
WPROWADZENIE DO EKONOFIZYKI:

NIEGAUSSOWSKIE PROCESY STOCHASTYCZNE

ORAZ NIEDEBYE’OWSKA RELAKSACJA W REALU.

Elementy teorii ryzyka rynkowego wraz z

elementami teorii zdarzeń ekstremalnych

Ryszard Kutner

Wydział Fizyki, Uniwersytet Warszawski

Warszawa, czerwiec 2015 (wersja beta)



Materiał w całości ani we fragmentach nie może być powielany ani roz-
powszechniany za pomocą urządzeń elektronicznych, mechanicznych, ko-
piujących, nagrywających i innych bez pisemnej zgody autora

2



Spis treści

I Wstęp 11

1 Motywacja 13

2 Zasadnicze pytania 17
2.1 Rys historyczny: rozkłady potęgowe . . . . . . . . . . . . . . . . . . . 17
2.1.1 Skalowanie i log-periodyczność

a bąble i krachy giełdowe . . . . . . . . . . . . . . . . . . . . . 19
2.2 Kluczowe pytanie matematyczne . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Niezbędne wyjaśnienia . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Paradoks Petersburski i jego konsekwencje . . . . . . . . . . . 26

2.3 Motywacja fizyczna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Relaksacja fraktalna . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Rola pamięci w relaksacji . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Spowolniona relaksacja na Warszawskiej GPW . . . . . . . . . 33

2.5 Dynamika materiału lepko-sprężystego a relaksacja fraktalna . . . . . 33
2.5.1 Model Zenera ciała stałego . . . . . . . . . . . . . . . . . . . . 34

2.6 Subdyfuzja fraktalna . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Procesy gaussowskie 41

3 Ruch Browna, opalescencja krytyczna, błękit nieba, rozpraszanie
krytyczne 43
3.1 Ruch Browna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Słów kilka o fraktalnym ruchu Browna . . . . . . . . . . . . . . . . . 46
3.3 Zjawisko opalescencji krytycznej
i zjawisko Tyndalla . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Wstępne definicje . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Pierwszy i drugi moment . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 Dekompozycja propagatora . . . . . . . . . . . . . . . . . . . 51
3.6.2 Rozkłady asymptotycznie gaussowskie . . . . . . . . . . . . . 54

3.7 Proces Markowa - równanie Mistrza . . . . . . . . . . . . . . . . . . . 55

3



3.8 Dyfuzja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8.1 Dyfuzja Ficka . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Centralne twierdzenie graniczne raz jeszcze . . . . . . . . . . . . . . . 60
3.10 Dyfuzja oraz unoszenie . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10.1 Twierdzenie o fluktuacji i dyssypacji . . . . . . . . . . . . . . 65
3.10.2 Równanie ciągłości a liczba Avogadro

- przełomowe doświadczenie Perrina . . . . . . . . . . . . . . . 66
3.11 Równanie Fokkera-Plancka-Smoluchowskiego . . . . . . . . . . . . . . 69
3.12 Autokorelacje - złamanie
Centralnego Twierdzenia Granicznego . . . . . . . . . . . . . . . . . . 71
3.12.1 Dyspersja a funkcja autokorelacji . . . . . . . . . . . . . . . . 72

3.13 CTG a zanik potęgowy:
zderzenie dwóch światów . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13.1 Rozkład Gaussa i rozkład potęgowy w jednym . . . . . . . . . 75
3.13.2 Od rozkładu Gaussa

do rozkładu logarytmiczno-normalnego . . . . . . . . . . . . . 78
3.14 Łańcuchy multiplikatywne:
rozkład logarytmiczno-normalny . . . . . . . . . . . . . . . . . . . . . 79
3.14.1 Od rozkładu log-normalnego do potęgowego . . . . . . . . . . 82
3.14.2 Log-normalne oraz potęgowe dochody

jednostek w społeczeństwie . . . . . . . . . . . . . . . . . . . . 83
3.14.3 Potęgowe dochody przedsiębiorstw . . . . . . . . . . . . . . . 84
3.14.4 Stochastyczny proces multiplikatywny

w obecności bariery . . . . . . . . . . . . . . . . . . . . . . . . 85
3.14.5 Model drabinowy dochodów gospodarstw domowych . . . . . . 87
3.14.6 Od równania Markowa do równania Fokkera-Plancka . . . . . 88
3.14.7 Multiplikatywno-addytywny proces stochastyczny

a proces multiplikatywny z odpychającą barierą . . . . . . . . 89
3.14.8 Równanie Langevina a rozkład potęgowy . . . . . . . . . . . . 90
3.14.9 Od nieliniowego równania Langevina

do równania Fokkera-Plancka . . . . . . . . . . . . . . . . . . 92

4 Analiza portfelowa 97
4.1 Bańka kredytowa - przypowieść . . . . . . . . . . . . . . . . . . . . . 97
4.2 Dwumianowy model dynamiki instrumentów finansowych . . . . . . . 98
4.2.1 Od awersji do ryzyka do miary neutralnej względem ryzyka -

podejście intuicyjne . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Podstawowe idee i definicje: pierwszy krok na drzewku dwu-

mianowym - istota problemu . . . . . . . . . . . . . . . . . . . 101
4.2.3 Uogólnienie: dowolny krok na drzewku dwumianowym . . . . 104
4.2.4 Ryzyko fluktuacyjne strategii arbitrażowej . . . . . . . . . . . 110
4.2.5 Strategia zabezpieczająca portfel . . . . . . . . . . . . . . . . 112
4.2.6 Korekta związana z wypłatą dywidendy . . . . . . . . . . . . 119

4



4.3 Procesy martyngałowe . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.1 Filtry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Warunkowe średnie ważone - martyngał . . . . . . . . . . . . . 122
4.3.3 Reprezentacja martyngałowa procesów dyskretnych . . . . . . 127

4.4 Opcje jako zasadniczy instrument stymulujący rynek finansowy . . . 131
4.4.1 Kontrakty terminowe . . . . . . . . . . . . . . . . . . . . . . . 131

4.5 Ciągła w czasie wycena opcji - model Blacka-Scholesa a przewodnic-
two cieplne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5.1 Od błądzenia na drzewie dwumianowym do modelu Blacka-

Scholesa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.5.2 Arbitrażowe drzewo dwumianowe i wycena opcji . . . . . . . . 136
4.5.3 Wycena europejskiej opcji kupna . . . . . . . . . . . . . . . . 138
4.5.4 Od dynamiki stochastycznej do formuły

Blacka-Scholesa . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.5 Dynamika infinitezymalnej zmiany ceny opcji . . . . . . . . . 143
4.5.6 Portfel pozbawiony ryzyka - równanie Blacka-Scholesa . . . . . 144
4.5.7 Portfel pozbawiony ryzyka w modelu BS

z punktu widzenia modelu dwumianowego . . . . . . . . . . . 147
4.5.8 Równanie BS jako formalne równanie dyfuzji Ficka lub prze-

wodnictwa cieplnego Fouriera . . . . . . . . . . . . . . . . . . 148
4.5.9 Formuła wyceny opcji kupna Blacka-Scholesa . . . . . . . . . 150
4.5.10 Analiza wrażliwości modelu Blacka-Scholesa . . . . . . . . . . 153
4.5.11 Formalne własności modelu BS: spełnienie warunku brzego-

wego (4.150) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5.12 Rozwiązanie równania (4.149) . . . . . . . . . . . . . . . . . . 165
4.5.13 Elementy rynku rzeczywistego - własności opcji kupna uwzględ-

niające prowizję . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.14 Dochód posiadacza opcji sprzedaży . . . . . . . . . . . . . . . 171

III Procesy niegaussowskie 175

5 Fraktale stochastyczne 177
5.1 Fraktale matematyczne a fraktale fizyczne . . . . . . . . . . . . . . . 177
5.2 Fraktale przypadkowe . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2.1 Ograniczone fraktale samopodobne . . . . . . . . . . . . . . . 178
5.2.2 Paradoks graniczny - struktura prawie wszędzie pusta . . . . . 181
5.2.3 Dolny wymiar samopodobieństwa . . . . . . . . . . . . . . . . 182
5.2.4 Gęstość struktury . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.2.5 Wymiar pudełkowy ograniczonych struktur fraktalnych . . . . 183
5.2.6 Nieograniczone fraktale samopodobne . . . . . . . . . . . . . . 184

5.3 Fraktale statystyczne . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.3.1 Ograniczone fraktale statystyczne . . . . . . . . . . . . . . . . 189

5



5.3.2 Różne sposoby defektowania struktur . . . . . . . . . . . . . . 190
5.4 Multifraktalność . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.4.1 Osobliwa gęstość niezmiennicza . . . . . . . . . . . . . . . . . 192
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Część I

Wstęp
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Rozdział 1

Motywacja

Niniejsza praca (aspirująca do miana podręcznika) jest roboczą wersję dwóch inter-
dyscyplinarnych wykładów jakie prowadzę dla studentów nowopowstałej na Wydzia-
le Fizyki Uniwersytetu Warszawskiego specjaliności pn.:Metody fizyki w ekono-
mii (ekonofizyka). Pierwszy z nich nosi nazwę Metody fizyki w ekonomii -
wprowadzenie drugi to Niegaussowskie procesy stochastyczne w naukach
przyrodniczych z elementami ekono- i socjofizyki.
Zasadniczym celem tych wykładów jest ilościowa, staranna i systematyczna ana-

liza wybranych, ważnych zagadnień z dziedziny rynków finasowych oraz gospodarek
wolnorynkowych, prowadzona przez pryzmat modeli używanych do opisu zjawisk i
procesów fizycznych. Jest to obiecujące podejście zwłaszcza, że bierzemy pod uwa-
gę przede wszystkim modele dopuszczające występowanie zdarzeń ekstremalnych a
nawet superextremalnych (czyli rzadkich ), które (jak się wydaje) odgrywają coraz
większą rolę także na rynkach finansowych i w gospodarkach wolnorynkowych. Inny-
mi słowy, zajmujemy się tutaj przede wszystkim takimi modelami, które pełnią (lub
mogą pełnić) dualną rolę: są stosowane zarówno w fizyce jak też (po reinterpretacji
a często i uogólnieniu) do opisu zjawisk i procesów zachodzących na rynkach finan-
sowych oraz w gospodarczej makroskali. Prowadzi to do uściślonej oraz pogłębionej
interpretacji nie tylko wspomnianych zjawisk i procesów ekonomicznych ale także
socjologicznych a w tym zwłaszcza typu bąbli i krachów giełdowych (D. Sornette:
Why Stock Markets Crash. Critical Events in Complex Financial Systems, Princeton
Univerity Press, Princeton and Oxford 2002, [1]). Tego typu podejście do ekonomii i
socjologii mieści się w ramach wschodzących, interdyscyplinarnych dziedzin wiedzy
potocznie zwanych, odpowiednio, ekonofizyką i socjofizyką.
Należy zaznaczyć, że w niniejszej pracy wykorzystujemy jako narzędzie matema-

tyczne przede wszystkim niegaussowskie procesy stochastyczne, np. typu Lévy’ego,
prowadzące do rozkładów prawdopodobienstwa posiadających ciężkie (pogrubione)
ogony.
Pojęcie ciężkiego (pogrubionego, tłustego) ogona rozkładu prawdo-

podobieństwa [3, 7] jest najczęściej używanym w niniejszej pracy. Zdefiniujmy je
tutaj, abyśmy od samego początku wiedzieli precyzyjnie o czym jest mowa. Zatem,
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mamy do czynienia z pogrubionym ogonem rozkładu prawdopodobieństwa P (x)
wtedy i tylko wtedy, gdy

lim
|x|→∞

exp(| x |)P (x) =∞, (1.1)

przy czym (bezwymiarowa) zmienna x może przyjmować zarówno wartości ciągłe
jak i dyskretne. Innymi słowy, dany rozkład prawdopodobieństwa posiada ciężki
ogon wtedy i tylko wtedy, gdy asymptotycznie zanika wolniej niż funkcja eksponens
(rozkład wykładniczy); funkcja eksponens pełni tutaj rolę funkcji progowej. Zatem
możemy powiedzieć, że dany rozkład prawdopodobieństwa nie posiada ciężkiego
ogona wtedy i tylko wtedy, gdy warunek (1.1) nie jest spelniony.
Aby przybliżyć ten warunek zauważmy, że obszerną klasę rozkładów posiada-

jących pogrubione ogony tworzy np. klasa funkcji zanikających potęgowo. Warto
też zdać sobie sprawę, że istnieją rozkłady posiadające tłusty ogon nie należące do
wspomnianej klasy, np. rozkład logarytmiczno-normalny. Warunek (1.1) można na-
zwać mocnym, gdyż używa się także słabszego warunku definiującego (trudniejszego
do analitycznego operowania), gdzie zamiast rozkładu P (x) występuje jego rozkład
skumulowany.
Należy podkreślić, że rozkłady i procesy gaussowskie (a w tym np. Centralne

Twierdzenie Graniczne (CTG)) traktowane są tutaj tylko jako niezbędny punkt od-
niesienia1, gdyż są one niewystarczające do opisu otaczającej nas rzeczywistości.
Tego typu podejście jest usprawiedliwione faktem, że procesy niegaussowskie mo-
gą być nieergodyczne czyli np. mogą być rządzone właśnie przez zdarzenia rzadkie,
stanowiące najprawdopodobniej podstawę zarówno wspomnianych bąbli i krachów
giełdowych, jak też będące podstawą spowolnionej, niedebye’owskiej relaksacji foto-
prądów w materiałach amorficznych, leżąc także u podstaw nieergodycznego chło-
dzenia laserowego stanowiącego przecież niezbędny etap doświadczalny prowadzący
do uzyskania kondensatu Bosego-Einsteina (W.D. Phillips: Laserowe chłodzenie i
pułapkowanie atomów obojętnych, Postępy Fizyki, Tom 49 (1998) 310-335, [4]; F.
Bardou, J.-P. Bouchaud, A. Aspect, C. Cohen-Tannoudji: Lévy Statistics and Laser
Cooling. How Rare Events Bring Atoms to Rest, Cambridge Univ. Press, Cambridge
2002, [5]). Oczywiście, oznacza to konieczność zastąpienia dobrze znanego Central-
nego Twierdzenia Granicznego przez tzw. Uogólnione Centralne Twierdzenie Gra-
niczne Lévy’ego-Chinczina dotyczące rozkładów stabilnych posiadających zarówno
skończoną jak i nieskończoną wariancję.
Ponadto, wspomniana na wstępie interdyscyplinarność bazuje m.in. na obser-

wacji, że procesy stochastyczne za pomocą których staramy się opisać otaczającą
nas rzeczywistość fizyczną bądż też ekonomiczno-socjologiczną (np. dynamika sto-
chastyczna rozwoju populacji w obecności zewnętrznego żródła, rozprzestrzeniania

1Mówimy tutaj o rozkładach i procesach gaussowskich w wąskim sensie, tzn. o takich, które
spełniają CTG. Innymi słowy, dla których wariancja jest liniową funkcją czasu (dyskretnego lub
ciągłego). Zatem, nie mamy tutaj na myśli np. Fraktalnego Ruchu Browna (FRB) - będzie jeszcze
o tym mowa w dalszej części.
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się epidemii, migracji ludności, opisująca ewolucję portfela investora giełdowego,
itd, itp) mają często charakter multiplikatywno-addytywny tzn. zawierają zarówno
szum multiplikatywny jak też szum addytywny (D. Sornette: Linear stochastic dyna-
mics with nonlinear fractal properties, Physica A (1998) 295-314). Za pomocą tego
typu procesów, wprowadzając odpowiednią konkurencję obu rodzajów szumu, moż-
na odtworzyć dla asymptotycznych wartości zmiennych losowych zarówno rozkład
Gaussa (R.N. Mantegna, H.E. Stanley: ”Ekonofizyka. Wprowadzenie”, Wydawnic-
twa Naukowe PWN, Warszawa 2001; [15]) jak też logarytmiczno-normalny (E.W.
Montroll, M.F. Shlesinger: On the wonderful world of random walks w Nonequili-
brium Phenomena II. From Stochastics to Hydrodynamics”, Studies in Statistical
Mechanics, Vol.XI, eds. J.L. Lebowitz, E.W. Montroll, North-Holland, Amsterdam
1984; [16]) a zwłaszcza rozkład potęgowy (D. Sornette: Critical Phenomena in Na-
tural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools,
Springer-Verlag, Berlin 2000; D. Sornette: ”Multiplicative processes and power law”,
Physical Review E 57 (1998) 4811-4813; [17]), czyli rozkłady odgrywające zasadni-
czą rolę zarówno w naukach przyrodniczych jak też ekonomiczno-społecznych2 (J.-P.
Bouchaud, M. Potter: Theory of Financial Risks. From Statistical Physics to Risk
Management, Cambridge Univ. Press, Cambridge 2001, [2]).
Do pracy dodaliśmy tytułem uzupełnienia rozdziały poświęcone materiałom lepko-

sprężystym takim jak np. biopolimery, w których relaksacja deformacji zachodząca
pod wpływem przyłożonego naprężenia jest opisana dynamiką fraktalną tzn. róż-
nego rodzaju fraktalnymi równaniami relaksacji (Th. F. Nonnenmacher, Ralf Met-
zler: ”Applications of Fractional Calculus Techniques to Problems in Biophysics”
in ”Applications of Fractional Calculus in Physics”, ed. R. Hilfer, World Scientific,
Singapore 2000). Jak się okazuje, rozwiązania takich równań oparte są na funk-
cjach H-Foxa, które posiadają własności interesujące z punktu widzenia rynków
finansowych. Na przykład, zanikają asymptotycznie zgodnie z prawem potęgowym
natomiast dla krótkich czasów zachowują się jak rozciągniety eksponens. Pozwala
to odtworzyć trendy (wznoszący i opadający) tworzące lokalne maksima szeregów
czasowych dziennych indeksów giełdowych (M. Kozłowska, R. Kutner: ”Dynamics
of the Warsaw Stock Exchange index as analysed by the Mittag-Leffler function”,
DPG - Fruejahrstagung des Arbeitskreises Festkoerperphysik in conjuction with EPS
- 21st General Conference of the Matter Division, Dresden, Germany 2006 [19]).

2Oczywiście, w naszych rozważaniach nie pominiemy rozkładów typu rozciągniętego eksponensa
zarówno zmiennej losowej jak też jej logarytmu, które są także używane m.in. do opisu relaksacji
w układach szklistych.
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Rozdział 2

Zasadnicze pytania

2.1 Rys historyczny: rozkłady potęgowe

Historia rozkładu potęgowego a w tym Pareto-Lévy’ego jest interesująca i warto ją
tutaj, jak sądzę, przytoczyć. Mianowicie, zaskoczenie może budzić fakt, że powszech-
nie uważa się iż rozkład potęgowy a dokładniej rzecz biorąc tego typu zależność
została odkryta w świecie realnym dopiero w roku 1897 przez włoskiego ekonomistę
i socjologa Vinifredo Pareto podczas gdy relaksacja potęgowa (czyli analogiczna za-
leżność tyle tylko, że od czasu) została już zaobserwowana w roku 1729 przez fizyka
i inżyniera B.G. Buelfingera, o czym jest mowa w rozdz.2.3. Co więcej, na począt-
ku drugiej połowy XIX w. francuski matematyk i fizyk baron Augustyn L. Cauchy
wprowadził i analizował rozkład postaci,

p(x) ∼ 1
1 + x2

, (2.1)

zwany dzisiaj właśnie rozkładem Cauchy’ego lub lorentzianem od nazwiska holen-
derskiego fizyka Hendrika A. Lorentza, który pierwszy zastosował ten rozkład w
spektroskopii do opisu kształtów linii widmowych i to pomimo jego nieskończonej
wariancji. Rozkład odkryty przez Pareto jest niezwykle ważny chociażby ze względu
na jego coraz liczniejsze zastosowania w różnych gałęziach nauki - od matematyczno-
przyrodniczych po ekonomiczno-społeczne.
Pareto badał empirycznie wzrost zamożności jednostek w różnych społeczeń-

stwach w okresach ”pokoju społecznego” (tzn. w okresie braku wojen, rewolucji,
krachów, etc.). Zauważył, że liczba jednostek y(x), których dochód jest nie mniejszy
od x daje się opisać, dla względnie dużych wartości dochodu, za pomocą rozkładu
potęgowego postaci,

y(x) ∼ 1
xα
, x > 0, (2.2)

gdzie α jest jedynym (oprócz przedwykładniczego czynnika normalizującego) para-
metrem definiującym rozkład. Pareto wyznaczył empirycznie ten wykładnik - wy-
niósł on z dobrym przybliżeniem 1.5 dla tak różnych społeczeństw jak mieszkańcy
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Anglii, Irlandi, Niemiec, Włoch a nawet Peru. Wzór (2.2) można wyrazić za pomocą
funkcji gęstości prawdopodobieństwa f(x) ∼ 1/x1+α

y(x) ∼
∫ xmax

x
dx′f(x′) ∼

∫ xmax

x
dx′
1

x′1+α
, (2.3)

gdzie 1 � x � xmax (tutaj, xmax jest maksymalnym możliwym do osiągnięcia
dochodem jednostki); gęstość f(x) jest miarą względnej liczby jednostek posiadająch
dochód równy dokładnie x. Zatem V. Pareto zaobserwował rozkład asymptotycznie
potęgowy dla dodatnich x,

f(x) ∼ 1
x1+α

. (2.4)

Rozszerzenie tego rozkładu na ujemne wartości x oraz jego systematyczna analiza
została opublikowana dopiero w roku 1926 przez matematyka francuskiego, Paula
Lévy’ego oraz niezależnie przez angielskiego geofizyka L. Richardsona, który zasto-
sował ten rozkład do opisu ruchu obiektów (tzw. pasywnych skalarów) w atmos-
ferze w obecności turbulencji (A. Tsinober: ”Variability of anomalous transport
exponents versus different physical situations in geophysical and laboratory tur-
bulence”, w Lévy Flights and Related Topics in Physics, Lecture Notes in Physics
Vol.450, Springer-Verlag, Berlin 1995, pp.3-33). Należy zaznaczyć, że rozkład Pareto-
Lévy’ego jest weryfikowany po dziś dzień. Na przykład, badania opublikowane w
2001 roku nad społeczeństwem Wielkiej Brytanii (A. Dragulescu, V.M. Yakovenko:
”Exponential and power-law probability distributions of wealth and income in the
United Kigdom and the United States”, Physica A 299 (2001) 213-221) potwier-
dzają w całej rozciągłości obserwacje V. Pareto przy czym tutaj α = 1.90 (gdzie
błąd jest na drugim miejscu po przecinku) dla dochodu netto powyżej 100 k£/year.
Byłoby wielce interesującym przeprowadzenie analogicznych badań nad społeczeń-
stwami wschodzących rynków i gospodarek kapitalistycznych.
Oczywiście, oprócz badań nad zamożnością jednostek prowadzone były i są ba-

dania nad dochodami wielu państw. Badania te przeprowadził jako pierwszy, na
podstawie zbiorczych danych uzyskanych z urzędów skarbowych, włoski ekonomista
i socjolog C. Gini w roku 1922; stwierdził on, że dochody te podlegają (z dobrym
przybliżeniem) prawom potęgowym o znacznie różniących się wykładnikach potęg.
Szczególnie interesujące były badania przeprowadzone pod koniec ubiegłego stu-

lecia nad gospodarką japońską (K. Okuyama, M. Takayasu, H. Takayasu: ”Zipf’s law
in income distribution of companies”, Physica A 269 (1999) 125-131), które wykaza-
ły, że dochody przedsiębiorstw japońskich podlegają prawu potęgowemu Zipfa1 (w
zakresie blisko czterech dekad od dochodu ponad 10 milionów jenów do blisko 105

milionów jenów - patrz rozdz.3.14.3). Co więcej, dochody przedsiębiorstw w ramach
poszczególnych gałęzi gospodarki był tym lepiej opisywane prawem potęgowym im

1Prawo potęgowe Zipfa jest asymptotycznie równoważne rozkładowi Cauchy’ego-Lorentza dla
dodatnich x czyli zbudowane na nim skumulowane prawdopodobieństwo posiada długozasięgowy
”ogon” zanikający z wykładnikiem 1.
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bardziej dana gałąż uczestniczyła w grze wolnorynkowej czyli im mniej było w danej
branży interwencjonizmu państwowego (przy czym wykładnik potęgi α zawiera się
w przedziale 0.72 ¬ α ¬ 1.13 a jego konkretna wartość zmienia się od gałęzi do
gałęzi). Na przykład, branża budowlana podlegająca niemal w pełni wolnej konku-
rencji daje się opisać prawem potęgowym o wykładniku α = 1.13 w zakresie trzech
dekad podczas gdy energetyka, podlegająca istotnej ochronie państwa, zachowuje
się, paradoksalnie, w sposób trudny do opisania.

2.1.1 Skalowanie i log-periodyczność
a bąble i krachy giełdowe

Zauważmy, że na przykład funkcja potęgowa y(x) dana wzorem Pareto (2.2) spełnia
następujące równanie skalowania2

y(λx) = f(| λ |)y(x), (2.5)

gdzie czynnik f skalujący funkcję y(x) jest zależny od λ i (tutaj) dany wzorem

f(λ) =| λ |ν; (2.6)

w dalszym ciagu zakładamy, że wykładnik ν może być zarówno dodatni jak i ujem-
ny (gdyż zależy to od tego z jaką wielkością fizyczna mamy tutaj do czynienia).
Należy podkreślić, że równanie skalowania (2.5) ma charakter ogólny i opisuje za-
chowanie tak różnych substancji jak np. magnetyki, stopy podwójne czy też gaz i
ciecz w obszarze przemiany fazowej w pobliżu punktu krytycznego (zwanym dla-
tego obszarem skalowania lub obszarem krytycznym; M. Toda, R. Kubo, N. Saito:
Fizyka statystyczna I. Mechanika statystyczna stanów równowagowych, Państwowe
Wydawnictwa Naukowe, Warszawa 1991, [6]). Jak uczy doświadczenie, w obszarze
tym większość wielkości fizycznych (opisujących przemianę, oznaczmy je przez WF )
zmienia się w zależności od temperatury T według prawa potęgowego3

WF ∼| T − Tc |α, (2.7)

gdzie α nosi nazwę indeksu lub wykladnika krytycznego, który przybiera wartości
uniwersalne (tzn. niezalezne od rodzaju substancji) a Tc jest temperaturą krytycz-
ną (która np. w przypadku przemiany fazowej ferromagnetyk-paramagnetyk nosi
dodatkowo nazwę temperatury Curie).

2Dokładniej rzecz biorąc, równanie skalowania (2.5) dotyczy także rozkładu Pareto-Lévy’ego
czyli rozkładu y(x) ∼ 1

|x|α , gdzie zmienna losowa x może przyjmować zarówno wartości ujemne jak
i dodatnie a nie tylko dodatnie jak to ma miejsce dla rozkładu Pareto.
3Chodzi o to, że są też wielkości fizyczne takie jak np. ciepła właściwe, które mogą posiadać

w punkcie krytycznym osobliwość logarytmiczną, np. tak jak to ma miejsce w dwuwymiarowym
modelu Isinga; przemiany fazowe, w których to zachodzi nie poddają się w pełni klasyfikacji Eh-
renfesta przemian fazowych (K. Huang: ”Mechanika statystyczna”, Państwowe Wydawnictwa Na-
ukowe, Warszawa 1978, [7]) chociaż pod wieloma względami (np. brak ciepła utajonego i ciągłości
parametru porządku w funkcji temperatury) przypominają przemianę fazową drugiego rodzaju.
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Zadajmy teraz pytanie o najogólniejszą postać rozwiązania singularnego równa-
nia skalowania (2.5). Łatwo sprawdzić, że funkcja postaci

y(x) =| x |α F
(

ln | x |
ln | λ |

)

, (2.8)

jest rozwiązaniem tego równania - jak się okazuje najogólniejszym (co wykażemy w
dalszej części), przy czym F (u) jest funkcją okresową argumentu u o okresie równym
1, natomiast wykładnik potęgi przybiera postać

α =
ln f(λ)
ln | λ | . (2.9)

Podstawiając konkretną postać funkcji f(λ) (tutaj daną wyrażeniem (2.6)) otrzy-
mujemy, że α = ν.
Rozwiniemy teraz okresową funkcję F (u) w szereg Fouriera,

F

(

ln | x |
ln | λ |

)

=
∞∑

n=−∞
cn exp

(

2πin · ln | x |
ln | λ |

)

= c0

[

1 + 2
∞∑

n=1

cn
c0
cos

(

2πn
ln | λ | · ln | x |

)]

, (2.10)

przy czym współczynniki rozwinięcia cn są tutaj dane w postaci

cn =
1
2

∫ 1

−1
duF (u) exp(−2πinu) =

∫ 1

0
duF (u) cos(2πnu), n = 1, 2, . . . , (2.11)

gdzie dla uproszczenia założyliśmy, że F (u) jest parzystą funkcją u a stąd każdy
współczynnik rozwinięcia fourierowskiego jest parzystą funkcją n (tzn. cn = c−n) co
zostało wykorzystane w drugiej równości w (2.10). Ponadto, ograniczamy się tutaj
do rzeczywistej funkcji F co oznacza, że współczynniki cn też są rzeczywiste4.
Stosując grupę renormalizacji wykażemy, że log-periodyczność jest obecna nie

tylko w rozkładach opisujących statystyki zmiennych losowych, np. indeksów gieł-
dowych, ale tkwi już w samych równaniach stochastycznych opisujących dynamikę
tych zmiennych (D. Sornette, A. Johansen, J.-P. Bouchaud: Stock Market Crashes,
Precursors and Replicas, J. Phys. I France 6 (1996) 167-175,[9]; D. Sornette and A.
Johansen: Large financial crashes, Physica A 245 (1997) 411-422, [10]).
Na rys.2.1 przedstawiono notowania indeksu Down Jones na Giełdzie Nowojor-

skiej (NYSE) przed pażdziernikiem 1929 roku czyli przed wielkim krachem na Wall
Street - największym kryzysem giełdowym jaki dotknął świat, a w tym także Stany
Zjednoczone Ameryki, w XX wieku. O głębokości tego kryzysu świadczy fakt, że w

4Parametr λ skalujący zmienną losową nie jest dowolny tylko dla dyskretnej relacji skalowania
o czym będzie także mowa w dalszej części (D. Sornette: ”Discrete scaling invariance and complex
dimensions”, Physics Reports 297 (1998) 239-270, [8]).

20



feralnym tygodniu: (otwarcie) środa 23 pażdziernik - (zamknięcie) wtorek 29 paż-
dziernik, indeks NYSE stracił ok. 30% swojej wartości5. Ponadto, dla porównania
przedstawiono najlepsze dopasowanie rozwiązania singularnego (2.8) uwżględniające
jedynie liniową log-periodyczność (tzn. uwzględniające w drugiej równości w (2.10),
w występującym tam szeregu tylko pierwszy wyraz z n = 1), przy czym jako zmienną
niezależną przyjęto teraz6

x
def= a· | tc − t |, (2.12)

gdzie t(< tc) jest czasem (liczonym w dniach) natomiast tc jest dniem krachu (a
jest tutaj, po prostu, stałą proporcjonalności). Innymi słowy, wzięto tutaj pod uwa-
gę następującą, uproszczoną formułę teoretyczną dla czasu poprzedzającego dzień
krachu tc (czyli dla t < tc)7

y(tc − t) ≈ A+B· | tc − t |α · [1 + C cos (ω ln | tc − t | −φ)] , (2.13)

gdzie zastosowano wygodniejsze oznaczenia B = c0 · aα, C = 2c1/c0,
ω = 2π/ ln | λ |, φ = −ω ln(a).
Jak widać, krach ten nastąpił tuż przed trzecim lokalnym maksimum tej krzywej

- nie jest to jednak bąbel giełdowy w przeciwieństwie do sytuacji przedstawionej
na rys.2.2, gdzie jest on wyrażnie widoczny w przebiegu indeksu giełdy w Kuala
Lumpur (Malezja) w postaci ostrego, lokalnego maksimum bezpośrednio poprzedza-
jącego krach o zupełnie innym kształcie niż wspomniane wcześniej. Właśnie tego
typu kształt będzie dla nas w dalszym ciągu niezbędną sygnaturą bąbla giełdo-
wego; ogólna definicja tzw. racjonalnego bąbla giełdowego pochodzi od Blacharda i
Watsona (O.J. Blanchard: ”Speculative bubbles, crashes and rational expectations”,
Economics Letters 3 (1979) 387-389, [13]; O.J. Blanchard, M.W. Watson: Bubbles,
rational expectations and speculative markets w Crisis in Economic and Financial
Structure: Bubbles, Bursts, and Shocks, ed. P. Wachtel, Lexington Books, Lexing-
ton, MA, [14]) i mówi tylko tyle, że jest to wzrost notowań akcji zachodzący w
relatywnie krótkim okresie czasu (w stosunku do całego rozpatrywanego przedzia-
łu czasu), który znacznie odbiega od fundamentalnej wyceny akcji ale nadal mieści
się w oszacowaniach wynikająch z istniejących modeli, w przeciwieństwie do bąbli
czysto spekulacyjnych.
Ze względu na olbrzymie znaczenie wyrażenia (2.13) w analizie technicznej no-

towań giełdowych, przedstawiamy na poniżych dwóch rysunkach zarówno zależność
y od czasu jak też jego składowych: potęgowej i log-periodycznej.

5Należy zaznaczyć, że podobny kryzys zdarzył się np. w pażdzierniku 1987 roku w tygodniu od
14 (otwarcie) do 19 pażdziernika (zamknięcie); na szczęście jego skutki nie były już tak dramatyczne
jak w roku 1929.
6Oznacza to, że rozważamy teraz dynamiczne przemiany fazowe gdzie rolę temperatury pełni

czas.
7Zauważmy, że data krachu uzyskana z dopasowania funkcji (2.13) do danych empirycznych

może być nieznacznie większa od rzeczywistej daty gdyż dalszemu spadkowi indeksów może po
prostu przeciwdziałać wstrzymanie obrotów na giełdzie.
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Rysunek 2.1: Notowania indeksu Down Jones na Giełdzie Nowojorskiej (NYSE)
przed pażdziernikiem 1929 roku czyli przed wielkim krachem na Wall Street - naj-
większym kryzysem giełdowym jaki dotknął świat, a w tym także Stany Zjedno-
czone Ameryki, w XX wieku. Linią ciągłą oznaczono najlepsze dopasowanie roz-
wiązania singularnego (2.8) uwzględniające jedynie liniową log-periodyczność (tzn.
uwzględniające w drugiej równości w (2.10) w występującym tam szeregu tylko wy-
raz z n=1). Optymalne wartości parametrów to: A = 571, B = -267, C = -0.0536,
α = 0.45, tc = 1930.22, ω = 7.9 oraz φ = 1.0. Jak widać, krach nastąpił tuż
przed trzecim lokalnym maksimum tej krzywej. (Rysunek zaczerpnięto z pracy A.
Johansen, D. Sornette: ”Critical Crashes”, Risk 12 (1990) 91-94, [11]).

Poniżej zamieściliśmy trzy dodatkowe wykresy prezentujące rolę drugiej harmo-
nicznej log-periodycznej poprawki danej wyrażeniem

y(tc − t) ≈ A+B· | tc − t |α ×
× [1 + C cos (ω ln | tc − t | −φ) + C ′ cos (2ω ln | tc − t | −2φ)]

(2.14)

dla pierwszego maksimum na WIG-u.

2.2 Kluczowe pytanie matematyczne

Lévy interesował się przede wszystkim klasą rozkładów stabilnych tzn. takich, któ-
re nie zmieniają swojego kształtu po dokonaniu transformacji od pojedynczej do
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Rysunek 2.2: Przebieg indeksu giełdy w Kuala Lumpur (Malezja) przed jej kra-
chem w styczniu 1994 roku - największym kryzysem giełdowym jaki dotknął Azję
w XX wieku. Linią ciągłą oznaczono najlepsze dopasowanie rozwiązania singular-
nego (2.8) uwzględniające jedynie liniową log-periodyczność (tzn. uwzględniające w
drugiej równości w (2.10) w występującym tam szeregu tylko wyraz z n = 1). Naj-
ważniejsze parametry tego dopasowania to: α = 0.24, tc = 1994.02 oraz ω = 10.9.
Jak widać, krach nastąpił tuż po ostrym lokalnym maksimum tej krzywej czyli był
poprzedzony przez tzw. bąbel giełdowy. (Rysunek zaczerpnięto z pracy A. Johan-
sen, D. Sornette: ”Bubbles and anti-bubbles in Latin-American, Asian and Western
stock markets: An empirical study”, International Journal of Theoretical and Ap-
plied Finance 4 (2001) 853-920, [12]).

sumarycznej zmiennej losowej; mogą one ulegać np. odpowiedniemu spłaszczeniu
i rozciągnięciu. Do tego typu klasy należą m.in. rozkłady Gaussa i Cauchy’ego
(Lorentza) (R. Nowak: ”Statystyka dla fizyków”, Wydawnictwa Naukowe PWN,
Warszawa 2002). Wymienione dwa rozkłady różni jedna zasadnicza cecha: rozkład
Gaussa posiada skończony drugi moment natomiast dla rozkładu Cauchy’ego jest
on nieskończony.
W związku z tym, że rozkłady posiadające skończony drugi moment nie muszą

być stabilne, Lévy postawił kluczowe pytanie o charakterze czysto matematycznym,
mianowicie: jaka jest najogólniejsza definicja pełnej klasy rozkładów sta-
bilnych? Odpowiedż na to pytanie została sformułowana przez Lévy’ego a nieco
póżniej doprecyzowana przez Chinczyna w postaci tzw. Uogólnionego Centralnego
Twierdzenia Granicznego (UCTG; W. Paul, J. Baschnagel: ”Stochastic Processes.
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Rysunek 2.3: Zależność funkcji y(tc− t) danej wzorem (2.13) od czasu t liczonego w
dniach (oscylująca, czerwona linia ciągła) oraz jej składowej potęgowej yPL(tc − t)
(wyrażenie stojące przed nawiasem kwadratowym we wzorze 2.13) (niebieska linia
ciągła); obie linie poprowadzono dla wartości parametrów otrzymanych z dopasowa-
nia do danych empirycznych przedstawionych na rys.2.1.

From Physics to Finance”, Springer-Verlag, Berlin 1999; R.N. Mantegna, H.E. Stan-
ley: ”Ekonofizyka. Wprowadzenie, Wydawnictwa Naukowe PWN, Warszawa 2001;
J.-P. Bouchaud, M. Potter: ”Theory of Financial Risks. From Statistical Physics
to Risk Management”, Cambridge Univ. Press, Cambridge 2001; J.-P. Bouchaud,
A. Georges: Anomalous diffusion in disordered media: statistical mechanics, models
and physical applications, Physics Reports 195 (1990) 127-293) zwanego także twier-
dzeniem granicznym Lévy’ego-Chinczyna. Twierdzenie to podaje explicite najogól-
niejszą postać rozkładu stabilnego zwanego już dzisiaj rozkładem Pareto-Lévy’ego
- omówienie UCTG, a w tym tego rozkładu oraz jego różnych zastosowań w fizyce i
na rynkach finansowych, jest jednym z zasadniczych celów niniejszej książki.

2.2.1 Niezbędne wyjaśnienia

Na rys.2.8 przedstawiliśmy orientacyjnie symetryczny rozkład Pareto-Lévy’ego czyli
najogólniejszą postać (symetrycznego) rozkładu stabilnego

P (x) =
1
π

∫ ∞

0
exp(−γ∆t | k |α) cos(kx)dk, 0 < α ¬ 2, (2.15)

dla czterech typowych wartości indeksu Pareto-Lévy’ego; zauważmy, że gęstość praw-
dopodobieństwa powrotu do początku (zgodnie z (2.15)) wynosi

P (x = 0) =
1

π(γ∆t)1/α
ΓEuler

(

1 +
1
α

)

(2.16)
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Rysunek 2.4: Zależność od czasu (liczonego w dniach) log-periodycznej składowej
funkcji y(tc−t) (wyrażenie stojące wewnatrz nawiasu kwadratowego we wzorze 2.13)
dla parametrów otrzymanych z dopasowania tej funkcji do danych empirycznych
przedstawionych na rys.2.1.

i maleje ze wzrostem indeksu α jak to pokazano rysunku.
Korzystając z rozwinięcia w szereg funkcji eksponens, następnie zamieniając od-

powiednio zmienną bieżącą w wyrażeniu (2.15) i całkując wyraz po wyrazie z wy-
korzystaniem definicji funkcji gamma Eulera (czyli całki Eulera drugiego rodzaju)
można rozkład Pareto-Lévy’ego wyrazić dla | x |> 0 w postaci następującego, wielce
przydatnego szeregu

P (x) = − 1
π

∞∑

j=1

(−1)j
j!
(γ∆t)jΓEuler (1 + αj) sin

(
jπα

2

) 1
| x |1+jα (2.17)

z którego wynika, że dla | x |→ ∞ dominować będzie pierwszy wyraz tego szeregu

P (x→∞) ∼ 1
| x |1+α (2.18)

co dobrze widać w skali log − log na rys.2.9 (porównaj (2.4)).
Na pierwszy rzut oka może budzić zdziwienie istnienie górnego ograniczenia na

indeks rozkładu Pareto-Lévy’ego we wzorze (2.15) - rys.2.10 wyjaśnia ten problem.
Chodzi o to, że gdy α > 2 wówczas funkcja P (x) dana wzorem (2.15) staje się
ujemna dla niektórych wartości zmiennej niezależnej x co pierwszy zauważył w roku
1919 matematyk F. Bernstein.
Na koniec tego paragrafu należy zaznaczyć, że jak dotychczas znane są tylko

trzy zamknięte postacie symetrycznego rozkładu Pareto-Lévy’ego: oprócz rozkładów
Gaussa i Cauchy’ego o których już mówiliśmy, jest jeszcze rozkład Zolotarieva czyli
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Rysunek 2.5: Pierwsze maksimum na WIG-u (czas jest liczony w dniach transakcyj-
nych (td) a index WIG w punktach (p)).

rozkład Pareto-Lévy’ego o indeksie α = 2/3, który wyraża sie za pomocą funkcji
Whittakera W1/2,1/6

P (x) =
1√
2π
1
| x |W1/2,1/6(

4
27
γ2/3

x2
) exp(− 2

27
γ3

x2
); (2.19)

jak widać rozkład Zołotarieva wyraża się za pomocą funkcji nieelementarnej (w
przeciwieństwie do dwóch pozostałych).

2.2.2 Paradoks Petersburski i jego konsekwencje

Poniżej rozważamy dwie zasadnicze kosekwencje Paradoksu Petersburskiego:

1) brak skali fizycznej zjawisk i procesów,

2) wprowadzenie funkcji użyteczności.

Obie otworzyły drogę współczesnym teoriom zjawisk i procesów bezskalowych oraz
współczesnej teorii użyteczności.
Najpierw jednak rozważymy zaskakującą własność rozkładu Pareto-Lévy’ego,

która przez dziesięciolecia powstrzymywała fizyków przed jego stosowaniem - cho-
dzi o rozbieżność drugiego momentu czyli o nieskończoną dyspersję tego rozkładu.
Zauważmy, że ma miejsce następujący wzór na moment rzędu (stopnia) m zmiennej
losowej x

〈xm〉 = (−i)m dm

dkm
P̃ (k) |k=0, (2.20)

gdzie P̃ (k) jest transformatą Fouriera, zwaną także funkcją charakterystczną roz-
kładu P (x) (wzór (2.20) wyprowadziliśmy w rozdz. ... dla ogólniejszego przypadku
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Rysunek 2.6: Zależność funkcji (2.14) uwzględniającej drugą harmoniczną log-
periodyczną poprawkę (oscylująca, czerwona linia ciągła) od czasu t (liczonego w
dniach) oraz jej składowej potęgowej (wyrażenie stojące przed nawiasem kwadrato-
wym we wzorze (2.13), niebieska linia ciągła); obie linie poprowadzono dla wartości
parametrów otrzymanych z dopasowania do danych empirycznych przedstawionych
na rys.2.1 przy czym swobodny parametr ważący tą poprawkę jest tutaj ujemny i
wynosi przykładowo C’ = 0.03.

momentów ułamkowych, korzystając z definicji pochodnej ułamkowej). Jak widać,
funkcja charakterystyczna rozkładu Pareto-Lévy’ego (2.15) jest dana wyrażeniem

P̃ (k) = exp(−γ | k |α), (2.21)

co w połączeniu ze wzorem (2.20) prowadzi do warunków

〈xm〉
{

<∞, dla m ¬ α
=∞, w przeciwnym razie (2.22)

czyli np. do wspomnianej na wstępie rozbieżności dyspersji rozkładu σx =
√

〈x2〉.
Właśnie ta własność jest kluczowym elementem Paradoksu Petersburskiego.

Brak skali fizycznej

Na istnienie w rachunku prawdopodobieństwa nieskończonych wartości przeciętnych
zwrócili już uwagę na początku XVIII wieku N. Bernoulli i D. Bernoulli posługując
się wprowadzonym przez siebie przykładem tzw. Paradoksem Petersburskim.
Jest to gra hazardowa, w której bankier rzuca symetryczną monetą n razy. Gracz
uczestniczący w tej grze wygrywa 2n−1 monet jeżeli n − 1 razy pod rząd wypadnie
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Rysunek 2.7: Zależność składowych log-periodycznych (zerowej, pierwszej i drugiej
harmonicznej traktowanych sumarycznie) dla tego samego przypadku, którego do-
tyczy rys.2.6.

Tabela 2.1: Tabela wygranych

Liczba rzutów Wygrana Prawdopodobieństwo Wartość oczekiwana
1 20 1/2 1 · 1/2 = 1/2
2 21 1/4 2 · 1/4 = 1/2
3 22 1/8 4 · 1/8 = 1/2
. . . . . . . . . . . .
n 2n−1 1/2n 2n−1 · 1/2n = 1/2
. . . . . . . . . . . .

avers zanim w kolejnym (n-tym rzucie) wypadnie revers8. Otrzymane wyniki zostały
przedstawione w tabeli 2.1. Jak widać, sumaryczna wygrana (czyli wartość oczeki-
wana), która jest równa sumie wszystkich liczb z ostatniej kolumny 1/2+ 1/2+ . . .,
rozbiega się w miarę jak liczba rzutów rośnie. Zatem, dla każdej skończonej stawki
jaką mógłby zaproponować wchodzący do gry gracz jego wygrana będzie prędzej
czy póżniej bardziej prawdopodobna niż porażka. Mimo to gracz nie zgodzi sią na
nieskończoną stawkę jaka byłaby wymagana przez grę sprawiedliwą gdyż, oczywi-
ście, nie jest w stanie grać nieskończenie długo. Z kolei bankier nie zgodzi się na
żadną skończoną opłatę wstępną gracza gdyż (jak powiedzieliśmy) straci ją prędzej
czy póżniej. Widać, że mamy tutaj do czynienia z nierozwiązywalnym konfliktem
(zresztą z tego powodu gry o nieskończonej wartości oczekiwanej nie nadają sią do

8Umówmy się, że niezasłużona wygrana gracza dla n=1, czyli gdy ani razu nie wypadł avers,
ma go zachęcić do przystąpienia do tej gry.
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Rysunek 2.8: Rozkład Pareto-Lévy’ego dla wartości parametru skalującego γ = 1
oraz czterech typowych wartości indeksu Pareto-Lévy’ego: (1) linia czarna dotyczy
indeksu α = 2 czyli opisuje rozkład Gaussa centrowany w zerze o dyspersji σ =√
2 γ =

√
2, (2) linia czerwona opisuje rozkład Pareto-Lévy’ego o indeksie α = 1.5,

natomiast (3) linia zielona o indeksie α = 1 czyli rozkład Cauchy’ego-Lorentza,
podczas gdy (4) linia niebieska rozkład o indeksie α = 0.5. Widać istotną różnicę
pomiędzy rozkładami o indeksie α ­ 1 a tymi o indeksie α < 1.

zastosowania w kasynach). Jaka jest przyczyna tego konfliktu. Otóż bankier i gracz
nie mogą ustalić żadnej kompromisowej stawki gdyż takiej charakterystycznej stawki
(lub mówiąc językiem fizyki, skali) po prostu nie ma.
Wracając do rozkładu Pareto-Lévy’ego, nieskończona dyspersja oznacza właśnie

brak charakterystycznej skali fluktuacji statystycznych; innymi słowy wszystkie skale
są tutaj równoprawne - zjawiska opisywane tym rozkładem zachodzące w różnych
skalach są (w sensie matematycznym) podobne, czyli połączone relacją skalowanie
o czym jest mowa szczegółowo w dalszej części.

Funkcja użyteczności

Odpowiemy teraz na zasadnicze pytanie a mianowicie, jak należy zmodyfikować
stawkę wygranej, W (n), w każdym kroku, n, gry aby oczekiwana wartość wygranej
była skończona, czyli gra była użyteczna? Modyfikacja zaproponowana przez D.
Bernoulliego jest prosta:

W (n) = (n− 1) ln 2. (2.23)
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Rysunek 2.9: Rozkład Pareto-Lévy’ego w skali log− log dla wartości parametru ska-
lującego γ = 1 oraz dwóch skrajnych (spośród czterech typowych) wartości indeksu
Pareto-Lévy’ego przedstawionych na rys.2.8: (1) linia czarna dotyczy indeksu α = 2
czyli opisuje rozkład Gaussa centrowany w zerze o dyspersji σ =

√
2, a (2) linia

niebieska rozkład o indeksie α = 0.5.

Widać, że wartość oczekiwana tak zdefiniowanej wygranej

〈W 〉 =
∞∑

n=1

1
2n
W (n) =

1
2
ln 2

∞∑

n=1

n− 1
2n−1

= ln 2. (2.24)

jest skończona. Z tego powodu funkcję U(n) = lnW (n) nazywa się funkcją uży-
teczności. Właśnie wartości funkcji użyteczności U(n), n = 0, 1, . . ., mogą stanowić
sensowne wielkości stawek wygrywanych w tej grze - stawek, które są ”spłaszczone”
dla dużych wartości n, tzn. ich wzrost w miarę wzrostu n jest spowolniony , tak
jak być powinno (bogatszym może nie zależeć tak bardzo na wygranej jak biedniej-
szym). Opisane powyżej podejście (oparte o Paradoks Petersburski) otworzyło drogę
do powstania współczesnej teorii użyteczności (patrz Wikipedia:
pl.wikipedia.org/wiki/Paradoks-petersburski).
Tytułem pożytecznej dygresji warto podkreślić, że Jacob Bernoulli skonstru-

ował rozkład zmiennej losowej (wspólcześnie nazywany rozkładem dwumianowym
ale także rozkładem Bernoulliego), której wartość oczekiwana jest zarazem domi-
nantą (czyli wartością najbardziej prawdopodobną). Tego typu rozkłady są dobrymi
kandydatami do opisu otaczającej nas probabilistycznej rzeczywistości.

30



2 4 6
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(x)

Rysunek 2.10: Zależność funkcji P (x) danej wzorem (2.15) od x dla parametru γ = 1
oraz indeksu α = 3 - jest to zależność typowa dla sytuacji gdy indeks α jest większy
od 2. Jak widać, funkcja P (x) przybiera także wartości ujemne co ją dyskwalifikuje
jako funkcję rozkładu prawdopodobieństwa dla α > 2.

2.3 Motywacja fizyczna

Chcąc nie chcąc, liczba doświadczeń które dają się opisać za pomocą spowolnionej
relaksacji, zwanej także długookresową (czyli anomalną, niedebye’owską albo nieek-
sponencjalną) szybko rośnie. Są to przede wszystkim zjawiska dotyczące relaksacji w
środowisku amorficznym, nieuporządkowanym (”random materials”). Spośród nich
najbardziej znane są te dotyczące relaksacji (M. Ghosh, B.K. Chakrabarti: ”Rela-
xation in disordered systems”, Indian Journal of Physics 65 A (1991) 1-24):

- fotoprądów w amorficznych filmach szklistych a w tym relaksacji fotoprądów
w eksperymentach kserograficznych (E.W. Montrol, M.F. Shlesinger: ”On the
wonderful world of random walks” in ”Nonequilibrium Phenomena II. From
Stochastics to Hydrodynamics”, Studies in Statistical Mechanics, Vol.XI, eds.
J.L. Lebowitz, E.W. Montroll, North-Holland, Amsterdam 1984)

- relaksacji namagnesowania magnetyków poniżej temperatury krytycznej

- szkieł spinowych

- układów perkolujących
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- starzejących się szkieł i polimerów

- relaksacji lepko-elastycznej

- relaksacji rekombinacyjnej w epitaksjalnych półprzewodnikach

- niestabilności w materii granulowanej (np. lawiny w samoorganizującej się kry-
tyczności kopca piachu lub silosa ze zbożem, cementem, itp.)

a także dotyczące

- anomalnej dyfuzji wodoru w amorficznych metalach przejściowych (R. Hem-
pelmann: ”Hydrogen Diffusion in Proton Conducting Oxides and in Nanocry-
stalline Metals” in ”Anomalous Diffusion. From Basics to Applications”, Lec-
ture Notes in Physics Vol.519, eds. R. Kutner, A. Pękalski, K. Sznajd-Weron,
Springer-Verlag, Berlin 1999)

- chłodzenia laserowego stanowiącego zasadniczy element metody pozwalającej
na pułapkowanie atomów w postaci kondensatu Bosego-Einsteina, przy czym
statystyka czasów życia tych atomów w pułapce podlega rozkładowi Lévy’ego
z wykładnikiem α = 1/2, (F. Bardou, J.-P. Bouchaud, A. Aspect, C. Cohen-
Tannoudji: ”Lévy Statistics and Laser Cooling. How Rare Events Bring Atoms
to Rest”, Cambridge Univ. Press, Cambridge 2002).

Spowolnioną relaksację opisuje się najczęściej za pomocą kilku rodzajów funk-
cji relaksacji f(t). Na przykład, za pomocą prawa Kohlrauscha-Williamsa-Wattsa
(KWW)

f(t) = exp
(

−
(
t

τ

)α)

, (2.25)

gdzie 0 < α < 1; wyrażenie (2.25) nosi także nazwę rozciągniętego exponensa (’stret-
ched exponent’). Również za pomocą prawa potęgowej relaksacji Nuttinga

f(t) =
1

(1 + t/τ)n
, (2.26)

gdzie wykładnik 0 < n < 1. Jak też, ogólnie rzecz biorąc, za pomocą funkcji, które
posiadają asymptotyczny zanik potęgowy

f(t) ∼ 1
tα
, (2.27)

(gdzie 0 < α) o czy będzie mowa w dalszej części.
Na rys.2.11 porównano w skali liniowej trzy rodzaje funkcji relaksacji: (zwykły)

exponent czyli (standardowe) prawo relaksacji Debye’a (linia zielona)

f(t) = exp(−t/τ), (2.28)
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Rysunek 2.11: Porównanie w skali liniowej trzech rodzajów funkcji relaksacji: prawa
relaksacji Debye’a (linia zielona), Kohlrauscha-Williamsa-Wattsa (linia czerwona)
oraz Nuttinga (linia niebieska) dla parametrów τ = 1 oraz α = n = 0.75.

oraz prawa KWW (linia czerwona) i Nuttinga (linia niebieska) dla parametrów τ = 1
i α = 0.75.
Analogicznie, na rys.2.12 porównano w skali log− log trzy rodzaje funkcji relak-

sacji: prawa relaksacji Debye’a (linia zielona), Kohlrauscha-Williamsa-Wattsa (linia
czerwona) oraz Nuttinga (linia niebieska) dla takich samych wartości parametrów
τ , α i n.
Jak powiedzieliśmy na wstępie, relaksacja potęgowa została po raz pierwszy za-

obserwowana przez B.G. Buelfingera w roku 1729 w badaniach nad relaksacją na-
prężeń w takich materiałach jak stal i kamień. Od roku 1888 nosi ona nazwę prawa
sprężystości Bacha.
Z grubsza rzecz biorąc, spowolniona relaksacja może być wynikiem istnienia w

układzie złożonym wielu silnie sprzężonych i różnie relaksujących podukładów, co
może prowadzić do retardacji lub, ogólniej mówiąc, pamięci a zatem do niemarko-
wowskiego charakteru procesu relaksacji (W.G. Glöckle, Th.F. Nonnenmacher: ”Fox
Function Representation of Non-Debye Relaxation Processes”, Journal of Statistical
Physics 71 (1993) 741-757; Th.F. Nonnenmacher, R. Metzler: ”Applications of frac-
tional calculus techniques to problems in biophysics” rozdz.VIII w ”Applications of
fractional calculus in physics”, pod redakcją R. Hilfera, World Scientific, Singapore
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Rysunek 2.12: Porównanie w skali log− log trzech rodzajów funkcji relaksacji przed-
stawionych na rys.2.11 w skali liniowej: prawa relaksacji Debye’a (linia zielona),
Kohlrauscha-Williamsa-Wattsa (linia czerwona) oraz Nuttinga (linia niebieska) dla
takich samych wartości parametrów τ , α i n.

2000). To z kolei prowadzi do ułamkowego (czyli fraktalnego) równania relaksacji,
którego rozwiązaniem jest funkcja Foxa zanikająca, jak wiadomo, potęgowo. Sys-
tematyczne omówienie tych zagadnień jest jednym z zasadniczych celów niniejszej
pracy.

2.4 Relaksacja fraktalna

Na zakończenie tego rozdziału wprowadzimy fraktalne równanie na funkcję relak-
sacji dzięki któremu będziemy mogli odtworzyć wprowadzoną wcześniej relaksację
potęgową. Jak wiadomo, wykładnicza funkcja relaksacji (2.28) jest rozwiązaniem
równania różniczkowego

df(t)
dt
= −1

τ
f(t), t > 0, (2.29)

z zadanym warunkiem początkowym f(t = 0) = f0. Odpowiednikiem całkowym
równania (2.29) jest następujące

f(t)− f0 = −
1
τ

d−1f(t)
dt−1

def.
= −1

τ

∫ t

0
dt′f(t′); (2.30)
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ponieważ całkowanie pełni rolę operacji odwrotnej do zwykłego różniczkowania dla-
tego oznaczyliśmy je tutaj jako ujemną pochodną. Oczywiście, pochodna ta ma
zupełnie inny charakter niż dodatnia a mianowicie, jest typu globalnego (w przeci-
wieństwie do dodatniej, która ma charakter lokalny).
Uogólnienie równania (2.30) polega na zastąpieniu występującego tam ujemnego

różniczkowania, ujemnym różniczkowaniem ułamkowym

f(t)− f0 = −
1
τα
d−αf(t)
dt−α

, 0 < α, (2.31)

gdzie ujemna pochodna stopnia −α jest po prostu operatorem całkowym Riemanna-
Liouville’a

d−αf(t)
dt−α

def.
=

{
1

ΓEuler(α)

∫ t
0 dt
′ f(t′)
(t−t′)1−α dla α > 0

f(t) dla α = 0
(2.32)

(patrz Dodatek A). Różniczkując stronami równanie całkowe (2.31) otrzymujemy
fraktalne równanie relaksacji czyli równanie różniczkowo-całkowe postaci

df(t)
dt
= − 1

τα
d1−αf(t)
dt1−α

, 0 < α, (2.33)

które stanowi bezpośrednie uogólnienie zwykłego równania różniczkowego pierw-
szego stopnia (2.29) opisująego relaksację debye’owską. Rozwiązanie tego równania
wyraża się za pomocą funkcji Foxa typu H1,11,2 (Th.F. Nonnenmacher, R. Metzler:
”Applications of Fractional Calculus Techniques to Problems in Biophysics” w ”Ap-
plications of Fractional Calculus in Physics”, ed. R. Hilfer, World Scientific, Singa-
pore 2000) lub inaczej rzecz biorąc, za pomocą funkcji Mittag-Leffler Eα (R. Metzler
and J. Klafter: ”The Random Walk’s Guide to Anomalous Diffusion: A Fractional
Dynamics Approach”, Physics Reports 339 (2000) 1-77, [18]),

f(t) =
f0
α
H1,11,2

[

t

τ

∣
∣
∣
∣
∣

(0, 1
α
)

(0, 1
α
), (0, 1)

]

= f0H
1,1
1,2

[(
t

τ

)α
∣
∣
∣
∣
∣

(0, 1)
(0, 1), (0, α)

]

= f0Eα

((

− t
τ

)α)

= f0
∞∑

j=0

(

− t
τ

)αj

ΓEuler(1 + αj)
. (2.34)

Rozwiązanie to przejawia następujące zachowania graniczne

f(t) ≈ f0






exp
(

− (t/τ)α

ΓEuler(1+α)

)

dla t� τ
1

ΓEuler(1−α)
1

(t/τ)α
dla t� τ oraz 0 < α < 1,

(2.35)

z których pierwsze to nic innego jak wspomniane przez nas wcześniej prawo relaksacji
Kohlrausha-Williamsa-Wattsa a drugie (także wspomniane przez nas) prawo zaniku
potęgowego z wykładnikiem 0 < α < 1; dla innych wartości α nie uzyskuje się
asymptotycznego prawa potęgowego.
Na rys. ... przedstawiono przykładowy przebieg funkcji Foxa H1112 dla trzech róż-

nych wartości wykładnika α.
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2.4.1 Rola pamięci w relaksacji

Spojrzymy teraz na relaksację od strony umozliwiającej analizę roli jaką odgrywa w
niej pamięć. Rozważmy zatem następujące równanie różniczkowo-całkowe z jądrem
pamięci K(t),

df(t)
dt
= −

∫ t

0
dt′K(t− t′)f(t′). (2.36)

Należy podkreślić, że powyższe równanie uzyskano przy wykorzystaniu techniki ope-
ratopów rzutowych Zwanziga. Powyższe równanie pozwoli nam na wyprowadzenie
wszystkich omawianych dotychczas rodzajów relaksacji poprzez odpowiedni dobór
jądra całkowego K(t).
A) Brak pamięci. Przypuśćmy, że w układzie nie występuje pamięć tzn., że jądro

całkowe

K(t) =
1
τ
δ(t); (2.37)

podstawiając powyższe wyrażenie do równania (2.36) otrzymujemy jako jego roz-
wiązanie wykładniczą funkcję relaksacji

f(t) = f0 exp(−
t

τ
) (2.38)

(daną już wcześniej właśnie wzorem (2.28)).
B) Pamięć stała. Załóżmy teraz, że jądro pamięci jest niezależne od czasu czyli

K(t) = ω2, (2.39)

wówczas, podstawiając (2.39) do (2.37), otrzymujemy oscylujące rozwiązanie na
funkcję relaksacji

f(t) = f0 cos(ωt), (2.40)

gdzie ω jest pewną stałą większą od zera.
C) Pamięć wolnozmienna. Przypuśćmy, że jądro całkowe, K(t), jest wolnozmien-

ną funkcją czasu i początkowo (dla t� τ) narasta w sposób potęgowy

K(t) = K0tγ , γ > 0. (2.41)

Stąd oraz z równania (2.36) otrzymujemy jako rozwiązanie funkcję relaksacji

f(t) ≈ f0 exp
(

−
(
t

τ

)γ+2
)

, τ−1 = K1/(γ+2)0 (2.42)

w postaci rozciągniętego eksponensu.
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D) Pamięć długookresowa. Załóżmy teraz, że jądro pamięci jest dla t > 0 alge-
braicznie malejącą funkcją czasu

K(t) =
K0
t2−α

, K0 > 0, 1 < α ¬ 2; (2.43)

podstawiając, jak zwykle, powyższą postać jądra do równania (2.36) otrzymujemy
natychmiast, że

df(t)
dt
= − 1

τα
d1−αf(t)
dt1−α

, τ−α
def.
= K0Γ(α− 1) (2.44)

gdzie po drodze skorzystaliśmy z definicji ujemnej pochodnej fraktalnej (2.32). Jak
widać, jądro całkowe typu (2.43) prowadzi do równania relaksacji fraktalnej (2.33)
z zakresem wykładnika α ograniczonym do przedziału 1 < α ¬ 2.
Powstaje teraz pytanie o związek fraktalnego równania relaksacji (2.33) z równa-

niem z pamięcią (2.36) dla 0 < α ¬ 1. Innymi słowy, chodzi o odpowiedż na pytanie
czy dla 0 < α ¬ 1 istnieje jądro całkowe K(t) a jeżeli tak to jaką ma postać?

2.4.2 Spowolniona relaksacja na Warszawskiej GPW

Tytułem przykładu spowolnionej relaksacji rozważymy indeks WIG a dokładniej
jego relaksację po osiągnięciu pierwszego maksimum (zawartego w obszarze pierw-
szych 550 dni transakcyjnych istnienia giełdy co jest dobrze widocznego na rysunku
2.13). Na rysunku 2.14 przedstawiono już tylko wspomniany obszar pierwszego mak-
simum. Dokładniej, prawe zbocze tego maksimum przedstawia rysunek 2.15.

2.5 Dynamika materiału lepko-sprężystego a re-
laksacja fraktalna

Przedstawimy teraz drogę na jakiej uzyskuje się relaksację fraktalną z równań opi-
sujących dynamikę materiału lepko-sprężystego (wisko-elastycznego). Punktem wyj-
ścia jest połączenie prawa sprężystości Hooka z prawem Newtona opisującego lepkie
własności ciała stałego związane z nieodwracalną dysypacją energii sprężystości.
Połączenie to prowadzi do modelu Maxwella-Zenera ciała stałego. Dopiero w na-
stępnum kroku, posługując się analogią, przejdziemy do opisu relaksacji fraktalnej
indeksu giełdowego, przykładowo WIG-u.

2.5.1 Model Zenera ciała stałego

Prawo Hooka. Siły działające prostopadle do powierzchni ciała stałego powodują, w
zależności od zwrotu, jego ściskanie albo rozciąganie. Miarą odkształcenia (zarówno
przy ściskaniu jak i rozciąganiu) jest względna zmiana długości ciała ε = ∆l/l zwana
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Rysunek 2.13: Przykładowy przebieg indeksu WIG poczynając od pierwszej sesji 16
kwietnia 1991 roku aż do tej w ... liczony w dniach transalcyjnych (td) na otwarciu.

odkształceniem lub deformacją; związek tej wielkości z działającą siłą F określa
prawo Hooka:

ε = Kσ =
1
E
σ, (2.45)

gdzie naprężenie wewnętrzne σ = F/S, przy czym S jest polem przekroju poprzecz-
nego pręta (w dalszym ciągu będziemy omawiać tylko tego typu ciała), natomiast
współczynnik E jest modułem sprężystości Younga. Z prawa tego wynika, że reak-
cja ciała na przyłożone naprężenie jest natychmiastowa tak jak i po usunięciu go.
Tego typu zachowanie ciała nazywamy sprężystym. Wiadomo z doświadczenia, że
własności sprężyste ciał obserwuje się tylko w ograniczonym zakresie odkształceń.
W szerszym zakresie obserwuje się (w różnym stopniu) zachowanie plastyczne, w
którym odkształcenie wzrasta (do pewnej charakterystycznej wielkości) nawet jeżeli
naprężenie nie ulega zmianie. Model Zenera (MZ) ciała stałego uwzględnia już oba
efekty (sprężystości i plastyczności). Aby opisać efekt plastyczności model Zenera
bazuje, oprócz prawa Hooka, na wyrażeniu Maxwella-Newtona opisującego relaksa-
cję ciała posiadającego lepkść.
Wyrażenie Maxwella-Newtona. Wyrażenie Maxwella-Newtona łączy naprężenie

przyłożone do ciała z szybkością zmiany odkształcenia na jednostkę czasu

dε

dt
= b · σ(t) ≡ ηdε

dt
= σ, (2.46)

gdzie η jest lepkością ciała (zwaną także tarciem wewnętrznym) a b ruchliwością.
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Rysunek 2.14: Przebieg indeksu WIG (w skali półlogarytmicznej) dla pierwszych
550 dni transakcyjnych istnienia giełdy. Zielona linia oznacza poziom odniesienia,
linia niebieska pokazuje exponensjalny wzrost indeksu, natomiast linia czerwona jest
dana wzorem (2.34).

Model Zenera. Model Zenera sformułujemy w postaci umożliwiającej bezpośred-
nie zastosowanie do opisu dynamiki indeksów giełdowych. Sformułowanie to uza-
leżnia odkształcenie ε od naprężenia σ a nie odwrotnie jak to jest w tradycyjnym
podejściu. Oznacza to, że skorzystamy z pierwszych równości w (2.45) i (2.46). Obec-
ne podejście bazuje na następującym liniowym równaniu różniczkowym:

dε(t)
dt
+
1
τ0
ε(t) =

K1
τ0
σ(t) + (K1 +K2)

dσ(t)
dt

, (2.47)

które jest kombinacją prawa Hooka i wyrażenia Maxwella-Newtona; τ0, K1, K2 są
niezależnymi parametrami a współczynnik lepkości η = 1/b = (K1/τ0)−1. Jego roz-
wiązanie jest postaci:

ε(t) = C1 exp(−
t

τ0
) + C2 exp(−

t

τ0
)
∫ t

0
exp(

t′

τ0
)[
K1
τ0
σ(t′) + (K1 +K2)

σ(t′)
dt′
]dt′,(2.48)

która świetnie nadaje się do dalszej analizy. Aby zrozumieć znaczenie współczynni-
ków K1 i K2 przedyskutujemy to rozwiązanie dla przypadku stałego naprężenia σ0
(wyznaczając przy okazji stałe C1 i C2).
Dyskusja rozwiązania równania (2.47) dla przypadku stałego naprężenia.W tym

przypadku rozwiązanie równania (2.47) przyjmuje prostszą postać:

ε(t) = C1 exp(−
t

τ0
) + C2K1σ0[1− exp(−

t

τ0
)], (2.49)
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Rysunek 2.15: Przebieg prawego zbocza indeksu WIG (w skali półlogarytmicznej) dla
pierwszego maksimum; czerwona linia jest obliczona za pomocą szeregu we wzorze
(2.34).

przy czym stałą C1 można wyznaczyć z warunku początkowego

ε(t = 0) = ε0 = (K1 +K2)σ0 = C1, (2.50)

natomiast stałą C2 z ograniczenia jakie nakładamy na asymptotyczne zachowanie

ε(t→∞) = ε0 + ε′0 = K1σ0, (2.51)

które oznacza (w połączeniu z (2.50)), że ε′0 = −K2σ0 oraz (w połączeniu z (2.49)),
że C2 = 1. Rozwiązanie (2.49) wraz z wyznaczonymi stałymi prowadzi do dwóch
następujących sytuacji:

(i) −K1 ¬ K2 < 0 ≡ ε0 ¬ ε0 + ε′0 ≡ ε′0 ­ 0,

(ii) K2 ­ 0 ≡ ε′0 ¬ 0,
które ilustrujemy na dwóch kolejnych rysunkach 2.16 i 2.17.
9Wyprowadzenie równania (2.47). Dokładniej rzecz biorąc, równanie (2.47) zo-

stało uzyskane w oparciu o termodynamikę procesów nieodwracalnych. Tutaj wy-
prowadzimy je analogicznie ale w kontekście rynków finansowych korzystając z od-
powiednich analogii zebranych w poniższej tabeli.

2.6 Subdyfuzja fraktalna

Analogicznie jak w rozdz.2.4, można otrzymać na drodze czysto formalnej równa-
nie dyfuzji fraktalnej (ang. Fractional Diffusion Equation, R. Metzler, J. Klafter:

9W pierwszym czytaniu można niniejsze wyprowadzenie opuścić.

40



Rysunek 2.16: Rozwiązanie równania (2.49) dla sytuacji (i).

The Random Walk’s Guide to Anomalous Diffusion: A Fractal Dynamics Approach,
Physics Report 339 (2000) 1–77, [18]). Proces stochastyczny prowadzący do tego
równania nosi nazywę błądzenia losowego w czasie fraktalnym (ang. fractal time
random walk). Na wyprowadzenie równania dyfuzji fraktalnej w ramach tzw. mode-
lu dolinowego (ang. Valley Model), opisującego błądzenie losowe dziur w materiale
amorficznym, wskazaliśmy w rozdz. 7.3.1.
Zatem, rozważmy jednowymiarowe równanie dyfuzji Ficka (dla uproszczenia bez

dryfu)

∂f(x, t)
∂t

= D
∂2f(x, t)
∂t2

; (2.52)

w dalszym ciągu zakładamy dla prostoty, że współczynnik dyfuzji D jest stały.
Całkując to równanie stronami po czasie otrzymujemy jako kroki pośrednie:

f(x, t)− f(x, t = 0) = D ∂−1

∂t−1
∂2f(x, t)
∂x2

(2.53)

oraz uogólnienie powyższego równania dla 0 ¬ α < 1 - stąd pochodzi nazwa subdy-
fuzja,

f(x, t)− f(x, t = 0) = Dα
∂−α

∂t−α
∂2f(x, t)
∂x2

, (2.54)

gdzie Dα jest uogólnionym współczynnikiem dyfuzji (tutaj stałym), którego wymiar
wynosi długość2/czasα, o czym dokładniej powiedzieliśmy w dalszej części (patrz
rozdz. 7.3.1).
Różniczkując cząstkowo po czasie (2.54), uzyskujemy poszukiwane równanie sub-

dyfuzji fraktalnej

∂f(x, t)
∂t

= Dα
∂1−α

∂t1−α
∂2f(x, t)
∂x2

. (2.55)
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Rysunek 2.17: Rozwiązanie równania (2.49) dla sytuacji (ii).

Rozwiązanie tego równania można wyrazić za pomocą H-funkcji Foxa

f(x, t) =
1√
4Dαtα

H2,01,2

[

x2

4Dατα

∣
∣
∣
∣
∣

(1− α
2
, α)

(0, 1), (1
2
, 1)

]

(2.56)

albo w alternatywnej postaci

f(x, t) =
1√
4Dαtα

H1,01,1

[

| x |√
Dατα

∣
∣
∣
∣
∣

(1− α
2
, α
2
)

(0, 1)

]

. (2.57)

Najważniejsze własności H-funkcji Foxa, zwłaszcza w domenie Fouriera i w domenie
Laplace’a oraz dla sytuacji asymptotycznej, omówiliśmy w Dodatku A.
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Część II

Procesy gaussowskie
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Rozdział 3

Ruch Browna, opalescencja
krytyczna, błękit nieba,
rozpraszanie krytyczne

Nasuwa się od razu pytanie: co łączy ze sobą wymienione w tytule tego rozdziału,
kluczowe dla naszych rozważań, zjawiska? Odpowiedż, podaną niezależnie przez fi-
zyków Alberta Einsteina i Mariana Smoluchowskiego można wyrazić jednym słowem
fluktuacje - to dzięki istnieniu dużych fluktuacji termicznych w różnych układach
złożonych możliwe jest zaobserwowanie ruchów Browna, opalescencji krytycznej i te-
mu podobnych zjawisk. Jednakże pomiędzy tymi zjawiskami występują także zasad-
nicze różnice co do charakteru fluktuacji chociaż w obu przypadkach są one makro-
skopowe: w ruchach Browna są ograniczone podczas gdy w zjawiskach krytycznych
są z zasady nieograniczone. Odpowiednio do tego mówimy o procesach gaussowskich
i niegaussowskich.
Należy podkreślić, że niniejsza praca dotyczy przede wszystkim niegaussowskiego

aspektu różnorodnych zjawisk przyrody, w tym biologicznych, medycznych i ekolo-
gicznych, ale także zjawisk społecznych i ekonomicznych przy czym zawężona jest do
dziedziny błądzeń przypadkowych. Przy czym, procesy gaussowskie stanowią tutaj
niezbędną podstawę.

3.1 Ruch Browna

Zrozumienie zjawiska ruchu Browna, które zostało szczegółowo opisane przez an-
gielskiego botanika Roberta Browna w 1827 roku, nastąpiło na początko XX w. i
związane jest z nazwiskami fizyków Alberta Einsteina, Paula Langevina, a przede
wszystkim Mariana Smoluchowskiego - zawdzięczamy Im wyjaśnienie mechanizmu
tego zjawiska w oparciu o kinetyczno-molekularną teorię materii, dynamikę stocha-
styczną oraz teorię stochastycznych procesów Markowa (patrz N.G. van Kampen:
”Procesy stochastyczne w fizyce i chemii”, Państwowe Wydawnictwo Naukowe, War-
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szawa 1990; R. Kubo, M.Toda, N. Hashitsume: ”Fizyka statystyczna II. Mechanika
statystyczna stanów nierównowagowych”, Wydawnictwa Naukowe PWN, Warsza-
wa 1991; S. Chandrasekhar, M. Kac, R. Smoluchowski, ”Marian Smoluchowski His
Life and Scientific Work”, PWN, Warszawa 2000; S. Chandrasekhar, ”Stochastic
Problems in Physics and Astronomy”, Rev. Mod. Physics, 15, 1-89 (1943); B. Ci-
chocki, ”Ruchy Browna”, Delta (1983) nr 4 str 4-5 oraz nr 5 str. 6-10; R. Kutner,
”Metoda Monte Carlo a ruchy Browna”, Delta (1986) nr 9 str. 10-12; B. Średniawa,
”Marian Smoluchowski (1872-1917)”, Delta (1997) nr 12 str. 3-6). Porównanie teorii
z doświadczeniem pozwoliło Jeanowi Perrinowi na wyznaczenie liczby Avogadro, a
zatem bezwzględnych mas atomowych i stanowiło przekonywujący dowód realności
tzw. hipotezy atomistycznej budowy materii, której korzenie sięgają starożytności,
poczynając od Demokryta z Abdery (A. Gawryś, Z. Gawryś, ”Poczet wielkich fi-
zyków atomistów”, Instytut Wydawniczy ”Nasza Księgarnia”, Warszawa 1976), a
przede wszystkim doprowadziło ostatecznie (w roku 1908) do uznania kinetycznej
teorii materii stworzonej (w 1898 roku) przez Ludwiga Boltzmanna (który niestety
nie dożył tej chwili).
Charakterystyczna własność ruchu Browna to występująca nieustan-

nie nieregularna zmiana położenia makrocząsteczki (np. kuleczki tłuszczu
lub pyłku kwiatowego) o rozmiarach rzędu 10−4 cm, zawieszonej w cieczy (np. w
rozcieńczonym mleku albo w wodzie) lub w gazie, wywołana przypadkowymi potrą-
ceniami ze strony otaczających ją znacznie mniejszych (nawet o cztery rzędy wielko-
ści) cząsteczek ośrodka. Inaczej mówiąc, na cząsteczkę zawiesiny działa fluktuująca
siła spowodowana chaotycznymi nieskompensowanymi, wielokrotnymi uderzeniami
cząsteczek ośrodka. Wynik pojedynczego, całkowicie przypadkowego zderzenia jest
bardzo mały (nawet w skali mikroskopowej), jednak sumarycznym efektem dużej
liczby tych zderzeń może być, obserwowane przez mikroskop nawet o niewielkim
powiększeniu, znaczne wypadkowe przemieszczenie przypadkowe cząstki zawiesiny.
Oczywiście, aby takie przemieszczenie mogło być zaobserwowane musi istnieć znacz-
na chwilowa różnica liczby cząstek ośrodka po obu stronach cząsteczki zawiesiny. In-
nymi słowy, muszą istnieć znaczne fluktuacje liczby cząsteczek ośrodka w otoczeniu
cząsteczki zawiesiny - zostało to po raz pierwszy wykazne przez Smoluchowskiego,
który wykorzystał w tym celu rozkład dwumianowy Bernoulliego1. Te znaczne fluk-
tuacje prowadzą do przekazu wystarczająco dużego pędu makrocząsteczce ze strony
cząsteczek ośrodka, skutkującego właśnie zauważalnym przemieszczeniem makro-
cząsteczki.

Podejście Smoluchowskiego

Dokładnie rzecz biorąc, pytanie jakie postawił Smoluchowski brzmiało następujące:
jaka jest, średnio rzecz biorąc, nadwyżka, 〈∆n(= nR − nL)〉 > 0, liczby cząsteczek
ośrodka, nR, znajdujących się, na przykład, po prawej stronie cząsteczki zawiesiny
względem tych po lewej, nL, (przy czym nR + nL = n, gdzie n jest całkowitą licz-

1Dla prostoty rozkład dwumianowy nazywamy także rozkładem Bernoulliego.
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bą cząsteczek ośrodka znajdujących się w najbliższym otoczeniu makroczasteczki
zawiesiny)? Tą wartość średnią obliczył bardzo prosto

〈∆n〉 =
n∑

∆n>0

∆n · pn(∆n), (3.1)

gdzie prawdopodobieństwo nadwyżki

pn(∆n) =
1
2n

(

n
n+∆n
2

)

(3.2)

zostało otrzymane przez naturalnym założeniu równego prawdopodobieństwa znale-
zienia pojedynczej cząsteczki ośrodka po obu stronach makromolekuły (przy czym
wyrażenie w nawiasie jest dobrze znanym współczynnikiem dwumianowym zwanym
także czynnikiem Newtona, patrz J. Antoniewicz: ”Tablice matematyczno-fizyczne”,
Wydawnictwo Naukowe PWN, Warszawa 1991); należy pamiętać, że suma w wy-
rażeniu (3.1) rozciąga się tylko na takie wartości ∆n, które posiadają taką samą
parzystość jak samo n. Oczywiście pytanie Smoluchowskiego dotyczy sytuacji dla
dużych wartości n (szacuje się, że w normalnych warunkach, w ciągu jednej sekundy
z makrocząsteczką zawiesiny zderza się, średnio rzecz biorąc, n ≈ 1020 cząsteczek
ośrodka). Stosując do wyrażenia (3.1)wzór Stirlinga, otrzymujemy z dobrym przy-
bliżeniem, że2

〈∆n〉 ∼ √n. (3.3)

Oznacza to, że w normalnych warunkach ogromna liczba, średnio rzędu 1010 nad-
miarowych cząsteczek ośrodka, zderza się w ciągu jednej sekundy z jedną ze stron
makromolekuły co może prowadzić do widocznego pod mikroskopem, nawet o nie-
wielkim powiększeniu (rzędu 102) przemieszczenia cząsteczki zawiesiny. Używając
języka teorii gier (często stosowanej na rynkach finansowych), możemy stwierdzić,
że im dłużej toczy się gra tym średnia wielkość wygranej albo przegranej rośnie
pierwiastkowo z czasem.
Otrzymany wynik nie jest sprzeczny z faktem, że średnia liczba cząsteczek ośrod-

ka po obu stronach makromolekuły jest równa i wynosi 〈nL〉 = 〈nR〉 = n/2, gdyż
jest on związany z fluktuacją liczby cząsteczek nJ , J = L,R, po obu stronach, czyli
z dyspersją σ(nJ) =

√

〈(nJ − 〈nJ〉)2〉, J = L,R. Ponownie korzystając z rozkładu
Bernoulliego. można łatwo obliczyć, że dyspersja cząsteczek ośrodka po każdej ze
stron makrocząsteczki zawiesiny

σ(nJ) ∼
√
n, J = L,R; (3.4)

czyli znaczny nadmiar cząsteczek po jednej stronie jest związany oczywiście z ich
znaczącym deficytem po drugiej; w efekcie daje to rozrzut w pełni zgodny z wynikiem
(3.3).

2W Dodatku B zamieszczono wyprowadzenie wzoru (3.3).
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Oczywiście, Smoluchowskiemu udało się rozwiać wiele innych wątpliwości (na
przykład dotyczących średniej prędkości cząsteczki zawiesiny), których tutaj już nie
będziemy omawiać. Można powiedzieć, że możliwość występowania znacznych fluk-
tuacji gęstości ośrodka w bezpośrednim otoczeniu cząsteczki zawiesiny oraz przypad-
kowość w jej ruchu przejawiająca się w postaci zygzakowatej trajektorii błądzącej
makromolekuły, leżą u podstaw statystycznego charakteru ruchu Browna.

3.2 Słów kilka o fraktalnym ruchu Browna

Jest jeszcze jeden prosty ale istotny aspekt ruchu Browna, na który zwrócił uwagę
amerykański matematyk Benoit B. Mandebrot a który póżniej został przez niego
wykorzystany do opisu ułamkowych (fraktalnych) ruchów Browna m.in. na rynkach
finansowych (B.B. Mandelbrot: ”Multifraktale rządzą na Wall Street”, Świat Nauki
92 (1999) 64-67; G. Paladin, A. Vulpiani: ”Anomalous Scaling Laws in Multifrac-
tal Objects”, Physics Reports 156 (1987) 147-225). Mianowicie, w miarę upływu
czasu cząsteczka zawiesiny odwiedza coraz większą liczbę punktów płaszczyzny, wi-
zytując w granicy (jak się wydaje) prawie wszystkie równie często (średnio rzecz
biorąc) zatem, wymiar fraktalny (Hausdorffa) df trajektorii brownowskiej jest rów-
ny 2 natomiast jej wymiar topologiczy dtop wynosi 1 (gdyż jest to nadal linia); do
omawiania tych zagadnień powrócimy w rozdz. ?? w kontekście zaobserwowanych
przez angielskiego hydrologa H.E. Hursta w roku 1951 i analizowanych przez B.B.
Mandelbrota (poczynając od roku 1971) fraktalnych ruchów Browna, dla których
0 < df < 2, (H.-O. Peitgen, H. Jürgens, D. Saupe: ”Granice Chaosu. Fraktale”, tom
1, Wydawnictwo Naukowe PWN, Warszawa 1997).
Hurst badał wariancję (a więc fluktuacje) poziomu rzeki Nilu w zależności od

czasu3 zauważając, iż zależność ta jest superliniowa czyli persystentna (a nie liniowa
jak dla ruchów Browna) co pozwoliło mu lepiej określić rozmiary zbiornika wodnego
tamy a jednocześnie zapoczątkowało badania nad błądzeniami niebrownowskimi.

