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Rozdziat 1
Motywacja

Niniejsza praca (aspirujaca do miana podrecznika) jest robocza wersje dwdch inter-
dyscyplinarnych wyktadéw jakie prowadze dla studentow nowopowstatej na Wydzia-
le Fizyki Uniwersytetu Warszawskiego specjalinosci pn.: Metody fizyki w ekono-
mii (ekonofizyka). Pierwszy z nich nosi nazwe Metody fizyki w ekonomii -
wprowadzenie drugi to Niegaussowskie procesy stochastyczne w naukach
przyrodniczych z elementami ekono- i socjofizyki.

Zasadniczym celem tych wyktadéw jest iloSciowa, staranna i systematyczna ana-
liza wybranych, waznych zagadnien z dziedziny rynkéw finasowych oraz gospodarek
wolnorynkowych, prowadzona przez pryzmat modeli uzywanych do opisu zjawisk i
procesow fizycznych. Jest to obiecujace podejécie zwlaszcza, ze bierzemy pod uwa-
ge przede wszystkim modele dopuszczajace wystepowanie zdarzen ekstremalnych a
nawet superextremalnych (czyli rzadkich ), ktére (jak sie wydaje) odgrywaja coraz
wieksza role takze na rynkach finansowych i w gospodarkach wolnorynkowych. Inny-
mi stowy, zajmujemy sie tutaj przede wszystkim takimi modelami, ktére petnia (lub
moga petni¢) dualna role: sa stosowane zaréwno w fizyce jak tez (po reinterpretacji
a czesto 1 uogodlnieniu) do opisu zjawisk i proceséw zachodzacych na rynkach finan-
sowych oraz w gospodarczej makroskali. Prowadzi to do uscislonej oraz poglebione;j
interpretacji nie tylko wspomnianych zjawisk i proceséw ekonomicznych ale takze
socjologicznych a w tym zwtaszcza typu babli i krachéw gietdowych (D. Sornette:
Why Stock Markets Crash. Critical Events in Complex Financial Systems, Princeton
Univerity Press, Princeton and Oxford 2002, [1]). Tego typu podejsécie do ekonomii i
socjologii miesci sie¢ w ramach wschodzacych, interdyscyplinarnych dziedzin wiedzy
potocznie zwanych, odpowiednio, ekonofizyka i socjofizyka.

Nalezy zaznaczy¢, ze w niniejszej pracy wykorzystujemy jako narzedzie matema-
tyczne przede wszystkim niegaussowskie procesy stochastyczne, np. typu Lévy’ego,
prowadzace do rozkladéw prawdopodobienstwa posiadajacych ciezkie (pogrubione)
ogony.

Pojecie ciezkiego (pogrubionego, tlustego) ogona rozkladu prawdo-
podobienstwa [3, 7] jest najczesciej uzywanym w niniejszej pracy. Zdefiniujmy je
tutaj, abysmy od samego poczatku wiedzieli precyzyjnie o czym jest mowa. Zatem,
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mamy do czynienia z pogrubionym ogonem rozkladu prawdopodobienstwa P(z)
wtedy i tylko wtedy, gdy

lim_exp(| @ )P(a) = oo, (L1)

przy czym (bezwymiarowa) zmienna x moze przyjmowaé zaréwno wartosci ciagle
jak i dyskretne. Innymi stowy, dany rozklad prawdopodobienstwa posiada ciezki
ogon wtedy i tylko wtedy, gdy asymptotycznie zanika wolniej niz funkcja eksponens
(rozktad wyktadniczy); funkcja eksponens petni tutaj role funkeji progowej. Zatem
mozemy powiedzie¢, ze dany rozkiad prawdopodobienstwa nie posiada ciezkiego
ogona wtedy i tylko wtedy, gdy warunek (1.1) nie jest spelniony.

Aby przyblizy¢ ten warunek zauwazmy, ze obszerng klase rozkltadéw posiada-
jacych pogrubione ogony tworzy np. klasa funkcji zanikajacych potegowo. Warto
tez zda¢ sobie sprawe, ze istnieja rozktady posiadajace thusty ogon nie nalezace do
wspomnianej klasy, np. rozktad logarytmiczno-normalny. Warunek (1.1) mozna na-
zwaé mocnym, gdyz uzywa sie takze stabszego warunku definiujacego (trudniejszego
do analitycznego operowania), gdzie zamiast rozktadu P(z) wystepuje jego rozktad
skumulowany.

Nalezy podkresli¢, ze rozklady i procesy gaussowskie (a w tym np. Centralne
Twierdzenie Graniczne (CTG)) traktowane sa tutaj tylko jako niezbedny punkt od-
niesienia!, gdyz sa one niewystarczajace do opisu otaczajacej nas rzeczywistosci.
Tego typu podejscie jest usprawiedliwione faktem, ze procesy niegaussowskie mo-
ga by¢ nieergodyczne czyli np. moga by¢ rzadzone wtasnie przez zdarzenia rzadkie,
stanowigce najprawdopodobniej podstawe zaroéwno wspomnianych babli i krachow
gietdowych, jak tez bedace podstawa spowolnionej, niedebye’owskiej relaksacji foto-
pradéow w materiatach amorficznych, lezac takze u podstaw nieergodycznego chto-
dzenia laserowego stanowiacego przeciez niezbedny etap doswiadczalny prowadzacy
do uzyskania kondensatu Bosego-Einsteina (W.D. Phillips: Laserowe chiodzenie i
putapkowanie atoméw obojetnych, Postepy Fizyki, Tom 49 (1998) 310-335, [4]; F.
Bardou, J.-P. Bouchaud, A. Aspect, C. Cohen-Tannoudji: Lévy Statistics and Laser
Cooling. How Rare Events Bring Atoms to Rest, Cambridge Univ. Press, Cambridge
2002, [5]). Oczywiscie, oznacza to koniecznos$¢ zastapienia dobrze znanego Central-
nego Twierdzenia Granicznego przez tzw. Uogo6lnione Centralne Twierdzenie Gra-
niczne Lévy’ego-Chinczina dotyczace rozktadéw stabilnych posiadajacych zaréwno
skonczona jak i nieskonczong wariancje.

Ponadto, wspomniana na wstepie interdyscyplinarnos¢ bazuje m.in. na obser-
wacji, ze procesy stochastyczne za pomoca ktorych staramy sie opisa¢ otaczajaca
nas rzeczywistosé¢ fizyczna badz tez ekonomiczno-socjologiczna (np. dynamika sto-
chastyczna rozwoju populacji w obecnosci zewnetrznego zrodia, rozprzestrzeniania

'Méwimy tutaj o rozkladach i procesach gaussowskich w waskim sensie, tzn. o takich, ktére
spelniaja CTG. Innymi stowy, dla ktérych wariancja jest liniowa funkcja czasu (dyskretnego lub
ciaglego). Zatem, nie mamy tutaj na mysli np. Fraktalnego Ruchu Browna (FRB) - bedzie jeszcze
o tym mowa w dalszej czesci.
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sie epidemii, migracji ludnosci, opisujaca ewolucje portfela investora gietdowego,
itd, itp) maja czesto charakter multiplikatywno-addytywny tzn. zawieraja zaré6wno
szum multiplikatywny jak tez szum addytywny (D. Sornette: Linear stochastic dyna-
mics with nonlinear fractal properties, Physica A (1998) 295-314). Za pomoca tego
typu proceséw, wprowadzajac odpowiednia konkurencje obu rodzajow szumu, moz-
na odtworzy¢ dla asymptotycznych wartosci zmiennych losowych zaréwno rozktad
Gaussa (R.N. Mantegna, H.E. Stanley: ”Ekonofizyka. Wprowadzenie”, Wydawnic-
twa Naukowe PWN, Warszawa 2001; [15]) jak tez logarytmiczno-normalny (E.W.
Montroll, M.F. Shlesinger: On the wonderful world of random walks w Nonequili-
brium Phenomena II. From Stochastics to Hydrodynamics”, Studies in Statistical
Mechanics, Vol.XI, eds. J.L. Lebowitz, E.W. Montroll, North-Holland, Amsterdam
1984; [16]) a zwlaszcza rozktad potegowy (D. Sornette: Critical Phenomena in Na-
tural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools,
Springer-Verlag, Berlin 2000; D. Sornette: ” Multiplicative processes and power law”,
Physical Review E 57 (1998) 4811-4813; [17]), czyli rozklady odgrywajace zasadni-
czg rolg zar6wno w naukach przyrodniczych jak tez ekonomiczno-spotecznych? (J.-P.
Bouchaud, M. Potter: Theory of Financial Risks. From Statistical Physics to Risk
Management, Cambridge Univ. Press, Cambridge 2001, [2]).

Do pracy dodalisémy tytutem uzupetnienia rozdziaty poswiecone materiatom lepko-
sprezystym takim jak np. biopolimery, w ktorych relaksacja deformacji zachodzaca
pod wptywem przylozonego naprezenia jest opisana dynamika fraktalng tzn. roz-
nego rodzaju fraktalnymi réwnaniami relaksacji (Th. F. Nonnenmacher, Ralf Met-
zler: 7 Applications of Fractional Calculus Techniques to Problems in Biophysics”
in 7 Applications of Fractional Calculus in Physics”, ed. R. Hilfer, World Scientific,
Singapore 2000). Jak si¢ okazuje, rozwigzania takich réwnan oparte sa na funk-
cjach H-Foxa, ktore posiadajg wtasnosci interesujace z punktu widzenia rynkow
finansowych. Na przyktad, zanikaja asymptotycznie zgodnie z prawem potegowym
natomiast dla krotkich czaséw zachowuja sie jak rozciggniety eksponens. Pozwala
to odtworzy¢ trendy (wznoszacy i opadajacy) tworzace lokalne maksima szeregdéw
czasowych dziennych indekséw gietdowych (M. Kozlowska, R. Kutner: ”Dynamics
of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function”,
DPG - Fruejahrstagung des Arbeitskreises Festkoerperphysik in conjuction with EPS
- 215" General Conference of the Matter Division, Dresden, Germany 2006 [19]).

2Qczywiscie, w naszych rozwazaniach nie pominiemy rozktadéw typu rozciagnietego eksponensa
zarOwno zmiennej losowej jak tez jej logarytmu, ktore sg takze uzywane m.in. do opisu relaksacji
w uktadach szklistych.
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Rozdzial 2

Zasadnicze pytania

2.1 Rys historyczny: rozklady potegowe

Historia rozktadu potegowego a w tym Pareto-Lévy’ego jest interesujaca i warto ja
tutaj, jak sadze, przytoczy¢. Mianowicie, zaskoczenie moze budzi¢ fakt, ze powszech-
nie uwaza sie iz rozklad potegowy a doktadniej rzecz biorac tego typu zaleznosé
zostalta odkryta w Swiecie realnym dopiero w roku 1897 przez wtoskiego ekonomiste
i socjologa Vinifredo Pareto podczas gdy relaksacja potegowa (czyli analogiczna za-
lezno$¢ tyle tylko, ze od czasu) zostata juz zaobserwowana w roku 1729 przez fizyka
i inzyniera B.G. Buelfingera, o czym jest mowa w rozdz.2.3. Co wiecej, na poczat-
ku drugiej potowy XIX w. francuski matematyk i fizyk baron Augustyn L. Cauchy
wprowadzit 1 analizowat rozktad postaci,

1
1t a2
zwany dzisiaj wtasnie rozktadem Cauchy’ego lub lorentzianem od nazwiska holen-
derskiego fizyka Hendrika A. Lorentza, ktéry pierwszy zastosowal ten rozklad w
spektroskopii do opisu ksztattéw linii widmowych i to pomimo jego nieskonczonej
wariancji. Rozktad odkryty przez Pareto jest niezwykle wazny chociazby ze wzgledu
na jego coraz liczniejsze zastosowania w roznych gateziach nauki - od matematyczno-
przyrodniczych po ekonomiczno-spoteczne.

Pareto badal empirycznie wzrost zamoznosci jednostek w roznych spoteczen-
stwach w okresach ”"pokoju spotecznego” (tzn. w okresie braku wojen, rewolucji,
krachéw, etc.). Zauwazyl, ze liczba jednostek y(x), ktorych dochdd jest nie mniejszy
od x daje sie opisaé, dla wzglednie duzych wartosci dochodu, za pomocg rozktadu
potegowego postaci,

p(x) (2.1)

1
I-OL
gdzie a jest jedynym (oprocz przedwykladniczego czynnika normalizujacego) para-

metrem definiujacym rozktad. Pareto wyznaczyl empirycznie ten wyktadnik - wy-
ni6st on z dobrym przyblizeniem 1.5 dla tak réznych spoteczenstw jak mieszkancy
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Anglii, Irlandi, Niemiec, Wtoch a nawet Peru. Wzoér (2.2) mozna wyrazié¢ za pomoca
funkcji gestoéci prawdopodobienstwa f(x) ~ 1/z!*e

Tmax ]_

ya) ~ [ )~ [ e (23)

gdzie 1 € o < Ty (tutaj, Tpe jest maksymalnym mozliwym do osiagniecia
dochodem jednostki); gestosé f(x) jest miara wzglednej liczby jednostek posiadajach
dochéd réwny doktadnie x. Zatem V. Pareto zaobserwowal rozktad asymptotycznie
potegowy dla dodatnich z,

1
rlta :

fa) ~ (2.4)
Rozszerzenie tego rozktadu na ujemne wartosci x oraz jego systematyczna analiza
zostata opublikowana dopiero w roku 1926 przez matematyka francuskiego, Paula
Lévy’ego oraz niezaleznie przez angielskiego geofizyka L. Richardsona, ktory zasto-
sowal ten rozklad do opisu ruchu obiektéw (tzw. pasywnych skalaréw) w atmos-
ferze w obecnosci turbulencji (A. Tsinober: ”Variability of anomalous transport
exponents versus different physical situations in geophysical and laboratory tur-
bulence”, w Lévy Flights and Related Topics in Physics, Lecture Notes in Physics
Vol.450, Springer-Verlag, Berlin 1995, pp.3-33). Nalezy zaznaczy¢, ze rozktad Pareto-
Lévy’ego jest weryfikowany po dzi$§ dzien. Na przyktad, badania opublikowane w
2001 roku nad spoteczenstwem Wielkiej Brytanii (A. Dragulescu, V.M. Yakovenko:
"Exponential and power-law probability distributions of wealth and income in the
United Kigdom and the United States”, Physica A 299 (2001) 213-221) potwier-
dzaja w calej rozciagtoéci obserwacje V. Pareto przy czym tutaj a = 1.90 (gdzie
btad jest na drugim miejscu po przecinku) dla dochodu netto powyzej 100 k£ /year.
Byloby wielce interesujgcym przeprowadzenie analogicznych badan nad spoteczen-
stwami wschodzacych rynkéw i gospodarek kapitalistycznych.

Oczywiscie, oprécz badan nad zamoznoscia jednostek prowadzone byty i sg ba-
dania nad dochodami wielu panstw. Badania te przeprowadzil jako pierwszy, na
podstawie zbiorczych danych uzyskanych z urzedéw skarbowych, wtoski ekonomista
i socjolog C. Gini w roku 1922; stwierdzil on, ze dochody te podlegaja (z dobrym
przyblizeniem) prawom potegowym o znacznie rézniacych sie wykltadnikach poteg.

Szczegolnie interesujace byty badania przeprowadzone pod koniec ubiegtego stu-
lecia nad gospodarka japonska (K. Okuyama, M. Takayasu, H. Takayasu: ” Zipf’s law
in income distribution of companies”, Physica A 269 (1999) 125-131), ktére wykaza-
ly, ze dochody przedsiebiorstw japonskich podlegaja prawu potegowemu Zipfa! (w
zakresie blisko czterech dekad od dochodu ponad 10 milionéw jenéw do blisko 10°
milionéw jenéw - patrz rozdz.3.14.3). Co wiecej, dochody przedsiebiorstw w ramach
poszczegolnych gatezi gospodarki byt tym lepiej opisywane prawem potegowym im

Prawo potegowe Zipfa jest asymptotycznie réwnowazne rozktadowi Cauchy’ego-Lorentza dla
dodatnich x czyli zbudowane na nim skumulowane prawdopodobienstwo posiada dhugozasiegowy
”ogon” zanikajacy z wyktadnikiem 1.
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bardziej dana gataz uczestniczyta w grze wolnorynkowej czyli im mniej byto w danej
branzy interwencjonizmu panstwowego (przy czym wyktadnik potegi o zawiera sie
w przedziale 0.72 < a < 1.13 a jego konkretna warto$¢ zmienia sie¢ od gatezi do
galezi). Na przyktad, branza budowlana podlegajaca niemal w pelni wolnej konku-
rencji daje sie opisa¢ prawem potegowym o wyktadniku o = 1.13 w zakresie trzech
dekad podczas gdy energetyka, podlegajaca istotnej ochronie panstwa, zachowuje
sie, paradoksalnie, w sposéb trudny do opisania.

2.1.1 Skalowanie i log-periodycznos¢
a bable i krachy gieldowe

Zauwazmy, ze na przyktad funkcja potegowa y(x) dana wzorem Pareto (2.2) spetnia
nastepujace rownanie skalowania?

y(Az) = f([ A y(z), (2.5)
gdzie czynnik f skalujacy funkcje y(z) jest zalezny od A i (tutaj) dany wzorem
F)=[A1% (2.6)

w dalszym ciagu zaktadamy, ze wyktadnik v moze by¢ zaréwno dodatni jak i ujem-
ny (gdyz zalezy to od tego z jaka wielkoscia fizyczna mamy tutaj do czynienia).
Nalezy podkresli¢, ze réwnanie skalowania (2.5) ma charakter ogélny i opisuje za-
chowanie tak réznych substancji jak np. magnetyki, stopy podwdjne czy tez gaz i
ciecz w obszarze przemiany fazowej w poblizu punktu krytycznego (zwanym dla-
tego obszarem skalowania lub obszarem krytycznym; M. Toda, R. Kubo, N. Saito:
Fizyka statystyczna I. Mechanika statystyczna stanéw rownowagowych, Panstwowe
Wydawnictwa Naukowe, Warszawa 1991, [6]). Jak uczy do$wiadczenie, w obszarze
tym wiekszo$¢ wielkosci fizycznych (opisujacych przemiane, oznaczmy je przez W F)
zmienia sie w zaleznodci od temperatury 7' wedtug prawa potegowego?®

WE~|T—T.|° (2.7)

gdzie o nosi nazwe indeksu lub wykladnika krytycznego, ktory przybiera wartosci
uniwersalne (tzn. niezalezne od rodzaju substancji) a T, jest temperatura krytycz-
na (ktéra np. w przypadku przemiany fazowej ferromagnetyk-paramagnetyk nosi
dodatkowo nazwe temperatury Curie).

2Doktadniej rzecz biorac, réwnanie skalowania (2.5) dotyczy takze rozkladu Pareto-Lévy’ego
czyli rozktadu y(x) ~ #, gdzie zmienna losowa x moze przyjmowaé zaréwno wartosci ujemne jak
i dodatnie a nie tylko dodatnie jak to ma miejsce dla rozktadu Pareto.

3Chodzi o to, ze sg tez wielkosci fizyczne takie jak np. ciepla wlasciwe, ktére mogg posiadaé
w punkcie krytycznym osobliwo$é¢ logarytmiczna, np. tak jak to ma miejsce w dwuwymiarowym
modelu Isinga; przemiany fazowe, w ktérych to zachodzi nie poddaja si¢ w pelni klasyfikacji Eh-
renfesta przemian fazowych (K. Huang: ”Mechanika statystyczna”, Panstwowe Wydawnictwa Na-
ukowe, Warszawa 1978, [7]) chociaz pod wieloma wzgledami (np. brak cieplta utajonego i ciaglodci
parametru porzadku w funkcji temperatury) przypominaja przemiane fazowa drugiego rodzaju.
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Zadajmy teraz pytanie o najogolniejsza postaé¢ rozwigzania singularnego rowna-
nia skalowania (2.5). Latwo sprawdzié¢, ze funkcja postaci

o) o P (). 28)

jest rozwiazaniem tego réwnania - jak sie okazuje najogélniejszym (co wykazemy w

dalszej czesci), przy czym F'(u) jest funkcja okresowa argumentu u o okresie réwnym
1, natomiast wyktadnik potegi przybiera postac

IS

Tl

(2.9)
Podstawiajac konkretna postaé funkcji f(\) (tutaj dana wyrazeniem (2.6)) otrzy-

mujemy, ze o = V.
Rozwiniemy teraz okresowa funkcje F'(u) w szereg Fouriera,

In|z| > . In|z|
F — L exp | 2min -
<ln\)\\> Zcexp(mn |
0o . 2
= ¢ [1—1—22_:0—005 <1n7|TZ| -1n|x\>1, (2.10)

przy czym wspoélezynniki rozwiniecia ¢, sa tutaj dane w postaci
1 /1 1
Cp = 5/ duF (u) exp(—2minu) = / duF(u) cos(2mnu), n=1,2,..., (2.11)
-1 0

gdzie dla uproszczenia zatozyliSmy, ze F'(u) jest parzysta funkcja u a stad kazdy
wspélezynnik rozwiniecia fourierowskiego jest parzysta funkcja n (tzn. ¢, = c_,) co
zostato wykorzystane w drugiej rownosci w (2.10). Ponadto, ograniczamy sie tutaj
do rzeczywistej funkcji ' co oznacza, ze wspolezynniki ¢, tez sa rzeczywiste?.

Stosujac grupe renormalizacji wykazemy, ze log-periodyczno$¢ jest obecna nie
tylko w rozktadach opisujacych statystyki zmiennych losowych, np. indeksow gietl-
dowych, ale tkwi juz w samych réwnaniach stochastycznych opisujacych dynamike
tych zmiennych (D. Sornette, A. Johansen, J.-P. Bouchaud: Stock Market Crashes,
Precursors and Replicas, J. Phys. I France 6 (1996) 167-175,[9]; D. Sornette and A.
Johansen: Large financial crashes, Physica A 245 (1997) 411-422, [10]).

Na rys.2.1 przedstawiono notowania indeksu Down Jones na Gietdzie Nowojor-
skiej (NYSE) przed pazdziernikiem 1929 roku czyli przed wielkim krachem na Wall
Street - najwiekszym kryzysem gieldowym jaki dotknat $wiat, a w tym takze Stany
Zjednoczone Ameryki, w XX wieku. O gltebokosci tego kryzysu swiadczy fakt, ze w

4Parametr ) skalujacy zmienna losowa nie jest dowolny tylko dla dyskretnej relacji skalowania
o czym bedzie takze mowa w dalszej czesci (D. Sornette: ” Discrete scaling invariance and complex
dimensions”, Physics Reports 297 (1998) 239-270, [8]).
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feralnym tygodniu: (otwarcie) sroda 23 pazdziernik - (zamkniecie) wtorek 29 paz-
dziernik, indeks NYSE stracit ok. 30% swojej wartoéci®. Ponadto, dla poréwnania
przedstawiono najlepsze dopasowanie rozwiazania singularnego (2.8) uwzgledniajace
jedynie liniowa log-periodycznosé (tzn. uwzgledniajace w drugiej réwnosci w (2.10),
w wystepujacym tam szeregu tylko pierwszy wyraz zn = 1), przy czym jako zmienna
niezalezng przyjeto teraz®

e at.—t| (2.12)
gdzie t(< t.) jest czasem (liczonym w dniach) natomiast t. jest dniem krachu (a
jest tutaj, po prostu, stata proporcjonalnosci). Innymi stowy, wzieto tutaj pod uwa-
ge nastepujaca, uproszczong formule teoretyczng dla czasu poprzedzajacego dzien
krachu ¢, (czyli dla t < t.)"

y(te—t)m A+ B-|t.—t|*-[1+Ccos(wln | t.—t | —9)], (2.13)

gdzie zastosowano wygodniejsze oznaczenia B = ¢q - a®, C = 2¢1 /¢y,
w=2r/In|\|, ¢ = —wln(a).

Jak wida¢, krach ten nastgpil tuz przed trzecim lokalnym maksimum tej krzywej
- nie jest to jednak babel gietdowy w przeciwienstwie do sytuacji przedstawionej
na rys.2.2, gdzie jest on wyraznie widoczny w przebiegu indeksu gietdy w Kuala
Lumpur (Malezja) w postaci ostrego, lokalnego maksimum bezposrednio poprzedza-
jacego krach o zupeklie innym ksztalcie niz wspomniane wczesniej. Wtasnie tego
typu ksztatt bedzie dla nas w dalszym ciggu niezbedng sygnatura babla gietdo-
wego; ogblna definicja tzw. racjonalnego babla gietdowego pochodzi od Blacharda i
Watsona (O.J. Blanchard: ” Speculative bubbles, crashes and rational expectations”,
Economics Letters 3 (1979) 387-389, [13]; O.J. Blanchard, M.W. Watson: Bubbles,
rational expectations and speculative markets w Crisis in Fconomic and Financial
Structure: Bubbles, Bursts, and Shocks, ed. P. Wachtel, Lexington Books, Lexing-
ton, MA, [14]) i méwi tylko tyle, ze jest to wzrost notowan akcji zachodzacy w
relatywnie krotkim okresie czasu (w stosunku do catego rozpatrywanego przedzia-
tu czasu), ktéry znacznie odbiega od fundamentalnej wyceny akeji ale nadal miesci
sie w oszacowaniach wynikajach z istniejacych modeli, w przeciwienstwie do babli
czysto spekulacyjnych.

Ze wzgledu na olbrzymie znaczenie wyrazenia (2.13) w analizie technicznej no-
towan gietdowych, przedstawiamy na ponizych dwoch rysunkach zaréwno zaleznosé
y od czasu jak tez jego sktadowych: potegowej i log-periodycznej.

®Nalezy zaznaczyé, ze podobny kryzys zdarzyl sie np. w pazdzierniku 1987 roku w tygodniu od
14 (otwarcie) do 19 pazdziernika (zamkniecie); na szczescie jego skutki nie byly juz tak dramatyczne
jak w roku 1929.

60znacza to, ze rozwazamy teraz dynamiczne przemiany fazowe gdzie role temperatury petni
czas.

"Zauwazmy, ze data krachu uzyskana z dopasowania funkcji (2.13) do danych empirycznych
moze byé nieznacznie wieksza od rzeczywistej daty gdyz dalszemu spadkowi indekséw moze po
prostu przeciwdziataé¢ wstrzymanie obrotéw na gietdzie.
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Rysunek 2.1: Notowania indeksu Down Jones na Gieldzie Nowojorskiej (NYSE)
przed pazdziernikiem 1929 roku czyli przed wielkim krachem na Wall Street - naj-
wiekszym kryzysem gieldowym jaki dotknal $wiat, a w tym takze Stany Zjedno-
czone Ameryki, w XX wieku. Linig ciggla oznaczono najlepsze dopasowanie roz-
wiazania singularnego (2.8) uwzgledniajace jedynie liniowa log-periodycznosé (tzn.
uwzgledniajace w drugiej réwnosci w (2.10) w wystepujacym tam szeregu tylko wy-
raz z n=1). Optymalne wartosci parametréw to: A = 571, B = -267, C = -0.0536,
a = 045, t. = 1930.22, w = 7.9 oraz ¢ = 1.0. Jak wida¢, krach nastapil tuz
przed trzecim lokalnym maksimum tej krzywej. (Rysunek zaczerpnigto z pracy A.
Johansen, D. Sornette: ”Critical Crashes”, Risk 12 (1990) 91-94, [11]).

Ponizej zamiesciliémy trzy dodatkowe wykresy prezentujace role drugiej harmo-
nicznej log-periodycznej poprawki danej wyrazeniem

y(te—t) ~ A+B-|t.—1]" x
X [1+Ccos(wln|t,—t|—¢)+ C"cos2wln | t. —t | —29¢)]
(2.14)

dla pierwszego maksimum na WIG-u.

2.2 Kluczowe pytanie matematyczne

Lévy interesowal sie przede wszystkim klasg rozktadéw stabilnych tzn. takich, kto-
re nie zmieniaja swojego ksztattu po dokonaniu transformacji od pojedynczej do
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Rysunek 2.2: Przebieg indeksu gietdy w Kuala Lumpur (Malezja) przed jej kra-
chem w styczniu 1994 roku - najwiekszym kryzysem gietdowym jaki dotknal Azje
w XX wieku. Linig cigglta oznaczono najlepsze dopasowanie rozwigzania singular-
nego (2.8) uwzgledniajace jedynie liniowa log-periodycznosé (tzn. uwzgledniajace w
drugiej réwnosci w (2.10) w wystepujacym tam szeregu tylko wyraz z n = 1). Naj-
wazniejsze parametry tego dopasowania to: o = 0.24, t. = 1994.02 oraz w = 10.9.
Jak wida¢, krach nastapit tuz po ostrym lokalnym maksimum tej krzywej czyli byt
poprzedzony przez tzw. babel gietdowy. (Rysunek zaczerpnieto z pracy A. Johan-
sen, D. Sornette: ”Bubbles and anti-bubbles in Latin-American, Asian and Western

stock markets: An empirical study”, International Journal of Theoretical and Ap-
plied Finance 4 (2001) 853-920, [12]).

sumarycznej zmiennej losowej; moga one ulega¢ np. odpowiedniemu sptaszczeniu
i rozciagnieciu. Do tego typu klasy naleza m.in. rozktady Gaussa i Cauchy’ego
(Lorentza) (R. Nowak: ”Statystyka dla fizykow”, Wydawnictwa Naukowe PWN,
Warszawa 2002). Wymienione dwa rozklady rézni jedna zasadnicza cecha: rozktad
Gaussa posiada skonczony drugi moment natomiast dla rozktadu Cauchy’ego jest
on nieskonczony.

W zwiazku z tym, ze rozklady posiadajace skonczony drugi moment nie musza
by¢ stabilne, Lévy postawit kluczowe pytanie o charakterze czysto matematycznym,
mianowicie: jaka jest najogdlniejsza definicja pelnej klasy rozkltadéw sta-
bilnych? Odpowiedz na to pytanie zostata sformutowana przez Lévy’ego a nieco
pozniej doprecyzowana przez Chinczyna w postaci tzw. Uogdlnionego Centralnego
Twierdzenia Granicznego (UCTG; W. Paul, J. Baschnagel: ”Stochastic Processes.
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Rysunek 2.3: Zaleznosé funkeji y(t. —t) danej wzorem (2.13) od czasu t liczonego w
dniach (oscylujaca, czerwona linia ciagta) oraz jej sktadowej potegowej ypr(t. — t)
(wyrazenie stojace przed nawiasem kwadratowym we wzorze 2.13) (niebieska linia
ciagta); obie linie poprowadzono dla wartosci parametréw otrzymanych z dopasowa-
nia do danych empirycznych przedstawionych na rys.2.1.

From Physics to Finance”, Springer-Verlag, Berlin 1999; R.N. Mantegna, H.E. Stan-
ley: ”Ekonofizyka. Wprowadzenie, Wydawnictwa Naukowe PWN, Warszawa 2001;
J.-P. Bouchaud, M. Potter: "Theory of Financial Risks. From Statistical Physics
to Risk Management”, Cambridge Univ. Press, Cambridge 2001; J.-P. Bouchaud,
A. Georges: Anomalous diffusion in disordered media: statistical mechanics, models
and physical applications, Physics Reports 195 (1990) 127-293) zwanego takze twier-
dzeniem granicznym Lévy’ego-Chinczyna. Twierdzenie to podaje explicite najogol-
niejszg postaé¢ rozktadu stabilnego zwanego juz dzisiaj rozktadem Pareto-Lévy’ego
- omowienie UCTG, a w tym tego rozktadu oraz jego réznych zastosowan w fizyce i
na rynkach finansowych, jest jednym z zasadniczych celéw niniejszej ksigzki.

2.2.1 Niezbedne wyjasnienia

Na rys.2.8 przedstawiliémy orientacyjnie symetryczny rozktad Pareto-Lévy’ego czyli
najogolniejsza postaé (symetrycznego) rozktadu stabilnego
1 00
P(z) = —/ exp(—y At | k |%) cos(kz)dk, 0 < a < 2, (2.15)
7 Jo

dla czterech typowych wartosci indeksu Pareto-Lévy’ego; zauwazmy, ze gestosé praw-
dopodobienstwa powrotu do poczatku (zgodnie z (2.15)) wynosi

1 1

Pz =0)= WFEule'r (1 + a) (2.16)
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Rysunek 2.4: Zaleznos$é od czasu (liczonego w dniach) log-periodycznej sktadowej
funkeji y(t.—t) (wyrazenie stojace wewnatrz nawiasu kwadratowego we wzorze 2.13)
dla parametréw otrzymanych z dopasowania tej funkcji do danych empirycznych
przedstawionych na rys.2.1.

i maleje ze wzrostem indeksu « jak to pokazano rysunku.

Korzystajac z rozwiniecia w szereg funkcji eksponens, nastepnie zamieniajac od-
powiednio zmienna biezaca w wyrazeniu (2.15) i catkujac wyraz po wyrazie z wy-
korzystaniem definicji funkcji gamma Eulera (czyli catki Eulera drugiego rodzaju)
mozna rozktad Pareto-Lévy’ego wyrazi¢ dla | = |> 0 w postaci nastepujacego, wielce
przydatnego szeregu

100
;Z

J=1 j'

1
| €x ‘1+ja

(2.17)

vAt T Buter (1+ «yj)sin (jga>

z ktérego wynika, ze dla | z |— oo dominowaé bedzie pierwszy wyraz tego szeregu

1

R FIEE

(2.18)

co dobrze wida¢ w skali log — log na rys.2.9 (poréwnaj (2.4)).

Na pierwszy rzut oka moze budzi¢ zdziwienie istnienie géornego ograniczenia na
indeks rozkladu Pareto-Lévy’ego we wzorze (2.15) - rys.2.10 wyjasnia ten problem.
Chodzi o to, ze gdy a > 2 wéwczas funkcja P(x) dana wzorem (2.15) staje sie
ujemna dla niektérych wartoéci zmiennej niezaleznej x co pierwszy zauwazyt w roku
1919 matematyk F. Bernstein.

Na koniec tego paragrafu nalezy zaznaczy¢, ze jak dotychczas znane sg tylko
trzy zamkniete postacie symetrycznego rozktadu Pareto-Lévy’ego: oprocz rozktadow
Gaussa i Cauchy’ego o ktorych juz méwilismy, jest jeszcze rozktad Zolotarieva czyli
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Rysunek 2.5: Pierwsze maksimum na WIG-u (czas jest liczony w dniach transakcyj-
nych (td) a index WIG w punktach (p)).

rozklad Pareto-Lévy’ego o indeksie a = 2/3, ktéry wyraza sie za pomoca funkcji
Whittakera W1/2,1/6

1 1 4 ~2/3 2 ~3
Plz)= ——W =) exp(—=—3); 2.19
(@) = Jora Vivean(qy ) P57 05 (2.19)

jak wida¢ rozklad Zolotarieva wyraza sie za pomoca funkcji nieelementarnej (w
przeciwienstwie do dwoch pozostatych).

2.2.2 Paradoks Petersburski i jego konsekwencje

Ponizej rozwazamy dwie zasadnicze kosekwencje Paradoksu Petersburskiego:
1) brak skali fizycznej zjawisk i proceséw,
2) wprowadzenie funkcji uzytecznosci.

Obie otworzyly droge wspotczesnym teoriom zjawisk i proceséw bezskalowych oraz
wspotcezesnej teorii uzytecznosei.

Najpierw jednak rozwazymy zaskakujaca wlasnos¢ rozktadu Pareto-Lévy’ego,
ktora przez dziesieciolecia powstrzymywalta fizykéw przed jego stosowaniem - cho-
dzi o rozbiezno$¢ drugiego momentu czyli o nieskonczona dyspersje tego rozktadu.
Zauwazmy, ze ma miejsce nastepujacy wzér na moment rzedu (stopnia) m zmiennej
losowej x

mdm~

(@) = (=0)" 7 P(E) =0, (2.20)

gdzie 15(16) jest transformata Fouriera, zwana takze funkcja charakterystczna roz-
ktadu P(z) (wzér (2.20) wyprowadziliémy w rozdz. ... dla ogdlniejszego przypadku
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Rysunek 2.6: Zaleznosé funkeji (2.14) uwzgledniajacej druga harmoniczng log-
periodyczna poprawke (oscylujaca, czerwona linia ciagta) od czasu t (liczonego w
dniach) oraz jej sktadowej potegowej (wyrazenie stojace przed nawiasem kwadrato-
wym we wzorze (2.13), niebieska linia ciagta); obie linie poprowadzono dla wartosci
parametrow otrzymanych z dopasowania do danych empirycznych przedstawionych
na rys.2.1 przy czym swobodny parametr wazacy ta poprawke jest tutaj ujemny i
wynosi przyktadowo C” = 0.03.

momentéw utamkowych, korzystajac z definicji pochodnej utamkowej). Jak widaé,
funkcja charakterystyczna rozktadu Pareto-Lévy’ego (2.15) jest dana wyrazeniem

P(k) = exp(—7 | k |), (2.21)

co w polaczeniu ze wzorem (2.20) prowadzi do warunkow
1 <

(™) { < 0, dams<a (2.22)

= 00, W przeciwnym razie

czyli np. do wspomnianej na wstepie rozbieznosci dyspersji rozktadu o, = y/(2?).
Wtadnie ta wlasnosé jest kluczowym elementem Paradoksu Petersburskiego.

Brak skali fizycznej

Na istnienie w rachunku prawdopodobienstwa nieskonczonych wartosci przecietnych
zwrécili juz uwage na poczatku XVIII wieku N. Bernoulli i D. Bernoulli postugujac
sie wprowadzonym przez siebie przyktadem tzw. Paradoksem Petersburskim.
Jest to gra hazardowa, w ktérej bankier rzuca symetryczng moneta n razy. Gracz
uczestniczacy w tej grze wygrywa 2"~ ! monet jezeli n — 1 razy pod rzad wypadnie

27



Log- Cos- Log2- Cos2
1.04¢

1.02;¢

t

1927.5 1928.5 1929 | 1929.5 | 1930
0.98/

0.96¢
0. 94

0.92¢

Rysunek 2.7: Zaleznosé sktadowych log-periodycznych (zerowej, pierwszej i drugiej
harmonicznej traktowanych sumarycznie) dla tego samego przypadku, ktérego do-
tyczy rys.2.6.

Tabela 2.1: Tabela wygranych

‘ Liczba rzutéw ‘ Wygrana ‘ Prawdopodobienstwo ‘ Wartosé oczekiwana ‘

1 20 1/2 1-1/2=1/2
21 1/4 2-1/4=1/2

3 2?2 1/8 1 1/8=1/2

n gn=1 12" T2 =1/2

avers zanim w kolejnym (n-tym rzucie) wypadnie revers®. Otrzymane wyniki zostaty
przedstawione w tabeli 2.1. Jak widaé¢, sumaryczna wygrana (czyli warto$¢ oczeki-
wana), ktéra jest réwna sumie wszystkich liczb z ostatniej kolumny 1/2+1/2+ ...,
rozbiega sie w miare jak liczba rzutoéw rosnie. Zatem, dla kazdej skonczonej stawki
jaka moglby zaproponowaé¢ wchodzacy do gry gracz jego wygrana bedzie predzej
czy poézniej bardziej prawdopodobna niz porazka. Mimo to gracz nie zgodzi sig na
nieskonczong stawke jaka bylaby wymagana przez gre sprawiedliwg gdyz, oczywi-
Scie, nie jest w stanie gra¢ nieskonczenie dtugo. Z kolei bankier nie zgodzi si¢ na
zadnag skonczong optate wstepna gracza gdyz (jak powiedzieliémy) straci ja predzej
czy pozniej. Widaé, ze mamy tutaj do czynienia z nierozwigzywalnym konfliktem
(zreszta z tego powodu gry o nieskonczonej wartosci oczekiwanej nie nadaja sia do

8Uméwmy sie, ze niezashuzona wygrana gracza dla n=1, czyli gdy ani razu nie wypadl avers,
ma go zacheci¢ do przystapienia do tej gry.
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Rysunek 2.8: Rozklad Pareto-Lévy’ego dla wartosci parametru skalujacego v = 1
oraz czterech typowych wartoséci indeksu Pareto-Lévy’ego: (1) linia czarna dotyczy
indeksu o = 2 czyli opisuje rozklad Gaussa centrowany w zerze o dyspersji o =
V27 = /2, (2) linia czerwona opisuje rozktad Pareto-Lévy’ego o indeksie o = 1.5,
natomiast (3) linia zielona o indeksie o = 1 ezyli rozktad Cauchy’ego-Lorentza,
podczas gdy (4) linia niebieska rozktad o indeksie v = 0.5. Widaé istotng r6znice
pomiedzy rozktadami o indeksie o > 1 a tymi o indeksie o < 1.

zastosowania w kasynach). Jaka jest przyczyna tego konfliktu. Ot6z bankier i gracz
nie mogg ustali¢ zadnej kompromisowej stawki gdyz takiej charakterystycznej stawki
(lub méwiac jezykiem fizyki, skali) po prostu nie ma.

Wracajac do rozktadu Pareto-Lévy’ego, nieskonczona dyspersja oznacza wlasnie
brak charakterystycznej skali fluktuacji statystycznych; innymi stowy wszystkie skale
sg tutaj rownoprawne - zjawiska opisywane tym rozktadem zachodzace w réznych
skalach sa (w sensie matematycznym) podobne, czyli potaczone relacja skalowanie
0 czym jest mowa szczegdOtowo w dalszej czesci.

Funkcja uzytecznosci

Odpowiemy teraz na zasadnicze pytanie a mianowicie, jak nalezy zmodyfikowaé
stawke wygranej, W(n), w kazdym kroku, n, gry aby oczekiwana warto$¢ wygranej
byta skonczona, czyli gra byla uzyteczna? Modyfikacja zaproponowana przez D.
Bernoulliego jest prosta:

Wi(n)=(n—1)ln2. (2.23)
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Rysunek 2.9: Rozktad Pareto-Lévy’ego w skali log —log dla wartosci parametru ska-
lujacego v = 1 oraz dwoch skrajnych (sposrdd czterech typowych) wartosci indeksu
Pareto-Lévy’ego przedstawionych na rys.2.8: (1) linia czarna dotyczy indeksu o = 2
czyli opisuje rozktad Gaussa centrowany w zerze o dyspersji ¢ = /2, a (2) linia
niebieska rozktad o indeksie av = 0.5.

Widac, ze warto$é¢ oczekiwana tak zdefiniowanej wygranej
> 1
Z 2— 1n2 Z =In2. (2.24)

jest skoniczona. Z tego powodu funkcje U(n) = InW(n) nazywa sie funkcja uzy-
tecznosci. Wtasnie wartosei funkeji uzytecznosci U(n), n = 0,1, ..., moga stanowi¢
sensowne wielkosci stawek wygrywanych w tej grze - stawek, ktoére sg ”sptaszczone”
dla duzych wartoséci n, tzn. ich wzrost w miare wzrostu n jest spowolniony , tak
jak by¢ powinno (bogatszym moze nie zaleze¢ tak bardzo na wygranej jak biedniej-
szym). Opisane powyzej podejscie (oparte o Paradoks Petersburski) otworzyto droge
do powstania wspolcezesnej teorii uzytecznosei (patrz Wikipedia:
pl.wikipedia.org/wiki/Paradoks-petersburski).

Tytulem pozytecznej dygresji warto podkresli¢, ze Jacob Bernoulli skonstru-
owal rozktad zmiennej losowej (wspdlczesnie nazywany rozktadem dwumianowym
ale takze rozkladem Bernoulliego), ktérej warto$¢ oczekiwana jest zarazem domi-
nanta (czyli wartoscia najbardziej prawdopodobna). Tego typu rozktady sa dobrymi
kandydatami do opisu otaczajacej nas probabilistycznej rzeczywistosci.
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Rysunek 2.10: Zaleznosé funkeji P(x) danej wzorem (2.15) od  dla parametru y = 1
oraz indeksu o = 3 - jest to zalezno$¢ typowa dla sytuacji gdy indeks o jest wiekszy
od 2. Jak widaé, funkcja P(x) przybiera takze wartosci ujemne co ja dyskwalifikuje
jako funkcje rozktadu prawdopodobienstwa dla a > 2.

2.3 Motywacja fizyczna

Chcac nie cheagce, liczba doswiadczen ktore daja sie opisaé za pomoca spowolnionej
relaksacji, zwanej takze dtugookresowa (czyli anomalna, niedebye’owska albo nieek-
sponencjalna) szybko rosnie. Sa to przede wszystkim zjawiska dotyczace relaksacji w
srodowisku amorficznym, nieuporzadkowanym (”random materials”). Sposréd nich
najbardziej znane sg te dotyczace relaksacji (M. Ghosh, B.K. Chakrabarti: ”Rela-
xation in disordered systems”, Indian Journal of Physics 65 A (1991) 1-24):

- fotopradow w amorficznych filmach szklistych a w tym relaksacji fotopradow
w eksperymentach kserograficznych (E.W. Montrol, M.F. Shlesinger: ”On the
wonderful world of random walks” in ”Nonequilibrium Phenomena II. From
Stochastics to Hydrodynamics”, Studies in Statistical Mechanics, Vol.XI, eds.
J.L. Lebowitz, E.W. Montroll, North-Holland, Amsterdam 1984)

- relaksacji namagnesowania magnetykow ponizej temperatury krytycznej
- szkiel spinowych

- uktadéw perkolujacych
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- starzejacych sie szkiet i polimerow
- relaksacji lepko-elastycznej
- relaksacji rekombinacyjnej w epitaksjalnych poétprzewodnikach

- niestabilnosci w materii granulowanej (np. lawiny w samoorganizujacej sie kry-
tycznosci kopcea piachu lub silosa ze zbozem, cementem, itp.)

a takze dotyczace

- anomalnej dyfuzji wodoru w amorficznych metalach przejsciowych (R. Hem-
pelmann: ”Hydrogen Diffusion in Proton Conducting Oxides and in Nanocry-
stalline Metals” in ” Anomalous Diffusion. From Basics to Applications”, Lec-
ture Notes in Physics Vol.519, eds. R. Kutner, A. Pekalski, K. Sznajd-Weron,
Springer-Verlag, Berlin 1999)

- chtodzenia laserowego stanowigcego zasadniczy element metody pozwalajacej
na putapkowanie atomow w postaci kondensatu Bosego-Einsteina, przy czym
statystyka czaséw zycia tych atoméw w putapce podlega rozktadowi Lévy’ego
z wyktadnikiem o = 1/2, (F. Bardou, J.-P. Bouchaud, A. Aspect, C. Cohen-
Tannoudji: " Lévy Statistics and Laser Cooling. How Rare Events Bring Atoms
to Rest”, Cambridge Univ. Press, Cambridge 2002).

Spowolniong relaksacje opisuje sie najczedciej za pomocg kilku rodzajow funk-
cji relaksacji f(t). Na przyktad, za pomoca prawa Kohlrauscha-Williamsa-Wattsa

(KWW)
f(t) = exp (— (3)a> : (2.25)

T

gdzie 0 < o < 1; wyrazenie (2.25) nosi takze nazwe rozciagnietego exponensa (’stret-
ched exponent’). Réwniez za pomoca prawa potegowej relaksacji Nuttinga

1

f(t) = 0 (2.26)

gdzie wyktadnik 0 < n < 1. Jak tez, ogdlnie rzecz biorac, za pomocg funkcji, ktore

posiadaja asymptotyczny zanik potegowy

£ ~ o (227)

(gdzie 0 < ) o czy bedzie mowa w dalszej czesci.
Na rys.2.11 poréwnano w skali liniowej trzy rodzaje funkcji relaksacji: (zwykty)
exponent czyli (standardowe) prawo relaksacji Debye’a (linia zielona)

f(t) = exp(—t/7), (2.28)
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Rysunek 2.11: Poréwnanie w skali liniowej trzech rodzajow funkcji relaksacji: prawa

relaksacji Debye’a (linia zielona), Kohlrauscha-Williamsa-Wattsa (linia czerwona)
oraz Nuttinga (linia niebieska) dla parametrow 7 =1 oraz o = n = 0.75.

oraz prawa KWW (linia czerwona) i Nuttinga (linia niebieska) dla parametréw 7 = 1
ia=0.75.

Analogicznie, na rys.2.12 poréwnano w skali log — log trzy rodzaje funkcji relak-
sacji: prawa relaksacji Debye’a (linia zielona), Kohlrauscha-Williamsa-Wattsa (linia
czerwona) oraz Nuttinga (linia niebieska) dla takich samych wartodci parametréw
T, in.

Jak powiedzieliémy na wstepie, relaksacja potegowa zostata po raz pierwszy za-
obserwowana przez B.G. Buelfingera w roku 1729 w badaniach nad relaksacja na-
prezen w takich materiatach jak stal i kamien. Od roku 1888 nosi ona nazwe prawa
sprezystosci Bacha.

7, grubsza rzecz biorac, spowolniona relaksacja moze by¢ wynikiem istnienia w
uktadzie ztozonym wielu silnie sprzezonych i réznie relaksujacych poduktaddéw, co
moze prowadzi¢ do retardacji lub, ogdlniej méwiac, pamieci a zatem do niemarko-
wowskiego charakteru procesu relaksacji (W.G. Glockle, Th.F. Nonnenmacher: ”Fox
Function Representation of Non-Debye Relaxation Processes”, Journal of Statistical
Physics 71 (1993) 741-757; Th.F. Nonnenmacher, R. Metzler: ” Applications of frac-
tional calculus techniques to problems in biophysics” rozdz.VIII w ” Applications of
fractional calculus in physics”, pod redakcja R. Hilfera, World Scientific, Singapore
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Rysunek 2.12: Poréwnanie w skali log — log trzech rodzajow funkcji relaksacji przed-
stawionych na rys.2.11 w skali liniowej: prawa relaksacji Debye’a (linia zielona),
Kohlrauscha-Williamsa-Wattsa (linia czerwona) oraz Nuttinga (linia niebieska) dla
takich samych warto$ci parametréw 7, o i n.

2000). To z kolei prowadzi do utamkowego (czyli fraktalnego) réwnania relaksacji,
ktorego rozwiazaniem jest funkcja Foxa zanikajaca, jak wiadomo, potegowo. Sys-
tematyczne oméwienie tych zagadnien jest jednym z zasadniczych celow niniejszej

pracy.

2.4 Relaksacja fraktalna

Na zakonczenie tego rozdziatu wprowadzimy fraktalne réwnanie na funkcje relak-
sacji dzieki ktéremu bedziemy mogli odtworzy¢ wprowadzong wcezesniej relaksacje
potegowa. Jak wiadomo, wyktadnicza funkcja relaksacji (2.28) jest rozwiazaniem
rownania rézniczkowego

df (1) 1

—o =M. t>0, (2.29)

z zadanym warunkiem poczatkowym f(¢ = 0) = fy. Odpowiednikiem catkowym
réwnania (2.29) jest nastepujace
CLdT(t) aer.

1 t
0 = fo=—=52 " — [t s(v); (2:30)
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poniewaz catkowanie petni role operacji odwrotnej do zwyktego rézniczkowania dla-
tego oznaczylidmy je tutaj jako ujemna pochodng. Oczywiscie, pochodna ta ma
zupelnie inny charakter niz dodatnia a mianowicie, jest typu globalnego (w przeci-
wienistwie do dodatniej, ktora ma charakter lokalny).

Uogdlnienie réwnania (2.30) polega na zastapieniu wystepujacego tam ujemnego
rozniczkowania, ujemnym rézniczkowaniem utamkowym

__ldf@)
£~ o=~ I

gdzie ujemna pochodna stopnia —a jest po prostu operatorem catkowym Riemanna-
Liouville’a

.0 <a, (2.31)

—a 1 ¢ ()
T { L Buter(a) Jo (t—t)i=e dla a0 (2.32)

dt— f(@ dla a =0
(patrz Dodatek A). Rézniczkujac stronami réownanie catkowe (2.31) otrzymujemy
fraktalne réwnanie relaksacji czyli réwnanie rézniczkowo-catkowe postaci

) 1A

dt T dtl—e
ktore stanowi bezposrednie uogélnienie zwyklego réwnania rézniczkowego pierw-
szego stopnia (2.29) opisujaego relaksacje debye’owska. Rozwiazanie tego réwnania
wyraza sie za pomoca funkcji Foxa typu H 1121 (Th.F. Nonnenmacher, R. Metzler:
” Applications of Fractional Calculus Techniques to Problems in Biophysics” w 7 Ap-
plications of Fractional Calculus in Physics”, ed. R. Hilfer, World Scientific, Singa-
pore 2000) lub inaczej rzecz biorac, za pomoca funkcji Mittag-Leffler F, (R. Metzler
and J. Klafter: ”The Random Walk’s Guide to Anomalous Diffusion: A Fractional
Dynamics Approach”, Physics Reports 339 (2000) 1-77, [18]),

,0<a, (2.33)

f(t) = %Hiﬁl l; (((?,é)), (0,1>] :fOHlly’;lG)a’ 811; (O’O‘J

= B ((=5)) = w3 ) (2.34)

=0 I‘Euler(l + Oé]) ‘
Rozwigzanie to przejawia nastepujace zachowania graniczne

(t/m) ) dlat<r

exp (~ e
t ~ Euler &
f(t) fO{ I‘Ell(lfa)(t/i')a dlat>71oraz 0 < a < 1,

(2.35)

z ktorych pierwsze to nic innego jak wspomniane przez nas wezesniej prawo relaksacji
Kohlrausha-Williamsa-Wattsa a drugie (takze wspomniane przez nas) prawo zaniku
potegowego z wykltadnikiem 0 < a < 1; dla innych wartosci a nie uzyskuje sie
asymptotycznego prawa potegowego.

Na rys. ... przedstawiono przyktadowy przebieg funkcji Foxa H{y dla trzech r6z-
nych wartosci wyktadnika a.
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2.4.1 Rola pamieci w relaksacji

Spojrzymy teraz na relaksacje od strony umozliwiajacej analize roli jaka odgrywa w
niej pamie¢. Rozwazmy zatem nastepujace rownanie rézniczkowo-catkowe z jadrem
pamieci K (t),

Nalezy podkresli¢, ze powyzsze rownanie uzyskano przy wykorzystaniu techniki ope-
ratopow rzutowych Zwanziga. Powyzsze rownanie pozwoli nam na wyprowadzenie
wszystkich omawianych dotychczas rodzajow relaksacji poprzez odpowiedni dobér
jadra catkowego K (t).

A) Brak pamieci. Przypus$émy, ze w uktadzie nie wystepuje pamieé tzn., ze jadro
catkowe

K(t) = %5(15); (2.37)

podstawiajac powyzsze wyrazenie do réwnania (2.36) otrzymujemy jako jego roz-
wiazanie wyktadnicza funkcje relaksacji

£(t) = foexp(~2) (2.35)

(dana juz wezesniej wlasnie wzorem (2.28)).
B) Pamie¢ stata. Zalézmy teraz, ze jadro pamieci jest niezalezne od czasu czyli

K(t) = w? (2.39)

wowezas, podstawiajac (2.39) do (2.37), otrzymujemy oscylujace rozwiazanie na
funkcje relaksacji

f(t) = focos(wt), (2.40)

gdzie w jest pewna stata wieksza od zera.
C) Pamie¢ wolnozmienna. Przypusémy, ze jadro catkowe, K (t), jest wolnozmien-
na funkcja czasu i poczatkowo (dla ¢t < 7) narasta w sposéb potegowy

K(t) = Kot?, v > 0. (2.41)
Stad oraz z réwnania (2.36) otrzymujemy jako rozwiazanie funkcje relaksacji

f(t) = foexp <— (;)W?) = Ké/(~/+2) (2.42)

w postaci rozciggnietego eksponensu.
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D) Pamieé¢ dtugookresowa. Zatézmy teraz, ze jadro pamieci jest dla ¢t > 0 alge-
braicznie malejaca funkcjg czasu

Ky

K(t):tQj7 [(0>O7 1 <a<?2; (243)
podstawiajac, jak zwykle, powyzsza postaé jadra do réwnania (2.36) otrzymujemy
natychmiast, ze

df) 1 dof()

_o def.
_ o del e Tl —1 244
dt o qa T ol'(e—1) (2.44)

gdzie po drodze skorzystaliSmy z definicji ujemnej pochodnej fraktalnej (2.32). Jak
widaé, jadro catkowe typu (2.43) prowadzi do réwnania relaksacji fraktalnej (2.33)
z zakresem wyktadnika a ograniczonym do przedziatu 1 < a < 2.

Powstaje teraz pytanie o zwiazek fraktalnego réwnania relaksacji (2.33) z réwna-
niem z pamiecia (2.36) dla 0 < a < 1. Innymi stowy, chodzi o odpowiedz na pytanie
czy dla 0 < a < 1 istnieje jadro catkowe K(t) a jezeli tak to jaka ma postac?

2.4.2 Spowolniona relaksacja na Warszawskiej GPW

Tytutem przyktadu spowolnionej relaksacji rozwazymy indeks WIG a doktadniej
jego relaksacje po osiggnieciu pierwszego maksimum (zawartego w obszarze pierw-
szych 550 dni transakcyjnych istnienia gietdy co jest dobrze widocznego na rysunku
2.13). Na rysunku 2.14 przedstawiono juz tylko wspomniany obszar pierwszego mak-
simum. Doktadniej, prawe zbocze tego maksimum przedstawia rysunek 2.15.

2.5 Dynamika materialu lepko-sprezystego a re-
laksacja fraktalna

Przedstawimy teraz droge na jakiej uzyskuje sie relaksacje fraktalng z rownan opi-
sujacych dynamike materiatu lepko-sprezystego (wisko-elastycznego). Punktem wyj-
Scia jest polaczenie prawa sprezystosci Hooka z prawem Newtona opisujacego lepkie
wlasnosci ciata statego zwigzane z nieodwracalng dysypacja energii sprezystosci.
Potaczenie to prowadzi do modelu Maxwella-Zenera ciata statego. Dopiero w na-
stepnum kroku, postugujac sie analogia, przejdziemy do opisu relaksacji fraktalnej
indeksu gietdowego, przyktadowo WIG-u.

2.5.1 Model Zenera ciala stalego

Prawo Hooka. Sity dziatajace prostopadle do powierzchni ciata stalego powoduja, w
zaleznosci od zwrotu, jego Sciskanie albo rozciaganie. Miara odksztatcenia (zaréwno
przy Sciskaniu jak i rozcigganiu) jest wzgledna zmiana dtugosci ciata e = Al/l zwana
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Rysunek 2.13: Przyktadowy przebieg indeksu WIG poczynajac od pierwszej sesji 16
kwietnia 1991 roku az do tej w ... liczony w dniach transalcyjnych (td) na otwarciu.

odksztalceniem lub deformacja; zwiazek tej wielkosci z dziatajaca sita F' okresla
prawo Hooka:

e=Ko = %J, (2.45)
gdzie naprezenie wewnetrzne o = F/S| przy czym S jest polem przekroju poprzecz-
nego preta (w dalszym ciagu bedziemy omawiaé tylko tego typu ciata), natomiast
wspotezynnik E jest modutem sprezystoéci Younga. Z prawa tego wynika, ze reak-
cja ciala na przylozone naprezenie jest natychmiastowa tak jak i po usunieciu go.
Tego typu zachowanie ciala nazywamy sprezystym. Wiadomo z doswiadczenia, ze
wlasnosci sprezyste cial obserwuje sie tylko w ograniczonym zakresie odksztatcen.
W szerszym zakresie obserwuje sie (w réznym stopniu) zachowanie plastyczne, w
ktérym odksztalcenie wzrasta (do pewnej charakterystycznej wielkosci) nawet jezeli
naprezenie nie ulega zmianie. Model Zenera (MZ) ciata stalego uwzglednia juz oba
efekty (sprezystosci i plastycznosci). Aby opisaé efekt plastycznosci model Zenera
bazuje, oprécz prawa Hooka, na wyrazeniu Maxwella-Newtona opisujacego relaksa-
cje ciala posiadajacego lepksc.

Wyrazenie Mazwella-Newtona. Wyrazenie Maxwella-Newtona taczy naprezenie
przytozone do ciata z szybkoscig zmiany odksztalcenia na jednostke czasu

de de
— . = n— — 2.4
7 b-o(t) = ndt o, (2.46)

gdzie n jest lepkoscia ciala (zwana takze tarciem wewnetrznym) a b ruchliwoscia.
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Rysunek 2.14: Przebieg indeksu WIG (w skali pétogarytmicznej) dla pierwszych
550 dni transakcyjnych istnienia gietdy. Zielona linia oznacza poziom odniesienia,
linia niebieska pokazuje exponensjalny wzrost indeksu, natomiast linia czerwona jest
dana wzorem (2.34).

Model Zenera. Model Zenera sformutujemy w postaci umozliwiajacej bezposred-
nie zastosowanie do opisu dynamiki indeksow gietdowych. Sformutowanie to uza-
leznia odksztalcenie € od naprezenia o a nie odwrotnie jak to jest w tradycyjnym
podejsciu. Oznacza to, ze skorzystamy z pierwszych réwnosci w (2.45) i (2.46). Obec-
ne podejscie bazuje na nastepujacym liniowym réwnaniu rézniczkowym:

de(t) 1 K, do(t)
= — K+ K
dt +7'0€ T0 U(t)+( 1+ 2) dt ’

(2.47)

ktore jest kombinacjg prawa Hooka i wyrazenia Maxwella-Newtona; 7y, K7, K5 s3
niezaleznymi parametrami a wspotczynnik lepkosci n = 1/b = (K, /7). Jego roz-
wigzanie jest postaci:

e(t) =C exp(—%) + Cy exp(—i) /Ot exp(t—/)[ﬁa(t’) + (K; + Kg)a(t,)]dt',(2.48)

0 To T0 To dt’
ktéra $wietnie nadaje sie do dalszej analizy. Aby zrozumie¢ znaczenie wspotczynni-
kéw K i Ky przedyskutujemy to rozwigzanie dla przypadku statego naprezenia og
(wyznaczajac przy okazji state Cy 1 Cy).

Dyskusja rozwigzania réwnania (2.47) dla przypadku statego naprezenia. W tym
przypadku rozwiazanie réwnania (2.47) przyjmuje prostsza postac:

() = Cy exp(—TiO) + CoRyop[l — exp(—TiO)], (2.49)
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Rysunek 2.15: Przebieg prawego zbocza indeksu WIG (w skali potlogarytmicznej) dla
pierwszego maksimum; czerwona linia jest obliczona za pomocg szeregu we wzorze

(2.34).

przy czym stalg C7 mozna wyznaczy¢ z warunku poczatkowego
e(t=0)=¢eg= (K1 + Ky)og = C1, (2.50)
natomiast stata (5 z ograniczenia jakie naktadamy na asymptotyczne zachowanie
e(t — 00) =¢eg + &, = K00, (2.51)

ktére oznacza (w poltaczeniu z (2.50)), ze e = —Ks0( oraz (w polaczeniu z (2.49)),
ze Cy = 1. Rozwiazanie (2.49) wraz z wyznaczonymi stalymi prowadzi do dwdch
nastepujacych sytuacji:

(l) —K1<K2<OE€0<€Q+€6

¢ >0,
(i) Ko > 0=¢, <0,

ktore ilustrujemy na dwéch kolejnych rysunkach 2.16 i 2.17.

9 Wyprowadzenie réwnania (2.47). Doktadniej rzecz biorac, réwnanie (2.47) zo-
stalo uzyskane w oparciu o termodynamike proceséw nieodwracalnych. Tutaj wy-
prowadzimy je analogicznie ale w kontekscie rynkow finansowych korzystajac z od-
powiednich analogii zebranych w ponizszej tabeli.

2.6 Subdyfuzja fraktalna

Analogicznie jak w rozdz.2.4, mozna otrzymac¢ na drodze czysto formalnej réwna-
nie dyfuzji fraktalnej (ang. Fractional Diffusion Equation, R. Metzler, J. Klafter:

W pierwszym czytaniu mozna niniejsze wyprowadzenie opuscié.
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Rysunek 2.16: Rozwiazanie réwnania (2.49) dla sytuacji (i).

The Random Walk’s Guide to Anomalous Diffusion: A Fractal Dynamics Approach,
Physics Report 339 (2000) 1-77, [18]). Proces stochastyczny prowadzacy do tego
réwnania nosi nazywe blgdzenia losowego w czasie fraktalnym (ang. fractal time
random walk). Na wyprowadzenie réwnania dyfuzji fraktalnej w ramach tzw. mode-
lu dolinowego (ang. Valley Model), opisujacego btadzenie losowe dziur w materiale
amorficznym, wskazaliémy w rozdz. 7.3.1.

Zatem, rozwazmy jednowymiarowe réwnanie dyfuzji Ficka (dla uproszczenia bez

dryfu)

of (x,t)  0*f(x,t).
ot =D oz’

w dalszym ciggu zaktadamy dla prostoty, ze wspotczynnik dyfuzji D jest staly.

Catkujac to réwnanie stronami po czasie otrzymujemy jako kroki posrednie:
Ot O f(x,t)
ot—1  0x?
oraz uogoélnienie powyzszego réwnania dla 0 < a < 1 - stad pochodzi nazwa subdy-
fuzja,

(2.52)

f(z,t) — f(x,t =0)=D (2.53)

0~ 92
f(l‘,t)-f(.ﬁﬁ,t:()): aata%a

(2.54)

gdzie D, jest uogdlnionym wspétezynnikiem dyfuzji (tutaj stalym), ktérego wymiar
wynosi dtugosé? /czas®, o czym dokladniej powiedzieliSmy w dalszej czeSci (patrz
rozdz. 7.3.1).

Rézniczkujac czastkowo po czasie (2.54), uzyskujemy poszukiwane réwnanie sub-
dyfuzji fraktalnej

Of(x,t) _ D ot 82f(x,t)‘

ot Totl—a Jx2 (2.55)
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Rysunek 2.17: Rozwiazanie rownania (2.49) dla sytuacji (ii).

Rozwiazanie tego réwnania mozna wyrazi¢ za pomoca H-funkeji Foxa

2
1 2,0 X
1,2

Tt = Jipm

albo w alternatywnej postaci

SO‘) 1 ] (2.56)

- %1 2) 1 . (2.57)

Najwazniejsze wtasnosci H-funkeji Foxa, zwtaszcza w domenie Fouriera i w domenie
Laplace’a oraz dla sytuacji asymptotycznej, oméwiliémy w Dodatku A.
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Czesé I

Procesy gaussowskie
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Rozdziat 3

Ruch Browna, opalescencja
krytyczna, blekit nieba,
rozpraszanie krytyczne

Nasuwa sie od razu pytanie: co taczy ze soba wymienione w tytule tego rozdziatu,
kluczowe dla naszych rozwazan, zjawiska? Odpowiedz, podana niezaleznie przez fi-
zykow Alberta Einsteina i Mariana Smoluchowskiego mozna wyrazi¢ jednym stowem
fluktuacje - to dzigki istnieniu duzych fluktuacji termicznych w réznych uktadach
ztozonych mozliwe jest zaobserwowanie ruchow Browna, opalescencji krytycznej i te-
mu podobnych zjawisk. Jednakze pomiedzy tymi zjawiskami wystepuja takze zasad-
nicze réznice co do charakteru fluktuacji chociaz w obu przypadkach sg one makro-
skopowe: w ruchach Browna sg ograniczone podczas gdy w zjawiskach krytycznych
sa z zasady nieograniczone. Odpowiednio do tego méwimy o procesach gaussowskich
i niegaussowskich.

Nalezy podkresli¢, ze niniejsza praca dotyczy przede wszystkim niegaussowskiego
aspektu réznorodnych zjawisk przyrody, w tym biologicznych, medycznych i ekolo-
gicznych, ale takze zjawisk spotecznych i ekonomicznych przy czym zawezona jest do
dziedziny btadzen przypadkowych. Przy czym, procesy gaussowskie stanowig tutaj
niezbedna podstawe.

3.1 Ruch Browna

Zrozumienie zjawiska ruchu Browna, ktoére zostato szczegdlowo opisane przez an-
gielskiego botanika Roberta Browna w 1827 roku, nastgpilo na poczatko XX w. i
zwigzane jest z nazwiskami fizykow Alberta Einsteina, Paula Langevina, a przede
wszystkim Mariana Smoluchowskiego - zawdzieczamy Im wyjasnienie mechanizmu
tego zjawiska w oparciu o kinetyczno-molekularng teori¢ materii, dynamike stocha-
styczna oraz teorie stochastycznych proceséw Markowa (patrz N.G. van Kampen:
" Procesy stochastyczne w fizyce i chemii”, Panstwowe Wydawnictwo Naukowe, War-
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szawa 1990; R. Kubo, M.Toda, N. Hashitsume: ”Fizyka statystyczna II. Mechanika
statystyczna stanow nieréwnowagowych”, Wydawnictwa Naukowe PWN, Warsza-
wa 1991; S. Chandrasekhar, M. Kac, R. Smoluchowski, ”Marian Smoluchowski His
Life and Scientific Work”, PWN, Warszawa 2000; S. Chandrasekhar, ”Stochastic
Problems in Physics and Astronomy”, Rev. Mod. Physics, 15, 1-89 (1943); B. Ci-
chocki, ”Ruchy Browna”, Delta (1983) nr 4 str 4-5 oraz nr 5 str. 6-10; R. Kutner,
”Metoda Monte Carlo a ruchy Browna”, Delta (1986) nr 9 str. 10-12; B. Sredniawa,
”Marian Smoluchowski (1872-1917)”, Delta (1997) nr 12 str. 3-6). Poréwnanie teorii
z doswiadczeniem pozwolito Jeanowi Perrinowi na wyznaczenie liczby Avogadro, a
zatem bezwzglednych mas atomowych i stanowito przekonywujacy dowod realnosci
tzw. hipotezy atomistycznej budowy materii, ktorej korzenie siegaja starozytnosci,
poczynajac od Demokryta z Abdery (A. Gawrys, Z. Gawrys, "Poczet wielkich fi-
zykow atomistéw”, Instytut Wydawniczy ”Nasza Ksiegarnia”, Warszawa 1976), a
przede wszystkim doprowadzito ostatecznie (w roku 1908) do uznania kinetycznej
teorii materii stworzonej (w 1898 roku) przez Ludwiga Boltzmanna (ktéry niestety
nie dozyt tej chwili).

Charakterystyczna wtasno$¢ ruchu Browna to wystepujgca nieustan-
nie nieregularna zmiana polozenia makroczasteczki (np. kuleczki tluszczu
lub pytku kwiatowego) o rozmiarach rzedu 10~% c¢m, zawieszonej w cieczy (np. w
rozcienczonym mleku albo w wodzie) lub w gazie, wywolana przypadkowymi potra-
ceniami ze strony otaczajacych ja znacznie mniejszych (nawet o cztery rzedy wielko-
Sci) czasteczek osrodka. Inaczej méwiac, na czasteczke zawiesiny dziata fluktuujaca
sita spowodowana chaotycznymi nieskompensowanymi, wielokrotnymi uderzeniami
czasteczek osrodka. Wynik pojedynczego, catkowicie przypadkowego zderzenia jest
bardzo maly (nawet w skali mikroskopowej), jednak sumarycznym efektem duzej
liczby tych zderzen moze by¢, obserwowane przez mikroskop nawet o niewielkim
powiekszeniu, znaczne wypadkowe przemieszczenie przypadkowe czastki zawiesiny.
Oczywiscie, aby takie przemieszczenie mogto by¢ zaobserwowane musi istnie¢ znacz-
na chwilowa réznica liczby czastek osrodka po obu stronach czasteczki zawiesiny. In-
nymi stowy, muszq istnie¢ znaczne fluktuacje liczby czgsteczek osrodka w otoczeniu
czqsteczki zawiesiny - zostato to po raz pierwszy wykazne przez Smoluchowskiego,
ktory wykorzystal w tym celu rozklad dwumianowy Bernoulliego!. Te znaczne fluk-
tuacje prowadza do przekazu wystarczajaco duzego pedu makroczasteczce ze strony
czasteczek osrodka, skutkujacego wtasnie zauwazalnym przemieszczeniem makro-
czasteczki.

Podejscie Smoluchowskiego

Doktadnie rzecz biorac, pytanie jakie postawit Smoluchowski brzmiato nastepujace:
jaka jest, érednio rzecz biorac, nadwyzka, (An(=ngr —ny)) > 0, liczby czasteczek
osrodka, ng, znajdujacych sie, na przykltad, po prawej stronie czgsteczki zawiesiny
wzgledem tych po lewej, ny, (przy czym ng + np = n, gdzie n jest catkowita licz-

'Dla prostoty rozklad dwumianowy nazywamy takze rozkladem Bernoulliego.
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ba czasteczek osrodka znajdujacych sie w najblizszym otoczeniu makroczasteczki
zawiesiny)? Ta warto$¢ Srednig obliczyt bardzo prosto

(An) = Xn: An - p,(An), (3.1)

An>0

gdzie prawdopodobienstwo nadwyzki

pu(An) = 2% ( @ ) (3.2)

zostalto otrzymane przez naturalnym zatozeniu rownego prawdopodobienstwa znale-
zienia pojedynczej czasteczki osrodka po obu stronach makromolekuly (przy czym
wyrazenie w nawiasie jest dobrze znanym wspotczynnikiem dwumianowym zwanym
takze czynnikiem Newtona, patrz J. Antoniewicz: ” Tablice matematyczno-fizyczne”,
Wydawnictwo Naukowe PWN, Warszawa 1991); nalezy pamietaé, ze suma w wy-
razeniu (3.1) rozciaga sie tylko na takie wartosci An, ktére posiadaja taka sama
parzystos¢ jak samo n. Oczywiscie pytanie Smoluchowskiego dotyczy sytuacji dla
duzych wartosci n (szacuje sie, ze w normalnych warunkach, w ciagu jednej sekundy
z makroczasteczka zawiesiny zderza sie, érednio rzecz biorac, n ~ 10%° czasteczek
osrodka). Stosujac do wyrazenia (3.1)wzér Stirlinga, otrzymujemy z dobrym przy-
blizeniem, ze?

(An) ~ /. (3.3)

Oznacza to, ze w normalnych warunkach ogromna liczba, $rednio rzedu 10*° nad-
miarowych czasteczek osrodka, zderza sie w ciggu jednej sekundy z jedng ze stron
makromolekuty co moze prowadzi¢ do widocznego pod mikroskopem, nawet o nie-
wielkim powiekszeniu (rzedu 10%) przemieszczenia czasteczki zawiesiny. Uzywajac
jezyka teorii gier (czesto stosowanej na rynkach finansowych), mozemy stwierdzi¢,
ze im dluzej toczy sie gra tym $rednia wielkos¢ wygranej albo przegranej roénie
pierwiastkowo z czasem.

Otrzymany wynik nie jest sprzeczny z faktem, ze $rednia liczba czasteczek osrod-
ka po obu stronach makromolekuly jest réwna i wynosi (n) = (ng) = n/2, gdyz
jest on zwiazany z fluktuacja liczby czasteczek n;, J = L, R, po obu stronach, czyli

z dyspersja o(ny) = \/((nJ —(ny))?), J = L, R. Ponownie korzystajac z rozktadu
Bernoulliego. mozna tatwo obliczy¢, ze dyspersja czasteczek osrodka po kazdej ze
stron makroczasteczki zawiesiny

o(ny) ~+/n, J=L,R; (3.4)

czyli znaczny nadmiar czasteczek po jednej stronie jest zwigzany oczywiscie z ich
znaczacym deficytem po drugiej; w efekcie daje to rozrzut w petni zgodny z wynikiem
(3.3).

W Dodatku B zamieszczono wyprowadzenie wzoru (3.3).
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Oczywiscie, Smoluchowskiemu udalo sie rozwia¢ wiele innych watpliwosci (na
przyktad dotyczacych éredniej predkosci czasteczki zawiesiny), ktérych tutaj juz nie
bedziemy omawia¢. Mozna powiedzie¢, ze mozliwosé wystepowania znacznych fluk-
tuacyi gestosci osrodka w bezposrednim otoczeniu czasteczki zawiesiny oraz przypad-
kowosé w jej ruchu przejawiajaca sie w postaci zygzakowatej trajektorii btadzacej
makromolekuty, lezg u podstaw statystycznego charakteru ruchu Browna.

3.2 Sitéw kilka o fraktalnym ruchu Browna

Jest jeszcze jeden prosty ale istotny aspekt ruchu Browna, na ktory zwréocit uwage
amerykanski matematyk Benoit B. Mandebrot a ktory pozniej zostat przez niego
wykorzystany do opisu utamkowych (fraktalnych) ruchéw Browna m.in. na rynkach
finansowych (B.B. Mandelbrot: ”Multifraktale rzadza na Wall Street”, Swiat Nauki
92 (1999) 64-67; G. Paladin, A. Vulpiani: " Anomalous Scaling Laws in Multifrac-
tal Objects”, Physics Reports 156 (1987) 147-225). Mianowicie, w miare uptywu
czasu czasteczka zawiesiny odwiedza coraz wiekszg liczbe punktéw ptaszcezyzny, wi-
zytujac w granicy (jak sie wydaje) prawie wszystkie rownie czesto ($rednio rzecz
biorac) zatem, wymiar fraktalny (Hausdorffa) d; trajektorii brownowskiej jest réw-
ny 2 natomiast jej wymiar topologiczy di,, wynosi 1 (gdyz jest to nadal linia); do
omawiania tych zagadnien powrécimy w rozdz. 7?7 w kontekscie zaobserwowanych
przez angielskiego hydrologa H.E. Hursta w roku 1951 i analizowanych przez B.B.
Mandelbrota (poczynajac od roku 1971) fraktalnych ruchow Browna, dla ktérych
0 < ds <2, (H.-O. Peitgen, H. Jiirgens, D. Saupe: ” Granice Chaosu. Fraktale”, tom
1, Wydawnictwo Naukowe PWN, Warszawa 1997).

Hurst badal wariancje (a wiec fluktuacje) poziomu rzeki Nilu w zaleznosci od
czasu® zauwazajac, iz zaleznosé ta jest superliniowa czyli persystentna (a nie liniowa
jak dla ruchéw Browna) co pozwolito mu lepiej okresli¢ rozmiary zbiornika wodnego
tamy a jednocze$nie zapoczatkowalto badania nad btadzeniami niebrownowskimi.

3.3 Zjawisko opalescencji krytycznej
i zjawisko Tyndalla

Rola fluktuacji, wskazana przez Smoluchowskiego, przejawia sie szczegdlnie wyraz-
nie w zjawisku opalescencji krytycznej (”Stownik fizyczny”, Wiedza Powszechna,
Warszawa, 1984; ” Encyklopedia Fizyki Wspotczesnej”, PWN, Warszawa, 1983) kto-
re nalezy do szerokiej grupy zjawisk krytycznych zwiazanych z rozpraszaniem pro-
mieniowania na uktadach znajdujacych sie w obszarze przejscia fazowego. Zjawisko

3Hurst, jako hydrolog, uczestniczyt w projektowaniu tamy assuanskiej dysponujac odnaleziony-
mi rejestrami poziomu Nilu prowadzonymi przez Egipcjan od blisko 850 lat (J. Czekaj, M. Wos,
J. Zarnowski: ”Efektywnos¢ gieldowego rynku akcji w Polsce z perspektywy dziesieciolecia”, Wy-
dawnictwo Naukowe PWN, Warszawa 2001).
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to polega na tym ze osrodki, ktére w warunkach normalnych sg dla promieniowa-
nia optycznie przezroczyste, w poblizu punktu krytycznego metnieja a natezenie
promieniowania rozproszonego? na tych osrodkach pod niezerowym katem (wzgle-
dem kierunku fali padajacej) gwaltownie rosnie - méwimy wtedy o rozpraszaniu
krytycznym. Zatem w zjawisku opalescencji krytycznej mamy do czynienia z roz-
praszaniem krytycznym. Zjawisko opalescencji krytycznej zostato wyjasnione przez
Mariana Smoluchowskiego. Wykazal on, ze gwalttowny wzrost promieniowania roz-
proszonego (pod niezerowym katem) jest spowodowany makroskopowymi fluktu-
acjami gestosci osrodka w poblizu punktu krytycznego - tym samym uktad staje
sie wysoce niejednorodny a duzym zgeszczeniom osrodka towarzysza jego znaczne
rozrzedzenia. Innymi stowy, te duze fluktuacje powodujg wystapienie zjawisk cha-
rakterystycznych dla osrodkow metnych - obok wspomnianych powyzej takze takich
jak zjawisko Tyndalla®. Smoluchowski zauwazyt na przyklad, ze fluktuacje gesto-
Sci powietrza (przede wszystkim czasteczek tlenu i azotu) wywotuja lokalne zmiany
wspotezynnika zatamania Swiatta, powodujac przez to wzrost rozpraszania $wiatta
w atmosferze. Poniewaz rozpraszanie to jest najwicksze dla fal krotkich®, wiec w
wyniku przechodzenia $wiatta przez atmosfere niebo uzyskuje zabarwienie blekitne.
Analogiczne zjawiska wystepuja réwniez w magnetykach gdzie obserwuje sie kry-
tyczne rozpraszanie neutronéw na fluktuacjach momentéw magnetycznych w pobli-
zu temperatury Curie; podobnie rzecz sie ma z krytycznym rozpraszaniem promieni
rentgenowskich na ferroelektrykach i stopach podwojnych.

W pierwszej czedci pracy dajemy przeglad najwazniejszych elementéw tematyki
dotyczacej proceséw gaussowskich - jest to konieczny wstep do proceséw niegaus-
sowskich, stanowiacych zasadnicza cze$¢ (druga), niniejszej pracy.

3.4 Wstepne definicje

Rozwazamy przyktadowo btadzenie przypadkowe pojedynczej czasteczki zawiesiny
przedstawione schematycznie na rys.3.1, gdzie wektory &y, ¥3, ..., &, oznaczaja
kolejne przypadkowe przemieszczenia czasteczki (n jest catkowita liczba tych prze-
mieszczen). Sumaryczne (wypadkowe) przemieszczenie czasteczki wyraza sie wzorem

4Jest to tzw. rayleighowskie rozpraszanie czyli rozpraszanie $wiatla bez zmiany jego dtugoéci
fali, ” Encyklopedia fizyki wspotczesnej”, PWN Warszawa 1983.

5Ogdlnie méwige, zjawisko to wystepuje np. przy przechodzeniu §wiatla przez oérodek wysoce
niejednorodny; niejednorodno$é ta moze byé spowodowana nie tylko makroskopowymi fluktuacjami
ale np. makromolekutami aero- lub hydrozoli takimi jak dym, mgta albo koloid, ”Stownik fizyki”,
Prészynski i S-ka Warszawa 1999.

6Moc rozproszonej fali elektromagnetycznej, czyli reemitowanej przez drgajace dipole czasteczek
gazdéw pobudzonych przez fale padajaca, jest zgodnie ze wzorem Rayleigha, wprost proporcjonalna
do kwadratu objetosci (kulistego) obiektu rozpraszajacego i odwrotnie proporcjonalna do czwartej
potegi dhugosci fali co faworyzuje oczywiscie fale krétkie.
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Rysunek 3.1: Prosta, graficzna reprezentacja sumarycznej zmiennej losowe;j X (n) —
X(0) = X%, ;.

(gdzie X, jest potozeniem poczatkowym czasteczki zawiesiny a X (n) jej potozeniem
koncowym); z matematycznego punktu widzenia, zaréwno pojedyncze jak tez suma-
ryczne przemieszczenia traktujemy jak (wektorowe) zmienne losowe tzn. takie co do
ktorych wiadomo, ze ich wystepowanie opisane jest jakimis rozktadami prawdopo-
dobienstwa - w dalszym ciagu przyjmujemy, ze pojedyncze przemieszczenia opisane
sq identycznym rozkladem, co wynika bezposrednio z obserwacji.

3.5 Pierwszy i drugi moment

Pytanie jakie stawiamy na wstepie dotyczy zalezno$ci sredniej z kwadratu wypadko-
wego przemieszezenia (X () — Xo)2) czasteczki zawiesiny (startujacej z punktu Xo)
od czasu t; przy okazji, obliczamy $rednig z sumarycznego przemieszczenia (X' —XO).
Wystepujaca tutaj oraz wszedzie w tym rozdziale $rednia (ktéra oznaczamy przez
(...)) jest srednia (arytmetyczna) po zesple statystycznym do$wiadczen podobnych
o czym jest mowa ponizej (patrz rys. 3.2). W przypadku blgdzenia czgsteczek staty-
stycznie niezaleznych, co ma miejsce np. dla rozcienczonych zawiesin, taka srednia
jest oczywiscie réwnowazna sredniej (arytmetycznej) po liczbie czasteczek.

Na rys.3.2 przedstawiono zespot statystyczny doswiadczen przeprowadzonych w
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doswind Uzewie 2

Rysunek 3.2: Zespol statystyczny zlozony z L doswiadczen podobnych (realizacji
czyli makrospowych replik) ruchu Browna pojedynczej makromolekuty.

identycznych warunkach termodynamicznych, co oczywiscie nie oznacza, ze wyniki
tych doswiadczen sg identyczne. Jak wida¢, w réznych do$wiadczeniach sumaryczne
przemieszezenie czasteczki X n) —)?é jest (na ogét) rézne podobnie jak rézne sa (na
og6l) pojedyncze przemieszczenia fé-, gdzie 7 = 1, 2, ..., n, numeruje kolejne po-
jedyncze przemieczczenia, natomiast [ = 1, ..., L, numeruje kolejne doswiadczenia
w zespole statystycznym doswiadczenn (L jest liczebnoscia tego zespotu - w prak-
tyce dobiera sie L > 1). Mozemy teraz zdefiniowaé¢ potrzebne nam pierwsze dwa
momenty zmiennej losowej X (n) —Xow postaci nastepujacej sSredniej arytmetycznej,

(Xn) Koy = Jim 32K ) — K = 1 30 (K'(m) — K,

=1

h

m=1, 2 (3.6)
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ktora nazywa sie wlasnie $rednig po zespole. (Zdefiniowana powyzej operacja nie
zawiera oczywiscie sredniowania po liczbie czasteczek gdyz dotyczy przypadku bta-
dzenia pojedynczej czasteczki zawiesiny.) Réwnosé przyblizona dotyczy przypadku,
gdy érednie sg skonczone bowiem woéwczas, na mocy prawa wielkich liczb, mozna
z kontrolowang doktadnoscia przyblizy¢ wartosé graniczng przez srednia dla odpo-
wiednio dobranego skoficzonego L (czesto rzedu np. 10%).

Zaktadamy, ze przestrzen, w ktérej odbywa sie btadzenie jest izotropowa (przypa-
dek przestrzeni anizotropowej zwigzanej z istnieniem zewnetrznego pola rozwazamy
w dalszych rozdziatach). Dla L dostatecznie duzego otrzymuje sie z dobrym przybli-
zeniem, ze pierwszy moment (odpowiadajacy przyjeciu w wyrazeniu (3.6) m = 1),

(X(n) — Xo) =0, (3.7)

co dobrze wida¢ na rys.3.3. Przedstawiono na nim zaleimosé (X (n) — Xo) od L
uzyskana na drodze symulacji Monte Carlo”. Wynik ten jest niemal oczywisty je-
zeli uprzytomnimy sobie, ze dla dostatecznie dyzych L sumaryczne przemieszczenie
uzyskane w dowolnie wybranym doswiadczeniu posiada, z dobrym przyblizeniem,
swoje kontrprzemieszczenie (przemieszczenie przeciwne) otrzymane w jakim$ innym
doswiadczeniu.

Wobec tego, obliczenie drugiego momentu (X (n) — X)2) jest réwnowazne (w
przypadku przestrzeni izotropowej) wyznaczeniu dyspersji (wariancji) wypadkowego
przemieszezenia X (n) — Xo,

—

(0x(n))* = <()§(n)—)§o)2> — (X(n) — Xo)*(= (X(n))*) = (X(n))*)
= ((X(n) = Xo0)*); (3.8)

wyprowadzamy zwiazek pomiedzy dyspersja ox(n) wypadkowego przemieszczenia
(sktadajacego sie z n pojedynczych przemieszczen) a dyspersja o, pojedynczego
przemieszczenia. Zwigzek ten stanowi pierwszy punkt tezy centralnego twierdzenia
granicznego, ktore formutujemy w dalszej czesci.

Z (3.5), (3.6), (3.7) oraz (3.8) otrzymujemy natychmiast, ze

—

(ox(n)* = ((X(n) - X0)*) = ((

=
S
=
~

= D @)% + (7 - 7)), (3.9)
=1 i#]
gdzie skorzystalismy z wlasnosci addytywnosci sredniej, wynikajacej bezposrednio
z okreslenia (3.6), mowiacej ze Srednia sumy zmiennych losowych jest réwna sumie
srednich tych zmiennych.
Wykorzystujemy teraz wtasno$¢ multiplikatywnosci $redniej mowiaca, ze Sred-
nia z tloczynu niezaleznych zmiennych losowych jest rowna tloczynow: Srednich tych

"Dla uproszczenia i przyspieszenia symulacji wszystkie elementarne przemieszczenia sa tutaj
jednakowej dlugodci.
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zmiennych; wlasnosé ta wynika takze z (3.6) po odpowiednim przegrupowaniu sktad-
nikow wchodzacych w sktad wystepujacej tam sumy. Dla rozcienczonych zawiesin,
nie dostrzegamy w ruchach Browna zadnej zaleznosci (lub inaczej mowiac korela-
cji) pomiedzy réznymi pojedynczymi przemieszczeniami czasteczek zawiesiny - stad
zalozenie o statystycznej niezaleznosci tych przemieszczen jest usprawiedliwione.
Zatem wykorzystujac réwnosé (3.9), otrzymujemy natychmiast

(ox(n))* = Zn21<(ffj)2> = n((7)*) = n(0,)", (3.10)

gdzie opudcilidmy wskaznik indeksujacy numer kroku aby podkresli¢ niezaleznosé
sredniej z kwadratu pojedynczego przemieszczenia od jego numeru co wynika z
faktu, ze pojedyncze przemieszczenia sg roéwnoprawne - jest to skutek jedorodno-
Sci czasu oraz jednorodnosci przestrzeni. Ponadto, podobnie jak dla sumarycznego
przemieszczenia, skorzystaliSmy z izotropowosci przestrzeni prowadzacej do znikania
pierwszego momentu pojedynczego przemieszczenia

(Z)=0,j=1,2,...,n (3.11)

Wyrazenie (3.10) jest kluczowym gdyz pozwala (co wykazemy w dalszej czesci) wy-
razi¢ tak wazna wielkosé jaka jest (makroskopowy) wspdtezynnik dyfuzji za pomoca
wielkosci mikroskopowych charakteryzujacych pojedyncze przemieszczenia czastecz-
ki.

Réwnosé (3.10) mozna przepisaé w postaci jawnie uwzgledniajacej czas; w tym
celu wprowadzamy elentarny przedzial czasu 7 charkteryzujacy sredni czas uptywa-
jacy pomiedzy kolejnymi, pojedynczymi przemieszczeniami (istnienie takiego czasu
oznacza, ze rozktad czaséw oczekiwania pomiedzy kolejnymi przemieszczeniami dany
jest rozktadem Poissona - patrz Dodatek ...). Stad,

(ox(1))* = (X (t) — Xo)*) = 2d(t — ty) D, (3.12)

gdzie d jest wymiarem przestrzeni Euklidesowej, w ktorej zachodzi btadzenie, t—ty =
nT czasem, natomiast

1 (0,)?

D= —
2d 1

(3.13)

okresla, o czym jest mowa takze w dalszej czesci, wspotezynnik dyfuzji czastek za-
wiesiny w nieobecno$ci zewnetrznego pola. Nalezy podkresli¢, ze powyzsze przejscie
do obrazu ciggtego w czasie jest mozliwe, z dobrym przyblizeniem, tylko wtedy gdy
t — 1y > 7 co odpowiada wykonaniu przez czasteczke duzej liczby przemieszczen -
oznacza to, ze n > 1 i w rezultacie czasteczka ma mozliwos¢ penetrowania znacz-
nych obszaréw przestrzeni. Innymi stowy, rozpatrujemy blgdzenie czqsteczki w skali
makroskopowej, ktére tym samym jest scharakteryzowane makroskopowym wspot-
czynnikiem D. Zatem $cisle rzecz biorac, wyrazenie (3.12) nalezy zapisaé w postaci
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wykorzystujacej przejscie graniczne

1 (ox(1)*

D =
t—to—oo 2d t —ty

(3.14)
podkreslajacej makroskopowy charakter wspotezynnika dyfuzji D. Jak widaé, wspot-
czynnik dyfuzji mozna wyznaczaé¢ na dwa zasadniczo rézne sposoby: 1) makrosko-
powy, za pomoca wyrazenia (3.14) oraz 2) mikroskopowy, stosujac wyrazenie (3.13).
Jest to uderzajgca dualnosé sugerujaca samopodobny, niezalezny od skali w jakiej
prowadzone sg pomiary, charakter btadzenia - do problemu tego powrdcimy w dal-
szej Czesci.

3.6 Propagator

Celem niniejszego rozdziatu jest wyznaczenie asymptotycznej gestosci prawdopodo-
bienistwa warunkowego P(X,t | Xy, o) znalezienia czasteczki zawiesiny w polozeniu
X w chwili ¢ pod warunkiem, ze w chwili poczatkowej t, czasteczka znajdowata
sie w polozeniu Xo. Cel ten zostanie zrealizowany dzieki odpowiedniej dekompo-
zycji propagatora. Przy okazji zostanie wyprowadzona druga cze$¢ Centralnego
Twierdzenia Granicznego.

3.6.1 Dekompozycja propagatora

Innymi stowy, naszym celem jest znalezienie jednoczastkowego propagatora - moze-
my go wyrazi¢ w postaci nastepujacej dekompozycji (superpozycji),
(e}

P(X,t| Xo,to) = > P(X,t,n | Xo,t0), (3.15)

n=0

gdzie 77()2 st | X'O, to) jest gestoscia prawdopodobiefistwa warunkowego znalezienia
czasteczki zawiesiny w potozeniu X w chwili ¢ w wyniku doktadnie n przemieszczen
pod warunkiem, ze w chwili pocza@tkowej ty czasteczka znajdowata sie w potozeniu
Xo. W dalszym ciggu P(X,t,n | Xo,t) mozna zapisa¢ w postaci,

P(X,t,n| Xo,to) = P(X — Xo | t — to, n)h(t — to,n), (3.16)

gdzie P(X — X, | t — to,n) jest gestoscia prawdopodobienstwa warunkowego prze-
mieszczenia czasteczki o wektor X —)?0 pod warunkiem, ze nastapito to w przeciaggu
czasu t — tog w wyniku n pojedynczych przemieszczen; ¥ (t — tg,n) jest prawdopop-
dobienstwem wykonania przez czasteczke w przeciggu czasu t —ty doktadnie n prze-
mieszczen.

Obecnie zajmiemy sie obliczeniem gestosci prawdopodobienstwa 77()2' — X, |
t —to,n). W niniejszej czesci zaktadamy, ze jest ono niezalezne od czasu t —ty co ma
miejsce wtedy gdy srodowisko, w ktérym zachodzi btadzenie czasteczki pozostaje
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w kazdej chwili w stanie réwnowagi statystycznej (dopuszczajacej, rzecz jasna, ist-
nienie fluktuacji). Zatem, ma miejsce nastepujaca oczywista konwolucyjna réwnosé
tancuchowa,

P(X — Xy | n) = /P()Z—X'l|n—1)73()€1—)?0|1)d)21
= PX-X|n-1)@PX, - X |1), (3.17)

gdzie catkowanie w (3.17) jest przeprowadzone po calej, nieograniczonej przestrzeni
euklidesowej; wykonujac kolejne kroki rekurencyjne (dla n = 2,3,...) otrzymujemy
nastepujaca n-krotna konwolucje

PX-Xy|n) = PX-X,1]1)®...0PXs—X,|1)
® PXo—X1|1)@P(X:—X,|1). (3.18)

Po dokonaniu transformacji Fouriera i skorzystaniu z wtasnosci, ze transforma-
ta Fouriera konwolucji ciggu funkcji jest réwna iloczynowi transformat
Fouriera tych funkcji wyrazenie (3.18) przybiera postac,

Pk |n)=Pk| )" =exp(nIn(P(k | 1), n=1, 2, ..., (3.19)

gdzie

— —

F(E) = / dX F(X) exp(ik - X) (3.20)
jest transformatg Fouriera funkcji F ()? ) (catkowanie w (3.20) jest, identycznie jak
w (3.17), przeprowadzone po calej, nieograniczonej przestrzeni euklidesowej).

W dalszym ciggu wprowadzimy prostsze oznaczenia, mianowicie

Pk | 1) = p(k) (3.21)
PX - Xy |1)=P(X - Xp); (3.22)

P nosi nazwe funkcji tworzacej prawdopodobienstwa P, czasami nazywa si¢ ja takze
czynnikiem strukturalnym btadzenia przypadkowego. Innymi stowy,

B(R) = / dXP(X) exp(ik - X), (3.23)

gdzie stosujemy oznaczenia k = (ky, ky,...) = (k1...,ka) = {k;}j=1.4 (przy czym d
jest wymiarem przestrzeni Euklidesowej); powyzsze réwnanie wraz z (3.19) pozwoli
nam podaé¢ warunki w jakich buduje sie rozklad Gaussa dla n-krokowej zmiennej
losowej (czyli sumarycznego przemieszczenia X - )20).
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Wprowadzimy teraz definicje rozktadéw stabilnych oraz rozktadow nieskonczenie
podzielnych. Mianowicie, o rozktadzie stabilnym moéwimy wtedy i tylko wtedy
ody VY prawdopodobiefistwo 77(}7 | n) jest, z doktadnoscia do czynnika skalujacego
(zar6éwno zmienna niezalezna jak i samo prawdopodobienstwo), réwne 73(}7 | 1) tzn.
gdy istnieje taka liczba a zalezna od n, ze

aP(aY |n) =P(Y |1), n> 1. (3.24)

Oznacza to, ze rozciggnieciu zmiennej niezaleznej musi towarzyszy¢ splaszczenie
rozkladu tak aby zachowaé jego normalizacje. Z relacji skalowania (3.24), (w oparciu
0 (3.19) i (3.21)) wynika, ze

-, -,

plak) = [p(k)]" = p(k) = [p(ak)]". (3.25)

7 rozktadem nieskonczenie podzielnym mamy do czynienia vyt(idy i tylko
wtedy gdy dla kazdego naturalnego n jego funkcja charakterystyczna ¢(k) jest n-ta
potega jakiej$ funkcji charakterystycznej ¢, (k), czyli

(k) = [dn(R)]". (3.26)

Zostanie pokazane w dalszej czesci, ze rozktady stabilne sa jednocze$nie nieskoncze-
nie podzielne (ale nie odwrotnie, co schematycznie ilustruje rys.3.4).

Przyktad 1: rozklad Gaussa

Obserwacje ruchéw Browna prowadza do wniosku, ze rozktad gestosci prawdopo-
dobienstwa kolejnego pojedynczego przemieszczenia czasteczki zawiesiny jest nieza-
lezny od jego numeru. Powyzszy wniosek jest niemal oczywisty w Swietle zatozenia
o statystycznej niezalezno$ci pojedynczych przemieszczen oraz jednorodnoéci czasu.
Przypus$émy, ze rozklad ten jest dany krzywa Gaussa, co stanowi dobre przyblizenie
rzeczywistej sytuacji. Zatem, niech

1

W@XP(—(@)Q/%%)% (3.27)

P(@;) = Pa(T;) = oo,

(gdzie skorzystalismy z oznaczen (3.5) i (3.22)). Podstawiajac powyzszy rozktad do
definicji funkcji charakterystycznej (3.21), otrzymujemy funkcje charakterystyczna,

-

pa(k), rozktadu Gaussa takze w postaci funkeji Gaussa,

pa(k) = exp(—(04)k?). (3.28)

Zgodnie z powyzsza zaleznoscia oraz relacja (3.19), funkcja charakterystyczna roz-
ktadu sumarycznej zmiennej losowej X (n) (patrz (3.5)) przyjmuje takze, dla kazdego
n > 1, posta¢ funkcji Gaussa,

~ —

Pg(k | n) = exp(—(0,)%k’n). (3.29)
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Stad, odwracajac relacje (3.23) otrzymujemy,

L exp(—(X(m)*/2(0x)?), (3.30)

PG()?(n)) = [271'(0)()2]

rozklad Gaussa, przy czym dyspersja tego rozktadu oy jest dana wzorem (3.10).
Jak widac, rozkltad Gaussa jest rozkladem stabilnym, przy czym czynnik skalujacy
wynosi tutaj a = n'/2. Latwo sprawdzi¢, iz jest on takze rozktadem nieskoriczenie
podzielnym.

