thus arrived at the central
result of this manuscript.

The limiting distribution comprises two important fac-
tors. First, the metric term [J7J| describing the pro-
jection of the surface element of M onto RM in the
parametrisation ¢ (w); This term was correctly computed
by Fixman [5]. Second, the shape term |H|, also called
the zero-point energy in the quantum-mechanical setting,
which was often missing in the derivations.

A. Computation of the shape term

A careful choice of parametrisation allows for compu-
tation of the metric term with relative ease. However,
the Hessian term |H| may be more difficult to compute.
In this Section, we present a feasible approach to its com-
putation.

Let B be the full Hessian of W at a point g,

32
b 0q;0q;

Wi(q). (16)

Since the eigenvectors of B are orthogonal and zero eigen-
vectors lie inside the tangent space T.M, we can compute
[H| from the product of the non-zero eigenvalues of B. We
can use the knowledge of the tangent space of M to help
us compute the eigenvalues of B. If our confining func-
tion is of the form W(g) = Y, P?, we can find vectors
that lie in the normal space M= [15, proposition 8.15]
by computing

Aj = aiqui (17)
The vectors {Aj1,...,A; Ny} are not pairwise orthog-
onal but are orthogonal to M, and thus can form a basis
of the normal space at gq. We can write the eigenvalue
problem using an arbitrary vector b; as

AAib; = By Ajb;. (18)

This is a system of N equations with N — M unknowns.
We can eliminate redundant equations by contracting
each side with A;; to finally get

MATA)b = (ATBA)b (19)

and thus the product of eigenvalues in this problem is
simply

_ABA

= ATAl (20)

Lo
We see that there are two terms in this expression. The
denominator |A” A| measures the angles between the gra-
dients of the constraining functions, while the numerator
|ATBA| measures the shape and strength of the confining
field in these directions.

IV. CALCULATION FOR THE TRIMER
PROBLEM

In the aforementioned case of a trimer, depicted in
Fig. 2(a), we have 3 beads located at 4,7, and 7. with
bond extensions P,, P. given by

P, = |ra—mp] — o (21)
Pc = ‘Tc_rb| _ZOa (22)

lop being the equilibrium bond length, and the confining
potential given by

W(q) = P? + P2 (23)

We now pick the parametrisation ¢ = ¢*(w) with w =
(2,9, 2,0, B,7,,1q,1.]T. Cartesian coordinates (x,v, )
describe the position of the central bead (b), (a, 8,7) are
the Euler angles that encode the direction of bead a seen
from b, and 1) is the bond angle between the edges ab and
bc. The positions of beads are thus given by

Te = [I,y,Z]T + laEaB'y[lvoao]Ta (24)
ry = [JJ, Y, z]T? (25)
re = [2,y,2]" +1:Eapy[cosi,sing, 07, (26)
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FIG. 2. (a) Parametrisation used for the trimer uses the position of the central particle (b), bond angle ¢ and bond lengths
lo and I, with identical equilibrium spring lengths lo. Rigid-body rotation around the particle b is omitted for clarity. (b)
Motion along the symmetric (top) and antisymmetric eigenvectors of the hessian H of the harmonic confinement function. Note
that the central bead must move for the overall motion to be orthogonal to the constraining manifold M. (c¢) Equilibrium
probability density function (PDF) for the bond angle ¢ from the Langevin numerical simulation. Solid line is the theoretical

prediction of Eq. (32).

We defined the rotation matrix E, g in terms of the Euler
angles in the Appendix. In addition, we note that P, =
la —lp and P. = 1. —lg. We compute the metric term as
1
= §l8 sin? Bsin? 1 (7 — cos 21) , (27)
from the matrix J listed in the Appendix. Next, we com-
pute the shape term using

Tr 2 cosy
AA_LOW 2}, (28)
T 194 cos2y 8cosy
A'BA = { 8cos® 9+ cos2y|’ (29)
thus finding
|ATBA|
We therefore have
JTJ 1/2 l4 ) .
||Hl|/2 = 50 sin B sin 1), (31)
and for the final distribution, we find
dpeo = Nsinfsiney dz dydzdadf dydy, (32)

where NN is a normalisation constant. Therefore, the
marginal density of the bond angle is proportional to
siny as expected. However, this is simply not the case
of a uniform distribution—that distribution corresponds
to |H| = const. This can be examined in greater de-
tail by looking at the eigenvectors of H, visualised in
Fig. 2(b). There are two eigenvectors which correspond
to symmetric and antisymmetric motion of the terminal

beads. Counterintuitively, the vectors in M+ change the
orientation of at least one bond when the bond length
changes.

