
Doctoral School of Exact and Natural Sciences � Physical Sciences

Examination

In the solutions, present the reasoning leading to your results. Write down the �nal results
of the calculations with accuracy of 3 or 2 signi�cant digits, after appropriate rounding, for
example 1.23456 · 10−19 ≈ 1.23 · 10−19 or 1.2 · 10−19.

Values of selected constants

speed of light in vacuum c ≈ 3.00 · 108 m/s

elementary charge e ≈ 1, 60 · 10−19 C

Coulomb constant ke ≈ 8.99 · 109 N·m2/C2

Planck constant h ≈ 6.63 · 10−34 Js ≈ 4.14 · 10−15 eVs

reduced Planck constant h̄ = h
2π ≈ 1.05 · 10−34 Js ≈ 6.58 · 10−16 eVs

gravitational constant G ≈ 6.67 · 10−11 Nm2/kg2

Avogadro constant NA ≈ 6.02 · 1023 mol−1

gas constant R ≈ 8.31 J / (mol·K)

Boltzmann constant kB ≈ 1.38 · 10−23 J/K≈ 8.62 · 10−5 eV/K

Rydberg constant R∞ ≈ 1.10 · 107 m−1

Rydberg unit of energy Ry ≈ 13.6 eV

electron mass me ≈ 9.11 · 10−31 kg ≈ 511 keV/c2

proton mass mp ≈ 1.67 · 10−27 kg ≈ 938 MeV/c2

uni�ed atomic mass unit u ≈ 931 MeV/c2

Problems 1�7 are easier. Submit solutions of only four of them.
For each of them you can get up to 6 points.
Problems 8-12 are more di�cult. Submit solutions of only two of them.
For each of these solutions you can get up to 8 points.
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Easier problems

Problem 1. Tunnel through the center of the Earth.

If it were possible to drill a tunnel through the center of the Earth (along its rotation axis)
and throw a stone into one end of this tunnel, how long would it take for the stone to travel
to the other end? Assume that the Earth is a perfect ball with a constant density, mass
MZ = 5.97 · 1024 kg and radius R = 6370 km. The gravitational constant
G = 6.67 · 10−11 m3/(kg·s2).

Problem 2. Particle in �elds ~E and ~B.
A particle of mass m and charge q moves in constant and uniform electric and magnetic �elds
given by ~E = −Eêy and ~B = Bêz. Initially, the particle is at the origin of the coordinate system
and its initial velocity is ~v0 = v0êx. Find how the position of the particle depends on time and
sketch the trajectory of the particle. The velocity of the particle is always much smaller than
the speed of light in vacuum, c.

Problem 3. Water �owing.

An ideal �uid, i.e. non-viscous and non-compressible, is �owing through a horizontally oriented
pipe. The �ow of the �uid is uniform, i.e. the velocity is the same everywhere. There are two
smaller, thin pipes placed perpendicularly to the wall and with ends at the same level and
oriented as in the �gure. The di�erence of the �uid levels inside them is ∆h = 0.2 m. Find the
velocity of the �uid in the horizontal pipe.

Problem 3. Water �owing.
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Problem 4. Isothermal expansion.

Nitrogen gas of mass m = 1.5 kg expanding isothermally at the temperature T = 300 K used
Q = 2.5 · 105 J of heat . How many times have the pressure and the volume changed? Molar
mass of nitrogen is µ = 28 kg/kmol and the gas constant R = 8.31 · 103 J/(kmol·K). Treat
nitrogen as an ideal gas.

Problem 5. Di�raction on a crystal.

X-ray di�raction experiment on the protein crystal was performed using radiation with a wave-
length of λ1 = 3.0 Å. Calculate the maximum resolution, dmax1, with which the protein structure
can be derived from these data. What should be the wavelength λ2 of the radiation used to
enable the experiment to record data with the two-fold better resolution dmax2? Hint: The
maximum resolution is equivalent to the minimum distance of lattice planes from which re�ec-
tion can be observed.

Problem 6. Compression of a PVC tube

A tube made of PVC is L = 10 m long when put horizontally. What would be the length of
this tube standing vertically?
Mass density of PVC, ρ = 1300 kg/m3, its Young's modulus, Y = 3.4 GPa, and the standard
acceleration due to gravity, g = 9.81 m/s2.

Problem 7. Soap bubbles.

Two spherical soap bubbles of radii r1 and r2, respectively, merge to form a spherical soap
bubble of a radius r3. Show that the volume of the �nal bubble is larger than the sum of the
volumes of the initial bubbles and that the surface area of the �nal bubble is smaller than the
sum of the surface areas of the initial bubbles.
Hint: For a spherical soap bubble of a radius r, the relation between the inner pressure pin and
the outer pressure pout reads pin = pout + 2σ/r, where σ is the surface tension.