3.3 Zjawisko opalescencji krytycznej
i zjawisko Tyndalla

Rola fluktuacji, wskazana przez Smoluchowskiego, przejawia się szczególnie wyraż-
nie w zjawisku opalescencji krytycznej (”Słownik fizyczny”, Wiedza Powszechna,
Warszawa, 1984; ”Encyklopedia Fizyki Współczesnej”, PWN, Warszawa, 1983) któ-
re należy do szerokiej grupy zjawisk krytycznych związanych z rozpraszaniem pro-
mieniowania na układach znajdujących się w obszarze przejścia fazowego. Zjawisko

3Hurst, jako hydrolog, uczestniczył w projektowaniu tamy assuańskiej dysponując odnaleziony-
mi rejestrami poziomu Nilu prowadzonymi przez Egipcjan od blisko 850 lat (J. Czekaj, M. Woś,
J. Żarnowski: ”Efektywność giełdowego rynku akcji w Polsce z perspektywy dziesięciolecia”, Wy-
dawnictwo Naukowe PWN, Warszawa 2001).
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to polega na tym że ośrodki, które w warunkach normalnych są dla promieniowa-
nia optycznie przeżroczyste, w pobliżu punktu krytycznego mętnieją a natężenie
promieniowania rozproszonego4 na tych ośrodkach pod niezerowym kątem (wzglę-
dem kierunku fali padającej) gwałtownie rośnie - mówimy wtedy o rozpraszaniu
krytycznym. Zatem w zjawisku opalescencji krytycznej mamy do czynienia z roz-
praszaniem krytycznym. Zjawisko opalescencji krytycznej zostało wyjaśnione przez
Mariana Smoluchowskiego. Wykazał on, że gwałtowny wzrost promieniowania roz-
proszonego (pod niezerowym kątem) jest spowodowany makroskopowymi fluktu-
acjami gęstości ośrodka w pobliżu punktu krytycznego - tym samym układ staje
się wysoce niejednorodny a dużym zgęszczeniom ośrodka towarzyszą jego znaczne
rozrzedzenia. Innymi słowy, te duże fluktuacje powodują wystąpienie zjawisk cha-
rakterystycznych dla ośrodków mętnych - obok wspomnianych powyżej także takich
jak zjawisko Tyndalla5. Smoluchowski zauważył na przykład, że fluktuacje gęsto-
ści powietrza (przede wszystkim cząsteczek tlenu i azotu) wywołują lokalne zmiany
współczynnika załamania światła, powodując przez to wzrost rozpraszania światła
w atmosferze. Ponieważ rozpraszanie to jest największe dla fal krótkich6, więc w
wyniku przechodzenia światła przez atmosferę niebo uzyskuje zabarwienie błękitne.
Analogiczne zjawiska występują również w magnetykach gdzie obserwuje się kry-
tyczne rozpraszanie neutronów na fluktuacjach momentów magnetycznych w pobli-
żu temperatury Curie; podobnie rzecz się ma z krytycznym rozpraszaniem promieni
rentgenowskich na ferroelektrykach i stopach podwójnych.
W pierwszej części pracy dajemy przegląd najważniejszych elementów tematyki

dotyczącej procesów gaussowskich - jest to konieczny wstęp do procesów niegaus-
sowskich, stanowiących zasadniczą część (drugą), niniejszej pracy.

3.4 Wstępne definicje

Rozważamy przykładowo błądzenie przypadkowe pojedynczej cząsteczki zawiesiny
przedstawione schematycznie na rys.3.1, gdzie wektory ~x1, ~x2, . . . , ~xn oznaczają
kolejne przypadkowe przemieszczenia cząsteczki (n jest całkowitą liczbą tych prze-
mieszczeń). Sumaryczne (wypadkowe) przemieszczenie cząsteczki wyraża się wzorem

~X(n)− ~X0 = ~x1 + ~x2 + . . .+ ~xn, (3.5)

4Jest to tzw. rayleighowskie rozpraszanie czyli rozpraszanie światła bez zmiany jego długości
fali, ”Encyklopedia fizyki współczesnej”, PWN Warszawa 1983.
5Ogólnie mówiąc, zjawisko to występuje np. przy przechodzeniu światła przez ośrodek wysoce

niejednorodny; niejednorodność ta może być spowodowana nie tylko makroskopowymi fluktuacjami
ale np. makromolekułami aero- lub hydrozoli takimi jak dym, mgła albo koloid, ”Słownik fizyki”,
Prószyński i S-ka Warszawa 1999.
6Moc rozproszonej fali elektromagnetycznej, czyli reemitowanej przez drgające dipole cząsteczek

gazów pobudzonych przez falę padającą, jest zgodnie ze wzorem Rayleigha, wprost proporcjonalna
do kwadratu objętości (kulistego) obiektu rozpraszającego i odwrotnie proporcjonalna do czwartej
potęgi długości fali co faworyzuje oczywiście fale krótkie.
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Rysunek 3.1: Prosta, graficzna reprezentacja sumarycznej zmiennej losowej ~X(n)−
~X(0) =

∑n
j=1 ~xj.

(gdzie ~X0 jest położeniem początkowym cząsteczki zawiesiny a ~X(n) jej położeniem
końcowym); z matematycznego punktu widzenia, zarówno pojedyncze jak też suma-
ryczne przemieszczenia traktujemy jak (wektorowe) zmienne losowe tzn. takie co do
których wiadomo, że ich występowanie opisane jest jakimiś rozkładami prawdopo-
dobieństwa - w dalszym ciągu przyjmujemy, że pojedyncze przemieszczenia opisane
są identycznym rozkładem, co wynika bezpośrednio z obserwacji.

3.5 Pierwszy i drugi moment

Pytanie jakie stawiamy na wstępie dotyczy zależności średniej z kwadratu wypadko-
wego przemieszczenia 〈( ~X(t)− ~X0)2〉 cząsteczki zawiesiny (startującej z punktu ~X0)
od czasu t; przy okazji, obliczamy średnią z sumarycznego przemieszczenia 〈 ~X− ~X0〉.
Występująca tutaj oraz wszędzie w tym rozdziale średnia (którą oznaczamy przez
〈. . .〉) jest średnią (arytmetyczną) po zesple statystycznym doświadczeń podobnych
o czym jest mowa poniżej (patrz rys. 3.2). W przypadku błądzenia cząsteczek staty-
stycznie niezależnych, co ma miejsce np. dla rozcieńczonych zawiesin, taka średnia
jest oczywiście równoważna średniej (arytmetycznej) po liczbie cząsteczek.
Na rys.3.2 przedstawiono zespół statystyczny doświadczeń przeprowadzonych w
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Rysunek 3.2: Zespół statystyczny złożony z L doświadczeń podobnych (realizacji
czyli makrospowych replik) ruchu Browna pojedynczej makromolekuły.

identycznych warunkach termodynamicznych, co oczywiście nie oznacza, że wyniki
tych doświadczeń są identyczne. Jak widać, w różnych doświadczeniach sumaryczne
przemieszczenie cząsteczki ~X l(n)− ~X l

0 jest (na ogół) różne podobnie jak różne są (na
ogół) pojedyncze przemieszczenia ~xlj, gdzie j = 1, 2, . . . , n, numeruje kolejne po-
jedyncze przemieczczenia, natomiast l = 1, . . . , L, numeruje kolejne doświadczenia
w zespole statystycznym doświadczeń (L jest liczebnością tego zespołu - w prak-
tyce dobiera się L � 1). Możemy teraz zdefiniować potrzebne nam pierwsze dwa
momenty zmiennej losowej ~X(n)− ~X0 w postaci następującej średniej arytmetycznej,

〈( ~X(n)− ~X0)m〉 = lim
L→∞
1
L

L∑

l=1

( ~X l(n)− ~X l
0)
m ≈ 1

L

L∑

l=1

( ~X l(n)− ~X l
0)
m,

m = 1, 2, (3.6)
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którą nazywa się właśnie średnią po zespole. (Zdefiniowana powyżej operacja nie
zawiera oczywiście średniowania po liczbie cząsteczek gdyż dotyczy przypadku błą-
dzenia pojedynczej cząsteczki zawiesiny.) Równość przybliżona dotyczy przypadku,
gdy średnie są skończone bowiem wówczas, na mocy prawa wielkich liczb, można
z kontrolowaną dokładnością przybliżyć wartość graniczną przez średnią dla odpo-
wiednio dobranego skończonego L (często rzędu np. 104).
Zakładamy, że przestrzeń, w której odbywa się błądzenie jest izotropowa (przypa-

dek przestrzeni anizotropowej związanej z istnieniem zewnętrznego pola rozważamy
w dalszych rozdziałach). Dla L dostatecznie dużego otrzymuje się z dobrym przybli-
żeniem, że pierwszy moment (odpowiadający przyjęciu w wyrażeniu (3.6) m = 1),

〈 ~X(n)− ~X0〉 = 0, (3.7)

co dobrze widać na rys.3.3. Przedstawiono na nim zależność 〈 ~X(n) − ~X0〉 od L
uzyskaną na drodze symulacji Monte Carlo7. Wynik ten jest niemal oczywisty je-
żeli uprzytomnimy sobie, że dla dostatecznie dyżych L sumaryczne przemieszczenie
uzyskane w dowolnie wybranym doświadczeniu posiada, z dobrym przybliżeniem,
swoje kontrprzemieszczenie (przemieszczenie przeciwne) otrzymane w jakimś innym
doświadczeniu.
Wobec tego, obliczenie drugiego momentu 〈( ~X(n) − ~X0)2〉 jest równoważne (w

przypadku przestrzeni izotropowej) wyznaczeniu dyspersji (wariancji) wypadkowego
przemieszczenia ~X(n)− ~X0,

(σX(n))2 = 〈( ~X(n)− ~X0)2〉 − 〈 ~X(n)− ~X0〉2(= 〈( ~X(n))2〉 − 〈 ~X(n)〉2)
= 〈( ~X(n)− ~X0)2〉; (3.8)

wyprowadzamy związek pomiędzy dyspersją σX(n) wypadkowego przemieszczenia
(składającego się z n pojedynczych przemieszczeń) a dyspersją σx pojedynczego
przemieszczenia. Związek ten stanowi pierwszy punkt tezy centralnego twierdzenia
granicznego, które formułujemy w dalszej części.
Z (3.5), (3.6), (3.7) oraz (3.8) otrzymujemy natychmiast, że

(σX(n))2 = 〈( ~X(n)− ~X0)2〉 = 〈(
n∑

j=1

~xj)2〉

=
n∑

j=1

〈(~xj)2〉+
n∑

i6=j
〈~xi · ~xj〉, (3.9)

gdzie skorzystaliśmy z własności addytywności średniej, wynikającej bezpośrednio
z określenia (3.6), mówiącej że średnia sumy zmiennych losowych jest równa sumie
średnich tych zmiennych.
Wykorzystujemy teraz własność multiplikatywności średniej mówiącą, że śred-

nia z iloczynu niezależnych zmiennych losowych jest równa iloczynowi średnich tych

7Dla uproszczenia i przyspieszenia symulacji wszystkie elementarne przemieszczenia są tutaj
jednakowej długości.
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zmiennych; własność ta wynika także z (3.6) po odpowiednim przegrupowaniu skład-
ników wchodzących w skład występującej tam sumy. Dla rozcieńczonych zawiesin,
nie dostrzegamy w ruchach Browna żadnej zależności (lub inaczej mówiąc korela-
cji) pomiędzy różnymi pojedynczymi przemieszczeniami cząsteczek zawiesiny - stąd
założenie o statystycznej niezależności tych przemieszczeń jest usprawiedliwione.
Zatem wykorzystując równość (3.9), otrzymujemy natychmiast

(σX(n))2 =
n∑

j=1

〈(~xj)2〉 = n〈(~x)2〉 = n(σx)2, (3.10)

gdzie opuściliśmy wskażnik indeksujący numer kroku aby podkreślić niezależność
średniej z kwadratu pojedynczego przemieszczenia od jego numeru co wynika z
faktu, że pojedyncze przemieszczenia są równoprawne - jest to skutek jedorodno-
ści czasu oraz jednorodności przestrzeni. Ponadto, podobnie jak dla sumarycznego
przemieszczenia, skorzystaliśmy z izotropowości przestrzeni prowadzącej do znikania
pierwszego momentu pojedynczego przemieszczenia

〈~xj〉 = 0, j = 1, 2, . . . , n. (3.11)

Wyrażenie (3.10) jest kluczowym gdyż pozwala (co wykażemy w dalszej części) wy-
razić tak ważną wielkość jaką jest (makroskopowy) współczynnik dyfuzji za pomocą
wielkości mikroskopowych charakteryzujących pojedyncze przemieszczenia cząstecz-
ki.
Równość (3.10) można przepisać w postaci jawnie uwzględniającej czas; w tym

celu wprowadzamy elentarny przedział czasu τ charkteryzujący średni czas upływa-
jący pomiędzy kolejnymi, pojedynczymi przemieszczeniami (istnienie takiego czasu
oznacza, że rozkład czasów oczekiwania pomiędzy kolejnymi przemieszczeniami dany
jest rozkładem Poissona - patrz Dodatek ...). Stąd,

(σX(t))2 = 〈( ~X(t)− ~X0)2〉 = 2d(t− t0)D, (3.12)

gdzie d jest wymiarem przestrzeni Euklidesowej, w której zachodzi błądzenie, t−t0 =
nτ czasem, natomiast

D =
1
2d
(σx)2

τ
, (3.13)

określa, o czym jest mowa także w dalszej części, współczynnik dyfuzji cząstek za-
wiesiny w nieobecności zewnętrznego pola. Należy podkreślić, że powyższe przejście
do obrazu ciągłego w czasie jest możliwe, z dobrym przybliżeniem, tylko wtedy gdy
t − t0 � τ co odpowiada wykonaniu przez cząsteczkę dużej liczby przemieszczeń -
oznacza to, że n � 1 i w rezultacie cząsteczka ma możliwość penetrowania znacz-
nych obszarów przestrzeni. Innymi słowy, rozpatrujemy błądzenie cząsteczki w skali
makroskopowej, które tym samym jest scharakteryzowane makroskopowym współ-
czynnikiem D. Zatem ściśle rzecz biorąc, wyrażenie (3.12) należy zapisać w postaci
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wykorzystującej przejście graniczne

D = lim
t−t0→∞

1
2d
(σX(t))2

t− t0
, (3.14)

podkreślającej makroskopowy charakter współczynnika dyfuzjiD. Jak widać, współ-
czynnik dyfuzji można wyznaczać na dwa zasadniczo różne sposoby: 1) makrosko-
powy, za pomocą wyrażenia (3.14) oraz 2) mikroskopowy, stosując wyrażenie (3.13).
Jest to uderzająca dualność sugerująca samopodobny, niezależny od skali w jakiej
prowadzone są pomiary, charakter błądzenia - do problemu tego powrócimy w dal-
szej części.

3.6 Propagator

Celem niniejszego rozdziału jest wyznaczenie asymptotycznej gęstości prawdopodo-
bieństwa warunkowego P( ~X, t | ~X0, t0) znalezienia cząsteczki zawiesiny w położeniu
~X w chwili t pod warunkiem, że w chwili początkowej t0 cząsteczka znajdowała
się w położeniu ~X0. Cel ten zostanie zrealizowany dzięki odpowiedniej dekompo-
zycji propagatora. Przy okazji zostanie wyprowadzona druga część Centralnego
Twierdzenia Granicznego.

3.6.1 Dekompozycja propagatora

Innymi słowy, naszym celem jest znalezienie jednocząstkowego propagatora - może-
my go wyrazić w postaci następującej dekompozycji (superpozycji),

P( ~X, t | ~X0, t0) =
∞∑

n=0

P( ~X, t, n | ~X0, t0), (3.15)

gdzie P( ~X, t, n | ~X0, t0) jest gęstością prawdopodobieństwa warunkowego znalezienia
cząsteczki zawiesiny w położeniu ~X w chwili t w wyniku dokładnie n przemieszczeń
pod warunkiem, że w chwili początkowej t0 cząsteczka znajdowała się w położeniu
~X0. W dalszym ciągu P( ~X, t, n | ~X0, t0) można zapisać w postaci,

P( ~X, t, n | ~X0, t0) = P( ~X − ~X0 | t− t0, n)ψ(t− t0, n), (3.16)

gdzie P( ~X − ~X0 | t − t0, n) jest gęstością prawdopodobieństwa warunkowego prze-
mieszczenia cząsteczki o wektor ~X− ~X0 pod warunkiem, że nastąpiło to w przeciągu
czasu t− t0 w wyniku n pojedynczych przemieszczeń; ψ(t− t0, n) jest prawdopop-
dobieństwem wykonania przez cząsteczkę w przeciągu czasu t− t0 dokładnie n prze-
mieszczeń.
Obecnie zajmiemy się obliczeniem gęstości prawdopodobieństwa P( ~X − ~X0 |

t− t0, n). W niniejszej części zakładamy, że jest ono niezależne od czasu t− t0 co ma
miejsce wtedy gdy środowisko, w którym zachodzi błądzenie cząsteczki pozostaje
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w każdej chwili w stanie równowagi statystycznej (dopuszczającej, rzecz jasna, ist-
nienie fluktuacji). Zatem, ma miejsce następująca oczywista konwolucyjna równość
łańcuchowa,

P( ~X − ~X0 | n) =
∫

P( ~X − ~X1 | n− 1)P( ~X1 − ~X0 | 1)d ~X1
= P( ~X − ~X1 | n− 1)⊗ P( ~X1 − ~X0 | 1), (3.17)

gdzie całkowanie w (3.17) jest przeprowadzone po całej, nieograniczonej przestrzeni
euklidesowej; wykonując kolejne kroki rekurencyjne (dla n = 2, 3, . . .) otrzymujemy
następującą n-krotną konwolucję

P( ~X − ~X0 | n) = P( ~X − ~Xn−1 | 1)⊗ . . .⊗ P( ~X3 − ~X2 | 1)
⊗ P( ~X2 − ~X1 | 1)⊗ P( ~X1 − ~X0 | 1). (3.18)

Po dokonaniu transformacji Fouriera i skorzystaniu z własności, że transforma-
ta Fouriera konwolucji ciągu funkcji jest równa iloczynowi transformat
Fouriera tych funkcji wyrażenie (3.18) przybiera postać,

P̃(~k | n) = P̃(~k | 1)n = exp(n ln(P̃(~k | 1))), n = 1, 2, . . . , (3.19)

gdzie

f̃(~k) =
∫

d ~XF( ~X) exp(i~k · ~X) (3.20)

jest transformatą Fouriera funkcji F( ~X) (całkowanie w (3.20) jest, identycznie jak
w (3.17), przeprowadzone po całej, nieograniczonej przestrzeni euklidesowej).
W dalszym ciągu wprowadzimy prostsze oznaczenia, mianowicie

P̃(~k | 1) = p̃(k) (3.21)

oraz

P( ~X − ~X0 | 1) = P( ~X − ~X0); (3.22)

p̃ nosi nazwę funkcji tworzącej prawdopodobieństwa P, czasami nazywa się ją także
czynnikiem strukturalnym błądzenia przypadkowego. Innymi słowy,

p̃(~k) =
∫

d ~XP( ~X) exp(i~k · ~X), (3.23)

gdzie stosujemy oznaczenia ~k ≡ (kx, ky, . . .) ≡ (k1 . . . , kd) ≡ {kj}j=1,d (przy czym d
jest wymiarem przestrzeni Euklidesowej); powyższe równanie wraz z (3.19) pozwoli
nam podać warunki w jakich buduje się rozkład Gaussa dla n-krokowej zmiennej
losowej (czyli sumarycznego przemieszczenia ~X − ~X0).
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Wprowadzimy teraz definicję rozkładów stabilnych oraz rozkładów nieskończenie
podzielnych. Mianowicie, o rozkładzie stabilnym mówimy wtedy i tylko wtedy
gdy ∀~Y prawdopodobieństwo P(~Y | n) jest, z dokładnością do czynnika skalującego
(zarówno zmienną niezależną jak i samo prawdopodobieństwo), równe P(~Y | 1) tzn.
gdy istnieje taka liczba a zależna od n, że

adP(a~Y | n) = P(~Y | 1), n ­ 1. (3.24)

Oznacza to, że rozciągnięciu zmiennej niezależnej musi towarzyszyć spłaszczenie
rozkładu tak aby zachować jego normalizację. Z relacji skalowania (3.24), (w oparciu
o (3.19) i (3.21)) wynika, że

p̃(a~k) = [p̃(~k)]n ≡ p̃(~k) = [p̃(a~k)]n. (3.25)

Z rozkładem nieskończenie podzielnym mamy do czynienia wtedy i tylko
wtedy gdy dla każdego naturalnego n jego funkcja charakterystyczna φ̃(~k) jest n-tą
potęgą jakiejś funkcji charakterystycznej φ̃n(~k), czyli

φ̃(~k) = [φ̃n(~k)]n. (3.26)

Zostanie pokazane w dalszej części, że rozkłady stabilne są jednocześnie nieskończe-
nie podzielne (ale nie odwrotnie, co schematycznie ilustruje rys.3.4).

Przykład 1: rozkład Gaussa

Obserwacje ruchów Browna prowadzą do wniosku, że rozkład gęstości prawdopo-
dobieństwa kolejnego pojedynczego przemieszczenia cząsteczki zawiesiny jest nieza-
leżny od jego numeru. Powyższy wniosek jest niemal oczywisty w świetle założenia
o statystycznej niezależności pojedynczych przemieszczeń oraz jednorodności czasu.
Przypuśćmy, że rozkład ten jest dany krzywą Gaussa, co stanowi dobre przybliżenie
rzeczywistej sytuacji. Zatem, niech

P(~xj) = PG(~xj) =
1

[2π(σx)2]d/2
exp(−(~xj)2/2(σx)2) (3.27)

(gdzie skorzystaliśmy z oznaczeń (3.5) i (3.22)). Podstawiając powyższy rozkład do
definicji funkcji charakterystycznej (3.21), otrzymujemy funkcję charakterystyczną,
p̃G(~k), rozkładu Gaussa także w postaci funkcji Gaussa,

p̃G(~k) = exp(−(σx)2k2). (3.28)

Zgodnie z powyższą zależnością oraz relacją (3.19), funkcja charakterystyczna roz-
kładu sumarycznej zmiennej losowej ~X(n) (patrz (3.5)) przyjmuje także, dla każdego
n ­ 1, postać funkcji Gaussa,

P̃G(~k | n) = exp(−(σx)2k2n). (3.29)
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Stąd, odwracając relację (3.23) otrzymujemy,

PG( ~X(n)) =
1

[2π(σX)2]d/2
exp(−( ~X(n))2/2(σX)2), (3.30)

rozkład Gaussa, przy czym dyspersja tego rozkładu σX jest dana wzorem (3.10).
Jak widać, rozkład Gaussa jest rozkładem stabilnym, przy czym czynnik skalujący
wynosi tutaj a = n1/2. Łatwo sprawdzić, iż jest on także rozkładem nieskończenie
podzielnym.

Przykład 2: rozkład Lorentza

Przypuśćmy, że w pewnych warunkach, np. w pobliżu punktu krytycznego czy też na
granicy faz, błądząca cząsteczka może od czasu do czasu wpadać w poślizg (”zrywać”
tarcie) co może prowadzić z rzadka do długich pojedynczych przemieszczeń. Tego
typu zachowanie (o czym będzie obszernie mowa w dalszej części) może prowadzić
do rozkładu Lorentza, który nie posiada skończonej dyspersji. Funkcja charaktery-
styczna rozkładu Lorentza jest dana w postaci następującej funkcji wykładniczej,

p̃L(~k) = exp(−γ | ~k |). (3.31)

Stąd, funkcja gęstości rozkładu Lorentza przyjmuje postać,

PL(~xj) =
γ

π

1
γ2 + (~xj)2

, (3.32)

przy czym rozważamy dla prostoty tylko przypadek jednowymiarowy. Podstawiając,
podobnie jak w poprzednim przykładzie, wyrażenie (3.31) do relacji (3.19) otrzymu-
jemy funkcję charakterystyczną sumarycznej zmiennej losowej,

P̃L(~k | n) = exp(−γ | ~k | n) (3.33)

a stąd jej rozkład

PL( ~X(n)) =
γ

π

1
n

1

γ2 + ( ~X(n)/n)2
. (3.34)

Jak widać, czynnik skalujący a = n, czyli rozkład Lorentza jest stabilny oraz nie-
skończenie podzielny.
Kończąc (na razie) omawianie tych przykładów zauważmy, że wszystkie one dają

się wyrazić za pomocą wspólnej, ogólnej funkcji charakterystycznej

p̃(~k) = exp(−const | ~k |β), (3.35)

gdzie wykładnik 0 ¬ β ¬ 2. Będzie jeszcze o tym mowa w dalszej części.
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3.6.2 Rozkłady asymptotycznie gaussowskie

Rozwińmy w szereg Taylora funkcję charakterystyczną p̃(~k),

p̃(~k) = 1− 1
2
k2(σx)2 +Θ({(kj)4}j=1,d) (3.36)

gdzie

(σx)2 =
∫

d ~X ~X2P( ~X); (3.37)

przyjęliśmy tutaj, że przestrzeń jest izotropowa (np. nie występuje dryf) co oznacza,
że funkcja charakterystyczna jest parzystą funkcją ~k (czyli pierwsza pochodna po
~k znika oraz reszta Θ jest także parzystą funkcją ~k); ponadto, założyliśmy, że speł-
niony jest pierwszy punkt centralnego twierdzenia granicznego tzn. σx <∞. Należy
podkreślić, że rozwinięcie (3.36) nie oznacza, że wyższe (niż druga) pochodne funk-
cji charakterystycznej istnieją - w ogólności tak być nie musi. W dalszym ciągu, dla
małych wartości | ~k | tzn. dla k2j � 1, j = 1, . . . , d, korzystając z (3.36) możemy z
dobrym przybliżeniem wyrazić (3.19) w postaci funkcji wykładniczej

P̃(~k | n) ≈ exp(−1
2
(σX(n))2k2), (3.38)

gdzie (σX(n))2 dane jest wyrażeniem (3.10). Oczywiście, gdyby nie był spełniony
pierwszy punkt CTG rozwinięcie nie byłoby możliwe i wtedy zamkniętej postaci
P̃(~k | n) musielibyśmy poszukiwań na innej drodze; takiej właśnie sytuacji dotyczy
część druga niniejszej pracy. W oparciu o (3.38) możemy wyznaczyć P̃( ~X − ~X0 | n)
jako transformatę Fouriera

P̃( ~X − ~X0 | n) =
1

(2π)d/2

∫

d~k exp(−i~k · ( ~X − ~X0))P̃(~k | n)

≈ 1
[2π(σX(n))2]d/2

exp[−( ~X − ~X0)2/2(σX(n))2]; (3.39)

przy czym powyższa, gaussowska postać rozkładu P̃( ~X − ~X0 | n) jest słuszna dla
dużych wartości przemieszczenia, tzn. dla | ~X − ~X0 |� 1. Oczywiście, warunek ten
da się w zasadzie spełnić wtedy gdy n � 1 czyli dla asymptotycznie dużej liczby
pojedynczych przemieszczeń. Zatem rozkład P̃( ~X − ~X0 | n) przybiera asymptotycz-
nie postać rozkładu Gaussa (3.39). Stanowi to treść drugiego (i ostatniego) punktu
centralnego twierdzenia granicznego.

3.7 Proces Markowa - równanie Mistrza

Bazując na obserwacji ruchów Browna pojedynczej cząsteczki zawiesiny, można za-
proponować do ich opisu równość łancuchową Bachelier’a-Chapmana-Kołmogorowa
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(S. Chandrasekhar: Stochastic Problems in Physics and Astronomy”, Review of Mo-
dern Physics”, 15 (1943) 1-89; E. W. Montroll, B.J. West: ”Studies in Statistical
Mechanics”, Vol. VII, Eds. E.W. Montroll, J.L. Lebowitz, North-Holland, Amster-
dam 1979; N.G. van Kampen: ”Procesy stochastyczne w fizyce i chemii”, PWN,
Warszawa 1990 (tłum. z j. angielskiego); R. Kubo, M. Toda, N. Hashitaume: ”Fizyka
statystyczna II. Mechanika statystyczna stanów nierównowagowych”, Wydawnictwa
Naukowe PWN, Warszawa 1991; I.I. Gikhman, A.V. Skorokhod: ”Introduction to
the Theory of Random Processes”, Dover Publ. Inc., New York 1996 (tłum. z j.
rosyjskiego))

P( ~X, t+∆t | ~X0, t0) =
∑

∆ ~X

W ( ~X, t+∆t | ~X −∆ ~X, t)P( ~X −∆ ~X, t | ~X0, t0) =

W ( ~X, t+∆t | ~X, t)P( ~X, t | ~X0, t0) +
∑

∆ ~X 6=0
W ( ~X, t+∆t | ~X −∆ ~X, t)P( ~X −∆ ~X, t | ~X0, t0), (3.40)

która pozwala uzyskać równanie ewolucji na wielkość P( ~X, t | ~X0, t0) zdefiniowa-
ną jako prawdopodobieństwo warunkowe (lub gęstość prawdopodobieństwa warun-
kowego o ile operujemy ciągłymi zmiennymi losowymi8) znalezienia cząsteczki w
położeniu ~X w chwili t pod warunkiem, że początkowo w chwili t0 cząsteczka ta
znajdowała się w położeniu ~X0. Prawdopodobieństwo to jest kluczową wiel-
kością charakteryzującą proces stochastyczny.
Oczywiście, pełny opis procesu stochastycznego Markowa uzyskujemy dopiero po

wprowadzeniu (niemal oczywistej) reguły na prawdopodobieństwo zupełne łączącej
wspomniane prawdopodobieństwo warunkowe z jednocząstkową funkcją rozkładu

P( ~X, t− t0) =
∑

∆ ~X0

P( ~X, t | ~X0, t0)P( ~X0, t0); (3.41)

zwykle przyjmuje się, że t0 = 0 a występująca po lewej stronie równości jednorod-
ność czasu ma jedynie charakter upraszczający, gdyż rozważania możnaby prowadzić
również i bez tego uproszczenia.
Sumowanie po prawej stronie równości (3.40) zawiera element, w którym ∆ ~X =

0; opisuje on przetrwanie cząsteczki w położeniu ~X od chwili t do t +∆t. Element
ten jest prawdopodobieństwem warunkowym znalezienia cząsteczki w położeniu ~X
w chwili t +∆t pod warunkiem, że w położeniu tym pozostawała od chwili t. Gdy
przemieszczenie ∆ ~X 6= 0, element przejścia W ( ~X, t+∆t | ~X −∆ ~X, t) jest prawdo-
podobieństwem warunkowym znalezienia cząsteczki w położeniu ~X w chwili t+∆t

8Operowanie ciągłymi zmiennymi losowymi prowadzi do równania Mistrza niemal identycznego
z uzyskanym tutaj (3.44) z tą różnicą, że występujące w takim równaniu całkowanie zastąpiło-
by obecne tutaj sumowanie - niestety jego wyprowadzenie wymagałoby bardziej wyrafinowanego
podejścia.
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pod warunkiem, że wcześniej, w chwili t cząsteczka znajdowała się w położeniu
~X − ∆ ~X . Zauważmy, że prawdopodobieństwa W , czyli element przetrwania i ele-
menty przejścia, definiują jednoznacznie proces stochastyczny; innymi słowy, proces
stochastyczny można utożsamiać ze zbiorem {W}, którego elementy spełniają waru-
nek normalizacyjny

∑

∆ ~X

W ( ~X −∆ ~X, t+∆t | ~X, t) =

W ( ~X, t +∆t | ~X, t) +
∑

∆ ~X 6=0
W ( ~X −∆ ~X, t+∆t | ~X, t) = 1. (3.42)

Z powyższego warunku wyznaczamy element opisujący przetrwanie i podstawiamy
do równości (3.40), otrzymując po prostych przekształceniach wygodną postać po-
średnią, zawierającą już tylko jeden rodzaj elementów,

P( ~X, t+∆t | ~X0, t0)− P( ~X, t | ~X0, t0)
∆t

=

∑

∆ ~X 6=0
[
W ( ~X, t+∆t | ~X −∆ ~X, t)

∆t
P( ~X −∆ ~X, t | ~X0, t0)−

W ( ~X −∆ ~X, t+∆t | ~X, t)
∆t

P( ~X, t | ~X0, t0)]; (3.43)

wykonując w powyższym wyrażeniu (obustronne) przejście graniczne ∆t→ 0 otrzy-
mujemy poszukiwane różniczkowo-różnicowe równanie Mistrza na ewolucję praw-
dopodobieństwa warunkowego P( ~X, t | ~X0, t0)

∂P( ~X, t | ~X0, t0)
∂t

=
∑

∆ ~X 6=0
[Γ(∆ ~X)P( ~X −∆ ~X, t | ~X0, t0)−

Γ(−∆ ~X)P( ~X, t | ~X0, t0)], (3.44)

gdzie element przejścia

Γ(∆ ~X)
def.
= lim
∆t→0

W ( ~X, t+∆t | ~X −∆ ~X, t)
∆t

= lim
∆t→0

W (∆ ~X,∆t)
∆t

, (3.45)

oraz analogicznie zdefiniowany Γ(−∆ ~X), są jednorodnymi prawdopodobieństwami
przejścia na jednostkę czasu (uzyskanymi przy założeniu czaso-przestrzennej jed-
norodności prawdopodobieństw przejść W ) zwanymi także funkcjami intensywno-
ści procesu statystycznego (stochastycznego) albo po prostu intensywnościami (lub
szybkościami) procesu stochastycznego - elementy te muszą być zadane aby moż-
na było efektywnie rozwiązać równanie ewolucji (3.44); przy wprowadzeniu tych
elementów skorzystaliśmy z własności jednorodności przestrzeni oraz jednorodności
czasu nie korzystając przy tym z anizotropowości przestrzeni. Proces Markowa po-
siadający tego typu własność nosi nazwę stacjonarego; w dalszym ciągu, wszędzie
tam gdzie używamy procesu Markowa jest on właśnie tego typu.
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Równanie (3.44) opisuje propagację statystyczną cząsteczki zawiesiny zarówno
pod nieobecność jak też w obecności zewnętrznego pola. Równanie (3.44) nosi na-
zwę równania Mistrza (patrz N.G. van Kampena pt.: ”Procesy stochastyczne w
fizyce i chemii”, PWN, Warszawa 1990) albo prospektywnego równania Kołmogo-
rowa (patrz M.Fisz, ”Rachunek prawdopodobieństwa i statystyka matematyczna”,
rozdz.8, PWN, Warszawa 1967) i jak widać opisuje ewolucję propagatora wprzód w
czasie; ewolucję wstecz opisuje (analogicznie wyprowadzane) równanie retrospektyw-
ne Kołmogorowa.

3.8 Dyfuzja

Równanie dyfuzji, zarówno pod nieobecność jak też w obecności zewnętrznego pola
(wtedy nosi nazwę rownania dyfuzji z dryfem), można otrzymać bezpośrednio z rów-
nania (3.44). Procedura polega na rozwinięciu prawdopodobieństwa P( ~X −∆ ~X, t |
~X0, t0) w szereg Taylora w punkcie ~X (które w tym przypadku zwane jest tak-
że rozwinięciem Kramersa-Moyala, patrz N.G. van Kampena pt.: ”Procesy stocha-
styczne w fizyce i chemii”, rozdz.8, PWN, Warszawa 1990) i ograniczeniu się tylko
do wyrazów kwadratowych w ∆ ~X. Tego typu przybliżenie jest usprawiedliwione
gdy | ∆ ~X |�| ~X | czyli gdy długość pojedynczego przemieszczenia cząsteczki jest
znacznie mniejsza od aktualnej odległości cząsteczki od punktu początkowego co ma
miejsce na ogół dla dostatecznie długiego okresu czasu t(� τ), (o czym była już mo-
wa wcześniej) lub gdy rozkład zmiennej ∆ ~X, dany elementem przejścia Γ(∆ ~X), jest
wąski (bardziej systematyczne, subtelniejsze podejście, przedstawione np. w książce
N.G. van Kampena pt.: ”Procesy stochastyczne w fizyce i chemii”, PWN, Warszawa
1990, oparte jest na rozwinięciu równania mistrza względem potęg małego narzu-
conego z zewnątrz specyficznego parametru - jak się wydaje jest to podejście lepiej
umotywowane niż rozwinięcie Kramersa-Moyala).
Rozważamy teraz przypadek braku dryfu co oznacza, że przestrzeń w której zacho-

dzi błądzenie losowe jest izotropowa; prowadzi to do znoszenia się wyrazów liniowych
w ∆ ~X. W takiej sytuacji z równania (3.44) otrzymujemy równanie dyfuzji

∂P( ~X, t | ~X0, t0)
∂t

= D∇2dP( ~X, t | ~X0, t0) (3.46)

(gdzie ∇d jest d-wymiarowym gradientem); współczynnik dyfuzji D otrzymaliśmy
tutaj w postaci

D =
1
2

∑

∆ ~X 6=0
(∆Xj)2Γ(∆ ~X) =

1
2d

∑

∆ ~X 6=0
(∆ ~X)2Γ(| ∆ ~X |), j = 1, . . . , d, (3.47)

przy czym równość drugą można było napisać dzięki izotropowości przestrzeni, któ-
ra jest skutkiem braku (w tym przypadku) dryfu - pozwala to na uzależnienie
elementów przejścia Γ jedynie od długości wektora pojedynczego przemieszczenia
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| ∆ ~X |=
√
∑d
j=1(∆Xj)2. Zatem, powyższa postać równania dyfuzji (3.46) została

uzyskana dzięki znikaniu elementów krzyżowych (pozadiagonalnych)
∑

∆ ~X 6=0
∆Xi∆XjΓ(| ∆ ~X |) = 0, i 6= j, i, j = 1, . . . , d; (3.48)

co wynika (tutaj) z izotropowości przestrzeni. Zarówno postać równania dyfuzji
(3.46) jak też wyrażenie na współczynnik dyfuzji mogą ulec zmianie po włączeniu
zewnętrznego pola co rozważamy w dalszej części.
Wzór (3.47) może się wydawać dokładniejszy od (3.13), który został wyprowa-

dzony w rozdz.3.5 jednak, jak wykazujemy oba wyrażenia są sobie równoważne. Jak
widać, współczynnik D dany wyrażeniem (3.47) jest, podobnie jak (3.13) i (3.14),
wielkością makroskopową gdyż dotyczy błądzenia na makroskopowo duże odległości
a zatem pokonywane przez cząsteczkę zawiesiny w makroskopowo długich okresach
czasu.
Łatwo sprawdzić (przez proste różniczkowania po czasie i po zmiennych prze-

strzennych), że rozkład Gaussa

P( ~X, t | ~X0, t0) =
1

(4π(t− t0)D)d/2
exp



−(
~X − ~X0)2

4(t− t0)D



 (3.49)

jest rozwiązaniem równania dyfuzji (3.46) pod nieobecność zewnętrznego pola speł-
niającym wymagany warunek początkowy

P( ~X, t0 | ~X0, t0) = δ( ~X − ~X0), (3.50)

stwierdzający, że w chwili początkowej t0 cząsteczka zawiesiny znajduje się w ściśle
określonym położeniu ~X0.
Korzystając z jawnej postaci propagatora (3.49), znajdujemy po prostym scał-

kowaniu

〈( ~X(t)− ~X0)2〉 =
∫ ∞

−∞
d ~X( ~X − ~X0)2

1
(4π(t− t0)D)d/2

exp



−(
~X − ~X0)2

4(t− t0)D





= 2d(t− t0)D; (3.51)

jak widać, jest to postać identyczna do uzyskanej wcześniej (3.12) - wykazaliśmy
tym samym identyczność obu postaci współczynnika dyfuzji(3.13) oraz (3.47).
Obie postacie współczynnika dyfuzji ((3.47) oraz (3.13)) posiadają uderzającą

cechę o której wspomnieliśmy wcześniej mianowicie, wielkość makroskopowa jaką
jest współczynnik dyfuzji D (patrz równość (3.14)) daje się wyrazić za pomocą lo-
kalnych wielkości mikroskopowych tzn. średniego pojednczego przemieszczenia kwa-
dratowego oraz czasu potrzebnego na to pojedyncze przemieszczenie. Oznacza to, że
z zachowania zawiesiny w skali mikroskopowej potrafimy odtworzyć jej zachowanie
w skali makroskopowej, co sugeruje to samopodobny charakter ewolucji; ewolucja
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układu w skali makro jest podobna do ewolucji układu oglądanej w innych skalach
np. mikro - jest to podstawowa cecha tzw. błądzeń fraktalnych9.
Zauważmy, że równanie (3.46) na prawdopodobieństwo warunkowe P( ~X, t | ~X0, t0)

jest spełnione przy dowolnym warunku początkowym P( ~X0, t0); dlatego średniując
to równanie stronami po wszystkich możliwych warunkach początkowych otrzymu-
jemy równanie dyfuzji

∂P( ~X, t)
∂t

= D∇2dP( ~X, t) (3.52)

na jednocząstkową funkcję rozkładu (dla prostoty położyliśmy t0 = 0).

3.8.1 Dyfuzja Ficka

Literalnie rzecz biorąc, dyfuzja Ficka dotyczy gęstości (koncentracji) cząsteczek (np.
zawiesiny) a nie prawdopoobieństw. Oczywiście, w przypadku statystycznie nieza-
leżnych cząsteczek istnieje prosty związek pomiędzy gęstością (liczbową) n( ~X, t) a
prawdopodobieństwem warunkowym

n( ~X, t) =
∫

P( ~X, t | ~X0, t0)n( ~X0, t0)d ~X0, (3.53)

gdzie n( ~X0, t0) jest gęstością (liczbową) w chwili początkowej t0 w położeniu ~X0.
Uśredniając równanie (3.46) z gęstością początkową n( ~X0, t0) otrzymujemy (w opar-
ciu o (3.53))

∂n( ~X, t)
∂t

= D∇2dn( ~X, t) (3.54)

dobrze znane równanie dyfuzji Ficka (patrz np. J.R. Manning, ”Diffusion Kinetics
for atoms in crystals”, D. van Nostrand Comp. Inc., Princeton 1968, (istnieje tłum.
na język rosyjski)). Oczywiście, na równanie to można patrzeć jak na równanie
ciągłości czyli jak na prawo zachowania liczby cząsteczek. Wówczas, można je zapisać
w postaci

∂n( ~X, t)
∂t

+∇d~jD( ~X, t) = 0, (3.55)

gdzie

~jD( ~X, t) = −D∇dn( ~X, t), (3.56)

jest strumieniem dyfuzyjnym cząsteczek. Do równania tego będziemy się jeszcze
odwoływać w dalszej części.

9Błądzenie brownowskie jest marginalnie fraktalne, o czym mówimy mowa w dalszej częsci.
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3.9 Centralne twierdzenie graniczne raz jeszcze

Jeden z najważniejszych wniosków jaki można sformułować na podstawie rozważań
przeprowadzonych w poprzednich rozdziałach, daje się sformułować w postaci na-
stępującego (wektorowego) twierdzenia Lindeberga-Lévy’ego (patrz M. Fisz, ”Ra-
chunek prawdopodobieństwa i statytyka matematyczna”, PWN, Warszawa 1967)
znanego, ze względu na swoje zasadnicze znaczenie w dziedzinie twierdzeń granicz-
nych, jako

Centralne Twierdzenie Graniczne (CTG)

Wprowadżmy ciąg niezależnych, wektorowych zmiennych losowych ~x1, ~x2, . . . , ~xn po-
siadających identyczny rozkład prawdopodobieństwa, a zatem taką samą wartość
średnią, 〈x〉, oraz dyspersję σx, tzn.

〈~xj〉 = 〈~x〉, j = 1, 2, . . . , n
σ2X = 〈(~xj)2〉 − 〈~xj〉2 = 〈~x2〉 − 〈~x〉2, j = 1, 2, . . . . (3.57)

Zdefiniujmy teraz sumaryczną, standaryzowaną (wyskalowaną), wektorową zmien-
ną losową

~Y (n) =
~X(n)− 〈 ~X(n)〉

σX
=
∑n
j=1(~xj − 〈~x〉)

σX
, (3.58)

zależną od n; jak widać, wartość oczekiwana tej zmiennej 〈~Y (n)〉 = 0 oraz jej dys-
persja σY (n) = 1 niezależnie od n,
Teza Centralnego Twierdzenia Granicznego10 mówi, że

1) istnieje związek pomiędzy dyspersją σX(n) sumarycznej zmienej losowej ~X(n)
a dyspersją σx pojedynczej zmiennej ~x postaci: σX(n) =

√
n σx,

2) dla asymptotycznie dużych n funkcja rozkładu standaryzowanej zmiennej lo-
sowej ~Y (n) dana jest, z dobrym przybliżeniem, rozkładem Gaussa:
G(~Y (n)) = 1

(2π)d/2
exp(−(~Y (n))2/2),

gdzie d jest wymiarem przestrzeni wektorowej do której należy zmienna ~Y (n).

Powyższe twierdzenie zostało sformułowane nieco ogólniej niż rozważania z których
wyrosło mianowicie, uwzględnia ono także dryf wywołany przyłożeniem do układu
zewnętrznego pola. Dryf ten można charakteryzować za pomocą stałej prędkości
unoszenia

〈~V 〉 = d〈 ~X(n)〉
dt

=
〈~x〉
τ
= 〈~v〉, (3.59)

10Innym powodem wprowadzenia tej nazwy jest fakt, że wszystko co jest najważniejsze dla
błądzenia cząsteczki Browna jest zawarte w części centralnej rozkładu prawdopodobieństwa.
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gdzie skorzystaliśmy z definicji (3.5) z rozdz.3.4 oraz wzoru t = nτ wprowadzonego
w rozdz.3.5. Jak widać prędkość unoszenia 〈~V 〉 obliczona na podstawie wypadkowe-
go wektora przemieszczenia cząsteczki zawiesiny jest, jak być powinna, identyczna
z prędkością unoszenia 〈~v〉 obliczoną w oparciu o pojedyncze przemieszczenie tej
cząsteczki. Zagadnienie dyfuzji w obecności dryfu omawiamy krótko w następnym
rozdziale, co usprawiedliwia wprowadzoną powyżej postać CTG.

3.10 Dyfuzja oraz unoszenie

Przedstawiamy teraz zmiany jakie powinny być uwzględnione w stosunku do roz-
ważań prowadzonych w rozdziałach 3.5, 3.7, 3.8 w przypadku istnienia w układzie
dryfu, co jest jedyną modyfikacją warunków błądzenia cząstki zawiesiny jaką do-
puszczamy.
Zasadniczą konsekwencją tej modyfikacji jest fakt że pierwszy moment, za-

równo pojedynczej jak też sumarycznej zmiennej losowej, nie znika czyli

〈 ~X(n)− ~X0〉 =
n∑

j=1

〈~xj〉 = n〈~x〉 6= 0, (3.60)

tym samym złamana została równość (3.7) (gdzie po drodze skorzystaliśmy z rów-
ności (3.5)).
W związku z powyższym, dyspersja zdefiniowana wzorem (3.8) nie równa się

teraz 〈( ~X(n) − ~X0)2〉 co prowadzi do wyniku ogólniejszego niż dany wyrażeniem
(3.9) oraz (3.10). Korzystając z ogólnej definicji dyspersji (druga równość w (3.8)),
otrzymujemy po prostych przekształceniach

(σX(n))2 =
n∑

j=1

[〈(~xj)2〉 − (〈~xj〉)2] +
n∑

i6=j
[〈~xi · ~xj〉 − 〈~xi〉 · 〈~xj〉]

= n(σx)2 + 2K(n), (3.61)

gdzie sumaryczna funkcja korelacji K(n) jest dana przez tą część wyrażenia (3.61),
które zawiera wyrazy krzyżowe; jak widać, funkcja ta znika dla takiego błądzenie w
którym pojedyncze przemieszczenia są nieskorelowane - przypadek błądzeń skorelo-
wanych, np. usztywnionych polimerów, omawiamy w dalszej części.
Wyrażenie (3.61) można zapisać w postaci umożliwiającej wprowadzenie współ-

czynników dyfuzji dla nieskorelowanego błądzenia pojedynczej cząsteczki w obecno-
ści dryfu - jest ono uogólnieniem wyrażenia (3.12)

(σX(t))2 = 2(t− t0)[(d− 1)D⊥ +D‖] (3.62)

gdzie współczynnik

D⊥ =
1

2(d− 1)
〈(~x⊥)2〉

τ
, (3.63)
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opisuje dyfuzję w kierunku poprzecznym do kierunku dryfu, natomiast

D‖ =
1
2
〈(~x‖)2〉 − 〈~x‖〉2

τ
=
1
2
〈(~x‖)2〉 − (〈~V 〉(t− t0))2

τ
, (3.64)

dyfuzję równoległą do kierunku dryfu przy czym w ogólności

D⊥ 6= D‖ (3.65)

a ponadto,

D‖ 6= D oraz D⊥ 6= D, (3.66)

przy czym ostatnia nierówność w ogólności ma miejsce pomimo, że dotyczy dyfu-
zji poprzecznej - będzie o tym jeszcze mowa poniżej. Jak widać, wyrażenie (3.62)
stanowi uogólnienie wzoru (3.12) na przypadek występowania zewnętrznego pola
wywołującego dryf. Należy zaznaczyć, że współczynnik dyfuzji równoległej D‖ jest
niezależny od czasu (co wykazujemy poniżej) gdyż identyczna (do jawnie wypisa-
nej) paraboliczna zależność od czasu tkwi także w średniej z kwadratu pojedynczego
przemieszczenia 〈(~x‖)2〉, prowadząc do jej skrócenia się.
Istnienie zewnętrznego pola wprowadza anizotropię przestrzeni co zmienia, jak

wykazujemy poniżej, postać równnia dyfuzji Fick’a (3.46). Postępując analogicznie
jak w rozdziale 3.8 (czyli rozwijając propagator P( ~X − ∆ ~X, t | ~X0, t0) w szereg
Taylora w punkcie ~X i ograniczając się tylko do wyrazów kwadratowych w ∆ ~X),
przekształcamy równanie mistrza (3.44) do postaci

∂P( ~X, t | ~X0, t0)
∂t

= D⊥∇2d−1P( ~X, t | ~X0, t0) +D‖∇21P( ~X, t | ~X0, t0)

− 〈~V 〉 · ∇P( ~X, t | ~X0, t0) (3.67)

zawierającej obok pierwszego składnika odpowiedzialnego za dyfuzję w kierunku
poprzecznym do kierunku przyłożonego pola gdzie,

D⊥ =
1

2(d− 1)
∑

∆ ~X 6=0
(∆ ~X⊥)2Γ(∆ ~X)

=
1

2(d− 1)
∑

∆ ~X 6=0
(∆ ~X⊥)2Γ(| ∆ ~X |) exp(~F ·∆ ~X‖/2kBT )

=
1

2(d− 1)
∑

∆ ~X 6=0
(∆ ~X⊥)2Γ(| ∆ ~X |) cosh





~F ·∆ ~X‖
2kBT





≈ 1
2(d− 1)

∑

∆ ~X 6=0
(∆ ~X⊥)2Γ(| ∆ ~X |)



1 +
1
2
(~F )2(∆ ~X‖)2

(2kBT )2





= D +
(~F )2

(2kBT )2
1

4(d− 1)
∑

∆ ~X 6=0
(∆ ~X⊥)2(∆ ~X‖)2Γ(| ∆ ~X |) (3.68)
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jest współczynnikiem dyfuzji poprzecznej, także drugi oznaczający dyfuzję wzdłuż
kierunku pola przy czym,

D‖ =
1
2

∑

∆ ~X 6=0
(∆ ~X‖)2Γ(∆ ~X)

=
1
2

∑

∆ ~X 6=0
(∆ ~X‖)2Γ(| ∆ ~X |) exp(~F ·∆ ~X‖/2kBT )

=
1
2

∑

∆ ~X 6=0
(∆ ~X‖)2Γ(| ∆ ~X |) cosh





~F ·∆ ~X‖
2kBT





≈ 1
2

∑

∆ ~X 6=0
(∆ ~X‖)2Γ(| ∆ ~X |)



1 +
1
2
(~F )2(∆ ~X‖)2

(2kBT )2





= D +
(~F )2

(2kBT )2
1
4

∑

∆ ~X 6=0
(∆ ~X‖)2(∆ ~X‖)2Γ(| ∆ ~X |) (3.69)

jest współczynnikiem dyfuzji wzdłuż pola oraz trzeci składnik związany z unosze-
niem (wzdłuż kierunku pola) gdzie prędkość unoszenia

〈~V 〉 =
∑

∆ ~X 6=0
∆ ~X‖Γ(∆ ~X) =

∑

∆ ~X 6=0
∆ ~X‖Γ(| ∆ ~X |) exp





~F ·∆ ~X‖
2kBT





=
∑

∆ ~X 6=0
∆ ~X‖Γ(| ∆ ~X |) sinh





~F ·∆ ~X‖
2kBT





≈ F

2kBT

∑

∆ ~X 6=0
(∆ ~X‖)2Γ(| ∆ ~X |) =

F

kBT
D, (3.70)

jest równoległa do kierunku pola ze względu na symetrię zwierciadlaną (F jest w
takim układzie współrzędnych jedyną nieznikającą składową wektora siły). Przy
okazji, wszystkie trzy wielkości wyraziliśmy w postaci jawnie zależnej od zewnętrznej
(stałej) siły.
Należy podkreślić, ze istnienie anizotropii przestrzeni nie narusza symetrii zwier-

ciadlanej funkcji intensywności procesu stochastycznego; funkcje te posiadają syme-
trię zwierciadlaną względem (dowolnej) płaszczyzny, w której leży wektor prędkości
unoszenia 〈~V 〉 co prowadzi, podobnie jak w przypadku braku pola, do znikania wy-
razów krzyżowych typu (3.48) oraz zeruje unoszenie prostopadłe do kierunku pola.
Można bez trudu sprawdzić, że rozwiązanie równania (3.67) spełniające warunek

początkowy (3.50) jest postaci iloczynu dryfującego oraz stojącego rozkładu Gaussa,

P( ~X, t | ~X0, t0) =
1

√

4π(t− t0)D‖
exp



−((
~X − ~X0)‖ − 〈~V 〉(t− t0))2

4(t− t0)D‖




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× 1
(4π(t− t0)D⊥)(d−1)/2

exp



−((
~X − ~X0)⊥)2

4(t− t0)D⊥



 . (3.71)

Innymi słowy, widzimy, że w kierunku prostopadłym do kierunku dryfu ma miejsce
jedynie ”rozpływanie się” propagatora czyli jego poszerzanie się z jednoczesnym ma-
leniem amplitudy przy czym ”środek ciężkości” (w tym przypadku maksimumum)
propagatora pozostaje przez cały czas nieruchomy - jest to efekt dyfuzji w czystej po-
staci. Natomiast, w kierunku równoległym do kierunku dryfu sytuacja jest bardziej
skomplikowana. Obok powyżej wspomnianego efektu dyfuzji, ma miejsce zjawisko
unoszenia (dryfu), które polega na przesuwaniu się środka ciężkości a zatem całego
propagatora z (wypadkową) prędkością 〈V 〉. Oczywiście, wyrażenie (3.71) nie jest
rozwiązaniem stacjonarnym równania (3.67) gdyż zmienia się wraz z upływem cza-
su. Rozwiązanie stacjonarne, a dokładniej mówiąc równowagowe, wyprowadzamy
poniżej analizując równanie ciągłości.
Licząc teraz dyspersję zmiennej ~X − ~X0 można wykazać, że oba współczynniki

dyfuzji D⊥ oraz D‖, otrzymane na dwóch różnych drogach (porównaj wyrażenia
(3.63) i (3.64) z odpowiednio (3.68) i (3.69)) są identyczne.

3.10.1 Twierdzenie o fluktuacji i dyssypacji

Równość przybliżona we wzorze (3.70) przedstawia, w przybliżeniu liniowym, zwią-
zek pomiędzy prędkością a przyłożoną siłą. Współczynnik proporcjonalności jest,
jak wiadomo, ruchliwością (którą często oznacza się przez B). A zatem,

B =
D

kBT
(3.72)

łącząc unoszenie z dyfuzją co stanowi tezę twierdzenia o fluktuacji i dysypacji (patrz,
R. Kubo, M. Toda, N. Hashitsume, ”Fizyka statystyczna. II. Mechanika statystycz-
na stanów nierównowagowych”, PWN, Warszawa 1991) - jednego z najgłębszych
twierdzeń fizyki statystycznej.
Przy okazji zauważmy, że wzory (3.68) oraz (3.69) wyznaczają stopień anizotropii

współczynników dyfuzji. Mianowicie, można je przepisać odpowiednio w postaci,

∆D⊥ = D⊥ −D ≈ 1
2
(~F )2

(2kBT )2

× 1
2(d− 1)

∑

∆ ~X 6=0
(∆ ~X⊥)2(∆ ~X‖)2Γ(| ∆ ~X |) (3.73)

oraz

∆D‖ = D‖ −D ≈ 1
2
(~F )2

(2kBT )2
1
2

∑

∆ ~X 6=0
(∆ ~X‖)2(∆ ~X‖)2Γ(| ∆ ~X |), (3.74)
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Jak widać, w przybliżeniu liniowym zarówno anizotropia poprzeczna ∆D⊥ jak i po-
dłużna ∆D‖ znikają. Zauważmy, że znikanie anizotropii poprzecznej ∆D⊥ nie ozna-
cza jeszcze znikania anizotropii podłużnejD‖, co pokażemy na przykładzie błądzenia
na sieci kwadratowej (patrz rys. 1(3.10.1) oraz rys. 2(3.10.1)). W tym miejscu nale-
ży podkreślić, że zastosowanie powyższych wywodów do takiego błądzenia wymaga
jedynie doprecyzowania po jakich wektorach przemieszczenia ∆ ~X przeprowadzane
jest sumowanie

∑

∆ ~X(. . .) oraz zaznaczenia, że wektor położenia ~X przyjmuje tylko
wartości dyskretne oznaczające węzły sieci.

Przykład 1

Rozważamy błądzenie przypadkowe pojedynczej cząsteczki na sieci kwadratowej tak
jak to pokazano na rys.1(3.10.1). Zakładamy, że przeskoki zachodzą tylko do najbliż-
szych sąsiadów (odległych o stałą sieci a) natomiast zewnętrzne pole jest przyłożone
równolegle do horyzontalnej linii węzłów. Zatem

Γ(| ∆ ~X |) =
{

Γ, dla ∆ ~X = (a, 0), (−a, 0), (0, a), (0,−a)
0, dla innych ∆ ~X.

Korzystając z wyrażenia (3.73) otrzymujemy,

∆D⊥ = 0, (3.75)

(gdyż w tym przypadku wektor przemieszczenia ∆ ~X albo posiada składową prosto-
padłą i nie posiada horyzontalnej albo odwrotnie), natomiast wyrażenie (3.74) daje
po prostu wzór

∆D‖
D
=
1
2
(~F )2a2

(2kBT )2
, (3.76)

na względną anizotropię podłużną.
Rozważamy teraz następny przykład (patrz rys.2(3.10.1) dotyczący sytuacji gdy

∆D⊥ = ∆D‖ 6= 0.

Przykład 2

W tym przypadku linia węzłów nie pokrywa się z kierunkiem przyłożonego pola. Ze
wzorów (3.73) oraz (3.74) otrzymujemy,

∆D⊥
D
=
∆D‖
D
=
1
8
(~F )2a2

(2kBT )2
. (3.77)

Zauważmy, że w obu przykładach krzyżowe współczynniki dyfuzji znikają ponieważ
ma miejsce symetria zwierciadlana elementów przejścia względem kierunku przyło-
żonego pola.
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3.10.2 Równanie ciągłości a liczba Avogadro
- przełomowe doświadczenie Perrina

Fenomenologiczna teoria transportu Onsagera słuszna dla stanów bliskich stanowi
równowgi termodynamicznej, wprowadza liniową zależność pomiędzy prądem a si-
łą termodynamiczną - tego typu związeki pojawiły się jako bezpośrednie wnioski z
doświadczeń. W przypadku błądzenia pojedynczej cząsteczki w obecności zewnętrz-
nego pola sprowadza się on do pierwszego prawa Fick’a postaci,

~j( ~X, t | ~X0, t0) = ~jD( ~X, t | ~X0, t0) +~jV ( ~X, t | ~X0, t0), (3.78)

przy czym

~jD( ~X, t | ~X0, t0) = −D̂∇P( ~X, t | ~X0, t0) (3.79)

jest prądem dyfuzyjnym natomiast

~jV ( ~X, t | ~X0, t0) = 〈~V 〉P( ~X, t | ~X0, t0) (3.80)

prądem unoszenia, gdzie D̂ jest diagonalnym tensorem dyfuzji

D̂ =

(

D̂⊥ 0
0 D‖

)

(3.81)

i podobnie (np. dla d = 2)

D̂⊥ =

(

D⊥ 0
0 D⊥

)

. (3.82)

Jak widać prawo to stwierdza, że gęstość prądu dyfuzyjnego jest proporcjonalna do
gradientu propagatora natomiast gęstość prądu unoszenia do samego propagatora
(przy stałej prędkości dryfu).
Można teraz postawić pytanie o warunek brzegowy przy którym uzyskuje się roz-

wiązanie równowagowe, tzn. takie które powstaje dzięki równoważeniu się prądu
dyfuzyjnego i prądu unoszenia - oczywiście w takiej sytuacji całkowity prąd w ukła-
dzie znika. A zatem przyjmujemy, że

~j( ~X, t | ~X0, t0) = ~jD( ~X, t | ~X0, t0) +~jV ( ~X, t | ~X0, t0) = 0. (3.83)

Co więcej, poszukujemy rozwiązania niezależnego od warunku początkowego, Zatem,
równość (3.83) zapisujemy w postaci,

D‖
∂

∂X‖
P(X‖) = 〈V‖〉P(X‖). (3.84)

Przyjmujemy, że składowa położenia X‖ jest skierowana ku górze natomiast składo-
wa prędkości dryfu 〈V‖〉 ku dołowi. Ponadto, d − 1-wymiarowa (hiper)płaszczyzna
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zdefiniowana równaniem X‖ = 0 jest nieprzenikliwa i zezwala na obecność cząstek
jedynie w górnej półprzestrzeni. Oznacza to, że rozwiązanie równania (3.84) jest
postaci,

P( ~X) = P(X‖) = P(X‖ = 0) exp
(〈V‖〉
D

X‖

)

. (3.85)

Oczywiście, rozwiązanie to musi spełniać warunek normalizacyjny
∫ ∞

0
dX‖

∫

Ωd−1

d ~X⊥P( ~X) = 1 ≡ Ωd−1P(X‖ = 0)
D

| 〈V‖〉 |
= 1

⇒ P(X‖ = 0) =
| 〈V‖〉 |
DΩd−1

, (3.86)

gdzie Ωd−1 jest (ograniczonym z definicji obszarem) (d−1)–wymiarowej powierzchni
(hiper)płaszczyzny. Jak widać, zawiesina jest umieszczona w naczyniu ograniczonym
ze wszystkich stron za wyjątkiem dodatniego kierunku składowej X‖11. Korzystając
ze wzorów (3.70) oraz (3.72) i pamiętając, że zawiesina znajduje się w polu grawi-
tacyjnym, czyli F = −mg, (gdzie m jest masą cząsteczki zawiesiny a g wartością
przyspieszenia ziemskiego) otrzymujemy z (3.85) oraz (3.86) nastyępujący wzór na
rozkład prawdopodobieństwa dla cząsteczki zawiesiny w jednorodnym polu grawi-
tacyjnym.

P(X‖) =
1
Ωd−1

mg

kBT
exp

(

− mg

kBT
X‖

)

. (3.87)

Jest to niezwykle ważny wzór, który umożliwił J. Perrin’owi przeprowadzenie do-
świadczenia, w którym wyznaczył liczbę Avogadro a tym samym podał po raz pierw-
szy doświadczalny dowód cząsteczkowej budowy materii.

Doświadczenie Perrina

Po pierwsze, J. Perrin zauważył, że wzór (3.87) pozwala na doświadczalne wyzna-
czenie stałej Boltzmanna kB. Po drugie, ze znajomości stałej gazowej R wyznaczonej
niezależnie na drodze czysto termodynamicznej oraz związku pomiędzy stałą gazową
a stałą Boltzmanna postaci

R = NAkB (3.88)

można wyznaczyć liczbę Avogadro NA.
Na rys. 1(3.10.2) przedstawiono schematycznie istotę doświadczenia Perrina.

Mianowicie, naczynie wypełnione zawiesiną umieszczono w (jednorodnym) polu gra-
witracyjnym o natężeniu g‖ = −g. Podzielono je myślowo na ”plasterki” o niewielkiej
11Ograniczenie także w tym kierunku jest możliwe ale skomplikowało by to postać nieistotnego
czynnika przedwykładniczego we wzorze (3.85).
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Rysunek 3.3: Schematyczny widok zawiesiny pod mikroskopem dla dwóch położeń
tubusu mikroskopu oddalonych od siebie o ∆. Lewy obraz dotyczy plasterka leżącego
niżej a prawy tego leżącego wyżej. Jak widać, istnieje wyraźna różnica liczby makro-
cząsteczek na obu wysokościach, co stanowi kluczową obserwację w doświadczenia
Perrina.

grubości ∆. Wzór (3.87) pozwala na obliczenie względnej liczby makrocząsteczek za-
wiesiny zawartych w kolejnych plasterkach zatem,

N(X‖ +∆, X‖ + 2∆)
N(X‖, X‖ +∆)

=

∫X‖+2∆

X‖+∆
dX ′‖P(X ′‖)

∫X‖+∆

X‖
dX ′‖P(X ′‖)

= exp
(

− mg

kBT
∆
)

, (3.89)

gdzie N(X‖, X‖ +∆) liczbą makrocząsteczek zawiesiny w plasterku [X‖, X‖ +∆[.
Powyższy wzór wyprowadzono przy założeniu rozrzedzonej zawiesiny co pozwo-

liło na przyjęcie, że liczba makrocząsteczek N(X‖) na poziomie X‖ jest, z dobrym
przybliżeniem, proporcjonalna do prawdopodobieństwa P(X‖) tzn.

N(X‖) = N P(X‖), (3.90)

gdzie N jest całkowitą liczbą makrocząsteczek w układzie.
Lewa strona wzoru (3.89) została wyznaczona w doświadczeniu na drodze bez-

pośredniego pomiaru liczby makrocząsteczek w dwóch sąsiednich plasterkach; prawa
strona wzoru zawiera tylko jedną niewiadomą, tzn. stałą Boltzmana kB, natomiast
masa cząsteczkowa m makrocząsteczki zawiesiny oraz przyspieszenie ziemskie g na
danej szerokości geograficznej są znane z bardzo dużą dokładnością. Stąd już można
było wyznaczyć potrzebną stałą kB. Dysponując tą stałą, Perrin wyznaczył ze wzoru
(3.88) poszukiwaną liczbę Avogadro12.
Doświadczenie Perrina stało się wystarczającym dowodem empirycz-

nym potwierdzającym ziarnistą bydowę materii na poziomie mikroskopo-
pwym. Można bez przesady powiedzieć, że doświadczenie to otworzyło
drogę nowożytnej fizyce atomowej.

12Stała Avogadro, wyznaczona z dokładniejszych pomiarów, wynosi NA = 6, 022 · 1023/mol.
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3.11 Równanie Fokkera-Plancka-Smoluchowskiego

W ogólnym przypadku niejednorodnych elementów przejścia z prerównania mistrza
(3.43) można wyprowadzić ogólne równanie dyfuzji znane jako równanie Fokkera-
Plancka bądź równanie Smoluchowskiego, używając wygodniejszej notacji

W ( ~X, t+∆t | ~X −∆ ~X, t) = W (∆ ~X,∆t | ~X −∆ ~X, t)
(3.91)

oraz analogicznie

W ( ~X −∆ ~X, t+∆t | ~X, t) =W (−∆ ~X,∆t | ~X, t). (3.92)

Notacja ta pozwala na alternatywne określenie elementów {W} na przykład, ele-
ment przejścia W (∆ ~X,∆t | ~X−∆ ~X, t) jest prawdopodobieństwem przemieszczenia
cząsteczki zawiesiny o wektor ∆ ~X w przedziale czasu ∆t pod warunkiem, że o jedno
przemieszczenie wcześniej w chwili t cząsteczka znajdowała się w położeniu ~X−∆ ~X.
Postępując analogicznie jak przy wyprowadzeniu równania (3.44) otrzymujemy ogól-
niejsze równanie różniczkowo-różnicowe

∂P( ~X, t | ~X0, t0)
∂t

=
∑

∆ ~X 6=0
[Γ(∆ ~X | ~X −∆ ~X, t)P( ~X −∆ ~X, t | ~X0, t0)−

Γ(−∆ ~X | ~X, t)P( ~X, t | ~X0, t0)], (3.93)

gdzie teraz użyliśmy ogólniejszej, niejednorodnej (w przestrzeni i czasie) postaci
elementów przejścia. Analogicznie jak poprzednio, wprowadziliśmy tutaj definicje
niejednorodnych intensywności procesu

Γ(∆ ~X | ~X −∆ ~X, t) = lim
∆t→0

W ( ~X, t+∆t | ~X −∆ ~X, t)
∆t

, (3.94)

oraz analogicznie zdefiniowaną intensywność Γ(−∆ ~X | ~X, t). Z równania (3.93) moż-
na wyprowadzić uogólnione równanie dyfuzji zwane najczęściej równaniem Fokkera-
Plancka, rozwijając pierwszy składnik pod sumą w szereg Taylora w punkcie ~X
(analogicznie jak przy wyprowadzaniu równania dyfuzji Fick’a (3.46)). Otrzymuje-
my na tej drodze

∂P( ~X, t | ~X0, t0)
∂t

=
∂2

∂X2j
[Dj( ~X, t)P( ~X, t | ~X0, t0)]−

∂

∂Xj

[〈Vj〉P( ~X, t | ~X0, t0)],

(3.95)

gdzie Dj( ~X, t) to współczynniki zdefiniowane wzorem analogicznym do (3.69) do-
puszczającym ich zależność od położenia cząsteczki oraz od czasu

Dj =
1
2

∑

∆ ~X 6=0
(∆Xj)2Γ(∆ ~X | ~X), j = 1, . . . , d, (3.96)
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natomiast 〈Vj〉, j = 1, . . . , d, są składowymi prędkości dryfu

〈Vj〉 =
∑

∆ ~X 6=0
∆XjΓ(∆ ~X | ~X), j = 1, . . . , d. (3.97)

Równanie Fokkera-Plancka (3.95) można przedstawić w postaci równania ciągło-
ści, gdyż prąd prawdopodobieństwa wynosi

~j = ~jD +~jV (3.98)

składając się z dyfuzyjnego prądu prawdopodobieństwa

~jD = −
{

∂

∂X1
[D1( ~X, t)P( ~X, t | ~X0, t0), . . . ,

∂

∂Xd
[Dd( ~X, t)P( ~X, t | ~X0, t0)}

}

,(3.99)

oraz konwekcyjnego prądu prawdopodobieństwa

~jV =
{

〈V1〉P( ~X, t | ~X0, t0), . . . , 〈Vd〉P( ~X, t | ~X0, t0)
}

. (3.100)

Zatem,

∂P( ~X, t | ~X0, t0)
∂t

+∇d~j = 0, (3.101)

jak być powinno.

3.12 Autokorelacje - złamanie
Centralnego Twierdzenia Granicznego

Rozpoczynamy teraz omawianie sytuacji, w których ulega złamaniu centralne twier-
dzenie graniczne; wykażemy, że może to być związane z długozasięgowymi autokore-
lacjami występującymi pomiędzy pojedynczymi przemieszczeniami cząsteczki. Ist-
nienie autokorelcji oznacza, że pojedyncze przemieszczenia danej cząsteczki są od
siebie statystycznie zależne. Typowym przykładem takiej sytuacji może być błądze-
nie (”główki”) usztywnionego polimeru zależne od orientacji wyjściowego monomeru
zwane błądzeniem ukierunkowanym (”directed random walk”) lub błądzenie poli-
meru bez samoprzecięć (”self-avoiding random walk”) albo skorelowane błądzenie
kanałowe (jednowymiarowe) jonów w sieci krystalicznej (któremu towarzyszą ”back-
jump correlations” lub ”feed-back” correlations”).
Rozważmy sumaryczną funkcję autokorelacji wprowadzoną w rozdz.3.10 przez

wyrażenie (3.61)

K(n) = 1
2

n∑

i6=j
K(i, j) =

n∑

i<j

K(i, j), (3.102)
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gdzie cząstkowa (parcjalna) funkcja autokorelacji

K(i, j) = 〈~xi · ~xj〉 − 〈~xi〉 · 〈~xj〉 (3.103)

dotyczy dwóch dowolnie wybranych pojedynczych przemieszczeń danej cząsteczki
(gdzie ”·” oznacza jak zwykle mnożenie skalarne wektorów).
Wzór (3.102) można przepisać w postaci

K(n) =
n−1∑

i=1

n∑

j=i+1

K(i, j) =
n−1∑

i=1

n−i∑

j−i=1
K(i, j), (3.104)

która będzie w dalszym ciągu przekształcana. Zakładając że wszystkie parcjalne
funkcje autokorelacji są jednorodne (co wynika z jenorodności czasu wyrażonego
liczbą pojedynczych przemieszczeń i jednorodności przestrzeni) i nie przejawiają
asymptotycznych oscylacji, można zapisać

K(i, j) = K(j − i) (3.105)

co razem z (3.104) daje

K(n) =
n−1∑

i=1

n−i∑

m=1

K(m). (3.106)

Należy podkreślić, że własność jednorodności jest cechą powszechnie występującą
- obserwuje się ją nie tylko w stanach równowagowych czy ogólniej stacjonarnych
układu ale nawet w przypadku relaksacji układu. Korzystając z wyrażenia (3.106)
wykazujemy, że funkcję autokorelacji K(n) można przekształcić do wygodnej postaci

K(n) =
n∑

j=1

(n− j)K(j) = n
n∑

j=1

K(j)−
n∑

j=1

jK(j). (3.107)

Wyprowadzenie wzoru (3.107) opiera się po prostu na zestawieniu wszystkich
składników sumy podwójnej (3.106) uzupełnionej o pomocniczą sumę

∑n
j=1 jZ(j)

(na razie elementy Z(j), j = 1, . . . n, są dowolne) w postaci tabelarycznej, gdzie
na przecięciu każdego wiersza i kolumny stoi jeden element tak poszerzonej sumy.
Sumując teraz elementy tabeli pionowo oraz przyjmując, że Z(j) = K(j), j =
1, . . . , n, otrzymujemy

n
n∑

j=1

K(j) =
n−1∑

i=1

n−i∑

m=1

K(m) +
n∑

j=1

jK(j) (3.108)

a stąd w oparciu o (3.106) poszukiwany wzór (3.107).
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Tabela 3.1: Zestawienie wszystkich elementów sumy
∑n−1
i=1

∑n−i
m=1K(m)+

∑n
j=1 jZ(j)

i = 1 K(1) K(2) . . . K(n− 2) K(n− 1) Z(n)
i = 2 K(1) K(2) . . . K(n− 2) Z(n− 1) Z(n)
. . . . . . . . . . . . . . . . . . . . .

i = n− 1 K(1) Z(2) . . . Z(n− 2) Z(n− 1) Z(n)
i = n Z(1) Z(2) . . . Z(n− 2) Z(n− 1) Z(n)

3.12.1 Dyspersja a funkcja autokorelacji

Ze wzorów (3.61) oraz (3.107) wynika, że znalezienie zależności sumarycznej dys-
persji σX od czasu dla długich czasów wymaga znajomości zależności sumarycznej
funkcji autokorelacji K od n dla dużych n a więc zależności cząstkowej funkcji au-
tokorelacji K od n dla dużych n.
Istnieją co najwyżej trzy różne przypadki asymptotycznego (gdy n → ∞), mo-

notonicznego zanikania cząstkowej funkcji autokorelacji

1) zanikanie szybsze niż 1/n czyli, K(n) ≈ Cn−(1+α), 0 < α,

2) zanikanie wolniejsze niż 1/n czyli, K(n) ≈ Cn−γ, 0 < γ < 1,

3) K(n) ≈ C/n,

gdzie C(> 0) jest pewną stałą. Przypadek 1) definiuje tzw. autokorelacje krótko-
zasięgowe, zaś przypadek 2) autokorelacje długozasięgowe; sytuacja 3) określa
przypadek marginalny (przejściowy).
Przedstawmy teraz funkcję autokorelacji w postaci sumy dwóch następujących

składników

K(n) = K(n0) +K>(n), (3.109)

gdzie

K>(n) = n
n∑

j=n0+1

K(j)−
n∑

j=n0+1

jK(j), (3.110)

tutaj n0 jest taką najmniejszą liczbą naturalną powyżej której oba sumowania w
(3.109) można zastąpić całkowaniem. Zatem

K>(n) ≈ n
∫ n

n0
K(j)dj −

∫ n

n0
jK(j)dj; (3.111)

jak widać, K(n0) jest stałą (nieistotną dla dalszych rozważań) - oznaczamy ją przez
C0. Można teraz wyznaczyć asymptotyczne zachowanie sumarycznej funkcji autoko-
relacji K(n) dla trzech wspomnianych powyżej przypadków.
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Przypadek 1

Rozważmy najpierw sytuację gdy 0 < α 6= 1. Wtedy, z (3.109) oraz (3.111) po
wykonaniu prostego całkowania wynika, że dla n→∞

K>(n) ≈ Cn
∫ n

n0

1
j1+α

dj − C
∫ n

n0

1
jα
dj = C ′0 + C1n

1−α + C2n1−α, (3.112)

gdzie C ′0, C1 i C2 są stałymi (które łatwo można powiązać ze stałą C oraz wykład-
nikiem α).
Rozważmy teraz ten sam przypadek ale dla szczególnej sytuacji gdy α = 1.

Wówczas, analogicznie jak poprzednio, z (3.109) oraz (3.111) otrzymujemy

K(n) ≈ C ′0 − C1 ln(n). (3.113)

Jak widać, każde z wyrażeń (3.112) oraz (3.113) podzielone przez n jest, w przypad-
ku autokorelacji krótkozasięgowych, malejącą funkcją n. Zatem, z równania (3.61)
na wariancję sumarycznego przemieszczenia cząsteczki otrzymujemy dla asympto-
tycznie dużego n, że

(σX(n))2 ≈ n(σx)2. (3.114)

Można powiedzieć, że korelacje krótkozasięgowe nie zmieniają asympto-
tycznie brownowskiego charakteru błądzeń przypadkowych.

Przypadek 2

Wykonując obliczenia analogicznie jak w poprzednim przypadku, otrzymujemy

K(n) ≈ C ′0 + C1n2−γ + C2n2−γ , (3.115)

przy czym jak widać, wykładnik 2 − γ > 1. Łącząc powyższe wyrażenie z (3.61)
dostajemy dla asymptotycznie dużych n

(σX(n))2 ≈ n(σx)2 + (C1 + C2)n2−γ ∼ n2−γ . (3.116)

Zatem dyspersja sumarycznego przemieszczenia rośnie superliniowo z całkowitą licz-
bą przemieszczeń. Wynik ten oznacza, że korelacje długozasięgowe zmieniają klasę
uniwersalności błądzenia przypadkowego. Mówimy teraz o superdyfuzji (a dokład-
niej supersamodyfuzji) cząsteczki. Zauważmy, że skrajnym przypadkiem superdy-
fuzji jest tzw. dyfuzja balistyczna odpowiadająca wykładnikowi γ = 0 co fizycznie
oznacza, że wszystkie pojedyncze przemieszczenia są identyczne (tzn. o jednako-
wej długości i zwrócone w tę samą stronę) - może to opisywać skrajny przypadek
”dyfuzji” polimeru o 100%-owej sztywności. Innymi słowy, może to być np. ruch
jednostajny (ze stałą prędkością) sztywnego pręta.
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Przypadek 3

Analogicznie jak w poprzednich przypadkach, z (3.109) oraz (3.111) otrzymujemy
(dla asymptotycznie dużych n) po prostych obliczeniach,

(σX(n))2 ≈ n((σx)2 − C1) + C2n ln(n) ∼ n ln(n). (3.117)

Jak widać, jest to rezultat o jeszcze innym charakterze niż dwa poprzednie - istnienie
korelacji niezwykle wzbogaca problematykę szeroko rozumianej dyfuzji.
Należy podkreślić, że autokorelacje długozasięgowe prowadzą w ogólności do roz-

kładów granicznych różniących się od rozkładu Gaussa (J.-P. Bouchaud and A. Geo-
rges, Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and
Physical Applications, Phys. Rep. 195 (1990) 127-293).

3.13 CTG a zanik potęgowy:
zderzenie dwóch światów

Omawiamy przykład, który pozwoli zorientować się w sposobie funkcjonowania CTG
w przypadku gdy dany rozkład zanika algebraicznie, czyli posiada algebraicznie za-
nikający ”ogon”, ale (pomimo to) skończoną wariancję (patrz D. Sornette: ”Critical
Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder:
Concepts and Tools”, Springer-Verlag, Berlin 2000, oraz J.-P. Bouchaud, M. Potter:
”Theory of Financial Risks. From Statistical Physics to Risk Management”, Cam-
bridge Univ. Press, Cambridge 2001). Zauważmy, że jest to sytuacja odmienna od
tej z jaką mamy do czynienia np. w przypadku obciętego rozkładu Lévy’ego (patrz
R.N. Mantegna, H.E. Stanley: ”Ekonofizyka. Wprowadzenie”, tłum. ang., Wydaw-
nictwo Naukowe PWN, Warszawa 2001), gdzie zmienna losowa podlega rozkładowi
Lévy’ego jedynie w skończonym zakresie (poza którym rozkład po prostu znika).

3.13.1 Rozkład Gaussa i rozkład potęgowy w jednym

W pierwszym etapie rozważmy jawną postać gęstości rozkładu Studenta (czyli
W. S. Gosseta) dla trzech stopni swobody (tzn. µ = 3)

p(x) =
1
π

2σ3

(σ2 + x2)2
, (3.118)

która jest scharaktryzowana skończoną wariancję równą po prostu σ2; często w lite-
raturze dla (wąsko rozumianego) rozkładu Studenta przyjmuje się, iż σ2 = 3.
W dalszej części wykorzystujemy funkcję charakterystyczną gęstości rozkładu

(3.118) czyli transformatę Fouriera tej gęstości p̃(k), którą łatwo wyznaczyć (patrz
np. H. Batemann, A. Erdélyi: ”Tables of Integral Transforms”, Vol.1, McGraw-Hill
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Book Comp. Inc., New York 1954) wiedząc, że

F
[

1
(σ2 + x2)(σ21 + x2)

]

=
π

(σ2 − σ21)
[ 1
σ1
exp(−(σ1 − σ) | k |)−

1
σ

]

exp(−σ | k |)

(3.119)

i przyjmując σ1 → σ (jak zwykle, F [f(x)] oznacza transformatę Fouriera funkcji
f(x)). Stąd otrzymujemy, po uwzględnieniu (3.118), że

p̃(k) = (1 + σ | k |) exp(−σ | k |). (3.120)

Zauważmy, że dla (x/σ)2 � 1 rozkład (3.118) przybiera postać

p(x) ≈ 1
π

2σ3

| x |d+µ , (3.121)

gdzie d = 1. Tego typu algebraiczny zanik rozkładu p(x) prowadzi do nieskończonych
wartości momentów absolutnych zmiennej losowej x czyli

〈| x |m〉 =∞, (3.122)

dla wykładnika m ­ µ.
Natomiast, gdy (x/σ)2 � 1,

p(x) ≈ 1
π

2
σ

[

1− 2
(
x

σ

)2
]

≈ 1
√

π/2
· pG(x; σ/2), (3.123)

gdzie pG(x; σ/2) jest (centrowanym w zerze) rozkładem Gaussa zmiennej losowej x
o odchyleniu standardowym σ/2.
Rys.3.4 jest podsumowaniem powyższych rozważań - przedstawiono na nim za-

równo ścisły rozkład (3.118) jak też pozostałe, przybliżone jeden (3.121) i dwa w
wyrażeniu (3.123). Jak widać, obszar wokół x = σ można traktować jako przejściowy
pomiędzy skrajnymi, omawianymi powyżej.
Przejdziemy teraz do drugiego etapu naszych rozważań. Zauważmy, że skoń-

czona wariancja wyjściowego rozkładu (3.118) pozwala na zastosowanie Centralnego
Twierdzenia Granicznego. W tym celu wyrazimy gęstość prawdopodobieństwa dla
sumarycznej zmiennej losowej Xn = x1 + x2 + . . . + xn, n = 2, 3, . . . , w postaci
następującej konwolucji

Pn(Xn) =

n
︷ ︸︸ ︷

(p⊗ p⊗ . . .⊗ p)(Xn) =

=
∫ ∞

−∞
dXn−1

∫ ∞

−∞
dXn−2 . . .