The simplification lies in the fortuitous cancellation of
the (7—cos 2¢)) term, rather than its absence. This is best
highlighted by an example where no such cancellation
occurs, which we present in the next Section.

We additionally corroborate this result with a Brow-
nian Dynamics simulation in Python using the package
pychastic [16]. Choosing kgT as the energy scale, [y as
the distance scale and 12/ D, as the timescale, with D be-
ing the diffusion coeflicient, the corresponding stochastic
BD equation takes the form

dr; = =V(U + E*W)dt + V2 dB;, (33)
with B; denoting the standard Wiener process. We have
performed ng,; = 4000 simulations with k£ = 35 (in units
of kpT/lp) for a time up to tyq, = 10 with time step ot =
10~°. The simulation results in Fig. 2(c) complement the
prediction of Eq. (32). We use the same code for a less
studied example of a tetramer in the following.

V. CYCLIC TETRAMER

A more complex, and yet fully tractable analytically, is
the case of a cyclic tetramer, a molecule of 4 beads joined
into a quadrilateral. For the sake of brevity, we discuss
the dynamics in two dimensions. The calculation in 3D is
completely analogous but involves much longer interme-
diate expressions due to the additional rotational degrees
of freedom and a dihedral angle. We pick the parametri-
sation where the 4 beads are located at r,, 7y, 7. and 74,
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FIG. 3. (a) The shape of a cyclic tetramer is specified with the bead b taken as reference point. The directions of sections ab
and bc span a rhombus, which is used to define the position of bead d. (b) Equilibrium probability density function (PDF) for
the bond angle 1 from the numerical simulation. Solid line is the theoretical prediction of Eq. (47).

with their positions given by

ro = [2,y]" +1.Ea[1,0]", (34)
ry = [z,9]7, (35)
re = [z,y]7 +1.Eqfcos,sine] T, (36)
rqg = [z,9]7 + Eq (1 +6)vs + ev.), (37)

(38)

where E,, is a rotation matrix defined in the Appendix,
and the vectors vs ¢, written as

[l +1.costp,l.siny]T

Vs = 9 ) (39)
— — i T
v, = [la —lccos 12#, sin ] ’ (40)

point along the diagonals of the rhombus spanned by the
edges ab and be. Finally, € and ¢ encode the position of
the bead located at ry. The four constraining surfaces
are given by

P, = |rg—mp] — o (41)
Py = |ry—rcl—1lo (42)
P. = |re—7ral —lo (43)
Pd = |rd — ’I“a| — lo (44)

and M is given by I, =1. =1y, =1,e =0.

The metric term is simply constant with [J7J| = 1612,
while the shape term is non-trivial. Denoting cos ) = cy,
for brevity, the shape factors are given by

2 Cyp 0 —cy
T _ Cofy 2 —Cy 0
AA =10 2 e | (45)
—Cw 0 Cw 2
& +2 2y —c
2¢y, Ci +2 —2cy —ci
—ci —2cy ci +2  2cy
—2cy —cfp 2¢cy 0121) + 2

—261/,

ATBA = 4 , (46)

yielding [H| = 256 sin?1). As a result, we get that

1
Qpoc o ), (47)

invy

which is not non-normalizable near 0 and 7. Physically,
as we approach the stiff spring limit, the tetramer spends
more and more time in the folded state, and unless some
repulsive potential is added, the molecule in the stiff
spring limit looks predominantly like a trimer, alternat-
ing between beads (a,c) and (b, d) coinciding in space.

This surprising result is also seen in the numerical sim-
ulation. In this case, a strong repulsive potential was
added to prevent bead overlaps for distances less than
0.05lp. The final bond angle distribution shown in Fig-
ure 3(b) coincides well with 0.15/ sin¢).

VI. CONCLUSIONS

In this work, we have provided a procedure by which
one can find the equilibrium probability probability dis-
tribution function of the configurations of a bead-spring
model of a polymer in the overdamped regime in the limit
of infinite stiffness of the bonds. In particular, we have
demonstrated that the shape of the confining spring po-
tential persists in the limiting distribution. By rephras-
ing the problem as a mathematically rigorous limit, we
have shown that the classical expression given by Fix-
man [5], later reproduced in numerous works and books,
for example in Ref. [3], is missing a critical term describ-
ing the shape of the confining potential, |H].