Przyklad 2: rozklad Lorentza

Przypus$émy, ze w pewnych warunkach, np. w poblizu punktu krytycznego czy tez na
granicy faz, btadzaca czasteczka moze od czasu do czasu wpadaé¢ w poslizg (" zrywac”
tarcie) co moze prowadzi¢ z rzadka do dtugich pojedynczych przemieszczen. Tego
typu zachowanie (o czym bedzie obszernie mowa w dalszej czedci) moze prowadzi¢
do rozktadu Lorentza, ktory nie posiada skonczonej dyspersji. Funkcja charaktery-
styczna rozktadu Lorentza jest dana w postaci nastepujacej funkcji wyktadnicze;j,

pr(k) = exp(— | k |). (3.31)
Stad, funkcja gestosci rozktadu Lorentza przyjmuje postac,

v 1

P

(3.32)

przy czym rozwazamy dla prostoty tylko przypadek jednowymiarowy. Podstawiajac,
podobnie jak w poprzednim przykladzie, wyrazenie (3.31) do relacji (3.19) otrzymu-
jemy funkcje charakterystyczna sumarycznej zmiennej losowej,

—

Py(k | n) = exp(—v | k| n) (3.33)

a stad jej rozktad

PL(X(n)) = - (3.34)

Jak wida¢, czynnik skalujacy a = n, czyli rozktad Lorentza jest stabilny oraz nie-
skonczenie podzielny.

Konczac (na razie) omawianie tych przyktadéw zauwazmy, ze wszystkie one daja
sie wyrazi¢ za pomocg wspoélnej, ogélnej funkeji charakterystycznej

p(k) = exp(—const | k |?), (3.35)
gdzie wyktadnik 0 < 3 < 2. Bedzie jeszcze o tym mowa w dalszej czesci.
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3.6.2 Rozklady asymptotycznie gaussowskie

Rozwinmy w szereg Taylora funkcje charakterystyczna ﬁ(E),

K (02)? + O({(k;)*}j=1.4) (3.36)

N —

B(k) =
gdzie
/ dX X?P (3.37)

przyjeliSmy tutaj, ze przestrzen jest izotropowa (np. nie wystepuje dryf) co oznacza,
ze funkcja charakterystyczna jest parzysta funkcja k (czyli pierwsza pochodna po
k znika oraz reszta © jest takze parzysta funkcja E), ponadto, zatozyliSmy, ze spel-
niony jest pierwszy punkt centralnego twierdzenia granicznego tzn. o, < oo. Nalezy
podkresli¢, ze rozwiniecie (3.36) nie oznacza, ze wyzsze (niz druga) pochodne funk-
cji charakterystycznej istniejg - w ogblnosei tak by¢ nie musi. W dalszym ciagu, dla
maltych wartosci | k | tzn. dla k:2 < 1, 5=1,...,d, korzystajac z (3.36) mozemy z
dobrym przyblizeniem wyrazi¢ (3 19) w posta(n funkcji wyktadniczej

P(F| ) ~ expl— (o (m) ), (3.38)

gdzie (ox(n))? dane jest wyrazeniem (3.10). Oczywiscie, gdyby nie byl spetniony
pierwszy punkt CTG rozwinigcie nie bytoby mozliwe i wtedy zamknigtej postaci

(k | n) musielibySmy poszukiwan na innej drodze; takiej wlasnie sytuaCJl dotyczy
cze$¢ druga niniejszej pracy. W oparciu o (3.38) mozemy wyznaczyé P(X — X | n)
jako transformate Fouriera

PX— X, |n) = W [ dFexp(~ik - (X~ Xo)/P(F | n)
1
27 (0x(n))?]

przy czym powyzsza, gaussowska postaé rozkladu P(X — X, | n) jest shuszna dla

Q

/2 exp[—()? - )?0)2/2(0)((”))2]; (3.39)

duzych wartosci przemieszczenia, tzn. dla | X — Xy |> 1. Oczywidcie, warunek ten
da sie¢ w zasadzie spetni¢ wtedy gdy n > 1 czyli dla asymptotycznie duzej liczby
pojedynczych przemieszezen. Zatem rozklad P(X — X, | n) praybiera asymptotycz-
nie postaé¢ rozktadu Gaussa (3.39). Stanowi to tre$¢ drugiego (i ostatniego) punktu
centralnego twierdzenia granicznego.

3.7 Proces Markowa - rOGwnanie Mistrza

Bazujac na obserwacji ruchow Browna pojedynczej czasteczki zawiesiny, mozna za-
proponowac do ich opisu rownosé¢ tancuchows Bachelier’a-Chapmana-Kotlmogorowa
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(S. Chandrasekhar: Stochastic Problems in Physics and Astronomy”, Review of Mo-
dern Physics”, 15 (1943) 1-89; E. W. Montroll, B.J. West: ”Studies in Statistical
Mechanics”, Vol. VII, Eds. E.W. Montroll, J.L.. Lebowitz, North-Holland, Amster-
dam 1979; N.G. van Kampen: ”Procesy stochastyczne w fizyce i chemii”, PWN,
Warszawa 1990 (ttum. z j. angielskiego); R. Kubo, M. Toda, N. Hashitaume: ” Fizyka
statystyczna II. Mechanika statystyczna stanéw nieréwnowagowych”, Wydawnictwa
Naukowe PWN, Warszawa 1991; [.I. Gikhman, A.V. Skorokhod: ”Introduction to
the Theory of Random Processes”, Dover Publ. Inc., New York 1996 (ttum. z j.
rosyjskiego))

P(X,t+ At ’ Xoﬂfo) =
S WX t+ At X — AX, )P(X — AX,t | Xo,t0) =

AX
W(X. t+At] X, O)P(X,t| Xo.to) +

Y WX, t+At] X — AX )P(X — AX, t | X, 1), (3.40)
AX£0

ktora pozwala uzyskaé réwnanie ewolucji na wielkosé P(X,t | Xo,to) zdefiniowa-
na jako prawdopodobienistwo warunkowe (lub gesto$é prawdopodobienstwa warun-
kowego o ile operujemy cigglymi zmiennymi losowymi®) znalezienia czasteczki w
potozeniu X w chwili ¢ pod warunkiem, ze poczatkowo w chwili tq czasteczka ta
znajdowala sie w potozeniu Xo. Prawdopodobienstwo to jest kluczowag wiel-
kosScig charakteryzujaca proces stochastyczny.

Oczywiscie, pelny opis procesu stochastycznego Markowa uzyskujemy dopiero po
wprowadzeniu (niemal oczywistej) reguly na prawdopodobienstwo zupetne taczacej
wspomniane prawdopodobienstwo warunkowe z jednoczagstkows funkcja rozktadu

P(X,t—ty) = > P(X,t ]| Xo, t0)P(Xo,t0); (3.41)
AXo

zwykle przyjmuje sie, ze tg = 0 a wystepujaca po lewej stronie réwnosci jednorod-
no$¢ czasu ma jedynie charakter upraszczajacy, gdyz rozwazania moznaby prowadzi¢
rowniez i bez tego uproszczenia.

Sumowanie po prawej stronie réwnosci (3.40) zawiera element, w ktérym AX =
0; opisuje on przetrwanie czasteczki w potozeniu X od chwili ¢ do ¢ + At. Element
ten jest prawdopodobienstwem warunkowym znalezienia czasteczki w potozeniu X
w chwili ¢ + At pod warunkiem, ze w polozeniu tym pozostawala od chwili . Gdy
przemieszczenie AX # 0, element przejécia W()Z S+ At X — AX, t) jest prawdo-
podobienstwem warunkowym znalezienia czasteczki w potozeniu X w chwili £ + At

8Operowanie ciagtymi zmiennymi losowymi prowadzi do réwnania Mistrza niemal identycznego
z uzyskanym tutaj (3.44) z ta réznica, ze wystepujace w takim réwnaniu calkowanie zastapito-
by obecne tutaj sumowanie - niestety jego wyprowadzenie wymagaloby bardziej wyrafinowanego
podejscia.
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pod warunkiem, ze wcze$niej, w chwili ¢ czasteczka znajdowalta sie w potozeniu
X — AX. Zauwazmy, ze prawdopodobienstwa W, czyli element przetrwania i ele-
menty przejécia, definiuja jednoznacznie proces stochastyczny; innymi stowy, proces
stochastyczny mozna utozsamial ze zbiorem {W '}, ktorego elementy spetniajg waru-
nek normalizacyjny

Y WX - AX t+At| X, t) =
AX
WX, t+ At X, 0+ Y WX -AX t+At] X, t)=1. (342
AX£0
7 powyzszego warunku wyznaczamy element opisujacy przetrwanie i podstawiamy

do réwnosci (3.40), otrzymujac po prostych przeksztalceniach wygodna postaé po-
srednig, zawierajaca juz tylko jeden rodzaj elementow,

P(X,t+ At | Xo,to) — P(X,t | Xo, to) _

At

WX, t+At] X —AX, 1) = LS
AX#£0
W(X - AX, t+At] X, 1)

wykonujac w powyzszym wyrazeniu (obustronne) przejscie graniczne At — 0 otrzy-
mujemy poszukiwane rézniczkowo-réznicowe ré6wnanie Mistrza na ewolucje praw-
dopodobienstwa warunkowego P (Xt | Xo, to)

IP(X .t | X, to)
ot

= Z [F(AX)P(X — AX ¢t | Xoyto) -

AX£0
T(—AX)P(X, | Xo, o)), (3.44)
gdzie element przejscia
L def. X t+At] X —AX, ¢ , AX, At
P(AR) % iy VX H A ) i WAXAYD a4y
At—0 At At—0 At

oraz analogicznie zdefiniowany F(—AX ), sa jednorodnymi prawdopodobienstwami
przejscia na jednostke czasu (uzyskanymi przy zalozeniu czaso-przestrzennej jed-
norodnosci prawdopodobienstw przej$¢ W) zwanymi takze funkcjami intensywno-
Sci procesu statystycznego (stochastycznego) albo po prostu intensywnosciami (lub
szybkos$ciami) procesu stochastycznego - elementy te musza by¢ zadane aby moz-
na byto efektywnie rozwiazaé¢ réwnanie ewolucji (3.44); przy wprowadzeniu tych
elementow skorzystaliémy z wtasnosci jednorodnosci przestrzeni oraz jednorodnosci
czasu nie korzystajac przy tym z anizotropowosci przestrzeni. Proces Markowa po-
siadajacy tego typu wtasno$é¢ nosi nazwe stacjonarego; w dalszym ciggu, wszedzie
tam gdzie uzywamy procesu Markowa jest on wtasnie tego typu.
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Réwnanie (3.44) opisuje propagacje statystyczna czasteczki zawiesiny zaréwno
pod nieobecno$é jak tez w obecno$ci zewnetrznego pola. Rownanie (3.44) nosi na-
zwe rownania Mistrza (patrz N.G. van Kampena pt.: "Procesy stochastyczne w
fizyce 1 chemii”, PWN, Warszawa 1990) albo prospektywnego réwnania Kolmogo-
rowa (patrz M.Fisz, ”Rachunek prawdopodobienstwa i statystyka matematyczna”,
rozdz.8, PWN, Warszawa 1967) i jak wida¢ opisuje ewolucje propagatora wprzoéd w
czasie; ewolucje wstecz opisuje (analogicznie wyprowadzane) réwnanie retrospektyw-
ne Kotmogorowa.

3.8 Dyfuzja

Roéwnanie dyfuzji, zaréwno pod nieobecno$é jak tez w obecnosci zewnetrznego pola
(wtedy nosi nazwe rownania dyfuzji z dryfem), mozna otrzymac bezposrednio z réw-
nania (3.44). Procedura polega na rozwinieciu prawdopodobieristwa P(X — AX ¢ |
Xo,to) w szereg Taylora w punkcie X (ktére w tym przypadku zwane jest tak-
ze rozwinieciem Kramersa-Moyala, patrz N.G. van Kampena pt.: ”Procesy stocha-
styczne w fizyce i chemii”, rozdz.8, PWN, Warszawa 1990) i ograniczeniu sie tylko
do wyrazow kwadratowych w AX. Tego typu przyblizenie jest usprawiedliwione
gdy | AX |<| X | czyli gdy dtugoéé pojedynczego przemieszczenia czgsteczki jest
znacznie mniejsza od aktualnej odlegtodci czasteczki od punktu poczatkowego co ma
miejsce na ogdt dla dostatecznie dtugiego okresu czasu (> 7), (o czym byta juz mo-
wa wezeéniej) lub gdy rozklad zmiennej AX, dany elementem przejscia I'(AX), jest
waski (bardziej systematyczne, subtelniejsze podejscie, przedstawione np. w ksiazce
N.G. van Kampena pt.: "Procesy stochastyczne w fizyce i chemii”, PWN, Warszawa
1990, oparte jest na rozwinieciu rownania mistrza wzgledem poteg matego narzu-
conego z zewnatrz specyficznego parametru - jak sie wydaje jest to podejscie lepiej
umotywowane niz rozwiniecie Kramersa-Moyala).

Rozwazamy teraz przypadek braku dryfu co oznacza, ze przestrzen w ktoérej zacho-
dzi btadzenie losowe jest izotropowa; prowadzi to do znoszenia sie wyrazéw liniowych
wAX. W takiej sytuacji z réwnania (3.44) otrzymujemy réwnanie dyfuzji

873()?,t ’ Xoﬂfo)

5 = DV2P(X,t| Xo,to) (3.46)

(gdzie Vg4 jest d-wymiarowym gradientem); wspotczynnik dyfuzji D otrzymalismy
tutaj w postaci

D=1 Y (ax,r(ax) :2i Z DAX ), j=1,....d, (347)

przy czym réowno$¢ druga mozna byto napisaé dzigki izotropowosci przestrzeni, kto-
ra jest skutkiem braku (w tym przypadku) dryfu - pozwala to na uzaleznienie
elementow przejscia I' jedynie od dtugosci wektora pojedynczego przemieszczenia
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| AX |= V291 (AX;)?. Zatem, powyzsza postaé rownania dyfuzji (3.46) zostala
uzyskana dzieki znikaniu elementéw krzyzowych (pozadiagonalnych)

Y AXAXD(|AX ) =0,i#§, 4,5=1,...,d; (3.48)
AX£0

co wynika (tutaj) z izotropowosci przestrzeni. Zaréwno postaé réwnania dyfuzji
(3.46) jak tez wyrazenie na wspoOlezynnik dyfuzji moga ulec zmianie po wlaczeniu
zewnetrznego pola co rozwazamy w dalszej czesci.

Wzér (3.47) moze siec wydawaé doktadniejszy od (3.13), ktéry zostal wyprowa-
dzony w rozdz.3.5 jednak, jak wykazujemy oba wyrazenia sg sobie réwnowazne. Jak
widaé, wspétezynnik D dany wyrazeniem (3.47) jest, podobnie jak (3.13) i (3.14),
wielkoscig makroskopowa gdyz dotyczy btadzenia na makroskopowo duze odlegtosci
a zatem pokonywane przez czasteczke zawiesiny w makroskopowo dtugich okresach
czasu.

PLatwo sprawdzi¢ (przez proste rézniczkowania po czasie i po zmiennych prze-
strzennych), ze rozktad Gaussa

v V)2
P(X,t| Ko, to) = . M) (3.49)

(4n(t — to) D)z P (_4(15 —t)D

jest rozwiazaniem réownania dyfuzji (3.46) pod nieobecnosé zewnetrznego pola spet-
niajacym wymagany warunek poczatkowy

P(X, to | Xo.to) = 0(X — Xo), (3.50)

stwierdzajacy, ze w chwili poczatkowej o czasteczka zawiesiny znajduje sie w Scisle
okreslonym potozeniu Xo.

Korzystajac z jawnej postaci propagatora (3.49), znajdujemy po prostym scal-
kowaniu

(R0 = %) = [ R = R e (_f(i - %Xﬁ?)
— 2t — t)D; (3.51)

jak widaé, jest to posta¢ identyczna do uzyskanej wczesniej (3.12) - wykazaliSmy
tym samym identyczno$¢ obu postaci wspétezynnika dyfuzji(3.13) oraz (3.47).
Obie postacie wspotezynnika dyfuzji ((3.47) oraz (3.13)) posiadaja uderzajaca
ceche o ktérej wspomnieliSmy wceze$niej mianowicie, wielko$¢ makroskopowa jaka
jest wspétezynnik dyfuzji D (patrz réwnosé (3.14)) daje sie wyrazié¢ za pomoca lo-
kalnych wielkosci mikroskopowych tzn. sredniego pojednczego przemieszczenia kwa-
dratowego oraz czasu potrzebnego na to pojedyncze przemieszczenie. Oznacza to, ze
z zachowania zawiesiny w skali mikroskopowej potrafimy odtworzy¢ jej zachowanie
w skali makroskopowej, co sugeruje to samopodobny charakter ewolucji; ewolucja
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uktadu w skali makro jest podobna do ewolucyi uktadu oglgdanej w innych skalach
np. mikro - jest to podstawowa cecha tzw. bladzen fraktalnych®.

Zauwazmy, ze réwnanie (3.46) na prawdopodobierfistwo warunkowe P (X, ¢ | Xy, to)
jest spelione przy dowolnym warunku poczatkowym 73()?0, to); dlatego $redniujac
to rownanie stronami po wszystkich mozliwych warunkach poczatkowych otrzymu-
jemy réwnanie dyfuzji

OP(X,t)

_ 2 v
— = DVIP(X,1) (3.52)

na jednoczastkowa funkcje rozktadu (dla prostoty potozylismy ¢y = 0).

3.8.1 Dyfuzja Ficka

Literalnie rzecz biorac, dyfuzja Ficka dotyczy gestosci (koncentracji) czasteczek (np.
zawiesiny) a nie prawdopoobienstw. Oczywiscie, w przypadku statystycznie nieza-
leznych czasteczek istnieje prosty zwiazek pomiedzy gestoscia (liczbowa) n()z 1) a
prawdopodobienstwem warunkowym

n()?,t) = /P(X,t ‘ Xo,to)n()zo,to)d)zo, (353)

gdzie n(Xo,to) jest gestoscig (liczbowa) w chwili poczatkowej to w polozeniu X.
Usredniajac réwnanie (3.46) z gestoscia poczatkowa n(Xo, ty) otrzymujemy (w opar-
ciu o (3.53))
on(X,t ,
% = DV2n(X, 1) (3.54)

dobrze znane réwnanie dyfuzji Ficka (patrz np. J.R. Manning, ”Diffusion Kinetics
for atoms in crystals”, D. van Nostrand Comp. Inc., Princeton 1968, (istnieje ttum.
na jezyk rosyjski)). Oczywiscie, na réwnanie to mozna patrzeé jak na réwnanie
ciagtosci czyli jak na prawo zachowania liczby czasteczek. Wowczas, mozna je zapisacé
w postaci

L Vain(X 1) =0, (3.55)
gdzie
jp(X,t) = —DVan(X, 1), (3.56)

jest strumieniem dyfuzyjnym czasteczek. Do réwnania tego bedziemy sie jeszcze
odwolywaé¢ w dalszej czesci.

9Bladzenie brownowskie jest marginalnie fraktalne, o czym méwimy mowa w dalszej czesci.
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3.9 Centralne twierdzenie graniczne raz jeszcze

Jeden z najwazniejszych wnioskow jaki mozna sformutowaé na podstawie rozwazan
przeprowadzonych w poprzednich rozdziatach, daje sie sformutowaé¢ w postaci na-
stepujacego (wektorowego) twierdzenia Lindeberga-Lévy’ego (patrz M. Fisz, "Ra-
chunek prawdopodobiefistwa i statytyka matematyczna”, PWN, Warszawa 1967)
znanego, ze wzgledu na swoje zasadnicze znaczenie w dziedzinie twierdzen granicz-
nych, jako

Centralne Twierdzenie Graniczne (CTG)

Wprowadzmy cigg niezaleznych, wektorowych zmiennych losowych &1, 25, ..., Z, po-
siadajacych identyczny rozktad prawdopodobienstwa, a zatem taka sama wartoscé
Srednia, (z), oraz dyspersje o, tzn.

(@) = (@), j=12,...,n
% = (&)~ (@) =@ - @ j=12.... (3.57)

Zdefiniujmy teraz sumaryczna, standaryzowana (wyskalowana), wektorowa zmien-
na losowa

Py - X = (X(m) _ D@ = @) 55

OXx 0x

zalezng od n; jak widaé, warto$é oczekiwana tej zmiennej (?(n)) = 0 oraz jej dys-
persja oy (n) = 1 niezaleznie od n,
Teza Centralnego Twierdzenia Granicznego!'® moéwi, ze

1) istnieje zwiazek pomiedzy dyspersja ox(n) sumarycznej zmienej losowej X (n)
a dyspersja o, pojedynczej zmiennej Z postaci: ox(n) = \/n oy,

2) dla asymptotycznie duzych n funkcja rozktadu standaryzowanej zmiennej lo-
sowej Y'(n) dana jest, z dobrym przyblizeniem, rozktadem Gaussa:
GV (n)) = ks exp(—(F(n)2/2).
gdzie d jest wymiarem przestrzeni wektorowej do ktorej nalezy zmienna Y (n).

Powyzsze twierdzenie zostato sformutowane nieco ogélniej niz rozwazania z ktorych
wyrosto mianowicie, uwzglednia ono takze dryf wywotany przytozeniem do uktadu
zewnetrznego pola. Dryf ten mozna charakteryzowaé¢ za pomoca statej predkodci
unoszenia

)= 0D _ D _ (3.59)

t T

OTnnym powodem wprowadzenia tej nazwy jest fakt, ze wszystko co jest najwazniejsze dla
btadzenia czasteczki Browna jest zawarte w czesci centralnej rozkltadu prawdopodobienstwa.

66



gdzie skorzystaliSmy z definicji (3.5) z rozdz.3.4 oraz wzoru t = nT wprowadzonego
w rozdz.3.5. Jak wida¢ predkosé unoszenia (\7> obliczona na podstawie wypadkowe-
go wektora przemieszczenia czasteczki zawiesiny jest, jak by¢ powinna, identyczna
z predkoscig unoszenia () obliczona w oparciu o pojedyncze przemieszczenie tej
czasteczki. Zagadnienie dyfuzji w obecnosci dryfu omawiamy krétko w nastepnym
rozdziale, co usprawiedliwia wprowadzong powyzej posta¢ CTG.

3.10 Dyfuzja oraz unoszenie

Przedstawiamy teraz zmiany jakie powinny by¢ uwzglednione w stosunku do roz-
wazan prowadzonych w rozdziatach 3.5, 3.7, 3.8 w przypadku istnienia w uktadzie
dryfu, co jest jedyna modyfikacja warunkéw bladzenia czastki zawiesiny jaka do-
puszczamy.

Zasadnicza konsekwencjg tej modyfikacji jest fakt ze pierwszy moment, za-
rowno pojedynczej jak tez sumarycznej zmiennej losowej, nie znika czyli

(X(n) an () # 0, (3.60)

tym samym ztamana zostala rownosé (3.7) (gdzie po drodze skorzystaliSmy z réw-
nosci (3.5)).

W zwigzku z powyzszym, dyspersja zdefiniowana wzorem (3.8) nie réwna sie
teraz ((X(n) — X)?) co prowadzi do wyniku ogdlniejszego niz dany wyrazeniem
(3.9) oraz (3.10). Korzystajac z ogdlnej definicji dyspersji (druga réwnos¢ w (3.8)),
otrzymujemy po prostych przeksztatceniach

(ox(n))* = iK(af})Q) = ((#3)°]+ é:[(ﬁ - T5) = (T) - ()]

= n(o,)* +2K(n), (3.61)

gdzie sumaryczna funkcja korelacji K(n) jest dana przez ta czes¢ wyrazenia (3.61),
ktore zawiera wyrazy krzyzowe; jak widac, funkcja ta znika dla takiego btadzenie w
ktorym pojedyncze przemieszcezenia sg nieskorelowane - przypadek btadzen skorelo-
wanych, np. usztywnionych polimeréw, omawiamy w dalszej czesci.

Wyrazenie (3.61) mozna zapisaé w postaci umozliwiajacej wprowadzenie wspol-
czynnikow dyfuzji dla nieskorelowanego btadzenia pojedynczej czasteczki w obecno-
Sci dryfu - jest ono uogdlnieniem wyrazenia (3.12)

(ox(t))* =2(t — to)[(d = 1)D1 + Dy] (3.62)

gdzie wspotezynnik

(3.63)



opisuje dyfuzje w kierunku poprzecznym do kierunku dryfu, natomiast

py = MM @ _ LGP - (e —tw) 500

dyfuzje réwnolegly do kierunku dryfu przy czym w ogolnosci

D, # D (3.65)
a ponadto,
D|| 7§ D oraz DJ_ 7é D, (366)

przy czym ostatnia nierownos$¢ w ogolnosci ma miejsce pomimo, ze dotyczy dyfu-
zji poprzecznej - bedzie o tym jeszcze mowa ponizej. Jak widaé, wyrazenie (3.62)
stanowi uogdlnienie wzoru (3.12) na przypadek wystepowania zewnetrznego pola
wywolujacego dryf. Nalezy zaznaczy¢, ze wspotczynnik dyfuzji réwnolegtej D) jest
niezalezny od czasu (co wykazujemy ponizej) gdyz identyczna (do jawnie wypisa-
nej) paraboliczna zaleznosé od czasu tkwi takze w Sredniej z kwadratu pojedynczego
przemieszczenia ((Z))?), prowadzac do jej skrécenia sie.

[stnienie zewnetrznego pola wprowadza anizotropie przestrzeni co zmienia, jak
wykazujemy ponizej, postaé¢ réwnnia dyfuzji Fick’a (3.46). Postepujac analogicznie
jak w rozdziale 3.8 (czyli rozwijajac propagator P(X' — AX,t | Xo,to) W szereg
Taylora w punkcie X i ograniczajac sie tylko do wyrazéw kwadratowych w AX ),
przeksztatcamy réwnanie mistrza (3.44) do postaci

873()Z',t ‘ tho)
ot

= D, V2 \P(X,t| Xo,to) + DyVIP(X,t| Xo,to)
— (V) VP(X,t| Xo,to) (3.67)

zawierajacej obok pierwszego skladnika odpowiedzialnego za dyfuzje w kierunku
poprzecznym do kierunku przytozonego pola gdzie,

1

D, = mA%éO(AXl) I'(AX)
1 = .9 = = =
= MAEO(AXL) F(| AX \)exp(F : AX”/QkBT)
1 o . F-AX)
= m A%Q(AXL) F(| AX ‘) cosh <W>

L G 2 > 1 (F)*(AX)?
MA%;O(AXQ I'(|AX ) [1+ 5(2TT)2

(2(162)7’)2 4(d1_ 1 A%éo(AXl)Z(AX DT AX ) (3.68)

Q

= D+
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jest wspotezynnikiem dyfuzji poprzecznej, takze drugi oznaczajacy dyfuzje wzdtuz
kierunku pola przy czym,

Dy

= LY (aX)Tax)
AX#£0
_ % > (AX))PT( AX [ exp(F - AX) /2k5T)
AX#£0
_ 1 z \2 . F-AX)
- §A%£0(AXH) (| AX |) cosh (W)
1 T . 1 (F)*(AX))*
~ §A£0(AX||) POAXD L+ 5 =g e
D+l S AR P@TPT(AT])  (e)

AX£0

jest wspotezynnikiem dyfuzji wzdtuz pola oraz trzeci sktadnik zwigzany z unosze-
niem (wzdluz kierunku pola) gdzie predkosé unoszenia

(V)

Q

S . . . F-AX
Y. AXT(AX) = > AXI(| AX |)exp (TT”)
AX£0 AX#0 B

. . F-AX
3 AX[(| AX |)sinh (7”)

A2 2kgT
F R N F
E AX)T(|AX |) = —=D .

jest réwnolegta do kierunku pola ze wzgledu na symetrie zwierciadlana (F jest w
takim uktadzie wspéhrzednych jedyna nieznikajaca sktadowa wektora sily). Przy
okazji, wszystkie trzy wielko$ci wyraziliémy w postaci jawnie zaleznej od zewnetrznej

(statej) sity.

Nalezy podkresli¢, ze istnienie anizotropii przestrzeni nie narusza symetrii zwier-
ciadlanej funkcji intensywnosci procesu stochastycznego; funkcje te posiadaja syme-
trie zwierciadlana wzgledem (dowolnej) ptaszczyzny, w ktorej lezy wektor predkosci

unoszenia (V') co prowadzi, podobnie jak w przypadku braku pola, do znikania wy-
razow krzyzowych typu (3.48) oraz zeruje unoszenie prostopadte do kierunku pola.

Mozna bez trudu sprawdzié, ze rozwiazanie rownania (3.67) spelniajace warunek
poczatkowy (3.50) jest postaci iloczynu dryfujacego oraz stojacego rozktadu Gaussa,

PX,t| Xo,to) =

L [ =Ko = (D)= 1)
47T(t — tO)D” 4(t - tO)DH
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s s 2
! exp (—M) : (3.71)
(47T(t — to)Dl)(d_l)/2 4(t — tO)DJ_

Innymi stowy, widzimy, ze w kierunku prostopadtym do kierunku dryfu ma miejsce
jedynie "rozptywanie sie” propagatora czyli jego poszerzanie si¢ z jednoczesnym ma-
leniem amplitudy przy czym ”$rodek ciezkosci” (w tym przypadku maksimumum)
propagatora pozostaje przez caly czas nieruchomy - jest to efekt dyfuzji w czystej po-
staci. Natomiast, w kierunku réownolegtym do kierunku dryfu sytuacja jest bardziej
skomplikowana. Obok powyzej wspomnianego efektu dyfuzji, ma miejsce zjawisko
unoszenia (dryfu), ktore polega na przesuwaniu si¢ srodka ciezkosci a zatem catego
propagatora z (wypadkowa) predkoscia (V). Oczywiscie, wyrazenie (3.71) nie jest
rozwigzaniem stacjonarnym réwnania (3.67) gdyz zmienia sie wraz z uptywem cza-
su. Rozwiazanie stacjonarne, a dokltadniej méwigc réwnowagowe, wyprowadzamy
ponizej analizujac rownanie m@g}osm

Liczac teraz dyspersje zmiennej X - XO mozna wykazacé, ze oba wspoétezynniki
dyfuzji D, oraz D, otrzymane na dwoch réznych drogach (poréwnaj wyrazenia
(3.63) i (3.64) z odpowiednio (3.68) i (3.69)) sa identyczne.

3.10.1 Twierdzenie o fluktuacji i dyssypacji

Réwnosé przyblizona we wzorze (3.70) przedstawia, w przyblizeniu liniowym, zwia-
zek pomiedzy predkoscia a przytozona sita. Wspoélczynnik proporcjonalnosci jest,
jak wiadomo, ruchliwoscia (ktora czesto oznacza sie przez B). A zatem,

D
B=-—"" 3.72

taczac unoszenie z dyfuzja co stanowi teze twierdzenia o fluktuacyi i dysypacji (patrz,
R. Kubo, M. Toda, N. Hashitsume, ”Fizyka statystyczna. II. Mechanika statystycz-
na stanéw nieréwnowagowych”, PWN, Warszawa 1991) - jednego z najgtebszych
twierdzen fizyki statystyczne;j.

Przy okazji zauwazmy, ze wzory (3.68) oraz (3.69) wyznaczaja stopien anizotropii
wspotezynnikow dyfuzji. Mianowicie, mozna je przepisa¢ odpowiednio w postaci,

_ 1 (P
ADL=D.-D ~ 550os
x ﬁé{)wm AXPr(ax))  (373)
ADj=Dj-D ~ %(Q;FB)T)Q%AEO(AXH)Q(AXH)QFU AX ),  (3.74)



Jak wida¢, w przyblizeniu liniowym zaréwno anizotropia poprzeczna AD | jak 1 po-
dtuina AD) znikajq. Zauwazmy, ze znikanie anizotropii poprzecznej AD, nie ozna-
cza jeszcze znikania anizotropii podtuznej D), co pokazemy na przykladzie btadzenia
na sieci kwadratowej (patrz rys. 1(3.10.1) oraz rys. 2(3.10.1)). W tym miejscu nale-
zy podkresli¢, ze zastosowanie powyzszych wywodow do takiego btadzenia wymaga
jedynie doprecyzowania po jakich wektorach przemieszczenia AX przeprowadzane
jest sumowanie Y, ¢(...) oraz zaznaczenia, ze wektor potozenia X przyjmuje tylko
wartodci dyskretne oznaczajace wezly sieci.

Przyktad 1

Rozwazamy btadzenie przypadkowe pojedynczej czasteczki na sieci kwadratowej tak
jak to pokazano na rys.1(3.10.1). Zaktadamy, ze przeskoki zachodza tylko do najbliz-
szych sasiadow (odleglych o stala sieci a) natomiast zewnetrzne pole jest przytozone
rownolegle do horyzontalnej linii weztow. Zatem

I, dla AX = (a,0), (—a,0), (0,a), (0,—a)

I(|AX|) = 3
( ) {O, dla innych AX.

Korzystajac z wyrazenia (3.73) otrzymujemy,
AD, =0, (3.75)

(gdyz w tym przypadku wektor przemieszczenia AX albo posiada sktadowsg prosto-
padla i nie posiada horyzontalnej albo odwrotnie), natomiast wyrazenie (3.74) daje
po prostu wzor

AD” . (ﬁ)2CL2

1
D 2(2kgT)?’

(3.76)

na wzgledna anizotropie podtuzna.
Rozwazamy teraz nastepny przyklad (patrz rys.2(3.10.1) dotyczacy sytuacji gdy
AD, = ADy #0.

Przyklad 2

W tym przypadku linia weztéw nie pokrywa sie z kierunkiem przylozonego pola. Ze
wzoréw (3.73) oraz (3.74) otrzymujemy,

ADJ_ B ADH . (ﬁ)2CL2

1
D D 8(2kpT)?*

(3.77)

Zauwazmy, ze w obu przyktadach krzyzowe wspotczynniki dyfuzji znikaja poniewaz
ma miejsce symetria zwierciadlana elementéw przejscia wzgledem kierunku przyto-
zonego pola.
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3.10.2 Rownanie ciggtosci a liczba Avogadro
- przelomowe doswiadczenie Perrina

Fenomenologiczna teoria transportu Onsagera stuszna dla stanéw bliskich stanowi
rownowgi termodynamicznej, wprowadza liniowa zaleznos¢ pomiedzy pradem a si-
tg termodynamiczng - tego typu zwigzeki pojawity sie jako bezposrednie wnioski z
doswiadczen. W przypadku btadzenia pojedynczej czasteczki w obecnosci zewnetrz-
nego pola sprowadza sie on do pierwszego prawa Fick’a postaci,

J(X | Xo,to) = jp(X.t | Xo.to) + v (X, t | Xo,to), (3.78)
przy czym
ip(X,t| Xo,t0) = —DVP(X,t | X, to) (3.79)
jest pradem dyfuzyjnym natomiast
Jv(X t | Xo,to) = (V)P(X,t | Xo, 1) (3.80)

pradem unoszenia, gdzie D jest diagonalnym tensorem dyfuzji

= (D, 0
o= (% 9) -
i podobnie (np. dla d = 2)
- (D, 0
D, = < 0 D, ) . (3.82)

Jak widaé¢ prawo to stwierdza, ze gestosé pradu dyfuzyjnego jest proporcjonalna do
gradientu propagatora natomiast gestos¢ pradu unoszenia do samego propagatora
(przy stalej predkosci dryfu).

Mozna teraz postawi¢ pytanie o warunek brzegowy przy ktorym uzyskuje sie roz-
wigzanie rownowagowe, tzn. takie ktore powstaje dzigki rownowazeniu sie pradu
dyfuzyjnego i pradu unoszenia - oczywiscie w takiej sytuacji catkowity prad w ukta-
dzie znika. A zatem przyjmujemy, ze

F(X b | Xo.to) = (Xt | Xo,to) + jv (X, t | Xo,to) = 0. (3.83)

Co wiecej, poszukujemy rozwigzania niezaleznego od warunku poczatkowego, Zatem,
réwnoscé (3.83) zapisujemy w postaci,

DnaiX”P(Xn) = (V)P(X)). (3.84)

Przyjmujemy, ze sktadowa potozenia X jest skierowana ku gorze natomiast sktado-
wa predkosci dryfu (Vj)) ku dotowi. Ponadto, d — 1-wymiarowa (hiper)ptaszczyzna
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zdefiniowana rownaniem X = 0 jest nieprzenikliwa i zezwala na obecnos¢ czastek
jedynie w gornej pélprzestrzeni. Oznacza to, ze rozwiazanie réwnania (3.84) jest
postaci,

P(X) = 'P(XII) = P(X” =0)exp <<LD”>X||> . (3.85)

OczywisScie, rozwiazanie to musi spetnia¢ warunek normalizacyjny

/OOO dX /Qd_ld)?lp()?) =1 = Q. P(X 20)’ <5”> =1
= P(X) =0) = —’lg'('il‘ (3.86)

gdzie Q41 jest (ograniczonym z definicji obszarem) (d —1)-wymiarowej powierzchni
(hiper)ptaszczyzny. Jak widaé, zawiesina jest umieszczona w naczyniu ograniczonym
ze wszystkich stron za wyjatkiem dodatniego kierunku sktadowej X''. Korzystajac
ze wzoréw (3.70) oraz (3.72) i pamietajac, ze zawiesina znajduje sie w polu grawi-
tacyjnym, czyli F = —mg, (gdzie m jest masa czasteczki zawiesiny a g wartoscia
przyspieszenia ziemskiego) otrzymujemy z (3.85) oraz (3.86) nastyepujacy wzér na
rozktad prawdopodobienstwa dla czasteczki zawiesiny w jednorodnym polu grawi-
tacyjnym.

1 myg mg

P(X)|)==——>——¢ <——X>. 3.87

X =7 " N (3.87)

Jest to niezwykle wazny wzor, ktory umozliwit J. Perrin’owi przeprowadzenie do-

swiadczenia, w ktorym wyznaczyt liczbe Avogadro a tym samym podat po raz pierw-
szy do$wiadczalny dowdd czasteczkowej budowy materii.

Doswiadczenie Perrina

Po pierwsze, J. Perrin zauwazyl, ze wzér (3.87) pozwala na do$wiadczalne wyzna-
czenie statej Boltzmanna k. Po drugie, ze znajomosci stalej gazowej R wyznaczonej
niezaleznie na drodze czysto termodynamicznej oraz zwigzku pomiedzy staty gazowa
a statag Boltzmanna postaci

R = Nakg (3.88)

mozna wyznaczy¢ liczbe Avogadro Ny.

Na rys. 1(3.10.2) przedstawiono schematycznie istote doswiadczenia Perrina.
Mianowicie, naczynie wypelnione zawiesing umieszczono w (jednorodnym) polu gra-
witracyjnym o natezeniu g = —g. Podzielono je myslowo na ”plasterki” o niewielkiej

1 Ograniczenie takze w tym kierunku jest mozliwe ale skomplikowalo by to postaé¢ nieistotnego
czynnika przedwykladniczego we wzorze (3.85).
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Rysunek 3.3: Schematyczny widok zawiesiny pod mikroskopem dla dwdoch potozen
tubusu mikroskopu oddalonych od siebie 0 A. Lewy obraz dotyczy plasterka lezacego
nizej a prawy tego lezacego wyzej. Jak widaé, istnieje wyrazna roznica liczby makro-
czasteczek na obu wysokosciach, co stanowi kluczowsg obserwacje w doswiadczenia
Perrina.

grubosci A. Wzér (3.87) pozwala na obliczenie wzglednej liczby makroczasteczek za-
wiesiny zawartych w kolejnych plasterkach zatem,

Xp+2a ,
N(X)+ A X +28)  Jxlra dX[P(X)) ( mg )
=exp | — A

N Xp+4) gt axpxy) ksT

(3.89)

gdzie N(X), X)) + A) liczba makroczasteczek zawiesiny w plasterku [ X, X + A[.

Powyzszy wzoér wyprowadzono przy zatozeniu rozrzedzonej zawiesiny co pozwo-
lito na przyjecie, ze liczba makroczasteczek N(X|) na poziomie X jest, z dobrym
przyblizeniem, proporcjonalna do prawdopodobienstwa P(X)) tzn.

N(X)) =N P(X)), (3.90)

gdzie N jest catkowita liczbg makroczasteczek w uktadzie.

Lewa strona wzoru (3.89) zostata wyznaczona w do$wiadczeniu na drodze bez-
posredniego pomiaru liczby makroczasteczek w dwoch sgsiednich plasterkach; prawa
strona wzoru zawiera tylko jedng niewiadoma, tzn. statg Boltzmana kg, natomiast
masa czasteczkowa m makroczasteczki zawiesiny oraz przyspieszenie ziemskie g na
danej szerokosci geograficznej sg znane z bardzo duzg doktadnoscia. Stad juz mozna
byto wyznaczy¢ potrzebng stalg k. Dysponujac ta statg, Perrin wyznaczyt ze wzoru
(3.88) poszukiwang liczbe Avogadro'?

Doswiadczenie Perrina stalo sie wystarczajacym dowodem empirycz-
nym potwierdzajacym ziarnistg bydowe materii na poziomie mikroskopo-
pwym. Mozna bez przesady powiedzie¢, ze doswiadczenie to otworzyto
droge nowozytnej fizyce atomowej.

12Stata Avogadro, wyznaczona z doktadniejszych pomiaréw, wynosi N4 = 6,022 - 102 /mol.

74



3.11 Roéwnanie Fokkera-Plancka-Smoluchowskiego

W ogdélnym przypadku niejednorodnych elementéw przejscia z prerownania mistrza
(3.43) mozna wyprowadzi¢ ogdlne réwnanie dyfuzji znane jako réwnanie Fokkera-
Plancka badz réwnanie Smoluchowskiego, uzywajac wygodniejszej notacji

WX, t+At| X —AX,t)=W(AX, At | X — AX 1)
(3.91)

oraz analogicznie
W(X —AX,t+At| X, t) = W(=AX, At | X, t). (3.92)

Notacja ta pozwala na alternatywne okreslenie elementéw {W'} na przyklad, ele-
ment przejscia W(A)Z AL X - AX, t) jest prawdopodobienistwem przemieszczenia
czasteczki zawiesiny o wektor AX w przedziale czasu At pod warunkiem, ze o jedno
przemieszczenie wezesniej w chwili ¢ czasteczka znajdowata sie w potozeniu X—AX.
Postepujac analogicznie jak przy wyprowadzeniu réwnania (3.44) otrzymujemy ogél-
niejsze réwnanie rézniczkowo-réznicowe

87)()2775 | Xoﬂfo)

7 = Y [(AX | X - AX H)P(X — AX,t | Xo, to) —

AX#0
T(-AX | X, t)P(X,t | Xo.to)], (3.93)

gdzie teraz uzylisSmy ogdlniejszej, niejednorodnej (w przestrzeni i czasie) postaci
elementow przejécia. Analogicznie jak poprzednio, wprowadziliSmy tutaj definicje
niejednorodnych intensywnosci procesu

L. , X, t+At] X —AX
M(AX | X — AX £) = Jim X LA )

Am Al , (3.94)

oraz analogicznie zdefiniowang intensywnoéé I'(—AX | X, t). Z réwnania (3.93) moz-
na wyprowadzi¢ uogélnione réwnanie dyfuzji zwane najczesciej réwnaniem Fokkera-
Plancka, rozwijajac pierwszy sktadnik pod suma w szereg Taylora w punkcie X
(analogicznie jak przy wyprowadzaniu réwnania dyfuzji Fick’a (3.46)). Otrzymuje-
my na tej drodze

OP(X,t | Xo,tg) O

ot 8X2[

J

Dj(th>P(X7t ‘ XOvtO)] - ‘G)P(X,t ‘ XOatO)L

B
a—XjK
(3.95)

gdzie D;(X,t) to wspotezynniki zdefiniowane wzorem analogicznym do (3.69) do-
puszczajacym ich zalezno$é¢ od potozenia czgsteczki oraz od czasu

1 -
Dj=3 > (AX)PI(AX | X), j=1,....d, (3.96)

AX#£0
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natomiast (V;), j =1,...,d, sa sktadowymi predkosci dryfu

Vi)=Y AX;T(AX | X), j=1,...,d (3.97)
AX£0

Réwnanie Fokkera-Plancka (3.95) mozna przedstawi¢ w postaci rownania ciagto-
sci, gdyz prad prawdopodobienstwa wynosi

j=Jp+jv (3.98)
sktadajac sie z dyfuzyjnego pradu prawdopodobienstwa

) B L ) L
]D = — {a—)(l[Dl(X,t)P(X,t ’ Xo,to), ey a—)(d[Dd(X,t)P(X,t ’ Xo,to)}} ,(399)

oraz konwekcyjnego pradu prawdopodobienstwa

Jv={(V)PX t| Xoto), ... . (VayP(X,t | Ko, o)} (3.100)
Zatem,
X,t| X .
IP tal 0f) | g,j=0, (3.101)

jak by¢ powinno.

3.12 Autokorelacje - ztamanie
Centralnego Twierdzenia Granicznego

Rozpoczynamy teraz omawianie sytuacji, w ktorych ulega ztamaniu centralne twier-
dzenie graniczne; wykazemy, ze moze to by¢ zwigzane z dtugozasiegowymi autokore-
lacjami wystepujacymi pomiedzy pojedynczymi przemieszczeniami czasteczki. Ist-
nienie autokorelcji oznacza, ze pojedyncze przemieszczenia danej czasteczki sa od
siebie statystycznie zalezne. Typowym przyktadem takiej sytuacji moze by¢ btadze-
nie (" gloéwki”) usztywnionego polimeru zalezne od orientacji wyjSciowego monomeru
zwane btadzeniem ukierunkowanym (”directed random walk”) lub btadzenie poli-
meru bez samoprzecie¢ (”self-avoiding random walk”) albo skorelowane bladzenie
kanatowe (jednowymiarowe) jonéw w sieci krystalicznej (ktéremu towarzysza ”back-
jump correlations” lub ”feed-back” correlations”).

Rozwazmy sumaryczna funkcje autokorelacji wprowadzona w rozdz.3.10 przez
wyrazenie (3.61)

n

Kln) = 3 3K (i) = Y K(i.4), (3.102)

i#j i<j
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gdzie czastkowa (parcjalna) funkcja autokorelacji

K(i,j) = (7 - 75) = (L) - (7)) (3.103)

dotyczy dwoch dowolnie wybranych pojedynczych przemieszczen danej czasteczki
(gdzie ”-” oznacza jak zwykle mnozenie skalarne wektoréw).
Wzér (3.102) mozna przepisaé w postaci

M |

i Z_: (3.104)

ktora bedzie w dalszym ciggu przeksztatcana. Zaktadajac ze wszystkie parcjalne
funkcje autokorelacji sa jednorodne (co wynika z jenorodnosci czasu wyrazonego
liczba pojedynczych przemieszczen i jednorodnosci przestrzeni) i nie przejawiaja
asymptotycznych oscylacji, mozna zapisac

K(i,j) = K(j — 1) (3.105)
co razem z (3.104) daje
n—1 n—i
_ K(m (3.106)
i=1 m=1

Nalezy podkresli¢, ze whasno$¢ jednorodnosci jest cechg powszechnie wystepujaca
- obserwuje si¢ ja nie tylko w stanach réwnowagowych czy ogolniej stacjonarnych
ukladu ale nawet w przypadku relaksacji uktadu. Korzystajac z wyrazenia (3.106)
wykazujemy, ze funkcje autokorelacji C(n) mozna przeksztatcié do wygodnej postaci

n

K(m) = 00— KG) = n > KG) = DK G), (3.107)

j=1

Wyprowadzenie wzoru (3.107) opiera sie po prostu na zestawieniu wszystkich
sktadnikéw sumy podwdjnej (3.106) uzupehionej o pomocnicza sume >7_; jZ(j)
(na razie elementy Z(j), j = 1,...n, sa dowolne) w postaci tabelarycznej, gdzie
na przecieciu kazdego wiersza i kolumny stoi jeden element tak poszerzonej sumy.
Sumujac teraz elementy tabeli pionowo oraz przyjmujac, ze Z(j) = K(j), j =
1,...,n, otrzymujemy

n—1 n—s

nzn:K(j) = K(m)—l—in(j) (3.108)

~.

a stad w oparciu o (3.106) poszukiwany wzor (3.107).
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Tabela 3.1: Zestawienie wszystkich elementow sumy > S0 K (m)+Y7_, 1 Z(j)

i=1 K1) K2) ... Kn-2) Kn-1) Z(n)
i=2 K1) K2) ... Kn-=2) Z(n-1) Z(n)
T=n 1K) 20) .. Z0-2) Zui-1 Z0)
i=n Z(1) Z(2) ... Zn—=2) Zn-1) Z(n)

3.12.1 Dyspersja a funkcja autokorelacji

Ze wzoréw (3.61) oraz (3.107) wynika, ze znalezienie zaleznosci sumarycznej dys-
persji ox od czasu dla dtugich czasow wymaga znajomosci zaleznosci sumarycznej
funkeji autokorelacji K od n dla duzych n a wiec zaleznosci czastkowej funkcji au-
tokorelacji K od n dla duzych n.

Istnieja co najwyzej trzy rézne przypadki asymptotycznego (gdy n — o0), mo-
notonicznego zanikania czastkowej funkcji autokorelacji

1) zanikanie szybsze niz 1/n czyli, K(n) ~ Cn=0+% 0 < a,
2) zanikanie wolniejsze niz 1/n czyli, K(n) =~ Cn™, 0 <y < 1,
3) K(n)~C/n,

gdzie C'(> 0) jest pewna stala. Przypadek 1) definiuje tzw. autokorelacje krétko-
zasiegowe, za$ przypadek 2) autokorelacje dtugozasiegowe; sytuacja 3) okresla
przypadek marginalny (przejsciowy).

Przedstawmy teraz funkcje autokorelacji w postaci sumy dwoch nastepujacych
sktadnikow

K(n) = K(no) + K< (n), (3.109)

gdzie

Komy=n S K@ — S iK(). (3.110)

Jj=no+1 Jj=no+1

tutaj ng jest taka najmniejsza liczba naturalng powyzej ktérej oba sumowania w
(3.109) mozna zastapi¢ catkowaniem. Zatem

n

K<(n) ~ n/

no

K()dj— [ K G)dj; (3.111)
no

jak widaé, KC(ng) jest stala (nieistotnag dla dalszych rozwazan) - oznaczamy ja przez

Cy. Mozna teraz wyznaczy¢ asymptotyczne zachowanie sumarycznej funkeji autoko-

relacji KC(n) dla trzech wspomnianych powyzej przypadkow.
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Przypadek 1

Rozwazmy najpierw sytuacje gdy 0 < a # 1. Wtedy, z (3.109) oraz (3.111) po
wykonaniu prostego catkowania wynika, ze dla n — oo
no] . nl o ! -« l1—a
K< (n) =~ C’n/ T —C | —dj=Ch+Cin ™"+ Con ™7, (3.112)

no J no

gdzie C}, C; i Cy sa stalymi (ktére tatwo mozna powiazaé ze stata C' oraz wyklad-
nikiem «).

Rozwazmy teraz ten sam przypadek ale dla szczegélnej sytuacji gdy a = 1.
Wowezas, analogicznie jak poprzednio, z (3.109) oraz (3.111) otrzymujemy

K(n) ~ C) — CyIn(n). (3.113)

Jak wida¢, kazde z wyrazen (3.112) oraz (3.113) podzielone przez n jest, w przypad-
ku autokorelacji krétkozasiegowych, malejaca funkcja n. Zatem, z réwnania (3.61)
na wariancje sumarycznego przemieszczenia czasteczki otrzymujemy dla asympto-
tycznie duzego n, ze

(0x(n))? = n(o,)”. (3.114)

Mozna powiedzie¢, ze korelacje kréotkozasiegowe nie zmieniajg asympto-
tycznie brownowskiego charakteru btadzen przypadkowych.

Przypadek 2

Wykonujac obliczenia analogicznie jak w poprzednim przypadku, otrzymujemy
K(n) ~ C)+ Cin* 7 + Cyn* 7, (3.115)

przy czym jak widaé, wykladnik 2 — v > 1. Laczac powyzsze wyrazenie z (3.61)
dostajemy dla asymptotycznie duzych n

(ox(n))* ~n(0,)* + (C1 + Co)n® 7 ~ n>77. (3.116)

Zatem dyspersja sumarycznego przemieszczenia ro$nie superliniowo z catkowitg licz-
ba przemieszczen. Wynik ten oznacza, ze korelacje dhugozasiegowe zmieniaja klase
uniwersalnosci btadzenia przypadkowego. Méwimy teraz o superdyfuzji (a doklad-
niej supersamodyfuzji) czasteczki. Zauwazmy, ze skrajnym przypadkiem superdy-
fuzji jest tzw. dyfuzja balistyczna odpowiadajaca wyktadnikowi v = 0 co fizycznie
oznacza, ze wszystkie pojedyncze przemieszczenia sa identyczne (tzn. o jednako-
wej dhugosci i zwrdcone w te sama strone) - moze to opisywaé skrajny przypadek
"dyfuzji” polimeru o 100%-owej sztywnosci. Innymi stowy, moze to byé np. ruch
jednostajny (ze stala predkoscia) sztywnego preta.
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Przypadek 3

Analogicznie jak w poprzednich przypadkach, z (3.109) oraz (3.111) otrzymujemy
(dla asymptotycznie duzych n) po prostych obliczeniach,

(ox(n))* ~n((0,)* — C1) + ConlIn(n) ~ nin(n). (3.117)

Jak widad, jest to rezultat o jeszcze innym charakterze niz dwa poprzednie - istnienie
korelacji niezwykle wzbogaca problematyke szeroko rozumianej dyfuzji.

Nalezy podkresli¢, ze autokorelacje dtugozasiegowe prowadza w ogdlnosci do roz-
ktadow granicznych rézniacych sie od rozktadu Gaussa (J.-P. Bouchaud and A. Geo-
rges, Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and
Physical Applications, Phys. Rep. 195 (1990) 127-293).

3.13 CTG a zanik potegowy:
zderzenie dwoéch swiatow

Omawiamy przyktad, ktéry pozwoli zorientowac sie w sposobie funkcjonowania CTG
w przypadku gdy dany rozktad zanika algebraicznie, czyli posiada algebraicznie za-
nikajacy ”ogon”, ale (pomimo to) skoficzona wariancje (patrz D. Sornette: ” Critical
Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder:
Concepts and Tools”, Springer-Verlag, Berlin 2000, oraz J.-P. Bouchaud, M. Potter:
"Theory of Financial Risks. From Statistical Physics to Risk Management”, Cam-
bridge Univ. Press, Cambridge 2001). Zauwazmy, Ze jest to sytuacja odmienna od
tej z jaka mamy do czynienia np. w przypadku obcietego rozktadu Lévy’ego (patrz
R.N. Mantegna, H.E. Stanley: ”Ekonofizyka. Wprowadzenie”, ttum. ang., Wydaw-
nictwo Naukowe PWN, Warszawa 2001), gdzie zmienna losowa podlega rozktadowi
Lévy’ego jedynie w skonczonym zakresie (poza ktérym rozktad po prostu znika).

3.13.1 Rozklad Gaussa i rozklad potegowy w jednym

W pierwszym etapie rozwazmy jawna postaé gestosci rozktadu Studenta (czyli
W. S. Gosseta) dla trzech stopni swobody (tzn. p = 3)

1 203

p(z) = ;m,

(3.118)
ktéra jest scharaktryzowana skoficzona wariancje réwna po prostu o?; czesto w lite-
raturze dla (wasko rozumianego) rozktadu Studenta przyjmuje sie, iz 02 = 3.

W dalszej czesci wykorzystujemy funkcje charakterystyczng gestosci rozktadu
(3.118) czyli transformate Fouriera tej gestosci p(k), ktéra tatwo wyznaczyé (patrz
np. H. Batemann, A. Erdélyi: " Tables of Integral Transforms”, Vol.1, McGraw-Hill
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Book Comp. Inc., New York 1954) wiedzac, ze

1 ] _ s iexp(—(cn —o) | k])— % exp(—o | k)

(02 +a2)(of +a?)| (0% —o0F) Loy
(3.119)

i przyjmujac o7 — o (jak zwykle, F[f(z)] oznacza transformate Fouriera funkcji
f(z)). Stad otrzymujemy, po uwzglednieniu (3.118), ze

pk)=>_0+0|k|)exp(—0o | k). (3.120)
Zauwazmy, ze dla (z/0)? > 1 rozktad (3.118) przybiera postaé

1 203
}‘ T ’d—l—u’

p(z) = (3.121)

gdzie d = 1. Tego typu algebraiczny zanik rozktadu p(x) prowadzi do nieskoniczonych
warto$ci momentow absolutnych zmiennej losowej = czyli

(|2 |™) = oo, (3.122)
dla wyktadnika m > u.
Natomiast, gdy (z/0)* < 1,
12 2 1
pla) ~ =2 [1 —2 (f) 1 ~ pela;o/2), (3.123)
To o /2

gdzie pg(x;0/2) jest (centrowanym w zerze) rozktadem Gaussa zmiennej losowej
o odchyleniu standardowym o /2.

Rys.3.4 jest podsumowaniem powyzszych rozwazan - przedstawiono na nim za-
réwno Scisty rozklad (3.118) jak tez pozostale, przyblizone jeden (3.121) i dwa w
wyrazeniu (3.123). Jak widaé, obszar wokol © = o mozna traktowaé jako przejéciowy
pomiedzy skrajnymi, omawianymi powyzej.

Przejdziemy teraz do drugiego etapu naszych rozwazan. Zauwazmy, ze skon-
czona wariancja wyjsciowego rozkltadu (3.118) pozwala na zastosowanie Centralnego
Twierdzenia Granicznego. W tym celu wyrazimy gesto$¢ prawdopodobienstwa dla
sumarycznej zmiennej losowej X,, = 1 + 22 + ... +x,, n = 2,3,..., w postaci
nastepujacej konwolucji

n

P.(X,) = (p@p®...0p)(X,) =

:/ anl/ dX, 5. /dXQ/ dX,

P(Xn | Xo)p(Xno1 [ Xnz) . p(Xa [ Xi)p(Xy),  (3.124)

gdzie p(X; | X;_1) jest gestoscig prawdopodobiefistwa wystapienia okreslonej zmien-
nej sumaryczneJ X, pod warunkiem pojawienia si¢ sumarycznej zmiennej X;_q, j =
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) / o X
12 /x\
T?E' o [1_*2\:;)]

Rysunek 3.4: Scisty rozktad (3.118) jak tez pozostate, przyblizone jeden (3.121) i
dwa w wyrazeniu (3.123).

2,3,...,n. W dalszym ciagu, korzystajac z warunku jednorodnosci (stacjonarnosci)
procesu

p(XJ ‘Xj—l):p(Xj_Xj—l)u j:2,3,...,n,) (3125)
otrzymujemy z (3.124), ze transformata Fouriera
Po(k) = [p(k)]" = (1 + 0 | k|)" exp(—no | k [); (3.126)

czyli funkcja charakterystyczna P, (k) prawdopodobienistwa P,(X,,) jest n-tg potega
funkcji charakterystycznej p(k) elementarnego prawdopodobienstwa p(z). Rozktad
spetniajacy taka wlasnos¢ nazywamy nieskonczenie podzielnym. Rozktady nieskon-
czenie podzielne nie musza byé stabilne (czyli moga zmieniaé swéj ksztalt przy
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przechodzeniu od pojedynczej do sumarycznej zmiennej losowej); na szczescie od-
wrotne twierdzenie jest prawdziwe. Niestety nie jest znana zamknieta postac¢ rozkta-
du posiadajacego funkcje charakterystyczng w postaci (3.126) dlatego dalej jeste$my
zmuszeni korzystaé¢ jedynie z odpowiednich przyblizen.

Rozwijajac dziatanie In Pn(k) w szereg w otoczeniu punktu k£ = 0 i ograniczajac
si¢ do wyrazow rzedu | k |3, mozna przyblizy¢ funkcje charakterystyczna (3.126) w
nastepujacy sposob

Py(k)~1-— %nanQ + %na?’ |k (3.127)
czyli takze z doktadnoscia do wyrazéow rzedu | k |*. Podkredlmy, ze wyrazy tego typu
zalezg od modutu k co oznacza, ze trzecia pochodna funkcji charakterystycznej f’n(k)
po k w zerze nie istnieje (istnieja tylko pochodne lewo- i prawostronne, ktére sa od
siebie r6zne) a tym samym nie istnieje trzeci moment rozktadu, tak jak to ma miejsce
dla potegowo zanikajacego rozktadu o wyktadniku 4. Zauwazmy, ze niezaleznie od
wartoscin = 1,2, ..., wyraz ~| k |?, ktéry mozemy nazwaé singularnym, jest zawsze
obecny tzn. funkcja charakterystyczna jest stabilna ze wzgledu na ten wyraz lub
inaczej algebraicznie zanikajacy "ogon” rozkladu jest stabilny ze wzgledu na n.
Wynika stad, ze dla dowolnego n istnieje zwasze na tyle duze X, ze

2 K
Pn(X) ~ no

~ (3.128)

Mozna tatwo sprawdzi¢, korzystajac z (3.126), ze wariancja o(n) rozktadu P, (X,,)
wynosi

o (n) <: _ddPi];(k) \k=o> =n-o (3.129)

czyli jest skonczona dla skonczonego n. W oparciu o CTG otrzymujemy, dla dosta-
tecznie duzego n(> 1), ze

1 X?

czyli jest asymptotycznie przyblizany rozkladem Gaussa o wariancji danej przez
(3.129). Przyblizenie to jest tym lepsze, czyli zachodzi dla tym wiekszego zakresu
zmiennej losowej X, im wigksze jest n. Zatem mozemy oczekiwaé istnienia takiej
charakterystycznej wartosci Xy, (n) monotonicznie rosnacej ze wzrostem n, ze jedy-
nie dla X < X.(n) spetnione jest przyblizenie gaussowskie (3.130) natomiast dla
X > Xy, (n) whasciwym przyblizeniem P, (X,,) jest jaki$ inny rozktad - kluczowym
zadaniem niniejszych rozwazan jest znalezienie tego rozkladu (na podsta-
wie rozwazan przeprowadzonych na wstepie niniejszego rozdziatu przypuszczamy, ze
jest to rozklad potegowy) oraz zaleznosci X;.(n) od n.
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T (0

Rysunek 3.5: Tlustracja przejécia od rozktadu Gaussa dla X < Xy.(n) = ovnlnn
do rozktadu potegowego dla X > X;.(n) = ovnlnn.

Teraz bez trudu znajdujemy to poszukiwane posrednie Xy, ktore najlepiej cha-
rakteryzuje obszar przejsciowy; poréwnujac (3.128) z (3.130)

2not N 1 (X, (n)] 2
[ Xy (n)]d+H ~ V2rno? exp <_W> ) (3.131)

otrzymujemy po prostych przeksztatceniach (zaniedbujac poprawke logarytmiczna i

state sktadniki)
Xir(n) = oy/(n—2)nlnn, (3.132)

co, jak wida¢, ma sens tylko dla p > 2. Rys.3.5 dobrze ilustruje opisana powyzej
sytuacje (dla p = 3): ze wzrostem n wzrasta szybciej niz liniowo rozmiar obszaru,
w ktérym sumaryczna zmienna losowa podlega rozktadowi Gaussa. Innymi stowy,
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ze wzrostem n coraz dalej odsuwa sie¢ granica obszaru w ktérym zmienna losowa
X posiada rozktad potegowy czyli maleje prawdopodobienstwo P(| X [>> X,.).
Oszacujemy to prawdopodobienstwo
P(| X |2 Xy) = P(X 2> X))+ P(X<—-Xy)
> P(| X |>> Xy) =P(X >> Xy) + P(X << —X4),

(3.133)
gdzie prawdopodobienstwo
P(X > X)) + P(X < —Xy,) 2/00 2ot
o/ (u—2)nlnn m Xt
4 1
= (3.134)

(g — 2)#/2m pu/2=1 12

dazac, dla p > 2, do zera gdy n — oo. Tym samym prawdopodobienstwo P(|
X |>> X,,) dazy do zera nie wolniej niz 1/n#/?~! In"? n. Zauwazmy, ze dla p < 2
cate nasze postepowanie w niniejszym rozdziale zalamuje sie¢ - mamy woéwczas do
czynienia z rozkltadem Lévy’ego a wiec z odmiennym ”$wiatem statystycznym”,
ktoremu poswiecone sg dalsze czesci niniejszej pracy.

3.13.2 Od rozkltadu Gaussa
do rozktadu logarytmiczno-normalnego

Transformacje rozkladu Gaussa w rozktad logarytmiczno-normalny (w skrécie log-
normalny) mozna tatwo przeprowadzi¢ korzystajac z odpowiedniej transformacji
zmiennej (rozpatrujemy dla prostoty przypadek jednowymiarowy). Podejscie to zi-
lustrujemy na przyktadzie amorficznego substratu - obiektu uzywanego w rozdz. 6
oraz czesci IV do poglebionej analizy wielu zagadnien zwigzanych z procesami i roz-
ktadami niegaussowskimi. Tutaj wykorzystamy tylko jeden aspekt tzw. substratu
gaussowskiego w ramach tzw. modelu dolinowego btadzen losowych.

Mowige tutaj o gaussowkim substracie amorficznym mamy na mysli fakt, ze
glebokos$ci minimum potencjatu, € > 0, sa rzeczywistymi liczbami przypadkowymi
odlosowywanymi z potéwkowego rozktadu Gaussa G(g) = \/# exp(—e?/20?) (we
wspomnianych rozdz. 6 i czedci IV uzywamy tzw. substratu wyktadniczego). Z te-
go, ze zmienna ¢ jest losowa wynika, ze zmienna przetransformowana dana wzorem:
7(e) = Toexp(e/kpT) > 70, jest tez zmienna losowa. Stad, pytanie jakie stawiamy
tutaj brzmi: jakiemu rozkladowi p(7) podlega zmienna 77 Przy okazji zauwaz-
my, ze zmienna ta definiuje $redni czas przebywania btadzacej czgsteczki w minimum
potencjatu o gtebokosci e.

Odpowiedz na powyzsze pytanie jest niemal natychmiastowa jezeli uprzytomni-
my sobie, ze mamy tutaj do czynienia z rozktadami niezmienniczymi, tzn. spetnia-
jacymi réwnosé

, (3.135)




gdzie (1) = kgT In(7/7). Podstawiajac to wyrazenie na (7) do wzoru (3.135)
otrzymujemy ostatecznie wzér na poszukiwany rozktad

1 2 1 1
T)=———r———exp | —— I (7/70) |, T/70 > 1, 3.136
p( ) 7—0\/@7/7'0 p( 20_% ( /0)) /0 ( )

ktéry jest whasnie zapowiedzianym na wstepie tego rozdzialu (ograniczonym) roz-
ktadem logarytmiczno-normalnym; tutaj zredukowana dyspersja or et 5 JkgT.

3.14 Lancuchy multiplikatywne:
rozktad logarytmiczno-normalny

Rozktad logarytmiczno-normaly pojawil sie przy rozwiazywaniu wielu zagadnien
probabilistycznych np. typu kruszenia (rozdrabniania) wegla, kamienia badz rudy
[1]. Wykazemy idac za Kolmogorowem [2], Ze tego typu taficuchy'® maja charakter
multiplikatywny (iloczynowy). Dotychczas omawialiSmy tancuchy i procesy addy-
tywne (sumaryczne) tzn. bedace suma niezaleznych, pojedynczych zmiennych loso-
wych (badz tez skorelowanych w sposéb krétkozasiegowy). Obecnie pochylimy sie
nad tancuchami i procesami multiplikatywnymi tzn. takimi, ktére sa iloczynem tego
typu zmiennych losowych czyli zachodzacymi np. w sposob sekwencyjny.

Przypu$émy, ze w wyniku wielostopniowego (wieloetapowego), sekwencyjnego
kruszenia (na sitach o coraz mniejszej srednicy) liniowy rozmiar ziaren X tworzy
ciag zmiennych losowych (Xo, X;, Xo, ..., X, 1, X,), gdzie X,, jest liniowym
rozmiarem pojedynczego ziarna na n-tym etapie (stopniu, poziomie) kruszenia przy
czym

0<X,<X,.1,n=12,.... (3.137)
Oczywiscie, X, jest zmienna losowa posiadajaca pewien (skoriczony, na og6! niewiel-
ki) rozrzut statystyczny wokot éredniego rozmiaru ziaren (X,,)!* na danym etapie

(czyli po pewnym czasie) kruszenia. Kolejna réznica X,, — X, 1(< 0) jest jakas
przypadkowa czescia (utamkiem) wyjsciowego rozmiaru ziarna X,,_;

Xn_Xn—l :Rn'Xn—b n = 1,2,..., (3138)

130 tancuchach stochastycznych méwimy wtedy, gdy czas jest dyskretny. Gdy czas jest ciagly
to méwimy o procesach stochastycznych.

4G ednia ta nalezy rozumieé jako érednia po wszystkich ziarnach na danym, n-tym, etapie
kruszenia. Zauwazmy, ze na kazdym etapie kruszenia, n, tworzy sie pewien stan ustalony, w ktérym
rozmiar ziaren nie ulega juz dalszemu zmniejszeniu. Wynika to z faktu, ze ziarna przelecialy na
sito o mniejszej Srednicy otwordw, przechodzac tym samym do nastepnego, n + 1, etapu kruszenia.
Podlegaja wtedy dalszemu kruszeniu, az do powstania nowego stanu ustalonego, itd, itp.

86



gdzie R, jest zmienng losowa z przedziatu —1 < R,, < 0 o rozkladzie (dla prostoty)
niezaleznym od n. Z powyzszego wynika (poprzez wielokrotne wykorzystanie reku-
rencji (3.138) dla kolejnych n), ze zmienna losowa X,, ma nastepujaca reprezentacje
multiplikatywna

=IIpj. n=12,..., (3.139)

j=1

IIg,,

gdzie p; = 1+ R; = X;/X,_; jest zmienng losowg z przedziatu 0 < p; < 1 (oczywi-
Scie, o rozktadzie takze niezaleznym od j). Zatem, logarytmujac stronami to wyra-
zenie otrzymujemy addytywna reprezentacje réwnania (3.139)

lna:n:Zyj, n=12..., (3.140)

gdzie y; = Inp; < 0, j = 0,1,2,..., jest zmienng losowg o skonczonej warto-
Sci przecigtnej (y;) = (Inp;) < 0 i skoficzonej wariancji o*(y;) = (y7) — (y;)° =
((Inp;)?) — (Inp;)?. Oczywiscie, obie wielkoSci sa teraz niezalezne od j, tzn. (y;) =
(y) = (Inp;) = (lnp) oraz o*(y;) = (y*) — (y)* = ((lnp)*) - (lnp)* = o*.

Zauwazmy, ze rownanie (3.140) mozna teraz przepisa¢ dla asymptotycznie duzego
n w postaci:

X,, = exp(—n{| Inp |))Xo, (3.141)

ktéra pokazuje, ze (| Inp [)1® pelni role wspolczynnika szybkosci asymptotycznego
zaniku zmiennej X,,, tzn. méwi o tym jak szybko proces In x, oddala si¢ nieogra-
niczenie od stanu wyjsciowego In(zog = 1) = 0.

Jak wida¢, zmienna losowa In z, nie ma dolnego ograniczenia, natomiast
od gory jest ograniczona przez 0. Wynika stad, ze tylko wtedy gdy wplyw tego ogra-
niczenia jest zaniedbywalny mozna przyjac, iz sumaryczna zmienna losowa -7, y;
spetnia Centralne Twierdzenie Graniczne!”
rozktad asymptotycznie normalny

czyli, ze zmienna losowa Inx, posiada

1 (Inz,, — pn)?
P(lnz,))dInz, ~ ———=cexp <—— dIlnz, (3.142)
2n0%(n) 20%(n)

gdzie $rednia po wszystkich ziarnach na danym etapie kruszenia

M = o (Inx,) Z Yj) = n(lnp) (3.143)

5Nier6wno$é ta wynika natychmiast z nieréwnoéci (3.137) wyrazonej w postaci 0 < X, <
(1 + Rn) Xn—l < Xn—l-

16Prosze nie myli¢ tej éredniej po j, gdzie j = 1,2,...,n, ze érednig (y;) po réznych wartosciach
y; dla ustalonego pokolenia j.

"Interesujaca sytuacje, gdy istnieje dolne ograniczenie (a nie istnieje gérne) rozwazamy w
rozdz.3.14.4.
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oraz sumaryczna wariancja
o’(n) =o*(Inz,) = > o*(y;) = no’. (3.144)
j=1

W powyzszych oznaczeniach warunek zachodzenia Centralnego Twierdzenia Gra-
nicznego mozna zapisaé¢ nastepujaco:

| i [ a(n) = (y) > —=. (3.145)

vn

Z rozkladu (3.142) otrzymujemy bezposrednio rozktad logarytmicznie-normalny
(czyli w skrécie log-normalny) dla zmiennej x,

Pleg) o —— L (——(ln In W) | (3.146)

\/2mo?(n) Tn 20%(n)

lub dla zmiennej z,,/z,, gdzie Inz, = tn(= (Inzy,)),

P (&) ot L oo <_—(ln($n/w"))2> , (3.147)

Tn, 2702(n) Tn/Tn 20%(n)

ktore stanowia podstawe naszej dalszej dyskusji w tym rozdziale. Oczywiscie, ani
rozktad (3.142) ani rozktady (3.146) i (3.147) nie sa rozkladami asymptotycznie
stacjonarnymi (o ktérych bedzie mowa w podrozdziatach 3.14.4 i 3.14.8) niemniej
ich przydatnosc jest wprost trudno przeceni¢. Podkreslmy raz jeszcze, u podstaw
pelnego (nieograniczonego) rozkladu logarytmiczno-normalnego legl fakt
braku jakichkolwiek ograniczen przestrzennych na zmienng losowa mul-
tiplikatywnego lancucha stochastycznego.

Latwo sprawdzi¢ (tytulem prostego ¢wiczenia), ze rozktad P (g—:) posiada mak-
simum dla

Tp

=t = = exp(—0’(n)) (3.148)

Tn T

oraz jest asymetryczny. Na rys.3.6 przedstawiono ten rozktad dla zmiennej wzglednej
7% T, /T, oraz dyspersji jednostkowej o(n) = 1 — wida¢, jak bardzo r6zni sie on od
odpowiadajacego mu rozktadu normalnemu (Gaussa) o zerowej wartosci oczekiwanej
i jednostkowej wariancji.

Zauwazmy, ze maksimum In(2*) rozktadu (3.146) przesuwa si¢ w strone liczb
coraz bardziej ujemnych w miare jak n roénie czyli jest "odpychane” od zera w
kierunku ujemnym ze wzgledu na to, ze érednia (In p) jest mniejsza od zera - bedzie

to jeszcze dyskutowane w rozdz. 3.14.4.
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Rysunek 3.6: Poréwnanie rozktadu log-normalnego (to ten posiadajacy lokalne mak-
simum) z odpowiadajacym mu rozkladem Gaussa.

Rozktad log-normalny posiada jeszcze jedng, charakterystyczng wtasno$é¢ miano-
wicie, znajomos¢ nawet wszystkich momentéw tego rozktadu nie okresla go jedno-
znacznie. Mozna tatwo sprawdzié, ze rozktad postaci

P(Z) - ﬁ%)% exp (—;;2((?)) 1+ asin@rIn(2))], —1 < a < 1, (3.149)

ma identyczne momenty jak odpowiadajacy mu rozktad logarytmiczno-normalny
(3.147).

3.14.1 Od rozkladu log-normalnego do potegowego

Wykazemy teraz wazna wtasnosc¢ rozktadu log-normalnego polegajaca na imitowaniu
rozktadu potegowego w szerokim zakresie zmiennej niezaleznej. Zauwazmy w tym
celu, ze zachodzi nastepujaca tozsamosé

exp(a - Inz) = z*™7; (3.150)

korzystajac z niej mozemy rozktad log-normalny (3.147) przepisa¢ w postaci

1 n —1—a(zn)
P(z,) = ———— (:f—) : (3.151)
2mo2%(n) \Tn
gdzie wolnozmienna funkcja «(z,) el Wl(n) In (;—:) Jak wida¢, gdy spetniony jest
warunek

| a(z,) |< 1 =| In(z,/7,) |< 20%(n), (3.152)
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wtedy mamy do czynienia z rozktadem potegowym o wyktadniku potegi w przybli-
zeniu réwnym 1 co stanowi zrédto szumu typu 1/f, o ktérym jest mowa ponizej.
Na rysunku 3.7 poréwnalismy taki rozktad log-normalny (3.147), ktory spetnia
warunek (3.152) (gdyz przyjelismy, ze o(n) = 10 oraz 1 < Z(= x,/%,) < 100) z od-
powiadajacym mu (czyli posiadajacym ta sama wartos¢ parametru o(n)) rozktadem
potegowym ktadac po prostu we wzorze (3.151) wyktadnik o = 0. Jak widaé, rozr6z-

P(2)

0.02;
0.01;

0. 005¢

0. 002
0.001;

Z

1 2 5 10 20 50 100

Rysunek 3.7: Por6wnanie rozkladu log-normalnego (to ten polozony nieco nizej) z
odpowiadajacym mu rozktadem potegowym o wyktadniku potegi rownym 1 w skali

log-log. Jak wida¢, obie krzywe sa trudne do odréznienia w zakresie Z spetniajacym
(3.152).

nienie w tych warunkach obu rozktadéw jest trudne tym bardziej gdy uwzglednimy
(nieobecny na rysunku) nieunikniony rozrzut punktéw doswiadczalnych.

3.14.2 Log-normalne oraz potegowe dochody
jednostek w spoleczenstwie

Roéwnanie (3.138) opisujace proces multiplikatywny mozna interpretowaé tak jak
to uczynit R. Gibrat w roku 1931 analizujac statystyke oséb o niskich i érednich
dochodach (W. Souma: ”Physics of Personal Income”, arXiv:cond-mat/0202388 v1
22 Feb 2002); z tego powodu w analizie finansowej charakterystyczny wspotczynnik
B = 1/4/202%(n) parametryzujacy rozktad log-normalny (3.147) nosi nazwe indeksu
Gibrata. Gibrat zatozyt, ze roczny przyrost dochodu jednostki X, — X,,_; jest jakim$
losowym utamkiem dochodu X,,_; w roku poprzedzajacym a sam dochdéd X, w

90



dowolnym roku n jest nieujemny. Oznacza to, ze czynnik losowy R, w réwnaniu
(3.138) mozna traktowaé¢ (podobnie jak to ma miejsce we wczesniej omawianym
procesie kruszenia) jako nie mniejszy od —1 ale nieograniczony od géry (gdyz moze
sie zdarzy¢, ze w danym roku jednostka osiggnie znaczny zysk, w przeciwienstwie
do procesu kruszenia) co nie wplywa na omawiane wyprowadzenie rozktadu log-
normalnego’®.

Na rysunku 3.8 przedstawiono skumulowane prawdopodobienstwo dochodéw oso-
bistych obywateli Stanéow Zjednoczonych w latach 1935-36 od najnizszych po naj-
wyzsze dostene (w skali log —log; gwiazdkami zaznaczono dane empiryczne). Widad,
ze dane dla jednostek o niskich dochodach daja si¢ opisa¢ rozktadem log-normalnym
(cienka czarna linia) o indeksie Gibrata § = 1.63 i wartosci sredniej z,, = 1100 [$],
natomiast jednostki o dochodach przecigtnych a zwlaszcza wysokich (gruba czarna
linia) opisuja sie rozktadem Pareto-Lévy’ego o indeksie o = 1.63 (gdzie btad jest na
trzecim miejscu po kropce dziesietnej). W oparciu o wykres przedstawiony na rys.

1 I I
¥Income

—— Lognormat {x,=§1,100. {=2.23)

w—— Power faw (11«1 63)
£
= 10
Q
a8 !
n_e 10° — re-“':
o /
-->- / : _— 1 " 63
-
s
S 10
E
-
(&

10" \

o' 10°

10° 10° 1
Income (dollars)

Rysunek 3.8: Poréwnanie (typu Gibrata) danych empirycznych (gwiazdki) z roz-
ktadem log-normalnym (cienka czarna linia ciggta o indeksie Gibrata § = 2.23 i
Z, = 1100 [$]) oraz z rozkladem Pareto-Lévy’ego (gruba linia ciagta o indeksie

rozkladu a = 1.63).

18Chodzi o to, ze wystepowanie takiego ograniczenia zmusitoby nas do wymagania przyjetego w
rozdz. 3.14, ze (In p) < 0. Dopiero takie ograniczenie pozwolilo na wyprowadzenie tam rozktadu log-
normalnego dla dostatecznie duzych n, odsuwajac centrum rozkladu na lewo, dostatecznie daleko

od wplywu tego (gérnego) ograniczenia.
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3.8 mozna stwierdzi¢, ze rozkltadowi Pareto podlega blisko 1% o0s6b czynnych zawo-
dowo podczas gdy pozostate podlegaja rozktadowi log-normalnemu. Zaskakujacym
moze by¢ fakt znikomej liczbnosci grupy oséb o przecietnych dochodach osobistych.

Analogiczne wyniki badan przeprowadzonych nad spoleczenstwem japonskim w
okresu 44 lat od roku 1955 do 1998 zestawiono na rys. 3.9, gdzie podano roczne
wartosci indeksow av and (3. Jak wida¢, w niektorych latach indeks Pareto byt wigkszy

3.5

5 7 Jyh%
E%nm@iw

g 2': .i%ﬁ“@m P
%m[ |

O—Q r1: Parato index| Qc
O—0 B: Gibrat index

[

1
1950 1660 1970 1980 1990 2000
Year

Rysunek 3.9: Wartosci indekséw: Pareto o (kotka) i Gibrata § (kwadraciki) otrzy-
mane z danych dotyczacych spoteczenstwa japonskiego w latach 1955-98.

od 2 co potraktowano jako rozrzut wokot wartosci $redniej indeksu .

Aby wyznaczy¢ tg wartos¢ srednig zebrano dane z okresu 112 lat od roku 1887
do 1998 i przedstawiono na rys. 3.10. Z danych empirycznych dotyczacych Japonii
wynika, ze @ réwna sie (z dobrym przyblizeniem) granicznej wartosci 2.

3.14.3 Potegowe dochody przedsiebiorstw

W roku 1999 opublikowana zostata wielce charakterystyczna praca (K. Okuyama,
M. Takayasu, H. Takayasu: ”Zipf’s law in income distribution of companies”, Phy-
sica A 269 (1999) 125-131) dotyczaca rozkladu rocznych dochodéw przedsiebiorstw
japonskich, ktére poréwnano z analogicznymi dla przedsiebiorstw wloskich - otrzy-
mane wyniki przedstawiono na rys. 3.11 Jak widaé¢, gospodarka japonska znacznie
lepiej daje sie opisa¢ prawen Zipfa niz wloska.
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Rysunek 3.10: Wartosci indeksu Pareto o dla Japonii (puste kotka) i Stanéw Zjed-
noczonych (czarne kwadraciki) otrzymane z danych dotyczacych odpowiednio spo-
teczenstwa japonskiego w latach 1887-98 i amerykanskiego w latach 1914-1936.

Ponadto, na rys. 3.12 przedstawiono bardziej szczegétowe wyniki uzyskane na
drodze analizy poszczegdlnych gatezi gospodarki japonskiej. Jak wida¢ budownic-
two, ktore w najwiekszym stopniu podlega wolnej konkurencji, jest najlepiej opisy-
wane prawem potegowym w przeciwienstwie do energetyki, w ktorej intrwencjonizm
panstwa jest najwiekszy.

3.14.4 Stochastyczny proces multiplikatywny
w obecnosci bariery

Czesto w multiplikatywnych procesach stochastycznych, za pomoca ktorych staramy
sie opisaé rzeczywisto$¢, zmienne losowe posiadaja naturalne ograniczenie od dotu
- s dodatnie. Na przyktad, cena akcji na gieldzie czy tez liczebnosé okreslonej po-
pulacji zwierzat na danym terytorium rezerwatu w rzeczywistosci nigdy nie spada
do zera gdyz w przypadku osiagniecia ustalonego dolnego ograniczenia (na warto$é
akcji lub liczebno$é populacji w rezerwacie) nastepuje interwencja z zewnatrz unie-
mozliwiajgca przekroczenie ustalonego progu. Zatem, rzeczywistos¢ czesto naktada
na dynamike stochastyczng dolny ograniczajacy warunek brzegowy.

Przypusémy zatem, ze réwnanie (3.138) opisuje teraz stochastyczna dynamike
ceny akcji, X, w chwili n na gieldzie [3]. Przepiszmy to réwnanie w postaci zloga-
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Rysunek 3.11: Skumulowane prawdopodobienstwo dochodéw przedsiebiorstw japon-
skich (linia ciagta) oraz wloskich (linia przerywana) przedstawione w skali log-log.
Widaé, ze prawo Zipfa (cienkie linie przerywane) jest spelnione znacznie lepiej dla
gospodarki japonskiej niz dla wloskiej.

rytmowanej
Yo=Y, 4+, n=0,1,2,..., (3.153)

ktora wskazuje, ze mamy tutaj do czynienia z btadzeniem przypadkowym typu ruchu
Browna, w czasie dyskretnym n, gdzie aktualne potozenie Y, = In X,, oraz aktualne
przemieszczenie [, = In p,. W dalszym ciggu zaktadamy (podobnie jak poprzednio),
ze zmienna p, (a wiec i [,) jest losowana z rozkladu, ktéry jest niezalezny od n
oraz, ze (Inp) < 0 co nie oznacza, ze zawsze p, < 1 - czasami moze sie zdarzy¢, ze
pn > 1 co odrézmia tg sytuacje od omawianej poprzedniol®. Zauwazmy, ze ten ostatni
warunek dopuszcza sytuacje gdy od czasu do czasu (w wyniku fluktuacji) Inp,, > 0.
Jednakze po chwili, nastepuje dryf w kierunku odpychajacej bariery umieszczonej
na lewo od Yy w odlegtym punkcie Yy, tzn. |Yy| > |Yy.

Nalezy podkresli¢, ze istnienie odpychajacej bariery prowadzi do kumulowania
sie na niej tych wszystkich przemieszczen, ktoére w przypadku jej braku prowadzityby
do realizacji nieograniczonego procesu na lewo od bariery. W ten sposob w pobli-
zu bariery moze powstaé, dla asymptotycznie duzego n, znaczaca odpychajaca sita
termodynamiczna (a doktadniej chemiczna, proporcjonalna do gradientu potencjatu

Y0czywiscie, w obu przypadkach przemieszczenia I,, sa z definicji statystycznie niezalezne.
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Rysunek 3.12: Skumulowane prawdopodobienstwo dochodéw przedsiebiorstw japon-
skich w ramach trzech charakterystycznych galezi gospodarki w skali log-log: 1)
budownictwa (linia ciagla), 2) wyroby elektryczne i elektrotechniczne (w tym oczy-
wiscie ’high-tech’ - linia przerywana), 3) energetyka (linia kropkowana). Jak wida¢,
chroniona przez panstwo energetyka wykazuje najwieksze odstepstwa od prawa po-
tegowego (linia prosta przerywano-kropkowana); budownictwo, podlegajace w naj-
wiekszym stopniu dziataniu wolnej konkurencji, najlepiej daje si¢ opisa¢ prawem
potegowym (o wyktadniku oo = 1.13 - linia prosta kropkowana ); branza elektrycz-
na i elektrotechniczna takze daje sie opisaé (z nieztym przyblizeniem) rozktadem
potegowym (o wykladniku o = 0.72).

chemicznego a stad do gradientu gestosci prawdopodobieristwa) prowadzaca do dy-
fuzji w kierunku dodatnim (na prawo od bariery). Istnienie dwoch przeciwstawnych
pradéw: dryfu jy = V Py(Y,,) w kierunku bariery, gdzie V- = — | (Inp) | jest (bezwy-
miarowa) predkoscia unoszenia (dryfu) a Py(Y;,) jest poszukiwanym stacjonarnym
rozkltadem prawdopodobienstwa, i dyfuzji jp = —D ijigfl) w kierunku odwrotnym
wywolanej istnieniem tejze bariery, gdzie D = [((Inp)?) — (Inp)?]/2 jest (bezwymia-
rowym, jednowymiarowym) wspotczynnikiem dyfuzji, moze prowadzi¢ do powstania
stanu stacjonarnego procesu, w przeciwienstwie do sytuacji omawianej poprzednio
(takze w niniejszym rozdz. 3.14); w nastepnym rozdz. 3.14.6 doktadniej uzasadniamy
powyzsze rozwazania wychodzac od rownania mistrza.

7 warunku znikania sumarycznego pradu w stanie rownowagi
J=Jv+ip=0, (3.154)
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otrzymujemy

dPs(Yy) _ _’ 4 ’Ps(Yn)a (3.155)

dy, D

skad natychmiast wynika (z dobrym przyblizeniem), ze

[ aexp(—a(Y, — ), dlaY, <Y, <Y
Ps(Y,) = { 0, da Y, < v, (3.156)
gdzie wprowadziliSmy oznaczenie o = % oraz wykorzystaliémy warunek normaliza-
cji
1~ Ps(Y,,)dY,,. (3.157)
Yy

Postugujac sie réwnaniem (3.156), powracamy w wystepujacym tam rozkladzie do
wyjsciowej zmiennej X,,, czyli korzystamy z niezmienniczosci rozktadéw, otrzymujac

dy,
dX,

_«a 1
- X, (Xn/Xb)lJra’

Py(X,) = Ps(Ya(Xy)) ‘ = Py(X,) (3.158)

a wiec uzyskaliSmy rozktad potegowy Pareto, o ktérym moéwiliSmy na wstepie. Za-
uwazmy, ze nawet dla o < 1 stacjonarny rozktad potegowy moze sie utworzyc¢, gdyz
jest to rozktad o charakterze asymptotycznym.

Podkreslmy: powstanie rozktadu potegowego byto mozliwe dzieki wpro-
wadzeniu dolnego ograniczenia na warto$¢ zmiennej losowej X; brak ta-
kiego ograniczenia doprowadza do powstania rozkladu log-normalnego
(patrz rozdz. 3.14).

3.14.5 Model drabinowy dochodéw gospodarstw domowych

Model drabinowy opisuje pojedyncza klase dochodowa okreslona jednym (ustalo-
nym) wyktadnikiem Pareto . Za pomoca tego modelu okreslimy warunki w jakich
skumulowany rozktad pradopodobienstwa dochodéw gospodarstw domowych ma po-
sta¢ potegows.

Na rysunku 3.13 przedstawiono drabine spoteczna podklas dochodowych na jakie
dzielimy dang klase dochodowa. Podzial na podklasy dokonujemy wedtug nastepu-
jacej popularnej reguty wyktadnicze;j:

Y

Ymin

¢ ' < <q¢,i=1,2,...,¢>1, (3.159)

gdzie wyktadnik ¢ numeruje podklasy, ¢ jest liczbg rzeczywista, y > 0 oznacza do-
chdd a y,nin > 0 minimalng wartosé tego dochodu. Jak widaé, logarytm wzglednego
dochodu, In(y/Ymin), jest réwnomiernie roztozony ze stalym dystansem pomiedzy
podklasami krokiem In ¢.
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Rysunek 3.13: Drabina podklas modelu drabinowego opisujacego pojedyncza klase
dochodowa okre§lona jednym (ustalonym) wyktadnikiem Pareto «. Prawdopodo-
bienstwa przejs¢ do gory i wdol oznaczono, odpowiednio, przez p, oraz p_. Dodat-
kowo, przez po oznaczono prawdopodobienstwo przetrwania w pierwszej podklasie.
Stad, prawdopodobienstwo przejscia z tej podklasy do podklasy drugiej wynosi 1—py.
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W dalszym ciagu zaktadamy, ze uktad znajduje sie w stanie rownowagi. W stanie
takim spelnione sg warunki rownowagi szczegdtowej w postaci charakterystycznej dla
jednokrokowego modelu drabinowego:

Nipy = Niap-, 1 22,
ng, = Nl(l —po), (3160)

gdzie N;, j = 1,2,..., oznacza liczbe gospodarstw domowych w podklasie docho-
dowej o numerze j.
Rozwiaznie jednorodnego réwnania rekurencyjnego stopnia pierwszego (3.160)

jest nastepujace:
i—2

pP—
1 —

Ny = — PN (3.161)
pP—

Teraz, gtéwny problem jakie staje przed nami to wyznaczenie prawdopodo-
bienstwa skumulowanego P(y > y;). Rozklada sie ono na dwa kroki.
W pierwszym kroku wyznaczamy prawdopodobienstwo:

Ni

-~ 3.162
N? ( )

Pi = P(yminqiil < y < ymmql) = P(yl < y< yi+1) -

znalezienia dochodu gospodarstwa domowego w podklasie o numerze ; tutaj N =
2 N; oznacza liczbe wszystkich gospodarstw domowych ponadto, y; = Yming' !, @

1,2,....
W drugim kroku sumujemy prawdopodobienstwa P; otrzymujac posukiwana za-

lezno$¢ potegowa:

y < yz+2 + P(yz+2 Yy < yi+3) + ...
CI/CIO _
) _ ( Z/ymzn) “

Ply>y) = Py <y<yiy1) + Pyiy1 <
1

(e} — +q
(3.163)

_ ZP—%QZ<

)
1_

Powyzsze wyrazenie jest szczeg6lnie proste gdy 1 — pg = p. Wowcezas:
P(y > yi) = (Yi/Yomin) " - (3.164)
gdyz wtedy qo = q.
Podkreslmy, ze model drabinowy nie dostarcza informacji o strukturze wyktad-

nika « a jedynie precyzuje warunki w jakich uzyskuje sie rozktad potegowy.
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3.14.6 Od réwnania Markowa do ré6wnania Fokkera-Plancka

Omawiany w poprzednim rozdz. 3.14.4 multiplikatywny proces stochastyczny (3.153)
z warunkiem brzegowym w postaci blokujacej bariery w Y} daje sie opisaé¢ za pomoca
réwnania mistrza dla procesu Markowa

PY,t+1) :/ T()P(Y — 1, t)dl, (3.165)

gdzie 7(l) jest rozktadem z ktérego losowane jest pojedyncze przemieszczenie . W

dalszym ciggu przyjmujemy, ze rozktad m(l) jest waski tzn. jego dyspersja o =

(12) — (1)?> < (I). Rozwinmy w (3.165) gestos¢ prawdopodobiefistwa P(Y —1,t) te-

go, ze w chwili ¢ proces znajdzie sie w potozeniu Y —[ w szereg Taylora, ograniczajac
sie tylko do trzech pierwszych wyrazow

PY — 1) =~ P(Y,t) — 1

2
P, Y) + %Fw. (3.166)

oYy oY?

Z (3.165) i (3.166) otrzymujemy po prostych przeksztalceniach, dla ¢ > 1, réwnanie

Fokkera-Plancka (tutaj o stalych wspétezynnikach)
oP(Y,t) 0¥t

ot oy

ktore jest po prostu réwnaniem cigglosci wyrazajacym zasade zachowania prawdopodo-
bienstwa; tutaj gestos¢ strumienia prawdopodobienstwa

(3.167)

Ji(Yt) = jv(Y,t) + jp(Y, 1), (3.168)

gdzie gestosé pradu unoszenia (dryf) jy (Y, t) oraz gestosé pradu dyfuzyjnego jp(Y, t)
dane sa odpowiednio przez

Ju(Y,t) = VP(Y, 1),
IP(Y, 1)

ip(Y,t)~ —D
jD(?) oY 9

(3.169)
przy czym V = (I) oraz 2D = o?. Oczywiscie z réwnan (3.168) i (3.169) i warunku
znikania gestos$ci pradu otrzymujemy natychmiast wynik (3.158) z poprzedniego
rozdz. 3.14.6. Jest to alternatywna, wychodzaca od procesu stochastycznego droga
uzyskania rozkladu potegowego (3.158).

3.14.7 Multiplikatywno-addytywny proces stochastyczny
a proces multiplikatywny z odpychajaca barierg

Jak widzieli$émy, kazdemu procesowi (czysto) multiplikatywnemu o dodatnim szumie
i dodatniej wartosci poczatkowej procesu odpowiada proces addytywny i odwrot-
nie kazdemu procesowi (czysto) addytywnemu odpowiada proces multiplikatywny.
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Relacja pomiedzy takimi procesami jest zbudowana za pomoca funkcji logarytm
mianowicie, logarytmujac stronami proces multiplikatywny otrzymujemy odpowia-
dajacy mu proces addytywny. Obecnie zajmiemy sie procesem multiplikatywno-
addytywnym i wskazemy w jakich okolicznos$ciach prowadzi on do rozktadu potego-
wego.

Zatem, niech bedzie dany stochastyczny proces multiplikatywno-addytywny

X1 =pn- X +bn, n=1,2,..., (3.170)

gdzie niezalezne szumy multiplikatywny p,, i addytywny b, sa dodatnie i losowane
odpowiednio z dwoch niezaleznych rozktadéw?’. Nalezy podkreslié, ze w powyzszym
problemie nie zostalty narzucone zadne dodatkowe warunki, np. brzegowe (w tym
sensie jest to zagadnienie swobodne). Jak wiadomo (I. Kozniewska: ”Réwnania re-
kurencyjne”, PWN, Warszawa 1972), powyzsze rownanie posiada Sciste rozwiazanie
w postaci

X, = Xoexp(n{lnp)) + zn: b; ﬁ Dis (3.171)

j=1  I=j+1

gdzie dla wygody dodefiniowaliémy []/-!p, = 1. W dalszym ciagu dyskutujemy
przypadek (Inp) < 0, ktory (jak wykazemy) jest analogiczny do dyskutowanego po-
przednio dla procesu (czysto) multiplikatywnego przy czym role ”sity odpychajacej”
pelni w powyzszym rozwiazaniu dodatnia ("miekka”) niejednorodno$¢ zbudowana
z obu rodzajow szumu a nie, jak poprzednio, (sztywna) bariera odpychajaca. Inny-
mi stowy, rywalizacja obu szuméw moze prowadzi¢ do powstania asymptotycznie
stabilnego rozwiazania postaci

n—oo n—oo

Xooo= > b II s (3.172)

j=1  I=j+1

ktore rozni sie od wartosci przecietnej procesu

(X) =1 ibzpy (3.173)

gdzie (p) < 1.

3.14.8 Rownanie Langevina a rozklad potegowy

Réwnanie rekurencyjne (3.170) mozna tatwo sprowadzi¢ do postaci rownania Lan-
gevina dla asymptotycznie dtugiego czasu. W tym celu przepiszmy (3.170) w postaci
Xpi1 — X b

_ Oy 3.174

20Warto wiedzieé, ze proces (3.170) nosi takze nazwe mapy afinicznej a zmienna X, nosi w
matematyce nazwe zmiennej Kestena.
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skad, po udrednieniu obu stron réwnania wzgledem szumu b(t), otrzymujemy poszu-
kiwane rownanie

PO _ pr @)+ v+,
F(Y (1) 2 (b) exp(~Y (1)), (3.175)

gdzie dla wygody?!

e zastapiliSmy dyskretny czas n przez ciagly (bezwymiarowy) ¢ zastepujac jed-
nostke czasu przez infinitezymalnie krétki przedziat czasu dt,

e uzyliSmy nowej zmiennej Y () o x (1),
e wprowadziliémy (bezwymiarowa) predkos¢ V = (p) — 1 = (Inp) < 0 oraz

e zdefiniowali$my tutaj d-samoskorelowany biaty szum 7(t) = p(t) — (p) posiada-
jacy znikajaca warto$¢ przecigtna oraz (bezwymiarowa) wariancje 2D = o2 =
() = () = (p)* = {(Inp)*) — ({Inp))*.
Jak widaé, F (Y (t)) pelni role sily, ktora jest tym wieksza im Y'(¢) jest mniejsze,
przeciwstawiajac sie osiaganiu przez proces ujemnych wartosci Y'(¢). Mamy tuta]
do czynienia nie tylko z addytywnym szumem 7(t) (ktéry moze przybieraé zar6wno
wartosci dodatnie jak i ujemne) ale takze z dodatnia stochastyczna sita F(Y (t))
odgrywajaca kluczowa role w tym problemie.
Réwnanie Fokkera-Plancka odpowiadajace réwnaniu Langevina (3.175) przybie-
ra postaé (patrz ogdlne wyprowadzenie zamieszczone w podrozdz. 3.14.9):

oP(Y,t)  0j(Y,1)
ot - oy
jY,t) = [V+F(Y)]7?(Y,t)—D%, (3.176)

ktora posiada interesujace nas rozwigzanie réwnowagowe dla Y > 0. Zauwazmy
przy okazji, ze gdy |V| > [(b)|exp(=Y(t)) to dryf jest zwrécony na lewo (w kie-
runku ujemnego Y'), natomiast prad dyfuzyjny na prawo (od duzego do malego
prawdopodobienstwa). Zatem mozliwe jest zrownowazenie sie tych dwoch pradow
dajac w konsekwencji rozwigzanie stacjonarne.

Rozwigzanie stacjonarne

Rozwiazanie stacjonarne uzyskujemy zaktadajac znikanie gestosci pradu (3.176), co
prowadzi do réwnania

dinPye(Y) V+F(Y)

dy D ’

2I'W réwnaniu (3.175) dla prostoty opusciliémy dodatkowe indeksowanie wszystkich wielkosci

podkreslajace, ze dotycza one sytuacji usrednionego a nie chwilowego szumu b(t), ktérego wartosé
$rednia nie znika.