∫ ∞

−∞
dX2

∫ ∞

−∞
dX1

p(Xn | Xn−1)p(Xn−1 | Xn−2) . . . p(X2 | X1)p(X1), (3.124)

gdzie p(Xj | Xj−1) jest gęstością prawdopodobieństwa wystąpienia określonej zmien-
nej sumarycznej Xj pod warunkiem pojawienia się sumarycznej zmiennej Xj−1, j =
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Rysunek 3.4: Ścisły rozkład (3.118) jak też pozostałe, przybliżone jeden (3.121) i
dwa w wyrażeniu (3.123).

2, 3, . . . , n. W dalszym ciągu, korzystając z warunku jednorodności (stacjonarności)
procesu

p(Xj | Xj−1) = p(Xj −Xj−1), j = 2, 3, . . . , n, ) (3.125)

otrzymujemy z (3.124), że transformata Fouriera

P̃n(k) = [p̃(k)]n = (1 + σ | k |)n exp(−nσ | k |); (3.126)

czyli funkcja charakterystyczna P̃n(k) prawdopodobieństwa Pn(Xn) jest n-tą potęgą
funkcji charakterystycznej p̃(k) elementarnego prawdopodobieństwa p(x). Rozkład
spełniający taką własność nazywamy nieskończenie podzielnym. Rozkłady nieskoń-
czenie podzielne nie muszą być stabilne (czyli mogą zmieniać swój kształt przy
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przechodzeniu od pojedynczej do sumarycznej zmiennej losowej); na szczęście od-
wrotne twierdzenie jest prawdziwe. Niestety nie jest znana zamknięta postać rozkła-
du posiadającego funkcję charakterystyczną w postaci (3.126) dlatego dalej jesteśmy
zmuszeni korzystać jedynie z odpowiednich przybliżeń.
Rozwijając działanie ln P̃n(k) w szereg w otoczeniu punktu k = 0 i ograniczając

się do wyrazów rzędu | k |3, można przybliżyć funkcję charakterystyczną (3.126) w
następujący sposób

P̃n(k) ≈ 1−
1
2
nσ2k2 +

1
3
nσ3 | k |3 (3.127)

czyli także z dokładnością do wyrazów rzędu | k |3. Podkreślmy, że wyrazy tego typu
zależą od modułu k co oznacza, że trzecia pochodna funkcji charakterystycznej P̃n(k)
po k w zerze nie istnieje (istnieją tylko pochodne lewo- i prawostronne, które są od
siebie różne) a tym samym nie istnieje trzeci moment rozkładu, tak jak to ma miejsce
dla potęgowo zanikającego rozkładu o wykładniku 4. Zauważmy, że niezależnie od
wartości n = 1, 2, . . . , wyraz ∼| k |3, który możemy nazwać singularnym, jest zawsze
obecny tzn. funkcja charakterystyczna jest stabilna ze względu na ten wyraz lub
inaczej algebraicznie zanikający ”ogon” rozkładu jest stabilny ze względu na n.
Wynika stąd, że dla dowolnego n istnieje zwasze na tyle duże X, że

Pn(X) ≈
2nσµ

πXd+µ
. (3.128)

Można łatwo sprawdzić, korzystając z (3.126), że wariancja σ2(n) rozkładu Pn(Xn)
wynosi

σ2(n)

(

= −d
2P̃n(k)
dk2

|k=0
)

= n · σ2, (3.129)

czyli jest skończona dla skończonego n. W oparciu o CTG otrzymujemy, dla dosta-
tecznie dużego n(� 1), że

Pn(X) ≈
1√
2πnσ2

exp

(

− X2

2nσ2

)

, (3.130)

czyli jest asymptotycznie przybliżany rozkładem Gaussa o wariancji danej przez
(3.129). Przybliżenie to jest tym lepsze, czyli zachodzi dla tym większego zakresu
zmiennej losowej X, im większe jest n. Zatem możemy oczekiwać istnienia takiej
charakterystycznej wartości Xtr(n) monotonicznie rosnącej ze wzrostem n, że jedy-
nie dla X � Xtr(n) spełnione jest przybliżenie gaussowskie (3.130) natomiast dla
X � Xtr(n) właściwym przybliżeniem Pn(Xn) jest jakiś inny rozkład - kluczowym
zadaniem niniejszych rozważań jest znalezienie tego rozkładu (na podsta-
wie rozważań przeprowadzonych na wstępie niniejszego rozdziału przypuszczamy, że
jest to rozkład potęgowy) oraz zależności Xtr(n) od n.
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Rysunek 3.5: Ilustracja przejścia od rozkładu Gaussa dla X � Xtr(n) = σ
√
n lnn

do rozkładu potęgowego dla X � Xtr(n) = σ
√
n lnn.

Teraz bez trudu znajdujemy to poszukiwane pośrednie Xtr, które najlepiej cha-
rakteryzuje obszar przejściowy; porównując (3.128) z (3.130)

2nσµ

π[Xtr(n)]d+µ
≈ 1√
2πnσ2

exp

(

− [Xtr(n)]2

2nσ2

)

, (3.131)

otrzymujemy po prostych przekształceniach (zaniedbując poprawkę logarytmiczną i
stałe składniki)

Xtr(n) ≈ σ
√

(µ− 2)n lnn, (3.132)

co, jak widać, ma sens tylko dla µ ­ 2. Rys.3.5 dobrze ilustruje opisaną powyżej
sytuację (dla µ = 3): ze wzrostem n wzrasta szybciej niż liniowo rozmiar obszaru,
w którym sumaryczna zmienna losowa podlega rozkładowi Gaussa. Innymi słowy,
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ze wzrostem n coraz dalej odsuwa się granica obszaru w którym zmienna losowa
X posiada rozkład potęgowy czyli maleje prawdopodobieństwo P (| X |>> Xtr).
Oszacujemy to prawdopodobieństwo

P (| X |­ Xtr) = P (X ­ Xtr) + P (X ¬ −Xtr)

­ P (| X |>> Xtr) = P (X >> Xtr) + P (X << −Xtr),

(3.133)

gdzie prawdopodobieństwo

P (X ­ Xtr) + P (X ¬ −Xtr) = 2
∫ ∞

σ
√
(µ−2)n lnn

2nσµ

πXd+µ
dX

=
4

µ(µ− 2)µ/2π
1

nµ/2−1 lnµ/2 n
, (3.134)

dążąc, dla µ > 2, do zera gdy n → ∞. Tym samym prawdopodobieństwo P (|
X |>> Xtr) dąży do zera nie wolniej niz 1/nµ/2−1 lnµ/2 n. Zauważmy, że dla µ ¬ 2
całe nasze postępowanie w niniejszym rozdziale zalamuje się - mamy wówczas do
czynienia z rozkładem Lévy’ego a więc z odmiennym ”światem statystycznym”,
któremu poświęcone są dalsze części niniejszej pracy.

3.13.2 Od rozkładu Gaussa
do rozkładu logarytmiczno-normalnego

Transformację rozkładu Gaussa w rozkład logarytmiczno-normalny (w skrócie log-
normalny) można łatwo przeprowadzić korzystając z odpowiedniej transformacji
zmiennej (rozpatrujemy dla prostoty przypadek jednowymiarowy). Podejscie to zi-
lustrujemy na przykładzie amorficznego substratu - obiektu używanego w rozdz. 6
oraz części IV do pogłębionej analizy wielu zagadnień związanych z procesami i roz-
kładami niegaussowskimi. Tutaj wykorzystamy tylko jeden aspekt tzw. substratu
gaussowskiego w ramach tzw. modelu dolinowego błądzeń losowych.
Mówiąc tutaj o gaussowkim substracie amorficznym mamy na myśli fakt, że

głębokości minimum potencjału, ε ­ 0, są rzeczywistymi liczbami przypadkowymi
odlosowywanymi z połówkowego rozkładu Gaussa G(ε) = 2√

2πσ2
exp(−ε2/2σ2) (we

wspomnianych rozdz. 6 i części IV używamy tzw. substratu wykładniczego). Z te-
go, że zmienna ε jest losowa wynika, że zmienna przetransformowana dana wzorem:
τ(ε) = τ0 exp(ε/kBT ) ­ τ0, jest też zmienną losową. Stąd, pytanie jakie stawiamy
tutaj brzmi: jakiemu rozkładowi p(τ) podlega zmienna τ? Przy okazji zauważ-
my, że zmienna ta definiuje średni czas przebywania błądzącej cząsteczki w minimum
potencjału o głębokości ε.
Odpowiedź na powyższe pytanie jest niemal natychmiastowa jeżeli uprzytomni-

my sobie, że mamy tutaj do czynienia z rozkładami niezmienniczymi, tzn. spełnia-
jącymi równość

p(τ) = G(ε(τ))

∣
∣
∣
∣
∣

dε(τ)
dτ

∣
∣
∣
∣
∣
, (3.135)
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gdzie ε(τ) = kBT ln(τ/τ0). Podstawiając to wyrażenie na ε(τ) do wzoru (3.135)
otrzymujemy ostatecznie wzór na poszukiwany rozkład

p(τ) =
1
τ0

2
√

2πσ2T

1
τ/τ0
exp

(

− 1
2σ2T
ln2 (τ/τ0)

)

, τ/τ0 ­ 1, (3.136)

który jest właśnie zapowiedzianym na wstępie tego rozdziału (ograniczonym) roz-
kładem logarytmiczno-normalnym; tutaj zredukowana dyspersja σT

def.= σ/kBT .

3.14 Łańcuchy multiplikatywne:
rozkład logarytmiczno-normalny

Rozkład logarytmiczno-normaly pojawił się przy rozwiązywaniu wielu zagadnień
probabilistycznych np. typu kruszenia (rozdrabniania) węgla, kamienia bądż rudy
[1]. Wykażemy idąc za Kołmogorowem [2], że tego typu łańcuchy13 mają charakter
multiplikatywny (iloczynowy). Dotychczas omawialiśmy łańcuchy i procesy addy-
tywne (sumaryczne) tzn. będące sumą niezależnych, pojedynczych zmiennych loso-
wych (bądż też skorelowanych w sposób krótkozasięgowy). Obecnie pochylimy się
nad łańcuchami i procesami multiplikatywnymi tzn. takimi, które są iloczynem tego
typu zmiennych losowych czyli zachodzącymi np. w sposób sekwencyjny.
Przypuśćmy, że w wyniku wielostopniowego (wieloetapowego), sekwencyjnego

kruszenia (na sitach o coraz mniejszej średnicy) liniowy rozmiar ziaren X tworzy
ciąg zmiennych losowych (X0, X1, X2, . . . , Xn−1, Xn), gdzie Xn jest liniowym
rozmiarem pojedynczego ziarna na n-tym etapie (stopniu, poziomie) kruszenia przy
czym

0 < Xn < Xn−1, n = 1, 2, . . . . (3.137)

Oczywiście, Xn jest zmienną losową posiadającą pewien (skończony, na ogół niewiel-
ki) rozrzut statystyczny wokół średniego rozmiaru ziaren 〈Xn〉14 na danym etapie
(czyli po pewnym czasie) kruszenia. Kolejna różnica Xn − Xn−1(< 0) jest jakąś
przypadkową częścią (ułamkiem) wyjściowego rozmiaru ziarna Xn−1

Xn −Xn−1 = Rn ·Xn−1, n = 1, 2, . . . , (3.138)

13O łańcuchach stochastycznych mówimy wtedy, gdy czas jest dyskretny. Gdy czas jest ciągły
to mówimy o procesach stochastycznych.
14Średnią tą należy rozumieć jako średnią po wszystkich ziarnach na danym, n-tym, etapie
kruszenia. Zauważmy, że na każdym etapie kruszenia, n, tworzy się pewien stan ustalony, w którym
rozmiar ziaren nie ulega już dalszemu zmniejszeniu. Wynika to z faktu, że ziarna przeleciały na
sito o mniejszej średnicy otworów, przechodząc tym samym do następnego, n+1, etapu kruszenia.
Podlegają wtedy dalszemu kruszeniu, aż do powstania nowego stanu ustalonego, itd, itp.
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gdzie Rn jest zmienną losową z przedziału −1 < Rn < 015 o rozkładzie (dla prostoty)
niezależnym od n. Z powyższego wynika (poprzez wielokrotne wykorzystanie reku-
rencji (3.138) dla kolejnych n), że zmienna losowa Xn ma następującą reprezentację
multiplikatywną

xn
def.
=

Xn

X0
=

n∏

j=1

pj, n = 1, 2, . . . , (3.139)

gdzie pj = 1 +Rj = Xj/Xj−1 jest zmienną losową z przedziału 0 < pj < 1 (oczywi-
ście, o rozkładzie także niezależnym od j). Zatem, logarytmując stronami to wyra-
żenie otrzymujemy addytywną reprezentację równania (3.139)

ln xn =
n∑

j=1

yj, n = 1, 2, . . . , (3.140)

gdzie yj = ln pj < 0, j = 0, 1, 2, . . . , jest zmienną losową o skończonej warto-
ści przeciętnej 〈yj〉 = 〈ln pj〉 < 0 i skończonej wariancji σ2(yj) = 〈y2j 〉 − 〈yj〉2 =
〈(ln pj)2〉 − 〈ln pj〉2. Oczywiście, obie wielkości są teraz niezależne od j, tzn. 〈yj〉 =
〈y〉 = 〈ln pj〉 = 〈ln p〉 oraz σ2(yj) = 〈y2〉 − 〈y〉2 = 〈(ln p)2〉 − 〈ln p〉2 = σ2.
Zauważmy, że równanie (3.140) można teraz przepisać dla asymptotycznie dużego

n w postaci:

Xn = exp(−n〈| ln p |〉)X0, (3.141)

która pokazuje, że 〈| ln p |〉16 pełni rolę współczynnika szybkości asymptotycznego
zaniku zmiennej Xn, tzn. mówi o tym jak szybko proces ln xn oddala się nieogra-
niczenie od stanu wyjściowego ln(x0 = 1) = 0.
Jak widać, zmienna losowa ln xn nie ma dolnego ograniczenia, natomiast

od góry jest ograniczona przez 0. Wynika stąd, że tylko wtedy gdy wpływ tego ogra-
niczenia jest zaniedbywalny można przyjąć, iż sumaryczna zmienna losowa

∑n
j=1 yj

spełnia Centralne Twierdzenie Graniczne17 czyli, że zmienna losowa ln xn posiada
rozkład asymptotycznie normalny

P(ln xn))d lnxn ≈
1

√

2πσ2(n)
exp

(

−(ln xn − µn)
2

2σ2(n)

)

d lnxn (3.142)

gdzie średnia po wszystkich ziarnach na danym etapie kruszenia

µn
def.
= 〈lnxn〉 =

n∑

j=1

〈yj〉 = n〈y〉 = n〈ln p〉 (3.143)

15Nierówność ta wynika natychmiast z nierówności (3.137) wyrażonej w postaci 0 < Xn <
(1 +Rn)Xn−1 < Xn−1.
16Proszę nie mylić tej średniej po j, gdzie j = 1, 2, . . . , n, ze średnią 〈yj〉 po różnych wartościach
yj dla ustalonego pokolenia j.
17Interesującą sytuację, gdy istnieje dolne ograniczenie (a nie istnieje górne) rozważamy w
rozdz.3.14.4.
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oraz sumaryczna wariancja

σ2(n) = σ2(ln xn) =
n∑

j=1

σ2(yj) = nσ2. (3.144)

W powyższych oznaczeniach warunek zachodzenia Centralnego Twierdzenia Gra-
nicznego można zapisać następująco:

| µn |� σ(n) ≡ 〈y〉 � σ√
n
. (3.145)

Z rozkładu (3.142) otrzymujemy bezpośrednio rozkład logarytmicznie-normalny
(czyli w skrócie log-normalny) dla zmiennej xn

P (xn) ≈
1

√

2πσ2(n)

1
xn
exp

(

−(ln xn − µn)
2

2σ2(n)

)

, (3.146)

lub dla zmiennej xn/x̄n, gdzie ln x̄n
def.
= µn(= 〈ln xn〉),

P
(
xn
x̄n

)

≈ 1
√

2πσ2(n)

1
xn/x̄n

exp

(

−(ln(xn/x̄n))
2

2σ2(n)

)

, (3.147)

które stanowią podstawę naszej dalszej dyskusji w tym rozdziale. Oczywiście, ani
rozkład (3.142) ani rozkłady (3.146) i (3.147) nie są rozkładami asymptotycznie
stacjonarnymi (o których będzie mowa w podrozdziałach 3.14.4 i 3.14.8) niemniej
ich przydatnośc jest wprost trudno przecenić. Podkreślmy raz jeszcze, u podstaw
pełnego (nieograniczonego) rozkładu logarytmiczno-normalnego legł fakt
braku jakichkolwiek ograniczeń przestrzennych na zmienną losową mul-
tiplikatywnego łańcucha stochastycznego.
Łatwo sprawdzić (tytułem prostego ćwiczenia), że rozkład P

(
xn
x̄n

)

posiada mak-
simum dla

xn
x̄n
=
xmaxn

x̄n
= exp(−σ2(n)) (3.148)

oraz jest asymetryczny. Na rys.3.6 przedstawiono ten rozkład dla zmiennej względnej
Z

def.
= xn/x̄n oraz dyspersji jednostkowej σ(n) = 1 – widać, jak bardzo różni się on od

odpowiadającego mu rozkładu normalnemu (Gaussa) o zerowej wartości oczekiwanej
i jednostkowej wariancji.
Zauważmy, że maksimum ln(xmaxn ) rozkładu (3.146) przesuwa się w stronę liczb

coraz bardziej ujemnych w miarę jak n rośnie czyli jest ”odpychane” od zera w
kierunku ujemnym ze względu na to, że średnia 〈ln p〉 jest mniejsza od zera - będzie
to jeszcze dyskutowane w rozdz. 3.14.4.
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Rysunek 3.6: Porównanie rozkładu log-normalnego (to ten posiadający lokalne mak-
simum) z odpowiadającym mu rozkładem Gaussa.

Rozkład log-normalny posiada jeszcze jedną, charakterystyczną własność miano-
wicie, znajomość nawet wszystkich momentów tego rozkładu nie określa go jedno-
znacznie. Można łatwo sprawdzić, że rozkład postaci

P (Z) =
1

√

2πσ2(n)

1
Z
exp

(

− ln
2(Z)
2σ2(n)

)

[1 + a sin(2π ln(Z))], −1 < a < 1, (3.149)

ma identyczne momenty jak odpowiadający mu rozkład logarytmiczno-normalny
(3.147).

3.14.1 Od rozkładu log-normalnego do potęgowego

Wykażemy teraz ważną własność rozkładu log-normalnego polegającą na imitowaniu
rozkładu potęgowego w szerokim zakresie zmiennej niezależnej. Zauważmy w tym
celu, że zachodzi następująca tożsamość

exp(a · ln2 x) ≡ xa·ln x; (3.150)

korzystając z niej możemy rozkład log-normalny (3.147) przepisać w postaci

P (xn) =
1

√

2πσ2(n)

(
xn
x̄n

)−1−α(xn)
, (3.151)

gdzie wolnozmienna funkcja α(xn)
def.
= 1
2σ2(n)

ln
(
xn
x̄n

)

. Jak widać, gdy spełniony jest
warunek

| α(xn) |� 1 ≡| ln(xn/x̄n) |� 2σ2(n), (3.152)
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wtedy mamy do czynienia z rozkładem potęgowym o wykładniku potęgi w przybli-
żeniu równym 1 co stanowi żródło szumu typu 1/f , o którym jest mowa poniżej.
Na rysunku 3.7 porównaliśmy taki rozkład log-normalny (3.147), który spełnia

warunek (3.152) (gdyż przyjęliśmy, że σ(n) = 10 oraz 1 ¬ Z(= xn/x̄n) ¬ 100) z od-
powiadającym mu (czyli posiadającym tą samą wartość parametru σ(n)) rozkładem
potęgowym kładąc po prostu we wzorze (3.151) wykładnik α = 0. Jak widać, rozróż-

1 2 5 10 20 50 100
Z

0.001
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0.005

0.01

0.02

P(Z)

Rysunek 3.7: Porównanie rozkładu log-normalnego (to ten położony nieco niżej) z
odpowiadającym mu rozkładem potęgowym o wykładniku potęgi równym 1 w skali
log-log. Jak widać, obie krzywe są trudne do odróżnienia w zakresie Z spełniającym
(3.152).

nienie w tych warunkach obu rozkładów jest trudne tym bardziej gdy uwzględnimy
(nieobecny na rysunku) nieunikniony rozrzut punktów doświadczalnych.

3.14.2 Log-normalne oraz potęgowe dochody
jednostek w społeczeństwie

Równanie (3.138) opisujące proces multiplikatywny można interpretować tak jak
to uczynił R. Gibrat w roku 1931 analizując statystykę osób o niskich i średnich
dochodach (W. Souma: ”Physics of Personal Income”, arXiv:cond-mat/0202388 v1
22 Feb 2002); z tego powodu w analizie finansowej charakterystyczny współczynnik
β = 1/

√

2σ2(n) parametryzujący rozkład log-normalny (3.147) nosi nazwę indeksu
Gibrata. Gibrat założył, że roczny przyrost dochodu jednostki Xn−Xn−1 jest jakimś
losowym ułamkiem dochodu Xn−1 w roku poprzedzającym a sam dochód Xn w
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dowolnym roku n jest nieujemny. Oznacza to, że czynnik losowy Rn w równaniu
(3.138) można traktować (podobnie jak to ma miejsce we wcześniej omawianym
procesie kruszenia) jako nie mniejszy od −1 ale nieograniczony od góry (gdyż może
się zdarzyć, że w danym roku jednostka osiągnie znaczny zysk, w przeciwieństwie
do procesu kruszenia) co nie wpływa na omawiane wyprowadzenie rozkładu log-
normalnego18.
Na rysunku 3.8 przedstawiono skumulowane prawdopodobieństwo dochodów oso-

bistych obywateli Stanów Zjednoczonych w latach 1935-36 od najniższych po naj-
wyższe dostęne (w skali log− log; gwiazdkami zaznaczono dane empiryczne). Widać,
że dane dla jednostek o niskich dochodach dają się opisać rozkładem log-normalnym
(cienka czarna linia) o indeksie Gibrata β = 1.63 i wartości średniej x̄n = 1100 [$],
natomiast jednostki o dochodach przeciętnych a zwłaszcza wysokich (gruba czarna
linia) opisują się rozkładem Pareto-Lévy’ego o indeksie α = 1.63 (gdzie błąd jest na
trzecim miejscu po kropce dziesiętnej). W oparciu o wykres przedstawiony na rys.

Rysunek 3.8: Porównanie (typu Gibrata) danych empirycznych (gwiazdki) z roz-
kładem log-normalnym (cienka czarna linia ciągła o indeksie Gibrata β = 2.23 i
x̄n = 1100 [$]) oraz z rozkładem Pareto-Lévy’ego (gruba linia ciągła o indeksie
rozkładu α = 1.63).

18Chodzi o to, że występowanie takiego ograniczenia zmusiłoby nas do wymagania przyjętego w
rozdz. 3.14, że 〈ln p〉 < 0. Dopiero takie ograniczenie pozwoliło na wyprowadzenie tam rozkładu log-
normalnego dla dostatecznie dużych n, odsuwając centrum rozkładu na lewo, dostatecznie daleko
od wpływu tego (górnego) ograniczenia.
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3.8 można stwierdzić, że rozkładowi Pareto podlega blisko 1% osób czynnych zawo-
dowo podczas gdy pozostałe podlegają rozkładowi log-normalnemu. Zaskakującym
może być fakt znikomej liczbności grupy osób o przeciętnych dochodach osobistych.
Analogiczne wyniki badań przeprowadzonych nad społeczeństwem japońskim w

okresu 44 lat od roku 1955 do 1998 zestawiono na rys. 3.9, gdzie podano roczne
wartości indeksów α and β. Jak widać, w niektórych latach indeks Pareto był większy

Rysunek 3.9: Wartości indeksów: Pareto α (kółka) i Gibrata β (kwadraciki) otrzy-
mane z danych dotyczących społeczeństwa japońskiego w latach 1955-98.

od 2 co potraktowano jako rozrzut wokół wartości średniej indeksu ᾱ.
Aby wyznaczyć tą wartość średnią zebrano dane z okresu 112 lat od roku 1887

do 1998 i przedstawiono na rys. 3.10. Z danych empirycznych dotyczących Japonii
wynika, że ᾱ równa się (z dobrym przybliżeniem) granicznej wartości 2.

3.14.3 Potęgowe dochody przedsiębiorstw

W roku 1999 opublikowana została wielce charakterystyczna praca (K. Okuyama,
M. Takayasu, H. Takayasu: ”Zipf’s law in income distribution of companies”, Phy-
sica A 269 (1999) 125–131) dotycząca rozkładu rocznych dochodów przedsiębiorstw
japońskich, które porównano z analogicznymi dla przedsiębiorstw włoskich - otrzy-
mane wyniki przedstawiono na rys. 3.11 Jak widać, gospodarka japońska znacznie
lepiej daje się opisać prawen Zipfa niż włoska.
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Rysunek 3.10: Wartości indeksu Pareto α dla Japonii (puste kółka) i Stanów Zjed-
noczonych (czarne kwadraciki) otrzymane z danych dotyczących odpowiednio spo-
łeczeństwa japońskiego w latach 1887-98 i amerykańskiego w latach 1914-1936.

Ponadto, na rys. 3.12 przedstawiono bardziej szczegółowe wyniki uzyskane na
drodze analizy poszczególnych gałęzi gospodarki japońskiej. Jak widać budownic-
two, które w największym stopniu podlega wolnej konkurencji, jest najlepiej opisy-
wane prawem potęgowym w przeciwieństwie do energetyki, w której intrwencjonizm
państwa jest największy.

3.14.4 Stochastyczny proces multiplikatywny
w obecności bariery

Często w multiplikatywnych procesach stochastycznych, za pomocą których staramy
się opisać rzeczywistość, zmienne losowe posiadają naturalne ograniczenie od dołu
- są dodatnie. Na przykład, cena akcji na giełdzie czy też liczebność określonej po-
pulacji zwierząt na danym terytorium rezerwatu w rzeczywistości nigdy nie spada
do zera gdyż w przypadku osiągnięcia ustalonego dolnego ograniczenia (na wartość
akcji lub liczebność populacji w rezerwacie) następuje interwencja z zewnątrz unie-
możliwiająca przekroczenie ustalonego progu. Zatem, rzeczywistość często nakłada
na dynamikę stochastyczną dolny ograniczajacy warunek brzegowy.
Przypuśćmy zatem, że równanie (3.138) opisuje teraz stochastyczną dynamikę

ceny akcji, Xn, w chwili n na giełdzie [3]. Przepiszmy to równanie w postaci zloga-
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Rysunek 3.11: Skumulowane prawdopodobieństwo dochodów przedsiębiorstw japoń-
skich (linia ciągła) oraz włoskich (linia przerywana) przedstawione w skali log-log.
Widać, że prawo Zipfa (cienkie linie przerywane) jest spełnione znacznie lepiej dla
gospodarki japońskiej niż dla włoskiej.

rytmowanej

Yn+1 = Yn + ln, n = 0, 1, 2, . . . , (3.153)

która wskazuje, że mamy tutaj do czynienia z błądzeniem przypadkowym typu ruchu
Browna, w czasie dyskretnym n, gdzie aktualne położenie Yn = lnXn oraz aktualne
przemieszczenie ln = ln pn. W dalszym ciągu zakładamy (podobnie jak poprzednio),
że zmienna pn (a więc i ln) jest losowana z rozkładu, który jest niezależny od n
oraz, że 〈ln p〉 < 0 co nie oznacza, że zawsze pn < 1 - czasami może się zdarzyć, że
pn ­ 1 co odróżnia tą sytuację od omawianej poprzednio19. Zauważmy, że ten ostatni
warunek dopuszcza sytuacje gdy od czasu do czasu (w wyniku fluktuacji) ln pn > 0.
Jednakże po chwili, następuje dryf w kierunku odpychającej bariery umieszczonej
na lewo od Y0 w odległym punkcie Yb, tzn. |Yb| � |Y0|.
Należy podkreślić, że istnienie odpychającej bariery prowadzi do kumulowania

się na niej tych wszystkich przemieszczeń, które w przypadku jej braku prowadziłyby
do realizacji nieograniczonego procesu na lewo od bariery. W ten sposób w pobli-
żu bariery może powstać, dla asymptotycznie dużego n, znacząca odpychająca siła
termodynamiczna (a dokładniej chemiczna, proporcjonalna do gradientu potencjału

19Oczywiście, w obu przypadkach przemieszczenia ln są z definicji statystycznie niezależne.
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Rysunek 3.12: Skumulowane prawdopodobieństwo dochodów przedsiębiorstw japoń-
skich w ramach trzech charakterystycznych gałęzi gospodarki w skali log-log: 1)
budownictwa (linia ciągła), 2) wyroby elektryczne i elektrotechniczne (w tym oczy-
wiście ’high-tech’ - linia przerywana), 3) energetyka (linia kropkowana). Jak widać,
chroniona przez państwo energetyka wykazuje największe odstępstwa od prawa po-
tęgowego (linia prosta przerywano-kropkowana); budownictwo, podlegające w naj-
większym stopniu działaniu wolnej konkurencji, najlepiej daje się opisać prawem
potęgowym (o wykładniku α = 1.13 - linia prosta kropkowana ); branża elektrycz-
na i elektrotechniczna także daje się opisać (z niezłym przybliżeniem) rozkładem
potęgowym (o wykładniku α = 0.72).

chemicznego a stąd do gradientu gęstości prawdopodobieństwa) prowadząca do dy-
fuzji w kierunku dodatnim (na prawo od bariery). Istnienie dwóch przeciwstawnych
prądów: dryfu jV = V Ps(Yn) w kierunku bariery, gdzie V = − | 〈ln p〉 | jest (bezwy-
miarową) prędkością unoszenia (dryfu) a Ps(Yn) jest poszukiwanym stacjonarnym
rozkładem prawdopodobieństwa, i dyfuzji jD = −D dPs(Yn)

dYn
w kierunku odwrotnym

wywołanej istnieniem tejże bariery, gdzie D = [〈(ln p)2〉− 〈ln p〉2]/2 jest (bezwymia-
rowym, jednowymiarowym) współczynnikiem dyfuzji, może prowadzić do powstania
stanu stacjonarnego procesu, w przeciwieństwie do sytuacji omawianej poprzednio
(także w niniejszym rozdz. 3.14); w następnym rozdz. 3.14.6 dokładniej uzasadniamy
powyższe rozważania wychodząc od równania mistrza.
Z warunku znikania sumarycznego prądu w stanie równowagi

j = jV + jD = 0, (3.154)
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otrzymujemy

dPs(Yn)
dYn

= −| V |
D
Ps(Yn), (3.155)

skąd natychmiast wynika (z dobrym przybliżeniem), że

Ps(Yn) =
{

α exp(−α(Yn − Yb), dla Yb ¬ Yn ¬ Y0
0, dla Yn < Yb,

(3.156)

gdzie wprowadziliśmy oznaczenie α = |V |
D
oraz wykorzystaliśmy warunek normaliza-

cji

1 ≈
∫ ∞

Yb
Ps(Yn)dYn. (3.157)

Posługując się równaniem (3.156), powracamy w występującym tam rozkładzie do
wyjściowej zmiennej Xn, czyli korzystamy z niezmienniczości rozkładów, otrzymując

Ps(Xn) = Ps(Yn(Xn))

∣
∣
∣
∣
∣

dYn
dXn

∣
∣
∣
∣
∣
⇒ Ps(Xn) =

α

Xb

1
(Xn/Xb)1+α

, (3.158)

a więc uzyskaliśmy rozkład potęgowy Pareto, o którym mówiliśmy na wstępie. Za-
uważmy, że nawet dla α� 1 stacjonarny rozkład potęgowy może się utworzyć, gdyż
jest to rozkład o charakterze asymptotycznym.
Podkreślmy: powstanie rozkładu potęgowego było możliwe dzięki wpro-

wadzeniu dolnego ograniczenia na wartość zmiennej losowej X; brak ta-
kiego ograniczenia doprowadza do powstania rozkładu log-normalnego
(patrz rozdz. 3.14).

3.14.5 Model drabinowy dochodów gospodarstw domowych

Model drabinowy opisuje pojedynczą klasę dochodową określoną jednym (ustalo-
nym) wykładnikiem Pareto α. Za pomocą tego modelu określimy warunki w jakich
skumulowany rozkład pradopodobieństwa dochodów gospodarstw domowych ma po-
stać potęgową.
Na rysunku 3.13 przedstawiono drabinę społeczną podklas dochodowych na jakie

dzielimy daną klasę dochodową. Podział na podklasy dokonujemy według następu-
jącej popularnej reguły wykładniczej:

qi−1 ¬ y

ymin
< qi, i = 1, 2, . . . , q > 1, (3.159)

gdzie wykładnik i numeruje podklasy, q jest liczbą rzeczywistą, y > 0 oznacza do-
chód a ymin > 0 minimalną wartość tego dochodu. Jak widać, logarytm względnego
dochodu, ln(y/ymin), jest równomiernie rozłożony ze stałym dystansem pomiędzy
podklasami krokiem ln q.
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Rysunek 3.13: Drabina podklas modelu drabinowego opisującego pojedynczą klasę
dochodową określoną jednym (ustalonym) wykładnikiem Pareto α. Prawdopodo-
bieństwa przejść do góry i wdól oznaczono, odpowiednio, przez p+ oraz p−. Dodat-
kowo, przez p0 oznaczono prawdopodobieństwo przetrwania w pierwszej podklasie.
Stąd, prawdopodobieństwo przejścia z tej podklasy do podklasy drugiej wynosi 1−p0.
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W dalszym ciagu zakładamy, że układ znajduje się w stanie równowagi. W stanie
takim spełnione są warunki równowagi szczegółowej w postaci charakterystycznej dla
jednokrokowego modelu drabinowego:

Nip+ = Ni+1p−, i ­ 2,
N2p− = N1(1− p0), (3.160)

gdzie Nj, j = 1, 2, . . . , oznacza liczbę gospodarstw domowych w podklasie docho-
dowej o numerze j.
Rozwiąznie jednorodnego równania rekurencyjnego stopnia pierwszego (3.160)

jest następujące:

Ni =

(

p+
p−

)i−2
, i ­ 2,

N2 =
1− p0
p−

N1. (3.161)

Teraz, główny problem jakie staje przed nami to wyznaczenie prawdopodo-
bieństwa skumulowanego P (y ­ yi). Rozkłada się ono na dwa kroki.
W pierwszym kroku wyznaczamy prawdopodobieństwo:

Pi = P (yminqi−1 ¬ y < yminq
i) = P (yi ¬ y < yi+1) =

Ni

N
, (3.162)

znalezienia dochodu gospodarstwa domowego w podklasie o numerze i; tutaj N =
∑∞
i=1Ni oznacza liczbę wszystkich gospodarstw domowych ponadto, yi = yminqi−1, i =
1, 2, . . . .
W drugim kroku sumujemy prawdopodobieństwa Pi otrzymując posukiwaną za-

leżność potęgową:

P (y ­ yi) = P (yi ¬ y < yi+1) + P (yi+1 ¬ y < yi+2) + P (yi+2 ¬ y < yi+3) + . . .

=
∞∑

j=i

Pj =
(q/q0)α

1 + q−α0
1−q−α

qα
∞∑

j=i

(

1
qα

)j

=
(q/q0)−α

1− q−α + q−α0
(yi/ymin)

−α .

(3.163)

Powyższe wyrażenie jest szczególnie proste gdy 1− p0 = p+. Wówczas:

P (y ­ yi) = (yi/ymin)−α . (3.164)

gdyż wtedy q0 = q.
Podkreślmy, że model drabinowy nie dostarcza informacji o strukturze wykład-

nika α a jedynie precyzuje warunki w jakich uzyskuje się rozkład potęgowy.
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3.14.6 Od równania Markowa do równania Fokkera-Plancka

Omawiany w poprzednim rozdz. 3.14.4 multiplikatywny proces stochastyczny (3.153)
z warunkiem brzegowym w postaci blokującej bariery w Yb daje się opisać za pomocą
równania mistrza dla procesu Markowa

P(Y, t+ 1) =
∫ ∞

−∞
π(l)P (Y − l, t)dl, (3.165)

gdzie π(l) jest rozkładem z którego losowane jest pojedyncze przemieszczenie l. W
dalszym ciągu przyjmujemy, że rozkład π(l) jest wąski tzn. jego dyspersja σ =
√

〈l2〉 − 〈l〉2 � 〈l〉. Rozwińmy w (3.165) gęstość prawdopodobieństwa P (Y − l, t) te-
go, że w chwili t proces znajdzie się w położeniu Y − l w szereg Taylora, ograniczając
się tylko do trzech pierwszych wyrazów

P(Y − l, t) ≈ P(Y, t)− l ∂P(Y, t)
∂Y

+
1
2
l2
∂2P(Y, t)
∂Y 2

. (3.166)

Z (3.165) i (3.166) otrzymujemy po prostych przekształceniach, dla t� 1, równanie
Fokkera-Plancka (tutaj o stałych współczynnikach)

∂P(Y, t)
∂t

= −∂j(Y, t)
∂Y

, (3.167)

które jest po prostu równaniem ciągłości wyrażającym zasadę zachowania prawdopodo-
bieństwa; tutaj gęstość strumienia prawdopodobieństwa

j(Y, t) = jV (Y, t) + jD(Y, t), (3.168)

gdzie gęstość prądu unoszenia (dryf) jV (Y, t) oraz gęstość prądu dyfuzyjnego jD(Y, t)
dane są odpowiednio przez

jV (Y, t) ≈ V P(Y, t),

jD(Y, t) ≈ −D
∂P(Y, t)
∂Y

, (3.169)

przy czym V = 〈l〉 oraz 2D = σ2. Oczywiście z równań (3.168) i (3.169) i warunku
znikania gęstości prądu otrzymujemy natychmiast wynik (3.158) z poprzedniego
rozdz. 3.14.6. Jest to alternatywna, wychodząca od procesu stochastycznego droga
uzyskania rozkładu potęgowego (3.158).

3.14.7 Multiplikatywno-addytywny proces stochastyczny
a proces multiplikatywny z odpychającą barierą

Jak widzieliśmy, każdemu procesowi (czysto) multiplikatywnemu o dodatnim szumie
i dodatniej wartości początkowej procesu odpowiada proces addytywny i odwrot-
nie każdemu procesowi (czysto) addytywnemu odpowiada proces multiplikatywny.
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Relacja pomiędzy takimi procesami jest zbudowana za pomocą funkcji logarytm
mianowicie, logarytmując stronami proces multiplikatywny otrzymujemy odpowia-
dający mu proces addytywny. Obecnie zajmiemy się procesem multiplikatywno-
addytywnym i wskażemy w jakich okolicznościach prowadzi on do rozkładu potęgo-
wego.
Zatem, niech będzie dany stochastyczny proces multiplikatywno-addytywny

Xn+1 = pn ·Xn + bn, n = 1, 2, . . . , (3.170)

gdzie niezależne szumy multiplikatywny pn i addytywny bn są dodatnie i losowane
odpowiednio z dwóch niezależnych rozkładów20. Należy podkreślić, że w powyższym
problemie nie zostały narzucone żadne dodatkowe warunki, np. brzegowe (w tym
sensie jest to zagadnienie swobodne). Jak wiadomo (I. Kożniewska: ”Równania re-
kurencyjne”, PWN, Warszawa 1972), powyższe równanie posiada ścisłe rozwiązanie
w postaci

Xn = X0 exp(n〈ln p〉) +
n∑

j=1

bj
n∏

l=j+1

pl, (3.171)

gdzie dla wygody dodefiniowaliśmy
∏n−1
l=n pl = 1. W dalszym ciągu dyskutujemy

przypadek 〈ln p〉 < 0, który (jak wykażemy) jest analogiczny do dyskutowanego po-
przednio dla procesu (czysto) multiplikatywnego przy czym rolę ”siły odpychającej”
pełni w powyższym rozwiązaniu dodatnia (”miękka”) niejednorodność zbudowana
z obu rodzajów szumu a nie, jak poprzednio, (sztywna) bariera odpychająca. Inny-
mi słowy, rywalizacja obu szumów może prowadzić do powstania asymptotycznie
stabilnego rozwiązania postaci

Xn→∞ =
n→∞∑

j=1

bj
n→∞∏

l=j+1

pl, (3.172)

które różni się od wartości przeciętnej procesu

〈X〉 = 〈b〉
1− 〈p〉 , (3.173)

gdzie 〈p〉 < 1.

3.14.8 Równanie Langevina a rozkład potęgowy

Równanie rekurencyjne (3.170) można łatwo sprowadzić do postaci równania Lan-
gevina dla asymptotycznie długiego czasu. W tym celu przepiszmy (3.170) w postaci

Xn+1 −Xn

Xn
=

bn
Xn
+ pn − 1, (3.174)

20Warto wiedzieć, że proces (3.170) nosi także nazwę mapy afinicznej a zmienna Xn nosi w
matematyce nazwę zmiennej Kestena.
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skąd, po uśrednieniu obu stron równania względem szumu b(t), otrzymujemy poszu-
kiwane równanie

dY (t)
dt
= F (Y (t)) + V + η(t),

F (Y (t))
def.
= 〈b〉 exp(−Y (t)), (3.175)

gdzie dla wygody21

• zastąpiliśmy dyskretny czas n przez ciągły (bezwymiarowy) t zastępując jed-
nostkę czasu przez infinitezymalnie krótki przedział czasu dt,

• użyliśmy nowej zmiennej Y (t) def.= lnX(t),
• wprowadziliśmy (bezwymiarową) prędkość V = 〈p〉 − 1 ≈ 〈ln p〉 < 0 oraz
• zdefiniowaliśmy tutaj δ-samoskorelowany biały szum η(t) = p(t)−〈p〉 posiada-
jący znikającą wartość przeciętną oraz (bezwymiarową) wariancję 2D = σ2 =
〈η2〉 = 〈p2〉 − 〈p〉2 ≈ 〈(ln p)2〉 − (〈ln p〉)2.

Jak widać, F (Y (t)) pełni rolę siły, która jest tym większa im Y (t) jest mniejsze,
przeciwstawiając się osiąganiu przez proces ujemnych wartości Y (t). Mamy tutaj
do czynienia nie tylko z addytywnym szumem η(t) (który może przybierać zarówno
wartości dodatnie jak i ujemne) ale także z dodatnią stochastyczną siłą F (Y (t))
odgrywającą kluczową rolę w tym problemie.
Równanie Fokkera-Plancka odpowiadające równaniu Langevina (3.175) przybie-

ra postać (patrz ogólne wyprowadzenie zamieszczone w podrozdz. 3.14.9):

∂P(Y, t)
∂t

= −∂j(Y, t)
∂Y

,

j(Y, t) = [V + F (Y )]P(Y, t)−D∂P(Y, t)
∂Y

, (3.176)

która posiada interesujące nas rozwiązanie równowagowe dla Y > 0. Zauważmy
przy okazji, że gdy |V | > |〈b〉| exp(−Y (t)) to dryf jest zwrócony na lewo (w kie-
runku ujemnego Y ), natomiast prąd dyfuzyjny na prawo (od dużego do małego
prawdopodobieństwa). Zatem możliwe jest zrównoważenie się tych dwóch prądów
dając w konsekwencji rozwiązanie stacjonarne.

Rozwiązanie stacjonarne

Rozwiązanie stacjonarne uzyskujemy zakładając znikanie gęstości prądu (3.176), co
prowadzi do równania

d lnPstac(Y )
dY

=
V + F (Y )

D
, (3.177)

21W równaniu (3.175) dla prostoty opuściliśmy dodatkowe indeksowanie wszystkich wielkości
podkreślajace, że dotyczą one sytuacji uśrednionego a nie chwilowego szumu b(t), którego wartość
średnia nie znika.
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Rozwiązując powyższe równanie otrzymujemy, po powrocie do zmiennejX, że Pstac(X)
dane jest odwrotnym rozkładem gamma,

Pstac(X) =
const

(X/X0)1+|V |/D
exp

(

−〈b〉
D

1
X

)

. (3.178)

Jak widać, rozkład ten, dla X � 〈b〉 /D > 0 przechodzi w rozkład potęgowy
zmiennej X. Tym samym uzyskaliśmy pogłębione objaśnienie okoliczności w ja-
kich multiplikatywno-addytywna dynamika stochastyczna generuje rozkład potęgo-
wy. Przy okazji zauważmy, że wykładnik potęgi jest tutaj identyczny do tego dla
procesu multiplikatywnego z barierą odpychającą. Co więcej, we wspomnianych po-
wyżej warunkach rola szumu addytywnego jest zanikająca.
Zauważmy na zakończenie tego rozdziału, że przejścia graniczne prowadzące do

rozwiązań (3.178) i (3.142) są zupełnie inne, chociaż (w sytuacji gdy 〈b〉 = 0) dotyczą
tego samego procesu multiplikatywnego. Zatem nic dziwnego, że są to inne rozkłady
prawdopodobieństwa.

3.14.9 Od nieliniowego równania Langevina
do równania Fokkera-Plancka

W niniejszym podrozdziale przedstawiamy brakujące, nadzwyczaj ważne ogniwo
łącząc dziedzinę procesów stochastycznych z dynamiką stochastyczną. Dokładniej
mówiąc, wyprowadzamy równanie Fokkera-Plancka z nieliniowego (w ogólności) rów-
nania Langevina. Wyprowadzenie to składa się z kilku etapów [4].
W pierwszym etapie odcałkowujemy równanie dynamiki stochastycznej Lange-

vina22,

dX(t)
dt
= −A(X(t), t) + C(X(t), t)η(t) (3.179)

rządzone przez biały szum η, do postaci równania dynamiki stochastycznej Winera

dX(t) = −A(X(t), t)dt + C(X(t), t)dW, (3.180)

gdzie dW = η(t)dt jest procesem Wienera, przy czym dW jest tzw. różniczką sto-
chastyczną (patrz np. [6, ?]). Z definicji procesu Wienera, typowa wartość (dW )2

jest rzędu dt. Innymi słowy, zmienna losowa dW jest odlosowywana z symetrycznego
rozkładu Gaussa o wariancji propocjonalnej do dt i stałej proporcjonalności rzędu
1.
W następnym kroku korzystamy z Lematu Itô, który sprowadza się do następu-

jącego rozwinięcia dowolnej, co najmniej dwukrotnie różniczkowalnej funkcji h(X):

dh = −A(X(t), t)dh(X)
dX

dt+B(X(t), t)
d2h(X)
dX2

dt+
dh(X)
dX

C(X(t), t)dW,

(3.181)
22Wprowadzamy równanie Langevina w postaci ogólniejszej od tej jaka została podana w książce
van Kampena [5], gdyż dopuszczamy tutaj jawną zależność współczynników równania od czasu.
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gdzie B(X(t), t) = C2(X(t), t)/2 i po drodze skorzystaliśmy z równania (3.180) oraz
przyjęliśmy po prostu, że (dW )2 = dt.
W kolejnym kroku średniujemy powyższe równanie uzyskując:

d〈h〉
dt
= A(X, t)

〈

−dh(X)
dX

〉

+B(X, t)

〈

−d
2h(X)
dX2

〉

=

∫ ∞

−∞

[

−A(X, t)dh(X)
dX

+B(X, t)
d2h(X)
dX2

]

P (X, t)dX,

(3.182)

gdzie wyraz proporcjonalny do dW wyzerował się.
Całkując przez części prawą stronę powyższego równania i wykorzystując znika-

nie rozkładu prawdopodobieństwa P (X, t) na brzegach X → ∓∞ i t → ∞, otrzy-
mujemy

d〈h〉
dt
=
∫ ∞

−∞
h(X)

{

∂

∂X
[A(X, t)P (X, t)] +

∂2

∂X2
[B(X, t)P (X, t)]

}

dX. (3.183)

gdzie dodatkowo skorzystalismy z unormowania
∫∞
−∞ P (X, t)dX = 1.

Z drugiej strony, pochodna po czasie wartości średniej wynosi

d〈h〉
dt
=

d

dt

∫ ∞

−∞
h(X)P (X, t)dX =

∫ ∞

−∞
h(X)

∂

∂t
P (X, t)dX. (3.184)

W ostatnim etapie, porównując lewe strony równań (3.183) i (3.184) oraz pamię-
tając, że są one sobie równe dla dowolnej funkcji h(X), otrzymujemy ostatecznie:

∂

∂t
P (X, t) =

∂

∂X
[A(X, t)P (X, t)] +

∂2

∂X2
[B(X, t)P (X, t)] , (3.185)

czyli poszukiwane równanie Fokkera-Plancka. Równanie to będzie jeszcze kilkakrot-
nie wykorzystywane w dalszej części. Mam tu na myśli, na przykład, oryginalne
zastosowanie stacjonarnego rozwiązania równania Fokkera-Plancka do analizy do-
chodów gospodarstw domowych, przedstawione w kolejnym rozdziale.
Aby uzyskać rozwiązanie stacjonarne P (X, t) = Pstac(X) wystarczy zauważyć, że

równanie (3.185) jest równaniem ciągłości na rozkład P (X, t), gdzie gęstość prądu
prawdopodobieństwa

j(X, t) = A(X, t)P (X, t) +
∂

∂X
[B(X, t)P (X, t)] . (3.186)

Rozwiązanie stacjonarne uzyskuje się zakładając, że gęstość prądu unoszenia jdryf (X, t)
def.=

A(X, t)P (X, t) jest równa gęstości prądu dyfuzyjnego jdyf (X, t) = − ∂
∂X
[B(X, t)P (X, t)].

Stąd,

Pstac(X) =
const

B(X)
exp

[

−
∫ X

X0

A(X ′)
B(X ′)

dX ′
]

, (3.187)

gdzie muszą być spełnione warunki: A(X, t) = A(X) > 0 oraz B(X, t) = B(X) > 0;
w przeciwnym razie rozwiązanie stacjonarne nie istnieje.
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Rozdział 4

Analiza portfelowa

4.1 Bańka kredytowa - przypowieść

Zanim przystąpimy do systematycznej analizy portfelowej przytoczymy przysłowio-
wą opowieść o fryzjerze, kliencie i banku, pokazującą z jaką nadzwyczajną łatwością
rynek może popaść w tarapaty finansowe z powodu naturalnej aktywności banku.
Wyobraźmy sobie banalną sytuację klienta płacącego, np. u fryzjera, za usługę

20 zł. Fryzjer ma dobrze rozkręcony interes przynoszący zyski, więc część tej kwoty,
np. 10 zł, lokuje w banku. Zatem, po obsłużeniu przez fryzjera dwóch klientów bank
dysponuje pełną kwotą umożliwiającą skredytowanie następnego klienta, którego
nie stać na fryzjera a który zwrócił sie do banku o pożyczkę. Oczywiście, bank żeby
zarobić musi prowadzić akcję kredytową. Udziela zatem owego dwudziestozłotowe-
go kredytu. Fryzjer znowu zarabia 20 zł za usługę wykonaną na rzecz tego klienta.
Ponownie zanosi zarobione pieniądze do banku, ten udziela kredytu kolejnemu klien-
towi fryzjera i tak w kółko. Rzecz jasna, przez jakiś czas system działa ale tylko do
chwili, gdy fryzjer będzie chciał odebrać swoją gotówkę (np. aby dokonać jakiejś
inwestycji). Zwróćmy uwagę, że to finansowe ”perpetum mobile” oparte było tyl-
ko na jednej faktycznej kwocie 20 zł, jaką na samym początku fryzjer ulokował w
banku - wszystkie kolejne stanowiły tylko jej ”wirtualne repliki”. Zatem bank nie
dysponuje gotówką, żeby oddać fryzjerowi co jego, gdyż po pierwsze gotówka jest w
obrocie a po drugie jest jej niewystarczająca ilość (fryzjer sporo odłożył a zasada
”tyle kredytu ile depozytu” jest dla banku nie do utrzymania). Oczywiście, wieść o
niewypłacalności banku rozchodzi się ”lotem blyskawicy” - kłopoty mają inne banki
a stąd cały sektor finansowy.
Ta pozornie naiwna przypowieść jasno wskazuje, że powstawanie baniek kredyto-

wych jest wmontowane w system finansowy - jest jego nieodłączną, fundamentalną
cechą. Oczywiście, każdy etap akcji kredytowej banku jest zabezpieczany - niestety,
nie da się tego zrobić w stu procentach, gdyż każda aktywność nastawiona na zysk
niesie ze sobą kumulujące się ryzyko. Właśnie o neutralizowanie ryzyka i o wy-
nikających stąd różnych (zależnie od okoliczności) strategiach działania,
jest mowa w niniejszym rozdziale.
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Gwoli ścisłości powiedzmy, że w niniejszym rozdziale zajmujemy się głównie ry-
zykiem rynkowym, podczas gdy nasza przypowieść dotyczyła ryzyka systemowego.
Jednakże, chodziło nam tutaj o wskazanie na nieodłaczną obecność ryzyka systemo-
wego, kładącego się cieniem na ryzyko rynkowe (zwiększając je). Zatem będziemy
pamiętać, że zawężając naszą analizę tylko do ryzyka rynkowego faktycznie niedo-
szacowujemy całkowite ryzyko.
Analiza portfelowa1 przeprowadzona w niniejszym rozdziale ma charakter refe-

rencyjny - stanowi punkt wyjścia ogromnej większości współczesnych modeli opisu-
jących dynamikę portfela, zarówno w czasie dyskretnym jak też ciągłym. W istocie
rzeczy, dotyczy tylko dynamiki trzech rodzajów walorów (instrumentów):

1) dwóch obarczonych ryzykiem tzn. bazowego (np. akcji) i pochodnego (np.
opcji) oraz

2) jednego rodzaju pozbawionych ryzyka (tzn. obligacji oraz lokaty bankowej).

Operowanie tymi instrumentami umożliwiają różne, omawiane tutaj strategie.

4.2 Dwumianowy model dynamiki instrumentów
finansowych

Model dwumianowy (ang. binomial model), dzięki swojej prostocie, umożliwia budo-
wanie ewolucji (bazowych oraz pochodnych) instrumentów finansowych na drzewku
dwumianowym (ang. binomial tree) krok po kroku (ang. step-by-step), w sposób se-
kwencyjny (rekurencyjny). Pozwala to dostrzec i sformalizować wiele zasadniczych
zależności, które są następnie wykorzystywane w bardziej złożonych modelach, np.
wielomianowych lub traktujących czas jako parametr ciągły a przedziały czasu ja-
ko zmienne losowe. W ramach dwumianowego rozważamy trzy rodzaje walorów a
mianowicie,

• pozarynkowe (np. obligacje lub lokaty bankowe) o stałej stopie oprocentowania

• akcje (będące bazowym instrumentem finansowym) oraz

• pochodne instrumenty finansowe (np. opcje) wystawione na te akcje.

Dynamikę tych walorów omawiamy wykorzystując trzy najpopularniejsze strategie
należące do grupy strategii replikujących (ang. replicating strategies) cenę pochod-
nego instrumentu finansowego:

1) strategię arbitrażową2 (ang. arbitrage strategy)

1W niniejszym rozdziale zajmujemy się tylko portfelem klienta a nie portfelem instytucji finan-
sowej.
2Jak zobaczymy to dalej, strategia ta powinna się raczej nazywać bezarbitrażowa.
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2) strategię zabezpieczającą (ang. hedging)

3) strategię samofinansującą (ang. self-financing strategy),

które stanowią punkt odniesienia strategii bardziej złożonych; dodajmy, że ostat-
nia strategia stanowi zastosowanie procesów martyngałowych, które są oczywiście
omawiane w niniejszym rozdziale.
Filarami, na których spoczywa analiza portfelowa omawiana w niniejszym roz-

dziale są dwie miary: arbitrażowa i martyngałowa, będące (jak zobaczymy) miara-
mi neutralnymi wobec ryzyka. Dzięki nim możliwe było ukoronowanie modelu
dwumianowego wyprowadzeniem w ramach niego (na drodze przejścia gra-
nicznego do czasu ciągłego) słynnej formuły wyceny opcji Blacka-Scholesa
dla portfela pozbawionego ryzyka.

4.2.1 Od awersji do ryzyka do miary neutralnej względem
ryzyka - podejście intuicyjne

Wszelka ludzka aktywność jest nastawiona na szeroko rozumianą korzyść, czyli zysk
np. materialny lub mentalny (intelektualny lub emocjonalny). Z drugiej strony, każ-
da aktywność jest obarczona ryzykiem prowadzącym do możliwości po-
jawienia się strat. Ryzyko będziemy więc utożsamiali z możliwością ponoszenia
strat; inaczej mówiąc, będziemy zakładać, że nie ma korzyści bez ryzyka. Jak
widać, znajdujemy się w sytuacji ”między młotem a kowadłem”. Zatem w każdej
chwili, mniej lub bardziej świadomie, staramy się optymalizować ryzyko, gdyż to-
warzyszy temu wszechobecne zjawisko awersji do ryzyka. Sam fakt zrozumienia
tego co to jest ryzyko jest niewystarczający - aby móc racjonalnie podejmować de-
cycje i działać musimy umieć mierzyć ryzyko, czyli dysponować miarą ryzyka
oraz umieć nim zarządzać. Trzeba podkreślić, że brak jest powszechnie ak-
ceptowanej teorii ryzyka - każde z istniejących podejść jest niewystarczające i
może prowadzić do przeszacowania albo niedoszacowania rzeczywistego ryzyka.

Awersja do ryzyka

Rozważmy prosty przykład gry3, której uczestnik może wygrać Xdown = 50 j.u. al-
bo Xup = 150 j.u. z jednakowym prawdopodobieństwem równym p = 1/2. Zatem,
średnio rzecz biorąc wygrana w tej grze wynosi 〈X〉P = 100 j.u. Jednakże, mała jest
szansa na to, że uczestnik gry zapłaci tytułem opłaty wstępnej tak wysoką kwotę
akceptując z prawdopodobieństwem 1− p = 1/2 stratę równą Xdown − 〈X〉P = −50
albo z prawdopodobieństwem p zysk Xup − 〈X〉P = +50. Chociaż taka gra byłaby
3Jest to uogólnienie rozważań zaczerpniętych z książki Grażyny Trzpiot,Wybrane modele oceny

ryzyka. Podejście nieklasyczne, Wydawnictwo Akademii Ekonomicznej im. Karola Adamieckiego
w Katowicach, Katowice 2008.
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grą sprawiedliwą4 (ang. fair game), to jednak znaczna większość z nas zdecy-
dowałaby się, paradoksalnie (gdyby taka możliwość istniała), na brak zysku o
ile tylko miałaby pewność, że nie towarzyszy temu żadna strata - właśnie
tego typu wybór jest bezpośrednim skutkiem awersji do ryzyka.
Możemy tutaj łatwo zmierzyć naszą awersję do ryzyka zadając sobie pytanie ja-

ką opłatę wstępną (prowizję, premię) bylibyśmy w stanie uiścić? Zapewne
byłaby to wielkość mniejsza od wartości średniej 〈X〉P , np. wynosząca +90 j.u. Pod-
nosi to jeden z głównych problemów finansów - problem uwzględnienia premii
za ryzyko.
Powyższe rozważania sugerują a pokazane to jest ściśle poniżej, że określe-

nie awersji do ryzyka jest wykonalne o ile w problemie istnieje wartość
przeciętna, czyli istnieje jakaś fizyczna skala (proszę nie mylić jej z jednostką)
charakteryzująca grę. Należy zaznaczyć, że istnieją także gry bezskalowe dla których
ustalenie takiej skali nie jest możliwe; najbardziej popularną a zarazem najstarszą z
nich jest tzw. paradoks petersburski Bernoulliego (patrz podrozdz. 2.2.2).

Miara neutralna wobec ryzyka

Uwzględnienie premii za ryzyko może się odbyć na drodze zamiany oryginalnej mia-
ry P = {p}, która prowadzi do premiii nieakceptowalnej, na neutralną wobec ryzyka
Q = {q}, a więc taką która prowadzi do premii akceptowalnej. W naszym konkret-
nym przypadku jest to (jak wykażemy) miara q = 2/5, w której wartość oczekiwana
(przeciętna)

〈X〉Q = Xupq +Xdown(1− q) = +90 j.u. (4.1)

jest dokładnie równa opłacie wstępnej jaką zgadzamy się uiścić. To właśnie ta
zgoda definiuje pojęcie neutralności wobec ryzyka. Oczywiście, powyższa
miara także definiuje grę sprawiedliwą. Innymi słowy, rozwiązując równanie (4.1)
względem poszukiwanej (dychotomicznej) miary q otrzymujemy,

q =
〈X〉Q −Xdown

Xup −Xdown
,

1− q = Xup − 〈X〉Q
Xup −Xdown

(4.2)

Jak widać, musiało zostać tutaj przeszacowane prawdopodobieństwo straty, wy-
noszącej teraz

Xdown − 〈X〉Q = −40 j.u. (4.3)

4Przez grę sprawiedliwą rozumiemy taką grę, w której straty i zyski statystycznie rzecz biorąc
równoważą się. Tutaj oznacza to, że (Xdown − 〈X〉P ) (1 − p) + (Xup − 〈X〉P ) p = 0. W dalszym
ciągu zjmujemy się tylko grami sprawiedliwymi.
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z 1 − p = 1/2 na większe 1 − q = 3/5, kosztem prawdopodobieństwa zysku - zysk
ten wynosi w tej nowej mierze

Xup − 〈X〉Q = +60 j.u. (4.4)

z p = 1/2 na mniejsze q = 2/5. Miara ryzyka jest tutaj związana bezpośred-
nio z awersją do ryzyka określoną wysokością opłaty wstępnej (zwanej też
wysokością premii lub prowizji za wejście do gry albo po prostu ceną). Im większa
jest ta prowizja tym wielkość straty wzrasta a zysku maleje. Oczywiście, strata ta
ma dobrze określone prawdopodobieństwo (dane drugim równaniem w (4.2)), które
(na szczęście) maleje ze wzrostem tej prowizji. Zauważmy, że prawdopodobieństwo
zysku zachowuje się odwrotnie - rośnie ze wzrostem prowizji. Inaczej, mięlibyśmy do
czynienia z finansowym ”perpetum mobile”. Tym samym, w naszym odczuciu, po-
trafimy zneutralizować ryzyko, co wynika z faktu, że godzimy się na określoną
nieprzekraczalną wielkość starty (tutaj wynoszącą −40 j.u.) mniejszą, oczywiście,
od straty maksymalnej ∆Xmax = Xdown − 〈X〉P = −50 j.u.
Przedstawiona powyżej miara ryzyka

a) wymaga określenia w sposób jawny i precyzyjny prawdopodobieństw zysków i
strat oraz

b) wymaga aby wartość przeciętna istniała; co więcej,

c) takie podejście ma zastosowanie do rynku zupełnego, który nie nakłada na
transakcje żadnych dodatkowych ograniczeń.

Jest interesującym, że struktura otrzymanych wzorów na prawdopodobieństwa
q oraz 1− q jest analogiczna do struktury wyrażenia na prawdopodobieństwa arbi-
trażowe, o którym jest mowa poniżej w podrozdz. 4.2.3 (patrz wyrażenia (4.20)).

4.2.2 Podstawowe idee i definicje: pierwszy krok na drzewku
dwumianowym - istota problemu

Celem zrozumienia podstawowej idei modelu dwumianowego skonstruujmy prosty
portfel składający się w każdej chwili czasu t tylko z dwóch walorów

πt = (φAt , φ
O
t ), (4.5)

gdzie φAt jest liczbą akcji a φ
O
t liczbą obligacji w portfelu (portfel πt jest tutaj dwuwy-

miarową zmienną losową), przy czym obie te liczby mogą być ułamkowe, zarówno
dodatnie jak też ujemne; liczba ujemna oznacza, że zakup nastąpił za pożyczone
pieniądze (walor jest zadłużony a dług należy spłacić - zakup lewarowany). Naszym
wyjściowym celem jest wyznaczenie struktury portfela czyli liczby akcji
i obligacji przy założeniu ich nieograniczonej płynności.
Ograniczamy się na razie do dwóch kolejnych chwil t = 0 i t = 1 δt (patrz rys.

4.1). Niech w chwili t = 0 cena akcji wynosi S0 a w następnej t = 1 [δt] z praw-
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Rysunek 4.1: Pierwszy krok ewolucji w modelu dwumianowym. Cena bazowego in-
strumentu finansowego wykonuje błądzenie przypadkowe w czasie dyskretnym na
jednowymiarowej sieci L równoodległych położeń. Pojedyncze przemieszczenie do
góry z określonym prawdopodobieństwem rynkowym odpowiada wzrostowi ceny a
na dół z dopełniającym, jej spadkowi.

dopodobieństwem ocenianym przez inwestora (a więc subiektywnym zwanym też
rynkowym) p+0 wynosi S

+
1 o ile jest większa od S0 a w przeciwnym razie z analogicz-

nym prawdopodobieństwem p−0 (= 1− p+0 ) wynosi S−1 . Należy podkreślić, że S+1 , S−1
są cenami domniemanymi przez inwestora (przyszłymi) a nie rzeczywistymi, gdyż
w chwili t = 0 nie wiadomo jeszcze jak potoczą się losy rynku. Dalej przyjmijmy, że
wartość obligacji w chwili t = 0 wynosi Λ0 a ponadto, (pozagiełdową) stopę procen-
tową na jednostkę czasu oznaczmy przez r. Stąd, domniemaną wartość portfela V
w chwili t=1 może przyjąć jako jedną z dwóch

V1(π0) =

{

V +1 , o ile cena akcji wzrośnie,
V −1 , o ile cena akcji spadnie,

(4.6)

tutaj

V ±1 = φ
A
0 S
±
1 + φ

O
0 Λ0(1 + rδt) ≈ φA0 S±1 + φO0 Λ0 exp(rδt) (4.7)
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gdzie założyliśmy (jak to zwykle ma miejsce w rzeczywistości), że r δt� 1 co umoż-
liwia, z dobrym przybliżeniem, wykładniczą (a więc wygodną z matematycznego
punktu widzenia) kapitalizację ciągłą.
Przypuśćmy, że wybrany przez inwestora pochodny instrument finanso-

wy F zależny od kursu akcji, daje w chwili t = 1 jedną z dwóch wypłat (tak jak
to ma miejsce dla opcji, czyli niech jego cena będzie tak określona jak dla opcji, o
czym jest mowa poniżej)

F1 =

{

F+1 , dla kursu akcji S
+
1 ,

F−1 , dla kursu akcji S
−
1 .

(4.8)

Zakładając, że nasz portfel πt ma charakter replikujący5 możemy bez trudu
odpowiedzieć na pytanie o wielkości udziałów φA0 , φ

O
0 w portfelu w chwili t = 0. W

tym celu wystarczy rozwiązać układ dwóch równań liniowych na niewiadome φA0 , φ
O
0 :

F+1 = V
+
1 = φ

A
0 S
+
1 + φ

O
0 Λ0 exp(rδt),

F−1 = V
−
1 = φ

A
0 S
−
1 + φ

O
0 Λ0 exp(rδt); (4.9)

poszukiwane rozwiązanie przyjmuje postać

φA0 =
F+1 − F−1
S+1 − S−1

,

φO0 =
1
Λ0
exp(−rδt) S

+
1 F
−
1 − S−1 F+1
S+1 − S−1

. (4.10)

Jak widać, liczba udziałów na akcje jest po prostu stosunkiem możliwej zmiany war-
tości pochodnego instrumentu finansowego przypadającej na jednostkową dopusz-
czalną zmianę wartości instrumentu bazowego. Paradoksalnie, wyrażenie na udziały
na obligacje jest bardziej skomplikowane, gdyż cena możliwych wartości opcji jest
odpowiednio ”ważona” ceną akcji.
Korzystając teraz z obu wyrażeń (4.10) oraz z wartości portfela V0 w chwili t = 0

V0 = φA0 S0 + φ
O
0 Λ0, (4.11)

osiągamy nasz zasadniczy cel, czyli otrzymujemy (po prostych przekształceniach)
odpowiedź na kluczowe dla inwestora pytanie o wartość danego instrumentu
finansowego w chwili t = 0 a więc w chwili, gdy stawia pytanie o opłacalność
strategii. Mianowicie,

F0 = V0 = exp(−rδt) (q+0 F+1 + q−0 F−1 )
= exp(−rδt)EQ

0 (F1) = exp(−rδt)〈F1〉0Q, (4.12)

5Replikujący charakter portfela oznacza tutaj, że watość portfela w danej chwili czasu jest
równa cenie danego instrumentu finansowego F .
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gdzie wagi q±0 zwane prawdopodobieństwami arbitrażowymi (ang. arbitrage probabi-
lities) zdefiniowane są w następujący sposób

q+0 =
S0 exp(rδt)− S−1

S+1 − S−1
, q−0 = 1− q+0 , (4.13)

natomiast EQ
0 (F1) ≡ 〈F1〉0Q jest wartością oczekiwaną w mierze Q def.= {q±0 } instru-

mentu F w chwili t = 1. Oczywiście, stwierdzenie to ma sens tylko wtedy, gdy
0 ¬ q±0 ¬ 1, czyli gdy dynamika cen akcji ma charakter opłacalny, tzn.

S−1 ¬ S0 exp(rδt) (4.14)

i

S+1 ­ S0 exp(rδt). (4.15)

Zatem, wartość portfela w chwili początkowej jest równa jego wartości oczekiwanej
w chwili aktualnej, zdyskontowanej na chwilę początkową. W dalszym ciągu bie-
rzemy pod uwagę tylko opłacalność większą niż ta na jaką pozwala kapitalizacja
pozarynkowa.
Tym samym przeszliśmy od procesu stochastycznego w mierze subiektywnej

(rynkowej, podstawowej) P def.= {p±0 } do nowego, opisanego powyższą miarą Q zwa-
ną arbitrażową (ang. arbitrage measure) - będzie jeszcze o tym mowa przy okazji
wprowadzenia procesów martyngałowych w rozdz. 4.3.
Zauważmy, że w równaniach (4.10) użyliśmy udziałów w chwili t = 0 a nie (jak

mogłoby się wydawać ”na pierwszy rzut oka”) w chwili t = 1 - wymaga to wyja-
śnienia tym bardziej, że przenosi się to na miarę arbitrażową. Tego typu podejście
bazuje na pragmatycznej procedurze, która umożliwia aktualizację udziałów dopie-
ro po wyznaczeniu domniemanego portfela replikującego we właściwej chwili a co
za tym idzie i domniemanej wartości instrumentu finansowego. Występujące tu-
taj opóźnienie nazywiemy bezwładnością udziałów - wrócimy do niego w podrozdz.
4.2.3.

4.2.3 Uogólnienie: dowolny krok na drzewku dwumianowym

Rozszerzymy teraz wzory (4.10), (4.12) i (4.13) na dowolną chwilę t, rozwijając dalej
w czasie jednokierunkowe drzewko dwumianowe i traktując zmienną St jako proces
stochastyczny na tym drzewku. Pierwszy element drzewka przedstawiono na rys. 4.1;
na rys. 4.2 przedstawiono rozwinięcie drzewka dwumianowego aż do chwili t = 4 δt.
Na rysunku tym oznaczono tylko niektóre (początkowe i wybrane końcowe) elementy
drzewka; zauważmy, że wprowadzono tam ogólniejszą notację niż ta, którą użyto na
rys.4.1. Korzystając z tej notacji można wspomniane powyżej wzory uzyskać dla
dowolnej chwili (a nie tylko dla t = 0), gdyż każdy węzeł tego drzewa jest połączony
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Rysunek 4.2: Jednokierunkowe drzewko dwumianowe powstałe w wyniku hipote-
tycznego błądzenia przypadkowego domniemanej ceny bazowego instrumentu finan-
sowego S w czasie dyskretnym na jednowymiarowej sieci L równoodległych poło-
żeń. Pojedyncze przemieszczenie do góry z prawdopodobieństwem pl,l+1t odpowiada
wzrostowi ceny a w dół, z prawdopodobieństwem pl,l−1t = 1− pl,l+1t , jej spadkowi; w
ogólności prawdopodobieństwa te mogą być niestacjonarne.

bezpośrednio tylko z dwoma sąsiednimi (analogicznie jak węzeł początkowy). Zatem,
wyjściowe równania (4.9) można przepisać następująco:

F l+1
t+δt = V

l+1
t+δt = φ

A,l
t Sl+1t+δt + φ

O,l
t Λt exp(rδt),

F l−1
t+δt = V

l−1
t+δt = φ

A,l
t Sl−1t+δt + φ

O,l
t Λt exp(rδt). (4.16)

Należy przy tym pamiętać, że poszukujemy wartości portfela a stąd ceny
instrumentu pochodnego we wcześniejszej chwili t

F l
t = V

l
t = φ

A,l
t Slt + φ

O,l
t Λt. (4.17)

Delikatny aspekt modelu tkwi (analogicznie jak poprzednio) w bezwładności
udziałów czyli w tym, że zarówno równania (4.16) jak i równanie (4.17) posługują
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się tymi samymi wartościami udziałów φA,lt i φ
O,l
t zatem, zmianie może ulegać war-

tość tych udziałów ale nie ich liczba. Innymi słowy, pomiędzy chwilą początkową i
końcową dysponujemy podwójnymi wartościami udziałów tak jak to pokazano na
rys. 4.3) zatem, zawsze należy pamiętać o ich kolejnej aktualizacji.

Rysunek 4.3: Przykładowa górna skrajna ścieżka na drzewie dwumianowym, dla któ-
rej policzono domniemane udziały dwumianowego portfela. Zaczerwienione punkty
oznaczają zaktualizowane wartości udziałów w kolejnych chwilach.

Rozwiązując równania (4.16) (na niewiadome φA,lt , φO,lt ) otrzymujemy, analo-
gicznie jak poprzednio, że

φA,lt =
F l+1
t+δt − F l−1

t+δt

Sl+1t+δt − Sl−1t+δt

,

φO,lt =
1
Λt
exp(−rδt) S

l+1
t+δtF

l−1
t+δt − Sl−1t+δtF

l+1
t+δt

Sl+1t+δt − Sl−1t+δt

. (4.18)

a dzięki temu
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F l
t = V l

t = exp(−rδt)
(

ql,l+1t,t+δtF
l+1
t+δt + q

l,l−1
t,t+δtF

l−1
t+δt

)

= exp(−rδt)EQ
l (Ft+δt)= E

Q
l (exp(−rδt)Ft+δt)

= exp(−rδt)〈Ft+δt〉lQ = 〈exp(−rδt)Ft+δt〉lQ,
l = 0,±1, . . . ,±L; t = 1, 2, . . . , T − 1, (4.19)

gdzie niestacjonarne na ogół prawdopodobieństwa arbitrażowe (wagi) q l,l±1t,t+δt są zde-
finiowane w następujący sposób:

ql,l+1t,t+δt =
Slt exp(rδt)− S l−1t+δt

Sl+1t+δt − Sl−1t+δt

,

ql,l−1t,t+δt = 1− ql,l+1t,t+δt =
Sl+1t+δt − Slt exp(rδt)

Sl+1t+δt − Sl−1t+δt

, (4.20)

natomiast, EQ
l ≡ 〈. . .〉lQ jest lokalnym operatorem średniowania zdefiniowanym w

pierwszym wierszu wyrażenia (4.19). Oczywiście, oba równania w (4.20) są sobie
równoważne dzięki lokalnym warunkom normalizacyjnym spełnianym przez praw-
dopodobieństwa warunkowe Q = {q}.
Podobnie jak poprzednio (dla chwili t = 0) procedura ma sens, gdy spełniony

jest warunek 0 ¬ ql,l±1t,t+δt ¬ 1, czyli gdy dynamika akcji nie przynosi strat

Slt exp(rδt) ­ S l−1t+δt,

Slt exp(rδt) ¬ S l+1t+δt. (4.21)

Jak wynika z pierwszego równania w trzecim wierszu w (4.19)

exp(rδt)F l
t = exp(rδt)V

l
t = 〈Ft+δt〉lQ, (4.22)

czyli spodziewana (oczekiwana) wartość pochodnego instrumentu finan-
sowego replikującego portfel jest w mierze arbitrażowej taka sama jak na
lokacie bankowej kwoty F l

t o oprocentowaniu r. O rynku spełniającym
powyższą własność dla dowolnego instrumentu finansowego mówimy, że
jest pozbawiony arbitrażu. Miarę, w ramach której ma to miejsce nazywa
się obojętną (neutralną) wobec ryzyka (patrz podrozdz. 4.2.1).
Zauważmy, że brak arbitrażu jest definiowany jedynie za pomocą wartości ocze-

kiwanej, co nic nie mówi o wariancji instrumentu. Innymi słowy, nie wyklucza do-
datkowego (ponad lokatę) zysku typu fluktuacyjnego i towarzyszacego mu ryzyka
fluktuacyjnego poniesienia straty (o czym jest mowa w podrozdz. 4.2.4).
Warto zdać sobie sprawę, że ze wzorów (4.20) wynika także

Slt = exp(−rδt) 〈St+δt〉lQ , (4.23)

czyli, że rolę derywaty może pełnić również sam instrument bazowy.
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Zapisując powyższe równanie w postaci

exp(rδt)S lt = 〈St+δt〉lQ, (4.24)

widzimy jasno, że spodziewany zysk z instrumentu bazowego w każdym kroku drze-
wa dwumianowego jest w mierze arbitrażowej dokładnie równy zyskowi z lokaty
bankowej (o oprocentowaniu r) kwoty równej S lt.
W oparciu o równości (4.22) i (4.24), można powiedzieć, że w żadnym kroku

czasowym miara arbitrażowa nie wprowadza na rynek (czyli na drzewo dwumianowe)
arbitrażu6. Innymi słowy, operujemy tutaj tylko cenami uczciwymi (uczciwą wyceną
instrumentów finansowych). Jak widać, przeszliśmy w naszym podejściu drogę od
miary arbitrażowej i replikowalności do braku arbitrażu.
Jak już wspominaliśmy, udziały φA,lt i φ

O,l
t wyznacza się biorąc pod uwagę dwie

kolejne chwile t oraz t+ δt. Tym samym, dla każdych dwóch chwil 0 ¬ t− δt, t+
δt ¬ T otrzymujemy w chwili t podwójne rozwiązanie: jedno pochodzące
od chwil t−δt a drugie od t+δt. Tego typu sytuacja - bezwładność udziałów, ma
miejsce tylko dla udziałów (a nie dla prawdopodobieństw arbitrażowych i cen po-
chodnego instrumentu finansowego) - do zagadnienia tego wrócimy przy omawianiu
strategii zabezpieczającej portfel.
Dzięki wzorom (4.19) i (4.20) można wyznaczyć jednoznacznie domniemaną cenę

pochodnego instrumentu finansowego w każdej wcześniejszej chwili czasu a w tym
w chwili jego zakupu, dysponując następującymi informacjami:

1) realną S00 oraz domniemanymi wartościami bazowego waloru w każdym węźle
dwumianowego drzewa, S lt, t = 1, 2, . . . , T [δt], l = 0,±1,±2, . . . ,±L,

2) ceną realizacji instrumentu pochodnego, czyli jedynie w chwili jego realizacji
t = T (tutaj T = 4 δt).

Innymi słowy, wzór (4.19) wraz z (4.20) określają sekwencję (rekurencję) działają-
cą wstecz, umożliwiającą udzielenie odpowiedzi na pytanie o dynamikę domniema-
nej ceny pochodnego instrumentu finansowego na drzewie dwumianowym a w tym
zwłaszcza na kluczowe pytanie o wycenę tego instrumentu w chwili jego
zakupu (czyli w chwili zawierania kontraktu) oraz o warunki pod jakimi taką wy-
cenę można dokonać, czyli warunki w jakich zakup instrumentu będzie opłacalny.
Charakterystyczną cechą wszystkich omawianych wzorów jest ich niezależność od
subiektywnej (rynkowej) miary podstawowej P.
Co więcej, można wykazać (np. poprzez konstrukcję - patrz poniższy przykład),

że ze wzoru (4.19) wynika następująca, kluczowa formuła wyceny pochodnego
instrumentu finansowego w mierze arbitrażowej Q

F0 = exp(−rT )EQ(FT ) = EQ(exp(−rT )FT ), (4.25)

6Inaczej mówiąc, wzory (4.22) i (4.24) definiują sytuację braku arbitrażu na drzewie dwumia-
nowym.
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stanowiąca inspirację dla wprowadzenia procesów stochastycznych zwanych martyn-
gałami (będzie o tym mowa w dalszej części); dla uproszczenia oznaczeń przyjęliśmy,
że F 00 = F0 i E

Q
0 = EQ oraz 〈. . . 〉lQ = 〈. . . 〉Q (jak zwykle T jest terminem utraty

ważności kontraktu na rozważany instrument).
Formułę (4.25) należy rozumieć jako globalną średnią ważoną daną w postaci

sumy po wszystkich iloczynach prawdopodobieństw arbitrażowych q liczonych na
pojedynczych trajektoriach łączących punkt (0, 0) drzewa dwumianowego z każdym
z punktów końcowych (T, l), l = −L,−(L−2), . . . , L−2, L; L = 1, 2, . . . , z osobna,
pomnożonych przez wartości wypłaty z pochodnego instrumentu finansowego, F l

t=T ,
w tych (końcowych) punktach. Formuła (4.25) stanowi podstawę wyceny opcji (patrz
rozdz. 4.5.1) oraz punkt wyjścia do określenia ceny opcji dla pośrednich chwil czasu
0 < t < T , czyli wyprowadzenia słynnej formuły Blacka-Scholesa.
Aby wykazać prawdziwość formuły (4.25) oraz pokazać jej funkcjonowanie a

zarazem przygotować się na wprowadzenie pojęcia wspomnianego procesu martyn-
gałowego, przeanalizujemy następujący przykład.

Przykład ilustrujący i uogólniający formułę (4.25)

Na rys. 4.4 przedstawiono przykładowe drzewo dwumianowe domniemanych (zada-
nych) wartości waloru bazowego S wraz z arbitrażowymi prawdopodobieństwami
(przejść) {q} obliczonymi ze wzoru (4.20) przy założeniu (dla prostoty) zerowej po-
zagiełdowej stopy zwrotu (r = 0).
Sprecyzujmy teraz sposób wyceny pochodnego instrumentu finansowego

F . Mianowicie, niech tym instrumentem będzie europejska opcja kupna (nie
wypłacająca dywidendy) z ceną wykonania K = 110 i terminem realizacji T = 4 [δt].
Jak wiadomo, funkcja wypłaty tej opcji (płatność) wynosi

Ft=T = (St=T −K)+ =
{

St=T −K jeżeli St=T > K
0 jeżeli St=T ¬ K. (4.26)

Korzystając z tak określonej ceny możemy wyznaczyć płatność opcji w chwili jej
realizacji (tutaj T = 4 δt) dla każdego węzła dwumianowego drzewa

FT=4 δt =







F l=4
T=4 δt = 90 gdyż ST=4 δt > K,

F l=2
T=4 δt = 60 gdyż ST=4 δt > K,

F l=0
T=4 δt = 10 gdyż ST=4 δt > K,
F l=−2
T=4 δt = 0 gdyż ST=4 δt < K,

F l=−4
T=4 δt = 0 gdyż ST=4 δt < K.

(4.27)

Teraz, w oparciu o wzory (4.19) i (4.20) dokonujemy uzupełnienia, obliczając ce-
nę opcji w każdym węźle dwumianowego drzewa (czyli dla każdej chwili t < T ).
Na rys. 4.5 przedstawiono wyniki tych obliczeń w postaci dwumianowego drzewa
ewolucji ceny opcji. Przy okazji podano wartości prawdopodobieństw przejść {q}
(wyznaczone ze wzorów (4.20)).
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Rysunek 4.4: Jednokierunkowe drzewo dwumianowe powstałe w wyniku hipotetycz-
nego błądzenia przypadkowego ceny bazowego instrumentu finansowego S w czasie
dyskretnym na jednowymiarowej sieci L równoodległych, dyskretnych położeń. W
kółkach umieszczono ceny instrumentu bazowego; strzałkami zaznaczono obliczone,
arbitrażowe prawdopodobieństwa przejść q.