This shows that the reasoning presented by Frenkel
& Smit [3] cannot be universally applied. First, the
dynamics and the distribution of a polymer connected
with (stiff or soft) springs is independent of the mass of
the monomers in the overdamped regime, and thus the
limiting distribution cannot depend on the mass of the



monomers. Second, putting aside the question of exis-
tence of the rigid rod distribution (or the lack thereof),
the supposition that the stiff spring limit should always
be the same, regardless of the details of the confining po-
tential is clearly not true, and harmonic potentials will
lead to a different outcome than springs that realise uni-
form confinement around the constraining manifold, as
previously remarked, e.g., by van Kampen & Lodder [12],
although without a general mathematical formulation.
The difference can be arbitrarily large, as shown in the
tetramer example. Frenkel & Smit remark in their book
that for the bond length constraints of the type most of-
ten used in Molecular Dynamics simulations, the effect
of hard constraints on the distribution functions seems
to be relatively small [3, Chapter 15.1.1]. We believe this
statement to be misleading. In the discussed case of the
trimer molecule, the effect might indeed be small, but we
have shown that for the tetramer system, which is still
a relatively simple setup, the effect is pronounced. To
provide a practical insight, we propose a straightforward
technique for the analysis of the limiting distributions
once the confining potential is specified in detail.
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Appendix A: Auxiliary matrices used in calculations

Using the notation s, = sin «, ¢, = cosa we can com-
pactly express the matrices used. The 2D rotation matrix

is given by
_|ea —Sa
-] "
The 3D rotation matrix is given by
CaCBCy — SaSy —CaCBSy — CySa  CaSp
Eogy = [C8CySa +CasSy  CaCy —C8SaSy  SaSs
—CyS8p SBSy (6]
(A2)

For our paremetrisation of the trimer, the Jacobian J
can be expressed as a block matrix with 3 x 4 blocks Q;

1 Q

J=11 Q

1 Qs

Writing v + ¢ = 6 for brevity, the blocks Q; are given by

(A3)

—8aCBCy — CaSy CaCBCy — 5454 0

Ql =1 —CaS3Cy —5058Cy —CBCy
U 0 —500y = CaCBSy CaCy— SaCaSy  SpSy
0
(A4)
000
T 000
000
—54C3CH — Ca50 CaCBCH — 5456 0
Qg‘ _ l() —CaSBCY —SaSpCh —CpBCy

—S8aCh — CaCpSH CaCh — SalCpSH SpSH
—SaCh — CaCpSH CaCh — SalCpSH SpSH

(A6)
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Conclusions

The objectives of this Thesis were twofold: (i) to identify the theoretical approaches capable of mod-
elling experimentally relevant macromolecules, and (ii) to develop a modular system capable of accommo-
dating various coarse-graining approximations and experimental techniques. The results demonstrate the
feasibility of such a unified approach and its ability to predict macromolecular diffusion coefficients with
an accuracy that enables comparison with experiments. Throughout the preparation of this PhD Thesis,
we examined numerous macromolecular scenarios, encompassing a wide range of elasticity, from near-
rigid DNA fragments and minicircles, through elastic loops subject to an external force and molecules of
intermediate elasticity in heat bath, to highly elastic linkers in bead models of Intrinsically Disordered
Proteins (IDPs), towards in a general treatment of molecules that combines both extremes in the study
of the stiff springs limit. The study yielded several results, the most important of which are the following;:

1. Scaling-based analysis of the approach of rod-like molecules to a nanopore, incorporating hydro-
dynamic interactions with the wall and Brownian reorientations [1].

2. Linear stability analysis and numerical investigation of the buckling instability induced by hydro-
dynamic drag during the sedimentation of flexible loops, modelled with Euler-Bernoulli elasticity
and resistive force theory [2].

3. The development of a coarse-grained modeling approach to computing the conformations of super-
coiled DNA minicircles by minimization of their elastic energy under for different values of linking
number [3].

4. Computation of hydrodynamic radii, diffusion coefficients and sedimentation coefficients for the
computed models of DNA minicricle topoisomers [3].

5. Development and implementation of a Python package integrating stochastic differential equations
of Brownian Dynamics [4].