(3.177)
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Rozwiazujac powyzsze rownanie otrzymujemy, po powrocie do zmiennej X, ze Pyyoe(X)
dane jest odwrotnym rozktadem gamma,

Paacl X) = 57 )C(Z?itlv 5 exp <—%>%> . (3.178)

Jak widaé, rozktad ten, dla X > (b) /D > 0 przechodzi w rozkltad potegowy
zmiennej X. Tym samym uzyskaliSmy pogtebione objasnienie okolicznosci w ja-
kich multiplikatywno-addytywna dynamika stochastyczna generuje rozktad potego-
wy. Przy okazji zauwazmy, ze wyktadnik potegi jest tutaj identyczny do tego dla
procesu multiplikatywnego z barierg odpychajacg. Co wiecej, we wspomnianych po-
wyzej warunkach rola szumu addytywnego jest zanikajaca.

Zauwazmy na zakonczenie tego rozdziatu, ze przejécia graniczne prowadzace do
rozwiazan (3.178) i (3.142) sa zupeknie inne, chociaz (w sytuacji gdy (b) = 0) dotycza
tego samego procesu multiplikatywnego. Zatem nic dziwnego, ze sg to inne rozktady
prawdopodobienstwa.

3.14.9 Od nieliniowego réwnania Langevina
do réwnania Fokkera-Plancka

W niniejszym podrozdziale przedstawiamy brakujace, nadzwyczaj wazne ogniwo
taczac dziedzine proceséw stochastycznych z dynamiks stochastyczng. Dokladniej
moéwiac, wyprowadzamy rownanie Fokkera-Plancka z nieliniowego (w ogdlnosci) row-
nania Langevina. Wyprowadzenie to sktada sie z kilku etapow [4].

W pierwszym etapie odcatkowujemy réwnanie dynamiki stochastycznej Lange-
vina??,

dX (t)

—5 = —A(X(t),t) + C(X(t), t)n(t) (3.179)
rzadzone przez biaty szum 7, do postaci rownania dynamiki stochastycznej Winera
dX(t) = —A(X(t),t)dt + C(X(t),t)dW, (3.180)

gdzie dW = n(t)dt jest procesem Wienera, przy czym dW jest tzw. rézniczka sto-
chastyczng (patrz np. [6, ?]). Z definicji procesu Wienera, typowa wartos¢ (dW)?
jest rzedu dt. Innymi stowy, zmienna losowa dW jest odlosowywana z symetrycznego
rozktadu Gaussa o wariancji propocjonalnej do dt i statej proporcjonalnosci rzedu
1.

W nastepnym kroku korzystamy z Lematu 1to, ktory sprowadza sie do nastepu-
jacego rozwiniecia dowolnej, co najmniej dwukrotnie rézniczkowalnej funkeji A(X):

dh(X) Ph(X) )., dh(X)
dx dx? dx

dh = —A(X(t), 1) dt + B(X(t),1) C(X(t), t)dW,

(3.181)

22Wprowadzamy réwnanie Langevina w postaci ogélniejszej od tej jaka zostata podana w ksigzce
van Kampena [5], gdyz dopuszczamy tutaj jawng zalezno$é wspoélezynnikéw réwnania od czasu.
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gdzie B(X(t),t) = C*(X(t),t)/2 i po drodze skorzystaliSmy z réwnania (3.180) oraz
przyjeliémy po prostu, ze (dW)? = dt.
W kolejnym kroku $redniujemy powyzsze réwnanie uzyskujac:

% X <_%> + B(X,1) <_d2dl;(()2<>> _

/_Z [_A(X, t>df;())(() + B(X, t)dd};(();)} P(X,t)dX,

(3.182)

gdzie wyraz proporcjonalny do dW wyzerowat sie.

Catkujac przez czesci prawa strone powyzszego réwnania i wykorzystujac znika-
nie rozktadu prawdopodobienstwa P(X,t) na brzegach X — Foo it — o0, otrzy-
mujemy

dt —o00 0X 0X?

gdzie dodatkowo skorzystalismy z unormowania [0 P(X,t)dX = 1.
7, drugiej strony, pochodna po czasie wartosci sredniej wynosi
d(hy d = )
A _ 2 hXPX,th:/ WX)Z P(X, t)dX. 3.184
=2 [ hOPXHAX = [ () P(X.1) (3.184)
W ostatnim etapie, poréwnujac lewe strony rownan (3.183) i (3.184) oraz pamie-
tajac, ze sa one sobie réwne dla dowolnej funkcji h(X), otrzymujemy ostatecznie:

2P(X t) = 9 [A(X,t)P(X,1)] + o
ot ’ 0X ’ ’ 0X?
czyli poszukiwane réwnanie Fokkera-Plancka. Réwnanie to bedzie jeszcze kilkakrot-
nie wykorzystywane w dalszej cze$ci. Mam tu na mysli, na przyktad, oryginalne
zastosowanie stacjonarnego rozwigzania rownania Fokkera-Plancka do analizy do-
chodéw gospodarstw domowych, przedstawione w kolejnym rozdziale.

Aby uzyskaé¢ rozwiazanie stacjonarne P(X,t) = Py,.(X) wystarczy zauwazy¢, ze
réwnanie (3.185) jest réwnaniem ciaglodci na rozkltad P(X,t), gdzie gestosé pradu
prawdopodobienstwa

d{h) :/“’ h(X){i[A(X,t)P(X,t)H o [B(X,t)P(X,t)]}dX. (3.183)

[B(X,t)P(X,1)], (3.185)

0
J(X,t) = A(X,t)P(X,t) + X [B(X,t)P(X,1)]. (3.186)
Rozwigzanie stacjonarne uzyskuje sie zaktadajac, ze gestosé pradu unoszenia jg,, (X, t) def.
A(X,t)P(X, 1) jest rowna gestosci pradu dyfuzyjnego ja, (X, t) = _aix [B(X,t)P(X,1)].
Stad,

B(X) ~ Jxo B(X")

gdzie muszg by¢ spelnione warunki: A(X,¢) = A(X) > 0 oraz B(X,t) = B(X) > 0;
W przeciwnym razie rozwigzanie stacjonarne nie istnieje.

X /
Pstac(X> - const exp [ A(X )dX,‘| , (3187)
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Rozdzial 4

Analiza portfelowa

4.1 Banka kredytowa - przypowies¢

Zanim przystapimy do systematycznej analizy portfelowej przytoczymy przystowio-
wa opowiesé o fryzjerze, kliencie i banku, pokazujaca z jaka nadzwyczajng tatwosciag
rynek moze popasé w tarapaty finansowe z powodu naturalnej aktywnosci banku.

Wyobrazmy sobie banalng sytuacje klienta ptacacego, np. u fryzjera, za ustuge
20 zt. Fryzjer ma dobrze rozkrecony interes przynoszacy zyski, wiec czesé tej kwoty,
np. 10 zt, lokuje w banku. Zatem, po obstuzeniu przez fryzjera dwoch klientéw bank
dysponuje pelna kwota umozliwiajaca skredytowanie nastepnego klienta, ktorego
nie sta¢ na fryzjera a ktory zwrocit sie do banku o pozyczke. Oczywiscie, bank zeby
zarobi¢ musi prowadzi¢ akcje kredytowa. Udziela zatem owego dwudziestoztotowe-
go kredytu. Fryzjer znowu zarabia 20 zt za ustuge wykonana na rzecz tego klienta.
Ponownie zanosi zarobione pienigdze do banku, ten udziela kredytu kolejnemu klien-
towi fryzjera i tak w kotko. Rzecz jasna, przez jakis czas system dziata ale tylko do
chwili, gdy fryzjer bedzie chcial odebraé¢ swoja gotowke (np. aby dokonaé jakiejs
inwestycji). Zwr6émy uwage, ze to finansowe ”perpetum mobile” oparte bylo tyl-
ko na jednej faktycznej kwocie 20 zt, jaka na samym poczatku fryzjer ulokowat w
banku - wszystkie kolejne stanowity tylko jej ”wirtualne repliki”. Zatem bank nie
dysponuje gotowka, zeby oddacé fryzjerowi co jego, gdyz po pierwsze gotowka jest w
obrocie a po drugie jest jej niewystarczajaca ilo$¢ (fryzjer sporo odlozyl a zasada
"tyle kredytu ile depozytu” jest dla banku nie do utrzymania). Oczywiscie, wiesé o
niewyptacalnosci banku rozchodzi sie ”lotem blyskawicy” - klopoty maja inne banki
a stad caly sektor finansowy.

Ta pozornie naiwna przypowiesé¢ jasno wskazuje, ze powstawanie baniek kredyto-
wych jest wmontowane w system finansowy - jest jego nieodlaczna, fundamentalng
cecha. Oczywiscie, kazdy etap akcji kredytowej banku jest zabezpieczany - niestety;,
nie da sie tego zrobi¢ w stu procentach, gdyz kazda aktywnosé¢ nastawiona na zysk
niesie ze soba kumulujace si¢ ryzyko. Wtasnie o neutralizowanie ryzyka i o wy-
nikajacych stad réznych (zaleznie od okolicznosci) strategiach dzialania,
jest mowa w niniejszym rozdziale.
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Gwoli Scistosci powiedzmy, ze w niniejszym rozdziale zajmujemy sie gtéwnie ry-
zykiem rynkowym, podczas gdy nasza przypowies¢ dotyczyla ryzyka systemowego.
Jednakze, chodzito nam tutaj o wskazanie na nieodtaczng obecnos¢ ryzyka systemo-
wego, kladacego sie cieniem na ryzyko rynkowe (zwigkszajac je). Zatem bedziemy
pamietac, ze zawezajac naszg analize tylko do ryzyka rynkowego faktycznie niedo-
szacowujemy catkowite ryzyko.

Analiza portfelowa! przeprowadzona w niniejszym rozdziale ma charakter refe-
rencyjny - stanowi punkt wyjscia ogromnej wiekszosci wspotezesnych modeli opisu-
jacych dynamike portfela, zaréwno w czasie dyskretnym jak tez cigglym. W istocie
rzeczy, dotyczy tylko dynamiki trzech rodzajéw waloréw (instrumentéw):

1) dwéch obarczonych ryzykiem tzn. bazowego (np. akcji) i pochodnego (np.
opcji) oraz

2) jednego rodzaju pozbawionych ryzyka (tzn. obligacji oraz lokaty bankowej).

Operowanie tymi instrumentami umozliwiaja rézne, omawiane tutaj strategie.

4.2 Dwumianowy model dynamiki instrumentéw
finansowych

Model dwumianowy (ang. binomial model), dzieki swojej prostocie, umozliwia budo-
wanie ewolucji (bazowych oraz pochodnych) instrumentéw finansowych na drzewku
dwumianowym (ang. binomial tree) krok po kroku (ang. step-by-step), w sposéb se-
kwencyjny (rekurencyjny). Pozwala to dostrzec i sformalizowaé¢ wiele zasadniczych
zaleznosci, ktore sg nastepnie wykorzystywane w bardziej ztozonych modelach, np.
wielomianowych lub traktujacych czas jako parametr cigglty a przedzialy czasu ja-
ko zmienne losowe. W ramach dwumianowego rozwazamy trzy rodzaje waloréw a
mianowicie,

e pozarynkowe (np. obligacje lub lokaty bankowe) o stalej stopie oprocentowania
e akcje (bedace bazowym instrumentem finansowym) oraz
e pochodne instrumenty finansowe (np. opcje) wystawione na te akcje.

Dynamike tych waloréw omawiamy wykorzystujac trzy najpopularniejsze strategie
nalezace do grupy strategii replikujacych (ang. replicating strategies) cene pochod-
nego instrumentu finansowego:

1) strategie arbitrazowa? (ang. arbitrage strategy)

'W niniejszym rozdziale zajmujemy sie tylko portfelem klienta a nie portfelem instytucji finan-
SOwej.
2Jak zobaczymy to dalej, strategia ta powinna sie raczej nazywaé bezarbitrazowa.
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2) strategie zabezpieczajaca (ang. hedging)
3) strategie samofinansujaca (ang. self-financing strategy),

ktore stanowig punkt odniesienia strategii bardziej ztozonych; dodajmy, ze ostat-
nia strategia stanowi zastosowanie proceséw martyngatowych, ktore sa oczywiscie
omawiane w niniejszym rozdziale.

Filarami, na ktorych spoczywa analiza portfelowa omawiana w niniejszym roz-
dziale sg dwie miary: arbitrazowa i martyngatowa, bedace (jak zobaczymy) miara-
mi neutralnymi wobec ryzyka. Dzigki nim mozliwe byto ukoronowanie modelu
dwumianowego wyprowadzeniem w ramach niego (na drodze przejscia gra-
nicznego do czasu ciaglego) stynnej formuly wyceny opcji Blacka-Scholesa
dla portfela pozbawionego ryzyka.

4.2.1 Od awersji do ryzyka do miary neutralnej wzgledem
ryzyka - podejscie intuicyjne

Wiszelka ludzka aktywnos¢ jest nastawiona na szeroko rozumiana korzys¢, czyli zysk
np. materialny lub mentalny (intelektualny lub emocjonalny). Z drugiej strony, kaz-
da aktywno$¢ jest obarczona ryzykiem prowadzacym do mozliwosci po-
jawienia sie strat. Ryzyko bedziemy wiec utozsamiali z mozliwoscia ponoszenia
strat; inaczej mowiac, bedziemy zakladaé, ze nie ma korzysci bez ryzyka. Jak
wida¢, znajdujemy si¢ w sytuacji "miedzy mlotem a kowadtem”. Zatem w kazdej
chwili, mniej lub bardziej swiadomie, staramy sie optymalizowa¢ ryzyko, gdyz to-
warzyszy temu wszechobecne zjawisko awersji do ryzyka. Sam fakt zrozumienia
tego co to jest ryzyko jest niewystarczajacy - aby moc racjonalnie podejmowaé de-
cycje i dziata¢ musimy umieé mierzy¢é ryzyko, czyli dysponowaé¢ miara ryzyka
oraz umie¢ nim zarzadzacé. Trzeba podkresli¢, ze brak jest powszechnie ak-
ceptowanej teorii ryzyka - kazde z istniejacych podejs$¢ jest niewystarczajace i
moze prowadzi¢ do przeszacowania albo niedoszacowania rzeczywistego ryzyka.

Awersja do ryzyka

Rozwazmy prosty przyklad gry?, ktorej uczestnik moze wygraé¢ Xgown, = 50 j.u. al-
bo X, = 150 j.u. z jednakowym prawdopodobienstwem réwnym p = 1/2. Zaten,
Srednio rzecz biorac wygrana w tej grze wynosi (X)p = 100 j.u. Jednakze, mata jest
szansa na to, ze uczestnik gry zaptaci tytutem optaty wstepnej tak wysoka kwote
akceptujac z prawdopodobienstwem 1 — p = 1/2 strate réwna X goun — (X)p = —50
albo z prawdopodobiefistwem p zysk X,, — (X)p = +50. Chociaz taka gra bylaby

3 Jest to uogdlnienie rozwazan zaczerpnietych z ksigzki Grazyny Trzpiot, Wybrane modele oceny
ryzyka. Podejscie nieklasyczne, Wydawnictwo Akademii Ekonomicznej im. Karola Adamieckiego
w Katowicach, Katowice 2008.
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gra sprawiedliwa® (ang. fair game), to jednak znaczna wigkszo$¢ z nas zdecy-
dowalaby sie, paradoksalnie (gdyby taka mozliwosé istniala), na brak zysku o
ile tylko miataby pewno$é¢, ze nie towarzyszy temu zadna strata - wlasdnie
tego typu wybor jest bezposrednim skutkiem awersji do ryzyka.

Mozemy tutaj tatwo zmierzy¢ nasza awersje do ryzyka zadajac sobie pytanie ja-
ka oplate wstepna (prowizje, premie) bylibySmy w stanie uiScié¢? Zapewne
bytaby to wielko$¢ mniejsza od wartosci sredniej (X) p, np. wynoszaca +90 j.u. Pod-
nosi to jeden z gtownych probleméw finansow - problem uwzglednienia premii
za ryzyko.

Powyzsze rozwazania sugeruja a pokazane to jest $ciSle ponizej, ze okresle-
nie awersji do ryzyka jest wykonalne o ile w problemie istnieje wartosé
przecietna, czyli istnieje jaka$ fizyczna skala (prosze nie myli¢ jej z jednostka)
charakteryzujaca gre. Nalezy zaznaczy¢, ze istnieja takze gry bezskalowe dla ktorych
ustalenie takiej skali nie jest mozliwe; najbardziej popularng a zarazem najstarsza z
nich jest tzw. paradoks petersburski Bernoulliego (patrz podrozdz. 2.2.2).

Miara neutralna wobec ryzyka

Uwzglednienie premii za ryzyko moze si¢ odby¢ na drodze zamiany oryginalnej mia-
ry P = {p}, ktéra prowadzi do premiii nieakceptowalnej, na neutralng wobec ryzyka
Q = {q}, a wiec taka ktéra prowadzi do premii akceptowalnej. W naszym konkret-
nym przypadku jest to (jak wykazemy) miara g = 2/5, w ktorej wartosé oczekiwana
(przecietna)

(X))o = Xupq + Xaown(1 — ¢) = +90 j.u. (4.1)
jest doktadnie réwna optacie wstepnej jaka zgadzamy sie uiscic. To wlasnie ta
zgoda definiuje pojecie neutralnosci wobec ryzyka. Oczywiscie, powyzsza

miara takze definiuje gre sprawiedliwa. Innymi stowy, rozwiazujac réwnanie (4.1)
wzgledem poszukiwanej (dychotomicznej) miary ¢ otrzymujemy,

1_q:L<X>Q (4.2)

Jak wida¢, musialo zosta¢ tutaj przeszacowane prawdopodobienstwo straty, wy-
noszacej teraz

Xaown — (X)g = —40 j.u. (4.3)

4Przez gre sprawiedliwa rozumiemy taka gre, w ktorej straty i zyski statystycznie rzecz biorac
réwnowazg sie. Tutaj oznacza to, ze (Xgown — (X)pP) (1 —p) + (Xup — (X)p)p = 0. W dalszym
ciggu zjmujemy sie tylko grami sprawiedliwymi.
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z 1 —p = 1/2 na wieksze 1 — ¢ = 3/5, kosztem prawdopodobienstwa zysku - zysk
ten wynosi w tej nowej mierze

Xup — (X)g = +60 j.u. (4.4)

z p = 1/2 na mniejsze ¢ = 2/5. Miara ryzyka jest tutaj zwigzana bezpo$red-
nio z awersja do ryzyka okreslona wysokosScia oplaty wstepnej (zwanej tez
wysokoscig premii lub prowizji za wejscie do gry albo po prostu cena). Im wigksza
jest ta prowizja tym wielkos¢ straty wzrasta a zysku maleje. Oczywiscie, strata ta
ma dobrze okre§lone prawdopodobiefistwo (dane drugim réwnaniem w (4.2)), ktore
(na szczescie) maleje ze wzrostem tej prowizji. Zauwazmy, ze prawdopodobienstwo
zysku zachowuje sie odwrotnie - ro$nie ze wzrostem prowizji. Inaczej, mielibysmy do
czynienia z finansowym ”perpetum mobile”. Tym samym, w naszym odczuciu, po-
trafimy zneutralizowac¢ ryzyko, co wynika z faktu, ze godzimy sie na okreslong
nieprzekraczalng wielko$¢ starty (tutaj wynoszaca —40 j.u.) mniejsza, oczywiscie,
od straty maksymalnej AX, 40 = Xaown — (X)p = —50 j.u.
Przedstawiona powyzej miara ryzyka

a) wymaga okreslenia w sposéb jawny i precyzyjny prawdopodobienstw zyskow i
strat oraz

b) wymaga aby warto$¢ przecietna istniala; co wiecej,

c) takie podejécie ma zastosowanie do rynku zupelnego, ktéry nie naktada na
transakcje zadnych dodatkowych ograniczen.

Jest interesujacym, ze struktura otrzymanych wzoréw na prawdopodobienstwa
q oraz 1 — q jest analogiczna do struktury wyrazenia na prawdopodobienstwa arbi-
trazowe, o ktérym jest mowa ponizej w podrozdz. 4.2.3 (patrz wyrazenia (4.20)).

4.2.2 Podstawowe idee i definicje: pierwszy krok na drzewku
dwumianowym - istota problemu

Celem zrozumienia podstawowej idei modelu dwumianowego skonstruujmy prosty
portfel sktadajacy sie w kazdej chwili czasu ¢ tylko z dwoch waloréw

Tt = (¢247¢t0)7 (45>

gdzie ¢! jest liczba akcji a 9 liczba obligacji w portfelu (portfel 7; jest tutaj dwuwy-
miarowg zmienng losowa), przy czym obie te liczby moga byé¢ utamkowe, zaréwno
dodatnie jak tez ujemne; liczba ujemna oznacza, ze zakup nastapil za pozyczone
pieniadze (walor jest zadluzony a dlug nalezy sptacié - zakup lewarowany). Naszym
wyjSciowym celem jest wyznaczenie struktury portfela czyli liczby akcji
i obligacji przy zalozeniu ich nieograniczonej plynnosci.

Ograniczamy sie na razie do dwéch kolejnych chwil ¢ = 01 ¢ = 15t (patrz rys.
4.1). Niech w chwili ¢ = 0 cena akcji wynosi Sy a w nastepnej t = 1[dt] z praw-
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Rysunek 4.1: Pierwszy krok ewolucji w modelu dwumianowym. Cena bazowego in-
strumentu finansowego wykonuje bladzenie przypadkowe w czasie dyskretnym na
jednowymiarowej sieci L réwnoodlegtych potozen. Pojedyncze przemieszczenie do
gory z okreslonym prawdopodobienstwem rynkowym odpowiada wzrostowi ceny a
na dot z dopetiajacym, jej spadkowi.

dopodobienstwem ocenianym przez inwestora (a wiec subiektywnym zwanym tez
rynkowym) pg wynosi Si o ile jest wigksza od Sy a w przeciwnym razie z analogicz-
nym prawdopodobienistwem py (= 1 — pgd) wynosi S; . Nalezy podkresli¢, ze Si", Sy
sa cenami domniemanymi przez inwestora (przysztymi) a nie rzeczywistymi, gdyz
w chwili ¢ = 0 nie wiadomo jeszcze jak potocza sie losy rynku. Dalej przyjmijmy, ze
wartosé obligacji w chwili ¢ = 0 wynosi Ag a ponadto, (pozagietdowa) stope procen-
towa na jednostke czasu oznaczmy przez r. Stad, domniemang wartos¢ portfela V'
w chwili t=1 moze przyjaé¢ jako jedna z dwdch

[ Vi*, oile cena akcji wzrosnie,
Vi(mo) = { V", oile cena akcji spadnie, (4.6)
tutaj
Vit = g0 ST+ ¢S No(1 + rot) = ¢t ST + 65 Mg exp(rdt) (4.7)
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gdzie zatozylismy (jak to zwykle ma miejsce w rzeczywistosci), ze r 6t < 1 co umoz-
liwia, z dobrym przyblizeniem, wykladnicza (a wiec wygodna z matematycznego
punktu widzenia) kapitalizacje ciagla.

Przypusémy, ze wybrany przez inwestora pochodny instrument finanso-
wy I zalezny od kursu akcji, daje w chwili ¢ = 1 jedna z dwoch wyptat (tak jak
to ma miejsce dla opcji, czyli niech jego cena bedzie tak okreslona jak dla opcji, o
czym jest mowa ponizej)

+ oo
P = { Fi, dla kursu akcji S7", (4.8)

F, dla kursu akcji Sy .

Zaktadajac, ze nasz portfel m, ma charakter replikujacy® mozemy bez trudu
odpowiedzie¢ na pytanie o wielkosci udzialéw ¢, ¢S w portfelu w chwili t = 0. W
tym celu wystarczy rozwigzaé¢ uktad dwéch réwnan liniowych na niewiadome ¢7', ¢S:

Fir = Vi = ¢4 ST + 6§ Ao exp(rdt),
F =V = ¢3Sy + ¢§ Ao exp(rdt); (4.9)

poszukiwane rozwigzanie przyjmuje postac

¢A_ F1+_F1_
0 — Sii——Sl_’
1 SHF- — ST Ff
O:_ . 141 141 ) 41
¢O AO eXp( T(St) Sfr —Sf ( O)

Jak wida¢, liczba udziatow na akcje jest po prostu stosunkiem mozliwej zmiany war-
tosci pochodnego instrumentu finansowego przypadajacej na jednostkowa dopusz-
czalng zmiane wartosci instrumentu bazowego. Paradoksalnie, wyrazenie na udziaty
na obligacje jest bardziej skomplikowane, gdyz cena mozliwych wartosci opcji jest
odpowiednio "wazona” ceng akcji.

Korzystajac teraz z obu wyrazen (4.10) oraz z wartosci portfela Vo w chwili ¢ = 0

Vo = ¢Sy + 65 Ao, (4.11)

osiagamy nasz zasadniczy cel, czyli otrzymujemy (po prostych przeksztalceniach)
odpowiedz na kluczowe dla inwestora pytanie o warto$¢ danego instrumentu
finansowego w chwili ¢t = 0 a wiec w chwili, gdy stawia pytanie o optacalnos¢
strategii. Mianowicie,

Fy = Vo =exp(—rdt) (g F\" +qo F7)
= exp(—r0t)EF (Fy) = exp(—rdt)(F1)D, (4.12)

SReplikujacy charakter portfela oznacza tutaj, ze watoéé portfela w danej chwili czasu jest
réwna cenie danego instrumentu finansowego F'.
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gdzie wagi ¢i zwane prawdopodobiefistwami arbitrazowymi (ang. arbitrage probabi-
lities) zdefiniowane sa w nastepujacy sposob

Soexp(rdt) — Sy
q(—)i—: . er( )7 laqazl_q(-)i—> (413)
ST =5

natomiast E&(F)) = (F1) jest wartodcig oczekiwang w mierze Q © @) instru-
mentu F' w chwili £ = 1. Oczywiscie, stwierdzenie to ma sens tylko wtedy, gdy
0 < g= < 1, czyli gdy dynamika cen akcji ma charakter optacalny, tzn.

S; < Spexp(rdt) (4.14)

S > Spexp(rdt). (4.15)

Zatem, warto$¢ portfela w chwili poczatkowej jest réwna jego wartodci oczekiwanej
w chwili aktualnej, zdyskontowanej na chwile poczatkowa. W dalszym ciagu bie-
rzemy pod uwage tylko optacalno$é¢ wieksza niz ta na jaka pozwala kapitalizacja
pozarynkowa.

Tym samym przeszliémy od procesu stochastycznego w mierze subiektywnej
(rynkowej, podstawowej) P o {pE} do nowego, opisanego powyzsza miara Q zwa-
na arbitrazowa (ang. arbitrage measure) - bedzie jeszcze o tym mowa przy okazji
wprowadzenia proceséw martyngatowych w rozdz. 4.3.

Zauwazmy, ze w réwnaniach (4.10) uzyli$émy udzialéw w chwili ¢ = 0 a nie (jak
mogloby sie wydawaé "na pierwszy rzut oka”) w chwili ¢ = 1 - wymaga to wyja-
$nienia tym bardziej, ze przenosi sie to na miare arbitrazowa. Tego typu podejscie
bazuje na pragmatycznej procedurze, ktéra umozliwia aktualizacje udziatow dopie-
ro po wyznaczeniu domniemanego portfela replikujacego we wlasciwej chwili a co
za tym idzie i domniemanej wartos$ci instrumentu finansowego. Wystepujace tu-
taj opoznienie nazywiemy bezwtadnoscig udziatéow - wrocimy do niego w podrozdz.
4.2.3.

4.2.3 Uogoblnienie: dowolny krok na drzewku dwumianowym

Rozszerzymy teraz wzory (4.10), (4.12) i (4.13) na dowolna chwile ¢, rozwijajac dalej
w czasie jednokierunkowe drzewko dwumianowe i traktujac zmienng S; jako proces
stochastyczny na tym drzewku. Pierwszy element drzewka przedstawiono na rys. 4.1;
na rys. 4.2 przedstawiono rozwiniecie drzewka dwumianowego az do chwili ¢t = 4 ét.
Na rysunku tym oznaczono tylko niektére (poczatkowe i wybrane koncowe) elementy
drzewka; zauwazmy, ze wprowadzono tam ogoélniejsza notacje niz ta, ktérg uzyto na
rys.4.1. Korzystajac z tej notacji mozna wspomniane powyzej wzory uzyskaé¢ dla
dowolnej chwili (a nie tylko dla t = 0), gdyz kazdy wezet tego drzewa jest potaczony
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Rysunek 4.2: Jednokierunkowe drzewko dwumianowe powstate w wyniku hipote-
tycznego btadzenia przypadkowego domniemanej ceny bazowego instrumentu finan-
sowego S w czasie dyskretnym na jednowymiarowej sieci L réwnoodlegtych poto-

., . . . , ., 1 .
zen. Pojedyncze przemieszczenie do géry z prawdopodobienstwem pi’“’ odpowiada

wzrostowi ceny a w dot, z prawdopodobienstwem pi’l_l =1- pi’l“, jej spadkowi; w

0g0lnosci prawdopodobienstwa te moga by¢ niestacjonarne.

bezposrednio tylko z dwoma sasiednimi (analogicznie jak wezel poczatkowy). Zatem,
wyjéciowe rownania (4.9) mozna przepisa¢ nastepujaco:

Al 0,l
Ftlialt = tlfalt = ¢ Siiét + ¢y " Ay exp(rot),
_ _ Al ol— 0,
Ftl-l—élt = th+517: = P Stl+§t + o0 Ay exp(rdt). (4-16>

Nalezy przy tym pamiectaé, ze poszukujemy wartosci portfela a stad ceny
instrumentu pochodnego we wczesniejszej chwili ¢

F =V} = ¢S]+ 07" (4.17)

Delikatny aspekt modelu tkwi (analogicznie jak poprzednio) w bezwladnosci
udzialéw czyli w tym, ze zaréwno réwnania (4.16) jak i réwnanie (4.17) postuguja
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sie tymi samymi wartosciami udziatow gbf by gbto’l zatem, zmianie moze ulega¢ war-
tosé¢ tych udzialéw ale nie ich liczba. Innymi stowy, pomiedzy chwilg poczatkowa i
koncowa dysponujemy podwdjnymi wartosciami udzialow tak jak to pokazano na
rys. 4.3) zatem, zawsze nalezy pamietaé o ich kolejnej aktualizacji.

AL

oh | duivika gorna skrognac (00) (1.1) > (2.2)- (3,3)

Rysunek 4.3: Przyktadowa gorna skrajna Sciezka na drzewie dwumianowym, dla kto-
rej policzono domniemane udzialy dwumianowego portfela. Zaczerwienione punkty
oznaczajg zaktualizowane wartosci udziatéw w kolejnych chwilach.

Rozwiazujac réwnania (4.16) (na niewiadome oMt P ’l) otrzymujemy, analo-

gicznie jak poprzednio, ze

I+1 -1
Al Flag—Fiy
t 7 Qi+l ql-17

t+ot t+6t

141 i1 -1 41
oq 1 5 StistFrise — StoatFrise
;= — exp(—rit) T T (4.18)
A Sitl 8
t t+0t t+6t

a dzieki temu
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L Li4+1 i+ Li-1
F = = eXp( 7“5) (qt t+6tF+6t + 4 t+6tF+5t)

= eXP( 0t) B (Fiyot)= Ef (exp(—rdt) Fys)
= exp(—10t)(First)g = (exp(—r0t) Fryst)g,
| = 0,41, . 4L t=12. . .T—1, (4.19)

gdzie niestacjonarne na ogét prawdopodobienstwa arbitrazowe (wagi) qi ﬁ};t sq zde-

finiowane w nastepujacy sposob:

quﬂ B Stexp(rit) — Sﬁ;;t
tirot 1 ;
Stise — Stra
Sl — 8! exp(rét)
Li-1 Li+1 43t
Grprse = 1= Qiror = it _ gi- ; (4.20)
ir5t — Stvat

natomiast, £ = (.. )b jest lokalnym operatorem $redniowania zdefiniowanym w
pierwszym wierszu wyrazenia (4.19). Oczywiscie, oba réwnania w (4.20) sa sobie
rownowazne dzigki lokalnym warunkom normalizacyjnym spelnianym przez praw-
dopodobienstwa warunkowe @ = {q}.

Podobnie jak poprzednio (dla chwili ¢ = 0) procedura ma sens, gdy spetniony

jest warunek 0 < qi iﬂt < 1, ezyli gdy dynamika akcji nie przynosi strat

Stexp(rét) > Stl;;t,
Spexp(rdt) < Sity,. (4.21)

Jak wynika z pierwszego réwnania w trzecim wierszu w (4.19)
exp(rét) F} = exp(rot) V! = <F[+5L>ZC), (4.22)

czyli spodziewana (oczekiwana) warto$é pochodnego instrumentu finan-
sowego replikujacego portfel jest w mierze arbitrazowej taka sama jak na
lokacie bankowej kwoty F! o oprocentowaniu r. O rynku spelniajagcym
powyzszg wlasnosé dla dowolnego instrumentu finansowego méwimy, ze
jest pozbawiony arbitrazu. Miare, w ramach ktérej ma to miejsce nazywa
sie obojetna (neutralng) wobec ryzyka (patrz podrozdz. 4.2.1).

Zauwazmy, ze brak arbitrazu jest definiowany jedynie za pomocg wartosci ocze-
kiwanej, co nic nie méwi o wariancji instrumentu. Innymi stowy, nie wyklucza do-
datkowego (ponad lokate) zysku typu fluktuacyjnego i towarzyszacego mu ryzyka
fluktuacyjnego poniesienia straty (o czym jest mowa w podrozdz. 4.2.4).

Warto zdaé sobie sprawe, ze ze wzoréw (4.20) wynika takze

Si = exp(—rét) <St+5t>l

b (4.23)

czyli, ze role derywaty moze petni¢ réwniez sam instrument bazowy.
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Zapisujac powyzsze rownanie w postaci
exp(rét)S; = (Sist) o (4.24)

widzimy jasno, ze spodziewany zysk z instrumentu bazowego w kazdym kroku drze-
wa dwumianowego jest w mierze arbitrazowej doktadnie rowny zyskowi z lokaty
bankowej (o oprocentowaniu r) kwoty réwnej S'.

W oparciu o réwnosci (4.22) i (4.24), mozna powiedzieé¢, ze w zadnym kroku
czasowym miara arbitrazowa nie wprowadza na rynek (czyli na drzewo dwumianowe)
arbitrazu®. Innymi stowy, operujemy tutaj tylko cenami uczciwymi (uczciwg wyceng
instrumentéw finansowych). Jak widaé, przeszliémy w naszym podejéciu droge od
miary arbitrazowej i replikowalnosci do braku arbitrazu.

Jak juz wspominaliSmy, udziaty gbf by (/ﬁ? ’l wyznacza si¢ biorac pod uwage dwie
kolejne chwile ¢ oraz t + dt. Tym samym, dla kazdych dwéch chwil 0 < t—dt, ¢+
0t < T otrzymujemy w chwili ¢ podwdjne rozwigzanie: jedno pochodzace
od chwil ¢t -t a drugie od t+ dt. Tego typu sytuacja - bezwtadnosé udziatéw, ma
miejsce tylko dla udziatéw (a nie dla prawdopodobienstw arbitrazowych i cen po-
chodnego instrumentu finansowego) - do zagadnienia tego wrécimy przy omawianiu
strategii zabezpieczajacej portfel.

Dzieki wzorom (4.19) i (4.20) mozna wyznaczy¢ jednoznacznie domniemana cene
pochodnego instrumentu finansowego w kazdej wczesniejszej chwili czasu a w tym
w chwili jego zakupu, dysponujac nastepujacymi informacjami:

1) realng S{ oraz domniemanymi wartosciami bazowego waloru w kazdym wezle
dwumianowego drzewa, S!, t =1,2,..., T [6t], | = 0,41, 42,... +L,

2) cena realizacji instrumentu pochodnego, czyli jedynie w chwili jego realizacji
t="T (tutaj T' = 4 4t).

Innymi stowy, wzor (4.19) wraz z (4.20) okreslaja sekwencje (rekurencje) dziataja-
ca wstecz, umozliwiajacg udzielenie odpowiedzi na pytanie o dynamike domniema-
nej ceny pochodnego instrumentu finansowego na drzewie dwumianowym a w tym
zwtaszcza na kluczowe pytanie o wycene tego instrumentu w chwili jego
zakupu (czyli w chwili zawierania kontraktu) oraz o warunki pod jakimi taka wy-
cene mozna dokona¢, czyli warunki w jakich zakup instrumentu bedzie optacalny.
Charakterystyczng cecha wszystkich omawianych wzoréw jest ich niezalezno$¢ od
subiektywnej (rynkowej) miary podstawowej P.

Co wiecej, mozna wykazaé (np. poprzez konstrukcje - patrz ponizszy przyktad),
ze ze wzoru (4.19) wynika nastepujaca, kluczowa formuta wyceny pochodnego
instrumentu finansowego w mierze arbitrazowej ()

Fy = exp(—rT)E?(Fr) = E9(exp(—rT)Fr), (4.25)

Inaczej moéwiac, wzory (4.22) i (4.24) definiuja sytuacje braku arbitrazu na drzewie dwumia-
nowym.
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stanowigca inspiracje dla wprowadzenia proceséw stochastycznych zwanych martyn-
gatami (bedzie o tym mowa w dalszej czesci); dla uproszezenia oznaczen przyjelismy,
ze F = Fy i E§ = E? oraz {...)}, = (...)q (jak zwykle T jest terminem utraty
waznosci kontraktu na rozwazany instrument).

Formule (4.25) nalezy rozumie¢ jako globalna srednia wazona dana w postaci
sumy po wszystkich iloczynach prawdopodobienstw arbitrazowych ¢ liczonych na
pojedynczych trajektoriach taczacych punkt (0,0) drzewa dwumianowego z kazdym
z punktéw koncowych (7,1), | = —L,—(L—2),...,L—2,L; L =1,2,..., z osobna,
pomnozonych przez wartosci wyplaty z pochodnego instrumentu finansowego, F_,
w tych (koficowych) punktach. Formuta (4.25) stanowi podstawe wyceny opcji (patrz
rozdz. 4.5.1) oraz punkt wyjscia do okreslenia ceny opcji dla posrednich chwil czasu
0 <t < T, czyli wyprowadzenia stynnej formuty Blacka-Scholesa.

Aby wykazaé¢ prawdziwosé formuly (4.25) oraz pokazaé jej funkcjonowanie a
zarazem przygotowacé sie na wprowadzenie pojecia wspomnianego procesu martyn-
galowego, przeanalizujemy nastepujacy przyktad.

Przyktad ilustrujacy i uogdlniajacy formule (4.25)

Na rys. 4.4 przedstawiono przyktadowe drzewo dwumianowe domniemanych (zada-
nych) wartosci waloru bazowego S wraz z arbitrazowymi prawdopodobienstwami
(przej$c) {q} obliczonymi ze wzoru (4.20) przy zatozeniu (dla prostoty) zerowej po-
zagieldowej stopy zwrotu (r = 0).

Sprecyzujmy teraz sposéb wyceny pochodnego instrumentu finansowego
F. Mianowicie, niech tym instrumentem bedzie europejska opcja kupna (nie
wyplacajaca dywidendy) z ceng wykonania K = 110 i terminem realizacji T = 4 [0t].
Jak wiadomo, funkcja wyplaty tej opcji (ptatnosé) wynosi

Si—r — K jezeli Si—p > K

0 jezeli Si—r < K. (4.26)

Fier = (Si=r — K)* = {

Korzystajac z tak okreslonej ceny mozemy wyznaczy¢ ptatnosé opcji w chwili jej
realizacji (tutaj T' = 4 6t) dla kazdego wezta dwumianowego drzewa

F%::%Mt =90 gdyz Sr—4s > K,
FiZ% 5 =60 gdyz Sp—as > K,
Fr_,5 = F%::%;t =10 gdyz ST:45,5 > K, (427)
Fri5 =0 gdyz Sr—as < K,
Fiz% =0 gdyz Sr—as < K.

Teraz, w oparciu o wzory (4.19) i (4.20) dokonujemy uzupelnienia, obliczajac ce-
ne opcji w kazdym wezle dwumianowego drzewa (czyli dla kazdej chwili ¢ < T ).
Na rys. 4.5 przedstawiono wyniki tych obliczen w postaci dwumianowego drzewa
ewolucji ceny opcji. Przy okazji podano wartosci prawdopodobienstw przejsé {q}
(wyznaczone ze wzoréw (4.20)).
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Rysunek 4.4: Jednokierunkowe drzewo dwumianowe powstate w wyniku hipotetycz-
nego btadzenia przypadkowego ceny bazowego instrumentu finansowego S w czasie
dyskretnym na jednowymiarowej sieci L rownoodlegtych, dyskretnych potozen. W
kotkach umieszczono ceny instrumentu bazowego; strzatkami zaznaczono obliczone,
arbitrazowe prawdopodobienstwa przejsé q.

Wreszcie, mozemy dokonaé prezentacji dzialania wielokrokowej formutly (4.25)
obliczajac wymagang $rednig E9. Aby przeprowadzié¢ to obliczenie (w sposéb po-
zwalajacy na wykazanie przy okazji prawdziwosci wzoréw (4.28) i (4.29)) zauwazmy,
ze kazda trajektoria prowadzaca do danego wezta koncowego musi przejsé przez od-
powiedni wezet poprzedzajacy go. Dzieki temu wszystkie trajektorie mozna podzieli¢
na grupy. Do pojedynczej grupy naleza tylko takie trajektorie, jakie przechodzg przez
dany wezet poprzedzajacy. Na przyktad, skrajng gorng grupe stanowia wszystkie te
trajektorie, jakie przechodza przez wezel (t = 346t,l = 3) (patrz np. rysunek 4.4
lub 4.5); ta grupa jest najprostsza bo dwuelementowa. Oczywiscie, z kazdego wezta
poprzedzajacego mozna dojs¢ w pojedynczym kroku tylko do dwéch weztéw kotico-
wych. Zatem, wygodnie jest oblicza¢ koncowa wartosé sredniag pochodne-
go instrumentu finansowego dla kazdej grupy z osobna. Dokonujemy tego,
po prostu, poprzez sumowanie iloczynéw prawdopodobienstw arbitrazowych ¢ na
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Rysunek 4.5: Jednokierunkowe drzewo dwumianowe powstate w wyniku hipotetycz-
nego btadzenia przypadkowego ceny pochodnego instrumentu finansowego F w cza-
sie dyskretnym na jednowymiarowej sieci L réwnoodlegtych (dyskretnych) potozen.
Koétkami zaznaczono ceny instrumentu pochodnego, strzatkami obliczone arbitrazo-
we prawdopodobienstwa przejsé q.

wszystkich trajektoriach danej grupy (oczywiscie wychodzacych ze wspdlnego wezta
poczatkowego, patrz oprocz rysunkéw 4.4 lub 4.5, takze rysunki 4.6 i 4.7 na ktérych
zestawiono trajektorie zgodnie ze wspomnianym podziatem na grupy) pomnozo-
nych przez odpowiadajace im ceny koncowe instrumentu pochodnego (zaznaczone
czerwonymi strzatkami). W ten sposéb cofamy sie o jeden krok czasowy, uzyskujac
wzor (4.28) (a nastepnie wzor (4.29), jak trzeba, ze wzoru (4.25)). Ponadto, sumujac
wszystkie wartosci oczekiwane uzyskane w ramach wszystkich grup wyceniamy opcje
(czyli uzyskujemy jej warto$é na chwile poczatkowa) zgodnie ze wzorem (4.25). Jak
widaé, warto$¢ poszukiwanej ceny opcji, Fy = 11.375, w chwili jej nabycia (zakon-
traktowania, patrz rys. 4.5) pokrywa sie, jak byé powinno, z ta uzyskana za pomoca
jednokrokowego wzoru (4.19) na drodze sukcesywnego cofania sie w czasie.

Zatem wskazaliémy (patrz czerwone strzatki na obu rysunkach 4.6 i 4.7, po-
kazujace koncowe wyniki skrocenia trajektorii do chwili 7" — 6t), ze maja miejsce
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Rysunek 4.6: Konstrukcja wartosci oczekiwanych ceny pochodnego instrumentu fi-
nansowego (opcji) F w chwili t = T — 0t = 3t (zamieszczonych w kotkach po
prawej stronie i wskazanych czerwonymi strzatkami) oraz ich wag (liczby stoja-
ce tuz przed nimi) na drzewie dwumianowym (przedstawionym na poprzednim
rysynku) w oparciu o znajomo$é arbitrazowych prawdopodobiefistw przej$é q na
wszystkich trajektoriach prowadzacych z wezta poczatkowego (0,0) do kazdego wezta
(t =T =46t1), | = —4,-2,0,2,4. Dodatkowo, czarnymi strzatkami zaznaczono
odpowiednio pogrupowane trajektorie (diagramy) prowadzace do tych weztow.

nastepujace wazne relacje, przydatne w naszych dalszych rozwazaniach
Fy = exp(—r(T — 0t))E9(Fyep_s) = E°?(exp(—r(T — 6t)) Fer_s)  (4.28)

a takze ogdlniejsza (dla 0 < m < %)

Fy = exp(—r(T — mot)) E?(Fi—p_mst) = E°(exp(=r(T — mdt)) Fep_pmst).
(4.29)

Zanim przejdziemy do analizy kolejnych strategii musimy odpowiedzie¢ na pyta-
nie o fluktuacyjne ryzyko inwestycyjne jakie niesie ze soba strategia arbi-
trazowa.
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Rysunek 4.7: Ciag dalszy konstrukcji wartosci oczekiwanych ceny pochodnego in-
strumentu finansowego (opcji) F przedstawionej na poprzednim rysunku. Jak widaé,
uzyskana $rednia wazona odtwarza jak trzeba cene pochodnego instrumentu finan-
sowego w chwili zawarcia kontraktu.

4.2.4 Ryzyko fluktuacyjne strategii arbitrazowej

Na rysunku 4.5 przedstawiono drzewko dwumianowe ceny przyktadowej, europej-
skiej opcji kupna zdefiniowanej poprzez wyrazenie (4.26). W niniejszym podrozdzia-
le drzewko to zostanie uzupetnione o wzgledne dyspersje warunkowe ceny opcji w
posrednich chwilach (czyli dla 0 < t < T'). Oczywiscie, dla kazdej takiej chwili dys-
ponujemy wartoscig oczekiwang ceny pochodnego instrumentu finansowego F' dang
np. w pierwszym wierszu wzoru (4.19). Ponadto, dysponujemy arbitrazowymi praw-
dopodobienstwami przejs¢ {q}. Zatem, mozemy wzgledna dyspersje warunkowa ceny
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F wyrazi¢ nastepujaco:

2
or(lt) | B (Fies)?) = (BP (Firar)
1 - 2
Fi (ER(Fiva)
— Fl+1 _Flfl
— Vi e fel, (430)

czyli jako iloczyn wzglednego rozrzutu ceny derywaty w nastepnej chwili ttumionej
srednig geometryczng (jedokrokowych) prawdopodobienstw przejsé. Brak czynnika
dyskontujacego wynika z faktu, ze wzér ten wyraza sie poprzez odpowiednie wiel-
kosci wzgledne. Ten elegancki wzor stanowi poszukiwane dopetnienie formuty (4.19)
a zarazem jest rozwigzaniem problemu postawionego na zakonczenie poprzedniego
podrozdziatu.

Na rysunku 4.8 przedstawiono drzewko dwumianowe zaczerpniete z rysunku 4.5,
uzupetnione o wzgledne dyspersje warunkowe dla kazdej chwili poprzedzajacej kon-
cowa 1 dla kazdego wezta drzewka (za wyjatkiem ostatniej kolumny weztéw). Dopiero
drzewko przedstawione na rysunku 4.8 jest kompletne, umozliwiajac podjecie opty-
malnej decyzji przez inwestora.

Rozwazmy wiec ponownie kompletne drzewko dwumianowe przedstawione na
rysunku 4.8. Widzimy, ze ryzyko jakim jest obarczona wyjsciowa ($rednia) cena
pochodnego instrumentu finansowego (wynoszaca F=) = 11.375 [j.u.]) to 72.3%.
Zatem, faktyczna cena zawarta jest w przedziale” 11.375(1 — 0.723) < F=0 <
11.375 (1 + 0.723) < 3.151 < F/ZJ < 19.599. Jest to szeroki przedzial - jego znajo-
mos¢ jest konieczna do prowadzenie przez inwestora racjonalnych negocjacji z biurem
maklerskim co do wysokosci prowizji. Analogiczne przedziaty mozna zbudowaé dla
pozostatych cen tej derywaty (oczywiscie, za wyjatkiem ostatniej kolumny).

4.2.5 Strategia zabezpieczajgca portfel

Dotychczas omawialiémy strategie, ktéra (niezbyt celnie) nazwa sie arbitrazowa
(SA). Teraz podamy przyktad pozwalajacy przedstawié strategie zabezpieczajaca
(SZ) portfel inwestora.

Sygnalem do aktywno$ci inwestora moze by¢ realna cena posiadanej
przez niego opcji kupna, czyli prawa do zakupu akcji od sprzedajacego po umo-
wionej cenie w dniu realizacji opcji. Jak wiadomo, cena sprawiedliwa (teoretyczna)
wynosi Fy) = 11.375 (patrz rys. 4.5) podczas gdy rynkowa jest wyzsza i wynosi np.
F(? = 25.5; niech stala w czasie cena obligacji bedzie Ag = 1 (przyjmujemy dla
uproszczenia, ze pozarynkowa stopa zwrotu r = 0).

Przyktadowo, rozwazymy dwie zasadniczo rézne trajektorie na drzewku dwumia-
nowym koniczace sie dla czasu t = T = 4 6t (patrz rys. 4.4 lub rys. 4.5):

"Staranniejsza analiza wymagalaby wprowadzenia pojecia poziomu ufnosci.
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Rysunek 4.8: Jednokierunkowe drzewo dwumianowe powstate w wyniku hipotetycz-
nego btadzenia przypadkowego ceny pochodnego instrumentu finansowego F w cza-
sie dyskretnym na jednowymiarowej sieci L réwnoodlegtych (dyskretnych) weztéw.
Koétkami zaznaczono ceny instrumentu pochodnego, strzatkami obliczone arbitra-
zowe prawdopodobienistwa przej$¢ {q}, natomiast dodatkowe liczby umieszczone
pomiedzy oznaczaja wzgledne dyspersje warunkowe wyznaczone ze wzoru (4.30)
i przypisane (za pomoca poziomych kresek) do odpowiadajacych im cen.
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1) trajektorie [0, 1,0, 1, 2], koficzaca sie opcja w cenie (czyli realizowana o wypla-
cie F\Z%_, = 60) oraz

2) trajektorie symetryczna do powyzszej [0, —1,0, —1, —2], koficzaca sie opcja nie
podlegajaca realizacji (czyli o wyplacie F/=72, = 0).

Poréwnamy w obu sytuacjach zysk z portfela dla SZ, przy czym przez zysk
rozumie sie tutaj po prostu wartos¢ portfela.

Trajektoria [0,1,0,1,2]

Wyjsciowy krok SZ: t =0, [ =0

Poniewaz opcja kupna jest przewartosciowana, czyli przeceniona przez rynek na
kwote F=0 — F9 = 25.5 — 11.375 = 14.125, wiec nalezy ja sprzedaé uzyskujac kwote
Ftl::(? = 25.5. Jednak, ten krok ma swoje konsekwencje; np. musimy dostarczy¢ akcje
posiadaczowi tej opcji w terminie jej realizacji (tutaj w terminie ¢ = T = 4 6t) po
cenie umownej K (tutaj K = 110). Musimy odpowiedzie¢ na pytanie czy krok ten
jest optacalny - jest to zwigzane z dynamika struktury udzialow naszego portfela.
Zatem, nalezy zbadaé strukture portfela czyli wyznaczyé liczbe udzialéw
(liczbe akgeji i liczbe obligacji).

Ze wzoréw (4.18) otrzymujemy, ze

25.625 — 6.625

SA, SZ: ¢pH=0 = 00 = 0475,
_ 130 - 6.625 — 90 - 25.625
SA: ¢ = 5000 = —36.125 (4.31)

gdzie znak -’ oznacza zadluzenie.
Zaktadamy, ze

e w strategii zabezpieczajacej udziaty na akcje sa dane tymi samymi wzorami
co 1 w strategii arbitrazowej natomiast,

e udzialy na obligacje sa do tego odpowiednio dostosowywane (wtasdnie zgodnie
ze strategia zabezpieczajaca, patrz ponizej).

Sa to kluczowe (ogélne) zatozenia tej strategii.

Zatem, jak dostosowywane sg udzialy na obligacje do udziatléw na ak-
cje? Z pierwszego rownania (4.31) wynika, ze nalezy zakupi¢ ¢24:,IO:0 = 0.475 udziatéow
na akcje po aktualnej cenie S!=) = 100 na co nalezy wydaé¢ dodatkowo, ze $rodkéw
wtlasnych, kwote rowna

A0 SI20 — FEY =475 - 25.5 = 22; (4.32)

kwota ta, z zalozenia, ma byé asekurowana identyczng pozyczona na za-
kup obligacji (w cenie Ag = 1 za sztuke) tzn.

0" Mo = — (90 - SIZ) — Fi) = —(47.5 - 25.5) = —22.
(4.33)
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Zatem, liczba obligacji w portfelu w wezle (t = 0, [ = 0) drzewa dwumianowego w
ramach strategii zabezpieczajacej wynosi

SZ: ¢ = —22 (4.34)

gdzie (jak poprzednio, w strategii arbitrazowej) znak -’ oznacza, iz sa one zadtuzone.
W ten sposéb skompletowalismy wyjéciowy portfel strategii zabezpieczajacej.

Zauwazmy, ze kwota gthl . Ay jaka musimy pozyczyé w tej strategii aby
zakupic obligacje jest teraz, dzieki temu, ze cena rynkowa opcji jest przewartoscio-
wana, nizsza od analogicznej kwoty ¢?:’l0:0 - Ay jaka musieliby$émy pozyczy¢
w strategii arbitrazowej wlasnie o to poczatkowe przewartosciowanie. Jak
zobaczymy, to przewarto$ciowanie dtugu bedzie nam towarzyszyto az do czasu re-
alizacji opcji w chwili ¢t = T'.

Istota SZ jest zabezpieczanie (asekurowanie, réwnowazenie, lewarowanie)
kwoty wydatkowanej w danej chwili czasu przez wlasciciela portfela na
zakup akcji identyczng kwotg pozyczona na zakup odpowiedniej liczby
obligacji - nie obawiamy sie takiego kroku, gdyz mamy (na kazdym etapie) zabez-
pieczenie dtugu w postaci posiadanych akcji. Jak sie okaze, strategia taka moze by¢
dochodowa tylko wtedy gdy wyjsciowo opcja jest przewartosciowana.

Pierwszy krok SZ: t=16t, [ =1
Postepujemy analogicznie jak w kroku wstepnym, czyli korzystajac ze wzoru
(4.18) dla strategii SA aktualizujemy udziaty w chwili ¢ = 1 §t. Mianowicie,

40 — 11.25
A, SZ: A=l T 71
SA, S oy 150 — 110 0.71875,
150 - 11.25 — 110 - 40
Az =t = — —67.8125. 4,
S oyt 150 — 110 67.8125 (4.35)
Jak wida¢, pule udzialow na akcje nalezy zwiekszy¢ o ¢Al - 24:’1020 = 0.24375;

poniewaz cena akcji wynosi teraz S'=} = 130 wiec, zgodnie z naszg strategia zabez-
pieczajaca, nalezy pozyczy¢ kwote asekurujaca rowna

Ad)Ol oA ( 24:,l1:1 _ 24:’%:0) St 1 = —31.6875, (4.36)

na zakup obligacji (w cenie, jak poprzednio, réwnej Aqg = 1 za sztuke) w liczbie
31.6875 sztuk. Zatem, aktualna liczba obligacji w portfelu (przypomnijmy, kupio-
nych za pozyczone pieniadze) wynosi

SZ . ¢t = 21=0 4 APl = 29 — 31,6875 = —53.6875. (4.37)

Jak widaé, zadluzenie w SZ jest nizsze w poréwnaniu z analogicznym dla SA (drugi
wzor w (4.35), caly czas o kwote wspomnianego przewartosciowania - chodzi o to
aby nie wydawac¢ zbyt wiele wtasnych zasobdow.
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Podkreslmy, w SZ ponoszac wydatek na zakup akcji, zawsze obligacje
kupujemy asekuracyjnie juz za pieniadze pozyczone.

Drugi krok SZ: t =24t, | =0

W wezle (t = 20t, | = 0) naszego drzewa dwumianowego (patrz rysunki 4.4 i
4.5) struktura portfela w strategii SA (liczona wciaz z tego samego wzoru (4.18))
jest nastepujaca

30—-5
SA, SZ: ¢5° = ———— =0.625
P2 140 — 100 ’
140 -5 —100- 30
SA: ¢ = = —57.5 4.38
9= 140 — 100 ’ ( )
co oznacza koniecznos¢ sprzedazy ¢Al - 24:’12:0 = 0.09375 udzialéw na akcje po
ich aktualnej cenie S!=J = 110; daje to kwote

NG = (o7 — o5 - SI=0 = 103125, (4.39)

wystarczajaca na zakup 10.3125 obligacji po (staltej) cenie Ay = 1. Stad, zaktuali-
zowana liczba obligacji w portfelu wynosi®

SZ: ¢ = g21= 4 AP0 = —53.6875 + 10.3125 = —43.375;  (4.40)

oczywiscie, jest to sumaryczna (wypadkowa) liczba obligacji wciaz zadluzona, ale
nizej niz w SA, o wspomniane przewarto$ciowane.

Trzeci krok SZ: t =36t, [ =1
Postepujac analogicznie jak w poprzednich krokach, aktualizujemy portfel otrzy-
mujac

60 — 10

A SZ: oM = ——— =1,
54, 5 Pi=s 170 — 120 0
170-10 — 120 - 60
Az gt = = —110. 4.41
5 Pi=s 170 — 120 0 ( )
Wynika stad, ze nalezy dokupi¢ ¢, A=l _ 24:,l2:0 = 0.375 udzialéw na akcje po Si=) =

140 za sztuke co wymaga pozyczenia kwoty
AR = — (o5 — ¢t5°) - SiZh = =525, (4.42)

idacej ponownie na zakup obligacji. Po aktualizacji liczba (zadtuzonych) obligacji w
portfelu wynosi

SZ: Pt = G20 4 AGQET — —43.375 — 52.5 = —95.875, (4.43)

8Dokonalismy tutaj skrétu myslowego; chodzi o to, ze teraz dysponujemy wolna kwota, ktéra
zwracamy wierzycielowi, natomiast obligacje na te kwote jakie posiadamy w portfelu sprzedajemy,
wycofujac je tym samym z naszego portfela.
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po cenie Ag = 1 - wciagz mniej o przewartosciowanie niz dla SA. Zatem, nasz dlug
wzrost ale wzrosta takze liczba udzialéw na akcje - wkrétce zobaczymy jaka per saldo
jest koncowa wartos¢ naszego portfela.

Czwarty krok SZ: t =T =46t, | =2

Nalezy teraz wykonaé ostatni krok, w ktérym realizowany jest zysk (lub strata)
na portfelu. Stan portfela dla strategii arbitrazowej i zabezpieczajacej wraz z jego
historig oraz odpowiednie zyski podano w tabeli 4.1 przy czym zysk zostat obliczony
w nastepujacy sposob.

Poniewaz opcja jest w cenie wiec dla wezta (t = T = 44t, | = 2) drzewa dwu-
mianowego, czyli w chwili realizacji opcji kupna przez jej nabywce, inwestor ma
obowiazek dostarczy¢ akcje po cenie umownej (tutaj) K = 110 uzyskujac taka wia-
snie kwote z jej sprzedazy. Z kwoty tej musi jednak sptaci¢ pozyczke zaciggnieta na
zakup obligacji czyli poszukiwany zysk strategii zabezpieczajacej wynosi®:

SZ: 7722, = K+ 22, - Ay = 14.125, (4.44)

czyli (jak nalezato oczekiwad) tyle ile wynosi réznica pomiedzy rynkowa a sprawie-
dliwa ceng opcji w chwili poczatkowej (tzn. poczatkowe przewartosciowanie). Jak
wida¢, przez zysk strategii zabezpieczajacej rozumiemy wartos¢ portfela,
przy czym wartos¢ akcji liczona jest tutaj po cenie umownej K a nie, jak
w strategii arbitrazowej, po cenie rynkowej.

Jezeli chodzi o strategie arbitrazows to analogiczny zysk wynosi'®

SA: AZ2 =822 o ol Ao = 60, (4.45)

czyli tyle ile zyskalibysmy kupujac opcje na akcje bez odliczania optaty wstepnej
(ceny opcji czyli premii).

W tabeli 4.1 zebrano uzyskane wyniki. Zauwazmy, ze w przedostatniej kolum-
nie wystepuja wartosci portfela w strategii arbitrazowej w kolejnych chwilach, ktére
(poniewaz portfel jest replikowalny) réwnaja sie odpowiednim cenom opcji. Nato-
miast, w strategii zabezpieczajacej sytuacja jest bardziej skomplikowana, gdyz zysk
mozemy ustali¢ dopiero po uptywie terminu umownego, czyli dopiero po sprzedazy
akcji posiadaczowi opcji. Jak widacé, zysk w strategii arbitrazowej jest caly czas pod
kontrola (jawnie widoczny).

Obliczymy taczne prawdopodobienstwo arbitrazowe na trajektorii [0, 1,0, 1, 2].
Zatem,

S U (4.46)

Poréwnujac to prawdopodobienstwo z ponizszym dla trajektorii [0, —1,0, —1, —2],
uzyskamy odpowiedz co do szansy realizacji zyskow dla poszczegdlnych trajektorii.

9Zauwazmy, ze (th:’lT:j L= (btoz’lgzl.
10 Analogicznie jak powyzej przyjmujemy, ze ¢;4;l;:24 = ¢,’54:’l;1 oraz gth:’lT:i = (btoz’lgzl.
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Tabela 4.1: Trajektoria [0,1,0,1,2]: poréwnanie strategii zabezpieczajacej (SZ) z ar-
bitraZowzg (SA)

(ot 1)) | SE] E | o | SAef" | SZ: ¢! | SA: A | SZ: Zy |
(0, 0) 100 [11.375 | 0475 | —36.125 | —22 [ 11375 | —
(1, 1) 130 | 25.625 | 0.71875 | —67.8125 | —53.6875 | 25.625 | —
(2, 0) 110 | 11.25 | 0.625 | —57.5 | —43.375 | 11.25 -
(3, 1) 140 [ 30 1.0 —110 | —95875 | 30 -

| (T=4,2) [170] 60 | 1.0 | —110 | —95.875 | 60 | 14.125

Trajektoria [0,-1,0,-1,-2]

Rozwazymy teraz (dla poréwnania) trajektorie [0, —1, 0, —1, —2]. Tak jak poprzednio
dla trajektorii [0, 1,0, 1, 2], bedziemy teraz prowadzi¢ réwnolegle obliczenia zar6wno
dla strategii arbitrazowej jak i zabezpieczajace;j.

Wyjsciowy krok SZ: t =0, [ =0

Krok ten daje analogiczny wynik jak poprzednio, gdyz dotyczy tego samego we-
zta; udzialy na akcje i obligacje dla portfela arbitrazowego i zabezpieczonego przed-
stawiono w pierwszym wierszu zbiorczej tabeli 4.2.

Pierwszy krok SZ: t = 16t, | = —1
Postepujemy analogicznie jak w kroku wstepnym, czyli korzystajac ze wzoru
(4.18) dla strategii SA aktualizujemy udziaty w chwili ¢ = 1 §t. Mianowicie,

11.25 — 2
A, SZ M=t = 8 2 (2312
SA, SZ: - oo = 023125,
110-2 —70-11.25

A o2t = — 141 4.4

SAT o 110 — 70 875 (447)

Jak wida¢, pule udzialéw na akcje nalezy zmniejszyé o b ? — ¢itl="t = 0.475 —
0.23125 = 0.24375 co pozwala uzyskaé¢ (chwilowy) dochdd; poniewaz cena akcji
wynosi teraz S'=;! = 90 wiec, zgodnie z nasza strategia zabezpieczajaca, nalezy za
zarobiong kwote dokupié¢ asekurujagca liczbe udzialdéw na obligacje rowna:

AP Ao = (67" — ot T - Sz = 21,9375, (4.48)
(w cenie, jak poprzednio, réwnej Ay = 1 za sztuke). Zatem, aktualna liczba obligacji

w portfelu (przypomnijmy, kupionych raz za pozyczone pieniadze a raz za zarobione)
11
Wwynosi

SZ: ¢ = g2=0 4 AGZI=T = 292 4 21.9375 = —0.0625. (4.49)

HPodobnie jak poprzednio, zrobiliémy tutaj skrét myslowy. Podkre$lmy raz jeszcze, chodzi o to,
ze teraz dysponujemy wolng gotowka, ktéra zwracamy wierzycielowi a odpowiadajaca tej kwocie
liczbe obligacji sprzedajemy wycofujac je tym samym z naszego portfela.
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Jak wida¢, to chwilowe zadtuzenie jest znacznie nizsze w poréwnaniu z analogicznym
dla SA (drugi wzor w (4.47)) o kwote poczatkowego przewartoSciowania ceny opcji.

Drugi krok SZ: t =24t, | =0
Ten krok jest szczegdlnie interesujacy gdyz potwierdza, ze w tych samych we-
zlach analizowane strategie daja (kazda z osobna) taki sam portfel nieza-
leznie od historii portfela. Juz bez komentarza przytoczymy odpowiednie wzory:
A =0 30 -5
SA, SZ: ¢,29 = 140 — 100 = 0.625,
140 -5 — 100 - 30

SA: ¢ — = 575 4.50
Pe=z 140 — 100 ’ (4.50)

co oznacza konieczno$¢ dokupienia ngAl 0 _ 242,11:—1 = 0.625 — 0.23125 = 0.39375
udzialéw na akcje po ich aktualnej cenie S,fjg = 110; daje to kwote

SAGRE Ao = (¢ — o) - 5120 = 0.39375 - 110 = 43.3125,  (4.51)

wystarczajaca na zakup (za dopozyczone pieniadze w tej samej wysokosci) —43.3125
obligacji po (stalej) cenie Ay = 1. Stad, zaktualizowana liczba obligacji w portfelu
wynosi

SZ: ¢250 = 2= 4 AP0 — —43.3125 — 0.0625 = —43.375;  (4.52)

oczywiscie, jest to sumaryczna (wypadkowa) liczba obligacji weiaz zadtuzonych nizej
niz w ramach SA (jak zwykle o kwote wyjsciowego przewartosciowania).

Trzeci krok SZ: t =346t, | = —1
Postepujac analogicznie jak w poprzednich krokach, aktualizujemy portfel otrzy-
mujac

_ 10-0
SA, SZ: ¢ = ——— =0.25
’ Gi=s 120 — 80 ’
_ 120-0—80- 10
SA: ¢t = o g = 2 (4.53)

Wynika stad, ze nalezy dokonaé sprzedazy ¢24l2 0_ ¢§4:’l3:71 =0.625 — 0.25 = 0.375
udziatéw na akcje po S!=} = 100 za sztuke co daje kwote chwilowego zysku

NG Ao = — (¢ — 050 - Simyt = 375 (4.54)

kwota ta w calosci idzie na zakup obligacji'?. Po aktualizacji, liczba obligacji w
portfelu wynosi

SZ: ¢ = o270 4 A2 = —43.375 + 37.5 = —5.875, (4.55)

12Tego typu skrét myslowy wyjasnilismy juz wezedniej w kroku 16¢.
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po cenie Ay = 1. Zatem, nadal nasz dtug jest nizszy, o poczatkowe przewartosciowa-
nie ceny opcji, od analogicznego w ramach strategii arbitrazowej - wkrotce zobaczy-
my jaka per saldo jest koncowa warto$¢ naszego portfela dla przyjetej trajektorii.

Czwarty krok SZ: t =T =46t, | = -2

Nalezy teraz wykonaé ostatni krok, w ktérym realizowany jest zysk (lub strata)
na portfelu. Stan portfela dla strategii arbitrazowej i zabezpieczajacej wraz z jego
historig oraz odpowiednie zyski podano w tabeli 4.2, przy czym zysk zostal obliczony
teraz w nastepujacy sposob.

Poniewaz opcja nie jest w cenie (patrz wezet (t = T = 40t, | = —2) drzewka
dwumianowego), czyli w chwili realizacji opcji kupna przez jej nabywce inwestor
nie musi sie wywigzywacé¢ z obowiazku dostarczenia akcji. Zatem, zysk z portfela w
ramach strategii zabezpieczajacej wynosi'®:

Al=—2
t=T=4

0,l=—2

Sz 722, = S8R e Ay = 0.25 - 80 — 5.875 = 14.125,

(4.56)

czyli (jak nalezalo oczekiwaé) tyle ile wynosi réznica pomiedzy rynkowa i sprawie-
dliwg cena opcji w chwili poczatkowej ¢ = 0.
Natomiast, jezeli chodzi o strategie arbitrazows to analogiczny zysk z portfela
wynosi'4
1= I=— Al=—2 0,1=—2
SA: At:2T:4 = St:Ti4 C O lr—y T Oy

Ao =0, (4.57)

czego mozna sie byto spodziewa¢ poniewaz opcja nie jest w cenie.

Tabela 4.2: Trajektoria [0,-1,0,-1,-2]: poréwnanie strategii zabezpieczajacej (SZ) z
arbitrazowa (SA)

@) | St OE | ¢ | SAr¢l" | SZ: ¢ | SA: Ay | SZ: Zy |
(0,0) [J100[11.375] 0475 | —36.125 | —22 | 11375 | —
(1, -1) [ 90 [ 6.625 | 0.23125 | —14.1875 | —0.0625 | 6.625 —
(2,0) [110[11.250] 0.625 | —57.5 | —43.375| 11.250 | —
(3,-1) [100[ 5.0 0.25 —20 | 5875 | 5.0 —

|((T=4,2)] 8 | 00 | 025 | —20 | 5875 | 0.0 | 14.125 |

Laczne prawdopodobiefistwo arbitrazowe na trajektorii [0, —1, 0, —1, —2] wynosi:

0,1 -1,0 0,-1 —1,-2 o
Qo1 "Ti2 Q23 34 12132 61 (4.58)
i . All=-2 Al=—-1 70,l=—2 70,l=—1
13Przypomnijmy, ze Dir—y = i oraz ¢, p_, = ¢4 .
1 Analogicznie jak powyzej, gZ)tO:’lT:;f = ¢f/0:’g:71.

132



czyli jest kilkunastokrotnie wieksze niz dla trajektorii [0, 1,0, 1, 2] (patrz wyraze-
nie (4.46)).

Podsumowujac, podobnie mozna sprawdzi¢, ze analogiczna sytuacja ma miejsce
dla pozostatych trajektorii na drzewku dwumianowym tzn.

e w ramach SZ zysk jest r6znica pomiedzy rynkows i sprawiedliwa cena opcji w
chwili poczatkowej

e w ramach SA zysk jest rowny ptatnosci za opcje na rozwazang akcje.

Jak wida¢, wprawdzie na rozwazanym drzewie dwumianowym istnieja (dwie)
trajektorie dla ktérych zysk w ramach SA jest znacznie wyzszy niz uzyskany dla
S7Z ale w ramach SA istniejg tez trajektorie nie dajace zysku podczas gdy wszystkie
trajektorie SZ daja jednakowy zysk. Ponadto, trajektorie niskiego zysku w ramach
SA sg bardziej prawdopodobne w poréwnaniu z trajektoriami przynoszacymi duzy
zysk. Wtasnie charakterystyczna cecha strategii zabezpieczajacej jest: maly zysk
przy malym ryzyku straty.

4.2.6 Korekta zwigzana z wyplata dywidendy

Zwrbémy jeszeze uwage na sytuacje, w ktérej od rozwazanego waloru bazowego (ak-
cji) jest wyplacana w sposob ciagly dywidenda (np. stala w czasie) o stopie d w
skali roku (akcja typu ’income’). Aby zrozumie¢ wplyw dywidendy na dynamike
ceny tego waloru (ktérego cena zmienia si¢ od S; w chwili ¢t do Syys W chwili ¢ + 6t)
poréwnajmy jego cene z ceng akcji tej samej spotki ale pozbawionej dywidendy
(akcja typu ’'growth’). Poniewaz zakladamy (jak zwykle), ze nie ma okazji do ar-
bitrazu wiec cena akcji nie przynoszacej dywidendy powinna sie zmienia¢ od S; do
Stist exp(d dt). Wynika to z faktu, ze akcje income sa tansze od akcji growth. Wtedy
akcje tego typu beda rownie chetnie kupowane jak akcje przynoszace dywidende, co
nie prowadzi do réznicowania tych dwoch rodzajow akcji a wiec nie stwarza okazji
do arbitrazu. Alternatywnie rzecz biorac mozna powiedzieé, ze cena akcji pozbawio-
nych dywidendy powinna sie zmienia¢ od Sy exp(—ddt) do Syys. Dlatego omawiana
poprzednio wycena pochodnego instrumentu finansowego (np. opcji) wystawionego
na akcje przynoszaca dywidende moze by¢ sprowadzona do wyceny tego instrumentu
na akcje pozbawiong dywidendy, ktérej aktualna cena (w chwili ) jest zmniejszona
o czynnik exp(—ddt). Stad, we wzorach (4.20) na arbitrazowe prawdopodobienstwa
przejsé g nalezy parametr r zastapi¢ po prostu przez r — d co daje,

ql,l+1 B Si exp((r - d) 5t) - ngrgt
tt+ot ] — )
Stic%t - St+§t
Gy = l—aiis, t=012,...T;1=0,1,2,..., L. (4.59)

Tym samym, caly analize przeprowadzona w rozdz.4.2 mozna rozszerzy¢ na walory
przynoszace dywidendy.
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4.3 Procesy martyngalowe

Proces martyngatowy jest szczegdlnym rodzajem procesu stochastycznego (losowe-
go), ktory wygodnie jest oméwiaé w oparciu o wprowadzone wezesniej procesy losowe
okreslone na drzewie dwumianowym. Ogolnie rzecz biorac, martyngatly zdefinio-
wane sg za pomocg prawdopodobienstw warunkowych dlatego w pierwszym
kroku zdefiniujemy te warunki zwane powszechnie filtrami (filtracjami).

4.3.1 Filtry
Definicja filtru (filtracji) F; sktada sie z dwdch nastepujacych krokow:

1) specyfikacji weztéw poczatkowych zajmowanych przez dany instrument (ba-
zowy lub pochodny) w chwli ¢ = 0 (w naszym przypadku jest to pojedynczy
wezel [ = 0 drzewa dwumianowego) i weztow koncowych, mozliwych do obsa-
dzenia przez ten instrument w danej chwili ¢ > 0.

2) wyznaczenia wszystkich mozliwych $ciezek taczacych punkt (wezel) poczatko-
wy z koncowymi. Na przyktad, dla wprowadzonego wezesniej drzewa dwumia-
nowego (patrz rys. 4.4)

ftl:3 [07 17 27 3] (180)

F=i=10,1,2,11U0,1,0,1]U0, —1,0, 1] (140)
Fi—g = f-l—fl [0’ 1,0, 1] U [O 707 1] U[ —1,-2, _1] (100) (460)
Fi=*=10,- —3] (50)

Powyzsze rozwazania uja¢ w postaci nastepujacej definicji.

Definicja 4.3.1.1 (Definicja filtracji) Filtracja (filtr) F; jest zbiorem wszystkich
filtréw czqstkowych F!, gdzie kazdy filtr czastkowy jest zbiorem Scieiek zwigzanych z
danym weztem poczgtkowym t = 0 oraz z konkretnym weztem dwumianowego drzewa
w danej chwili t > 0.

W dalszym ciagu (dla prostoty) poprowadzimy nasz wywdd dla drzewka dwumia-
nowego przedstawionego na rys. 4.9, gdzie zamiast poprzednio uzywanego indeksu
[ wprowadzimy zwykla numeracje weztow (1, 2, ..., 6). W tym przypadku filtracja
dlat =0,1,2 jest postaci

t=0:
Fizo = FLy = [1] (100) (4.61)
t=1:
| F=11,3] (120)
T { FLy =112 (30) (462
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Rysunek 4.9: Drzewko dwumianowe przedstawione dla chwil t=0,1,2, dla procesu
stochastycznego bazowego instrumentu finansowego S; w mierze P.

F8,=11,3,6] (140)
Fima =< Fp,=1[1,2,5]U]1,3,5] (100) (4.63)
Fr,=1[1,2,4] (60)

Znajac prawdopodobierfistwa przejs¢ w przyjetej mierze (na razie wprowadziliSmy
tylko miare rynkowa, subiektywna P = {p} i miare arbitrazowa Q = {q} - ponizej
wprowadzamy takze miare martyngatowa), mozna dla kazdej ze Sciezek okresli¢ wage
czyli wktad danej Sciezki do $rednich wazonych (wartoéci oczekiwanych) oraz do
warunkowych §rednich wazonych (warunkowych wartosci oczekiwanych).

Jak wida¢ na obu powyzszych przyktadach, w kazdej chwili (za wyjatkiem po-
czatkowej) filtracja prowadzi (w ogélnosci) do réznych wartosci instrumen-
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tu z dobrze okreslonym prawdopodobienstwem, co pozwola (jak zobaczymy)
traktowac ja jak proces stochastyczny. Innymi stowy, pozwola to na zdefiniowa-
nie filtracji jako zaleznej od czasu zmiennej losowej - jej ”"wartosciami” sa
obiekty w postaci odpowiednich filtréw czastkowych (prowadzacych do danej warto-
Sci instrumentu finansowego). Jednakze, postugiwanie sie tego typu zmienna losowa
(chociaz dobrze umotywowane) jest niewygodne.

4.3.2 Warunkowe Srednie wazone - martyngat

Wprowadzimy najpierw definicje warunkowej wartoéci oczekiwanej ($redniej) B (- |
F1), ktéra zalezy nie tylko od miary podstawowej (subiektywnej, rynkowej, domnie-
manej) P ale takze od filtracji F; (czyli historii danego procesu stochastycznego
na drzewku dwumianowym). Mianowicie, mozna wprowadzi¢ nastepujaca niezwykle
wazna definicje.

Definicja 4.3.2.1 (Definicja wartosci oczekiwanej warunkowanej filtracja)
Wyrazenie EY (Fy | F,), 7 < t, oznacza takq warunkowq warto$é oczekiwang instru-
mentu finansowego Fy, jaka jest liczona tylko wzdluz drog, ktore sq akceptowane
(przepuszczane) przez filtr F,.

Moéwiac konkretniej, aby ”zmaterializowa¢” tg wartosé oczekiwana musimy pod-
stawi¢ konkretna wartosé filtracji (czyli konkretne wartosci zmiennej losowej), tzn.
scisle okreslone trajektorie prowadzace od wezta poczatkowego do danego wezta w
wybranej chwili czasu t. Definicje tg zilustrujemy na prostym przyktadzie.

Przyktad

Niech instrumentem finansowym bedzie instrument bazowy tzn. F; = S;. Wyzna-
czamy warunkowe wartosci oczekiwane ET(S; | F,), 7 <t = 0,1,2 (patrz tabele
4.3 - 4.5); w dalszym ciagu nazywamy je przefiltrowanymi wartoSciami oczekiwa-
nymi. Zauwazmy, ze z powyzszych tabel wynikaja dwie wazne réwnosci (warunki

Tabela 4.3: Przefiltrowane wartodci oczekiwane dla chwili t=T=0
| EY(Fi—r(0) | F;) | Filtracja | Wartoé¢ E”(S,_r(—q) | F>) |

| ET(So|lF) | [ ] 100

brzegowe) spetnione dla dowolnej chwili, dowolnej miary i dowolnego instrumentu
finansowego:

EP(F, | Fo) = E"(F), (4.64)
E°(F, | &) = F. (4.65)

136



Tabela 4.4: Przefiltrow

rane wartosci oczekiwane dla chwili t=T=1

| EY(Fi—r-y | F;) | Filtracja | Wartoé¢ E7(S,_p—y | F>) |
ET(S, | Fo) 1] 3.80+ 1120 =90
ET(S, | F) [1,2] 80
[1,3] 120

Tabela 4.5: Przefiltrowane wartosci oczekiwane dla chwili t=T=2
‘ EP(Fi_ir—a | F,) H Filtracja Wartos¢ BV (Si—r2) | Fr)
EP (S, | Fo) [1] 1.2 140+2-1-2.100+ 2 2.60 = 80
EP(Sy | F) [1,2] 1100+ 2-60 =70
[1,3] 1-14042.100 =110
EP(Sy | Fa) [1,2,4] 60
[1,2,5] U [1,3,5] 100 U 100 = 100
[1,3,6] 140
Ponadto wida¢, ze przefiltrowana wartos¢ oczekiwana
Z, S B (Sr—y | F), t=0,1,2, (4.66)

jest zmienng losowq przyjmujaca rézne wartosci (patrz tabela 4.5) z réznymi
na ogél prawdopodobienstwami (patrz rys. 4.10), przy czym (jak zobaczymy
ponizej) zmienna Z; nie zalezy od T.

Na rys. 4.10 przedstawiono, w oparciu o tabele 4.5, ten nowy proces stochastycz-
ny Z; na drzewku dwumianowym (w mierze P).

W ogélnosci, procesem stochastycznym jest zmienna losowa

def.
o, =

EP(Fp | F), t=0,1,2,...,T, (4.67)
okreslona na drzewku dwumianowym dla dowolnego instrumentu finansowego F'
(a nie tylko dla ceny S instrumentu bazowego; patrz ponizej kluczowe twierdzenie
4.3.2.1 dotyczace martyngatu).

Pokazemy w oparciu o drzewko dwumianowe zamieszczone na rys. 4.10, ze proces
Z; (zdefiniowany przez (4.66)) posiada, dla kazdej chwili ¢ < T'(= 2), nastepujaca
bardzo istotng wlasnosé

Zy = B (Zris) | Fo). (4.68)

W tym celu konstruujmy tabele 4.6 odpowiednio przefiltrowanych wartosci ocze-
kiwanych tej zmiennej. Poprzez (bezposrednie) poréwnanie odpowiadajacych sobie
wartodci w tej tabeli i na drzewie dwumianowym przedstawionym na rys. 4.10 widac,
ze spetniona jest rownosé (4.68).
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Rysunek 4.10: Drzewko dwumianowe przedstawione dla trzech kolejnych chwil dla
przyktadowego procesu stochastycznego Z; = E¥(Sra) | ).

Dodatkowo, tabela 4.6 pokazuje, ze maja miejsce nastepujace wlasnosci (wyni-
kajace, jak zobaczymy ponizej, bezposrednio z faktu, ze proces stochastyczny Z; jest
martyngaltem):

EP(ZO | f()) - EP(Z1 | f()) - EP(Z2 | f())

(4.69)
oraz
E"(Zy | 1) = EX(Zy | F), (4.70)
lub ogdlniej
EP(Z | F)=EY(Ziyj | F), t=0,1,2,..., j=0,1,2,.... (4.71)

Teraz jestesmy przygotowani do wprowadzenia kluczowej definicji.
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Tabela 4.6: Przefiltrowane wartosci oczekiwane dla procesu stochastycznego Z; w

mierze P
| EY(Fr | F) | Filtracja | Wartoé¢ EY (Zr | F)
EP(Zy | Fo) [1] 11404212100+ 2 360 = 80
ET(Zy | F1) [1,2] T-100+ 3 -60 =70
[1,3] 1- 140+ 2 -100 = 110
EP(Z,| F) [1,2,4] 60
[1,2,5] U [1,3,5] 100 U 100 = 100
[1,3,6] 140
EP(Z, | Fo) 1] 1-110+3-70 =80
EP(Z, | F1) 1.2 70
[1,3] 110
E7(Zy | Fo) 1] 80

Definicja 4.3.2.2 (Definicja martyngalu wzgledem miary i filtracji) Dowolny
proces stochastyczny U, okreslony w mierze P = {p} i ograniczony, (czyli spelniajgcy
nieréwno$é EX(| U; |) < o0), nazywamy P-martyngatem (tzn. martyngatem wzgle-
dem miary P) jezeli zmienna losowa Uy spelnia réwno$é (analogiczng do (4.68)):

U, = EP(Ur | F), (4.72)

dla kazdej chwili t < T. Jak widaé, proces stochastyczny Z; jest P-martyngatem;
miara P nosi nazwe miary martyngatowes.

Warto zauwazy¢, ze nawet gdyby proces U; nie byl martyngatem, to zawsze Uy =
EF(Ur | Fr), czyli dla dowolnej miary i filtracji.

Jak wida¢, znalezienie miary martyngatowej dla procesu stochastyczne-
go danego instrumentu finansowego pozwala wyceni¢ ten instrument w
dowolnej chwili 0 < t < T. W ten sposéb odpowiedzieliSmy na jedno z
kluczowych pytan analizy portfelowej o wycene dowolnego instrumentu
finasowego w dowolnej chwili.

Zachodzi nastepujace, ogdlne twierdzenie.

Twierdzenie 4.3.2.1 (Twierdzenie kluczowe o konstrukcji martyngatu) Dla
dowolnego instrumentu finansowego F' proces stochastyczny przefiltrowanej warto$ci
oczekiwanej ®; = EY (Fr | F), t < T, jest martyngatem wzgledem miary P i filtracji
F (zauwaimy, Ze T jest dowolng liczbg naturalng albo zerem), czyli

O, =EF(®r | F), 0<t<T. (4.73)
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Dowdd tego twierdzenia (przez konstrukcje) jest analogiczny jak wywdd przeprowa-
dzony dla instrumentu Z; zbudowanego na bazie S;, gdyz nie zalezal on od konkret-
nej postaci instrumentu S; (mégt byé to réwnie dobrze jaki$ inny instrument F).
Co wiecej, nie zalezatl od konkretnej postaci miary P.

Moze si¢ zdarzy¢, ze np. &, = F; - wtedy instrument F jest juz od razu martyn-
gatem w mierze P i filtracji F bez potrzeby ponownego budowania przefiltrowane;
wartosci oczekiwanej.

Przy okazji zwréémy uwage, ze wzor (4.25) mozna przepisaé¢ w jezyku martyn-
galéw a mianowicie,

Fy = exp(—rT)E?(Fr | Fo) = E9(exp(—rT)Fr | Fo). (4.74)

Oczywiscie, gdyby dla instrumentu finansowego istniala taka miara'® Q, ze powyzszy
wzor mozna by uogdlni¢ do postaci

Fy = exp(—r(T — ))EY(Fp | ) = E9(exp(—r(T — t))Fr | 7o), (4.75)

wowezas, zdyskontowany instrument finansowy exp(—rt)F; bytby w tej mierze mar-
tyngatem, gdyz speliona bylaby réwnoséé definiujaca (4.72) w postaci:

exp(—rt)F, = E(exp(—rT)Fr | ), 0<t < T. (4.76)

Zatem, znalezienie miary martyngalowej umozliwia wyznaczenie warto-
$ci instrumentu w dowolnej chwili 0 < ¢ < T - to kluczowe zagadnienie jest
omawiane ponizej.

Wida¢, ze proces martyngatowy nie prowadzi do arbitrazu - wystarczy w tym
celu w réwnaniu (4.76) podstawi¢ T' = t + dt, co prowadzi do wyrazenia:

exp(rét)Fy = E9(Fys | 1), 0<t < T — 6t, (4.77)

ktére ma taka sama wymowe jak weze$niej wyprowadzone (4.22) dla miary arbitra-
zowej. Tzn., spodziewany zysk z instrumentu finansowego F w chwili ¢ + 6t jest, w
tym przypadku, taki jak z lokaty bankowej o wartosci F}. Jak juz wcze$niej mowi-
lismy, tego typu miar¢ nazywamy obojetng wzgledem ryzyka. Zatem, znalezienie
miary martyngalowej dla danego instrumentu finansowego jest zawsze
wyjSciowym zadaniem narzucanym przez paradygmant istnienia rynku
finansowego, czyli braku arbitrazu.

Zauwazmy jeszcze (poréwnaj drzewko dwumianowe na rys. 4.9 z tym na rys.
4.10), ze proces stochastyczny ceny akcji S; nie jest (w ogdlnosci) martyngatem
wzgledem miary P i filtracji F. Okazuje sie jednak, ze

Lemat 4.3.2.1 (Lemat o konstrukcji miary martyngatowej) Mozna skonstru-
owaé takg miare (poréwnaj drzewka dwumianowe na rysunkach 4.9 i 4.11) Q =

{q = 1/2} wzgledem ktérej proces stochastyczny S; bedzie Q-martyngalem wzgle-

dem filtracji F; co wiecej widaé, ze jest ona w naszym przypadku jednoczesnie miarg

arbitrazowq (patrz wzory (4.20)).

15Prosze nie pomylié teraz tej miary z miara arbitrazowa.
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Ponizsza tabelka 4.7 zawiera konieczne wartosci obliczone dla tego procesu (przy
zaltozeniu, ze r = 0) - wlasnie te wartosci zostaty dodatkowo umieszczone na drzewie
dwumianowym na rys. 4.11. Poréwnanie otrzymanych wielkosci z odpowiadajacy-
mi im umieszczonymi na drzewie przedstawionym na rys. 4.9 wskazuje na speknienie
wlasnosci (4.72) definiujacej martyngal. W og6lnosci, znalezienie miary martyngato-
wej do danego instrumentu finansowego nie jest takie proste, Jednakze, dla procesu
cen akcji zaktadamy iz jest to mozliwe - patrz Lemat o istnieniu 4.3.3.3.

Tabela 4.7: Przefiltrowane wartosci oczekiwane dla procesu stochastycznego S; w
mierze martyngatowej Q.

| E°(Fr | F) | Filtracja | Wartosé E9(Sy | F) |

E9(Sy | Fo) 1] L-140+2- 1100+ 1 - 60 = 100
EQ(Sy | F1) [1,2] 5 - 100+ 5 - 60 = 80

[1,3] 5-140 4 5 - 100 = 120
EQ(Sy | Fy) [1,2,4] 60

[1,2,5] U [1,3,5] 100 U 100 = 100

1,3,6] 140
EC(S, | Fo) 1] - 80+ 5 -120 =100
EC(S, [ F1) [1,2] 80

[1,3] 120
E%(S | Fo) [1] 100

4.3.3 Reprezentacja martyngalowa proceséw dyskretnych

Podamy teraz (bez dowodu) zasadnicze twierdzenie dotyczace reprezentacji mar-
tyngatowej procesow dyskretnych odgrywajace wprost trudng do przecenienia role
w finansach (np. w konstruowaniu strategii samofinansujacej). Zanim jednak je sfor-
mutujemy podamy definicje procesu prognozowalnego.

Definicja 4.3.3.1 (Definicja procesu prognozowalnego) Mdwimy, Ze mamy do
czynienia z procesem prognozowalnym ¢; na drzewku dwumianowym jezeli wartosé
tego procesu w chwili t zalezy (przynagmniej) od filtracji Fy_y.

Najprostszym przyktadem takiego procesu moze by proces ceny obligacji A;, poru-
szajacy sie jedynie po skrajnie gornej trajektorii drzewka - jest to wedréowka tylko w
gére o czynnik exp(rdt) z prawdopodobienistwem 1. Dodajmy, ze jezeli jakis proces
jest prognozowalny to réwniez (prawie) dowolna funkcja f(¢;) jest procesem progno-
zowalnym. Moéwigc ogolnie, trudno jest podac przyktad procesu nieprognozowalnego.

Twierdzenie 4.3.3.1 (Twierdzenie o reprezentacji martyngatowej) Niech da-
ne bedg dwa procesy Q-martyngatowe My i Ny na drzewie dwumianowym. Istnieje
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Rysunek 4.11: Drzewko dwumianowe przedstawione dla trzech kolejnych chwil dla
procesu stochastycznego Sy w mierze martyngatowej Q.

taki proces prognozowalny ¢, Ze zachodzi nastepujgca rownosc:

t—1
Nt:N0+Z¢kAMk,t:1,2,.‘.,T, (4.78)
k=0
przy czym AMy = My, — My jest przyrostem procesu My od chwili k do k + 1,
natomiast proces prognozowalny ¢ wyraza sie (dodatkowo) wzorem

¢k _ Nlj+1 — Nk_+1 _ 5Nk+1
MljJrl - MI;H 5Mk+1’

k=0,1,..., (4.79)

gdzie N,irl oraz M,irl to wartosci jakie mogq przyymowac odpowiednio proces Ny
i My w wezlach (widetkach) drzewa dwumianowego w chwili k + 1 sqsiadujgcych
bezposrednio z wyjsciowym w chwili k.

Zauwazmy, ze wyrazenie (4.79) mozna traktowaé jako formalne rozszerzenie (z
miary arbitrazowej na martyngatowa) pierwszego wzoru w (4.18) na liczbe udziatéw
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na akcje w portfelu dwuwalorowym, gdzie proces N; mozna interpretowac jako proces
pochodnego instrumentu finansowego wystawionego na papier wartosciowy M; -
papier ten nie musi by¢ instrumentem bazowym (czyli cena akcji) a moze by¢ takze
jakims instrumentem pochodnym.

7 Twierdzenia 4.3.3.1 wynika wielce uzyteczny dla zastosowan

Lemat 4.3.3.1 (Lemat o rekurencji) Ze wzoru (4.78) wynika bezposrednio na-
stepujgca, rekurencyjna formuta

Nt - Nt_l + ¢t_1 AMt—la t= ]_, 2, ey T, (480)

lub jej postac rownowazna

AN

=—— t=12,...,T 4.81
AMt717 ? Y Y ( )

Qstfl

Aby wyprowadzi¢ formute (4.80) wystarczy we wzorze (4.78) przedstawi¢ sumowanie
w postaci dwoch czedci a mianowicie, sumowania krotszego o jeden sktadnik, czyli
do t — 2 oraz ostatniego sktadnika, czyli ¢;_; AM,; ;. Ta krétsza suma to nic innego
jak proces N;_1, co konczy wywod.

Co wiecej, wykazemy, ze z Lematu 4.3.3.1 wynika juz posta¢ procesu progno-
zowalnego (4.79). W tym celu zapiszmy réwnosé (4.80) dla wartosci proceséw w
postaci:

Nt—:—l = Nt+¢tMt—:—1_¢tMt>
Nt:—l = Nt+¢tMt11_¢tMt7 t:071)27"'7T_17 (482)

skad, odejmujac stronami obie réwnosci i dzielac je przez rézmice M, — M,
otrzymujemy poszukiwana postaé¢ ¢; dana wzorem (4.81). Zauwazmy, ze Ny i M,
oznaczaja tutaj (skrétowo) wartosci proceséw, odpowiednio, Ny i M; w wezle wide-
lek. Odwrotnie, ze wzoru (4.80) mozna wyprowadzi¢ (krok po kroku'®) wyrazenie
(4.78).

Jak wida¢, proces prognozowalny ¢, mozna przedstawié¢ albo jako iloraz réznico-
wy po weztach drzewka dwumianowego (przy ustalej nastepnej chwili) obu proceséw
Q-martyngatowych (patrz wzor (4.79)) albo jako ich (jednokrokowy) iloraz réznico-
wy w czasie (patrz wzor (4.81)).

Zauwazmy jeszcze, ze z rownosci (4.80) wynika rownosé (4.78) poprzez kolejne
podstawienia (rekurencje). Mianowicie, wyrazenie (4.80) na proces N;—; w chwili
t = 1 podstawiamy do wzoru (4.80) ale na Ny—, z kolei ta wielkosé podstawiamy do
Ny—3, itd, itp. Pozwala to stwierdzi¢, ze Lemat 4.3.3.1 jest réwnowazny Twierdzeniu
4.3.3.1.

Dodajmy jeszcze jeden uzyteczny lemat.

16 ub, po prostu, stosujac indukcje matematyczna.
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Lemat 4.3.3.2 (Lemat o odwrotnym procesie prognozowalnym) Z Lematu
4.8.83.1 wynika bezposrednio, zZe jezeli ¢, jest procesem prognozowalnym to i proces
odwrotny (co do wartosci) ¢y jest takie procesem prognozowalnym.

Ponizej zastosujemy wzor (4.81) do skonstruowania typowej strategii samofinan-
sujacej portfela dwusktadnikowego, nalezacej do grupy strategii replikujacych.

Ogodlne uwagi o strategii samofinansujacej

Zaktadamy jak zwykle, ze mamy do dyspozycji stochastyczny proces akcji Sy oraz
prognozowalny proces ceny obligacji Ay, ktore sg zdefiniowane na drzewie dwumia-
nowym (w dalszym ciagu bez zmniejszania ogdlnosci rozwazan mozna przyjaé, ze
Ay = 1, co pozwala na dyskontowanie i kapitalizacje instrumentéw finansowych za
pomoca ceny obligacji, ktéra reprezentuje zmieniajaca sie wraz z uptywem czasu
warto$¢ pieniadza); zauwazmy, ze réwniez proces A; ' jest prognozowalny (na mocy
Lematu 4.3.3.2).

Nalezy podkresli¢, ze dla dyskretnego procesu stochastycznego S, (tutaj na drzew-
ku dwumianowym) udowodniono nastepujacy, bardzo wazny lemat.

Lemat 4.3.3.3 (Lemat o istnieniu) O istnieniu jednej i tylko jednej miary Q,
wzgledem ktérej proces stochastyczny zdyskontowanych cen akcji Sy = A;'S; jest
Q-martyngatem.

Oczywiscie, Q-martyngatem bedzie takze proces stochastyczny rozpatrywanego zdys-
kontowanego instrumentu finansowego F' zdefiniowany jako przefiltrowana wartosé
oczekiwanal” (patrz wzory (4.67) i (4.73)):

E, = E° (A Fr | F), t<T, (4.83)
przy czym, oczywiscie, Ep = A7 Fp. W ten sposéb definiujemy
1) dwa procesy Q-martyngatowe, S oraz E;, wzgledem (tej samej) filtracji F oraz

2) dwa procesy prognozowalne (A; oraz ¢;);

pozwoli to poréwnaé procesy wymienione w p.1), korzystajac wlasnie z Twierdzenia
4.3.3.1 o reprezentacji martyngatowej, i zbudowa¢ samofinansujaca strategie zabez-
pieczajacy.

Gdyby tak sie zdarzyto, iz zdyskontowany instrument finansowy

A'F, = E; (4.84)

wowezas on sam bylby, co wida¢ w oparciu o wzor (4.83), @Q-martyngatem w filtra-
cji F (a nie tylko jego przefiltrowana warto$é¢ oczekiwana) przy czym, otrzymane
wzory bylyby dodatkowo wzorami omawianej wczeéniej strategii arbitrazowej. Oczy-
wiscie, niniejsze podejscie bazujace na réwnosci (4.83), jest znacznie ogdlniejsze (np.
zbudowana strategia nie jest w ogélnosei arbitrazowa).

17Prosze nie myli¢ oznaczenia E? z E;. To pierwsze (przypomnijmy) oznacza warto$é oczekiwana
w mierze (Q, natomiast to drugie proces stochastyczny w chwili ¢.
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Strategia samofinansujgca - praktyczna realizacja
Na wstepie, przyjmujmy, ze
Ny = Ey,
M, =S, (4.85)

Nastepnie, zdefiniujemy dla kazdej chwili ¢ liczbe udzialéw w portfelu na akcje

o = b, (4.86)

gdzie ¢, jest zdefiniowanym wcze$niej w Twierdzeniu 4.3.3.1 o reprezentacji martyn-
gatowej procesem prognozowalnym, czyli na mocy Lematu 4.3.3.1,

AE_, _E -E,

N R

(4.87)

To wlasnie do wielkoSci udzialéw na akcje dobierane sa odpowiednio
udzialy na obligacje. Odpowiedni dobér byt takze i w poprzednich strategiach.
W obecnej, liczba obligacji w portfelu dana jest wzorem:

VP = By — ¢;'5;. (4.88)
Teraz juz mozemy okredli¢ warto$é portfela m; = (47, 4°) w chwili ¢ a mianowicie,

Vi(m) = ¢S+ yPN,

Warto$¢ ta jest réwna (dzieki wyrazeniu (4.83) przefiltrowanej wartosci oczekiwanej
zdyskontowanego instrumentu finansowego A, Fr. Oznacza to, ze portfel nie jest
replikujacy (w sensie definicji (4.16) i (4.17)).

W dalszym ciagu wykazemy, ze warto$é¢ portfela m_y = (¢, ¢ ) w chwili ¢
wynosi

Vi(mi—1) = Vi(my). (4.90)

Wtadnie ta réwnos$é definiuje portfel samofinansujacy (strategie samo-
finansujaca), gdyz umozliwia sprzedaz portfela 7, ; i jednoczesne kupno
portfela 7, w ramach (specyficznej) operacji typu no profit. Innymi stowy,
definicja liczby obligacji dana wzorem (4.88) oraz (jak wykazujemy ponizej) Twier-
dzenie 4.3.3.1 o reprezentacji martyngatowej, umozliwiaja wtasnie zbudowanie tego
typu portfela.