Wreszcie, możemy dokonać prezentacji działania wielokrokowej formuły (4.25)
obliczając wymaganą średnią EQ. Aby przeprowadzić to obliczenie (w sposób po-
zwalający na wykazanie przy okazji prawdziwości wzorów (4.28) i (4.29)) zauważmy,
że każda trajektoria prowadząca do danego węzła końcowego musi przejść przez od-
powiedni węzeł poprzedzający go. Dzięki temu wszystkie trajektorie można podzielić
na grupy. Do pojedynczej grupy należą tylko takie trajektorie, jakie przechodzą przez
dany węzeł poprzedzający. Na przykład, skrajną górną grupę stanowią wszystkie te
trajektorie, jakie przechodzą przez węzeł (t = 3 δt, l = 3) (patrz np. rysunek 4.4
lub 4.5); ta grupa jest najprostsza bo dwuelementowa. Oczywiście, z każdego węzła
poprzedzającego można dojść w pojedynczym kroku tylko do dwóch węzłów końco-
wych. Zatem, wygodnie jest obliczać końcową wartość średnią pochodne-
go instrumentu finansowego dla każdej grupy z osobna. Dokonujemy tego,
po prostu, poprzez sumowanie iloczynów prawdopodobieństw arbitrażowych q na
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Rysunek 4.5: Jednokierunkowe drzewo dwumianowe powstałe w wyniku hipotetycz-
nego błądzenia przypadkowego ceny pochodnego instrumentu finansowego F w cza-
sie dyskretnym na jednowymiarowej sieci L równoodległych (dyskretnych) położeń.
Kółkami zaznaczono ceny instrumentu pochodnego, strzałkami obliczone arbitrażo-
we prawdopodobieństwa przejść q.

wszystkich trajektoriach danej grupy (oczywiście wychodzących ze wspólnego węzła
początkowego, patrz oprócz rysunków 4.4 lub 4.5, także rysunki 4.6 i 4.7 na których
zestawiono trajektorie zgodnie ze wspomnianym podziałem na grupy) pomnożo-
nych przez odpowiadające im ceny końcowe instrumentu pochodnego (zaznaczone
czerwonymi strzałkami). W ten sposób cofamy się o jeden krok czasowy, uzyskując
wzór (4.28) (a następnie wzór (4.29), jak trzeba, ze wzoru (4.25)). Ponadto, sumując
wszystkie wartości oczekiwane uzyskane w ramach wszystkich grup wyceniamy opcję
(czyli uzyskujemy jej wartość na chwilę poczatkową) zgodnie ze wzorem (4.25). Jak
widać, wartość poszukiwanej ceny opcji, F0 = 11.375, w chwili jej nabycia (zakon-
traktowania, patrz rys. 4.5) pokrywa się, jak być powinno, z tą uzyskaną za pomoca
jednokrokowego wzoru (4.19) na drodze sukcesywnego cofania się w czasie.

Zatem wskazaliśmy (patrz czerwone strzałki na obu rysunkach 4.6 i 4.7, po-
kazujące końcowe wyniki skrócenia trajektorii do chwili T − δt), że mają miejsce
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Rysunek 4.6: Konstrukcja wartości oczekiwanych ceny pochodnego instrumentu fi-
nansowego (opcji) F w chwili t = T − δt = 3 δt (zamieszczonych w kółkach po
prawej stronie i wskazanych czerwonymi strzałkami) oraz ich wag (liczby stoją-
ce tuż przed nimi) na drzewie dwumianowym (przedstawionym na poprzednim
rysynku) w oparciu o znajomość arbitrażowych prawdopodobieństw przejść q na
wszystkich trajektoriach prowadzących z węzła początkowego (0,0) do każdego węzła
(t = T = 4 δt, l), l = −4,−2, 0, 2, 4. Dodatkowo, czarnymi strzałkami zaznaczono
odpowiednio pogrupowane trajektorie (diagramy) prowadzące do tych węzłów.

następujące ważne relacje, przydatne w naszych dalszych rozważaniach

F0 = exp(−r(T − δt))EQ(Ft=T−δt) = EQ(exp(−r(T − δt))Ft=T−δt) (4.28)

a także ogólniejsza (dla 0 ¬ m ¬ T
δt
)

F0 = exp(−r(T −mδt))EQ(Ft=T−mδt) = EQ(exp(−r(T −mδt))Ft=T−mδt).
(4.29)

Zanim przejdziemy do analizy kolejnych strategii musimy odpowiedzieć na pyta-
nie o fluktuacyjne ryzyko inwestycyjne jakie niesie ze sobą strategia arbi-
trażowa.
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Rysunek 4.7: Ciąg dalszy konstrukcji wartości oczekiwanych ceny pochodnego in-
strumentu finansowego (opcji) F przedstawionej na poprzednim rysunku. Jak widać,
uzyskana średnia ważona odtwarza jak trzeba cenę pochodnego instrumentu finan-
sowego w chwili zawarcia kontraktu.

4.2.4 Ryzyko fluktuacyjne strategii arbitrażowej

Na rysunku 4.5 przedstawiono drzewko dwumianowe ceny przykładowej, europej-
skiej opcji kupna zdefiniowanej poprzez wyrażenie (4.26). W niniejszym podrozdzia-
le drzewko to zostanie uzupełnione o względne dyspersje warunkowe ceny opcji w
pośrednich chwilach (czyli dla 0 ¬ t < T ). Oczywiście, dla każdej takiej chwili dys-
ponujemy wartością oczekiwaną ceny pochodnego instrumentu finansowego F daną
np. w pierwszym wierszu wzoru (4.19). Ponadto, dysponujemy arbitrażowymi praw-
dopodobieństwami przejść {q}. Zatem, możemy względną dyspersję warunkową ceny
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F wyrazić następująco:

σF (l, t)
F l
t

=

√
√
√
√
√
√

EQ
l ((Ft+δt)2)−

(

EQ
l (Ft+δt)

)2

(

EQ
l (Ft+δt)

)2

=
√

ql,l+1t,t+δt q
l,l−1
t,t+δt

| F l+1
t+δt − F l−1

t+δt |
F l
t

, (4.30)

czyli jako iloczyn względnego rozrzutu ceny derywaty w następnej chwili tłumionej
średnią geometryczną (jedokrokowych) prawdopodobieństw przejść. Brak czynnika
dyskontującego wynika z faktu, że wzór ten wyraża się poprzez odpowiednie wiel-
kości względne. Ten elegancki wzór stanowi poszukiwane dopełnienie formuły (4.19)
a zarazem jest rozwiązaniem problemu postawionego na zakończenie poprzedniego
podrozdziału.
Na rysunku 4.8 przedstawiono drzewko dwumianowe zaczerpnięte z rysunku 4.5,

uzupełnione o względne dyspersje warunkowe dla każdej chwili poprzedzającej koń-
cową i dla każdego węzła drzewka (za wyjątkiem ostatniej kolumny węzłów). Dopiero
drzewko przedstawione na rysunku 4.8 jest kompletne, umożliwiając podjęcie opty-
malnej decyzji przez inwestora.
Rozważmy więc ponownie kompletne drzewko dwumianowe przedstawione na

rysunku 4.8. Widzimy, że ryzyko jakim jest obarczona wyjściowa (średnia) cena
pochodnego instrumentu finansowego (wynosząca F l=0

t=0 = 11.375 [j.u.]) to 72.3%.
Zatem, faktyczna cena zawarta jest w przedziale7 11.375 (1 − 0.723) ¬ F l=0

t=0 ¬
11.375 (1 + 0.723)⇔ 3.151 ¬ F l=0

t=0 ¬ 19.599. Jest to szeroki przedział - jego znajo-
mość jest konieczna do prowadzenie przez inwestora racjonalnych negocjacji z biurem
maklerskim co do wysokości prowizji. Analogiczne przedziały można zbudować dla
pozostałych cen tej derywaty (oczywiście, za wyjątkiem ostatniej kolumny).

4.2.5 Strategia zabezpieczająca portfel

Dotychczas omawialiśmy strategię, która (niezbyt celnie) nazwa się arbitrażową
(SA). Teraz podamy przykład pozwalający przedstawić strategię zabezpieczającą
(SZ) portfel inwestora.
Sygnałem do aktywności inwestora może być realna cena posiadanej

przez niego opcji kupna, czyli prawa do zakupu akcji od sprzedającego po umó-
wionej cenie w dniu realizacji opcji. Jak wiadomo, cena sprawiedliwa (teoretyczna)
wynosi F 00 = 11.375 (patrz rys. 4.5) podczas gdy rynkowa jest wyższa i wynosi np.
F̃ 00 = 25.5; niech stała w czasie cena obligacji będzie Λ0 = 1 (przyjmujemy dla
uproszczenia, że pozarynkowa stopa zwrotu r = 0).
Przykładowo, rozważymy dwie zasadniczo różne trajektorie na drzewku dwumia-

nowym kończące się dla czasu t = T = 4 δt (patrz rys. 4.4 lub rys. 4.5):

7Staranniejsza analiza wymagałaby wprowadzenia pojęcia poziomu ufności.
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Rysunek 4.8: Jednokierunkowe drzewo dwumianowe powstałe w wyniku hipotetycz-
nego błądzenia przypadkowego ceny pochodnego instrumentu finansowego F w cza-
sie dyskretnym na jednowymiarowej sieci L równoodległych (dyskretnych) węzłów.
Kółkami zaznaczono ceny instrumentu pochodnego, strzałkami obliczone arbitra-
żowe prawdopodobieństwa przejść {q}, natomiast dodatkowe liczby umieszczone
pomiędzy oznaczają względne dyspersje warunkowe wyznaczone ze wzoru (4.30)
i przypisane (za pomocą poziomych kresek) do odpowiadających im cen.
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1) trajektorię [0, 1, 0, 1, 2], kończącą się opcją w cenie (czyli realizowaną o wypła-
cie F l=2

t=T=4 = 60) oraz

2) trajektorię symetryczną do powyższej [0,−1, 0,−1,−2], kończącą się opcją nie
podlegającą realizacji (czyli o wypłacie F l=−2

t=T=4 = 0).

Porównamy w obu sytuacjach zysk z portfela dla SZ, przy czym przez zysk
rozumie się tutaj po prostu wartość portfela.

Trajektoria [0,1,0,1,2]

Wyjściowy krok SZ: t = 0, l = 0
Ponieważ opcja kupna jest przewartościowana, czyli przeceniona przez rynek na

kwotę F̃ l=0
t=0 −F 00 = 25.5− 11.375 = 14.125, więc należy ją sprzedać uzyskując kwotę

F̃ l=0
t=0 = 25.5. Jednak, ten krok ma swoje konsekwencje; np. musimy dostarczyć akcję
posiadaczowi tej opcji w terminie jej realizacji (tutaj w terminie t = T = 4 δt) po
cenie umownej K (tutaj K = 110). Musimy odpowiedzieć na pytanie czy krok ten
jest opłacalny - jest to związane z dynamiką struktury udziałów naszego portfela.
Zatem, należy zbadać strukturę portfela czyli wyznaczyć liczbę udziałów
(liczbę akcji i liczbę obligacji).
Ze wzorów (4.18) otrzymujemy, że

SA, SZ : φA,l=0t=0 =
25.625− 6.625
130− 90 = 0.475,

SA : φO,l=0t=0 =
130 · 6.625− 90 · 25.625

130− 90 = −36.125 (4.31)

gdzie znak ’-’ oznacza zadłużenie.
Zakładamy, że

• w strategii zabezpieczającej udziały na akcje są dane tymi samymi wzorami
co i w strategii arbitrażowej natomiast,

• udziały na obligacje są do tego odpowiednio dostosowywane (właśnie zgodnie
ze strategią zabezpieczającą, patrz poniżej).

Są to kluczowe (ogólne) założenia tej strategii.
Zatem, jak dostosowywane są udziały na obligacje do udziałów na ak-

cje? Z pierwszego równania (4.31) wynika, że należy zakupić φA,l=0t=0 = 0.475 udziałów
na akcje po aktualnej cenie S l=0t=0 = 100 na co należy wydać dodatkowo, ze środków
własnych, kwotę równą

φA,0t=0 · Sl=0t=0 − F̃ l=0
t=0 = 47.5− 25.5 = 22; (4.32)

kwota ta, z założenia, ma być asekurowana identyczną pożyczoną na za-
kup obligacji (w cenie Λ0 = 1 za sztukę) tzn.

φ̃O,l=0t=0 · Λ0 = −
(

φA,0t=0 · Sl=0t=0 − F̃ l=0
t=0

)

= −(47.5− 25.5) = −22.
(4.33)
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Zatem, liczba obligacji w portfelu w węźle (t = 0, l = 0) drzewa dwumianowego w
ramach strategii zabezpieczającej wynosi

SZ : φ̃O,l=0t=0 = −22 (4.34)

gdzie (jak poprzednio, w strategii arbitrażowej) znak ’-’ oznacza, iż są one zadłużone.
W ten sposób skompletowaliśmy wyjściowy portfel strategii zabezpieczającej.
Zauważmy, że kwota φ̃O,l=0t=0 ·Λ0 jaką musimy pożyczyć w tej strategii aby

zakupić obligacje jest teraz, dzięki temu, że cena rynkowa opcji jest przewartościo-
wana, niższa od analogicznej kwoty φO,l=0t=0 · Λ0 jaką musielibyśmy pożyczyć
w strategii arbitrażowej właśnie o to początkowe przewartościowanie. Jak
zobaczymy, to przewartościowanie długu będzie nam towarzyszyło aż do czasu re-
alizacji opcji w chwili t = T .
Istotą SZ jest zabezpieczanie (asekurowanie, równoważenie, lewarowanie)

kwoty wydatkowanej w danej chwili czasu przez właściciela portfela na
zakup akcji identyczną kwotą pożyczoną na zakup odpowiedniej liczby
obligacji - nie obawiamy się takiego kroku, gdyż mamy (na każdym etapie) zabez-
pieczenie długu w postaci posiadanych akcji. Jak się okaże, strategia taka może być
dochodowa tylko wtedy gdy wyjściowo opcja jest przewartościowana.

Pierwszy krok SZ: t = 1δt, l = 1
Postępujemy analogicznie jak w kroku wstępnym, czyli korzystając ze wzoru

(4.18) dla strategii SA aktualizujemy udziały w chwili t = 1 δt. Mianowicie,

SA, SZ : φA,l=1t=1 =
40− 11.25
150− 110 = 0.71875,

SA : φO,l=1t=1 =
150 · 11.25− 110 · 40

150− 110 = −67.8125. (4.35)

Jak widać, pulę udziałów na akcje należy zwiększyć o φA,l=1t=1 − φA,l=0t=0 = 0.24375;
ponieważ cena akcji wynosi teraz S l=1t=1 = 130 więc, zgodnie z naszą strategią zabez-
pieczającą, należy pożyczyć kwotę asekurującą równą

∆φ̃O,l=1t=1 · Λ0 = −
(

φA,l=1t=1 − φA,l=0t=0

)

· Sl=1t=1 = −31.6875, (4.36)

na zakup obligacji (w cenie, jak poprzednio, równej Λ0 = 1 za sztukę) w liczbie
31.6875 sztuk. Zatem, aktualna liczba obligacji w portfelu (przypomnijmy, kupio-
nych za pożyczone pieniądze) wynosi

SZ : φ̃O,l=1t=1 = φ̃
O,l=0
t=0 +∆φ̃

O,l=1
t=1 = −22− 31.6875 = −53.6875. (4.37)

Jak widać, zadłużenie w SZ jest niższe w porównaniu z analogicznym dla SA (drugi
wzór w (4.35), cały czas o kwotę wspomnianego przewartościowania - chodzi o to
aby nie wydawać zbyt wiele własnych zasobów.
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Podkreślmy, w SZ ponosząc wydatek na zakup akcji, zawsze obligacje
kupujemy asekuracyjnie już za pieniądze pożyczone.

Drugi krok SZ: t = 2 δt, l = 0
W węźle (t = 2 δt, l = 0) naszego drzewa dwumianowego (patrz rysunki 4.4 i

4.5) struktura portfela w strategii SA (liczona wciąż z tego samego wzoru (4.18))
jest następująca

SA, SZ : φA,l=0t=2 =
30− 5
140− 100 = 0.625,

SA : φO,l=0t=2 =
140 · 5− 100 · 30
140− 100 = −57.5, (4.38)

co oznacza konieczność sprzedaży φA,l=1t=1 − φA,l=0t=2 = 0.09375 udziałów na akcje po
ich aktualnej cenie S l=0t=2 = 110; daje to kwotę

∆φ̃O,l=0t=2 =
(

φA,l=1t=1 − φA,l=0t=2

)

· Sl=0t=2 = 10.3125, (4.39)

wystarczającą na zakup 10.3125 obligacji po (stałej) cenie Λ0 = 1. Stąd, zaktuali-
zowana liczba obligacji w portfelu wynosi8

SZ : φ̃O,l=0t=2 = φ̃
O,l=1
t=1 +∆φ̃

O,l=0
t=2 = −53.6875 + 10.3125 = −43.375; (4.40)

oczywiście, jest to sumaryczna (wypadkowa) liczba obligacji wciąż zadłużona, ale
niżej niż w SA, o wspomniane przewartościowane.

Trzeci krok SZ: t = 3 δt, l = 1
Postępując analogicznie jak w poprzednich krokach, aktualizujemy portfel otrzy-

mując

SA, SZ : φA,l=1t=3 =
60− 10
170− 120 = 1.0,

SA : φO,l=1t=3 =
170 · 10− 120 · 60
170− 120 = −110. (4.41)

Wynika stąd, że należy dokupić φA,l=1t=3 −φA,l=0t=2 = 0.375 udziałów na akcje po S
l=1
t=3 =

140 za sztukę co wymaga pożyczenia kwoty

∆φ̃O,l=1t=3 = −
(

φA,l=1t=3 − φA,l=0t=2

)

· Sl=1t=3 = −52.5, (4.42)

idącej ponownie na zakup obligacji. Po aktualizacji liczba (zadłużonych) obligacji w
portfelu wynosi

SZ : φ̃O,l=1t=3 = φ̃
O,l=0
t=2 +∆φ̃

O,l=1
t=3 = −43.375− 52.5 = −95.875, (4.43)

8Dokonaliśmy tutaj skrótu myślowego; chodzi o to, że teraz dysponujemy wolną kwotą, którą
zwracamy wierzycielowi, natomiast obligacje na tę kwotę jakie posiadamy w portfelu sprzedajemy,
wycofując je tym samym z naszego portfela.
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po cenie Λ0 = 1 - wciąż mniej o przewartościowanie niż dla SA. Zatem, nasz dług
wzrósł ale wzrosła także liczba udziałów na akcje - wkrótce zobaczymy jaka per saldo
jest końcowa wartość naszego portfela.

Czwarty krok SZ: t = T = 4 δt, l = 2
Należy teraz wykonać ostatni krok, w którym realizowany jest zysk (lub strata)

na portfelu. Stan portfela dla strategii arbitrażowej i zabezpieczającej wraz z jego
historią oraz odpowiednie zyski podano w tabeli 4.1 przy czym zysk został obliczony
w następujący sposób.
Ponieważ opcja jest w cenie więc dla węzła (t = T = 4 δt, l = 2) drzewa dwu-

mianowego, czyli w chwili realizacji opcji kupna przez jej nabywcę, inwestor ma
obowiązek dostarczyć akcję po cenie umownej (tutaj) K = 110 uzyskując taką wła-
śnie kwotę z jej sprzedaży. Z kwoty tej musi jednak spłacić pożyczkę zaciągniętą na
zakup obligacji czyli poszukiwany zysk strategii zabezpieczającej wynosi9:

SZ : Z l=2
t=T=4 = K + φ̃

O,l=2
t=T=4 · Λ0 = 14.125, (4.44)

czyli (jak należało oczekiwać) tyle ile wynosi różnica pomiędzy rynkową a sprawie-
dliwą ceną opcji w chwili początkowej (tzn. początkowe przewartościowanie). Jak
widać, przez zysk strategii zabezpieczającej rozumiemy wartość portfela,
przy czym wartość akcji liczona jest tutaj po cenie umownej K a nie, jak
w strategii arbitrażowej, po cenie rynkowej.
Jeżeli chodzi o strategię arbitrażową to analogiczny zysk wynosi10

SA : Al=2t=T=4 = S
l=2
t=T=4 · φA,l=2t=T=4 + φ

O,l=2
t=T=4 · Λ0 = 60, (4.45)

czyli tyle ile zyskalibyśmy kupując opcje na akcje bez odliczania opłaty wstępnej
(ceny opcji czyli premii).
W tabeli 4.1 zebrano uzyskane wyniki. Zauważmy, że w przedostatniej kolum-

nie występują wartości portfela w strategii arbitrażowej w kolejnych chwilach, które
(ponieważ portfel jest replikowalny) równają się odpowiednim cenom opcji. Nato-
miast, w strategii zabezpieczającej sytuacja jest bardziej skomplikowana, gdyż zysk
możemy ustalić dopiero po upływie terminu umownego, czyli dopiero po sprzedaży
akcji posiadaczowi opcji. Jak widać, zysk w strategii arbitrażowej jest cały czas pod
kontrolą (jawnie widoczny).
Obliczymy łączne prawdopodobieństwo arbitrażowe na trajektorii [0, 1, 0, 1, 2].

Zatem,

q0,10,1 · q1,01,2 · q0,12,3 · q1,23,4 =
1
4
· 1
2
· 1
4
· 2
5
=
1
80
. (4.46)

Porównując to prawdopodobieństwo z poniższym dla trajektorii [0,−1, 0,−1,−2],
uzyskamy odpowiedź co do szansy realizacji zysków dla poszczególnych trajektorii.

9Zauważmy, że φ̃O,l=2t=T=4 = φ̃
O,l=1
t=3 .

10Analogicznie jak powyżej przyjmujemy, że φA,l=2t=T=4 = φ
A,l=1
t=3 oraz φ

O,l=2
t=T=4 = φ

O,l=1
t=3 .
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Tabela 4.1: Trajektoria [0,1,0,1,2]: porównanie strategii zabezpieczającej (SZ) z ar-
bitrażową (SA)
(t [δt], l [j.u.]) S lt F l

t φA,lt SA: φO,lt SZ: φ̃O,lt SA: AT SZ: ZT
(0, 0) 100 11.375 0.475 −36.125 −22 11.375 −
(1, 1) 130 25.625 0.71875 −67.8125 −53.6875 25.625 −
(2, 0) 110 11.25 0.625 −57.5 −43.375 11.25 −
(3, 1) 140 30 1.0 −110 −95.875 30 −
(T = 4, 2) 170 60 1.0 −110 −95.875 60 14.125

Trajektoria [0,-1,0,-1,-2]

Rozważymy teraz (dla porównania) trajektorię [0,−1, 0,−1,−2]. Tak jak poprzednio
dla trajektorii [0, 1, 0, 1, 2], będziemy teraz prowadzić równolegle obliczenia zarówno
dla strategii arbitrażowej jak i zabezpieczającej.

Wyjściowy krok SZ: t = 0, l = 0
Krok ten daje analogiczny wynik jak poprzednio, gdyż dotyczy tego samego wę-

zła; udziały na akcje i obligacje dla portfela arbitrażowego i zabezpieczonego przed-
stawiono w pierwszym wierszu zbiorczej tabeli 4.2.

Pierwszy krok SZ: t = 1δt, l = −1
Postępujemy analogicznie jak w kroku wstępnym, czyli korzystając ze wzoru

(4.18) dla strategii SA aktualizujemy udziały w chwili t = 1 δt. Mianowicie,

SA, SZ : φA,l=−1t=1 =
11.25− 2
110− 70 = 0.23125,

SA : φO,l=−1t=1 =
110 · 2− 70 · 11.25
110− 70 = −14.1875 (4.47)

Jak widać, pulę udziałów na akcje należy zmniejszyć o φA,l=0t=0 − φA,l=−1t=1 = 0.475 −
0.23125 = 0.24375 co pozwala uzyskać (chwilowy) dochód; ponieważ cena akcji
wynosi teraz S l=−1t=1 = 90 więc, zgodnie z naszą strategią zabezpieczającą, należy za
zarobioną kwotę dokupić asekurującą liczbę udziałów na obligacje równą:

∆φ̃O,l=−1t=1 · Λ0 =
(

φA,l=0t=0 − φA,l=−1t=1

)

· Sl=−1t=1 = 21.9375, (4.48)

(w cenie, jak poprzednio, równej Λ0 = 1 za sztukę). Zatem, aktualna liczba obligacji
w portfelu (przypomnijmy, kupionych raz za pożyczone pieniądze a raz za zarobione)
wynosi11

SZ : φ̃O,l=−1t=1 = φ̃O,l=0t=0 +∆φ̃
O,l=−1
t=1 = −22 + 21.9375 = −0.0625. (4.49)

11Podobnie jak poprzednio, zrobiliśmy tutaj skrót myślowy. Podkreślmy raz jeszcze, chodzi o to,
że teraz dysponujemy wolną gotówką, którą zwracamy wierzycielowi a odpowiadającą tej kwocie
liczbę obligacji sprzedajemy wycofując je tym samym z naszego portfela.
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Jak widać, to chwilowe zadłużenie jest znacznie niższe w porównaniu z analogicznym
dla SA (drugi wzór w (4.47)) o kwotę początkowego przewartościowania ceny opcji.

Drugi krok SZ: t = 2 δt, l = 0
Ten krok jest szczególnie interesujący gdyż potwierdza, że w tych samych wę-

złach analizowane strategie dają (każda z osobna) taki sam portfel nieza-
leżnie od historii portfela. Już bez komentarza przytoczymy odpowiednie wzory:

SA, SZ : φA,l=0t=2 =
30− 5
140− 100 = 0.625,

SA : φO,l=0t=2 =
140 · 5− 100 · 30
140− 100 = −57.5, (4.50)

co oznacza konieczność dokupienia φA,l=0t=2 − φA,l=−1t=1 = 0.625 − 0.23125 = 0.39375
udziałów na akcje po ich aktualnej cenie S l=0t=2 = 110; daje to kwotę

−∆φ̃O,l=0t=2 · Λ0 =
(

φA,l=0t=2 − φA,l=1t=1

)

· Sl=0t=2 = 0.39375 · 110 = 43.3125, (4.51)

wystarczającą na zakup (za dopożyczone pieniądze w tej samej wysokości) −43.3125
obligacji po (stałej) cenie Λ0 = 1. Stąd, zaktualizowana liczba obligacji w portfelu
wynosi

SZ : φ̃O,l=0t=2 = φ̃
O,l=−1
t=1 +∆φ̃O,l=0t=2 = −43.3125− 0.0625 = −43.375; (4.52)

oczywiście, jest to sumaryczna (wypadkowa) liczba obligacji wciąż zadłużonych niżej
niż w ramach SA (jak zwykle o kwotę wyjściowego przewartościowania).

Trzeci krok SZ: t = 3 δt, l = −1
Postępując analogicznie jak w poprzednich krokach, aktualizujemy portfel otrzy-

mując

SA, SZ : φA,l=−1t=3 =
10− 0
120− 80 = 0.25,

SA : φO,l=−1t=3 =
120 · 0− 80 · 10
120− 80 = −20. (4.53)

Wynika stąd, że należy dokonać sprzedaży φA,l=0t=2 − φA,l=−1t=3 = 0.625− 0.25 = 0.375
udziałów na akcje po S l=1t=3 = 100 za sztukę co daje kwotę chwilowego zysku

∆φ̃O,l=−1t=3 · Λ0 = −
(

φA,l=−1t=3 − φA,l=0t=2

)

· Sl=−1t=3 = 37.5; (4.54)

kwota ta w całości idzie na zakup obligacji12. Po aktualizacji, liczba obligacji w
portfelu wynosi

SZ : φ̃O,l=−1t=3 = φ̃O,l=0t=2 +∆φ̃
O,l=−1
t=3 = −43.375 + 37.5 = −5.875, (4.55)

12Tego typu skrót myślowy wyjaśniliśmy już wcześniej w kroku 1δt.
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po cenie Λ0 = 1. Zatem, nadal nasz dług jest niższy, o początkowe przewartościowa-
nie ceny opcji, od analogicznego w ramach strategii arbitrażowej - wkrótce zobaczy-
my jaka per saldo jest końcowa wartość naszego portfela dla przyjętej trajektorii.

Czwarty krok SZ: t = T = 4 δt, l = −2
Należy teraz wykonać ostatni krok, w którym realizowany jest zysk (lub strata)

na portfelu. Stan portfela dla strategii arbitrażowej i zabezpieczającej wraz z jego
historią oraz odpowiednie zyski podano w tabeli 4.2, przy czym zysk został obliczony
teraz w następujący sposób.
Ponieważ opcja nie jest w cenie (patrz węzeł (t = T = 4 δt, l = −2) drzewka

dwumianowego), czyli w chwili realizacji opcji kupna przez jej nabywcę inwestor
nie musi się wywiązywać z obowiązku dostarczenia akcji. Zatem, zysk z portfela w
ramach strategii zabezpieczającej wynosi13:

SZ : Z l=2
t=T=4 = φ

A,l=−2
t=T=4 · Sl=−2t=T=4 + φ̃

O,l=−2
t=T=4 · Λ0 = 0.25 · 80− 5.875 = 14.125,

(4.56)

czyli (jak należało oczekiwać) tyle ile wynosi różnica pomiędzy rynkową i sprawie-
dliwą ceną opcji w chwili początkowej t = 0.
Natomiast, jeżeli chodzi o strategię arbitrażową to analogiczny zysk z portfela

wynosi14

SA : Al=2t=T=4 = S
l=−2
t=T=4 · φA,l=−2t=T=4 + φ

O,l=−2
t=T=4 · Λ0 = 0, (4.57)

czego można się było spodziewać ponieważ opcja nie jest w cenie.

Tabela 4.2: Trajektoria [0,-1,0,-1,-2]: porównanie strategii zabezpieczającej (SZ) z
arbitrażową (SA)

(t, l) Slt F l
t φA,lt SA: φO,lt SZ: φ̃O,lt SA: AT SZ: ZT

(0, 0) 100 11.375 0.475 −36.125 −22 11.375 −
(1, −1) 90 6.625 0.23125 −14.1875 −0.0625 6.625 −
(2, 0) 110 11.250 0.625 −57.5 −43.375 11.250 −
(3, −1) 100 5.0 0.25 −20 −5.875 5.0 −
(T = 4, 2) 80 0.0 0.25 −20 −5.875 0.0 14.125

Łączne prawdopodobieństwo arbitrażowe na trajektorii [0,−1, 0,−1,−2] wynosi:

q0,−10,1 · q−1,01,2 · q0,−12,3 · q−1,−23,4 =
3
4
· 1
2
· 3
4
· 1
2
=
9
64
, (4.58)

13Przypomnijmy, że φA,l=−2t=T=4 = φ
A,l=−1
t=3 oraz φ̃O,l=−2t=T=4 = φ̃

O,l=−1
t=3 .

14Analogicznie jak powyżej, φO,l=−2t=T=4 = φ
O,l=−1
t=3 .
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czyli jest kilkunastokrotnie większe niż dla trajektorii [0, 1, 0, 1, 2] (patrz wyraże-
nie (4.46)).
Podsumowując, podobnie można sprawdzić, że analogiczna sytuacja ma miejsce

dla pozostałych trajektorii na drzewku dwumianowym tzn.

• w ramach SZ zysk jest różnicą pomiędzy rynkową i sprawiedliwą ceną opcji w
chwili początkowej

• w ramach SA zysk jest równy płatności za opcje na rozważaną akcję.

Jak widać, wprawdzie na rozważanym drzewie dwumianowym istnieją (dwie)
trajektorie dla których zysk w ramach SA jest znacznie wyższy niż uzyskany dla
SZ ale w ramach SA istnieją też trajektorie nie dające zysku podczas gdy wszystkie
trajektorie SZ dają jednakowy zysk. Ponadto, trajektorie niskiego zysku w ramach
SA są bardziej prawdopodobne w porównaniu z trajektoriami przynoszącymi duży
zysk. Właśnie charakterystyczną cechą strategii zabezpieczającej jest: mały zysk
przy małym ryzyku straty.

4.2.6 Korekta związana z wypłatą dywidendy

Zwróćmy jeszcze uwagę na sytuację, w której od rozważanego waloru bazowego (ak-
cji) jest wypłacana w sposób ciągły dywidenda (np. stała w czasie) o stopie d w
skali roku (akcja typu ’income’). Aby zrozumieć wpływ dywidendy na dynamikę
ceny tego waloru (którego cena zmienia się od St w chwili t do St+δt w chwili t+ δt)
porównajmy jego cenę z ceną akcji tej samej spółki ale pozbawionej dywidendy
(akcja typu ’growth’). Ponieważ zakładamy (jak zwykle), że nie ma okazji do ar-
bitrażu więc cena akcji nie przynoszącej dywidendy powinna się zmieniać od St do
St+δt exp(d δt). Wynika to z faktu, że akcje income są tańsze od akcji growth. Wtedy
akcje tego typu będą równie chętnie kupowane jak akcje przynoszące dywidendę, co
nie prowadzi do różnicowania tych dwóch rodzajów akcji a więc nie stwarza okazji
do arbitrażu. Alternatywnie rzecz biorąc można powiedzieć, że cena akcji pozbawio-
nych dywidendy powinna się zmieniać od St exp(−dδt) do St+δt. Dlatego omawiana
poprzednio wycena pochodnego instrumentu finansowego (np. opcji) wystawionego
na akcje przynoszącą dywidendę może być sprowadzona do wyceny tego instrumentu
na akcje pozbawioną dywidendy, której aktualna cena (w chwili t) jest zmniejszona
o czynnik exp(−dδt). Stąd, we wzorach (4.20) na arbitrażowe prawdopodobieństwa
przejść q należy parametr r zastąpić po prostu przez r − d co daje,

ql,l+1t,t+δt =
Slt exp((r − d) δt)− S l−1t+δt

Sl+1t+δt − Sl−1t+δt

,

ql,l−1t,t+δt = 1− ql,l+1t,t+δt, t = 0, 1, 2, . . . , T ; l = 0, 1, 2, . . . , L. (4.59)

Tym samym, całą analizę przeprowadzoną w rozdz.4.2 można rozszerzyć na walory
przynoszące dywidendy.
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4.3 Procesy martyngałowe

Proces martyngałowy jest szczególnym rodzajem procesu stochastycznego (losowe-
go), który wygodnie jest omówiać w oparciu o wprowadzone wcześniej procesy losowe
określone na drzewie dwumianowym. Ogólnie rzecz biorąc, martyngały zdefinio-
wane są za pomocą prawdopodobieństw warunkowych dlatego w pierwszym
kroku zdefiniujemy te warunki zwane powszechnie filtrami (filtracjami).

4.3.1 Filtry

Definicja filtru (filtracji) Ft składa się z dwóch następujących kroków:

1) specyfikacji węzłów początkowych zajmowanych przez dany instrument (ba-
zowy lub pochodny) w chwli t = 0 (w naszym przypadku jest to pojedynczy
węzeł l = 0 drzewa dwumianowego) i węzłów końcowych, możliwych do obsa-
dzenia przez ten instrument w danej chwili t ­ 0.

2) wyznaczenia wszystkich możliwych ścieżek łączących punkt (węzeł) początko-
wy z końcowymi. Na przykład, dla wprowadzonego wcześniej drzewa dwumia-
nowego (patrz rys. 4.4)

Ft=3 =







F l=3t=3 = [0, 1, 2, 3] (180)
F l=1t=3 = [0, 1, 2, 1]

⋃
[0, 1, 0, 1]

⋃
[0,−1, 0, 1] (140)

F l=−1t=3 = [0, 1, 0,−1]
⋃
[0,−1, 0,−1]⋃ [0,−1,−2,−1] (100)

F l=−3t=3 = [0,−1,−2,−3] (50)
(4.60)

Powyższe rozważania ująć w postaci następującej definicji.

Definicja 4.3.1.1 (Definicja filtracji) Filtracja (filtr) Ft jest zbiorem wszystkich
filtrów cząstkowych F lt , gdzie każdy filtr cząstkowy jest zbiorem ścieżek związanych z
danym węzłem początkowym t = 0 oraz z konkretnym węzłem dwumianowego drzewa
w danej chwili t ­ 0.

W dalszym ciągu (dla prostoty) poprowadzimy nasz wywód dla drzewka dwumia-
nowego przedstawionego na rys. 4.9, gdzie zamiast poprzednio używanego indeksu
l wprowadzimy zwykłą numerację węzłów (1, 2, ... , 6). W tym przypadku filtracja
dla t = 0, 1, 2 jest postaci
t=0:

Ft=0 = F1t=0 = [1] (100) (4.61)

t=1:

Ft=1 =
{

F3t=1 = [1, 3] (120)
F2t=1 = [1, 2] (80)

(4.62)
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Rysunek 4.9: Drzewko dwumianowe przedstawione dla chwil t=0,1,2, dla procesu
stochastycznego bazowego instrumentu finansowego St w mierze P.

t=2:

Ft=2 =







F6t=2 = [1, 3, 6] (140)
F5t=2 = [1, 2, 5]

⋃
[1, 3, 5] (100)

F4t=2 = [1, 2, 4] (60)
(4.63)

Znając prawdopodobieństwa przejść w przyjętej mierze (na razie wprowadziliśmy
tylko miarę rynkową, subiektywną P = {p} i miarę arbitrażową Q = {q} - poniżej
wprowadzamy także miarę martyngałową), można dla każdej ze ścieżek określić wagę
czyli wkład danej ścieżki do średnich ważonych (wartości oczekiwanych) oraz do
warunkowych średnich ważonych (warunkowych wartości oczekiwanych).
Jak widać na obu powyższych przykładach, w każdej chwili (za wyjątkiem po-

czątkowej) filtracja prowadzi (w ogólności) do różnych wartości instrumen-
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tu z dobrze określonym prawdopodobieństwem, co pozwola (jak zobaczymy)
traktować ją jak proces stochastyczny. Innymi słowy, pozwola to na zdefiniowa-
nie filtracji jako zależnej od czasu zmiennej losowej - jej ”wartościami” są
obiekty w postaci odpowiednich filtrów cząstkowych (prowadzących do danej warto-
ści instrumentu finansowego). Jednakże, posługiwanie się tego typu zmienną losową
(chociaż dobrze umotywowane) jest niewygodne.

4.3.2 Warunkowe średnie ważone - martyngał

Wprowadzimy najpierw definicję warunkowej wartości oczekiwanej (średniej) EP (· |
Ft), która zależy nie tylko od miary podstawowej (subiektywnej, rynkowej, domnie-
manej) P ale także od filtracji Ft (czyli historii danego procesu stochastycznego
na drzewku dwumianowym). Mianowicie, można wprowadzić następującą niezwykle
ważną definicję.

Definicja 4.3.2.1 (Definicja wartości oczekiwanej warunkowanej filtracją)
Wyrażenie EP (Ft | Fτ ), τ ¬ t, oznacza taką warunkową wartość oczekiwaną instru-
mentu finansowego Ft, jaka jest liczona tylko wzdłuż dróg, które są akceptowane
(przepuszczane) przez filtr Fτ .

Mówiąc konkretniej, aby ”zmaterializować” tą wartość oczekiwaną musimy pod-
stawić konkretną wartość filtracji (czyli konkretne wartości zmiennej losowej), tzn.
ściśle określone trajektorie prowadzące od węzła początkowego do danego węzła w
wybranej chwili czasu t. Definicję tą zilustrujemy na prostym przykładzie.

Przykład

Niech instrumentem finansowym będzie instrument bazowy tzn. Ft = St. Wyzna-
czamy warunkowe wartości oczekiwane EP (St | Fτ ), τ ¬ t = 0, 1, 2 (patrz tabele
4.3 - 4.5); w dalszym ciągu nazywamy je przefiltrowanymi wartościami oczekiwa-
nymi. Zauważmy, że z powyższych tabel wynikają dwie ważne równości (warunki

Tabela 4.3: Przefiltrowane wartości oczekiwane dla chwili t=T=0
EP (Ft=T (=0) | Fτ ) Filtracja Wartość EP (St=T (=0) | Fτ )
EP (S0 | F0) [1] 100

brzegowe) spełnione dla dowolnej chwili, dowolnej miary i dowolnego instrumentu
finansowego:

EP (Ft | F0) = EP (Ft), (4.64)

EP (Ft | Ft) = Ft. (4.65)
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Tabela 4.4: Przefiltrowane wartości oczekiwane dla chwili t=T=1
EP (Ft=T (=1) | Fτ ) Filtracja Wartość EP (St=T (=1) | Fτ )
EP (S1 | F0) [1] 3

4
· 80 + 1

4
· 120 = 90

EP (S1 | F1) [1,2] 80
[1,3] 120

Tabela 4.5: Przefiltrowane wartości oczekiwane dla chwili t=T=2
EP (Ft=(T=2) | Fτ ) Filtracja Wartość EP (St=T (=2) | Fτ )
EP (S2 | F0) [1] 1

4
· 1
4
· 140 + 2 · 1

4
· 3
4
· 100 + 3

4
· 3
4
· 60 = 80

EP (S2 | F1) [1,2] 1
4
· 100 + 3

4
· 60 = 70

[1,3] 1
4
· 140 + 3

4
· 100 = 110

EP (S2 | F2) [1,2,4] 60
[1,2,5]

⋃
[1,3,5] 100

⋃
100 = 100

[1,3,6] 140

Ponadto widać, że przefiltrowana wartość oczekiwana

Zt
def.= EP (ST=2 | Ft), t = 0, 1, 2, (4.66)

jest zmienną losową przyjmującą różne wartości (patrz tabela 4.5) z różnymi
na ogół prawdopodobieństwami (patrz rys. 4.10), przy czym (jak zobaczymy
poniżej) zmienna Zt nie zależy od T .
Na rys. 4.10 przedstawiono, w oparciu o tabelę 4.5, ten nowy proces stochastycz-

ny Zt na drzewku dwumianowym (w mierze P ).
W ogólności, procesem stochastycznym jest zmienna losowa

Φt
def.= EP (FT | Ft), t = 0, 1, 2, . . . , T, (4.67)

określona na drzewku dwumianowym dla dowolnego instrumentu finansowego F
(a nie tylko dla ceny S instrumentu bazowego; patrz poniżej kluczowe twierdzenie
4.3.2.1 dotyczące martyngału).
Pokażemy w oparciu o drzewko dwumianowe zamieszczone na rys. 4.10, że proces

Zt (zdefiniowany przez (4.66)) posiada, dla każdej chwili t ¬ T (= 2), następującą
bardzo istotną własność

Zt = EP (ZT (=2) | Ft). (4.68)

W tym celu konstruujmy tabelę 4.6 odpowiednio przefiltrowanych wartości ocze-
kiwanych tej zmiennej. Poprzez (bezpośrednie) porównanie odpowiadających sobie
wartości w tej tabeli i na drzewie dwumianowym przedstawionym na rys. 4.10 widać,
że spełniona jest równość (4.68).
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Rysunek 4.10: Drzewko dwumianowe przedstawione dla trzech kolejnych chwil dla
przykładowego procesu stochastycznego Zt = EP (ST (=2) | Ft).

Dodatkowo, tabela 4.6 pokazuje, że mają miejsce następujące własności (wyni-
kające, jak zobaczymy poniżej, bezpośrednio z faktu, że proces stochastyczny Zt jest
martyngałem):

EP (Z0 | F0) = EP (Z1 | F0) = EP (Z2 | F0) (4.69)

oraz

EP (Z1 | F1) = EP (Z2 | F1), (4.70)

lub ogólniej

EP (Zt | Ft) = EP (Zt+j | Ft), t = 0, 1, 2, . . . , j = 0, 1, 2, . . . . (4.71)

Teraz jesteśmy przygotowani do wprowadzenia kluczowej definicji.
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Tabela 4.6: Przefiltrowane wartości oczekiwane dla procesu stochastycznego Zt w
mierze P

EP (FT | Ft) Filtracja Wartość EP (ZT | Ft)
EP (Z2 | F0) [1] 1

4
· 1
4
· 140 + 2 · 1

4
· 3
4
· 100 + 3

4
· 3
4
· 60 = 80

EP (Z2 | F1) [1,2] 1
4
· 100 + 3

4
· 60 = 70

[1,3] 1
4
· 140 + 3

4
· 100 = 110

EP (Z2 | F2) [1,2,4] 60
[1,2,5]

⋃
[1,3,5] 100

⋃
100 = 100

[1,3,6] 140
EP (Z1 | F0) [1] 1

4
· 110 + 3

4
· 70 = 80

EP (Z1 | F1) [1,2] 70
[1,3] 110

EP (Z0 | F0) [1] 80

Definicja 4.3.2.2 (Definicja martyngału względem miary i filtracji) Dowolny
proces stochastyczny Ut określony w mierze P = {p} i ograniczony, (czyli spełniający
nierówność EP (| Ut |) < ∞), nazywamy P-martyngałem (tzn. martyngałem wzglę-
dem miary P) jeżeli zmienna losowa Ut spełnia równość (analogiczną do (4.68)):

Ut = EP (UT | Ft), (4.72)

dla każdej chwili t ¬ T . Jak widać, proces stochastyczny Zt jest P-martyngałem;
miara P nosi nazwę miary martyngałowej.

Warto zauważyć, że nawet gdyby proces Ut nie był martyngałem, to zawsze UT =
EP (UT | FT ), czyli dla dowolnej miary i filtracji.
Jak widać, znalezienie miary martyngałowej dla procesu stochastyczne-

go danego instrumentu finansowego pozwala wycenić ten instrument w
dowolnej chwili 0 ¬ t ¬ T . W ten sposób odpowiedzieliśmy na jedno z
kluczowych pytań analizy portfelowej o wycenę dowolnego instrumentu
finasowego w dowolnej chwili.
Zachodzi następujące, ogólne twierdzenie.

Twierdzenie 4.3.2.1 (Twierdzenie kluczowe o konstrukcji martyngału) Dla
dowolnego instrumentu finansowego F proces stochastyczny przefiltrowanej wartości
oczekiwanej Φt = EP (FT | Ft), t ¬ T , jest martyngałem względem miary P i filtracji
F (zauważmy, że T jest dowolną liczbą naturalną albo zerem), czyli

Φt = EP (ΦT | Ft), 0 ¬ t ¬ T. (4.73)
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Dowód tego twierdzenia (przez konstrukcję) jest analogiczny jak wywód przeprowa-
dzony dla instrumentu Zt zbudowanego na bazie St, gdyż nie zależał on od konkret-
nej postaci instrumentu St (mógł być to równie dobrze jakiś inny instrument Ft).
Co więcej, nie zależał od konkretnej postaci miary P .
Może się zdarzyć, że np. Φt = Ft - wtedy instrument F jest już od razu martyn-

gałem w mierze P i filtracji F bez potrzeby ponownego budowania przefiltrowanej
wartości oczekiwanej.
Przy okazji zwróćmy uwagę, że wzór (4.25) można przepisać w języku martyn-

gałów a mianowicie,

F0 = exp(−rT )EQ(FT | F0) = EQ(exp(−rT )FT | F0). (4.74)

Oczywiście, gdyby dla instrumentu finansowego istniała taka miara15 Q, że powyższy
wzór można by uogólnić do postaci

Ft = exp(−r(T − t))EQ(FT | Ft) = EQ(exp(−r(T − t))FT | Ft), (4.75)

wówczas, zdyskontowany instrument finansowy exp(−rt)Ft byłby w tej mierze mar-
tyngałem, gdyż spełniona byłaby równość definiująca (4.72) w postaci:

exp(−rt)Ft = EQ(exp(−rT )FT | Ft), 0 ¬ t ¬ T. (4.76)

Zatem, znalezienie miary martyngałowej umożliwia wyznaczenie warto-
ści instrumentu w dowolnej chwili 0 ¬ t ¬ T - to kluczowe zagadnienie jest
omawiane poniżej.
Widać, że proces martyngałowy nie prowadzi do arbitrażu - wystarczy w tym

celu w równaniu (4.76) podstawić T = t + δt, co prowadzi do wyrażenia:

exp(rδt)Ft = EQ(Ft+δt | Ft), 0 ¬ t ¬ T − δt, (4.77)

które ma taką sama wymowę jak wcześniej wyprowadzone (4.22) dla miary arbitra-
żowej. Tzn., spodziewany zysk z instrumentu finansowego F w chwili t + δt jest, w
tym przypadku, taki jak z lokaty bankowej o wartości Ft. Jak już wcześniej mówi-
lismy, tego typu miarę nazywamy obojętną względem ryzyka. Zatem, znalezienie
miary martyngałowej dla danego instrumentu finansowego jest zawsze
wyjściowym zadaniem narzucanym przez paradygmant istnienia rynku
finansowego, czyli braku arbitrażu.
Zauważmy jeszcze (porównaj drzewko dwumianowe na rys. 4.9 z tym na rys.

4.10), że proces stochastyczny ceny akcji St nie jest (w ogólności) martyngałem
względem miary P i filtracji F . Okazuje się jednak, że
Lemat 4.3.2.1 (Lemat o konstrukcji miary martyngałowej) Można skonstru-
ować taką miarę (porównaj drzewka dwumianowe na rysunkach 4.9 i 4.11) Q =
{q = 1/2} względem której proces stochastyczny St będzie Q-martyngałem wzglę-
dem filtracji F ; co więcej widać, że jest ona w naszym przypadku jednocześnie miarą
arbitrażową (patrz wzory (4.20)).

15Proszę nie pomylić teraz tej miary z miarą arbitrażową.
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Poniższa tabelka 4.7 zawiera konieczne wartości obliczone dla tego procesu (przy
założeniu, że r = 0) - właśnie te wartości zostały dodatkowo umieszczone na drzewie
dwumianowym na rys. 4.11. Porównanie otrzymanych wielkości z odpowiadający-
mi im umieszczonymi na drzewie przedstawionym na rys. 4.9 wskazuje na spełnienie
własności (4.72) definiującej martyngał. W ogólności, znalezienie miary martyngało-
wej do danego instrumentu finansowego nie jest takie proste, Jednakże, dla procesu
cen akcji zakładamy iż jest to możliwe - patrz Lemat o istnieniu 4.3.3.3.

Tabela 4.7: Przefiltrowane wartości oczekiwane dla procesu stochastycznego St w
mierze martyngałowej Q.

EQ(FT | Ft) Filtracja Wartość EQ(ST | Ft)
EQ(S2 | F0) [1] 1

4
· 140 + 2 · 1

4
· 100 + 1

4
· 60 = 100

EQ(S2 | F1) [1,2] 1
2
· 100 + 1

2
· 60 = 80

[1,3] 1
2
· 140 + 1

2
· 100 = 120

EQ(S2 | F2) [1,2,4] 60
[1,2,5]

⋃
[1,3,5] 100

⋃
100 = 100

[1,3,6] 140
EQ(S1 | F0) [1] 1

2
· 80 + 1

2
· 120 = 100

EQ(S1 | F1) [1,2] 80
[1,3] 120

EQ(S0 | F0) [1] 100

4.3.3 Reprezentacja martyngałowa procesów dyskretnych

Podamy teraz (bez dowodu) zasadnicze twierdzenie dotyczące reprezentacji mar-
tyngałowej procesów dyskretnych odgrywające wprost trudną do przecenienia rolę
w finansach (np. w konstruowaniu strategii samofinansującej). Zanim jednak je sfor-
mułujemy podamy definicję procesu prognozowalnego.

Definicja 4.3.3.1 (Definicja procesu prognozowalnego) Mówimy, że mamy do
czynienia z procesem prognozowalnym φt na drzewku dwumianowym jeżeli wartość
tego procesu w chwili t zależy (przynajmniej) od filtracji Ft−1.

Najprostszym przykładem takiego procesu może by proces ceny obligacji Λt, poru-
szający się jedynie po skrajnie górnej trajektorii drzewka - jest to wędrówka tylko w
górę o czynnik exp(rδt) z prawdopodobieństwem 1. Dodajmy, że jeżeli jakiś proces
jest prognozowalny to również (prawie) dowolna funkcja f(φt) jest procesem progno-
zowalnym. Mówiąc ogólnie, trudno jest podać przykład procesu nieprognozowalnego.

Twierdzenie 4.3.3.1 (Twierdzenie o reprezentacji martyngałowej) Niech da-
ne będą dwa procesy Q-martyngałowe Mt i Nt na drzewie dwumianowym. Istnieje
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Rysunek 4.11: Drzewko dwumianowe przedstawione dla trzech kolejnych chwil dla
procesu stochastycznego St w mierze martyngałowej Q.

taki proces prognozowalny φt, że zachodzi następująca równość:

Nt = N0 +
t−1∑

k=0

φk∆Mk, t = 1, 2, . . . , T, (4.78)

przy czym ∆Mk = Mk+1 − Mk jest przyrostem procesu Mk od chwili k do k + 1,
natomiast proces prognozowalny φk wyraża się (dodatkowo) wzorem

φk =
N+k+1 −N−k+1
M+k+1 −M−k+1

=
δNk+1

δMk+1

, k = 0, 1, . . . , (4.79)

gdzie N±k+1 oraz M
±
k+1 to wartości jakie mogą przyjmować odpowiednio proces Nt

i Mt w węzłach (widełkach) drzewa dwumianowego w chwili k + 1 sąsiadujących
bezpośrednio z wyjściowym w chwili k.

Zauważmy, że wyrażenie (4.79) można traktować jako formalne rozszerzenie (z
miary arbitrażowej na martyngałową) pierwszego wzoru w (4.18) na liczbę udziałów
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na akcje w portfelu dwuwalorowym, gdzie procesNt można interpretować jako proces
pochodnego instrumentu finansowego wystawionego na papier wartościowy Mt -
papier ten nie musi być instrumentem bazowym (czyli ceną akcji) a może być także
jakimś instrumentem pochodnym.
Z Twierdzenia 4.3.3.1 wynika wielce użyteczny dla zastosowań

Lemat 4.3.3.1 (Lemat o rekurencji) Ze wzoru (4.78) wynika bezpośrednio na-
stępująca, rekurencyjna formuła

Nt = Nt−1 + φt−1∆Mt−1, t = 1, 2, . . . , T, (4.80)

lub jej postać równoważna

φt−1 =
∆Nt−1
∆Mt−1

, t = 1, 2, . . . , T. (4.81)

Aby wyprowadzić formułę (4.80) wystarczy we wzorze (4.78) przedstawić sumowanie
w postaci dwóch części a mianowicie, sumowania krótszego o jeden składnik, czyli
do t− 2 oraz ostatniego składnika, czyli φt−1∆Mt−1. Ta krótsza suma to nic innego
jak proces Nt−1, co kończy wywód.
Co więcej, wykażemy, że z Lematu 4.3.3.1 wynika już postać procesu progno-

zowalnego (4.79). W tym celu zapiszmy równość (4.80) dla wartości procesów w
postaci:

N+t+1 = Nt + φtM+t+1 − φtMt,

N−t+1 = Nt + φtM−t+1 − φtMt, t = 0, 1, 2, . . . , T − 1, (4.82)

skąd, odejmując stronami obie równości i dzieląc je przez różnicę M+t+1 − M−t+1,
otrzymujemy poszukiwaną postać φt daną wzorem (4.81). Zauważmy, że Nt i Mt

oznaczają tutaj (skrótowo) wartości procesów, odpowiednio, Nt i Mt w węźle wide-
łek. Odwrotnie, ze wzoru (4.80) można wyprowadzić (krok po kroku16) wyrażenie
(4.78).
Jak widać, proces prognozowalny φt można przedstawić albo jako iloraz różnico-

wy po węzłach drzewka dwumianowego (przy ustalej następnej chwili) obu procesów
Q-martyngałowych (patrz wzór (4.79)) albo jako ich (jednokrokowy) iloraz różnico-
wy w czasie (patrz wzór (4.81)).
Zauważmy jeszcze, że z równości (4.80) wynika równość (4.78) poprzez kolejne

podstawienia (rekurencje). Mianowicie, wyrażenie (4.80) na proces Nt=1 w chwili
t = 1 podstawiamy do wzoru (4.80) ale na Nt=2, z kolei tą wielkość podstawiamy do
Nt=3, itd, itp. Pozwala to stwierdzić, że Lemat 4.3.3.1 jest równoważny Twierdzeniu
4.3.3.1.
Dodajmy jeszcze jeden użyteczny lemat.

16Lub, po prostu, stosując indukcję matematyczną.
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Lemat 4.3.3.2 (Lemat o odwrotnym procesie prognozowalnym) Z Lematu
4.3.3.1 wynika bezpośrednio, że jeżeli φt jest procesem prognozowalnym to i proces
odwrotny (co do wartości) φ−1t jest także procesem prognozowalnym.

Poniżej zastosujemy wzór (4.81) do skonstruowania typowej strategii samofinan-
sującej portfela dwuskładnikowego, należącej do grupy strategii replikujących.

Ogólne uwagi o strategii samofinansującej

Zakładamy jak zwykle, że mamy do dyspozycji stochastyczny proces akcji St oraz
prognozowalny proces ceny obligacji Λt, które są zdefiniowane na drzewie dwumia-
nowym (w dalszym ciagu bez zmniejszania ogólności rozważań można przyjąć, że
Λ0 = 1, co pozwala na dyskontowanie i kapitalizację instrumentów finansowych za
pomocą ceny obligacji, która reprezentuje zmieniającą się wraz z upływem czasu
wartość pieniądza); zauważmy, że również proces Λ−1t jest prognozowalny (na mocy
Lematu 4.3.3.2).
Należy podkreślić, że dla dyskretnego procesu stochastycznego St (tutaj na drzew-

ku dwumianowym) udowodniono następujący, bardzo ważny lemat.

Lemat 4.3.3.3 (Lemat o istnieniu) O istnieniu jednej i tylko jednej miary Q,
względem której proces stochastyczny zdyskontowanych cen akcji S̃t = Λ−1t St jest
Q-martyngałem.

Oczywiście, Q-martyngałem będzie także proces stochastyczny rozpatrywanego zdys-
kontowanego instrumentu finansowego F zdefiniowany jako przefiltrowana wartość
oczekiwana17 (patrz wzory (4.67) i (4.73)):

Et = EQ(Λ−1T FT | Ft), t ¬ T, (4.83)

przy czym, oczywiście, ET = Λ−1T FT . W ten sposób definiujemy

1) dwa procesy Q-martyngałowe, S̃t oraz Et, względem (tej samej) filtracji F oraz
2) dwa procesy prognozowalne (Λt oraz φt);

pozwoli to porównać procesy wymienione w p.1), korzystając właśnie z Twierdzenia
4.3.3.1 o reprezentacji martyngałowej, i zbudować samofinansującą strategię zabez-
pieczającą.
Gdyby tak się zdarzyło, iż zdyskontowany instrument finansowy

Λ−1t Ft = Et (4.84)

wówczas on sam byłby, co widać w oparciu o wzór (4.83), Q-martyngałem w filtra-
cji F (a nie tylko jego przefiltrowana wartość oczekiwana) przy czym, otrzymane
wzory byłyby dodatkowo wzorami omawianej wcześniej strategii arbitrażowej. Oczy-
wiście, niniejsze podejście bazujące na równości (4.83), jest znacznie ogólniejsze (np.
zbudowana strategia nie jest w ogólności arbitrażowa).
17Proszę nie mylić oznaczenia EQ z Et. To pierwsze (przypomnijmy) oznacza wartość oczekiwaną
w mierze Q, natomiast to drugie proces stochastyczny w chwili t.
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Strategia samofinansująca - praktyczna realizacja

Na wstępie, przyjmujmy, że

Nt ≡ Et,
Mt ≡ S̃t. (4.85)

Następnie, zdefiniujemy dla każdej chwili t liczbę udziałów w portfelu na akcje

φAt = φt, (4.86)

gdzie φt jest zdefiniowanym wcześniej w Twierdzeniu 4.3.3.1 o reprezentacji martyn-
gałowej procesem prognozowalnym, czyli na mocy Lematu 4.3.3.1,

φt−1 =
∆Et−1
∆S̃t−1

=
Et − Et−1
S̃t − S̃t−1

. (4.87)

To właśnie do wielkości udziałów na akcje dobierane są odpowiednio
udziały na obligacje. Odpowiedni dobór był także i w poprzednich strategiach.
W obecnej, liczba obligacji w portfelu dana jest wzorem:

ψOt = Et − φAt S̃t. (4.88)

Teraz już możemy określić wartość portfela πt = (φAt , ψ
O
t ) w chwili t a mianowicie,

Vt(πt) = φAt St + ψ
O
t Λt

= φAt St + (Et − φAt S̃t)Λt = ΛtEt. (4.89)

Wartość ta jest równa (dzięki wyrażeniu (4.83) przefiltrowanej wartości oczekiwanej
zdyskontowanego instrumentu finansowego Λ−1T−tFT . Oznacza to, że portfel nie jest
replikujący (w sensie definicji (4.16) i (4.17)).
W dalszym ciągu wykażemy, że wartość portfela πt−1 = (φAt−1, ψ

O
t−1) w chwili t

wynosi

Vt(πt−1) = Vt(πt). (4.90)

Właśnie ta równość definiuje portfel samofinansujący (strategię samo-
finansującą), gdyż umożliwia sprzedaż portfela πt−1 i jednoczesne kupno
portfela πt w ramach (specyficznej) operacji typu no profit. Innymi słowy,
definicja liczby obligacji dana wzorem (4.88) oraz (jak wykazujemy poniżej) Twier-
dzenie 4.3.3.1 o reprezentacji martyngałowej, umożliwiają własnie zbudowanie tego
typu portfela.
Oczywiście, powyżej przeprowadzona operacja typu no profit nie oznacza tutaj

braku chwilowego zysku - jest on po prostu różnicą

ZY SKt = Vt(πt)− Vt−1(πt−1). (4.91)
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Udowodnimy teraz kluczową równość (4.90), przekształcając jej lewą stronę:

Vt(πt−1) = φAt−1St + ψ
O
t−1Λt

= φAt−1St + (Et−1 − φAt−1S̃t−1)Λt
= Λt[Et−1 + φAt−1(S̃t − S̃t−1)]
= Λt(Et−1 + φAt−1∆S̃t−1) = ΛtEt = Vt(πt), (4.92)

gdzie po drodze skorzystaliśmy (kolejno) ze wzorów (4.88), (4.87) i (4.89).
Ponadto, zauważmy, że w chwili t = T wartość portfela πT−1 wynosi

VT (πT−1) = ΛTET = ΛTEQ(Λ−1T FT | FT ) = ΛTΛ−1T FT = FT , (4.93)

co oznacza, że strategia samofinansująca jest replikująca w słabym sensie, gdyż
odtwarza cenę (czyli wartość wypłaty) instrumentu finansowego F jedynie w chwili
jego realizacji T . Poprawną (sprawiedliwą) jest taka wartość portfela π w każdej
chwili 0 ¬ t ¬ T , którą zdefiniowano za pomocą udziałów danych wzorami (4.87) i
(4.88). Każda inna cena byłaby arbitrażową w takim sensie, że mogłaby prowadzić
do dodatkowych (a więc nieuzasadnionych czyli niesprawiedliwych) zysków.
Na zakończenie tego paragrafu zauważmy jeszcze, iż może się zdarzyć, że (w

jakimś przedziale czasu) równość (4.90) jest tautologią, co ma miejsce wtedy gdy
portfel (w tym przedziale) nie uległ zmianie, tzn. gdy πt = πt−1. Wtedy strategia
samofinansująca staje się strategią pasywną.

4.4 Opcje jako zasadniczy instrument stymulują-
cy rynek finansowy

4.4.1 Kontrakty terminowe

Można powiedzieć, że kontrakty terminowe i ich ”łagodniejsze” odmiany w posta-
ci opcji, stanowią zasadnicze instrumenty pochodne obecne na rynkach, znacznie
zmniejszające ryzyko inwestycyjne. Kontrakt terminowy jest instrumentem finanso-
wym zobowiązującym18 obie zawierające go strony do realizacji w przyszłości trans-
akcji na warunkach określonych w kontrakcie. Wystawiający kontrakt, czyli przyj-
mujący (otwierający) tzw. pozycję krótką (ang. ’short position’), przyjmuje na siebie
zobowiązanie wystawienia do sprzedaży przedmiotu kontraktu w ustalonym terminie
(tzw. terminie realizacji) po ustalonej cenie (czyli cenie umownej). Nabywca kon-
traktu określany jako przyjmujący (otwierający) pozycję długą (ang. ’long position’)
zobowiązuje się do zapłacenia ceny umownej po dostarczeniu przedmiotu kontraktu.

18Tutaj tkwi istotna różnica pomiędzy kontraktem terminowym a opcją o czym powiemy szcze-
gółowo w następnym rozdziale.

146



Podkreślmy, że przedmiot kontraktu odgrywa rolą instrumentu pierwotnego (czyli
bazowego).
Bieżąca cena instrumentu bazowego, na który opiewa kontrakt zmienia się w cza-

sie zatem, jego rynkowa cena w terminie realizacji różni się na ogół od ceny umownej.
Płatność z racji zawarcia takiego kontraktu jest albo dodatnia albo ujemna: zawsze
to co jedna strona zyskuje to druga traci19. Dwa zasadnicze rodzaje kontraktów to:

1) kontrakty forward oraz

2) kontrakty futures,

omawiamy je poniżej.

Kontrakty forward

Kontrakt forward jest podstawowym typem kontraktu terminowego, który zobowią-
zuje obie umawiające się strony kontraktu do przeprowadzenia danej transakcji w
określonej przyszłości. Transakcja ta jest typu sprzedaż-kupno instrumentu bazowe-
go (podstawowego). Oznacza to, że jedna ze stron dostarcza drugiej w określonym
terminie T (zwanym terminem wygaśnięcia kontraktu) przedmiot transakcji po usta-
lonej cenie K (zwanej ceną dostawy lub rozliczenia). Jak widać, kontrakt forward nie
dopuszcza żadnych przepływów pieniężnych, towarowych lub innych w chwili t < T ,
czyli przed wygaśnięciem kontraktu. Wycena tego kontraktu polega na wyznaczeniu
sprawiedliwej ceny rozliczenia.

Kontrakty futures

Istota i struktura kontraktów futures jest taka sama jak kontraktów forward, przy
czy różnica pomiędzy nimi ma charakter instytucjonalny ze względu na to, że te
pierwsze (w przeciwieństwie do tych drugich) zostały dopuszczone do obrotu rynko-
wego (giełdowego). Ponieważ kontrakty futures są przedmiotem obrotu rynkowego
zatem, ich aktualna cena jest kształtowana poprzez popyt i podaż, co stanowi zasad-
niczą różnicę w stosunku do kontraktów forward. Ważną konsekwencją dopuszcze-
nia kontraktów futures do obrotu giełdowego jest przejęcie przez nią roli pośrednika
pomiędzy stronami kontraktu. Do roli tej należy dbanie o to aby każda ze stron wy-
wiązała się ze swoich zobowiązań. W tym celu giełdy wyposażone są w odpowiednie
instrumenty ekonomiczne, np. w system depozytów (zabezpieczających oraz pod-
trzymujacych) oraz codziennych rozliczeń (ang. making to market). Zauważmy, że
najczęściej kontrakty te kończą się (są realizowane) przed upływem terminu ich wy-
gaśnięcia, co jest właśnie konsekwencją dopuszczenia ich do obrotu giełdowego.

19Sytuacje remisowe czyli zrównania się ceny realnej z ceną umowną są bardzo rzadkie.
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4.5 Ciągła w czasie wycena opcji - model Blacka-
Scholesa a przewodnictwo cieplne

Z chwilą dopuszczenia do obrotu opcjami (ang. options) na rynkach finansowych czy-
li do obrotu pochodnymi (wtórnymi, ang. derivatives) instrumentami finansowymi,
które stanowią łagodniejszą formę kontraktów terminowych gdyż dają prawo, ale nie
zobowiązują ich posiadacza, do zakupu (ang. call options) lub sprzedaży (ang. put
options) innego tzw. podstawowego (inaczej, pierwotnego czyli bazowego instrumen-
tu finansowego, ang. underlying instrument), w szczególności papieru wartościowego,
po ustalonej cenie umownej (inaczej, cenie wykonania, ang. exercise price lub stri-
king price)K w ściśle określonym terminie realizacji czyli wykupu T (ang. expiration
date, lub maturity; opcja europejska ang. European option) lub w czasie 0 ¬ t ¬ T
(ang. exercise date; opcja amerykańska ang. American option), pojawiło się kluczo-
we zagadnienie wyceny opcji zwanej premią (ang. option premium) (R.N, Mantegna,
H.E. Stanley: Ekonofizyka. Wprowadzenie, Wydawnictwa Naukowe PWN, Warszawa
2001; K. Jajuga, T. Jajuga: Inwestycje: instrumenty finansowe, ryzyko finansowe,
inżynieria finansowa, Wydawnictwo Naukowe PWN, Warszawa 2004; A. Weron, R.
Weron: Inżynieria finansowa, Wydanie drugie, Wydawnictwa Naukowo-Techniczne,
Warszawa 1999).
Zauważmy, iż ma miejsce charakterystyczna asymetria pomiędzy posiadaczem

(ang. holder) a wystawcą (ang. writer) opcji. Wystawca opcji jest zobowiązany do
realizacji czynności umownych gdy tylko posiadacz opcji wyrazi chęć jej wykonania.
Oczywiście tego typu asymetrii nie ma w przypadku kontraktów terminowych (gdzie
przecież obie strony kontraktu podejmują zobowiązanie).
Najczęściej spotyka się opcje na następujące instrumenty bazowe:

1) opcje akcyjne (ang. stock opitions), których instrumentem pierwotnym (bazo-
wym) są akcje,

2) opcje walutowe (ang. currency options), których instrumentem bazowym jest
kurs waluty jakiegoś innego kraju,

3) opcje procentowe (ang. interest rate options), których instrumentem bazowym
jest oprocentowane papiery wartościowe np. obligacje, których cena rynkowa
oczywiście waha się.

Szczególnym rodzajem opcji akcyjnej jest warrant - jest to opcja wystawiana przez
daną firmę na akcje lub obligacje tej firmy.
Ponadto, dość popularne są opcje indeksowe różniące się od powyższych, któ-

rych instrumentem bazowym są różnego rodzaju indeksy giełdowe. Nie występuje
tutaj bowiem fizyczna dostawa instrumentu bazowego w momencie realizacji opcji a
jedynie wypłata proporcjonalna do różnicy wartości (ceny) indeksu w tym momen-
cie a (ustaloną w chwili otwierania opcji) ceną wykonania. Oczywiście, opcja kupna
zostanie zrealizowana tylko wtedy gdy różnica ta jest dodatnia; w przeciwnym razie
zrealizowana zostanie opcja sprzedaży.
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Uwagi wstępne dotyczące wyceny opcji

Jeżeli zależną od czasu t cenę danego instrumentu finansowego oznaczymy przez
Y (t) to cenę opcji można zapisać w postaci C(Y (t), t), umożliwiającej analizę jej
dynamiki aż do chwili t = T kiedy opcja traci ważność. W tym zapisie tkwi mil-
czące założenie, które w dalszym ciągu będzie przez nas wykorzystywane, że obrót
instrumentami finansowymi jest ciągły w czasie. Oczywiście, szczególnie waże dla
uczestników rynków finansowych (czyli inwestorów) jest cena opcji w chwili po-
czątkowej gdy inwestor stoi przed odpowiedzią na pytania: jaką cenę umowną K
wynegocjować i ewntualnie na jakią opłatę wstępną się zgodzić20? Na pytania te jako
pierwsi konstruktywnej odpowiedzi udzielili Fisher Black, Myron Scholes i Robert
Merton za co dwaj ostatni w roku 1997 otrzymali nagrodę Nobla w dziedzinie eko-
nomii; Fisher Black zmarł niestety dwa lata wcześniej w związku z tym nie mógł
jej otrzymać pomimo, że to właśnie model Blacka-Scholesa stanowi punkt wyjścia
nowej dziedziny zwanej niekiedy matematyką finansową, czasem także inżynierią
finansową a ostatnio nawet fizyką finansową.

4.5.1 Od błądzenia na drzewie dwumianowym do modelu
Blacka-Scholesa

Niniejszy rozdział stanowi ukoronowanie naszych rozważań dotyczących procesów
dwumianowych. Pokażemy w nim jak, dzięki wprowadzeniu miary arbitrażowej na
drzewie dwumianowym, można uzyskać słynny wzór na wycenę opcji Blacka-Scholesa
(BS)21. Podejście tego typu zostało po raz pierwszy zaproponowane przez Coxa-
Rossa-Rubinsteina (J.C. Cox, S.A. Ross, M. Rubinstein, J. Finance Econ. 7 (1979)
229; A.N. Shiryaev: Essentials of Stochastic Finance: Facts, Models, Theory, World
Sci., Singapore 1999). Obok wielkiej poglądowości, jego zaletą jest podatność na
uogólnienia wychodzące poza tradycyjny model BS (patrz np. A. Jurlewicz, A. Wy-
łomańska and P. Żebrowski: Financial Data Analysis by means of Coupled Continuous-
Time Random Walk in Rachev-Rüschendorf Model, Acta Phys. Pol A 114 (2008)
629-635).

Formuła określająca dynamikę stochastyczną bazowego instrumentu fi-
nansowego

Nadal przyjmujemy, że bazowy instrument finansowy błądzi przypadkowo na drzewie
dwumianowym (patrz np. rys. 4.4 lub 4.9). Przyjmujemy, że (elementarny) wzrost
ceny bazowego instrumentu finansowego zachodzi (w pojedynczym kroku czasowym)

20Odpowiedż na drugą część pytania wybiega poza rozważany kanoniczny model Blacka-Scholesa
dla rynku idealnego. Pomimo to udzielimy tutaj przybliżonej odpowiedzi będącej wnioskiem z tego
modelu.
21Niniejsze rozważania są inspirowane w znacznej mierze książką A. Weron, R. Weron: Inży-
nieria finansowa. Wycena instrumentów pochodnych. Symulacje komputerowe. Statystyka rynku,
Wydawnictwa Naukowo-Techniczne, Warszawa 1999.
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z prawdopodobieństwem p zatem, jej zmalenie zachodzi z prawdopodobieństwem
1−p. Niech cena instrumentu bazowego po pierwszym kroku czasowym (1 δt) wynosi:

S1 = S0 exp(µ δt) ·
{

exp(σ
√
δt), jeśli cena bazowego instrumentu rośnie

exp(−σ
√
δt), jeśli cena tego instrumentu maleje,

(4.94)

gdzie dryf µ jest stopą wzrostu (ang. growth rate) - proszę nie mylić dryfu z wolną od
ryzyka (pozagiełdową) krótkoterminową stopą procentową r; σ jest miarą zmienności
tej ceny (będzie jeszcze o tym mowa poniżej).
Analogicznie, dla drugiego kroku czasowego (2 δt) możemy zapisać, że

S2 = S1 exp(µ δt) ·
{

exp(σ
√
δt), jeśli cena bazowego instrumentu rośnie

exp(−σ
√
δt), jeśli jego cena maleje,

= S0 exp(2µ δt) ·







exp(2σ
√
δt), dla wierzchołka 6

1, dla wierzchołka 5
exp(−2σ

√
δt), dla wierzchołka 4.

(4.95)

Powyższe wzory dają się łatwo uogólnić na przypadek n-tego kroku czasowego (n =
t/δt = 1, 2, 3, . . . , gdzie t jest czasem). Mianowicie,

St+δt = St exp(µ δt) ·
{

exp(σ
√
δt), jeśli cena bazowego instrumentu rośnie

exp(−σ
√
δt), jeśli jego cena maleje,

(4.96)

a stąd otrzymujemy wyrażenie stanowiące punkt wyjścia naszych dalszych rozważań

St = S0 exp(µnδt) · exp(∆Xn σ
√
δt) = S0 exp(µ t) · exp

(

∆Xn√
n
σ
√
t

)

, (4.97)

gdzie ∆Xn
def.= X+n − X−n , tutaj X±n jest zmienną losową mówiącą o sumarycznym

przemieszczeniu bazowego waloru po n krokach czasowych, odpowiednio w kierunku
jego wzrostu (+) oraz zmalenia (−). Oczywiście, X+n + X−n = n, stąd ∆Xn =
2X+n − n.
Ze wzoru (4.96) wynika natychmiast, że wartość oczekiwana logarytmicznej stopy

zwrotu wynosi:
〈

ln
(
St+δt
St

)〉

= µδt+ (2p− 1)σ
√
δt (4.98)

natomiast,

〈

ln2
(
St+δt
St

)〉

−
〈

ln
(
St+δt
St

)〉2

= 4p(1− p)σ2δt (4.99)
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jest jej wariancją. W dalszym ciągu będziemy się starali wyrazić logarytmiczną stopę
zwrotu z instrumentu bazowego za pomocą wygodniejszej, standaryzowanej zmien-
nej losowej.
Jak wynika ze wzoru (4.96) na chwilową wartość instrumentu bazowego St+δt,

składowa losowa logarytmicznej stopy zwrotu podlega rozkładowi dychotomicznemu
(dwupunktowemu) postaci:

ρ(x) = p δ(x− σ
√
δt) + (1− p) δ(x+ σ

√
δt) (4.100)

a co za tym idzie zmienna losowa X+n podlega rozkładowi dwumianowemu:

Pn(X+n ) =
n!

X+n !X−n !
pX
+
n (1− p)X−n (4.101)

co oznacza, że wartość oczekiwana i wariancja zmiennej X+n wynoszą, odpowiednio

〈X+n 〉 = n p,

σ2X+ = n p (1− p). (4.102)

Stąd natychmiast wynika, że zmienna losowa Yn
def.= ∆Xn√

n
posiada wartość oczekiwaną

równą 〈Yn〉 =
√
n (2p−1) i wariancję równą σ2Y = 4 p (1−p). Pozwala to na zapisanie

chwilowej wartości bazowego instrumentu finansowego w postaci

St = S0 exp
(

µ t+ σ
√
t 〈Yn〉+ σY σ

√
t Zn

)

, (4.103)

gdzie zmienna losowa Zn
def.= Yn−〈Yn〉

σY
jest już standaryzowana, tzn. posiada wartość

oczekiwaną równą 0 i wariancję równą 1, dla n = 1, 2, 3, . . . .
Na mocy Centralnego Twierdzenia Granicznego (patrz Część II) zmienna Zn

dąży do podlegania rozkładowi normalnemu N(0, 1), gdy n → ∞ albo równoważ-
nie, gdy δt→ 0. Czyli, zmienna losowa postaci ln(St/S0) posiada rozkład normalny
N(µt+σ

√
t〈Yn〉, σ2Y σ2 t). Jest on niestety niewygodny w operowaniu (nawet dla sy-

metrycznego błądzenia instrumentu bazowego na drzewie dwumianowym, tzn. dla
p = 1/2), gdyż wartość oczekiwana zmiennej losowej ln(St/S0) względem tego roz-
kładu nie znika. Oznacza to, że ta zmienna losowa nie jest wycentrowana. Dlatego,
zamiast operować wyjściową miarą P przejdziemy do znacznie wygodniejszej miary,
czyli miary arbitrażowej Q. Stanowi to kluczowy krok techniczny niniejszego podej-
ścia pozwalający na skorzystanie z ogólnej formuły wyceny pochodnego instrumentu
finansowego (4.25) - dla miary P tego typu ogólna formuła nie jest znana. Przy oka-
zji zaznaczmy, że przejście od wzoru (4.97) do (4.103) także związane było ze zmianą
miary z dwumianowej na gaussowską, gdyż n→∞.

4.5.2 Arbitrażowe drzewo dwumianowe i wycena opcji

Korzystając ze wzoru (4.96), łączącego wartości bazowego instrumentu finansowe-
go w kolejnych chwilach, można wyrażenie (4.20), definiujące elementarne praw-
dopodobieństwo arbitrażowe przemieszczenia tego instrumentu w górę na drzewie
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dwumianowym, przekształcić do następującej postaci:

q
ozn.= ql,l+1t,t+δt =

exp((r − µ) δt)− exp(−σ
√
δt)

exp(σ
√
δt)− exp(−σ

√
δt)

≈ 1
2

(

1−
√
δt
µ− r + σ2/2

σ

)

,

1− q = ql,l−1t,t+δt ≈
1
2

(

1 +
√
δt
µ− r + σ2/2

σ

)

, (4.104)

przy czym obie (przybliżone) równości zachodzą dla przypadku δt → 0. Aby je
otrzymać wystarczyło uwzględnić: 1) trzy pierwsze wyrazy w obu funkcjach wykład-
niczych w mianowniku i w drugiej funkcji w liczniku oraz 2) dwa pierwsze wyrazy
w pierwszej funkcji wykładniczej w liczniku22. Wtedy obliczenia prowadzone są z
dokładnością rzędu

√
δt, jak to jest wymagane.

Zauważmy, że niezależnie od stosowanej miary P na drzewie dwumianowym,
ciąg {X+n , n = 1, 2, 3, . . . } jest nadal opisany rozkładem dwumianowym ale teraz
o parametrach (wartości oczekiwanej i wariancji) wyrażonych już za pomocą arbi-
trażowej miary Q. Mianowicie, wartość oczekiwana i wariancja dane są wzorami
analogicznymi do (4.102)

〈X+n 〉 = n q,

σ2X+ = n q (1− q). (4.105)

Podobnie rzecz się ma ze zmienną Zn, przy czym teraz

〈Yn〉 =
√
n (2q − 1) ≈ −

√
t
µ− r + σ2/2

σ
,

σ2Y = 4 q (1− q) ≈ 1− δt
(

µ− r + σ2/2
σ

)2

, (4.106)

i 〈Yn〉 nie zależy jawnie od n (o co m.in. chodziło). Jak widać, dla δt→ 0 wariancja
σ2Y → 1. Stąd oraz za mocy CTG łatwo obliczyć, że wyrażenie (4.103) na chwilową
wartość bazowego instrumentu finansowego St przybiera w mierze arbitrażowej Q
szczególnie dogodną do dalszych obliczeń postać:

St = S0 exp

((

r − σ2

2

)

t+ σ
√
t Z

)

(4.107)

gdzie standaryzowana zmienna losowa Z podlega rozkładowi normalnemu N(0, 1).
Mówiąc o szczególnie prostej postaci St mamy na myśli fakt, że (dzięki mierze ar-
bitrażowej danej wyrażeniami (4.104)) dryf we wzorze (4.107) już nie występuje.
Innymi słowy, graniczny (gdyż rozpatrywany w granicy dużych n) rozkład
zmiennej losowej ln(St/S0) względem miary arbitrażowej Q jest niezależny
od stopy wzrostu µ. Upraszcza to znacząco np. symulacje komputerową, gdyż nie

22Rozwinięcie pierwszej funkcji wykładniczej w liczniku do trzeciego wyrazu prowadziłoby do
konieczności uwzględnięnia zbyt dużego rzędu obliczeń, mianowicie (

√
δt)3.
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jest już konieczne uwzględnianie dryfu. Stanowi także dogodny punkt wyjścia dla
różnorodnych rozważań dotyczących zarówno dynamiki instrumentu bazowego jak
też określonego na nim instrumentu pochodnego.
Zauważmy, że przejście od miary podstawowej P do arbitrażowej Q było moż-

liwe zarówno dzięki interpretacji zmiennych losowych X+n i X
−
n jako liczby kroków,

które nie ulegają przecież zmianie przy takiej transformacji, jak też dzięki temu,
że rozważania w rozdz. 4.5.1 nie zależały od konkretnej postaci miary P. To wy-
godne przejście jest przykładem funkcjonowania ogólnego twierdzenia Grisanowa
dotyczącego istnienia miar równoważnych (patrz na przykład, A. Weron, R. Weron:
Inżynieria finansowa. Wycena instrumentów pochodnych. Symulacje komputerowe.
Statystyka rynku, Wydawnictwa Naukowo-Techniczne, Warszawa 1999). W naszym
przypadku właśnie P i Q to przykład miar równoważnych23 .
Teraz jesteśmy już przygotowani na dokonanie wyceny, na przykład, europejskiej

opcji kupna.

4.5.3 Wycena europejskiej opcji kupna

Przypuśćmy, że C(t) jest ceną europejskiej opcji kupna o terminie wygaśnięcia (za-
padalności) T oraz cenie wykonania K i funkcji wypłaty C(T ) = (ST − K)+ =
max(ST −K, 0). Wówczas jej wartość (cena) w chwili początkowej, zgodnie z wcze-
śniej wyprowadzoną formułą wyceny (4.25) w mierze arbitrażowej dowolnego instru-
mentu pochodnego, wynosi:

C(t = 0) = EQ [exp(−rT )C(T )]
= EQ

{[

S0 exp
(

σ
√
T Z − σ2T/2

)

−K exp(−rT )
]+
}

,

(4.108)

gdzie wykorzystaliśmy wyrażenie (4.107) kładąc t = T .
Naszym celem jest wyprowadzenie z powyższego wyrażenia kluczowej

formuły Blacka-Scholesa.