6. Development of the Globule Linker Model for expedited sampling of IDP conformations, combined
with the Minimum Dissipation Approximation for computing their hydrodynamic size [5].

7. Analytic determination of the limit of the equilibirum distributions for a general elastic macro-
molecule with stiff and soft degrees of freedom [6].

The key practical achievements of this Thesis can be summarised as follows:

e Successful prediction of hydrodynamic radii for DNA minicircles at different degrees of supercoiling
and given values of linking number.

e Successful prediction of hydrodynamic radii for 38 different intrinsically disordered proteins—the
largest benchmark set to date.

e Provision of user-friendly, well-documented, and publicly available Python implementations for all
proposed methods (without compromising the prediction speed).

Consequently, the presented methods can serve as a numerically feasible null-hypothesis model in
future investigations by various experimental groups, with significant deviations from its predictions
indicating potential new physical phenomena. Moreover, we anticipate that the soft matter physics
community will leverage the software developed in this Thesis in various ways, either as-is for predicting
diffusion coefficients of similar molecules or by extending its capabilities through its modular design and
utilizing its components independently.
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Other research activity

e Radost Waszkiewicz, John Burnham Shaw, Maciej Lisicki, and Piotr Szymczak. “Goldilocks fluc-
tuations: dynamic constraints on loop formation in scale-free transport networks”. In: Physical
Review Letters (2024). DOI: 10.1103/PhysRevLett.132.137401

ABSTRACT: Adaptive transport networks are known to contain loops when subject to hydrody-
namic fluctuations. However, fluctuations are no guarantee that a loop will form, as shown by
loop-free networks driven by oscillating flows. We provide a complete stability analysis of the dy-
namical behaviour of any loop formed by fluctuating flows. We find a threshold for loop stability
that involves an interplay of geometric constraints and hydrodynamic forcing mapped to constant
and fluctuating components. Loops require fluctuation in the relative size of the flux between nodes,
not just a temporal variation in the flux at a given node. Hence, there is both a minimum and a
maximum amount of fluctuation relative to the constant-flux component where loops are supported.

e Jan Turczynowicz, Radost Waszkiewicz, and Fukasz Gtadczuk. “Preventing sinking of a disk
by leveraging the Parametric Hydraulic Jump phenomenon”. In: arXiv preprint (2023). DOI:
10.48550/arXiv.2312.13099

ABSTRACT: Although it is commonly expected that a metal disk placed on the surface of wa-
ter will sink, our investigation has revealed a surprising phenomenon: a vertical jet directed onto
the disk from above can allow it to remain afloat. This result defies intuition, as one would as-
sume that the force of the jet’s impact would cause the disk to sink.We have discovered that
this phenomenon occurs as a result of water displacement from the top of the disk caused by the
impacting jet, operating through a mechanism similar to a classical hydraulic jump. This dis-
placement generates a difference in hydrostatic pressures, resulting in an upward buoyancy force
capable of balancing the force of gravity. In contrast to the classical case, here the jump ra-
dius is fixed by the geometric parameters of a disk, a phenomenon we refer to as the parametric
hydraulic jump. To further explore this effect, we have presented a theoretical model based on
scaling laws, which provides the conditions required for the disk to float. The dimensionless scaling
constant’s value was determined through an independent experiment. Finally, we conducted ex-
periments on the disk’s floating and sinking, which showed a good match with the proposed theory.

e Radost Waszkiewicz and Honorata Bogusz. “The Impact of Parenthood on Labour Market Out-
comes of Women and Men in Poland”. In: arXiv preprint (2024). DOI: 10.48550/arXiv.2306.
12924

ABSTRACT: We examine the gender gap in income in Poland in relation to parenthood status,
employing the placebo event history method adapted to low-resolution data (Polish Gener-
ations and Gender Survey). Our analysis reveals anticipatory behavior in both women and
men who expect to become parents. We observe a decrease of approximately 20 percent in
mothers’ income post-birth. In contrast, the income of fathers surpasses that of non-fathers
both pre- and post-birth, suggesting that the fatherhood child premium may be primarily
driven by selection. We note an increase (decrease) in hours worked for fathers (mothers).
Finally, we compare the gender gaps in income and wages between women and men in the
sample with those in a counterfactual scenario where the entire population is childless. Our
findings indicate no statistically significant gender gaps in the counterfactual scenario, lead-
ing us to conclude that parenthood drives the gender gaps in income and wages in Poland.
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