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(Received 16 July 2008; revised manuscript received 30 October 2010; published 6 March 2013)

We demonstrate that arbitrarily weak magnetic field may cause violent instability of an anticyclonic,

recirculating flow with uniform mean angular velocity. This magnetohydrodynamic instability would

trigger turbulence in the cores of vortices where neither centrifugal, exchange instability, nor magneto-

rotational instability is effective. In the accretion disk vortices this can be an important mechanism of

enhanced outward transport of angular momentum.
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Externally imposed magnetic field is usually a factor
that stabilizes the magnetohydrodynamic flows (e.g., the
Taylor-Couette flow between solid cylinders [1,2]). A sur-
prising counterexample is the magnetorotational instability
(MRI) discovered by Velikhov [3] and then elucidated by
Chandrasekhar [4] followed by Balbus and Hawley [5].
Since its discovery it has attracted great interest as a
possible mechanism of turbulence enhancement in the
accretion disks that may be responsible for the efficient
transport of angular momentum inferred from observations
[6]. Without magnetic field recirculating flows are subject
to centrifugal (exchange) instability when angular momen-
tum is outwardly decreasing [for power-law azimuthal
velocity u�ðrÞ � rnþ1 it means n <�2], so Keplerian

disks [u�ðrÞ � r�1=2] are not affected. However, with the
magnetic field present, no matter how weak, the class of
unstable velocity profiles is much extended. The MRI acts
in flows with outwardly decreasing angular velocity
(n < 0) and those include the Keplerian profile but still
exclude flows with linear profile [u�ðrÞ � rþ1], i.e., flows
with uniform angular velocity (vorticity) which is approxi-
mately the case in the cores of vortices.

We demonstrate that a wide class of uniform vorticity
flows, such as cores of anticyclonic vortices in a rotating
frame, are also subject to a violent instability, provided
they are nonaxisymmetric. This instability differs from the
MRI. Unlike the MRI it affects the linear profile flows but,
also unlike the MRI, depends on the elliptical deformation
of streamlines. However, it has one important character-
istics of the MRI. In the weak-field limit its onset and its
growth rate are independent of the magnetic field strength,
so even a seed field is a trigger of the powerful flow
instability, namely, elliptical instability [7,8]. We show
that the dominant elliptical instability modes (horizontal
modes), which in anticyclonic vortices would otherwise be
stable, are triggered by the magnetic field.

The physical situation we have described, i.e., elliptical
vortex core with background rotation and axial magnetic

field, is likely to occur in at least some types of accretion
disks. Vertical field in a disk is believed to be a fairly
common occurrence recently confirmed by observations
[9]. Observed large scale asymmetries in the distribution of
dust [10] are attributed to vortices generated, possibly, by
the Rossby wave instability acting on the scale of the entire
disk [11]. Earlier simulations suggested vortex generation
by the disruptions of the zonal shear flow (‘‘cat’s eyes’’)
[12]. When the zonal flow has outward-decreasing angular
velocity, the emerging vortices, obviously, will be anti-
cyclonic, so they will be affected by this instability.
Numerical simulations indeed showed the evidence of
such structures being unstable with respect to the vertically
propagating perturbations [13].
Stability of elliptical flows is of great interest in the

context of planetary interiors. For a comprehensive study
of the effect of precession, see Refs. [14,15]. Those works
were mainly concerned with the asymptotic analysis in the
limit of small ellipticity (Ref. [15] also found the growth
rates of the horizontal modes in their configuration).
In this Letter, motivated by the significance of the

magnetic instabilities for the dynamics of accretion disks,
we study the conditions under which the magnetic field
triggers the instability in an elliptic vortex subject to
background rotation. In Ref. [16], horizontal modes were
computed numerically. Here we analytically derive the
dispersion relation, provide a complete stability map in
the parameter space, and highlight physical implications.
We write the equations of ideal magnetohydrodynamics

in a frame of reference steadily rotating with angular
velocity � ¼ �êz,

@u

@t
þ ðu �rÞu¼���1rP� 2��uþ��1j�B; (1a)

@B

@t
þ ðu �rÞB¼ ðB �rÞu; (1b)

r �u¼ 0; r �B¼ 0; j¼��1r�B; (1c)

PRL 110, 104503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 MARCH 2013

0031-9007=13=110(10)=104503(5) 104503-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.104503


where � is fluid density, � its permeability and Pðx; tÞ is
the pressure field including the potential of the centrifugal
force.