More di�cult problems

Problem 8. Elastic rubber band.

An elastic rubber band lies on a smooth table and uniformly extends when a force is applied
to one of the ends of the rubber band, while the other end remains �xed. A cylindrical roll is
rotated without sliding by the rubber band moving beneath it. The axis of the roll is �xed,
perpendicular to the direction in which the rubber band is extended and parallel to the surface
of the table. The contact point between the roll and the rubber band remains at a distance D
from the �xed end of the rubber band. The band is stretched from an initial length L1 to the
�nal length L2 in such a way that a distance travelled by a given point of the surface of the
roll was equal to D and the rubber band was always stretched. Find the ratio L2/L1.

�

�

Problem 8. Elastic rubber band (drawing).
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Problem 8. Elastic rubber band (photo). Constructed by J. Grabarczyk.

Problem 9. Reaction threshold.

Consider endothermic nuclear reaction

2H+14N→6Li+10B

with reaction energy Q = −10.1 MeV. If in the laboratory the deuteron 2H is incident on sta-
tionary 14N, what minimum kinetic energy must it have for the reaction to occur?

Problem 10. Hydrogen spectrum.

The graph below presents a part of the spectrum of light emitted by the star HR1861 [1], in
which several absorption lines belonging to one of the so-called hydrogen spectral series can
be seen. Subsequent lines correspond to transitions from the same lower energy level to the
consecutive upper levels.

Problem 10. Hydrogen spectrum

Perform the necessary calculations and answer the following questions:

a. What is the principal quantum number n of the lower energy level of transitions belonging
to this series?
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b. What is the short-wavelength limit of this series, i.e. below which wavelength one cannot
observe lines belonging to this series?

c. What is the longest wavelength of lines belonging to this series?

Wavelengths in the graph are given in angstroms, 1Å= 10−10 m.
The Rydberg constant R = 13.6 eV,
the Planck constant h = 6.63 · 10−34 J·s = 4.14 · 10−15 eV·s, speed of light c = 3 · 108 m/s.

Problem 11. Determining the concentration of a solution on the basis of absorbance

measurement.

The UV absorption spectrum of a certain substance was measured by placing its solution in
a quartz cuvette with an optical path length of l = 0.5 cm. The spectrum shows two narrow
bands with a maximum at 280 nm and 220 nm, with absorbance A280 = 0.50 and A220 = 3.05,
respectively, while the absorbance recorded for wavelengths greater than 320 nm is constant
and equals to A>320 = 0.10. Then the solution was twofold diluted (with the same solvent in
which the initial solution was prepared) and the spectrum of the diluted solution was recorded
using the same cuvette. This time, at the maxima for the wavelength of 280 nm and 220
nm, the absorbance was A′280 = 0.30 and A′220 = 1.75, respectively, while the absorbance for
wavelengths greater than 320 nm did not change. Determine the concentration of the initial
solution of the tested substance, knowing that under the experimental conditions used in this
experiment its decimal molar absorption (also called extinction) coe�cients for the wavelengths
of 280 nm and 220 nm are respectively ε280 = 10 000 M−1cm−1 and ε220 = 150 000 M−1cm−1.
Justify your answer. Remarks: Absorbance is the decimal logarithm of the ratio of the in-
tensity of the radiation beam incident on the test sample to the intensity of the radiation
beam after it has passed through the test sample. The decimal molar absorption coe�cient
is the absorbance value of a 1 M solution tested in a cuvette with an optical path length of 1 cm.

Problem 12. Heating the pool.

Consider a system consisting of a pool with water (covered and isolated from the environment),
a solar heater and a pump. The pump moves water from the pool through the solar heater and
back, with the mass �ow rate dm

dt
= 0.04 kg/s. How much time is needed to warm up the water

in the pool by ∆T = 1◦C? What is the heating time if the pump capacity is doubled, that
is, the mass �ow rate through the solar heater dm

dt
doubles)? Neglect heat losses and assume

that the e�ciency of the heater is constant η = η0 = 50%. Assume the mass of water in the
pool to be M = 5000 kg, the speci�c heat of the water cw = 4200 J/(kg K) and assume that
the temperature of the water in the pool is homogeneous throughout the volume and initially
equals T0 = 15◦C. The intensity of solar radiation is I = 800 W/m2, and the surface area of
the heater A = 10 m2.

Hint: E�ciency of the solar heater reads:

η =
P

AI
,

where P = dm
dt
cw(Tout − Tin) is the power of the solar heater, Tin and Tout are temperatures at

the inlet and outlet of the solar heater, respectively.
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Problem 12. Heating the pool.
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