Wyprowadzenie formuły wyceny opcji Blacka-Scholesa

Należy obliczyć wartość oczekiwaną daną drugą równością w (4.108) - wartość tą
można wyrazić za pomocą następującej całki:

C(0) =
1√
2π

∫

ST­K

[

S0 exp
(

σ
√
TZ − σ2T/2

)

−K exp (−rT )
]

exp(−Z2/2) dZ,

(4.109)

23Dwie miary określone na tym samym zbiorze zdarzeń elementarnych są równoważne wtedy i tyl-
ko wtedy, gdy nieznikające prawdopodobieństwo wystąpienia jakiegokolwiek zdarzenia w pierwszej
mierze implikuje nieznikające prawdopodobieństwo wystąpienia tego zdarzenia w drugiej mierze i
odwrotnie.
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gdzie warunek ST ­ K jest równoważny nierówności −Z ¬ d−, przy czym d−
def.=

[ln (S0/K) + (r − σ2/2)T ] /σ
√
T . Wprowadzając prostą zamianę zmiennej Z ′ = −Z,

można wyrażenie (4.109) sprowadzić do postaci:

C(0) =
1√
2π

∫ d−

−∞

[

S0 exp
(

−σ
√
TZ ′ − σ2T/2

)

−K exp (−rT )
]

exp
(

−Z ′2/2
)

dZ ′

=
1√
2π

∫ d−

−∞
S0 exp

(

−
(

Z ′ + σ
√
T
)2
/2
)

dZ ′

− K exp (−rT )√
2π

∫ d−

−∞
exp

(

−Z ′2/2
)

dZ ′

=
S0√
2π

∫ d+

−∞
exp

(

−Z ′′2/2
)

dZ ′′ −K exp (−rT ) Φ(d−)

= S0 Φ(d+)−K exp (−rT ) Φ(d−), (4.110)

gdzie tożsamość −σ
√
TZ ′ − σ2T/2 − Z ′2/2 = −

(

Z ′ + σ
√
T
)2
/2 została wykorzy-

stana w całce stojącej w drugim wierszu, natomiast w pierwszej całce w wierszu
czwartym dokonano kolejnej zamiany zmiennej: Z ′′ def.= Z ′+σ

√
T ponadto, wprowa-

dzono definicję d+
def.= [ln (S0/K) + (r + σ2/2)T ] /σ

√
T oraz przez Φ(d±) oznaczono

dystrybuantę standaryzowanego rozkładu Gaussa N(0, 1) zależną od argumentu d±.
Jest to słynna formuła wyceny opcji Blacka-Scholesa, czyli formuła określająca jej
cenę w chwili początkowej t = 0. Teraz naszym celem jest uogólnienie tej
formuły na dowolną chwilę 0 ¬ t ¬ T .

Uogólnienie formuły Blacka-Scholesa

Wyprowadzenie uogólnionej formuły BS bazuje na ogólniejszej postaci wzoru (4.107):

St = S0 exp

((

r − σ2

2

)

t+ σBt

)

, (4.111)

gdzie Bt(=
√
tZ) jest ruchem Browna24 (procesemWienera), będącego rozwiązaniem

stochastycznego równania różniczkowego:

d ln(St/S0) = σdBt +
(

r − 1
2
σ2
)

dt, (4.112)

gdzie pierwszy składnik opisuje losowość procesu a drugi jego dryf; tutaj dBt jest
tzw. różniczką stochastyczną (posiadającą inne własności niż zwykła różniczka zu-
pełna25).

24Zmienna losowa Bt podlega (warunkowemu) rozkładowi normalnemu N(0, t).
25Równanie (4.112) wprowadza nas w świat stochastycznych równań różniczkowych - dziedziny
matematyki o ogromnym znaczeniu dla zastosowań, m.in. własnie w analizie finansowej (patrz na
przykład, A. Weron, R. Weron: Inżynieria finansowa. Wycena instrumentów pochodnych. Symula-
cje komputerowe. Statystyka rynku, Wydawnictwa Naukowo-Techniczne, Warszwwa 1999).
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Wyprowadzenie uogólnionej formuły BS ma charakter dwuetapowy: pierwszy
etap dotyczy dynamiki instrumentu bazowego a drugi wartości oczekiwanej.
W pierwszym etapie zauważmy, że wzór (4.111) można zapisać w równoważnej,

niezwykle przydatnej postaci:

St′ = St exp
(

σ(Bt′ − Bt) + (r − σ2/2)(t′ − t)
)

, 0 ¬ t ¬ t′ ¬ T, (4.113)

gdzie dla prostoty (nie zmieniającej istoty rzeczy) przyjmujemy, że wyjściowo ruch
Browna B(t = 0) = 0. Aby się przekonać o prawdziwości powyższego wyrażenia,
wystarczy podstawić zamiast St wzór (4.111)). W dalszym ciągu:

1) wzór (4.113) będziemy warunkować, przyjmując brownowską zmienną losową
Bt jako ustaloną.

2) Co więcej, wykorzystamy stacjonarność przyrostów ruchu Browna wy-
nikającą z faktu, że ruch ten ma miejsce w stanie równowagi prowadzącej (jak
wiadomo) do jednorodności czasu, tzn. do sytuacji w której zachodzi następu-
jąca równość:

Bt′ −Bt = Bt′−t. (4.114)

Czyli przyrosty ruchu Browna, Bt′ − Bt, podlegają, przy ustalonym Bt, uwarunko-
wanemu rozkładowi normalnemu N(0, t′ − t).
Drugi etap jest bardziej złożony, gdyż wykorzystuje wzory (4.108), (4.113) i

(4.114).
Zgodnie z warunkiem (4.114), możemy chwilę t potraktować jako początkową.

Pozwala to na bezpośrednie wykorzystanie wzoru (4.108), co daje

C(t) = exp(−r(T − t))×
× EQ

{[

St exp
(

σBT−t + (r − σ2/2)(T − t)
)

−K
]+
}

=
1
2π

∫

ST­K

[

St exp
(

σ
√
T − t Z − (T − t) σ2/2

)

−K exp(−r(T − t))
]

× exp(−Z2/2)dZ,
(4.115)

gdzie przyjęliśmy chwilę t jako początek liczenia czasu oraz położylismy t′ = T ; tak
jak dla wyceny opcji, zmienna Z jest standaryzowaną zmienną gaussowską (czy-
li podlegającą rozkładowi normalnemu N(0, 1)). Jak widać, ostatnie wyrażenie w
(4.115) jest identyczne z (4.109), jeżeli T w tym ostatnim zastąpimy przez T − t, S0
przez St a C(0) przez C(t) (proszę pamiętać, że Bt a więc i St są ustalone). Zatem,
przeprowadzając rachunek identyczny jak w (4.110) otrzymujemy:

C(t) = St Φ(d+)−K exp (−r(T − t)) Φ(d−), (4.116)
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co stanowi poszukiwaną, uogólnioną formułę BS; tutaj

d±
def.=

[

ln (St/K) + (r ± σ2/2)(T − t)
]

/σ
√
T − t, (4.117)

stanowi uogólnienie wcześniej użytych analogicznych wyrażeń (patrz opis wzorów
(4.109) i (4.110)) o takich samych oznaczeniach.
Zauważmy, że jedną z najważniejszych konsekwencji wzoru (4.115) dotyczącego

wyceny opcji europejskiej w dowolnej, pośredniej chwili 0 ¬ t ¬ T , jest możliwość
zapisania go w następującej postaci

Λ−1t C(t) = EQ
(

Λ−1T (ST −K)+ | Ft
)

, 0 ¬ t ¬ T, (4.118)

gdzie oczywiście Λ−1T C(T ) = Λ−1T (ST−K)+. Wynika to bezpośrednio ze stacjonarno-
ści ruchu Browna i pokazuje, że miara arbitrażowa Q jest jednocześnie miarą
martyngałową dla opcji europejskiej.
Uogólniona formuła BS (4.116) pozwala łatwo wyznaczyć liczbę udziałów na

akcje w portfelu dwuwalorowym dla omawianych przez nas w podrozdz. 4.2 i 4.3
trzech26 kanonicznych strategii inwestycyjnych:

φt =
∂C(t)
∂St

= Φ(d+), (4.119)

gdzie pochodna cząstkowa jest tutaj pochodną ”przestrzenną”27. Powyższe wyraże-
nie jest kontynualną w przestrzeni postacią pierwszego wyrażenia we wzorze (4.18)
nadającą dodatkowy sens dystrybuancie Φ(d+).
Przykładowo obliczymy teraz liczbę udziałów na obligacje, ψt, dla portfela dwu-

walorowego inwestującego według strategii arbitrażowej. Zgodnie z definicją tej stra-
tegii (patrz podrozdz. 4.2.3 wzór (4.17)) oraz korzystając ze wzoru (4.116),

ψt =Λ−1t [C(t)− φt St] = −K exp(−rT ) Φ(d−), (4.120)

co analogicznie jak poprzednio, nadaje głębszy sens dystrybuancie Φ(d−). Wykorzy-
staliśmy tutaj fakt, że chwilowa cena opcji to nic innego jak chwilowa wartość port-
fela w ramach strategii arbitrażowej (patrz podrozdz. 4.2.2 i 4.2.3), czego należało
się spodziewać, gdyż jak widać mamy tutaj do czynienia z portfelem replikującym.

Parytet kupno-sprzedaż

Aby wyznaczyć cenę opcji sprzedaży (ang. put option), czyli instrumentu finansowe-
go dającego prawo jego posiadaczowi sprzedaży akcji po cenie umownej K wtedy gdy

26Udziały na akcje są we wszystkich tych strategiach identyczne i dane pierwszym wyrażeniem
we wzorze (4.18) - udziały na obligacje są do nich odpowiednio dopasowywane.
27Ściślej rzecz biorąc, opcja C(t) powinna być zapisana w postaci C(St, t), gdyż jest określona
na bazowym instrumencie St. Tego typu bardziej złożoną notacje wprowadzamy w następnych
rozdziałach.
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jej cena jest nie większa od tej ceny umownej28 wygodnie jest skorzystać z parytetu
kupno-sprzedaż (ang. call-put parity).
Parytet ten można prosto objaśnić budując portfel trójwalorowy składający się

z:

• instrumentu bazowego St,

• opcji sprzedaży P (t) oraz

• sprzedanej opcji kupna C(t) (obie opcje o tej samej cenie umownej K i wspól-
nym terminie wygaśnięcia T ).

Można łatwo sprawdzić, że niezależnie od ceny bazowego instrumentu w chwili T
wartość portfela w chwili realizacji kontraktów równa jest cenie umownej K. Stąd
(zdyskontowana), wartość portfela w chwili t wynosi K exp(−r(T − t)); a zatem

St + P (t)− C(t) = K exp(−r(T − t)), (4.121)

co stanowi właśnie poszukiwany parytet kupno-sprzedaż.
Korzystając ze wzoru (4.121) otrzymujemy, wzór Blacka-Scholesa na cenę opcji

sprzedaży:

P (t) = C(t)− St +K exp(−r(T − t))
= −S(t) (1− Φ(d+)) +K exp(−r(T − t)) (1− Φ(d−))
= −S(t)Φ(−d+) +K exp(−r(T − t))Φ(−d−), (4.122)

gdzie po drodze skorzystaliśmy z warunku normalizacyjnego rozkładu Gaussa Φ(−d±) =
1− Φ(d±) oraz jego parzystości.
Ogólnie, można powiedzieć, że formuły Blacka-Scholesa (a także Mertona uwzględ-

niająca dywidendę) racjonalizują decyzje inwestycyjne na giełdzie.

4.5.4 Od dynamiki stochastycznej do formuły
Blacka-Scholesa

Proces stochastyczny Itô

Wyjściowym elementem modelu Blacka-Scholesa (BS) jest założenie mówiące, że
cena papieru wartościowego podlega procesowi stochastycznemu Itô czyli spełnia
następujące stochastyczne równanie różniczkowe

dY (t) = a(Y (t), t)dt + b(Y (t), t)dW, (4.123)

28Można to zapisać w następujący sposób: cena opcji sprzedaży P (t) = (ST −K)− def.= min(St−
K, 0) = (K − ST )+.
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gdzie a(Y (t), t) i b(Y (t), t) są współczynnikami równania zapisanymi w najogólniej-
szej postaci natomiast dW jest procesem stochastycznym Wienera tzn. zmienna dW
podlega rozkładowi Gaussa

G(dW ) =
1√
2πσ2dt

exp

(

−(dW )
2

2σ2dt

)

; (4.124)

często proces Itô nazywa się także procesem Wienera z dryfem lub procesem ruchu
Browna. Korzystając z (4.124) można łatwo sprawdzić, że dla tego procesu

〈(dW )2〉 = σ2dt, (4.125)

gdzie dyspersja σ procesu stochastycznego opisującego dynamikę waloru Y nosi tak-
że nazwę zmienności (ang. volatility). Relacja (4.125) oznacza, że bez szkody dla jego
dynamiki można przyjąć, iż typowa zależność zmiennej dW od czasu jest pierwiast-
kowa czyli z dobrym przybliżeniem

dW = ±σ
√
dt. (4.126)

Alternatywnym punktem widzenia (eksploatowanym29 w rozdz. 4.5.3) jest przy-
jęcie, że zmienna dW (a dokłaniej rzecz biorąc jej znak) jest szumem dychotomicz-
nym, czyli przyjmującym wartość + albo − z prawdopodobieństwem 1/2. Zależność
(4.126) umożliwia wyprowadzenie wyjściowego równania modelu BS na infinitezy-
malną zmianę ceny opcji30.

4.5.5 Dynamika infinitezymalnej zmiany ceny opcji

Możemy teraz wyprowadzić wzór na różniczkę zupełną ceny opcji wykorzystując
rozwinięcie w szereg Taylora ceny opcji C(Y (t) + dY (t), t+ dt),

dC(Y (t), t) = C(Y (t) + dY (t), t + dt)− C(Y (t), t)

≈ ∂C(Y (t), t)
∂t

dt+
∂C(Y (t), t)
∂Y (t)

dY (t) +
1
2
∂2C(Y (t), t)
∂(Y (t))2

(dY (t))2

+
1
2
∂2C(Y (t), t)

∂t2
(dt)2 +

∂2C(Y (t), t)
∂Y (t)∂t

dY (t)dt

≈ ∂C(Y (t), t)
∂t

dt+
∂C(Y (t), t)
∂Y (t)

dY (t) +
1
2
σ2[b(Y (t), t)]2

∂2C(Y (t), t)
∂(Y (t))2

dt,

(4.127)

29W rozdz. 4.5.3 używaliśmy zmiennej losowej dBt, którą należy porównywać z przeskalowaną
zmienną losową dW/σ. Inne podobieństwa obu równań dynamiki stochastycznej (4.123) i (4.112)
zostaną wskazane w rozdz. 4.5.6.
30Zależność (4.126) stanowi zasadnicze (mocne) założenie przedstawionego poniżej w rozdz. 4.5.5
lematu Itô.
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gdzie przy uzyskaniu ostatniej równości ograniczyliśmy się jedynie do wyrazów linio-
wych31 w dt korzystając z równań (4.123) i (4.126); ta ostatnia równość jest właśnie
treścią lematu Itô. Równanie (4.127) stanowi wyjściowy etap, konieczny do przepro-
wadzenia analizy portfela pozbawionego ryzyka; dzięki tej analizie m.in. pozbędziemy
się wyrazu proporcjonalnego do dY (t) wnoszącego ryzyko (ze względu na możliwość
zmiany znaku).

4.5.6 Portfel pozbawiony ryzyka - równanie Blacka-Scholesa

Rozważmy zatem portfel Φ(Y (t), t) (a dokładniej wartość portfela w przeliczeniu na
jedną opcję) zawierający pewną liczbę (czyli udział) h papierów wartościowych Y (t)
i opcję C(Y (t), t) na ten papier

Φ(Y (t), t) = −h(Y (t), t)Y (t) + C(Y (t), t)⇒
⇒ d′Φ(Y (t), t) = −h(Y (t), t)dY (t) + dC(Y (t), t), (4.128)

przy czym powyższa sekwencja znaków oznacza popularny sposób obrotu walorami
polegający po prostu na pożyczeniu (lewarowaniu) walorów bazowych przez inwe-
stora (wtedy h > 0) i zwrocie ich w dogodnym terminie32 t > T . Nie jest to jedyny
sposób konstrukcji portfela. Równie dobrze inwestor mógłby zakupić h udziałów in-
strumentu bazowego a zaciągnąć kredyt na zakup opcji; wówczas w równaniu (4.128)
mięlibyśmy do czynienia z odwrotnymi znakami.
Oznaczenie d′ (występujące w drugiej równości (4.128)) wyraża zmianę wartości

portfela w przedziale czasu dt przy ustalonej liczbie udziałów, czyli nie jest różniczką
zupełną. Jest to sposób traktowania udziałów analogiczny do tego jaki ma miejsce
w modelu dwumianowym (patrz poniżej rys. 4.12 oraz rozdz. 4.2 rys. 4.3).
Kostrukcja portfela dana pierwszym równaniem w (4.128) oznacza, że nie pono-

simy żadnych kosztów transakcyjnych (a w tym opłaty wstępnej obciążającej port-
fel) oraz nie uzyskujemy żadnych dywidend (zwiększających wartość portfela) przed
upływem terminu ważności opcji.
Łącząc równania (4.127) i (4.128) otrzymujemy równanie na zmianę wartości

portfela

d′Φ(Y (t), t) =
∂C(Y (t), t)

∂t
dt+

[

∂C(Y (t), t)
∂Y (t)

− h(Y (t), t)
]

dY (t)

+
1
2
σ2[b(Y (t), t)]2

∂2C(Y (t), t)
∂(Y (t))2

dt. (4.129)

31Do wyeliminowania składnika propocjonalnego do dY wystarczyłoby założenie o monotonicznej
zależności |dW | od dt.
32Inwestor może także zastosować np. krótką sprzedaż (ang. short sale), która polega na poży-
czeniu określonej puli h instrumentów pierwotnych, a następnie ich sprzedaży w dogodnej sytuacji
rynkowej (np. właśnie w chwili realizacji opcji) i ponownym ich zakupie w tej samej wyjściowej
liczbie w jakiejś chwili t > T , gdy stracą na wartości. Ostatecznie, inwestor zwraca pełną pulę
zarabiając na niej dodatkowo. Oczywiście, tego typu aktywność nie jest już opisywana modelem
BS.
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Rysunek 4.12: Zależność udziału h od czasu t analogiczna do tej jaka ma miejsce w
modelu dwumianowym (patrz rozdz. 4.2) Przerywana linia pokazuje schematycznie
schodkową trajektorię dynamiki udziału. Czarne punkty oznaczają wartości h dane
równaniem (4.130).

Zauważmy, że portfel pozbawiony ryzyka oznacza znikanie losowej przy-
czyny (składowej) powodującej losowe zmalenie wartości portfela (znika-
nie losowej niepewności). Można to zagwarantować przyjmując, że w powyższym
równaniu składnik proporcjonalny do dY (t) znika. Wynika stąd, że udział waloru
bazowego w portfelu wyraża się wzorem analogicznym do (4.119) (podanym w rozdz.
4.5.3),

h(Y (t), t) =
∂C(Y (t), t)
∂Y (t)

; (4.130)

h(Y (t), t) jest także nazywany współczynnikiem zabezpieczenia portfela pozbawio-
nego ryzyka (ang. riskless hadge ratio, zwany również współczynnikiem delta, δ),
mogącym przyjmować zarówno wartości dodatnie (dla posiadacza opcji kupna) jak
i ujemne (dla wystawcy opcji kupna) o czym powiemy dokładniej w dalszej części.
Stąd równania (4.128) oraz (4.129) przyjmują postacie:

d′Φ(Y (t), t) =
∂C(Y (t), t)

∂t
dt+
1
2
σ2[b(Y (t), t)]2

∂2C(Y (t), t)
∂(Y (t))2

dt. (4.131)
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oraz

Φ(Y (t), t) = −∂C(Y (t), t)
∂Y (t)

Y (t) + C(Y (t), t)⇒

⇒ d′Φ(Y (t), t) = −∂C(Y (t), t)
∂Y (t)

dY (t) + dC(Y (t), t). (4.132)

Podkreślamy, że zależność ceny waloru Y (t) oraz ceny opcji C(Y (t), t) od czasu ozna-
cza, że model BS dopuszcza obrót walorem Y (t) w sposób ciągły przez uczestników
rynku finansowego.
W dalszym ciągu przyjmiemy wzmacniające założenie, że wolna od ryzyka krót-

koterminowa stopa procentowa lub inaczej mówiąc stopa zwrotu z portfela pozba-
wionego ryzyka na jednostkę czasu r (np. miesięczna stopa zwrotu) jest stała33

1
dt

d′Φ(Y (t), t)
Φ(Y (t), t)

= r. (4.133)

Wynika to z faktu, że w modelu BS nie istnieje arbitraż a więc nie ma możliwości
na uzyskiwanie dochodów pozbawionych ryzyka innych niż tylko takie jakie uzysku-
je się na pozagiełdowych instrumentach finansowych pozbawionych ryzyka34 np. na
różnego rodzaju lokatach bankowych (tutaj o stałym oprocentowaniu) lub gwaran-
towanych papierach dłużnych (np. obligacjach).
Podstawiając przyrost wartości portfela d′Φ(Y (t), t) wyznaczony z powyższego

równania do równania (4.131) otrzymujemy poszukiwane równanie na ewolucję ceny
opcji w postaci

rC(Y (t), t) =
∂C(Y (t), t)

∂t
+ rY (t)

∂C(Y (t), t)
∂Y (t)

+
1
2
σ2[b(Y (t), t)]2

∂2C(Y (t), t)
∂(Y (t))2

.

(4.134)

Jak widać, w równaniu tym brak jest wyrazów zawierających współczynnik a(Y (t), t)
co jest bezpośrednim wnioskiem z założenia o braku ryzyka (patrz równanie (4.129)).
W modelu BS zakłada się, że dynamikę instrumentu bazowego (papieru warto-

ściowego) opisuje proces stochastyczny zwany geometrycznym (lub logarytmicznym)
ruchem Browna tzn. przyjmuje się, że35

a(Y (t), t) = µY (t),

b(Y (t), t) = Y (t), (4.135)

33W przypadku, gdy od akcji wypłacana jest dywidenda d stopa zwrotu powinna być o nią
pomniejszona, bowiem w przeciwnym razie pojawiła by się okazja do arbitrażu; innymi słowy, w
równaniu (4.133) i odpowiednio dalej zamiast r należy wtedy podstawić r′ = r − d.
34Oczywiście, można sprawdzić co by było gdyby prawa strona równania (4.133) była większa
od r. Jednak, takiego zwiększonego zysku nie da się na ”dłuższą metę” zagwarantować.
35Przyjmując, że parametr µ = r − σ2/2, zmienne losowe Y (t) ≡ St oraz dW ≡ σdBt a współ-
czynniki a, b czynią zadość warunkom (4.135) uzyskujemy równoważność równań dynamiki sto-
chastycznej (4.112) i (4.123).
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gdzie niezależny od czasu parametr µ jest zyskiem z tego waloru na jednostkę czasu
czyli tzw. stopą wzrostu (ang. growth rate) nazywaną także dryfem (ang. drift) pro-
cesu stochastycznego ceny walory Y (t). Podstawiając drugie równanie (4.135) do
(4.134) otrzymujemy ostatecznie poszukiwane liniowe (przybliżone) równanie róż-
niczkowe cząstkowe drugiego rzędu o zmiennych współczynnikach na wycenę opcji
Blacka-Scholesa na rynku idealnym czyli pozbawionym możliwości arbitrażu i efek-
tywnym (tzn. takim gdzie wszyscy uczestnicy mają jednakowy dostęp do informacji)
a ponadto, nieopodatkowanym, pozbawionym dywident i kosztów transakcyjnych:

rC(Y (t), t) =
∂C(Y (t), t)

∂t
+ rY (t)

∂C(Y (t), t)
∂Y (t)

+
1
2
σ2[Y (t)]2

∂2C(Y (t), t)
∂(Y (t))2

,

(4.136)

przy czym (na mocy (4.123) i (4.135)) powyższe równanie dopuszcza jedynie
rozwiązania dla Y (t) > 0.
Naszym celem jest znalezienie rozwiązań tego równania dla różnych warunków

brzegowych w każdej chwili czasu t ¬ T . Oczywiście, rozwiązanie typu at-the-money,
czyli tożsamościowo równe zeru, jest trywialnym rozwiązaniem równania BS.
Zauważmy, że powyższe równanie posiada symetrię z której wynika, że jeżeli

funkcja C(Y (t), t) jest rozwiązaniem równania (4.136) to także funkcja ”stowarzy-
szona” −C(Y (t), t) jest jego rozwiązaniem. Na przykład, jeżeli C(Y (t), t) jest ceną
opcji (potencjalnym dochodem) posiadacza opcji kupna, to przy odpowiednich wa-
runkach brzegowych −C(Y (t), t) jest ceną opcji (stratą) dla wystawcy opcji kupna.
Rozwiązania te, a także dotyczące opcji sprzedaży, omawiamy w dalszej części.
Rozwiązanie równania BS umożliwia badanie dynamiki cen np.:

• różnych kontraktów terminowych - oprócz opcji europejskich także amerykań-
skie, a w tym zarówno typu kupna jak i sprzedaży (odpowiednio dla posiadacza
i wystawcy opcji); ponadto,

• rozwiązanie to stanowi podstawę bardziej złożonych formuł opisujących opcje,
których wycena jest zależna od ich historii takie jak np. opcje barierowe (są
to szczególnie popularne opcje egzotyczne) zależne od wielkości bariery, jaką
na swojej drodze napotyka bładzący instrument bazowy.

Innymi słowy, interesującym jest nie tylko posiadanie formuł określających ce-
nę pochodnego instrumentu finansowego w dwóch charakterystycznych chwilach:
C(Y (t = 0), t = 0) oraz C(Y (t = T ), t = T ), ale także znajomość jego ceny w chwi-
lach pośrednich, tzn. interesujacym dla inwestora jest znajomość pełnej dynamiki
danego instrumentu finansowego; pozwala to na znaczne zwiększenie płynności tego
instrumentu.

162



4.5.7 Portfel pozbawiony ryzyka w modelu BS
z punktu widzenia modelu dwumianowego

Niezbędne wyrażenie modelu BS na udziały (4.130) uzyskane poprzez równanie
(4.129) i założenie o istnieniu portfela pozbawionego ryzyka można otrzymać bez-
pośrednio w oparciu o model dwumianowy (patrz rozdz. 4.2).
Na rys. 4.13 przedstawiono pojedynczy krok czasowy w modelu (podejściu) dwu-

mianowym. Zakładamy, że w przedziale czasu ∆t jego wartość może wzrosnąć od
wyjściowej wielkości Φ do Φ+ lub zmaleć do Φ−, gdzie zależność h od czasu jest da-
na linią schodkową przykładowo przedstawioną na rys. 4.12. Warunek braku ryzyka

Rysunek 4.13: Pojedynczy krok czasowy ∆t w modelu dwumianowym; warunek
braku ryzyka inwestycyjnego prowadzi bezpośrednio do wzoru ujętego w ramkę.

oznacza niewrażliwość portfela na tego typu zmiany tzn. musi zachodzić równość
zamieszczona w ramce na tym rysunku skąd po prostym przekształceniu i przejściu
∆t→ δt otrzymujemy warunek (4.130). Podkreślmy, że nie wolno mylić zmiany war-
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tości portfela d′Φ, która związana jest z upływem czasu dt przy ustalonych udziałach,
ze zmianą Φ+ − Φ−, która oznacza różnicę pomiędzy dwiema różnymi możliwymi
wartościami portfela w ustalonej chwili, także przy ustalonych udziałach. Bowiem,
pierwsza różnica dana jest równaniem (4.133) a druga po prostu znika.
W dalszej części przeprowadzimy analizę wrażliwości modelu BS w oparciu o

znajomość jego rozwiązania.

4.5.8 Równanie BS jako formalne równanie dyfuzji Ficka
lub przewodnictwa cieplnego Fouriera

W niniejszym rozdziale wykazujemy istnienie takich zmiennych, w których równanie
(4.136) przechodzi w równanie dyfuzji Ficka lub przewodnictwa cieplnego (równanie
Fouriera) o jednostkowym wspólczynniku dyfuzji lub przewodnictwa temperaturo-
wego. W tym celu cenę opcji C(Y (t), t) potraktujemy jako wynik zdyskontowania
pewnej nowej funkcji y(x, t′) mianowicie,

C(Y (t), t) = exp(r(t− T )) y(x, t′), (4.137)

gdzie zmienna ”przestrzenna”

x
def.=

2
σ2

(

r − 1
2
σ2
) [

ln

(

Y (t)
K

)

−
(

r − 1
2
σ2
)

(t− T )
]

=
2
σ2

(

r − σ2

2

)

ln

(

Y (t)
K

)

+ t′, (4.138)

przy czym zmienna czasowa

t′
def.= − 2

σ2

(

r − 1
2
σ2
)2

(t− T ). (4.139)

a stąd, w nowych zmiennych

Y (x, t′) = K exp

(

(x− t′)
( 2
σ2

(

r − σ2/2
))−1)

. (4.140)

Naszym zadaniem jest wykazanie, że funkcja y(x, t′) jest (formalnie rzecz biorąc)
koncentracją lub polem temperatury spełniającym, odpowiednio, równanie Ficka lub
Fouriera.
Wyznaczymy wszystkie pochodne występujące w równaniu (4.136) wykorzystu-

jąc podstawienie (4.137). Zatem, jako pierwszą obliczmy

∂C

∂t
= rC(Y, t)− 2

σ2

(

r − 1
2
σ2
)2

exp(r(t− T ))
[

∂y(x, t′)
∂x

+
∂y(x, t′)
∂t′

]

,

(4.141)
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przy czym po drodze skorzystaliśmy z prostych zależności

∂y(x(t′), t′)
∂t

=
∂y(x(t′), t′)
∂x(t′)

dx(t′)
dt
+
∂y(x(t′), t′)

∂t′
dt′

dt
(4.142)

oraz

dx(t′)
dt
=
dt′

dt
= −

(

r − σ2

2

)2

σ2

2

. (4.143)

Następnie przekształcamy pierwszą pochodną ”przestrzenną” do postaci

∂C

∂Y
=
1
Y

2
σ2

(

r − 1
2
σ2
)

exp(r(t− T ))∂y(x, t
′)

∂x
, (4.144)

gdzie skorzystaliśmy ze wzoru (na pochodną superponowaną)

∂y(x(t′), t′)
∂Y

=
∂y(x(t′), t′)
∂x(t′)

dx(t′)
dY

, (4.145)

przy czym

dx(t′)
dY
=
1

Y (t)
r − σ2

2
σ2

2

. (4.146)

Stąd, otrzymujemy wyrażenie na drugą pochodną przestrzenną postaci

∂2C
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(4.147)

Podstawiając tak wyznaczone pochodne do równania (4.136) otrzymujemy pośrednie
wyrażenie

rC = rC − 2
σ2

(

r − 1
2
σ2
)2
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, (4.148)
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które, po (natychmiastowym) uproszczeniu wyrażeń znajdujących się w wierszu dru-
gim, trzecim i czwartym, daje poszukiwane równanie Ficka lub Fouriera odpowiednio
na koncentrację lub na pole temperatury y(x, t′) postaci

∂y(x, t′)
∂t′

=
∂2y(x, t′)
∂x2

. (4.149)

Równanie (4.149) otwiera dodatkowe możliwości przed modelem BS np. interpreta-
cyjne w języku termodynamiki nierównowagowej (termodynamiki przepływów).

4.5.9 Formuła wyceny opcji kupna Blacka-Scholesa

Aby rozwiązać równanie (4.136) należy przyjąć odpowiednie warunki brzegowe (a
więc umożliwiające znalezienie rozwiązania). W tym celu będziemy w dalszym ciągu
przykładowo zajmować się opcją kupna czyli wyceną opcji dla nabywcy kontraktu
czyli dla tzw. strategii długiej (zwanej też pozycją długą, ang. long call), dla której
wspomniane warunki mogą mieć np. następującą prostą postać:

C(Y (t = T ), t = T ) = max{Y (t = T )−K, 0} (4.150)

oraz

C(Y (t) = 0, t) = 0. (4.151)

Pierwszy warunek mówi, że opcja jest warta tyle ile wynosi zysk na papierze na
który opiewa natomiast drugi warunek stwierdza, że oczywiście nic nie jest war-
ta opcja na papier bezwartościowy. Dodatkowo wprowadza się dość oczywiste za-
strzeżenie, że współczynnik zabezpieczenia portfela przed ryzykiem h(Y (t), t) =
∂C(Y (t), t)/∂Y (t) musi być skończony.
W niniejszej części po prostu sprawdzamy, że poniższa formuła Blacka-Scholesa

(BS) na opcję kupna

C(Y (t), t) = Y (t)Φ(d+)−K ′(t)Φ(d−), (4.152)

gdzie K ′(t) = K exp(−r(T − t)) oznacza zdyskontowaną cenę wykonania opcji, jest
rozwiązaniem równania (4.136) spełniającym wspomniane powyżej warunki brzego-
we, przy czym Φ(z) jest dystrybuantą rozkładu normalnego N(0, 1) oraz

d± =
ln
(
Y (t)
K

)

+ (r ± σ2

2
)(T − t)

σ
√
T − t =

ln
(
Y (t)
K′(t)

)

± σ2

2
(T − t)

σ
√
T − t . (4.153)

Zauważmy, że rozwiązanie (4.152) posiada dla Y (t) > K ′(t) i dowolnego czasu
0 ¬ t ¬ T asymptotę ukośną w zmiennej Y daną wzorem

Casymp(Y (t), t) = Y (t)−K ′(t), (4.154)
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która znika w punkcie Y (t) = K ′(t); dla Y ¬ K ′ mamy do czynienia z odcinkiem
pokrywającym się z osią Y .
Na rysunkach 4.17, 4.18, 4.19, 4.20 i 4.21 są to linie zaznaczone na niebiesko -

obie te linie można wyrazić za pomocą jednego wzoru,

Cmax(Y (t), t) = max[Y (t)−K ′(t), 0]; (4.155)

stanowiącego odniesienie dla rozwiązania (4.152); np. dla t = T (czyli w chwili
zamykania kontraktu) oba wyrażenia (4.152) i (4.154) pokrywają się jak należy,
co jest konsekwencją przyjętego warunku brzegowego (4.150) (z tego powodu linia
czerwona na rys. 4.17 nie jest niestety widoczna).
Należy podkreślić, że formuła (4.152) odpowiada na dwa kluczowe pytania

przed jakimi staje inwestor a mianowicie:

(1) na jaką cenę opcji (premię, opłatę wstępną) zgodzić się w chwili za-
wierania kontraktu na akcje znając jej cenę oraz akceptując cenę (umowną)
po jakiej kontrakt będzie zrealizowany w ściśle określonym terminie wygaśnię-
cia opcji,

(2) jaka jest cena opcji dla czasów pośrednich 0 < t < T ; znajomość od-
powiedzi na to pytanie pozwala inwestorowi podejmować racjonalne decyzje
dotyczące obrotu opcjami, tzn. dotyczące ewentualnej sprzedaży lub dokupie-
nia opcji.

W świetle rozwiązania (4.152) rodzi się pytanie o jego zgodność z paradygma-
tem giełdy, czyli z zasadą braku arbitrażu na giełdzie; czy nie jest ona w
tym przypadku naruszona? Aby zrozumiec, że zasada ta nie jest tutaj naruszo-
na przeanalizujmy schematyczny rys. 4.14. Wyraźnie widoczne jest tam błądzenie
(jest to geometryczny ruch Browna) instrumentu bazowego Y w płaszczyźnie (Y, t)
(niebieska, poplątana linia). Właśnie fakt, że jest to błądzenie oznacza, że nie umie-
my podać z całą pewnością wartości instrumentu bazowego w chwili t. Ten losowy
charakter trajektorii Y (t) a stąd C(Y (t), t) (czerwona wijąca się linia) zabezpiecza
formułę Blacka-Scholesa (4.152) przed naruszeniem zasady braku arbitrażu.
Na rysunkach 4.15 i 4.16 przedstawiono trójwymiarowe wykresy zależności ceny

opcji C od ceny waloru bazowego Y i od czasu t danej formułą BS dla przykładowo
wybranych parametrów: ceny umownej K = 4 [j.u.], terminu realizacji opcji T =
10 [mies.] i pozagiełdowej stopy zwrotu r = 0.1 [1/mies.] oraz dwóch znacznie
różniących się od siebie wartości zmienności, odpowiednio σ = 0.05 i σ = 0.2. Takie
wykresy pozwalają na analizę ceny opcji C(Y (t), t) dla dowolnej trajektorii Y (t)
w płaszczyźnie (Y, t), na przykład dla konkretnej realizacji geometrycznego ruchu
Browna (patrz rys. 4.14).
Ponadto, na dwuwymiarowych wykresach na rysunkach 4.17, 4.18, 4.19, 4.20,

4.21, 4.22 i 4.23 zamieszczono wybrane przekroje powyższych trójwymiarowych wy-
kresów w płaszczyznach (C, Y ) i (C, t).
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Rysunek 4.14: Trójwymiarowy, schematyczny wykres powierzchni C(Y,t) opisującej
cenę opcji kupna w zależności od ceny podstawowego instrumentu finansowego Y
oraz czasu t. Dodatkowo, na płaszczyźnie (Y,t) zaznaczono przykładową realizację
geometrycznego ruchu Browna waloru bazowego Y (ciągła linia niebieska) a na po-
wierzchni C(Y,t) jego obraz (ciągła linia czerwona). Jak widać, dopiero na tego typu
wykresie możliwe jest przedstawienie pełnej dynamiki ceny opcji.

Porównując odpowiednio ze sobą wykresy dla obu wartości zmienności widać,
że wzrost zmienności prowadzi do wzrostu odstępstw przewidywań formuły BS od-
powiednio od osi poziomej i asymptotyki ukośnej (niebieskie linie na dwuwymiaro-
wych wykresach). Innymi słowy, w miarę wzrostu zmienności wzrasta rola formuły
BS, która pozwala dokładnie określić wpływ elementu losowego na cenę opcji aż do
chwili jej realizacji. W rozdz. 4.5.10 kontynuujemy ten wątek przedstawiając zależ-
ność wskaźnika greckiego lambda (λ, nazywa się go także wskaźnikiem vega, kappa,
epsilon, eta a zdefiniowanego jako pochodna cząstkowa ceny opcji po zmienności)
od zmiennych Y i t.
Na wspomnianych powyżej rysunkach przedstawiliśmy przewidywanie formuły

BS w zmiennych Y i t oraz jej rzuty na płaszczyznę (Y, C) i (t, C) dla typowych
wartości parametrów charakteryzujących formułę. Jak widać, rozwiązanie to pozwa-
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Rysunek 4.15: Trójwymiarowy wykres ceny europejskiej opcji kupna C w zależności
od ceny podstawowego instrumentu finansowego Y oraz czasu t (mniejszego od T),
obliczona na podstawie formuły BS (4.152) dla następujących wartości parametrów
modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagieł-
dowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].

la obserwować cenę opcji C w zależności od ceny Y instrumentu bazowego dla dowol-
nej chwili (np. otwierania i zamykania kontraktu) oraz dla ustalonej ceny umownej
co jest niezbędnym elementem zmniejszającym ryzyko podejmowanych decyzji na
rynku finansowym.

4.5.10 Analiza wrażliwości modelu Blacka-Scholesa

Ważnym elementem analizy modelu BS jest badanie jego wrażliwości czyli określenie
jak cena opcji zmienia się

• ze zmianę ceny instrumentu bazowego,

• z upływem czasu pozostałego do jej wygaśnięcia

• ze zmianą parametrów charakteryzujących cenę opcji.
Innymi słowy, poszukujemy odpowiedzi na pytanie dotyczące zmiany ceny opcji w
zależności od zmiany czynników mających na nią wpływ.
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Rysunek 4.16: Trójwymiarowy wykres cena opcji kupna C w zależności od ceny
bazowego instrumentu finansowego Y oraz czasu t (krótszego od T), obliczona na
podstawie formuły BS (4.152) dla następujących wartości parametrów modelu: ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.]. Jak widać, wykres ten

różni się od poprzedniego tylko zwiększoną wartością zmienności σ.

W tym celu wprowadza się współczynnki (zwane także wskaźnikami grecki-
mi), które można nazwać podatnościami lub wrażliwościamia, które (za wyjątkiwm
wskaźnika gamma 36 (γ), o czym jest mowa w rozdz. 4.5.10) są po prostu pochod-
nymi cząstkowymi rzędu pierwszego ceny opcji względem wspomnianych wielkości.
Najczęściej używanymi wskaźnikami, obok wspomnianego już w rozdz. 4.5.6 współ-
czynnika zabezpieczenia portfela, h(Y (t), t), są cztery zdefiniowane następująco:

• wskaźnik γ(Y (t), t) def.= ∂h(Y, t)
∂Y
zwany także tempem i oznaczany przez g, okre-

ślający podatność (wrażliwość) udziałów (przypadających na jedna opcję) na
zmianę ceny waloru bazowego,

• wskaźnik λ(Y (t), t) def.= ∂C(Y, t)
∂σ
, zwany także dalej V ega, określający wrażliwość

ceny opcji na zmianę zmienności,

36Dla oznaczenia niektórych wskaźników greckich stosuje się także duże litery alfabetu greckiego.
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Rysunek 4.17: Profil wypłaty (płatność równa tutaj cenie) opcji kupna C w zależ-
ności od ceny podstawowego instrumentu finansowego Y obliczona na podstawie
formuły BS (4.152) dla czasu realizacji opcji t=T oraz następujących wartości pa-
rametrów modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.],
pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].

Jak widać rozwiązanie równania zgadza się jak trzeba z przyjętym warunkiem brze-
gowym (4.150).

• wskaźnik θ(Y (t), t) def.= ∂C(Y, t)
∂τ
(gdzie τ def= T − t), określający wrażliwość ceny

opcji na upływ czasu pozostałego do jej wygaśnięcia,

• wskaźnik ρ(Y (t), t) def.= ∂C(Y, t)
∂r
, określający podatność ceny opcji na zmianę

stopy procentowej,

Poniżej omawiamy każdy ze współczynników z osobna.
Warto zwrócić uwagę, że współczynniki greckie wraz ze współczynnikiem

zabezpieczenia portfela stanowią jedną z grup definiujących miarę ryzyka
rynkowego, tzw. miarę wrażliwości. Im większe są te współczynniki tym większe
jest ryzyko jakie niesie ze sobą inwestowanie (w danej konkretnej sytuacji).

Wskaźnik zabezpieczenia portfela h

Wskaźnik zabezpieczenia portfela można łatwo wyznaczyć ze wzoru BS (4.152) oraz
wspomagającego go wyrażenia (4.153) a mianowicie,

h(Y (t), t) =
∂C(Y, t)
∂Y

= Φ(d+) + Y
dΦ(d+)
dd+

∂d+
∂Y
−K ′ dΦ(d−)

dd−

∂d−
∂Y

= Φ(d+) +
1

σ
√
T − t

[

N(0, 1; d+)−
1
Y
K ′N(0, 1; d−)

]

, (4.156)
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Rysunek 4.18: Cena europejskiej opcji kupna C w zależności od ceny podstawowego
instrumentu finansowego Y dana formułą BS (4.152) dla czasu t=T/2 (linia czer-
wona; liniami niebieskimi oznaczono odpowiednio asymptotę ukośną oraz obszar Y
pniżej zdyskontowanej ceny umownej K’=2.43) dla wartości parametrów modelu ta-
kich jak dla rozwiązania przedstawionego na dwóch poprzednich rysunkach: K=4
[j.u.], T=10 [mies.], r=0.1 [1/mies.], σ = 0.05 [1/

√
mies.]. Jak widać, rozwiązanie

równania BS (linia czerwona) odbiega w części centralnej (czyli w pobliżu progu K’)
od swojej asymptoty ukośnej (linia niebieska).

gdyż

dΦ(d±)
dd±

= N(0, 1; d±),

∂d±
∂Y
=

1
σ
√
T − t

1
Y
, (4.157)

gdzie N(0, 1; d±) jest wartością standaryzowanego rozkładu Gaussa w punkcie d±.
Na rysunkach 4.24 i 4.25 przedstawiono trójwymiarowe wykresy zależności współ-

czynnika zabezpieczenia portfela h(Y (t), t) (patrz także rozdz. 4.5.6 wzór 4.130),
który można uważać za najważniejszy współczynnik wrażliwości, od ceny waloru ba-
zowego Y i od czasu t dla tych samych wartości parametrów, które zostały podane w
rozdz. 4.5.9 (czyli ceny umownej K = 4 [j.u.], terminu realizacji opcji T = 10 [mies.]
i pozagiełdowej stopy zwrotu r = 0.1 [1/mies.] oraz dwóch różnych wartości zmien-
ności, odpowiednio σ = 0.05 i σ = 0.2). Takie wykresy (podobnie jak analogiczne
przedstawione w rozdz. 4.5.9) pozwalają na analizę tego współczynnika dla dowolnej
trajektorii Y (t) w płaszczyźnie (t, Y ), na przykład dla dowolnie wybranej realizacji
geometrycznego ruchu Browna. Dzięki temu wybór określonej strategii zarządzania
aktywami przez inwestora jest łatwiejszy.
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Rysunek 4.19: Profil opcji kupna C w zależności od ceny bazowego instrumentu fi-
nansowego Y obliczona na podstawie formuły BS (4.152) dla czasu t=0 (czyli dla
chwili zawarcia kontraktu na tę opcję) oraz wartości parametrów modelu takich jak
dla rozwiązania przedstawionego na poprzednim rysunku: K=4 [j.u.], T=10 [mies.],
r=0.1 [1/mies], σ = 0.05 [1/

√
mies.]. Podobnie jak na rys. 4.18, rozwiązanie równa-

nia BS (linia czerwona) odbiega wyraźnie w części centralnej od swojej asymptoty
ukośnej (linia niebieskia).

Ponadto, na dwuwymiarowych wykresach na rysunkach 4.26, 4.27, 4.17, 4.22
4.28, 4.29, 4.30 i 4.31 zamieszczono wybrane przekroje powyższych trójwymiarowych
wykresów w płaszczyznach (h, Y ) i (h, t). Porównując ze sobą odpowiednio wykresy
dla obu wartości zmienności widać, że wzrost zmienności prowadzi do zmniejszenia
nachylenia funkcji h w otoczeniu proguK ′, czyli do wzrostu odstępstwa od przebiegu
wielkości majoryzujacej danej poniższym wzorem (4.158) (niebieskie linie na tych
wykresach; czarna pionowa linia lokalizuje położenie progu K’).
Na rysunkach 4.32, 4.33 i 4.34 porównaliśmy zależność współczynnika zabezpie-

czenia portfela pozbawionego ryzyka h(Y (t), t) od waloru Y (t) z analogiczną zależ-
nością majoryzującej go użytecznej wielkości

hmax(Y (t), t) =
∂Cmax(Y (t), t)

∂Y (t)
=

{

1, gdy Y (t) > K ′

0, gdy Y (t) < K ′,
(4.158)

uzyskanym bezpośrednio z wyrażenia (4.155). Jak widać, udział h(Y (t), t) jest prze-
działami stały z dobrym przybliżeniem dla czasu t ≈ T czyli dla najbardziej in-
teresującej sytuacji. Oprócz tego dla Y ­ K exp(−r(T − t)) przyjmuje wartość w
przybliżeniu równą 1; zakresem Y < K exp(−r(T − t)) nie musimy się zajmować
gdyż tam rozwiązanie C(Y (t), t) znika.
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Rysunek 4.20: Zbiorczy wykres przedstawiający cenę opcji kupna C w zależności
od ceny podstawowego instrumentu finansowego Y obliczoną na podstawie formuły
BS (4.152) dla czterech wybranych chwil t=0.1, 1, 4, 9 oraz następujących wartości
parametrów modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.],
pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.21: Zbiorczy wykres ceny opcji kupna C w zależności od ceny podsta-
wowego (bazowego) instrumentu finansowego Y obliczona na podstawie formuły BS
(4.152) dla czterech wybranych chwil t=0.1, 1, 4, 9 oraz następujących wartości pa-
rametrów modelu: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.],
pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.22: Profil wypłaty (płatność) czyli cena opcji kupna C dla jej posiada-
cza w zależności od czasu t, dla czterech wybranych wartości ceny podstawowego
(bazowego) instrumentu finansowego Y mniejszych od ceny umownej K, obliczona
na podstawie formuły BS (4.152) oraz następujących wartości parametrów modelu:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05.
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Rysunek 4.23: Profil wypłaty (płatność) czyli cena opcji kupna C dla jej posiada-
cza w zależności od czasu t, dla czterech wybranych wartości ceny podstawowego
(bazowego) instrumentu finansowego Y mniejszych od ceny umownej K, obliczona
na podstawie formuły BS (4.152) oraz następujących wartości parametrów modelu:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2.
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Rysunek 4.24: Trójwymiarowy wykres zależności współczynnika zabezpieczenia
portfela wolnego od ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y
i czasu t dla wybranych wartości parametrów: ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmienności σ = 0.05.
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Rysunek 4.25: Trójwymiarowy wykres zależności współczynnika zabezpieczenia
portfela wolnego od ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y
i czasu t dla wybranych wartości parametrów: ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmienności σ = 0.2.
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Rysunek 4.26: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y dla czterech wybranych
chwil t=0.1, 1, 4, 9 i dla wybranych wartości parametrów: ceny umownej K=4 [j.u.],
terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.]
oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.27: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od ceny bazowego instrumentu finansowego Y dla czterech wybranych
chwil t=0.1, 1, 4, 9 i dla wybranych wartości parametrów: ceny umownej K=4 [j.u.],
terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.]
oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.28: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartosci ceny bazowego instrumen-
tu finansowego Y mniejszych od ceny umownej i dla wybranych wartości parame-
trów: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej
stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.29: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartości ceny bazowego instrumen-
tu finansowego Y mniejszych od ceny umownej i dla wybranych wartości parame-
trów: ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej
stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.30: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartości ceny bazowego instrumen-
tu finansowego Y większych od ceny umownej i dla wybranych wartości parametrów:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.31: Wykres zależności współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y,t) od czasu t dla czterech wybranych wartości ceny bazowego instrumen-
tu finansowego Y większych od ceny umownej i dla wybranych wartości parametrów:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.32: Porównanie współczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=0), t=0) z majoryzującą go wielkością hmax(Y (t = 0), t = 0) w zależności
od ceny bazowego instrumentu finansowego Y(t=0) otrzymane dla takiej parame-
tryzacji jaka została przedstawiona w opisie rys. 4.19.
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Rysunek 4.33: Porównanie współczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=5),t=5) z majoryzującą go wielkością hmax(Y (t = 5), t = 5) w zależności
od ceny bazowego instrumentu finansowego Y(t=5) otrzymane dla takiej parame-
tryzacji jaka została przedstawiona w opisie rys. 4.18.

Innymi słowy, w miarę wzrostu zmienności wzrasta rola formuły BS, która po-
zwala dokładniej określić wpływ elementu losowego na cenę opcji aż do chwili jej
wygaśnięcia (będzie jeszcze o tym mowa w dalszej części przy okazji analizy wskaź-
nika λ).

Wskaźnik grecki gamma

Wskaźnik gamma uzyskuje się bezpośrednio z różniczkowania wskaźnika zabezpie-
czenia portfela (danego wzorem (4.156)) po cenie waloru bazowego

γ(Y (t), t) =
∂h(Y (t), t)
∂Y (t)

= N(0, 1; d+)
∂d+
∂Y

− 1
σ
√
T − tN(0, 1; d+) d+

∂d+
∂Y

+
1
Y 2

1
σ
√
T − tK

′N(0, 1; d−)

+
1
Y

1
σ
√
T − tK

′N(0, 1; d−) d−
∂d−
∂Y

, (4.159)

a stąd

γ(Y (t), t) =
1
Y

1
σ
√
T − tN(0, 1; d+)

[

1− d+

σ
√
T − t

]

+
1
Y 2

1
σ
√
T − t K

′N(0, 1; d−)

[

1 +
d−

σ
√
T − t

]

; (4.160)

jest to wyrażenie, które (dla t < T ) daje się łatwo obliczać na drodze numerycznej.
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Rysunek 4.34: Porównanie współczynnika zabezpieczenia portfela wolnego od ryzy-
ka h(Y(t=T=10), t=T=10) z majoryzującą go wielkością hmax(Y (t = T = 10), t =
T = 10) w zależności od ceny bazowego instrumentu finansowego Y(t=T=10) otrzy-
mane dla takiej parametryzacji jaka została przedstawiona w opisie rys. 4.17.

Na kolejnych trójwymiarowych wykresach zamieszczonych na rysunkach 4.35
4.43, 4.44 i 4.45 i 4.36 przedstawiono, dla dwóch przykładowych wartości zmien-
ności σ = 0.05 i σ = 0.2, współczynnik gamma γ(Y (t), t) = ∂h(Y (t), t)/∂Y (t) =
∂2C(Y (t), t)/∂Y (t)2, czyli współczynnik pozwalający określić tempo zmiany ceny
opcji względem zmiany ceny waloru podstawowego Y lub inaczej zmianę liczby
udziałów h względem zmiany ceny opcji Y . Takie wykresy (podobnie jak analo-
giczne przedstawione w rozdz. 4.5.9 i w niniejszym rozdziale powyżej) pozwalają na
analizę tego współczynnika dla dowolnej trajektorii Y (t) w płaszczyźnie (t, Y ), na
przykład dla dowolnie wybranej realizacji geometrycznego ruchu Browna tzn. uła-
twiają inwestorowi wybór określonej strategii zarządzania aktywami. Co więcej, sze-
rokość połówkowa zależności tego współczynnika od ceny waloru bazowego definiuje
zasadniczy obszar zmienności współczynnika zabezpieczenia portfela pozbawionego
ryzyka.
Ponadto, na rysunkach 4.37, 4.38, 4.39 i 4.40 zamieszczono wybrane przekroje

powyższych trójwymiarowych wykresów w płaszczyznach (γ, Y ) i (γ, t). Porównując
ze sobą odpowiednio wykresy dla obu wartości zmienności widać, że wzrost zmien-
ności prowadzi do zmniejszenia nachylenia funkcji g w otoczeniu progu K ′, czyli do
wzrostu odstępstwa od przebiegu wielkości majoryzujacej danej poniższym wzorem
(4.158) (niebieskie linie na tych wykresach; czarna pionowa linia lokalizuje położenie
progu K ′).
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Rysunek 4.35: Trójwymiarowy wykres tempa g czyli wskaźnika gamma w zależ-
ności od czasu t i ceny waloru bazowego Y dla wybranych wartości parametrów:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.36: Trójwymiarowy wykres tempa g czyli wskaźnika gamma w zależ-
ności od czasu t i ceny waloru bazowego Y dla wybranych wartości parametrów:
ceny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.37: Przekrój tempa g czyli wskaźnika gamma w płaszczyźnie (γ, t) dla
czterech przykładowo wybranych cen waloru bazowego Y dla przykładowo wy-
branych wartości parametrów: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ =
0.05 [1/

√
mies.].
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Rysunek 4.38: Przekrój tempa g czyli wskaźnika gamma w zależności od czasu
t i ceny waloru bazowego Y dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.39: Przekrój tempa g czyli wskaźnika gamma w płaszczyźnie (γ, t) dla
czterech przykładowo wybranych cen waloru bazowego Y, dla przykładowo wy-
branych wartości parametrów: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ =
0.05 [1/

√
mies.].

Rysunek 4.40: Przekrój tempa g czyli wskaźnika gamma w zależności od czasu
t i ceny waloru bazowego Y dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Na rysunkach 4.41 i 4.42 zamieszczono wybrane przekroje powyższych trójwy-
miarowych wykresów w czterech wybranych płaszczyznach (γ, Y ) tzn. dla czterech
różnych chwil (patrz legendy tych wykresów).

Rysunek 4.41: Wykres zależności współczynnika γ(Y, t) od ceny bazowego instru-
mentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9 i dla wy-
branych wartości parametrów: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ =
0.05 [1/

√
mies.].
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Rysunek 4.42: Wykres zależności współczynnika γ(Y, t) od ceny bazowego instru-
mentu finansowego Y i czasu t pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.43: Tempo g zmiany współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y (t = 0), t = 0) w zależności od ceny bazowego instrumentu finansowego
Y (t = 0) otrzymane dla takiej parametryzacji jaka została przedstawiona w opisie
rys. 4.19.
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Rysunek 4.44: Tempo g zmiany współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y (t = T/2 = 5), t = T/2 = 5) w zależności od ceny bazowego instrumentu
finansowego Y (t = T/2 = 5) otrzymane dla takiej parametryzacji jaka została
przedstawiona w opisie rys. 4.18.

Wskaźnik grecki lambda

Wskaźnik ten, zwany także wskaźnikiem Vega, pozwala analizować wrażliwość (po-
datność) ceny opcji na zmianę zmienności instrumentu bazowego. Uzyskuje się go
bezpośrednio poprzez różniczkowanie wzoru (4.152) po zmienności σ. Zatem,

λ(Y (t), t) = Y N(0, 1; d+)
∂d+
∂σ
−K ′N(0, 1; d−)

∂d−
∂σ

= Y N(0, 1; d+)
(

− 1
σ
d+ +

√
T − t

)

− K ′N(0, 1; d−)
(

− 1
σ
d− −

√
T − t

)

,

(4.161)

gdzie po drodze skorzystaliśmy z wyrażenia na pochodną postaci

∂d±
∂σ
= − 1

σ
d± ±

√
T − t. (4.162)

Wyrażenie to (podobnie jak analogiczne dla wspólczynników h i γ) można (dla
t < T ) łatwo analizować na drodze numerycznej. Tutaj, podobnie jak dla wszystkich
innych współczynników, analiza jest prowadzona, przykładowo, dla dwóch istotnie
rózniących się wartości zmienności: σ = 0.05 [1/

√
mies.] oraz σ = 0.2 [1/

√
mies.].
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Rysunek 4.45: Tempo g zmiany współczynnika zabezpieczenia portfela wolnego od
ryzyka h(Y (t = T = 10), t = T = 10) w zależności od ceny bazowego instrumen-
tu finansowego Y (t = T = 10) otrzymane dla takiej parametryzacji jaka została
przedstawiona w opisie rys. 4.17.

Na kolejnych trójwymiarowych wykresach zamieszczonych na rysunkach 4.46
i 4.47 przedstawiono, dla dwóch przykładowych wartości zmienności σ = 0.05 i
σ = 0.2, współczynnik lambda (Vega) pozwalający określić tempo zmiany ceny opcji
względem zmianności waloru podstawowego Y . Takie wykresy (podobnie jak ana-
logiczne przedstawione w rozdz. 4.5.9 i w niniejszym rozdziale powyżej) pozwalają
na analizę tego współczynnika dla dowolnej trajektorii Y (t) w płaszczyźnie (t, Y ),
na przykład dla dowolnie wybranej realizacji geometrycznego ruchu Browna tzn.
ułatwiają inwestorowi wybór określonej strategii zarządzania aktywami.
Ponadto, na rysunkach 4.48, 4.49 i 4.50 zamieszczono wybrane przekroje powyż-

szych trójwymiarowych wykresów w płaszczyznach (λ, Y ) i (λ, t). Porównując ze
sobą odpowiednio wykresy dla obu wartości zmienności widać, że wzrost zmienności
prowadzi do poszerzenia wskaźnika zarówno w funkcji czasu t jak i waloru bazowego
Y .
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Rysunek 4.46: Trójwymiarowy wykres wskaźnika Vega (λ) w zależności od czasu
t i ceny waloru bazowego Y dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].
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Rysunek 4.47: Trójwymiarowy wykres wskaźnika Vega (λ) w zależności od czasu
t i ceny waloru bazowego Y dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].
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Rysunek 4.48: Przekrój wskaźnika Vega (λ) w płaszczyźnie (λ, t) dla czterech przy-
kładowo wybranych cen waloru bazowego Y=1, 2, 3, 3.9, dla przykładowo wy-
branych wartości parametrów: ceny umownej K=4 [j.u.], terminu realizacji opcji
T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności σ =
0.05 [1/

√
mies.].
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Rysunek 4.49: Przekrój wskaźnika Vega (λ) w zależności od czasu t i ceny walo-
ru bazowego Y=1, 2, 3, 3.9, dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].

Na rysunkach 4.51 i 4.52 zamieszczono wybrane przekroje powyższych trójwy-
miarowych wykresów w czterech wybranych płaszczyznach (λ, Y ) tzn. dla czterech
różnych chwil (patrz legendy tych wykresów).

Wskaźnik grecki theta

Wskaźnik theta (θ) uzyskuje się bezpośrednio z jego definicji oraz ze wzoru BS
(4.152),

θ(Y (t), t) = Y (t)N(0, 1; d+)
∂d+
∂τ
−K ′N(0, 1; d−)

∂d−
∂τ
+ rK ′ Φ(d−)

= Y (t)N(0, 1; d+)

(

−1
2
1
τ
d+ +

r + σ2/2
σ
√
τ

)

− K ′N(0, 1; d−)

(

−1
2
1
τ
d− +

r − σ2/2
σ
√
τ

)

+ r K ′ Φ(d−), (4.163)
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Rysunek 4.50: Przekrój wskaźnika Vega (λ) w zależności od czasu t i ceny walo-
ru bazowego Y=4, 4.5, 5, 6, dla wybranych wartości parametrów: ceny umownej
K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1
[1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].

gdzie po drodze wykorzystano wyrażenie na pochodne postaci

∂d±
∂τ
= −1
2
1
τ
d± +

r ± σ2/2
σ
√
τ

. (4.164)

Numeryczna analiza wyrażenia (4.163) nie nastręcza (dla t < T ) żadnych trudności.

Na rysunkach 4.53 i 4.54 przedstawiono współczynnik theta w zależności od ceny
podstawowego (bazowego) instrumentu finansowego Y i od czasu t dla dwóch wyraź-
nie różniących się wartości zmienności σ = 0.05 [1/

√
mies.] oraz σ = 0.2 [1/

√
mies.].

Zauważmy, że dla t→ T ma miejsce rozbieżność współczynnika theta. Wynika to z
istnienia osobliwości we wzorze (4.163) w t = T .

Natomiast, na rys. 4.55 przedstawiono tą zależność dla czterech przykładowo
wybranych chwil.
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Rysunek 4.51: Wykres zależności współczynnika Vega czyli λ(Y, t) od ceny bazo-
wego instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9 dla
wybranych wartości parametrów: ceny umownej K = 4 [j.u.], terminu realizacji
opcji T = 10 [mies.], pozagiełdowej stopy zwrotu r = 0.1 [1/mies.] oraz zmienności
σ = 0.05 [1/

√
mies.].

Wskaźnik grecki rho

Wskaźnik rho (ρ) uzyskuje się bezpośrednio z jego definicji oraz ze wzoru BS (4.152),

ρ(Y (t), t) = Y (t)N(0, 1; d+)
∂d+
∂r
−K ′N(0, 1; d−)

∂d−
∂r
− (T − t)K ′ Φ(d−)

= Y (t)
1
σ

√
T − t (N(0, 1; d+)−N(0, 1; d−))− (T − t)K ′ Φ(d−),

(4.165)

gdzie po drodze wykorzystano proste wyrażenie na pochodne

∂d±
∂r
=
1
σ

√
T − t. (4.166)

Podobnie jak dla pozostałych wskaźników, analiza numeryczna wyrażenia (4.165)
nie sprawia żadnych trudności.
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Rysunek 4.52: Wykres zależności współczynnika Vega (λ(Y, t)) od ceny bazowego
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla przy-
kładowo wybranych wartości parametrów: ceny umownej K=4 [j.u.], terminu reali-
zacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz zmienności
σ = 0.2 [1/

√
mies.].

4.5.11 Formalne własności modelu BS: spełnienie warunku
brzegowego (4.150)

Przypuśćmy, że rozpatrujemy opcję w chwili jej wygaśnięcia t = T a więc w
chwili najważniejszej dla jej posiadacza. Rozważmy dwie różne sytuacje: najpierw
gdy Y (t = T ) > K. Wówczas, d+(t = T ) = d−(t = T ) = ∞ co daje Φ(d+) =
Φ(d−) = 1 i w efekcie C(Y (t = T ), t = T ) = Y (t = T )−K, jak być powinno.
Odwrotnie, gdy Y (t = T ) ¬ K, wówczas d+(t = T ) = d−(t = T ) = −∞, co daje

Φ(d+) = Φ(d−) = 0 i w efekcie C(Y (t = T ), t = T ) = 0, jak trzeba.

4.5.12 Rozwiązanie równania (4.149)

Sprawdzimy teraz, że wyrażenie (w pierwszym wierszu poniżej)

y(x(t′), t′) = ỹ(x(t′), t′) Φ(d+)−KΦ(d−) = exp(r(T − t))C(Y (t), t) = C̃(Y (t), t),
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Rysunek 4.53: Trójwymiarowa zależność współczynnika theta od ceny podstawowego
(bazowego) instrumentu finansowego Y i od czasu t dla ceny umownej K = 4 [j.u.],
terminu realizacji opcji T = 10 [mies.], pozagiełdowej stopy zwrotu r = 0.1 [1/mies.]
oraz zmiennosci σ = 0.05 [1/

√
mies.].

ỹ(x(t′), t′) = exp(r(T − t))Y (t), (4.167)

otrzymane z formuły wyceny opcji kupna BS (4.152) oraz podstawienia (4.137),
gdzie na podstawie (4.138) i (4.139) Y (t) i T − t przybierają w zmiennych x(t′) i t′
następującą postać

Y (x(t′), t′) = K exp




(x(t′)− t′)




r − σ2

2
σ2

2





−1


 ,

T − t = t′





(

r − σ2

2

)2

σ2

2






−1

, (4.168)

jest rozwiązaniem równania (4.149), przy czym

d− =
ln
(
Y
K

)

+
(

r − σ2

2

)

(T − t)
σ
√
T − t =

1√
2

x√
t′
,

d+ = d− + σ
√
T − t = d− +

σ2√
2
1

r − 1
2
σ2

√
t′. (4.169)
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Rysunek 4.54: Trójwymiarowa zależność współczynnika theta od ceny podstawowego
(bazowego) instrumentu finansowego Y i od czasu t dla ceny umownej K = 4 [j.u.],
terminu realizacji opcji T = 10 [mies.], pozagiełdowej stopy zwrotu r = 0.1 [1/mies.]
oraz zmienności σ = 0.2 [1/

√
mies.].

W tym celu, przedstawmy najpierw funkcję y(x(t′), t′) w postaci jawnie zależnej
od nowych zmiennych x i t′; podstawiając pierwsze wyrażenie w (4.169) do (4.167)
otrzymujemy,

y(x(t′), t′) = ỹ(x(t′), t′)Φ(d+)−KΦ(d−), (4.170)

gdzie

ỹ(x(t′), t′) = K exp

(

σ2

2ρ

(

x(t′) +
σ2

2ρ
t′
))

, (4.171)

przy czym ρ
def.= r− σ2

2
. Funkcja (4.170) stanowi podstawę kolejnych etapów obliczeń.

Wyznaczmy teraz pochodną pierwszego stopnia po zmiennej t′

∂y(x(t′), t′)
∂t′

=





(

σ2

2 ρ

)2

Φ(d+) +
dΦ(d+)
dd+

∂d+
∂t′



 ỹ(x(t′), t′)−K dΦ(d−)
dd−

∂d−
∂t′

=





(

σ2

2 ρ

)2

Φ(d+) +
1√
2π
exp

(

−(d+)
2

2

)(

− 1
2
√
2

x

t′ 3/2
+

σ2

2
√
2 ρ

1√
t′

)


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Rysunek 4.55: Zależność współczynnika theta od ceny podstawowego (bazowego)
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.05 [1/

√
mies.].

× ỹ(x(t′), t′)

+ K
1√
2π
exp

(

−(d−)
2

2

)

1

2
√
2

x

t′ 3/2
(4.172)

gdzie po drodze skorzystaliśmy z zależności

dΦ(d±)
dd±

=
1√
2π
exp

(

−(d±)
2

2

)

,

∂d+
∂t′

= − 1
2
√
2

x

t′ 3/2
+

σ2

2
√
2 ρ
1√
t′
,

∂d−
∂t′

= − 1
2
√
2

x

t′ 3/2
, (4.173)

i podobnie po zmiennej x

∂y(x, t′)
∂x

=

[

σ2

2 ρ
Φ(d+) +

dΦ(d+)
dd+

∂d+
∂x

]

ỹ(x(t′), t′)−KdΦ(d−)
dd−

∂d−
∂x
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Rysunek 4.56: Zależność współczynnika theta od ceny podstawowego (bazowego)
instrumentu finansowego Y dla czterech wybranych chwil t=0.1, 1, 4, 9, dla ce-
ny umownej K=4 [j.u.], terminu realizacji opcji T=10 [mies.], pozagiełdowej stopy
zwrotu r=0.1 [1/mies.] oraz zmienności σ = 0.2 [1/

√
mies.].

=

[

σ2

2 ρ
Φ(d+) +

1√
2π
exp

(

−(d+)
2

2

)

1√
2
1√
t′

]

ỹ(x(t′), t′)

− K
1√
2π
exp

(

−(d−)
2

2

)

1√
2
1√
t′

(4.174)

oraz pochodna drugiego stopnia po zmiennej x

∂2y(x, t′)
∂x2

= [

(

σ2

2 ρ

)2

Φ(d+) +
σ2√
2ρ
1√
2π
exp

(

−(d+)
2

2

)

1√
t′

−
(

1√
2

x√
t′
+

σ2√
2ρ

√
t′
)

1√
2π
exp

(

−(d+)
2

2

)

1
2
1
t′
] ỹ(x(t′), t′)

+ K
1√
2π
exp

(

−(d−)
2

2

)

1
2
√
2
x

t′3/2

=
∂y(x, t′)
∂t

; (4.175)
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Rysunek 4.57: Zależność współczynnika theta od czasu t dla czterech wybranych
wartości instrumentu bazowego Y=1, 2, 3, 4, dla ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmienności σ = 0.05 [1/

√
mies.].

drugą równość otrzymano po uporządkowaniu wyrazów w pierwszej (czyli po doda-
niu drugiego wyrazu w pierwszym wierszu do drugiego w drugim) - zauważmy, że
drugi wyraz w pierwszym wierszu po prawej stronie powstał z sumy dwóch połówek
tego wyrazu. Przy wyprowadzeniu (4.175) skorzystaliśmy z pomocniczych równości

∂d±
∂x

=
1√
2
1√
t′
,

d−
∂d−
∂x

= d−
1√
2
1√
t′
=

x

2 t′
,

d+
∂d+
∂x

= d+
1√
2
1√
t′
= d−

1√
2
1√
t′
+
σ2

2ρ
=

x

2t′
+
σ2

2ρ
. (4.176)

W ten sposób wykazaliśmy wprost co należało, czyli spełnienie równania (4.149)
przez funkcję y(x, t′).
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Rysunek 4.58: Zależność współczynnika theta od czasu t dla czterech wybranych
wartości instrumentu bazowego Y=1, 2, 3, 4, dla ceny umownej K=4 [j.u.], termi-
nu realizacji opcji T=10 [mies.], pozagiełdowej stopy zwrotu r=0.1 [1/mies.] oraz
zmienności σ = 0.2 [1/

√
mies.].

4.5.13 Elementy rynku rzeczywistego - własności opcji kup-
na uwzględniające prowizję

Opłacalność opcji kupna. Na rys. 4.59 przedstawiliśmy cenę opcji dla dwóch cha-
rakterystycznych chwil: zakupu t = 0 i realizacji t = T (porównaj także wykresy
zamieszczone na rysunkach 4.19, 4.18 i 4.17). Podane na rys. 4.59 oszacowanie na
opłacalność opcji wynika bezpośrednio z porównania obu przebiegów C w zależności
od Y , które dostarcza racjonalnego warunku na wysokość opłaty wstępnej. Waru-
nek ten mówi, że wysokość prowizji M powinna być równa cenie opcji C(Y (0), 0)
w chwili zawarcia kontraktu terminowego, gdyż w przypadku niższej prowizji poja-
wi się okazja do arbitrażu (zysku bez ryzyka) a na wyższą nie zgodzi sie inwestor
(uważając, że ryzyko jest za wysokie). Ponadto, opłacalność opcji kupna wymaga
aby cena opcji w chwili t = 0 była mniejsza od ceny opcji w chwli t = T .
Zatem,

C(Y (T ), T ) = Y (T )−K > C(Y (0), 0) = Y (0)−K ′ =M
⇒ Y (T ) > Y (0) +K[1− exp(−rT )], (4.177)
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Rysunek 4.59: Analiza opłacalności ceny dla posiadacza opcji kupna poprzez porów-
nanie zależności jej ceny C od ceny waloru Y dla chwili realizacji opcji t=T i chwili
zawierania kontraktu t=0.

gdzie po drodze skorzystaliśmy z relacji K ′ = K exp(−rT ) oraz z warunku (4.150).
Nasze rozważania dotyczą takiego zakresu ceny waloru bazowego w chwili t = 0,

w którym cena opcji osiąga już (z dobrym przybliżeniem) wartość asymptotyczną
czyli zakres względnie dużych zysków na opcji (tzn. względnie wysokiej ceny opcji)
a także względnie dużej prowizji. Właśnie dzięki temu prawą stronę powyższej nie-
równości uzyskaliśmy w tak prostej postaci; stąd, bezpośrednio wynika oszacowanie
opłacalności opcji i otrzymanie warunku na opłacalną cenę bazowego instrumentu
finansowego. Mianowicie widać, że warunek (4.177) jest równoważny następujące-
mu, wyrażającemu się poprzez stopę zwrotu rY na instrumencie bazowym w całym
okresie trwania opcji

Y (T )− Y (0)
Y (0)

= rY >
K

Y (0)
[1− exp(−rT )], (4.178)

który wykorzystamy poniżej. Należy podkreślić, że wyrażenie (4.177) (a tym samym
(4.178)) mówi tylko o opłacalnej cenie instrumentu bazowego natomiast nie wskazuje
jaka strategia jest bardziej opłacalna:
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A) realizacja kontraktu terminowego na opcję kupna czy, po prostu,

B) obrót bazowym instrumentem finansowym.

Podamy teraz warunek na taką progową cenę bazowego instrumentu finansowego
Yprog(T ) powyżej której opłacalne staje się wykorzystywanie przez inwestora gieł-
dowego strategii A). Mianowicie, opłacalność ta ma miejsce wtedy i tylko wtedy
gdy stopa zwrotu rC wynikająca z realizacji kontraktu terminowego jest większa od
stopy zwrotu rY na instrumencie bazowym czyli:

rC =
Y (T )−K −M

M
> rY =

Y (T )− Y (0)
Y (0)

(> 0), (4.179)

skąd (po prostych przekształceniach wykorzystujących fakt, że wielkość prowizji
M = Y (0)−K ′) otrzymujemy, iż poszukiwana cena

Y (T ) > Yprog(T )
def.= exp(rT )Y (0), (4.180)

czyli ma być większa od skapitalizowanej ceny instrumentu bazowego w chwili wyga-
śnięcia opcji, czego należało się spodziewać. Zauważmy, że dla Y (T ) = Yprog(T ) obie
strategie są jednakowo opłacalne. Jak widać, opłacalności strategii A) nie niszczy na-
wet pobieranie przez biuro maklerskie prowizji (M dopuszczonej przez oszacowanie
(4.177)).
Dodatkowo zauważmy, że warunek (4.180) jest równoważny następującemu, sza-

cującemu od dołu stopę zwrotu z akcji:

Y (T )− Y (0)
Y (0)

= rY >
K −K ′
K ′

>
K −K ′
Y (0)

, (4.181)

(gdzie przy wyprowadzaniu ostatniej nierówności skorzystaliśmy z oczywistego, wspo-
mnianego powyżej warunku istnienia prowizji tzn. C(Y (0), 0) = Y (0)−K ′ = M >
0).
Omawiana powyżej opłacalność opcji kupna jest jednym z elementów

rzeczywistego (a nie idealnego) rynku finansowego, gdyż uwzględnia opła-
tę wstępną M , która nie jest brana pod uwagę w kanonicznym modelu
Blacka-Scholesa. Do dynamiki opcji na rynku rzeczywistym jeszcze powrócimy na
końcu tego rozdziału.
Aby zilustrować powyższe rozważania przedyskutujmy następujący przykład.

Przykład

Przypuśćmy, że inwestor decyduje się na zakup jakiejś akcji, której obecna war-
tość wynosi Y (0) = 100PLN wierząc, że w przyszłości, powiedzmy po kwartale
(T = 3mies.), jej wartość wzrośnie do Y (T ) = 150PLN . Przyjmując wielkość sto-
py procentowej (czyli zwrotu na instrumentach finansowych pozbawionych ryzyka)
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r w tym okresie równą 0.1%/mies.37, inwestor łatwo wyznaczy w oparciu o wzór
(4.180) poszukiwaną cenę progową

Yprog(T = 3 mies.) = 134.99 PLN. (4.182)

Oczywiscie, gdyby Y (T ) = Yprog(T ) wówczas obie strategie byłyby jednakowo opła-
calne.
Porównamy teraz obie stopy zwroty rC i rY korzystając z (4.179) i przyjmując,

że spełniony jest warunek dyskryminujący (4.180). W związku z tym ustalamy cenę
umowną na K = 110 PLN czyli na taką aby M > 0; zatem, z (4.177) otrzymujemy,
że prowizja M = Y (0)−K exp(−rT ) = 18.51 PLN . Ostatecznie,

rC = 1.161 > rY = 0.5. (4.183)

Jak widać, opłacalność strategii realizacji kontraktu terminowego na
opcje kupna jest w tym przykładzie ponad dwukrotnie wyższa od stra-
tegii polegającej tylko na obrocie bazowym instrumentem finansowym.
Zwróćmy uwagę, że ryzyko tej bardziej opłacalnej strategii A) jest mniejsze gdyż
w sytuacji niekorzystnej inwestor traci tylko prowizję (w naszym przykładzie kwotę
M = 18.51 PLN) podczas gdy w przypadku mniej opłacalnej strategii B) inwe-
stor może stracić wszystko czyli kwotę Y (0) (w naszym przykładzie jest to kwota
Y (0) = 100 PLN ; oczywiście, ma to miejsce wtedy gdy posiadany instrument fi-
nansowy stracił całkowicie swoją wartość).

4.5.14 Dochód posiadacza opcji sprzedaży

Historycznie rzecz biorąc, model BS dotyczył dynamiki europejskiej opcji kupna
czyli opcji ’call’ zarówno dla nabywcy, czyli znajdującego sie w pozycji długiej (ang.
’long call ’), jak i wystawcy, czyli znajdującego sie w pozycji krótkiej (ang. ’short
call ’) - poniżej zastosujemy ten model do opisu dynamiki opcji sprzedaży czyli opcji
’put’ zarówno dla nabywcy (pozycja ang. ’long put ’) i wystawcy (pozycja ang. ’short
call ’).
Metoda parytetu sprzedaż-kupno (ang. ’put-call parity’). Można łatwo sprawdzić,

że cena opcji sprzedaży

C(Y (t), t) = K exp(−r(T − t))[1− Φ(d−)]− Y (t)[1− Φ(d+)], (4.184)

spełniająca warunki brzegowe

C(Y (t = T ), t = T ) = max{K − Y (t = T ), 0},
C(Y (t) = 0, t) = 0 (4.185)

37Należy przypomnieć, że stopa procentowa jest ustalana kwartalnie przez Bank Centralny, np.
NBP, czyli jest związana z danym rynkiem finansowym i w tym sensie nie jest swobodnym para-
metrem modelu BS.
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wymagane przez tego typu opcje38, spełnia równanie BS (4.136).
39Aby sprawdzić, że (4.184) jest rozwiązaniem równania BS należy po pierwsze

zauważyć, że

C(Y (t), t) = CC(Y (t), t) + CPC(Y (t), t)), (4.186)

gdzie

CC(Y (t), t) = Y (t)Φ(d+)−K exp(−r(T − t))Φ(d−)], (4.187)

jest poprzednio omawianą opcją kupna dla nabywcy a więc spełniającą równanie
BS, natomiast

CPCY (t), t) = K exp(−r(T − t))− Y (t) (4.188)

jest konieczną korektą także spełniającą równanie BS o czym można się łatwo prze-
konać dokonując wymaganych w tym równaniu różniczkowań. Zauważmy, że

|CPCY (t), t)| = |K exp(−r(T − t))− Y (t)| (4.189)

możnaby interpretować jako uproszczoną opcją jednoczesnego kupna i sprzedaży dla
jej nabywcy.
Na trzech kolejnych rysunkach 4.60, 4.61 i 4.62 przedstawiliśmy charakterystycz-

ne przebiegi ceny opcji sprzedaży dla nabywcy; dla wystawcy są analogiczne ale z
przeciwnym znakiem.

38Raczej nie kontraktuje się nieliniowych warunków brzegowych.
39Przy pierwszym czytaniu można ten akapit opuścić.
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Rysunek 4.60: Dochód C posiadacza opcji sprzedaży w zależności od ceny pod-
stawowego instrumentu finansowego Y uzyskana w oparciu o formułę (4.184) dla
czasu t=0 (czyli dla chwili pośredniej) oraz wartości parametrów modelu takich jak
dla rozwiązania przedstawionego na dwóch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], σ = 0.05 [1/

√
mies.]. Podobnie jak na rys. 4.18

rozwiązanie równania BS (linia czerwona) odbiega wyrażnie w części centralnejod
swojej asymptotyki ukośnej (linia niebieska).

214



1 2 3 4 5
Cena bazy Y

0.5

1

1.5

2

2.5

3
Cena opcji C

Rysunek 4.61: Dochód C posiadacza opcji sprzedaży w zależności od ceny podsta-
wowego instrumentu finansowego Y uzyskana w oparciu o formułę (4.184) dla czasu
t=T/2 (czyli dla chwili pośredniej) oraz wartości parametrów modelu takich jak
dla rozwiązania przedstawionego na dwóch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], σ = 0.05 [1/

√
mies.]. Podobnie jak na rys. 4.18

rozwiązanie równania BS (linia czerwona) odbiega wyrażnie w części centralnejod
swojej asymptotyki ukośnej (linia niebieska).
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Rysunek 4.62: Dochód C posiadacza opcji sprzedaży w zależności od ceny pod-
stawowego instrumentu finansowego Y uzyskana w oparciu o formułę (4.184) dla
czasu t=T (czyli dla chwili pośredniej) oraz wartości parametrów modelu takich jak
dla rozwiązania przedstawionego na dwóch poprzednich rysunkach: K = 4 [j.u.],
T = 10 [mies.], r = 0.1 [1/mies.], σ = 0.05 [1/

√
mies.]. Podobnie jak na rys.4.17

rozwiązanie równania BS (linia czerwona) pokrywa się ze swoją asymptotyką ukośną
(linia niebieska).
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Rysunek 4.63: Analiza dochodu C(Y (t), t) posiadacza opcji sprzedaży w zależności
od ceny podstawowego instrumentu finansowego Y uzyskana w oparciu o formułę BS
(4.184) dla czasu t=T/2 (czyli dla chwili pośredniej) oraz wartości parametrów mo-
delu takich jak dla rozwiązania przedstawionego na dwóch poprzednich rysunkach:
K = 4 [j.u.], T = 10 [mies.], r = 0.1 [1/mies.], σ = 0.05 [1/

√
mies.]. Cena opcji

(linia czerwona) został zdekomponowana na dwie składowe: linię zieloną opisującą
składową ceny CC(Y (t), t) oraz linię niebieską opisującą składową CPC(Y (t), t).
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Część III

Procesy niegaussowskie
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Rozdział 5

Fraktale stochastyczne

Fraktale stochastyczne to obiekty jakie powstają przez wprowadzenie szumu (czyli
zaburzeń statystycznych) do deterministycznych (tradycyjnych) struktur fraktal-
nych takich jak np. fraktale samopodobne lub samopokrewne (inaczej samopowino-
wate). Innymi słowy, fraktale stochastyczne tym się różnią od deterministycznych,
że zawierają element przypadku, który może modyfikować daną strukturę fraktalną
- modyfikacja ta może być wieloraka. Otrzymane w ten sposób fraktale stochastycz-
ne należą, na ogół, do klas uniwersalności różnych od tych do jakich należą ich
deterministyczne pierwowzory. Oczywiście, fraktale stochastyczne są znacznie bliż-
sze obiektom występującym w przyrodzie, takim jak np. materiały porowate, czy
ogólniej mówiąc, układy perkolujące bądź też obszary rozgraniczenia faz, niż frakta-
le deterministyczne; te ostatnie stanowią raczej wyidealizowany punkt odniesienia,
ułatwiający rozważania.
Droga jaką obraliśmy aby przedstawić fraktale stochastyczne składa się z dwóch

etapów - najpierw omawiamy fraktale przypadkowe a następnie szerszą klasę, czyli
fraktale statystyczne. Te pierwsze powstają poprzez prostą, przypadkową modyfika-
cję fraktali deterministycznych (patrz rozdz. 5.2), bez naruszania wymiaru fraktal-
nego deterministycznych ”rodziców”, w przeciwieństwie do fraktali statystycznych,
które w ogólności mają wymiary fraktalne różne od swoich deterministycznych pier-
wowzorów (patrz rozdz. 5.3). Podejście tego typu dostarcza wskazówek pozwalają-
cych na rozwiązywanie niektórych zagadnień odwrotnych, np. dotyczących makro-
skopowych statystycznych struktur fraktalnych1.