We consider linear stability of a vortical flow with
elliptical streamlines [8] and with uniform magnetic field
aligned with the axis of rotation,

U 0 ¼ �½�ð1þ �Þy; ð1� �Þx; 0�; B0 ¼ B0êz; (2)

where �1< �< 1 is a measure of eccentricity.
The characteristic scales of time, velocity, and length in

this basic flow are given by

��1; uA ¼ B0ð��Þ�1=2; uA�
�1; (3)

where 2� is the (uniform) relative vorticity and uA is the
Alfvén speed. The magnitude of the background rotation is
characterised by the Rossby number,

Ro ¼ �=�: (4)

When Ro is positive (negative) the vortex is called cyclonic
(anticyclonic). The (nondimensional) angular frequency of

the vortex is ! ¼ ð1� �2Þ1=2 [17] (alternative scaling
could be used instead with turnover time taken for a unit).

Linearizing the dimensionless form of (1) we obtain
equations for infinitesimal perturbations u0, B0, P0, These
equations admit solutions in the form of inertial waves,
also known as Kelvin modes (as in the rapid distortion
theory [18–20]),

½u0;B0; P0� ¼ ½vðtÞ;bðtÞ; pðtÞ�eikðtÞ�x; (5)

The components in the (x, y) plane (called the
‘‘horizontal plane’’ although gravity is not taken into
account in this problem) are decoupled from the vertical
components. We shall now focus on a special class of
disturbances, called horizontal perturbations, in which
the vertical components identically vanish,

kx ¼ ky ¼ 0; bz ¼ vz ¼ 0; jkj ¼ kz ¼ k: (6)

Then the amplitudes of the Kelvin modes satisfy the
ordinary differential equations

_v ¼ �ðÂþ 2Ro�1ÔÞvþ ikb; _b ¼ Âbþ ikv; (7)

where Â is the velocity gradient and Ô is the rotation
matrix [16]. If we write the horizontal components as a
single four-component vector, s ¼ ðvx; vy; bx; byÞ, then

Eq. (7) can be written as _s ¼ Ŝ0s. The matrix Ŝ0 has four
eigenvalues,

��þ ¼ �ð�2 � �2þÞ1=2; ��� ¼ �ð�2 � �2�Þ1=2; (8a)

��ðk;RoÞ ¼ Ro�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðRo�1 þ 1Þ2
q

: (8b)

Since �1< �< 1, one can easily verify that Reð���Þ ¼ 0
and Reð��þÞ � 0. Hence, the existence of an unstable
horizontal mode is determined by Reð�þþÞ. The condition
for horizontal instability (HI) is j�þj< j�j. The vortex
with given (Ro, �) is unstable if this is satisfied for at least
one value of k. The stability diagram is shown in Fig. 1.
The maximum growth rate �m is

�m ¼ maxk Re

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � �2þ
q

�

; (9)

and the corresponding wave number k ¼ km is

km ¼
(

0; Ro<�2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1� 2Ro�1
p

; �2 � Ro< 0:
: (10)

Figure 2(a) shows �m, given by Eq. (9), as a function of
(Ro, �). Solid lines are contours of �m while dashed lines
are contours of km given by Eq. (10).
In order to assess the role played by the magnetic field,

in Fig. 2(b) we plot a similar diagram for the situation
when the magnetic field is absent and the problem is
reduced to that of the horizontal modes of elliptical insta-
bility with the Coriolis force, which had been studied
before [17,21–25]. All Kelvin modes, regardless of their
wavelength, now have the same growth rate �0ðRo; �Þ
(solid lines), which is an eigenvalue of the matrix Ŝ0ðkÞ
in the limit k ! 0,

�0 ¼ Re

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � ð1þ 2Ro�1Þ2
q

�

: (11)