Oczywiscie, powyzej przeprowadzona operacja typu no profit nie oznacza tutaj
braku chwilowego zysku - jest on po prostu réznica

ZYSKf == %(ﬂ't) - ‘/;5_1<7Tt_1). (491)
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Udowodnimy teraz kluczowa réwnosé (4.90), przeksztalcajac jej lewa strone:

Vilm1) = oS+ 920
= ¢24_1St + (B1 — ¢24_1’§t71)At
= MN[E 1+ ¢Z4_1(gt - gtfl)]
= M(E_q + o2 AS, 1) = ME, = Vi(my), (4.92)

gdzie po drodze skorzystalismy (kolejno) ze wzoréw (4.88), (4.87) i (4.89).
Ponadto, zauwazmy, ze w chwili t = T wartos¢ portfela 7mp_; wynosi

VT(TFT_l) = ATET = ATEQ(A;IFT ‘ fT) = ATA;IFT = FT, (493)

co oznacza, ze strategia samofinansujaca jest replikujaca w stabym sensie, gdyz
odtwarza cene (czyli warto$¢ wyplaty) instrumentu finansowego F' jedynie w chwili
jego realizacji T. Poprawna (sprawiedliwa) jest taka warto$¢ portfela 7 w kazdej
chwili 0 < ¢ < T, ktora zdefiniowano za pomoca udziatéw danych wzorami (4.87) i
(4.88). Kazda inna cena bytaby arbitrazowa w takim sensie, ze mogtaby prowadzié
do dodatkowych (a wiec nieuzasadnionych czyli niesprawiedliwych) zyskéw.

Na zakoniczenie tego paragrafu zauwazmy jeszcze, iz moze sie zdarzyé, ze (w
jakims$ przedziale czasu) réwnos$¢ (4.90) jest tautologia, co ma miejsce wtedy gdy
portfel (w tym przedziale) nie ulegt zmianie, tzn. gdy m, = m,_1. Wtedy strategia
samofinansujaca staje si¢ strategia pasywna.

4.4 Opcje jako zasadniczy instrument stymulujg-
cy rynek finansowy

4.4.1 Kontrakty terminowe

Mozna powiedzie¢, ze kontrakty terminowe i ich ”tagodniejsze” odmiany w posta-
ci opcji, stanowia zasadnicze instrumenty pochodne obecne na rynkach, znacznie
zmniejszajace ryzyko inwestycyjne. Kontrakt terminowy jest instrumentem finanso-
wym zobowiazujacym!® obie zawierajace go strony do realizacji w przysztosci trans-
akcji na warunkach okreslonych w kontrakcie. Wystawiajacy kontrakt, czyli przyj-
mujacy (otwierajacy) tzw. pozycje krotka (ang. ’short position’), przyjmuje na siebie
zobowigzanie wystawienia do sprzedazy przedmiotu kontraktu w ustalonym terminie
(tzw. terminie realizacji) po ustalonej cenie (czyli cenie umownej). Nabywca kon-
traktu okreslany jako przyjmujacy (otwierajacy) pozycje dtuga (ang. 'long position’)
zobowiazuje sie do zaptacenia ceny umownej po dostarczeniu przedmiotu kontraktu.

18Tutaj tkwi istotna réznica pomiedzy kontraktem terminowym a opcja o czym powiemy szcze-
gbéltowo w nastepnym rozdziale.
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Podkreslmy, ze przedmiot kontraktu odgrywa rola instrumentu pierwotnego (czyli
bazowego).

Biezaca cena instrumentu bazowego, na ktory opiewa kontrakt zmienia sie w cza-
sie zatem, jego rynkowa cena w terminie realizacji r6zni si¢ na ogét od ceny umowne;j.
Ptatnosé z racji zawarcia takiego kontraktu jest albo dodatnia albo ujemna: zawsze
to co jedna strona zyskuje to druga traci!®. Dwa zasadnicze rodzaje kontraktéw to:

1) kontrakty forward oraz
2) kontrakty futures,

omawiamy je ponizej.

Kontrakty forward

Kontrakt forward jest podstawowym typem kontraktu terminowego, ktory zobowig-
zuje obie umawiajace sie strony kontraktu do przeprowadzenia danej transakcji w
okreslonej przysztosci. Transakcja ta jest typu sprzedaz-kupno instrumentu bazowe-
go (podstawowego). Oznacza to, ze jedna ze stron dostarcza drugiej w okreslonym
terminie 7" (zwanym terminem wygasniecia kontraktu) przedmiot transakeji po usta-
lonej cenie K (zwanej cena dostawy lub rozliczenia). Jak wida¢, kontrakt forward nie
dopuszcza zadnych przeptywdéw pienieznych, towarowych lub innych w chwili ¢ < T',
czyli przed wygasnieciem kontraktu. Wycena tego kontraktu polega na wyznaczeniu
sprawiedliwej ceny rozliczenia.

Kontrakty futures

Istota i struktura kontraktow futures jest taka sama jak kontraktow forward, przy
czy réznica pomiedzy nimi ma charakter instytucjonalny ze wzgledu na to, ze te
pierwsze (w przeciwienstwie do tych drugich) zostaty dopuszczone do obrotu rynko-
wego (gietdowego). Poniewaz kontrakty futures sa przedmiotem obrotu rynkowego
zatem, ich aktualna cena jest ksztaltowana poprzez popyt i podaz, co stanowi zasad-
niczg réznice w stosunku do kontraktoéw forward. Wazna konsekwencja dopuszcze-
nia kontraktow futures do obrotu gietdowego jest przejecie przez nig roli posrednika
pomiedzy stronami kontraktu. Do roli tej nalezy dbanie o to aby kazda ze stron wy-
wiazala sie ze swoich zobowigzan. W tym celu gietdy wyposazone sa w odpowiednie
instrumenty ekonomiczne, np. w system depozytéw (zabezpieczajacych oraz pod-
trzymujacych) oraz codziennych rozliczen (ang. making to market). Zauwazmy, ze
najczesciej kontrakty te koncza sie (sa realizowane) przed uptywem terminu ich wy-
gasniecia, co jest wtasnie konsekwencja dopuszczenia ich do obrotu gietdowego.

j isowe czyli zréw ia si iz W 70 IZ ie.
9Sytuacje remisowe czyli zréwnania sie ceny realnej z cena umowna sa bardzo rzadkie

147



4.5 Ciggla w czasie wycena opcji - model Blacka-
Scholesa a przewodnictwo cieplne

Z chwilg dopuszczenia do obrotu opcjami (ang. options) na rynkach finansowych czy-
li do obrotu pochodnymi (wtérnymi, ang. derivatives) instrumentami finansowymi,
ktore stanowia tagodniejsza forme kontraktéw terminowych gdyz daja prawo, ale nie
zobowiazuja ich posiadacza, do zakupu (ang. call options) lub sprzedazy (ang. put
options) innego tzw. podstawowego (inaczej, pierwotnego czyli bazowego instrumen-
tu finansowego, ang. underlying instrument), w szczegdlnosci papieru wartosciowego,
po ustalonej cenie umownej (inaczej, cenie wykonania, ang. exercise price lub stri-
king price) K w $cisle okreslonym terminie realizacji czyli wykupu 7" (ang. expiration
date, lub maturity; opcja europejska ang. European option) lub w czasie 0 <t < T
(ang. ezercise date; opcja amerykanska ang. American option), pojawito sie kluczo-
we zagadnienie wyceny opcji zwanej premia (ang. option premium) (R.N, Mantegna,
H.E. Stanley: Ekonofizyka. Wprowadzenie, Wydawnictwa Naukowe PWN, Warszawa
2001; K. Jajuga, T. Jajuga: Inwestycje: instrumenty finansowe, ryzyko finansowe,
mzynieria finansowa, Wydawnictwo Naukowe PWN, Warszawa 2004; A. Weron, R.
Weron: Inzynieria finansowa, Wydanie drugie, Wydawnictwa Naukowo-Techniczne,
Warszawa 1999).

Zauwazmy, iz ma miejsce charakterystyczna asymetria pomiedzy posiadaczem
(ang. holder) a wystawca (ang. writer) opcji. Wystawca opcji jest zobowiazany do
realizacji czynnosci umownych gdy tylko posiadacz opcji wyrazi cheé¢ jej wykonania.
Oczywiscie tego typu asymetrii nie ma w przypadku kontraktow terminowych (gdzie
przeciez obie strony kontraktu podejmuja zobowiazanie).

Najczesciej spotyka sie opcje na nastepujace instrumenty bazowe:

1) opcje akcyjne (ang. stock opitions), ktérych instrumentem pierwotnym (bazo-
wym) sa akcje,

2) opcje walutowe (ang. currency options), ktérych instrumentem bazowym jest
kurs waluty jakiegos innego kraju,

3) opcje procentowe (ang. interest rate options), ktérych instrumentem bazowym
jest oprocentowane papiery warto$ciowe np. obligacje, ktérych cena rynkowa
oczywiscie waha sie.

Szczegbdlnym rodzajem opcji akcyjnej jest warrant - jest to opcja wystawiana przez
dang firme na akcje lub obligacje tej firmy.

Ponadto, do$é¢ popularne sa opcje indeksowe réznigce sie od powyzszych, kto-
rych instrumentem bazowym sg réznego rodzaju indeksy gieldowe. Nie wystepuje
tutaj bowiem fizyczna dostawa instrumentu bazowego w momencie realizacji opcji a
jedynie wyptata proporcjonalna do réznicy wartosci (ceny) indeksu w tym momen-
cie a (ustalona w chwili otwierania opcji) cena wykonania. Oczywiscie, opcja kupna
zostanie zrealizowana tylko wtedy gdy réznica ta jest dodatnia; w przeciwnym razie
zrealizowana zostanie opcja sprzedazy.
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Uwagi wstepne dotyczace wyceny opcji

Jezeli zalezng od czasu t cene danego instrumentu finansowego oznaczymy przez
Y (t) to cene opcji mozna zapisaé w postaci C(Y(t),t), umozliwiajacej analize jej
dynamiki az do chwili t = T kiedy opcja traci wazno$¢. W tym zapisie tkwi mil-
czace zalozenie, ktore w dalszym ciggu bedzie przez nas wykorzystywane, ze obrit
strumentamsi finansowymai jest ciggly w czasie. Oczywiscie, szczegdlnie waze dla
uczestnikéw rynkéw finansowych (czyli inwestoréw) jest cena opcji w chwili po-
czatkowej gdy inwestor stoi przed odpowiedzia na pytania: jakg cene umowng K
wynegocjowaé i ewntualnie na jakiq oplate wstepng sie zgodzic®°? Na pytania te jako
pierwsi konstruktywnej odpowiedzi udzielili Fisher Black, Myron Scholes i Robert
Merton za co dwaj ostatni w roku 1997 otrzymali nagrode Nobla w dziedzinie eko-
nomii; Fisher Black zmart niestety dwa lata wczesniej w zwigzku z tym nie mogh
jej otrzymac¢ pomimo, ze to wtasnie model Blacka-Scholesa stanowi punkt wyjscia
nowej dziedziny zwanej niekiedy matematyka finansowsa, czasem takze inzynierig
finansowg a ostatnio nawet fizyka finansows.

4.5.1 Od btadzenia na drzewie dwumianowym do modelu
Blacka-Scholesa

Niniejszy rozdziat stanowi ukoronowanie naszych rozwazan dotyczacych procesow
dwumianowych. Pokazemy w nim jak, dzieki wprowadzeniu miary arbitrazowej na
drzewie dwumianowym, mozna uzyskaé stynny wzor na wycene opcji Blacka-Scholesa
(BS)?L. Podejscie tego typu zostalo po raz pierwszy zaproponowane przez Coxa-
Rossa-Rubinsteina (J.C. Cox, S.A. Ross, M. Rubinstein, J. Finance Econ. 7 (1979)
229: A.N. Shiryaev: FEssentials of Stochastic Finance: Facts, Models, Theory, World
Sci., Singapore 1999). Obok wielkiej pogladowosci, jego zaleta jest podatno$é na
uogdlnienia wychodzace poza tradycyjny model BS (patrz np. A. Jurlewicz, A. Wy-
lomanska and P. Zebrowski: Financial Data Analysis by means of Coupled Continuous-
Time Random Walk in Rachev-Rischendorf Model, Acta Phys. Pol A 114 (2008)
629-635).

Formuta okreslajagca dynamike stochastyczng bazowego instrumentu fi-
nansowego

Nadal przyjmujemy, ze bazowy instrument finansowy btadzi przypadkowo na drzewie
dwumianowym (patrz np. rys. 4.4 lub 4.9). Przyjmujemy, ze (elementarny) wzrost
ceny bazowego instrumentu finansowego zachodzi (w pojedynczym kroku czasowym)

200dpowiedz na drugg czeéé¢ pytania wybiega poza rozwazany kanoniczny model Blacka-Scholesa
dla rynku idealnego. Pomimo to udzielimy tutaj przyblizonej odpowiedzi bedacej wnioskiem z tego
modelu.

2 Niniejsze rozwazania sj inspirowane w znacznej mierze ksigzka A. Weron, R. Weron: Inzy-
nieria finansowa. Wycena instrumentéw pochodnych. Symulacje komputerowe. Statystyka rynku,
Wydawnictwa Naukowo-Techniczne, Warszawa 1999.
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z prawdopodobienstwem p zatem, jej zmalenie zachodzi z prawdopodobienstwem
1—p. Niech cena instrumentu bazowego po pierwszym kroku czasowym (1 §t) wynosi:

exp(oVdt), jesli cena bazowego instrumentu rosnie
S1 =Sy exp(pdt) - . . :
exp(—o Vdt),  jesli cena tego instrumentu maleje,
(4.94)

gdzie dryf p jest stopa wzrostu (ang. growth rate) - prosze nie myli¢ dryfu z wolna od
ryzyka (pozagietdowa) krétkoterminowa stopa procentowa r; o jest miara zmiennosci
tej ceny (bedzie jeszcze o tym mowa ponizej).

Analogicznie, dla drugiego kroku czasowego (2 §t) mozemy zapisaé, ze

exp(oVvot), jedli cena bazowego instrumentu rosnie

Sy = 51 exp(pét) - {

exp(—o V/dt), jesli jego cena maleje,
exp(20V/6t),  dla wierzchotka 6
= Sp exp(2udt) - 1 dla wierzchotka 5

exp(—20 v/6t), dla wierzchotka 4.
(4.95)

Powyzsze wzory daja sie tatwo uogélnié na przypadek n-tego kroku czasowego (n =
t/ot =1,2,3,..., gdzie t jest czasem). Mianowicie,

exp(ov/t), jesli cena bazowego instrumentu rosnie
Siyse = Sy exp(pdt) - ( ). s & .
exp(—o V/t), jesli jego cena maleje,
(4.96)
a stad otrzymujemy wyrazenie stanowigce punkt wyjsécia naszych dalszych rozwazan

AX,
NG

gdzie AX, def. X — X, tutaj XF jest zmienng losowa méwiaca o sumarycznym
przemieszczeniu bazowego waloru po n krokach czasowych, odpowiednio w kierunku
jego wzrostu (4) oraz zmalenia (—). Oczywiscie, X,/ + X = n, stad AX, =
2X+T —n.

Ze wzoru (4.96) wynika natychmiast, ze warto$¢ oczekiwana logarytmicznej stopy
zwrotu wynosi:

S, = Sp exp(pndt) - exp(AX, o Vt) = Sy exp(pt) - exp ( o \/f), (4.97)

<ln (ngt» = udt + (2p — 1)oV/dt (4.98)

natomiast,

<11r12 <StTJ;&>> - <1n <S§6t>>2 = 4p(1 — p)o?ot (4.99)
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jest jej wariancja. W dalszym ciagu bedziemy sie starali wyrazi¢ logarytmiczna stope
zwrotu z instrumentu bazowego za pomoca wygodniejszej, standaryzowanej zmien-
nej losowe;j.

Jak wynika ze wzoru (4.96) na chwilowa wartos$é¢ instrumentu bazowego Sy s,
sktadowa losowa logarytmicznej stopy zwrotu podlega rozktadowi dychotomicznemu
(dwupunktowemu) postaci:

p(z) = pd(x — o Vot)+ (1 —p) d(z + o Vot) (4.100)
a co za tym idzie zmienna losowa X podlega rozktadowi dwumianowemu:

n! + -
Pr(X,) = Xrx1? (1—p) (4.101)
co oznacza, ze warto$¢ oczekiwana i wariancja zmiennej X © wynosza, odpowiednio

<X7er> = np,
ox+ = np(l—p). (4.102)

Stad natychmiast wynika, ze zmienna losowa Y, def. Afﬁ" posiada warto$¢ oczekiwang
réwna (Y,) = /n (2p—1) i wariancje réwng o3 = 4 p (1—p). Pozwala to na zapisanie

chwilowej warto$ci bazowego instrumentu finansowego w postaci

S, = Sy exp (,ut—ka\/E(Y,,,) +0y0\/EZ,,L>, (4.103)
gdzie zmienna losowa 7, def. Y”;iiym jest juz standaryzowana, tzn. posiada wartos¢

oczekiwana rowna 0 i wariancje rowna 1, dlan =1,2,3,....

Na mocy Centralnego Twierdzenia Granicznego (patrz Cze$¢ II) zmienna 7,
dazy do podlegania rozktadowi normalnemu N(0,1), gdy n — oo albo réwnowaz-
nie, gdy ot — 0. Czyli, zmienna losowa postaci In(S,;/Sy) posiada rozktad normalny
N(ut+ovt(Y,), 0% o?t). Jest on niestety niewygodny w operowaniu (nawet dla sy-
metrycznego bladzenia instrumentu bazowego na drzewie dwumianowym, tzn. dla
p = 1/2), gdyz warto$¢ oczekiwana zmiennej losowej In(S;/Sy) wzgledem tego roz-
ktadu nie znika. Oznacza to, ze ta zmienna losowa nie jest wycentrowana. Dlatego,
zamiast operowa¢ wyjsciowa miarg P przejdziemy do znacznie wygodniejszej miary,
czyli miary arbitrazowej Q. Stanowi to kluczowy krok techniczny niniejszego podej-
Scia pozwalajacy na skorzystanie z ogolnej formuty wyceny pochodnego instrumentu
finansowego (4.25) - dla miary P tego typu ogélna formula nie jest znana. Przy oka-
zji zaznaczmy, ze przejscie od wzoru (4.97) do (4.103) takze zwiazane byto ze zmiana
miary z dwumianowej na gaussowska, gdyz n — oo.

4.5.2 Arbitrazowe drzewo dwumianowe i wycena opcji

Korzystajac ze wzoru (4.96), taczacego wartosci bazowego instrumentu finansowe-
go w kolejnych chwilach, mozna wyrazenie (4.20), definiujace elementarne praw-
dopodobienstwo arbitrazowe przemieszczenia tego instrumentu w gore na drzewie
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dwumianowym, przeksztatci¢ do nastepujacej postaci:

ozn. exp((r — p) ot) — exp(—oVdt 1 —r 4 02/2
e e UL (BVGLE e |
exp(oV/ot) — exp(—o/dt) 2 o

_ 1 p—r-+o?/2
l-q¢ = qi:f‘—l—(l%%i(l"‘m%), (4.104)

przy czym obie (przyblizone) réwnosci zachodza dla przypadku dt — 0. Aby je
otrzymaé wystarczyto uwzglednié: 1) trzy pierwsze wyrazy w obu funkcjach wyktad-
niczych w mianowniku i w drugiej funkcji w liczniku oraz 2) dwa pierwsze wyrazy
w pierwszej funkeji wykltadniczej w liczniku??. Wtedy obliczenia prowadzone sa z
doktadnoscia rzedu V/dt, jak to jest wymagane.

Zauwazmy, ze niezaleznie od stosowanej miary P na drzewie dwumianowym,
ciag {X,[, n =1,2,3,...} jest nadal opisany rozktadem dwumianowym ale teraz
o parametrach (wartosci oczekiwanej i wariancji) wyrazonych juz za pomoca arbi-
trazowej miary Q. Mianowicie, wartos¢ oczekiwana i wariancja dane sg wzorami
analogicznymi do (4.102)

<X1;r> = ng,
ox+ = nq(l—q). (4.105)

Podobnie rzecz si¢ ma ze zmienng Z,,, przy czym teraz

V) = Vii(2q—1)~ i BT

g

_ 2/9 2
02 = 4q(1—q)~1— 4t <%> , (4.106)

i (Y,,) nie zalezy jawnie od n (o co m.in. chodzito). Jak wida¢, dla 6t — 0 wariancja
o3 — 1. Stad oraz za mocy CTG tatwo obliczy¢, ze wyrazenie (4.103) na chwilowg
wartos¢ bazowego instrumentu finansowego S; przybiera w mierze arbitrazowej Q
szczegolnie dogodna do dalszych obliczen postac:

S, = Sy exp ((r — %2> t+oVt Z> (4.107)

gdzie standaryzowana zmienna losowa Z podlega rozkladowi normalnemu N (0, 1).
Méwiac o szczegdlnie prostej postaci S; mamy na mysli fakt, ze (dzieki mierze ar-
bitrazowej danej wyrazeniami (4.104)) dryf we wzorze (4.107) juz nie wystepuje.
Innymi stowy, graniczny (gdyz rozpatrywany w granicy duzych n) rozkltad
zmiennej losowej In(S;/5;) wzgledem miary arbitrazowej Q jest niezalezny
od stopy wzrostu p. Upraszcza to znaczaco np. symulacje komputerowa, gdyz nie

22Rozwiniecie pierwszej funkcji wyktadniczej w liczniku do trzeciego wyrazu prowadziloby do

koniecznosci uwzglednienia zbyt duzego rzedu obliczeni, mianowicie (\/E)3
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jest juz konieczne uwzglednianie dryfu. Stanowi takze dogodny punkt wyjscia dla
roznorodnych rozwazan dotyczacych zaréwno dynamiki instrumentu bazowego jak
tez okreslonego na nim instrumentu pochodnego.

Zauwazmy, ze przejscie od miary podstawowej P do arbitrazowej Q bylto moz-
liwe zar6wno dzieki interpretacji zmiennych losowych X;I i X jako liczby krokow,
ktore nie ulegajg przeciez zmianie przy takiej transformacji, jak tez dzigki temu,
ze rozwazania w rozdz. 4.5.1 nie zalezaty od konkretnej postaci miary P. To wy-
godne przejécie jest przykltadem funkcjonowania ogélnego twierdzenia Grisanowa
dotyczacego istnienia miar réwnowaznych (patrz na przyktad, A. Weron, R. Weron:
Inzynieria finansowa. Wycena instrumentow pochodnych. Symulacje komputerowe.
Statystyka rynku, Wydawnictwa Naukowo-Techniczne, Warszawa 1999). W naszym
przypadku wlagnie P i Q to przyktad miar réwnowaznych?3.

Teraz jesteSmy juz przygotowani na dokonanie wyceny, na przyktad, europejskiej
opcji kupna.

4.5.3 Wycena europejskiej opcji kupna

Przypudémy, ze C(t) jest cena europejskiej opcji kupna o terminie wygasniecia (za-
padalnosci) T oraz cenie wykonania K i funkcji wyptaty C(T) = (S — K)t =
max (St — K,0). Wowczas jej warto$é (cena) w chwili poczatkowej, zgodnie z weze-
$niej wyprowadzona formuta wyceny (4.25) w mierze arbitrazowej dowolnego instru-
mentu pochodnego, wynosi:

C(t=0) = E°[exp(—rT)C(T)]
= E¢ {[SO exp (O’ﬁZ - O'2T/2) - Kexp(—rT)r} :
(4.108)
gdzie wykorzystaliémy wyrazenie (4.107) ktadac t = T.

Naszym celem jest wyprowadzenie z powyzszego wyrazenia kluczowej
formuty Blacka-Scholesa.

Wyprowadzenie formuly wyceny opcji Blacka-Scholesa
Nalezy obliczy¢ warto$é oczekiwana dana druga réownoscia w (4.108) - wartosé ta
mozna wyrazi¢ za pomocg nastepujacej caltki:

c0) = So exp (a\/?Z - O'QT/Q) — Kexp (—TT)} exp(—2%/2)dZ,

1
werd
(4.109)

23Dwie miary okreslone na tym samym zbiorze zdarzen elementarnych sg réwnowazne wtedy i tyl-
ko wtedy, gdy nieznikajace prawdopodobienstwo wystapienia jakiegokolwiek zdarzenia w pierwszej
mierze implikuje nieznikajace prawdopodobienstwo wystapienia tego zdarzenia w drugiej mierze i
odwrotnie.

153



gdzie warunek Sr > K jest rownowazny nieréwnosci —Z < d_, przy czym d_ def.

[In (So/K) + (r — 0?/2)T] Jo/T. Wprowadzajac prosta zamiane zmiennej Z' = —Z,
mozna wyrazenie (4.109) sprowadzi¢ do postaci:

C(0) = \/ﬁ - SO exp U\/CFZ’ — 02T/2) — Kexp (—TT)} exp (—Z/2/2) az'

— \/%_W doo So exp <— (Z' +0ﬁ)2/2> dz'
_ KGXP%Q(;TT) /_‘; exp (—27/2) dZ

— \/ﬂ * _exp (—Z"2/2) dZ" — K exp (—rT) ®(d_)
= S @ (d+) — Kexp (—rT) ®(d-), (4.110)

2
gdzie tozsamosé —oVTZ' — o?T /2 — Z%/2 = — (Z’ + a\/T) /2 zostata wykorzy-
stana w calce stojacej w drugim wierszu, natomiast w pierwszej calce w wierszu
czwartym dokonano kolejnej zamiany zmiennej: 2 7y o T T ponadto, wprowa-

dzono definicje dy L [In (So/K) + (r + 02/2)T] Jo/T oraz przez ®(d) oznaczono
dystrybuante standaryzowanego rozktadu Gaussa N(0, 1) zalezna od argumentu d.
Jest to stynna formuta wyceny opcji Blacka-Scholesa, czyli formuta okreslajaca jej
cene w chwili poczatkowej t = 0. Teraz naszym celem jest uogodlnienie tej
formuly na dowolng chwile 0 <t < T.

Uogdlnienie formuly Blacka-Scholesa

Wyprowadzenie uogélnionej formuty BS bazuje na ogblniejszej postaci wzoru (4.107):

2
Sy = Sp exp <<’I“ — %) t+ aBt> : (4.111)

gdzie B;(= \/tZ) jest ruchem Browna?! (procesem Wienera), bedacego rozwiazaniem
stochastycznego réwnania roézniczkowego:

1
d1n(S,/Sy) = odB, + (7" - 502) dt, (4.112)
gdzie pierwszy sktadnik opisuje losowosé procesu a drugi jego dryf; tutaj dB; jest

tzw. rézniczka stochastyczna (posiadajaca inne wlasnosci niz zwykta rézniczka zu-
petna?).

24Zmienna losowa B; podlega (warunkowemu) rozktadowi normalnemu N (0, ).

25Réwnanie (4.112) wprowadza nas w $wiat stochastycznych réwnan rézniczkowych - dziedziny
matematyki o ogromnym znaczeniu dla zastosowan, m.in. wlasnie w analizie finansowej (patrz na
przyktad, A. Weron, R. Weron: Inzynieria finansowa. Wycena instrumentdéw pochodnych. Symula-
cje komputerowe. Statystyka rynku, Wydawnictwa Naukowo-Techniczne, Warszwwa 1999).
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Wyprowadzenie uogélnionej formuty BS ma charakter dwuetapowy: pierwszy
etap dotyczy dynamiki instrumentu bazowego a drugi wartodci oczekiwanej.

W pierwszym etapie zauwazmy, ze wzor (4.111) mozna zapisaé w réwnowaznej,
niezwykle przydatnej postaci:

Sy =Sy exp (o(By — B) + (r—o?/2)(t' = 1)), 0<t<t'<T,  (4.113)

gdzie dla prostoty (nie zmieniajacej istoty rzeczy) przyjmujemy, ze wyjSciowo ruch
Browna B(t = 0) = 0. Aby sie przekonaé o prawdziwosci powyzszego wyrazenia,
wystarczy podstawi¢ zamiast S; wzoér (4.111)). W dalszym ciagu:

1) wzér (4.113) bedziemy warunkowaé, przyjmujac brownowska zmienna losowa
B; jako ustalona.

2) Co wiecej, wykorzystamy stacjonarnosé przyrostéw ruchu Browna wy-
nikajaca z faktu, ze ruch ten ma miejsce w stanie rownowagi prowadzacej (jak
wiadomo) do jednorodnosci czasu, tzn. do sytuacji w ktérej zachodzi nastepu-
jaca rownosc:

Bt’ - Bt — Bt’—t‘ (4114)

Czyli przyrosty ruchu Browna, By — By, podlegaja, przy ustalonym B;, uwarunko-
wanemu rozktadowi normalnemu N (0, ¢ — t).

Drugi etap jest bardziej zlozony, gdyz wykorzystuje wzory (4.108), (4.113) i
(4.114).

Zgodnie z warunkiem (4.114), mozemy chwile ¢ potraktowaé jako poczatkowa.
Pozwala to na bezposrednie wykorzystanie wzoru (4.108), co daje

Ct) = exp(—r(T —1t)) x
< 1[5, exp (oBr-+ o /2)(T 1) ~ K]}
= % /ST>K [St exp (Ux/T —tZ—(T—-1) 02/2) — Kexp(—r(T — t))}
x exp(—2Z%/2)dZ,
(4.115)

gdzie przyjeliSmy chwile ¢ jako poczatek liczenia czasu oraz potozylismy t' = T'; tak
jak dla wyceny opcji, zmienna Z jest standaryzowana zmienng gaussowska (czy-
li podlegajaca rozktadowi normalnemu N(0,1)). Jak wida¢, ostatnie wyrazenie w
(4.115) jest identyczne z (4.109), jezeli T w tym ostatnim zastapimy przez T —t, Sy
przez Sy a C(0) przez C(t) (prosze pamietaé, ze By a wiec 1 S; sa ustalone). Zatem,
przeprowadzajac rachunek identyczny jak w (4.110) otrzymujemy:

O(t) = S, d(ds) — K exp (—r(T — t)) &(d_), (4.116)
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co stanowi poszukiwang, uogélniong formute BS; tutaj
de S [In(S,/K) + (r £ 0/2)(T — )| JoV'T —t, (4.117)

stanowi uogélnienie wezes$niej uzytych analogicznych wyrazen (patrz opis wzoréw
(4.109) i (4.110)) o takich samych oznaczeniach.

Zauwazmy, ze jedna z najwazniejszych konsekwencji wzoru (4.115) dotyczacego
wyceny opcji europejskiej w dowolnej, posredniej chwili 0 < t < T, jest mozliwosé
zapisania go w nastepujacej postaci

ASIC() = EQ (A7 (Sr— K)" | F), 0<t<T, (4.118)

gdzie oczywiscie A7 C(T) = A7 (S — K)T. Wynika to bezposrednio ze stacjonarno-
sci ruchu Browna i pokazuje, ze miara arbitrazowa Q jest jednocze$nie miarg
martyngatowa dla opcji europejskiej.

Uogélniona formuta BS (4.116) pozwala tatwo wyznaczyé liczbe udzialéw na
akcje w portfelu dwuwalorowym dla omawianych przez nas w podrozdz. 4.2 i 4.3
trzech?® kanonicznych strategii inwestycyjnych:

_aC(t)
¢ = a5,

= o(dy), (4.119)

gdzie pochodna czgstkowa jest tutaj pochodng "przestrzenna’?”. Powyzsze wyraze-
nie jest kontynualng w przestrzeni postacia pierwszego wyrazenia we wzorze (4.18)
nadajaca dodatkowy sens dystrybuancie ®(d.).

Przyktadowo obliczymy teraz liczbe udzialow na obligacje, 1, dla portfela dwu-
walorowego inwestujacego wedtug strategii arbitrazowej. Zgodnie z definicjg tej stra-
tegii (patrz podrozdz. 4.2.3 wzor (4.17)) oraz korzystajac ze wzoru (4.116),

Yy =ATH[O(t) — ¢ Sy] = —K exp(—rT) ®(d_), (4.120)

co analogicznie jak poprzednio, nadaje glebszy sens dystrybuancie ®(d_). Wykorzy-
staliSmy tutaj fakt, ze chwilowa cena opcji to nic innego jak chwilowa wartosé¢ port-
fela w ramach strategii arbitrazowej (patrz podrozdz. 4.2.2 i 4.2.3), czego nalezato
sie spodziewac, gdyz jak wida¢ mamy tutaj do czynienia z portfelem replikujacym.

Parytet kupno-sprzedaz

Aby wyznaczy¢ cene opcji sprzedazy (ang. put option), czyli instrumentu finansowe-
go dajacego prawo jego posiadaczowi sprzedazy akcji po cenie umownej K wtedy gdy

26Udziaty na akcje sa we wszystkich tych strategiach identyczne i dane pierwszym wyrazeniem
we wzorze (4.18) - udzialy na obligacje sa do nich odpowiednio dopasowywane.

278cislej rzecz biorac, opcja C(t) powinna byé zapisana w postaci C(S;,t), gdyz jest okreslona
na bazowym instrumencie S;. Tego typu bardziej zlozona notacje wprowadzamy w nastepnych
rozdziatach.
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jej cena jest nie wicksza od tej ceny umownej®® wygodnie jest skorzystaé z parytetu
kupno-sprzedaz (ang. call-put parity).
Parytet ten mozna prosto objasni¢ budujac portfel trojwalorowy sktadajacy sie

e instrumentu bazowego S;,
e opcji sprzedazy P(t) oraz

e sprzedanej opcji kupna C(t) (obie opcje o tej samej cenie umownej K i wspol-
nym terminie wygasniecia 7).

Mozna tatwo sprawdzi¢, ze niezaleznie od ceny bazowego instrumentu w chwili T'
wartos¢ portfela w chwili realizacji kontraktow réwna jest cenie umownej K. Stad
(zdyskontowana), wartosé portfela w chwili ¢ wynosi K exp(—r(T —t)); a zatem

S+ P(t) — C(t) = Kexp(—r(T —t)), (4.121)

co stanowi wlasnie poszukiwany parytet kupno-sprzedaz.
Korzystajac ze wzoru (4.121) otrzymujemy, wzér Blacka-Scholesa na cene opcji
sprzedazy:

P(t) = C(t) = S+ Kexp(—r(T — 1))
= —S(t) (1 - @(dy)) + K exp(—r(T — 1)) (1 — @(d-))
= —SH)P(—dy) + K exp(—r(T — 1))®(—d_), (4.122)

gdzie po drodze skorzystali$émy z warunku normalizacyjnego rozkladu Gaussa ®(—d) =
1 — ®(d+) oraz jego parzystosci.

Ogolnie, mozna powiedzie¢, ze formuly Blacka-Scholesa (a takze Mertona uwzgled-
niajaca dywidende) racjonalizuja decyzje inwestycyjne na gieldzie.

4.5.4 0Od dynamiki stochastycznej do formuly
Blacka-Scholesa

Proces stochastyczny It6

Wyjsciowym elementem modelu Blacka-Scholesa (BS) jest zalozenie méwiace, ze
cena papieru wartosciowego podlega procesowi stochastycznemu Ito czyli spetnia
nastepujace stochastyczne réwnanie rozniczkowe

dY (£) = a(Y (£), £)dt + b(Y (¢), t)dW, (4.123)

28Mozna to zapisa¢ w nastepujacy sposéb: cena opcji sprzedazy P(t) = (St — K)~ def. min(Sy —

K,0) = (K — S7)*.
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gdzie a(Y (t),t) 1 b(Y (t),t) sa wspélezynnikami réwnania zapisanymi w najogélniej-
szej postaci natomiast dWW jest procesem stochastycznym Wienera tzn. zmienna dV
podlega rozktadowi Gaussa

G(dW) =

(dW>2> ; (4.124)

1
V2mo?dt P <_ 202dt

czesto proces [t0 nazywa sie takze procesem Wienera z dryfem lub procesem ruchu
Browna. Korzystajac z (4.124) mozna tatwo sprawdzi¢, ze dla tego procesu

((dW)?) = o%dt, (4.125)

gdzie dyspersja o procesu stochastycznego opisujacego dynamike waloru Y nosi tak-
ze nazwe zmiennosci (ang. volatility). Relacja (4.125) oznacza, ze bez szkody dla jego
dynamiki mozna przyjac, iz typowa zalezno$¢ zmiennej dW od czasu jest pierwiast-
kowa czyli z dobrym przyblizeniem

AW = o Vdt. (4.126)

Alternatywnym punktem widzenia (eksploatowanym? w rozdz. 4.5.3) jest przy-
jecie, ze zmienna dW (a doktaniej rzecz biorac jej znak) jest szumem dychotomicz-
nym, czyli przyjmujacym wartosé¢ + albo — z prawdopodobienistwem 1/2. Zaleznos$¢
(4.126) umorzliwia wyprowadzenie wyjSciowego réwnania modelu BS na infinitezy-
malng zmiane ceny opcji*.

4.5.5 Dynamika infinitezymalnej zmiany ceny opcji

Mozemy teraz wyprowadzi¢ wzoér na rézniczke zupelna ceny opcji wykorzystujac
rozwiniecie w szereg Taylora ceny opcji C(Y (t) + dY (), t + dt),

dC(Y(t),t) = C(Y(t) +dY (t),t + dt) — C(Y(t),t)

0000 000Dy LECO DL
~ ac(git)’t) dt + aca(gég’t) dY (t) + %UQ[b(Y(t), t)]2—32§£§/i£§;;t)dt,
(4.127)

29W rozdz. 4.5.3 uzywaliémy zmiennej losowej dB;, ktéra nalezy poréwnywaé z przeskalowang
zmienng losowg dW/o. Inne podobienstwa obu réwnan dynamiki stochastycznej (4.123) i (4.112)
zostang wskazane w rozdz. 4.5.6.

30Zaleznosé (4.126) stanowi zasadnicze (mocne) zalozenie przedstawionego ponizej w rozdz. 4.5.5
lematu Ito.
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gdzie przy uzyskaniu ostatniej réwnosci ograniczyliémy sie jedynie do wyrazow linio-
wych3! w dt korzystajac z réwnan (4.123) i (4.126); ta ostatnia réwnos$¢ jest wlasnie
trescia lematu It6. Rownanie (4.127) stanowi wyjsciowy etap, konieczny do przepro-
wadzenia analizy portfela pozbawionego ryzyka; dzigki tej analizie m.in. pozbedziemy
sie wyrazu proporcjonalnego do dY (t) wnoszacego ryzyko (ze wzgledu na mozliwosé
zmiany znaku).

4.5.6 Portfel pozbawiony ryzyka - r6wnanie Blacka-Scholesa

Rozwazmy zatem portfel ®(Y'(¢),t) (a doktadniej wartosé portfela w przeliczeniu na
jedna opcje) zawierajacy pewna liczbe (czyli udziat) h papieréw wartosciowych Y (t)
i opcje C(Y(t),t) na ten papier

(Y (t),t)=—h(Y(t),)Y(t)+ C(Y(t),t) =
= dO(Y(t),t) = —h(Y(t),t)dY (t) + dC(Y (¢),t), (4.128)

przy czym powyzsza sekwencja znakow oznacza popularny sposob obrotu walorami
polegajacy po prostu na pozyczeniu (lewarowaniu) waloréw bazowych przez inwe-
stora (wtedy h > 0) i zwrocie ich w dogodnym terminie3? ¢ > T'. Nie jest to jedyny
sposob konstrukeji portfela. Rownie dobrze inwestor mégtby zakupi¢ h udziatéw in-
strumentu bazowego a zaciagna¢ kredyt na zakup opcji; wéwezas w réwnaniu (4.128)
mielibySmy do czynienia z odwrotnymi znakami.

Oznaczenie d' (wystepujace w drugiej réwnosci (4.128)) wyraza zmiane wartosci
portfela w przedziale czasu dt przy ustalonej liczbie udzialéw, czyli nie jest rézniczka
zupelna. Jest to sposob traktowania udzialéw analogiczny do tego jaki ma miejsce
w modelu dwumianowym (patrz ponizej rys. 4.12 oraz rozdz. 4.2 rys. 4.3).

Kostrukcja portfela dana pierwszym réwnaniem w (4.128) oznacza, ze nie pono-
simy zadnych kosztéw transakcyjnych (a w tym oplaty wstepnej obciazajacej port-
fel) oraz nie uzyskujemy zadnych dywidend (zwiekszajacych warto$é portfela) przed
uplywem terminu waznosci opcji.

bLaczac rownania (4.127) i (4.128) otrzymujemy réwnanie na zmiane wartosci
portfela

: oC(Y(t),1) (
do(Y(t),t) = T dt + oY (
2
2%@))6&. (4.129)

—R(Y (1), )| dY (1)

+ oY (),0)

31Do wyeliminowania skladnika propocjonalnego do dY wystarczyloby zalozenie o monotonicznej
zaleznosci |[dW| od dt.

32Inwestor moze takze zastosowaé np. krotka sprzedaz (ang. short sale), ktéra polega na pozy-
czeniu okreslonej puli A instrumentéw pierwotnych, a nastepnie ich sprzedazy w dogodnej sytuacji
rynkowej (np. wlasnie w chwili realizacji opcji) i ponownym ich zakupie w tej samej wyjsciowej
liczbie w jakiejs chwili ¢ > T, gdy straca na wartosci. Ostatecznie, inwestor zwraca pelna pule
zarabiajac na niej dodatkowo. Oczywiscie, tego typu aktywnosé nie jest juz opisywana modelem
BS.
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Rysunek 4.12: Zaleznosé¢ udziatu h od czasu t analogiczna do tej jaka ma miejsce w
modelu dwumianowym (patrz rozdz. 4.2) Przerywana linia pokazuje schematycznie
schodkowg trajektorie dynamiki udziatu. Czarne punkty oznaczaja wartosci h dane
réwnaniem (4.130).

Zauwazmy, ze portfel pozbawiony ryzyka oznacza znikanie losowej przy-
czyny (skladowej) powodujacej losowe zmalenie wartosci portfela (znika-
nie losowej niepewnosci). Mozna to zagwarantowaé przyjmujac, ze w powyzszym
réwnaniu sktadnik proporcjonalny do dY(t) znika. Wynika stad, ze udzial waloru
bazowego w portfelu wyraza sie wzorem analogicznym do (4.119) (podanym w rozdz.
4.5.3),

oC(Y (1))

h(Y (t),t) = v (4.130)
h(Y(t),t) jest takze nazywany wspolczynnikiem zabezpieczenia portfela pozbawio-
nego ryzyka (ang. riskless hadge ratio, zwany réwniez wspoOtczynnikiem delta, §),
mogacym przyjmowaé zaréwno wartosci dodatnie (dla posiadacza opcji kupna) jak
i ujemne (dla wystawcy opcji kupna) o czym powiemy doktadniej w dalszej czesci.
Stad réwnania (4.128) oraz (4.129) przyjmuja postacie:

aC (Y (t),t) 1 26%7@%w,wdt
— v

dt + =a*[b(Y (t),1)] VEOIE

IOV (1),1) = ——, :

(4.131)
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oraz

B(Y (1),1) = _8(}5}};8,75)}/@) O (D)) =
= do(Y(t),t) = —%dy(w +dC(Y(t),1). (4.132)

Podkreslamy, ze zaleznos¢ ceny waloru Y (t) oraz ceny opcji C(Y (t),t) od czasu ozna-
cza, ze model BS dopuszcza obrét walorem Y (t) w sposéb ciagly przez uczestnikow
rynku finansowego.

W dalszym ciagu przyjmiemy wzmacniajace zalozenie, ze wolna od ryzyka krot-
koterminowa stopa procentowa lub inaczej moéwigc stopa zwrotu z portfela pozba-
wionego ryzyka na jednostke czasu r (np. miesieczna stopa zwrotu) jest stata®

1d(Y(t),1)

it SV (0).1) (4.133)

Wynika to z faktu, ze w modelu BS nie istnieje arbitraz a wiec nie ma mozliwosci
na uzyskiwanie dochodéw pozbawionych ryzyka innych niz tylko takie jakie uzysku-
je sie na pozagieldowych instrumentach finansowych pozbawionych ryzyka®* np. na
réznego rodzaju lokatach bankowych (tutaj o stalym oprocentowaniu) lub gwaran-
towanych papierach dtuznych (np. obligacjach).

Podstawiajac przyrost wartosci portfela d'®(Y (t),t) wyznaczony z powyzszego
réwnania do réwnania (4.131) otrzymujemy poszukiwane réwnanie na ewolucje ceny
opcji w postaci

oC (Y (t),1t) oC(Y(t),t) 1

rC(Y(t),t) = — T rY(t)T(t) + 5cr2[l)()/(zf), t)]

,PC(Y(1),1)
(Y (1))?
(4.134)

Jak widaé¢, w réwnaniu tym brak jest wyrazéw zawierajacych wspotezynnik a(Y'(t),t)
co jest bezposrednim wnioskiem z zatozenia o braku ryzyka (patrz rownanie (4.129)).

W modelu BS zaklada sie, ze dynamike instrumentu bazowego (papieru warto-
Sciowego) opisuje proces stochastyczny zwany geometrycznym (lub logarytmicznym)
ruchem Browna tzn. przyjmuje sie, ze®

a(Y(t),t) = pY(?),
BY(),t) = Y(t), (4.135)

33W przypadku, gdy od akcji wyplacana jest dywidenda d stopa zwrotu powinna byé o nig
pomniejszona, bowiem w przeciwnym razie pojawita by sie okazja do arbitrazu; innymi stowy, w
réwnaniu (4.133) i odpowiednio dalej zamiast r nalezy wtedy podstawié¢ ' =r — d.

34Qczywiécie, mozna sprawdzié¢ co by bylto gdyby prawa strona réwnania (4.133) byta wigksza
od r. Jednak, takiego zwiekszonego zysku nie da sie na ”dluzszg mete” zagwarantowac.

35Przyjmujac, ze parametr u = r — 02 /2, zmienne losowe Y (t) = S; oraz dW = odB; a wspol-
czynniki a, b czynia zado$¢ warunkom (4.135) uzyskujemy réwnowazno$é réwnan dynamiki sto-
chastycznej (4.112) i (4.123).

161



gdzie niezalezny od czasu parametr u jest zyskiem z tego waloru na jednostke czasu
czyli tzw. stopa wzrostu (ang. growth rate) nazywana takze dryfem (ang. drift) pro-
cesu stochastycznego ceny walory Y (¢). Podstawiajac drugie réwnanie (4.135) do
(4.134) otrzymujemy ostatecznie poszukiwane liniowe (przyblizone) réwnanie r6z-
niczkowe czgstkowe drugiego rzedu o zmiennych wspétczynnikach na wycene opcji
Blacka-Scholesa na rynku idealnym czyli pozbawionym mozliwosci arbitrazu i efek-
tywnym (tzn. takim gdzie wszyscy uczestnicy maja jednakowy dostep do informacji)
a ponadto, nieopodatkowanym, pozbawionym dywident i kosztéw transakcyjnych:

rC(Y(t),t) = % + 7Y (t)

aC(Y (1), 1)

1 , 2C(Y (t),1)
dY (t) 2

oY (1)
(4.136)

o[V (t)]

przy czym (na mocy (4.123) i (4.135)) powyzsze réwnanie dopuszcza jedynie
rozwigzania dla Y (¢) > 0.

Naszym celem jest znalezienie rozwigzan tego rownania dla réznych warunkdéw
brzegowych w kazdej chwili czasu t < T'. OczywiScie, rozwigzanie typu at-the-money,
czyli tozsamo$ciowo rowne zeru, jest trywialnym rozwiazaniem réwnania BS.

Zauwazmy, ze powyzsze rOwnanie posiada symetrie z ktorej wynika, ze jezeli
funkcja C(Y (t),t) jest rozwiazaniem réwnania (4.136) to takze funkcja ”stowarzy-
szona” —C(Y(t),t) jest jego rozwiazaniem. Na przyktad, jezeli C(Y (t),t) jest cena
opcji (potencjalnym dochodem) posiadacza opcji kupna, to przy odpowiednich wa-
runkach brzegowych —C'(Y'(¢),t) jest cena opcji (strata) dla wystawcy opcji kupna.
Rozwiazania te, a takze dotyczace opcji sprzedazy, omawiamy w dalszej czesci.

Rozwiazanie rownania BS umozliwia badanie dynamiki cen np.:

e r6znych kontraktéw terminowych - oprocz opcji europejskich takze amerykan-
skie, a w tym zaréwno typu kupna jak i sprzedazy (odpowiednio dla posiadacza
i wystawcy opcji); ponadto,

e rozwigzanie to stanowi podstawe bardziej ztozonych formut opisujacych opcje,
ktérych wycena jest zalezna od ich historii takie jak np. opcje barierowe (sa
to szczegdlnie popularne opcje egzotyczne) zalezne od wielkosci bariery, jaka
na swojej drodze napotyka btadzacy instrument bazowy.

Innymi stowy, interesujacym jest nie tylko posiadanie formut okreslajacych ce-
ne pochodnego instrumentu finansowego w dwoch charakterystycznych chwilach:
C(Y(t=0),t=0)oraz C(Y(t=T),t =T), ale takze znajomos¢ jego ceny w chwi-
lach posrednich, tzn. interesujacym dla inwestora jest znajomo$¢ pelnej dynamiki
danego instrumentu finansowego; pozwala to na znaczne zwiekszenie ptynnosci tego
instrumentu.
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4.5.7 Portfel pozbawiony ryzyka w modelu BS
z punktu widzenia modelu dwumianowego

Niezbedne wyrazenie modelu BS na udzialy (4.130) uzyskane poprzez réwnanie
(4.129) i zalozenie o istnieniu portfela pozbawionego ryzyka mozna otrzymaé bez-
posrednio w oparciu o model dwumianowy (patrz rozdz. 4.2).

Na rys. 4.13 przedstawiono pojedynczy krok czasowy w modelu (podejéciu) dwu-
mianowym. Zaktadamy, ze w przedziale czasu At jego wartosé moze wzrosnaé od
wyjsciowej wielko$ci @ do @, lub zmale¢ do ®_, gdzie zaleznosé h od czasu jest da-
na linig schodkowa przyktadowo przedstawiona na rys. 4.12. Warunek braku ryzyka

 Tesetionit] oo s

O SR RS e iz B e e o

Rysunek 4.13: Pojedynczy krok czasowy At w modelu dwumianowym; warunek
braku ryzyka inwestycyjnego prowadzi bezposrednio do wzoru ujetego w ramke.

oznacza niewrazliwo$¢ portfela na tego typu zmiany tzn. musi zachodzi¢ réwnosé
zamieszczona w ramce na tym rysunku skad po prostym przeksztatceniu i przejsciu
At — §t otrzymujemy warunek (4.130). Podkreslmy, ze nie wolno myli¢ zmiany war-
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tosci portfela d'®, ktora zwigzana jest z uptywem czasu dt przy ustalonych udziatach,
ze zmiang ¢, — ®_ ktéra oznacza roéznice pomiedzy dwiema réznymi mozliwymi
wartosciami portfela w ustalonej chwili, takze przy ustalonych udziatach. Bowiem,
pierwsza réznica dana jest réwnaniem (4.133) a druga po prostu znika.

W dalszej czedci przeprowadzimy analize wrazliwosci modelu BS w oparciu o
znajomosé jego rozwigzania.

4.5.8 Roéwnanie BS jako formalne réwnanie dyfuzji Ficka
lub przewodnictwa cieplnego Fouriera

W niniejszym rozdziale wykazujemy istnienie takich zmiennych, w ktoérych rownanie
(4.136) przechodzi w réwnanie dyfuzji Ficka lub przewodnictwa cieplnego (réwnanie
Fouriera) o jednostkowym wspélezynniku dyfuzji lub przewodnictwa temperaturo-
wego. W tym celu cene opcji C(Y (t),t) potraktujemy jako wynik zdyskontowania
pewnej nowej funkcji y(x,t’) mianowicie,

C(Y(t),t)=exp(r(t—T)) y(x,t), (4.137)

gdzie zmienna " przestrzenna’

z < % <7" - %&) [ln (%) - (7" - %&) (t — T)]

- (e )u(79). a3

przy czym zmienna czasowa
2 1 2
T - (r - 502) (t—1T). (4.139)

a stad, w nowych zmiennych

Y(z,t') = K exp <(x — ) (% (r— 02/2))1> . (4.140)

Naszym zadaniem jest wykazanie, ze funkcja y(z,t') jest (formalnie rzecz biorac)
koncentracja lub polem temperatury spetniajacym, odpowiednio, réwnanie Ficka lub
Fouriera.

Wyznaczymy wszystkie pochodne wystepujace w réwnaniu (4.136) wykorzystu-
jac podstawienie (4.137). Zatem, jako pierwsza obliczmy

Byl t) oyl 1)
ox ot! ’
(4.141)

%—? = rC(Y,t) — 2 <7“ — lU2>Qexp(7’(t —-T)) l

o? 2
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przy czym po drodze skorzystaliémy z prostych zaleznosci

Oy(z(t), ') _ Oy(a(t),t) dx(t’) & Oy(a(t),t)dl’
ot T ox(t)  dt YT @ (4.142)

oraz

dz(t) _ dt' _ _L%)Q (4.143)
dt dt < ‘

Nastepnie przeksztatcamy pierwsza pochodng ”przestrzenna” do postaci

oy(x,t)

oC 12 1,
— = —=—|r—= t—T 4.144
Y Yo (r 27 )eXp(r( "o (4.144)
gdzie skorzystalismy ze wzoru (na pochodna superponowana)
/ / / / /
Y oz (t") ay
przy czym
dx(t") 1 r— "—22
- ) 4.146
avy Yt % ( )
Stad, otrzymujemy wyrazenie na druga pochodng przestrzenna postaci
’Cc 0 [(oCcY(h),t)
oy2 oY (1) oY (t)
12 1, Oy(x,t') 2 < 1 2> Py(x,t)
= y352 (r 50 )exp(r(t T)) l e + S \r—3° 52 :
(4.147)

Podstawiajac tak wyznaczone pochodne do réwnania (4.136) otrzymujemy posrednie
wyrazenie

rC = rC — % (r — 302) exp(r(t — T))ay(ai; )
- % <7" — %O’Q> exp(r(t — T))%
2 1 2 8y(w,t’)
+ "3 (r — 50 > exp(r(t —1T1)) o
— (r — 302) exp(r(t — T))ay(ai’t )
o 2 (r— 1) exploa - TULL), (4.148)
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ktére, po (natychmiastowym) uproszczeniu wyrazen znajdujacych sie w wierszu dru-
gim, trzecim i czwartym, daje poszukiwane rownanie Ficka lub Fouriera odpowiednio
na koncentracje lub na pole temperatury y(z,t’) postaci

oy(x,t')  Py(x,t)
o 0x2

(4.149)

Réwnanie (4.149) otwiera dodatkowe mozliwosci przed modelem BS np. interpreta-
cyjne w jezyku termodynamiki nieréwnowagowej (termodynamiki przeptywow).

4.5.9 Formuta wyceny opcji kupna Blacka-Scholesa

Aby rozwiazaé réwnanie (4.136) nalezy przyja¢ odpowiednie warunki brzegowe (a
wiec umozliwiajace znalezienie rozwiazania). W tym celu bedziemy w dalszym ciagu
przyktadowo zajmowaé sie opcja kupna czyli wycena opcji dla nabywcy kontraktu
czyli dla tzw. strategii dlugiej (zwanej tez pozycja dluga, ang. long call), dla ktorej
wspomniane warunki moga mie¢ np. nastepujaca prosta postac:

COY(t=T)t=T)=maz{Y(t=T) - K,0} (4.150)
(Y () =0,t) = 0. (4.151)

Pierwszy warunek mowi, ze opcja jest warta tyle ile wynosi zysk na papierze na
ktory opiewa natomiast drugi warunek stwierdza, ze oczywiscie nic nie jest war-
ta opcja na papier bezwartosciowy. Dodatkowo wprowadza sie do$¢ oczywiste za-
strzezenie, ze wspOtczynnik zabezpieczenia portfela przed ryzykiem h(Y (t),t) =
0C(Y (t),t)/0Y (t) musi by¢ skonczony.

W niniejszej czesci po prostu sprawdzamy, ze ponizsza formuta Blacka-Scholesa
(BS) na opcje kupna

CY(t),t) = Y(H)®(d,) — K'(£)D(d_), (4.152)

gdzie K'(t) = K exp(—r(T —t)) oznacza zdyskontowana cene wykonania opcji, jest
rozwigzaniem réwnania (4.136) spelniajacym wspomniane powyzej warunki brzego-
we, przy czym P(z) jest dystrybuanta rozktadu normalnego N(0, 1) oraz

In (XQ) 4 (r+£ )N (T -t In (X8 4 (T —¢
dy = (5) + =5 ) _ (i) = 5 ) (4.153)

oVvT —t oVvT —t

Zauwazmy, ze rozwiazanie (4.152) posiada dla Y (t) > K'(t) i dowolnego czasu
0 <t < T asymptote ukosng w zmiennej Y dang wzorem

Coasymp(Y (£), 1) =Y (t) — K'(t), (4.154)



ktéra znika w punkcie Y (t) = K'(t); dla Y < K’ mamy do czynienia z odcinkiem
pokrywajacym sie z osig Y.

Na rysunkach 4.17, 4.18, 4.19, 4.20 i 4.21 sa to linie zaznaczone na niebiesko -
obie te linie mozna wyrazi¢ za pomocg jednego wzoru,

Conaa (Y (£),8) = maz[Y () — K'(1), 0]; (4.155)

stanowiacego odniesienie dla rozwiazania (4.152); np. dla t = T (czyli w chwili
zamykania kontraktu) oba wyrazenia (4.152) i (4.154) pokrywaja sie jak nalezy,
co jest konsekwencja przyjetego warunku brzegowego (4.150) (z tego powodu linia
czerwona na rys. 4.17 nie jest niestety widoczna).

Nalezy podkreslié, ze formuta (4.152) odpowiada na dwa kluczowe pytania
przed jakimi staje inwestor a mianowicie:

(1) na jaka cene opcji (premie, oplate wstepna) zgodzié¢ sie w chwili za-
wierania kontraktu na akcje znajac jej cene oraz akceptujac cene (umowna)
po jakiej kontrakt bedzie zrealizowany w Scisle okreslonym terminie wygasnie-
cia opcji,

(2) jaka jest cena opcji dla czaséw posrednich 0 < t < T'; znajomo$¢ od-
powiedzi na to pytanie pozwala inwestorowi podejmowacé racjonalne decyzje
dotyczace obrotu opcjami, tzn. dotyczace ewentualnej sprzedazy lub dokupie-
nia opcji.

W $wietle rozwiazania (4.152) rodzi sie pytanie o jego zgodnoéé z paradygma-
tem gieldy, czyli z zasadg braku arbitrazu na gieldzie; czy nie jest ona w
tym przypadku naruszona? Aby zrozumiec, ze zasada ta nie jest tutaj naruszo-
na przeanalizujmy schematyczny rys. 4.14. Wyraznie widoczne jest tam btadzenie
(jest to geometryczny ruch Browna) instrumentu bazowego Y w ptaszezyznie (Y, t)
(niebieska, poplatana linia). Wlasnie fakt, ze jest to bladzenie oznacza, ze nie umie-
my poda¢ z cata pewnoscia wartosci instrumentu bazowego w chwili ¢. Ten losowy
charakter trajektorii Y'(¢) a stad C(Y(¢),t) (czerwona wijaca sie linia) zabezpiecza
formute Blacka-Scholesa (4.152) przed naruszeniem zasady braku arbitrazu.

Na rysunkach 4.15 i 4.16 przedstawiono tréjwymiarowe wykresy zaleznosci ceny
opcji C od ceny waloru bazowego Y i od czasu t danej formuta BS dla przyktadowo
wybranych parametréw: ceny umownej K = 4 [j.u.], terminu realizacji opcji T =
10 [mies.] 1 pozagietdowej stopy zwrotu r = 0.1 [1/mies.] oraz dwoch znacznie
roznigcych sie od siebie wartosci zmiennosci, odpowiednio o = 0.051 0 = 0.2. Takie
wykresy pozwalaja na analize ceny opcji C(Y(t),t) dla dowolnej trajektorii Y (%)
w plaszezyznie (Y t), na przyklad dla konkretnej realizacji geometrycznego ruchu
Browna (patrz rys. 4.14).

Ponadto, na dwuwymiarowych wykresach na rysunkach 4.17, 4.18, 4.19, 4.20,
4.21, 4.22 i 4.23 zamieszczono wybrane przekroje powyzszych trojwymiarowych wy-
kreséw w ptaszcezyznach (C, Y) i (C, t).
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Rysunek 4.14: Tréjwymiarowy, schematyczny wykres powierzchni C(Y,t) opisujacej
cene opcji kupna w zaleznosci od ceny podstawowego instrumentu finansowego Y
oraz czasu t. Dodatkowo, na plaszczyZnie (Y,t) zaznaczono przyktadowa realizacje
geometrycznego ruchu Browna waloru bazowego Y (ciagta linia niebieska) a na po-
wierzchni C(Y,t) jego obraz (ciagta linia czerwona). Jak widaé, dopiero na tego typu
wykresie mozliwe jest przedstawienie petnej dynamiki ceny opcji.

Poréwnujac odpowiednio ze sobg wykresy dla obu warto$ci zmiennosci widac,
ze wzrost zmiennoéci prowadzi do wzrostu odstepstw przewidywan formuty BS od-
powiednio od osi poziomej i asymptotyki ukosnej (niebieskie linie na dwuwymiaro-
wych wykresach). Innymi stowy, w miare wzrostu zmiennosci wzrasta rola formuty
BS, ktoéra pozwala doktadnie okresli¢c wptyw elementu losowego na cene opcji az do
chwili jej realizacji. W rozdz. 4.5.10 kontynuujemy ten watek przedstawiajac zalez-
nos$¢ wskaznika greckiego lambda (A, nazywa sie go takze wskaznikiem vega, kappa,
epsilon, eta a zdefiniowanego jako pochodna czastkowa ceny opcji po zmiennosci)
od zmiennych Y i t.

Na wspomnianych powyzej rysunkach przedstawiliSmy przewidywanie formuty
BS w zmiennych Y it oraz jej rzuty na plaszezyzne (Y, C) i (¢, C') dla typowych
wartosci parametrow charakteryzujacych formute. Jak widac, rozwiazanie to pozwa-
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Rysunek 4.15: Trojwymiarowy wykres ceny europejskiej opcji kupna C w zaleznosci
od ceny podstawowego instrumentu finansowego Y oraz czasu t (mniejszego od T),
obliczona na podstawie formuty BS (4.152) dla nastepujacych wartosci parametrow
modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiet-
dowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].

la obserwowac cene opcji C' w zaleznosci od ceny Y instrumentu bazowego dla dowol-
nej chwili (np. otwierania i zamykania kontraktu) oraz dla ustalonej ceny umownej
co jest niezbednym elementem zmniejszajacym ryzyko podejmowanych decyzji na
rynku finansowym.

4.5.10 Analiza wrazliwosci modelu Blacka-Scholesa

Waznym elementem analizy modelu BS jest badanie jego wrazliwosci czyli okreslenie
jak cena opcji zmienia sie

e ze zmiane ceny instrumentu bazowego,
e 7 uplywem czasu pozostatego do jej wygasniecia
e ze zmiang parametrow charakteryzujacych cene opcji.

Innymi stowy, poszukujemy odpowiedzi na pytanie dotyczace zmiany ceny opcji w
zaleznosci od zmiany czynnikéw majacych na nig wpltyw.
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Rysunek 4.16: Trojwymiarowy wykres cena opcji kupna C w zaleznosci od ceny
bazowego instrumentu finansowego Y oraz czasu t (krétszego od T), obliczona na
podstawie formuty BS (4.152) dla nastepujacych wartosci parametréw modelu: ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.|, pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.]. Jak wida¢, wykres ten
rozni sie od poprzedniego tylko zwiekszona wartoscia zmiennosci o.

W tym celu wprowadza sie wspélezynnki (zwane takze wskaznikami grecki-
mi), ktére mozna nazwaé¢ podatnosciami lub wrazliwosciamia, ktére (za wyjatkiwm
wskaznika gamma 3¢ (), o czym jest mowa w rozdz. 4.5.10) s po prostu pochod-
nymi czastkowymi rzedu pierwszego ceny opcji wzgledem wspomnianych wielkosci.
Najczesciej uzywanymi wskaznikami, obok wspomnianego juz w rozdz. 4.5.6 wspot-
czynnika zabezpieczenia portfela, h(Y (t),t), sa cztery zdefiniowane nastepujaco:

o wskaznik v(Y'(t), 1) def. %};’t) zwany takze tempem i oznaczany przez g, okre-
Slajacy podatnosé (wrazliwosé) udziatéw (przypadajacych na jedna opcje) na
zmiane ceny waloru bazowego,

o wskaznik A(Y'(¢),t) = def. 6C(Y D swany takze dalej Vega, okreslajacy wrazliwosé
ceny opcji na zmiane zmlennosm,

36Dla oznaczenia niektérych wskaznikéw greckich stosuje sie takze duze litery alfabetu greckiego.
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Rysunek 4.17: Profil wyptaty (ptatno$¢ réwna tutaj cenie) opcji kupna C w zalez-
nosci od ceny podstawowego instrumentu finansowego Y obliczona na podstawie
formuty BS (4.152) dla czasu realizacji opcji t=T oraz nastepujacych wartosci pa-
rametrow modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.],
pozagietdowej stopy zwrotu r=0.1 [1/mies.| oraz zmiennosci o = 0.05[1/v/mies.].
Jak wida¢ rozwiazanie rownania zgadza sie jak trzeba z przyjetym warunkiem brze-
gowym (4.150).

o wskaznik A(Y(t),t) < % (gdzie 7 & T — 1), okreslajacy wrazliwoéé ceny
opcji na uptyw czasu pozostatego do jej wygasniecia,

e wskaznik p(Y(¢),1) def. %, okreslajacy podatnos$é ceny opcji na zmiane
stopy procentowej,

Ponizej omawiamy kazdy ze wspotczynnikéw z osobna.

Warto zwrdci¢ uwage, ze wspotczynniki greckie wraz ze wspdlczynnikiem
zabezpieczenia portfela stanowia jedng z grup definiujacych miare ryzyka
rynkowego, tzw. miare wrazliwosci. Im wieksze sg te wspotczynniki tym wicksze
jest ryzyko jakie niesie ze soba inwestowanie (w danej konkretnej sytuacji).

Wskaznik zabezpieczenia portfela h

Wskaznik zabezpieczenia portfela mozna tatwo wyznaczy¢ ze wzoru BS (4.152) oraz
wspomagajacego go wyrazenia (4.153) a mianowicie,

oC(Y,t d®(d,) od ,dP(d_) od_

1
= P(dy)+ N(0.1:ds) = 5 K'N(0,1;d-) |, (4.156)

1
oI —t
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Rysunek 4.18: Cena europejskiej opcji kupna C w zaleznosci od ceny podstawowego
instrumentu finansowego Y dana formuta BS (4.152) dla czasu t=T/2 (linia czer-
wona; liniami niebieskimi oznaczono odpowiednio asymptote uko$ng oraz obszar Y
pnizej zdyskontowanej ceny umownej K’=2.43) dla wartosci parametréw modelu ta-
kich jak dla rozwigzania przedstawionego na dwdch poprzednich rysunkach: K=4
j.ou.], T=10 [mies.], r=0.1 [1/mies.], ¢ = 0.05 [1/vV'mies.]. Jak widaé, rozwiazanie
réwnania BS (linia czerwona) odbiega w czesci centralnej (czyli w poblizu progu K’)
od swojej asymptoty ukosnej (linia niebieska).

gdyz
d®(dy)
=N(0,1;d
ddi (7 ) :|:)7
ody 1 1

Y  oJT—-tY’ (4.157)
gdzie N(0,1;d4) jest wartoscia standaryzowanego rozktadu Gaussa w punkcie d..
Na rysunkach 4.24 i 4.25 przedstawiono trojwymiarowe wykresy zaleznosci wspot-
czynnika zabezpieczenia portfela h(Y (t),t) (patrz takze rozdz. 4.5.6 wzoér 4.130),
ktory mozna uwazaé za najwazniejszy wspotczynnik wrazliwosci, od ceny waloru ba-
zowego Y i od czasu t dla tych samych warto$ci parametréw, ktore zostaly podane w
rozdz. 4.5.9 (czyli ceny umownej K = 4 [j.u.], terminu realizacji opcji T = 10 [mies.]
i pozagietdowej stopy zwrotu r = 0.1 [1/mies.] oraz dwéch réznych wartosei zmien-
nosci, odpowiednio o = 0.05 i o = 0.2). Takie wykresy (podobnie jak analogiczne
przedstawione w rozdz. 4.5.9) pozwalaja na analize tego wspo6tezynnika dla dowolnej
trajektorii Y (¢) w plaszczyznie (¢, Y), na przyktad dla dowolnie wybranej realizacji
geometrycznego ruchu Browna. Dzieki temu wybor okreslonej strategii zarzadzania
aktywami przez inwestora jest tatwiejszy.

172



Cena opcji C
1 i

0. 8¢
0. 6¢
0. 4;

0. 2;

Cena bazy Y

0.5 1 1.5 2 2.5 3

Rysunek 4.19: Profil opcji kupna C w zaleznosci od ceny bazowego instrumentu fi-
nansowego Y obliczona na podstawie formuty BS (4.152) dla czasu t=0 (czyli dla
chwili zawarcia kontraktu na te opcje) oraz wartosci parametréw modelu takich jak
dla rozwiazania przedstawionego na poprzednim rysunku: K=4 [j.u.], T=10 [mies.],
r=0.1 [1/mies|, o0 = 0.05 [1/v/mies.]. Podobnie jak na rys. 4.18, rozwiagzanie réwna-
nia BS (linia czerwona) odbiega wyraznie w czesci centralnej od swojej asymptoty
uko$nej (linia niebieskia).

Ponadto, na dwuwymiarowych wykresach na rysunkach 4.26, 4.27, 4.17, 4.22
4.28,4.29, 4.30 1 4.31 zamieszczono wybrane przekroje powyzszych tréjwymiarowych
wykreséw w plaszezyznach (h, Y) i (h, t). Poréwnujac ze soba odpowiednio wykresy
dla obu wartosci zmiennosci widaé, ze wzrost zmiennosci prowadzi do zmniejszenia
nachylenia funkcji h w otoczeniu progu K’, czyli do wzrostu odstepstwa od przebiegu
wielkosci majoryzujacej danej ponizszym wzorem (4.158) (niebieskie linie na tych
wykresach; czarna pionowa linia lokalizuje potozenie progu K’).

Na rysunkach 4.32, 4.33 i 4.34 poréwnaliSmy zalezno$é¢ wspodtezynnika zabezpie-
czenia portfela pozbawionego ryzyka h(Y (t),t) od waloru Y (¢) z analogiczna zalez-
nosciag majoryzujacej go uzytecznej wielkosci

B (V (1), £) = 2Cmar (D, 1) { 1, gdy Y(t) > K’

oY (1) 0, gy Y(t) < K, (4.158)
uzyskanym bezposrednio z wyrazenia (4.155). Jak widaé, udziat h(Y'(t), ) jest prze-
dziatami staly z dobrym przyblizeniem dla czasu ¢t ~ T czyli dla najbardziej in-
teresujacej sytuacji. Oprocz tego dla Y > Kexp(—r(T — t)) przyjmuje warto$¢ w
przyblizeniu réwna 1; zakresem Y < Kexp(—r(T — t)) nie musimy sie zajmowaé
gdyz tam rozwiazanie C'(Y (¢),t) znika.
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Rysunek 4.20: Zbiorczy wykres przedstawiajacy cene opcji kupna C w zaleznosci
od ceny podstawowego instrumentu finansowego Y obliczong na podstawie formuty
BS (4.152) dla czterech wybranych chwil t=0.1, 1, 4, 9 oraz nastepujacych wartosci
parametréw modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.],
pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].
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Rysunek 4.21: Zbiorczy wykres ceny opcji kupna C w zaleznosci od ceny podsta-
wowego (bazowego) instrumentu finansowego Y obliczona na podstawie formulty BS
(4.152) dla czterech wybranych chwil t=0.1, 1, 4, 9 oraz nastepujacych wartosci pa-
rametrow modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 |mies.],
pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.22: Profil wyplaty (platnosé) czyli cena opcji kupna C dla jej posiada-
cza w zaleznosci od czasu t, dla czterech wybranych wartosci ceny podstawowego
(bazowego) instrumentu finansowego Y mniejszych od ceny umownej K, obliczona
na podstawie formulty BS (4.152) oraz nastepujacych wartosci parametréw modelu:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05.
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Rysunek 4.23: Profil wyptaty (platnosé) czyli cena opcji kupna C dla jej posiada-
cza w zaleznosci od czasu t, dla czterech wybranych wartosci ceny podstawowego
(bazowego) instrumentu finansowego Y mniejszych od ceny umownej K, obliczona
na podstawie formuty BS (4.152) oraz nastepujacych wartosci parametréw modelu:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2.
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Rysunek 4.24: Trojwymiarowy wykres zalezno$ci wspoétczynnika zabezpieczenia
portfela wolnego od ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y
i czasu t dla wybranych wartosci parametréw: ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagieldowe]j stopy zwrotu r=0.1 [1/mies.] oraz
zmiennosci o = 0.05.
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Rysunek 4.25: Tréjwymiarowy wykres zaleznosci wspotczynnika zabezpieczenia
portfela wolnego od ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y
i czasu t dla wybranych wartosci parametréw: ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.|, pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz
zmiennosci o = 0.2.
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Rysunek 4.26: Wykres zaleznosci wspotezynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y dla czterech wybranych
chwil t=0.1, 1, 4, 9 i dla wybranych wartosci parametréw: ceny umownej K=4 [j.u.],
terminu realizacji opcji T=10 [mies.|, pozagietdowej stopy zwrotu r=0.1 [1/mies.]
oraz zmiennosci o = 0.05 [1/v/mies.].
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Rysunek 4.27: Wykres zaleznosci wspotezynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y dla czterech wybranych
chwil t=0.1, 1, 4, 9 i dla wybranych wartosci parametréw: ceny umownej K=4 [j.u.],
terminu realizacji opcji T=10 [mies.|, pozagieldowej stopy zwrotu r=0.1 [1/mies.]
oraz zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.28: Wykres zaleznosci wspétczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartosci ceny bazowego instrumen-
tu finansowego Y mniejszych od ceny umownej i dla wybranych wartosci parame-
tréw: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 |[mies.], pozagietdowej
stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].
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Rysunek 4.29: Wykres zaleznosci wspotezynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartosci ceny bazowego instrumen-
tu finansowego Y mniejszych od ceny umownej i dla wybranych wartosci parame-
tréw: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagieldowe;
stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.30: Wykres zaleznosci wspotezynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartosci ceny bazowego instrumen-
tu finansowego Y wiekszych od ceny umownej i dla wybranych wartosci parametrow:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.|, pozagietdowe] stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/+v/mies.].
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Rysunek 4.31: Wykres zaleznosci wspétczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartosci ceny bazowego instrumen-
tu finansowego Y wiekszych od ceny umownej i dla wybranych wartosci parametrow:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/'mies.].
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Rysunek 4.32: Porownanie wspétczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=0), t=0) z majoryzujaca go wielkodcia hq. (Y (t = 0),t = 0) w zaleznosci
od ceny bazowego instrumentu finansowego Y (t=0) otrzymane dla takiej parame-
tryzacji jaka zostata przedstawiona w opisie rys. 4.19.

185



Zabezpi eczenie h

1 5 3 A Cena opcji Y

Rysunek 4.33: Porownanie wspétczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=5),t=>5) z majoryzujaca go wielkoscia hyq. (Y (t = 5),t = 5) w zaleznosci
od ceny bazowego instrumentu finansowego Y (t=5) otrzymane dla takiej parame-
tryzacji jaka zostata przedstawiona w opisie rys. 4.18.

Innymi stowy, w miare wzrostu zmiennosci wzrasta rola formuty BS, ktéra po-
zwala doktadniej okresli¢c wpltyw elementu losowego na cene opcji az do chwili jej
wygasniecia (bedzie jeszcze o tym mowa w dalszej czesci przy okazji analizy wskaz-
nika \).

Wskaznik grecki gamma

Wskaznik gamma uzyskuje sie bezposrednio z rézniczkowania wskaznika zabezpie-
czenia portfela (danego wzorem (4.156)) po cenie waloru bazowego

_ On(Y(t),t) ody
1 ' ody
1
+ \/_ N(0,1;d_)
1 od_
+ Vo \/_ "N(0,1;d_ )d_a (4.159)
a stad
VYD) = 4 N 1 T
, T YouT—t T oT —t
1 1

WO’\/T— oI —t

jest to wyrazenie, ktére (dla t < T') daje sie tatwo obliczaé¢ na drodze numeryczne;j.

K'N(0,1;d_) [ L] (4.160)

186



Zabezpi eczenie h

5 A 6 3 Cena opcji Y

Rysunek 4.34: Porownanie wspétczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=T=10), t=T=10) z majoryzujaca go wielkoscia hmq.. (Y (t =T = 10), t =
T = 10) w zaleznosci od ceny bazowego instrumentu finansowego Y (t=T=10) otrzy-
mane dla takiej parametryzacji jaka zostata przedstawiona w opisie rys. 4.17.

Na kolejnych tréjwymiarowych wykresach zamieszczonych na rysunkach 4.35
4.43, 4.44 i 4.45 i 4.36 przedstawiono, dla dwoch przyktadowych wartoéci zmien-
noséci o = 0.05 i 0 = 0.2, wspétezynnik gamma (Y (¢),t) = Oh(Y (t),t)/0Y (t) =
D2C(Y(t),t)/0Y (t)?, czyli wspdlezynnik pozwalajacy okresli¢ tempo zmiany ceny
opcji wzgledem zmiany ceny waloru podstawowego Y lub inaczej zmiane liczby
udzialéw h wzgledem zmiany ceny opcji Y. Takie wykresy (podobnie jak analo-
giczne przedstawione w rozdz. 4.5.9 i w niniejszym rozdziale powyzej) pozwalaja na
analize tego wspétezynnika dla dowolnej trajektorii Y (¢) w plaszczyznie (¢, V), na
przyktad dla dowolnie wybranej realizacji geometrycznego ruchu Browna tzn. uta-
twiaja inwestorowi wybdr okreslonej strategii zarzadzania aktywami. Co wiecej, sze-
rokos¢ potowkowa zaleznosci tego wspotezynnika od ceny waloru bazowego definiuje
zasadniczy obszar zmiennosci wspotcezynnika zabezpieczenia portfela pozbawionego
ryzyka.

Ponadto, na rysunkach 4.37, 4.38, 4.39 i 4.40 zamieszczono wybrane przekroje
powyzszych trojwymiarowych wykresow w ptaszczyznach (v, Y) i (v, t). Poréwnujac
ze sobg odpowiednio wykresy dla obu wartos$ci zmiennosci widac, ze wzrost zmien-
nosci prowadzi do zmniejszenia nachylenia funkcji ¢ w otoczeniu progu K’, czyli do
wzrostu odstepstwa od przebiegu wielkosci majoryzujacej danej ponizszym wzorem
(4.158) (niebieskie linie na tych wykresach; czarna pionowa linia lokalizuje potozenie
progu K').
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Rysunek 4.35: Trojwymiarowy wykres tempa g czyli wskaznika gamma w zalez-
nosci od czasu t i ceny waloru bazowego Y dla wybranych wartosci parametrow:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].
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Rysunek 4.36: Trojwymiarowy wykres tempa g czyli wskaznika gamma w zalez-
nosci od czasu t i ceny waloru bazowego Y dla wybranych wartosci parametrow:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/'mies.].
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Rysunek 4.37: Przekréj tempa g czyli wskaznika gamma w ptaszczyznie (v, t) dla
czterech przyktadowo wybranych cen waloru bazowego Y dla przyktadowo wy-
branych wartodci parametréw: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o =

0.05 [1/v/'mies.].
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Rysunek 4.38: Przekrdj tempa g czyli wskaznika gamma w zaleznosci od czasu
t i ceny waloru bazowego Y dla wybranych wartosci parametrow: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.39: Przekréj tempa g czyli wskaznika gamma w plaszczyznie (v, t) dla
czterech przyktadowo wybranych cen waloru bazowego Y, dla przyktadowo wy-
branych wartodci parametréw: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o =

0.05 [1/v'mies.].
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Rysunek 4.40: Przekr6j tempa g czyli wskaznika gamma w zaleznosci od czasu
t i ceny waloru bazowego Y dla wybranych wartosci parametrow: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].
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Na rysunkach 4.41 i 4.42 zamieszczono wybrane przekroje powyzszych trojwy-
miarowych wykresow w czterech wybranych ptaszczyznach (7, Y) tzn. dla czterech
réznych chwil (patrz legendy tych wykresow).

0015
£
£ o0
2

0.005

0015
£
£ nor

0.005

t=01 T=10 r=0.1 k=4

$=0.05

2

[ &
Cena bazy Y

t=4 T=10 r=0.1 k=4 s=0.05

2

4 B

0015
£
g om

0.005

t=1 T=10 r=0.1 k=4 5=0.05

4 8 |
Cena bazy Y

t=9 T=10 r=0.1 k=4 s=0.05

4 B 8

Cena bazy Y Cena bazy Y

Rysunek 4.41: Wykres zaleznosci wspotezynnika (Y, t) od ceny bazowego instru-
mentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9 i dla wy-
branych wartodci parametréw: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.|, pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o =

0.05 [1/v/'mies.].
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Rysunek 4.42: Wykres zaleznosci wspotezynnika v(Y,¢) od ceny bazowego instru-
mentu finansowego Y i czasu t pozagietdowej stopy zwrotu r=0.1 [1/mies.] oraz

zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.43: Tempo g zmiany wspoétczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y (t = 0),t = 0) w zaleznosci od ceny bazowego instrumentu finansowego

Y (t = 0) otrzymane dla takiej parametryzacji jaka zostata przedstawiona w opisie
rys. 4.19.
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Rysunek 4.44: Tempo g zmiany wspoétczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y (t =T/2 =5),t =T/2 =5) w zaleznosci od ceny bazowego instrumentu
finansowego Y (t = T/2 = 5) otrzymane dla takiej parametryzacji jaka zostata
przedstawiona w opisie rys. 4.18.

Wskaznik grecki lambda

Wskaznik ten, zwany takze wskaznikiem Vega, pozwala analizowaé¢ wrazliwosé (po-
datnosé) ceny opcji na zmiane zmiennosci instrumentu bazowego. Uzyskuje sie go
bezposrednio poprzez rézniczkowanie wzoru (4.152) po zmiennosci o. Zatem,

MY (t),1) = YN(OJ;dH%_K/N(O’Ld)%

1
— YN, 1:d,) (—; dy + VT = t)

- K/N(O,l;d_)<—ld_— T—t),
ag
(4.161)

gdzie po drodze skorzystaliSmy z wyrazenia na pochodna postaci

od 1
= Zd VT — & (4.162)
do o
Wyrazenie to (podobnie jak analogiczne dla wspélezynnikéw h i ) mozna (dla
t < T') tatwo analizowa¢ na drodze numerycznej. Tutaj, podobnie jak dla wszystkich
innych wspotezynnikéw, analiza jest prowadzona, przyktadowo, dla dwéch istotnie

rézniacych sie wartosci zmiennosci: o = 0.05 [1/v/mies.| oraz o = 0.2 [1/v/'mies.].
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Rysunek 4.45: Tempo g zmiany wspoétczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y(t = T = 10),t = T = 10) w zaleznosci od ceny bazowego instrumen-
tu finansowego Y (¢t = T = 10) otrzymane dla takiej parametryzacji jaka zostata
przedstawiona w opisie rys. 4.17.

Na kolejnych tréjwymiarowych wykresach zamieszczonych na rysunkach 4.46
i 4.47 przedstawiono, dla dwoch przyktadowych warto$ci zmiennosci o = 0.05 i
o = 0.2, wspdtezynnik lambda (Vega) pozwalajacy okreslié tempo zmiany ceny opcji
wzgledem zmiannosci waloru podstawowego Y. Takie wykresy (podobnie jak ana-
logiczne przedstawione w rozdz. 4.5.9 i w niniejszym rozdziale powyzej) pozwalaja
na analize tego wspo6tezynnika dla dowolnej trajektorii Y (t) w plaszezyznie (¢, Y),
na przyktad dla dowolnie wybranej realizacji geometrycznego ruchu Browna tzn.
utatwiajg inwestorowi wybor okreslonej strategii zarzadzania aktywami.

Ponadto, na rysunkach 4.48, 4.49 i 4.50 zamieszczono wybrane przekroje powyz-
szych trojwymiarowych wykreséw w plaszczyznach (A, Y) i (A, t). Por6wnujac ze
soba odpowiednio wykresy dla obu wartosci zmiennosci wida¢, ze wzrost zmiennosci
prowadzi do poszerzenia wskaznika zaréwno w funkcji czasu ¢ jak i waloru bazowego

Y.
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Rysunek 4.46: Trojwymiarowy wykres wskaznika Vega (\) w zaleznosci od czasu
t i ceny waloru bazowego Y dla wybranych wartosci parametrow: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].
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Rysunek 4.47: Trojwymiarowy wykres wskaznika Vega (\) w zaleznosci od czasu
t i ceny waloru bazowego Y dla wybranych wartosci parametrow: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].
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Rysunek 4.48: Przekroj wskaznika Vega () w plaszczyznie (A, t) dla czterech przy-
ktadowo wybranych cen waloru bazowego Y=1, 2, 3, 3.9, dla przyktadowo wy-
branych wartoéci parametréw: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagietdowe]j stopy zwrotu r=0.1 [1/mies.] oraz zmiennosci o =

0.05 [1/v/mies.].
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Rysunek 4.49: Przekrdj wskaznika Vega (A) w zaleznosci od czasu t i ceny walo-
ru bazowego Y=1, 2, 3, 3.9, dla wybranych wartosci parametréw: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].

Na rysunkach 4.51 i 4.52 zamieszczono wybrane przekroje powyzszych trojwy-
miarowych wykreséw w czterech wybranych ptaszczyznach (A, V) tzn. dla czterech
réznych chwil (patrz legendy tych wykreséw).

Wskaznik grecki theta

Wskaznik theta (0) uzyskuje sie bezposrednio z jego definicji oraz ze wzoru BS
(4.152),

oY (),t) = Y(t) N(o,1;d+)%i:—K’N(o,1;d)%wf{/@(d)
r+o%/2
o\T
11 Ly
— K'N(0,1;d_) <—§;d+%>
oK d(d), (4.163)

11
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Rysunek 4.50: Przekréj wskaznika Vega (A) w zaleznosci od czasu t i ceny walo-
ru bazowego Y=4, 4.5, 5, 6, dla wybranych wartosci parametréw: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1
[1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].

gdzie po drodze wykorzystano wyrazenie na pochodne postaci

d 11 + 02/2
a_i:___di+r O-/'

4.164
or 271 o\/T (4.164)

Numeryczna analiza wyrazenia (4.163) nie nastrecza (dla ¢t < T') zadnych trudnosci.

Na rysunkach 4.53 i 4.54 przedstawiono wspotezynnik theta w zaleznosci od ceny
podstawowego (bazowego) instrumentu finansowego Y i od czasu t dla dwéch wyraz-
nie réznigcych sie wartosci zmiennosci o = 0.05 [1/v/mies.| oraz o = 0.2 [1/v/mies.].
Zauwazmy, ze dla t — T ma miejsce rozbieznos¢ wspotcezynnika theta. Wynika to z
istnienia osobliwosci we wzorze (4.163) wt =1

Natomiast, na rys. 4.55 przedstawiono tg zaleznos¢ dla czterech przyktadowo
wybranych chwil.
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Rysunek 4.51: Wykres zaleznosci wspotezynnika Vega czyli A(Y,t) od ceny bazo-
wego instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9 dla
wybranych wartosci parametrow: ceny umownej K = 4 [j.u.], terminu realizacji
opcji T' = 10 [mies.], pozagieldowej stopy zwrotu r = 0.1 [1/mies.] oraz zmiennosci

o =0.05 [1/vmies.].

Wskaznik grecki rho
Wskaznik rho (p) uzyskuje sie bezposrednio z jego definicji oraz ze wzoru BS (4.152),
od, od_

r r
1 —
o
(4.165)
gdzie po drodze wykorzystano proste wyrazenie na pochodne
d 1
Ods _ 1 gy (4.166)
or o

Podobnie jak dla pozostatych wskaznikéw, analiza numeryczna wyrazenia (4.165)
nie sprawia zadnych trudnosci.
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Rysunek 4.52: Wykres zaleznosci wspétezynnika Vega (A(Y,t)) od ceny bazowego
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla przy-
ktadowo wybranych wartosci parametréw: ceny umownej K=4 [j.u.], terminu reali-
zacji opcji T=10 [mies.|, pozagietdowej stopy zwrotu r=0.1 [1/mies.| oraz zmiennosci

o =0.2 [1/vmies.].

4.5.11 Formalne wlasnos$ci modelu BS: spelnienie warunku
brzegowego (4.150)

Przypusémy, ze rozpatrujemy opcje w chwili jej wygasniecia t = T a wiec w

chwili najwazniejszej dla jej posiadacza. Rozwazmy dwie rézne sytuacje: najpierw

gdy Y(t = T) > K. Wowczas, di(t = T) = d_(t = T) = oo co daje ®(dy) =

O(d_)=1iwefekcie C(Y(t=T),t=T)=Y(t=T) — K, jak by¢ powinno.
Odwrotnie, gdy Y(t =T) < K, wowczas d(t =T) =d_(t =T) = —o0, co daje

O(dy) =P(d-) =01 w efekcie C(Y(t =T),t =T) =0, jak trzeba.

4.5.12 Rozwigzanie réwnania (4.149)

Sprawdzimy teraz, ze wyrazenie (w pierwszym wierszu ponizej)

y(a(t), ) = glat), ') ®(dy) — K&(d-) = exp(r(T — 1)) C(Y (t),t) = C(Y(1), 1),
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Rysunek 4.53: Trojwymiarowa zalezno$é¢ wspotezynnika theta od ceny podstawowego
(bazowego) instrumentu finansowego Y i od czasu t dla ceny umownej K = 4 [j.u.],
terminu realizacji opcji T = 10 [mies.], pozagietdowej stopy zwrotu r = 0.1 [1/mies.]
oraz zmiennosci o = 0.05 [1/v/mies.].

g(x(t"),t) = exp(r(T —1))Y(t), (4.167)

otrzymane z formuty wyceny opcji kupna BS (4.152) oraz podstawienia (4.137),
gdzie na podstawie (4.138) i (4.139) Y'(t) i T — t przybieraja w zmiennych x(t') i ¢/
nastepujaca postaé

Y(x(t'),t') = Kexp | (z(t') = ') (r ;%) :

o? 2
T—t=t @ , (4.168)

jest rozwiazaniem réwnania (4.149), przy czym

L (g)+(r-5)T-t 1
T oI —t —\/§ "’
1

di = d+oVT—t=d +——55 V. (4.169)
g
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Rysunek 4.54: Tr6jwymiarowa zaleznos$¢ wspotczynnika theta od ceny podstawowego
(bazowego) instrumentu finansowego Y i od czasu t dla ceny umownej K = 4 [j.u.],
terminu realizacji opcji 7' = 10 [mies.|, pozagietdowej stopy zwrotu r = 0.1 [1/mies.]
oraz zmiennosci o = 0.2 [1/v/mies.].

W tym celu, przedstawmy najpierw funkcje y(z(t'),t') w postaci jawnie zaleznej
od nowych zmiennych x i t'; podstawiajac pierwsze wyrazenie w (4.169) do (4.167)
otrzymujemy,

y(a(t), ) = gla(t), 1) ®(dy) — KO(d-), (4.170)

gdzie
i)t = Kexp [ L (o) + Tv (4.171)
x =Kexp|— |z — .
y Y p 2p 2p 7
przy czym p def "—22 Funkcja (4.170) stanowi podstawe kolejnych etapéw obliczen.
Wyznaczmy teraz pochodng pierwszego stopnia po zmiennej ¢’
Qy(a(t), t') 2)\* dP(d.) dd

o dd(d) ad
_ P arldy) _ o)
or (do)+ =3 2 [ 9=E). 1) ad_ o

Q

[\
3

Q
[\

? 1 (dy)? 1 =z o2 1

- O(d,) + —— exp [ — _ n -

\)
b
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Rysunek 4.55: Zaleznosé wspélezynnika theta od ceny podstawowego (bazowego)
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.|, pozagietdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.05 [1/v/mies.].

X g(x(t), 1)

1
+ K —exp <—

V2

(d)*y 1 =
2 2\/§ $3/2

gdzie po drodze skorzystaliSmy z zaleznosci

d®(dy)
dd
ad.
ot’
od_
ot

i podobnie po zmiennej x

dy(x,t) o2

= |[5=®(dy) +

ox 2p

1
— X
Vo P < 2

B 1 T n o2 1
V212 22
1 T

_2\/5 #3/2°

d®(d.) dd,
dd,
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Rysunek 4.56: Zaleznosé wspétezynnika theta od ceny podstawowego (bazowego)
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 |[mies.], pozagieldowej stopy
zwrotu r=0.1 [1/mies.] oraz zmiennosci o = 0.2 [1/v/mies.].

(4.174)

oraz pochodna drugiego stopnia po zmiennej x

Folet) _ [<0—2> O(dy) +

Ox? 2p

V2p
- (B \/_p\/_>\/—2_7re><p< ) sttt
+ K\/12_7re><p (_(d2)2> 2\1@755/2
y(x,1')

_ v) 4.1
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Rysunek 4.57: Zalezno$¢ wspotezynnika theta od czasu t dla czterech wybranych
wartosci instrumentu bazowego Y=1, 2, 3, 4, dla ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagietdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmiennosci o = 0.05 [1/v/mies.].

druga réwnoséé otrzymano po uporzadkowaniu wyrazéw w pierwszej (czyli po doda-
niu drugiego wyrazu w pierwszym wierszu do drugiego w drugim) - zauwazmy, ze
drugi wyraz w pierwszym wierszu po prawej stronie powstal z sumy dwéch potowek
tego wyrazu. Przy wyprowadzeniu (4.175) skorzystaliémy z pomocniczych réwnosci

ode 11

dr 2V
R U

Ox V2E 2t

od 11 11 o> o
dy=—= = dy——F—=d_ ———=+— = — + —. 4.176
T or V2V V2VE o 2p 21 2p (176)

W ten sposbb wykazaliSmy wprost co nalezalo, czyli spetnienie réwnania (4.149)
przez funkcje y(z,t').
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Rysunek 4.58: Zalezno$¢ wspotezynnika theta od czasu t dla czterech wybranych
wartosci instrumentu bazowego Y=1, 2, 3, 4, dla ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.|, pozagieldowej stopy zwrotu r=0.1 [1/mies.] oraz

zmiennosci o = 0.2 [1/v/mies.].

4.5.13 Elementy rynku rzeczywistego - wtasnosci opcji kup-
na uwzgledniajagce prowizje

Oplacalnosc opcji kupna. Na rys. 4.59 przedstawiliSmy cene opcji dla dwdch cha-
rakterystycznych chwil: zakupu ¢ = 0 i realizacji t = T (poréwnaj takze wykresy
zamieszczone na rysunkach 4.19, 4.18 1 4.17). Podane na rys. 4.59 oszacowanie na
optacalnosé opcji wynika bezposrednio z poréwnania obu przebiegéw C' w zaleznosci
od Y, ktoére dostarcza racjonalnego warunku na wysoko$é¢ optaty wstepnej. Waru-
nek ten mowi, ze wysoko$é prowizji M powinna by¢ réwna cenie opcji C(Y(0),0)
w chwili zawarcia kontraktu terminowego, gdyz w przypadku nizszej prowizji poja-
wi sie okazja do arbitrazu (zysku bez ryzyka) a na wyzsza nie zgodzi sie inwestor
(uwazajac, ze ryzyko jest za wysokie). Ponadto, oplacalnosé opcji kupna wymaga
aby cena opcji w chwili ¢ = 0 byla mniejsza od ceny opcji w chwli t =T
Zatem,

CY(T),T) = Y(T)— K> C(Y(0),0)=Y(0) - K' = M
= Y(T) > Y(0) + K[1 — exp(—rT)], (4.177)
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Rysunek 4.59: Analiza optacalnosci ceny dla posiadacza opcji kupna poprzez poréw-
nanie zaleznosci jej ceny C od ceny waloru Y dla chwili realizacji opcji t=T i chwili
zawierania kontraktu t=0.

gdzie po drodze skorzystalismy z relacji K’ = K exp(—rT') oraz z warunku (4.150).

Nasze rozwazania dotycza takiego zakresu ceny waloru bazowego w chwili ¢ = 0,
w ktérym cena opcji osiaga juz (z dobrym przyblizeniem) warto$é asymptotyczna
czyli zakres wzglednie duzych zyskéw na opcji (tzn. wzglednie wysokiej ceny opcji)
a takze wzglednie duzej prowizji. Wtasnie dzieki temu prawsg strone powyzszej nie-
rownosci uzyskaliSmy w tak prostej postaci; stad, bezposrednio wynika oszacowanie
optacalnosci opcji i otrzymanie warunku na optacalng cene bazowego instrumentu
finansowego. Mianowicie widaé, ze warunek (4.177) jest réwnowazny nastepujace-
mu, wyrazajacemu sie poprzez stope zwrotu ry na instrumencie bazowym w catym
okresie trwania opcji

Y(T) - ¥(0)

U K1~ exp(—r)), (4.178)

Y(0)
ktéry wykorzystamy ponizej. Nalezy podkresli¢, ze wyrazenie (4.177) (a tym samym

(4.178)) méwi tylko o optacalnej cenie instrumentu bazowego natomiast nie wskazuje
jaka strategia jest bardziej optacalna:
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A) realizacja kontraktu terminowego na opcje kupna czy, po prostu,
B) obrét bazowym instrumentem finansowym.

Podamy teraz warunek na taka progows cene bazowego instrumentu finansowego
Yrog(T') powyzej ktorej oplacalne staje sie wykorzystywanie przez inwestora giel-
dowego strategii A). Mianowicie, oplacalnosé ta ma miejsce wtedy i tylko wtedy
gdy stopa zwrotu r¢ wynikajaca z realizacji kontraktu terminowego jest wicksza od
stopy zwrotu ry na instrumencie bazowym czyli:

Y(T)-K-M Y (T) —Y(0)

rc = Vi >T‘YZW(> 0), (4179)

skad (po prostych przeksztalceniach wykorzystujacych fakt, ze wielkosé prowizji
M =Y (0) — K') otrzymujemy, iz poszukiwana cena

Y(T) > Yirog(T) = exp(rT)Y (0), (4.180)

czyli ma by¢ wieksza od skapitalizowanej ceny instrumentu bazowego w chwili wyga-
$niecia opcji, czego nalezalo si¢ spodziewaé. Zauwazmy, ze dla Y (1) = Y,.04(1) obie
strategie sa jednakowo optacalne. Jak widaé, optacalnosci strategii A) nie niszczy na-
wet pobieranie przez biuro maklerskie prowizji (M dopuszczonej przez oszacowanie
(4.177)).
Dodatkowo zauwazmy, ze warunek (4.180) jest réwnowazny nastepujacemu, sza-
cujagcemu od dotu stope zwrotu z akcji:
Y (T)—Y(0) K-K K-K

Yo Y7 TK T Y0

(4.181)

(gdzie przy wyprowadzaniu ostatniej nieréwnosci skorzystalismy z oczywistego, wspo-
mnianego powyzej warunku istnienia prowizji tzn. C(Y(0),0) = Y(0) — K' = M >
0).

Omawiana powyzej optacalnosé opcji kupna jest jednym z elementéow
rzeczywistego (a nie idealnego) rynku finansowego, gdyz uwzglednia opta-
te wstepng M, ktéra nie jest brana pod uwage w kanonicznym modelu
Blacka-Scholesa. Do dynamiki opcji na rynku rzeczywistym jeszcze powrdcimy na
koncu tego rozdziahu.

Aby zilustrowaé powyzsze rozwazania przedyskutujmy nastepujacy przyktad.

Przyklad

Przypusémy, ze inwestor decyduje sie na zakup jakiej$ akcji, ktérej obecna war-
tos¢é wynosi Y (0) = 100 PLN wierzac, ze w przysztodci, powiedzmy po kwartale
(T = 3mies.), jej wartos¢ wzrosnie do Y (T') = 150 PLN. Przyjmujac wielkosé sto-
py procentowej (czyli zwrotu na instrumentach finansowych pozbawionych ryzyka)
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r w tym okresie réwng 0.1 %/mies.>

(4.180) poszukiwana cene progowa

, inwestor tatwo wyznaczy w oparciu o wzor

Yyrog(T = 3 mies.) = 134.99 PLN. (4.182)

Oczywiscie, gdyby Y (1) = Y,r0q(T) wOwczas obie strategie bylyby jednakowo opta-
calne.

Poréwnamy teraz obie stopy zwroty r¢ i ry korzystajac z (4.179) i przyjmujac,
ze spelniony jest warunek dyskryminujacy (4.180). W zwiazku z tym ustalamy cene
umowna na K = 110 PLN czyli na taka aby M > 0; zatem, z (4.177) otrzymujemy,
ze prowizja M =Y (0) — K exp(—rT) = 18.51 PLN. Ostatecznie,

ro = 1.161 > ry = 0.5. (4.183)

Jak widaé, oplacalnos$é strategii realizacji kontraktu terminowego na
opcje kupna jest w tym przykltadzie ponad dwukrotnie wyzsza od stra-
tegii polegajacej tylko na obrocie bazowym instrumentem finansowym.
Zwrbéémy uwage, ze ryzyko tej bardziej oplacalnej strategii A) jest mniejsze gdyz
w sytuacji niekorzystnej inwestor traci tylko prowizje (w naszym przyktadzie kwote
M = 1851 PLN) podczas gdy w przypadku mniej optacalnej strategii B) inwe-
stor moze straci¢ wszystko czyli kwote Y(0) (w naszym przykladzie jest to kwota
Y (0) = 100 PLN; oczywiscie, ma to miejsce wtedy gdy posiadany instrument fi-
nansowy stracit catkowicie swoja wartosé).