5.1 Fraktale matematyczne a fraktale fizyczne

Zwykle, mówiąc o fraktalach (bez żadnych dodatkowych przymiotników) ma się na
myśli matematyczne fraktale deterministyczne. Ale fraktale matematyczne w przyro-
dzie nie występują. Rodzi się zatem pytanie dlaczego fizycy się nimi zajmują? Należy

1Zagadnienie odwrotne polega na znalezieniu wymiaru fraktalnego danej statystycznej struktury
fraktalnej, dysponując jedynie pojedynczym egzemplarzem takiej struktury.
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ono do tej samej kategorii co pytanie o przydatność rachunku różniczkowego i cał-
kowego dla fizyki. Przecież w przyrodzie mamy do czynienia tylko ze skończonymi
przyrostami a nie z wielkościami granicznymi, infinitezymalnie małymi. Na przykład,
pomiar prędkości jest zawsze tylko pomiarem skończonego odcinka drogi przebytego
przez dane ciało w skończonym czasie i nic więcej. Występujące w definicji prędkości
przejście graniczne jest tylko matematyczną idealizacją - możliwość takiej idealiza-
cji wynika z obserwacji co do wystarczająco regularnego zachownia się kolejnych
coraz to mniejszych przyrostów drogi pokonywanych w odpowiednio krótszych od-
cinkach czasu. Mówimy o takiej procedurze, że jest zbieżna. Pozwala to zatrzmać
nasze pomiary na, siłą rzeczy, skończonym poziomie ziarnistości bowiem, nie ma
sensu mierzyć prędkości pędzącego samochodu poprzez pomiar milimetrowych od-
cinków drogi pokonywanych w milisekundowych przedziałach czasu. Podobnie rzecz
się ma z obiektami samopodobnymi lub samopokrewnymi, czy mówiąc ogólniej z
fraktalami bądź multifraktalami. W rzeczywistości, możemy mówić zawsze tylko o
skończonej liczbie pokoleń struktury samopodobnej czy samopokrewnej lub inaczej
o skończonej liczbie skal czasoprzestrzennych. Innymi słowy, fraktale fizyczne to w
istocie prefraktale czy nawet premultifraktale stochastyczne; pomimo tego, używając
analizy fraktalnej możemy (z kontrolowaną dokładnością) przewidzieć zachowanie
się realnego układu w wielu interesujących nas skalach, czyli zachowaniu wieloska-
lowym.

5.2 Fraktale przypadkowe

Poniżej omawiamy dwa rodzaje struktur fraktalnych mianowicie ograniczone, któ-
rych (całkowity) liniowy rozmiar L jest niezależny od poziomu ziarnistości (ska-
li) oraz fraktale nieograniczone, których (całkowity) liniowy rozmiar rośnie w mia-
rę przechodzenia do obrazu coraz bardziej gruboziarnistego (coraz większej skali).
Krótko mówiąc, fraktale ograniczone to obiekty powstające poprzez odpowiednie zde-
fektowanie jednorodnej struktury w głąb, podczas gdy fraktale nieograniczone po-
wstają przez odpowiednio zdefektowany wzrost. W niniejszym rozdziale omawiamy
w zasadzie, jako najbardziej przydatne ze względów pragmatycznych, tylko wymiar
samopodobieństwa oraz wymiar pudełkowy dla obu rodzajów struktur fraktalnych.

5.2.1 Ograniczone fraktale samopodobne

Nasze rozważania rozpoczynamy od analizy obiektów, które powstały przez wpro-
wadzenie prostszego, przypadkowego zaburzenia do samopodobnych2 (determini-
stycznych) struktur fraktalnych.
Na rys.5.1 przedstawiono dwa kolejne pokolenia przypadkowo zdefektowanego

dywanu Sierpińskiego - jego odpowiednikiem w jednym wymiarze jest zbiór Cantora

2Struktury samopodobne noszą nazwę beskalowych, gdyż w każdej skali wyglądają identycznie
bądź analogicznie - nie udaje się dla nich wyróżnić żadnej szczególnej skali.
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a w trzech wymiarach gąbką Sierpińskiego; dla dywanu wymiar przestrzeni Euklide-
sowej, d, w której zanurzony jest dywan, wynosi 2, dla wspomnianego zbioru Cantora
d = 1 a dla gąbki Sierpińskiego d = 3.

Rysunek 5.1: Pierwsze dwa pokolenia ograniczonego, przypadkowo zdefektowanego
dywanu Sierpińskiego. Jak widać, jego wymiar ds nie zmienił sie w stosunku do
deterministycznego pierwowzoru.

Na rys. 5.1 pokazano pierwsze (k = 1) i drugie (k = 2) pokolenie powstałe z
kwadratu większego o długości boku L. Jak widać, bok ten został podzielony na
n = 3 równe części; zwykle 1/n nosi nazwę współczynnika redukcji a m/nd współ-
czynnika zdefektowania, gdzie m jest liczbą mniejszych kwadratów usuwanych w
danym pokoleniu z każdego kwadratu wyjściowego dla tego pokolenia. Dokładniej
rzecz biorąc, wspomniane pokolenia skonstruowano przez odpowiednie usunięcie po-
jedynczego (m = 1) mniejszego kwadratu a następnie z tak powstałej struktury
pojedynczych jeszcze mniejszych, niekoniecznie centralnych (jak to ma miejsce dla
deterministycznego dywanu Sierpińskiego). Innymi słowy, usunięcie pojedynczego,
mniejszego kwadratu ma miejsce zawsze, w każdym pokoleniu k natomiast, nie wia-
domo który kwadrat zostanie usunięty, co jest właśnie dziełem przypadku.
Tym samym zdefiniowany został generator przypadkowej struktury fraktalnej po-

zwalalający na zbudowanie ograniczonego fraktalnego obiektu samopodobnego w
sensie probabilistycznym (statystycznym). Definicję tę można traktować jako okre-
ślenie samopodobieństwa przypadkowej struktury fraktalnej. Bezpośredni wniosek
jaki się nasuwa dotyczy wymiaru samopodobnego - w dalszym ciągu nazywamy go
fraktalnym gdyż jest to wymiar ułamkowy a nie całkowity jak wymiar Euklideso-
wy (topologiczny) przestrzeni i oznaczamy przez ds; jest on identyczny z wymiarem
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fraktalnym deterministycznego dywanu Sierpińskiego (patrz np. artykuł w czaso-
piśmie ”Delta” 2 (1985) 1, książka H.-O.Peitgen, H.Juergens, D.Saupe, ”Granice
Chaosu. Fraktale”, PWN, Warszawa 1997, lub książka T.Vicsek, ”Fractal growth
phenomena”, World Scienc., Singapore 1989). Wynika to z faktu, że wymiar sa-
mopodobieństwa jest (tutaj) niewrażliwy na to który kwadrat jest usuwany, ważne
aby w każdym pokoleniu jeden elementarny (najmniejszy) kwadrat został usunięty
z większego, czyli tego, który był elementarny o jedno pokolenie wcześniej.
Z jednej strony, dla tego typu przypadkowo zdefektowanych struktur można na-

pisać równanie algebraiczne słuszne dla każdego pokolenia k(= 1, 2, . . .)

N(k) = (nd −m)k = (9− 1)k = 8k, (5.1)

gdzie N(k) jest liczbą kwadratów jaka pozostała w pokoleniu k po przeprowadze-
niu (powyżej opisanej) procedury przypadkowego defektowania. Równanie (5.1) jest
także słuszne dla deterministycznego dywanu Sierpińskiego.
Z drugiej strony, dzięki własności samopodobieństwa (tutaj w sensie statystycz-

nym gdyż obarczonej dodatkowo elementem przypadkowości), można napisać klu-
czową relację pomiędzy liczbą kwadratów N(k) a liczbą

n(k) = nk =
L

l(k)
(5.2)

na jaką został podzielony w pokoleniu k bok wyjściowego kwadratu o długości L
(l(k)(= L/nk) jest długością boku małego kwadratu w pokoleniu k); mianowicie

N(k) = n(k)ds =

(

l(k)
L

)−ds
, k = 1, 2, . . . . (5.3)

Jak widać, wymiar samopodobieństwa ds jest niezależny od numeru pokolenia k
co wynika z samopodobnego (tutaj dodatkowo w sensie statystycznym) charakteru
struktury. Często, wyrażenie (5.3) zapisuje się w skrótowej postaci

N(k) ∼ (l(k))−ds , (5.4)

mówiąc, że liczba pokrywających kwadratów (”pudełek”) jaka istnieje w k-tym poko-
leniu skaluje się z liniowym rozmiarem pokrywającego kwadratu (”pudełka”). Tego
typu zapis pozwala rozszerzyć analizę na przypadek struktur fraktalnych nie będą-
cych samopodobnymi (patrz rozdz. 5.2.5).
Z (5.1), po uwzględnieniu (5.3), otrzymujemy że

ds =
ln(N(k))
ln(L/l(k))

=
ln(nd −m)
ln(n)

=
ln(8)
ln(3)

= 3
ln(2)
ln(3)

, (5.5)

gdzie oczywiście wykładnik

ds < d (5.6)
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co wynika z faktu, że omawiana struktura jest zdefektowanym kwadratem tzn. jej
pokrycie małymi kwadratami nie zapełnia jednolicie większego kwadratu; gdyby
nasz kwadrat nie był dziurawy wtedy oczywiście ds = d.
Zastanówmy się nad sensem wymiaru samopodobnego ds który, podobnie jak

omawiany poniżej tzw. wymiar pudełkowy (patrz rozdz. 5.2.5), jest szczególnym
przypadkiem wymiaru Hausdorffa. W tym celu zauważmy, że d(= 2)-wymiarowa
objętość V (k) (tutaj powierzchnia) obiektu w pokoleniu k wynosi,

V (k) = N(k)(l(k))d. (5.7)

Objętość V (k) przyjmuje się za miarę danej struktury fraktalnej.
Z drugiej strony, na mocy równania (5.7) oraz (5.3) otrzymujemy, że

V (k) = Lds(l(k))d−ds = Ld
(

l(k)
L

)d−ds
(5.8)

czyli

ds = d−
ln(V (k)/Ld)
ln(l(k)/L)

. (5.9)

Czasami wykładnik ∆s = d−ds = z jakim skaluje się objętość nazywa się wymiarem
Minkowskiego albo deficytem wymiaru samopodobnego.
Często, wyrażenie (5.8) zapisuje się krócej

V (k)
Ld
∼ (l(k))∆s , (5.10)

mówiąc, że (względna) miara danej struktury fraktalnej skaluje się z liniowym roz-
miarem l(k) pokrywającego kwadratu (”pudełka”). Tego typu zapis pozwala rozsze-
rzyć analizę na przypadek struktur fraktalnych, które nie są samopodobne (patrz
rozdz. 5.2.5).
Łatwo zauważyć, że wyrażenia (5.5) oraz (5.9) są słuszne dla każdego pokolenia

k tylko dlatego, że mamy do czynienia ze strukturą samopodobną (niezależnie
od tego czy jest ona samopodobna w sensie deterministycznym czy też sensie pro-
babilistycznym zdefiniowanym powyżej).

5.2.2 Paradoks graniczny - struktura prawie wszędzie pusta

W oparciu o wzory (5.7), (5.3), (5.1) oraz (5.2) można wykonać następujące przejście
graniczne

lim
k→∞

V (k)
Ld
= lim

k→∞
N(k)[l(k)]d

[n(k)]d [l(k)]d
= lim

k→∞
N(k)
n(k)d

= lim
k→∞
(1− m

nd
)k = 0. (5.11)

Powyższy wynik jest paradoksalny gdyż, jak widać, w granicy k → ∞ objętość
struktury oraz liczba jej elementów (elementarnych pudełek) jest zaniedbywalnie
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mała w stosunku do objętości struktury niezdefektowanej oraz liczby tworzących
ją pudełek. Innymi słowy, liczba dziur dorównuje liczbie (prawie) wszystkich pude-
łek (kwadratów) tworzących jednorodny (niezdefektowany) obiekt. Wynik ten jest
prawdziwy tylko w granicy k →∞ wskazując, że graniczna struktura samopodobna
jest maksymalnie zdefektowana, czyli że wielkość obszaru dziur jest (prawie) rów-
na wielkości całego obszaru struktury pomimo, że na każdym poziomie ziarnistości
usunięto jedynie minimalną liczbę (m = 1) kwadratów potrzebną do zapewnienia
(nietrywialnego) samopodobieństwa ograniczonego, przypadkowego dywanu Sierpiń-
skiego.
Przy tworzeniu struktur fraktalnych, należy wziąć pod uwgę zasadnicze ogra-

niczenie - aby struktura mogła istnieć wszystkie jej elementy muszą być ze sobą
powiązane tzn. muszą się stykać. Oznacza to, że każde dwa elementy struktury moż-
na połączyć ze sobą linią należącą całkowicie do tej struktury.

5.2.3 Dolny wymiar samopodobieństwa

Wskazujemy na zależność oszacowania wielkości dolnego ograniczenia wymiaru sa-
mopodobnego od stopnia zdefektowania m/nd fraktalnej struktury samopodobnej.
W tym celu korzystamy z wyrażenia (5.5) pozwalającego zanalizować np. nierówność
postaci

d− j < ds =
ln(N(k))
ln(L/l(k))

=
ln(nd −m)
ln(n)

= d−∆s(< d), j = 1, 2, . . . , d, (5.12)

gdzie deficyt wymiaru

∆s =
ln(1− m

nd
)

ln(1/n)
> 0 (5.13)

wyraża się za pomocą współczynnika zdefektowania oraz współczynnika redukcji; z
powyższych dwóch zależności otrzymujemy bezpośredni warunek na współczynnik
zdefektowania

m

nd
< 1− 1

nj
, j = 1, 2, . . . , d. (5.14)

Postępując analogicznie w pozostałych przypadkach, czyli gdy ds < d− j oraz ds =
d− j, j = 1, 2, . . . , d− 1, otrzymujemy następujące zbiorcze wyrażenie

ds







> d− j, dla m/nd < 1− 1/nj, j = 1, 2, . . . , d
= d− j, dla m/nd = 1− 1/nj, j = 1, 2, . . . , d− 1
< d− j, dla m/nd > 1− 1/nj, j = 1, 2, . . . , d− 1.

Jak widać, wyrażenie 1− 1/nj określa marginalne wartości współczynnika zdefekto-
wania, dla których wymiar samopodobny jest liczbą naturalną. Z powyższego wy-
nika, że możliwe jest ”rośnięcie” w przestrzeni d wymiarowej struktur d− 1 wymia-
rowych (gdy m/nd = 1 − 1/n), d − 2 wymiarowych (gdy m/nd = 1 − 1/n2), itd.,
wreszcie struktur jednowymiarowych (gdym/nd = 1−1/nd−1) a nawet subliniowych
(o wymiarze mniejszym od 1 gdy m/nd > 1− 1/nd−1).
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5.2.4 Gęstość struktury

Zauważmy, że gęstość liczbowa struktury ρ(k) skaluje się w tych warunkach iden-
tycznie jak struktura niezdefektowa mianowicie,

ρ(k) =
N(k)
V (k)

= [l(k)]−d, (5.15)

czyli jest niewrażliwa na operację defektowania układu. Zatem, gęstość liczbowa ρ(k)
jest jej niezmiennikiem i nie nadaje się do opisu struktur fraktalnych.

5.2.5 Wymiar pudełkowy ograniczonych struktur fraktal-
nych

Wymiar samopodobny jest tylko szczególnym przypadkiem wymiaru fraktalnego
Hausdorffa. Dla struktur, które nie są samopodobne wyrażenia (5.5) oraz (5.9) należy
zapisać w postaci ogólniejszej, mianowicie

db = lim
k→∞

ln(N(k))
ln(L/l(k))

(5.16)

lub

db = d− lim
k→∞
ln(V (k)/Ld)
ln(l(k)/L)

. (5.17)

Wzory (5.16) oraz (5.17) uzyskano w wyniku pokrycia danej struktury fraktalnej
takimi pudełkami (patrz rys.2(5.2.1), których liniowy rozmiar l(k) maleje potęgowo
z wykładnikiem k, analogicznie jak dla struktur samopodobnych (czyli l(k) = L/nk).
Uzyskana w ten sposób wielkość db nosi nazwę wymiaru pudełkowego.
Ogólnie mówiąc, z wymiarem pudełkowym mamy do czynienia wtedy i tylko

wtedy, gdy dla znikającej ziarnistości l (czyli liniowego rozmiaru pudełka, który w
ogólności jest zmienną niezależną),

db = lim
l→0
ln(N(l))
ln(L/l)

(5.18)

lub

db = d− lim
l→0
ln(V (l)/Ld)
ln(l/L)

. (5.19)

Jak widać minimalna objętość V (l), w której daje się zamknąć daną strukturę frak-
talną skaluje się (ze znikającą ziarnistością l) jak

V (l) ∼ (l)d−db (5.20)
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natomiast minimalna liczba pudełek N(l) skaluje się jak

N(l) ∼ (l)−db . (5.21)

Zauważmy, że często jest wygodniej operować wielkościami bezwymiarowymi -
w tym celu wprowadżmy ziarnistość bezwymiarową zdefiniowaną jako ułamek

ε =
l

L
. (5.22)

Korzystając z definicji (5.22) można wyrażenia (5.3) oraz (5.8) przedstawić w postaci

N(ε) = ε−db (5.23)

oraz

V (ε)
Ld
= εd−db . (5.24)

Stąd, wymiar pudełkowy db można zapisać następująco

db = lim
ε→0
ln(N(ε))
ln(1/ε)

(5.25)

lub

db = d− lim
l→0
ln(V (ε)/Ld)
ln(ε)

, (5.26)

co ułatwia dalsze uogólnienia (np. na pokrycia inne od pudełkowego), pozwalające
na wprowadzenie pojęcia wymiaru Hausdorffa. Należy podkreślić, że wymiar samo-
podobny ds oraz wymiar pudełkowy db dla struktur samopodobnych nie są tożsame;
można to zrozumieć na przykładzie obiektów zanurzonych w przestrzeni dwuwy-
miarowej gdyż wtedy wymiar pudełkowy nigdy nie jest większy od dwóch, w przeci-
wieństwie do wymiaru samopodobnego. W przypadku tego ostatniego, można podać
przykłady struktur, których poszczególne elementy zachodzą na siebie, co prowadzi
do wymiaru samopodobnego większego od dwóch.

5.2.6 Nieograniczone fraktale samopodobne

Analogicznie jak w rozdz. 5.2.1, rozważamy samopodobny fraktal przypadkowy czy-
li strukturę samopodobną w sensie statystycznym, powstającą przez odpowiednie
powielanie obiektu wyjściowego (tak jak to przedstawiono na rys. 5.2).
Pomimo że istnieje wiele rzucających się w oczy analogii pomiędzy oboma typami

struktur, zdecydowaliśmy się na ich systematyczne, oddzielne omówienie ze względu
na fakt, iż wykład jest przeznaczony przede wszystkim dla początkujących studen-
tów. Ponadto takie podejście pozwala, w zasadzie, na niezależne zapoznawanie się z
wybranymi fragmentami tekstu.
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Rysunek 5.2: Pierwsze dwa pokolenia nieograniczonego, przypadkowo zdefektowa-
nego dywanu Sierpińskiego.

Przedstawiona na rys. 5.2 struktura jest to nieograniczenie rosnący, przypadko-
wy (indeterministyczny) dywan Sierpińskiego zbudowany z elementarnych kwadra-
tów o długości boku l(= 1). Bezwymiarowy współczynnik (liniowego) powiększenia
dywanu wynosi przykładowo n = L/l = 3 (często używa się zamiennie współczyn-
nika ziarnistości ε = 1/n), a każdy większy kwadrat jest zbudowany z (nd − m)k
mniejszych, gdzie d(= 2) jest wymiarem przestrzeni Euklidesowej, w której jest
zanurzony konstruowany dywan Sierpińskiego, m(= 1) jest liczbą usuniętych mniej-
szych kwadratów z każdego powielonego kwadratu pobranego z poprzedniego poko-
lenia, natomiast k jest numerem aktualnego pokolenia (skali lub poziomu ziarnistości
struktury) w jakim prowadzi się obliczenia. Jak widać, na każdym poziomie ziarni-
stości defektowanie może wyglądać inaczej tzn. z kwadratu na poziomie ziarnistości
k usuwany jest jeden z powielonych, (większych) kwadratów oraz przypadkowo, z
dowolnego miejsca tych powielonych dużych kwadratów, kwadrat elementarny w
poprzedzającej skali k − 1.
Możemy teraz postawić inicjujące pytanie: jaka jest liczba N(k) podstawowych

kwadratów (o długości boku l) zawartych w dużym kwadracie w k-tym pokoleniu
(lub inaczej mówiąc, na k-tym poziomie ziarnistości)? Z jednej strony, z przedsta-
wionej na rys.1(5.2.6) konstrukcji wynika poprzez bezpośrednie zliczanie, że poszu-
kiwana liczba wyraża się prostym wzorem

N(k) = (nd −m)k = (32 − 1)k = 8k, k = 1, 2, . . . , (5.27)

czyli jest taka sama jak dla ograniczonego, przypadkowego dywanu Sierpińskiego
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(patrz równanie(5.1)); co więcej jest ona równa analogicznym liczbom dla determi-
nistycznych (ograniczonych i nieograniczonych) dywanów Sierpińskiego.
Z drugiej strony, analogicznie jak w przypadku ograniczonego dywanu Sierpiń-

skiego, stawiamy pytamie o istnienie takiej liczby ds niezależnej od numeru pokolenia
k, która spełnia kluczową relację

N(k) = n(k)ds = ε(k)−ds =

(

L(k)
l

)ds

, k = 1, 2, . . . , (5.28)

gdzie wprowadziliśmy wielkość,

L(k) = n(k)l, k = 1, 2, . . . , (5.29)

będącą liniowym rozmiarem kwadratu w k-tym pokoleniu, gdzie identycznie jak dla
struktur ograniczonych

n(k) = nk, k = 1, 2, . . . , (5.30)

a ponadto

ε(k) = εk, k = 1, 2, . . . . (5.31)

Zależność (5.28) zapisuje się często w postaci,

N(k) ∼ (L(k))ds , k = 1, 2, . . . , (5.32)

mówiąc, że ”masa” N(k) struktury widoczna na k-tym poziomie ziarnistości skaluje
się potęgowo z jej rozmiarem liniowym L(k); występujący w równaniu (5.32) wy-
kładnik nosi nazwę wymiaru samopodobnego - w dalszej części zobaczymy, że jest on
szczególnym przypadkiem wymiaru fraktalnego (a dokładniej, fraktalnego wymiaru
Hausdorffa).
Ponadto, w oparciu o nierówność

nds < nd (5.33)

(wynikającą z konstrukcji dywanu) otrzymujemy, że

ds < d. (5.34)

Oczywiście, gdyby struktura była jednorodna (czyli nie pozbawiano by jej w każ-
dym pokoleniu niektórych elementów) wówczas mięlibyśmy, po prostu, ds = d. Fakt,
że udało się znależć wspólny dla wszystkich pokoleń wykładnik ds jest kluczowy
dla niniejszych rozważań i wynika z samopodobnej natury konstruowanych obiek-
tów przy czym nie jest tutaj ważne czy samopodobieństwo to ma statystyczny czy
deterministyczny charakter.
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Ze wzoru (5.28) wynika, że

ds =
ln(N(k))
ln(n(k))

=
ln(N(k))
ln(L(k)/l)

=
ln(nd −m)
ln(n)

= ds −∆s, k = 1, 2, . . . , (5.35)

gdzie, podobnie jak dla fraktali ograniczonych, deficyt wymiaru samopodobnego ∆s
dany jest wzorem

∆s =
ln(1− m

nd
)

ε
, (5.36)

i tak jak trzeba nie zależy od numeru pokolenia k.
Różnica pomędzy oboma rodzajami struktur (ograniczoną i nieograniczoną) jest

widoczna dopiero we wzorach na objętość, która w pierwszym przypadku maleje
zgodnie ze wzorem (5.8) w miarę przechodzenia do coraz starszych pokoleń a w
drugim rośnie. Mianowicie, wynosi ona

V (k) = ldN(k) = ldn(k)ds = ld
(

L(k)
l

)ds

, k = 1, 2, . . . , (5.37)

co często zapisuje się w postaci

V (k) ∼ (L(k))ds , k = 1, 2, . . . , (5.38)

mówiąc, że objętość V (k) rosnącej struktury samopodobnej skaluje się potęgowo z
jej rozmiarem liniowym L(k). Ponadto,

ds =
ln(V (k)/ld)
ln(L(k)/l)

, k = 1, 2, . . . (5.39)

i nie zależy od k, jak być powinno.
W oparciu o (5.37) widzimy, że gęstość liczbowa

ρ =
N(k)
V (k)

=
1
ld
, k = 1, 2, . . . , (5.40)

czyli nie ulega zmianie przy przechodzeniu od struktury regularnej do fraktalnej
podobnie jak to ma miejsce dla struktur ograniczonych.
Widać na postawie (5.27), (5.29) oraz (5.37), że

lim
k→∞

V (k)
{L(k)}d = limk→∞

ldN(k)
ldn(k)d

= lim
k→∞

(

1− m

nd

)k

= 0, (5.41)

lub inaczej, w oparciu o (5.28), (5.29) oraz (5.37)

lim
k→∞

V (k)

(L(k))d
= lim

k→∞
ldN(k)
ldn(k)d

= lim
k→∞

n(k)ds

n(k)d
= lim

k→∞
1

nk(d−ds)
= 0. (5.42)

231



Powyższy wynik jest prawdziwy tylko w granicy k → ∞ pokazując, że graniczna
struktura samopodobna jest maksymalnie zdefektowana gdyż obszar dziur dorównu-
je wielkością całemu obszarowi struktury pomimo, że na każdym poziomie ziarnisto-
ści usunięto jedynie minimalną liczbę (m = 1) kwadratów potrzebną do zapewnienia
(nietrywialnego) samopodobieństwa nieograniczonego statystycznego dywanu Sier-
pińskiego.
Aby lepiej zrozumieć wynik (5.41) obliczamy w granicy k → ∞ liczbę N(k)

elementarnych kwadratów oraz dziur M(k). Zgodnie z (5.27)

lim
k→∞

N(k)
n(k)d

= lim
k→∞

(

1− m

nd

)k

= 0 (5.43)

oraz

lim
k→∞

M(k)
n(k)d

= lim
k→∞

(

1−
(

1− m

nd

)k
)

= 1. (5.44)

Powyższy wynik jest paradoksalny gdyż, jak widać, w granicy k → ∞ liczba dziur
dorównuje liczbie wszystkich pudełek (kwadratów) tworzących jednorodny obiekt.
Wyznaczamy teraz dolne oszacowanie wymiaru samopodobnego ds dla nieogra-

niczonego (deterministycznego bądż przypadkowego) dywanu Sierpińskiego. Rozwa-
żamy w tym celu wyrażenia

lim
k→∞

V (k)

(L(k))d−1
= lim

k→∞
ldN(k)

ld−1n(k)d−1
= l lim

k→∞
nk(1+ds−d) = l lim

k→∞

(

n− m

nd−1

)k

=







∞, dla m < nd−1(n− 1)
l, dla m = nd−1(n− 1)
0, dla m < nd−1(n− 1),

z których wynika, że

df







> d− 1, dla m < nd−1(n− 1)
= d− 1, dla m = nd−1(n− 1)
< d− 1, dla m > nd−1(n− 1).

W naszym przypadu, przyjęliśmy na wstępie dla prostoty, że m = 1 (oraz n = 3 i
d = 2) co prowadzi do tego, że d − 1 < ds. Jednakże moglibyśmy, równie dobrze,
rozważać przypadki dla których 1 ¬ m < n. Z powyższego wynika, że np. kryształ
rosnący w trzech wymiarach może być faktycznie dwuwymiarowy co odpowiadałoby
(dla n = 3 oraz d = 3) czynnikowi zdefektowania m = 18(< nd = 27). Oczywiście,
do pomyślenia są także kryształy jednowymiarowe (wtedy m > 18).
Ponadto, gdybyśmy rozważali analogiczne struktury, które powstają przez od-

powiednie dodawanie elementów na każdym poziomie ziarnistości k (dobrym przy-
kładem może być krzywa Kocha) wówczas mięlibyśmy, zamiast równości (5.27),
analogiczne wyrażenie

N(k) = (nd +m)k = (32 + 1)k = 10k, k = 1, 2, . . . , (5.45)
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prowadzące, w oparciu o (5.28) oraz zachodzącą w tym przypadku nierówność

n(k)ds > n(k)d, k = 1, 2, . . . , (5.46)

do wymiaru fraktalnego

ds > d, (5.47)

przewyższającego wymiar przestrzeni Euklidesowej, w której jest zanurzony wyjścio-
wy, niezdefektowany obiekt.
Oszacujemy górne ograniczenie wymiaru samopodobnego ds. W tym celu rozwa-

żamy wyrażenia

lim
k→∞

V (k)

(L(k))d+1
= lim

k→∞
ldN(k)

ld+1n(k)d+1
=
1
l
lim
k→∞

nk(ds−d−1) =
1
l
lim
k→∞

( 1
n
+

m

nd+1

)k

=







∞, dla m > nd(n− 1)
1
l
, dla m = nd(n− 1)
0, dla m < nd(n− 1),

z których wynika, że

ds







> d+ 1, dla m > nd(n− 1)
= d+ 1, dla m = nd(n− 1)
< d+ 1, dla m < nd(n− 1).

Na przykład, wspomniana powyżej krzywa Kocha (d = 1, n = 3, m = 1) posiada,
zgodnie z powyższymi wzorami wymiar samopodobieństwa d < ds(= ln(4)/ ln(3)) <
d+ 1.

5.3 Fraktale statystyczne

W niniejszym rozdziale omawiamy statystyczne struktury ograniczone i nieograni-
czone zwane fraktalami statystycznymi na przykładzie statystycznego zbioru Can-
tora (omówienie deterministycznego zbioru Cantora można znależć np. w książce
H.-O. Peitgen, H. Juergens, D. Saupe, ”Granice Chaosu. Fraktale”, Wydawnictwo
Naukowe PWN, Warszawa 1997).

5.3.1 Ograniczone fraktale statystyczne

Na rys. 5.3 przedstawiono zespół statystyczny złożony z Nk(=1) odcinków podzielo-
nych na trzy równe części; jak widać, niektóre odcinki centralne zostały usunięte -
zakładamy, że nastąpiło to z prawdopodobieństwem p.
Można teraz postawić pytanie dotyczące nieusuniętych odcinków a mianowicie,

jaka jest ich średnia liczba (〈N(k(= 1))〉) w danym pokoleniu k (tutaj pierwszym
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Rysunek 5.3: Zespół statystyczny dla pierwszego pokolenia, przypadkowo zdefekto-
wanego zbioru Cantora.

gdyż k = 1)? Odpowiedż jest natychmiastowa - jest to granica następującej średniej
ważonej nazywanej także średnią po zespole statystycznym,

〈N(k(= 1))〉 = lim
N k(=1)→∞



2
N k(=1)
2

N k(=1)
+ 3
N k(=1)
3

Nk(=1)



 = 2p+ 3(1− p)

= 3− p, (5.48)

gdzie N k(=1)
2 oznacza całkowitą liczę odcinków pozbawionych części centralnej, a

N k(=1)
3 odcinków, które ją posiadają.
W następnym pokoleniu (k = 2), z każdym odcinkiem zdefektowanym, składa-

jącym się z dwóch odsuniętych od siebie krótszych, bądż niezdefektowanym zbu-
dowanym z trzech odcinków krótszych, wiążemy osobny zespół statystyczny (rys.
5.4). Analogicznie jak dla pokolenia pierwszego, każdy z krótszych odcinków jest
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Rysunek 5.4: Zespół statystyczny dla drugiego pokolenia, przypadkowo zdefektowa-
nego zbioru Cantora.

także defektowany statystycznie. W celu łatwiejszego przedstawienia istoty rzeczy,
wprowadzamy synchronizację polegającą na tym, że np. zdarzenie defektowania za-
chodzi jednocześnie dla wszystkich krótszych odcinków danego pokolenia (o numerze
k), składających się na jeden odcinek dłuższy poprzedniego pokolenia (o numerze
k − 1). Wyznaczamy teraz średnią liczbę 〈N(k(= 2))〉 odcinków jaka pozostała po
przeprowadzeniu procedury defektowania w drugim pokoleniu,

〈N(k(= 2))〉 = lim
N k(=1)→∞

lim
N k(=2)→∞

(2
N k(=1)
2

N k(=1)
×


2
N k(=2)
2

N k(=2)
+ 3
N k(=2)
3

N k(=2)





+ 3
N k(=2)
3

N k(=2)
×


2
N k(=2)
2

N k(=2)
+ 3
N k(=2)
3

N k(=2)



)

= (2p+ 3(1− p))k(=2) = (3− p)k(=2). (5.49)

Postępując analogicznie dla następnych pokoleń, uzyskujemy ogólne, proste wyra-
żenie na średnią liczbę odcinków jaka pozostała po przeprowadzeniu k-pokoleniowej
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statystycznej procedury defektowania

〈N(k)〉 = (2p+ 3(1− p))k = (3− p)k. (5.50)

Wyrażenie (5.50) pozwala wyznaczyć wymiar fraktalny ds statystycznej struk-
tury fraktalnej mianowicie, z definicji

〈N(k)〉 = (3k)ds (5.51)

oraz z wyrażenia (5.50) wynika natychmiast, że

ds =
ln(3− p)
ln(3)

. (5.52)

Często interpretuje się równość (5.51) jako związek pomiędzy (bezwymiarową) ”ob-
jętością” stochastycznej struktury fraktalnej (lewa strona równania) a (bezwymia-
rową) ”masą” zawartą w niej w k-tym pokoleniu (prawa strona tegoż równania); jest
to wyrażniej widoczne poniżej. Oczywiście, statystyczna struktura fraktalna prze-
chodzi w deterministyczną tylko wtedy gdy p = 1; wówczas jej wymiar fraktalny
ds = ln(2)/ ln(3). Gdy p = 0 mamy do czynienia z drugim przypadkiem skrajnym
dotyczącym odcinka niezdefektowanego - wówczas ds = d(= 1) czyli wymiar samo-
podobny jest równy po prostu wymiarowi przestrzeni.

5.3.2 Różne sposoby defektowania struktur

Dalsze uogólnienie wzoru (5.50) jest związane ze sposobem defektowania czyli spo-
sobem w jaki dana struktura fraktalna została uzyskana ze struktury jednolitej oraz
minimalnym wymiarem przestrzeni w jakiej jest zanurzona. Na przykład, jeżeli za-
miast usuwać środkowy odcinek zastąpimy go ”daszkiem” złożonym z dwóch odcin-
ków, jak to pokazano na rys. 2(5.3), wówczas w poniższym wzorze m = +2 a nie −1
jak to ma miejsce dla zbioru Cantora (porównaj wyrażenie (5.50)). Zatem,

〈N(k)〉 = ((bd +m)p+ bd(1− p))k = (bd +mp)k = (bk)df , (5.53)

gdzie b stanowi wyjściową, liniową miarę wyjściowej, defektowanej struktury jed-
nolitej natomiast d jest minimalnym wymiarem Euklidesowym przestrzeni w której
zanurzona jest ta struktura Z trzeciej równoći w (5.53) otrzymujemy, że

df =
ln(bd +mp)
ln(b)

= d+
ln
(

1 + pm
bd

)

ln(b)
, (5.54)

bezpośrednie uogólnienie wzoru (5.52).
Wskazujemy na zależność oszacowania wielkości dolnego ograniczenia wymia-

ru samopodobnego df od stopnia statystycznego zdefektowania −pm/nd fraktalnej
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struktury samopodobnej. W tym celu korzystamy z wyrażenia (5.53) pozwalającego
zanalizować np. nierówność postaci

d− j < df =
ln〈N(k)〉
ln(L/l(k))

=
ln(nd − pm)
ln(n)

(< d), j = 1, 2, . . . , d, (5.55)

skąd otrzymujemy bezpośredni warunek na współczynnik statystycznego zdefekto-
wania

p
m

nd
< 1− 1

nj
, j = 1, 2, . . . , d. (5.56)

Postępując analogicznie w pozostałych przypadkach, czyli gdy df < d − j oraz
df = d− j, j = 1, 2, . . . , d− 1, otrzymujemy następujące zbiorcze wyrażenie

df







> d− j, dla pm/nd < 1− 1/nj, j = 1, 2, . . . , d
= d− j, dla pm/nd = 1− 1/nj, j = 1, 2, . . . , d− 1
< d− j, dla pm/nd > 1− 1/nj, j = 1, 2, . . . , d− 1.

Jak widać, wyrażenie 1 − 1/nj określa marginalne wartości współczynnika staty-
stycznego zdefektowania, dla których wymiar samopodobny jest liczbą naturalną. Z
powyższego wynika, że możliwe jest ”rośnięcie” w przestrzeni d wymiarowej struk-
tur d− 1 wymiarowych (gdy pm/nd = 1− 1/n), d− 2 wymiarowych (gdy pm/nd =
1 − 1/n2), itd., wreszcie struktur jednowymiarowych (gdy pm/nd = 1 − 1/nd−1) a
nawet subliniowych (o wymiarze mniejszym od 1 gdy pm/nd > 1− 1/nd−1).

5.4 Multifraktalność

Dalsze rozważania poprzedzimy wprowadzeniem pojęcia multifraktalności3. Multi-
fraktalność to coś więcej niż pojedyncza krytyczność gdyż dotyczy sytuacji, w której
obecne jest widmo (spektrum) wykładników fraktalnych, czyli wykładników krytycz-
nych zwanych singularnościami lub osobliwosciami. Istnienie widma osobliwości
jest właśnie sygnaturą multifraktalności. Pokażemy to na prostym, pouczają-
cym przykładzie bifraktalności, prowadzącym do potrzebnych uogólnień.
Dodajmy, że istnieją dwa istotnie różne źródła multifraktalności:

a) poszerzone, czyli gruboogonowe rozkłady o kształcie odbiegającym w central-
nej części od prawa potęgowego oraz

b) korelacje długozasięgowe lub długookresowe.

Wpływ obu przejawia się w sposób analogiczny, czyli poprzez uogólniony wykład-
nik Hursta. W istocie rzeczy temu wieloskalowemu wykładnikowi a stąd spektrum
singularności poświęcone są niniejsze rozważania.

3Multifraktalność i wielofraktalność traktujemy jak synonimy.
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5.4.1 Osobliwa gęstość niezmiennicza

Rozważmy przykład osobliwej ale całkowalnej gęstości niezmienniczej danej nastę-
pującą funkcją potęgową4

ρ(x) def.= (1− γ)x−γ , 0 < γ < 1, 0 ¬ x < 1. (5.57)

Można ją interpretować jako stacjonarną gęstość prawdopodobieństwa znalezienia
błądzącej cząsteczki (uwięzionej na odcinku [0, 1[) w punkcie x - będzie jeszcze o
tym mowa poniżej.
W dalszym ciągu podzielmy dziedzinę x na odcinki o niewielkiej długości l �

1; węzły tak przeprowadznej dyskretyzacji oznaczmy przez xj = (j − 1)l, j =
1, 2, . . . , N + 1 = 1

l
+ 1 � 1. Dla każdego odcinka [xj, xj+1[, j = 1, 2, . . . , N ,

wyznaczmy związane z nim prawdopodobieństwo

pj(l) =
∫ xj+1

xj
ρ(x)dx =

{

l1−γ dla j = 1
ρ(xj)l dla j ­ 2, (5.58)

przy czym drugi wzór (dla j ­ 2) jest przybliżony i tym dokładniejszy im mniejsza
jest wartość l. Pierwszego wzoru nie da się przedstawić w analogicznej postaci, gdyż
w punkcie x1 gęstość ρ ma osobliwość (nieanalityczną rozbieżność). Właśnie ten
aspekt w istotny sposób odróżnia oba wzory.
Obliczmy teraz sumę statystyczną5 (zwaną też funkcją rozdziału lub podziału).

Można powiedzieć, że multifraktalność tkwi korzeniami w fizyce statystycznej a do-
kładniej bierze swój początek właśnie w funkcji rozdziału. To własności tej funkcji
mogą narzucić wieloskalowy, multifraktalny charakter analizowanych układów. Ob-
liczmy teraz sumę statystyczną dla naszego przykładu,

Zq =
N∑

j=1

[pj(l)]q =

[
∫ l

0
ρ(x)dx

]q

+
N∑

j=2

[ρ(xj)l]
q

≈ l(1−γ) q + lq−1
∫ 1

l
[ρ(x)]qdx

= l(1−γ) q +
(1− γ)q
1− γq

(

1− l1−γq
)

lq−1

= [1− a(q)]l(1−γ) q + a(q)lq−1, 0 ¬ a(q) def.= (1− γ)
q

1− γ q ¬ 1. (5.59)

Można ją interpretować jako (stacjonarne) prawdopodobieństwo znalezienia q błą-
dzących cząsteczek (uwięzionych na odcinku [0, 1[) w jakiejkolwiek komórce (o roz-

4W istocie rzeczy, przykład ten został zaczerpnięty z książki: H. G. Schuster: Deterministic
Chaos. An introduction, second revised edition, VCH Verlagsgesellschaft, Weinheim 1988 (istnieje
tłum. polskie). Przy okazji, przykład ten uogólniono i poprawiono, usuwając występujące tam
usterki.
5Związek sumy statystycznej Zq danej wzorem (5.59) z tą dobrze znaną, stanowiącą podstawę

termodynamiki statystycznej podamy w dalszej części.
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miarze l). Interpretacja ta jest przydatna przy określeniu całek korelacyjnych po-
zwalających na alternatywne przedstawienie sumy statystycznej6.
Podział sumy statystycznej na dwa skladniki wynika z faktu, że mamy tutaj do

czynienia tylko z jedną osobliwością gęstości niezmieniczej (i resztą nieosobliwą).
Obie nierówności w (5.59) określające przedział dozwolonych wartości q narzu-

cają na nią istotne ograniczenia, mianowicie: 0 ¬ q ¬ 1∪∞, niezależnie od wartości
γ spełniającej obie nierówności w (5.57); w przeciwnym razie czynnika przedwy-
kładniczego a(q) nie można byłoby interpretować jako wagi, potrzebnej w dalszych
rozważaniach.
Jak widać,

a) Zq→0 = 1l (= N), czyli określa rozmiar nośnika (w jednostkach długości l).

b) Ponadto Zq→1 = 1, co oznacza, że powyższa procedura nie naruszyła norma-
lizacji prawdopodobieństwa - jest to zasadniczy warunek jaki został na nią
nałożony.

c) Wreszcie, Zq→∞ ≈ l(1−γ) q, gdyż a(q →∞)→ 0.

Wszystkie te własności są wykorzystywane poniżej do scharakteryzowania multi-
fraktalności.
Zauważmy, że równanie (5.59) można przepisać w postaci

Zq ≈
∫

ρ̂(α) lαq
1

lf(α)
dα =

∫

ρ̂(α) exp {− [α q − f(α)] | ln l |} dα, (5.60)

pozwalającej na istotne uogólnienie.
Wprowadziliśmy gęstość prawdopodobieństwa

ρ̂(α) def.= (1− a(q))δ(α− (1− γ)) + a(q)δ(α− 1) (5.61)

występowania (tutaj tylko dwóch wartości) singularności α = α1 i α = α2 skalu-
jących prawdopodobieństwa, odpowiednio p1 i pj, j ­ 2 (patrz wyrażenie (5.58)),
przy czym pierwsza singularność, α1 = 1− γ, dotyczy pierwszego przedziału x, tzn.
odcinka [0, l[, natomiast druga, α2 = 1, pozostałych 1l −1 przedziałów, czyli odcinka
[l, 1[. Singularności te można traktować jak lokalne wymiary fraktalne (Hausdorffa)
określające ”objętości” lαj , j = 1, 2, lokalnych obszarów fraktalnych definiujących
odpowiadające im prawdopodobieństwa p1 oraz pj(­ 2). Przejście od sumowania po
j we wzorze (5.59) do całkowania po singularnościach α we wzorze (5.60) wymagało
jeszcze wprowadzenia gęstości liczbowej 1/lf(α), gdzie

f(α) =

{

0 dla α1(= 1− γ)
1 dla α2(= 1).

(5.62)

6To alternatywne przedstawienie wynika wprost z definicji prawdopodobieństwa pj(l) znale-
zienia zmiennej x (elementu szeregu czasowego) w otoczeniu xj o rozmiarze l danego wzorem
pj(l) = 1

N

∑

iΘ(l− | xi − xj |), gdzie funkcja Θ(. . .) oznacza thetę Heaviside’a.
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Gęstość ta mówi nam jaka jest krotność singularności α, czyli ile obszarów fraktal-
nych jest scharakteryzowanych taką właśnie (jednakową) singularnością7. Zauważ-
my, że f(α) można traktować jak wymiar fraktalny (Hausdorffa, związany z sin-
gularnością α), mówiący jak skaluje się wspomniana gęstość liczbowa. Oczywiście,
w ogólności α 6= f(α). Funkcja f(α) to właśnie nic innego jak poszukiwane
spektrum singularności (widmo osobliwości).
Wyrażenie (5.60) można przepisać (wykorzystując (5.61) i (5.64)) w postaci

Zq ≈ [1− a(q)]lα1 q−f(α1) + a(q)lα2 q−f(α2), (5.63)

czyli sumy ważonej (superpozycji) określającej współistnienie dwóch monofraktali.
Jednakże, dla skrajmych wartości q wyrażenie to redukuje się do następującego:

Zq ≈
{

lα1 q−f(α1) dla q →∞
lα2 q−f(α2) dla q → 1 lub q → 0. (5.64)

Definiuje ono bifraktal na trzypunktowym nośniku q, czyli dla q = 0, 1, ∞. Jak
widać bifraktal stanowi tutaj obiekt graniczny dla dwóch zsuperponowa-
nych monofraktali.
Dzięki przedstawionej powyżej interpretacji poszczególnych czynników w funk-

cji podcałkowej wyrażenia (5.60), można je traktować jako ogólne, niezależne od
konkretnej postaci gęstości niezmienniczej ρ. Zatem, całe wyrażenie (5.60) można
przyjąć jako ogólną (całkową) postać sumy statystycznej Zq. W naszym przypadku
mamy (jak widać) do czynienia jedynie z bifraktalem, gdyż spektrum singularności
(5.64) jest tutaj dwupunktowe. W ogólności spektrum to może być jednopunkto-
we (wtedy mamy do czynienia z monofraktalem zwanym też po prostu fraktalem)
poprzez dwu- i przeliczlnie punktowe aż po widmo ciągłe. Patrząc całościowo, moż-
na powiedzieć, że połączona gęstość liczbowa ρ̂(α) 1

lf(α)
dα określa ile razy relacja

skalowania pj(l) ≈ lαj zawiera się w sumie
∑N
j=1 pj(l)

q.
W dalszym ciągu rozważamy już sytuację ogólną, dla której wyznaczamy (uprosz-

czamy) całkę (5.60) za pomocą Metody Punktu Siodłowego (przedstawionej w Do-
datku C), czyli przybliżamy ją za pomocą wiodącej składowej związanej z pewną
szczególną wartością α = α∗(q). Jest to możliwe do przeprowadzenia w przypadku
wolnozmienniej gęstości prawdopodobieństwa ρ̂(α). Oczywiście, stosowanie tej me-
tody do naszego konkretnego przykładu nie jest ani możliwe ani potrzebne (mamy
tutaj α1 = α∗(q =∞) oraz α2 = α∗(q = 0) = α∗(q = 1)).

5.4.2 Wymiary uogólnione Rényi’ego

Wspomnianą w poprzednim rozdziale szczególną wartość α∗(q) dotyczącą sytuacji
ogólnej definiujemy jako punkt, w którym funkcja αq − f(α) posiada minimum ze
7Ściślej rzecz biorąc, w przypadku α = α2 = 1 wspomniana krotność wynosi 1l − 1. Jednakże,

1
l � 1, co w pełni usprawiedliwia przyjętą (nieco uproszczoną) formułę na wspomnianą powyżej
gęstość liczbową.
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względu na zmienną α. Pełni ona rolę funkcji F (x) stojącej we wzorze (C.1) (rolę
zmiennej x pełni teraz zmienna α a parametru N wielkość | ln l |). Oczywiście, użycie
Metody Punktu Siodłowego jest możliwe, gdy wspomniane minimum istnieje a sama
funkcja daje się w jego otoczeniu (przynajmniej z grubsza) przybliżyć za pomocą
wielomianu drugiego stopnia. Zatem, korzystając ze wzoru (C.1) otrzymujemy

Zq ≈ A(α∗) lα
∗(q)q−f(α∗(q)) = A(α∗) exp {− [α∗(q)q − f(α∗(q))] | ln l |}, (5.65)

gdzie zależność α∗ = α∗(q) uzyskuje się z warunku istnienia ekstremum dla danego q,
czyli f ′(α∗(q)) = q; warunek f ′′(α∗(q)) > 0 definiujący minimum jest nam potrzebny
poniżej. Ponadto, wolnozmienny współczynnik

A(α∗(q)) = ρ̂(α∗(q))

√

2π
f ′′(α∗(q)) | ln l | . (5.66)

jest iloczynem szczególnej wartości ρ̂(α∗) oraz odwrotności współczynnika normali-
zacji, jako pozostałość po zastosowaniu Metody Punktu Siodłowego.
W naszym przykładzie związek pomiedzy α∗ oraz q uzyskujemy na innej drodze,

gdyż spectrum singularności nie jest u nas różniczkowalne. Podkreślmy, że przed-
stawione powyżej podejście jest możliwe do zastosowania tylko w przypadku wol-
nozmiennej zależności ρ̂(α) oraz jej ograniczenia od góry a także | ln l | na tyle
dużego aby całka gaussowska była wystarczajaco dobrym przybliżeniem delty Dira-
ca. W przypadku naszego przykładu nie ma potrzeby stosowania Metody Punktu
Siodłowego ponieważ całkę (5.60) daje się (niemal) ściśle obliczyć bezpośrednim
rachunkiem.
W dalszym ciągu wprowadzamy nadzwyczaj ważny uogólniony wykładnik wie-

loskalowy

τ(q) = α∗(q)q − f(α∗(q)), (5.67)

jako (ujemne) przekształcenie Legendre’a widma osobliwości f(α∗(q)). Stąd, uogól-
niony wymiar Rényi’ego Dq połączony jest z uogólnionym wykładnikiem τ(q) za
pomocą relacji

τ(q) = (q − 1)Dq (5.68)

oraz suma statystyczna

Zq = A(α∗(q)) exp(−τ(q) | ln l |) = A(α∗(q)) exp(−(q − 1)Dq | ln l |)
⇔ −Iq = Cq +Dq | ln l |, (5.69)

gdzie informacja Rényi’ego

Iq =
lnZq
q − 1 . (5.70)
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Co więcej, zredukowana informacja Rényi’ego8 wynosi

Cq = − lnA(α∗(q))/(q − 1) (5.71)

i jest niezależna od l. Zatem, dla dostatecznie małego l otrzymujemy z (6.192) -
(5.71) popularne wyrażenie na uogólniony wymiar Rényi’ego

Dq ≈ −
Iq
| ln l | =

Sq
| ln l | , (5.72)

gdzie nieaddytywna entropia Rényi’ego

Sq
def.= −Iq. (5.73)

Jak widać, im mniej jest dostępnej informacji w układzie (czyli im większy jest w
układzie nieporządek) tym entropia układu jest większa. Entropia ta dała początek
termodynamice nieekstensywnej, opisującej układy w których oddziaływanie pomię-
dzy jego elementami jest długozasięgowe9.
Przy okazji zwróćmy uwagę, że Sq→1(= −Iq→1) jest entropią informacyjną Shan-

nona. Aby to dostrzec, przedstawmy sumę

N∑

j=1

p
1+(q−1)
j =

N∑

j=1

pj exp((q − 1) ln pj) ≈
N∑

j=1

pj(1 + (q − 1) ln pj)

= 1 + (q − 1)
N∑

j=1

pj ln pj. (5.74)

Stąd, z (5.70) oraz z definicji entropii Sq→1 otrzymujemy poszukiwaną zależność

Sq→1 = − lim
q→1

1
q − 1 ln



1 + (q − 1)
N∑

j=1

pj ln pj



 = −
N∑

j=1

pj ln pj, (5.75)

często też używaną w termodynamice (a nie tylko w teorii informacji).
Wróćmy teraz do naszego przykładu i zbudujemy tabelę 5.1 wielkości charaktery-

zujących rozważany bifraktal. Widać (bez stosowania Metody Punktu Siodłowego),
że tylko trzy wartości q pozwalają uzyskać nasze dwupunktowe spektrum singular-
ności. Są to te wartości q, o które nam chodziło. Zauważmy, że wartości w drugim
wierszu tabeli 5.1 występują dla dwóch różnych q - częściowo była już o tym mowa
w rozdz. 5.4.1.
8Ponieważ w dalszej części nie zajmujemy się już zredukowaną informacją Rényi’ego, dlatego

nie dbamy tutaj o właściwy dobór czynnika normalizacyjnego, który wchodzi jedynie do Cq .
9W tym kontekście szczególnie polecane są następujące prace: Dynamics and Thermodynamics

of Systems with Long-Range Interactions, T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens
(Eds.), Springer-Verlag, Berlin 2002 oraz C. Tsallis, Nonadditive entropy and nonextensive stati-
stical mechanics - An overview after 20 years, Braz. J. Phys. 39 (2009), 337.
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Tabela 5.1: Zasadnicze wielkości charakteryzujące bifraktal

Dq α∗(q) f(α∗(q))
q →∞ (1− γ) q

1−q → 1− γ 1− γ 0
q → 0, 1 1 1 1

5.4.3 Konstrukcja widma osobliwości

Wprowadzimy teraz dodatkowe własności ułatwiające konstrukcję widma osobliwo-
ści.

a) Z transformacji Legendre’a (5.67) wynika, że skoro uogólniony wykładnik τ(q)
jest ujemną transformacją Legendre’a widma osobliwości f(α∗) to i odwrot-
nie, widmo osobliwości jest ujemną transformacją Legendre’a uogólnionego
wykładnika. Ma to swoje konsekwencje w postaci następującej zależności:
α∗(q) = dτ(q)

dq
⇔ q = df(α∗)

dα∗
. W dalszym ciągu możemy przyjąć, że spełnio-

ne są obie równości.

b) Ponadto, z transformacji Legendre’a (5.67) oraz wyrażenia (6.192) wynika10,
że τ(q = 1) = 0⇔ f(α∗(q = 1)) = α∗(q = 1) oraz df(α∗)

dα∗
= 0 dla α∗(q = 0).

c) Kolejna własność dotyczy wartości brzegowych widma osobliwości αmin oraz
αmax. Mianowicie, korzystając z pierwszego równania w (5.59) oraz (5.70) i
(5.72) otrzymujemy potrzebny wzórDq ≈ 1

ln l
1
q−1 ln

∑N
j=1[pj(l)]

q. Stąd,Dq→∞ ≈
1
ln l

1
q−1 ln[pmax(l)]

q = q
q−1 α

∗
min → αmin, gdzie przy wyprowadzeniu przedostat-

niej równości skorzystaliśmy z zależności pj(l) ≈ lαj , przy czym dla wystarcza-
jąco dużych wartości q w sumie pozostała jedynie minimalna wartość wykład-
nika αj = α∗min. Analogiczne rozważania można przeprowadzić dla q → −∞.
Wówczas, dominującym wyrazem w sumie jest [pj(l)]q ≈ lα

∗
max q co prowa-

dzi do Dq→−∞ ≈ α∗max. Zatem, widomo osobliwości zawiera się w przedziale
[α∗min, α

∗
max].

d) Jak wynika z własności przedstawionej w punkcie a), pochodne na brzegu no-
śnika widma osobliwości są nieograniczone: df(α

∗)
dα∗
|α∗min=∞ oraz

df(α∗)
dα∗
|α∗max=

−∞.

Dzięki własnościom a) - d) mogliśmy przedstawić schematycznie na rysunku 5.5
kształt widma osobliwości f(α∗). Przy okazji można było również przedstawić sche-
matyczny wykres D(q) (patrz rysunek 5.6).

10Milcząco założyliśmy, że mamy tutaj do czynienia z ograniczonym wymiarem informacyjnym
Rényi’ego Dq→1.
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Rysunek 5.5: Schematyczny wykres widma osobliwości.
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Rysunek 5.6: Schematyczny wykres wymiarów Rényi’ego Dq.
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Tabela 5.2: Przyporządkowania wielkości multifraktalnych termodynamicznym

Multifraktal Termodynamika
q β
| ln l | V

α∗(q) Uβ
V

τ(q) β
Fβ
V

f(α∗(q)) Sβ
V

cN(q) cV (β)

5.4.4 Związek multifraktalności z termodynamiką

Analizę związku multifraktalności z klasyczną termodynamiką stanów równowago-
wych rozpoczniemy od zwrócenia uwagi na analogię pomiędzy energią swobodną
właściwą, Fβ/V , układu termodynamicznego a uogólnionym wykładnikiem τ(q).
Mianowicie,

β
Fβ
V
≡ τ(q), (5.76)

gdzie odpowiednikiem wielkości β = 1/T (czyli odwrotności temperatury) jest q
natomiast odpowiednikiem (makroskopowej) objętości układu V jest N =| ln l |.
Zauważmy, że dzięki transformacji Legendre’a możemy powiązać energię właściwą
układu oraz jego entropię właściwą, S/V , właśnie z energią swobodną właściwą tego
układu, tzn.

β
Fβ
V
= β

Uβ
V
− Sβ
V
≡ τ(q) = qα∗(q)− f(α∗(q)). (5.77)

Powyższa odpowiedniość ma miejsce dzięki transformacji Legendre’a (5.67), która
pozwoliła na dwa kolejne przyporządkowania (obok podanego powyżej (5.76)),

Uβ
V
≡ α∗(q) oraz Sβ

V
≡ f(α∗(q)). (5.78)

Wszystkie przyporządkowania zostały zebrane w tabeli 5.2. Dodatkowo zamieści-
liśmy multifraktalny odpowiednik, cN , ciepła właściwego przy stałej objętości cV ,
który można uzyskać właśnie dzięki wcześniejszemu przyporządkowaniu energii swo-
bodnej właściwej uogólnionemu wykładnikowi.

5.5 Statystyczne struktury multifraktalne

Powyższe rozważania można rozszerzyć na statystyczne struktury multifraktalne -
statystyczność, skończona liczba pokoleń oraz multifraktalność to podstawowe wła-
sności przypisywane wielu realnym strukturom. Multifraktale wprowadzimy teraz w
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najprostszy znany nam sposób a mianowicie, uśredniając po k wielkość 〈N(k)q−1〉 z
jakąś stosunkowo prostą wagą, gdzie q jest (na razie) dowolnym rzeczywistym wy-
kładnikiem potęgi. Średniowanie to oznacza, że poszczególne pokolenia odcinków
zostały rozmieszczone na podłożu zgodnie ze wspomnianą powyżej wagą - wyjaśnia-
my to dokładniej poniżej. Innymi słowy, multifraktalność wydobywamy tutaj dla
dwumianowej statystycznej kaskady.
Wprowadźmy wagę w postaci najprostszego z możliwych rozkładów, czyli w po-

staci delty Kroneckera

w(k) = δk,k∗ (5.79)

mówiącej z jakim prawdopodobieństwem obserwator może wylosować pokolenie k
w zespole statystycznym przygotowanych już wcześniej statystycznie zdefektowa-
nych struktur (np. odcinków ze zbioru Cantora). Zdajemy sobie sprawę, że realnie
rzecz biorąc taka waga nie powinna znikać na zbiorze liczb natauralnych, mając np.
postać dyskretnego rozkładu Gaussa centrowanego w punkcie k∗. Rozkład (5.79)
stanowi jego graniczny przypadek (o znikającej wariancji). Na szczęście, powyższe
uproszczenie nie niszczy multifraktalności, znacząco upraszczając rachunki.
Zatem, wyrażenie na moment rzędu q − 1 średniej liczby odcinków jaką uzy-

skano w pokoleniu k w wyniku procedury defektowania (kantoryzacji) odcinków z
pokolenia wcześniejszego k − 1 wynosi

〈〈N(k)q−1〉〉 =
∞∑

k=1

w(k)〈N(k)q−1〉 = exp(k∗G(k∗)) = ετ(q), (5.80)

gdzie ε = nk
∗
i

G(k∗) = ln
(

p
(

nd ∓m
)q−1
+ (1− p)nd(q−1)

)

, (5.81)

oraz

τ(q) = (q − 1)D(q) (5.82)

co wynika z bezpośredniego uogólnienia wyrażeń (5.53) i (5.54); tutaj wymiary
Rényi’ego

D(q) =
ln
(

p
(

nd ∓m
)q−1
+ (1− p)nd(q−1)

)

(q − 1) ln(n) (5.83)

oraz uogólniony (wieloskalowy) wykładnik Hursta, h(q), łączy się z uogólnionym
wykładnikiem wieloskalowym za pomocą zależności

τ(q) = qh(q)− 1, (5.84)
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gdzie

h(q) = 1 +
ln
(

p
(

nd ∓m
)q−1
+ (1− p)nd(q−1)

)

q ln(n)
. (5.85)

Zauważmy, że dla q = 1 wyrażenie (5.80) przyjmuje wartość równą 1, co pozwala
(ze względu na jego budowę) na utożsamienie go z funkcją rozdziału dla dowolnego
q. Zatem,

Zq = 〈〈N(k)q−1〉〉. (5.86)

Przy okazji widać, że D(q = 2) =
ln(nd∓m)
ln(n)

, co stanowi zwykły wymiar fraktalny
struktury statystycznej (porównaj wzory (5.53) i (5.54)).
Stąd,

η(q) =
dτ(q)
dq
=
1
ln(n)

p
(

nd ∓m
)q−1
ln
(

nd ∓m
)

+ (1− p)nd(q−1) ln
(

nd
)

p (nd ∓m)q−1 + (1− p)nd(q−1)
. (5.87)

Zatem, korzystając z transformacji Legendre’a, otrzymujemy

f(η(q)) = qη(q)− τ(q) = q

ln(n)

p
(

nd ∓m
)q−1
ln
(

nd ∓m
)

+ (1− p)nd(q−1) ln
(

nd
)

p (nd ∓m)q−1 + (1− p)nd(q−1)

−
ln
(

p
(

nd ∓m
)q−1
+ (1− p)nd(q−1)

)

ln(n)
. (5.88)

Widać, że

f(η(q = 1)) = η(q = 1) oraz
df(η)
dη
|η(q=1)= 1, (5.89)

co stanowi warunek (wystarczający i konieczny) transformacji kontaktowej, jaką jest
transformacja Legendre’a. Ponadto,

f(η(q = 0)) = −τ(q = 0) = D(q = 0) oraz df(η)
dη
|η(q=0)= 0. (5.90)

Niestety, chociaż wyrażenia (5.82), 5.83), (5.87) i (5.88) udało się wyprowadzić
w postaci analitycznej, to jakże ważną zależność f(η) musimy uzyskać na drodze
numerycznej - zrobimy to w oparciu o wzory (5.87) i (5.88).
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5.5.1 Statystyczna kantoryzacja masy

Skoncentrujmy sie teraz na odcinkach, w liczbie 2k, pozostawionych po usunięciu z
prawdopodobieństwem p wszystkich pozostałych 2k+1−1 odcinków. Przypuśćmy, że
te pozostawione odcinki posiadają równomiernie rozłożoną masę, przy czym w każ-
dym pokoleniu k = 1, 2, 3, . . ., całkowita masa wtych wszystkich nie ulega zmianie w
stosunku do masy wyjściowej równej (dla prostoty) 1, tzn. obowiązuje tutaj prawo
zachowania masy. Oczywiście, zamiast masy możemy mówić o ładunku elektrosta-
tycznym, namagnesowaniu, biomasie, itd, itp. Zachowanie masy oznacza, że masę
usuniętych odcinków przekazujemy tym pozostałym.
Najpierw, odpowiemy na pytanie jak średnia masa, 〈µk−1〉, odcinka w pokoleniu

k − 1 skaluje się z jego długością
(
1
3

)k−1
. Korzystając z definicji średniej masy,

możemy napisać

〈µk−1〉 = p
(1
2

)k−1
+ (1− p)

(1
3

)k−1
=
(1
3

)(k−1)D(k)
=
(1
3

)τ(k)

. (5.91)

Jak widać, mamy tutaj w ogólności, doczynienia z wieloskalowym wykładnikiem
skalowania τ(k) zależnym od pokolenia. Jednak, w skrajnym przypadku p = 1 otrzy-
mujemy D(k) = ln 2

ln 3
niezależnie od k.

Wyrażenie (5.91) pozwala na zadefiniowanie funkcji rozdziału dla tego problemu
poprzez następujące przyporządkowanie

Zk = 〈µk−1〉, k = 1, 2, 3, . . . . (5.92)

Przyporządkowanie to usprawiedliwia następującą definicję wieloskalowego wykład-
nika skalowania

τ(k) = (k − 1)D(k), (5.93)

gdzie

D(k) = −
ln
(

p(nd ∓m)−(k−1) + (1− p)n−d(k−1)
)

(k − 1) lnn , (5.94)

przy czym, w naszym przypadku d = 1, n = 3 natomiast ∓m = −1. Jak widać,
powyższe wyrażenie jest uogólnieniem na d-wymiarowy i ∓m defektowany zbiór
Cantora. Stąd singularność,

η(k) =
dτ(k)
dk
=
1
lnn

p
(

nd ∓m
)−(k−1)

ln
(

nd ∓m
)

+ (1− p)n−d(k−1) ln
(

nd
)

p (nd ∓m)−(k−1) + (1− p)n−d(k−1)
(5.95)

oraz widmo singularności

f(η(k) = kη(k)− τ(k)
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=
k

lnn

p
(

nd ∓m
)−(k−1)

ln
(

nd ∓m
)

+ (1− p)n−d(k−1) ln
(

nd
)

p (nd ∓m)−(k−1) + (1− p)n−d(k−1)

+
ln
(

p(nd ∓m)−(k−1) + (1− p)n−d(k−1)
)

lnn
, (5.96)

stanowiące kontaktową transformację Legendre’a.

Statystyczne diabelskie schody

Jako ciekawostkę podamy prosty przepis na zbudowanie tzw. diabelskich schodów w
pokoleniu k, bazujący na opisamej powyżej staystycznej kantoryzacji masy.

5.6 Multifraktalna Analiza Fluktuacji
Detrendowanych

Koncepcja skalowania multifraktalnego posłużyła fizykom do konstrukcji niezwy-
kle ważnej i szeroko już dzisiaj stosowanej metody zwanej Multifraktalną Analizą
Fluktuacji Detrendowanych (ang. Multifractal Detrended Fluctuation Analysis, MF-
DFA). Została ona tutaj podzielona na pięć etapów, ułatwiających jej algorytmiza-
cję.

Etap wstępny: definicja szeregu czasowego

Niech rozważany szereg czasowy {xk}Nk=1 składa się z 1 ¬ N ¬ ∞ elementów (liczb)
indeksowanych dyskretnym wskaźnikiem k, przy czym dopuszczona jest możliwość
znikania elementów szeregu wewnątrz przedziału czasowego, tzn. dla 2 ¬ k ¬ N−1.
Jak widać, analizuje się tutaj jedynie wartości szeregu traktując czas jako zdyskrety-
zowany, czyli na sposób stałokrokowy. Przykladowym szeregiem jest tutaj minutowy
WIG z Warszawskiej GPW (patrz rysunek 5.7).

Etap pierwszy: konstrukcja profilu szeregu

Zdefiniujemy profil szeregu jako skumulowaną, centrowaną zmienną losową postaci:

Y (i) =
i∑

k=1

(xk − 〈x〉), i = 1, 2, . . . , N, (5.97)

gdzie 〈x〉 jest estymatą wartości oczekiwanej szeregu czasowego. W dalszym ciągu
zbiór zmiennych losowych (profili) {Y (i)}Ni=1 będzie traktowany jako nowy szereg
czasowy a sama zmienna jako formalne przemieszczenie po i-krokach czasowych
hipotetycznej ”mrówki” finansowej (stanowiącej odpowiednik błądzącej molekuły).
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Rysunek 5.7: Minutowy WIG z Warszawskiej GPW przedstawiony (przykładowo)
od początku października 1999 do końca czerwca 2006.
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Etap drugi: konstrukcja substratu

Podzielimy przedział czasu [1, N ] na Ns = int(N/s) nieprzekrywających się segmen-
tów o jednakowym rozmiarze11 s. Ponieważ najczęściej rozmiar s jest niewspółmierny
z N więc część segmentu o rozmiarze N − sNs mniejszym od s pozostaje. Aby nie
odrzucać tej części budujemy kolejnych Ns segmentów o rozmiarze s, ale przeliczamy
je od końca do początku (czyli od N do 1) a nie jak poprzednio od 1 do N . W ten
sposób dysponujemy substratem o dwukrotnie większej liczbie segmentów równej
2Ns (wciąż o jednakowym rozmiarze s).

Etap trzeci: eliminacja lokalnych trendów

W każdym spośród 2Ns segmentów trend jest przybliżany za pomocą wielomianu wm
ν

ustalonego stopnia m = 1, 2, . . ., jednakowego dla wszystkich segmentów ν i takiego,
że m ¬ s − 2 (w przeciwnym razie nie byłoby możliwe wyznaczenie wszystkich
współczynników tego wielomianu). Współczynniki tego wielomianu wyznacza się
metodą najmniejszych kwadratów minimalizując wariancję

F 2(ν, s) =
1
s

s∑

i=1

{Y [(ν − 1)s+ i]− wm
ν (i)}2, (5.98)

dla każdego segmentu ν = 1, 2, . . . , Ns, z osobna; dla każdego z pozostałych Ns

segmentów, ν = Ns + 1, . . . , 2Ns, minimalizowana jest (odpowiednia) wariancja

F 2(ν, s) =
1
s

s∑

i=1

{Y [N − (ν −Ns)s+ i]− wm
ν (i)}2. (5.99)

Często, stopień wielomianu m pojawia się dodatkowo w (bardziej szczegółowej) na-
zwie metody mianowicie, MF-DFAm. W ten sposób możemy mówić o metodzie
pierwszorzędowej (liniowej) MD-DFA1, drugorzędowej MF-DFA2, trzeciorzędowej
MF-DFA3, itd. Stabilizowanie się wyników uzyskanych metodami o różnych rzędach
dostarcza informacji o rzędzie trendu (czyli o najniższym rządzie metody, licząc od
którego widmo lokalnych wykładników (osobliwości) nie ulega już zmianie). Niestety,
to stabilizowanie się widma osobliwości można otrzymać w zasadzie tylko na drodze
numerycznej, dedykowanej każdemu rozpatrywanemu multifraktalowi z osobna.

Etap czwarty: funkcja fluktuacyjna

Funkcja fluktuacyjna, którą w dalszym ciągu będziemy nazywać funkcją q-fluktuacyjną
zdefinowana została w następujący sposób:

Fq(s) = 〈[F 2(s)]q/2〉1/q, (5.100)

11Mówiąc o rozmiarze mamy na myśli liczbę punktów.
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gdzie średnią 〈. . .〉 zdefiniowano następująco:

〈[F 2(s)]q/2〉 = 1
2Ns

2Ns∑

ν=1

[F 2(ν, s)]q/2, (5.101)

przy czym q jest tutaj liczbą rzeczywistą różną od zera (do tego przypadku powró-
cimy jeszcze w dalszej części). Naszym zasadniczym celem jest znalezienie
zależności funkcji q-fluktuacyjnej od wielkości przedziału s dla różnych
wartości q.

Etap piąty: skalowanie funkcji q-fluktuacyjnej

Jesteśmy zainteresowani potęgową zależnością funkcji q-fluktuacyjnej od s tzn. za-
leżnością postaci,

Fq(s) ∼ sh(q), (5.102)

gdzie h(q) jestw tzw. uogólnionym wykładnikiem Hursta. Z tego typu zależnością
mamy do czynienia np. wtedy gdy szereg czasowy {xk}Nk=1 wykazuje długookresowe
korelacje (a więc zanikające na sposób potęgowy). Na rysunku 5.8 sprawdzono za-
leżność (5.102) w oparciu o wspomniany wcześniej minutowy WIG. Tak uzyskaną
zależność uogólnionego wykładnika Hursta od q przedstawiono na kolejnym rysunku
5.9.
Dla kompletności na rysunku 5.10 przedstawiono zależność uogólnionego wy-

kładnika τ od q dla minutowego WIG. Wykladnik ten został zdefiniowany wzorem

τ(q) def.= q h(q)− 1. (5.103)

Tym samym, wykładnik ten kalibruje się następująco: τ(q = 0) = −1 (patrz rysunek
5.11). Wreszcie, dysponując uogólnionym wykładnikiem τ(q) można było wyznaczyć
widmo osobliwości (patrz rozdz. 5.4.3) - przedstawiono je na rysunku 5.12.
Zwróćmy uwagę, że otwartym pozostaje pytanie o związek definicji (5.103)

z uogólnionym wykładnikiem (5.67) (patrz rozdz. 5.4.2). Do zagadnienia te-
go przechodzimy w kolejnym rozdziale.

5.6.1 Związek funkcji fluktuacyjnej z sumą statystyczną
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Rysunek 5.8: Zależność funkcji fluktuacyjnej od szerokości przedziału dyskretyza-
cji s dla sześciu przykładowo wybranych wartości q dla wspomnianego wcześniej
minutowego WIG.
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Rysunek 5.9: Zależność uogólnionego wykładnika Hursta od q dla minutowego WIG.
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Rysunek 5.10: Zależność uogólnionego wykładnika τ od q dla minutowego WIG.
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Rysunek 5.11: Zależność uogólnionego wykładnika τ od q dla minutowego WIG w
zakresie −3 ¬ q ¬ 3, czyli znacznie zawężonym w stosunku do przedstawionego na
rysunku 5.10.
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Rysunek 5.12: Zależność widma osobliwości f od singularności α dla minutowego
WIG w zakresie 0.35 ¬ α ¬ 0.85.
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Rozdział 6

Transport dyspersyjny -
doświadczenia Sharfe’a, Gilla i
Pfistera

Piękne doświadczenie, w którym zaobserwowano anomalny, dyspersyjny transport
zostało wykonane po raz pierwszy w roku 1970 przez M.E. Sharfe’a (”Transient
Photoconductivity in Vitreous As2Se3”, Phys. Rev. B 2, 5025–5034); w roku 1974
G.Pfister podjął dalsze badania nad tym związkiem, analizując zależność anomal-
nego transportu od ciśnienia przyłożonego do próbki (”Pressure-Dependence Elec-
tronic Transport in Amorphous As2Se3”, Phys. Rev. Lett. 33, 1474–1477). Obaj
autorzy badali zależne od częstości fotoprzewodnictwo w amorficznym αAs2Se3, mie-
rząc zanikanie w czasie fotoprądu wywołanego krótkotrwałym impulsem świetlnym.
Układ pomiarowy przedstawiono schematycznie na rys.6.1. Jak widać, jego zasadni-
czym elementem jest próbka zbudowana ze wspomnianego powyżej światłoczułego
półprzewodnika o przewodnictwie dziurowym umieszczona pomiędzy dwiema elek-
trodami, z których jedna (złota) jest półprzezroczysta; jej impulsowe oświetlenie
pozwala na wygenerowanie w próbce przewodzących dziur które, dzięki przyłożonej
do elektrod (niewielkiej) różnicy potencjałów, wędrują do przeciwnej elektrody, da-
jąc zanikający w czasie prąd dziurowy - natężenie tego prądu I(t) jest mierzone w
funkcji czasu. Wynik (w skali ln− ln) przedstawiono na rys.6.2 - widać dwa różne
obszary potęgowej zależności prądu od czasu.

Dla porównania na rys.6.3 (górna część) zamieszczono zależność pokazującą za-
nikanie prądu dla sytuacji normalnej, gdy dyfuzja i dryf opisana jest biegnącym roz-
kładem Gaussa. Dolna część rysunku dotyczy rozkładu Pareto-Lévy’ego i jest przez
nas omawiana poniżej. Warto dodać, iż otrzymany efekt ma charakter ogólniejszy a
mianowicie, w 1972 roku W.D.Gill (J.Appl.Phys. 43, 5033–5040) zaobserwował go
także dla organicznego kompleksu trinitrofluorenone i poly-n-vinylcarazole. Jednym
z zasadniczych celów niniejszego wykładu jest wyjaśnienie zaobserwowanego efektu,
który jest kluczowym dla zrozumienia tzw. dyfuzji anomalnej.
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Rysunek 6.1: Schematyczny układ elektryczny do pomiaru relaksacji fotoprądu w
amorficznych filmach.

6.1 Błądzenie w czasie ciągłym

W niniejszym rozdziale przedstawiamy model skokowego błądzenia pojedynczego
atomu w czasie ciągłym; różni się on od poprzednio omawianych prostszych modeli,
które były asymptotycznie równoważne modelowi skokowego błądzenia atomu w
czasie dyskretnym. Rozważamy dwie sytuacje:

1) pod nieobecność zewnętrznego pola (potencjał ten przedstawiono schematycz-
nie na rys. 6.4),

2) w obecności zewnętrznego pola (potencjał ten przedstawiono schematycznie
na rys. 6.5) wywołującego dryf.

To właśnie wprowadzenie formalizmu matematycznego1 pozwalającego opisać do-
wolne błądzenie w każdej chwili stanowiło przełomowy krok w teorii procesów przy-
padkowych. Wyprowadziło to badania poza Centralne Twierdzenie Graniczne, czyli

1W literaturze anglosaskiej nosi on nazwę Continuous-Time Random Walk.
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Rysunek 6.2: Relaksacja fotoprądu zmierzona w amorficznym αAs2Se3.

rozszerzyło je na procesy niegaussowskie, tzn. wychodzące poza ruchy Browna, a
w tym zwłaszcza na procesy z pamięcią, które umożliwiły wprowadzenie do fizy-
ki procesów Lévy’ego. Potencjał przedstawiony na rysunkach 6.4 i 6.5 jest podstawą
popularnego dolinowego modelu błądzeń przypadkowych, który w dalszym ciągu ana-
lizujemy pod nieobecność oraz w obecności zewnętrznej stałej siły F wywołującej
dryf .

6.1.1 Podstawowe wielkości

Ilościowe sformułowanie modelu rozpoczynamy od wprowadzenia

1) gęstości prawdopodobieństwa ΦE(t) przetrwania cząsteczki w danej dolinie po-
tencjału o głębokości E przynajmniej przez okres czasu t, czyli przetrwania od
chwili początkowej w której cząsteczka pojawiła się w niej, przynajmniej do
chwili t (tzn. cząsteczka może przetrwać dłużej w danej dolinie potencjału ale
na pewno nie krócej),

oraz powiązanej z nią

2) funkcji rozkładu czasów oczekiwania cząsteczki w dolinie potencjału, φE(t).

Funkcja φE(t) jest zdefiniowana jako gęstość prawdopodobieństwa, że cząsteczka
przetrwa w (dowolnie) wybranej dolinie potencjału o głębokości E dokładnie do
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Rysunek 6.3: Relaksacja fotoprądu dla rozkładu Gaussa (lewy rysunek) oraz dla
rozkładu Pareto-Lévy’ego (prawy rysunek).

chwili t tzn. dokładnie w chwili t opuści tę dolinę. Z powyższych dwóch definicji
wynika następujący związek pomiędzy obiema funkcjami,

ΦE(t) =
∫ ∞

t
dt′φE(t′) = 1−

∫ ∞

0
dt′φE(t′), (6.1)

gdzie przy zapisaniu drugiej równości skorzystaliśmy z warunku normalizacji
∫ ∞

0
dtφE(t) = 1. (6.2)

Warunek ten mówi, że w danej dolinie potencjału cząstka z pewnością przetrwa
dowolnie długi okres czasu. Funkcja φE jest wygodniejszą do dalszego operowania
dlatego traktujemy ją w naszym modelu jako wyjściową; często jednak, zwłaszcza na
etapach pośrednich, posługujemy się także obiema funkcjami. W całym niniejszym
wykładzie przyjmujemy, funkcję rozkładu czasów oczekiwania w postaci Poissona

φE(t) = ν0(E) exp(−ν0(E)t), (6.3)

gdzie ν0(E) jest częstością przeskoków cząsteczki pomiędzy sąsiednimi dolinami po-
tencjału (w przypadku jednowymiarowym mogą to być dwaj najbliżsi sąsiedzi, patrz
rys. 6.4) w nieobecności zewnętrznej siły wywołującej dryf. Z powyższego wzoru oraz
relacji (6.1) otrzymujemy, że

ΦE(t) = exp(−ν0(E)t). (6.4)
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Rysunek 6.4: Błądzenie molekuły w potencjale dolinowym pod nieobecność ze-
wnętrznego pola (stąd poziom odniesienia potencjału jest równoległy do osi x-ów).

Możemy teraz przystąpić do skonstruowania separowalnej, cząstkowej funkcji
rozkładu czasów oczekiwania, którą oznaczymy przez ψE(x, t) (zapis ten nie ma nic
wspólnego z analogicznym, oznaczającym funkcję falową w mechanice kwantowej).
W tym celu musimy dodatkowo wprowadzić

3) przestrzenny rozkład przemieszczeń p(x)

zdefiniowany jako gęstość prawdopodobieństwa przemieszczenia się cząsteczki o wek-
tor x (ponieważ ruch cząsteczki jest jednowymiarowy dlatego dla uproszczenia opu-
ściliśmy oznaczenie ~. . .). Oczywiście, spełnia on warunek normalizacyjny postaci

∫ ∞

0
dxp(x) = 1. (6.5)

Przykładowo, rozkład p(x) można przyjąć w postaci,

p(x) =
1
2
[δ(x− b0) + δ(x+ b0)] (6.6)

gdzie b0 jest stałą odległością pomiędzy sąsiednimi dolinami potencjału. Tego typu
rozkład dopuszcza, jak widać, jedynie przeskoki pomiędzy dolinami oddalonymi o
b0.
Teraz możemy zapisać

ψE(x, t) = p(x)φE(t); (6.7)
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Rysunek 6.5: Błądzenie molekuły w potencjale dolinowym w obecności zewnętrznego
pola (stąd poziom odniesienia potencjału jest nachylony pod niezerowym kątem do
osi x-ów).

jak widać, cząstkowa funkcja rozkładu czasów oczekiwania jest gęstością prawdo-
podobieństwa następującej sekwencji zdarzeń: najpierw cząsteczka przetrwa w
danym miejscu (tzn. dolinie potencjału) aż do chwili t a następnie, dokładnie
w chwili t, przemieści się (a dokładniej, dokona przeskoku) o wektor x. Se-
perowalność cząstkowej funkcji rozkładu jest tutaj narzucona separowalnością obu
zmiennych stochastycznych tj. przemieszczenia x oraz czasu t. (Zauważmy, że czas
występuje tutaj jako zmienna losowa co, jak zobaczymy, w niczym nie zmienia jego
roli.) Zakładając separowalność funkcji ψE(x, t) przyjmujemy tym samym, że dwa
zasadniczo różne zdarzenia takie jak oczekiwanie oraz przemieszczenie się cząstecz-
ki są od siebie statystycznie niezależne. Założenie to wydaje się całkiem naturalne
dla tak elementarnych procesów o jakich tutaj mówimy. W drugiej części niniejszej
pracy omówimy także błądzenia nieseparowalne.
Z warunków normalizacyjnych (6.2), (6.5) oraz definicji (6.7) wynika bezpośred-

nio niezbędny warunek normalizacyjny

∫ ∞

0
dt
∫ ∞

−∞
dxψE(x, t) = 1; (6.8)

w przypadku ogólniejszym, gdyby funkcja rozkładu ψE(x, t) nie była separowalna,
wówczas musielibyśmy warunek (6.8) po prostu narzucić jako wymaganą normaliza-
cję. Ponadto, z definicji (6.1) i (6.7) oraz z warunku normalizacyjnego (6.5) otrzy-
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mujemy, że

ΨE(t) =
∫ ∞

t
dt′
∫ ∞

−∞
dxψE(x, t′) = 1−

∫ t

0
dt′
∫ ∞

−∞
dxψE(x, t′), (6.9)

gdzie definicja funkcji ΨE(t) oraz ΦE(t) są identyczne, a w przypadku separowal-
nym (który dotyczy zarówno błądzenia pod nieobecność jak też w obecności pola
co zostanie wykazane poniżej), uzyskujemy ΨE(t) = ΦE(t)). Warto podkreślić, że
równości występujące w (6.9) mają charakter ogólny, niezależny od własności sepa-
rowalności funkcji rozkładu ψE(x, t), i wynikają tylko z jej definicji oraz z warunku
normalizacyjnego (6.8).