The reason for this degeneracy is that the unbounded flow
(2) has no intrinsic length scale. In the absence of magnetic
field no unit of length is selected in any way [magnetic field
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FIG. 1. Stability diagram of the HI modes in the (Ro, k) space.
Level contours of j�þj are shown. Dark gray area and the
interval (k ¼ 0, �1�Ro�0) mark the region where j�þj�1
(stable for all �). The instability condition (j�þj< j�j) is sat-
isfied inside regions bordered by j�þj ¼ j�j contours (light gray
band is an example for j�j ¼ 0:3). Maximum growth rate �m is
marked with broken lines, dashed when Ro>�2 (�þ ¼ 0
contour), and dotted when Ro � �2. Bars show how to read
when the vortex of given � is unstable. Vertical bars mark the
ranges of unstable k for ðRo; j�jÞ ¼ ð�3:5; 0:6Þ (left) and (� 0:7,
0.3) (right). Horizontal bars show ranges of unstable Ro for
ðk; j�jÞ ¼ ð2; 0:6Þ (upper) and (� 0:75, 0.3) (lower).
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introduces the length uA�
�1, cf. Eq. (3), and then the

wavelength is measured in such units].
Important conclusions can now be drawn from Fig. 2.
(i) The instability of horizontal modes is caused by an

arbitrarily weak magnetic field which, in the analy-
sis, becomes anOð1Þ quantity as soon as it is present.
When Ro>�1, it happens for any �, and when
�2< Ro<�1, it happens provided � is not too
large.

(ii) When the field is present, weak anticyclonic vorti-
ces (� 2< Ro< 0) are always unstable to horizon-
tal modes (provided � � 0). The more elliptical
they are, the more violent the instability (�m ¼
j�j). This is a short-wave instability with the wave-
length decreasing to zero when Ro ! 0� (in a dis-
sipative fluid there would be a cutoff wavelength
determined by viscosity [26] or by resistivity).

The physical explanation for the first conclusion is as
follows. The nature of the B ! 0 limit is such that the
maximal growth rate is independent of B. As B decreases,
so does the wavelength of the fastest growing mode, but the
growth rate remains the same for any B � 0. The simple
reason is that the growth rate scales with kuA. However
small the Alfvén velocity (or B), sufficiently short wave
will grow at finite rate. However, these modes do not exist
when B ¼ 0, so the B ! 0 limit is, in fact, singular
(discontinuous).
Let us now consider the effect of finite-magnitude field,

which cannot be regarded as weak. Since in an unbounded
system the field magnitude can always be scaled out, as it
enters the calculation only through the definition of units
(3), there is then no distinction between weak and strong
field (the only distinction is between ‘‘field present’’ and
‘‘field absent’’). However, in a real system of finite size L
[e.g., the depth of a planetary liquid core or, in our case, the
thickness of the disk), the magnitude of the field can be
characterized by the ratio of the two length scales, BL ¼
ðuA��1Þ=L�. We can then consider the effect of finite BL

and see that the modes destabilized by the weak field
(BL 	 1) gradually become stable again when the field
is strong (BL * 1). The reason is that in a bounded system
there is an upper limit on the wavelength as a mode must
‘‘fit,’’ i.e., k�1ðuA��1Þ & L or k * BL. Calculating the
maximum growth rate [see Eq. (9)], we now have to max-
imize over a restricted range of wave numbers, k > BL, and
thus obtain a smaller value �L < �m. The value of �L, as a
function of Ro and �, is plotted in Fig. 3. Comparing
Figs. 2(a) and 3 shows the effect of finite BL. When the
field is (moderately) strong, BL ¼ 1:2, the stable region
(dark gray) is much larger than in the weak-field (or large
L) limit, in agreement with the intuition that (strong) field
should be a stabilizing factor. For lower (more negative)
values of Ro (i.e., Ro<�4=B2