4.5.14 Dochéd posiadacza opcji sprzedazy

Historycznie rzecz biorac, model BS dotyczyl dynamiki europejskiej opcji kupna
czyli opcji “call’ zaréwno dla nabywey, czyli znajdujacego sie w pozycji dtugiej (ang.
‘long call’), jak i wystawcy, czyli znajdujacego sie w pozycji krétkiej (ang. ’'short
call’) - ponizej zastosujemy ten model do opisu dynamiki opcji sprzedazy czyli opcji
‘put’ zaréwno dla nabywcy (pozycja ang. 'long put’) i wystawcy (pozycja ang. 'short
call’).

Metoda parytetu sprzedaz-kupno (ang. 'put-call parity’). Mozna tatwo sprawdzié,
ze cena opcji sprzedazy

C(Y(t),t) = Kexp(—r(T —1t))[1 = ®(d_)] = Y (¢)[1 — P(dy)], (4.184)
spetniajaca warunki brzegowe

CYt=T),t=T) = max{K -Y(t=T),0},
C(Y(t)=0,t) = 0 (4.185)

3"Nalezy przypomnieé, ze stopa procentowa jest ustalana kwartalnie przez Bank Centralny, np.
NBP, czyli jest zwigzana z danym rynkiem finansowym i w tym sensie nie jest swobodnym para-
metrem modelu BS.
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wymagane przez tego typu opcje®®, spetnia réwnanie BS (4.136).
39 Aby sprawdzi¢, ze (4.184) jest rozwiazaniem réwnania BS nalezy po pierwsze
zauwazyc, ze

C(Y(t),t) =Cec(Y(t),t) + Cpc(Y(t),1)), (4.186)
gdzie
Ce(Y(t),t) =Y ()P(dy) — Kexp(—r(T —1t))P(d-)], (4.187)

jest poprzednio omawiang opcjg kupna dla nabywcy a wiec spetniajaca réwnanie
BS, natomiast

CpeY (1),1) = K exp(—r(T — ) — Y (t) (4.188)

jest konieczna korekta takze spetniajaca rownanie BS o czym mozna sie tatwo prze-
kona¢ dokonujac wymaganych w tym réwnaniu rézniczkowan. Zauwazmy, ze

|CpcY (t),8)] = |[Kexp(—r(T — 1)) = Y'(t)] (4.189)

moznaby interpretowaé jako uproszczong opcjag jednoczesnego kupna i sprzedazy dla
jej nabywcy.

Na trzech kolejnych rysunkach 4.60, 4.61 i 4.62 przedstawiliémy charakterystycz-
ne przebiegi ceny opcji sprzedazy dla nabywcy; dla wystawcy sa analogiczne ale z
przeciwnym znakiem.

38Raczej nie kontraktuje sie nieliniowych warunkéw brzegowych.
39Przy pierwszym czytaniu mozna ten akapit opuscié.
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Rysunek 4.60: Dochdéd C posiadacza opcji sprzedazy w zaleznosci od ceny pod-
stawowego instrumentu finansowego Y uzyskana w oparciu o formute (4.184) dla
czasu t=0 (czyli dla chwili posredniej) oraz wartosci parametréw modelu takich jak
dla rozwiazania przedstawionego na dwdch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], o = 0.05 [1/v/mies.]. Podobnie jak na rys. 4.18
rozwigzanie réwnania BS (linia czerwona) odbiega wyraznie w czesci centralnejod
swojej asymptotyki ukosnej (linia niebieska).
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Rysunek 4.61: Dochéd C' posiadacza opcji sprzedazy w zaleznosci od ceny podsta-
wowego instrumentu finansowego Y uzyskana w oparciu o formute (4.184) dla czasu
t=T/2 (czyli dla chwili posredniej) oraz wartoéci parametréw modelu takich jak
dla rozwiazania przedstawionego na dwdch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], o = 0.05 [1/v/mies.]. Podobnie jak na rys. 4.18
rozwigzanie réwnania BS (linia czerwona) odbiega wyraznie w czedci centralnejod
swojej asymptotyki ukosnej (linia niebieska).
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Rysunek 4.62: Dochéd C posiadacza opcji sprzedazy w zaleznosci od ceny pod-
stawowego instrumentu finansowego Y uzyskana w oparciu o formute (4.184) dla
czasu t=T (czyli dla chwili posredniej) oraz wartosci parametréw modelu takich jak
dla rozwiazania przedstawionego na dwdch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], o = 0.05 [1/v/mies.]. Podobnie jak na rys.4.17
rozwigzanie rownania BS (linia czerwona) pokrywa sie ze swoja asymptotyka uko$na
(linia niebieska).
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Cena opcji C

ngbna bazy Y

Rysunek 4.63: Analiza dochodu C(Y (), t) posiadacza opcji sprzedazy w zaleznosci
od ceny podstawowego instrumentu finansowego Y uzyskana w oparciu o formute BS
(4.184) dla czasu t=T/2 (czyli dla chwili posredniej) oraz wartosci parametréw mo-
delu takich jak dla rozwiazania przedstawionego na dwoch poprzednich rysunkach:
K =4 [ju], T =10 [mies.], r = 0.1 [1/mies.], 0 = 0.05 [1/v/mies.]. Cena opcji
(linia czerwona) zostal zdekomponowana na dwie sktadowe: linie zielona opisujaca
sktadowa ceny Cc(Y'(t),t) oraz linie niebieska opisujaca sktadowa Cpo (Y (t),1).
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Rozdziatl 5

Fraktale stochastyczne

Fraktale stochastyczne to obiekty jakie powstaja przez wprowadzenie szumu (czyli
zaburzen statystycznych) do deterministycznych (tradycyjnych) struktur fraktal-
nych takich jak np. fraktale samopodobne lub samopokrewne (inaczej samopowino-
wate). Innymi stowy, fraktale stochastyczne tym sie réznia od deterministycznych,
ze zawieraja element przypadku, ktory moze modyfikowaé¢ dang strukture fraktalng
- modyfikacja ta moze by¢ wieloraka. Otrzymane w ten sposob fraktale stochastycz-
ne naleza, na ogdl, do klas uniwersalnosci réznych od tych do jakich naleza ich
deterministyczne pierwowzory. Oczywiscie, fraktale stochastyczne sq znacznie bliz-
sze obiektom wystepujgcym w przyrodzie, takim jak np. materialy porowate, czy
ogolniej méwiac, uktady perkolujace badz tez obszary rozgraniczenia faz, niz frakta-
le deterministyczne; te ostatnie stanowig raczej wyidealizowany punkt odniesienia,
utatwiajacy rozwazania.

Droga jaka obraliSmy aby przedstawi¢ fraktale stochastyczne sktada sie z dwoch
etapow - najpierw omawiamy fraktale przypadkowe a nastepnie szersza klase, czyli
fraktale statystyczne. Te pierwsze powstaja poprzez prosta, przypadkows modyfika-
cje fraktali deterministycznych (patrz rozdz. 5.2), bez naruszania wymiaru fraktal-
nego deterministycznych "rodzicéw”, w przeciwienstwie do fraktali statystycznych,
ktore w ogdlnosci maja wymiary fraktalne rézne od swoich deterministycznych pier-
wowzoréw (patrz rozdz. 5.3). Podejscie tego typu dostarcza wskazowek pozwalaja-
cych na rozwiazywanie niektorych zagadnien odwrotnych, np. dotyczacych makro-
skopowych statystycznych struktur fraktalnych?.

5.1 Fraktale matematyczne a fraktale fizyczne
Zwykle, mowiac o fraktalach (bez zadnych dodatkowych przymiotnikéw) ma sie na

my$li matematyczne fraktale deterministyczne. Ale fraktale matematyczne w przyro-
dzie nie wystepujg. Rodzi sie zatem pytanie dlaczego fizycy sie nimi zajmuja? Nalezy

1 Zagadnienie odwrotne polega na znalezieniu wymiaru fraktalnego danej statystycznej struktury
fraktalnej, dysponujac jedynie pojedynczym egzemplarzem takiej struktury.
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ono do tej samej kategorii co pytanie o przydatno$¢ rachunku roézniczkowego i cal-
kowego dla fizyki. Przeciez w przyrodzie mamy do czynienia tylko ze skonczonymi
przyrostami a nie z wielko$ciami granicznymi, infinitezymalnie matymi. Na przyktad,
pomiar predkosci jest zawsze tylko pomiarem skonczonego odcinka drogi przebytego
przez dane cialo w skonczonym czasie i nic wiecej. Wystepujace w definicji predkosci
przejscie graniczne jest tylko matematyczng idealizacja - mozliwosé takiej idealiza-
cji wynika z obserwacji co do wystarczajaco regularnego zachownia sie kolejnych
coraz to mniejszych przyrostéw drogi pokonywanych w odpowiednio krotszych od-
cinkach czasu. Mowimy o takiej procedurze, ze jest zbiezna. Pozwala to zatrzmac
nasze pomiary na, sitg rzeczy, skonczonym poziomie ziarnistosci bowiem, nie ma
sensu mierzy¢ predkosci pedzacego samochodu poprzez pomiar milimetrowych od-
cinkéw drogi pokonywanych w milisekundowych przedziatach czasu. Podobnie rzecz
sie¢ ma z obiektami samopodobnymi lub samopokrewnymi, czy mdéwiac ogodlniej z
fraktalami badz multifraktalami. W rzeczywistosci, mozemy mowié¢ zawsze tylko o
skoniczonej liczbie pokolen struktury samopodobnej czy samopokrewnej lub inaczej
o skonczonej liczbie skal czasoprzestrzennych. Innymi stowy, fraktale fizyczne to w
istocie prefraktale czy nawet premultifraktale stochastyczne; pomimo tego, uzywajac
analizy fraktalnej mozemy (z kontrolowana doktadnoscia) przewidzie¢ zachowanie
sie realnego uktadu w wielu interesujacych nas skalach, czyli zachowaniu wieloska-
lowym.

5.2 Fraktale przypadkowe

Ponizej omawiamy dwa rodzaje struktur fraktalnych mianowicie ograniczone, kto-
rych (catkowity) liniowy rozmiar L jest niezalezny od poziomu ziarnistosci (ska-
li) oraz fraktale nieograniczone, ktorych (catkowity) liniowy rozmiar ro$nie w mia-
re przechodzenia do obrazu coraz bardziej gruboziarnistego (coraz wiekszej skali).
Krétko mowiac, fraktale ograniczone to obiekty powstajgce poprzez odpowiednie zde-
fektowanie jednorodnej struktury w glgb, podczas gdy fraktale nieograniczone po-
wstajqg przez odpowiednio zdefektowany wzrost. W niniejszym rozdziale omawiamy
w zasadzie, jako najbardziej przydatne ze wzgledéw pragmatycznych, tylko wymiar
samopodobienstwa oraz wymiar pudetkowy dla obu rodzajow struktur fraktalnych.

5.2.1 Ograniczone fraktale samopodobne

Nasze rozwazania rozpoczynamy od analizy obiektow, ktore powstaty przez wpro-
wadzenie prostszego, przypadkowego zaburzenia do samopodobnych? (determini-
stycznych) struktur fraktalnych.

Na rys.5.1 przedstawiono dwa kolejne pokolenia przypadkowo zdefektowanego
dywanu Sierpinskiego - jego odpowiednikiem w jednym wymiarze jest zbior Cantora

2Struktury samopodobne nosza nazwe beskalowych, gdyz w kazdej skali wygladaja identycznie
badz analogicznie - nie udaje sie dla nich wyrézni¢ zadnej szczegdlnej skali.
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a w trzech wymiarach gabka Sierpinskiego; dla dywanu wymiar przestrzeni Euklide-
sowej, d, w ktorej zanurzony jest dywan, wynosi 2, dla wspomnianego zbioru Cantora
d =1 a dla gabki Sierpinskiego d = 3.

v
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Rysunek 5.1: Pierwsze dwa pokolenia ograniczonego, przypadkowo zdefektowanego
dywanu Sierpinskiego. Jak widaé¢, jego wymiar d, nie zmienit sie w stosunku do
deterministycznego pierwowzoru.

Na rys. 5.1 pokazano pierwsze (k = 1) i drugie (k = 2) pokolenie powstale z
kwadratu wiekszego o dtugosci boku L. Jak widac¢, bok ten zostal podzielony na
n = 3 réwne czedci; zwykle 1/n nosi nazwe wspotezynnika redukeji a m/n? wspot-
czynnika zdefektowania, gdzie m jest liczbg mniejszych kwadratéw usuwanych w
danym pokoleniu z kazdego kwadratu wyjsciowego dla tego pokolenia. Doktadniej
rzecz bioragc, wspomniane pokolenia skonstruowano przez odpowiednie usunigcie po-
jedynczego (m = 1) mniejszego kwadratu a nastepnie z tak powstalej struktury
pojedynczych jeszcze mniejszych, niekoniecznie centralnych (jak to ma miejsce dla
deterministycznego dywanu Sierpifiskiego). Innymi stowy, usuniecie pojedynczego,
mniejszego kwadratu ma miejsce zawsze, w kazdym pokoleniu £ natomiast, nie wia-
domo ktéry kwadrat zostanie usuniety, co jest wlasnie dzietem przypadku.

Tym samym zdefiniowany zostal generator przypadkowej struktury fraktalnej po-
zwalalajacy na zbudowanie ograniczonego fraktalnego obiektu samopodobnego w
sensie probabilistycznym (statystycznym). Definicje te mozna traktowaé jako okre-
slenie samopodobienstwa przypadkowej struktury fraktalnej. Bezposredni wniosek
jaki sie nasuwa dotyczy wymiaru samopodobnego - w dalszym ciggu nazywamy go
fraktalnym gdyz jest to wymiar utamkowy a nie catkowity jak wymiar Euklideso-
wy (topologiczny) przestrzeni i oznaczamy przez dg; jest on identyczny z wymiarem
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fraktalnym deterministycznego dywanu Sierpinskiego (patrz np. artykul w czaso-
pismie "Delta” 2 (1985) 1, ksiazka H.-O.Peitgen, H.Juergens, D.Saupe, ”Granice
Chaosu. Fraktale”, PWN, Warszawa 1997, lub ksiazka T.Vicsek, ”Fractal growth
phenomena”, World Scienc., Singapore 1989). Wynika to z faktu, ze wymiar sa-
mopodobiefistwa jest (tutaj) niewrazliwy na to ktéry kwadrat jest usuwany, wazne
aby w kazdym pokoleniu jeden elementarny (najmniejszy) kwadrat zostal usuniety
z wiekszego, czyli tego, ktéry byt elementarny o jedno pokolenie wczesniej.

7 jednej strony, dla tego typu przypadkowo zdefektowanych struktur mozna na-
pisa¢ réwnanie algebraiczne stuszne dla kazdego pokolenia k(= 1,2,...)

N(k) = (n* —m)* = (9 - 1)F =8~ (5.1)

gdzie N (k) jest liczba kwadratéow jaka pozostata w pokoleniu k po przeprowadze-
niu (powyzej opisanej) procedury przypadkowego defektowania. Réwnanie (5.1) jest
takze stuszne dla deterministycznego dywanu Sierpinskiego.

Z drugiej strony, dzieki wlasnosci samopodobienstwa (tutaj w sensie statystycz-
nym gdyz obarczonej dodatkowo elementem przypadkowosci), mozna napisaé klu-
czowg relacje pomiedzy liczba kwadratow N (k) a liczba

n(k) =n"= (5.2)

na jaka zostatl podzielony w pokoleniu k bok wyjsciowego kwadratu o dtugosci L
(I(k)(= L/n*) jest dtugoscia boku matego kwadratu w pokoleniu k); mianowicie

—d
l(k °
N(k) = n(k)® = (%) L k=1,2,.... (5.3)
Jak widaé¢, wymiar samopodobienstwa d, jest niezalezny od numeru pokolenia k
co wynika z samopodobnego (tutaj dodatkowo w sensie statystycznym) charakteru
struktury. Czesto, wyrazenie (5.3) zapisuje sie¢ w skrotowej postaci

N (k) ~ (I(k))~", (5.4)

moéwiac, ze liczba pokrywajacych kwadratéw ("pudetek”) jaka istnieje w k-tym poko-
leniu skaluje si¢ z liniowym rozmiarem pokrywajacego kwadratu (”pudetka”). Tego
typu zapis pozwala rozszerzy¢ analize na przypadek struktur fraktalnych nie beda-
cych samopodobnymi (patrz rozdz. 5.2.5).

Z (5.1), po uwzglednieniu (5.3), otrzymujemy ze

~ In(N(k))  In(n*—m) In(8)  In(2)
ds = In(L/I(k))  In(n)  In(3) 31n(3)’ (5:5)
gdzie oczywiscie wyktadnik
ds < d (5.6)
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co wynika z faktu, ze omawiana struktura jest zdefektowanym kwadratem tzn. jej
pokrycie malymi kwadratami nie zapelnia jednolicie wiekszego kwadratu; gdyby
nasz kwadrat nie byt dziurawy wtedy oczywiscie ds = d.

Zastanowmy sie nad sensem wymiaru samopodobnego d, ktéry, podobnie jak
omawiany ponizej tzw. wymiar pudetkowy (patrz rozdz. 5.2.5), jest szczegblnym
przypadkiem wymiaru Hausdorffa. W tym celu zauwazmy, ze d(= 2)-wymiarowa
objetos¢ V (k) (tutaj powierzchnia) obiektu w pokoleniu & wynosi,

V(k) = N(k)(1(k))". (5.7)

Objetosé V (k) przyjmuje sie za miare danej struktury fraktalnej.
Z drugiej strony, na mocy réwnania (5.7) oraz (5.3) otrzymujemy, ze

V(k) = L% (1(k))* % = L? (@) o (5.8)

czyli

In(V (k)/L%
de=d— M (5.9)
In(l(k)/L)
Czasami wyktadnik Ay = d—dy = z jakim skaluje sie objeto$¢ nazywa sie wymiarem
Minkowskiego albo deficytem wymiaru samopodobnego.
Czesto, wyrazenie (5.8) zapisuje sie krécej

V (k) .
T (I(k))2, (5.10)

moéwiac, ze (wzgledna) miara danej struktury fraktalnej skaluje si¢ z liniowym roz-
miarem [(k) pokrywajacego kwadratu ("pudetka”). Tego typu zapis pozwala rozsze-
rzy¢ analize na przypadek struktur fraktalnych, ktére nie sa samopodobne (patrz
rozdz. 5.2.5).

bLatwo zauwazy¢, ze wyrazenia (5.5) oraz (5.9) sa stuszne dla kazdego pokolenia
k tylko dlatego, ze mamy do czynienia ze struktura samopodobng (niezaleznie
od tego czy jest ona samopodobna w sensie deterministycznym czy tez sensie pro-
babilistycznym zdefiniowanym powyzej).

5.2.2 Paradoks graniczny - struktura prawie wszedzie pusta

W oparciu o wzory (5.7), (5.3), (5.1) oraz (5.2) mozna wykona¢ nastepujace przejscie
graniczne

- V(k) o NR[IR)] . N(R) myy
T S R A g A ) =0 (51D

Powyzszy wynik jest paradoksalny gdyz, jak wida¢, w granicy & — oo objetos¢
struktury oraz liczba jej elementéw (elementarnych pudelek) jest zaniedbywalnie
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mata w stosunku do objetosci struktury niezdefektowanej oraz liczby tworzacych
ja pudetek. Innymi stowy, liczba dziur doréwnuje liczbie (prawie) wszystkich pude-
ek (kwadratéw) tworzacych jednorodny (niezdefektowany) obiekt. Wynik ten jest
prawdziwy tylko w granicy k — oo wskazujac, ze graniczna struktura samopodobna
jest maksymalnie zdefektowana, czyli ze wielko$¢ obszaru dziur jest (prawie) row-
na wielkosci catego obszaru struktury pomimo, ze na kazdym poziomie ziarnistosci
usunieto jedynie minimalnag liczbe (m = 1) kwadratow potrzebna do zapewnienia
(nietrywialnego) samopodobiefistwa ograniczonego, przypadkowego dywanu Sierpin-
skiego.

Przy tworzeniu struktur fraktalnych, nalezy wzia¢ pod uwge zasadnicze ogra-
niczenie - aby struktura mogta istnie¢ wszystkie jej elementy muszg by¢ ze soba
powiagzane tzn. muszg sie styka¢. Oznacza to, ze kazde dwa elementy struktury moz-
na potlaczyé ze sobg linig nalezaca catkowicie do tej struktury.

5.2.3 Dolny wymiar samopodobienstwa

Wskazujemy na zaleznos¢ oszacowania wielko$ci dolnego ograniczenia wymiaru sa-
mopodobnego od stopnia zdefektowania m/n? fraktalnej struktury samopodobne;.
W tym celu korzystamy z wyrazenia (5.5) pozwalajacego zanalizowa¢ np. nieréwnosé
postaci
, In(N(k))  In(n?—m) _
d—j<ds= = =d—Ai<d), j=1,2,...,d, (5.12
J m(L/i(k))  In(n) (<d), J (5.12)

gdzie deficyt wymiaru

In(1 - 713)
In(1/n)
wyraza sie za pomoca wspotczynnika zdefektowania oraz wspotczynnika redukcji; z

powyzszych dwoch zaleznosci otrzymujemy bezposredni warunek na wspotczynnik
zdefektowania

A, = >0 (5.13)

m 1

E<1—E,j:1,2,...,d. (5.14)
Postepujac analogicznie w pozostatych przypadkach, czyli gdy ds < d — j oraz ds =
d—j, j=1,2,...,d— 1, otrzymujemy nastepujace zbiorcze wyrazenie
>d—j, dlam/ni<1-1/n/, j=1,2,...,d
ds{ =d—j, dlam/nd=1-1/n’, j=1,2,...,d—1
<d—j, dlam/n®>1-1/n?, j=1,2,....,d—1.

Jak widaé¢, wyrazenie 1 —1/n’ okre$la marginalne warto$ci wsp6tezynnika zdefekto-
wania, dla ktorych wymiar samopodobny jest liczba naturalng. Z powyzszego wy-
nika, ze mozliwe jest "rosniecie” w przestrzeni d wymiarowej struktur d — 1 wymia-
rowych (gdy m/n? =1 —1/n), d — 2 wymiarowych (gdy m/n? = 1 — 1/n?), itd.,
wreszcie struktur jednowymiarowych (gdy m/n? = 1—1/n4"1) a nawet subliniowych
(o wymiarze mniejszym od 1 gdy m/n¢ > 1 —1/n1).
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5.2.4 Gestosc¢ struktury

Zauwazmy, ze gestosé liczbowa struktury p(k) skaluje sie w tych warunkach iden-
tycznie jak struktura niezdefektowa mianowicie,

N(k)

p(k) = Vi) [1(R)] (5.15)

czyli jest niewrazliwa na operacje defektowania uktadu. Zatem, gestosé liczbowa p(k)
jest jej niezmiennikiem i nie nadaje sie do opisu struktur fraktalnych.

5.2.5 Wymiar pudeltkowy ograniczonych struktur fraktal-
nych

Wymiar samopodobny jest tylko szczegdlnym przypadkiem wymiaru fraktalnego
Hausdorffa. Dla struktur, ktore nie sa samopodobne wyrazenia (5.5) oraz (5.9) nalezy
zapisa¢ w postaci ogdlniejszej, mianowicie

In(N (k)

lub
dy = d — lim In(V(k)/L7) (5.17)

koo In(I(k)/L)

Wzory (5.16) oraz (5.17) uzyskano w wyniku pokrycia danej struktury fraktalne;
takimi pudetkami (patrz rys.2(5.2.1), ktérych liniowy rozmiar [(k) maleje potegowo
z wykladnikiem k, analogicznie jak dla struktur samopodobnych (czyli I[(k) = L/n*).
Uzyskana w ten sposéb wielkos¢ dj, nosi nazwe wymiaru pudetkowego.

Ogélnie méwiac, z wymiarem pudetkowym mamy do czynienia wtedy i tylko
wtedy, gdy dla znikajacej ziarnistosci [ (czyli liniowego rozmiaru pudetka, ktéry w
og6lnosei jest zmienna niezalezng),

do = T (5.18)
lub
dy = d — tim 2V D/LY (5.19)

=0 In(l/L)

Jak wida¢ minimalna objeto$é V (1), w ktorej daje sie zamknaé dana strukture frak-
talna skaluje sie (ze znikajaca ziarnistoscia [) jak

V() ~ (1) (5.20)
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natomiast minimalna liczba pudetek N(I) skaluje sie jak
N(1) ~ (1), (5.21)

Zauwazmy, ze czesto jest wygodniej operowaé¢ wielkosciami bezwymiarowymi -
w tym celu wprowadzmy ziarnisto$¢ bezwymiarows zdefiniowang jako utamek

=T (5.22)

Korzystajac z definicji (5.22) mozna wyrazenia (5.3) oraz (5.8) przedstawi¢ w postaci

N(e) =e b (5.23)
V(e) _ _d—d,
a =€ (5.24)

Stad, wymiar pudetkowy d;, mozna zapisa¢ nastepujaco

In(N(e))

dy = llir(l) m (5.25)
lub

co utatwia dalsze uogélnienia (np. na pokrycia inne od pudetkowego), pozwalajace
na wprowadzenie pojecia wymiaru Hausdorffa. Nalezy podkresli¢, ze wymiar samo-
podobny d oraz wymiar pudetkowy d;, dla struktur samopodobnych nie sg tozsame;
mozna to zrozumie¢ na przyktadzie obiektow zanurzonych w przestrzeni dwuwy-
miarowej gdyz wtedy wymiar pudetkowy nigdy nie jest wiekszy od dwoch, w przeci-
wienstwie do wymiaru samopodobnego. W przypadku tego ostatniego, mozna podaé
przyktady struktur, ktérych poszczegdlne elementy zachodza na siebie, co prowadzi
do wymiaru samopodobnego wiekszego od dwoch.

5.2.6 Nieograniczone fraktale samopodobne

Analogicznie jak w rozdz. 5.2.1, rozwazamy samopodobny fraktal przypadkowy czy-
li strukture samopodobnag w sensie statystycznym, powstajaca przez odpowiednie
powielanie obiektu wyjsciowego (tak jak to przedstawiono na rys. 5.2).

Pomimo ze istnieje wiele rzucajacych sie w oczy analogii pomiedzy oboma typami
struktur, zdecydowalismy sie na ich systematyczne, oddzielne oméwienie ze wzgledu
na fakt, iz wyktad jest przeznaczony przede wszystkim dla poczatkujacych studen-
tow. Ponadto takie podejécie pozwala, w zasadzie, na niezalezne zapoznawanie sie z
wybranymi fragmentami tekstu.
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Rysunek 5.2: Pierwsze dwa pokolenia nieograniczonego, przypadkowo zdefektowa-
nego dywanu Sierpinskiego.

Przedstawiona na rys. 5.2 struktura jest to nieograniczenie rosnacy, przypadko-
wy (indeterministyczny) dywan Sierpifiskiego zbudowany z elementarnych kwadra-
téw o dtugosci boku (= 1). Bezwymiarowy wspétezynnik (liniowego) powiekszenia
dywanu wynosi przyktadowo n = L/l = 3 (czesto uzywa sie zamiennie wspélezyn-
nika ziarnistoéci € = 1/n), a kazdy wigkszy kwadrat jest zbudowany z (n?¢ — m)*
mniejszych, gdzie d(= 2) jest wymiarem przestrzeni Euklidesowej, w ktérej jest
zanurzony konstruowany dywan Sierpinskiego, m(= 1) jest liczba usunietych mniej-
szych kwadratow z kazdego powielonego kwadratu pobranego z poprzedniego poko-
lenia, natomiast k jest numerem aktualnego pokolenia (skali lub poziomu ziarnistosci
struktury) w jakim prowadzi sie obliczenia. Jak wida¢, na kazdym poziomie ziarni-
stosci defektowanie moze wygladac¢ inaczej tzn. z kwadratu na poziomie ziarnistosci
k usuwany jest jeden z powielonych, (wigkszych) kwadratéw oraz przypadkowo, z
dowolnego miejsca tych powielonych duzych kwadratow, kwadrat elementarny w
poprzedzajacej skali k — 1.

Mozemy teraz postawié¢ inicjujace pytanie: jaka jest liczba N (k) podstawowych
kwadratéw (o dtugosci boku 1) zawartych w duzym kwadracie w k-tym pokoleniu
(lub inaczej méwiac, na k-tym poziomie ziarnistoéci)? Z jednej strony, z przedsta-
wionej na rys.1(5.2.6) konstrukeji wynika poprzez bezposrednie zliczanie, ze poszu-
kiwana liczba wyraza sie prostym wzorem

Nk)=n'"—m)lr=3*-1)F=8" k=12 ..., (5.27)
czyli jest taka sama jak dla ograniczonego, przypadkowego dywanu Sierpinskiego
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(patrz réwnanie(5.1)); co wiecej jest ona réwna analogicznym liczbom dla determi-
nistycznych (ograniczonych i nieograniczonych) dywanéw Sierpinskiego.

7. drugiej strony, analogicznie jak w przypadku ograniczonego dywanu Sierpin-
skiego, stawiamy pytamie o istnienie takiej liczby dg niezaleznej od numeru pokolenia
k, ktora spetnia kluczowa relacje

L(k)\*
N(k) = n(k)% = e(k)™% = <¥> L k=1,2,..., (5.28)
gdzie wprowadzilidmy wielkos¢,
L(k) =n(k)l, k=1,2,..., (5.29)

bedaca liniowym rozmiarem kwadratu w k-tym pokoleniu, gdzie identycznie jak dla
struktur ograniczonych

nk)=nF k=1,2,..., (5.30)
a ponadto
ek)y=¢"k=1,2,.... (5.31)
Zaleznosé (5.28) zapisuje sie czesto w postaci,
N(k) ~ (L(k)* , k=1,2,..., (5.32)

moéwiac, ze "masa” N (k) struktury widoczna na k-tym poziomie ziarnistosci skaluje
sie potegowo z jej rozmiarem liniowym L(k); wystepujacy w réwnaniu (5.32) wy-
ktadnik nosi nazwe wymiaru samopodobnego - w dalszej czesci zobaczymy, ze jest on
szczegblnym przypadkiem wymiaru fraktalnego (a doktadniej, fraktalnego wymiaru
Hausdorffa).

Ponadto, w oparciu o nieréwnos¢

ds

n® < n? (5.33)

(wynikajaca z konstrukcji dywanu) otrzymujemy, ze
ds < d. (5.34)

Oczywiscie, gdyby struktura byta jednorodna (czyli nie pozbawiano by jej w kaz-
dym pokoleniu niektérych elementéw) wowcezas mielibysmy, po prostu, d, = d. Fakt,
ze udato sie znalez¢ wspolny dla wszystkich pokolen wyktadnik dy jest kluczowy
dla niniejszych rozwazan i wynika z samopodobnej natury konstruowanych obiek-
tOw przy czym nie jest tutaj wazne czy samopodobienstwo to ma statystyczny czy
deterministyczny charakter.
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Ze wzoru (5.28) wynika, ze

_ In(N(k))  In(N(k) In(nd — m) o )
@s = 1n(n(k)) - ln(L(k)/l) - ln(n) =d,—Ag, k=1,2,..., (535)

gdzie, podobnie jak dla fraktali ograniczonych, deficyt wymiaru samopodobnego A,
dany jest wzorem

Ay = ——n2 (5.36)

i tak jak trzeba nie zalezy od numeru pokolenia k.

Réznica pomedzy oboma rodzajami struktur (ograniczona i nieograniczona,) jest
widoczna dopiero we wzorach na objetos¢, ktora w pierwszym przypadku maleje
zgodnie ze wzorem (5.8) w miare przechodzenia do coraz starszych pokolen a w
drugim rosnie. Mianowicie, wynosi ona

V%)zﬂNUﬁ:F%%WS:ﬂ<£%Q>%,kzlﬂ,“, (5.37)

co czesto zapisuje sie w postaci
V(k) ~ (L(EN), k=1,2,..., (5.38)

moéwiac, ze objeto$é V (k) rosnacej struktury samopodobnej skaluje sie potegowo z
jej rozmiarem liniowym L(k). Ponadto,

In(V (k)/19)
= k=1,2,... 5.39
in(Z(5)/1) -39
i nie zalezy od k, jak by¢ powinno.
W oparciu o (5.37) widzimy, ze gestosé liczbowa
N(k) 1
=——=—k=12,... 5.40
V(k) ld? ) ) ) ( )
czyli nie ulega zmianie przy przechodzeniu od struktury regularnej do fraktalnej

podobnie jak to ma miejsce dla struktur ograniczonych.
Widaé¢ na postawie (5.27), (5.29) oraz (5.37), ze

V() NG m\kE
£$4L@»w‘£&wm@d_£ﬂll_ﬁﬁ =0, (5.41)
lub inaczej, w oparciu o (5.28), (5.29) oraz (5.37)
d ds
V(k) = lim [N K) = lim n(k) = lim L 0. (5.42)

m
k—o0 (L(k))d k—o0 ldn(k>d koo n(k)d o0 pF(d—ds)



Powyzszy wynik jest prawdziwy tylko w granicy & — oo pokazujac, ze graniczna
struktura samopodobna jest maksymalnie zdefektowana gdyz obszar dziur doréwnu-
je wielkoscig catemu obszarowi struktury pomimo, ze na kazdym poziomie ziarnisto-
$ci usunieto jedynie minimalna liczbe (m = 1) kwadratéw potrzebna do zapewnienia
(nietrywialnego) samopodobienstwa nieograniczonego statystycznego dywanu Sier-
pinskiego.

Aby lepiej zrozumieé¢ wynik (5.41) obliczamy w granicy k& — oo liczbe N(k)
elementarnych kwadratéw oraz dziur M (k). Zgodnie z (5.27)

. N(k) , m\*
Jim e = dm (1= 75) =0 (5.43)
oraz
. M(k) m\*\
My~ (“(“m) )— | o4

Powyzszy wynik jest paradoksalny gdyz, jak wida¢, w granicy k — oo liczba dziur
doréwnuje liczbie wszystkich pudetek (kwadratéw) tworzacych jednorodny obiekt.

Wyznaczamy teraz dolne oszacowanie wymiaru samopodobnego d, dla nieogra-
niczonego (deterministycznego badz przypadkowego) dywanu Sierpinskiego. Rozwa-
zamy w tym celu wyrazenia

k 1N (k k

0o, dlam < ni- 1( -1
=< I, dlam=n"n-
0, dlam <n®(n

)
1)
1)’

z ktérych wynika, ze

>d—1, dlam<n?l(n-1)
dyd =d—1, dlam=n"'(n-1)
<d-1, dlam>n?t(n-1).

W naszym przypadu, przyjeliSmy na wstepie dla prostoty, ze m = 1 (oraz n = 3 i
d = 2) co prowadzi do tego, ze d — 1 < d,. Jednakze mogliby$my, réwnie dobrze,
rozwaza¢ przypadki dla ktorych 1 < m < n. Z powyzszego wynika, ze np. krysztat
rosnacy w trzech wymiarach moze by¢ faktycznie dwuwymiarowy co odpowiadatoby
(dla n = 3 oraz d = 3) czynnikowi zdefektowania m = 18(< n¢ = 27). Oczywiscie,
do pomyslenia sa takze krysztaty jednowymiarowe (wtedy m > 18).

Ponadto, gdybysmy rozwazali analogiczne struktury, ktére powstaja przez od-
powiednie dodawanie elementéw na kazdym poziomie ziarnistosci k (dobrym przy-
ktadem moze by¢ krzywa Kocha) wéwcezas mieliby$my, zamiast rownosci (5.27),
analogiczne wyrazenie

Nk)=n'+m)F =3 +1)"=10" k=1,2,..., (5.45)
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prowadzace, w oparciu o (5.28) oraz zachodzaca w tym przypadku nieréwnosé
n(k)® >n(k) k=1,2,..., (5.46)
do wymiaru fraktalnego
ds > d, (5.47)

przewyzszajacego wymiar przestrzeni Euklidesowej, w ktorej jest zanurzony wyjscio-
wy, niezdefektowany obiekt.

Oszacujemy gérne ograniczenie wymiaru samopodobnego ds. W tym celu rozwa-
Zamy wyrazenia

. V (k) : YN (k) 1 . kd—d 1. 1 m \*
hmizhmi:—hmn(dsdl):—hm(——l— >
k00 (L(k))d+1 k00 ldJrln(k)dJrl l

oo, dlam >n4(n—
7, dlam=n(n—
0, dlam <ni(n—1),

z ktérych wynika, ze

>d+1, dlam>ni(n—1)
ds{ =d+1, dlam=nin-1)
<d+1, dlam<ni(n-1).

Na przyktad, wspomniana powyzej krzywa Kocha (d = 1, n = 3, m = 1) posiada,
zgodnie z powyzszymi wzorami wymiar samopodobiefistwa d < ds(=1In(4)/1n(3)) <
d+1.

5.3 Fraktale statystyczne

W niniejszym rozdziale omawiamy statystyczne struktury ograniczone i nieograni-
czone zwane fraktalami statystycznymi na przykltadzie statystycznego zbioru Can-
tora (oméwienie deterministycznego zbioru Cantora mozna znalezé np. w ksiazce
H.-O. Peitgen, H. Juergens, D. Saupe, ”Granice Chaosu. Fraktale”, Wydawnictwo
Naukowe PWN, Warszawa 1997).

5.3.1 Ograniczone fraktale statystyczne

Na rys. 5.3 przedstawiono zesp6t statystyczny ztozony z Ny =1y odcinkéw podzielo-
nych na trzy réwne czesci; jak widac, niektore odcinki centralne zostaly usuniete -
zaktadamy, ze nastapito to z prawdopodobienstwem p.

Mozna teraz postawi¢ pytanie dotyczace nieusunietych odcinkéw a mianowicie,
jaka jest ich érednia liczba ((N(k(= 1)))) w danym pokoleniu k (tutaj pierwszym
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Rysunek 5.3: Zespot statystyczny dla pierwszego pokolenia, przypadkowo zdefekto-
wanego zbioru Cantora.

gdyz k = 1)7 Odpowiedz jest natychmiastowa - jest to granica nastepujacej $redniej
wazonej nazywanej takze srednig po zespole statystycznym,

. NEED £k
(N(k(=1))) = Nk(h{g;m( ey 3 /\/(:1) =2 +3(1-p)
= 3-p, (5.48)

gdzie NQk(:l) oznacza calkowity licze odcinkéw pozbawionych czesci centralnej, a
./\/},k(zl) odcinkéw, ktoére jg posiadaja.

W nastepnym pokoleniu (k = 2), z kazdym odcinkiem zdefektowanym, sktada-
jacym sie z dwdch odsunietych od siebie krétszych, badz niezdefektowanym zbu-
dowanym z trzech odcinkéw krétszych, wiazemy osobny zespol statystyczny (rys.
5.4). Analogicznie jak dla pokolenia pierwszego, kazdy z krétszych odcinkéw jest
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Rysunek 5.4: Zespo6t statystyczny dla drugiego pokolenia, przypadkowo zdefektowa-
nego zbioru Cantora.

takze defektowany statystycznie. W celu tatwiejszego przedstawienia istoty rzeczy,
wprowadzamy synchronizacje polegajaca na tym, ze np. zdarzenie defektowania za-
chodzi jednoczesnie dla wszystkich krétszych odcinkéw danego pokolenia (o numerze
k), sktadajacych sie na jeden odcinek dtuzszy poprzedniego pokolenia (o numerze
k —1). Wyznaczamy teraz srednia liczbe (N (k(= 2))) odcinkéw jaka pozostata po
przeprowadzeniu procedury defektowania w drugim pokoleniu,

k(=1) AFE2) AFE2)
y 2 3

(N(k(=2))) = lim lim

2
NEED oo Nk(:?)_,oo(2Nk(:1) 2_/\/7€(=2) * 3Nk(=2)

'/\/3]6(22) y ( Nk(:Q) A@k(:Q)))

2
+ 3 NEE=2) 2 NHE=2) +3 NEE=2)

= (2p+3(1-p)" =3 -pH2. (5.49)

Postepujac analogicznie dla nastepnych pokolen, uzyskujemy ogoélne, proste wyra-
zenie na $rednig liczbe odcinkow jaka pozostata po przeprowadzeniu k-pokoleniowe;j
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statystycznej procedury defektowania
(N(k)) = (2p+3(1-p)" =B -p" (5.50)

Wyrazenie (5.50) pozwala wyznaczy¢é wymiar fraktalny d, statystycznej struk-
tury fraktalnej mianowicie, z definicji

(N(k)) = (3")*" (5.51)
oraz z wyrazenia (5.50) wynika natychmiast, ze

_ In(3 —p)

ds In(3)

. (5.52)

Czesto interpretuje sie réwnosé (5.51) jako zwiazek pomiedzy (bezwymiarows) ”ob-
jetoscia” stochastycznej struktury fraktalnej (lewa strona réwnania) a (bezwymia-
rowa) "masa’ zawarta w niej w k-tym pokoleniu (prawa strona tegoz réwnania); jest
to wyrazniej widoczne ponizej. Oczywiscie, statystyczna struktura fraktalna prze-
chodzi w deterministyczng tylko wtedy gdy p = 1; wowczas jej wymiar fraktalny
ds = In(2)/In(3). Gdy p = 0 mamy do czynienia z drugim przypadkiem skrajnym
dotyczacym odcinka niezdefektowanego - wowcezas ds = d(= 1) czyli wymiar samo-
podobny jest rowny po prostu wymiarowi przestrzeni.

5.3.2 Robzne sposoby defektowania struktur

Dalsze uogélnienie wzoru (5.50) jest zwiazane ze sposobem defektowania czyli spo-
sobem w jaki dana struktura fraktalna zostata uzyskana ze struktury jednolitej oraz
minimalnym wymiarem przestrzeni w jakiej jest zanurzona. Na przyktad, jezeli za-
miast usuwacé $srodkowy odcinek zastapimy go ”daszkiem” ztozonym z dwoch odcin-
kéw, jak to pokazano na rys. 2(5.3), wéwczas w ponizszym wzorze m = +2 a nie —1
jak to ma miejsce dla zbioru Cantora (poréwnaj wyrazenie (5.50)). Zatem,

(N(k)) = (" +m)p +b'(1 = p))* = (0" +mp)* = ("), (5.53)

gdzie b stanowi wyjsciowa, liniowg miare wyjsciowej, defektowanej struktury jed-
nolitej natomiast d jest minimalnym wymiarem Euklidesowym przestrzeni w ktorej
zanurzona jest ta struktura Z trzeciej réwnodéi w (5.53) otrzymujemy, ze

In (b + mp) In (1+ i)

bezposrednie uogélnienie wzoru (5.52).
Wskazujemy na zalezno$¢ oszacowania wielkosci dolnego ograniczenia wymia-
ru samopodobnego d; od stopnia statystycznego zdefektowania —pm/n? fraktalnej
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struktury samopodobnej. W tym celu korzystamy z wyrazenia (5.53) pozwalajacego
zanalizowa¢ np. nieréwnos¢ postaci
In(N(k))  In(n? — pm)

d—j<df:1n(L/l(k)>: o) (<d), j=1,2,....d, (5.55)

skad otrzymujemy bezposredni warunek na wspoétczynnik statystycznego zdefekto-
wania

m 1 .
pﬁ<1_ﬁ’]_1’2""’d' (5.56)
Postepujac analogicznie w pozostatych przypadkach, czyli gdy dy < d — j oraz
dy =d—3j, j=1,2,...,d— 1, otrzymujemy nastepujgce zbiorcze wyrazenie
>d—j, dlapm/nt<1-1/n, j=1,2,...,d

des =d—7j, dlapm/ndzl—l/nf',j:1,2,...,d—1
<d—j, dlapm/n®>1-1/ni, j=1,2,...,d— 1.

Jak wida¢, wyrazenie 1 — 1/n/ okredla marginalne wartosci wspotczynnika staty-
stycznego zdefektowania, dla ktorych wymiar samopodobny jest liczba naturalng. 7Z
powyzszego wynika, ze mozliwe jest "rosniecie” w przestrzeni d wymiarowej struk-
tur d — 1 wymiarowych (gdy pm/n¢ =1—1/n), d — 2 wymiarowych (gdy pm/n? =
1 — 1/n?), itd., wreszcie struktur jednowymiarowych (gdy pm/n? =1 — 1/n41) a
nawet subliniowych (o wymiarze mniejszym od 1 gdy pm/n?® > 1 —1/n"1).

5.4 Multifraktalnoscé

Dalsze rozwazania poprzedzimy wprowadzeniem pojecia multifraktalnosci®. Multi-
fraktalnosé to cos$ wiecej niz pojedyncza krytycznosé gdyz dotyczy sytuacji, w ktorej
obecne jest widmo (spektrum) wyktadnikéw fraktalnych, czyli wyktadnikow krytycz-
nych zwanych singularnosciami lub osobliwosciami. Istnienie widma osobliwosci
jest wlasnie sygnaturg multifraktalnosci. Pokazemy to na prostym, pouczaja-
cym przyktadzie bifraktalnosci, prowadzacym do potrzebnych uogolnien.

Dodajmy, ze istnieja dwa istotnie rézne zrédta multifraktalnosci:

a) poszerzone, czyli gruboogonowe rozktady o ksztalcie odbiegajacym w central-
nej czesci od prawa potegowego oraz

b) korelacje dtugozasiegowe lub dtugookresowe.

Wplyw obu przejawia sie w sposéb analogiczny, czyli poprzez uogoélniony wyktad-
nik Hursta. W istocie rzeczy temu wieloskalowemu wyktadnikowi a stad spektrum
singularno$ci poswiecone sg niniejsze rozwazania.

3Multifraktalnoéé i wielofraktalnosé traktujemy jak synonimy.
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5.4.1 Osobliwa gesto$¢ niezmiennicza

Rozwazmy przyktad osobliwej ale catkowalnej gestosci niezmienniczej danej naste-
pujaca funkcja potegowa®

pla) = (1-y)a, 0<y<1,0<z <1 (5.57)

Mozna ja interpretowaé jako stacjonarng gesto$¢ prawdopodobienstwa znalezienia
btadzacej czasteczki (uwigzionej na odcinku [0, 1[) w punkcie x - bedzie jeszcze o
tym mowa ponizej.

W dalszym ciagu podzielmy dziedzine x na odcinki o niewielkiej dtugosci | <
1; wezly tak przeprowadznej dyskretyzacji oznaczmy przez z; = (j — 1), j =
1,2,....,.N+1 = %—i— 1 > 1. Dla kazdego odcinka [z, z;41[, j = 1,2,... N,
wyznaczmy zwigzane z nim prawdopodobienstwo

Tj+1 =7 dlaj=1
p)= [ onas={ IS, (559
przy czym drugi wzér (dla j > 2) jest przyblizony i tym dokladniejszy im mniejsza
jest wartos¢ [. Pierwszego wzoru nie da sie przedstawi¢ w analogicznej postaci, gdyz
w punkcie 1 gesto$é p ma osobliwo$é (nieanalityczng rozbieznosé). Wiasnie ten
aspekt w istotny sposob odréznia oba wzory.

Obliczmy teraz sume statystyczna® (zwana tez funkcja rozdzialu lub podziatu).
Mozna powiedzie¢, ze multifraktalnos¢ tkwi korzeniami w fizyce statystycznej a do-
ktadniej bierze swbj poczatek wtasnie w funkcji rozdziatu. To wlasnosci tej funkeji
moga narzuci¢ wieloskalowy, multifraktalny charakter analizowanych uktadéw. Ob-
liczmy teraz sume statystyczna dla naszego przyktadu,

N

2 = S0 = [ [ sedta] + 3 e

=1

Q

1
1A=7)4 +lq—1/l [p(2)]%dx
— (0=7a 4 (1 =) (1 _ llqu) a1

L =g
1 — ~)4
= el el D<@ U <1 (550
- 74
Mozna ja interpretowaé jako (stacjonarne) prawdopodobienstwo znalezienia g bta-
dzacych czasteczek (uwiezionych na odcinku [0, 1[) w jakiejkolwiek komoéree (o roz-

4W istocie rzeczy, przyklad ten zostal zaczerpniety z ksiazki: H. G. Schuster: Deterministic
Chaos. An introduction, second revised edition, VCH Verlagsgesellschaft, Weinheim 1988 (istnieje
tlum. polskie). Przy okazji, przyktad ten uogdlniono i poprawiono, usuwajac wystepujace tam
usterki.

°Zwiazek sumy statystycznej Z, danej wzorem (5.59) z ta dobrze znana, stanowiaca podstawe
termodynamiki statystycznej podamy w dalszej czedci.
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miarze [). Interpretacja ta jest przydatna przy okresleniu catek korelacyjnych po-
zwalajacych na alternatywne przedstawienie sumy statystycznej®.

Podzial sumy statystycznej na dwa skladniki wynika z faktu, ze mamy tutaj do
czynienia tylko z jedng osobliwoscia gestosci niezmieniczej (i reszta nieosobliwa).

Obie nieréwnosci w (5.59) okreslajace przedzial dozwolonych wartosci ¢ narzu-
caja na nig istotne ograniczenia, mianowicie: 0 < ¢ < 1U oo, niezaleznie od wartosci
v spelniajacej obie nieréwnosci w (5.57); w przeciwnym razie czynnika przedwy-
ktadniczego a(g) nie mozna byloby interpretowaé jako wagi, potrzebnej w dalszych
rozwazaniach.

Jak widac,

a) Zgo = 7(= N), czyli okresla rozmiar nosnika (w jednostkach dtugosci [).

b) Ponadto Z,_.; = 1, co oznacza, ze powyzsza procedura nie naruszyla norma-
lizacji prawdopodobienstwa - jest to zasadniczy warunek jaki zostal na nig
natozony.

¢) Wreszcie, Zy oo ~ 11779 gdyz a(q — 0o0) — 0.

Wszystkie te wlasnosci sa wykorzystywane ponizej do scharakteryzowania multi-
fraktalnosci.
Zauwazmy, ze réwnanie (5.59) mozna przepisa¢ w postaci

Zy [ o)1 sda = [ pla)exp {~lag — f(@)] |l [} do, (560

pozwalajacej na istotne uogdlnienie.
Wprowadzilismy gestos¢ prawdopodobienstwa

pla) & (1 - alg))d(a — (1 —7)) +a(g)d(a — 1) (5.61)

wystepowania (tutaj tylko dwoch wartosei) singularnosci @ = a7 1 @ = a9 skalu-
jacych prawdopodobienstwa, odpowiednio p; 1 p;, j > 2 (patrz wyrazenie (5.58)),
przy czym pierwsza singularno$¢, oy = 1 — v, dotyczy pierwszego przedziatu x, tzn.
odcinka [0, /[, natomiast druga, as = 1, pozostatych % — 1 przedziatéw, czyli odcinka
[, 1]. Singularnosci te mozna traktowaé jak lokalne wymiary fraktalne (Hausdorffa)
okreslajace "objetosci” (%7, j = 1,2, lokalnych obszarow fraktalnych definiujacych
odpowiadajace im prawdopodobiefistwa p; oraz p;(> 2). Przejécie od sumowania po
J we wzorze (5.59) do catkowania po singularnosciach a we wzorze (5.60) wymagato
jeszcze wprowadzenia gestosci liczbowej 1/17 (@) gdzie

ORS R (502)

6To alternatywne przedstawienie wynika wprost z definicji prawdopodobienstwa p;j(l) znale-
zienia zmiennej x (elementu szeregu czasowego) w otoczeniu x; o rozmiarze ! danego wzorem
pi(l) =+ >, 0(— | zi — z; |), gdzie funkcja O...) oznacza thete Heaviside’a.

239



Gestos¢ ta moéwi nam jaka jest krotnos$é singularnosci «, czyli ile obszarow fraktal-
nych jest scharakteryzowanych taka wlasnie (jednakowa) singularnoscia’. Zauwaz-
my, ze f(a) mozna traktowaé jak wymiar fraktalny (Hausdorffa, zwiazany z sin-
gularnodcia «), méwiacy jak skaluje sie wspomniana gestos¢ liczbowa. Oczywiscie,
w ogélnoséci a # f(a). Funkcja f(«) to wladnie nic innego jak poszukiwane
spektrum singularnosci (widmo osobliwosci).

Wyrazenie (5.60) mozna przepisa¢ (wykorzystujac (5.61) i (5.64)) w postaci

Zy & [1 — a(q))ler a7 @) 4 g(g)1e2 a7 (e2), (5.63)

czyli sumy wazonej (superpozycji) okreslajacej wspélistnienie dwoch monofraktali.
Jednakze, dla skrajmych wartosci ¢ wyrazenie to redukuje sie do nastepujacego:

a1 g—f(a1)
Z,~ { l dla g = oo (5.64)

[o29-f(e2) dla ¢ — 1 lub ¢ — 0.

Definiuje ono bifraktal na trzypunktowym nosniku ¢, czyli dla ¢ = 0, 1, co. Jak
wida¢ bifraktal stanowi tutaj obiekt graniczny dla dwéch zsuperponowa-
nych monofraktali.

Dzigki przedstawionej powyzej interpretacji poszczegolnych czynnikéow w funk-
cji podcatkowej wyrazenia (5.60), mozna je traktowaé jako ogdlne, niezalezne od
konkretnej postaci gestosci niezmienniczej p. Zatem, cale wyrazenie (5.60) mozna
przyjaé jako ogdlna (catkowa) postaé¢ sumy statystycznej Z,. W naszym przypadku
mamy (jak wida¢) do czynienia jedynie z bifraktalem, gdyz spektrum singularnosci
(5.64) jest tutaj dwupunktowe. W ogdlnosci spektrum to moze byé jednopunkto-
we (wtedy mamy do czynienia z monofraktalem zwanym tez po prostu fraktalem)
poprzez dwu- i przeliczlnie punktowe az po widmo ciggte. Patrzac calo$ciowo, moz-
na powiedzie¢, ze potaczona gestosé liczbowa p(ar) lf(%) da okredla ile razy relacja
skalowania p;(l) ~ % zawiera sie w sumie > p;(1)7.

W dalszym ciagu rozwazamy juz sytuacje ogdlna, dla ktérej wyznaczamy (uprosz-
czamy) catke (5.60) za pomoca Metody Punktu Siodtowego (przedstawionej w Do-
datku C), czyli przyblizamy ja za pomoca wiodacej sktadowej zwiazanej z pewna
szczegblna wartoscia a = a*(q). Jest to mozliwe do przeprowadzenia w przypadku
wolnozmienniej gestosci prawdopodobienstwa p(«). Oczywiscie, stosowanie tej me-
tody do naszego konkretnego przykladu nie jest ani mozliwe ani potrzebne (mamy
tutaj ap = a*(q = 00) oraz as = a*(¢ =0) = a*(¢ =1)).

5.4.2 Wymiary uogélnione Rényi’ego

Wspomniang w poprzednim rozdziale szczegdlna warto$é a*(q) dotyczaca sytuacji
ogblnej definiujemy jako punkt, w ktérym funkcja ag — f(«) posiada minimum ze

7Scislej rzecz biorac, w przypadku a = g = 1 wspomniana krotnoéé wynosi % — 1. Jednakze,
% > 1, co w pelni usprawiedliwia przyjeta (nieco uproszczona) formule na wspomniang powyzej
gestosé liczbowa.
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wzgledu na zmienna «. Pelni ona role funkcji F'(x) stojacej we wzorze (C.1) (role
zmiennej x pelni teraz zmienna « a parametru N wielkos¢ | Inl |). Oczywiscie, uzycie
Metody Punktu Siodtowego jest mozliwe, gdy wspomniane minimum istnieje a sama
funkcja daje sie w jego otoczeniu (przynajmniej z grubsza) przyblizy¢ za pomoca
wielomianu drugiego stopnia. Zatem, korzystajac ze wzoru (C.1) otrzymujemy

Zy~ Afa) 1@ @) — A(a*) exp {~ [a*(g)g — f(a*(@))] | L[}, (5.65)

gdzie zaleznosé a* = a*(q) uzyskuje sie z warunku istnienia ekstremum dla danego ¢,
czyli f'(a*(q)) = ¢; warunek f”(a*(q)) > 0 definiujacy minimum jest nam potrzebny
ponizej. Ponadto, wolnozmienny wspotczynnik

27
q) [Inl |

jest iloczynem szczegdlnej wartosci p(a*) oraz odwrotnosci wspétezynnika normali-
zacji, jako pozostatlo$¢ po zastosowaniu Metody Punktu Siodtowego.

W naszym przyktadzie zwiazek pomiedzy a* oraz q uzyskujemy na innej drodze,
gdyz spectrum singularnosci nie jest u nas rézniczkowalne. Podkreslmy, ze przed-
stawione powyzej podejscie jest mozliwe do zastosowania tylko w przypadku wol-
nozmiennej zaleznosci p(a)) oraz jej ograniczenia od géry a takze | Inl | na tyle
duzego aby catka gaussowska byta wystarczajaco dobrym przyblizeniem delty Dira-
ca. W przypadku naszego przyktadu nie ma potrzeby stosowania Metody Punktu
Siodtowego poniewaz caltke (5.60) daje sie (niemal) Scisle obliczy¢ bezposrednim
rachunkiem.

Al @) = e @) 7o (5.6

W dalszym ciggu wprowadzamy nadzwyczaj wazny uogélniony wyktadnik wie-
loskalowy

7(q) = a*(q)q — f("(q)), (5.67)

jako (ujemne) przeksztatcenie Legendre’a widma osobliwosci f(a*(q)). Stad, uogdl-
niony wymiar Rényi'ego D, polaczony jest z uogélnionym wyktadnikiem 7(q) za
pomocay relacji

7(q) = (¢ —1)D, (5.68)

oraz suma statystyczna

Zy = Ala*(q))exp(—7(q) | Inl |) = A(a™(¢q)) exp(—(¢ — 1)Dg | Inl |)
& —I,=C,+D,|Inl|, (5.69)

gdzie informacja Rényi’ego

InZ,
s (5.70)
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Co wiecej, zredukowana informacja Rényi’ego® wynosi

Cy=—InA(a"(q))/(¢—1) (5.71)

i jest niezalezna od [. Zatem, dla dostatecznie malego [ otrzymujemy z (6.192) -
(5.71) popularne wyrazenie na uogélniony wymiar Rényi’ego

I S,
Dy~ ——=%L - =1 5.72
7 |Inl| |Inl| (5:72)
gdzie nieaddytywna entropia Rényi’ego
S, 1, (5.73)

Jak widaé, im mniej jest dostepnej informacji w uktadzie (czyli im wiekszy jest w
uktadzie nieporzadek) tym entropia uktadu jest wigksza. Entropia ta data poczatek
termodynamice nieekstensywnej, opisujacej uktady w ktérych oddziatywanie pomie-
dzy jego elementami jest dtugozasiegowe®.

Przy okazji zwréémy uwage, ze S,—1(= —I,-1) jest entropia informacyjng Shan-
nona. Aby to dostrzec, przedstawmy sume

Zp”q Vo= Zpaexp (q—1)Inp;) ~ Zpa +(q—1)lnp))
7j=1
N
= 1+(g—1) pjlnp; (5.74)
J=1

Stad, z (5.70) oraz z definicji entropii S,—.; otrzymujemy poszukiwang zaleznosé

Sq_>1 = —lim

q—)lq— j 1

N
In (1 +(g—1 ij hlpj) ==Y p;jlnp;, (5.75)
j=1

czesto tez uzywana w termodynamice (a nie tylko w teorii informacji).

Wréémy teraz do naszego przyktadu i zbudujemy tabele 5.1 wielkosci charaktery-
zujacych rozwazany bifraktal. Widaé (bez stosowania Metody Punktu Siodtowego),
ze tylko trzy wartosci ¢ pozwalaja uzyskaé¢ nasze dwupunktowe spektrum singular-
nosci. Sg to te wartosci ¢, o ktéore nam chodzito. Zauwazmy, ze wartosci w drugim
wierszu tabeli 5.1 wystepuja dla dwoch réznych q - czeSciowo byta juz o tym mowa
w rozdz. 5.4.1.

8Poniewaz w dalszej czesci nie zajmujemy sie juz zredukowang informacja Rényi’ego, dlatego
nie dbamy tutaj o wlasciwy dobdr czynnika normalizacyjnego, ktéry wchodzi jedynie do C,.

W tym kontekécie szczegdlnie polecane sg nastepujace prace: Dynamics and Thermodynamics
of Systems with Long-Range Interactions, T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens
(Eds.), Springer-Verlag, Berlin 2002 oraz C. Tsallis, Nonadditive entropy and nonextensive stati-
stical mechanics - An overview after 20 years, Braz. J. Phys. 39 (2009), 337.
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Tabela 5.1: Zasadnicze wielkosci charakteryzujace bifraktal

| | D, | a*(q) | fla*(9) ]
g—oo | (1= —1-7]1-1 0
q—0,1 1 1 1

5.4.3 Konstrukcja widma osobliwosci

Wprowadzimy teraz dodatkowe wlasnosci utatwiajace konstrukcje widma osobliwo-

$ci.

a)

Z transformacji Legendre’a (5.67) wynika, ze skoro uogélniony wyktadnik 7(q)
jest ujemna transformacja Legendre’a widma osobliwosci f(a*) to i odwrot-
nie, widmo osobliwo$ci jest ujemng transformacja Legendre’a uogdlnionego
wyktadnika. Ma to swoje konsekwencje w postaci nastepujacej zaleznosci:
a*(q) = d;—(qq) & q = df . W dalszym ciggu mozemy przyjacé, ze spehio-
ne sg obie réwnosci.

Ponadto, z transformacji Legendre’a (5.67) oraz wyrazenia (6.192) wynikal®,
zeT(g=1)=0< f(a*(¢=1)) =a*(¢=1) oraz d(a* =0 dla a*(¢ =0).

Kolejna wtasnos¢ dotyczy wartosci brzegowych widma osobliwosci vy, oraz
Qmaz- Mianowicie, korzystajac z pierwszego réwnania w (5.59) oraz (5.70) i
(5. 72) otrzymujemy potrzebny wzér D, &~ = L In Z] 1P (D]9. Stad, Dy—oo =
= I L In[ppas (1)) = 75 @nin — Qmin, gdzie przy wyprowadzeniu przedostat-
niej réwnosci skorzystaliSmy z zaleznosci p; (1) ~ 1%, przy czym dla wystarcza-
jaco duzych wartosci ¢ w sumie pozostata jedynie minimalna wartosé¢ wyktad-
nika o; = aj,;,. Analogiczne rozwazania mozna przeprowadzi¢ dla ¢ — —oo.
Wéwezas, dominujacym wyrazem w sumie jest [p;(1)]? & [@me=? co prowa-
dzi do Dy = a,,.. Zatem, widomo osobliwosci zawiera si¢ w przedziale

max
* *
[amin ) amaw] .

Jak wynika z wlasnosci przedstawionej w punkcie a), pochodne na brzegu no-
df (o) df a )
do*

$nika widma osobliwo$ci sa nieograniczone:
—00.

|ax = 00 oraz

‘amar

Dzieki wlasnosciom a) - d) mogliSmy przedstawi¢ schematycznie na rysunku 5.5
ksztalt widma osobliwosci f(a*). Przy okazji mozna byto réwniez przedstawié¢ sche-
matyczny wykres D(q) (patrz rysunek 5.6).

10Milczaco zatozyliémy, ze mamy tutaj do czynienia z ograniczonym wymiarem informacyjnym
Rényi’ego Dy_.1.
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Rysunek 5.5: Schematyczny wykres widma osobliwo$ci.

244



Rysunek 5.6: Schematyczny wykres wymiaréw Rényi’ego D,.

245

ENEEN 1T ]
L} | [
BIA T
' _E?:ﬂ | | | *
RN IN KT
| o
| D \
| \\\ | s
i e ESEENE
BERE
| |
| 0 — |




Tabela 5.2: Przyporzadkowania wielkosci multifraktalnych termodynamicznym

‘ Multifraktal ‘ Termodynamika ‘

q B
[ ni | 1%
a*(q) .
7(q) =
fa*(q)) >
CN(CI) Cy 5)

5.4.4 Zwigzek multifraktalnosci z termodynamika

Analize zwigzku multifraktalnosci z klasyczng termodynamika stanéw roéwnowago-
wych rozpoczniemy od zwrdcenia uwagi na analogie pomiedzy energia swobodna
wlasciwa, Fjg/V, uktadu termodynamicznego a uogdlnionym wyktadnikiem 7(g).
Mianowicie,

F
37 =7(0). (5.76)
gdzie odpowiednikiem wielkosci B = 1/T (czyli odwrotnosci temperatury) jest ¢
natomiast odpowiednikiem (makroskopowej) objetosci uktadu V' jest N =| Inl |.

Zauwazmy, ze dzieki transformacji Legendre’a mozemy powigzaé energie wlasciwg
uktadu oraz jego entropie wlasciwa, S/V, wlasnie z energia swobodna wtasciwa tego
uktadu, tzn.

Is

by =0y v = 7(q) = qa”(q) — f(a™(q)). (5.77)

Powyzsza odpowiednio$¢ ma miejsce dzigki transformacji Legendre’a (5.67), ktéra
pozwolita na dwa kolejne przyporzadkowania (obok podanego powyzej (5.76)),
Us _

v = a*(q) oraz % = f(a*(q)). (5.78)

Wszystkie przyporzadkowania zostaly zebrane w tabeli 5.2. Dodatkowo zamiesci-
liSmy multifraktalny odpowiednik, cy, ciepta wlasciwego przy statej objetosci cy,
ktory mozna uzyskaé¢ wlasnie dzigki weze$niejszemu przyporzadkowaniu energii swo-
bodnej wlasciwej uogélnionemu wyktadnikowi.

5.5 Statystyczne struktury multifraktalne

Powyzsze rozwazania mozna rozszerzy¢ na statystyczne struktury multifraktalne -
statystycznosé, skonczona liczba pokolen oraz multifraktalnosé to podstawowe wla-
snosci przypisywane wielu realnym strukturom. Multifraktale wprowadzimy teraz w
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najprostszy znany nam sposb a mianowicie, usredniajac po k wielko$é¢ (N (k)71 z
jaka$ stosunkowo prosta waga, gdzie ¢ jest (na razie) dowolnym rzeczywistym wy-
kladnikiem potegi. Sredniowanie to oznacza, ze poszczegdlne pokolenia odcinkéw
zostaly rozmieszczone na podtozu zgodnie ze wspomniang powyzej waga - wyjasnia-
my to doktadniej ponizej. Innymi stowy, multifraktalnos¢ wydobywamy tutaj dla
dwumianowej statystycznej kaskady.

Wprowadzmy wage w postaci najprostszego z mozliwych rozktadow, czyli w po-
staci delty Kroneckera

mowigcej z jakim prawdopodobienstwem obserwator moze wylosowaé pokolenie k
w zespole statystycznym przygotowanych juz wczesniej statystycznie zdefektowa-
nych struktur (np. odcinkéw ze zbioru Cantora). Zdajemy sobie sprawe, ze realnie
rzecz biorac taka waga nie powinna znika¢ na zbiorze liczb natauralnych, majac np.
postaé¢ dyskretnego rozktadu Gaussa centrowanego w punkcie k*. Rozktad (5.79)
stanowi jego graniczny przypadek (o znikajacej wariancji). Na szczescie, powyzsze
uproszczenie nie niszezy multifraktalnosci, znaczaco upraszczajac rachunki.

Zatem, wyrazenie na moment rzedu ¢ — 1 $éredniej liczby odcinkéw jaka uzy-
skano w pokoleniu k& w wyniku procedury defektowania (kantoryzacji) odcinkéw z
pokolenia wczesniejszego k — 1 wynosi

(N (k)*)) = i_o: w(k)(N(k)?1) = exp(k*G(k*)) = 7@, (5.80)

gdzie e = n*" i
G(k*) =In (p (nd F m)q_l + (1 —p)nd(q_l)) , (5.81)
7(q) = (¢ —1)D(q) (5.82)

co wynika z bezposredniego uogdlnienia wyrazen (5.53) i (5.54); tutaj wymiary
Rényi’ego

-1

In (p (nd + m)q La- p)nd(q—l))

Dla) = TEID

(5.83)

oraz uogdlniony (wieloskalowy) wyktadnik Hursta, h(q), taczy sie z uogdlnionym
wyktadnikiem wieloskalowym za pomoca zaleznosci

7(q) = qh(q) — 1, (5.84)
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gdzie

In (p (nd F m)q_l + (1 — p)nd(ql))

qIn(n)

hg) =1+ (5.85)

Zauwazmy, ze dla ¢ = 1 wyrazenie (5.80) przyjmuje warto$¢ rowna 1, co pozwala
(ze wzgledu na jego budowe) na utozsamienie go z funkcja rozdziatu dla dowolnego
q. Zatem,

Zy = ((N(k)"1)). (5.86)

n d
Przy okazji widaé, ze D(q = 2) = %, co stanowi zwykly wymiar fraktalny
struktury statystycznej (poréwnaj wzory (5.53) i (5.54)).

Stad,

L dr(q) 1 (nd ¥ m)lFl In (nd ¥ m) + (1 — p)n® a1 In (nd)
ne) = =5~ = n(n) D) 1 (1= p)nda . (5.87)

Zatem, korzystajac z transformacji Legendre’a, otrzymujemy

P (nd F m)q_l In (nd F m) + (1 = p)n¥@=H1n (nd)

In(n) p(ndFm)”" + (1 - p)ndaD
) In (p (n? Fm) ln(;u) (1- p)nd<q—1)> | .
Widaé, ze
f(n(q=1)) =n(q=1) oraz dfd—;m Ing=n= 1, (5.89)

co stanowi warunek (wystarczajacy i konieczny) transformacji kontaktowej, jaka jest
transformacja Legendre’a. Ponadto,

df(n)

f(n(qg=10)) = —7(¢=0)=D(q=0) oraz ln(g=0)= 0. (5.90)

Niestety, chociaz wyrazenia (5.82), 5.83), (5.87) i (5.88) udato si¢ wyprowadzié
w postaci analitycznej, to jakze wazna zalezno$¢ f(n) musimy uzyskaé¢ na drodze
numerycznej - zrobimy to w oparciu o wzory (5.87) i (5.88).
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5.5.1 Statystyczna kantoryzacja masy

Skoncentrujmy sie teraz na odcinkach, w liczbie 2%, pozostawionych po usunieciu z
prawdopodobienistwem p wszystkich pozostatych 2¥+1 —1 odcinkéw. Przypusémy, ze
te pozostawione odcinki posiadajg réwnomiernie roztozong mase, przy czym w kaz-
dym pokoleniu k = 1,2, 3, ..., catkowita masa wtych wszystkich nie ulega zmianie w
stosunku do masy wyjsciowej réwnej (dla prostoty) 1, tzn. obowiazuje tutaj prawo
zachowania masy. Oczywiscie, zamiast masy mozemy moéwié¢ o tadunku elektrosta-
tycznym, namagnesowaniu, biomasie, itd, itp. Zachowanie masy oznacza, ze mase
usunietych odcinkow przekazujemy tym pozostalym.

Najpierw, odpowiemy na pytanie jak $rednia masa, (u;_1), odcinka w pokoleniu

k—1
k — 1 skaluje sie z jego dlugoscia (%) . Korzystajac z definicji $redniej masy,
mozemy napisac

wen=p(2) o (DT =TT ey

Jak wida¢, mamy tutaj w ogdlnosci, doczynienia z wieloskalowym wyktadnikiem
skalowania 7(k) zaleznym od pokolenia. Jednak, w skrajnym przypadku p = 1 otrzy-
mujemy D(k) = }g—g niezaleznie od k.

Wyrazenie (5.91) pozwala na zadefiniowanie funkcji rozdziatu dla tego problemu

poprzez nastepujace przyporzadkowanie
Z = (p—1), k=1,2,3,.... (5.92)

Przyporzadkowanie to usprawiedliwia nastepujaca definicje wieloskalowego wyktad-
nika skalowania

(k) = (k—1)D(k), (5.93)
gdzie
Dy = (p(n? F m)=0= 4 (1 = p)n-dt-D) 5o
B (k—1)lnn ’ '
przy czym, w naszym przypadku d = 1, n = 3 natomiast ¥m = —1. Jak widag¢,

powyzsze wyrazenie jest uogoOlnieniem na d-wymiarowy i Fm defektowany zbior
Cantora. Stad singularnos¢,

dr (k) 1P (nd F m)_(k_l) In (nd F m) + (1 — p)n~d*=D1n (nd)
— dk Inn p(ndFm) "D 1 (1 p)p-dt-

n(k)
(5.95)

oraz widmo singularnosci
fn(k) = kn(k) —7(k)
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Ep (nd F m)_(k_l) In (nd F m) + (1 = p)n~ 4=V n (nd)

Inn p(nd T m)—(k‘—l) + (1 — p)n—dt=1)
In (p(n? 5 m)~ ¢ 4 (1 — p)n-dk=1) - o
ln n Y ( ‘ )

stanowiace kontaktowa transformacje Legendre’a.

Statystyczne diabelskie schody

Jako ciekawostke podamy prosty przepis na zbudowanie tzw. diabelskich schodow w
pokoleniu &, bazujacy na opisamej powyzej staystycznej kantoryzacji masy.

5.6 Multifraktalna Analiza Fluktuacji
Detrendowanych

Koncepcja skalowania multifraktalnego postuzyta fizykom do konstrukeji niezwy-
kle waznej i szeroko juz dzisiaj stosowanej metody zwanej Multifraktalna Analiza
Fluktuacji Detrendowanych (ang. Multifractal Detrended Fluctuation Analysis, MF-
DFA). Zostata ona tutaj podzielona na pie¢ etapéw, utatwiajacych jej algorytmiza-
cje.

Etap wstepny: definicja szeregu czasowego

Niech rozwazany szereg czasowy {xy }i_, sktada si¢ z 1 < N < oo elementéw (liczb)
indeksowanych dyskretnym wskaznikiem k, przy czym dopuszczona jest mozliwosé
znikania elementéw szeregu wewnatrz przedziatu czasowego, tzn. dla 2 < k < N —1.
Jak wida¢, analizuje sie tutaj jedynie wartosci szeregu traktujac czas jako zdyskrety-
zowany, czyli na sposob statokrokowy. Przykladowym szeregiem jest tutaj minutowy
WIG z Warszawskiej GPW (patrz rysunek 5.7).

Etap pierwszy: konstrukcja profilu szeregu
Zdefiniujemy profil szeregu jako skumulowana, centrowana zmienng losows postaci:

Y (i) :kj:(xk (&), i=1,2,...,N, (5.97)

gdzie (x) jest estymata wartosci oczekiwanej szeregu czasowego. W dalszym ciagu
zbiér zmiennych losowych (profili) {Y (i)}, bedzie traktowany jako nowy szereg
czasowy a sama zmienna jako formalne przemieszczenie po i-krokach czasowych
hipotetycznej "mréwki” finansowej (stanowiacej odpowiednik btadzacej molekuty).
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Rysunek 5.7: Minutowy WIG z Warszawskiej GPW przedstawiony (przyktadowo)
od poczatku pazdziernika 1999 do konca czerwca 2006.
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Etap drugi: konstrukcja substratu

Podzielimy przedziat czasu [1, N| na Ny = int(N/s) nieprzekrywajacych sie segmen-
téw o jednakowym rozmiarze!! s. Poniewaz najczesciej rozmiar s jest niewspotmierny
z N wiec czes¢ segmentu o rozmiarze N — s Ny mniejszym od s pozostaje. Aby nie
odrzucaé tej czedci budujemy kolejnych N, segmentow o rozmiarze s, ale przeliczamy
je od konca do poczatku (czyli od N do 1) a nie jak poprzednio od 1 do N. W ten
sposob dysponujemy substratem o dwukrotnie wickszej liczbie segmentéw rownej
2N, (wciaz o jednakowym rozmiarze s).

Etap trzeci: eliminacja lokalnych trendéw

W kazdym sposrod 2N, segmentow trend jest przyblizany za pomoca wielomianu w!
ustalonego stopnia m = 1,2, ..., jednakowego dla wszystkich segmentow v i takiego,
ze m < s — 2 (w przeciwnym razie nie byloby mozliwe wyznaczenie wszystkich
wspélezynnikow tego wielomianu). Wspodlezynniki tego wielomianu wyznacza sie
metoda najmniejszych kwadratéw minimalizujac wariancje

F2(u,s) = é S Y [(v = D)s + 4] — wl (i)}, (5.98)

i=1

dla kazdego segmentu v = 1,2,..., N, z osobna; dla kazdego z pozostatych N

segmentéw, v = Ng + 1,..., 2N, minimalizowana jest (odpowiednia) wariancja
1 S
F?(v,s) = => {Y[N — (v — Ny)s +i] —w)'(i)}>. (5.99)
Si=1

Czesto, stopien wielomianu m pojawia sie¢ dodatkowo w (bardziej szczegbtowej) na-
zwie metody mianowicie, MF-DFAm. W ten sposéb mozemy mowi¢ o metodzie
pierwszorzedowej (liniowej) MD-DFA1, drugorzedowej MF-DFA2, trzeciorzedowej
MF-DFA3, itd. Stabilizowanie sie wynikow uzyskanych metodami o réznych rzedach
dostarcza informacji o rzedzie trendu (czyli o najnizszym rzadzie metody, liczac od
ktérego widmo lokalnych wyktadnikéw (osobliwosci) nie ulega juz zmianie). Niestety,
to stabilizowanie sie widma osobliwosci mozna otrzymaé¢ w zasadzie tylko na drodze
numerycznej, dedykowanej kazdemu rozpatrywanemu multifraktalowi z osobna.

Etap czwarty: funkcja fluktuacyjna

Funkcja fluktuacyjna, ktorg w dalszym ciggu bedziemy nazywac funkcja g-fluktuacyjna
zdefinowana zostata w nastepujacy sposob:

Fy(s) = ([F*(s)]2) Y, (5.100)

HUMéwiac o rozmiarze mamy na mysli liczbe punktéw.
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gdzie $rednia (...) zdefiniowano nastepujaco:

1 2N

([F2())7?) = o7 D[F (v, )72, (5.101)
2N, =

przy czym q jest tutaj liczba rzeczywista rézna od zera (do tego przypadku powré-

cimy jeszcze w dalszej czesci). Naszym zasadniczym celem jest znalezienie

zaleznosci funkcji g-fluktuacyjnej od wielkosci przedziatu s dla réznych

wartosci q.

Etap piaty: skalowanie funkcji g-fluktuacyjnej

Jestesmy zainteresowani potegowa zaleznoscia funkcji g-fluktuacyjnej od s tzn. za-
leznodcig postaci,

F,(s) ~ s"9, (5.102)
gdzie h(q) jestw tzw. uogélnionym wyktadnikiem Hursta. Z tego typu zaleznoscig
mamy do czynienia np. wtedy gdy szereg czasowy {x; }i_, wykazuje dtugookresowe
korelacje (a wiec zanikajace na sposéb potegowy). Na rysunku 5.8 sprawdzono za-
leznos¢ (5.102) w oparciu o wspomniany wczesniej minutowy WIG. Tak uzyskana
zaleznos¢ uogolnionego wyktadnika Hursta od ¢ przedstawiono na kolejnym rysunku
5.9.

Dla kompletnosci na rysunku 5.10 przedstawiono zaleznos¢ uogdlnionego wy-
ktadnika 7 od ¢ dla minutowego WIG. Wykladnik ten zostal zdefiniowany wzorem

7(q) = qh(q) — 1. (5.103)

Tym samym, wyktadnik ten kalibruje sie nastepujaco: 7(¢ = 0) = —1 (patrz rysunek
5.11). Wreszcie, dysponujac uogdlnionym wyktadnikiem 7(¢) mozna byto wyznaczy¢
widmo osobliwosci (patrz rozdz. 5.4.3) - przedstawiono je na rysunku 5.12.

Zwrbéémy uwage, ze otwartym pozostaje pytanie o zwigzek definicji (5.103)
z uogdllnionym wyktadnikiem (5.67) (patrz rozdz. 5.4.2). Do zagadnienia te-
go przechodzimy w kolejnym rozdziale.

5.6.1 Zwigzek funkcji luktuacyjnej z suma statystyczng
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Rysunek 5.8: Zalezno$¢ funkeji fluktuacyjnej od szerokosci przedziatu dyskretyza-
cji s dla szesciu przykltadowo wybranych wartosci ¢ dla wspomnianego wczesniej
minutowego WIG.
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Rysunek 5.9: Zaleznos¢ uogélnionego wyktadnika Hursta od ¢ dla minutowego WIG.
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Rysunek 5.10: Zaleznosé¢ uogdlnionego wyktadnika 7 od ¢ dla minutowego WIG.
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Rysunek 5.11: Zaleznos¢ uogélnionego wyktadnika 7 od ¢ dla minutowego WIG w
zakresie —3 < ¢ < 3, czyli znacznie zawezonym w stosunku do przedstawionego na
rysunku 5.10.
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Rysunek 5.12: Zaleznos¢ widma osobliwosci f od singularnosci a dla minutowego
WIG w zakresie 0.35 < a < 0.85.
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Rozdzial 6

Transport dyspersyjny -
doswiadczenia Sharfe’a, Gilla i
Pfistera

Pigkne do$wiadczenie, w ktorym zaobserwowano anomalny, dyspersyjny transport
zostalo wykonane po raz pierwszy w roku 1970 przez M.E. Sharfe’a (”Transient
Photoconductivity in Vitreous As,Ses”, Phys. Rev. B 2, 5025-5034); w roku 1974
G.Pfister podjal dalsze badania nad tym zwigzkiem, analizujgc zaleznos¢ anomal-
nego transportu od cisnienia przytozonego do probki (”Pressure-Dependence Elec-
tronic Transport in Amorphous As;Ses”, Phys. Rev. Lett. 33, 1474-1477). Obaj
autorzy badali zalezne od czestosci fotoprzewodnictwo w amorficznym aAs,Ses, mie-
rzac zanikanie w czasie fotopradu wywotanego krotkotrwatym impulsem $wietlnym.
Uktad pomiarowy przedstawiono schematycznie na rys.6.1. Jak wida¢, jego zasadni-
czym elementem jest probka zbudowana ze wspomnianego powyzej $wiattoczutego
polprzewodnika o przewodnictwie dziurowym umieszczona pomiedzy dwiema elek-
trodami, z ktérych jedna (zlota) jest pélprzezroczysta; jej impulsowe o$wietlenie
pozwala na wygenerowanie w probce przewodzacych dziur ktore, dzigki przytozone;j
do elektrod (niewielkiej) réznicy potencjatéw, wedruja do przeciwnej elektrody, da-
jac zanikajacy w czasie prad dziurowy - natezenie tego pradu I(t) jest mierzone w
funkcji czasu. Wynik (w skali In —In) przedstawiono na rys.6.2 - widaé¢ dwa rdézne
obszary potegowej zaleznosci pradu od czasu.

Dla poréwnania na rys.6.3 (gérna czes¢) zamieszczono zaleznosé pokazujaca za-
nikanie pradu dla sytuacji normalnej, gdy dyfuzja i dryf opisana jest biegnacym roz-
ktadem Gaussa. Dolna cze$¢ rysunku dotyczy rozktadu Pareto-Lévy’ego i jest przez
nas omawiana ponizej. Warto doda¢, iz otrzymany efekt ma charakter ogoélniejszy a
mianowicie, w 1972 roku W.D.Gill (J.Appl.Phys. 43, 5033-5040) zaobserwowal go
takze dla organicznego kompleksu trinitrofluorenone i poly-n-vinylcarazole. Jednym
z zasadniczych celow niniejszego wykltadu jest wyjadnienie zaobserwowanego efektu,
ktory jest kluczowym dla zrozumienia tzw. dyfuzji anomalne;j.
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Rysunek 6.1: Schematyczny uktad elektryczny do pomiaru relaksacji fotopradu w
amorficznych filmach.

6.1 Bladzenie w czasie cigglym

W niniejszym rozdziale przedstawiamy model skokowego btadzenia pojedynczego
atomu w czasie cigglym; rozni sie on od poprzednio omawianych prostszych modeli,
ktore byty asymptotycznie réwnowazne modelowi skokowego btadzenia atomu w
czasie dyskretnym. Rozwazamy dwie sytuacje:

1) pod nieobecno$¢ zewnetrznego pola (potencjal ten przedstawiono schematycz-
nie na rys. 6.4),

2) w obecnosci zewnetrznego pola (potencjal ten przedstawiono schematycznie
na rys. 6.5) wywolujacego dryf.

To wtasnie wprowadzenie formalizmu matematycznego! pozwalajacego opisaé do-
wolne btadzenie w kazdej chwili stanowito przetomowy krok w teorii proceséw przy-
padkowych. Wyprowadzito to badania poza Centralne Twierdzenie Graniczne, czyli

W literaturze anglosaskiej nosi on nazwe Continuous-Time Random Walk.
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Rysunek 6.2: Relaksacja fotopradu zmierzona w amorficznym aAssSe3.

rozszerzyto je na procesy niegaussowskie, tzn. wychodzace poza ruchy Browna, a
w tym zwlaszcza na procesy z pamiecig, ktére umozliwity wprowadzenie do fizy-
ki procesow Lévy’ego. Potencjal przedstawiony na rysunkach 6.4 i 6.5 jest podstawsa
popularnego dolinowego modelu blgdzen przypadkowych, ktoéry w dalszym ciggu ana-

lizujemy pod nieobecnos¢ oraz w obecnosci zewnetrznej statej sity F' wywolujacej
dryf .

6.1.1 Podstawowe wielkosci
[lo$ciowe sformutowanie modelu rozpoczynamy od wprowadzenia

1) gestosci prawdopodobienstwa ®g(t) przetrwania czasteczki w danej dolinie po-
tencjatu o glebokodci £ przynajmniej przez okres czasu t, czyli przetrwania od
chwili poczatkowej w ktorej czasteczka pojawita sie w niej, przynajmniej do
chwili ¢ (tzn. czasteczka moze przetrwaé dtuzej w danej dolinie potencjatu ale
na pewno nie krocej),

oraz powiazanej z nig
2) funkcji rozktadu czaséw oczekiwania czasteczki w dolinie potencjatu, ¢g(t).
Funkcja ¢g(t) jest zdefiniowana jako gesto$é prawdopodobienstwa, ze czasteczka

przetrwa w (dowolnie) wybranej dolinie potencjalu o glebokosci € doktadnie do
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Rysunek 6.3: Relaksacja fotopradu dla rozktadu Gaussa (lewy rysunek) oraz dla
rozkladu Pareto-Lévy’ego (prawy rysunek).

chwili ¢ tzn. doktadnie w chwili ¢ opusci te doline. Z powyzszych dwéch definicji
wynika nastepujacy zwigzek pomiedzy obiema funkcjami,

De(t) = / At pe(t') =1 — / dt' pe (), (6.1)
t 0
gdzie przy zapisaniu drugiej rownosci skorzystaliSmy z warunku normalizacji
/ dtde(t) = 1. (6.2)
0

Warunek ten méwi, ze w danej dolinie potencjatu czastka z pewnoscia przetrwa
dowolnie dtugi okres czasu. Funkcja ¢¢ jest wygodniejszg do dalszego operowania
dlatego traktujemy ja w naszym modelu jako wyjsciowa; czesto jednak, zwtaszcza na
etapach posrednich, postugujemy sie takze obiema funkcjami. W calym niniejszym
wyktadzie przyjmujemy, funkcje rozktadu czasow oczekiwania w postaci Poissona

pe(t) = V°(E) exp(—1°(E)t), (6.3)

gdzie 10(€) jest czestoscia przeskokéw czasteczki pomiedzy sasiednimi dolinami po-
tencjatu (w przypadku jednowymiarowym moga to by¢ dwaj najblizsi sasiedzi, patrz
rys. 6.4) w nieobecnosci zewnetrznej sity wywotujacej dryf. Z powyzszego wzoru oraz
relacji (6.1) otrzymujemy, ze

e (t) = exp(—12(E)t). (6.4)
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Rysunek 6.4: Bladzenie molekuly w potencjale dolinowym pod nieobecnos¢ ze-
wnetrznego pola (stad poziom odniesienia potencjaltu jest rownolegly do osi z-6w).

Mozemy teraz przystapi¢ do skonstruowania separowalnej, czastkowej funkcji
rozkladu czasow oczekiwania, ktora oznaczymy przez 1g¢(x,t) (zapis ten nie ma nic
wspélnego z analogicznym, oznaczajacym funkcje falowa w mechanice kwantowej).
W tym celu musimy dodatkowo wprowadzi¢

3) przestrzenny rozktad przemieszezen p(z)

zdefiniowany jako gestos¢ prawdopodobienstwa przemieszczenia sie czasteczki o wek-
tor x (poniewaz ruch czasteczki jest jednowymiarowy dlatego dla uproszczenia opu-
Sciliémy oznaczenie .7.). Oczywiscie, spelnia on warunek normalizacyjny postaci

/ " dap(z) = 1. (6.5)
0
Przyktadowo, rozktad p(z) mozna przyjaé¢ w postaci,
1
p(z) = 5[6(z = bo) + 6z + bo)] (6.6)

gdzie by jest staty odlegtoscig pomiedzy sasiednimi dolinami potencjatu. Tego typu
rozktad dopuszcza, jak widac, jedynie przeskoki pomiedzy dolinami oddalonymi o
bo.

Teraz mozemy zapisac
Ve(z,t) = p(z)de(l); (6.7)
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Rysunek 6.5: Bladzenie molekuly w potencjale dolinowym w obecno$ci zewnetrznego
pola (stad poziom odniesienia potencjatu jest nachylony pod niezerowym katem do
osi z-6w).

jak widac, czgstkowa funkcja rozktadu czasow oczekiwania jest gestoscia prawdo-
podobienstwa nastepujacej sekwencji zdarzen: najpierw czasteczka przetrwa w
danym miejscu (tzn. dolinie potencjatu) az do chwili ¢ a nastepnie, dokladnie
w chwili ¢, przemiesci sie (a dokladniej, dokona przeskoku) o wektor z. Se-
perowalnosé¢ czagstkowej funkcji rozktadu jest tutaj narzucona separowalnoscig obu
zmiennych stochastycznych tj. przemieszczenia = oraz czasu t. (Zauwazmy, ze czas
wystepuje tutaj jako zmienna losowa co, jak zobaczymy, w niczym nie zmienia jego
roli.) Zaktadajac separowalno$¢ funkeji ve(z,t) przyjmujemy tym samym, ze dwa
zasadniczo rozne zdarzenia takie jak oczekiwanie oraz przemieszczenie sie czastecz-
ki sg od siebie statystycznie niezalezne. Zatozenie to wydaje sie catkiem naturalne
dla tak elementarnych proceséw o jakich tutaj méwimy. W drugiej czedci niniejszej
pracy omowimy takze btadzenia nieseparowalne.

Z warunkéw normalizacyjnych (6.2), (6.5) oraz definicji (6.7) wynika bezposred-
nio niezbedny warunek normalizacyjny

/0 Tt [ o; e (z,t) = 1; (6.8)

w przypadku ogélniejszym, gdyby funkcja rozkladu g (z,t) nie byta separowalna,
wowezas musieliby$my warunek (6.8) po prostu narzuci¢ jako wymagana normaliza-
cje. Ponadto, z definicji (6.1) i (6.7) oraz z warunku normalizacyjnego (6.5) otrzy-
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mujemy, ze

Ue(t) = /too dt’ /O:O dre(z, ) = 1 — /Ot dt’ /O:O e (1), (6.9)

gdzie definicja funkcji We(t) oraz ®g(t) sa identyczne, a w przypadku separowal-
nym (ktéry dotyczy zaréwno bladzenia pod nieobecnosé jak tez w obecnosci pola
co zostanie wykazane ponizej), uzyskujemy We(t) = ®g(t)). Warto podkresli¢, ze
réwnosci wystepujace w (6.9) maja charakter ogdlny, niezalezny od wlasnosci sepa-
rowalnosci funkgeji rozktadu ¢e(z,t), i wynikaja tylko z jej definicji oraz z warunku
normalizacyjnego (6.8).

6.1.2 Funkcja rozkladu czas6w oczekiwania w obecnosci dry-
fu

Wystepowanie systematycznego dryfu (wywolanego zewnetrzna sita dzialajaca na
wedrujacy atom, patrz rys.2(6.1)) zmienia, jak zobaczymy, posta¢ funkcji rozktadu
czasoOw oczekiwnia g (z,t) oraz wymaga rozszerzenia relacji (6.1). Jednak nadal,
jako podstawowa funkcje rozktadu, mozna uzywaé g (z,t).

W pierwszym kroku, wprowadzamy czesto$¢ v+(€) przeskoku atomu pomiedzy
sasiednimi dolinami potencjatu (patrz, rys.2(6.1)) w kierunku odpowiednio zgodnym
z dryfem (znak +) oraz przeciwnym do niego (znak —). Zgodnie z interpretacja
funkcji rozktadu przybiera ona teraz postac

¢S($vt> :¢;(I7t)+¢5_(x7t)v (61())
gdzie wprowadziliémy oznaczenie
77Z)§:(I7 t) - V:t(é’)(;(x + bO) eXp(_V<g)t)7 (6'11)

wynikajace z istnienia dryfu przy czym sumaryczna czestosé

v(&)=vT(&)+v (E) (6.12)
oraz czestosci kierunkowe
vE(E) = pF0(€) (6.13)
gdzie waga
" exp(+Fby/2kgT) _ Lexp(£Fby/2kgT) (6.14)

- exp(Fby/2kpT) + exp(—Fby/2kpT) 2 cosh(Fby/2kgT)’

jest prawdopodobienstwem wyboru jednej z dwbch orientacji pojedynczego przesko-
ku - jak wida¢, ma miejsce niezbedna normlizacja p* +p~ = 1; z (6.13) oraz (6.14)
wynika niezwykle pozyteczna relacja,

v(€) =1°(€) (6.15)
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co oznacza w oparciu o wyrazenie (6.11), ze
VE (2, ) = pT8(x F b))’ (E) exp(—v (L) = pT6(z F by)ge(t). (6.16)

Tym samym, czastkows funkcje rozktadu czaséw oczekiwana mozna przedstawi¢ w
postaci separowalnej

Ye(x,t) = p(x)ge(t); (6.17)
analogicznej do tej dla przypadku niewystepowania zewnetrznego pola, gdzie
p(x) = po(z — by) +p~d(x + bo) (6.18)

jest uogélnieniem wyrazenia (6.6) na przypadek uwzgledniajacy istnienie zewnetrznego
pola.

W przypadku stabego pola zewnetrznego czyli Fby/2 < kgT, wyrazenie (6.14)
upraszcza sie do postaci liniowej,

1 Fb
T (14 0
p ( kpT

: ), (6.19)

szczegblnie przydatnej w teorii liniowej odpowiedzi (przy obliczaniu podatnosei i
przewodnictwa).

W drugim kroku, dysponujac wzorem (6.10) na funkcje rozktadu ¢ (x,t) oraz
pomocniczymi okresleniami (6.11) - (6.19) mozemy juz skorzystaé¢ z rozszerzonej
definicji (6.9) gestosci prawdopodobienstwa We(t) przetrwania czasteczki (przynaj-
mniej) przez czas t w danej dolinie potencjatu o gltebokosci &, otrzymujac postaé

Ve (t) = exp(—"(E)t) = Pel(t) (6.20)

identycza jak w przypadku braku zewnetrznego pola. Oba zasadnicze wzory, zardw-
no (6.17) jak i (6.20) wynikaja z separowalnosci czastkowej funkcji rozktadu czaséw
oczekiwania oraz niezaleznosci sumarycznej czestosci przeskokéow v(€) od zewnetrz-
nego pola.

Dysponujac wprowadzonymi powyzej gestosciami prawdopodobienstw, przys-
tepujemy do obliczenia propagatora opisujacego proces btadzenia przypadkowego
zaréwno pod nieobecnos¢ jak tez w obecnosci zewnetrznego pola wywotujacego dryf.

6.1.3 Propagtor jednoczastkowy

Zasadniczym celem niniejszego rozdzialtu jest wyznaczenie propagatora P(X,t | Xy, to)
lub inaczej méwiac, jednoczastkowej warunkowej gestosci prawdopodobienstwa zna-
lezienia czasteczki w potozeniu X w chwili ¢ pod warunkiem, ze poczatkowo cza-
steczka ta znajdowala sie w potozeniu Xy w chwili #y. Czasteczka mogta pojawic
sie¢ w danej dolinie potencjatu w potozeniu X w chwili ¢ w wyniku nastepujacych
procesow:
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1) mogta trwaé¢ w danej dolinie potencjalu w potozeniu X (= X) od samego
poczatku az do chwili ¢, o ile tak sie ztozyto, ze potozenie to byto poczatkowym
- takie trwanie opisujemy za pomocg propagatora Pg(o) (X, t] Xo, to),

2) mogta sie znalezé w potozeniu X w wyniku pojedynczego przelotu - proces ten
opisujemy propagatorem Pé;,)g(X ,t ] Xo,t0), lub

3) w wyniku dwoch kolejnych przelotéw przedzielonych oczekiwaniem w jakiejs
dolinie potencjatu - proces ten opisujemy propagatorem P(s(’g?gl’g(X ,t ] Xo, to),

4) itd., itp., ogdlnie rzecz biorac,

5) czasteczka mogta pojawié sie w danej dolinie potencjalu w poltozeniu X w
chwili ¢ w wyniku n(> 1) przelotéw, z ktérych kazdy byt poprzedzony (krét-
szym lub dtuzszym) oczekiwaniem w jakiej$ dolinie potencjatu - proces ten

opisujemy za pomocy czastkowego propagatora Pé‘:’)gl“"’gnil’g(X,t | Xo,to)-

Reasumujac, powyzsze procesy ujmujemy za pomoca sumarycznego propagatora,
0
Pgo,51,52,...,5(X7 t | X07 tO) - Pé(‘ )(Xut | XO? tO)
+ S P e e(Xot] Xoto),  (6.21)
n=1
opisujacego gestos¢ prawdopodobienstwa znalezienia czasteczki w potozeniu X w
chwili ¢ w wyniku dowolnego procesu tzn. trwania w polozeniu poczatkowym (jezeli
X = Xj - skladnik o indeksie n = 0 w wyrazeniu (6.21)) badZ tez jako rezultat
procesu sktadajacego sie z dowolnej liczby wystepujacych na przemian oczekiwan i
przelotéw (wyrazy z n > 1).

Mozna teraz postawi¢ pytanie o zwiazek wczesniej wprowadzonego propagatora
P(X,t | Xo,to) z powyzej zdefiniowanym Pg, ¢, ¢,...e(X,t | Xo,t0)? Aby znalezéé

ten zwiazek zapiszmy w jawnej postaci propagatory czastkowe Pé‘:’)(c/‘17""5n7 Le(Xot |

Xo,tg), n=0,1,2,... , wprowadzajac dogodniejsza notacje. Mianowicie,
PO(X, t)(= PO(X,t | Xo,t0)) = (X — Xo)We(t — to), (6.22)
nastepnie
t
P (X, 1)(= PL:(X | Xo,to)) = /0 dty e, (X — Xo, t1 — o) Ue(t —t1), (6.23)

oraz

0 t to
P, e(X, (= Pk, o(Xot | Xot)) = [ doy [ dta [ "ty
Ve (11 — Xo, t1 — to) Ve, (X — 1, te — 1) We(t — o), (6.24)
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itd., w og6lnosci zapisujemy

Pf/(‘O,)gh wEn—1, S(X t)( P(c/('o)gl SEn—1, E(X t ‘ Xo,to))

tn
—/ da, 1. /dxg/ dxl/dt . /dt1

Ve, (w1 — Xo, t1 — to)ve, (T2 — 21,80 —t1) . Ve, (X — 21, ty — t1)

Ue(t —t,), n=1,2,3,...; (6.25)
Wyrazenia (6.23), (6.24) i (6.25) opieraja sie w istocie rzeczy na zalozeniu, ze funk-
cja rozktadu Ve (ry — x1, to — t1) opisuje stan réwnowagi czastkowej (lokalnej) zatem
zalezy od réznicy zmiennych przestrzennych i czasowych tak jak to ma miejsce w sta-
nie rownowagi zupetnej - dyskusji tej sytuacji poswiecamy wiecej miejsca w dalszej
czesci. Co wiecej, wyrazenia te zostaly skonstruowane przy zatozeniu, ze pierwsze
oczekiwanie i nastepujacy po nim przelot sa opisywane ta samg funkcja rozktadu
co i nastepne tego tupu pary zdarzen - takze i ten subtelny aspekt procesu btadzen
omawiamy w dalszej czesci.

Jak wida¢, propagatory typu P zawierajq w sobie dodatkowo informacje o gle-
bokoSciach odwiedzonych przez czqsteczke dolinach potencjatu; dopiero usrednienie
tych propagatoréw po "krajobrazie” energetycznym daje propagatory typu P. Po-
nizej omawiamy te procedure sredniowania.