6.1.2 Funkcja rozkładu czasów oczekiwania w obecności dry-
fu

Występowanie systematycznego dryfu (wywołanego zewnętrzną siłą działającą na
wędrujący atom, patrz rys.2(6.1)) zmienia, jak zobaczymy, postać funkcji rozkładu
czasów oczekiwnia ψE(x, t) oraz wymaga rozszerzenia relacji (6.1). Jednak nadal,
jako podstawową funkcję rozkładu, można używać ψE(x, t).
W pierwszym kroku, wprowadzamy częstość ν±(E) przeskoku atomu pomiędzy

sąsiednimi dolinami potencjału (patrz, rys.2(6.1)) w kierunku odpowiednio zgodnym
z dryfem (znak +) oraz przeciwnym do niego (znak −). Zgodnie z interpretacją
funkcji rozkładu przybiera ona teraz postać

ψE(x, t) = ψ+E (x, t) + ψ
−
E (x, t), (6.10)

gdzie wprowadziliśmy oznaczenie

ψ±E (x, t) = ν
±(E)δ(x∓ b0) exp(−ν(E)t), (6.11)

wynikające z istnienia dryfu przy czym sumaryczna częstość

ν(E) = ν+(E) + ν−(E) (6.12)

oraz częstości kierunkowe

ν±(E) = p±ν0(E) (6.13)

gdzie waga

p± =
exp(±Fb0/2kBT )

exp(Fb0/2kBT ) + exp(−Fb0/2kBT )
=
1
2
exp(±Fb0/2kBT )
cosh(Fb0/2kBT )

, (6.14)

jest prawdopodobieństwem wyboru jednej z dwóch orientacji pojedynczego przesko-
ku - jak widać, ma miejsce niezbędna normlizacja p+ + p− = 1; z (6.13) oraz (6.14)
wynika niezwykle pożyteczna relacja,

ν(E) = ν0(E) (6.15)
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co oznacza w oparciu o wyrażenie (6.11), że

ψ±E (x, t) = p
±δ(x∓ b0)ν0(E) exp(−ν0(E)t) = p±δ(x∓ b0)φE(t). (6.16)

Tym samym, cząstkową funkcję rozkładu czasów oczekiwana można przedstawić w
postaci separowalnej

ψE(x, t) = p(x)φE(t); (6.17)

analogicznej do tej dla przypadku niewystępowania zewnętrznego pola, gdzie

p(x) = p+δ(x− b0) + p−δ(x + b0) (6.18)

jest uogólnieniem wyrażenia (6.6) na przypadek uwzględniający istnienie zewnętrznego
pola.
W przypadku słabego pola zewnętrznego czyli Fb0/2 � kBT , wyrażenie (6.14)

upraszcza się do postaci liniowej,

p± ≈ 1
2
(1± Fb0
2kBT

), (6.19)

szczególnie przydatnej w teorii liniowej odpowiedzi (przy obliczaniu podatności i
przewodnictwa).
W drugim kroku, dysponując wzorem (6.10) na funkcję rozkładu ψE(x, t) oraz

pomocniczymi określeniami (6.11) - (6.19) możemy już skorzystać z rozszerzonej
definicji (6.9) gęstości prawdopodobieństwa ΨE(t) przetrwania cząsteczki (przynaj-
mniej) przez czas t w danej dolinie potencjału o głębokości E , otrzymując postać

ΨE(t) = exp(−ν0(E)t) = ΦE(t) (6.20)

identyczą jak w przypadku braku zewnętrznego pola. Oba zasadnicze wzory, zarów-
no (6.17) jak i (6.20) wynikają z separowalności cząstkowej funkcji rozkładu czasów
oczekiwania oraz niezależności sumarycznej częstości przeskoków ν(E) od zewnętrz-
nego pola.
Dysponując wprowadzonymi powyżej gęstościami prawdopodobieństw, przys-

tępujemy do obliczenia propagatora opisującego proces błądzenia przypadkowego
zarówno pod nieobecność jak też w obecności zewnętrznego pola wywołującego dryf.

6.1.3 Propagtor jednocząstkowy

Zasadniczym celem niniejszego rozdziału jest wyznaczenie propagatora P(X, t | X0, t0)
lub inaczej mówiąc, jednocząstkowej warunkowej gęstości prawdopodobieństwa zna-
lezienia cząsteczki w położeniu X w chwili t pod warunkiem, że początkowo czą-
steczka ta znajdowała się w położeniu X0 w chwili t0. Cząsteczka mogła pojawić
się w danej dolinie potencjału w położeniu X w chwili t w wyniku następujących
procesów:
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1) mogła trwać w danej dolinie potencjału w położeniu X(= X0) od samego
początku aż do chwili t, o ile tak się złożyło, że położenie to było początkowym
- takie trwanie opisujemy za pomocą propagatora P (0)E (X, t | X0, t0),

2) mogła się znależć w położeniu X w wyniku pojedynczego przelotu - proces ten
opisujemy propagatorem P

(1)
E0,E(X, t | X0, t0), lub

3) w wyniku dwóch kolejnych przelotów przedzielonych oczekiwaniem w jakiejś
dolinie potencjału - proces ten opisujemy propagatorem P

(2)
E0,E1,E(X, t | X0, t0),

4) itd., itp., ogólnie rzecz biorąc,

5) cząsteczka mogła pojawić się w danej dolinie potencjału w położeniu X w
chwili t w wyniku n(­ 1) przelotów, z których każdy był poprzedzony (krót-
szym lub dłuższym) oczekiwaniem w jakiejś dolinie potencjału - proces ten
opisujemy za pomocą cząstkowego propagatora P (n)E0,E1,...,En−1,E(X, t | X0, t0).

Reasumując, powyższe procesy ujmujemy za pomocą sumarycznego propagatora,

PE0,E1,E2,...,E(X, t | X0, t0) = P
(0)
E (X, t | X0, t0)

+
∞∑

n=1

P
(n)
E0,E1,...,En−1,E(X, t | X0, t0), (6.21)

opisującego gęstość prawdopodobieństwa znalezienia cząsteczki w położeniu X w
chwili t w wyniku dowolnego procesu tzn. trwania w położeniu początkowym (jeżeli
X = X0 - składnik o indeksie n = 0 w wyrażeniu (6.21)) bądź też jako rezultat
procesu składającego się z dowolnej liczby występujących na przemian oczekiwań i
przelotów (wyrazy z n ­ 1).
Można teraz postawić pytanie o związek wcześniej wprowadzonego propagatora

P(X, t | X0, t0) z powyżej zdefiniowanym PE0,E1,E2,...,E(X, t | X0, t0)? Aby znależćć
ten związek zapiszmy w jawnej postaci propagatory cząstkowe P (n)E0,E1,...,En−1,E(X, t |
X0, t0), n = 0, 1, 2, . . . , wprowadzając dogodniejszą notację. Mianowicie,

P
(0)
E (X, t)(≡ P (0)E (X, t | X0, t0)) = δ(X −X0)ΨE(t− t0), (6.22)

następnie

P
(1)
E0,E(X, t)(≡ P

(1)
E0,E(X, t | X0, t0)) =

∫ t

0
dt1ψE0(X −X0, t1 − t0)ΨE(t− t1), (6.23)

oraz

P
(2)
E0,E1,E(X, t)(≡ P

(2)
E0,E1,E(X, t | X0, t0)) =

∫ ∞

−∞
dx1

∫ t

0
dt2

∫ t2

0
dt1

ψE0(x1 −X0, t1 − t0)ψE1(X − x1, t2 − t1)ΨE(t− t2), (6.24)
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itd., w ogólności zapisujemy

P
(n)
E0,E1,...,En−1,E(X, t)(≡ P

(n)
E0,E1,...,En−1,E(X, t | X0, t0))

=
∫ ∞

−∞
dxn−1 . . .

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1

ψE0(x1 −X0, t1 − t0)ψE1(x2 − x1, t2 − t1) . . . ψEn−1(X − xn−1, tn − tn−1)
ΨE(t− tn), n = 1, 2, 3, . . . ; (6.25)

Wyrażenia (6.23), (6.24) i (6.25) opierają się w istocie rzeczy na założeniu, że funk-
cja rozkładu ψE(x2−x1, t2− t1) opisuje stan równowagi cząstkowej (lokalnej) zatem
zależy od różnicy zmiennych przestrzennych i czasowych tak jak to ma miejsce w sta-
nie równowagi zupełnej - dyskusji tej sytuacji poświęcamy więcej miejsca w dalszej
części. Co więcej, wyrażenia te zostały skonstruowane przy założeniu, że pierwsze
oczekiwanie i następujący po nim przelot są opisywane tą samą funkcją rozkładu
co i następne tego tupu pary zdarzeń - także i ten subtelny aspekt procesu błądzeń
omawiamy w dalszej części.
Jak widać, propagatory typu P zawierają w sobie dodatkowo informacje o głę-

bokościach odwiedzonych przez cząsteczkę dolinach potencjału; dopiero uśrednienie
tych propagatorów po ”krajobrazie” energetycznym daje propagatory typu P. Po-
niżej omawiamy tę procedurę średniowania.
Po pierwsze zakładamy, że głębokości dolin potencjału są od siebie statystycznie

niezależne co oznacza, że rozkład p(E0, E1, . . . , En, . . .) z którym średniujemy propa-
gatory cząstkowe P (n)E0,E1,...,En(X, t), n = 0, 1, 2, . . ., (a stąd propagator sumaryczny
PE0,E1,...,En,...(X, t)) faktoryzuje się tzn.

p(E0, E1, . . . , En, . . .) = p(E0)p(E1) . . . p(En) . . . . (6.26)

Na mocy powyższego, średniując równości (6.22) oraz (6.25), otrzymujemy odpo-
wiednio

P(0)(X, t) = (≡ P (0)(X, t | X0, t0)) = δ(X −X0)Ψ(t− t0), (6.27)

P(n)(X, t)(≡ P (n)(X, t | X0, t0)) =
∫ ∞

−∞
dxn−1 . . .

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1 ψ(x1 −X0, t1 − t0)ψ(x2 − x1, t2 − t1) . . .

ψ(X − xn−1, tn − tn−1)Ψ(t− tn),
n = 1, 2, 3, . . . , (6.28)

gdzie wprowadziliśmy następujące oznaczenia wielkości średnich

ψ(x, t) =
∫ ∞

0
dEp(E)ψE(x, t),

Ψ(t) =
∫ ∞

0
dEp(E)ΨE(t),

P(n)(X, t) =
∫ ∞

0

∫ ∞

0
. . .
∫ ∞

0
dE0dE1 . . . dEn

p(E0)p(E1) . . . p(En)P (n)E0,E1,...,En(X, t), n = 1, 2, . . . , (6.29)
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które w dalszym ciągu zinterpretujemy, wskazując na sposób ich realizacji. Osta-
tecznie, z (6.28) oraz (6.21) otrzymujemy wyrażenie,

P(X, t) =
∞∑

n=0

P(n)(X, t) (6.30)

które pozwala rozpocząć postępowanie umożliwiające skonstruowanie odpowiedzi na
pytanie dlaczego, na poziomie makroskopowym, niektóre rodzaje błądzeń postrze-
gamy jako posiadające charakter singularny (fraktalny)?

6.1.4 Postać zamknięta propagatora

Narzuca się teraz zasadnicze, techniczne pytanie mianowicie, jak zapisać (o ile to
jest możliwe) propagator (6.30) w postaci zamkniętej? Na szczęście, odpowiedż na
to pytanie jest pozytywna wymaga jednak przejścia do transformat Fouriera oraz
Laplace’a. Wtedy równanie (6.30) przybiera postać

P̃(k, s) =
∞∑

n=0

P̃(n)(k, s), (6.31)

gdzie skorzystaliśmy z definicji transformaty Fouriera-Laplace’a postaci

F̃(k, s) =
∫ ∞

−∞
dX exp(−ikX)

∫ ∞

0
dt exp(−st)F(X, t) (6.32)

tutaj F jest dowolną funkcją spełniającą twierdzenie o odwracaniu transformat Fo-
uriera oraz Laplace’a (patrz I.M. Ryżyk i I.S. Gradsztajn, ”Tablice całek, sum,
szeregów i iloczynów”, PWN, Warszawa 1964). Korzystając z definicji (6.28) pro-
pagatora P (0) i (6.28) propagatora P (n) oraz transformaty Fouriera-Laplace’a (6.32)
można obliczyć (patrz Dodatek ...), że

P̃(n)(k, s) = Ψ̃(s)[ψ̃(k, s)]n, n = 0, 1, 2, . . . . (6.33)

Stąd oraz z (6.31) otrzymujemy poszukiwaną, zamkniętą postać sumarycznego pro-
pagatora w przestrzeni odwrotnej (czyli w zmiennych Fouriera-Laplace’a),

P̃(k, s) = Ψ̃(s)

1− ψ̃(k, s)
=
1
s

1− ψ̃(k = 0, s)
1− ψ̃(k, s)

, (6.34)

gdzie, przy wyprowadzeniu drugiej równości, skorzystaliśmy dodatkowo z uśred-
nionej po E transformaty Laplace’a formuły (6.9).
Zauważmy, że do wyprowadzenia powyższej formuły nie było potrzebne założe-

nie o separowalności funkcji rozkładu ψ(x, t) - w takim przypadku formuła (6.34)
przyjmuje postać

P̃(k, s) = Φ̃(s)

1− φ̃(s)p̃(k)
=
1
s

1− φ̃(s)
1− φ̃(s)p̃(k)

, (6.35)

269



gdzie podobnie jak dla (6.34), skorzystaliśmy z (uśrednionej po E) transformaty
Laplace’a formuły (6.1).
Teraz możemy już bardzo precyzyjnie sformułować zasadniczy cel niniejszej pracy

mianowicie, jest nim analiza propagatora danego wyrażeniem (6.35) poprzez analizę
funkcji rozkładu czasów oczekiwania φ oraz czynnika struktu- ralnego przelotów p.

6.1.5 Uogólnione równanie mistrza

Równanie (6.35) pozwala na wprowadzenie tzw. całkowego jądra pamięci (w skrócie
po prostu pamięci). Aby to wykazać, prawą stronę tego równania zapiszmy jako
1/[s− K̃(k, s)] skąd po prostych, algebraicznych przekształceniach otrzymujemy, że

K̃(k, s) = [p̃(k)− 1]ϕ̃(s) (6.36)

jest dane także w postaci separowalnej przy czym,

ϕ̃(s) = s
ψ̃(s)

1− ψ̃(s)
(6.37)

jest, jak wykażemy, poszukiwaną pamięcią. Możemy teraz przepisać równanie (6.35)
następująco,

sP̃(k, s)− P̃(k = 0, t) = K̃(k, s)P̃(k, s) = [p̃(k)− 1]ϕ̃(s)P̃(k, s), (6.38)

co pozwala na przejście do postaci różniczkowo–całkowej; przy wyprowadzaniu (6.38)
z (6.35) skorzystaliśmy z warunku początkowego

P(X, t = 0) = δ(X) ≡ P̃(k, t = 0) (6.39)

jaki musi spełniać propagator. Zauważmy, że lewa strona równania (6.38) jest trans-
formatą Laplace’a pochodnej po czasie propagatora P̃(k, t) a prawa transformatą
Laplace’a konwolucji czasowej wielkości K̃ oraz P̃ . Zatem,

∂

∂t
P̃(k, t) =

∫ t

0
dt′K̃(k, t− t′)P̃(k, t′)

=
∫ t

0
dt′[p̃(k)− 1]ϕ(t− t′)P̃ (k, t′). (6.40)

Jak widać, funkcja ϕ pełni rolę pamięci gdyż ( w ogólności) pozwala na uzależnienie
aktualnego zachowania propagatora od jego zachowaniia w przeszłości (tzn. dla czasu
t′ < t).

6.1.6 Pierwszy moment

Aby wyjaśnić, wspomniane na wstępie, doświadczenia Sharfe’a, Gill’a i Pfister’a
musimy obliczyć pierwszy moment 〈X(t)〉. W tym celu zauważmy, że

〈X̃(s)〉 = −i∇kP̃(k, s) |k=0= −
i

s

1

1− ψ̃(k = 0, s)
∇kψ̃(k, s) |k=0, (6.41)
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gdzie skorzystaliśmy po drodze ze wzoru (6.34). Dla separowalnej funkcji rozkładu
ψ̃(k, s) powyższy wzór upraszcza się do postaci

〈X̃(s)〉 = −i∇kP̃(k, s) |k=0= −
i

s

φ̃(s)

1− φ̃(s)
∇kp̃(k) |k=0, (6.42)

gdzie teraz zastosowaliśmy wzór (6.35). W dalszej części, wykorzystamy jawną po-
stać p̃(k) oraz φ̃(s) aby przedstawić explicite wyrażenie (6.42) i tym samym wyjaśnić
pierwszą część wykresu zamieszczonego na rys.2(6).
Przykład. Przypuśćmy, że p(x) dane jest wzorem (6.18); zatem czynnik struktu-

ralny błądzenia przypadkowego przybiera postać

p̃(k) = (p+ + p−) cos(k) + i(p+ − p−) sin(k). (6.43)

Stąd i ze wzoru (6.42) otrzymujemy proste wyrażenie,

〈X̃(s)〉 = (p+ − p−)1
s

φ̃(s)

1− φ̃(s)
, (6.44)

do którego powrócimy w dalszej części, po wyznaczeniu jawnej zależności φ̃ od zmien-
nej s.

6.1.7 Rola pierwszego oczekiwania oraz przelotu

Rozważymy teraz sytuację ogólniejszą, w której pierwsze wyczekiwanie i przelot opi-
sane są inną funkcją rozkładu (oznaczmy ją przez h(x, t)) niż pozostałe pary tego
typu zdarzeń. Przypadek h = ψ omówiony powyżej, dotyczy sytuacji gdy początek
procesu zbiega się z początkiem jego obserwacji. Innymi słowy, w momencie poja-
wienia sią cząsteczki w układzie rozpoczyna się zarówno proces jej błądzenia jak
też obserwacja tego procesu. Oczywiście w ogólności tak być nie musi, tzn. obser-
wacja może rozpocząć się (i na ogół rozpoczyna się) znacznie póżniej; tym samym
układ posiada już pewną historię, którą należy uwzględnić przy opisie pierwszego
oczekiwania. Wprowadza to modyfikacje polegające na tym, że

1) we wzorze (6.22), definiującym propagator cząstkowy P (0)E (X, t), należy zastą-
pić rozkład ΨE(t) przez ogólniejszy ΞE(t), zdefiniowany poniżej

2) w pozostałych wzorach (6.23), (6.24) i (6.25) definiujących propagatory wyż-
szych rzędów P (n)E0,E1,...,En,E(X, t) (gdzie n ­ 1) należy funkcję rozkładu ψE0(x1−
X0, t1 − t0) zastąpić ogólniejszą hE0(x1 −X0, t1 − t0);

oczywiście, pomiędzy rozkładami h(x, t) oraz Ξ(t) zachodzi relacja analogiczna do
(6.9) czyli relacji pomiędzy ΨE(t) oraz ψE(x, t)

ΞE(t) =
∫ ∞

t
dt′
∫ ∞

−∞
dxhE(x, t′) = 1−

∫ t

0
dt′
∫ ∞

−∞
dxhE(x, t′). (6.45)
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Możemy teraz przepisać równanie (6.34) w ogólniejszej postaci

P̃(k, s) = Ξ̃(s) + h̃(k, s) Ψ̃(s)

1− ψ̃(k, s)

=
1
s

[

1− h̃(k = 0, s) + h̃(k, s)1− ψ̃(k = 0, s)
1− ψ̃(k, s)

]

. (6.46)

Analogicznie jak w paragrafie 6.1.4, separowalność h(x, t)(= q(x)χ(t)) oraz ψ(x, t)(=
p(x)φ(t)) upraszcza wzór (6.46) do postaci

P̃(k, s) = 1
s

[

1− χ̃(s) + q̃(k)χ̃(s) 1− φ̃(s)
1− p̃(k)φ̃(s)

]

. (6.47)

Oczywiście, w przypadku gdy h(x, t) = ψ(x, t) oba powyższe wzory przechodzą
w wyprowadzone wcześniej odpowiednio (6.34) i (6.35). Ogólność wzorów (6.46) i
(6.47) pozwala na badanie zarówno układów znajdujących się w stanie równowagi
jak też z dala od niej.

6.1.8 Niejednorodne uogólnione równanie mistrza

W dalszym ciągu wykażemy, że analogicznie jak to miało miejsce w paragrafie 6.1.5,
równanie (6.46) można zapisać w postaci różniczkowo–całkowej. W tym celu, prze-
piszemy pierwszą równość w (6.46) w następującej pośredniej postaci,

1− ψ̃(k, s)
Ψ̃(s)

P̃(k, s) = {Ξ̃(s)1− ψ̃(k, s)
Ψ̃(s)

+ h̃(k, s)}P̃ (k, t = 0)

(6.48)

którą można skrótowo zapisać w dogodniejszej do dalszych przekształceń formie,

[s− K̃(k, s)]P̃(k, s) = P̃(k, t = 0) + Ĩ(k, s), (6.49)

gdzie jądro całkowe pamięci

K̃(k, s) = sψ̃(k, s)− ψ̃(k = 0, s)
1− ψ̃(k = 0, s)

, (6.50)

co jest uogólnieniem wprowadzonego wcześniej dla przypadku separowalnego (po-
równaj (6.36) i (6.37)) a niejednorodność

Ĩ(k, s) = h̃(k, s)− ψ̃(k, s)− h̃(k = 0, s) + ψ̃(k = 0, s)
1− ψ̃(k = 0, s)

+
h̃(k = 0, s)ψ̃(k, s)− h̃(k, s)ψ̃(k = 0, s)

1− ψ̃(k = 0, s)
; (6.51)
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jak widać niejednorodność znika jak należy gdy h(x, t) = ψ(x, t). Wreszcie, analo-
gicznie jak poprzednio, równanie to można zapisać w poszukiwanej formie

∂

∂t
P̃(k, t) =

∫ t

0
dt′K̃(k, t− t′)P̃(k, t′) + Ĩ(k, t). (6.52)

Jest to właśnie niejednorodne, uogólnione równanie mistrza. W przepadku separo-
walnym, gdy ponadto h(x, t) = ψ(x, t) równanie to przechodzi w wyprowadzone
wcześniej (6.40).

6.2 Przypadkowe pułapkowanie

Rozważania przeprowadzone w niniejszym rozdziale składają się z dwóch etapów.
W pierwszym konstruujemy ciągłą funkcję rozkładu czasów oczekiwania jako średnią
ważoną, uwzględniającą ”krajobraz” energetyczny ośrodka; w drugim analizujemy
funkcje pokrewne, ściśle z nią związane np. jej pierwszy moment, który jest śred-
nim czasem oczekiwania i pozwala na łatwe odróżnie procesu Poissona od procesu
Lévy’ego

6.2.1 Ciągła funkcja rozkładu czasów oczekiwania

Rozważmy błądzenie skokowe pojedynczej cząsteczki w potencjale przedstawionym
na rys.6.4; błądzenie tego typu nosi nazwę przypadkowego pułapkowania (ang. random-
trap model) lub alternatywnie modelu dolinowego (ang. valley model).
Zakładamy, że gęstość prawdopodobieństwa pojawienia się doliny o określonej głę-

bokości E lokalnego minimum potencjału podlega prawu wykładniczego zaniku (czyli
jest typu Poissona),

p(E) = A exp
(

−EĒ
)

, (6.53)

gdzie A jest stałą normalizacyjną, którą można łatwo obliczyć z warunku normali-
zacyjnego

∫ ∞

0
p(E)dE = 1; (6.54)

podstawiając wyrażenie (6.53) do tego warunku i wykonując proste przekształcenia
otrzymujemy, że A = 1/Ē. Oczywiście, warunek normalizacyjny (6.54) bierze się
stąd, że p(E) jest gęstością prawdopodobieństwa, tego że wybrana na chybił trafił
dolina potencjału będzie miała określoną głębokość E ; zatem prawdopodobieństwo,
że będzie ona miała dowolną głębokość jest pewnością. W tym miejscu uzasadnionym
jest pytanie o sens fizyczny stałej Ē . Aby go dostrzec zauważmy, że

Ē =
∫ ∞

0
Ep(E)dE , (6.55)
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co oznacza, że Ē jest średnią głębokością doliny potencjału. W powyższych rozważa-
niach milcząco przyjmowaliśmy, że głębokości dolin są nieograniczone. Powinniśmy
uwzględniać fakt, że w rzeczywistości tak nie jest i przyjmować, że głębokość doliny
jest zawarta w przedziale 0 < E ¬ Emax, gdzie Emax oznacza maksymalną głębokość
jaką może mieć dowolnie wybrana dolina potencjału. Nieco bardziej skomplikowa-
ne podejście, uwzględniające ten bardziej realny punkt widzenia przedstawiliśmy w
Dodatku .... Jednakże zasadnicze wnioski płynące z obu podejść są identyczne.
Wyrażenie (6.53) na rozkład p(E) jest jednym z dwóch jakie najczęściej stosuje

się do statystycznego opisu ”krajobrazu” energetycznego układów nieuporządkowa-
nych a w tym amorficznych czy szklistych; innym jest po prostu rozkład Gaussa.
Nieporządek widoczny w rozrzucie głębokości dolin potencjału może być wywołany
przez rozmieszczenie w sposób losowy różnych atomów (budujących sieć krystalicz-
ną) w węzłach danej sieci czyli jest związany z nieporządkiem składu a nie geometrii
sieci (tzn. stała sieci nie ulega zmianie od węzła do węzła). Oba rozkłady opisują sta-
tyczne własności krajobrazu energetycznego i związane są z własnościami samych
materiałów a nie błądzącej cząsteczki. Rozkład (6.53) jest łatwiejszy w zastoso-
waniach gdyż jest jednoparametrowy w przeciwieństwie do rozkładu Gaussa (który
obok wartości średniej zawiera także dyspersję a ponadto, zawiera kwadrat zmiennej
losowej; rolę rozkładu Gaussa omówiliśmy w Dodatku ...). W niniejszym rozdziale
zajmujemy się materiałami nieuporządkowanymi scharakteryzowanymi rozkładem
wykładniczym (6.53).
W dalszym ciągu przyjmujemy, że proces błądzenia ma charakter ponadbarierowy

- termicznie aktywowany co oznacza, że prawdopodobieństwo przeskoku cząsteczki
na jednostkę czasu z jednej doliny potencjału do drugiej, czyli częstość przeskoków
tutaj pomiędzy sąsiednimi dolinami dane jest wzorem

ν0(E) = γ0 exp
(

− E
kBT

)

= γ0γ
E
∆ (6.56)

gdzie γ0 jest częstością drgań (podstawowych) w danej dolinie potencjału, natomiast

γ = exp

(

− ∆
kBT

)

, (6.57)

∆ jest tutaj jednostką energii, kB jak zwykle stałą Boltzmanna, a

T =
{

T, dla prawa Hopfa–Arrheniusa (HA)
T − Tg, przy T > Tg, dla prawa Vogela-Tammana-Fulchera (VTF),

co jak widać, dotyczy dwóch klas materiałów - prawo HA takich, które nie są szkła-
mi bądż są w stanie dalekim od zeszklenia natomiast prawo VTF materiałów w
pobliżu punktu zeszklenia; wielkość T oznacza jak zwykle temperaturę absolutną a
Tg temperaturę przejścia do stanu szklistego. Ze wzoru (6.56) wynika, że średni czas
oczekiwania (przebywania) cząsteczki w wybranej dolinie potencjału wynosi

τ 0(E) = 1
ν0(E) . (6.58)
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Z powyższego wzoru wynika jak być powinno, że im głębsza jest dolina potencjału
tym dłuższy jest czas przebywania w niej cząsteczki.
Trzecim założeniem jest poissonowski kształt funkcji rozkładu czasów oczekiwania

φE(t), która jest zdefiniowana jako gęstość prawdopodobieństwa, tego że błądząca
cząsteczka przetrwa w danej dolinie potencjału o głębokości E dokładnie przez czas
t (tzn. po tym czasie na pewno ją opuści) czyli, że

φE(t) = ν0(E) exp(−ν0(E)t). (6.59)

Jak widać w oparciu o (6.56), funkcja φE(t), traktowana jako funkcja zmiennej E ,
jest tzw. rozciągniętym eksponentem (‘stretch exponent’).
Naszym celem jest obliczenie następującej średniej ważonej w postaci zamkniętej,

φ(t) =
∫ ∞

0
p(E)φE(t)dE , (6.60)

która jest, oczywiście, średnią funkcją rozkładu czasów oczekiwania spełniającą, jak
widać, warunek normalizacyjny

∫ ∞

0
dtφ(t) = 1, (6.61)

i odgrywającą zasadniczą rolę w modelu błądzeń w czasie ciągłym (patrz rozdz.6.1)
w układach amorficznych lub nieuporządkowanych a także np. w procesie starzenia
się szkieł (Cécile Mounthus, Jean-Philippe Bouchaud, ”Models of traps and glass
phenomenology”, J.Phys. A: Math. Gen. 29 (1966) 3847-3869). Powyższa funkcja
rozkładu oznacza średnią gęstość prawdopodobieństwa, że błądząca cząsteczka prze-
trwa w jakiejkolwiek dolinie dokładnie przez czas t. Średniowanie po głębokościach
dolin (czyli po zmiennej E) można zrealizować przynajmniej w dwóch różnych po-
dejściach. Pierwsze polega na rozpatrywaniu zachowania się wielu niezależnych czą-
steczek w próbce (co odpowiada rozrzedzonemu gazowi sieciowemu) a następnie
średniowaniu po zespole złożonym z tych cząsteczek. Podejście to jest bliższe do-
świadczalnej realizacji niż podejście drugie. Drugie podejście polega na (myślowym)
utworzeniu ogromnej liczby replik stochastycznych, czyli układów podobnych do
wyjściowego ale nie identycznych z nim, składających się z pojedynczej błądzącej
cząsteczki oraz krajobrazu energetycznego stanowiącego jej środowisko a wylosowa-
nego z zadanego rozkładu p(E). Średniowanie po E w wyrażeniu (6.60) można teraz
po prostu wykonać po tak zbudowanym zespole statystycznym.
Podstawmy zatem wyrażenie (6.53) oraz (6.59) do (6.60) wykorzystując (6.56),

φ(t) =
1
Ē
∫ ∞

0
dE exp

(

−EĒ
)

γ0 exp
(

− E
kBT

)

exp
(

−γ0 exp
(

− E
kBT

)

t
)

. (6.62)

Powyższą całkę można obliczyć na trzy istotnie różne sposoby.
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Pierwszy sposób (obliczenia wprost) polega na przeprowadzeniu pomocniczej za-
miany zmiennych

y = γ0 exp
(

− E
kBT

)

t,

dy = − dE
kBT

y, (6.63)

która w połączeniu z równaniem (6.62) prowadzi do następującego ciągu przekształ-
ceń

φ(t) = −kBTĒ
1
t

∫ 0

γ0t
dy exp

(

−EĒ
)

exp(−y)

=
γ0α

(γ0t)1+α

∫ γ0t

0
dy
(

γ0 exp
(

− E
kBT

)

t
)α

exp(−y)

=
γ0α

(γ0t)1+α

∫ γ0t

0
dyyα exp(−y) = γ0α

(γ0t)1+α
γ(1 + α, γ0t), (6.64)

gdzie wykładnik α = kBT /Ē > 0, natomiast γ(1+α, γ0t) jest niekompletną funkcją
gamma (tutaj zależną od argumentu γ0t), która posiada następującą decydującą dla
niniejszego wyprowadzenia własność

γ(1 + α, γ0t→∞) = ΓEuler(1 + α). (6.65)

Innymi słowy, w przypadku gdy γ0t � max(α, 1) otrzymujemy asymptotyczną po-
stać rozkładu φ(t)

φ(t) ≈ γ0
αΓEuler(1 + α)
(γ0t)1+α

, (6.66)

która jest kluczową dla naszych dalszych rozważań. Należy podkreślić, że dopiero
uwzględnienie wszystkich trzech elementów (6.53), (6.56) oraz (6.59) daje potęgowy
w czasie zanik funkcji rozkładu (6.66). Jak widać, to potęgowe zanikanie w czasie
funkcji rozkładu zachodzi dla dowolnego α ­ 0 ale, jak zobaczymy, fascynującym
jest jedynie przypadek α < 1.
Drugi sposób przedstawiony w Dodatku E, polega na wyrażeniu funkcji wykład-

niczej zmiennej t za pomocą transformaty Mellina (patrz, Harry Bateman, Arthur
Erdéley, ”Tables of Integral Transforms”, Vol.I, McGraw-Hill Book Comp., Inc.,
New York 1954) a następnie zastosowaniu metody obliczania całek konturowych
w płaszczyżnie zespolonej przez residua (patrz, Krzysztof Maurin, ”Analiza. Cz.II.
Wstęp do analizy globalnej”, PWN, Warszawa 1971). Podejście tego typu zostało
także wykorzystane w trzecim sposobie traktującym odwrotną transformatę Lapla-
ce’a funkcji rozkładu czasów oczekiwania; omówiliśmy go w rozdz. 6.2.3.
Rozważmy teraz zachowanie funkcji rozkładu φ(t) dla krótkich czasów tzn. dla

przypadku gdy γ0t� 1. Rozwijając w szereg funkcję eksponens w funkcji podcałko-
wej wyrażenia (6.64), następnie wykonując całkowanie wyraz po wyrazie i ogranicza-
jąc się do wyrazów kwadratowych w γ0t, otrzymujemy φ(t) w postaci wykładniczej
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Rysunek 6.6: Potęgowa zależność rozkładu prawdopodobieństwa czasów oczekiwania
φ od czasu t dana wzorem (6.66) dla wykładników α = 0.75 (linia czerwona) i
α = 0.50 (linia niebieska) oraz γ0 = 1. Zauważmy, że dla t = 0 rozkład φ(t = 0) =
α
1+α
czyli dla α = 0.75 wynosi około 0.43 natomiast dla α = 0.50 około 0.33. Dla

porównania przedstawiono wykładniczą zależność φ od czasu t daną wyrażeniem
(6.67) (czarna linia) dla α = 0.75.

(patrz Dodatek D),

φ(t) ≈ γ0
α

1 + α
exp

(

−1 + α
2 + α

γ0t
)

; (6.67)

wynika stąd natychmiast, że φ(t = 0) = γ0 α
1+α
.

6.2.2 Wielkości pokrewne

Niezwykle użyteczną w naszych dalszych rozważaniach jest transformata Laplace’a

φ̃(s)( ozn= Ls(φ(t))) =
∫ ∞

0
dt exp(−ts)φ(t), (6.68)

którą rozważamy dla s → 0 co, zgodnie z twierdzeniem Tauberina (patrz Dodatek
J), odpowiada właśnie sytuacji asymptotycznie długich czasów. Obliczenia przepro-
wadzone w Dodatku G dały, w przypadku gdy α < 1, nieholomorficzną zależność
od s w otoczeniu s = 0 zarówno dla

φ̃(s) ≈ 1− 1
γ′f

(

s

γ0

)α

, (6.69)
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Rysunek 6.7: Potęgowa zależność rozkładu prawdopodobieństwa czasów oczekiwania
φ od czasu t dana wzorem (6.66) a przedstawiona w skali log − log dla przypad-
ków przedstawionych na rys.6.6 tzn. dla wykładników α = 0.75 (linia czerwona) i
α = 0.50 (linia niebieska) oraz γ0 = 1. Dla porównania przedstawiono wykładniczą
zależność φ od czasu t daną wyrażeniem (6.67) (czarna linia) dla α = 0.75.

jak też dla

Φ̃(s) ≈ 1
γ0γ′f

(
γ0
s

)1−α
. (6.70)

Jak wykazaliśmy wcześniej, obie funkcje odgrywają zasadniczą rolę w modelu błą-
dzeń w czasie ciągłym. Zauważmy, że z (6.70) otrzymujemy natychmiast asympto-
tyczną zależność czasową postaci

Φ(t) ≈ 1
Γ(1− α)γ′f

1
(γ0t)α

, (6.71)

co stanowi najkrótszą drogę uzyskania asymptotyki funkcji Φ(t). Uogólnienie wy-
rażenia (6.69), obejmujące zarówno postć normalną jak i anomalną wyprowadzimy
poniżej.

6.2.3 Równanie skalowania

Równanie skalowania danej funkcji powstaje w wyniku:

1) operacji liniowego przeskalowania zmiennej niezależnej,

2) liniowej odpowiedzi samej funkcji na to przeskalowanie.
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Zauważmy, że transformata Laplace’a φ̃(s) spełnia niejednorodne równanie skalowa-
nia

φ̃(γ−1s) =Mφ̃(s)−M ln(M)
∫ 1

0
dξ
1
M ξ

1
1 + s

γ0γξ

, (6.72)

gdzie M = exp(∆/Ē) a γ jest dana wzorem (6.57). W dalszym ciągu zakładamy, że
∆/Ē � 1 i analogicznie ∆/kBT � 1 co pozwoli nam wykazać, że, niejednorodność
całkowa sprowadza się do algebraicznej i nie zależy od γ tzn. od czynnika skalowania
zmiennej niezależnej s. Rozważamy tylko przypadek asymptotyczny w czasie co
odpowiada (na mocy twierdzenia Tauberina) s→ 0. Stąd, niejednorodność przybiera
przybliżoną, prostszą postać

M ln(M)
∫ 1

0
dξ
1
M ξ

1
1 + s

γ0γξ
≈ M ln(M)

∫ 1

0
dξ
1
M ξ

(

1− s

γ0γξ

)

= M − 1− s

γ0

ln(M)
ln(Mγ)

M

(

1− 1
Mγ

)

≈ (M − 1
(

1− s

γ0

)

, (6.73)

gdyż w tym przypadku s/γ0γ � 1. Dzięki (6.73) niejednorodne równanie skalowania
(6.72) można przepisać w postaci

φ̃(γ−1s) =Mφ̃(s)− (M − 1)
(

1− s

γ0

)

, (6.74)

która jest znacznie łatwiejsza do rozwiązania
Rozwiązanie równania (6.74) poszukujemy w postaci sumy

φ̃(s) = φ̃reg(s) + φ̃sing(s), (6.75)

gdzie φ̃reg(s) jest rozwiązaniem ogólnym, regularnym równania niejednorodnego
(6.72) natomiast φ̃sing(s) jest rozwiązaniem szczególnym, singularnym równania jed-
norodnego

φ̃sing(γ−1s) =Mφ̃sing(s). (6.76)

Postać rozwiązania ogólnego jest narzucona przez niejednorodność równania (6.72).
Ponieważ niejednorodność tą traktujemy w sposób przybliżony (patrz (6.73) zatem,
z dokładnością do wyrazów kwadratowych w zmiennej s,

φ̃reg(s) ≈ 1−
1
γ′
s

γ0
(6.77)

gdzie współczynnik

γ′ =
1− 1

Mγ

1− 1
M

. (6.78)
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Można sprawdzić (przez podstawienie do równania (6.75)), że rozwiązanie singularne
jest postaci

φ̃sing(s) ≈ −
1
γ′f

(

s

γ0

)α

, (6.79)

gdzie wykładnik α = − ln(M)/ ln(γ)(= kBT /Ē), natomiast γ′f jest tutaj nieznanym
współczynnikiem; systematyczną metodę znalezienia rozwiązania singularnego, a za-
tem i tego współczynnika2 podaliśmy w Dodatku A2. Jest on postaci

γ′f =
sin(πα)
πα

. (6.80)

Ostatecznie, rozwiązanie równania (6.72) dla s→ 0 przybiera następującą, przy-
bliżoną postać,

φ̃(s) ≈ 1− 1
γ′f

(

s

γ0

)α

− 1
γ′
s

γ0
, (6.81)

która jest poszukiwanym uogólnieniem wyrażenia (6.69). Gdyby uwzględnić wszyst-
kie wyrazy rozwinięcia Taylora funkcji podcałkowej w niejednorodności równania
skalowania (6.72) (dla | s |< γ0γ), wówczas rozwiązanie regularne φ̃reg(s) byłoby
szeregiem potęgowym zmiennej s. Oznacza to, że ścisłne rozwiązanie φ̃(s) można by
zapisać (symbolicznie) w postaci,

φ̃(s) = 1− 1
γ′f

(

s

γ0

)α

− 1
γ′
s

γ0
+Θ(s2), (6.82)

gdzie Θ(s2) jest resztą (szeregiem potęgowym) rzędu nie mniejszego niż s2. Rozwią-
zanie (6.82) a tym samym (6.81) wymaga omówienia.

6.2.4 Rozkład Lévy’ego a rozkład Poissona

Rozważmy dwa zasadnicze przypadki, które przedstawimy w następujący sposób

φ̃(s) ≈







1− 1
γ′
f
( s
γ0
)α ≈ 1

1+ 1
γ′
f

(
s
γ0

)α ≈

exp
(

− 1
γ′
f

(
s
γ0

)α
)

, dla sytuacji singularnej, czyli α < 1;

1− 1
γ′

s
γ0
≈ 1
1+ 1
γ′
s
γ0

≈ exp
(

− 1
γ′

s
γ0

)

, dla sytuacji regularnej, czyli α > 1.

(6.83)

2Dokładniej rzecz biorąc, nie jest to stały współczynnik a cykliczna funkcja ln(s) o okresie rów-
nym − ln(γ) - podany tutaj współczynnik jest jedynie zerowym przybliżeniem wyrażenia zależnego
od zmiennej ln(s), o czym jest mowa w Dodatku A2.
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Jak widać, uzyskane rozwiązanie singularne jest identyczne z otrzymanym wcze-
śniej (patrz rozdz.6.2.2, wyrażenie (6.69)). Tym samym, asymptotyczna zależność
czasowa funkcji rozkładu jest dana wzorem (6.66) z rozdz.6.2.1. W dalszym ciągu,
asymptotyczne w czasie rozwiązanie regularne uzyskuje się poprzez bezpośrednie
odwrócenie transformaty Laplace’a w wyrażeniu (6.83) dla przypadku α > 1 (patrz
I.M. Ryżyk i I.S. Gradsztajn, ”Tablice, sum, szeregów i iloczynów”, PWN, Warszawa
1964); prowadzi to do rozkładu Poissona

φ(t) ≈ γ0γ exp(−γ0γt). (6.84)

Uzyskaliśmy tym samym dwa różne typy rozkładów. Możemy powiedzié, że w
przypadku pierwszego z nich zjawiska najistotniejsze opisuje długoczasowy ogon
funkcji rozkładu. Natomiast w drugim przypadku korpus funkcji rozkładu a wartość
parametru α = 1 stanowi próg oddzielający te dwa zasadniczo różne światy.
Uzyskany wynik pozwala wyrazić w tych dwóch przypadkach pierwszy moment

w jawnej postaci; najpierw jego transformatę Laplace’a

〈X̃(s)〉 ≈







(p+ − p−)γ
′
f

γ0
1

(
s
γ0

)1+α , dla sytuacji singularnej, czyli α < 1;

(p+ − p−) γ′
γ0

1
(
s
γ0

)2 , dla sytuacji regularnej, czyli α > 1.

(6.85)

a stąd, w zależności od czasu

〈X(t)〉 ≈
{

(p+ − p−)γ′f(γ0t)α, dla sytuacji singularnej czyli α < 1;
(p+ − p−)γ′γ0t, dla sytuacji regularnej czyli α > 1.

(6.86)

Wreszcie z (6.86) można wyznaczyć prędkość unoszenia

d

dt
〈X(t)〉 = 〈V (t)〉 ≈







(p+ − p−) γ′fγ0

(γ0t)(1−α)
, dla α < 1;

(p+ − p−)γ′γ0, dla α > 1.

(6.87)

Tym samym, wyjaśniona została pierwsza część potęgowego zaniku fotoprądu od
czasu; pozostała jeszcze do wyjaśnienia zależność w której istotną rolę odgrywa
absorbujący wpływ katody.
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6.2.5 Średni czas oczekiwania

Poszukujemy odpowiedzi na zasadnicze pytanie: jaki jest średni czas oczekiwania
(życia),

〈t〉 =
∫ ∞

0
tφ(t)dt, (6.88)

błądzącej cząsteczki w jakiejkolwiek dolinie (minimum) potencjału? Rozważmy klu-
czowy dla naszych rozważań przypadek α < 1. Łatwo dostrzec, podstawiając (6.66)
do (6.88) (oraz korzystając z faktu, że funkcja φ(t) jest ograniczona), że 〈t〉 = ∞.
Podobnie można sprawdzić, że także dowolny moment 〈tm〉 = ∞, m = 2, 3, . . . .
Oznacza to, że średni czas oczekiwania (życia) cząsteczki w dowolnej dolinie (mini-
mum) potencjału oraz jego dyspersja (rozrzut statystyczny) są nieskończene.
Rodzi to szereg pytań - jednym z najważniejszych jest w jaki sposób powyższy

wynik teretyczny może przejawiać się w realnym doświadczeniu? Aby odpowiedzieć
na to pytanie rozważmy dowolnie wybrany przedział czasu ∆t w którym będziemy
obserwować błądzenie cząsteczki. Przypuśćmy, że w tym przedziale czasu cząsteczka
n(� 1) razy zmieniała swoje miejsce pobytu co pozwoliło nam dokonać n-krotnego
pomiaru jej czasu życia tj, j = 1, 2, . . ., w kolejno odwiedzanych dolinach poten-
cjału. Na tej podstawie możemy wyznaczyć średni czas oczekiwania cząsteczki jako
〈t(∆t)〉 = 1/n∑n

j=1 tj. Oczywiście, wielkość ta zależy od długości przedziału ∆t
w którym prowadzono obserwacje. Zależność ta może być dwojakiego rodzaju. Je-
żeli wykładnik α > 1 wówczas średni czas oczekiwania jest skończony i, zgodnie z
prawem wielkich liczb Bernoulliego, w miarę wzrostu długości przedziału czasu ∆t
powyższa średnia 〈t(∆t)〉 dąży do osiągnięcia skończonego plateau czyli ulega sta-
blilizacji. Jeżeli α < 1 wówczas średni czas oczekiwania jest nieskończony i wzrost
długości czasu obserwacji nie prowadzi do stabilizowania się uzyskiwnych wyników a
wprost przeciwnie, �dłuższy przedział obserwacji ∆t oznacza większą szansę pojawie-
nia się rzadkiego zdarzenia w postaci bardzo długiego czasu oczekiwania w jakimś
lokalnym minimum potencjału co może prowadzić do drastycznego wzrostu średniej
〈t(∆t)〉; tego typu zależność przedstawiono na rys.... i omówiono w rozdz..... (przy
okazji omówiono tam także o przypadek marginalny gdy α = 1 wymagający osob-
nego traktowania). Innymi słowy, nieskończony średni czas oczekiwania przejawia
się w postaci rosnącej nieograniczenie wartości 〈t(∆t)〉 ze wzrostem ∆t. Ponadto,
w przypadku α < 1 rodzi się kluczowe pytanie dotyczące istnienia i osiągania przez
układ stanu równowagi; ten niezwykle istotny problem dyskutujemy w dalszej części.

6.2.6 Oczekiwanie Weierstrassa–Mandelbrota

Dalsze rozważania, dotyczące fraktalizacji czasów oczekiwania, łatwiej przeprowadzić
korzystając z funkcji Weierstrassa-Mandelbrota, czyli z dyskretnej reprezentacji funk-
cji rozkładu czasów oczekiwania.
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6.2.7 Dyskretna funkcja rozkładu czasów oczekiwania

Wprowadżmy w tym celu następującą wyjściową definicję, która daje poszukiwaną
funkcję rozkładu w postaci nieskończonej superpozycji funkcji Poissona

φ(t) =
∞∑

j=0

vjγj exp(−γjt), (6.89)

przy czym

τj =
1
γj

(6.90)

jest średnim czasem przebywania czasteczki w dolinie potencjału o numerze j (oczy-
wiście danej głębokości odpowiada jeden i tylko jeden wskażnik j niezależnie od tego
w którym miejscu taka dolina się znajduje), natomiast wagi vj spełniają warunek
normalizacyjny

∞∑

j=0

vj = 1. (6.91)

Jak widać, wprowadzenie reprezentacji dyskretnej jest związane z ponumerowaniem
dolin potencjału w kolejności od najpłytszej do najgłębszej. Jednak, jak to już wska-
zaliśmy w poprzednim paragrafie, głębokość minimów potencjałów jest ograniczona
zatem sumowanie w (6.89) powinno być skończone, co niestety komplikuje rozwa-
żania matematyczne (patrz Dodatek B) chociaż zasadnicze wnioski płynące z obu
podejść są identyczne.
Z (6.91) wynika bezpośrednio warunek normalizacyjny dla funkcji rozkładu po-

staci
∫ ∞

0
φ(t)dt = 1. (6.92)

Aby łatwiej uchwycić sens fizyczny superpozycji (6.89) zauważmy, że ma miej-
sce odpowiedniość pomiędzy reprezentacją ciągłą (6.62) i dyskretną (6.89), która
została przedstawiona w Tabeli 1 (gdzie wprowadziliśmy explicite jednostkę energii
oznaczoną przez ∆).
W dalszym ciągu, pod wpływem reprezentacji (6.62) dopuszczamy wariant naj-

prostszy, w którym stosunek wag w kolejnych rzędach j = 0, 1, 2, . . . , jest funkcją
malejącą i niezależną od rzędu, czyli

vj+1
vj
=
1
M

< 1; (6.93)

oznacza to, że parametr M pełni rolę współczynnika podobieństwa stochastycznego
(tutaj współczynnika stochastycznego osłabienia) czasowej struktury stochastycznej.
Z (6.91) oraz (6.93) wynika bezpośrednio, że

vj =
(

1− 1
M

) 1
M j

. (6.94)
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Tabela 6.1: Relacje pomiędzy reprezentacjami

Reprezentacja ciągła Reprezentacja dyskretna
∫∞
0 dE/∆ ∑∞

j=0

E/∆ j
exp(∆/Ē) M
∆/Ē 1− 1

M

exp(−∆/kBT ) γ

γ0(exp(−∆/kBT ))E/∆ γ0γ
j

Ponadto, zgodnie z duchem zależności (6.93), przyjmujemy, że stosunek

γj+1
γj
= γ < 1, (6.95)

jest niezależny od rzędu (pokolenia) j; bezwymiarowy współczynnik γ pełni rolę
współczynnika podobieństwa czasowego natomiast, γ0 jest częstością charakteryzu-
jącą proces na poziomie wyjściowego, zerowego pokolenia. Z (6.95) wynika natych-
miast, że

γj = γ0γj, j = 0, 1, 2, . . . , (6.96)

oraz na mocy (6.90)

τ0τ
j =

1
γ0γj

. (6.97)

Podstawiając wyrażenie (6.94) oraz (6.96) do definicji (6.89) otrzymujemy następu-
jącą, przygotowaną do dalszej analizy, postać funkcji rozkładu czasów oczekiwania,

φ(t) = γ0
(

1− 1
M

) ∞∑

j=0

1
M j

γj exp(−γ0γjt). (6.98)

Zauważmy, iż warunek (6.93) oraz (6.95) gwarantują, że dla każdej chwili t funkcja
φ(t) ma wartość skończoną dzięki temu, że

γ

M
< 1. (6.99)

Nieskończony ciąg stałych czasowych (6.97) charakteryzujący we wszystkich rzę-
dach (pokoleniach) omawiany proces stochastyczny rodzi pytanie o istnienie efek-
tywnej (wypadkowej) jednostki czasowej - zagadnienie to analizujemy poniżej. Tutaj
zauważmy jedynie, że regularność procesu stochastycznego na każdym poziomie j z
osobna nie oznacza jeszcze, że sumaryczny proces ma charakter regularny czyli, że
jest scharakteryzowany jednym, skończonym średnim czasem oczekiwania cząstecz-
ki.
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6.2.8 Czasowe równanie skalowania

Wprowadżmy transformatę Laplace’a funkcji rozkładu czasów oczekiwania

φ̃(s) =
∫ ∞

0
dt exp(−ts)φ(t) = (1− 1

M
)γ0

∞∑

j=0

(
γ

M

)j 1
s+ γ0γj

, (6.100)

dzięki temu łatwo zauważyć, że spełnione jest następujące równanie skalowania

φ̃(γ−1s) =Mφ̃(s)− (M − 1) γ0
s+ γ0

. (6.101)

Rozwiązanie tego równania można poszukiwać w postaci sumy

φ̃(s) = φ̃reg(s) + φ̃sing(s), (6.102)

gdzie φ̃reg(s) jest rozwiązaniem ogólnym, regularnym równania niejednorodnego
(6.101) natomiast φ̃sing(s) jest rozwiązaniem szczególnym, singularnym równania
jednorodnego

φ̃sing(γ−1s) =Mφ̃sing(s). (6.103)

Postać rozwiązania ogólnego jest narzucona przez niejednorodność równania (6.101).
Rozwijając ją w szereg Taylora otrzymujemy naprzemienny szereg potęgowy w
zmiennej s, pozwalający na wyznaczenie współczynników szeregu potęgowego (także
w zmiennej s) jakim jest rozwiązanie regularne. Z dokładnością do wyrazów linio-
wych możemy napisać, z dobrym przybliżeniem dla | s |� γ0,

φ̃reg(s) ≈ 1−
s

γ′
, (6.104)

gdzie uogólnione prawdopodobieństwo przeskoku na jednostkę czasu

γ′ = γ0
1− 1

Mγ

1− 1
M

. (6.105)

Zauważmy, że γ′ > 0 wtedy i tylko wtedy gdy Mγ > 1 co odpowiada sytuacji, dla
której istnieje wartość oczekiwana

〈t〉 =
∫ ∞

0
tφ(t)dt = (1− 1

M
)
1
γ0

∞∑

j=0

1
(Mγ)j

=
1
γ′
. (6.106)

Sytuację przeciwną, gdy Mγ < 1, omawiamy poniżej.
Można łatwo sprawdzić, korzystając z równania jednorodnego (6.103), że poszu-

kiwany kształt rozwiązania sigularnego jest następujący

φ̃sing(s) ≈ −
sη

γ′f
, (6.107)
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gdzie wykładnik

η = − ln(M)
ln(γ)

= α; (6.108)

wyznaczenie współczynnika propocjonalności, czyli fraktalnego elementu przejścia
na jednostkę czasu, γ ′f w równaniu (6.107) wymaga subtelniejszego podejścia sto-
sującego transformatę Mellina oraz metodę residuów do obliczania całek (w płasz-
czyżnie zespolonej).
Wreszcie, korzystając z (6.102), (6.104) oraz (6.107) otrzymujemy dla s→ 0,

φ̃(s) ≈ 1− sη

γ′f
− s

γ′
≈ 1
1 + sη

γ′
f
+ s

γ′

. (6.109)

Uproszczenie powyższego wzoru zależy od wartości wykładnika α mianowicie,

φ̃(s) ≈







1− s
γ′
≈ 1
1+ s
γ′
, dla sytuacji regularnej czyli α > 1

1− sα

γ′
f
≈ 1
1+ s

α

γ′
f

, dla sytuacji anomalnej czyli α < 1;

przypadek marginalny gdy α = 1 wymaga innego, bardziej zaawansowanego podej-
ścia (wykorzystującego transformatę Mellina oraz całkowanie przez residua) i zostało
omówione w dalszej części.
Jak widać, dla sytuacji regularnej (α > 1) φ̃(s) ≈ φ̃reg(s) tzn. dla małych s domi-

nuje rozwiązanie regularne w przeciwieństwie do sytuacji anomalnej (wymagającej
omówienia). Rozwiązanie regularne oznacza, że po dokonaniu odwrotnej transfor-
maty Laplace’a funkcja rozkładu

φ(t) ≈ γ′ exp(−γ′t) (6.110)

jest dana, dla asymptotycznie długich czasów t, funkcją Poissona (patrz pierwsza
część Dodatku C).
W sytuacji anomalnej (α < 1), po dokonaniu odwrotnej transformacji Lapla-

ce’a funkcja rozkładu dla asymptotycznie długich czasów zanika potęgowo (patrz
wyprowadzenie w drugiej części Dodatku C) tzn.,

φ(t) ≈ α

Γ(1− α)
1
γ′f

1
t1+α

. (6.111)

Łatwo sprawdzić (w oparciu o (6.111) oraz o fakt, że φ(t) jest ograniczone), że w tym
przypadku wartość oczekiwana 〈t〉 = ∞. Jak widać, rozkład dany wzorem (6.110)
oraz (6.111) różnią się zasadniczo - naszym celem jest omówienie tego ostatniego.
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Rysunek 6.8: Schematycznie przedstawiona uporządkowana hierarchia średnich cza-
sów wyczekiwania opisana zdyskretyzowaną funkcją rozkładu φ(t) przykładowo dla
N = 3 i τ = 2. Ponadto, przedstawiono własności samopodobieństwa i skalowania
oraz zdefiniowano pojęcie rzadkiego zdarzenia.
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6.2.9 Gra petersburska - przypomnienie

Istnienie zmiennych losowych nie posiadających skończonych wartości oczekiwanych
zostało po raz pierwszy zauważone przez Daniela Bernoulli’ego w zaproponowanej
przez niego tzw. grze petersburskiej (przejrzyste omówienie tej gry można znależć w
książce Williama Fellera, ”Wstęp do rachunku prawdopodobieństwa”, wyd.II zmie-
nione, rozdz.X4, PWN, Warszawa 1966). Gra ta jest związana z rzucaniem żeto-
nem przy czym szansa, że w wyniku pojedynczego rzutu wypadnie awers wynosi
1/M natomiast rewers 1 − 1/M , gdzie M > 1. Należy zaznaczyć, że w oryginal-
nej grze petersburskiej żeton jest symetryczny czyli M = 2. Zasada gry polega
na tym, iż gracz może rzucać żetonem do pierwszego pojawienia się rewersu; o ile
j(= 0, 1, 2, . . .) razy pod rząd wypadł awers grający wygrywa kwotę równą fj. Na-
leży, oczywiście przyjąć, że wygranie większej kwoty powinno być mniej prawdo-
podobne zatem, stawka fj powinna rosnąć z j a poza tym może być dowolna; za-
uważmy, że przypadek fj = M j, jaki ma miejsce w oryginalnej grze petersburskiej,
prowadzi do sytuacji, w której wartość oczekiwana wygranej dana nieskończoną
sumą (1 − 1

M
) + (1 − 1

M
)M
M
+ (1 − 1

M
)M

2

M2
+ . . . + (1 − 1

M
)M

j

Mj
+ . . . jest nieogra-

niczona, co uniemożliwia zastosowanie prawa wielkich liczb. W naszym przypadku
stawka wynosi fj = 1/(γ0γj) co prowadzi do wyrażenia (6.106) na wartość ocze-
kiwaną wygranej, która jedynie dla Mγ < 1 przyjmuje wartość nieskończoną. Jest
to wynik przełomowy dla rachunku prawfopodobieństwa, otwierajacy drogę anali-
zie zmiennych losowych, których wybrane momenty (np. wartość oczekiwana) mogą
nie istnieć. Tego typu rachunek prawdopodobieństwa i statystyka matematyczna
odgrywają kluczową rolę we współczesnych zastosowaniach w fizyce i poza nią. Ka-
nonicznym przykładem wspomnianych zmiennych losowych są błądzenia fraktalne
a tutaj przeloty Weierstrassa, o których jest mowa poniżej w rozdz. 6.4.

6.3 Błądzenia fraktalne

Zrozumienie tzw. błądzeń fraktalnych wymagało od nas omówienia w pierwszym
rzędzie obiektów zwanych fraktalami statystycznymi (probabilistycznymi). Błądze-
nia fraktalne rozważmy na przykładzie wielce charakterystycznych tzw. błądzeń
Weierstrassa3, które pozwalają na dostrzeżenie zasadniczej przyczyny powodującej
istnienie algebraicznie zanikających, długozasięgowych ”ogonów” zarówno w rozkła-
dach prawdopodobieństw jak i w funkcjach korelacji. Jak wykazujemy, tą przyczyną
są rzadkie, ekstremalne zdarzenia które, w określonych warunkach, są gene-
rowane przez stochastycznie samopodobną strukturę trajektorii błądzącej
cząsteczki. Mówiąc ogólniej, trajektoria ta tworzy stochastyczną strukturę fraktalną
- stąd wzięła się nazwa tych błądzeń.

3Termin ‘błądzeniaWeierstrassa’ został wprowadzony w pracy E.W.Montrolla i M.F.Shlesingera
pt.: ”On the Wonderful World of RandomWalks” zamieszczonej w ”Nonequilibrium Phenomena II.
From Stochastics to Hydrodynamics”, SSM XI, eds, J.L.Lebowitz i E.W.Montroll (North-Holland,
Amsterdam 1984)
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Istnienie rzadkich, ekstremalnych zdarzeń otwiera inny od tradycyjnego, i mimo
znacznych osiągnięć będący wciąż w fazie początkowej, kierunek dociekań fizyki
statystycznej oraz dynamiki chaotycznej.

6.4 Przeloty Weierstrassa

Przeloty Weierstrassa stanowią szczególny przypadek błądzeń Weierstrassa
czyli procesu stochastycznego, który potrafi opisać zarówno sytuacje gdy

1) przemieszczenia pojedynczej cząsteczki można traktować jako natychmiastowe

jak też takie, w których

2) prędkość przemieszczania się jest skończona tzw. spacery Weierstrassa.

Ten pierwszy przypadek, znacznie łatwiejszy do opisania (dzięki mniejszej liczbie
stopni swobody charakteryzującej układ), dotyczy właśnie przelotów Weierstras-
sa - od niego zaczynamy nasz wywód. Proces stochastyczny typu przelotów nosi
także nazwę hoppingu (jumpingu) bądż po prostu procesu skokowego i jest sze-
roko stosowany w materii skondensowanej a zwłaszcza w fizyce ciała stałego np. do
opisu dyfuzji oraz przewodnictwa jonowego.

6.4.1 Definicje i interpretacje

Zdefiniujemy część przestrzenną, p(x), gęstości prawdopodobieństwa przemieszczenia
się cząsteczki o wektor x w wyniku pojedynczego przelotu. Dla uproszczenia wstęp-
nych wywodów matematycznych omawiamy przeloty jednowymiarowe; przeloty
w przestrzeniach o większej liczbie wymiarów omawiamy w Dodatku A (dokładniej
rzecz biorąc, dyskutujemy sferycznie symetryczne przeloty Weierstrasa, zwane tak-
że błądzeniem Rayleigha-Pearsona, będące bezpośrednim uogólnieniem przypadku
jednowymiarowego).
Wprowadżmy następującą wyjściową definicję opisującą kinetykę przemieszczenia

cząstki o wektor x,

p(x) =
1
2

∞∑

j=0

wj[δ(x− bj) + δ(x + bj)], (6.112)

gdzie waga wj, j = 0, 1, 2, . . ., spełniająca warunek normalizacyjny
∞∑

j=0

wj = 1, (6.113)

oznacza prawdopodobieństwo z jakim cząsteczka przemieszcza się na odległość bj.
Oczywiście, z warunku (6.113) wynika natychmiast warunek normalizacji gęstości
prawdopodobieństwa p(x),

∫ ∞

−∞
p(x)dx = 1. (6.114)
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Zauważmy, że czynnik 1/2 stojący przed sumą jest prawdopodobieństwem wybra-
nia przez cząstkę jednej z dwóch dozwolonych orientacji wektora przemieszczenia;
ponieważ każda z orientacji jest równie prawdopodobna więc p(x) opisuje błądzenie
w nieobecności zewnętrznego pola. W dalszym ciągu dopuszczamy jedynie najprost-
szy wariant, w którym stosunek wag w kolejnych rzędach j = 0, 1, 2, . . ., jest funkcją
malejącą i niezależną od rzędu, tzn.

wj+1
wj
=
1
N

< 1, (6.115)

co oznacza, że parametr N pełni rolę współczynnika podobieństwa stochastycznego
(tutaj współczynnika stochastycznego osłabienia) struktury stochastycznej; z (6.113)
oraz (6.115) wynika natychmiast, że

wj =
(

1− 1
N

) 1
N j

(6.116)

maleje potęgowo z rzędem j. W dalszym ciągu, zgodnie z duchem zależności (6.115),
przyjmujemy, że

bj+1
bj
= b > 1, (6.117)

gdzie b pełni rolę współczynnika podobieństwa geometrycznego (zwanego też cza-
sami współczynnikiem geometrycznego wzmocnienia struktury stochastycznej); po-
dobnie jak dla wag, z (6.117) wynika natychmiast zależność potęgowa

bj = b0bj, (6.118)

gdzie b0 jest stałą, jednostkową długością przelotu rzędu zerowego; w dalszym ciągu
kładziemy (w wybranych miejscach) dla uproszczenia wywodów matematycznych
b0 = 1 przyjmując, że przeloty dłuższe są mniej prawdopodobne np. ze względu
na opory ruchu tzn. zakładając, że b > 1. Sytuacja przeciwna, gdy b < 1, dotyczy
np. błądzenia trajektorii w przestrzeni fazowej w obszarze hierarchicznych pułapek
istniejących w wielu nieliniowych zagadnieniach dynamicznych przejawiających za-
chowania chaotyczne. Przypadek b = 1 ma charakter marginalny - nie będziemy go
tutaj rozważać.
Z wyrażenia (6.116) oraz (6.118) wynika, że przeloty cząsteczki można grupować

w rzędy zarówno według częstości ich występowania jak i długości przelotów, co
pozwala przepisać wyjściowy wzór (6.112) w postaci

p(x) =
1
2

(

1− 1
N

) ∞∑

j=0

1
N j
[δ(x− b0bj) + δ(x + b0bj)]. (6.119)

Jak widać, wzór (6.119) dopuszcza dowolnie długie przeloty cząsteczki. Omawia-
ne tutaj błądzenie pojedynczej cząsteczki nosi nazwę przelotów dlatego że zarówno
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ogólna definicja (6.112) jak i wzór (6.119) określają natychmiastowe przemieszcza-
nie się błądzącej cząsteczki pomiędzy kolejnymi punktami zwrotnymi (przystankami
wyznaczającymi oczywiście początek i koniec pojedynczego przelotu). Należy pod-
kreślić, iż wszystkie wnioski formułowaneane w tym rozdziale odnoszą się także do
wspomnianych już sferycznych przelotów Weierstrassa omówionych w Dodatku A.
Na przykład, prowadzona tutaj dyskusja dotycząca wzorów (6.112) oraz (6.119)
odnosi się jednocześnie do wzoru (H.1) oraz towarzyszących mu definicji zamiesz-
czonych w Dodatku A.

Asymptotyczna postać p(x)

Istnieje kilka sposobów odpowiedzi na pytanie o asymptotyczną postać p(x). Wybie-
ramy tutaj tą najprostszą, wynikającą bezpośrednio z odpowiedniej zamiany zmien-
nych. Zatem, poszukujemy prawdopodobieństwa p(x) dla | x |� b0. Rozważmy w
tym celu prawdopodobieństwo w(j) dane wzorem (6.116), w którym zmienną j wy-
razimy poprzez bj. Pamiętajmy, że zgodnie z definicją przelotów Weierstrassa (6.119)
bj =| x | /b0. Korzystając z niezmienniczości prawdopodobieństwa (jako skalara),
możemy wprowadzić następującą równość

w(j)d j = p(| x |)d | x |⇔ p(x) = w̌ (| x |) d j

d | x | =
1− 1

N

ln b
bβ0
| x |1+β , (6.120)

gdzie skorzystaliśmy z faktu, iż po zamianie zmiennej j na | x | prawdopodobieństwo
w(j)d j staje się prawdopodobieństwen p(| x |)d | x |, przy czym

w̌(| x |) def.= w(j(| x |)) = w
(

j =
1
ln b
ln

(

| x |
b0

))

=
(

1− 1
N

)
bβ0
| x |β , (6.121)

gdyż

1
N j
= exp(−j lnN) = exp

(

−β ln
(

| x |
b0

))

=

(

| x |
b0

)−β
. (6.122)

Skorzystaliśmy też tutaj z możliwości uciąglenia dyskretnej zmiennej j. Możliwość
ta wynika z faktu, że warunek konieczny i wystarczający, czyli

d j

d | x | � 1⇔
1
ln b
1
| x | � 1⇔| x |�

1
ln b

(6.123)

jest łatwo spełnić.

Samopodobny charakter przelotów Weiertrassa

Istnieje ważny powód, dla którego nasze rozważania rozpoczęliśmy od analizy po-
jedynczego przemieszczenia cząsteczki. Otóż, jak zobaczymy przeloty Weierstrassa
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mają charakter samopodobny dlatego należy oczekiwać, że już elementarne prze-
mieszczenie będzie w sobie zawierać istotne informacje dotyczące całej trajektorii;
aspekt ten był już zresztą widoczny dla ruchów Browna, dla których współczynnik
samodyfuzji dał się wyrazić za pomocą parametrów mikroskopowych charakteryzu-
jących jedynie pojedyncze przemieszczenie cząsteczki.
Interpretacja wzoru (6.119) jest szczególnie prosta gdy parametr N jest liczbą

naturalną większą od 1. Mianowicie, już ze wzoru (6.115) wynika, że przeloty o
długości b0bj+1 są N razy mniej prawdopodobne niż przeloty o długości b0bj. Moż-
na zatem powiedzieć, że średnio rzecz biorąc zanim cząsteczka wykona przelot
rzędu j +1 musi wykonać N przelotów rzędu j Zaniedbując na razie nieunik-
nione fluktuacje sekwencji przelotów oraz fluktuacje proporcji pomiędzy liczbami
przelotów o różnych długościach, można to przedstawić schematycznie w postaci
graficznej, przyjmując dla przykładu, że N = 3 oraz b = 2.
Poniższy (dwuczęściowy) rysunek 6.9 przedstawia, dla większej poglądowości,

błądzenie w przestrzeni dwuwymiarowej; nie narusza to w niczym ogólnych zasad
(6.115) i (6.117) definiujących przeloty Weierstrassa.
Uderzającą cechą tak uporządkowanej trajektorii błądzącej cząsteczki jest jej

samopodobny charakter co widać już przez zwykłe porównanie rysunku 6.9(a) i
6.9(b).
Na rysunku 6.9(a) zamieszczone są wszystkie szczegóły trajektorii, tzn. aby wy-

konać przelot o długości b1 = 2 cząsteczka musi wykonać najpierw N = 3 przelotów
o długości jednostkowej (rzędu zerowego); aby wykonać przelot o długości b2 = 4
musi analogicznie wykonać N = 3 przelotów rzędu j = 1, itd, itp. A zatem, zanim
zostanie wykonany przelot rzędu j = 2 musi być zrealizowanych N j=2 = 9 przelotów
o długości jednostkowej (rzędu zerowego). Zatem ogólnie mówiąc, N j można trak-
tować jako średnią liczbą przelotów rzędu zerowego, które muszą zostać
wykonane aby mógł się pojawić przelot o długości bj. Ten pojedynczy przelot
rozpoczynający j-e pokolenie w hierarchii przelotów stanowi w zbiorze złożonym z
(N j+1 − 1)/(N − 1)(= N j +N j−1 + . . . + N1 + N0) przelotów tzw. rzadkie, eks-
tremalne zdarzenie o ile spełniony jest dodatkowy warunek, który wprowadziamy
poniżej. Jak wykażemy, zdarzenia takie odgrywają zasadniczą rolę w tzw. dyfuzji
anomalnej. To właśnie z powodu tego typu zdarzeń zwykła dyfuzja traci swój nor-
malny charakter; jak zobaczymy, właśnie to jest np. przyczyną zamiany relaksacji
wykładniczej na potęgową.
Z grubsza rzecz biorąc, rzadkie, ekstremalne zdarzenie a tutaj rzadki, ekstremal-

ny przelot, jest unikalnym w stosunku do tych, które już się pojawiły i przynajmniej
o rząd wielkości większym - jak pokazujemy, jest to warunek konieczny ale nie wy-
starczający. W tym sensie stochastyczna trajektoria samopodobna może, w pewnych
warunkach, wygenerować rzadkie, ekstremalne zdarzenia, natomiast (jak zobaczy-
my) rzadkie, ekstremalne zdarzenia zawsze budują stochastyczną trajektorię samo-
podobną. W dalszym ciągu prowadzimy rozważania pozwalające na wprowadzenie
uściślonej definicji rzadkiego, ekstremalneg zdarzenia.
Wielkość N j można formalnie traktować jak elementarną ”masę” błądzenia We-
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Rysunek 6.9: Schematycznie przedstawiona trajektoria zbudowana z uporządkowa-
nych hierarchicznie pojedynczych przemieszczeń opisana zdyskretyzowaną funkcją
rozkładu (6.119) przykładowo dla N = 3, b = 2 i b0 = 1. Ponadto, przedstawio-
no własności samopodobieństwa i skalowania oraz zdefiniowano pojęcie rzadkiego
zdarzenia.
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ierstrassa (całkowitą ”masą” jest wielkość (N j+1 − 1)/(N − 1)) nagromadzoną w
obszarze scharakteryzowanym przez liniowy rozmiar bj; wykażemy, że zależność po-
między nagromadzoną ”masą” a liniowym rozmiarem prowadzi do istnienia uniwer-
salnego wykładnika, który w dalszym ciągu nazywamy wymiarem samopodo-
bieństwa i oznaczamy przez ds.
Rysunek 6.9(b) jest tą samą trajektorią ”sfotografowaną” już z pewnej odległo-

ści mianowicie takiej, że zdolność rozdzielcza ”zdjęcia” nie pozwala na rozróżnienie
niektórych jego szczegółów. Ta nierozróżnialność szczegółów sprowadza się do trak-
towania każdej grupy składającej się tutaj z trzech jednostkowych przemieszczeń
jak pojedynczego punktu. Dlatego właśnie najmniejsza rozróżnialna grupa składa
się (przy takiej a nie innej zdolności rozdzielczej zdjęcia) z trzech przemieszczeń
o długości b1. Jak widać, trajektoria zamieszczona na rysunku 6.9(b) nie różni się
niczym od tej jaka znajduje się na rysunku 6.9(a) za wyjątkiem,

1) skali - jest narysowana w skali b razy większej

2) (być może) przypadkowych różnic co do orientacji kolejnych, odpowiadających
sobie na obu rysunkach, wektorów przemieszczeń.

Każda trajektoria stochastyczna spełniająca powyższe własności nosi nazwę samo-
podobnej trajektorii stochastycznej czyli, średnio rzecz biorąc, jest niezmien-
nicza ze względu na skalowanie. Oczywiście, oddalając się jeszcze bardziej (czyli
przechodząc na coraz niższy poziom ziarnistości obrazu) doprowadzili byśmy do te-
go, że także grupy złożone z trzech przemieszczeń o długości b1 widoczne byłyby
jedynie w postaci punktów, co znowu nie zmienia w niczym istotnym wyjściowego
rysunku 6.9(a) , itd, itp; postępowanie to można kontynuować bez przeszkód gdyż
jest ono ograniczone jedynie rozmiarem samej trajektorii.
Powyższe postępowanie można sformalizować pisząc dla każdego poziomu ziar-

nistości k(= 0, 1, 2, . . . , j) następującą relację wynikania

N j−k(bk)⇒ bj−k(bk); (6.124)

przy czym k-ty poziom ziarnistości oznacza, że przelot o długości bk jest traktowany
jak jednostkowy a wszystkie pozostałe przeloty o długościach krótszych, które go
poprzedzają są (w tej zdolności rozdzielczej) traktowane po prostu jak punkt. Tym
samym, N j−k przemieszczeń o długości bk poprzedza (w średniej) przemieszczenie o
długości bj−k razy większe.
Można wykazać, że nie tylko trajektoria jako całość tworzy rosnącą strukturę

samopodobną ale także zbiór wszystkich punktów zwrotnych (oznaczonych na ry-
sunku przez pełne kółka). Co więcej, wymiar fraktalny tego zbioru punktów wynosi
df = β.
Wskazana tutaj własność samopodobieństwa w sensie stochastycznym jest pod-

stawową cechą tzw. stochastycznych struktur fraktalnych, o których jest mowa w dal-
szej części. Zauważmy, że własność samopodobieństwa udało nam się łatwo dostrzec
tylko dlatego, że zrezygnowaliśmy z nieuniknionych w rzeczywistości wspomnianych

294



już fluktuacji przelotów. Innymi słowy, ze stochastyczną strukturą samopodomną,
bądż ogólniej fraktalną, mamy do czynienia wtedy gdy po przeprowadzeniu proce-
dury regularyzacji (porządkowania) czyli po pozbyciu się fluktuacji (nieporządku)
struktura staje się samopodobna w sensie deterministcznym, bądż ogólniej mówiąc,
staje się fraktalem deterministycznym, przynajmniej w granicy dużej liczby poko-
leń. I odwrotnie, ze struktury deterministycznej można uzyskać stochastyczną przez
wprowadzenie nieporządku, np. typu fluktuacji czyli w taki sposób aby w średniej
nie zniszczyć własności samopodobieństwa. Zatem, dla rzeczywistych błądzeń na-
leży zbudować statystykę długości przelotów (mówiącą o częstości występowania
przelotów o poszczególnych długościach) i na tej podstawie wyznaczyć stosunek od-
powiednich wag; zbudowanie takiej statystyki w postaci zamkniętej (a nie w postaci
nieskończonej sumy) jest zasadniczym celem niniejszych rozważań.
Można teraz zadać fundamentalne pytanie: jak elementarna ”masa” oma-

wianej struktury stochastycznej skaluje się z liniowym rozmiarem obszaru
w którym jest nagromadzona? Na pytanie to można odpowiedzieć bez trudu,
korzystając z relacji (6.124) dla rzędu j oraz poziomu ziarnistości k (traktując oczy-
wiście bk jako jednostkę). Mianowicie, ma miejsce równość

N j−k = (bj−k)β, (6.125)

z której można wyznaczyć wykładnik β w postaci niezależnej od j oraz k

β =
ln(N)
ln(b)

(6.126)

będącej bezpośrednią konsekwencją samopodobnego charakteru struktury; to wła-
śnie wykładnik β nazywa się wymiarem samopodobieństwa i oznacza ds. Tym
samym wymiar samopodobieństwa ds, można traktować jako unikalną charaktery-
stykę struktury samopodobnej. Jest to stwierdzenie słuszne nie tylko w tym konkret-
nym przypadku ale dla wszelkiego typu struktur fraktalnych (zarówno o charakterze
stochastycznym jak też deterministycznym) dla których wymiar fraktalny jest za-
wsze dany w postaci ilorazu dwóch logarytmów.
W rozdz. 6.4.5 wskazujemy na progowy charakter błądzeń tzn. pokazujemy dla

jakich wartości wykładnika β struktura jest trwała i nie ulega zamazaniu nawet po
wykonaniu przez cząsteczkę wielkiej liczby przelotów.

6.4.2 Czynnik strukturalny przelotów Weierstrassa

Czynnik strukturalny przelotów Weierstrassa, p̃(k), zwany także funkcją
charakterystyczną przelotówWeierstrassa jest zdefiniowany jako transformata
Fouriera

p̃(k) =
∫ ∞

−∞
dx exp(−ikx)p(x) (6.127)
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przybierając (po podstawieniu formuły (6.119) i scałkowaniu) postać sumy szeregu
geometryczno-trygonometrycznego

p̃(k) =
(

1− 1
N

) ∞∑

j=0

1
N j
cos(kbj); (6.128)

czynnik strukturalny błądzenia Weierstrassa dany wyrażeniem (6.128) nosi nazwę
funkcji Weierstrassa lub częściowej funkcji Weierstrassa-Mandelbrota. Na rysunku
6.10
Zasadnicze własności funkcji Weierstrassa (6.128) omawiamy poniżej.

6.4.3 Przestrzenne równanie skalowania

W tym miejscu rodzi się zasadnicze pytanie o warunki w jakich p̃(k), wyrażone
wzorem (6.128), daje się przedstawić (z dobrym przybliżeniem) w postaci
zamkniętej? Odpowiedź na to pytanie jest dwuetapowa.
Po pierwsze zauważmy, że p̃(k) spełnia następujące, niejednorodne równanie ska-

lowania

p̃(bk) = Np̃(k)− (N − 1) cos(k), (6.129)

co pozwala na poszukiwanie jego rozwiązania p̃(k) w postaci sumy rozwiązania ogól-
nego (regularnego, normalnego), p̃n(k), równania niejednorodnego (6.129) oraz roz-
wiązania szczególnego (singularnego), p̃s(k), równania jednorodnego

p̃s(bk) = Np̃s(k). (6.130)

Kształt rozwiązania ogólnego jest już narzucony przez niejednorodność równania
(6.129) tzn. cos(k); jest to zatem szereg potęgowy zawierający tylko parzyste potęgi
zmiennej k, którego współczynniki musimy wyznaczyć. Robimy to standardowo,
podstawiając ten szereg do równania (6.129) i przyrównując do siebie wyrażenia
stojące przy tych samych potęgach k znajdujemy poszukiwane współczynniki. Stąd
rozwiązanie ogólne otrzymujemy w postaci

p̃n(k) ≈ 1−D′k2, (6.131)

gdzie tzw. uogólniony współczynnik dyfuzji

D′ =
1
2
1− 1

N

1− b2

N

. (6.132)

(Dokładniej rzecz biorąc, o współczynniku dyfuzji można mówić wtedy gdy zdefi-
niowany został średni czas potrzebny na wykonanie pojedynczego przelotu - tutaj
przyjęliśmy go milcząco jako jednostkowy; będzie o tym obszernie mowa w dalszej
części.) Ta postać współczynnika D′ posłuży nam do dalszej analizy a zwłaszcza
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Rysunek 6.10: Schematycznie przedstawienie kilku składowych funkcji Weierstrassa
(6.128) dla N = 4, b = 8 (czyli β = 2/3) i b0 = 1. Górny wykres przedstawia sumę
dwóch pierwszych składowych a dolny trzech pierwszych. Możemy się domyślać,
że w granicy nieskończonej sumy składowych ciągłość tej funkcji jest zachowana
ale różniczkowalniość nie, gdyż uniemożliwia to powstała nieskończona hierarchia
coraz mniejszych ale bardziej gwałtownych zakrętów funkcji Weierstrassa obecnych
w każdym punkcie.
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klasyfikacji rodzajów dyfuzji. Ograniczyliśmy się tutaj tylko do dwóch pierwszych
wyrazów rozwinięcia gdyż zarówno rozwiązanie regularne jak i singularne interesu-
je nas tylko dla przypadku gdy | k |� 1 co oznacza, że poszukujemy rozwiązania
opisującego przede wszystkim długie przeloty.
Po drugie, rozwiązanie singularne p̃s(k) równania (6.130) możemy zaprojektować

w postaci iloczynu funkcji wolnozmiennej oraz potęgowej (była juz o tym mowa w
rozdz. 2.1.1 w kontekście porównania z danymi empirycznymi)

p̃s(k) ≈ −Q
(

ln | k |
ln b

)

| k |β′ , (6.133)

przy czym funkcja wolnozmienna funkcja przedwykładnicza posiada następującą
własność,

Q

(

ln | bk |
ln b

)

= Q

(

ln | k |
ln b

+ 1

)

= Q

(

ln | k |
ln b

)

(6.134)

czyli jest funkcją okresową o okresie 1. Zatem, posiada następujące rozwinięcie fo-
urierowskie

Q

(

| k |
ln b

)

=
∞∑

n=−∞
An exp

(

2πin
ln | k |
ln b

)

, (6.135)

zwane logarytmiczną periodycznością (była już o tym mowa w rozdz. 2.1.1). W naj-
prostszym przypadku redukuje się ono do stałej, którą oznaczamy przez D ′f(= A0) -
w niniejszym rozdziale, dla prostoty rozważań, ograniczamy się tylko do tego szcze-
gólnego przypadku; najogólniejszą postać funkcji Q a także jawną postać fraktal-
nego współczynnika dyfuzji D′f wyprowadziliśmy w Dodatku I korzystając z
transformaty Mellina (patrz, Harry Bateman, Arthur Erdéley, ”Tables of Integral
Transforms”, Vol.I, McGraw-Hill Book Comp., Inc., New York 1954) oraz metody
residuów (patrz, Krzysztof Maurin, ”Analiza. Cz.II. Wstęp do analizy globalnej”,
PWN, Warszawa 1971) obliczania całek na płaszczyżnie zespolonej.
Wykładnik β ′ znajdujemy podstawiając wyrażenie (6.133) do równania (6.130).

W ten sposób otrzymujemy, że

β ′ =
lnN
ln b
= β; (6.136)

niestety, na tej drodze nie udaje się wyznaczyć fraktalnego współczynnika dyfuzji
D′f .
Jest charakterystyczne, że ten wcześniej wprowadzony wykładnik β jest de facto

odpowiedzialny za nieanalityczny charakter rozwiązania singularnego. Z kolei po-
jawienie się tego wykładnika było spowodowane samopodobnym charakterem prze-
lotów Weierstrassa więc to własność samopodobieństwa jest praprzyczyną
istnienia rozwiązania singularnego. Zatem wykładnik β może być traktowany
jako podstawowy we wszelkiego rodzaju analizach a w tym klasyfikacjach.
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Ostatecznie, łącząc (6.131) i (6.133) wraz z (6.136), znajdujemy strukturalny
czynnik przelotów Weierstrassa w postaci,

p̃(k) = p̃s(k) + p̃n(k) ≈ 1−D′k2 −D′f | k |β

≈ exp(−D′k2 −D′f | k |β). (6.137)

Dalsze uproszczenie powyższego wzoru zależy od wartości wykładnika β. Miano-
wicie (pamiętając, że | k |� 1) otrzymujemy,

p̃(k) ≈
{

1−D′k2 ≈ exp (−D′k2) , dla β > 2
1−D′f | k |β≈ exp

(

−D′f | k |β
)

, dla β < 2;

przypadek marginalny gdy β = 2 wymaga innego, bardziej zaawansowanego po-
dejścia (wykorzystującego transformatę Mellina oraz całkowanie przez residua) któ-
re omawiamy w dalszej części. Powyższa postać czynnika strukturalnego przelotów
Weierstrassa jest słuszna dla dowolnego wymiaru przestrzeni euklidesowej, w której
zachodzą przeloty. Postać ta umożliwia znalezienie (w postaci funkcji a nie dystry-
bucji jak to ma miejsce we wzorach (6.112) oraz (6.119)) asymptotycznej postaci
rozkładu p(x).