L), the finite BL effect, in
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FIG. 2. Destabilizing effect of weak magnetic field. Shown are
the level contours of the horizontal mode (HI) growth rate. Dark
gray is the stable region in the (Ro, �) parameter space.
(a) Magnetic field present: Level contours of �m, given by
Eq. (9) (solid lines), and of the wave number of the fastest
growing mode km, given by Eq. (10) (dashed lines). Light gray is
the region where km ¼ 0; i.e., the fastest growing mode does not
depend on z. For �2< Ro< 0 the fastest growing mode has
finite wavelength (km�0) and km!1 as Ro!0�. (b) Magnetic
field absent: Level contours of �0 given by Eq. (11) which is
independent of k (all modes grow at equal rate). Dark gray stable
region for Ro>�2 disappears when the field is present.
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FIG. 3. Stability diagram for the HI modes in a bounded
system with moderately strong magnetic field, BL ¼ 1:2.
Plotted are level contours of the maximum growth rate �L (solid
lines) and of the wave number of the fastest growing mode
(dashed lines). Comparison with Fig. 2(a) indicates the stabiliz-
ing effect of strong magnetic field.
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fact, eliminates all unstable HI modes. Importantly, for
Ro>�2=ð1þ B2

LÞ the modes have short wavelength and
therefore remain unaffected.

We should stress that the notion of weak or strong field is
meaningful only when some characteristic length scale L,
independent of the field magnitude, can be identified in the
system. The distance traveled by the Alfvén waves during
one flow time unit (3) is then compared with that scale.
Hence, the weak-field limit is equivalent to the large-L
limit and vice versa, strong field’’ means the same as
‘‘compact system.’’

We have shown that weak field acting on elliptical
vortices (in a rotating frame) triggers some particular
modes of instability (HI). The importance of this mecha-
nism depends on whether these modes really dominate and
thus determine the fate of the vortices. For Ro in the range
�2< Ro<�2=3 and the field absent, there are no un-
stable linear modes of any kind [25], so the presence of the
field really makes critical difference. Outside this range of
Ro unstable resonant modes (not HI) do exist even in the
absence of the magnetic field (see Ref. [27] for� ¼ 0 and
[16] for � � 0). Still, the field triggers the vigorous HI
modes which can often be shown to dominate, i.e., to have
faster growth rates, than the resonant modes. This can be
shown analytically in the limit � ! 0 [16] and for � ! 1.
Preliminary computations show this to be generally true for
�2=3< Ro< 0, so we may expect that weak field really
would decide the fate of the vortices in the right-hand gray
patch in Fig. 2(b) and promote turbulent enhancement in
them.

Astrophysical relevance of the HI modes and the results
described above depends on whether (a) vortices are likely
to have ðRo; �Þ in the right-hand gray area of Fig. 2, and
(b) the HI growth time scale is comparable with the vortex
‘‘life expectancy’’ (or shorter). When the vortex is created
in a disk (with, say, �� rn), we may reasonably assume
that its vorticity 2� (calculated in the shearing box ap-
proximation [28,29], so relative to the frame comoving
around the disk with the vortex center) is of the order of
local ambient vorticity (i.e., shear) in the disk, S ¼
�r@�=@r. Suppose 2� ¼ �2S (vortex must be strong
enough or shear will tear it apart). Then we obtain Ro ¼
n, so for a Keplerian disk we have Ro ¼ �3=2 and for
galactic disk Ro ¼ �1, both values within the interesting
range.

The value of � can be estimated from the Kida model of

the vortex patch in a shear flow [30], which gives Ro ¼
nð1þ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

Þ�1. Hence, in the range �2< Ro<
�2=3, most vulnerable to the HI modes, we obtain 0:6<
�< 1 (Keplerian disk) and 0:4< �< 0:9 (galactic disk).
Vortices vulnerable to unstable HI modes are therefore
likely.

In the range �2< Ro<�2=3 the (dimensional) HI
growth rate is � ¼ �� [cf. Fig. 2(a)]. The (dimensional)

angular frequency of the vortex is ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

. Hence,

�=!> 0:7 for Keplerian disks and 0:4<�=!< 2 for
galactic disks. In both cases the HI is clearly fast enough
to affect even the short-lived vortices that survive only a
few turn-over times.
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