Po pierwsze zaktadamy, ze glebokosci dolin potencjatu sg od siebie statystycznie
niezalezne co oznacza, ze rozklad p(&y, &1, ..., &y, .. .) z ktérym $redniujemy propa-

gatory czgstkowe P‘(J('(:Z’?gl’“qgn (X,t), n =0,1,2,..., (a stad propagator sumaryczny
Pey g6 (X, t)) faktoryzuje sie tzn.

Na mocy powyzszego, Sredniujac réwnosci (6.22) oraz (6.25), otrzymujemy odpo-
wiednio

POX, 1) = (= POX, ] Xo, o)) = 6(X — Xo)U(t —ty),  (6.27)
P(n)(X, t)(E P(n (X,t | X(),t() = / dxn—l .. / de/ dl’l
t tn t2
/() dtn 0 dtn,1 .. /0 dtl w(l'l — Xo,tl — to)w(l'g —x, t2 — tl) Ce
ﬂ)(X — Tp-1, tn — tn_l)‘lj(t — tn),
n=1,2,3,..., (6.28)

gdzie wprowadziliSmy nastepujace oznaczenia wielkosci srednich
U, t) = [ dEp(E)ve(a. ),
()= [ dEp(E)Te),

PO (X, 1) = / / /oodé’odé’l...dé’n

p(go) (51) (5 )PSO &1, (X t) n = 1, 2, N (629)
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ktore w dalszym ciggu zinterpretujemy, wskazujac na sposéb ich realizacji. Osta-
tecznie, z (6.28) oraz (6.21) otrzymujemy wyrazenie,

P(X,t) = i PM(X, 1) (6.30)

n=0

ktore pozwala rozpoczaé postepowanie umozliwiajace skonstruowanie odpowiedzi na
pytanie dlaczego, na poziomie makroskopowym, niektore rodzaje bltadzen postrze-
gamy jako posiadajace charakter singularny (fraktalny)?

6.1.4 Posta¢ zamknieta propagatora

Narzuca sie teraz zasadnicze, techniczne pytanie mianowicie, jak zapisaé¢ (o ile to
jest mozliwe) propagator (6.30) w postaci zamknietej? Na szczescie, odpowiedz na
to pytanie jest pozytywna wymaga jednak przejécia do transformat Fouriera oraz
Laplace’a. Wtedy rownanie (6.30) przybiera postaé

P(k,s) =Y P™(k,s), (6.31)
n=0
gdzie skorzystalismy z definicji transformaty Fouriera-Laplace’a postaci
Flk,s) = / dX exp(—ikX) / dt exp(—st)F(X, 1) (6.32)
—00 0

tutaj F jest dowolng funkcja spetniajaca twierdzenie o odwracaniu transformat Fo-
uriera oraz Laplace’a (patrz I.M. Ryzyk i 1.S. Gradsztajn, ”Tablice catek, sum,
szeregbw 1 iloczynéw”, PWN, Warszawa 1964). Korzystajac z definicji (6.28) pro-
pagatora P i (6.28) propagatora P oraz transformaty Fouriera-Laplace’a (6.32)
mozna obliczyé¢ (patrz Dodatek ...), ze

75(”)(k:, s) = ‘il(s)[zz(k, )", n=0,1,2,.... (6.33)

Stad oraz z (6.31) otrzymujemy poszukiwana, zamknieta postaé¢ sumarycznego pro-
pagatora w przestrzeni odwrotnej (czyli w zmiennych Fouriera-Laplace’a),

Bl s) = — o) 11-¢(k=0.5) (6.34)
1—4(k,s) s 1—1u(k,s)
gdzie, przy wyprowadzeniu drugiej rownosci, skorzystaliémy dodatkowo z usred-
nionej po £ transformaty Laplace’a formutly (6.9).
Zauwazmy, ze do wyprowadzenia powyzszej formuly nie byto potrzebne zatoze-
nie o separowalnosci funkeji rozktadu ¢(x,t) - w takim przypadku formuta (6.34)
przyjmuje postac

() __1 1-9() (6.35)

é —
1= 0()p(k) 51— o(s)(k)
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gdzie podobnie jak dla (6.34), skorzystaliSmy z (usrednionej po &) transformaty
Laplace’a formuty (6.1).

Teraz mozemy juz bardzo precyzyjnie sformutowac zasadniczy cel niniejszej pracy
mianowicie, jest nim analiza propagatora danego wyrazeniem (6.35) poprzez analize
funkcji rozktadu czasow oczekiwania ¢ oraz czynnika struktu- ralnego przelotow p.

6.1.5 Uogoblnione réwnanie mistrza

Réwnanie (6.35) pozwala na wprowadzenie tzw. catkowego jadra pamieci (w skrdcie
po prostu pamieci). Aby to wykazaé, prawa strone tego réwnania zapiszmy jako
1/[s — K(k, s)] skad po prostych, algebraicznych przeksztalceniach otrzymujemy, ze

K(k,s) = [p(k) = 1]¢(s) (6.36)
jest dane takze w postaci separowalnej przy czym,
(s)
1—1)(s)
jest, jak wykazemy, poszukiwana pamiecia. Mozemy teraz przepisaé rownanie (6.35)

nastepujaco,
sP(k,s) — Pk =0,t) = K(k,s)P(k,s) = [p(k) — 1]@(s)P(k, s), (6.38)

o(s)=s (6.37)

co pozwala na przejscie do postaci rézniczkowo—catkowej; przy wyprowadzaniu (6.38)
z (6.35) skorzystaliSmy z warunku poczatkowego

P(X,t=0)=06(X)=P(k,t=0) (6.39)

jaki musi spelnia¢ propagator. Zauwazmy, ze lewa strona rownania (6.38) jest trans-
formata Laplace’a pochodnej po czasie propagatora P(k,t) a prawa transformata
Laplace’a konwolucji czasowej wielkosci K oraz P. Zatem,

%p(k t) = / dt'K(k,t — )Pk, 1)

_ / dt'[p Jo(t — )Pk, 1) (6.40)

Jak widaé, funkcja ¢ pelni role pamieci gdyz ( w ogdlnosci) pozwala na uzaleznienie
aktualnego zachowania propagatora od jego zachowaniia w przesztosci (tzn. dla czasu
t<t).

6.1.6 Pierwszy moment

Aby wyjasni¢, wspomniane na wstepie, doswiadczenia Sharfe’a, Gill’a i Pfister’a
musimy obliczy¢ pierwszy moment (X (¢)). W tym celu zauwazmy, ze
. . ) 1 ~
X(s)) = —iViP(k,S) |g=0o= —— = Vi(k,s) |k=o, 6.41
(X =~V 5) o= — s Vib(k ) o (640
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gdzie skorzystaliSmy po drodze ze wzoru (6.34). Dla separowalnej funkeji rozktadu

¥(k, s) powyzszy wzor upraszcza sie do postaci

<X(8)> = —z‘V;ﬂS(k, S) |k=o= —é%vkﬁ(lﬂ) k=0, (6.42)

gdzie teraz zastosowaliSmy wzér (6.35). W dalszej czesci, wykorzystamy jawna po-
sta¢ p(k) oraz ¢(s) aby przedstawié explicite wyrazenie (6.42) i tym samym wyjasnié
pierwsza czes¢ wykresu zamieszczonego na rys.2(6).

Przyktad. Przypusémy, ze p(z) dane jest wzorem (6.18); zatem czynnik struktu-
ralny btadzenia przypadkowego przybiera postac

B(k) = (" +p~) cos(k) +i(p* —p~) sin(k). (6.43)
Stad i ze wzoru (6.42) otrzymujemy proste wyrazenie,
L o(s)

X(s)) = (pt —p)m———, 6.44
(X(s)) = (p p)81_¢(s) (6.44)
do ktérego powrdcimy w dalszej czesci, po wyznaczeniu jawnej zaleznosei ¢ od zmien-
nej s.

6.1.7 Rola pierwszego oczekiwania oraz przelotu

Rozwazymy teraz sytuacje ogdlniejsza, w ktorej pierwsze wyczekiwanie i przelot opi-
sane sg inng funkcja rozktadu (oznaczmy ja przez h(x,t)) niz pozostate pary tego
typu zdarzen. Przypadek h = 1) omoéwiony powyzej, dotyczy sytuacji gdy poczatek
procesu zbiega sie z poczatkiem jego obserwacji. Innymi stowy, w momencie poja-
wienia sig czasteczki w uktadzie rozpoczyna sie zarowno proces jej bladzenia jak
tez obserwacja tego procesu. Oczywidcie w ogdlnosci tak by¢ nie musi, tzn. obser-
wacja moze rozpoczaé sie (i na ogdt rozpoczyna sig) znacznie pézniej; tym samym
uktad posiada juz pewng historie, ktorg nalezy uwzgledni¢ przy opisie pierwszego
oczekiwania. Wprowadza to modyfikacje polegajace na tym, ze

1) we wzorze (6.22), definiujacym propagator czastkowy Pg(o) (X, t), nalezy zasta-

pi¢ rozktad We(t) przez ogdlniejszy Z¢(t), zdefiniowany ponizej

2) w pozostatych wzorach (6.23), (6.24) i (6.25) definiujacych propagatory wyz-

szych rzedéw P‘s(’g)é'l""’gn7g(X ,t) (gdzie n > 1) nalezy funkcje rozktadu g, (21 —

Xo, t1 — to) zastapi¢ ogdlniejsza he, (1 — Xo,t1 — to);

oczywiscie, pomiedzy rozkladami h(z,t) oraz Z(t) zachodzi relacja analogiczna do
(6.9) czyli relacji pomiedzy We(t) oraz g (z,t)

o0 o0 t 0
= () = / dt’ / drhe(z,¢) =1 — / dt’ / drhe(z, 1), (6.45)
t —0o0 0 —00
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Mozemy teraz przepisaé¢ réwnanie (6.34) w ogdlniejszej postaci

P(k,s) = Z(s)+ h(k,s)

:-—F—Mk:@@+h@ﬁf_w@zoﬁq.

1—(k,s)

Analogicznie jak w paragrafie 6.1.4, separowalnosé h(z, t)(= q(x)x(t)) oraz ¢¥(z,t)(=
p(z)o(t)) upraszcza wzor (6.46) do postaci

(6.46)

P(k,s) = L

S

- )+ A (6.47)

Oczywiscie, w przypadku gdy h(z,t) = (x,t) oba powyzsze wzory przechodza
w wyprowadzone wezesniej odpowiednio (6.34) i (6.35). Ogélnosé wzordéw (6.46) i

(6.47) pozwala na badanie zaréwno uktadéw znajdujacych sie w stanie réwnowagi
jak tez z dala od niej.

6.1.8 Niejednorodne uogdlnione réwnanie mistrza

W dalszym ciagu wykazemy, ze analogicznie jak to miato miejsce w paragrafie 6.1.5,
réwnanie (6.46) mozna zapisa¢ w postaci rozniczkowo—catkowej. W tym celu, prze-
piszemy pierwsza réwno$¢ w (6.46) w nastepujacej posredniej postaci,

1_12(1673) 1_12(1678)

o) Fs) + h(k,s)}P(k,t = 0)

Pk, s) = {Z(s)
(6.48)

ktorag mozna skrotowo zapisa¢ w dogodniejszej do dalszych przeksztatcen formie,
[s — K(k,s)|P(k,s) = P(k,t = 0) + Z(k,s), (6.49)

gdzie jadro catkowe pamieci

Rk, s) = s L2 8) = (k= 0,) (6.50)
’ 1—k=0,s) '

co jest uogdlnieniem wprowadzonego wezesniej dla przypadku separowalnego (po-
réwnaj (6.36) i (6.37)) a niejednorodnosé

. hk,s) —(k,s) — h(k =0, s) + Uk =0, )

I(k?,S) == 1—1;(]€:O,3>
Bk =0,5)0(k, ) — h(k, )bk = 0.5), (6.51)
1—(k=0,s) ’ '
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jak widaé¢ niejednorodnosé znika jak nalezy gdy h(z,t) = ¥(x,t). Wreszcie, analo-
gicznie jak poprzednio, réwnanie to mozna zapisa¢ w poszukiwanej formie

0 =~ t ~ ~

=Pk, :/ ARk, t — )Pk, ) + Tk, 1). (6.52)
0

Jest to wtasnie niejednorodne, uogoélnione rownanie mistrza. W przepadku separo-

walnym, gdy ponadto h(z,t) = (x,t) réwnanie to przechodzi w wyprowadzone

wczesniej (6.40).

6.2 Przypadkowe pulapkowanie

Rozwazania przeprowadzone w niniejszym rozdziale sktadaja sie z dwodch etapow.
W pierwszym konstruujemy cigglq funkcje rozktadu czasow oczekiwania jako $rednia
wazong, uwzgledniajaca ”krajobraz” energetyczny osrodka; w drugim analizujemy
funkcje pokrewne, $cisle z nig zwigzane np. jej pierwszy moment, ktory jest $red-
nim czasem oczekiwania i pozwala na tatwe odrdznie procesu Poissona od procesu
Lévy’ego

6.2.1 Ciagta funkcja rozkladu czasé6w oczekiwania

Rozwazmy btadzenie skokowe pojedyncze]j czasteczki w potencjale przedstawionym
na rys.6.4; bladzenie tego typu nosi nazwe przypadkowego pulapkowania (ang. random-
trap model) lub alternatywnie modelu dolinowego (ang. valley model).

Zaktadamy, ze gestosé prawdopodobieristwa pojawienia sie doliny o okreslonej gle-
bokosci & lokalnego minimum potencjalu podlega prawu wyktadniczego zaniku (czyli
jest typu Poissona),

p(&) = Aexp <—§) : (6.53)

&
gdzie A jest stalg normalizacyjna, ktéra mozna tatwo obliczy¢ z warunku normali-
zacyjnego

/0 T p(E)dE = 1 (6.54)

podstawiajac wyrazenie (6.53) do tego warunku i wykonujac proste przeksztatcenia
otrzymujemy, ze A = 1/&. Oczywiscie, warunek normalizacyjny (6.54) bierze sie
stad, ze p(€) jest gestoscia prawdopodobienstwa, tego ze wybrana na chybil trafit
dolina potencjalu bedzie miata okreslong gtebokos¢ £; zatem prawdopodobienstwo,
ze bedzie ona miata dowolng gteboko$é jest pewnosciag. W tym miejscu uzasadnionym
jest pytanie o sens fizyczny statej £. Aby go dostrzec zauwazmy, ze

g— /OOo Ep(E)dE, (6.55)
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co oznacza, ze & jest érednig gtebokoscig doliny potencjatu. W powyzszych rozwaza-
niach milczaco przyjmowalismy, ze glebokosci dolin sg nieograniczone. Powinnidmy
uwzglednia¢ fakt, ze w rzeczywistosci tak nie jest i przyjmowac, ze gtebokosé doliny
jest zawarta w przedziale 0 < & < &4z, gdzie £,,4, 0znacza maksymalna glebokosé
jaka moze mie¢ dowolnie wybrana dolina potencjatu. Nieco bardziej skomplikowa-
ne podejscie, uwzgledniajace ten bardziej realny punkt widzenia przedstawiliSmy w
Dodatku .... Jednakze zasadnicze wnioski ptynace z obu podejéé¢ sa identyczne.

Wyrazenie (6.53) na rozktad p(€) jest jednym z dwéch jakie najezesciej stosuje
sie do statystycznego opisu ”krajobrazu” energetycznego uktadéow nieuporzadkowa-
nych a w tym amorficznych czy szklistych; innym jest po prostu rozktad Gaussa.
Nieporzadek widoczny w rozrzucie gtebokosci dolin potencjalu moze by¢ wywotany
przez rozmieszczenie w sposéb losowy réznych atoméw (budujacych sie¢ krystalicz-
na) w weztach danej sieci czyli jest zwiazany z nieporzadkiem sktadu a nie geometrii
sieci (tzn. stala sieci nie ulega zmianie od wezta do wezta). Oba rozktady opisuja sta-
tyczne witasnosci krajobrazu energetycznego i zwigzane sg z wlasnosciami samych
materialéw a nie bladzacej czasteczki. Rozklad (6.53) jest latwiejszy w zastoso-
waniach gdyz jest jednoparametrowy w przeciwienistwie do rozktadu Gaussa (ktory
obok wartosci sredniej zawiera takze dyspersje a ponadto, zawiera kwadrat zmiennej
losowej; role rozktadu Gaussa omoéwilismy w Dodatku ...). W niniejszym rozdziale
zajmujemy sie materialami nieuporzadkowanymi scharakteryzowanymi rozkladem
wyktadniczym (6.53).

W dalszym ciagu przyjmujemy, ze proces blgdzenia ma charakter ponadbarierowy
- termicznie aktywowany co oznacza, ze prawdopodobienstwo przeskoku czasteczki
na jednostke czasu z jednej doliny potencjalu do drugiej, czyli czestos¢ przeskokow
tutaj pomiedzy sasiednimi dolinami dane jest wzorem

£
V(€) = o exp <_—kBT) = o7& (6.56)

gdzie 7 jest czestoscia drgan (podstawowych) w danej dolinie potencjatu, natomiast

A
o) oan

A jest tutaj jednostka energii, kg jak zwykle stalg Boltzmanna, a

T_ T, dla prawa Hopfa—Arrheniusa (HA)
| T -1, przy T >T,, dla prawa Vogela-Tammana-Fulchera (VTF),

co jak wida¢, dotyczy dwoch klas materialéw - prawo HA takich, ktére nie sg szkta-
mi badz sg w stanie dalekim od zeszklenia natomiast prawo VTF materiatéow w
poblizu punktu zeszklenia; wielko$¢ T oznacza jak zwykle temperature absolutna a
T, temperature przejscia do stanu szklistego. Ze wzoru (6.56) wynika, ze éredni czas
oczekiwania (przebywania) czasteczki w wybranej dolinie potencjatu wynosi

(&) = . (6.58)



Z powyzszego wzoru wynika jak by¢ powinno, ze im gtebsza jest dolina potencjatu
tym dtuzszy jest czas przebywania w niej czasteczki.

Trzecim zatozeniem jest poissonowsk: ksztalt funkcji rozktadu czasow oczekiwania
¢e(t), ktora jest zdefiniowana jako gesto$é prawdopodobienistwa, tego ze bladzaca
czasteczka przetrwa w danej dolinie potencjatu o gltebokosci £ doktadnie przez czas
t (tzn. po tym czasie na pewno ja opusci) czyli, ze

b (t) = v°(€) exp(—(E)1). (6.59)

Jak wida¢ w oparciu o (6.56), funkcja ¢¢(t), traktowana jako funkcja zmiennej &,
jest tzw. rozciagnietym eksponentem (‘stretch exponent’).
Naszym celem jest obliczenie nastepujacej sredniej wazonej w postaci zamknietej,

o(t) = [ p€)oc(t)de. (6.60)

ktora jest, oczywiscie, srednig funkcja rozktadu czaséw oczekiwania spetniajaca, jak
widaé¢, warunek normalizacyjny

/OOO dto(t) =1, (6.61)

i odgrywajaca zasadnicza role w modelu btadzen w czasie ciaglym (patrz rozdz.6.1)
w uktadach amorficznych lub nieuporzadkowanych a takze np. w procesie starzenia
sie szkiet (Cécile Mounthus, Jean-Philippe Bouchaud, ”"Models of traps and glass
phenomenology”, J.Phys. A: Math. Gen. 29 (1966) 3847-3869). Powyzsza funkcja
rozktadu oznacza $rednig gesto$¢ prawdopodobienstwa, ze btadzaca czasteczka prze-
trwa w jakiejkolwiek dolinie doktadnie przez czas t. Sredniowanie po glebokosciach
dolin (czyli po zmiennej £) mozna zrealizowa¢ przynajmniej w dwéch réznych po-
dejsciach. Pierwsze polega na rozpatrywaniu zachowania sie wielu niezaleznych cza-
steczek w probee (co odpowiada rozrzedzonemu gazowi sieciowemu) a nastepnie
sredniowaniu po zespole ztozonym z tych czasteczek. Podejscie to jest blizsze do-
$wiadczalnej realizacji niz podejscie drugie. Drugie podejécie polega na (myslowym)
utworzeniu ogromnej liczby replik stochastycznych, czyli uktadéw podobnych do
wyjsciowego ale nie identycznych z nim, sktadajacych sie z pojedynczej bladzacej
czasteczki oraz krajobrazu energetycznego stanowigcego jej srodowisko a wylosowa-
nego z zadanego rozktadu p(£). Sredniowanie po £ w wyrazeniu (6.60) mozna teraz
po prostu wykona¢ po tak zbudowanym zespole statystycznym.

Podstawmy zatem wyrazenie (6.53) oraz (6.59) do (6.60) wykorzystujac (6.56),

o(t) = %/OOO d€ exp (—%) Yo €Xp (_kgi’f) exp <—70 exp (_kBiT) t> . (6.62)

Powyzsza catke mozna obliczy¢ na trzy istotnie rozne sposoby.
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Pierwszy spos6b (obliczenia wprost) polega na przeprowadzeniu pomocniczej za-
miany zmiennych

&
Y = Yo €xp <_/€B—T> t,
d€
_kBTya

ktéra w polaczeniu z réwnaniem (6.62) prowadzi do nastepujacego ciagu przeksztal-
cen

dy = (6.63)

]CBT 1 /0 E
o) = ~T7 [ e (=g) ew-n
Yolx Yot £ a
(%;W/o 4y (70 xp (_kf;—T) t) exp(—y)
« Yot o
(%ZOW ; dyy® exp(—y) = (%)Vtowﬁy(l + o, Yot), (6.64)

gdzie wyktadnik o = kp7 /€ > 0, natomiast (1 + «a, yot) jest niekompletna funkcja
gamma (tutaj zalezna od argumentu ~ot), ktéra posiada nastepujaca decydujaca dla
niniejszego wyprowadzenia wtasnoscé

V(l + «, ’Yot - OO) - FEuler(l + Oé)- (665)

Innymi stowy, w przypadku gdy 7ot > maz(a, 1) otrzymujemy asymptotyczna po-
sta¢ rozktadu ¢(t)

arEuler(l + a)
(yot)tte 7

ktora jest kluczowa dla naszych dalszych rozwazan. Nalezy podkresli¢, ze dopiero
uwzglednienie wszystkich trzech elementéw (6.53), (6.56) oraz (6.59) daje potegowy
w czasie zanik funkcji rozktadu (6.66). Jak widaé, to potegowe zanikanie w czasie
funkcji rozktadu zachodzi dla dowolnego v > 0 ale, jak zobaczymy, fascynujgcym
jest jedynie przypadek o < 1.

Drugi sposoéb przedstawiony w Dodatku E, polega na wyrazeniu funkcji wyktad-
niczej zmiennej ¢t za pomoca transformaty Mellina (patrz, Harry Bateman, Arthur
Erdéley, "Tables of Integral Transforms”, Vol.I, McGraw-Hill Book Comp., Inc.,
New York 1954) a nastepnie zastosowaniu metody obliczania calek konturowych
w plaszczyznie zespolonej przez residua (patrz, Krzysztof Maurin, ” Analiza. Cz.I1.
Wstep do analizy globalnej”, PWN, Warszawa 1971). Podejscie tego typu zostato
takze wykorzystane w trzecim sposobie traktujacym odwrotng transformate Lapla-
ce’a funkcji rozktadu czaséow oczekiwania; omoéwiliSmy go w rozdz. 6.2.3.

Rozwazmy teraz zachowanie funkeji rozktadu ¢(t) dla krétkich czaséw tzn. dla
przypadku gdy vot < 1. Rozwijajac w szereg funkcje eksponens w funkcji podcatko-
wej wyrazenia (6.64), nastepnie wykonujac catkowanie wyraz po wyrazie i ogranicza-
jac sie do wyrazéw kwadratowych w 7ot, otrzymujemy ¢(¢) w postaci wyktadniczej

P(t) ~ o

(6.66)
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Rysunek 6.6: Potegowa zalezno$¢ rozktadu prawdopodobienstwa czaséw oczekiwania
¢ od czasu t dana wzorem (6.66) dla wyktadnikéw o = 0.75 (linia czerwona) i
a = 0.50 (linia niebieska) oraz 79 = 1. Zauwazmy, ze dla t = 0 rozktad ¢(t = 0) =
4a Czyli dla o = 0.75 wynosi okolo 0.43 natomiast dla o = 0.50 okolo 0.33. Dla
porownania przedstawiono wyktadnicza zaleznosé ¢ od czasu t dang wyrazeniem
(6.67) (czarna linia) dla o = 0.75.

(patrz Dodatek D),

«Q 1+«
t) ~ — t]; 6.67
¢() ”Yol+aexp< 2+a70)7 ( )

wynika stad natychmiast, ze ¢(t = 0) = 70755

6.2.2 Wielkosci pokrewne

Niezwykle uzyteczng w naszych dalszych rozwazaniach jest transformata Laplace’a

B)(2 Lu(o(t) = [ dtexp(~ts)o(t) (6.68)

ktéra rozwazamy dla s — 0 co, zgodnie z twierdzeniem Tauberina (patrz Dodatek
J), odpowiada wlasnie sytuacji asymptotycznie dtugich czaséw. Obliczenia przepro-
wadzone w Dodatku G daty, w przypadku gdy a < 1, nieholomorficzna zaleznos¢
od s w otoczeniu s = 0 zaréwno dla

Bs)~1 -+ <i>a, (6.69)
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Rysunek 6.7: Potegowa zalezno$¢ rozktadu prawdopodobienstwa czaséw oczekiwania
¢ od czasu t dana wzorem (6.66) a przedstawiona w skali log — log dla przypad-
kéw przedstawionych na rys.6.6 tzn. dla wyktadnikéw o = 0.75 (linia czerwona) i
a = 0.50 (linia niebieska) oraz 79 = 1. Dla poréwnania przedstawiono wyktadnicza
zaleznosé ¢ od czasu t dana wyrazeniem (6.67) (czarna linia) dla o = 0.75.

jak tez dla

~ 1 -«
O(s) ~ — <@> . (6.70)
Yoy \ s

Jak wykazaliSmy wczesniej, obie funkcje odgrywaja zasadniczg role w modelu bla-
dzen w czasie ciaglym. Zauwazmy, ze z (6.70) otrzymujemy natychmiast asympto-
tyczna zaleznos¢ czasowq postaci

1 1

20~ T tade (671)

co stanowi najkrotsza droge uzyskania asymptotyki funkeji ®(¢). Uogdlnienie wy-
razenia (6.69), obejmujace zar6wno post¢ normalna jak i anomalna wyprowadzimy
ponizej.

6.2.3 Roéwnanie skalowania
Roéwnanie skalowania danej funkeji powstaje w wyniku:
1) operacji liniowego przeskalowania zmiennej niezaleznej,

2) liniowej odpowiedzi samej funkcji na to przeskalowanie.
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Zauwazmy, ze transformata Laplace’a ¢(s) spelnia niejednorodne réwnanie skalowa-
nia

d(v's) = M(s) — MIn(M / de-L (6.72)

gdzie M = exp(A/€) a v jest dana wzorem (6.57). W dalszym ciagu zaktadamy, ze
A/E < 1 i analogicznie A/kpT < 1 co pozwoli nam wykazaé, ze, niejednorodnosé
catkowa sprowadza si¢ do algebraicznej i nie zalezy od v tzn. od czynnika skalowania
zmiennej niezaleznej s. Rozwazamy tylko przypadek asymptotyczny w czasie co
odpowiada (na mocy twierdzenia Tauberina) s — 0. Stad, niejednorodnosé przybiera
przyblizona, prostsza postac

MIn(M /dg ~ Mln(M /dg < mf>

- M—1—iln(M)M<1—i>

Yo In(M~) My
~ (M—1 (1 - %> , (6.73)

gdyz w tym przypadku s/v¢y < 1. Dzieki (6.73) niejednorodne réwnanie skalowania
(6.72) mozna przepisa¢ w postaci

By 1s) = M(s) — (M — 1) (1 - 7) , (6.74)

ktora jest znacznie tatwiejsza do rozwigzania
Rozwiazanie réwnania (6.74) poszukujemy w postaci sumy

9?)(3) = Qgreg(3> + Qgsz'ng(5>7 (675>

gdzie req(s) jest rozwigzaniem ogdlnym, regularnym réwnania niejednorodnego
(6.72) natomiast @gny(s) jest rozwiazaniem szczegblnym, singularnym réwnania jed-
norodnego

&sing(ﬁyils) = ngsing(s)- (676)

Postaé rozwiazania ogélnego jest narzucona przez niejednorodnosé réwnania (6.72).
Poniewaz niejednorodnosé ta traktujemy w sposdb przyblizony (patrz (6.73) zatem,
z doktadnoscig do wyrazow kwadratowych w zmiennej s,

~ 1 s
Preg(s) = 1 — i (6.77)
gdzie wspotezynnik
1-—-L
M
v = T ! (6.78)
M



Mozna sprawdzi¢ (przez podstawienie do réwnania (6.75)), ze rozwiazanie singularne

jest postaci
~ 1 [(s\“
Psing(s) ~ 5 <%> , (6.79)

gdzie wyktadnik a = —In(M)/In(y)(= kpT /£), natomiast 7} jest tutaj nieznanym
wspotezynnikiem; systematyczna metode znalezienia rozwigzania singularnego, a za-
tem i tego wspotezynnika? podalismy w Dodatku A2. Jest on postaci

sin(mav) '

= 6.80
R/ (6.80)
Ostatecznie, rozwiazanie réwnania (6.72) dla s — 0 przybiera nastepujaca, przy-

blizong postac,

~ 1 (s\* 1s
o(s) =~ 1 ( ) . (6.81)
ktéra jest poszukiwanym uogélnieniem wyrazenia (6.69). Gdyby uwzglednié wszyst-
kie wyrazy rozwiniecia Taylora funkcji podcatkowej w niejednorodnosci rownania
skalowania (6.72) (dla | s |< 707), wowczas rozwiazanie regularne é,q4(s) byloby
szeregiem potegowym zmiennej s. Oznacza to, ze Scislne rozwiazanie gZNJ(s) mozna by
zapisa¢ (symbolicznie) w postaci,

do=1-5 (2) -1 e (652
s)=1—-—|—] ——— 57), .
j 7 Yo

gdzie ©(s?) jest reszta (szeregiem potegowym) rzedu nie mniejszego niz s?. Rozwig-

zanie (6.82) a tym samym (6.81) wymaga oméwienia.

6.2.4 Rozklad Lévy’ego a rozklad Poissona

Rozwazmy dwa zasadnicze przypadki, ktore przedstawimy w nastepujacy sposob

11— L (2)r~ L~
Yy 20 1+i(%)
P(s) ~ exp(—2 (= ¢ , dla sytuacji singularnej, czyli a < 1;
Y0

(6.83)

2Dokladniej rzecz biorac, nie jest to staly wspélezynnik a cykliczna funkcja In(s) o okresie réw-
nym — In(vy) - podany tutaj wspélczynnik jest jedynie zerowym przyblizeniem wyrazenia zaleznego
od zmiennej In(s), o czym jest mowa w Dodatku A2.

280



Jak wida¢, uzyskane rozwiazanie singularne jest identyczne z otrzymanym wcze-
$niej (patrz rozdz.6.2.2, wyrazenie (6.69)). Tym samym, asymptotyczna zaleznosé
czasowa funkcji rozktadu jest dana wzorem (6.66) z rozdz.6.2.1. W dalszym ciagu,
asymptotyczne w czasie rozwigzanie regularne uzyskuje sie poprzez bezposrednie
odwrécenie transformaty Laplace’a w wyrazeniu (6.83) dla przypadku o > 1 (patrz
LM. Ryzyk i L.S. Gradsztajn, " Tablice, sum, szeregéw i iloczynéw”, PWN, Warszawa
1964); prowadzi to do rozktadu Poissona

P(t) = Yoy exp(—y071)- (6.84)

Uzyskalismy tym samym dwa rézne typy rozktadéw. Mozemy powiedzie; ze w
przypadku pierwszego z nich zjawiska najistotniejsze opisuje dtugoczasowy ogon
funkcji rozktadu. Natomiast w drugim przypadku korpus funkcji rozktadu a wartosé
parametru o = 1 stanowi prog oddzielajacy te dwa zasadniczo rézne swiaty.

Uzyskany wynik pozwala wyrazi¢ w tych dwoch przypadkach pierwszy moment
w jawnej postaci; najpierw jego transformate Laplace’a

1
t—p)

()
70

,yl

T )3

(p dla sytuacji singularnej, czyli a < 1;

(X(s)) ~

dla sytuacji regularnej, czyli a > 1.

(6.85)
a stad, w zaleznosci od czasu
(X (1)) ~ (p* —p7)7;(wt)*, dla sytuacji singularnej czyli o < 1;
2 D e e (12 a sytuacji regularnej czyli o > 1.
(6.86)
Wreszcie z (6.86) mozna wyznaczy¢ predkosé unoszenia
d + )10 .
C(X(@0) = vy~ @ P g dlaa <
dt (pt —p )Y, dlaa>1.
(6.87)

Tym samym, wyjasniona zostata pierwsza cze$¢ potegowego zaniku fotopradu od
czasu; pozostata jeszcze do wyjasnienia zalezno$¢ w ktorej istotng role odgrywa
absorbujacy wptyw katody.
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6.2.5 Sredni czas oczekiwania

Poszukujemy odpowiedzi na zasadnicze pytanie: jaki jest sredni czas oczekiwania
(2ycia),

() = /0 T to(t)dt, (6.88)

bladzqcej czqsteczki w jakiejkolwiek dolinie (minimum) potencjalu? Rozwazmy klu-
czowy dla naszych rozwazan przypadek a < 1. Latwo dostrzec, podstawiajac (6.66)
do (6.88) (oraz korzystajac z faktu, ze funkcja ¢(t) jest ograniczona), ze (t) = oc.
Podobnie mozna sprawdzi¢, ze takze dowolny moment (') = oo, m = 2,3,....
Oznacza to, ze sredni czas oczekiwania (zycia) czasteczki w dowolnej dolinie (mini-
mum) potencjatu oraz jego dyspersja (rozrzut statystyczny) sa nieskonczene.

Rodzi to szereg pytan - jednym z najwazniejszych jest w jaki sposéb powyzszy
wynik teretyczny moze przejawiaé sie w realnym dosSwiadczeniu? Aby odpowiedzie¢
na to pytanie rozwazmy dowolnie wybrany przedziat czasu At w ktérym bedziemy
obserwowadé btadzenie czasteczki. Przypusémy, ze w tym przedziale czasu czasteczka
n(>> 1) razy zmieniata swoje miejsce pobytu co pozwolito nam dokonaé n-krotnego
pomiaru jej czasu zycia t;, j = 1,2,..., w kolejno odwiedzanych dolinach poten-
cjalu. Na tej podstawie mozemy wyznaczy¢ sredni czas oczekiwania czasteczki jako
(t(At)) = 1/n375_,t;. Oczywidcie, wielkos¢ ta zalezy od diugosci przedziatu At
w ktorym prowadzono obserwacje. Zaleznosé ta moze by¢ dwojakiego rodzaju. Je-
zeli wyktadnik o > 1 wowcezas $redni czas oczekiwania jest skonczony i, zgodnie z
prawem wielkich liczb Bernoulliego, w miare wzrostu dtugosci przedzialu czasu At
powyzsza Srednia (t(At)) dazy do osiagniecia skonczonego plateau czyli ulega sta-
blilizacji. Jezeli a < 1 woéwczas sredni czas oczekiwania jest nieskoriczony i wzrost
dhugosci czasu obserwacji nie prowadzi do stabilizowania sie uzyskiwnych wynikéw a
wprost przeciwnie, (flquzy przedzial obserwacji At oznacza wieksza szanse pojawie-
nia sie rzadkiego zdarzenia w postaci bardzo dlugiego czasu oczekiwania w jakims
lokalnym minimum potencjatu co moze prowadzi¢ do drastycznego wzrostu sredniej
(t(At)); tego typu zaleznosé przedstawiono na rys.... i oméwiono w rozdz..... (przy
okazji omowiono tam takze o przypadek marginalny gdy o = 1 wymagajacy osob-
nego traktowania). Innymi stowy, nieskonczony sredni czas oczekiwania przejawia
sie w postaci rosnacej nieograniczenie wartosci (t(At)) ze wzrostem At. Ponadto,
w przypadku a < 1 rodzi sie kluczowe pytanie dotyczgce istnienia i osiggania przez
uktad stanu rownowagi; ten niezwykle istotny problem dyskutujemy w dalszej czesci.

6.2.6 Oczekiwanie Weierstrassa—Mandelbrota

Dalsze rozwazania, dotyczace fraktalizacji czaséw oczekiwania, tatwiej przeprowadzi¢
korzystajac z funkcji Weierstrassa-Mandelbrota, czyli z dyskretnej reprezentacji funk-
¢ji rozktadu czasow oczekiwania.
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6.2.7 Dyskretna funkcja rozktadu czaséw oczekiwania

Wprowadzmy w tym celu nastepujaca wyjsciowa definicje, ktora daje poszukiwang
funkcje rozkltadu w postaci nieskoriczonej superpozycji funkcji Poissona

o(t) = ZUJ'%' exp(—;t), (6.89)
=0
przy czym
1
= (6.90)
7

jest srednim czasem przebywania czasteczki w dolinie potencjalu o numerze j (oczy-
wiscie danej gtebokosci odpowiada jeden i tylko jeden wskaznik j niezaleznie od tego
w ktérym miejscu taka dolina sie znajduje), natomiast wagi v; spelniaja warunek
normalizacyjny

> v =1 (6.91)
j=0

Jak wida¢, wprowadzenie reprezentacji dyskretnej jest zwiazane z ponumerowaniem
dolin potencjatu w kolejnosci od najptytszej do najglebszej. Jednak, jak to juz wska-
zaliSmy w poprzednim paragrafie, gteboko$¢ miniméw potencjatow jest ograniczona
zatem sumowanie w (6.89) powinno by¢ skoniczone, co niestety komplikuje rozwa-
zania matematyczne (patrz Dodatek B) chociaz zasadnicze wnioski ptynace z obu
podejsé sa identyczne.

Z (6.91) wynika bezposrednio warunek normalizacyjny dla funkcji rozktadu po-
staci

/Ooo o(t)dt = 1. (6.92)

Aby tatwiej uchwycié sens fizyczny superpozycji (6.89) zauwazmy, ze ma miej-
sce odpowiednio$¢ pomiedzy reprezentacja ciagta (6.62) i dyskretna (6.89), ktéra
zostata przedstawiona w Tabeli 1 (gdzie wprowadziliSmy ezplicite jednostke energii
oznaczona przez A).

W dalszym ciagu, pod wplywem reprezentacji (6.62) dopuszczamy wariant naj-
prostszy, w ktérym stosunek wag w kolejnych rzedach 7 = 0,1,2,..., jest funkcjg
malejaca i niezalezna od rzedu, czyli

Uj+1 1 )

o M < 1; (6.93)
oznacza to, ze parametr M pelni role wspotezynnika podobienstwa stochastycznego
(tutaj wspolezynnika stochastycznego ostabienia) czasowej struktury stochastyczne;.
Z (6.91) oraz (6.93) wynika bezposrednio, ze

v; = (1 - %) % (6.94)
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Tabela 6.1: Relacje pomiedzy reprezentacjami

‘ Reprezentacja ciggla ‘ Reprezentacja dyskretna ‘

Jo~ dE/A i=0
E/A j
exp(A/€E) M

AJE 11—+
exp(—A/kgT) Y

Yo(exp(=A/kpT))*/2 Y0V’

Ponadto, zgodnie z duchem zaleznosci (6.93), przyjmujemy, ze stosunek

W, (6.95)
Vi
jest niezalezny od rzedu (pokolenia) j; bezwymiarowy wspoétczynnik ~ pelni role
wspotezynnika podobienstwa czasowego natomiast, g jest czesto$cig charakteryzu-
jaca proces na poziomie wyjsciowego, zerowego pokolenia. Z (6.95) wynika natych-
miast, ze

v =7, j=0,1,2,..., (6.96)
oraz na mocy (6.90)
. 1
ToT! = - (6.97)
Yo’

Podstawiajac wyrazenie (6.94) oraz (6.96) do definicji (6.89) otrzymujemy nastepu-
jaca, przygotowang do dalszej analizy, posta¢ funkcji rozktadu czasow oczekiwania,

o(t) = (1 - %) Jio %vj exp(—707't). (6.98)

Zauwazmy, iz warunek (6.93) oraz (6.95) gwarantuja, ze dla kazdej chwili ¢ funkcja
¢(t) ma wartos¢ skonczona dzieki temu, ze

NE T (6.99)

M

Nieskoniczony ciag stalych czasowych (6.97) charakteryzujacy we wszystkich rze-
dach (pokoleniach) omawiany proces stochastyczny rodzi pytanie o istnienie efek-
tywnej (wypadkowej) jednostki czasowej - zagadnienie to analizujemy ponizej. Tuta]
zauwazmy jedynie, ze regularnos$¢ procesu stochastycznego na kazdym poziomie j z
osobna nie oznacza jeszcze, ze sumaryczny proces ma charakter regularny czyli, ze
jest scharakteryzowany jednym, skonczonym Srednim czasem oczekiwania czastecz-

ki.
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6.2.8 Czasowe rownanie skalowania

Wprowadzmy transformate Laplace’a funkcji rozktadu czaséw oczekiwania

. o0 1 v\ 1
= dt —ts)op(t) = (1 — — — ) — 6.100
) = [ o100 = (1= 53 (7)o (6100
dzieki temu tatwo zauwazy¢, ze spetnione jest nastepujace rownanie skalowania
b(yLs) = M(s) — (M — 1)—>— 6.101
B071s) = Ma(s) — (M~ 1) (6.101)

Rozwigzanie tego rownania mozna poszukiwaé¢ w postaci sumy

ng)(S) = qgreg(8> + qgsing(3>7 (6102)

gdzie ¢~5,ﬂ6g(s) jest rozwiazaniem ogdlnym, regularnym réwnania niejednorodnego
(6.101) natomiast ¢gny(s) jest rozwiazaniem szczegblnym, singularnym réwnania
jednorodnego

Qf;smg(ry_ls) = ngsing(3>‘ (6103)

Postaé¢ rozwigzania ogdlnego jest narzucona przez niejednorodnosé réwnania (6.101).
Rozwijajac ja w szereg Taylora otrzymujemy naprzemienny szereg potegowy w
zmiennej s, pozwalajacy na wyznaczenie wspotczynnikéw szeregu potegowego (takze
w zmiennej s) jakim jest rozwiazanie regularne. Z doktadnoscia do wyrazow linio-
wych mozemy napisaé, z dobrym przyblizeniem dla | s |< 7o,

~ S
¢reg(3) ~ 1 - ?7 (6104)

gdzie uogoélnione prawdopodobienstwo przeskoku na jednostke czasu

1— L
V=1 (6.105)
—

Zauwazmy, ze 7' > 0 wtedy i tylko wtedy gdy M~ > 1 co odpowiada sytuacji, dla
ktorej istnieje warto$¢ oczekiwana

00 1.1 & 1 1
() :/0 to(t)dt = (1 — M)%JZOW =3 (6.106)

Sytuacje przeciwna, gdy M~y < 1, omawiamy ponizej.
Mozna tatwo sprawdzié, korzystajac z rownania jednorodnego (6.103), ze poszu-
kiwany ksztatt rozwigzania sigularnego jest nastepujacy

~ s"
¢sing(s) ~ WE (6107)
Ty
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gdzie wyktadnik

= q (6.108)

wyznaczenie wspolczynnika propocjonalnosci, czyli fraktalnego elementu przejscia
na jednostke czasu, 74 w réwnaniu (6.107) wymaga subtelniejszego podejscia sto-
sujacego transformate Mellina oraz metode residuéw do obliczania calek (w plasz-
czyznie zespolonej).

Wreszcie, korzystajac z (6.102), (6.104) oraz (6.107) otrzymujemy dla s — 0,

~ s" s 1
) - N — (6.109)
vf ’7/ 1+W+?

Uproszczenie powyzszego wzoru zalezy od wartosci wyktadnika o mianowicie,

-5 ~3 Jrli, dla sytuacji regularnej czyli a > 1
5 ~ o ’Y/ .o . .
P(s) =~ —- o~ Hlsa , dla sytuacji anomalnej czyli a < 1;
P
’

przypadek marginalny gdy o = 1 wymaga innego, bardziej zaawansowanego podej-
Scia (wykorzystujacego transformate Mellina oraz catkowanie przez residua) i zostato
omoéwione w dalszej czesci.

Jak wida¢, dla sytuacji regularnej (o > 1) QNS(S) ~ qgreg(s) tzn. dla matych s domi-
nuje rozwigzanie regularne w przeciwienstwie do sytuacji anomalnej (wymagajacej
oméwienia). Rozwigzanie regularne oznacza, ze po dokonaniu odwrotnej transfor-
maty Laplace’a funkcja rozktadu

¢(t) =+ exp(—9't) (6.110)

jest dana, dla asymptotycznie dlugich czaséw ¢, funkcja Poissona (patrz pierwsza
czes¢é Dodatku C).

W sytuacji anomalnej (o < 1), po dokonaniu odwrotnej transformacji Lapla-
ce’a funkcja rozktadu dla asymptotycznie diugich czaséw zanika potegowo (patrz
wyprowadzenie w drugiej czesci Dodatku C) tzn.,

o 1 1

o(t) ~ (L —a) 7, (6.111)

Latwo sprawdzi¢ (w oparciu o (6.111) oraz o fakt, ze ¢(t) jest ograniczone), ze w tym
przypadku warto$¢ oczekiwana (t) = oo. Jak widaé, rozktad dany wzorem (6.110)
oraz (6.111) réznia sie zasadniczo - naszym celem jest omowienie tego ostatniego.
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v Hierarducol, WTD 6 (4)

-
= 1 . l—_-—--——1—1 i Tn'(ﬂﬂ- J‘a-
¢ (t) EO - ‘.Fta' (T: J} v _

"

pruck + ( )?
ulf-winilty (Facdal)

mm

Rysunek 6.8: Schematycznie przedstawiona uporzadkowana hierarchia $rednich cza-
séw wyczekiwania opisana zdyskretyzowana funkcja rozktadu ¢(t) przyktadowo dla
N = 3 i 7 = 2. Ponadto, przedstawiono wtasnos$ci samopodobienstwa i skalowania
oraz zdefiniowano pojecie rzadkiego zdarzenia.
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6.2.9 Gra petersburska - przypomnienie

Istnienie zmiennych losowych nie posiadajacych skonczonych wartosci oczekiwanych
zostato po raz pierwszy zauwazone przez Daniela Bernoulli’ego w zaproponowanej
przez niego tzw. grze petersburskiej (przejrzyste oméwienie tej gry mozna znalezé w
ksigzce Williama Fellera, ”Wstep do rachunku prawdopodobienstwa”, wyd.II zmie-
nione, rozdz.X4, PWN, Warszawa 1966). Gra ta jest zwiazana z rzucaniem zeto-
nem przy czym szansa, ze w wyniku pojedynczego rzutu wypadnie awers wynosi
1/M natomiast rewers 1 — 1/M, gdzie M > 1. Nalezy zaznaczy¢, ze w oryginal-
nej grze petersburskiej zeton jest symetryczny czyli M = 2. Zasada gry polega
na tym, iz gracz moze rzucaé zetonem do pierwszego pojawienia sie rewersu; o ile
Jj(=0,1,2,...) razy pod rzad wypadl awers grajacy wygrywa kwote réwna f;. Na-
lezy, oczywiscie przyjac, ze wygranie wiekszej kwoty powinno by¢ mniej prawdo-
podobne zatem, stawka f; powinna rosna¢ z j a poza tym moze by¢ dowolna; za-
uwazmy, ze przypadek f; = M7, jaki ma miejsce w oryginalnej grze petersburskiej,
prowadzi do sytuacji, w ktorej wartos¢ oczekiwana wygranej dana nieskorficzong
suma (1 — ) + (1 — L) + (1 - ﬁ)% + ...+ (1= )35 4+ ... jest nieogra-
niczona, co uniemozliwia zastosowanie prawa wielkich liczb. W naszym przypadku
stawka wynosi f; = 1/(707?) co prowadzi do wyrazenia (6.106) na warto$¢ ocze-
kiwana wygranej, ktéra jedynie dla M~y < 1 przyjmuje warto$¢ nieskonczona. Jest
to wynik przetomowy dla rachunku prawfopodobienstwa, otwierajacy droge anali-
zie zmiennych losowych, ktérych wybrane momenty (np. wartosé¢ oczekiwana) moga
nie istnie¢. Tego typu rachunek prawdopodobienstwa i statystyka matematyczna
odgrywaja kluczowg role we wspotczesnych zastosowaniach w fizyce i poza nig. Ka-
nonicznym przyktadem wspomnianych zmiennych losowych sa btadzenia fraktalne
a tuta]j przeloty Weierstrassa, o ktorych jest mowa ponizej w rozdz. 6.4.

6.3 Bladzenia fraktalne

Zrozumienie tzw. btadzen fraktalnych wymagato od nas omowienia w pierwszym
rzedzie obiektéw zwanych fraktalami statystycznymi (probabilistycznymi). Bladze-
nia fraktalne rozwazmy na przyktadzie wielce charakterystycznych tzw. bladzen
Weierstrassa®, ktore pozwalaja na dostrzezenie zasadniczej przyczyny powodujace;
istnienie algebraicznie zanikajacych, dtugozasiegowych ”ogondéw” zaréwno w rozkta-
dach prawdopodobienstw jak i w funkcjach korelacji. Jak wykazujemy, ta przyczyna
sg rzadkie, ekstremalne zdarzenia ktore, w okreslonych warunkach, sa gene-
rowane przez stochastycznie samopodobna strukture trajektorii bladzacej
czasteczki. Méwigce ogdlniej, trajektoria ta tworzy stochastyczng strukture fraktalng
- stad wzieta sie nazwa tych bladzen.

3Termin ‘bladzenia Weierstrassa’ zostal wprowadzony w pracy E.W.Montrolla i M.F.Shlesingera
pt.: 7On the Wonderful World of Random Walks” zamieszczonej w ” Nonequilibrium Phenomena II.
From Stochastics to Hydrodynamics”, SSM XI, eds, J.L.Lebowitz i E.W.Montroll (North-Holland,
Amsterdam 1984)
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I[stnienie rzadkich, ekstremalnych zdarzen otwiera inny od tradycyjnego, i mimo
znacznych osiggnie¢ bedacy wcigz w fazie poczatkowej, kierunek dociekan fizyki
statystycznej oraz dynamiki chaotycznej.

6.4 Przeloty Weierstrassa

Przeloty Weierstrassa stanowia szczegblny przypadek btadzen Weierstrassa
czyli procesu stochastycznego, ktory potrafi opisa¢ zarowno sytuacje gdy

1) przemieszczenia pojedynczej czasteczki mozna traktowaé jako natychmiastowe
jak tez takie, w ktorych
2) predkosé przemieszczania sie¢ jest skonczona tzw. spacery Weierstrassa.

Ten pierwszy przypadek, znacznie tatwiejszy do opisania (dzieki mniejszej liczbie
stopni swobody charakteryzujacej uktad), dotyczy wlasnie przelotéw Weierstras-
sa - od niego zaczynamy nasz wywod. Proces stochastyczny typu przelotéw nosi
takze nazwe hoppingu (jumpingu) badz po prostu procesu skokowego i jest sze-
roko stosowany w materii skondensowanej a zwtaszcza w fizyce ciata statego np. do
opisu dyfuzji oraz przewodnictwa jonowego.

6.4.1 Definicje i interpretacje

Zdefiniujemy czesé przestrzenna, p(z), gestosci prawdopodobienstwa przemieszczenia
sie czasteczki o wektor  w wyniku pojedynczego przelotu. Dla uproszczenia wstep-
nych wywodow matematycznych omawiamy przeloty jednowymiarowe; przeloty
w przestrzeniach o wiekszej liczbie wymiaréw omawiamy w Dodatku A (doktadnie;
rzecz biorac, dyskutujemy sferycznie symetryczne przeloty Weierstrasa, zwane tak-
ze btadzeniem Rayleigha-Pearsona, bedace bezposrednim uogélnieniem przypadku
jednowymiarowego).

Whprowadzmy nastepujaca wyjsciowa definicje opisujaca kinetyke przemieszczenia
czastki o wektor x,

1 [e.e]
52 d(x —b;) + d(x +b;)], (6.112)
gdzie waga wj, 7 = 0,1,2,..., spelniajgca warunek normalizacyjny
> wy=1, (6.113)
=0

oznacza prawdopodobienstwo z jakim czasteczka przemieszcza si¢ na odleglosc b;.
Oczywiscie, z warunku (6.113) wynika natychmiast warunek normalizacji gestosci
prawdopodobiefistwa p(z),

/o; p(z)de = 1. (6.114)
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Zauwazmy, ze czynnik 1/2 stojacy przed suma jest prawdopodobienstwem wybra-
nia przez czastke jednej z dwoch dozwolonych orientacji wektora przemieszczenia;
poniewaz kazda z orientacji jest rownie prawdopodobna wiec p(x) opisuje btadzenie
w nieobecnoéci zewnetrznego pola. W dalszym ciggu dopuszczamy jedynie najprost-
szy wariant, w ktorym stosunek wag w kolejnych rzedach 7 = 0,1, 2, ..., jest funkcja
malejaca i niezalezna od rzedu, tzn.

Wj41 1

= =<1 6.115
wj N ’ ( )

co oznacza, ze parametr N pelni role wspotezynnika podobienstwa stochastycznego
(tutaj wspolezynnika stochastycznego ostabienia) struktury stochastycznej; z (6.113)
oraz (6.115) wynika natychmiast, ze

1 1
w; = (1 _ N) N (6.116)

maleje potegowo z rzedem j. W dalszym ciagu, zgodnie z duchem zaleznosci (6.115),
przyjmujemy, ze

% —b>1, (6.117)

J

gdzie b pelni role wspoélezynnika podobienistwa geometrycznego (zwanego tez cza-
sami wspo6tezynnikiem geometrycznego wzmocnienia struktury stochastycznej); po-
dobnie jak dla wag, z (6.117) wynika natychmiast zaleznosé potegowa

bj - bob‘?, (6118)

gdzie by jest stata, jednostkows dtugoscig przelotu rzedu zerowego; w dalszym ciggu
ktadziemy (w wybranych miejscach) dla uproszczenia wywodéw matematycznych
bo = 1 przyjmujac, ze przeloty dtuzsze sa mniej prawdopodobne np. ze wzgledu
na opory ruchu tzn. zaktadajac, ze b > 1. Sytuacja przeciwna, gdy b < 1, dotyczy
np. bladzenia trajektorii w przestrzeni fazowej w obszarze hierarchicznych putapek
istniejacych w wielu nieliniowych zagadnieniach dynamicznych przejawiajacych za-
chowania chaotyczne. Przypadek b = 1 ma charakter marginalny - nie bedziemy go
tutaj rozwazac.

Z wyrazenia (6.116) oraz (6.118) wynika, ze przeloty czasteczki mozna grupowac
w rzedy zaréwno wedlug czestosci ich wystepowania jak i dlugosci przelotow, co
pozwala przepisaé¢ wyjsciowy wzor (6.112) w postaci

p(x) = % (1 _ %) fj %[5(95 — bob?) + 6(z + bob)]. (6.119)

Jak wida¢, wzér (6.119) dopuszcza dowolnie dtugie przeloty czasteczki. Omawia-
ne tutaj btadzenie pojedynczej czasteczki nosi nazwe przelotow dlatego ze zaréwno
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og6lna definicja (6.112) jak i wzor (6.119) okreslaja natychmiastowe przemieszcza-
nie sie btadzacej czasteczki pomiedzy kolejnymi punktami zwrotnymi (przystankami
wyznaczajacymi oczywiscie poczatek i koniec pojedynczego przelotu). Nalezy pod-
kresli¢, iz wszystkie wnioski formutowaneane w tym rozdziale odnoszg si¢ takze do
wspomnianych juz sferycznych przelotow Weierstrassa omowionych w Dodatku A.
Na przyktad, prowadzona tutaj dyskusja dotyczaca wzoréw (6.112) oraz (6.119)
odnosi si¢ jednoczesnie do wzoru (H.1) oraz towarzyszacych mu definicji zamiesz-
czonych w Dodatku A.

Asymptotyczna postaé p(z)

Istnieje kilka sposobéw odpowiedzi na pytanie o asymptotyczna postaé p(x). Wybie-
ramy tutaj ta najprostsza, wynikajaca bezposrednio z odpowiedniej zamiany zmien-
nych. Zatem, poszukujemy prawdopodobienstwa p(x) dla | x [> by. Rozwazmy w
tym celu prawdopodobienstwo w(j) dane wzorem (6.116), w ktérym zmienna j wy-
razimy poprzez b’. Pamietajmy, ze zgodnie z definicjg przelotéw Weierstrassa (6.119)
WV =| x| /by. Korzystajac z niezmienniczosci prawdopodobiefistwa (jako skalara),
mozemy wprowadzi¢ nastepujaca rownoscé

dj _1-% &
dlz| Inb |z |5

w(j)dj =p(|lz)d| 2| plr) = (] ) (6.120)

gdzie skorzystaliSmy z faktu, iz po zamianie zmiennej j na | x | prawdopodobiefistwo
w(j)d j staje sie prawdopodobienstwen p(| = |)d | z |, przy czym

(2 ) w(i( 2 ]) = (j S ('bi‘)) ~(1-4) % (6.121)

gdyz

1 . Ed E
N7 = exp(—jIn N) = exp <—ﬂln <b—0>> = <?> . (6.122)

SkorzystaliSmy tez tutaj z mozliwosci ucigglenia dyskretnej zmiennej j. Mozliwosé
ta wynika z faktu, ze warunek konieczny i wystarczajacy, czyli

1
Lle|z|>»— (6.123)

di
J <l& o

d|z| Inb|z|
jest tatwo spehic.

Samopodobny charakter przelotéw Weiertrassa

Istnieje wazny powdd, dla ktoérego nasze rozwazania rozpoczeliSmy od analizy po-
jedynczego przemieszczenia czasteczki. Otoz, jak zobaczymy przeloty Weierstrassa

291



maja charakter samopodobny dlatego nalezy oczekiwac, ze juz elementarne prze-
mieszczenie bedzie w sobie zawieraé istotne informacje dotyczace calej trajektorii;
aspekt ten byt juz zresztg widoczny dla ruchéow Browna, dla ktérych wspotezynnik
samodyfuzji dat sie wyrazi¢ za pomoca parametréw mikroskopowych charakteryzu-
jacych jedynie pojedyncze przemieszczenie czasteczki.

Interpretacja wzoru (6.119) jest szczegélnie prosta gdy parametr N jest liczbg
naturalng wieksza od 1. Mianowicie, juz ze wzoru (6.115) wynika, ze przeloty o
dhugodci ot/ Tt sg N razy mniej prawdopodobne niz przeloty o dlugosci bot?/. Moz-
na zatem powiedzie¢, ze $rednio rzecz biorgc zanim czasteczka wykona przelot
rzedu j + 1 musi wykonaé N przelotéw rzedu j Zaniedbujac na razie nieunik-
nione fluktuacje sekwencji przelotéw oraz fluktuacje proporcji pomiedzy liczbami
przelotéw o réznych diugosciach, mozna to przedstawi¢ schematycznie w postaci
graficznej, przyjmujac dla przyktadu, ze N = 3 oraz b = 2.

Ponizszy (dwucze$ciowy) rysunek 6.9 przedstawia, dla wiekszej pogladowosci,
btadzenie w przestrzeni dwuwymiarowej; nie narusza to w niczym ogdlnych zasad
(6.115) 1 (6.117) definiujacych przeloty Weierstrassa.

Uderzajaca cecha tak uporzadkowanej trajektorii btadzacej czasteczki jest jej
samopodobny charakter co wida¢ juz przez zwykle poréwnanie rysunku 6.9(a) i
6.9(b).

Na rysunku 6.9(a) zamieszczone sa wszystkie szczegély trajektorii, tzn. aby wy-
kona¢ przelot o dtugosci b' = 2 czgsteczka musi wykonaé najpierw N = 3 przelotéw
o dlugodci jednostkowej (rzedu zerowego); aby wykonaé przelot o diugosci v? = 4
musi analogicznie wykona¢ N = 3 przelotéw rzedu j = 1, itd, itp. A zatem, zanim
zostanie wykonany przelot rzedu j = 2 musi by¢ zrealizowanych N/=2 = 9 przelotéw
o dtugosci jednostkowej (rzedu zerowego). Zatem ogdlnie méwiac, N7 mozna trak-
towac jako $rednig liczba przelotéw rzedu zerowego, ktore musza zostaé
wykonane aby még! sie pojawié przelot o dlugosci v’. Ten pojedynczy przelot
rozpoczynajacy j-e pokolenie w hierarchii przelotow stanowi w zbiorze ztozonym z
(NIt —1)/(N = 1)(= N7 + N1+ . 4+ N' + N przelotéw tzw. rzadkie, eks-
tremalne zdarzenie o ile spelniony jest dodatkowy warunek, ktory wprowadziamy
ponizej. Jak wykazemy, zdarzenia takie odgrywaja zasadniczg role w tzw. dyfuzji
anomalnej. To wlasnie z powodu tego typu zdarzen zwykta dyfuzja traci swoj nor-
malny charakter; jak zobaczymy, wtasnie to jest np. przyczyna zamiany relaksacji
wyktadniczej na potegowa.

Z grubsza rzecz biorac, rzadkie, ekstremalne zdarzenie a tutaj rzadki, ekstremal-
ny przelot, jest unikalnym w stosunku do tych, ktore juz sie pojawity i przynajmniej
o rzad wielkosci wiekszym - jak pokazujemy, jest to warunek konieczny ale nie wy-
starczajacy. W tym sensie stochastyczna trajektoria samopodobna moze, w pewnych
warunkach, wygenerowa¢ rzadkie, ekstremalne zdarzenia, natomiast (jak zobaczy-
my) rzadkie, ekstremalne zdarzenia zawsze buduja stochastyczna trajektorie samo-
podobna. W dalszym ciggu prowadzimy rozwazania pozwalajace na wprowadzenie
uscislonej definicji rzadkiego, ekstremalneg zdarzenia.

Wielko$é N7 mozna formalnie traktowaé jak elementarng “mase” btadzenia We-
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Rysunek 6.9: Schematycznie przedstawiona trajektoria zbudowana z uporzadkowa-
nych hierarchicznie pojedynczych przemieszczen opisana zdyskretyzowana funkcja
rozkltadu (6.119) przyktadowo dla N = 3, b = 2 i by = 1. Ponadto, przedstawio-
no wtasnosci samopodobienstwa i skalowania oraz zdefiniowano pojecie rzadkiego
zdarzenia.
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ierstrassa (catkowita "masg” jest wielkos¢ (N/*1 — 1)/(N — 1)) nagromadzong w
obszarze scharakteryzowanym przez liniowy rozmiar b’; wykazemy, ze zalezno$é po-
miedzy nagromadzona "masa” a liniowym rozmiarem prowadzi do istnienia uniwer-
salnego wyktadnika, ktory w dalszym ciggu nazywamy wymiarem samopodo-
bienstwa i oznaczamy przez d;.

Rysunek 6.9(b) jest ta sama trajektoria ”sfotografowana” juz z pewnej odlegto-
sci mianowicie takiej, ze zdolno$¢ rozdzielcza ”zdjecia” nie pozwala na rozréznienie
niektorych jego szczegdtow. Ta nierozroznialnosé szczegdtdéw sprowadza sie do trak-
towania kazdej grupy sktadajacej sie tutaj z trzech jednostkowych przemieszczen
jak pojedynczego punktu. Dlatego wtasnie najmniejsza rozroznialna grupa sktada
sie (przy takiej a nie innej zdolnosci rozdzielezej zdjecia) z trzech przemieszezen
o dtugosci b'. Jak wida¢, trajektoria zamieszczona na rysunku 6.9(b) nie rézni sie
niczym od tej jaka znajduje si¢ na rysunku 6.9(a) za wyjatkiem,

1) skali - jest narysowana w skali b razy wieksze]

2) (by¢ moze) przypadkowych réznic co do orientacji kolejnych, odpowiadajacych
sobie na obu rysunkach, wektoréw przemieszczen.

Kazda trajektoria stochastyczna spetiajaca powyzsze wtasnosci nosi nazwe samo-
podobnej trajektorii stochastycznej czyli, srednio rzecz biorac, jest niezmien-
nicza ze wzgledu na skalowanie. Oczywiscie, oddalajac sie jeszcze bardziej (czyli
przechodzac na coraz nizszy poziom ziarnistosci obrazu) doprowadzili by$my do te-
go, ze takze grupy zlozone z trzech przemieszczen o dtugoéci b! widoczne bytyby
jedynie w postaci punktow, co znowu nie zmienia w niczym istotnym wyjsciowego
rysunku 6.9(a) , itd, itp; postepowanie to mozna kontynuowaé¢ bez przeszkod gdyz
jest ono ograniczone jedynie rozmiarem samej trajektorii.

Powyzsze postepowanie mozna sformalizowaé piszac dla kazdego poziomu ziar-
nistosci k(= 0, 1,2, ..., j) nastepujaca relacje wynikania

NI7FOF) = bR (F); (6.124)

przy czym k-ty poziom ziarnistoéci oznacza, ze przelot o dtugosci b* jest traktowany
jak jednostkowy a wszystkie pozostale przeloty o dlugosciach krotszych, ktore go
poprzedzaja sa (w tej zdolnosci rozdzielezej) traktowane po prostu jak punkt. Tym
samym, N7~* przemieszczen o dtugodci b* poprzedza (w éredniej) przemieszczenie o
dtugosci v/ ~* razy wieksze.

Mozna wykazaé¢, ze nie tylko trajektoria jako calo$é¢ tworzy rosnaca strukture
samopodobna ale takze zbidr wszystkich punktéw zwrotnych (oznaczonych na ry-
sunku przez pelne kétka). Co wiecej, wymiar fraktalny tego zbioru punktéw wynosi
dy = 0.

Wskazana tutaj wtasnos¢ samopodobienstwa w sensie stochastycznym jest pod-
stawowg cechg tzw. stochastycznych struktur fraktalnych, o ktorych jest mowa w dal-
szej czedci. Zauwazmy, ze wlasno$¢ samopodobienstwa udato nam sie tatwo dostrzec
tylko dlatego, ze zrezygnowaliSémy z nieuniknionych w rzeczywisto$ci wspomnianych
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juz fluktuacji przelotow. Innymi stowy, ze stochastyczng strukturg samopodomna,
badz ogdlniej fraktalng, mamy do czynienia wtedy gdy po przeprowadzeniu proce-
dury regularyzacji (porzadkowania) czyli po pozbyciu si¢ fluktuacji (nieporzadku)
struktura staje sie samopodobna w sensie deterministcznym, badz ogdlniej mowiac,
staje sie fraktalem deterministycznym, przynajmniej w granicy duzej liczby poko-
len. I odwrotnie, ze struktury deterministycznej mozna uzyska¢ stochastyczng przez
wprowadzenie nieporzadku, np. typu fluktuacji czyli w taki sposéb aby w sredniej
nie zniszczy¢ wlasnosci samopodobienstwa. Zatem, dla rzeczywistych btadzen na-
lezy zbudowaé statystyke dlugosci przelotéw (méwiaca o czestosci wystepowania
przelotéw o poszezegdlnych dhugosciach) i na tej podstawie wyznaczyé stosunek od-
powiednich wag; zbudowanie takiej statystyki w postaci zamknietej (a nie w postaci
nieskoniczonej sumy) jest zasadniczym celem niniejszych rozwazan.

Mozna teraz zada¢ fundamentalne pytanie: jak elementarna ”masa” oma-
wianej struktury stochastycznej skaluje si¢ z liniowym rozmiarem obszaru
w ktorym jest nagromadzona? Na pytanie to mozna odpowiedzie¢ bez trudu,
korzystajac z relacji (6.124) dla rzedu j oraz poziomu ziarnistosci k (traktujac oczy-
wiscie b* jako jednostke). Mianowicie, ma miejsce réwno$é

NI=F = (M), (6.125)

z ktorej mozna wyznaczy¢ wyktadnik § w postaci niezaleznej od j oraz k

g = (6.126)

bedacej bezposrednia konsekwencjg samopodobnego charakteru struktury; to wta-
$nie wyktadnik § nazywa sic wymiarem samopodobienstwa i oznacza d,. Tym
samym wymiar samopodobienstwa d,, mozna traktowac¢ jako unikalng charaktery-
styke struktury samopodobnej. Jest to stwierdzenie stuszne nie tylko w tym konkret-
nym przypadku ale dla wszelkiego typu struktur fraktalnych (zar6wno o charakterze
stochastycznym jak tez deterministycznym) dla ktérych wymiar fraktalny jest za-
wsze dany w postaci ilorazu dwoch logarytméw.

W rozdz. 6.4.5 wskazujemy na progowy charakter btadzen tzn. pokazujemy dla
jakich wartosci wyktadnika ( struktura jest trwata i nie ulega zamazaniu nawet po
wykonaniu przez czasteczke wielkiej liczby przelotow.

6.4.2 Czynnik strukturalny przelotow Weierstrassa

Czynnik strukturalny przelotéw Weierstrassa, p(k), zwany takze funkcja
charakterystyczna przelotow Weierstrassa jest zdefiniowany jako transformata
Fouriera

p(k) = /O:O dx exp(—ikz)p(x) (6.127)
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przybierajac (po podstawieniu formuty (6.119) i scatkowaniu) postaé¢ sumy szeregu
geometryczno-trygonometrycznego

(k) = (1 - %) ]i) % cos(kb); (6.128)

czynnik strukturalny btadzenia Weierstrassa dany wyrazeniem (6.128) nosi nazwe
funkcji Weierstrassa lub cze$ciowej funkcji Weierstrassa-Mandelbrota. Na rysunku
6.10

Zasadnicze wtasnosci funkcji Weierstrassa (6.128) omawiamy ponizej.

6.4.3 Przestrzenne rownanie skalowania

W tym miejscu rodzi sie zasadnicze pytanie o warunki w jakich p(k), wyrazone
wzorem (6.128), daje sie przedstawié¢ (z dobrym przyblizeniem) w postaci
zamknietej? Odpowiedz na to pytanie jest dwuetapowa.

Po pierwsze zauwazmy, ze p(k) spetnia nastepujace, niejednorodne réwnanie ska-
lowania

B(bk) = Np(k) — (N — 1) cos(k), (6.129)

co pozwala na poszukiwanie jego rozwiazania p(k) w postaci sumy rozwiazania ogol-
nego (regularnego, normalnego), p,(k), réwnania niejednorodnego (6.129) oraz roz-
wiazania szczegblnego (singularnego), ps(k), réwnania jednorodnego

Ps(bk) = Nps(k). (6.130)

Ksztalt rozwigzania ogbélnego jest juz narzucony przez niejednorodnosé¢ réwnania
(6.129) tzn. cos(k); jest to zatem szereg potegowy zawierajacy tylko parzyste potegi
zmiennej k, ktorego wspotezynniki musimy wyznaczyé. Robimy to standardowo,
podstawiajac ten szereg do rownania (6.129) i przyréwnujac do siebie wyrazenia
stojace przy tych samych potegach k znajdujemy poszukiwane wspotczynniki. Stad
rozwigzanie ogblne otrzymujemy w postaci

Pu(k) =1 — D'k? (6.131)

gdzie tzw. uogélniony wspoétczynnik dyfuzji

11—+
’:51 o5 (6.132)
N

(Doktadniej rzecz biorac, o wspétezynniku dyfuzji mozna méwié wtedy gdy zdefi-
niowany zostal sredni czas potrzebny na wykonanie pojedynczego przelotu - tutaj
przyjelismy go milczaco jako jednostkowy; bedzie o tym obszernie mowa w dalszej
czesci.) Ta postaé wspétezynnika D’ postuzy nam do dalszej analizy a zwlaszeza

296



>k

Rysunek 6.10: Schematycznie przedstawienie kilku sktadowych funkcji Weierstrassa
(6.128) dla N =4, b =8 (czyli = 2/3) 1 by = 1. Gérny wykres przedstawia sume
dwoch pierwszych sktadowych a dolny trzech pierwszych. Mozemy sie domyslaé,
ze w granicy nieskonczonej sumy sktadowych ciggtos¢ tej funkcji jest zachowana
ale rozniczkowalnio$¢ nie, gdyz uniemozliwia to powstata nieskonczona hierarchia
coraz mniejszych ale bardziej gwattownych zakretow funkcji Weierstrassa obecnych

kazd kcie.
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klasyfikacji rodzajow dyfuzji. Ograniczylismy sie tutaj tylko do dwéch pierwszych
wyrazow rozwiniecia gdyz zaréwno rozwigzanie regularne jak i singularne interesu-
je nas tylko dla przypadku gdy | k£ |< 1 co oznacza, ze poszukujemy rozwiazania
opisujacego przede wszystkim dtugie przeloty.

Po drugie, rozwiazanie singularne p(k) réwnania (6.130) mozemy zaprojektowaé
w postaci iloczynu funkcji wolnozmiennej oraz potegowej (byta juz o tym mowa w
rozdz. 2.1.1 w kontekscie poréwnania z danymi empirycznymi)

e(k) ~ —Q <lnh’1§ ‘) k|7, (6.133)

przy czym funkcja wolnozmienna funkcja przedwyktadnicza posiada nastepujaca

wlasnosc,
In | bk | In |k | In |k |
= 1] = 134
Q( Inb ) Q( Inb + ¢ Inb (6.134)

czyli jest funkcjg okresows o okresie 1. Zatem, posiada nastepujace rozwiniecie fo-
urierowskie

(e}
Q (%) = n;oo A, exp (%m%) , (6.135)
zwane logarytmiczna periodycznoscia (byta juz o tym mowa w rozdz. 2.1.1). W naj-
prostszym przypadku redukuje si¢ ono do stalej, ktéra oznaczamy przez D'y(= Ap) -
w niniejszym rozdziale, dla prostoty rozwazan, ograniczamy sie tylko do tego szcze-
gblnego przypadku; najogdlniejszg postaé¢ funkcji () a takze jawna postaé fraktal-
nego wspotczynnika dyfuzji D, wyprowadzilismy w Dodatku I korzystajac z
transformaty Mellina (patrz, Harry Bateman, Arthur Erdéley, " Tables of Integral
Transforms”, Vol.I, McGraw-Hill Book Comp., Inc., New York 1954) oraz metody
residuéw (patrz, Krzysztof Maurin, ” Analiza. Cz.II. Wstep do analizy globalnej”,
PWN, Warszawa 1971) obliczania catek na ptaszczyznie zespolone;j.

Wyktadnik 4’ znajdujemy podstawiajac wyrazenie (6.133) do réwnania (6.130).
W ten sposéb otrzymujemy, ze

In N B

g = Tob B; (6.136)

niestety, na tej drodze nie udaje sie wyznaczy¢ fraktalnego wspotczynnika dyfuzji
Dy.

Jest charakterystyczne, ze ten wezesniej wprowadzony wyktadnik (3 jest de facto
odpowiedzialny za nieanalityczny charakter rozwigzania singularnego. 7 kolei po-
jawienie sie tego wyktadnika byto spowodowane samopodobnym charakterem prze-
lotéw Weierstrassa wiec to wlasno$é samopodobienstwa jest praprzyczyna
istnienia rozwigzania singularnego. Zatem wyktadnik § moze by¢ traktowany
jako podstawowy we wszelkiego rodzaju analizach a w tym klasyfikacjach.
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Ostatecznie, taczac (6.131) i (6.133) wraz z (6.136), znajdujemy strukturalny
czynnik przelotéw Weierstrassa w postaci,

p(k) = ps(k) + pu(k) ~ 1—-DK* —D}| k|’
~ exp(—D'k* — D} | k). (6.137)

Dalsze uproszczenie powyzszego wzoru zalezy od wartosci wyktadnika 3. Miano-
wicie (pamietajac, ze | k |< 1) otrzymujemy,

. 1 — D'k* ~exp (—D'k?), dla 3 > 2
p(k) ~ 1— ’f]k\ﬁ%exp(— ’f]k\ﬂ), dla g < 2;

przypadek marginalny gdy # = 2 wymaga innego, bardziej zaawansowanego po-
dejscia (wykorzystujacego transformate Mellina oraz catkowanie przez residua) kto-
re omawiamy w dalszej czesci. Powyzsza postaé czynnika strukturalnego przelotow
Weierstrassa jest stuszna dla dowolnego wymiaru przestrzeni euklidesowej, w ktorej
zachodza przeloty. Postaé ta umozliwia znalezienie (w postaci funkcji a nie dystry-
bucji jak to ma miejsce we wzorach (6.112) oraz (6.119)) asymptotycznej postaci
rozkladu p(z).

6.4.4 Renormalizacyjne rozwigzanie rownania skalowania

Teraz, zdefiniujmy zagadnienie odwrotne. Mianowicie, dysponujac réwnaniem ska-
lowania (6.129) znajdziemy jego rozwiazanie metoda renormalizacji, czyli na drodze
systematycznej a nie "metoda” zgadywania. Metoda renormalizacji jest wielokroko-
wa. Krokiem zerowym jest samo réwnanie skalowania, ktére przepisujemy w postaci:

(k) = N7'p(bk) + G(k) (6.138)
gdzie niejednorodnosc
(k) (1 - %) cos(k). (6.139)

W pierwszym kroku dokonujemy w powyzszym réwnaniu dyskretnej renormalizacji
(przeskalowania) zmiennej niezaleznej k za pomoca stalej rzeczywistej b. Otrzymu-
jemy,

N~'5(bk) = N2p(b°k) + N~ 'G(bk), (6.140)

gdzie dodatkowo podzielilismy otrzymane rownanie przez N. Podstawiajac rownanie
(6.138) do réwnania (6.140), uzyskujemy:

(k) = N7?p(bk) + N7'G(bk) + G(k) (6.141)

Jak widaé¢, wykorzystaliSmy réwnanie wyjsciowe (6.138) na dwa sposoby, tzn. naj-
pierw zrenormalizowaliSmy je a nastepnie zastapliSmy za pomoca niego wielkosé
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jednokrotne zrenormalizowana p(bk). Oczywiscie, w kolejnych krokach procedury
renormalizacyjnej postepujemy analogicznie. Zatem, w drugim kroku:

N7'5(bk) = N73p(b°k) + NG (b*k) + N~*G(bk) (6.142)

i w rezultacie
p(k) = N7°p(b°k) + N7°G(b*k) + N'G(bk) + G(k). (6.143)
7 powyzszego tatwo juz mozna wywnioskowaé jaka postac otrzymamy w [-tym kroku.
Mianowicie,

p(k) = N7p(V'E) + li N7G(VE). (6.144)

J=0

W dalszym ciagu zaktadamy, ze w granicy [ — oo wielkos¢ p (blk) jest ograniczona.
Zatem ostatecznie, przechodzac z | — 0o, otrzymujemy wzor

(k) = (1 _ %) 2 % cos(kl), (6.145)

ktéry jest oczywiscie tozsamy z wyrazeniem (6.128), co nalezato wykazacé.

6.4.5 Dyfuzja anomalna

W pierwszym kroku zbadamy w jakich warunkach srednia dtugos¢ pojedynczego
przelotu jest skonczona a w jakich tak nie jest. Przeanalizujmy w tym celu wyrazenie

(ol = [ dep) | l= (1- ) 2 (%) (6.146)

- =
gdzie skorzystaliSmy z wzoru (6.119) i (6.127). Wyrdzni¢ mozna tutaj dwa istotnie
rozne przypadki

A) (Jz]) < oo

B) ([ [) = oo

Z wyrazenia (6.146) wynika, ze z przypadkiem 1) mamy do czynienia wtedy i tylko

wtedy gdy b/N < 1 czyli gdy § > 1 podczas gdy z przypadkiem 2) wtedy i tylko

wtedy gdy b/N > 1 czyli gdy 3 < 1. Jest interesujacym rozwazanie obu sytuacji w

polaczeniu z analiza wtasnosci éredniej z kwadratu pojedynczego przelotu (z?).
Zauwazmy, ze

@ = [ dupe)s? (: —% |k0> _ (1 _ %) Ji::o (%)J (6.147)

gdzie, tak jak poprzednio wykorzystaliémy definicje (6.112) oraz wyrazenie (6.127)).
Analogicznie jak poprzednio, rozwazmy dwie istotnie rozne sytuacje,
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1) normalna, gdy Srednia (z?) < oo
2) anomalng, gdy (2?) = oo;

7 sytuacja pierwszg mamy do czynienia wtedy i tylko wtedy gdy suma szeregu
geometrycznego stojaca w wyrazeniu (6.147) jest zbiezna czyli gdy

b2
v <1=8>2 (6.148)

W rezultacie otrzymujemy, ze

(z?) = I =2D < . (6.149)

Powyzszy zwiazek jest wazny poniewaz umozliwia wyrazenie uogdlnionego wspot-
czynnika dyfuzji, ktory jest wielkoscig makroskopows za pomocg wielkosci mikro-
skopowej jaka jest srednia z kwadratu pojedynczego przelotu; jest to mozliwe dzieki
temu, ze struktura przelotéw ma charakter samopodobny (czyli przeloty zachodzace
w réznych skalach tworza zbiory podobne).

Zauwazmy, ze z istnienia ogdlnej nieréwnosci

(|2 )?* < (2%, (6.150)
wynika, ze w tym przypadku takze
(|z ) <oo, (6.151)

tzn. oba te przypadki sa ze sobg $cisle skorelowane.

Nalezy zdawaé sobie sprawe, ze skoriczona warto$¢ drugiego momentu (x?) (w
zwiazku ze skonczona wartoscia czynnika strukturalnego p(k) dla dowolnego wek-
tora k) to warunek dostateczny i konieczny na istnienie rozktadu p(x) w postaci
gaussowskiej dla asymptotycznie duzych wartoéci | x | Zatem, nie jest konieczne
aby byty skonczone wyzsze momenty zmiennej losowej z. Innymi stowy, w takim
przypadku proces Weierstrassa jest rownowazny procesowi Wienera czyli po prostu
opisuje btadzenie losowe zwane ruchem Browna.

Sytuacja druga ma miejsce wtedy i tylko wtedy gdy

—>1=0p<2 (6.152)
i w konsekwencji
(2%) = oo. (6.153)

Powyzsza sytuacja jest catkowicie zdekorelowana z zachowaniem si¢ pierwszego mo-
mentu absolutnego tzn. moze on by¢ w tej sytuacji zaréwno skonczony jak tez nie-
skonczony. Jednakze sytuacja gdy pierwszy moment absolutny jest nieskonczony
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pociagga za soba oczywiscie (na mocy nieréwnosci (6.150)) wniosek, ze takze dru-
gi moment jest nieskonczony. Analiza zachowania wyzszych momentéw nie jest juz
tutaj istotna.

Rysunek 6.11 przedstawia przyktadowe przeloty Weierstrassa*: dwa pierwsze dla
sytuacji A) oraz jeden (trzeci) dla sytuacji B). Wykres na rysunku 6.11a dotyczy
sytuacji gdy 2 < # = In5/In2(~ 2.32), podczas gdy wykres na rysunek 6.11b
dotyczy zasadniczo innej sytuacji gdy 1 < f = In3/In2(= 1.585) < 2, wreszcie
wykres na rysunku 6.11c dotyczy przypadku B) gdy § = In5/In6(~ 0.9) < 1.
Widag¢, ze s to trzy istotnie rézne sytuacje reprezentujace kolejno, proces gaussowski
(gdyz (| x |} < oo oraz (z%) < oo, ograniczone przeloty Weierstrassa (gdyz (| x |) <
o0 i (2%) = o0) oraz nieograniczone przeloty Weierstrassa (gdyz (| = |) = oo oraz
(2%) = o0).

W tym miejscu mozna postawi¢ pytanie: jak w realnym doswiadczeniu be-
dzie przejawiac¢ sie nieograniczony charakter Sredniej dtugosci badz dys-
persji elementarnego przelotu? Zauwazmy, ze pytanie to ma duzo ogdlniejszy
charakter i moze dotyczy¢ dowolnej zmiennej losowej a nie tylko wektora elemen-
tarnego przelotu. Odpowiedz na nie jest dzisiaj stosunkowo prosta chociaz do sro-
dowiska fizykéw docierata zaskakujaco powoli (patrz Benoit B. Mandelbrot, ”The
Paul Lévy I knew” in ”Lévy Flights and Related Topics in Physics”, LNP Vol.450,
eds. Michael F. Shlesinger, George M. Zaslavsky, Uriel Frisch (Springer, Berlin 1995)
p.VIII - XII).

Mianowicie, dokonajmy pierwszej serii o okreslonej liczbie pomiaréw n; > 1
zmiennej losowej = i wyznaczmy dla tej serii pomiaréw srednia dlugosé (| z )y
oraz kwadrat dyspersji (z?);, nastepnie kontynuujmy nasze pomiary wydtuzajac
serie pomiarowa do no > my i obliczajac ponownie te obie Srednie, analogicznie
obliczmy te $rednig dla nastepnych, sitg rzeczy coraz dhuzszych, serii pomiarowych
(tzn. ny <€ ny < ... € n; < ...). OtrzymaliSmy ciag trzech rodzajéw wyni-
kéw dla sredniej z kwadratu sumarycznego przemieszczenia btadzacej czasteczki,
(R2(t)) = (X?2(t)), w funkeji (dyskretnego) czasu, ktére przedstawiliSmy na rysunku
6.12. Wyniki uzyskaliSmy na drodze symulacji Monte Carlo przelotow Weierstrassa
sparametryzowanych przyktadowo (rysunek 6.12a) przez N = 3 oraz b = 2 co daje
wyktadnik g ~ 1.585; algorytm tej symulacji zostal omoéwiony w dalszej czesci.

Jak wida¢, w miare wzrostu liczebnosci serii wzrasta tez, miejscami na-
wet gwaltownie, $rednia (| x |) oraz (z?). Zwigkszanie liczby pomiaréw nie sta-
bilizuje $rednich a wprost przeciwnie - im wigksza jest liczba pomiaréw tym wigksza
jest szansa, ze w danej serii wystapi tzw. rzadkie zdarzenie czyli ogromna war-
toé¢ zmiennej losowej | o | oraz x* w istotny sposdéb wpltywajaca na wynik koncowy
pomiomo, ze jej czestos¢ wystepowania jest znikoma. To wtasnie rzadkie zdarzenia
(czyli z grubsza moéwiac, przeloty przynajmniej o rzad wielkosci dtuzsze od aktualnie
wykonywanych) chronig trajektorie btadzacej czasteczki przed zamazywaniem sie w
wyniki ogromnej liczby przelotow, wyrzucajac czasteczke daleko poza obszar aktual-

4Doktadniej rzecz biorac, przedstawia tzw. sferyczne przeloty Weierstrassa (patrz Dodatek H).
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Rysunek 6.11: Schematycznie przedstawienie przelotéw Weierstrassa dla sytuacji A)
i B). Wykres (a) jest opisany wykladnikiem 5 = 2.32, wykres (b) wyktadnikiem
B = 1.585, natomiast (c) wyktadnikiem 5 = 0.90.
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Rysunek 6.12: Symulacja komputerowa s$redniej z kwadratu sumarycznego prze-
mieszczenia dla przelotéw Weierstrassa (czas ¢ jest dyskretny liczony kolejnymi
przelotami). Wykres (a) jest opisany wykladnikiem § = 1.585, natomiast wykres
(b) wyktadnikiem § = 2.32. W obu przypadkach zesp6l statystyczny miat liczeb-
no$¢ M kolejno réwna: n; = 10° (o), ny = 10%(x),n3 = 107 (e). Jak widaé, wzrost

liczebnosci zespotu statystycznego prowadzi (paradoksalnie) do zwiekszenia ampli-
tudy uskokow.
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nie wizytowany. Tym samym nastepuje separacja btadzen realizowanych w réznych
skalach dhugosci - bedzie o tym dokladniej mowa w dalszej czesci.

Dla poréwnania na rysunku 6.12b przedstawiono w taki sam sposob sytuacje
normalna uzyskang analogicznie dla przelotéw Weierstrassa ale sparametryzowanych
przez wieksza warto$¢ N = 5 przy tej samej wartosci b(= 2) co daje § = 2.32
(wyraznie wigksze od progowej wartosci § = 2). Jak widaé, wartosci srednie (| z |)
oraz (z?) szybko sie stabilizuja osiagajac przewidywana warto$¢ teoretyczng réwna
odpowiednio 4/3 oraz 4.

6.4.6 Rzadkie, ekstremalne zdarzenia

Korzystajac z weze$niejszych rozwazan, ktére doprowadzity do wzoréw (6.125) oraz
(6.126), mozna odpowiedzie¢ na gtebsze pytanie jak wielkosé (dtugo$é), | Tmas |,
tego rzadkiego, pojedynczego zdarzenia (przelotu) skaluje sie z catkowita
liczba przelotéw L ? Zauwazmy, ze | Tpa | jest wartoScia maksymalna jaka
pojawita sie w trakcie tych L przelotow. Zatem dla duzej liczby przelotéw L zachodzg
relacje,

jma:ﬂ . ijaz+1 _ 1 1 .
L=) N = A Nmas (6.154)
= N -1 1-4

N

gdyz Nimee > 1. przy czym jmee jest najwieksza wartoscig j-ego pokolenia jaka
pojawita sie w trakcie tych L(> 1) przelotéw, oraz

| Tynaz |= bob’™, (6.155)

z ktorych, po wyeliminowaniu pomocniczej wielkosci jqez, otrzymujemy poszukiwa-
na zaleznosé

| Timaa [ ALY?, (6.156)

gdzie wspotezynnik A = by(1 — 1/N)V/5,

Zauwazmy przy okazji, ze ze wzoru (6.154) wynika®, iz prawdopodobiefistwo,
W(Zmaz ), Wystapienia pojedynczego przelotu o maksymalnej dtugosci | Zpqex | jest
réwne, z dobrym przyblizeniem, 1/L. Zatem, na podstawie powyzszego okreslenia
prawdopodobiefnistwa w(Z,,q,) oraz wzoru (6.156) otrzymujemy, ze

B

~ 9
‘ Tmax ‘ﬁ

W(Tmaz) (6.157)

gdzie wspoéltezynnik B = AP,
Bez trudu mozna wykazaé¢ (korzystajac z prostego wyrazenia, L; = NJ/mer na
catkowita liczba elementarnych przelotéw L), ze | Zmae | skaluje sie analogicznie z

Bardziej subtelne wyprowadzenie, prowadzace do dokladniejszego wzoru (6.121), zostato przed-
stawione w rozdz. 6.4.1.
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Ly przy czym wspotezynnik proporcjonalnosci jest rowny jednosci. Z tego powodu
czasami L; a nie L nazywa si¢ "masa’ btadzenia przypadkowego.

Powyzsze rozwazania, a w tym zwlaszcza wzor (6.156), sa stuszne tylko dla § < 2
(co nie wynika wprost z przeprowadzonego oszacowania) gdyz tylko wtedy rzadkie
zdarzenie moze odegra¢ wazacg role, w przeciwnym razie jego czestos¢ wystepowa-
nia jest zbyt mata w porownaniu z czestoscig wystepowania krotszych przelotow
(przypadek marginalny = 2 wymaga osobnego potraktowania).

Zwroémy uwage na dwa rodzaje srednich z jakimi mamy do czynienia w tym
paragrafie - w nastepnym omawiamy trzeci rodzaj. Pierwszy rodzaj $rednich to mo-
menty (absolutne) (| z |")., n = 1,2,..., liczone wzdtuz trajektorii btadzacej cza-
steczki i zalezne od catkowitej liczby przelotéow L, przy czym (...) oznacza po pro-
stu srednig arytmetyczng ze wszystkich L przelotéw. W przypadku asymptotycznie
duzej liczby przelotéw (dla kazdego n) zachodzi zwiazek

(oMo = (2= [ dop(@) | " (6:158)

gdzie (| x |") jest drugim rodzajem $redniej, ktéry dla n = 1 oraz n = 2 byl juz
dyskutowany w poprzednim paragrafie. W ogdlnosci rownosé srednich

(Ve = (), (6.159)

to nic innego jak wlasnosé samosredniowania.

W niniejszym rozdziale odpowiemy na istotne pytania dotyczace pierwszego ro-
dzaju érednich, a mianowicie jak momenty liczone wzdluz trajektorii skalujg
sie z L? W tym celu skorzystajmy z przyblizonej zaleznosci stusznej dla duzych
wartosci L usprawiedliwiajacej zaniedbanie zaréwno fluktuacji sekwencji przelotéw
jak tez fluktuacji proporcji pomiedzy liczebnosciami przelotéw w poszczegdlnych
rzedach. Otrzymujemy;,

(bn)Oijaz + (bn)lemm—l + (bn)2ija172 4+ 4+ (bn)jmazNO

(lz ")y = ’ -
o ijaz jma.r <b_n>] B ija.r (%)]mar-f—l _ 1
= — =
L = \N L -
ijaz (ﬂ)]mar‘i’l 1 1 i
N o Mo dla g <, (6.160)
N pn

gdzie indeks jq. jest najwiekszag wartoscia rzedu (pokolenia) o numerze j jaka
pojawita sie w trakcie L przelotéw (patrz (6.154)); ponadto przyjeliSmy tutaj, ze
Jmaz > 1 (co jest nieco mocniejszym zatozeniem od L > 1). Zauwazmy przy oka-
zji, ze utamek NJme==J /[ j = 0,..., jmaz, jest po prostu prawdopodobieristwem
wystapienia (wsrdéd L przemieszczen) takiego, ktére ma dtugosé 7.

Korzystajac z powyzszego wzoru oraz z wyrazenia (6.154) otrzymujemy po pro-
stych przeksztatceniach,

C/
(2"~ Cal" "t % =2 g [, dla <, (6.161)
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gdzie wspolezynnik C,, = A"[1/(1 — N/b")] a C!, = C,/A"; przypadek § = n jest
marginalny i dlatego nie zajmujemy sie nim tutaj. Warto zdawaé sobie sprawe, ze
zainteresowani jestesmy przede wszystkim przypadkiem n =1 oraz n = 2.

Dla kompletnosci, rozwazmy jeszcze komplementarng sytuacje gdy wyktadnik
B < n. Wéwezas, ma miejsce nieréwnosé b" /N < 1, ktéra powoduje, ze wzor (6.160)
przybiera postac:

_ ijaa: (%)JMGT—FI - 1 N ijacc ]_ -~ 1 - i

(lz ") 7 ~ w~— =2D"  (6.162)

Ponizej, obie relacje (6.160) i (6.162) sa wykorzystywane do wyznaczenia np.
dhugosci drogi przebytej przez czastke oraz jej sumarycznej wariancji.

6.4.7 Srednia po zespole statystycznym

Oméwimy teraz dwie niezwykle wazne konsekwencje relacji skalowania (6.161). Mia-
nowicie, odpowiemy na dwa pytania: 1) Jak skaluje si¢ z L $rednia dtugo$é dro-
gi jaka pokonuje czasteczka w wyniku L przelotéw? 2) Jak skaluje sie z L
$rednia z kwadratu wypadkowego przemieszczenia czgsteczki w wyniku
jej L przelotéw? Aby odpowiedzie¢ na te pytania nalezy najpierw okresli¢ z jakimi
srednimi mamy tutaj do czynienia. W tym celu wprowadzmy zesp6t statystyczny
ztozony z ogromnej liczby L trajektorii (podobnych czyli stochastycznych replik),
z ktorych kazda sktada sie z L przelotow. Méwige tutaj o $rednich mamy na my-
sli érednie arytmetyczne po zespole statystyczny, ktore uzyskujemy w nastepujacy
spos6b. Obliczamy w wyniku L przelotéw, w przypadku 1), dtugosé przebytej dro-
gi, a przypadku 2) kwadrat wypadkowego przemieszczenia dla pierwszej trajektorii,
potem dla drugiej, itd, wreszcie dla ostatniej trajektorii o numerze L i nastepnie
obliczamy po prostu Srednie arytmetyczne uzyskanych wynikéw. Istotnym tutaj jest
to, ze liczebno$¢ zespotu statystycznego trajektorii jest taka sama jak liczba przelo-
tow z ktorych sktada sie kazda trajektoria. Zbudowalidémy w ten sposob trzeci rodzaj
sredniej - wszystkie trzy sa niezwykle przydatne w naszych rozwazaniach.

Rozwazmy przypadek 1), oznaczajac przez S(L) dlugosé pojedynczej trajektorii
czasteczki; wspomniang powyzej srednig mozemy zapisa¢ w postaci nastepujacej
relacji skalowania,

(S = (o Do+ @+ + {2
= L{lz |\~ C LY =~ C! | Zpas |, dla 3 < 1, (6.163)

przy czym skorzystali$émy: a) z relacji skalowania (6.161) b) z definicji dtugosci drogi
S(L)=|zy |+ |x2 | +...|xp |, gdzie| z; |, I =1,2,..., L, sa dtugosciami pojedyn-
czych przelotow, bedach oczywiscie jakimis potegami wspotezynnika podobienstwa
b, dalej z c) niemal oczywistej zaleznosci (| x; |) = (| = |), [,I! = 1,2,...,L,
(co pozwala na opuszczenie w tego typu $rednich indeksu numerujacego pojedynczy
przelot) oraz z d) zalozenia, ze Srednia po zespole statystycznym o liczebnosci L z
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dowolnej potegi dtugosci pojedynczego przelotu jest z dobrym przyblizeniem réwna
sredniej z tej wielkosci liczonej po dowolnie wybranej trajektorii sktadajacej sie z
tej samel liczby L pojedynczych przelotow. Oczywiscie, ze wzgledu na nieuchronne
fluktuacje, zatozenie to tym lepiej funkcjonuje im wicksza jest wartos¢ L. To jest
takze powdd dla ktérego oba typy érednich (pierwszego i trzeciego rodzaju) zostaty
oznaczone w taki sam sposob.

Rozwazmy przypadek 2), oznaczajac przez X (L) = x1 + x93 + ... + 1 wypad-
kowe przemieszczenie czasteczki w wyniku L pojedynczych przelotéw. W dalszym
ciggu skorzystamy z zalozenia, ze pojedyncze przeloty sa statystycznie niezalezne
co prowadzi dla n = 2 (po skorzystaniu z wyrazenia (6.161)) do nastepujacej relacji
skalowania,

2 N CoL?/P C3(Timaz)?, dla 8 < 2,
(X)) =L{| = | >L~{ 2D'L, dla 3> 2,

gdzie X(L) = x1 + x2 + ... + x1. Oba powyzsze przyklady jeszcze raz wskazuja
na zasadnicza role jaka pelni wymiar samopodobienstwa 3 w przelotach Weierstras-
sa. Wreszcie, co jest moze najistotniejsze, pokazuja ze za tymi relacjami skalowania
kryje sie jedno i to samo, kluczowe zjawisko wystepowania rzadkich, ekstre-
malnych zdarzen otwierajace nowe pole badan w dziedzinie fizyki statystycznej i
jej zastosowan.

6.4.8 Rozklad Pareto-Lévy’ego

Udowodnimy teraz nastepujace, kluczowe

Twierdzenie Lévy’ego: Niech dana bedzie funkcja postaci (6.138) dla sytuacji ano-
malnej ([ < 2) wowczas,

1

W7 (6.164)

p(x — £00) —n~
gdzie d jest wymiarem euklidesowym przestrzeni, w ktérej zachodza btadzenia; w
dalszym ciggu rozwazamy sytuacje d = 1, co nie zmienia (w istocie) og6lnosci do-
wodu

Dowdd jest trzycze$ciowy a mianowicie dla trzech réznych zakresow 3. Przytaczy-
my go tutaj w catosci ze wzgledu na jego centralne znaczenie dla naszego wyktadu.
Dla tych wszystkich zakreséw naszym celem jest obliczenie transformaty Fouriera
postaci,

1 o)
p(r — +o0) =~ %/_OO dk exp(—ikz) exp(—Dj | k |7). (6.165)

Zauwazmy, ze do znalezienia asymptotycznej postaci p(x) wystarczy skorzystaé je-
dynie ze znajomosci czynnika strukturalnego p(k) dla D’ | k |< 1; pozwala to na
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formalne rozciagniecie granic catkowania od plus do minus nieskoriczonosci (czyli to
co sie dzieje daleko w przestrzeni odwrotnej nie ma istotnego wpltywu na to co sie
dzieje daleko w przestrzeni prostej), utatwiajac znacznie przeprowadzenie obliczen.

