A three-dimensional map of the Milky Way using classical Cepheid variable stars

Dorota Skowron

Astronomical Observatory University of Warsaw

THE MILKY WAY

Credit: K. Ulaczyk / J. Skowron / OGLE

M31

NGC 2683

NGC 1566

NGC 4414

Credit: NASA / Hubble Telescope

NGC 3344

M81

M104

NGC 1232

NGC 1672

THE MILKY WAY

Bright young supergiants

Credit: wordlesstech.com

Bright young supergiants

Age:	< 400 Myrs
Mass:	4 - 20 M _☉
Luminosity:	10 ² - 10 ⁴ L _O
Pulsation period:	1 - 100 days

Stars pulsating radially

Why are they good for mapping our Galaxy?

Why are they good for mapping our Galaxy?

OBEY PERIOD-LUMINOSITY RELATION

→ allow for direct, model independent distance determination (standard candles)

PERIOD - LUMINOSITY RELATION

10

PERIOD - LUMINOSITY RELATION

11

 we then calculate absolute magnitude from P based on P-L relation:

$$M_{\lambda} = a_{\lambda} \log P + b_{\lambda}$$

• and get the distance:

$$d_{\lambda} = 10^{0.2} ((m_{\lambda} - A_{\lambda}) - M_{\lambda}) + 1$$
 [parsecs]

Why are they good for mapping our Galaxy?

OBEY PERIOD-LUMINOSITY RELATION

→ allow for direct, model independent distance determination (standard candles)

VERY BRIGHT

→ can be detected at extragalactic distances, and through obscuring interstellar gas and dust within our Galaxy

Why are they good for mapping our Galaxy?

OBEY PERIOD-LUMINOSITY RELATION

→ allow for direct, model independent distance determination (standard candles)

VERY BRIGHT

→ can be detected at extragalactic distances, and through obscuring interstellar gas and dust within our Galaxy

FAIRLY EASY TO SEPARATE FROM OTHER VARIABLES

→ given several years of observations and hundreds of data points

CLASSICAL CEPHEID LIGHT CURVES

Distinct shape for the given period (in optical bands)

15

Soszynski et al. 2008

A_{λ} - the biggest uncertainty

A_{λ} - the biggest uncertainty

A_{λ} - the biggest uncertainty

 using mid-infrared data from space (Spitzer, WISE) and mid-infrared P-L relations minimizes extinction

THE EXTINCTION CURVE

A_{λ} - the biggest uncertainty

- using mid-infrared data from space (Spitzer, WISE) and mid-infrared P-L relations minimizes extinction
- available extinction maps provide distance-dependent extinction values in the infrared bands

distance and extinction are correlated → calculating distance is an iterative process

• calculate distance to each object separately for every available Spitzer and WISE band (\mathbf{d}_{λ} , $\lambda \in [W1...W4,S1...S4]$) (initially assuming no extinction)

- calculate distance to each object separately for every available Spitzer and WISE band (\mathbf{d}_{λ} , $\lambda \in [W1...W4,S1...S4]$) (initially assuming no extinction)
- calculate mean distance d as a weighted average of d_λ with 3- σ outliers rejection

- calculate distance to each object separately for every available Spitzer and WISE band (\mathbf{d}_{λ} , $\lambda \in [W1...W4,S1...S4]$) (initially assuming no extinction)
- calculate mean distance d as a weighted average of d_λ with 3- σ outliers rejection
- extract $\boldsymbol{A}_{\boldsymbol{\lambda}}$ from IR extinction map, for calculated distance \boldsymbol{d}

- calculate distance to each object separately for every available Spitzer and WISE band (\mathbf{d}_{λ} , $\lambda \in [W1...W4,S1...S4]$) (initially assuming no extinction)
- calculate mean distance d as a weighted average of d_λ with 3- σ outliers rejection
- extract $\boldsymbol{A}_{\boldsymbol{\lambda}}$ from IR extinction map, for calculated distance \boldsymbol{d}
- recalculate distances $\boldsymbol{d}_{\boldsymbol{\lambda}}$ and their mean: \boldsymbol{d}

distance and extinction are correlated → calculating distance is an iterative process

- calculate distance to each object separately for every available Spitzer and WISE band (\mathbf{d}_{λ} , $\lambda \in [W1...W4,S1...S4]$) (initially assuming no extinction)
- calculate mean distance d as a weighted average of d_λ with 3- σ outliers rejection
- extract $\boldsymbol{A}_{\boldsymbol{\lambda}}$ from IR extinction map, for calculated distance \boldsymbol{d}
- recalculate distances $\boldsymbol{d}_{\boldsymbol{\lambda}}$ and their mean: \boldsymbol{d}
- extract new value of ${f A}_{m \lambda}$

. . .

Credit: K. Ulaczyk / J. Skowron / OGLE

Credit: K. Ulaczyk / J. Skowron / OGLE

2222 cepheids with measured distances

Skowron et al. 2019

Skowron et al. 2019

Skowron et al. 2019

Credit: J. Skowron / OGLE

Credit: J. Skowron / OGLE

THE FLARING

Skowron et al. 2019

DISK SCALE HEIGHT

Skowron et al. 2019

THE MILKY WAY DISK IN NUMBERS

- warping starts at ~25,000 ly from the Galactic center
- stars in the outer disk are up to 4,500 ly away from the Galactic plane
- the disk thickness is not constant about 500 ly near the Sun and over 3,000 ly near the edges
- the Sun is displaced by ~50 ly from the plane

 $(1 \text{ pc} = 3.26 \text{ ly} = 31 \times 10^{15} \text{ m})$

PULSATION PERIODS

Skowron et al. 2019

period-age relation:

log(Age) = a - b logP

- → **older** cepheids pulsate **faster** than the younger
- → there might be an age distribution in the Galaxy

THE AGES

43

Skowron et al. 2019

Skowron et al. 2019

Credit: J. Skowron / OGLE

Credit: J. Skowron / OGLE

THANK YOU!

Credit: K. Ulaczyk / J. Skowron / OGLE