Czes¢ I f < 1

Przeksztalcimy stopniowo prawa strone wyjsciowego wyrazenia (6.165)

Q

1 o]
pla — £00) ;/O dkcos(k | z ) exp(=D} | k |°)

1 1 00 d .
_ ;m i dk <%sm(k5|x|)>e>{p(—DHk|ﬁ)
10}
7| x|

L DB e (v
= ;\aj\”ﬁ/o dyy” " sin(y) exp | =D} m . (6.166)

Aby wyznaczyé poszukiwang, asymptotyczna postaé p(x) skorzystamy ze znanej
relacji

|k P singe @ ) exp(— | £ 17)
0

/ dyy”~"sin(y) = T(3) sin <g6> : (6.167)
0
Zatem ostatecznie,

1 D} /T

przybierajac tym samym postaé¢ Pareto-Lévy’ego.
Czese II: p =1
W tym marginalnym przypadku wyrazenie (6.165) przybiera prostsza postac,
p — +00) ~ % / o; dk exp(—ikz) exp(~D} | k |). (6.169)

Nastepnie, dzigki parzystosci funkcji exp(—D% | k |), otrzymujemy

Q

1 00
plx — +00) %/o dk exp(—ikz) exp(=D’ | k |)

1 00
+ %/0 dk exp(ikz) exp(=D% | k |)
1 D 1 D}

e S dl D)2, 6.170
W(D})2+x2 T a2’ a o> f) ( )
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W tym przypadku, jak widaé, rozktad p(x) przybiera asymptotycznie postaé¢ Lo-
rentzianu tozsama z rozkladem Pareto-Lévy’ego.

Czes¢ III: 1 < B < 2
Podobnie jak w poprzednich dwoch przypadkach, mozna zapisaé
@ — to0) ~ %/Ow dk cos(k | z |) exp(~D} | & |?). (6.171)
W dalszym ciggu, po zamianie zmiennych, otrzymujemy
p(r — +o0) =~ %/Ooo dy cos(y) exp(—D’vy”), (6.172)

gdzie podstawilismy y =| x | k oraz v =| z |7; zauwazmy, D}v jest wielkoicia malg
umozliwiajaca rozwijanie w szereg Taylora. Mianowicie,

1 [e’e)
p(r — £o0) = - /0 dy exp(—D’vy) cos(y) exp(—Djv(y” — y))

1 [e’e)
= - /0 dy exp(—Dyvy) cos(y)[1 — Dyv(y” — y)

+ %(D}vf(yﬁ —y)’+..]; (6.173)

w dalszym ciggu skorzystamy z zaleznosci

o _ L(v) 1
/ v—1
/o dy exp(—vay) cos(y)y” " = G }v)Q 7 coS <y arc tg(D}v)> )

dlav > 1, (6.174)

ktéra pozwala wyrazié¢ rozklad p(x) w nastepujacej postaci asymptotycznej

15 Lt e (04 95) + o)

plz — £o00) =~

1 D} T
oyl )sin <§5>, (6.175)
gdzie po drodze skorzystalismy takze z rownowaznej postaci
/
/o dy exp(—D’vy) cos(y) = W, dlav =1, (6.176)

oraz z przyblizenia arctan(z — oo0) ~ 7/2. W podsumowaniu tego twierdzenia za-
uwazmy, ze dla wszystkich zakreséw ( (sytuacja marginalng dla 5 = 2 zajmujemy
sie w dalszej czesci) otrzymalidmy w koncu identyczna asymptotyczng postaé rozkta-
du p(x); uzyskalisémy takze co$ wiecej wykazujac nie tylko, ze p(z) przybiera postaé
Pareto-Lévy’ego w granicy duzych wartosci | z | ale takze znajdujac wyrazenia na
wspotezynnik przedwyktadniczy co ma znaczenie wtedy gdy np. poréwnujemy prze-
widywania teoretyczne z danymi do$wiadczalnymi.
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6.5 Multifraktalne bladzenie w czasie cigglym na
gaussowskim amorficznym substracie

Nasze podejscie sktada sie z dwoch etapéw. W pierwszym (podrozdz. 6.5.1), ze wzgle-
dow dydaktycznych i rachunkowych, analizujemy funkcje rozdziatu czasow wyczeki-
wania wskazujac na jej nietermodynamiczny charakter. W drugim etapie (podrozdz.
6.5.2) proponujemy prosta liniowa transformacje tej funkcji rozdziatlu pozwalajaca
juz na pela charakterystyke multifraktalng i termodynamiczna czestosciowej (dy-
namicznej) czesci bladzenia losowego w czasie ciagltym na gaussowskim amorficznym
substracie - nazwa ta zostata usprawiedliwiona ponizej. Dodajmy, ze nie tylko sub-
straty wyktadnicze ale takze i gaussowskie uzywane sa do modelowania materiatow
szklistych.

6.5.1 Nietermodynamiczna multifraktalnosé
- pouczajacy przyktad

Przypusémy, ze mamy do czynienia tylko z nieporzadkiem wywotanym przez losowe
lokalne minima energii potencjalnej substratu; niech energie te beda losowane z
"waskiego” rozktadu Gaussa

p(€) = \/2;7@@ (—(52%‘2&2) . (6.177)

gdzie o < & oraz z dobrym przyblizeniem® 0 < £ < 2€ zatem,

IRZGEY  dEp(€) ~ 1. (6.178)

Stad, rozktad wykltadniczy (6.53) wystepujacy w usrednionej funkeji rozktadu czasoéw
wyczekiwania (6.60) nalezy zastapi¢ przez powyzszy (6.177). Wowezas, wyrazenie
(6.62) przechodzi w nastepujaca superstatystyke

B 2& 1 (5 . 5)2
¢(t> = 0 dg\/m €xXp <—T‘2> qf)g(t) (6179)
gdzie
€ £
Pe(t) = o exp <_kB—T) exp (—% exp <_kB—T> t) = 7075/0 exp (_%Vg/at) '

(6.180)

przy czym skorzystaliSmy z oznaczenia (6.57) ktadac A = o.

6Przyblizenie to skutkuje, jak zobaczymy, wplywem skoficzonego rozmiaru substratu (ang. finite
size effect), tzn. skonczonego zakresu glebokosci putapek na wynik. Wplyw ten zostanie przez nas
krotko oméwiony w nastepnym paragrafie.
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Naszym wyjsciowym zadaniem jest obliczenie momentu (t¢~1) rzedu ¢, gdzie
q jest (na razie) dowolna liczba rzeczywista; wykorzystamy w tym celu powyzsze
wyrazenie (6.179). Zatem,

28
<t"‘1>=/ dEp(E){tT e, (6.181)
0
gdzie
o0 E 171
=y — -1 = . =
e = [t 0e(t) = Truera) - [roexp(—1 )
~(¢-1)
= Truer() - (07°7) ", (6.182)

przy czym I'guer(q) jest funkcja gamma Eulera zdefiniowana (przypomnijmy) na-
stepujaco

Dot (0) = [ dyy*™ exp(—). (6.183)

czyli mozna przyjacé’, ze q¢ > 0.
Zauwazmy, ze

Z, o (t171) = /O T g(t), (6.184)

tzn. moment rzedu ¢ — 1 mozna traktowaé, przynajmniej formalnie, jako funkcje
rozdziatu (ang. partition function) tutaj czaséw wyczekiwania.
Podstawiajac wyrazenie (6.182) do (6.181), otrzymujemy

q—1 28 (q—1)§ 2&
zqzigzz(q; = [ aznte) (%) = [T agen(ce),  (6189)

oraz

G(€) = —% + (¢ — 1)]@% - %111(27?02); (6.186)

funkcje G(€) mozna tatwo przeksztalcié do wygodniejszej postaci:

1 1
GE) = —==(&—-E)? — = In(2n0?
) = —53(E &)~ 5 In@no?)
£ 1 o \?
b1t - —12<—) 6.187
"W ogélnosci, zachodzi relacja I'(q) = m dajaca osobliwoéci w ¢ = —n, gdzie n =
0,1,2,3,.... Chcac uniknaé tych osobliwosci, przyjeliSmy powyzsze ograniczenie na q.
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gdzie

2

a<<5*:€+(q—1)k07<2£, (6.188)
B

tzn. zalozyliSmy, ze catka gaussowska w drugiej réwnosci w (6.185) ma ostre maksi-
mum w £*. Rzecz jasna, nieréwnosci (6.188) naktadaja ograniczenia na wyktadnik
potegi ¢

kT g

E kgT
—<1——><<(q—1)<— b
g g

LB (6.189)

g o

Poniewaz wystepujaca w wyrazeniu (6.185) catka gaussowska jest (z dobrym przybli-
zeniem) réwna 1, wiec ostatecznie wyrazenie (6.185) sprowadza sie do poszukiwanej

przez nas postaci wieloskalowej,
1 7(q)
Zy = <—> , (6.190)

Y

przy czym globalny wykladnik wieloskalowy® (ang. global multiscaling exponent),

@) = (4= 1)D(q) = nla) — Flnla)) < - (5) ke (6.191)

2\o o
gdzie

(g—1) o &
2 kBT+U

D(q) = (6.192)
to tzw. wymiary Renyi’ego, bedace tutaj liniowa funkcja ¢ — 1. Ponadto, wprowa-
dzilismy kluczowe dla naszych rozwazan wielkosci

o &

nq) = (¢— 1)1@—7 +t

¢ o E 1 o

fin(q) = ng—TJr;—@{B—T
1kgT g o\ &€ 1 ¢
— et _ey ) e 2 1
2 o <77(C]) a+kBT> +O’ 2kgT (6.193)

Trzeba podkresli¢, ze f(n) jest tutaj wypukta a nie wklesta funkcja n (jest parabolg o
ramionach skierowanych ku gorze). Taki ksztatt wyklucza jej zwiazek z formalizmem
termodynamiki. Ten zwiazek zostanie znaleziony dopiero w rozdz. 6.5.2, po doko-
naniu transformacji zmiennej ¢, tzn. po przejsciu do funkcji rozdzialu odwrotnosci
czasOw oczekiwania czyli czestosci.

8Dokladniej rzecz biorac, jest to rodzina globalnych wykladnikéw wieloskalowych indeksowana
wartosciami q.
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Druga réowno$¢ w 6.191 wprowadzita transformacje Legendre’a, stosowang juz
wezesniej w rozdz. 5.4.4), taczaca globalny wykladnik wieloskalowy 7(¢) z widmem
osobliwosci (singularnosci® ang. spectrum of singularities) f(n(q)) oraz (jak trzeba)

dr(q)
dqq - /’77
df(n) _

Dodajmy, ze wielko$¢ n jest czesto nazywana lokalnym wyktadnikiem skalowania
(ang. local scaling exponent).

Nalezy podkreslié, ze zar6wno 7(q) jak tez widmo lokalnych wymiaréw fraktal-
nych f(n(q)) niosa identyczna informacje o uktadzie, gdyz sa powiazane transforma-
cja Legendre’a. Zaleta uzywania widma f(n(q)) jest jego prosta "fizyczna” interpre-
tacja méwiaca o tym jak skaluje sie gesto$¢ standéw p(n). Mianowicie, korzystajac z
(6.177) i (6.193) otrzymujemy

1 AL
plon) = N <;> . (6.195)

Innymi stowy, widmo f petni role wyktadnika fraktalnego skalujacego gestos¢ mia-
ry zbioru punktéw posiadajacych wspélna ceche (tutaj identyczny lokalny wymiar
fraktalny) 7.

Korzystajac z (6.195) mozna wyrazié¢ (6.190) w postaci usprawiedliwiajacej trak-
towanie 7 wtasnie jako lokalnego (czastkowego) wyktadnika skalujacego

1 an(a)
Z, =~ p(on) <§> . (6.196)

Bardziej pogtebionej, mikroskopowej analizy tego wyktadnika nie bedziemy juz tutaj
prowadzi¢ koncentrujac sie gtéwnie na analizie zwiazku multifraktalnosci z formali-
zmem termodynamicznym.

Nalezy podkresli¢, ze przedstawione w niniejszym podrozdziale rozwazania doty-
czace multifraktalnos$ci wskazuja, ze jest ona tutaj obecna. Jednakze podejscie to jest
niewystaczajace do pokazania jej zwigzku z formalizmem termodynamicznym. Taki
zwiazek podajemy ponizej w rozdz. 6.5.2 poprzez wprowadzenie funkcji rozdziatu
czestosci.

6.5.2 Termodynamiczna funkcja rozdziatu
a multifraktalnosé

Aby powiaza¢ multifraktalno$¢ z formalizmem termodynamicznym nalezy dokonaé
prostej liniowej transformacji zmiennej niezaleznej ¢, mianowicie

§=2—q §<2. (6.197)

97wane jest ono takze 'widmem lokalnych wymiaréw’ (ang. spectrum of local dimenions).
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Prowadzi to do nastepujacej postaci funkcji rozdziatu

N

— =A@, 6.198
FEule'r(Q - Q) 7 ( )

gdzie
7(q) = —7(2—q). (6.199)

W wyrazeniu (6.198) przeszlismy od skalowania czasu do skalowania czestosci (od-
wrotnosci czasu). Co wiecej, przetransformowana funkcja rozdziatu jest (jak trzeba)
unormowana, tzn. spehiajaca réwnosé Zz_; = 1, gdyz 7(§ = 1) = 0 (patrz wyraze-
nie (6.200) ponizej).
Dzigki transformacji (6.197) oraz (6.199) wymiary Renyi’ego
. (g € 1 o q o
D@ = = 5 30T 2T (6.200)

SN

gdzie ma miejsce ograniczenie na zakres zmiennej ¢

kT & kT €&  kgT
P A (6.201)
o o o o o
przy czym zaktadamy, ze 27 > 1. Zauwazmy, ze D(§) jest liniowo malejaca funkcja

g zatem, jest w stanie oplsac Jedynle centralna, prostoliniowa (z dobrym przyblize-
niem) cze$¢ wykresu wykladnikéw Renyi’ego - pelniejszy jego przebieg przedstawio-
no na rysunku (5.6) w rozdz. 5.4.

Dysponujac teraz przetransformowanym globalnym wyktadnikiem wieloskalo-
wym, mozemy wyprowadzi¢ zaréwno przetransformowany lokalny wyktadnik ska-
lowania 77(q) jak tez przetransformowane widmo lokalnych wymiaréw f (7). Miano-
wicie,

. - E 1 o q o e -
=1 (4 530y - b ) — 0 - @), G20m)
gdzie 1(q) n(1—4q), f(7i(q)) = —f(7) i maja miejsce nastepujace ograniczenia
£ o . dr(q) & o .o & .
s T SN = st T T S o i) >
(6.203)
ponadto
o 1kgT (. E\® _ .
Fatan = -5 (i) - £) +ia), (6.200)



przy czym zachodzi (jak trzeba)

df ()
dij

=g (6.205)

Jak wida¢, transformacja od wielkosci bez falki do odpowiadajacych im oznaczonej
falkg jest liniowa. Oczywiscie, ograniczenia (6.203) zubozaja multifraktalnosé zawe-
zajac jej dziedzine, ale mimo tego multifraktalnosé jest tutaj wyraznie widoczna, co
pokazujemy ponizej, m.in. na rysunku 6.13.

Warto jeszcze podaé nastepujace, przydatne wtasnosci wymiaréow fraktalnych
Renyi’ego, a mianowicie:

(q) = 37(q) + 3

S

a)

Q |t

b) D(2§) = 7(§) + D'(§) = 7(§) — %kﬁ., gdzie D’ oznacza pochodng po §

c) jesli ¢1 = Go to D(q1) < D(Cb)

d) w zakresach okreslonych przez nieréwnosci (6.201) wymiary Renyi’ego D(§) >
0.

Stad, w waznych szczegdlnych przypadkach otrzymujemy:

D(cjzl—@-é):ég

o o 20
~ E 1 o
DiG=0)= =+ -——
(=0) U+2%
. &
Dig=1)=2
@ ) >
. E 1 o
DiG=2)=2 - ~——
(@=2) Y
kT & kpT 1€ 1
D(g: Ji~—a~£—>=—— - (6.206)
o o o 20 2

W dalszym ciggu naszym celem jest analiza widma osobliwosci danego wzorem
(6.204). Podkreslmy, ze parametrami charakteryzujacymi widmo (a takze pozosta-
te dwie funkcje 7(§) oraz 7(q)) sa wielkosci bezwymiarowe 2L oraz £, co pozwala
uniknaé efektu rozmiarowego (ang. finite size effect). Po prostu, zwiekszajac rozmiar
uktadu (czyli érednig gteboko$é miniméw potencjatu £) nalezy proporcjonalnie do
tego zmieniaé o a stad takze kg7 tak, aby zachowaé¢ niezmienionymi wartosci wspo-

mnianych parametréw bezwymiarowych.
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Analiza widma osobliwosci

Po przeprowadzeniu prostych algebraicznych przeksztatcen otrzymujemy wtasnosci
wykorzystane takze przy konstrukcji wykresu na rysunku 6.13,

1) lokalny wyktadnik skalowania 7(¢) = D(q) + (§ — 1)D'(q)

2) korzystajac z powyzszego oraz z transformacji Legendre’a (druga réwnosé¢ w
(6.202)) mozna widmo singularnoéci wyrazi¢ nastepujaco f(7(q)) = D(§) +
q(q —1)D'(q)

3) widmo singularnosci osiaga maksimum dla 77(¢ = 0) = § + 527, tzn. zachodzi
fi(@=0))=D(G=0) =% + 335,

4) dla n(q = 1) widmo singularnosci f(i(G=1) =7(G=1)) = D(G = 1) =

ponadto, & \,7 G=1) = 1,

Q |t

5) widmo singularnoéci ma dwa rézne pierwiastki 7+ = (¢ = ¢x) = g + i F
1+ QkBTg , gdzie g4 = +y/1+ QkBTS stad, rozpieto$¢ widma osobliwo-

sci A =1y —1-=n(G-)—7(G+) =2y/1+ 2%5 Skrajne wymiary Renyi’ego
D(q,) oraz D(g_) okreslaja granice obszaru skalowania Z(§), definiujac zara-
zem rozpieto$¢ widma osobliwosci.

6) pochodne widma singularnosci w punktach skrajnych 0 < \,7 =gy < +00
oraz —oo < ‘;—f;|ﬁ+ = ¢_ < 0 nie osiggajg, jak widac, Wartosc1, odpowiednio,

+00 a ponadto, na mocy whasnosci b) z poprzedniego paragrafu, D(Qq}) =
~ 1 o
¥ = 3%pT
Rysunek 6.13 przedstawia schematyczny przebieg zaleznosci (6.204) z naniesio-
nymi charakterystycznymi punktami (poréwnaj z rysunkiem 5.5). Dla uproszczenia
f, i oraz D(§) (a stad, oczywiscie, T) zostaly podzielone przez przyktadowy uzytecz-
ny czynnik skalujacy g przy czym oznaczenia (dla prostoty) pozostaly niezmienione;
dodajmy, ze w takim przypadku ~ zostala podniesiona do potegi réwnej wspomnia-
nemu czynnikowi.

Zwiazek multifraktalnosci z termodynamika dla konkretnych wielko$ci

W analogii do rozwazan przeprowadzonych w rozdz. 5.4.4, mozemy podaé tabe-
le odpowiedniosci pomiedzy wielkosciami multifraktalnymi i termodynamicznymi,
analogiczna do tabeli 5.2. Jak wida¢, w tabeli 6.2 przedstawiliémy konkretne postaci
wielkosci multifraktalnych dotyczacych rozwazanego tutaj multifraktalnego btadze-
nia losowego w czasie ciggltym na substracie gaussowskim. Na szczegolng uwage
zashuguje uzyskana, stosunkowo wolna, paraboliczna zalezno$é¢ ciepta wtasciwego
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Rysunek 6.13: Schematyczny wykres widma osobliwosci. Zasadnicze wielkosci cha-
rakteryzujace analizowana multifraktalno$¢ zostaty (dla wygody) podzielone przez
uzyteczny czynnik skalujacy g i zebrane w tabeli 6.2 - oznaczenia (dla prostoty) po-
zostaly niezmienione. Dokladniej rzecz biorac, f(7), 7(§) oraz D(§) (a stad, oczy-
wiscie, 7(q)) zostaly podzielone przez wspomniany czynnik; w takim przypadku,
v ulegta zmianie przybierajac wygodniejsza, obecna we wzorze (6.56) postaé cha-
rakteryzujaca prawo Hopfa-Arrheniusa lub prawo Vogela-Tammana-Fulchera, tzn.
v = exp 6—@% , czyli zostata podniesiona do potegi rownej wspomnianemu czyn-
nikowi). Stad, np. wartoé¢ maksimum widma wynosi D(¢ = 0) = 1 + %%k}%, tylko
nienacznie przekraczajac 1 (przypominamy, ze gesto$¢ rozktadu prawdopodobiefi-
stwa moze by¢ wicksza od 1). Ponadto, wida¢, ze pochodne | f/(7z)| = |G+| < oo ze
wzgledu na paraboliczny ksztalt widma osobliwosci, chociaz czesto nieparaboliczne
widmo osobliwosci charakteryzuje sie nieskoniczonymi wartosciami tych pochodnych.
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Tabela 6.2: Przyporzadkowanie charakterystyk multifraktalnych wielko$ciom termo-
dynamicznym

‘ Multifraktal ‘ Termodynamika ‘
q 5
g

EnT U‘(/)
Q) =1+ %527 — 03527 -

~(~ ~ o o jo o F
7(q)=(-1) (1‘1‘%5;—%5@) —ﬁv(ﬁ)
f(n(q))Z—%k%g(n—l)QJrn e
Cé/szT(Cj) = —@2d—q~ = 62%—k;’ cv(B)

od odwrotnoéci temperatury ¢. Zauwazmy, ze mamy tutaj do czynienia z dwo-
ma temperaturami, tzn. kg7 oraz %. Pierwsza wchodzi do formalizmu tylko jako
ustalony parametr zewnetrzny, natomiast druga peini role faktycznej temperatury
multifraktalnej. Wspomniana paraboliczna zalezno$¢ jest analogiczna do zaleznosci
ciepta wlasciwego od temperatury, np. dla paramagnetyka (patrz Krzysztof Rej-
mer: Wprowadzenie do termodynamiki, Wydawnictwo ... , Poznan 2013) czy tez dla
cial amorficznych sktadajacych sie z niezaleznych, niskoenergetycznych poduktaddw

dwupoziomowych (patrz Charles Kittel: Wstep do fizyki ciala statego, Wydawnictwo
Naukowe PWN, Warszawa 1999, ttum. z ang.).

319



320



Czes¢ IV
CTRW a dyfuzja fraktalna
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Rozdzial 7
Wybrane elementy CTRW

In the present work we match the biased Hierarchical Continuous-Time Random
Flight (HCTRF) on a regular lattice (based on hierarchical waiting-time distribu-
tion) and the statistical Extreme Value Theory (EVT). This approach extends the
understanding of the anomalous transport and diffusion (for example, found in so-
me amorphous, vitreous solids as well as in conducting and light-emitting organic
polimers). Both independent approaches were developed in terms of random-trap
or valley model where the disorder of energy landscape is exponentially distributed
while the corresponding mean residence times in traps obey the power-law. This
type of disorder characterizes several amorphous (even used commercially) mate-
rials which makes it possible to apply the HCTRF formalism. By using the EVT
we additionally show that the rare (stochastic) events are indeed responsible for the
transport and diffusion in these materials.

7.1 Introduction and motivation

The variety of observed relaxation phenomena in condensed and soft matter are re-
lated to transport and/or diffusion of atoms, particles, carriers, defects, excitons and
complexes [1] (and refs. therein). In fact, the transport and diffusion are regarded
as a paradigm of irreversible behaviour of many ordered and disordered systems. A
universal feature of a disordered system is the temporal complex pattern, where the
Debye-relaxation is no longer obeyed. The sentence which we quote after Scher and
Montroll [2] characterizes well the straightforward link between physics of anoma-
lous transient-time dispersion in an amorphous substance and its application. The
development of modern photocopying machines has motivated experimental work on
amorphous materials, some of which display anomalous transport properties.

The theory of carrier transport in some amorphous insulators (such as the com-
mercially used vitreous AsySez) and in some amorphous charge-transfer complexes
of organic polymers (as the commercially used trinitrofluorenone mixed with poly-
vinylcarbazole, TNF-PVK) provides canonical examples of
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(i) continuous-time random flights and walks, and
(ii) broad- or long-tailed waiting-time distribution between steps.

More precisely, the generic description of the dispersive transport and diffusion [3]
found in the canonical experiments on transient current in an amorphous medium
(induced by flash-light [4, 5, 6, 2, 7] or voltage pulse [9] and refs. therein) is given
indeed by the Hierarchical Continuous-Time Random Flight formalism® [10, 11, 12,
13, 14]. The principal aim of my lecture is to express this description in terms
of the Extreme Value Theory (EVT) [1, 2, 3]. Such an approach shows that rare
(stochastic) events are indeed responsible for the transport and diffusion in these
materials.

The paper consists of two parts. The first part (Sec.7.2) includes remarks con-
sidering the basic elements of HCTRF and particularly, the averaged over disorder,
hierarchical waiting-time distribution and its scale-invariance as the main property.
In the second part (Sec.8.3) we develop the EVT in the context of the random-trap
or valley model where disorder is due to the energetic depth of the traps (which are
exponentially distributed) and by the corresponding mean residence times (which
obey then the power-law).

7.2 Basic elements of the biased Hierarchical
Continuous-Time Random Flight

The most spread models describing transport and diffusion in disordered substrates
are based on the Continuous-Time Random Walk formalism. The major simplifica-
tion in these models is that the disordered energetic landscape of the substrate can
be described by an exponential distribution and incorporated into a regular lattice.
In this work we consider single particle random instantaneous hops (flights) betwe-
en regularly displaced valleys which have, however, different depths; the mountain
peaks have all at the same energy level when a bias is absent (which justifies the
name of the model), cf. Fig7.1

In the case when biased (constant) force F' is present the potential is simply
modified as it is shown in Fig.7.2.

Waiting-time distribution. The pausing or residence time ¢ in a given trap (be-
tween the successive hops) is a stochastic variable whose statistics is defined by the
normalized waiting-time distribution . (). This basic quantity here is the sharp
probability density that the particle will perform its next hop exactly at time ¢
after having waited until this instant in a trap of depth . The simplest but realistic
example is provided by the exponential waiting-time distribution of a local in space

"'We distinguish between particle flights and walks as the former are instantaneous while the
latter ones need some time to move between the traps.
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Rysunek 7.1: Schematic reprsentation of the valley or random-trap model when bias
is absent. All valleys are equally spaced, but have different depths. The mountain
peaks are all the same energy.

Poisson process

0.) = s e (—%) (71)

where the factor 1/7(¢) is the probability density per unit time or rate of transition
to a neigbouring site; the second factor is the probability that no hop has occurs
until time ¢.

As we consider here only thermally activated over-barrier hops in the presence
of a constant external bias, we can use asymmetric transition rates in the form

Ii(e) =Ty exp <—ﬁ’ . (5 F %Fa)) , (7.2)

where

for the Hopf-Arrhenius (HA) law

g={ "D (73
(kp®)~!, for the Vogel-Tamm-Vulcher (VTF) law '
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Rysunek 7.2: Schematic reprsentation of the valley model shown in Fig.7.1 when
biased, constant force F' is present. All mountain peaks are now displaced along a
tangent straight line.

where kg is the Boltzmann constant, T is the absolute temperature, and © =T —
T, > 0, where T, is the transition temperature to the glass phase. Note that in
expression (7.2) the external force is denoted by F', the lattice constant by a and
[', is the transition rate along the direction of external force while I'_ is the one
in the opposite direction. Hence, the approximate equality (in the second line) in
expression

—_

—— = T () +T(e) = 20 - exp(—f3's) cosh(§'Fa)

B
—~
™
~—

~ 9Ty exp(—F)[1 + (8 Fa)?), (7.4)
gives the second-order effect in the applied field, i.e. quadratically depends on the
small quantity #'Fa. Fortunately, in all our discussions we have 3'Fa < 1 as this is
an obvious experimental constraint justifying the restriction only to the first-order
effect in the applied field in all our considerations.

Sojourn probability. It is useful to introduce the sojourn probability W.(¢) that
the particle remains at a lattice site at least until time ¢ without any hop; and is
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defined by using the waiting-time distribution

U (t) = /t - dt' . (t") (7.5)

which in the case of a local Poisson process described by (7.1) asumes the simple
exponential form

t
U, (t) = exp < 7'(5)) . (7.6)
In our model the averaging of this distribution over disorder is required to calcu-
late the full propagator. How to perform this averaging is the essential problem
considered below.

The structure factor of the biased random walk. Before we calculate the propaga-
tor we need to define the structure factor of the biased random walk. This definition
requires the knowledge of the (stationary) spatial (single-hop) transition probabi-
lities, p+, along and against the applied force, respectively, and includes here (for
simplicity) the transitions only to the nearest-neighbours. Then

Fi(eS) 1

»
PE = T ) 2 (1 +30 F“) ! (7.7)

and the corresponding spatial probability density
p() = psd(z — a) + p_3(x + a). (7.8)

Hence, the structure factor of the biased random walk is defined as the Fourier
transform of p(z)

p(k) = cos(ak) — i - (py — p_) sin(ak) ~ cos(ak) — %ﬂ’F& -sin(ak); (7.9)

here again only the first-order effect in the applied field was taken into account.

The propagator. The waiting-time distribution and sojourn probability avera-
ged over disorder are, together with the structure factor, the relevant quantities to
construct the full propagator considered in this paragraph.

The motion of the particle consists of a sequence of alternative events defined by
the waiting in a given trap and next the hop to the neighbouring one. Correspon-
dingly, the propagator consists of an unrestricted superposition of the n-step partial
propagators

Pso,sl,sz,...,s(Xa t) = PE:EO (X> tyn = 0) + Z Pso,sl,sz,...,sn_1,5(Xa ta TL) (710>

n=1

where the multi-step propagators (defined as the probability density of finding a
particle at position X at time ¢ within n stelps over a sequence of traps which have
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depths €g, €1, €9,...,6,_1,€) can be expressed as follows,

PEOZE(X7 in = 0) - 6<X> ’ \ij:‘o:f:‘(t)v

t tn t3 to
Preroaer 1o (X, tim) = /O dty [ dtu .. /0 dty [ dn

/ dxn/ dxn_l.../ dxg/ dzq

Yoo (1, 81) e, (9 — 1,80 — 1) . ..

Ve, (T —xp1,ty — t 1)0(X —z,) W (t — 1),

n=123,.... (7.11)
where the full waiting-time distribution, 1.(z,¢) “2" p(z) - 1.(t), means the sharp
probability density of a single displacement x just at time ¢t when the particle stayed
whole the time (from 0 to t) at a given trap. As it is seen, the terms with n > 1 are n-
fold convolutions. I.e., for the n-step partial propagator the walker performs exactly
n single steps while the last nth one is just under way (in general it is not finished).
It should be admitted that the initial condition is not visible here because it is the
same for each partial propagator. This condition has a non-stationary character and
says that initially the particle was surely at the origin.

The average propagator. Now, to obtain the average propagator we should ave-
rage the above expression by using the distribution p., ¢, c,.... 2, ,.c i the factorized
form, i.e. p(go,€1,€2,...,6n-1,€) = p(€0)p(e1) ... p(en—1)p(€), as the depths of traps
are, by definition, statistically independent. The key point of our consideration is
given by the exponential form of the single-trap distribution

ole) = % exp <—<§>> | (7.12)

By applying waiting-time distribution . and py ¢, ,...c,_,,c i the factorized form
together with expression (7.12) into (7.11) we get the average propagator in the form

P(X,t)= Z P(X,t;n) (7.13)
n=0
where the partial, average n-step propagators are
P(X,t;n=0)=0(X)¥(t),
t to
P(X,t:n) = /dt/ dto_: .. /301152 dt,
0 0

/Oodwn/ dwn,l.../ dxg/ dzq

Yy, t)Y(xg — 1, t — 1) ...
W(xy — xp1,ty — ty1)0(X — 2,)U(t — L),
n=123 ... (7.14)
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and the average waiting-time distributions and sojourn probability are given by
U t) = p@) - v(t), vt = [ deple) (1),
U(t) = / dep(e) - WL (1) (7.15)
0

After the Fourier and Laplace transformations of the convolutions (7.14) we get
the geometric series which can be written in a simple, closed form

P(k,s) = LSZ,
1 —(k,s) ~
Bks) = BR)-0ls), B(s) = -2 (7.16)

where f(...) means the Fourier and/or Laplace transform of function f(...). We
should find now an explicit asymptotic form of the waiting-time distribution.

7.2.1 Scaling relation obeyed
by the waiting-time distribution

It can be easily found that the average waiting-time distribution, given by the second
relation in (7.15) combined with (7.1), has an approximate form

1 o0 1 1 t
o) ~ (13- [ e e O <—m> (7.17)

or
~ 1
P(s) ~ (1 —~ —) / ng T (7 s (7.18)
where we introduced a convenient notation
ef. € def. A 1 A , ’
fd:f —, N = exp <—> 1l == — =exp(f'A), 7.19)
A ) TN ) (

and assumed (for simplicity) A < (g).
Expression (7.18) obeys the convenient scaling relation

, 1
O Yy o 3 m—_—

~ N-@/;(S)—(N—l)-(l—To-s), (7.20)

which can be solved by assuming, as usual for an equation of this type, that the
solution is composed of the sum of two essentially different terms, i.e. U(s) =
¥s(s) + ¥ (s), where the singular (general) term v, (s) obeys the homogeneous part
of eq.(7.20), and the regular (particular) one v, (s) obeys the (full) homogeneous
eq.(7.20).
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7.2.2 Explicit asymptotic form
of the waiting-time distribution

For | s |[< 1 we obtain the singular term

In 7/

Ju(s) ~ —Q (1“3) (70 5)% (7.21)

where the exponent @ = InN/In7" = (' - (¢))~! and the log-periodic function
(whose period is equal to 1) reduces, in the lowest approximation (or zero-order in
s-variable), to the form?

1 -1

In 7/ InN sin(ra)’

The regular term (controlled by an approximate form of the inhomogeneouity in
eq.(7.20)) reduces, within the linear approximation in s-variable, into the form

1—
1—

2=

&r(s)%l—Cﬁ-Tms, C'j:

(7.23)

=2

Finally, we obtain the seeked waiting-time distribution in the Laplace domain
for | s |[< 1/19

1/;(3)%1—C’g~(7'0-s)a—0}-7'0-s

f1=CY (19 5), fora<l
N{ 1-Cl19-s, fora>1 (7.24)
and in the asymptotic-time domain
1 1—L ¢ ]
bt) ~ = 1n(1<7V) ca - Tpyer (14 a) - (T—O) , fora<1 (7.25)
()=t exp (—é) , for o > 1,

(here (t) = 13- C!) which makes it possible to consider the propagator and hence the
asymptotic mean- as well as mean-square displacement in an explicit form?. (Note
that for the derivation of the first expression in (7.25) for o < 1 we used relations
(7.16), (7.15), (7.5) and (7.22).)

2The derivation of the detailed form of coefficient C? by using the Mellin transformation, is
given, e.g., in [11].
3In the paper we do not consider the marginal case defined by the threshold a = 1.
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7.2.3 Asymptotic form of the propagator

For | 7o-s|< 1 and | k-a |< 1 the propagator (given by (7.16)) can assume the
following explicit form

~ 1
P(k,s) = =
5+ [1 —p(k)] : 1:23((5))
1
N s+[1—ﬁ(k)1'W’ fora <1 (7 26)
L for a > 1. )

where we used the explicit asymptotic form of the waiting-time distribution (7.24).
In the Fourier and time domain the above relation transforms still into the relatively
simple form

Blk.t) { Eo (- (L)) fora <1 (727

exp (—[1 — p(k)] - é) , for a > 1.

where FE,(...) is the well known Mittag-Leffler function [3], called sometimes the
generalized exponent,

e} n

Ea(x) = Z ”

n=0 I‘Euler(l + na) ‘

The Fourier transformation of the second relation in (7.27) into the real space
gives the well known shifted Gaussian. The analogous transformation for a < 1
is unknown in a closed form although it can be expressed in the integral form in
terms of the (non-shifted) Gaussian and the weight given by the corresponding Fox
H-function as the integrand (for details see [3] and refs. therein).

(7.28)

7.2.4 Explicit asymptotic form of the first and second mo-
ments

The mean displacement. Now, we are able to obtain the general formula for the ave-
rage time-dependent displacement of the particle along the direction of the external
field. This is the essential quantity which characterizes the drift of each particle.
From (7.16) we obtain in the Laplace domain

- d = 1 (s)
X)(s) =1—P(k,S) |g=0o= () - —  ——=—, 7.29
(X)(5) = i Pl s) oom (o) 5 T (7.20)
where the single-hop mean displacement (z) = a- (p+ —p-). From (7.29) and (7.24)
we obtain for | s |« 1

(X)(s)

2
=

(7.30)
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From the above relation we easily obtain for the asymptotic time, i.e. for ¢y > 7,

(= 1 (t\® for o < 1
<X> (t) ~ { Cg FEule<'rx(>1+Of) (7'0)

(7.31)
o b for a > 1.

where T'gyer(...) denotes the well-known Gamma-Euler function. Although the
time-dependence of the drift below and above the threshold o = 1 differ essen-
tially the transition between both cases is smooth; nevertheless, we obtain for these
cases essentially different drift velocities

f) 1 1 e fora <1

V(t) = —(X(t) =~ { e FEuler(O‘)< (t/mo)t=” (7.32)

% for a > 1.
Indeed, this quantity is proportional to the transient photocurrent measured in
experiments made on amorphous materials mentioned in Sec.7.1.

The mean-square displacement. The mean-square displacement, involving infin-
tely many steps of the walker or a time-dependent variance of displacement, is the
main stochastic characteristics of the diffusion process. At first, we derive this qu-
antity in the Laplace domain

Y2 _ ) _ 1 7;(5) 2 2 12(8)
(X9)(s) = T‘ko—;m((x%k@)i

2
%

1

S
2

2

2 —
+ (@ s ( (10-8)*+C}- 0'8)

12

oot (8) &
CCQ X
<01>'%'s2+(_}>)

Next, from (7.33) and (7.31) we obtain for the asymptotic time (i.e. for ¢ > 79)

cir, fora<1
seet (7.33)

Q

-83, for a > 1.

(%) 1 1 @
9 C—g ' E ' ]-‘Euler(a) ' (:_0) + 9
2 — 2~ (@) \“ 1 2 1 @
<X (t)> <X(t>> -~ (C_g) a{]:‘Euler(2o‘) - a'[rEuler(a)]Q} ’ (TLO) ’ for a < 1
Lt for ao > 1.
(7.34)

As it is seen, the time-dependence of the mean-square displacement below and
above the threshold a = 1 differ essentially. For a@ < 1 the diffusion is controlled by
the drift while for the opposite case it is not.
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7.3 Btladzenia fraktalne

7.3.1 Bladzenie losowe w czasie fraktalnym
a model dolinowy

Jednym ze skrajnych, wielce interesujacych przykladéw procesu stochastycznego
opisanego propagatorem P(k,t) (patrz wyrazenie (7.27)) jest bladzenie losowe w
czasie fraktalnym (patrz rozdz. 3.2). Zatem, rozwazmy ten propagator dla a < 1,
czyli w postaci danej gérnym wyrazeniem w (7.27). Wyrazenie to spelnia fraktalne
réwnanie dyfuzji (2.55) otrzymane w rozdz. 2.6, gdy czynnik strukturalny btadzenia
losowego p(k) nie posiada sktadowej singularnej, czyli zbudowany jest tylko z czesci
regularnej (patrz rozdz. 6.3 a tam paragraf 6.4.3) i mozna go przedstawi¢ (z dobrym
przyblizeniem) w postaci: p(k) ~ 1 — 3 (%) k?, przy czym przyjelismy tutaj dla
prostoty znikanie dryfu () = 0. Wéwczas dla o < 1, propagator?

To

P(k,t) ~ E, (—éx—éz) - (i)a - k2> — E.(-D.-1"-¥),  (7.35)

1(#%)
2 15
winiecia czedci singularnej C?(> 0) jest dany wyrazeniem (7.22).

Mozna wykazaé (patrz Dodatek A), ze dla asymptotycznie dtugiego czasu (czyli
dla t > 1) propagator (7.35) przyjmuje posta¢ funkcji potegowe;:

gdzie fraktalny wspotczynnik dyfuzji D, = %, przy czym wspoOtczynnik roz-

- 1 11
Pk,t) =~ — .
( ’ ) DarEuler(l - Oé) kQ (A

(7.36)

Zatem, wyktadnicza (debye’owska) relaksacja modéw dyfuzyjnych w dyfuzji Ficka
(normalnej) zostata w subdyfuzji fraktalnej zastapiona relakscajg spowolniong (po-
tegowa - niedebye’owska).

Zauwazmy, ze dla D, - t* - k* < 1 funkcja Mittag-Lefflera przechodzi (z dobrym
przyblizeniem) w zwykty eksponens dajac

P(k,t) ~ exp(—Dy -t k?) (7.37)
7 powyzszego uzyskujemy samozgodnie singularng wariancje sumarycznej zmien-
nej losowej

ok (t) = < X?(t)> = FEuzja% ) te, (7.38)

identyczng z (7.34) (dla (z) = 01 a < 1), tak jak by¢ powinno. Ta nieliniowa za-
leznos$é sumarycznej wariancji od czasu w potaczeniu z postacia propagatora (7.35)

4“Wystepujacy tutaj propagator jest réwnowazny transformacie Fouriera f (k,t) funkeji f(z,t)
wystepujacej w réwnaniu subdyfusji fraktalnej (2.55).
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wskazuje, ze mamy tutaj do czynienia wtasnie z btadzeniem losowym w czasie frak-
talnym.

Gdyby wyktadnicza postaé propagatora (7.37) byta stuszna dla calej przestrzeni
fourierowskiej, wowczas mielibySmy do czynienia z popularnym fraktalnym ruchem
Browna (ang. Fractal Brownian Motion) w calej przestrzeni rzeczywistej, gdyz wow-
czas propagator bytby dany po prostu rozkladem Gaussa o wariancji (7.38).

Na zakonczenie tego paragrafu warto podac¢ dwie przydatne postacie propagatora
- obie w przestrzeni rzeczywistej. Jedna, Scista w postaci nieskonczonego, przemien-
nego szeregu wystarczajaco wygodnego do obliczen numerycznych

1 o (—1) X2 \"?
P = e 2 Tl — a1 D72 (Data> (7.39)

oraz druga, asymptotyczna

PIX 1 1 2\ 1-e)/@=) /| X | (1-a)/(2—a)
t) = Z
(X, 1) VirD, t* | 2 — « (a) <,/Dat_a>

2 — o /a\/(2—a) | X | 1/(1-a/2)
_ . 7.40
8 eXp( 2 (2> <\/Data ’ (7.40)

przybierajaca, dla | X |> /D, t%, postaé¢ rozciagnietego rozktadu Gaussa.

Wreszcie, na rysunkach 7.3 i 7.4 poréwnano propagator P(X,t) dla subdyfu-
zji, przyktadowo z wykladnikiem o = 1/2, z rozkltadem Gaussa G(X,t). Dobrze
widoczne sa zasadnicze réznice pomiedzy nimi.

7.3.2 Roéwnanie dyfuzji fraktalnej Lévy’ego

Innym skrajym, nie mniej interesujacym przyktadem jest proces przelotow Lévy’ego.
Ma on miejsce w sytuacji, gdy o > 1 natomiast czynnik strukturalny btadzenia
losowego p(k) zawiera skladnik singularny (patrz rozdz. 6.3 a tam paragraf 6.4.3),
Wowezas, dla wyktadnika § < 2, wyrazenie (7.27) przechodzi w nastepujace:

P(k,t) ~ exp (—D’f | & |° %) : (7.41)

definiujace funkcje charakterytstyczna wycentrowanego, symetrycznego (czyli w nie-
obecnodci dryfu) rozktadu Lévy’ego w czasie ciagtym. Mozna sprawdzi¢, ze tak zde-
finiowany rozktad spetnia nastepujace rownanie dyfuzji fraktalnej Lévy’ego

OP(X, 1)

= D} _D/P(X,1), (7.42)

gdzie _oon jest pochodna Weyla przedstawiong w Dodatku A.
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Rysunek 7.3: Wykres propagatora P(X,t) dla wykladnika o = 1/2 oraz trzech
przyktadowo wybranych chwil ¢ = 0.1, 1.0, 10.0. Bardzo dobrze jest widoczny ksztatt
ostrza w otoczeniu chwli poczatkowej ¢t = 0. Nie tylko ten ksztalt ale takze potegowe
zanikanie rozkladéw odréznia je od rozktadu Gaussa (patrz rys. 7.4).

Nalezy podkresli¢, ze oba skrajne przyklady (przedstawione w poprzednim pa-
ragrafie 7.3.1 oraz w niniejszym paragrafie) legly u podstaw, intensywnie rozwija-
nych w ostatnich dekadach, dwoch istotnie réznych kategorii proceséw stochastycz-
nych niespelniajacych Centralnego Twierdzenia Granicznego. Procesy te znalazty
juz ogromna liczbe waznych zastosowan w szeroko rozumianej fizyce i poza nia (np.
w ekonomii i socjologii).
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G(X,t)

X

—4 -2 2 4

Rysunek 7.4: Wykres propagatora G(X, t) w postaci rozktadu Gausa dla trzech przy-
ktadowo wybranych chwil £ = 0.05, 0.2, 1.0. Wykresy na tym rysunku wystarczajaco
dobrze ukazuja réznice pomiedzy rozktadem Gaussa a propagatorem stanowigcym
rozwiazanie fraktalnego réwnania dyfuzji (2.55) i przyktadowo przedstawionym na
rys. 7.3.
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Cze$é V

Wspoblczesna teoria oceny ryzyka
rynkowego
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Rozdzial 8

Ryzyko w ujeciu tradycyjnym i
nowoczesnym

Termin ryzyko pochodzi od starowtoskiego stowa risicare co oznacza odwazenie sie.
Jak wiadomo, ryzyko inwestycyjne mozna podzieli¢ na dwie czesci:

A) rynkowe, czyli podstawowe zwigzane z dynamika cen akcji emitera na gietdzie

B) pozarynkowe, za ktore odpowiedzialna jest sytuacja w firmie emitujacej akcje
oraz jej zewnetrzne uwarunkowania.

W dalszym ciggu zajmujemy si¢ wytacznie ryzykiem rynkowym zaktadajac, ze te
dwa rodzaje ryzyka sa od siebie niezalezne.

Ryzyko rynkowe mozna podzieli¢ na wiele sktadnikéw, na ktére wpltyw ma szereg
roznych czynnikéw nie tylko natury ekonomicznej. Z ryzykiem rynkowym mamy do
czynienia wtedy i tylko wtedy, gdy ceny papieréw wartosciowych zaleza bezposred-
nio od sytuacji na rynku. Oczywiscie, zaleznosé¢ ta jest w wiekszym lub mniejszym
stopniu stale obecna. Zatem, ryzyko rynkowe jest nieusuwalnym elementem aktyw-
nosci rynkowej. Sam fakt zrozumienia tego co to jest ryzyko jest niewystarczajacy -
aby moéc racjonalnie podejmowac decyzje i dziata¢ musimy umieé mierzyé¢ ryzy-
ko. Trzeba podkresli¢, ze brak jest powszechnie akceptowanej teorii ryzyka - kazde z
istniejacych podejs¢ jest niewystarczajace i moze prowadzi¢ do przeszacowania albo
niedoszacowania rzeczywistego ryzyka.

Miary ryzyka rynkowego dzieli si¢ zwyczajowo na trzy grupy:

1) miary zmiennosci (ang. volatility), np. zmiennosci ceny, stopy zwrotu (lub
wzrostu), rozktadu prawdopodobienstwa,

2) miary wrazliwosci (w fizyce podatnosci) np. wrazliwosci ceny lub stopy zwro-
tu (wzrostu); oznacza sie je tradycyjnie literami alfabetu greckiego i nazywa
skrétowo wskaznikami greckimi (ang. greeks),

3) miary zagrozenia wyrazajacej sie mozliwoscia spadku ceny lub stopy zwrotu
(wzrostu), czyli mozliwoscia wystapienia nadmiernych strat (analizowanych
np. metoda tzw. Wartosci Zagrozonej Ryzykiem (ang. Value at Risk, VaR).
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W niniejszych rozwazaniach zajmujemy sie tylko grupa trzecia, wykorzystujac po-
dejscie od strony Teorii Zdarzen Ekstremalnych wprowadzonej wczesniej w
rozdz. 8.3.

Istnieje przynajmniej kilka powodow, dla ktérych dotychczasowe teorie oceniaja-
ce ryzyko rynkowe sg niewystarczajace. Teorie te bazuja na Centralnym Twierdze-
niu Granicznym (CTG), czyli na analizie zmiennosci ('volatility’) rozumianej jako
typowy rozrzut cen akcji badz wielkosci indeksow gieldowych wokot ich wartosci
przecietnych wyrazony np. za pomoca dyspersji o lub kurtozy . Tego typu podej-
Scie oznacza, ze najistotniejsze informacje statystyczne zawarte sg w tzw. przedziale
trzysigmowym (+30). Innymi stowy, "ogon” rozktadu nie zawiera wtedy istotnych
informacji statystycznych - jest to gaussowski punkt widzenia, w ktérym nie ma
miejsca na procesy stochastyczne typu Lévy’ego, czyli na zdarzenia rzadkie.

Procesy Lévy’ego sg przeciwienstwem procesoéw gaussowskich gdyz mamy w nich
do czynienia z tzw. rozktadami poszerzonymi gdzie najistotniejsza informacja o ukta-
dzie statystycznym zawarta jest wtasnie w pogrubionym ”ogonie” funkcji rozktadu;
prowadzi to natychmiast do nieskonczonej dyspersji i kurtozy a tym samym do bez-
uzytecznosci oceny ryzyka opartej na tego typu tradycyjnych zmiennosciach. Jak
wida¢, wlasciwa analiza ryzyka rynkowego wymaga innej definicji ryzyka.

Istotg wspotcezesnej teorii ryzyka rynkowego jest traktowanie zdarzen ekstremal-
nych jako posiadajacych decydujacy wplyw na charakter i wielko$¢ ponoszonego ry-
zyka. Jest to zasadnicza réznica w stosunku do podejé¢ tradycyjnych, w ktorych tego
typu zdarzenia sg po prostu ignorowane. Prowadzi to bezposrednio do nowej, wspot-
czesnej definicji ryzyka rynkowego opartego przede wszystkim na technice kwantyli?.

8.1 Tradycyjna analiza poziomu ryzyka

Przyjrzyjmy sie nieco doktadniej roli CTG w tradycyjnej ocenie poziomu ryzyka,
analizujac zalezng od czasu chwilowg stope zwrotu?

def. X(t+AL) — X (1)  AX(1)
B X(t) X))

AR(t) (8.1)

jakiego$ papieru wartosciowego, ktorego cena w chwili ¢ wynosi X (t) a w chwili p6z-
niejszej t + At jest X (t + At); tutaj At jest ustalonym horyzontem czasowym (ziar-
nistoécia czasu, krokiem dyskretyzacji czasu), czyli czas t =n - At, n=0,1,2,....
Stopa zwrotu moze by¢ zaréwno dodatnia jak i ujemna - w pierwszym przypadku
myslimy o niej jak o relatywnym zysku, w drugim jak o relatywnej stracie.

W dalszym ciggu zaktadamy, ze zmiana ceny w zadanym horyzoncie czasu At
jest relatywnie niewielka, tzn. | AX(¢) |< X(t), stad zalezna od czasu chwilowa

'Moge polecié tutaj ksiazke autorstwa Romana Nowaka pt.: Statystyka dla fizykéw, Wydawnic-
two Naukowe PWN SA, Warszawa 2002.

W przypadku zwrotu na réznego rodzaju indeksach i wskaznikach uzywa sie czesto terminu
chwilowa stopa wzrostu.
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stopa zwrotu

X(t+ At)

AR(t) ~ In < ) =In(X(t + At)) — In(X(¢)), (8.2)
X(t)

czyli jest, z dobrym przyblizeniem, zmiang logarytmow cen zwana chwilowq loga-
rytmiczng stopg zwrotu. Zatem, chwilowa logarytmiczna stopa zwrotu jest szumem
procesu stochastycznego jakim jest logarytm ceny. Wyrazenia (8.1) oraz (8.2) po-
zwalaja na stosowanie zamiennie (w zaleznosci od potrzeb) jednej z trzech definicji
chwilowej stopy zwrotu, gdyz w wielu roznych sytuacjach wygodniej jest sie postu-
giwaé logarytmem ceny a nie sama cena.

Zauwazy, ze sumaryczna stopa zwrotu (zwana dalej po prostu stopg zwrotu) dana
jest w postaci sumy chwilowych stop zwrotu

X(t) - X(0) . (X()
RO = =X ”ln<m>

_ X(At) X(2At) X((n—1)At)  X(nAt)
-0 < X(0) X(AD) T X((n—2)Al) X((n— 1)At)>

_ (ﬁ1+AR At)))

Q

ni AR(j - At), (8.3)

przy czym milczaco zatozylismy, ze takze wartos¢ sumarycznej zmiany ceny | X () —
X(0) |« X(0). Jak widaé, stopa zwrotu jest analogicznie zdekomponowana jak
przyrost procesu

X(n - At) Z AX(j (8.4)

co prowadzi do analogicznych konsekwencji. Mianowicie, wynik (8.3) ma charak-
ter zasadniczy, czyniacy celowym wprowadzenie kluczowego zatozenia tradycyjnej
analizy ryzyka traktujacej chwilowe stopy zwrotu jak niezalezne zmienne lo-
sowe o identycznym, niekoniecznie gaussowskim rozktadzie wymagajacym jedynie
aby wariancja chwilowej stopy zwrotu byta skonczona i niezalezna od czasu (ale, w
ogblnosci, zalezna od At)

= ([AR(t) — (AR(t)]*) = ([AR(H)]*) — m* < o0, (8.5)
podobnie jak i sama wartosé¢ srednia
= (AR(t)) < o0, (8.6)

czyli na poziomie szumu, z punktu widzenia jego wariancji i wartoséci oczekiwanej,
czas jest traktowany jako jednorodny, czyli w sposob stacjonarny.
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W zwiazku z powyzszym, do stopy zwrotu R(¢) mozna zastosoweaé CTG. Ozna-
cza to, ze dla n — oo centrowana zmienna losowa R(n - At) — (R(n - At)) staje si¢
zmienna gaussowska (czyli podlegajaca rozktadowi Gaussa) o wariancji

ox(n-At) =n-o? (8.7)

i wartosci Sredniej

mpr(n-At) =n-m. (8.8)
Zatem, jakakolwiek miara poziomu ryzyka, Ag > 0, np. rozrzut trzysigmowy
AG =3- O'R(t) (89)

lub rozrzut wzgledny czyli tzw. wspotezynnik zmiennosci

or(t) o .L:\/E ~dof. 0
Zg =Tl 7o n,xf (8.10)

~ [mr(t) | [m |

bazuja w tym podejéciu na dyspersji o (gdyz skosno$é dla rozktadu Gaussa znika
a nadmiarowa kurtoza jest po prostu stala); oczywiscie, wspélezynnik zmiennosci
jako miara wzgledna opiera sie takze na wartosci sredniej.

Czesto uzywa sie takze wyrazenia odwrotnego do (8.10) nazywajac go jakoscig
tnwestycyi a takze stosunkiem sygnat-szum jak tez stosunkiem Sharpe’a, ktory ozna-
cza sie przez

Szt (8.11)

i zwykle okresla w skali roku. Oczywiscie, miary poziomu ryzyka (8.9) i (8.10) na-
lezy traktowane komplementarnie. W takim podejéciu (ktére sila rzeczy jest tutaj
dwuparametrowe) straty i zyski sa roztozone symetrycznie wokét wielkosci sredniej

mr (t) .

Zakres stosowalnosci

Po$wiecimy teraz nieco wiecej uwagi zakresowi stosowalnosci powyzszego, tradycyj-
nego podejécia do oceny poziomu ryzyka.

1. Jak juz powiedzielismy, straty i zyski podlegaja tutaj rozktadowi symetrycz-
nemu dlatego wystepuja, Srednio rzecz biorac, z jednakowa czestoscia co na
ogo6t nie ma miejsca dla sytuacji rzeczywistych. Inaczej mowigc, model taki
jest nierealistyczny.

2. Inna niedogodnos¢ modelu opiera sie na zatozeniu relatywnie matych zmian
ceny waloru co pozostaje w sprzecznosci z czesto obserwowanymi (zwlaszcza
w ostatnich dwéch dekadach) znacznymi, skokowymi zmianami cen waloréw
wykraczajacymi znacznie poza obszar trzysigmowy.
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3. Ponadto, samo zalozenie o skonczonej wartosci dyspersji moze by¢ kwestiono-
wane ze wzgledu na istnienie zdarzen rzadkich. Objawia sie to w postaci niesta-
bilnego zachowania estymaty dyspersji ze wzrostem rozmiaru okna czasowego
(czyli liczby danych empirycznych budujacych dyspersje). Zamiast stabilizo-
wania sie tej wielkosci, jak to przewiduje Prawo Wielkich Liczb Bernoullie-
go, obserwuje sie co jaki$ czas uskoki, ktorych amplituda wyraznie wzrasta ze
wzrostem wielkosci okna czasowego z ktorego zbiera sie dane. Inymi stowy, gdy
wzrasta wielkos¢ okna czasowego to tym samym wzrasta prawdopodobienstwo
wystapienia zdarzenia rzadkiego destabilizujacego estymate dyspers;ji.

8.1.1 Twierdzenia graniczne na gietdzie

Tytutem wielce pouczajacego przyktadu, postawimy pytanie kluczowe dla tradycyj-
nej analizy dynamiki walorow, a mianowicie: czy przewidywania CTG sa czy
tez nie sg obserwowane na gietdzie? Odpowiedz na to pytanie jest ztozona i
zalezy od tego jaki papier warto$ciowy lub indeks a takze jaki horyzont czasowy i
czasokres rozpatrujemy. Mianowicie, dla indeksu Standard & Poor 500 notowanego
na Nowojorskiej Gieldzie Papieréw Wartosciowych (NYSE) - jednej z najwiekszych
gietd $wiata, dla horyzontéw czasowych od At = 1 [min.] do rzedu At = 1 [td]?
dane empiryczne przeskalowane za pomocg czynnika (At)_l/ @ kolapsujg, z dobrym
przyblizeniem, do stabilnego, symetrycznego rozktadu Lévy’ego (o ile ich statysty-
ki przeskalujemy za pomoca czynnika odwrotnego), gdzie « jest indeksem rozktadu
Lévy’ego. Wlasnos¢ ta nazywa sie Uogolnionym Centralnym Twierdzeniem Granicz-
nym (UCTG) lub granicznym twierdzeniem Lévy’ego-Khintchine’a (TLK). Wyniki
te zostaly uzyskane przez R.N. Mantegne i H.E.Stanley’a (patrz praca pt.: ”Scaling
behaviour in the dynamics of an economic index”, Nature, Vol.376, No.6 (1995)
46-49 oraz ksigzka tych samych autoréw pt.: ”Ekonofizyka. Wprowadzenie”, Wy-
dawnictwa Naukowe PWN SA| Warszawa 2001). Analogiczne rezultaty otrzymali
B.H.Wang i P.M.Hui dla indeksu Hang Seng gieldy w Hong Kongu (patrz praca pt.:
"The distribution and scaling of fluctuations for Hang Seng index in Hong Kong
stock market”, The European Physical Journal Vol.20, No.20 (2001) 573-579).

Oczywiscie, istnieja takze walory, ktorych np. dzienne zmiany podlegaja rozkta-
dowi Gaussa (patrz rys.8.1) i w zwiazku z tym daja sie zestandaryzowaé co umoz-
liwia gaussowski kolaps danych czyli zasadniczo rézny od wspomnianego powyzej.
Ponizej omawiamy wnioski pltynace z analizy oba rodzajow twierdzen granicznych
jakim moga podlegaé¢ dane empirycznych dostarczane przez rynki finansowe.

3Skrét "td” jest akronimem angielskiej nazwy “trading day” czyli ”dzien transakcyjny” lub
?dzien handlowy”.
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Rysunek 8.1: Empiryczny rozktad prawdopodobienstwa réznic logarytmow dzien-
nych zmian ceny, czyli logarytmicznej stopy zwrotu, akcji S(¢) = InY (¢t + At) —
InY(t), gdzie Y (¢t + At) oraz Y (t) sa cenami akcji firmy Chevron notowanej na
gietdzie nowojorskiej w okresie od 1989 do 1995 roku, przy czym tutaj At = 1 [td].
Gtadka linia jest krzywa Gaussa o odchyleniu standardowym wyznaczonym z danych
empirycznych (potaczonych linia zygzakowata). Jest to rozklad typowy dla tej firmy
zaréwno dla znacznie mniejszych jak i znacznie wiekszych horyzontéw czasowych.
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8.1.2 Uogoblnione Centralne Twierdzenie Graniczne
na NYSE

Jak juz powiedzielismy, ztamanie Centralnego Twierdzenia Granicznego czyli za-
chodzenie Uogolnionego Centralnego Twierdzenia Granicznego dla rynkéw finanso-
wych pierwsi zaobserwowali Mantegna i Stanley badajac indeks S&P 500 notowany
dla danych szybkozmiennych o wspomnianych powyzej horyzontach czasowych oraz
wspomnianym zakresie. Przedstawiono to na rys. 8.2 w postaci odpowiednich roz-
ktadow prawdopodobienstw przy czym, w miare wzrostu horyzontu czasowego, jak
nalezalo sie spodziewaé, warto$¢ poczatkowa rozkladu maleje ale za to (zgodnie z
normalizacja) rozwarto$¢ ramion krzywej dzwonowej rosnie. To co bylo zaskaku-
jace to wzrost splaszczenia (leptokurtycznosci) czyli wzrost nadmiarowej kurtozy
ze wzrostem horyzontu czasowego (np. najbardziej leptokurtyczna jest krzywa dla
At = 1000 [min.] a najmniej dla At = 1 [min.]) co stoi w jawnej sprzecznosci z prze-
widywaniem CTG, ktéore mowi, ze w miare wzrostu horyzontu czasowego rozktad
sumarycznej zmiennej losowej coraz bardziej upodabnia sie do rozktadu Gaussa a
wiec jego leptokurtycznoéé maleje do zera?. Byt to wynik, ktéry wstrzasnat fizyka-
mi analizujacymi notowania gietdowe i stal sie faktycznym poczatkiem ekonofizyki,
czyli poczatkiem ogromnego wzrostu zainteresowania fizykow finansowymi szerega-
mi czasowymi.

Na rys. 8.3 przedstawiono rozktad prawdopodobienstwa standaryzowanej zmiany
tego indeksu Z/o, gdzie Z(t) = Za(t) = Y (t + At) — Y (¢), przy czym Y (¢t + At)
oraz Y (t) sa wartosciami indeksu S&P 500, odpowiednio, w chwilach ¢+ At i ¢ nato-
miast o = o(At) jest estymata dypersji obliczona na podstawie przedstawionych na
rysunku danych empirycznych dla wybranego horyzontu czasowego At = 1 [min.].

Wreszcie, na rys. 8.4 przedstawiono wspomiane na wstepie, przeskalowane sta-
tystyki indeksu S&P 500 w zaleznosci od przeskalowanej zmiennej losowej tzn.

P(Z)= (A" PalZ(2). 2= s 8.12

gdzie indeks o i wspotezynnik ~y, wspélne dla wszystkich statystyk Pa,(Z), zostaty
wyznaczony z ich wartosci dla Z = 0 czyli z gestosci prawdopodobienstwa powrotu
do poczatku a doktadniej z nachylenia prostej Pa(Z = 0) (w skali log—log) w funkcji
At (patrz rys.8.5). Uwaga, przy wyprowadzaniu ponizej w rozdz. 8.1.3 wzoréw (8.12)
skorzystaliémy z niezmienniczosci prawdopodobienstw

P(2)dZ = Pa(2)dZ (8.13)

jako skalaréw®.

4Qczywiscie, o ile wyjéciowo mieliémy takze do czynienia z rozkladem Gaussa to nadmiarowa
kurtoza caly czas jest réwna zeru niezaleznie od wielkosci horyzontu czasowego At.

SW ogélnosci, réwnosé (8.13) ma charakter zorientowany, tzn. P(Z) = Par(Z(Z)) | % |~L.
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Rysunek 8.2: Poréwnanie rozktadéow prawdopodobienstw otrzymanych dla szyb-
kozmiennych danych empirycznych dotyczacych indeksu S&P 500 dla horyzon-
tu czasowego At = 1,3,10,32,100,316,1000 [min.|, przy czy Z(t) = Zalt) =
Y(t + At) — Y(t), gdzie Y (t + At) oraz Y (t) sa wartoSciami indeksu S&P 500,
odpowiednio, w chwilach ¢t + At i t. Zauwazmy, ze w zasadzie nadmiarowa kurto-
za rozktadu wzrasta czyli maksimum obniza sie i troche splaszcza (co niestety nie
jest dostatecznie widoczne w przyjetej skali rysunku) a ramiona rozktadu rozchylaja
sie w miare wzrostu horyzontu czasowego At (tzn. rozklad dla At = 1 [min.] jest
najwezszy a dla At = 1000 [min.] najszerszy).
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Rysunek 8.3: Przyktadowe poréwnanie rozktadéw prawdopodobienstw otrzymanych
dla szybkozmiennych danych empirycznych dotyczacych indeksu S&P 500 dla hory-
zontu czasowego At = 1 [min.|, przy czym Z(t) = Za(t) = Y (t + At) — Y (t), gdzie
Y (t+At) oraz Y (t) sa wartosciami indeksu S&P 500, odpowiednio, w chwilach t+At
i t natomiast o = 0.0508 jest estymata dypersji obliczong na podstawie wszystkich
przedstawionych na rysunku danych empirycznych (kotka potaczone odcinkami li-
nii). Linia ciagla przedstawia rozktad Lévy’ego o wyktadniku ksztaltu o = 1.40 i
czynniku skalowania v = 0.00375 (na rysunku 8.2 jest to ten najwezszy), natomiast
linia kropkowana jest rozkladem Gaussa centrowanym w Z/o = 0 i sparametryzo-
wanym wspomniang powyzej estymata dyspersji o.
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Rysunek 8.4: Porownanie odpowiednio zestandaryzowanych rozktadéw prawdopodo-
biefistw, P, otrzymanych dla szybkozmiennych danych empirycznych dotyczacych
indeksu S&P 500 dla horyzontu czasowego At = 1,3, 10, 32,100,316, 1000 [min.],
przy czym Z(t) jest standaryzowana zmienna losowa. Jak wida¢, ma miejsce (z do-

brym przyblizeniem) kolaps danych.
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Rysunek 8.5: Prawdopodobienstwo powrotu do poczatku Pa,(Z = 0) (biate kétka) w
funkcji horyzontu czasowego At. Nachylenie prostej (w skali log — log) utozsamiamy
z wyktadnikiem 1/ = 0.712 4+ 0.025 co daje @« = 1.40 F 0.05. Dla poréwnania
zamieszczono wyniki dla analogicznego prawdopodobienstwa Pg(Z = 0) (czarne
kwadraty) otrzymanego z rozkladu Gaussa; wariancje takiego procesu wyznaczono
z dostepnych danych empirycznych dla kazdej wartosci At z osobna.
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8.1.3 Stabilny, symetryczny rozkltad Lévy’ego

Kolaps danych uzyskany dzieki skalowaniu (8.12) (patrz rys. 8.4), gdzie indeks «
uzyskano analizujac prawdopodobienistwo powrotu do poczatku Pai(Z = 0) (patrz
rys. 8.5) wskazuje, ze statystyki dla omawianych horyzontéw czasowych mozna wy-
razi¢ za pomocy stabilnego, symetrycznego rozktadu Lévy’ego o indeksie «

]_ 0
fhdZ)Z;;A Xat(q) cos(¢Z)dg, (8.14)
gdzie
XAAq)%ieXp(—vAtIQP),7=:%% At = nr, (8.15)

jest jego funkcja charakterystyczna (w przypadku rozkladu Gaussa, gdy a = 2,
Yo = 02%/2). Z wyrazen (8.14) i (8.15) otrzymujemy (po dokonaniu prostej zamia-
ny zmiennych ¢ = § = (yAt)/?q), ze prawdopodobieistwo powrotu do poczatku
WYnosi:

1 1 1 1 1
PAt(Z = O) = ;FE'uler <a) : W = ;I‘Euler (1 + a) ’ (VAwil/a’
(8.16)
gdyz
1 oo e o
I}mmr(a>::cgé epr—!q!)qu:A exp(—y) -y *dy, (8.17)

gdzie dokonaliSmy zamiany zmiennych y =| ¢ |*. Dysponujac konkretna wartoscia
a, wyznaczamy czynnik skalujacy v z wyrazenia (8.16) i wielkosci przesuniecia linii
prostej (biate kétka) na wykresie (8.5).

Zauwazmy, ze zaréwno eksponent « jak tez czynnik skalujacy v zmieniajg sie w
czasie - tutaj z miesigca na miesiac; te miesieczne wahania przedstawiono na rys.
8.6 i rys. 8.7. Jak widac, nawet najwieksza wartos¢ « jest znacznie mniejsza od 2
(typowy btad pojedynczej wartosci wyktadnika o dla danego miesiaca podano w
opisie rys. 8.5).

Konsekwencja zamiany ¢ na ¢ jest zamiana w wyjsciowej calce (8.14) zmiennej
Z na Z = Z/(yAt)V/* - dzieki temu otrzymujemy potrzebne wyrazenie

P(2) =~ [ exp(— |31 cos(dZ)dq (5.15)
niezalezne od At, przy czym jest ono powigzane z wyjsciowym prawdopodobien-
stwem Pai(Z) pierwsza relacja w (8.12). Zatem, opis zasadniczej czesci danych em-
pirycznych za pomocg rozktadu Lévy’ego jest dowiedziony chociaz problem opisu
ksztaltu samych "ogonéw”, jak tez znaczny rozrzut danych na ”ogonach” (patrz
rys. 8.4 dla | Z |Z 0.5) jest wcigz zagadnieniem otwartym budzacym wielkie zain-
teresowanie. Warto podkresli¢, ze np. prawdopodobienstwo powrotu do poczatku
dla rozktadu Gaussa skaluje sie z wyktadnikiem o = 2 co definiuje zupelnie inny
(normalny w przeciwienstwie do anomalnego) ”swiat statystyczny”, w ktérym nie
ma miejsca na zdarzenia rzadkie.
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Rysunek 8.6: Zalezno$¢ czasowa wyktadnika o wyznaczona na podstawie zaleznosci
prawdopodobiefistwa powrotu do poczatku od wielkosci horyzontu czasowego (li-
czonego w miesiacach). Pozioma ciggta linia zostala poprowadzona dla przecietnej
wartosci a = 1.40.
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Rysunek 8.7: Zaleznos¢ czasowa czynnika skalujacego v wyznaczona na podstawie
zaleznosci prawdopodobienstwa powrotu do poczatku od wielkosci horyzontu cza-
sowego (liczonego w miesiacach). Pozioma ciagla linia zostala poprowadzona dla
przecietnej wartosci v = 0.00375.
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8.2 Kolaps danych a Uogélnione Centralne
Twierdzenie Graniczne na NYSE

W roku 2006 ukazala si¢ praca (K. Kiyono, Z.R. Struzik, Y. Yamamoto: ”Critica-
lity and Phase Transition in Stock-Price Fluctuations”, Phys.Rev. Lett. 96 (2006)
068701-1-068701-4), ktéra poréwnuje ze soba przebieg indexu S&P 500 w dwdch
istotnie réznych przedziatach czasowych:

(1) zawierajacym tzw. ”czarny poniedzialek” (”black Monday”) czyli poniedziatek
19 pazdziernika 1987 roku, w ktorym index stracit niespodziewanie, w prze-
ciagu ok. 10 min. blisko 1/3 swojej wartosci (patrz rys. 8.8),

(2) w obszarze nie zawierajacym czarnego poniedziatku.

Na rys. 8.8 przedstawiono (w skali potlogarytmicznej) przebieg dziennych war-
tosci (na zamknieciu Z(t)) indexu S&P 500 w latach 1984-1995. Okres ten jest
szczegblnie interesujacy gdyz zawiera nie tylko tzw. czarny poniedziatek (”black
Monday”) 19 paZdziernika 1987 roku, w ktérym warto$¢ indeksu spadta o blisko
1/3, ale takze przejawia wpltyw wojny w Zatoce Perskiej. Oprécz tego, na rysunku
tym zamieszczono wariogram pokazujacy wysokoczestosciowe, w 10 min. odstepach
czasu, zmiany logarytmu indeksu, Y (t) = In Z(t). Oczywiscie, analiza przedstawio-
nego tam szeregu czasowego wymaga jego wezesniejszego zdetrendowania.

Na rys. 8.9 przedstawiono (takze w skali péllogarytmicznej statystyke, Ps(AsZ),
zdetrendowanych zmian

AZ(E) LYt +5) — Y1), (8.19)

(gdzie s jest horyzontem czasowym a gwiazdka oznaczono wtasnie wielkosé zdetren-
dowana) dla jednego roku nie zawierajacego wspomnianych powyzej szczegblnych
wydarzen. Widoczne jest przejécie od rozktadu niegaussowskiego do rozktadu Gaus-
sa w miare wzrostu horyzontu czasowego.

Na rys. 8.10 poréwnano statystyke Py(A,Z) dla dwéch kolejnych kwartatéw ro-
ku 1987: rysunek po lewej stronie dotyczy kwartatu bezposrednio poprzedzajacego
czarny poniedziatek, natomiast rysunek po prawej stronie dotyczy czwartego kwar-
tatu tego roku zawierajacego czarny poniedziatek. Jak wida¢, w drugim przypadku
brak jest przejscia do rozktadu Gaussa - widoczne sa tylko rozklady niegaussow-
skie, ktére mozna (na drodze odpowiedniego przeskalowania) doprowadzié¢ do tzw.
kolapsu danych (patrz rys. 8.11); potwierdza to tym samym fakt, ze mamy tutaj
do czynienia z rozktadem stabilnym a wiec, ze na NYSE spetnione jest Uogélnione
Centralne Twierdzenie Graniczne.

8.3 Statistics of extremes

The central values and typical fluctuations are not sufficient to characterize natural
systems which exhibit rare but extreme events often dominating the long-term be-
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Rysunek 8.8: Dzienne wartosci indeksu S&P 500 w latach 1984-1996, przy czym w
prawej dolnej czesci zamieszczono powiekszony wariogram przedziatu C, w ktérym
znajduje sie czarny poniedziatek widoczny w postaci najdtuzszego odcinka lezacego
po stronie ujemnej; szary pasek znajdujacy sie w centrum wariogramu ciagnacy
sie poprzez calg jego wysokos¢ oznacza po prostu pelny dzien transakcyjny czarny
poniedziatek 19 pazdziernika 1987 roku.
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Rysunek 8.9: Statystyka Ps(A,Z) zdetrendowanych zmian A,Z w zaleznosci od wiel-
kosci tych zmian po standaryzacji AyZ/o, dla réznych horyzontéw czasowych (idac
od gory s = 8,16, 32,64, 128,256,512, 1024, 2048, 4096 min.). Dane dla poszczegdl-
nych horyzontéw czasowych zostaly rozsuniete aby mozna je bylto rozréznic.
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Rysunek 8.10: Statystyka Ps(AsZ) zdetrendowanych zmian A,Z w zaleznosci od
wielkosci tych zmian po standaryzacji AsZ/o, dla réznych horyzontéw czasowych
(idac od gory s = 8,16, 32,64, 128, 256,512, 1024, 2048 min.) dla kwartatu poprze-
dzajacego czarny poniedzialek (rysunek po lewej stronie) i dla kwartatu zawiera-
jacego czarny poniedzialek (rysunek po prawej stronie). Dane dla poszczegblnych
horyzontow czasowych zostaly rozsuniete aby mozna je byto rozréznic.

haviour. Therefore the statistics of extrema is a classical subject of great interest in
mathematics, physics and economical and social sciences [1, 2, 3]. In physics, extre-
me events have been studied in a number of fields [4] (and refs. therein) including
self-organized fluctuations and critical phenomena, material fracture, disordered sys-
tems at low temperatures, and turbulence. Knowledge of extreme event statistics is
of fundamental importance to predict and estimate the risk in a variety of natural
and man-made phenomena such as earthquakes, changes in climate conditions, flo-
ods and large movement in financial markets. A new field where extreme statistics
is of interest are complex networks [4].

358



FiAZ)

R Y R
A, Zlo

Rysunek 8.11: Kolaps danych czyli statystyka Ps(A;Z) zdetrendowanych zmian
AsZ w zaleznosci od wielkosci tych zmian po przeskalowaniu zmiennej AyZ/o
i tegoz rozkladu dla kolejnych horyzontéw czasowych (idac od gory s =
8,16,32, 64,128, 256,512, 1024, 2048 min.) dla kwartalu zawierajacego czarny po-
niedziatek.
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8.3.1 Twierdzenie Graniczne Maksimow

Filarem statystycznej Teorii Zdarzen Ekstremalnych (ang. Eztreme Value Theory
w skrocie EVT zwanej tez Theory of Extreme Values) jest Twierdzenie Graniczne
Maksiméw (ang. Mazimum Limit Theorem) autorstwa Gniedenki [5, 11, 6]. Przed-
stawiamy je tutaj bez dowodu w wersji dla ciaglej zmiennej losowej, wskazujac (w
nastepnym paragrafie) na jego praktyczne znaczenie.

Twierdzenie 8.3.1.1 (Maximum Limit Theorem) Niech dany bedzie cigg nie-
zaleznych, cigglych zmiennych losowych (x1,xa,...,x,) o identycznym rozkladzie
i niech " = max(ry,Te,...,T,). Jesli istnieje cigg zbiezny trojek liczb (a,(>

0),bn,vn) — (a(>0),b,7), czyli parametry odpowiedzialne, odpowiednio, za standa-
ryzacje, centralizacje v ksztalt, a niezdegenerowana dystrybuanta graniczna

—b —b
lim P (2" < z) = lim H,, (m n) =H, (m ) )

n—00 n—00 ay, a

jest dobrze okreslona dla kazdego x, to ta dystrybuanta moze przybierac tylko jedng
z trzech nastepujgcych postaci granicznych:

(i) Frécheta

B 0, forxz <0
Hp () = { exp (—x=%), forz >0, a>0.

(8.20)
(ii) Gumbela

Hgu(x) = exp (—exp(—z)), forz €R. (8.21)
(1ii) Weibulla®

| exp(—(=2)7%), forx <0, a<0
Hyi(z) = { 0, for z > 0.
(8.22)

Oczywiscie, rozktady Frécheta, Gumbela i Weibulla uzyskuje sie jako pochodne
odpowiednich, powyzej podanych dystrybuant, po ich gérnych granicach, czyli po
zmiennej .

Warto zauwazy¢, ze rozklady Weibulla i Frécheta sa komplementarne w takim
sensie, ze cata ich zmienno$¢ lokuje sie na no$nikach komplementarnych. Jednakze,
ich ksztalty réznia sie istotnie (pomimo formalnego podobiefistwa), gdyz okreslajace
je parametry ksztaltu sg przeciwnego znaku.

6Dokladniej rzecz biorac, jest to tzw. odwrotny rozklad Weibulla. Rozktad Weibulla [7] opisuje
statystyke wartosci minimalnych.
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Okazuje sie, ze powyzsze trzy dystrybuanty mozna wyrazi¢ za pomoca uogdlnio-
nej dystrybuanty wartosci ekstremalnych (ang. Generalized Extreme Value Distri-
bution, w skrécie GEVD)

Hy(x) =exp (= (1+7-2)7"7), (8.23)

gdzie (...), = max(0,(...)). Dziedzina tej uogélnionej dystrybuanty zalezy od pa-
rametru ksztaltu” v w nastepujacy sposob:

1) gdy v > 0 wéwezas x €] — 1/, ool i wtedy mamy do czynienia z dystrybuanta
(przesunietego i przeskalowanego) rozktadu Frécheta (patrz wzor (8.20)), gdzie

/)y = o

2) dla v < 0 dysponujemy = € [—oo, —1/v[ i wtedy mamy do czynienia z dys-
trybuantg (przesynietego i przeskalowanego) rozktadu Weibulla (patrz wzér
(8.22)), gdzie 1/y = a;

3) w przypadku v — 0 dziedzina x nie jest ograniczona - mamy wtedy do czy-
nienia z dystrybuanta rozktadu Gumbela (patrz wzér (8.21)).

Nalezy podkredli¢, ze wyznaczenie parametréw granicznych a i b a zwlaszcza
parametru ksztaltu v z danych empirycznych jest podstawowym, prag-
matycznym zadaniem Teorii Zdarzen Ekstremalnych.

W rozdz. 8.3.2 przedstawiamy alternatywne, nie tak wyspecyfikowane podej-
Scie do statystyk zdarzen ekstremalnych oparte na rozktadach bazowych, z ktorych
odlosowywane sa wspomniane w Twierdzeniu 8.3.1.1 ciggi niezaleznych zmiennych
losowych (x1, za, ..., x,).

Warto$é Zagrozona Ryzykiem
a uogdlniony rozktad wartosci ekstremalnych

Wyznaczenie tzw. "Wartosci Zagrozonej Ryzykiem’ (ang. Value at Risk, VaR), ozna-
czajacej maksymalna dopuszczalna strate, za pomoca GEVD stanowi jeden z naj-
wazniejszych sukcesow EVT - wyznaczenia tego dokonamy w niniejszym podroz-
dziale.

Przypusémy zatem, ze zadaliSmy poziom ufnosci 1 — « (tego typu oznaczenie
stanie si¢ jasniejsze w rozdz. 8.1, gdzie dokladniej analizujemy wtasnosci VaR) -
stowarzyszona z tym poziomem warto$é¢ dystrybuanty®

8

F(VaRi_,) =P(x <VaRi_,) =1—a. (8.24)

"Parametr ksztattu v o %, gdzie a to wykladnik definiujacy rozktad Frécheta i rozklad Weibulla
w Twierdzeniu 8.3.1.1.

8Prosze nie myli¢ tego, powszechnie uzywanego oznaczenia, z oznaczeniem wyktadnika wpro-
wadzonego w rozdz. 8.3.1.

9Dokladniej rzecz biorac, przez dystrybuante rozumiemy wyrazenie F(VaRi_,) = P(x <
VaR1_,) - w naszym przypadku ciaglej zmiennej losowej jest to bez znaczenia. Dodajmy, ze
wtedy o dystrybuancie (8.24) méwimy, ze jest kwantylem rzedu 1 — .
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Mozemy teraz tatwo wyznaczy¢ dystrybuante wartosci ekstremalnej pamietajac, ze
z zatozenia bierzemy pod uwage tylko takie odlosowane wartosci zmiennej x, jakie
sa nie wieksza od wartosci progowej VaR;_,. Mianowicie, dla dostatecznie duzych
wartosci n, na mocy Tw. 8.3.1.1, zachodzi z dobrym przyblizeniem

H’Y (W) ~ P(l’?ax < V&lea) = [P(l’ < Valea)]n = (1 - a)na(825)

gdzie n-ta potega wystepujaca po prawej stronie bierze sie stad, ze kazda z n > 1
odlosowywanych wartosci ciagu (x1, . . ., x,) musi by¢ mniejsza od przyjetej wartosci
progowej VaR;_,.

Podstawiajac teraz (8.23) do lewej strony (8.25) otrzymujemy ostatecznie po
prostych przeksztatceniach

a
VaR,_ o ~ b+ — [(—nln(l —a))7 - 1} . (8.26)
Y
Do analizy wtasnosci VaR i szerzej, do analizy ryzyka oraz zwigzanych z nim strat,
powrdcimy w rozdz. 8.4.

8.3.2 Rozklad maksimoéw a rozktad bazowy - ogélna formuta

If one observes a series of L independent realizations of the same random pheno-
menon (or its stochastic replica), the central question of the Extreme Value Theory

(EVT) imposes how to characterize the maximum observed value of random va-

: def. .
riables'® .., = max{r;};=1 . 1. For example, the maximum value could be the

deepest trap encountered by the walker in a disordered medium (then we would ha-
ve x = ¢, where ¢ is the energetic depth of the trap) or the longest mean residence
time (called also the sojourn time of the walker) in such a trap (then we would have
x = 7, where 7 is the mean residence time).

The main goal of the EVT is to characterize x,,,, by determination of the proba-
bilty distribution, P (. = A), of the maximal value x,,,,, where A is an arbitrary
threshold. In the case of dispersive transport and diffusion we apply the EVT to
characterize, the mentioned above two, related, stochastic variables (¢ and 7).

First, we calculate the cumulative probability distribution P(Z. < A) of the
random variable x,,,, by noting that if the maximum z,,,, is smaller than A then all
x;’s are also smaller than this threshold and vice versa. As these random variables
are idependent and identically distributed (iid), we can put

P(tmae < A) = [p<(A)]" = [1 = p>(A)]", (8.27)

by assuming the cumulative probability distribution of random variable x

peh)= [ playin, (8.28)

down

10We developed the Extreme Value Theory by considering continuous variables and assuming

simplied notation .4, instead of z'** used in Sec. 8.3.1, where n = L.
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where p(z)dz is the basic probability that the random variable x can be found in
the interval x, z 4+ dx, and x4, is the lowest value which this variable can assume.
Of course, the second equality in expression (8.27) comes from the normalization of
the probability density (or distribution) p(...) where

Tup
po (M) = [ pla)da, (8.29)
here x,,, is the largest value which the variable x can assume. We set here 4., <
A < zy, so that the strong inequality p~(A) < 1 is obeyed. Therefore, the second
equality in expression (8.27) takes, with a good approximation, the useful form

,P(xmaa: < A) ~ eXp(—L ’ :0>(A)) (830>

In this way, we reached our second step, namely the intermediate formula useful for
further transformations

Plrger = A) = PO S8 o0y exp(-Lopa(a), (831)
where the notation p(A) = p(x = A) and definition (8.29) have been introduced.

In the third step, we relate the number of observations (L) to the rare event.
The law of large numbers tells us that one can expect to observe (typically) such
events which have a probability at least equal to 1/L. Hence, it would be surprising
to encounter an event which has a probability much smaller than 1/L. The largest
event Ayuq., observed in a series of L > 1 iid random variables (which we call indeed
the rare one), is thus given by relation

0> (Amaz) = 1. (8.32)

L
We can call the above definition of the rare event the weak one; the stronger defintion
(which seems to be even easier to interpret) could have the form

1

Npoz) = —, 8.33

p(hae) = 7 (8.33)

which is, however, less convenient (from the technical point of view of the general

approach)!!. Since now we operate with two types of max-variables our aim is to
find the probabilistic relation between them.

By combining eqs.(8.30), (8.31) and (8.32) we finally find the general formula for

the searched distribution

P(Zpae = N) = 7p>€/(\/:3w) - exp <_7p§(>/\(:3$)> ) (8.34)

H'Note that for most cases analytically solvable both definitions give identical shapes of distribu-
tions of random variables which require only rescaling by additive and/or multiplicative constants.
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It is just the above formula that we use to get the Gumbel and Fréchet distributions
as well as to find a relation between them.
Warto doda¢ dla kompletnosci, ze dystrybuanta (8.30) przybiera teraz postaé

P(Tmae < N) ~ exp <_,0>I0(>T(j:jx)> : (8.35)

nie tak wyspecyfikowana jak GEVD podana w rozdz. 8.3.1.

8.3.3 The Gumbel distribution versus the Fréchet one

We assume that disordered substrate (medium) is characterized by the random-trap
or valley model defined on a regular lattice. Therefore, all valleys are equally spaced
but have different (energetic) depths, {¢ > 0}, while the mountain peaks are all at
the same energy level. It is assumed that the distribution of depths is exponential

ple) = <?1> exp (—é—>> (8.36)

which was done by many authors. The visible aspect of the random-trap model
is its symmetry where (in absence of a bias) there is no tendency for the carrier
to drift from any configuration of traps. Hence the carrier hops in any possible
direction have an equal probability and the different hops between valleys are, of
course, uncorrelated. We use the above given distribution as a basis for further
considerations.

The Gumbel distribution. As we already mentioned in Sec.8.3.2, we can identify
the random variables x = e. Moreover, from expression (8.36) we find

p(A) = <?1>exp (—%)

p(A) = e (—%) 2 (Ae) = exp (—A;;;x) | (3.37)

required to express formula (8.34) in an explicit form. Note that the third expression
(8.37) together with (8.33) gives an explicit, unique relation between the value of
the rare event A,,,, and the number of observations L

Amax
{€)

which points to a slow (logarithmic) growth!? with increasing L.

= In(L), (8.38)

12For the stronger definition of the rare event (8.33) we obtain A,u../(e) = In(L/(€)) while the
Gumbel distribution (8.41) of variable u defined by (8.40) is unaffected.
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By using (8.37), formula (8.34) takes an intermediate form

Plepan = M) ~ <?1>exp G%) exp <—exp (-%)) (8.39)

To obtain the searched distribution in a closed, explicit form the following transfor-
mation of variable ¢,,4,, or A should be made

e max ~ Amax A - Amax A
def. £ - = du=—; (8.40)

{€) {€) ()’

hence and by expression (8.39) we finally obtain the well known Gumbel distribution

P(u) = exp(—u) exp(— exp(—u)) (8.41)

of the u random variable, where we tacitly use the invariance of the probability
under the monotonic transformation of random variable (invariant measure); thus
we used the equality

P(emaz = N)dA = P(u)du. (8.42)

Zauwazmy, ze rozktad (8.41) mozna otrzymaé, jak trzeba, jako pochodna dystrybu-
anty rozktadu Gumbela danej wzorem (8.21), przy czym u = .

Note that the most probable value of the distribution (8.41) is u = 0 which
shows that, paradoxally, the rare event A,,.,. is the most probable value among
Emaz S- On the other hand, when u — oo the Gumbell distribution P(u — o0) —
exp(—u). Hence, the distribution of random variable £ and the analogous (although
asymptotic) one of variable €,,,, are exponential. We can say that the exponential
distribution is asymptotically stable with respect to the 'max’ operation.

The Fréchet distribution. Now we are ready to answer the question concerning the
distribution of sojourn times of the walker in traps and find (by using formula (8.34))
the distribution of its longest values present within a given series of observations.
Then (as we mentioned at the beginning of Sec. 8.3.2) we assume that the random
variable r = 7.

Accordingly, as the first step we perform the transformation

e=1(e) = mexp(fe) =1 (7)),
1 «

p(e) = p(1(e)) = Py ey (8.43)

where we set 7 = exp(f’ - A), as we consider over-barrier jumps of a carrier (here
A denotes the energy unit), and the exponent

a= = (8.44)



To derive of the second equality in (8.43) we used again the invariance of the proba-
bility under the monotonic transformation of random variable (as given by the first
equation of (8.43)), i.e. we used the positively oriented equality

P (T)dT = p(e)de. (8.45)

Note that the exzponential transformation of the random variable leads to the trans-
formation of its (invariant) probability distribution from the exponential one to the
power-law. Conversely, the logarithmic transformation of random variable leads to
the transformation of its probability distribution from the power-law to exponential
ones.

From the second relation in (8.43) and definition (8.29) we can easily calculate
the probability

, B 1
p> (A) - (A/To)a . (846>
and hence
, B 1
05 (Amaz) = ey (8.47)

necessary to obtain probabiliy distribution (8.34) in an explicit form'®. Note that
by using eq. (8.32) we obtain A,,q, as a power-law function of L*

Amax

= LY, (8.48)
70

It should be noted that the same result is obtained if we use the rare event of energy
depth of traps (8.38) as a power (divided by A) of 7/ which gives self-consistency of
the approach.
By introducing formulae (8.46) and (8.47) into (8.34) we obtain after straight-
forward calculations
1

Q
Amaw (A/Amaw)
Hence we finally obtain the Fréchet distribution

Plu) = — exp (—i> (8.50)

uOl

P(Tmaz = N\) = e exp(—1/(A/Amaz)”) (8.49)

of u % A /Apmar variable, where as usual we used the invariance of the probability
under the monotonic transformation of random variable, i.e. we used the equality

P(Timae = N)dA = P(u)du. (8.51)

13The A variable used here relates to 7 and not € one.

4By using the stronger definition (8.33) of the rare event one gets a related scaling law A 4. /70 =
(L/ (70 - )M/ D).
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Zauwazmy, ze rozktad ten mozna uzyskac, jak trzeba, jako pochodng dystrybuanty
Frécheta (8.20), gdzie u = z.

It can be easily found that the most probable value of 7,,,, is proportional to
the value of the rare event A,,..".

As it is seen, for u > 1 the Fréchet distribution is the power-law of exponent
1 + a with the power-law correction to the scaling of exponent « since

P(u) ~ uf+1 (1 - i) . (8.52)

ua

Analogously to the Gumbel distribution, we can again say that the power-law tail
is asymptotically stable with respect to the 'max’ operation.

Relation between the Gumbel and Fréchet distributions. The above cosiderations
show that, when we made the transformation from the random variable ¢ to its expo-
nential representation 7(¢) (cf. the first relation in (8.43)) as a result we transformed
the Gumbel to the Fréchet distributions. In other words, the Gumbel distribution
characterizes an additive stochastic process while the multiplicative one is charac-
terized by the Fréchet distribution (where relation between both processes is given
by the log operation).

8.3.4 Pictorial analysis of rank ordering

The main goal of this section is to show the decisive role of rare events in Hierarchical

Continuous-Time Random Walk (HCTRW) for asymptotic many time-steps. To

make our analysis more convenient we treat variable ¢/A as a discrete one which

is possible as A can be always assumed to be sufficiently small (i.e. by assuming

A < £). Again, we assume that x = 7 is our random variable distributed according

to the power-law defined by the second expression in (8.43). Now, we introduce the
13

discrete notation j = %, j = 0,1,2,..., and define N = exp(%); hence, with a

good approximation, % ~1-— %, which makes the transformation to the discrete
distribution

1 1
= 0" (5 :(1——>-—., 1 =0,1,2,..., 8.53
ple) = p"(j) ~) Wi (8.53)
and the definition of the rare event
1 1
"Gmaz) = (1 — =) - ——, 8.54
i) = (1= 5 ) o (8:54)

clear!®.
Hierarchical waiting-time distribution in a discrete representation. Note that
our hierarchical waiting-time distribution, ¢(¢) (which is the basic function of the

5More precisely, Tpmaz = (a/(1 + a))® . Apae and only for o — oo variable Tae = Apmae-
16Tn the above derivation we simply exchanged d (%) for 1. Note that the distribution has still
an exponential form and its normalization is conserved, as it should be.
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HCTRW) assumes, within the above introduced discrete representation, the follo-
wing useful form

U(t) = 0" (5) i (0), (8.55)
Jj=0
where the conditional Poisson waiting-time distribution
O / (8.56)
() = - exp | ————— :
N CO TR N COT)

and p”(7) is the weight which plays a fundamental role in these considerations. (Of
course, this discretized 1 (t) conserves the normalization and scaling). For example,
the sojourn time can be easily calculated by using the weight,

(t) = i}ﬂ'(i) (), (B =7(j) = /Ooot - (t)dt =70 - (7). (8.57)

Note that the partial residence time (t);, j = 0,1,2,..., is always finite but the
total residence time is finite only when a > 1 and equal to

]_ _
1—

2|

{t) =70 : (8.58)

=

otherwise it diverges which fully agrees with the result shown in Sec.2.2. Hence, to
obtain (t) finite the weight p”(j) must converge sufficiently quickly with the increase
of variable j.
It is decisive for our present considerations that the ratio of successive weights
"z
prury 1 (8.59)
p"(Gj) N
be already j-independent. This means that in each single-step the residence of a
carrier in a trap with sojourn time 7y - (7')? or in state (or hierarchy level) j is
N times more likely than those of the next larger order 5 + 1. Hence, one expects
(on the average) that the walker will visit N7 traps having the shortest sojourn
time 79 before he encounters a sufficiently deep trap with a mean residence time
() =710 (), j=1,2,...
Practical aims. In Fig.8.12 the schematic illustration of this essential observation
is given in the form of one-dimensional hierarchically ordered time-intervals or mean
residence (sojourn) times in the corresponding traps. Here

(i) we neglect (due to the Bernoulli law of large numbers) the fluctuation of the
number of hierarchy levels as well as their succession (as we calculate the
summarized quantities), and
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Hierarchical ordering of mean residence times
p”(+1)/p”()=1/N

rare event: 1(j=2)

\

For example: N=3, t'=4

self-similarity:
o = In(N)/In(t') = 0.792

N

background event: t(j=0)

Rysunek 8.12: The part of the stochastic hierarchy of the carrier residence times in
random traps presented in the form of ordered two-dimensional zig-zag intervals (the
art-view) where the length of each interval is given by 7(j) = 70+ (7')?, j =0,1,2,....

(ii) plot only the length of the average time-intervals (¢);, j =0,1,2,....

As it is seen, we made the transformation from the stochastic hierarchy to its deter-
ministic representation. This makes it easier to realize our practical aims, namely
to discuss

(1) the rank ordering of residence times,

(2) the finite-size effect as scaling of characteristic quantities with the size of the
hierarchy:.

From Fig.8.12 one gets the useful relation between the size of hierarchy L and
the number of its levels j(> 1 and 7/, N > 1),

1

L) =N +N71+ 4N+ N~ ———.
(4) + +...+ N+ 1N

NV, (8.60)
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RANK ORDERING
16406 f———T—rr T

let+0 F m F= A*n/<s>
® F,=A n/T0

10000

1000

L. 100

0,1

0,011

Rysunek 8.13: The rank ordering of residence times and depths of traps described
by the power-law (function Fy, where A} is given by eq.(8.77)) and logarithmic (Fy,
where A} is given by eq.(8.76)) dependences, respectively.

The quantity L(j) is also the total number of steps after which the walker encoun-
tered the trap with sojourn time 7y - (7/)7.

Now, we can set the rank n = L(j) and look for the corresponding sojourn time
as a function of n ranked according to its decreasing amplitude. Hence, we can write
the one-to-one correspondence in the form: n = L(j) < (7/)/me==J where jqz 18
related to the total number of observations L; by using relation (8.60) we can write

1

N« NImaw 8.61
1-1/N (8.61)

L= L(]maz)
From expressions (8.60) and (8.61) we calculate exponent j,q. —j and by introducing
it into the formula for n given the above, we finally find the searched rank dependence

. . N Ve

T(n) =1 (7Y =19 - <ﬁ> , (8.62)
which is (for large L) the power-law with exponent —1/«a. In Fig.8.13 we presented
this dependence, for example, for a = 0.792 (or N = 3 and 7/ = 4) and L = 9841.
Eq.(8.62) shows that hierarchically organized encountered random variables lead
to the power-law rank of their amplitudes. Speaking more precisely, we obtained a
kind of descending devil’s staircase whose average slope is asymptotically given by
exponent —1/a.

Empirical verification of the tail. The rank relation (8.62) is very useful in iden-
tifying the nature of the tails of probability distributions. The single-step procedure
is as follows: one sorts in decreasing order the series of observed random variables
(for example, 7’s) and one simply draws A,, (here equil to 7(n)) as a function of n. If
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variables are power-law distributed, this graph should be a straight line in a log-log
plot, with a slope given by exponent —1/« (as shown, e.g., by expression (8.62)).
Decisive role of rare events. Our second aim is realized in connection with rare
events. Now, we can prove that the (average) total time for which carrier stays in
the traps encountered during L steps obeys the same scaling law with L as a rare
event.
First, from (8.53) and (8.54) we easily obtain

0o 1 1 1
”A: //‘:—:>//Amax == = =
p=(A) ;\P (7) NA P ) NAmaz [,
In(L)
= MANpaz = .

where the second relation defines the rare event in agreement with weaker definition
(8.33). Hence, we have

(/) Amar = LV, (8.64)

By using relations (8.61) and (8.54), we find that just j.. is the rare event in the
stronger sense given by (8.33); thus,

i) - L]V, (8.65)

e = (1=

which means that the difference A0z — jmae = In N/ In(1—1/N) is an unimportant
constant.
The total time mentioned above is given by the following sum

I ~ NO(T/)]maz + Nl (7—/>]mazfl + . + N]maz—l (7-/>1 + N]maz (7—/)0
7o

-5

11, - Ndmaz — for o > 1,

= Nimar N/ (8.66)

(S tl — 1 N { L (7)Imee . for a < 1
N

r
N

By introducing eq.(8.65) and eq.(8.61) into (8.66) we obtain the important relations

t w.ljl/o" foroé<1
~ ol (8.67)
70 N L, for a > 1.

-5

Note that both relations (8.66) and (8.67) distinguish two essentially different ranges
of exponent « (the marginal case o« = 1 is not considered here). For the first range
(v < 1) we found t proportional to the rare event, i.e. it scales with the number of
steps L in the same manner as the rare event; this is the main result of this section.
The proportionality coefficient is called the (dimensionless) fractional residence time.
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For the opposite, regular case the analogous coefficient is simply the residence time
given above (cf. eq.(8.58) and second relation (7.34)).

Now, it is easy to calculate the dependence of the mean-time, (t), used by the
walker for a single step, on L. For the asymptotic long L one can write the following
average calculated along the L-step trajectory

@ ijaz ijaz_l NO

~ N0 N1 - /jmaz
- 7 ()" + 7 (T)+...+L(T)
_131/a
A=y)7* lf)ﬂl Lé_l, for a < 1
R~ T (8.68)
1—2’ for a > 1,
N

Of course, this result can be obtained straightforward from expression (8.67) by
deviding it simply by L.

Additional properties of rare events. It is useful to have a list of several simple
properties of the rare events. The first question which we can easily answer is: how
many potential rare events, 4., typically appear within L(>> 1) events'’? From
(8.60) we immediately get (exchanging simply j for le): lnaz = %

The second question is: how the distance between the successive rare events
increases with L? Again from (8.60) we obtain

AL(j) = L(j +1) = L(j) = N = (N = 1) - L(j); (8.69)

i.e. this distance increases linearly with L.

The third question concerns the ratio of the value of the potential rare events
and their difference. Directly from Fig.8.12 we find that this ratio is simply equal to
7" independently of L while their difference

To - [(T/)lmam+1 _ (T/)lmaa:] ~ Ty - (T/ —1)- Ll/a7 (8.70)

scales with L as a single rare event.

8.3.5 Generalized Extreme Value Theory

In this section we ask a more general question than in Sec.8.3.2 although we consi-
der again a series of L independent observations of random, identically distributed
variables. We can rank variables x;, [ = 1,2,..., L, in decreasing order of their
amplitude. We denote by A, the n'® encountered value among these random varia-
bles. Hence, for example, Ay = 2,0, and Ap = 2, (ie. the minimal value of the
variables ;).

As the first step we are interested in the probability distribution P,(A,) =
P,(x = A,) of the random variable A,,. We can write the exact formula

Py(An) =L - Cg:% p(z = Ay)[p> (An)]nil[p< (An)]Lin’ (8.71)

1"The potential rare event is such an event which is the maximal one but within the given number
of steps smaller than L.
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where C7~1 denotes the combinatorial (or Newton binomial) factor. The product
L - O~} gives the total number of ways to set A,, within all possible configurations
of L — 1 elements, which remain random variables of the series. Note that for n =1
the above formula simplifies to expression (8.31), as it is expected be.

In the second step we find the most probable value of A% (for a given rank n). By
differentiating probability distribution (8.71) and setting it equal to zero we obtain
the formula

1 dp(An)
L dh,

n—1

s (An) - p<(An)  — 7 [p(An)]2 “p<(An)

+ (1- z) ) [P(An)]2 ps(An) =0 (8.72)

useful for further considerations particularly when n, L — oo with fixed ratio n/L.
Then the first term in (8.72) vanishes and we obtain the formula

n

p>(A) = 7 (8.73)

which generalizes (8.32)15.

To complete information about distribution P,(A,) in the vicinity of A% we
calculate, as our third step, its width o,,. We find o,, by using the saddle-point (or
Gaussian) approximation from the second derivative of In P,(A,) calculated at AJ
since in this approximation one can use

2
LA = —— (8.74)

2 n 2°
dA2 o2

Hence and from (8.71), we obtain immediately the width of the probability distri-
bution P,(A,) in the form

1z (A-7)
VL  p(A})
which is more and more sharply peaked around its most probable value A} as L
tends to infinity (with fixed ratio n/L).

Two useful cases. Let’s assume the case of exponential tail (given in Sec.8.3.3 by
eq.(8.36)). By applying the second relation of eq.(8.37) to eq.(8.72) we obtain that

A~ (e) - In <£> . (8.76)

n

(8.75)

O

In the case of the power-law tail (given again in Sec.8.3.3 by the second equation
in (8.43)) we obtain

L l/a
A (—) , (8.77)
n

18We used here the normalization condition p<(A,) = 1—p= (A,,) which is valid for the continuous
random variable.
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which was already derived in Sec.8.3.4 by the simplified approach (of course, A}
present in the above formula is equivalent to 7(n) in formula (8.62)).

In Fig.8.13 we compare both the above derived results in the log-log plot (where
we used L = 9841 and o = 0.792). For the exponential distribution we observe an
effective slope which is smaller and smaller as the rank variable n increases, i.e. the
remarkable difference between both rank plots is well seen.

8.3.6 Concluding remarks

In the paper we present, in the context of amorphous materials, two essentially dif-
ferent types of transport and diffusion: above the temperature threshold 1/5" = (¢)
they are regular (normal) while below they are anomalous (i.e. non-Gaussian). We
discuss, for these two regions, the asymptotic form of the spatial-temporal pro-
pagator, the time-dependent drift and the variance emphasizing their subdiffusive
character. Moreover, we were able to show the decisive role of rare events in the-
se anomalous types of transport and diffusion by matching the biased Hierarchical
Continuous-Time Random Flight model and the Extreme Value Theory. We ho-
pe that this approach makes possible a deeper understanding of the transport and
diffusaion phenomena.

8.4 Nowoczesne podejsScie do oceny ryzyka

Przypusémy, ze chcemy oceni¢ pojedyncza strate AX < 0 jaka mogliby$my po-
nie$¢ w horyzoncie czasowym 7, czyli np. na koniec dnia transakcyjnego (wéwezas
7 =1 [td]). W tym celu wprowadzmy bazowa gesto$¢ prawdopodobieristwa
strat, P,(AX), dla ustalonego horyzontu czasowego 7. Unormujmy ja (dla prosto-
ty) w taki sposob, ze [Ta" P(AX)d(AX) = 1. W miare potrzeb mozna wziaé¢ pod
uwage pelniejszy sposéb normalizacji, uwzgledniajacy takze zyski (AX > 0). Ta
gestos¢ prawdopodobienstwa nalezy rozumieé¢ w taki sposéb, ze budujaca ja staty-
styka empiryczna jest zbierana na koniec kazdego dnia transakcyjnego 7. Oznacza
to jednak, ze nie bierze sie tutaj pod uwage dwoch istotnych efektow

1) kumulowania sie strat w trakcie dnia transakcyjnego, z ktorych kazda z osobna
jest mniejsza od dopuszczalnej straty, ale ktore w sumie przewyzszaja ja,

2) pojawienia sie straty wiekszej od dopuszczalnej w trakcie danego dnia trans-
akcyjnego a nie na jego koniec.

Do zagadnien tych powrdcimy w dalszej czesci tego rozdziatu.

Na wstepie, dysponujac rozktadem P,(AX), okreslamy np. prawdopodobienstwo
(absolutnej wartosci) straty —AX =| AX | nie mniejszej niz jakas (dowolnie) usta-
lona przez nas dopuszczalna wielko$é progowa A (tutaj A > 0):

PAX < —A) = Pe(—A) = / ' p(AX)AX, (8.78)

7Adown
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gdzie prawdopodobienstwo P<(—A) (wyrazane najczesciej w procentach) nosi nazwe
oceny ryzyka (ang. risk estimation) lub poziomu ufnos$ci (ang. confidence level),
wartos¢ A nazywana jest poziomem strat (ang. level of loss), poziomem ryzyka
(ang. level of risk) lub po prostu ryzykiem (ang. risk), warto$¢ Agewn(> 0) jest
maksymalng absolutng wartoscig potencjalnej straty jaka mozemy ponies¢, przy
czym zaktadamy, ze A < Agown; W zwiazku z tym mozna przyjacé, ze Agown = 00, €O
upraszcza obliczenia nie wplywajac na (przyblizona) postaé ostatecznych wzordw.

W dalszym ciagu wprowadzmy w réwnaniu (8.78) jakas konkretna warto$¢ po-
ziomu strat, ktorg nazwiemy 'Wartoscig Zagrozong Ryzykiem’, i oznaczmy przez
—Avyqr (skrot VaR jest akronimem angielskiej nazwy Value at Risk) - niech bedzie
to taki poziom strat, ktory odpowiada przyjetej ocenie ryzyka

o = Pyar def. Pg(—AVaR), (8.79)

rownej np. 1%. Oznacza to, ze absolutna wartos$¢ straty wiekszej lub réwnej stracie
progowej —Ay,r wystapi (Srednio rzecz biorac) raz na N = 100 [td]; w przypadku
5% zaledwie raz na N = 20 [td]. Zatem, z dobrym przyblizeniem, dla N > 1, mozna
przyjac, ze

1

Prar & - (8.80)

Ogodlnie rzecz biorac, im wiekszy jest poziom ufnosci tym mniejszy jest poziom strat.
Zaznaczmy, ze na wielko$¢ N mozna patrzeé¢ jak na Srednia odlegtosé (tutaj liczo-
na w dniach transakcyjnych) pomiedzy dwiema kolejnymi stratami nieprzewyzsza-
jacymi tej progowej —A. Zatem, 1/N to $rednia czesto$é wystepowania tych strat.
Dodajmy, ze badanie fluktuacji czasow miedzytransakcyjnych jest jednym z wazniej-
szych zagadnien nie tylko ekono- i socjofizyki (patrz A. Bunde, J. Kropp, and H.J.
Schellnhuber: The Science of Disasters, Springer-Verlag, Berlin 2002). Na tej drodze
odkryto, na przyktad, zjawisko grupowania sie (klastrowania) duzych strat (warto
tutaj przypomnie¢ sobie porzekadto, ze "nieszczescia chodza parami”), co w istotny
sposOb wplywa na nasze rozumienie ryzyka. Co wiecej, dla monofraktalnych szere-
gbéw czasowych przejawiajacych dtugookresowe korelacje, rozktad P_,(At) czaséw
miedzytransakcyjnych strat nie mniejszych od —A jest rozciagnietym eksponensem.
Dla multifraktalnych szeregéw czasowych stép zwrotu rozktad ten przyjmuje postaé
g-wyktadniczej funkeji Tsallisa (patrz J. Ludescher and A. Bunde: Universal beha-
vior of the interoccurrence times between losses in financial markets. Independence
of the time resolution, Physical Review E (2014), w druku).

Jak wida¢, réwnanie (8.79) wprowadza nas w $wiat parametrow pozycyjnych -
kwantyli (patrz R. Nowak: Statystyka dla fizykéw, Wydawnictwo Naukowe PWN,
Warszawa 2002), gdyz Wartosé¢ Zagrozona Ryzykiem, —Ay g, jest po prostu kwan-
tylem rzedu «. Zaletg tego podejscia jest fakt, ze kwantyle dowolnego rzedu istnieja
nawet wtedy gdy momenty rozktadu nie istnieja. Wydaje sig, ze jest ono najczesciej
uzywanym we wspélezesnej ocenie ryzyka (patrz P. Jorin: Value at Risk: The New
Benchmark for Managing Financial Risk, McGraw-Hill, New York 2001).
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Naszym celem jest wyznaczenie poziomu ryzyka —Ay,z przy zadanej
wielkosci poziomu ufnosci Py g, tzn. odwrdcenie réwnosci (8.79)

Avar = ~PZ'(@) = =P2 (Pya) = =P () (5:81)
W ogoélnosci jest to zagadnienie rozwiazywalne tylko na drodze numerycznej jednak-
ze dla kilku charakterystycznych przypadkéw mozna uzyskaé¢ rozwiazanie analitycz-
ne o czy méwimy ponizej. Zauwazmy, ze rownanie (8.81) zalezy w sposéb globalny
(sumaryczny) od nieznanej bazowej gestosci prawdopodobienstwa - jego postaé jest
wynikiem przyjetego modelu i musi, rzecz jasna, podlega¢ weryfikacji empiryczne;j.

8.4.1 Zasadnicze pytania

Mozemy teraz postawi¢ pytanie charakterystyczne dla Teorii Zdarzen Ekstremal-
nych (ang. Extreme Value Theory) (patrz rozdz. IV) mianowicie, jaka jest ge-
sto$¢ prawdopodobienstwa wystgpienia najwiekszej pojedynczej straty,
P(—A; N), o zadanej wartosci —A w czasie ré6wnym N dni transakcyjnych?
Jak wida¢, w tak postawionym pytaniu wtasnie —A pelni role zdarzenia ekstremal-
nego. OdpowiedZ na to pytanie uzyskujemy (analogicznie jak w rozdz. IV) w oparciu
o zalozenie méwigce o statystycznej niezaleznosci strat. Zatem,

P(=A;N) = N [Po(=AN)]"71 Pr(=A) = N [1 = P<(=A)"1 - Pr(=A)
~ N-P(—=A)-exp(—N-Pc(—=A)), N> 1, (8.82)

gdzie przy wyprowadzeniu przyblizonej réwnosci w (8.82) przyjelismy, ze prawdo-
podobienstwo P<(—A) jest co najwyzej rzedu 10% tzn., ze mamy do czynienia ze
stosunkowo duzym ryzykiem czyli stosunkowo niskim poziomem ufnoéci. Zauwazmy,
ze skorzystaliSmy tutaj z warunku normalizacji postaci:
—Ay
1 =Po(=A) + Po(—A), Ps(-A) = /A " P.(AX)d(AX), (8.83)
gdzie —A,, jest strata minimalna.

Innymi stowy, réwnanie (8.82) odpowiada na pytanie jaki jest rozktad prawdo-
podobienstwa tego, ze —A jest maksymalng pojedynczg stratg jaka pojawita sie w
przeciggu N dni transakcyjnych.

Wyrazenie (8.82) mozna zapisa¢ w alternatywnej postaci, ktéra wykorzystujemy
w dalszej czesci

oy PN (Pt
P(—A;N) ~ o p< P ) (8.84)

Zwroémy uwage, ze powyzsze wyrazenie jest, w istocie rzeczy, takie samo jak tamto
(8.34) wyprowadzone w rozdz. IV - réznica polega tylko na tym, ze straty sa tutaj
wyrazane liczbami ujemnymi
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Postawmy teraz zasadnicze pytanie: dla jakiej wartosci —A gesto$é praw-
dopodobienstwa P(—A; N) osigga maximum? Czyli poszukujemy najbardziej
prawdopodobnej wielkosci straty. W jezyku teorii parametrow pozycyjnych oznacza
to, ze poszukujemy tzw. mody zwanej tez dominanta. Z réwnosci w (8.82) otrzymu-
jemy konieczny warunek, rézniczkujac jg stronami po —A i przyréwnujac otrzymane
wyrazenie do zera

d(=A)
€Xp (_ng(_Amaa:)) : %

(N - 1) ' PT(_Amaa:> - P>(_Ama$) '

| max

lmazs  (8.85)

Q

ktory wykorzystamy do analizy wielce uzytecznych przyktadow.
Podkreslmy, ze to wtasnie wielko$¢ A,,q. jest ta charakterystyka poziomu ryzyka,
o ktéra nam chodzi - niestety, mozliwosci jej praktycznego wykorzystania sa (jak na

razie) mniejsze niz wielkosci Ay, g, ze wzgledu na trudnosé zwiazana z wyznaczeniem

w jawnej postaci Pmaaj(dgf. P<(—Amaz)). Nie mniej, wszedzie tam gdzie to jest

tylko mozliwe nalezy dazy¢ do uzyskania obu tych wielkoSci w jawnej
(przynajmniej przyblizonej) postaci.

Dodatkows wielkoscia zwigzang z analiza ryzyka rynkowego jest oczekiwana
wielko$é straty przekraczajacej VaR (ang. Expected Tail Loss, ETL'?). Oczywi-
Scie, wyznaczenie tego (pierwszego, czastkowego) momentu jest mozliwe tylko wtedy,
gdy on istnieje. Zatem, nie jest to mozliwe w sytuacji, gdy dystrybuanta rozktadu
strat ma gruby ogon zanikajacy jak 1/(AX)? lub wolniej. Chociaz czesto pogru-
bione ogony zanikaja szybciej niz 1/(AX)?, a wigc umozliwiaja wyznaczenie ET'L,
to w dalszym ciggu nasze rozwazania bedg oparte gtdwnie na pojeciu parametréw
pozycyjnych (kwantyli) a nie na momentach rozktadéw?, gdyz takie podejscie jest
bardziej uniwersalne i wiecej méowiace.

8.4.2 Rachunek skumulowanych strat.
Podejscie dynamiczne w ramach formalizmu CTRW

Jak to zostalo wskazane w poprzednim podrozdziale, zawarte tam rozwazania nie
uwzgledniaty strat wewnatrzdziennych - obecnie zajmiemy si¢ tym nadzwyczaj waz-
nym zagadnieniem. Czesto wlasnie straty wewnatrzdzienne, a w tym straty skumu-
lowane, stanowig istotne zagrozenie dla inwestora przekraczajac dopuszczalny prog
przed uptywem dnia transakcyjnego. Zatem teraz, naszym celem jest wyznacze-
nie rozktadu prawdopodobienstwa warunkowego, P(AgsX, At), wystapie-
nia skumulowanej (sumarycznej) straty AsX w przedziale czasu At pod
warunkiem, ze wyjsciowo (w chwili poczatkowej) nie byto zadnej straty ani zysku

YPatrz G. Trzmiel: Wybrane modele oceny ryzyka. Podejécie nieklasyczne, Wydawnictwo Aka-
demii Ekonomicznej im, Karola Adamieckiego w Katowicach, Katowice 2008.
20R. Nowak: Statysyka dla fizykéw, Wydawnictwo Naukowe PWN SA, Warszawa 2002.
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(dla uproszczenia warunek ten zostal opuszczony w powyzszym zapisie). Poniewaz,
dopuszczamy tutaj zaréwno straty jak i zyski wiec AgX moze by¢ dowolnego znaku.
Rozwigzania tego problemu bedziemy poszukiwa¢ w ramach rozwinietego w rozdz.
6.1 formalizmu CTRW, reinterpretujac wystepujace tam zmienne. Wykorzystamy
tutaj formule (6.35) - przypomnijmy

P(k,s) = 11_—¢(S) (8.86)
$1—¢(s) p(k)
teraz P(k, s) jest transformata Laplace’a i Fouriera rozktadu P(AgX, At), wielkosé
qg(s) jest transformata Laplace’a rozktadu ¢(6t) pojedynczych czaséw 6t pomiedzy
kolejnymi zdarzeniami (tutaj sa nimi straty lub zyski w dowolnym zestawieniu),
natomiast p(k) jest transformata Fouriera rozkladu p(AX) pojedynczej (jednokro-
kowej) straty lub zysku AX. Jak wida¢ (méwilidmy juz o tym w rozdz. 6.1), oba
rozklady jednokrokowe ¢(dt) oraz p(AX) sa podstawowymi dla uzytego formalizmu
CTRW.

Otrzymany rozklad, P(AgX, At), pozwala obliczy¢ trzy nadzwyczaj wazne wiel-
kosci:

(1) prawdopodobienstwo, ,PS(_AVaRa AAVaRt) = f__o/;VGR P(ASX, AAVaRt)d(ASX)a
wystapienia sumarycznej straty nie mniejszej niz ustalona progowa (np. nie
mniejszej niz —Ay,r) w dowolnie wybranej chwili Ay, .t oraz

(ii) prawdopodobienistwo, F'(AgX, At), pierwszego pojawienia sie sumarycznej stra-
ty AgX w chwili At a stad prawdopodobiefistwo, F<(—Avar, An,,xt) =
[TAver BP(AGX, Ay, 1)d(AgX), pierwszego wystapienia sumarycznej straty
nie mniejszej niz ustalona progowa (np. nie mniejszej niz —Ay,gz) w dowolnie
wybranej chwili Ay, .t. Prawdopodobienstwo to mozna nazwa¢ dynamiczng
oceng ryzyka.

Dodajmy, tytulem uzupetnienia punktu (ii), ze prawdopodobienstwo, F(AgX, At),
pierwszego pojawienia sie sumarycznej straty Ag X w chwili At jest zwigzane relacja

F(AgX,s) = M, dla AgX # 0, (8.87)

P(0,s)

z rozktadem P(AgX,At) (patrz J.W. Haus and K.W. Kehr: Diffusion in regular
and disordered lattices, Physics Reports 150 (1987) 263-406).

Rozklad czas6w pomiedzy nadmiernymi stratami

Znajdziemy teraz odpowiedZ na inne wazne pytanie?! zwiazane z dynamika wystepo-
wania jednorazowych strat nie mniejszych od progowej —A. Powyzej zajmowalidmy

2l'Rozwazania zawarte w niniejszym podrozdziale powstaly z inspiracji dr Tomasza Gubca.
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sie stratami skumulowanymi - teraz zajmiemy sie podejsciem bardziej szczegétowym
- jego mikroskopia. Mianowicie, chodzi o rozkltad 15 (Axt) przedziatéw czasu Axt po-
miedzy takimi stratami (patrz rysunek 8.14) przy zalozeniu, ze straty wyznaczamy
zawsze na koniec dnia transakcyjnego? W tym celu skonstruujemy czastkowe, wie-
lokrokowe (n-krokowe) reprezentacje, ¥} (Axt), tego rozktadu rzedu n =0,1,2, ...,
postaci

A C(Ant) = Y(Ant)P<(—A),
A = [ [ dn )P (-a)

[(ta — t1) P (—=A)] P(Ast — t2)P<(—A),
. (8.88)

X

gdzie 0 < t; < to,..., < t, < Apt, przy czym z definicji poprzednia strata nie mniej-
sza od —A jest tutaj ulokowana w zerze (patrz pomocniczy rys. 8.15). Zauwazmy,
ze wyrazenie dla n = 2 pozwala juz podac¢ wzor na rozktad wielokrokowy dowolnego
rzedu. Uzyty tutaj rozktad ¢(At) czaséw At =t; —t;_4, j =1,2,..., pomiedzy ko-
lejnymi stratami jest niezalezny od ich wielkosci. Przypomnijmy, ze komplementar-
ne prawdopodobienstwa P (—A) i P~(—A) zostaly zdefiniowane za pomoca wzoru
(8.78) i warunku normalizacyjnego (8.83). Zauwazmy jeszcze, ze analogiczna stra-
tegie wielokrokows stosowaliSmy juz w podrozdz. 6.1.3 do obliczenia propagatoréw
czastkowych a za ich pomocg sumarycznego propagatora.

Dysponujac rozktadami wielokrokowymi mozemy juz teraz skonstruowaé¢ suma-
ryczny rozktad

Ua(Bnt) = 3 UR(Aa), (3.89)

ktéry w zmiennej Laplace’a s (sprzezonej ze zmienna Ajxt) przybiera prosta, za-
mknieta postac

S () ~
) = T e <Y (8.90)

gdzie po drodze skorzystali$émy z warunku normalizacyjnego P<(—A) +P-(—A) =1
oraz warunku ograniczajacego | 12(3) |< 1.

Aby zilustrowaé przydatno$¢ wzoru (8.90), rozwazmy szczegélnie prosty przypa-
dek wyktadniczej zaleznosci rozktadu ¢ (At) od czasu At. Jego transformata Lapla-

ce’a jest postaci 1/1115

(gdzie T jest czasem relaksacji rozkladu 1 lub, inaczej mowiac,

22Dzien transakcyjny ma tutaj charakter czysto umowny - ogdlniej rzecz biorac, chodzi tutaj o
jednostke transakcyjna, ktorg moze by¢ np. godzina transakcyjna.
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Neroda,

Y

Rysunek 8.14: Schematyczny wykres strat (pionowe odcinki) wyznaczanych na ko-
niec kazdego przedziatu czasowego 7 (tutaj dnia transakcyjnego). Zmienne odlegto-
Sci czasowe pomiedzy nadmiernymi stratami (niebieskie pionowe odcinki) oznaczono
przez Apt(> 7).
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Rysunek 8.15: Schematyczny wykres strat (pionowe odcinki) poniesionych pomie-
dzy dwiema kolejnymi stratami nie mniejszymi od wartosci progowej rownej —A
(pionowe odcinki zaznaczone na niebiesko). Ta wartosé progowa oznaczono pozio-
ma czerwong linig. Czasy t;, 7 = 1,2,..., oznaczaja chwile w ktérych pojawita sie
kolejna j-ta strata.
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$rednim czasem pomiedzy kolejnymi stratami), co pozwala po prostych algebraicz-
nych przeksztatceniach uzyska¢ takze rozktad wyktadniczy
Ua(Bat) = L exp (~Ant/ma), T L T (8.91)
TA ’ Pg (—A) ’

ale o odpowiednio przeskalowanym czasie relaksacji 7o. Aby by¢ w zgodzie z roz-
wazaniami w rozdz. 8.4 przyjmujemy, ze 7 = 1 td. Wielko$¢ 7o wystepujaca w tym
wzorze to (w istocie rzeczy) nic innego jak wielko$é N wystepujaca we wzorze (8.80).
Oznacza to, ze kolejne straty moga pojawiac sie zaréwno wczesniej jak i pozniej ale
srednio co 15 (co oznacza, ze przedzial pomiedzy kolejnymi stratami w tym przy-
padku fluktuuje). Oczywiscie, gdy rozktad 1) ma bardziej skomplikowana postaé to
otrzymanie rozkitadu 1, staje sie bardziej skomplikowane; mimo to, przydatnosé
wzoru (8.91) jest wprost trudno przecenic.

Zauwazmy, ze w sytuacji gdy za prog przyjmujemy Wartos¢ Zagrozona Ryzy-
kiem, Ay,g, wéwezas wzér (8.91) mozna przepisa¢ w formalnie prostszej postaci

T (o) = ~12(8) N
o) = T e =)

Pozostaje nam jeszcze wyprowadzi¢ zwiazek pomiedzy rozktadem 1 (At) a roz-
ktadem podstawowym ¢(dt). Zauwazmy w tym celu (patrz rysunek 8.16), ze pomie-
dzy kolejnymi stratami (niebieskie pionowe odcinki) moze by¢ dowolnie wiele zyskéw
(pionowe czarne odcinki). Pozwala to ponownie wykorzystaé¢ (powyzej uzyta) strate-
gie reprezentacji wielokrokowej do opisu czastkowych rozktadéw 1™ (At) - ich suma
daje ¥(At). Oznacza to, ze

0 R L) (893)
1 —¢(s)p> 1—¢(s) (1 —p<)
gdzie ps = [;° p(AX)d(AX) jest prawdopodobienstwem wystapienia zysku w poje-
dynczym kroku czasowym, natomiast p< = [ p(AX)d(AX) straty, przy czym ma
miejsce normalizacja ps +p< = 1. Dodajmy, ze tutaj role rozktadu ¢ wystepujacego
we wzorach (8.88) przejmuje rozktad bazowy ¢ natomiast role prawdopodobienstwa
P~ (—A) prawdopodobienstwo p~ (odpowiednio, role P< komplementarne prawdo-
podobienstwo pg).
Podstawiajac wyrazenie (8.93) do (8.90) otrzymujemy ostatecznie, ze

- i
) = T T peP ()

(8.92)

p<P<(—AN). (8.94)

Jak widaé, udalo sie wyrazi¢ rozktad ztozony ¢, (s) za pomoca rozktadu bazowego
qg(s), znacznie tatwiejszego do uzyskania z danych empirycznych. Oczywiscie, jest
takze mozliwa sytuacja odwrotna gdy ze znajomosci rozktadu ztozonego (uzyskanego
np. z danych empirycznych) wyprowadza sie rozktad bazowy.
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Rysunek 8.16: Schematyczny wykres chwilowych zyskéow (pionowe czarne odcinki)
jakie moga pojawic¢ sie pomiedzy kolejnymi stratami (pionowe czarno-niebieskie od-
cinki). Zmienne odlegtosci czasowe pomiedzy nimi podkreslaja dynamiczny charak-
ter sytuacji.
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Tytutem referencyjnego przyktadu (Scisle zwiazanego z poprzednim), rozwazmy
sytuacje gdy ¢(t) jest dane rozkladem wyktadniczym - wtedy jego transformata
Laplace’a przybiera postaé¢ ¢(s) = Si/lT/OTO Pozwala to wyrazi¢ (8.93) i (8.94) odpo-
wiednio

. 1

Y(s) = #177’1’ 1 =To/P<, (8.95)

czyli
w(t) = Tilexp (—t/7) (8.96)

oraz
Ia() = —L2 5y = o /peP(~A) (5.97)

A —S+1/T2>2—0P<< ) .

tzn.

Ya(Ant) = %eXp (—Ant/7). (8.98)

Tytutem uzytecznego przyktadu rozwazmy sytuacje, gdy rozklad ¢(t) przybiera
postaé¢ dana ostatnim wyrazeniem w (6.64), ktéra dla asymptotycznie dtugich czaséw
przechodzi w rozktad potegowy (6.66) - jego transformata Laplace’a jest (dla s — 0)
dana wzorem (6.69). Ze wzoru (8.93) otrzymujemy po prostych przeksztatceniach,
ze

- 1 1 s\
Y(s) = W ~1l-— <—> V= 5ps (8.99)

€O oznacza, ze

o ﬁ arEuler(l + Oé)

(At) = P P VIEE (8.100)
a ze wzoru (8.94) ostatecznie, ze
Pa(s) = % ~1o L <i>a, A = AP (=), (8.101)
L+ 3 (2) ¥ \ 0 fu
czyli
pa(Ant) = —10 T puer(l+ ) (8.102)

p<P<(—A)  (vAat)tTe

Jak wida¢, zaréwno rozktad wyktadniczy jak i asymptotycznie potegowy sa nie-
zmiennicze (co do ksztaltu) ze wzgledu na transformacje CTRW (typu (8.90)). Py-
tanie, jakie inne rozktady posiadaja tg wlasnosé pozostaje na razie bez odpowiedzi.

Nalezy podkredli¢, ze dynamiczna ocena ryzyka moze pozwoli¢ znaczaco zwiek-
szy¢ bezpieczenstwo inwestowania.
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8.4.3 Charakterystyczne przyktady

Omoéwimy teraz trzy charakterystyczne, niezwykle uzyteczne przyktady dotyczace,
roznigeych sie w sposob istotny, bazowych rozktadéw prawdopodobienstw. Zaktada-
my przy tym dla prostoty, ze ograniczamy sie tylko do statystyki strat czyli przyj-
mujemy, ze wielko$¢ A jest nieujemna. Ponadto, dwa pierwsze pierwsze przyktady
dostarcza nam rozwiazan analitycznych réwnania (8.81).

Przyklad 1.

Przypu$émy, ze bazowy rozklad (gesto$¢) prawdopodobienstwa

Po—A) = - exp <—<i> A0, (8.103)

(A) A)
gdzie przecietna (oczekiwana) wielkosé strat (A)(> 0) jest mozliwa do bezposredniej
estymacji na drodze empirycznej. Stad,

A

P<(—A) =exp <——> : (8.104)
()

Podstawiajac wyrazenia (8.103) i (8.104) do warunku (8.85) oraz korzystajac z roz-

winiecia exp (—P<(—Amaz)) & 1 — P<(—Apae) otrzymujemy, ze

1
Pmax == Pé(_Amax) ~ N ~ PVaR == Pé(_AVaR)> (8105>

czyli, ze
Ama:c = AVaR = _<A> . ln(PVaR) = <A> : ln(N), (8106)

co stanowi poszukiwane jawne rozwiazanie réwnania (8.81).

Jak wida¢, przy zadanej ocenie ryzyka, Py.r, odpowiadajacy jej poziom ryzyka,
Avar, jest (w tym przypadku) najbardziej prawdopodobna strata sposrod wszelkich
mozliwych strat jakie mogg mie¢ miejsce w przeciagu N dni transakcyjnych i wolno
(logarytmicznie) ro$nie ze wzrostem N.

Jak juz wspomnieliémy (przy wyprowadzaniu wzoru (8.82)), préog —A pelni
role zdarzenia ekstremalnego dlatego jest celowym pytanie o jego rozktad.
Podstawiajac wyrazenia (8.103) i (8.104) do wzoru (8.84) otrzymujemy, ze

P(—=A;N) ~ ﬁ - exp <—%> exp (- exp <—$>> . (8.107)

czyli ostatecznie, po dokonaniu zamiany zmiennych (—A — Ay,g)/(A) = u, otrzy-
mujemy, ze

P(—=A; N) = P(u) =~ exp(—u) - exp(— exp(—u)), (8.108)
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Rysunek 8.17: Rozklad Gumbela zdarzen ekstremalnych dany wzorem (8.108), przy

czym zmienna u e A Avqr. Jak widaé, najbardziej prawdopodobng wartoscig

zmiennej u jest u = 0, czyli Ajue = Avar, gdzie A,,.. jest najbardziej prawdopo-
dobna wartoscia A. Jak wynika ze wzoru (8.108), wartosé¢ tego prawdopodobienistwa
wynosi P(u = 0) = 1/e ~ 0.368. Mozna tatwo obliczy¢, ze prawdopodobiefistwo
straty A > Ay,r wynosi dla rozktadu Gumbela 63% (co zostalo zaznaczone po pra-
wej stronie wykresu), czyli jest wyraznie wieksze niz prawdopodobiefistwo mniejszej
straty.
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czyli rozktad Gumbela (8.41) zdarzen ekstremalnych, ktéry omawialiSmy w rozdz.
IV (patrz rysunek 8.17). Oczywiscie, taki rozktad jest wynikiem wyktadniczego cha-
rakteru rozkltadu bazowego (8.103). Ponownie wida¢ (nie mogto by¢ inaczej), ze naj-
bardziej prawdopodobna wartos$cig straty jest warto$é¢ zagrozona ryzykiem Ay.g,
ktora jest zarazem ekstremalng wartoscia straty odpowiadajaca przyjetej ocenie ry-
zyka Py.r (patrz wzér (8.81)) oraz zdarzeniem rzadkim - zagadnienie to zostato
doktadniej oméwiane w rozdz. 8.3. Ponadto wida¢, ze ma miejsce asymetria typu
strata/zysk wynoszaca 63/37 = 1.703. Tego typu asymetria stanowi istotna infor-
macje dla inwestora.

Przyktad 2.

Zatozmy teraz, ze gesto$é prawdopodobienstwo bazowego P.(—A) jest zadane (dla
duzych wartosci A) w postaci potegowego rozkladu Pareto-Lévy’ego

BAY

P.(—A) = A B>0,A>A A>0, (8.109)
unormowanego nastepujaco
1=A° AOO Aﬁﬁ dA. (8.110)
Stad
P<(=A) = . (8.111)
N (A/A)P

gdzie A pelni role jednostki zwanej amplituda ogona (ang. tail amplitude), w ktorej
mozna najprosciej wyrazi¢ A. Zatem, poziom ryzyka

Avep = A PP = A. NP (8.112)

jest potegowa funkcja poziomu ufnosci o wykltadniku —1//.
Podstawiajac wyrazenia (8.109) i (8.111) do réwnosci (8.85) oraz korzystajac z
(8.112) otrzymujemy po prostych przeksztalceniach, ze dla N > 1/,

3 1/8
Moz = | —— - Avag. 8.113
(105) v (8.113)

Inaczej niz w poprzednim przyktadzie, tylko dla 3 > 1 wielkos¢ progowa Ay g jest
(z dobrym przyblizeniem) najbardziej prawdopodobna wielkoscia straty. Widaé¢ wiec
jak wazny jest wybor modelu czyli bazowego rozktadu prawdopodobienstwa.
Odpowiemy teraz na pytanie dotyczace zamknietej postaci rozktadu P(—A; N).
Podstawmy w tym celu (8.109) i (8.111) do wyrazenia (8.84)
1

P(-AN) ~ mexp (—1/(A/Avar)), (8.114)
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Rysunek 8.18: Rozktad Frécheta zdarzen ekstremalnych dany wzorem (8.115) dla
B = 3, przy czym zmienna u def. A/Ayqr. Jak widaé, najbardziej prawdopodob-
na warto$¢ zmiennej u wynosi Umer = Amaz/Aver = 0.909 (patrz takze wzor
(8.113)), czyli Apar < Avar, gdzie —Ayq. jest najbardziej prawdopodobna war-
toscig najwiekszej jednorazowej straty —A, przy czym rozktad prawdopodobienstwa
P(u=1) = /e = 1.104 jest tylko nieznacznie mniejszy od P(taz). Dobrze wi-
doczna jest tez znaczna asymetria typu strata/zysk stanowiaca istotna informacje
dla inwestora.

co po prostej zamianie zmiennych A = u = A/Ay,g, tak jak to miato miejsce w
rozdz.IV, otrzymujemy dyskutowany tam rozktad Frécheta (8.50)

P(=A;N) = P(u) = uﬁ exp <—i> (8.115)

dla zdarzen ekstremalnych (patrz rysunek 8.18).

Zatem, nawet w przypadku gdy mamy do czynienia z rozktadem (8.109) posiada-
jacym pogrubiony ogon, pojecia oceny ryzyka i poziomu ryzyka sa dobrze okreslone
i pozwalaja na prowadzenie skutecznej analizy danych rynkowych. Jest to wtasnie
zasadnicza korzys$é ptynaca z takiego podejscia do problemu ryzyka rynkowego, czyli
podejscia w ktérym postugujemy sie parametrami pozycyjnymi a nie momentami
rozktadu.

Warto podkresli¢, ze niestety w obu charakterystycznych przyktadach
ma miejsce znaczaca asymetria prawdopodobienstwa typu strata/zysk na
rzecz straty.

Celem doktadniejszego rozwazenia otrzymanych w tym przyktadzie wynikéw
wprowadzmy bazowy rozkitad prawdopodobienstwa w postaci, ktorej transformata
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Fouriera jest funkcja Weierstrassa, czyli

1 1 1 .
P(AX) = 5 (1 - M) 3 ol AX | b)), M, b1, (8.116)
]:

dyskutowang juz przez nas w rozdz. 6.4 w kontekscie przelotéw Weierstrassa (czyli
teraz AX moze by¢ dowolnego znaku). Stad po podstawieniu do definicji (8.78)
otrzymujemy natychmiast, ze

(8.117)

gdzie milczgco przyjeliSmy, iz rozwazamy tylko takie wartosci A, dla ktérych zachodzi
réwnosé A(7) = bot/. W dalszym ciggu przyjmiemy, ze ﬁ — ﬁ < 1 co odpowiada
duzym watosciom indeksu j pozwalajac, z dobrym przyblizeniem, uciggli¢ zmienng
A w wyrazeniu (8.117) i wykona¢ rézniczkowanie po zmiennej —A. W rezultacie

otrzymujemy bazowy rozktad prawdopodobienstwa dla duzych wartosci A

bo)B
P (—A) ~ ﬁA(li)ﬁ :

(8.118)

Jak widaé¢, otrzymaliémy wyrazenia réwnowazne odpowiednio (8.109) i (8.111), przy
czym stata A = by.

Obliczmy jeszcze, tytutem pouczajacego ¢wiczenia, wariancje jednokrokowej zmien-
nej AX dla jednostkowego horyzontu czasowego 7

Jj=0

1
{ ()13, edy 5> 2 5119)
00, gdy 3 < 2.

Pozwolito to powigzaé tg wariancje z mikroskopowymi parametrami rozktadu M
oraz b.

W dalszym ciagu (patrz podrozdz. ?77) wariancja zostanie wykorzystana do po-
rownania zaleznosci poziomu ryzyka od poziomu ufnosci dla réznych postaci bazo-
wego rozktadu prawdopodobienstwa.

Przyklad 3.

Rozwazmy teraz bazowy rozktad prawdopodobienstwa zadany w postaci funkcji
Gaussa

PAAX) = ——— . exp (—3 - <AXTT<)AX>> ) , (8.120)



przy czym teraz AX moze by¢ zaréwno wielko$cig ujemng jak tez dodatnig, czyli
moze byé¢ zaréwno strata jak tez zyskiem, (AX) jest przecietna wielkoscia straty
wyznaczana najczesciej bezposrednio z danych empirycznych (czesto jest ujemna),
natomiast wariancja o(7) = o2 - 7, jest (na mocy CTG) liniowa funkcja czasu 7
(09 jest dyspersja jednodniowej straty liczonej na zamknieciu, po zespole ztozonym
z wielu dni transakeyjnych).

Zauwazmy, ze 7z wyrazenia (8.120), w oparciu o definicje (8.78), otrzymujemy
natychmiast:

B ler . A+ (AX)

gdzie (przypomnijmy)
def. 2 &0 2
erfc(z) = ﬁ/ exp(—y~)dy. (8.122)

Teraz, podstawiajac (8.121) do réwnania (8.81) otrzymujemy, ze poszukiwany
poziom ryzyka dla rozktadu Gaussa

Aver +(AX) _ B (2
T(T) = erfc ' (2Pyag) = erfc ! <N) &

Aver = V2007 - erfc  (2Pyar) — (AX) (8.123)

wolno rosnie ze wzrostem wielko$ci horyzontu czasowego 7 oraz liczba dni transak-
cyjnych N (co bedzie pokazane ponizej na rysunkach 8.20 i 8.21). Inaczej méwiac, w
przyblizeniu gaussowskim poziom ryzyka, jak mozna byto si¢ spodziewac, jest pro-
porcjonalny do dyspersji o(7) oraz maleje w spos6b monotonicznyny ze wzrostem
poziomu ufnosci Py, - zaleznosé ta mozna wizualizowaé tylko na drodze numerycz-
nej, w przeciwienstwie do omawianych wczesniej dwoch przyktadow.

Co wiecej, zarowno prawdopodobienstwo

P(=A;1/Pyar) = ! L ) exp (—% <M> )

Pvar V2mo(T o(7)

X exp (— ! erfc(%?j?)), (8.124)

ktére tatwo mozna wyprowadzié¢ korzystajac z ogdlnego wzoru (8.84), jak tez (uzy-
skane powyzej) wyrazenie na Ay, g a takze wyrazenie na A,,,,, wynikajace bezposred-
nio z réwnania (8.85), przybieraja skomplikowane postacie. Mianowicie, P(—A; N)
nie daje si¢ wyrazi¢ za pomoca funkcji elementarnych natomiast uzyskanie A, jest
mozliwe tylko na drodze numerycznego rozwiazania réwnania przestepnego (patrz
(8.123)). Jak widaé¢, komplikuje to analize zaréwno poziomu jak tez oceny ryzyka.
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Rysunek 8.19: Poréwnanie przebiegéw funkcji P(u) danej wzorem (8.125) dla dwdch
wartosci oceny ryzyka Py,g = 0.01 (linia czerwona) i Py,r = 0.05 (linia niebieska).

Wprowadzenie zmiennej standaryzowanej u def. Ajgﬁ? pozwala wyrazi¢ rozktad

(8.124) w nieco prostszej postaci

P(=A;1/Pyqar) = P(u) = L1 exp(—u?) exp <— ! erfc(u)) . (8.125)
Pvar /T 2Pvar
Jak wida¢, wprowadzenie zmiennej standaryzowanej u sprowadzito rozktad do prost-
szej, jednoparametrowej postaci, przy czym parametrem jest wielko$¢ Py g odgry-
wajaca kluczowg role w teorii ryzyka. Mimo wszystko, rozktad ma nadal zbyt skom-
plikowang posta¢ dla prowadzenia rozwazan o charakterze analitycznym.

Na rysunku 8.19 poréwnano przebiegi funkeji P(u) danej powyzszym wzorem
(gdzie przyjeto u > 0) dla dwdch wartosci oceny ryzyka Py,z = 0.01 (linia czer-
wona) i Py,g = 0.05 (linia niebieska). Widaé, ze prawdopodobienistwo najbardziej
prawdopodobnej straty w pierwszym przypadku jest znacznie wigksze niz w drugim.
Co wiecej, strata ta w pierwszym przypadku jest wyraznie wieksza niz w drugim.
Innymi stowy, inwestowanie wedtug oceny ryzyka Py,zr = 0.01 (dopuszczonej przez
Bazylee I1) jest wyraznie bardziej ryzykowne niz wedtug Py,r = 0.05 (dopuszczonej
przez Bazylee I).

Niestety, rownanie pozwalajace wyznaczyc .. jest teraz réwnaniem przestep-
nym, mozliwym do rozwigzania tylko na drodze numerycznej

2\/7_TPVaR Umaz = €XP (_u?nax) : (8126)
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Rysunek 8.20: Porownanie zaleznos$ci trzech wartosci zagrozonych ryzykiem od liczby
dni transakcyjnych 1 < N < 1000 dla trzech przedstawionych powyzej rozktadow:
linia czerwona wzér (8.112), linia niebieska wzér (8.106) i linia zielona wzér (8.123).
Jak wida¢, dla duzej liczby dni transakcyjnych warto$¢ zagrozona ryzykiem dla
rozktadu potegowego (linia czerwona) szybciej rosnie w poréwnaniu z pozostatymi
dwoma rozktadami (wyktadniczym - linia niebieska i Gaussa - linia zielona).

Ryzyko VaR

P N W~ 01 O

50 40 60 80 100 120 140 [N

Rysunek 8.21: Porownanie zaleznos$ci trzech wartosci zagrozonych ryzykiem od liczby
dni transakcyjnych 1 < N < 150 dla trzech przedstawionych powyzej rozktadow:
linia czerwona wzor (8.112), linia niebieska wzér (8.106) i linia zielona wzér (8.123).
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Otrzymuje sie je z ogélnego réwnania (8.85) po wykorzystaniu (8.120) i (8.121).
Istnienie tak réznych réwnan jak (8.123) i (8.126) wskazuje na to, ze Ayag 1 Apmaz S8
dwiema zasadniczo réznymi wielkogciami rézniacymi sie takze od (AX). Swiadezy to
o komplikacji i nieprzejrzystosci jaka wprowadzalby rozktad Gaussa gdyby chciano
go stosowa¢ do analizy ryzyka rynkowego.

Nalezy podkresli¢, ze w ogdlnosci nie istnieje liniowa zaleznos¢ pomiedzy pozio-
mem ryzyka Ay,r a zmiennoscia o(7) nawet jezeli ta ostatnia wielkosé jest skornczo-
na. Dysponujemy jedynie nieréwnoscia Czebyszewa, bedaca najlepsza z oszacowan

2 = AVaR < 0'(2) . 7'7)‘;(11/%2, (8127)

przy czym druga z nieréwnosci moze by¢ przydatna do oszacowania gérnej wartosci
Avar - jej zaleta jest nadzwyczajna efektywnos$é (oczywiscie o ile oq istnieje).

8.5 Podsumowanie tabelaryczne

Podsumowanie przedstawiamy w postaci zbiorczej tabeli 8.5 pokazujacej jawne re-
lacje pomiedzy wielkoSciami charakteryzujacymi ryzyko w omawianych przez nas
przyktadach. Termin ’brak’ wystepujacy w tabeli oznacza, ze brak jest jawnej rela-

Tabela 8.1: Zestawienie jawnych relacji okreslajacych poziom ryzyka Ay,g.

‘ Przyktad No. ‘ Jawna relacja Avor(o, Pyar) ‘ Jawna relacja Ay (Avar) ‘
1 AV(LR ~ —0o In PV(LR Ama.r - AVaR
—1/f K 1/3
2 AV(I,H - Apvij/; A’NL(I,’IJ — <F33> A\/uli
3 brak

¢ji pomiedzy A,az 1 Aver. Latwo sie o tym mozna przekonaé zestawiajac réwnanie
(8.123) z (8.126). Zatem, podkreslmy raz jeszcze, postugiwanie sie rozktadem Gaussa
w analizie ryzyka opartej na parametrach pozycyjnych jest niecelowe.

8.5.1 Kanoniczny algorytm symulacji kwantyli - prawdopo-
dobienstwo strat a VaR

W niniejszym podrozdziale przedstawiony jest kanoniczny, prosty algorytm Mon-

te Carlo (MC) umozliwiajacy obliczanie na drodze symulacji numerycznej kwantyli

dowolnego rzedu wybranej wielkoéci?® a w tym zwlaszcza dopuszczalnej wartosci

23Patrz Ph. Jorion: Value At Risk. The New Benchmark for Managing Financial Risk (Third Ed-
dition), podrozdz. 12.2.1, 12.2.4, 12.2.5, McGraw-Hill, New York 2007, oraz P. Glasserman: Monte
Carlo Methods in Financial Engineering, podrozdz. 9.1.2 a tam paragraf Monte Carlo Simulation,
str. 489-491, Springer Science+Business Media, LLC, New York 2004.
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Tabela 8.2: Ranking symulowanych strat
Strata | Krotnos¢

J1 J1
AT NT
J2 J2
AT NT

In—1 In—1
AT NT
In In
AT NT

narazonej na ryzyko, czyli VaR. Algorytm ten stanowi punkt wyjscia wszyst-
kich innych - przedstawiamy go tutaj przyktadowo dla strat. Ponadto, podajemy
zasadniczy powodd, dla ktérego w praktyce nalezy stosowaé algorytmy ulepszone -
omawiamy te, ktére moga by¢ szczegblnie przydatne.

Przykladowy algorytm dla strat

W pierwszej kolumnie tabeli 8.5.1 wypisano przyktadowo ranking absolutnych war-
tosci strat portfela AZ, =| VI(T) —VI(T — At) |, j = 1,2,...,n, jakie zanotowano w
wybranej chwili 7" dla réznych trajektorii j symulowanych metodag MC w przedziale
czasu [T — At, T, wielkosci VI (T — At) oraz VI (T') sa tutaj wartosciami portfela dla
j-€j trajektorii odpowiednio w chwili 7" — AT i T'. Ranking oznacza, ze mamy tutaj
do czynienia z uszeregowaniem ”wedtug wzrostu” absolutnych wartosci strat, tzn.
A]fl < Agﬁ <...< A< A%ZL, gdzie j; jest numerem wysymulowanej trajektorii.
Na przyktad, gdy j; = 7 to znaczy, ze najmniejsza, pierwsza w kolejnosci strate
zanotowano dla trajektorii numer 7, ktérg w zwigzku z tym usytuowano w tabeli
8.5.1 na miejscu pierwszym, itd, itp. Zatem, indeks ¢ mowi, ze strata A{p jest i-ta co
do wielkosci strata. W drugiej kolumnie tabeli przedstawiono krotnosci wystepowa-
nia poszczegélnych strat. Wystepowanie krotnosci wigkszych od 1 oznacza, ze dla
niektérych trajektorii odnotowano jednakowe straty. Zatem, N > S0_, NJ¥', gdzie
N jest liczba wszystkich wysymulowanych trajektorii (zaréwno tych, dla ktérych
odnotowano straty jak i takich, dla ktérych zanotowano zyski), natomiast n jest
catkowitg liczbg réznych wartosci strat.

Wyznaczenie kwantyla rzedu 1 — p, czyli wielkoei z,%*, sprowadza si¢ do wyko-
nania dwoch nastepujacych krokow,

1) sumowania po kolei wszystkich krotnosci (idac od dotu tabeli ku gérze) tak
dtugo jak dtugo spelniony jest warunek:

mazx; [Ei/:o N%"*i/}
N )

p> (8.128)

24Stosujemy tutaj oznaczenie zaczerpniete z ksiazki P. Glasserman: Monte Carlo Methods in
Financial Engineering.
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przy czym operacja max; oznacza, ze wybierane jest najwicksze i, dla ktorego
warunek (8.128) jest jeszcze spetniony. Péjscie o krok dalej i dotaczenie do su-
my krotnogci N2#~"~' zmieniloby ten warunek na nieréwnosé¢ ostra skierowang
W przeciwng strone - jest to realizowane w drukim kroku.

2) Drzieki znalezieniu w pierwszym kroku indeksu ¢, odczytujemy w tabeli 8.5.1
wielko$¢ strat A7~ oraz A%~ jakie wyznaczaja, odpowiednio, dolng i gérna
granice przedziatu ufnosci wewnatrz ktérego miesci sie (z okreslonym prawdo-
podobienstwem) prawdziwa wartos¢ poszukiwanego kwantyla. Prawdopodo-
biefistwo to mozna, obliczy¢?® z rozkltadu dwumianowego, wykorzystujac wla-
snos¢ statystycznej niezaleznosci strat (patrz podrozdz. 8.4.1).

Oczywiscie, jezeli na tej drodze chcemy wyznaczy¢ VaR,_, nalezy przyjaé w po-
wyzszej procedurze p = «a. Jak widaé, (w tej konwencji) VaR;_, jest po prostu
kwantylem rzedu 1 — a.

Jezeli przedstawiona powyzej procedura pozwala zadowalajaco oszacowaé na dro-
dze symulacji MC zaréwno skumulowane prawdopodpodobienstwo strat P(A > )
jak tez prawdziwg wartos¢ x,, to powinny by¢ spetnione nastepujace, zdroworozsad-
kowe warunki

a) wielko$¢ przedziatu ufnosci A7~ — AJ'~"' wewnatrz ktérego moze sie znajdo-
wal prawdziwa warto$¢ poszukiwanego kwantylu powinna by¢ duzo mniejsza

In—i
od A7,

b) obie strony réwnosci (8.128) powinny sie od siebie rézni¢ o mata wyzszego
rzedu; to samo powinno dotyczy¢ analogicznej (nie wypisanej tutaj w jawnej
postaci) nieréwnosci dla prawdopodobienstwa dopelniajacego 1—p (bazujacego
zaréwno na sumie wszystkich zyskéw jak tez na sumie strat liczonej od gory
tabeli 8.5.1 w dét az do z,,).

Wskazemy teraz dlaczego spetnienie wprost powyzszych dwoch warunkéw (czy-
li poprzez proste zwigkszanie liczby symulowanych trajektorii) moze prowadzi¢ do
nieefektywnej metody Monte Carlo oraz co nalezy zrobi¢ aby przywroécié jej efek-
tywnos¢.

Problem duzej dyspersji estymaty wielkosci z,

Traktujac straty jak wielkosci statystycznie niezalezne mozna, korzystajac z rozkta-
du dwumianowego oraz stosujac przyblizenie punktu siodtowego (ang. saddle-point

258 ciglej rzecz biorac, oblicza sie ” pojemniejsze” prawdopodobienstwo. Jezeli jest ono, z doklad-
noscia do maltej wyzszego rzedu, rowne 1 — p to mozna je traktowaé jak poziom ufnosci. Jezeli
tak nie jest, nalezy odpowiednio zwigkszy¢ liczbe symulowanych trajektorii; patrz P. Glasserman:
Monte Carlo Methods in Financial Engineering, podrozdz. 9.1.2, paragraf Quantile Estimation,
str. 491.
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approzimation®®), wyznaczy¢ dyspersje estymaty poszukiwanego kwantyla. Przybie-

ra ona nastepujaca postaé?”,
1 1
VN p(z})’

gdzie p jest gestoscia prawdopodobienstwa wystapienia pojedynczej starty (albo zy-
sku) natomiast 7 jest (zalezna od N) estymata wielkosci x, . Zwykle, gestos¢ ta

O'p%

(8.129)

N —

maleje ze wzrostem N szybciej niz 1/4/N. Na przyktad, gdy p ma posta¢ wyktadni-
czg wowezas p(xy) ~ 1/N, natomiast gdy p jest funkcja potegowa o wyktadniku po-
tegi v to p(a}) ~ 1/N'T* Zatem najczesciej, dyspersja o, ro$nie ze wzrostem
N, a nie maleje jak bySmy chcieli. Jest to sytuacja paradoksalna, wymagajaca
wprowadzenia metod redukujacych dyspersje.

8.5.2 Wybrane metody redukcji dyspersji

Metody redukcji dyspersji, ktore omawiamy ponizej opieraja sie na traktowaniu
strat w sposob przyblizony, uwzgledniajac co najwyzej wyrazy kwadratowe w nieza-
leznych zmiennych stochastycznych obarczonych ryzykiem. Takie podejécie pozwala
(dzieki faktoryzacji Choleskiego) na wyrazenie strat za pomoca nieskorelowanych
zmiennych normalnych. Dzieki temu oraz wykorzystaniu rozwiniecia kumulantowe-
go, znalezienie rozktadu tych strat, a stad VaR, jest znacznie utatwione.

Paraboliczne przyblizenie delta-gamma

26Przyblizenie to jest takze znane pod nazwa metody najwickszego spadku (ang. steepest-descend
method.

2TPatrz M. Koztowska, R. Kutner: Anomalous transport and diffusion versus extreme value the-
ory, Physica A 357 (2005) 282-304; .
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Dodatek A

Pochodna fraktalna dowolnego
stopnia - definicja Riemanna
Liouville’a

W niniejszym dodatku przedstawimy definicje Riemanna-Liouville’a pochodnej frak-
talnej (czyli utamkowej). Podejscie sktada sie z trzech krokéw.

Krok pierwszy: definicja ujemnej pochodnej catkowitej stopnia —n.

Jak juz wspomnieliSmy w rozdz.2.4 ujemna pochodna stopnia —1 to po prostu po-
jedyncza catka Riemanna (patrz wzér (2.30)). Naturalnie, pochodna stopnia catko-
witego —n (gdzie n jest liczba naturalna) to catka n-krotna; zatem,

%{St) _ /Ot dt, /Ot"_l dtng.../otl dtof(to) = /Ot a8 )

(t _ t/)lfn’
co stanowi punkt wyjsécia ogoélniejszej definicji.

1
(n—1)!

Krok drugi: definicja ujemnej pochodnej fraktalnej stopnia —a.

Bezposrednim uogdlnieniem pochodnej stopnia —n na pochodng dowolnego ujemne-
go stopnia —« (gdzie « jest dodatnig liczba rzeczywista) jest zastapienie w ostatnie;
calce po prawej stronie wyrazenia (A.1) znajdujacej sia tam silni (n — 1)! przez
I puera (@) oraz wyktadnika n przez a. Woéwezas mozemy wprowadzié¢ definicje

df(t) aes. 1 b S
dt— FEulem(Oé)/O at (t —t)t=e’ (42)

warto wiedzie¢, ze w przypadku ogdlniejszym, gdy dolna granica catkowania moze
by¢ rézna od zera, stosuje sie oznaczenie

ef. 1 t o, !
oD (1) def T @) /a dt _(t f (;))10“ (A.3)
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skad dla a = 0 mamy oczywiscie
d—f(t)
dt=e

Teraz mozemy juz odpowiedzie¢ na pytanie: jak zdefiniowa¢ pochodng fraktalng
stopnia a?

oD f(t) =

(A.4)

Krok trzeci: definicja pochodnej fraktalnej stopnia o > 0.

Odpowiedz na postawione powyzej pytanie jest juz bardzo prosta. Wystarczy bo-
wiem n razy zrézniczkowaé¢ pochodna fraktalng stopnia o — n(< 0)

Dif(t) < %(aD?‘”f(t)), (A.5)

co stanowi definicje Riemanna-Liouville’a pochodnej fraktalnej (dodatniego stop-
nia rzeczywistego). W dalszym ciagu uzywaé bedziemy tej pochodnej jedynie dla
a = 0. Inny wykorzystywany szczegdlny przypadek to gdy a = oo - wtedy nazywa
sie ona pochodng fraktalng Weyla. Oczywiscie, z tego punktu widzenia zarowno réw-

nanie relaksacji fraktalnej (2.33) jak i dyfuzji fraktalnej (2.55) sa niejednoznaczne
ze wzgledu na dowolno$é¢ wyboru dolnej granicy catkowania.

A.1 Podstawowe wlasnosci pochodnej fraktalnej

Podamy teraz szereg wtasnosci pochodnej fraktalnej, ktére umozliwia nam opero-
wanie tym narzedziem wielce uzytecznym w analizie proceséw niegaussowskich.
Po pierwsze, zauwazmy, ze dowolna pochodna fraktalna funkcji potegowej wynosi

I‘Euler (,U + 1) t#_a

Dyttt = A6
o ]:‘Eule'r(,u +1-— Oé) ( )
skad
Diexp(t) = oDF Y = ——
ex = - _
oDy exp O e T per(m+1) 2= Thuier(m + 1 — a)
t—Oé
= ———— Fi(l,1 —a,t). A7
FE'uler(l _CV) ! 1( ’ % ) ( )

Przy okazji warto zaznaczy¢, ze pochodna fraktalna Weyla daje (podobnie jak zwy-
kta pochodna)

oo Df exp(t) = exp(1), (A.8)

dla dowolnego rzeczywistego a.
Po drugie, pokazemy czemu réwna jest transformata Laplace’a pochodnej frak-
talnej.
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Dodatek B
Obliczenie $redniej nadwyzki (An)

Aby wyznaczy¢ $rednia nadwyzke (An) podstawmy najpierw wzér (3.2) do (3.1) -
daje to wyrazenie przejéciowe

o) = g > an ()

An>0

= 2% Z An exp (lnn! —In <n +2An>! —In <n —2An>!> (B.1)

An>0

dobrze nadajace si¢ do kolejnych, niezbednych przeksztalcen.
W tym celu korzystamy ze wzoru Stirlinga postaci:

1 1
|~ - — - -1
lnn.N(n—l—Q)lnn n—|—21n27r+@(n ), (B.2)

zaktadajac przy tym, ze n > 1 oraz |A—n”| < 1. Zatem,
n 2 3
(An) = > Anexp n <1 + &> an 1 <&> + <&> X
Anmo 2 n n 2\ n n
An An 1 [(An\> 1 [An\®
X exp l—— )| —4+=— +=|—
2 n n 2\ n 3\ n

X exp (m (%) —%m <1+%> —%m (1-%) —1nm>. (B.3)

Rozwijajac w szereg, do trzeciego stopnia w An/n, funkcje In

1 1
In(l+x)~+x— 51’2 + gwg, (B.4)

mozemy wyrazenie (B.3) przeksztalcié¢ do postaci

2\1/2 & 1AR? 1A
(An) =~ (—) > An exp (———n+ n)

™ Ao 2 n 2 n?
9 1/2 n 1A

~ (—) > An exp (___n) \/7\/7 (B.5)
e An>0
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gdzie ostatnia réwnosé zostata otrzymana dzieki przejsciu od sumy po n do od-
powiadajacej jej, wazonej potéwkowsa calka gaussowska. Przy okazji zaznaczmy, ze
powyzsze wyprowadzenie sprowadzilo sie po prostu (przy narzuconych ogranicze-
niach) do przejscia od rozkladu dwumianowego do rozktadu Gaussa.
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Dodatek C

Metoda Punktu Siodlowego

Metoda Punktu Siodtowego (ang. Saddle-Point Approxzimation) zwana takze Meto-
da Najwickszego Spadku! (ang. Steepest Descent Method). Metoda ta pozwala na
przyblizone obliczenie szerokiej klasy catek.

Zatem, niech wyznaczenia wymaga catka

I= /exp(—NF(x))dm, (C.1)

dla ktérej funkcja F'(z) ma minimum w punkcie siodtowym z = z*, czyli punkt ten
jest okreslony za pomoca réwnosci F'(z*) = 0, przy czym druga pochodna w tym
punkcie? F”(z*) > 0. Rozwinmy funkcje F'(z) w szereg Taylora w punkcie x = z*.
Otrzymujemy;,

~ exp(—NF(z")) /exp[—NF”(x*)(x — 2%)?/2]dx. (C.2)

Jak widaé, sprowadziliSmy obliczenie wyjsciowej catki (C.1) do wyznaczenia calki
gaussowskiej. Ostatecznie, dla N > 1 mozemy z dobrym (kontrolowanym) przybli-
zeniem napisac, ze

(~NF@)) (©3)

~ exp(—NF(x —_. :
! NFE"(z*)

Wida¢, ze tak obliczona catka I jest obarczona tym mniejszym bledem im
dyspersja 1//NF"(z*) funkcji NF(x) jest mniejsza. Dlatego wtasnie potrzebne
byto tutaj przyjecie duzej wartosci N.

!Metoda ta jest tez znana pod nazwa Przyblizenia Parabolicznego (ang. Parabolic Approzima-
tion) czasami nazywa sie ja tez Metoda Stacjonarnej Fazy (ang. Method of Stationary Phase.).

2Punkt ten nazywamy siodlowym a nie po prostu minimum, gdyz w nieuwidocznionych tutaj
(dla prostoty) zmiennych moze w tym punkcie by¢ maximum.
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Dodatek D

Wilasnosci funkcji rozkltadu czaséow
oczekiwania

Po pierwsze, rozwazamy sytuacje dla krétkich czasow tzn. gdy ot < 1; wowcezas
funkcje wyktadnicza w funkcji podcatkowej mozna rozwingé w szereg potegowy,
ograniczajac sie tylko do trzech pierwszych wyrazow,

« Yot 1
o(t) =~ L/O y- (1—y+—y2> dy

L

(yot) 1+ 2
1 1 1 1
= — t+ ———(yt)?
7004[1+@ 2+a% +23+a(%)]
«Q 1+«
= — t). D.1
701+aexp< 2+a%> ( )

Widad, ze ¢(t = 0) = yo155 jest nieznikajaca, skoficzong wartoscia. Ponadto, z (D.1)
wynika, ze trzeci wyraz rozwiniecia jest znacznie mniejszy od drugiego co oznacza, ze
funkcja ¢(t) maleje (z dobrym przyblizeniem) liniowo z czasem dla krétkich czaséw.

Po drugie zauwazmy, ze dla 0 < a < 1 oraz y > 1 funkcja podcatkowa podlega
prostemu oszacowaniu

exp(—y) < y* exp(—y) < yexp(—y), (D.2)

przy czym dla o # 0,1, obie réwnosci zachodza jednoczesnie tylko dla skrajnych
warto$ci y = 1 albo y = 0co. W ogélnoscidlam < a<m+1, m=20,1,2,..., ma
miejsce oszacowanie

y™ exp(—y) < y*exp(—y) < y™exp(—y); (D.3)
dalsze rachunki prowadzimy tylko dla przypadku m = 0, pozostawiajac sytuacje
dowolnego naturalnego m zainteresowanemu Czytelnikowi. Nalezy zaznaczy¢, przy-
padki marginalne o = m, m =0, 1,2, ..., mozna obliczy¢ wprost (patrz ponizej, na
zakonczenie przyktadowy rachunek dla o = 1).
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Z relacji (D.2) otrzymujemy dla ot > 1 oszacowanie catkowe,
(e} [e.e] [e.e]
/ exp(—y)dy < |y exp(—y)dy < | yexp(—y)dy, (D.4)
Yot Yot Yot

przy czym dla a # 0, 1, obie rownosci zachodza jednoczesnie tylko w granicy ot —
oo; z (D.4) wynika poszukiwane oszacowanie

o0

exp(—t) < | y*exp(—y)dy < 2exp(—yol). (D.5)
Yo

Co wiecej, zgodnie z definicjg funkcji I' mamy,

/OW y*exp(—y)dy =T(1 +a) — A

Dalej, korzystajac z oszacowania (D.5) oraz réwnosci (D.6), otrzymujemy

o0

t y* exp(—y)dy. (D.6)

0

~ot
P(1+a) = 2exp(=mt) < | y*exp(—y)dy

< T'(1+ a) — exp(—ot). (D.7)

Stad, dla asymptotycznie dtugiego czasu (czyli ot > 1) mamy z dobrym przyblize-
niem

Yot>1 o
/0 y*exp(—y)dy ~ T'(1+ «). (D.8)
Zatem, przy tych warunkach uzyskujemy z dobrym przyblizeniem, ze
1
t) ~ (1 —_. D.9
¢( ) fyoa ( + Ck) (,yot)l-‘,-a ( )

Zauwazmy, ze zaleznos$¢ (D.9) jest spetniona dla dowolnego, nieujemnego wyktadnika
a przy czym w dalszym ciagu gtéwny nurt naszych zainteresowan dotyczy przypadku
a < 1.

Przypadek marginalny o = 1. Calkujac przez czesci calke stojaca (w trzeciej
réwnosci) w wyrazeniu (6.64) otrzymujemy, ze

Yot _
y* = exp(—y)dy = 1 — exp(—ot). (D.10)

Zatem dla ot > 1, ¢(t) przybiera natychmiast asymptotyczna postaé

~ o
(1) ol)? (D.11)
ktéra wynika takze z wyrazenia (D.9) (uzyskanego na znacznie dtuzszej drodze).
Po trzecie, omawiamy przypadek posredni gdy a<votS1 (w dalszym ciagu roz-
wazamy sytuacje dla ktérych o < 1). Ze wzoru (6.66) widaé, ze funkcja ¢ jest
iloczynem funkcji malejacej (potegowo w czasie) i rosnacej (w czasie, danej w posta-
ci catkowej). Mozna zatem poszukiwaé takiego czasu, dla ktérego funkcja rozktadu
¢ posiada lokalne maksimum.
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Dodatek E

Scista funkcja rozktadu czasow
oczekiwania

Punktem wyjscia jest przedstawienie ponizszej funkcji wyktadniczej za pomocg trans-
formaty Mellina (patrz, Harry Bateman, Arthur Erdéley, " Tables of Integral Trans-
forms”, Vol.I, McGraw-Hill Book Comp., Inc., New York 1954),

E 1 c+ioco s E
exp <—70 exp (_—k:BT> t> =5 /Ciioo ds(yot) ~°T'(s) exp <

kT 3) ’
0<c=Rs< 1. (E.1)
Nastepnie, podstawiajac (E.1) do (6.62) otrzymujemy,

o(t) = %%a /j: ds(vot)"°T'(s) /OOo d (,@%) exp (—kf%(l +o— 8))

1 c+ioo F(S)
= — d t)  ————— = 1. E.2
omi °¢ ~/cfioo s(o1) I+a—3s’ 0 <e=Ms< (E2)

Wprowadzajac powiekszajacy sie kontur K przedstawiony na rys...., ktérego gora
(K.), prawy bok (K,) oraz podstawa (K,;) odsuwaja sie do nieskoniczonosci, mozna
catke w (E.2) zamieni¢ na catke konturows
eioo I'(s) 1 I'(s)
ds(yot) P ———— = —— aj{ ds(yot) * —————— E.3
/cfioo (ot) l+a—s 27r7,70 Koo (ot) l+a—s (E-3)
gdzie K™ jest konturem K, ktéry uleglt nieskoriczonemu powiekszeniu (orientacja

catki konturowej jest ujemna stad znak ” —” stojacy po prawej stronie réwnosci).

Skorzystalidmy tutaj z faktu, ze gdy z — oo (gdzie s = x + iy) wowezas,
I'(s)

ds(vot)* ————

/KT (o) l+a—-s

gdyz (0t)™*% — 0 (gdy z — o0) dla ot > 1; czyli powyzsza calka na prawym

brzegu (boku) konturu (prostokata) K, znika gdy brzeg ten oddala sie¢ do nieskon-

czonodci. Ponadto skorzystaliSmy z wlasnosci méwiacej, ze gdy | y |— oo wowcezas,

/ ds(7yot) " L)

K., l+a—s

— 0, (E.4)

0. (E.5)
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Dowod powyzszej wlasnosci wynika bezposrednio z asymptotycznego przedstawienia
funkcji T'(s(= x +iy)) dla | y |— oo (patrz, LM. Ryzyk i I.S. Gradsztajn, " Tablice
calek, sum, szeregéw i iloczynéw”, PWN, Warszawa 1964),

. o T
| D +iy) |= (2m) /2 |y [/ exp(—3 |y 1), (E.6)

w ktérym czynnik wykladniczy decyduje o zanikaniu ze wzrostem | y | przy ustalo-
nym x.

Zatem, naszym zadaniem jest teraz obliczenie catki konturowej po prawej stro-
nie réwnosci (E.3); mozna to przeprowadzié¢ korzystajac z metody residuéw (patrz,
Krzysztof Maurin, ” Analiza. Cz.II. Wstep do analizy globalnej”, PWN, Warszawa
1971). Zauwazmy w tym celu, ze jedyny biegun funkcji podcatkowej (oznaczmy ja
przez F') jaki znajduje sie na dodatniej osi rzeczywistej to zero mianownika 1+« —s
tzn. biegun funkcji F' jest w punkcie so = 1 4 a. Ponadto, jak wida¢ biegun ten jest
rzedu pierwszego.

Metoda residuéw mowi, ze wspomniana powyzej catka konturowa

]i(oo ds(fyot)_s% = —2mi Res F\(sy), (E.7)

gdzie Res F(sg) to residuum funkcji podcatkowej F' w punkcie so. Metoda residuéw
podaje przepis pozwalajacy wyznaczy¢ residuum w punkcie bedacym np. biegunem
rzedu pierwszego mianowicie, jest to nastepujaca granica

Res F(sg) = lim ((s — s9)F(s)). (E.8)

s— S0

Obliczenie powyzszej granicy jest natychmiastowe i daje

lim (s — 59)F(s) = —(70t) " °T(1 + a). (E.9)

s— S0

Wreszcie, podstawiajac kolejno (E.9) do (E.8), nastepnie (E.8) do (E.7) a to do (E.3)
mozemy za pomoca takiego przeksztalconego wyrazenia zapisaé ostatecznie (E.2) w
postaci (D.9)

al'(1+ «)
(yot)t

wyprowadzonej na alteratywnej drodze w Dodatku D.

o(t) = v (E.10)
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Dodatek F

Funkcja rozktadu czaséw
oczekiwania
Weierstrassa-Mandelbrota

I. Metoda bezposrednia. Wyprowadzimy $cista postaé funkceji rozktadu czaséow ocze-
kiwania Weierstrassa-Mandelbrota, korzystajac z transformaty Mellina oraz metody
catkowania przez residua. Takie podejscie pozwoli na bezposrednie uzyskanie potego-
wego zaniku funkeji rozktadu ¢(t) w zaleznosci od czasu t bez potrzeby wykonywania
dwukrotnej transformaty Laplace’a, raz wyjsciowej prostej do przestrzeni odwrot-
nej i drugi raz (na zakonczenie procedury) powr6t do przestrzeni prostej za pomoca
odwrotnej transformaty Laplace’a. Jest to podejscie oryginalne, alternatywne w sto-
sunku do istniejacego juz w literaturze.
Nasz wywdd rozpoczniemy od funkcji rozkladu danej wyrazeniem (6.98)

010 =1 =3 3 357 el (F.1)

Korzystajac z transformaty Mellina funkcji wyktadniczej (patrz, Harry Bateman,
Arthur Erdéley, " Tables of Integral Transforms”, Vol.I, McGraw-Hill Book Comp.,
Inc., New York 1954),

. 1 ctoo .

exp(—y0y't) = —/ ds(yot) °T(s)y 7%, 0 < Rs =c < 1, (F.2)
2mi Je—ioo

mozna funkcje rozktadu dang wyrazeniem (F.1) przeksztalcié do postaci

1-s

o18) =201 = 371 [ dstaut) T S5, (¥.3)

—100

ktora dalej przeksztalcamy korzystajac z faktu, iz dla v < 1 oraz M > 1 zawsze
mozna dobra¢ liczbe 0 < ¢ < 1 tak aby wartos¢ ilorazu kolejnych sktadnikéw szeregu
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geometrycznego (wystepujacego w (F.3)), czyli | y'7* /M |=~'7¢/M, byta mniejsza
od jednsci. Zatem, wyrazenie (F.3) przybiera postaé

1.1

o(t) = v0(1 — M>2—m /CCJ:: ds(fyot)s%, (F.4)

ktorg w dalszym ciggu przeksztatcamy korzystajac z metody residuéw (patrz, Krzysz-
tof Maurin, ” Analiza. Cz.I1. Wstep do analizy globalnej”, PWN, Warszawa 1971).
Zatem, wprowadzmy kontur prostokatny K (= K; + K, + K, + K,) na plaszczyznie
zespolonej schematycznie przedstawiony na rys.... Wykazemy, ze

[ sty L = sttt (¥

1—s5)
—ico 1-2 K> 1- %=

gdzie catkowanie po prawej stronie powyzszej rownosci przeprowadzono wzdtuz kon-
turu K, ktorego prawy bok oraz podstawa i gérna krawedz oddalaja sie do nieskon-
czonodci (stad oznaczenie K°°) ponadto, orientacja catki konturowej jest ujemna
(stad znak ” —” przed nia). Po pierwsze zauwazmy, ze gdy x — oo wowczas,

/ ds(%t)_sii(s)_

1—s - 07 (F6>
Kr 1=
gdzie s = x + iy, gdyz yot > 11 (yot) > % — 0 gdy z — oo; czyli powyzsza calka
na prawym brzegu (boku) konturu (prostokata) K, znika gdy brzeg ten oddala sie
do nieskonczonosci.

Po drugie wykazemy, ze gdy | y |[— oo wowczas,

/K ) ds(’yot)s% — 0. (F.7)

1_M

Dowod powyzszego twierdzenia wynika bezposrednio z asymptotycznego przedsta-
wienia funkeji " dla | y |— oo (patrz, .M. Ryzyk i [.S. Gradsztajn, ” Tablice calek,
sum, szeregéw i iloczynéow”, PWN, Warszawa 1964),

. o T
| D +iy) [— (2m)'2 | y | 1”exp(—-g [y ) (F.8)

Zatem, naszym zadaniem jest teraz obliczenie calki konturowej po prawej stronie
réwnosci (H.16); mozna to przeprowadzié¢ korzystajac z metody residuéw. Zauwazmy
w tym celu, ze jedyne bieguny funkcji podcatkowej jakie znajduja sie po dodatniej
stronie osi rzeczywistej to zera mianownika 1 — lei czyli

1-—s 2
7 =O:>sn:1+a—ﬂ
In(7)
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gdzie przez s,, n =0,+1,+£2,..., oznhaczono poszukiwane bieguny. Ponadto, jak wi-
dac¢ bieguny te sa rzedu pierwszego. Metoda residuéw mowi, ze wspomniana powyzej
catka konturowa

—j{ ds(yot)~ P( ) = 27 Z Res F(sy), (F.10)

n=—oo

gdzie Res F(s,) to residuum funkcji podcatkowej, ktéra oznaczylismy tutaj przez
F', w punkcie s,,. Metoda residuéw podaje m.in. przepis jak wyznaczy¢ residuum w
punkcie bedacym biegunem rzedu pierwszego mianowicie, jest to nastepujaca granica

Res F(sy,) = lim (s — s0)F(5)]. (F.11)

W naszym przypadu, obliczenie tej granicy sprowadza sie w zasadzie do obliczenia
granicy ponizszego wyrazenia,

i 5 Sn , s — Sy,
m ———— = 1m
soen ] — T2 =i 1 — grexp((1 — s,) In(7y)) exp((s, — ) In(7y))
5—s 1
= lim = = . F.12
BT (e, - ) () 1)
Stad oraz ze (F.11), (F.10), (H.16) i (F.4) otrzymujemy wreszcie,
1 , I(s)
) = —(1-—— ]f ds(yot) ™ ————
(1) Y= 77) ¢ ds(t) 1_773
’YO ]_ _ 271
= - 1— —) (0t T(s,)(Y0t) 20"
ln(v)( M)(70 ) “ X n;oo S ’70 )
7o 1 —1l—-a
= — 1 ——)(t r
ln(”y)( M)(70 ) X { (30)
S 2mip —ami,,
+ D [D(sn)(q0) 07" + T (s_n) (701) "0 ]} (F.13)
n=1
Mozna wykazaé na drodze numerycznej, ze (dla vt > 1)
T'(so) > Z ) (Yot) "™ 4 T(s_) (70t) 1" (F.14)

dowdd analityczny, jak dotychczas, nie jest znany. Rys.... przedstawia ... Zatem, z
dobrym przyblizeniem mozna zapisac
Yo 1

6(0) ~ — o5 (1= 3P0+ a)uf) ™ (F.15)
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Dodatek G

Uzyteczne transformaty Laplace’a

Wyprowadzimy wzér na transformate Laplace’a ¢(s)( 2" L4(6(t))) funkcji rozktadu
czasOw oczekiwania. W tym celu skorzystamy z pomocniczej relacji,

L <—%<I>(t)> = ®(0) — 5P(s), (G.1)

spetnionej dla dowolnej, rézniczkowalnej funkcji ® posiadajacej transformate Lapla-
ce’a ®(s) (patrz, LM. Ryzyk i L.S. Gradsztajn, ” Tablice, sum, szeregdw i iloczynéw”,
PWN, Warszawa 1964).

Z (6.66) wida¢, ze dla t — oo,

- k)BTF(l + Oé) 1 B k)BTF(l + Oé) d —a
ot) =~ g e rE i (™% + const)
d
= ——O(t 2
- 2(), (G-2)

gdzie asymptotyczna postaé funkcji

q)(t) ~ ]{BTF(l + Oé)

ayg€
posiada dla o < 1 transformate Laplace’a dana wzorem (patrz, .M. Ryzyk i L.S.
Gradsztajn, " Tablice, sum, szeregéw i iloczynéw”, PWN, Warszawa 1964),

~ kgTT(1 ' — t
B(s) ~ M2 (ag+ @) < (1-a) | cons ) |
o

Z relacji (G.1), (G.2) oraz (G.4) wynika, ze

_ ]{BTF(l + Oé)
avg€

(™% + const), (G.3)

(G.4)

sl-o s

~ d

o(s) = L <—%<I>(t)> = ®(0) (I'(1 — a)s™ + const). (G.5)
Stala const nalezy wybraé¢ tak aby funkcja rozktadu ¢ spetniata warunek nor-

malizacji (6.61), ktéry mozna wyrazi¢ w postaci

é(s = 0) = 1. (G.6)
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Stad oraz z (G.5) wynika, ze

kpTT(1 -
const = (B(0) — 1) <M> (@.7)
avg€
Z powyzszego oraz ze (G.5) otrzymujemy ostatecznie, ze
~ T s\
=1- — G.8
s =1- s (2 G5
gdzie milczaco skorzystaliSmy z pomocniczych wzorow
kT
o=—,
&
I'l+a) =al(a),
T
MNa)l'(l—a) = . G.9
(@01 =) = 27 (©.9)
Wprowadzajac bezwymiarowy wspotczynnik
,  sin(ma)
= G.10
L/ (G.10)

mozemy (G.8) zapisa¢ nastepujaco,

Hs)=1— — <i>a. (G.11)

Yo

Przy okazji zauwazmy, ze ze (G.2) otrzymujemy

a(1) = ¢(0) - [ "at(t). (G.12)

Wybierajac stata ®(0) = 1 (co na mocy (G.7) daje const = 0) oraz korzystajac z
warunku normalizacji (6.61), otrzymujemy, ze

(t) = /t Tats (t), (G.13)

stajac sie tym samym gestosciag prawdopodobienstwa przetrwania czasteczki w ja-
kiej$ dolinie potencjatu przynajmniej przez czas t; jest to funkcja, ktora odgrywa
wspomagajaca, wazna role w modelu bladzenia czasteczki w czasie ciagtym. Z (G.12)
oraz (G.11) wynika bezposrednio (patrz, .M. Ryzyk i I.S. Gradsztajn, ” Tablice, sum,
szeregéw 1 iloczynow”, PWN, Warszawa 1964), ze transformata Laplace’a

B(s) = 1 —8¢(3> _ %17} (?)1()‘_ (G.14)

Z powyzszego oraz z (6.88) widaé, ze éredni czas oczekiwania

(t) = &(s = 0) (G.15)

jest, dla o < 1, nieskonczony.
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Dodatek H

Sferyczne przeloty Weierstrassa

Dla sferycznych przelotéw Weierstrassa w czasie dyskretnym czesé przestrzenna p(%)
gestosci prawdopodobienstwa przemieszczenia sie czgsteczki o wektor & w wyniku
pojedynczego przelotu posiada wlasnosé sferycznej symetrii,

p(F) = ﬁm(\ 7)), (H.1)

spetniajac warunek normalizacji
[ dan(@) = [ dizipo( 7)) = 1 (H.2)

gdzie Sy = 27%2/T(d/2) jest powierzchnia d — 1 wymiarowej hipersfery o promie-
niu jednostkowym (gdzie d jest wymiarem przestrzeni Euklidesowej). Zauwazmy, ze
Sg—g = 41, Sg—o = 27, Sq—1 = 2. W dalszym ciagu przyjmujemy, analogicznie jak
dla jednowymiarowych przelotéw Weierstrassa, ze

wll #1) =~ 3 59 (171 =) (13

widaé, ze w szczegdlnym przypadu d = 1, p(z) = po(z)/2 (gdzie dla uproszczenia
opusciliémy oznaczenie 7 7 7).

Tytutem pouczajacego przyktadu, wyznaczamy czynnik strukturalny sferycznych
przelotow Weierstrassa dla d = 3. Z definicji,

D (E) = /dfexp (—ZIZ . f)p(f)
= Z—:/Oood|f|/oﬁdﬁsin(19)exp(—i|f||/;|cos(?9))po(\f|)

™

00 1/2 .
_ [Targ (—=—) n.(zIF 7)), H.4
[ (7o) ae (07 )m =) (1.

gdzie przez Ji/2(2) oznaczono, jak zwykle, funkcje Bessela (walcowa pierwszego ro-
dzaju).
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Natomiast, dla sytuacji ogélnej (d-wymiarowej) otrzymujemy,
e d 0o ~ 1 . . 1-d/2 . . =
p(®) = v (5) [Tarel (3 120E) T g (1 F D7)

S\ 1-d/2
N—1_(d\ 1 [|k|V L
= TF <§>Zﬁ( 9 ) Jaja—1 (\k!b’), (H.5)

J=0

gdzie przez Jyj2—1(z) oznaczono funkcje Bessela (walcowa pierwszego rodzaju).

W tym miejscu, podobnie jak dla przypadku jednowymiarowego, rodzi sie pyta-
nie o warunki w jakich uzyskana powyzej posta¢ czynnika strukturalnego
da sie przedstawi¢ w postaci zamknietej? Aby odpowiedzie¢ na to pytanie
zauwazmy, ze p k spelnia niejednorodne réwnanie skalowania postaci,

d

p08) = N) — 00 (5) (3181) g (F1). it

Rozwiazanie tego rownania (podobnie jak to robilismy dla réwnania (6.129) w rozdz.
6.4.2) poszukujemy w postaci sumy

]3 (IZ) - ﬁreg (E) +]53ing (E) 5 (H7)
przy czym rozwigzanie regularne (normalne, ogélne) p,, (/Z) spelnia rownanie nie-

jednorodne (H.6) a rozwiazanie singularne p;n, (E) jednorodng czes¢ tego réwnania.
Jak zwykle, posta¢ rozwiazania ogdlnego jest narzucona przez niejednorodnosc.

H.1 Rozwigzanie regularne

Zatem, korzystajac z rozwiniecia funkcji Bessela pierwszego rodzaju

| E ’d/2—1 o0 | E ‘21

Jappa(| ) = S 2 (=)
2421 I 220r (441

(H.8)

—

mozemy przyjac rozwigzanie Pyeg (k:) w postaci szeregu potegowego zawierajacego

takze tylko parzyste potegi zmiennej | k | a mianowicie,

e o 1 .
Breg (k) = 143 (=17 < a; | k|7, (H.9)
j=1 J:
gdzie aj, j =1,2,..., sa poszukiwanymi wspétczynnikami (wprzedzajac nieco nasze

rozwazania, przyjeliSmy ag = 1). Podstawiajac (H.8) i (H.9) do (H.6) i poréwnujac
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wspétezynniki przy tych samych potegach | k |, otrzymujemy (po prostych algebra-
icznych przeksztatceniach) poszukiwane wyrazenie na wspétezynnik,

1 (g 1-4
aJ—ZTJF(%—}—j)l—%,

i=0,1,2,.... (H.10)

Na przyklad, ograniczajac sie jedynie do wyrazéw co najwyzej kwadratowych w | k |
otrzymujemy,

_ 7 - 11—+
Preg(|E) =1 =D | k% D/:m:ﬁli{’g’ (H.11)
N

co stanowi uogdlnienie wyrazen (6.131) i (6.132) stusznych w jednym wymiarze na
dowolng liczbe wymiarow d > 1.

H.2 Rozwigzanie singularne

Rozwigzanie singularne, pging (/Z), mozna od razu zapisa¢ w postaci analogicznej do
(6.133) z pomocniczym wyrazeniem (6.135) (gdzie zamiast | &k | nalezy podstawié
| k| /2) i wykladnikiem danym wzorem (6.136), gdyz spetnia ono réwnanie for-
malnie identyczne do (6.130), Wspo6tczynniki A; (dla procesu przelotéw Wierstrassa
zachodzacego w przestrzeni o dowolnej liczbie wymiaréw d > 1) wyznaczamy poni-
zej, korzystajac z ogolnej metody wykorzystujacej transformate Mellina i catkowanie
przez residua.

W szczegdlnym przypadku ograniczenia sie tylko do stalego wspoétezynnika Ay,
otrzymujemy

Paing(K) ~ =D} | K |7, Dy = A, (H.12)

co jest formalnie identyczne z drugim wyrazeniem w réwnaniu (6.138) (dla 8 < 2).

H.2.1 Pelna postaé rozwigzania singularnego

Strategia postepowania polega na dokonaniu najpierw transformaty Mellina funkcji
(H.5) a nastepnie (po przeprowadzeniu odpowiednich obliczen) obliczenie odwrotne;
transformaty Mellina. Na tej drodze wydobedziemy z funkcji (H.5) pelne rozwiazanie
singularne.

Przypomnijmy na wstepie, ze transformata Mellina (TM) funkcji f(x) jest zde-
finiowana nastepujaco

Jo) (= Mipish) < [7 fla)a e, (H.13)
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gdzie s jest zmienng zespolong. Natomiast, odwrotna transormata Mellina (TM 1)
przybiera bardziej skomplikowana, ale nadzwyczaj uzyteczng postac

- e 1 c+100
f(x) (E Mfl[f;x]) def. —/ f(s)x™@ds, 0 <ec<1, 0<Rs<c (H.14)
271 Je—ico

Zauwazmy, ze TM zastosujemy do funkcji f(z) = 27%/2J,(22'/?), gdzie J,(...)
jest funkcja Bessela (walcowa pierwszego rodzaju). Transformata Mellina tej funkcji
wynosi f = I'(s)/T(v —s+1), 0 < Rs < 27'Rv + 3/4. W naszym przypad-
ku obowigzuje nastepujace podstawienie: v = d/2 — 1, 222 =| k | ¥ = 2 =

N e (a2 Lo\ 1d/2 _ . :

(5 | k |) b = (a: ) = (5 | k| b7) . Wykorzystujac powyzsze, mozemy
nasza funkcje (H.5) wyrazi¢ w nastepujacy sposob:

1 /chzoo N —1 1 r (%) [(s) 1 i (H.15)

~E:_ ; —
plk) —wo N ((%’g‘f) r(g—s)l—(Nb2s)

21

gdzie wykorzystaliémy przemienno$¢ sumowania (wystepujacego we wzorze (H.5)) i
catkowania we wzorze (H.14)), gdyz zaréwno calka jak i suma sa zbiezne. Ponadto,
zamiast sumowania szeregu geometrycznego wyraz po wyrazie, po prostu, wsta-
wiliSmy odpowiednig sume szeregu geometrycznego. Podkredlmy, ze catkowanie we
wzorze (H.15) wykonamy za pomoca residuéw, dzieki ulokowaniu biegunéw funkcji
podcatkowej w lewej péiplaszezyznie (patrz rysunek H.1) i zalozeniu (w dalszym
ciggu), ze 3 | k<1

Wykazemy teraz, ze catka w (H.15) znika na lewym brzegu konturu i na jego
dolnej i gérnej krawedzi. Jej znikanie na lewym brzegu wynika wprost z powyzszego
zatozenia. Natomiast wzor

s =) | =V [y e (T ) oo (10

pokazuje bezposrednio, jak zanika zarowno stosunek gam Eulera - (F é(s_)s) —|y \21’_‘1/ 2
2

wystepujacy w funkcji podcatkowej w wyrazeniu (H.15), za nim pelna funkcja pod-
catkowa a stad i caltka, gdy goérna i dolna krawedz konturu oddalaja sie nieograni-
czenie.

Zatem, mozemy zapisaé, ze

(k) =Y Res F(so), (H.17)

gdzie prawa strona powyzszej réwnosci oznacza sume residudéw zwigzang ze wszyst-
kimi biegunami funkcji podcatkowej F'(s).

Zajmiemy sie teraz wyznaczaniem tych biegunéw oraz zwigzanymi z nimi resi-
duami.
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Rysunek H.1: Prostkatny, zamkniety, rozbiegajacy sie kontur catkowania przedsta-
wiony na ptaszczyznie zespolonej s = x + 1.
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H.2.2 Bieguny i residua
Bieguny funkcji podcatkowej sa dwojakiego rodzaju:
a) catkowite ujemne wraz zerem, bedace biegunami funkcji T'(s),

b) zespolone (za wyjatkiem jednego rzeczywistego), stanowiace bieguny funkcji
1/ (1= (Nb*)7).

W przypadku a) bieguny mozna tatwo znalezé pamietajac, ze I'(s) = «/(I'(1 —
s)sin(ws)). Stad, so = =1, 1 =0,1,2,....

W przypadku b) bieguny wyznaczamy z réwnosci:
N = (b?)" =exp(—soInb®+2mn), n=0,1,2,.... Czyli, sy = —%ﬁ + I, n=
0,41,42,.. ..

Teraz przypomnijmy, ze residuum (pierwszego rzedu - ale tylko z takimi residu-
ami mamy tutaj do czynienia) dowolnej funkcji zespolonej F'(s) zmiennej zespolonej
s wyznacza sie z prostego wzoru

Res F(sg) = lim F(s)(s — sg). (H.18)
5—80
Zatem,
(=1
ResT(sg) = ~——,1=0,1,2,.... (H.19)

il

Residua te prowadza bezposrednio do wyrazenia (H.9) z pomocniczym (H.10), czyli
do rozwigzania regularnego - nie mozemy go wiec tutaj bra¢ pod uwage.
Rozwazmy teraz przypadek b). Korzystajac ze wzoru (H.18) otrzymujemy, ze

R 1 _ s — Sp i s — Sp
€s 1 — (Nsto)_l - 31—>I£10 1— % b—2(s—s0) o SLIEO 1 — p—2(s—s0)
. s — S 1
= lim = , H.20
s=s0 1 —exp (—2(s — sp)Inb)  2Inbd ( )
gdzie wykorzystaliSmy rownosé bi;so = 1, obecng powyzej w objasnieniach przypad-

ku b).
W Swietle powyzszego, pelne rozwiazanie singularne przyjmuje postac,

- 1 1 d\ /1 - \?
panF) = (1= ) gy (5) (51%1)
) i F(—%ﬁ+%) m(%\/ﬂ)

exp | —2mn 7> . (H.21)
d mn

co, w polaczeniu z pelnym rozwiazaniem regularnym (H.9) i wyrazeniem (H.10),

daje pele rozwigzanie ﬁ(E)
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Dodatek 1

Scisly czynnik strukturalny dla
jednowymiarowych przelotow
Welierstrassa

Wyprowadzimy Scista postaé¢ czynnika strukturalnego dla jednowymiarowego bta-
dzenia Weierstrassa, korzystajac z transformaty Mellina oraz catkowania przez resi-
dua, czyli postepujac analogicznie jak dla sferycznych przelotéw Weierstrassa (patrz
Dodatek H) ale bez wyjsciowego rozlozenia poszukiwanego rozwiazania na cze$¢
regularng i singularng.

Naszym wyjsciowym wzorem Jest (6.128). Poniewaz transformata Mellina funkcji
cos(| k | &) wynosi (b)) °T(s)cos (g ) ngc poszukiwany czynnik strukturalny
mozna przedstawi¢ w postam

o) = S [Tk P eos (T) ()
= s) cos s
p N 271' Z _o /1o 2
N—-1 1 [fehwo m 1
N e () L
N 2m /Hoo R D eos {8 ) T s (D)

Postaé ta pozwala juz na obliczenie catki metoda residuéw dla | k |< 1. Zaznaczmy,
ze druga rownos¢ zostata uzyskana dzigki zamiania sumowania z catkowaniem, co
byto mozliwe poniewaz obie sg zbiezne.

W tym celu, podobnie jak w Dodatku H, otaczamy bieguny funkcji podcatko-
wej (oznaczmy ja podobnie jak w poprzednim Dodatku przez F'(s)) znajdujace sie
w lewej pélplaszezyznie, prostokatnym rozbiegajacym sie¢ konturem (patrz rysunek
H.1). Znikanie calki na dolnej i gérnej krawedzi konturu wynika bezposrednio ze
wzoru (H.16) natomiast na lewej krawedzi z faktu, ze prowadzimy obliczenia przy
zalozeniu | k |< 1.

Mamy (podobnie jak poprzednio) dwa rodzaje biegunéw: pierwszy pochodzacy

od iloczynu funkcji T'(s) cos (gs) i drugi od funkcji Pierwszy zbior biegu-

1— (Nbs) 1—(Nbs)~ T
néw dany jest wyrazeniem (H.19), gdzie [ (dzieki cos( )) przebiega tylko liczby
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parzyste, natomiast drugi wyrazeniem (analogicznym do tego dotyczacego przypad-
ku b) w Dodatku H) so = —3 + 211’!)", n = 0,%1,+1,.... Pozostaje jeszcze tylko
problem znalezienia residuéw dla obu rodzajow biegunéw. Postepujac analogicznie

jak w Dodatku H, otrzymujemy odpowiednio ((_—l)l [ =0,1,2,..., oraz . Osta-

20)! 1
tecznie, petna postaé czynnika strukturalnego sktada sie z dwoch zasadmczo roznych

wyrazen

) 1 1
]5(@ — bN | Lk |2J + | k |ﬂ bN
:O W
© 27mn T 2min
8 n_ZOOF< 1nb)cos(§ <_ﬁ+ nb ))
2mn
In| & 1.2
X exp( 0D n | |> (1.2)

jawnie zawierajaca zarowno cze$¢ regularna (oparta o pierwszy nieskonczony szereg)
jak i singularna (oparta o drugi).

Powyzszy wzér oraz formula na p(3 | k |) z Dodatku H sa kluczowymi dla
przelotéw Weierstrassa (zaréwno jedno- jak i wielowymiarowych).
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Dodatek J

Twierdzenie Abeliana 1
twierdzenie Tauberina

Twierdzenie Abeliana

1. Przypadek o« > —1

Przypusémy, ze dla t — oo funkcja ma przebieg potegowy, tzn.

f(t) = t*F(t), (J.1)
gdzie F(t) jest funkcja asymptotycznie jednorodna tzn.

. F(ct)
tli,r?o F ) =1, (J.2)

dla kazdego ¢ > 0 (np. F(¢) = In(t)) oraz nie malejaca szybciej niz ¢~ Wowczas,
transformata Laplace’a f(s) funkcji f(¢) dla s — 0 przyjmuje postaé

- 'l+a«) 1

fo) = =2 P (), (13)

Dowdd tego twierdzenia sktada sie z dwdch czesci. Po pierwsze, zapisujemy trans-
formate Laplace’a f(s) w postaci

f(s) = /Ooof(t)exp(—st)dt

/Otm () — °F(0)] exp(—st)df 1 /O TP (t) exp(—st)dt,

Q

(J.4)

gdzie t,q.. jest czasem powyzej ktérego funkcja f(t) przyjmuje, z dobrym przybli-
zeniem, swoja postaé¢ asymptotyczng. Po drugie, uzywamy zmiennej s spetniajacej
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warunek Rst,,.. < 1 (czyli posiadajacej znikomo mala czesé rzeczywista) wowczas,
powyzsze wyrazenie mozna przeksztatci¢ do postaci,

fo) ~ [T - e F@ld— s [0 - e Rl
+ 511+a /Ooo v F (%) exp(—y)dy

s
1 1, e
/A consty — s X consty + 31+0‘F(;)/0 y* exp(—y)dy, (J.5)

gdzie state consty (pierwszy wyraz w pierwszym rzedzie) oraz const; (wyrazenie
catkowe stojace w drugim wyrazie takze w pierwszym rzedzie) sa skonczone (co
jest dodatkowym warunkiem narzuconym na funkcje F') i zaleza od parametru t,,,,
ponadto, podstawiliSmy y = st oraz skorzystaliSmy po drodze z asymptotycznej
postaci (J.1) funkcji f(¢) iz wlasnosci (J.2) (a takze z definicji funkeji I'). Oczywiscie,
dla s — 0 w wyrazeniu (J.5) dominuje trzeci sktadnik zatem,

i)~ O (16)

S

II. Przypadek oo = —-1 -0, 0< (<1

Przypusémy, ze dla t — oo funkcja f zanika w sposob potegowy, tzn.
f(t) = t"OPR(), (J.7)
gdzie F'(t) jest funkcja asymptotycznie jednorodna tzn.

fim 200 .

(J.8)

dla kazdego ¢ > 0 (np. F(t) = In(t)) oraz malejaca wolniej od ¢~ ponadto, dla
t — 0 funkcja F'(t) maleje nie wolniej niz t. Woéwczas, transformata Laplace’a f(s)
funkeji f(t) dla s — 0 przyjmuje postac

- 1
f(s) = const + sﬁF(—ﬁ)F(g), (J.9)
gdzie I'(—p3) = —I'(1 — 3)/ dla wyktadnika g nalezacego do podanego wyzej prze-

dziatu.
Pierwszy krok dowodu jest analogiczny jak w poprzednim przypadku zatem,

o) = [ s exp(=styat

/Otmaz () — 1049 P exp(—st)d + /Ooo t~ D P(t) exp(—st)dt,
(J.10)

Q
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gdzie t,.. jest czasem powyzej ktérego funkcja f(t) przyjmuje, z dobrym przybli-
zeniem, swoja posta¢ asymptotyczng. Po drugie, uzywamy zmiennej s spetniajacej
warunek Rst,,.. < 1 (czyli posiadajacej znikomo mala czesé rzeczywista) wowczas,
powyzsze wyrazenie mozna przeksztatci¢ do postaci (wykorzystujac catkowanie przez
czesci),

tmax

fo) ~ [T - e R — s [ () - R
w5 [Ty IR ) exp(—y)dy
~ const — s X consty + sﬁF(—ﬁ)F(é)

~ const + sﬂP(—ﬁ)F(é), (7.11)

Q

gdzie state const (pierwszy wyraz w pierwszym rzedzie) oraz const, (wyrazenie cal-
kowe stojace w drugim wyrazie w tym samym rzedzie) sa skonczone (co jest, analo-
gicznie jak w poprzedni przypadku, dodatkowym warunkiem narzuconym na funkcje
F) i zaleza od parametru t,,,, ponadto, podstawiliSémy y = st oraz skorzystaliSmy
po drodze z asymptotycznej postaci (J.1) funkcji f(¢) i z wtasnosci (J.2) (a takze z
definicji funkeji I'). Oczywiscie, dla s — 0 w wyrazeniu (J.11) dominuje wyraz rzedu
zZerowego w s oraz wyraz subliniowy w s.
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