6.4.4 Renormalizacyjne rozwiązanie równania skalowania

Teraz, zdefiniujmy zagadnienie odwrotne. Mianowicie, dysponując równaniem ska-
lowania (6.129) znajdziemy jego rozwiązanie metodą renormalizacji, czyli na drodze
systematycznej a nie ”metodą” zgadywania. Metoda renormalizacji jest wielokroko-
wa. Krokiem zerowym jest samo równanie skalowania, które przepisujemy w postaci:

p̃(k) = N−1p̃(bk) +G(k) (6.138)

gdzie niejednorodność

G(k) def.=
(

1− 1
N

)

cos(k). (6.139)

W pierwszym kroku dokonujemy w powyższym równaniu dyskretnej renormalizacji
(przeskalowania) zmiennej niezależnej k za pomocą stałej rzeczywistej b. Otrzymu-
jemy,

N−1p̃(bk) = N−2p̃(b2k) +N−1G(bk), (6.140)

gdzie dodatkowo podzieliliśmy otrzymane równanie przez N . Podstawiając równanie
(6.138) do równania (6.140), uzyskujemy:

p̃(k) = N−2p̃(bk) +N−1G(bk) +G(k) (6.141)

Jak widać, wykorzystaliśmy równanie wyjściowe (6.138) na dwa sposoby, tzn. naj-
pierw zrenormalizowaliśmy je a następnie zastąpliśmy za pomocą niego wielkość
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jednokrotne zrenormalizowaną p̃(bk). Oczywiście, w kolejnych krokach procedury
renormalizacyjnej postępujemy analogicznie. Zatem, w drugim kroku:

N−1p̃(bk) = N−3p̃(b3k) +N−2G(b2k) +N−1G(bk) (6.142)

i w rezultacie

p̃(k) = N−3p̃(b3k) +N−2G(b2k) +N−1G(bk) +G(k). (6.143)

Z powyższego łatwo już można wywnioskować jaką postać otrzymamy w l-tym kroku.
Mianowicie,

p̃(k) = N−lp̃(blk) +
l−1∑

j=0

N−jG(bjk). (6.144)

W dalszym ciągu zakładamy, że w granicy l →∞ wielkość p̃
(

blk
)

jest ograniczona.
Zatem ostatecznie, przechodząc z l →∞, otrzymujemy wzór

p̃(k) =
(

1− 1
N

) ∞∑

j=0

1
N j
cos(kbj), (6.145)

który jest oczywiście tożsamy z wyrażeniem (6.128), co należało wykazać.

6.4.5 Dyfuzja anomalna

W pierwszym kroku zbadamy w jakich warunkach średnia długość pojedynczego
przelotu jest skończona a w jakich tak nie jest. Przeanalizujmy w tym celu wyrażenie

〈| x |〉 =
∫ ∞

−∞
dxp(x) | x |=

(

1− 1
N

) ∞∑

j=0

(

b

N

)j

, (6.146)

gdzie skorzystaliśmy z wzoru (6.119) i (6.127). Wyróżnić można tutaj dwa istotnie
różne przypadki

A) 〈| x |〉 <∞

B) 〈| x |〉 =∞.
Z wyrażenia (6.146) wynika, że z przypadkiem 1) mamy do czynienia wtedy i tylko
wtedy gdy b/N < 1 czyli gdy β > 1 podczas gdy z przypadkiem 2) wtedy i tylko
wtedy gdy b/N ­ 1 czyli gdy β ¬ 1. Jest interesującym rozważanie obu sytuacji w
połączeniu z analizą własności średniej z kwadratu pojedynczego przelotu 〈x2〉.
Zauważmy, że

〈x2〉 =
∫ ∞

−∞
dxp(x)x2

(

= −d
2p̃(k)
dk2

|k=0
)

=
(

1− 1
N

) ∞∑

j=0

(

b2

N

)j

, (6.147)

gdzie, tak jak poprzednio wykorzystaliśmy definicję (6.112) oraz wyrażenie (6.127)).
Analogicznie jak poprzednio, rozważmy dwie istotnie różne sytuacje,
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1) normalną, gdy średnia 〈x2〉 <∞

2) anomalną, gdy 〈x2〉 =∞;
Z sytuacją pierwszą mamy do czynienia wtedy i tylko wtedy gdy suma szeregu

geometrycznego stojąca w wyrażeniu (6.147) jest zbieżna czyli gdy

b2

N
< 1 ≡ β > 2. (6.148)

W rezultacie otrzymujemy, że

〈x2〉 = 1−
1
N

1− b2

N

= 2D′ <∞. (6.149)

Powyższy związek jest ważny ponieważ umożliwia wyrażenie uogólnionego współ-
czynnika dyfuzji, który jest wielkością makroskopową za pomocą wielkości mikro-
skopowej jaką jest średnia z kwadratu pojedynczego przelotu; jest to możliwe dzięki
temu, że struktura przelotów ma charakter samopodobny (czyli przeloty zachodzące
w różnych skalach tworzą zbiory podobne).
Zauważmy, że z istnienia ogólnej nierówności

〈| x |〉2 < 〈x2〉, (6.150)

wynika, że w tym przypadku także

〈| x |〉 <∞, (6.151)

tzn. oba te przypadki są ze sobą ściśle skorelowane.
Należy zdawać sobie sprawę, że skończona wartość drugiego momentu 〈x2〉 (w

związku ze skończoną wartością czynnika strukturalnego p̃(k) dla dowolnego wek-
tora k) to warunek dostateczny i konieczny na istnienie rozkładu p(x) w postaci
gaussowskiej dla asymptotycznie dużych wartości | x | Zatem, nie jest konieczne
aby były skończone wyższe momenty zmiennej losowej x. Innymi słowy, w takim
przypadku proces Weierstrassa jest równoważny procesowi Wienera czyli po prostu
opisuje błądzenie losowe zwane ruchem Browna.
Sytuacja druga ma miejsce wtedy i tylko wtedy gdy

b2

N
­ 1 ≡ β ¬ 2 (6.152)

i w konsekwencji

〈x2〉 =∞. (6.153)

Powyższa sytuacja jest całkowicie zdekorelowana z zachowaniem się pierwszego mo-
mentu absolutnego tzn. może on być w tej sytuacji zarówno skończony jak też nie-
skończony. Jednakże sytuacja gdy pierwszy moment absolutny jest nieskończony
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pociaąga za sobą oczywiście (na mocy nierówności (6.150)) wniosek, że także dru-
gi moment jest nieskończony. Analiza zachowania wyższych momentów nie jest już
tutaj istotna.
Rysunek 6.11 przedstawia przykładowe przeloty Weierstrassa4: dwa pierwsze dla

sytuacji A) oraz jeden (trzeci) dla sytuacji B). Wykres na rysunku 6.11a dotyczy
sytuacji gdy 2 < β = ln 5/ ln 2(≈ 2.32), podczas gdy wykres na rysunek 6.11b
dotyczy zasadniczo innej sytuacji gdy 1 < β = ln 3/ ln 2(≈ 1.585) < 2, wreszcie
wykres na rysunku 6.11c dotyczy przypadku B) gdy β = ln 5/ ln 6(≈ 0.9) < 1.
Widać, że są to trzy istotnie różne sytuacje reprezentujące kolejno, proces gaussowski
(gdyż 〈| x |〉 <∞ oraz 〈x2〉 <∞, ograniczone przeloty Weierstrassa (gdyż 〈| x |〉 <
∞ i 〈x2〉 = ∞) oraz nieograniczone przeloty Weierstrassa (gdyż 〈| x |〉 = ∞ oraz
〈x2〉 =∞).
W tym miejscu można postawić pytanie: jak w realnym doświadczeniu bę-

dzie przejawiać się nieograniczony charakter średniej długości bądż dys-
persji elementarnego przelotu? Zauważmy, że pytanie to ma dużo ogólniejszy
charakter i może dotyczyć dowolnej zmiennej losowej a nie tylko wektora elemen-
tarnego przelotu. Odpowiedż na nie jest dzisiaj stosunkowo prosta chociaż do śro-
dowiska fizyków docierała zaskakująco powoli (patrz Benoit B. Mandelbrot, ”The
Paul Lévy I knew” in ”Lévy Flights and Related Topics in Physics”, LNP Vol.450,
eds. Michael F. Shlesinger, George M. Zaslavsky, Uriel Frisch (Springer, Berlin 1995)
p.VIII - XII).
Mianowicie, dokonajmy pierwszej serii o określonej liczbie pomiarów n1 � 1

zmiennej losowej x i wyznaczmy dla tej serii pomiarów średnią długość 〈| x |〉1
oraz kwadrat dyspersji 〈x2〉1, następnie kontynuujmy nasze pomiary wydłużając
serię pomiarową do n2 � n1 i obliczając ponownie te obie średnie, analogicznie
obliczmy tę średnią dla następnych, siłą rzeczy coraz dłuższych, serii pomiarowych
(tzn. n1 � n2 � . . . � nj � . . .). Otrzymaliśmy ciąg trzech rodzajów wyni-
ków dla średniej z kwadratu sumarycznego przemieszczenia błądzącej cząsteczki,
〈R2(t)〉 = 〈X2(t)〉, w funkcji (dyskretnego) czasu, które przedstawiliśmy na rysunku
6.12. Wyniki uzyskaliśmy na drodze symulacji Monte Carlo przelotów Weierstrassa
sparametryzowanych przykładowo (rysunek 6.12a) przez N = 3 oraz b = 2 co daje
wykładnik β ≈ 1.585; algorytm tej symulacji został omówiony w dalszej części.
Jak widać, w miarę wzrostu liczebności serii wzrasta też, miejscami na-

wet gwałtownie, średnia 〈| x |〉 oraz 〈x2〉. Zwiększanie liczby pomiarów nie sta-
bilizuje średnich a wprost przeciwnie - im większa jest liczba pomiarów tym większa
jest szansa, że w danej serii wystąpi tzw. rzadkie zdarzenie czyli ogromna war-
tość zmiennej losowej | x | oraz x2 w istotny sposób wpływająca na wynik końcowy
pomiomo, że jej częstość występowania jest znikoma. To właśnie rzadkie zdarzenia
(czyli z grubsza mówiąc, przeloty przynajmniej o rząd wielkości dłuższe od aktualnie
wykonywanych) chronią trajektorię błądzącej cząsteczki przed zamazywaniem się w
wyniki ogromnej liczby przelotów, wyrzucając cząsteczkę daleko poza obszar aktual-

4Dokładniej rzecz biorąc, przedstawia tzw. sferyczne przeloty Weierstrassa (patrz Dodatek H).
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Rysunek 6.11: Schematycznie przedstawienie przelotów Weierstrassa dla sytuacji A)
i B). Wykres (a) jest opisany wykładnikiem β = 2.32, wykres (b) wykładnikiem
β = 1.585, natomiast (c) wykładnikiem β = 0.90.
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Rysunek 6.12: Symulacja komputerowa średniej z kwadratu sumarycznego prze-
mieszczenia dla przelotów Weierstrassa (czas t jest dyskretny liczony kolejnymi
przelotami). Wykres (a) jest opisany wykładnikiem β = 1.585, natomiast wykres
(b) wykładnikiem β = 2.32. W obu przypadkach zespół statystyczny miał liczeb-
ność M kolejno równą: n1 = 105 (◦), n2 = 106 (×), n3 = 107 (•). Jak widać, wzrost
liczebności zespołu statystycznego prowadzi (paradoksalnie) do zwiększenia ampli-
tudy uskoków.
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nie wizytowany. Tym samym następuje separacja błądzeń realizowanych w różnych
skalach długości - będzie o tym dokładniej mowa w dalszej części.
Dla porównania na rysunku 6.12b przedstawiono w taki sam sposób sytuację

normalną uzyskaną analogicznie dla przelotów Weierstrassa ale sparametryzowanych
przez większą wartość N = 5 przy tej samej wartości b(= 2) co daje β = 2.32
(wyrażnie większe od progowej wartości β = 2). Jak widać, wartości średnie 〈| x |〉
oraz 〈x2〉 szybko się stabilizują osiągając przewidywaną wartość teoretyczną równą
odpowiednio 4/3 oraz 4.

6.4.6 Rzadkie, ekstremalne zdarzenia

Korzystając z wcześniejszych rozważań, które doprowadziły do wzorów (6.125) oraz
(6.126), można odpowiedzieć na głębsze pytanie jak wielkość (długość), | xmax |,
tego rzadkiego, pojedynczego zdarzenia (przelotu) skaluje się z całkowitą
liczbą przelotów L ? Zauważmy, że | xmax | jest wartością maksymalną jaka
pojawiła się w trakcie tych L przelotów. Zatem dla dużej liczby przelotów L zachodzą
relacje,

L =
jmax∑

j=0

N j =
N jmax+1 − 1
N − 1 ≈ 1

1− 1
N

N jmax, (6.154)

gdyż N jmax � 1, przy czym jmax jest największą wartością j-ego pokolenia jaka
pojawiła się w trakcie tych L(� 1) przelotów, oraz

| xmax |= b0bjmax, (6.155)

z których, po wyeliminowaniu pomocniczej wielkości jmax, otrzymujemy poszukiwa-
ną zależność

| xmax |≈ AL1/β , (6.156)

gdzie współczynnik A = b0(1− 1/N)1/β .
Zauważmy przy okazji, że ze wzoru (6.154) wynika5, iż prawdopodobieństwo,

w(xmax), wystąpienia pojedynczego przelotu o maksymalnej długości | xmax | jest
równe, z dobrym przybliżeniem, 1/L. Zatem, na podstawie powyższego określenia
prawdopodobieństwa w(xmax) oraz wzoru (6.156) otrzymujemy, że

w(xmax) ≈
B

| xmax |β
, (6.157)

gdzie współczynnik B = Aβ.
Bez trudu można wykazać (korzystając z prostego wyrażenia, L1 = N jmax na

całkowitą liczbą elementarnych przelotów L1), że | xmax | skaluje się analogicznie z
5Bardziej subtelne wyprowadzenie, prowadzące do dokładniejszego wzoru (6.121), zostało przed-

stawione w rozdz. 6.4.1.
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L1 przy czym współczynnik proporcjonalności jest równy jedności. Z tego powodu
czasami L1 a nie L nazywa się ”masą” błądzenia przypadkowego.
Powyższe rozważania, a w tym zwłaszcza wzór (6.156), są słuszne tylko dla β < 2

(co nie wynika wprost z przeprowadzonego oszacowania) gdyż tylko wtedy rzadkie
zdarzenie może odegrać ważącą rolę, w przeciwnym razie jego częstość występowa-
nia jest zbyt mała w porównaniu z częstością występowania krótszych przelotów
(przypadek marginalny β = 2 wymaga osobnego potraktowania).
Zwróćmy uwagę na dwa rodzaje średnich z jakimi mamy do czynienia w tym

paragrafie - w następnym omawiamy trzeci rodzaj. Pierwszy rodzaj średnich to mo-
menty (absolutne) 〈| x |n〉L, n = 1, 2, . . ., liczone wzdłuż trajektorii błądzącej czą-
steczki i zależne od całkowitej liczby przelotów L, przy czym 〈. . .〉L oznacza po pro-
stu średnią arytmetyczną ze wszystkich L przelotów. W przypadku asymptotycznie
dużej liczby przelotów (dla każdego n) zachodzi związek

〈| x |n〉L→∞ = 〈| x |n〉 =
∫ ∞

−∞
dxp(x) | x |n, (6.158)

gdzie 〈| x |n〉 jest drugim rodzajem średniej, który dla n = 1 oraz n = 2 był już
dyskutowany w poprzednim paragrafie. W ogólności równość średnich

〈. . .〉L→∞ = 〈. . .〉, (6.159)

to nic innego jak własność samośredniowania.
W niniejszym rozdziale odpowiemy na istotne pytania dotyczące pierwszego ro-

dzaju średnich, a mianowicie jak momenty liczone wzdłuż trajektorii skalują
się z L? W tym celu skorzystajmy z przybliżonej zależności słusznej dla dużych
wartości L usprawiedliwiającej zaniedbanie zarówno fluktuacji sekwencji przelotów
jak też fluktuacji proporcji pomiędzy liczebnościami przelotów w poszczególnych
rzędach. Otrzymujemy,

〈| x |n〉L =
(bn)0N jmax + (bn)1N jmax−1 + (bn)2N jmax−2 + . . .+ (bn)jmaxN0

L

=
N jmax

L

jmax∑

j=0

(

bn

N

)j

=
N jmax

L

( b
n

N
)jmax+1 − 1
bn

N
− 1

≈ N jmax

L

( b
n

N
)jmax+1
bn

N
− 1 ≈

1
L

1
1− N

bn

(bn)jmax, dla β < n, (6.160)

gdzie indeks jmax jest największą wartością rzędu (pokolenia) o numerze j jaka
pojawiła się w trakcie L przelotów (patrz (6.154)); ponadto przyjęliśmy tutaj, że
jmax � 1 (co jest nieco mocniejszym założeniem od L � 1). Zauważmy przy oka-
zji, że ułamek N jmax−j/L, j = 0, . . . , jmax, jest po prostu prawdopodobieństwem
wystąpienia (wśród L przemieszczeń) takiego, które ma długość bj.
Korzystając z powyższego wzoru oraz z wyrażenia (6.154) otrzymujemy po pro-

stych przekształceniach,

〈| x |n〉L ≈ CnLn/β−1 ≈
C ′n
L
| xmax |n, dla β < n, (6.161)
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gdzie współczynnik Cn = An[1/(1 − N/bn)] a C ′n = Cn/A
n; przypadek β = n jest

marginalny i dlatego nie zajmujemy się nim tutaj. Warto zdawać sobie sprawę, że
zainteresowani jesteśmy przede wszystkim przypadkiem n = 1 oraz n = 2.
Dla kompletności, rozważmy jeszcze komplementarną sytuację gdy wykładnik

β < n. Wówczas, ma miejsce nierówność bn/N < 1, która powoduje, że wzór (6.160)
przybiera postać:

〈| x |n〉L =
N jmax

L

( b
n

N
)jmax+1 − 1
bn

N
− 1 ≈ N jmax

L

1
1− bn

N

≈ 1−
1
N

1− bn

N

= 2D′ (6.162)

Poniżej, obie relacje (6.160) i (6.162) są wykorzystywane do wyznaczenia np.
długości drogi przebytej przez cząstkę oraz jej sumarycznej wariancji.

6.4.7 Średnia po zespole statystycznym

Omówimy teraz dwie niezwykle ważne konsekwencje relacji skalowania (6.161). Mia-
nowicie, odpowiemy na dwa pytania: 1) Jak skaluje się z L średnia długość dro-
gi jaką pokonuje cząsteczka w wyniku L przelotów? 2) Jak skaluje się z L
średnia z kwadratu wypadkowego przemieszczenia cząsteczki w wyniku
jej L przelotów? Aby odpowiedzieć na te pytania należy najpierw określić z jakimi
średnimi mamy tutaj do czynienia. W tym celu wprowadżmy zespół statystyczny
złożony z ogromnej liczby L trajektorii (podobnych czyli stochastycznych replik),
z których każda składa się z L przelotów. Mówiąc tutaj o średnich mamy na my-
śli średnie arytmetyczne po zespole statystyczny, które uzyskujemy w następujący
sposób. Obliczamy w wyniku L przelotów, w przypadku 1), długość przebytej dro-
gi, a przypadku 2) kwadrat wypadkowego przemieszczenia dla pierwszej trajektorii,
potem dla drugiej, itd, wreszcie dla ostatniej trajektorii o numerze L i następnie
obliczamy po prostu średnie arytmetyczne uzyskanych wyników. Istotnym tutaj jest
to, że liczebność zespołu statystycznego trajektorii jest taka sama jak liczba przelo-
tów z których składa się każda trajektoria. Zbudowaliśmy w ten sposób trzeci rodzaj
średniej - wszystkie trzy są niezwykle przydatne w naszych rozważaniach.
Rozważmy przypadek 1), oznaczając przez S(L) długość pojedynczej trajektorii

cząsteczki; wspomnianą powyżej średnią możemy zapisać w postaci następującej
relacji skalowania,

〈S(L)〉L = 〈| x1 |〉L + 〈| x2 |〉L + . . .+ 〈| xL |〉L
= L〈| x |〉L ≈ C1L1/β ≈ C ′1 | xmax |, dla β < 1, (6.163)

przy czym skorzystaliśmy: a) z relacji skalowania (6.161) b) z definicji długości drogi
S(L) =| x1 | + | x2 | + . . . | xL |, gdzie | xl |, l = 1, 2, . . . , L, są długościami pojedyn-
czych przelotów, będąch oczywiście jakimiś potęgami współczynnika podobieństwa
b, dalej z c) niemal oczywistej zależności 〈| xl |〉 = 〈| xl′ |〉, l, l′ = 1, 2, . . . , L,
(co pozwala na opuszczenie w tego typu średnich indeksu numerującego pojedynczy
przelot) oraz z d) założenia, że średnia po zespole statystycznym o liczebności L z
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dowolnej potęgi długości pojedynczego przelotu jest z dobrym przybliżeniem równa
średniej z tej wielkości liczonej po dowolnie wybranej trajektorii składającej się z
tej samel liczby L pojedynczych przelotów. Oczywiście, ze względu na nieuchronne
fluktuacje, założenie to tym lepiej funkcjonuje im większa jest wartość L. To jest
także powód dla którego oba typy średnich (pierwszego i trzeciego rodzaju) zostały
oznaczone w taki sam sposób.
Rozważmy przypadek 2), oznaczając przez X(L) = x1 + x2 + . . . + xL wypad-

kowe przemieszczenie cząsteczki w wyniku L pojedynczych przelotów. W dalszym
ciągu skorzystamy z założenia, że pojedyncze przeloty są statystycznie niezależne
co prowadzi dla n = 2 (po skorzystaniu z wyrażenia (6.161)) do następującej relacji
skalowania,

〈[X(L)]2〉L = L〈| x |2〉L ≈
{

C2L
2/β ≈ C ′2(xmax)2, dla β < 2,
2D′L, dla β > 2,

gdzie X(L) = x1 + x2 + . . . + xL. Oba powyższe przykłady jeszcze raz wskazują
na zasadniczą rolę jaką pełni wymiar samopodobieństwa β w przelotach Weierstras-
sa. Wreszcie, co jest może najistotniejsze, pokazują że za tymi relacjami skalowania
kryje się jedno i to samo, kluczowe zjawisko występowania rzadkich, ekstre-
malnych zdarzeń otwierające nowe pole badań w dziedzinie fizyki statystycznej i
jej zastosowań.

6.4.8 Rozkład Pareto-Lévy’ego

Udowodnimy teraz następujące, kluczowe

Twierdzenie Lévy’ego: Niech dana będzie funkcja postaci (6.138) dla sytuacji ano-
malnej (β < 2) wówczas,

p(x→ ±∞)→∼ 1
| x |d+β , (6.164)

gdzie d jest wymiarem euklidesowym przestrzeni, w której zachodzą błądzenia; w
dalszym ciągu rozważamy sytuację d = 1, co nie zmienia (w istocie) ogólności do-
wodu

Dowód jest trzyczęściowy a mianowicie dla trzech różnych zakresów β. Przytaczy-
my go tutaj w całości ze względu na jego centralne znaczenie dla naszego wykładu.
Dla tych wszystkich zakresów naszym celem jest obliczenie transformaty Fouriera
postaci,

p(x→ ±∞) ≈ 1
2π

∫ ∞

−∞
dk exp(−ikx) exp(−D′f | k |β). (6.165)

Zauważmy, że do znalezienia asymptotycznej postaci p(x) wystarczy skorzystać je-
dynie ze znajomości czynnika strukturalnego p̃(k) dla D′f | k |� 1; pozwala to na
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formalne rozciągnięcie granic całkowania od plus do minus nieskończoności (czyli to
co się dzieje daleko w przestrzeni odwrotnej nie ma istotnego wpływu na to co się
dzieje daleko w przestrzeni prostej), ułatwiając znacznie przeprowadzenie obliczeń.

Część I: β < 1

Przekształcimy stopniowo prawą stronę wyjściowego wyrażenia (6.165)

p(x→ ±∞) ≈ 1
π

∫ ∞

0
dk cos(k | x |) exp(−D′f | k |β)

=
1
π

1
| x |

∫ ∞

0
dk

(

d

dk
sin(k | x |)

)

exp(−D′f | k |β)

=
1
π

D′fβ

| x |
∫ ∞

0
dk | k |β−1 sin(k | x |) exp(− | k |β)

=
1
π

D′fβ

| x |1+β
∫ ∞

0
dyyβ−1 sin(y) exp



−D′f
(

y

| x |

)β


 . (6.166)

Aby wyznaczyć poszukiwaną, asymptotyczną postać p(x) skorzystamy ze znanej
relacji

∫ ∞

0
dyyβ−1 sin(y) = Γ(β) sin

(
π

2
β
)

. (6.167)

Zatem ostatecznie,

p(x→ ±∞) ≈ 1
π

D′f
| x |1+βΓ(1 + β) sin

(
π

2
β
)

(6.168)

przybierając tym samym postać Pareto-Lévy’ego.

Część II: β = 1

W tym marginalnym przypadku wyrażenie (6.165) przybiera prostszą postać,

p(x→ ±∞) ≈ 1
2π

∫ ∞

−∞
dk exp(−ikx) exp(−D′f | k |). (6.169)

Następnie, dzięki parzystości funkcji exp(−D′f | k |), otrzymujemy

p(x→ ±∞) ≈ 1
2π

∫ ∞

0
dk exp(−ikx) exp(−D′f | k |)

+
1
2π

∫ ∞

0
dk exp(ikx) exp(−D′f | k |)

=
1
π

D′f
(D′f)2 + x2

≈ 1
π

D′f
x2
, dla | x |� (D′f)1/2. (6.170)
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W tym przypadku, jak widać, rozkład p(x) przybiera asymptotycznie postać Lo-
rentzianu tożsamą z rozkładem Pareto-Lévy’ego.

Część III: 1 < β < 2

Podobnie jak w poprzednich dwóch przypadkach, można zapisać

p(x→ ±∞) ≈ 1
π

∫ ∞

0
dk cos(k | x |) exp(−D′f | k |β). (6.171)

W dalszym ciągu, po zamianie zmiennych, otrzymujemy

p(x→ ±∞) ≈ 1
π

∫ ∞

0
dy cos(y) exp(−D′fvyβ), (6.172)

gdzie podstawiliśmy y =| x | k oraz v =| x |−β; zauważmy, D′fv jest wielkością małą
umożliwiającą rozwijanie w szereg Taylora. Mianowicie,

p(x→ ±∞) ≈ 1
π

∫ ∞

0
dy exp(−D′fvy) cos(y) exp(−D′fv(yβ − y))

=
1
π

∫ ∞

0
dy exp(−D′fvy) cos(y)[1−D′fv(yβ − y)

+
1
2
(D′fv)

2(yβ − y)2 + . . . ] ; (6.173)

w dalszym ciągu skorzystamy z zależności
∫ ∞

0
dy exp(−D′fvy) cos(y)yν−1 =

Γ(ν)
((D′fv)2 + 1)ν/2

cos

(

ν arc tg(
1

D′fv
)

)

,

dla ν ­ 1, (6.174)
która pozwala wyrazić rozkład p(x) w następującej postaci asymptotycznej

p(x→ ±∞) ≈ − 1
π

1
| x |

[

D′fvΓ(1 + β)
((D′fv)2 + 1)(1+β/2

cos
(

(1 + β)
π

2

)

+ ϑ((D′fv)
2)

]

≈ 1
π

D′f
| x |1+βΓ(1 + β) sin

(
π

2
β
)

, (6.175)

gdzie po drodze skorzystaliśmy także z równoważnej postaci
∫ ∞

0
dy exp(−D′fvy) cos(y) =

D′fv

(D′fv)2 + 1
, dla ν = 1, (6.176)

oraz z przybliżenia arctan(z → ∞) ≈ π/2. W podsumowaniu tego twierdzenia za-
uważmy, że dla wszystkich zakresów β (sytuacją marginalną dla β = 2 zajmujemy
się w dalszej części) otrzymaliśmy w końcu identyczną asymptotyczną postać rozkła-
du p(x); uzyskaliśmy także coś więcej wykazując nie tylko, że p(x) przybiera postać
Pareto-Lévy’ego w granicy dużych wartości | x | ale także znajdując wyrażenia na
współczynnik przedwykładniczy co ma znaczenie wtedy gdy np. porównujemy prze-
widywania teoretyczne z danymi doświadczalnymi.
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6.5 Multifraktalne błądzenie w czasie ciągłym na
gaussowskim amorficznym substracie

Nasze podejście składa się z dwóch etapów. W pierwszym (podrozdz. 6.5.1), ze wzglę-
dów dydaktycznych i rachunkowych, analizujemy funkcję rozdziału czasów wyczeki-
wania wskazując na jej nietermodynamiczny charakter. W drugim etapie (podrozdz.
6.5.2) proponujemy prostą liniową transformację tej funkcji rozdziału pozwalającą
już na pełną charakterystykę multifraktalną i termodynamiczną częstościowej (dy-
namicznej) części błądzenia losowego w czasie ciągłym na gaussowskim amorficznym
substracie - nazwa ta została usprawiedliwiona poniżej. Dodajmy, że nie tylko sub-
straty wykładnicze ale także i gaussowskie używane są do modelowania materiałów
szklistych.

6.5.1 Nietermodynamiczna multifraktalność
- pouczający przykład

Przypuśćmy, że mamy do czynienia tylko z nieporządkiem wywołanym przez losowe
lokalne minima energii potencjalnej substratu; niech energie te będą losowane z
”wąskiego” rozkładu Gaussa

ρ(E) = 1√
2πσ2

exp

(

−(E − Ē)
2

2σ2

)

. (6.177)

gdzie σ � Ē oraz z dobrym przybliżeniem6 0 ¬ E ¬ 2Ē zatem,
∫ ∞

−∞
dEρ(E) ≈

∫ 2Ē

0
dEρ(E) ≈ 1. (6.178)

Stąd, rozkład wykładniczy (6.53) występujący w uśrednionej funkcji rozkładu czasów
wyczekiwania (6.60) należy zastąpić przez powyższy (6.177). Wówczas, wyrażenie
(6.62) przechodzi w następującą superstatystykę

φ(t) =
∫ 2Ē

0
dE 1√
2πσ2

exp

(

−(E − Ē)
2

2σ2

)

φE(t) (6.179)

gdzie

φE(t) = γ0 exp
(

− E
kBT

)

exp
(

−γ0 exp
(

− E
kBT

)

t
)

= γ0γE/σ exp
(

−γ0γE/σt
)

.

(6.180)

przy czym skorzystaliśmy z oznaczenia (6.57) kładąc ∆ = σ.

6Przybliżenie to skutkuje, jak zobaczymy, wpływem skończonego rozmiaru substratu (ang. finite
size effect), tzn. skończonego zakresu głębokości pułapek na wynik. Wpływ ten zostanie przez nas
krótko omówiony w następnym paragrafie.
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Naszym wyjściowym zadaniem jest obliczenie momentu 〈tq−1〉 rzędu q, gdzie
q jest (na razie) dowolną liczbą rzeczywistą; wykorzystamy w tym celu powyższe
wyrażenie (6.179). Zatem,

〈tq−1〉 =
∫ 2Ē

0
dEρ(E)〈tq−1〉E , (6.181)

gdzie

〈tq−1〉E =
∫ ∞

0
dttq−1φE(t) = ΓEuler(q) ·

[

γ0 exp(−
E

kBT
)
]−(q−1)

= ΓEuler(q) ·
(

γ0γ
E/σ
)−(q−1)

, (6.182)

przy czym ΓEuler(q) jest funkcją gamma Eulera zdefiniowaną (przypomnijmy) na-
stępująco

ΓEuler(q) =
∫ ∞

0
dyyq−1 exp(−y), (6.183)

czyli można przyjąć7, że q > 0.
Zauważmy, że

Zq ∝ 〈tq−1〉 =
∫ ∞

0
dttq−1φ(t), (6.184)

tzn. moment rzędu q − 1 można traktować, przynajmniej formalnie, jako funkcję
rozdziału (ang. partition function) tutaj czasów wyczekiwania.
Podstawiając wyrażenie (6.182) do (6.181), otrzymujemy

Zq =
〈(γ0t)q−1〉
ΓEuler(q)

=
∫ 2Ē

0
dEρ(E)

(

1
γ

)(q−1) E
σ

=
∫ 2Ē

0
dE exp(G(E)), (6.185)

oraz

G(E) = −(E − Ē)
2

2σ2
+ (q − 1) E

kBT
− 1
2
ln(2πσ2); (6.186)

funkcję G(E) można łatwo przekształcić do wygodniejszej postaci:

G(E) = − 1
2σ2
(E − E?)2 − 1

2
ln(2πσ2)

+ (q − 1) Ē
kBT
+
1
2
(q − 1)2

(
σ

kBT
)2

, (6.187)

7W ogólności, zachodzi relacja Γ(q) = π
Γ(1−q) sin(πq) dająca osobliwości w q = −n, gdzie n =

0, 1, 2, 3, . . .. Chcąc uniknąć tych osobliwości, przyjęliśmy powyższe ograniczenie na q.
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gdzie

σ � E? = Ē + (q − 1) σ
2

kBT
¬ 2Ē, (6.188)

tzn. założyliśmy, że całka gaussowska w drugiej równości w (6.185) ma ostre maksi-
mum w E?. Rzecz jasna, nierówności (6.188) nakładają ograniczenia na wykładnik
potęgi q

kBT
σ

(

1− Ē
σ

)

� (q − 1) ¬ Ē
σ
· kBT
σ

. (6.189)

Ponieważ występująca w wyrażeniu (6.185) całka gaussowska jest (z dobrym przybli-
żeniem) równa 1, więc ostatecznie wyrażenie (6.185) sprowadza się do poszukiwanej
przez nas postaci wieloskalowej,

Zq =

(

1
γ

)τ(q)

, (6.190)

przy czym globalny wykładnik wieloskalowy8 (ang. global multiscaling exponent),

τ(q) = (q − 1)D(q) = qη(q)− f(η(q)) ¬ 3
2

(

Ē
σ

)2
kBT
σ

, (6.191)

gdzie

D(q) =
(q − 1)
2

σ

kBT
+
Ē
σ

(6.192)

to tzw. wymiary Renyi’ego, będące tutaj liniową funkcją q − 1. Ponadto, wprowa-
dziliśmy kluczowe dla naszych rozważań wielkości

η(q) = (q − 1) σ

kBT
+
Ē
σ
,

f(η(q)) =
q2

2
σ

kBT
+
Ē
σ
− 1
2

σ

kBT

=
1
2
kBT
σ

(

η(q)− Ē
σ
+

σ

kBT

)2

+
Ē
σ
− 1
2

σ

kBT
. (6.193)

Trzeba podkreślić, że f(η) jest tutaj wypukłą a nie wklęsłą funkcją η (jest parabolą o
ramionach skierowanych ku górze). Taki kształt wyklucza jej związek z formalizmem
termodynamiki. Ten związek zostanie znaleziony dopiero w rozdz. 6.5.2, po doko-
naniu transformacji zmiennej q, tzn. po przejściu do funkcji rozdziału odwrotności
czasów oczekiwania czyli częstości.

8Dokładniej rzecz biorąc, jest to rodzina globalnych wykładników wieloskalowych indeksowana
wartościami q.
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Druga równość w 6.191 wprowadziła transformację Legendre’a, stosowaną już
wcześniej w rozdz. 5.4.4), łączącą globalny wykładnik wieloskalowy τ(q) z widmem
osobliwości (singularności9 ang. spectrum of singularities) f(η(q)) oraz (jak trzeba)

dτ(q)
dq
= η,

df(η)
dη
= q. (6.194)

Dodajmy, że wielkość η jest często nazywana lokalnym wykładnikiem skalowania
(ang. local scaling exponent).
Należy podkreślić, że zarówno τ(q) jak też widmo lokalnych wymiarów fraktal-

nych f(η(q)) niosą identyczną informację o układzie, gdyż są powiązane transforma-
cją Legendre’a. Zaletą używania widma f(η(q)) jest jego prosta ”fizyczna” interpre-
tacja mówiąca o tym jak skaluje się gęstość stanów ρ(η). Mianowicie, korzystając z
(6.177) i (6.193) otrzymujemy

ρ(ση) =
1√
2πσ2

(

1
γ

)−f(η)
. (6.195)

Innymi słowy, widmo f pełni rolę wykładnika fraktalnego skalującego gęstość mia-
ry zbioru punktów posiadających wspólną cechę (tutaj identyczny lokalny wymiar
fraktalny) η.
Korzystając z (6.195) można wyrazić (6.190) w postaci usprawiedliwiającej trak-

towanie η właśnie jako lokalnego (cząstkowego) wykładnika skalującego

Zq ≈ ρ(ση)
(

1
γ

)qη(q)

. (6.196)

Bardziej pogłębionej, mikroskopowej analizy tego wykładnika nie będziemy już tutaj
prowadzić koncentrując się głównie na analizie związku multifraktalności z formali-
zmem termodynamicznym.
Należy podkreślić, że przedstawione w niniejszym podrozdziale rozważania doty-

czace multifraktalności wskazują, że jest ona tutaj obecna. Jednakże podejście to jest
niewystaczające do pokazania jej związku z formalizmem termodynamicznym. Taki
związek podajemy poniżej w rozdz. 6.5.2 poprzez wprowadzenie funkcji rozdziału
częstości.

6.5.2 Termodynamiczna funkcja rozdziału
a multifraktalność

Aby powiązać multifraktalność z formalizmem termodynamicznym należy dokonać
prostej liniowej transformacji zmiennej niezależnej q, mianowicie

q̃ = 2− q, q̃ < 2. (6.197)
9Zwane jest ono także ’widmem lokalnych wymiarów’ (ang. spectrum of local dimenions).
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Prowadzi to do następującej postaci funkcji rozdziału

Z̃q̃ =
〈
(
1
γ0t

)q̃−1〉
ΓEuler(2− q̃)

= γ τ̃(q̃), (6.198)

gdzie

τ̃ (q̃) = −τ(2− q̃). (6.199)

W wyrażeniu (6.198) przeszliśmy od skalowania czasu do skalowania częstości (od-
wrotności czasu). Co więcej, przetransformowana funkcja rozdziału jest (jak trzeba)
unormowaną, tzn. spełniającą równość Z̃q̃=1 = 1, gdyż τ̃ (q̃ = 1) = 0 (patrz wyraże-
nie (6.200) poniżej).
Dzięki transformacji (6.197) oraz (6.199) wymiary Renyi’ego

D̃(q̃) =
τ̃(q̃)
q̃ − 1 =

Ē
σ
+
1
2

σ

kBT
− q̃

2
σ

kBT
(6.200)

gdzie ma miejsce ograniczenie na zakres zmiennej q̃

1− kBT
σ
· Ē
σ
¬ q̃ � 1 + kBT

σ

Ē
σ
− kBT

σ
, (6.201)

przy czym zakładamy, że kBT
σ

> 1. Zauważmy, że D̃(q̃) jest liniowo malejącą funkcją
q̃ zatem, jest w stanie opisać jedynie centralną, prostoliniową (z dobrym przybliże-
niem) część wykresu wykładników Renyi’ego - pełniejszy jego przebieg przedstawio-
no na rysunku (5.6) w rozdz. 5.4.
Dysponując teraz przetransformowanym globalnym wykładnikiem wieloskalo-

wym, możemy wyprowadzić zarówno przetransformowany lokalny wykładnik ska-
lowania η̃(q̃) jak też przetransformowane widmo lokalnych wymiarów f̃(η̃). Miano-
wicie,

τ̃ (q̃) = (q̃ − 1)
(

Ē
σ
+
1
2

σ

kBT
− q̃

2
σ

kBT

)

= q̃η̃(q̃)− f̃(η̃(q̃)), (6.202)

gdzie η̃(q̃) = −η(1− q̃), f̃(η̃(q̃)) = −f(η̃) i mają miejsce następujące ograniczenia

Ē
σ
− σ

kBT
¬ η̃(q̃) = dτ̃(q̃)

dq̃
=
Ē
σ
+

σ

kBT
− q̃ σ

kBT
¬ 2 Ē

σ
oraz η̃(q̃)� 1;

(6.203)

ponadto,

f̃(η̃(q̃)) = −1
2
kBT
σ

(

η̃(q̃)− Ē
σ

)2

+ η̃(q̃), (6.204)

315



przy czym zachodzi (jak trzeba)

df̃(η̃)
dη̃
= q̃. (6.205)

Jak widać, transformacja od wielkości bez falki do odpowiadających im oznaczonej
falką jest liniowa. Oczywiście, ograniczenia (6.203) zubożają multifraktalność zawę-
żając jej dziedzinę, ale mimo tego multifraktalność jest tutaj wyraźnie widoczna, co
pokazujemy poniżej, m.in. na rysunku 6.13.
Warto jeszcze podać następujące, przydatne własności wymiarów fraktalnych

Renyi’ego, a mianowicie:

a) D̃(q̃) = 1
2
η̃(q̃) + 1

2
Ē
σ

b) D̃(2q̃) = η̃(q̃) + D̃′(q̃) = η̃(q̃)− 1
2

σ
kBT , gdzie D̃

′ oznacza pochodną po q̃

c) jeśli q̃1 ­ q̃2 to D̃(q̃1) ¬ D̃(q̃2)

d) w zakresach określonych przez nierówności (6.201) wymiary Renyi’ego D̃(q̃) >
0.

Stąd, w ważnych szczególnych przypadkach otrzymujemy:

D̃

(

q̃ = 1− kBT
σ
· Ē
σ

)

=
3
2
Ē
σ

D̃(q̃ = 0) =
Ē
σ
+
1
2

σ

kBT

D̃(q̃ = 1) =
Ē
σ

D̃(q̃ = 2) =
Ē
σ
− 1
2

σ

kBT

D̃

(

q̃ = 1 +
kBT
σ
· Ē
σ
− kBT

σ

)

=
1
2
Ē
σ
+
1
2

(6.206)

W dalszym ciągu naszym celem jest analiza widma osobliwości danego wzorem
(6.204). Podkreślmy, że parametrami charakteryzującymi widmo (a także pozosta-
łe dwie funkcje τ̃ (q̃) oraz η̃(q̃)) są wielkości bezwymiarowe kBT

σ
oraz Ē

σ
, co pozwala

uniknąć efektu rozmiarowego (ang. finite size effect). Po prostu, zwiększając rozmiar
układu (czyli średnią głebokość minimów potencjału Ē) należy proporcjonalnie do
tego zmieniać σ a stąd także kBT tak, aby zachować niezmienionymi wartości wspo-
mnianych parametrów bezwymiarowych.
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Analiza widma osobliwości

Po przeprowadzeniu prostych algebraicznych przekształceń otrzymujemy własności
wykorzystane także przy konstrukcji wykresu na rysunku 6.13,

1) lokalny wykładnik skalowania η̃(q̃) = D̃(q̃) + (q̃ − 1)D̃′(q̃)

2) korzystając z powyższego oraz z transformacji Legendre’a (druga równość w
(6.202)) można widmo singularności wyrazić następująco f̃(η̃(q̃)) = D̃(q̃) +
q̃(q̃ − 1)D̃′(q̃)

3) widmo singularności osiąga maksimum dla η̃(q̃ = 0) = Ē
σ
+ σ

kBT , tzn. zachodzi

f̃(η̃(q̃ = 0)) = D̃(q̃ = 0) = Ē
σ
+ 1
2

σ
kBT ,

4) dla η̃(q̃ = 1) widmo singularności f̃(η̃(q̃ = 1) = η̃(q̃ = 1)) = D(q̃ = 1) = Ē
σ
a

ponadto, df̃(η̃)
dη̃
|η̃(q̃=1) = 1,

5) widmo singularności ma dwa różne pierwiastki η̃∓ = η̃(q̃ = q̃±) = Ēσ +
σ

kBT ∓
σ

kBT

√

1 + 2kBT
σ
Ē
σ
, gdzie q̃± = ±

√

1 + 2kBT
σ
Ē
σ
; stąd, rozpiętość widma osobliwo-

ści ∆ = η̃+− η̃− = η̃(q̃−)− η̃(q̃+) = 2
√

1 + 2kBT
σ
Ē
σ
. Skrajne wymiary Renyi’ego

D̃(q̃+) oraz D̃(q̃−) określają granice obszaru skalowania Z̃(q̃), definiując zara-
zem rozpiętość widma osobliwości.

6) pochodne widma singularności w punktach skrajnych 0 ¬ df̃
dη̃
|η̃− = q̃+ ¬ +∞

oraz −∞ ¬ df̃
dη̃
|η̃+ = q̃− ¬ 0 nie osiągają, jak widać, wartości, odpowiednio,

±∞ a ponadto, na mocy własności b) z poprzedniego paragrafu, D̃(2q̃±) =
η̃∓ − 12 σ

kBT .

Rysunek 6.13 przedstawia schematyczny przebieg zależności (6.204) z naniesio-
nymi charakterystycznymi punktami (porównaj z rysunkiem 5.5). Dla uproszczenia
f̃ , η̃ oraz D̃(q̃) (a stąd, oczywiście, τ̃) zostały podzielone przez przykładowy użytecz-
ny czynnik skalujący Ē

σ
przy czym oznaczenia (dla prostoty) pozostały niezmienione;

dodajmy, że w takim przypadku γ została podniesiona do potęgi równej wspomnia-
nemu czynnikowi.

Związek multifraktalności z termodynamiką dla konkretnych wielkości

W analogii do rozważań przeprowadzonych w rozdz. 5.4.4, możemy podać tabe-
lę odpowiedniości pomiędzy wielkościami multifraktalnymi i termodynamicznymi,
analogiczną do tabeli 5.2. Jak widać, w tabeli 6.2 przedstawiliśmy konkretne postaci
wielkości multifraktalnych dotyczących rozważanego tutaj multifraktalnego błądze-
nia losowego w czasie ciągłym na substracie gaussowskim. Na szczególną uwagę
zasługuje uzyskana, stosunkowo wolna, paraboliczna zależność ciepła właściwego
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Rysunek 6.13: Schematyczny wykres widma osobliwości. Zasadnicze wielkości cha-
rakteryzujące analizowaną multifraktalność zostały (dla wygody) podzielone przez
użyteczny czynnik skalujący Ē

σ
i zebrane w tabeli 6.2 - oznaczenia (dla prostoty) po-

zostały niezmienione. Dokładniej rzecz biorąc, f̃(η̃), η̃(q̃) oraz D̃(q̃) (a stąd, oczy-
wiście, τ̃(q̃)) zostały podzielone przez wspomniany czynnik; w takim przypadku,
γ uległa zmianie przybierając wygodniejszą, obecną we wzorze (6.56) postać cha-
rakteryzującą prawo Hopfa-Arrheniusa lub prawo Vogela–Tammana–Fulchera, tzn.
γ = exp

(

− Ē
kBT

)

, czyli została podniesiona do potęgi równej wspomnianemu czyn-

nikowi). Stąd, np. wartość maksimum widma wynosi D̃(q̃ = 0) = 1 + 1
2
σ
Ē

σ
kBT , tylko

nienacznie przekraczając 1 (przypominamy, że gęstość rozkładu prawdopodobień-
stwa może być większa od 1). Ponadto, widać, że pochodne |f̃ ′(η̃∓)| = |q̃±| <∞ ze
względu na paraboliczny kształt widma osobliwości, chociaż często nieparaboliczne
widmo osobliwości charakteryzuje się nieskończonymi wartościami tych pochodnych.
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Tabela 6.2: Przyporządkowanie charakterystyk multifraktalnych wielkościom termo-
dynamicznym

Multifraktal Termodynamika
q̃ β
Ē

kBT V

η̃(q̃) = 1 + σ
Ē

σ
kBT − q̃

σ
Ē

σ
kBT

U(β)
V

τ̃(q̃) = (q̃ − 1)
(

1 + 1
2
σ
Ē

σ
kBT −

q̃
2
σ
Ē

σ
kBT

)
βF (β)
V

f̃(η̃(q̃)) = − 1
2
kBT
σ

σ
Ē (η̃ − 1)

2 + η̃ S(β)
V

cĒ/kBT (q̃) = −q̃2 dη̃dq̃ = q̃2 σĒ σ
kBT cV (β)

od odwrotności temperatury q̃. Zauważmy, że mamy tutaj do czynienia z dwo-
ma temperaturami, tzn. kBT oraz 1q̃ . Pierwsza wchodzi do formalizmu tylko jako
ustalony parametr zewnętrzny, natomiast druga pełni rolę faktycznej temperatury
multifraktalnej. Wspomniana paraboliczna zależność jest analogiczna do zależności
ciepła właściwego od temperatury, np. dla paramagnetyka (patrz Krzysztof Rej-
mer: Wprowadzenie do termodynamiki, Wydawnictwo ... , Poznań 2013) czy też dla
ciał amorficznych składających się z niezależnych, niskoenergetycznych podukładów
dwupoziomowych (patrz Charles Kittel:Wstęp do fizyki ciała stałego, Wydawnictwo
Naukowe PWN, Warszawa 1999, tłum. z ang.).
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Część IV

CTRW a dyfuzja fraktalna
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Rozdział 7

Wybrane elementy CTRW

In the present work we match the biased Hierarchical Continuous-Time Random
Flight (HCTRF) on a regular lattice (based on hierarchical waiting-time distribu-
tion) and the statistical Extreme Value Theory (EVT). This approach extends the
understanding of the anomalous transport and diffusion (for example, found in so-
me amorphous, vitreous solids as well as in conducting and light-emitting organic
polimers). Both independent approaches were developed in terms of random-trap
or valley model where the disorder of energy landscape is exponentially distributed
while the corresponding mean residence times in traps obey the power-law. This
type of disorder characterizes several amorphous (even used commercially) mate-
rials which makes it possible to apply the HCTRF formalism. By using the EVT
we additionally show that the rare (stochastic) events are indeed responsible for the
transport and diffusion in these materials.

7.1 Introduction and motivation

The variety of observed relaxation phenomena in condensed and soft matter are re-
lated to transport and/or diffusion of atoms, particles, carriers, defects, excitons and
complexes [1] (and refs. therein). In fact, the transport and diffusion are regarded
as a paradigm of irreversible behaviour of many ordered and disordered systems. A
universal feature of a disordered system is the temporal complex pattern, where the
Debye-relaxation is no longer obeyed. The sentence which we quote after Scher and
Montroll [2] characterizes well the straightforward link between physics of anoma-
lous transient-time dispersion in an amorphous substance and its application. The
development of modern photocopying machines has motivated experimental work on
amorphous materials, some of which display anomalous transport properties.

The theory of carrier transport in some amorphous insulators (such as the com-
mercially used vitreous As2Se3) and in some amorphous charge-transfer complexes
of organic polymers (as the commercially used trinitrofluorenone mixed with poly-
vinylcarbazole, TNF-PVK) provides canonical examples of
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(i) continuous-time random flights and walks, and

(ii) broad- or long-tailed waiting-time distribution between steps.

More precisely, the generic description of the dispersive transport and diffusion [3]
found in the canonical experiments on transient current in an amorphous medium
(induced by flash-light [4, 5, 6, 2, 7] or voltage pulse [9] and refs. therein) is given
indeed by the Hierarchical Continuous-Time Random Flight formalism1 [10, 11, 12,
13, 14]. The principal aim of my lecture is to express this description in terms
of the Extreme Value Theory (EVT) [1, 2, 3]. Such an approach shows that rare
(stochastic) events are indeed responsible for the transport and diffusion in these
materials.
The paper consists of two parts. The first part (Sec.7.2) includes remarks con-

sidering the basic elements of HCTRF and particularly, the averaged over disorder,
hierarchical waiting-time distribution and its scale-invariance as the main property.
In the second part (Sec.8.3) we develop the EVT in the context of the random-trap
or valley model where disorder is due to the energetic depth of the traps (which are
exponentially distributed) and by the corresponding mean residence times (which
obey then the power-law).

7.2 Basic elements of the biased Hierarchical
Continuous-Time Random Flight

The most spread models describing transport and diffusion in disordered substrates
are based on the Continuous-Time Random Walk formalism. The major simplifica-
tion in these models is that the disordered energetic landscape of the substrate can
be described by an exponential distribution and incorporated into a regular lattice.
In this work we consider single particle random instantaneous hops (flights) betwe-
en regularly displaced valleys which have, however, different depths; the mountain
peaks have all at the same energy level when a bias is absent (which justifies the
name of the model), cf. Fig7.1
In the case when biased (constant) force F is present the potential is simply

modified as it is shown in Fig.7.2.
Waiting-time distribution. The pausing or residence time t in a given trap (be-

tween the successive hops) is a stochastic variable whose statistics is defined by the
normalized waiting-time distribution ψε(t). This basic quantity here is the sharp
probability density that the particle will perform its next hop exactly at time t
after having waited until this instant in a trap of depth ε. The simplest but realistic
example is provided by the exponential waiting-time distribution of a local in space

1We distinguish between particle flights and walks as the former are instantaneous while the
latter ones need some time to move between the traps.

324



Rysunek 7.1: Schematic reprsentation of the valley or random-trap model when bias
is absent. All valleys are equally spaced, but have different depths. The mountain
peaks are all the same energy.

Poisson process

ψε(t) =
1

τ(ε)
exp

(

− t

τ(ε)

)

(7.1)

where the factor 1/τ(ε) is the probability density per unit time or rate of transition
to a neigbouring site; the second factor is the probability that no hop has occurs
until time t.
As we consider here only thermally activated over-barrier hops in the presence

of a constant external bias, we can use asymmetric transition rates in the form

Γ±(ε) = Γ0 · exp
(

−β ′ ·
(

ε∓ 1
2
Fa
))

, (7.2)

where

β ′ =

{

(kBT )−1, for the Hopf-Arrhenius (HA) law
(kBΘ)−1, for the Vogel-Tamm-Vulcher (VTF) law

(7.3)
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Rysunek 7.2: Schematic reprsentation of the valley model shown in Fig.7.1 when
biased, constant force F is present. All mountain peaks are now displaced along a
tangent straight line.

where kB is the Boltzmann constant, T is the absolute temperature, and Θ = T −
Tg > 0, where Tg is the transition temperature to the glass phase. Note that in
expression (7.2) the external force is denoted by F , the lattice constant by a and
Γ+ is the transition rate along the direction of external force while Γ− is the one
in the opposite direction. Hence, the approximate equality (in the second line) in
expression

1
τ(ε)

= Γ−(ε) + Γ+(ε) = 2Γ0 · exp(−β ′ε) cosh(β ′Fa)

≈ 2Γ0 · exp(−β ′ε)[1 +
1
8
(β ′Fa)2], (7.4)

gives the second-order effect in the applied field, i.e. quadratically depends on the
small quantity β ′Fa. Fortunately, in all our discussions we have β ′Fa� 1 as this is
an obvious experimental constraint justifying the restriction only to the first-order
effect in the applied field in all our considerations.
Sojourn probability. It is useful to introduce the sojourn probability Ψε(t) that

the particle remains at a lattice site at least until time t without any hop; and is
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defined by using the waiting-time distribution

Ψε(t) =
∫ ∞

t
dt′ψε(t′) (7.5)

which in the case of a local Poisson process described by (7.1) asumes the simple
exponential form

Ψε(t) = exp

(

− t

τ(ε)

)

. (7.6)

In our model the averaging of this distribution over disorder is required to calcu-
late the full propagator. How to perform this averaging is the essential problem
considered below.
The structure factor of the biased random walk. Before we calculate the propaga-

tor we need to define the structure factor of the biased random walk. This definition
requires the knowledge of the (stationary) spatial (single-hop) transition probabi-
lities, p±, along and against the applied force, respectively, and includes here (for
simplicity) the transitions only to the nearest-neighbours. Then

p± =
Γ±(ε)

Γ−(ε) + Γ+(ε)
≈ 1
2

(

1± 1
2
β ′Fa

)

, (7.7)

and the corresponding spatial probability density

p(x) = p+δ(x− a) + p−δ(x+ a). (7.8)

Hence, the structure factor of the biased random walk is defined as the Fourier
transform of p(x)

p̃(k) = cos(ak)− i · (p+ − p−) sin(ak) ≈ cos(ak)−
i

2
β ′Fa · sin(ak); (7.9)

here again only the first-order effect in the applied field was taken into account.
The propagator. The waiting-time distribution and sojourn probability avera-

ged over disorder are, together with the structure factor, the relevant quantities to
construct the full propagator considered in this paragraph.
The motion of the particle consists of a sequence of alternative events defined by

the waiting in a given trap and next the hop to the neighbouring one. Correspon-
dingly, the propagator consists of an unrestricted superposition of the n-step partial
propagators

Pε0,ε1,ε2,...,ε(X, t) = Pε=ε0(X, t;n = 0) +
∞∑

n=1

Pε0,ε1,ε2,...,εn−1,ε(X, t;n) (7.10)

where the multi-step propagators (defined as the probability density of finding a
particle at position X at time t within n stelps over a sequence of traps which have
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depths ε0, ε1, ε2, . . . , εn−1, ε) can be expressed as follows,

Pε0=ε(X, t;n = 0) = δ(X) ·Ψε0=ε(t),
Pε0,ε1,ε2,...,εn−1,ε(X, t;n) =

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t3

0
dt2

∫ t2

0
dt1

∫ ∞

−∞
dxn

∫ ∞

−∞
dxn−1 . . .

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1

ψε0(x1, t1)ψε1(x2 − x1, t2 − t1) . . .
ψεn−1(xn − xn−1, tn − tn−1)δ(X − xn)Ψε(t− tn),
n = 1, 2, 3, . . . . (7.11)

where the full waiting-time distribution, ψε(x, t)
def.= p(x) · ψε(t), means the sharp

probability density of a single displacement x just at time t when the particle stayed
whole the time (from 0 to t) at a given trap. As it is seen, the terms with n ­ 1 are n-
fold convolutions. I.e., for the n-step partial propagator the walker performs exactly
n single steps while the last nth one is just under way (in general it is not finished).
It should be admitted that the initial condition is not visible here because it is the
same for each partial propagator. This condition has a non-stationary character and
says that initially the particle was surely at the origin.
The average propagator. Now, to obtain the average propagator we should ave-

rage the above expression by using the distribution ρε0,ε1,ε2,...,εn−1,ε in the factorized
form, i.e. ρ(ε0, ε1, ε2, . . . , εn−1, ε) = ρ(ε0)ρ(ε1) . . . ρ(εn−1)ρ(ε), as the depths of traps
are, by definition, statistically independent. The key point of our consideration is
given by the exponential form of the single-trap distribution

ρ(ε) =
1
〈ε〉 · exp

(

− ε

〈ε〉

)

. (7.12)

By applying waiting-time distribution ψε and ρε0,ε1,ε2,...,εn−1,ε in the factorized form
together with expression (7.12) into (7.11) we get the average propagator in the form

P (X, t) =
∞∑

n=0

P (X, t;n) (7.13)

where the partial, average n-step propagators are

P (X, t;n = 0) = δ(X)Ψ(t),

P (X, t;n) =
∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t3

0
dt2

∫ t2

0
dt1

∫ ∞

−∞
dxn

∫ ∞

−∞
dxn−1 . . .

∫ ∞

−∞
dx2

∫ ∞

−∞
dx1

ψ(x1, t1)ψ(x2 − x1, t2 − t1) . . .
ψ(xn − xn−1, tn − tn−1)δ(X − xn)Ψ(t− tn),
n = 1, 2, 3, . . . . (7.14)
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and the average waiting-time distributions and sojourn probability are given by

ψ(x, t) = p(x) · ψ(t), ψ(t) =
∫ ∞

0
dερ(ε) · ψε(t),

Ψ(t) =
∫ ∞

0
dερ(ε) ·Ψε(t). (7.15)

After the Fourier and Laplace transformations of the convolutions (7.14) we get
the geometric series which can be written in a simple, closed form

P̃ (k, s) =
Ψ̃(s)

1− ˜ψ(k, s)
,

ψ̃(k, s) = p̃(k) · ψ̃(s), Ψ̃(s) = 1− ψ̃(s)
s

, (7.16)

where f̃(. . .) means the Fourier and/or Laplace transform of function f(. . .). We
should find now an explicit asymptotic form of the waiting-time distribution.

7.2.1 Scaling relation obeyed
by the waiting-time distribution

It can be easily found that the average waiting-time distribution, given by the second
relation in (7.15) combined with (7.1), has an approximate form

ψ(t) ≈ (1− 1
N
) ·
∫ ∞

0
dξ
1
N ξ
· 1
τ0 · (τ ′)ξ

· exp
(

− t

τ0 · (τ ′)ξ
)

(7.17)

or

ψ̃(s) ≈
(

1− 1
N

)

·
∫ ∞

0
dξ
1
N ξ
· 1
1 + τ0 · (τ ′)ξ · s

, (7.18)

where we introduced a convenient notation

ξ
def.=

ε

∆
, N

def.= exp

(

∆
〈ε〉

)

, 1− 1
N
≈ ∆〈ε〉 , τ

′ = exp(β ′∆), (7.19)

and assumed (for simplicity) ∆� 〈ε〉.
Expression (7.18) obeys the convenient scaling relation

ψ̃(τ ′ · s) = N · ψ̃(s)− (N − 1) ·
∫ 1

0
dξ
1
N ξ
· 1
1 + τ0 · (τ ′)ξ · s

≈ N · ψ̃(s)− (N − 1) · (1− τ0 · s), (7.20)

which can be solved by assuming, as usual for an equation of this type, that the
solution is composed of the sum of two essentially different terms, i.e. ψ̃(s) =
ψ̃s(s) + ψ̃r(s), where the singular (general) term ψ̃s(s) obeys the homogeneous part
of eq.(7.20), and the regular (particular) one ψ̃r(s) obeys the (full) homogeneous
eq.(7.20).
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7.2.2 Explicit asymptotic form
of the waiting-time distribution

For | s |� 1 we obtain the singular term

ψ̃s(s) ≈ −Q
(

ln s
ln τ ′

)

· (τ0 · s)α, (7.21)

where the exponent α = lnN/ ln τ ′ = (β ′ · 〈ε〉)−1 and the log-periodic function
(whose period is equal to 1) reduces, in the lowest approximation (or zero-order in
s-variable), to the form2

Q

(

ln s
ln τ ′

)

≈ C0s =
1− 1

N

lnN
· πα

sin(πα)
. (7.22)

The regular term (controlled by an approximate form of the inhomogeneouity in
eq.(7.20)) reduces, within the linear approximation in s-variable, into the form

ψ̃r(s) ≈ 1− C1r · τ0 · s, C1r =
1− 1

N

1− τ ′

N

. (7.23)

Finally, we obtain the seeked waiting-time distribution in the Laplace domain
for | s |� 1/τ0

ψ̃(s) ≈ 1− C0s · (τ0 · s)α − C1r · τ0 · s

≈
{

1− C0s · (τ0 · s)α, for α < 1
1− C1r · τ0 · s, for α > 1

(7.24)

and in the asymptotic-time domain

ψ(t) ≈






1
τ0
· 1−

1
N

ln(N)
· α · ΓEuler(1 + α) ·

(
t
τ0

)−1−α
, for α < 1

〈t〉−1 · exp
(

− t
〈t〉

)

, for α > 1,
(7.25)

(here 〈t〉 = τ0 ·C1r ) which makes it possible to consider the propagator and hence the
asymptotic mean- as well as mean-square displacement in an explicit form3. (Note
that for the derivation of the first expression in (7.25) for α < 1 we used relations
(7.16), (7.15), (7.5) and (7.22).)

2The derivation of the detailed form of coefficient C0s by using the Mellin transformation, is
given, e.g., in [11].
3In the paper we do not consider the marginal case defined by the threshold α = 1.

330



7.2.3 Asymptotic form of the propagator

For | τ0 · s |� 1 and | k · a |� 1 the propagator (given by (7.16)) can assume the
following explicit form

P̃ (k, s) =
1

s+ [1− p̃(k)] · s·ψ̃(s)
1−ψ̃(s)

≈







1
s+[1−p̃(k)]· s

C0s ·(τ0·s)
α
, for α < 1

1
s+[1−p̃(k)]· 1

〈t〉

, for α > 1.
(7.26)

where we used the explicit asymptotic form of the waiting-time distribution (7.24).
In the Fourier and time domain the above relation transforms still into the relatively
simple form

P̃ (k, t) ≈






Eα
(

− [1−p̃(k)]
C0s
·
(
t
τ0

)α)

, for α < 1

exp
(

−[1− p̃(k)] · t
〈t〉

)

, for α > 1.
(7.27)

where Eα(. . .) is the well known Mittag-Leffler function [3], called sometimes the
generalized exponent,

Eα(x) =
∞∑

n=0

xn

ΓEuler(1 + nα)
. (7.28)

The Fourier transformation of the second relation in (7.27) into the real space
gives the well known shifted Gaussian. The analogous transformation for α < 1
is unknown in a closed form although it can be expressed in the integral form in
terms of the (non-shifted) Gaussian and the weight given by the corresponding Fox
H-function as the integrand (for details see [3] and refs. therein).

7.2.4 Explicit asymptotic form of the first and second mo-
ments

The mean displacement. Now, we are able to obtain the general formula for the ave-
rage time-dependent displacement of the particle along the direction of the external
field. This is the essential quantity which characterizes the drift of each particle.
From (7.16) we obtain in the Laplace domain

˜〈X〉(s) = i d
dk
P̃ (k, s) |k=0= 〈x〉 ·

1
s
· ψ̃(s)

1− ψ̃(s)
, (7.29)

where the single-hop mean displacement 〈x〉 = a · (p+− p−). From (7.29) and (7.24)
we obtain for | s |� 1

˜〈X〉(s) ≈ 〈x〉 · 1
s
· 1
C0s · (τ0 · s)α + C1r · τ0 · s

≈






〈x〉
C0s
· 1
τα0
· 1
sα+1

, for α < 1
〈x〉
C1r
· 1
τ0
· 1
s2
, for α > 1.

(7.30)
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From the above relation we easily obtain for the asymptotic time, i.e. for t0 � τ0,

〈X〉(t) ≈






〈x〉
C0s
· 1
ΓEuler(1+α)

·
(
t
τ0

)α
, for α < 1

〈x〉
〈t〉 · t, for α > 1.

(7.31)

where ΓEuler(. . .) denotes the well-known Gamma-Euler function. Although the
time-dependence of the drift below and above the threshold α = 1 differ essen-
tially the transition between both cases is smooth; nevertheless, we obtain for these
cases essentially different drift velocities

V (t) =
d

dt
〈X(t)〉 ≈







〈x〉
C0s
· 1
ΓEuler(α)

· 1
τ0
· 1
(t/τ0)1−α

, for α < 1
〈x〉
〈t〉 , for α > 1.

(7.32)

Indeed, this quantity is proportional to the transient photocurrent measured in
experiments made on amorphous materials mentioned in Sec.7.1.
The mean-square displacement. The mean-square displacement, involving infin-

tely many steps of the walker or a time-dependent variance of displacement, is the
main stochastic characteristics of the diffusion process. At first, we derive this qu-
antity in the Laplace domain

〈X̃2〉(s) = −d
2P̃ (k, s)
dk2

|k=0=
1
s
· ψ̃(s)

1− ψ̃(s)
·
(

〈x2〉+ 〈x〉2 · ψ̃(s)

1− ψ̃(s)

)

≈ 〈x2〉 · 1
s
· 1
C0s · (τ0 · s)α + C1r · τ0 · s

+ 〈x〉2 · 2
s
·
(

1
C0s · (τ0 · s)α + C1r · τ0 · s

)2

≈







〈x2〉
C0s
· 1
τα0
· 1
sα+1
+
( 〈x〉
C0s

)2 · 2
τ2α0
· 1
s2α+1

, for α < 1
〈x2〉
C1r
· 1
τ0
· 1
s2
+
( 〈x〉
C1r

)2 · 2
τ0
· 1
s3
, for α > 1.

(7.33)

Next, from (7.33) and (7.31) we obtain for the asymptotic time (i.e. for t� τ0)

〈X2(t)〉 − 〈X(t)〉2 ≈







〈x2〉
C0s
· 1
α
· 1
ΓEuler(α)

·
(
t
τ0

)α
+

( 〈x〉
C0s

)2
1
α
{ 2
ΓEuler(2α)

− 1
α·[ΓEuler(α)]2 } ·

(
t
τ0

)2α
, for α < 1

〈x2〉
〈t〉 · t, for α > 1.

(7.34)

As it is seen, the time-dependence of the mean-square displacement below and
above the threshold α = 1 differ essentially. For α < 1 the diffusion is controlled by
the drift while for the opposite case it is not.
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7.3 Błądzenia fraktalne

7.3.1 Błądzenie losowe w czasie fraktalnym
a model dolinowy

Jednym ze skrajnych, wielce interesujących przykładów procesu stochastycznego
opisanego propagatorem P̃ (k, t) (patrz wyrażenie (7.27)) jest błądzenie losowe w
czasie fraktalnym (patrz rozdz. 3.2). Zatem, rozważmy ten propagator dla α < 1,
czyli w postaci danej górnym wyrażeniem w (7.27). Wyrażenie to spełnia fraktalne
równanie dyfuzji (2.55) otrzymane w rozdz. 2.6, gdy czynnik strukturalny błądzenia
losowego p̃(k) nie posiada składowej singularnej, czyli zbudowany jest tylko z części
regularnej (patrz rozdz. 6.3 a tam paragraf 6.4.3) i można go przedstawić (z dobrym
przybliżeniem) w postaci: p̃(k) ≈ 1 − 1

2
〈x2〉 k2, przy czym przyjęliśmy tutaj dla

prostoty znikanie dryfu 〈x〉 = 0. Wówczas dla α < 1, propagator4

P̃ (k, t) ≈ Eα

(

−〈x
2〉
2C0s
·
(
t

τ0

)α

· k2
)

= Eα
(

−Dα · tα · k2
)

, (7.35)

gdzie fraktalny współczynnik dyfuzji Dα = 12
〈x2〉
τα0

1
C0s
, przy czym współczynnik roz-

winięcia części singularnej C0s (> 0) jest dany wyrażeniem (7.22).
Można wykazać (patrz Dodatek A), że dla asymptotycznie długiego czasu (czyli

dla t� τ0) propagator (7.35) przyjmuje postać funkcji potęgowej:

P̃ (k, t) ≈ 1
DαΓEuler(1− α)

1
k2
1
tα
. (7.36)

Zatem, wykładnicza (debye’owska) relaksacja modów dyfuzyjnych w dyfuzji Ficka
(normalnej) została w subdyfuzji fraktalnej zastąpiona relakscają spowolnioną (po-
tęgową - niedebye’owską).
Zauważmy, że dla Dα · tα · k2 � 1 funkcja Mittag-Lefflera przechodzi (z dobrym

przybliżeniem) w zwykły eksponens dając

P̃ (k, t) ≈ exp
(

−Dα · tα · k2
)

(7.37)

Z powyższego uzyskujemy samozgodnie singularną wariancję sumarycznej zmien-
nej losowej

σ2X(t) =
〈

X2(t)
〉

=
2Dα

ΓEulera(1 + α)
tα, (7.38)

identyczną z (7.34) (dla 〈x〉 = 0 i α < 1), tak jak być powinno. Ta nieliniowa za-
leżność sumarycznej wariancji od czasu w połączeniu z postacią propagatora (7.35)

4Występujący tutaj propagator jest równoważny transformacie Fouriera f̃(k, t) funkcji f(x, t)
wystepującej w równaniu subdyfusji fraktalnej (2.55).
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wskazuje, że mamy tutaj do czynienia właśnie z błądzeniem losowym w czasie frak-
talnym.
Gdyby wykładnicza postać propagatora (7.37) była słuszna dla całej przestrzeni

fourierowskiej, wówczas mięlibyśmy do czynienia z popularnym fraktalnym ruchem
Browna (ang. Fractal Brownian Motion) w całej przestrzeni rzeczywistej, gdyź wów-
czas propagator byłby dany po prostu rozkładem Gaussa o wariancji (7.38).
Na zakończenie tego paragrafu warto podać dwie przydatne postacie propagatora

- obie w przestrzeni rzeczywistej. Jedną, ścisłą w postaci nieskończonego, przemien-
nego szeregu wystarczająco wygodnego do obliczeń numerycznych

P (X, t) =
1√
4πDα tα

∞∑

n

(−1)n
n!ΓEuler(1− α(n+ 1)/2)

(

X2

Dαtα

)n/2

(7.39)

oraz drugą, asymptotyczną

P (X, t) =
1√
4πDα tα

√

1
2− α

( 2
α

)(1−α)/(2−α) ( | X |√
Dα tα

)(1−α)/(2−α)

× exp


−2− α
2

(
α

2

)α/(2−α) ( | X |√
Dα tα

)1/(1−α/2)

 , (7.40)

przybierającą, dla | X |� √Dα tα, postać rozciągniętego rozkładu Gaussa.
Wreszcie, na rysunkach 7.3 i 7.4 porównano propagator P (X, t) dla subdyfu-

zji, przykładowo z wykładnikiem α = 1/2, z rozkładem Gaussa G(X, t). Dobrze
widoczne są zasadnicze różnice pomiędzy nimi.

7.3.2 Równanie dyfuzji fraktalnej Lévy’ego

Innym skrajym, nie mniej interesującym przykładem jest proces przelotów Lévy’ego.
Ma on miejsce w sytuacji, gdy α > 1 natomiast czynnik strukturalny błądzenia
losowego p̃(k) zawiera składnik singularny (patrz rozdz. 6.3 a tam paragraf 6.4.3),
Wówczas, dla wykładnika β < 2, wyrażenie (7.27) przechodzi w następujące:

P̃ (k, t) ≈ exp
(

−D′f | k |β ·
t

〈t〉

)

, (7.41)

definiujące funkcję charakterytstyczną wycentrowanego, symetrycznego (czyli w nie-
obecności dryfu) rozkładu Lévy’ego w czasie ciągłym. Można sprawdzić, że tak zde-
finiowany rozkład spełnia następujące równanie dyfuzji fraktalnej Lévy’ego

∂P (X, t)
∂t

= D′f −∞D
β
t P (X, t), (7.42)

gdzie −∞D
β
t jest pochodną Weyla przedstawioną w Dodatku A.
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Rysunek 7.3: Wykres propagatora P (X, t) dla wykładnika α = 1/2 oraz trzech
przykładowo wybranych chwil t = 0.1, 1.0, 10.0. Bardzo dobrze jest widoczny kształt
ostrza w otoczeniu chwli początkowej t = 0. Nie tylko ten kształt ale także potęgowe
zanikanie rozkładów odróżnia je od rozkładu Gaussa (patrz rys. 7.4).

Należy podkreślić, że oba skrajne przykłady (przedstawione w poprzednim pa-
ragrafie 7.3.1 oraz w niniejszym paragrafie) legły u podstaw, intensywnie rozwija-
nych w ostatnich dekadach, dwóch istotnie różnych kategorii procesów stochastycz-
nych niespełniających Centralnego Twierdzenia Granicznego. Procesy te znalazły
już ogromną liczbę ważnych zastosowań w szeroko rozumianej fizyce i poza nią (np.
w ekonomii i socjologii).
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Rysunek 7.4: Wykres propagatoraG(X, t) w postaci rozkładu Gausa dla trzech przy-
kładowo wybranych chwil t = 0.05, 0.2, 1.0. Wykresy na tym rysunku wystarczajaco
dobrze ukazują różnice pomiędzy rozkładem Gaussa a propagatorem stanowiącym
rozwiązanie fraktalnego równania dyfuzji (2.55) i przykładowo przedstawionym na
rys. 7.3.
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Część V

Współczesna teoria oceny ryzyka
rynkowego
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Rozdział 8

Ryzyko w ujęciu tradycyjnym i
nowoczesnym

Termin ryzyko pochodzi od starowłoskiego słowa risicare co oznacza odważenie się.
Jak wiadomo, ryzyko inwestycyjne można podzielić na dwie części:

A) rynkowe, czyli podstawowe związane z dynamiką cen akcji emitera na giełdzie

B) pozarynkowe, za które odpowiedzialna jest sytuacja w firmie emitującej akcje
oraz jej zewnętrzne uwarunkowania.

W dalszym ciągu zajmujemy się wyłącznie ryzykiem rynkowym zakładając, że te
dwa rodzaje ryzyka są od siebie niezależne.
Ryzyko rynkowe można podzielić na wiele składników, na które wpływ ma szereg

różnych czynników nie tylko natury ekonomicznej. Z ryzykiem rynkowym mamy do
czynienia wtedy i tylko wtedy, gdy ceny papierów wartościowych zależą bezpośred-
nio od sytuacji na rynku. Oczywiście, zalezność ta jest w większym lub mniejszym
stopniu stale obecna. Zatem, ryzyko rynkowe jest nieusuwalnym elementem aktyw-
ności rynkowej. Sam fakt zrozumienia tego co to jest ryzyko jest niewystarczający -
aby móc racjonalnie podejmować decyzje i działać musimy umieć mierzyć ryzy-
ko. Trzeba podkreslić, że brak jest powszechnie akceptowanej teorii ryzyka - każde z
istniejących podejść jest niewystarczające i może prowadzić do przeszacowania albo
niedoszacowania rzeczywistego ryzyka.
Miary ryzyka rynkowego dzieli się zwyczajowo na trzy grupy:

1) miary zmienności (ang. volatility), np. zmienności ceny, stopy zwrotu (lub
wzrostu), rozkładu prawdopodobieństwa,

2) miary wrażliwości (w fizyce podatności) np. wrażliwości ceny lub stopy zwro-
tu (wzrostu); oznacza się je tradycyjnie literami alfabetu greckiego i nazywa
skrótowo wskaźnikami greckimi (ang. greeks),

3) miary zagrożenia wyrażającej się możliwością spadku ceny lub stopy zwrotu
(wzrostu), czyli możliwością wystąpienia nadmiernych strat (analizowanych
np. metodą tzw. Wartości Zagrożonej Ryzykiem (ang. Value at Risk, VaR).
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W niniejszych rozważaniach zajmujemy się tylko grupą trzecią, wykorzystując po-
dejście od strony Teorii Zdarzeń Ekstremalnych wprowadzonej wcześniej w
rozdz. 8.3.
Istnieje przynajmniej kilka powodów, dla których dotychczasowe teorie oceniają-

ce ryzyko rynkowe są niewystarczające. Teorie te bazują na Centralnym Twierdze-
niu Granicznym (CTG), czyli na analizie zmienności (’volatility’) rozumianej jako
typowy rozrzut cen akcji bądź wielkości indeksów giełdowych wokół ich wartości
przeciętnych wyrażony np. za pomocą dyspersji σ lub kurtozy κ. Tego typu podej-
ście oznacza, że najistotniejsze informacje statystyczne zawarte są w tzw. przedziale
trzysigmowym (±3σ). Innymi słowy, ”ogon” rozkładu nie zawiera wtedy istotnych
informacji statystycznych - jest to gaussowski punkt widzenia, w którym nie ma
miejsca na procesy stochastyczne typu Lévy’ego, czyli na zdarzenia rzadkie.
Procesy Lévy’ego są przeciwieństwem procesów gaussowskich gdyż mamy w nich

do czynienia z tzw. rozkładami poszerzonymi gdzie najistotniejsza informacja o ukła-
dzie statystycznym zawarta jest właśnie w pogrubionym ”ogonie” funkcji rozkładu;
prowadzi to natychmiast do nieskończonej dyspersji i kurtozy a tym samym do bez-
użyteczności oceny ryzyka opartej na tego typu tradycyjnych zmiennościach. Jak
widać, właściwa analiza ryzyka rynkowego wymaga innej definicji ryzyka.
Istotą współczesnej teorii ryzyka rynkowego jest traktowanie zdarzeń ekstremal-

nych jako posiadających decydujący wpływ na charakter i wielkość ponoszonego ry-
zyka. Jest to zasadnicza różnica w stosunku do podejść tradycyjnych, w których tego
typu zdarzenia są po prostu ignorowane. Prowadzi to bezpośrednio do nowej, współ-
czesnej definicji ryzyka rynkowego opartego przede wszystkim na technice kwantyli1.

8.1 Tradycyjna analiza poziomu ryzyka

Przyjrzyjmy się nieco dokładniej roli CTG w tradycyjnej ocenie poziomu ryzyka,
analizując zależną od czasu chwilową stopę zwrotu2

∆R(t) def.= X(t+∆t)−X(t)
X(t)

=
∆X(t)
X(t)

, (8.1)

jakiegoś papieru wartościowego, którego cena w chwili t wynosi X(t) a w chwili póź-
niejszej t+∆t jest X(t+∆t); tutaj ∆t jest ustalonym horyzontem czasowym (ziar-
nistością czasu, krokiem dyskretyzacji czasu), czyli czas t = n ·∆t, n = 0, 1, 2, . . ..
Stopa zwrotu może być zarówno dodatnia jak i ujemna - w pierwszym przypadku
myślimy o niej jak o relatywnym zysku, w drugim jak o relatywnej stracie.
W dalszym ciągu zakładamy, że zmiana ceny w zadanym horyzoncie czasu ∆t

jest relatywnie niewielka, tzn. | ∆X(t) |� X(t), stąd zależna od czasu chwilowa

1Mogę polecić tutaj książkę autorstwa Romana Nowaka pt.: Statystyka dla fizyków, Wydawnic-
two Naukowe PWN SA, Warszawa 2002.
2W przypadku zwrotu na różnego rodzaju indeksach i wskaźnikach używa się często terminu

chwilowa stopa wzrostu.
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stopa zwrotu

∆R(t) ≈ ln
(

X(t+∆t)
X(t)

)

= ln(X(t+∆t))− ln(X(t)), (8.2)

czyli jest, z dobrym przybliżeniem, zmianą logarytmów cen zwaną chwilową loga-
rytmiczną stopą zwrotu. Zatem, chwilowa logarytmiczna stopa zwrotu jest szumem
procesu stochastycznego jakim jest logarytm ceny. Wyrażenia (8.1) oraz (8.2) po-
zwalają na stosowanie zamiennie (w zależności od potrzeb) jednej z trzech definicji
chwilowej stopy zwrotu, gdyż w wielu różnych sytuacjach wygodniej jest się posłu-
giwać logarytmem ceny a nie samą ceną.
Zauważy, że sumaryczna stopa zwrotu (zwana dalej po prostu stopą zwrotu) dana

jest w postaci sumy chwilowych stóp zwrotu

R(t) = X(t)−X(0)
X(0)

≈ ln
(

X(t)
X(0)

)

= ln

(

X(∆t)
X(0)

X(2∆t)
X(∆t)

. . .
X((n− 1)∆t)
X((n− 2)∆t)

X(n∆t)
X((n− 1)∆t)

)

= ln





n−1∏

j=0

(1 + ∆R(j ·∆t))




≈
n−1∑

j=0

∆R(j ·∆t), (8.3)

przy czym milcząco założyliśmy, że także wartość sumarycznej zmiany ceny | X(t)−
X(0) |� X(0). Jak widać, stopa zwrotu jest analogicznie zdekomponowana jak
przyrost procesu

X(n ·∆t)−X(0) =
n−1∑

j=0

∆X(j ·∆t), (8.4)

co prowadzi do analogicznych konsekwencji. Mianowicie, wynik (8.3) ma charak-
ter zasadniczy, czyniący celowym wprowadzenie kluczowego założenia tradycyjnej
analizy ryzyka traktującej chwilowe stopy zwrotu jak niezależne zmienne lo-
sowe o identycznym, niekoniecznie gaussowskim rozkładzie wymagającym jedynie
aby wariancja chwilowej stopy zwrotu była skończona i niezależna od czasu (ale, w
ogólności, zależna od ∆t)

σ2 = 〈[∆R(t)− 〈∆R(t)〉]2〉 = 〈[∆R(t)]2〉 −m2 <∞, (8.5)

podobnie jak i sama wartość średnia

m = 〈∆R(t)〉 <∞, (8.6)

czyli na poziomie szumu, z punktu widzenia jego wariancji i wartości oczekiwanej,
czas jest traktowany jako jednorodny, czyli w sposób stacjonarny.
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W związku z powyższym, do stopy zwrotu R(t) można zastosoweać CTG. Ozna-
cza to, że dla n→∞ centrowana zmienna losowa R(n ·∆t)− 〈R(n ·∆t)〉 staje się
zmienną gaussowską (czyli podlegającą rozkładowi Gaussa) o wariancji

σ2R(n ·∆t) = n · σ2 (8.7)

i wartości średniej

mR(n ·∆t) = n ·m. (8.8)

Zatem, jakakolwiek miara poziomu ryzyka, ΛG ­ 0, np. rozrzut trzysigmowy

ΛG = 3 · σR(t) (8.9)

lub rozrzut względny czyli tzw. współczynnik zmienności

ZG =
σR(t)
| mR(t) |

=
σ

| m | ·
1√
n
=

√

ñ

n
,
√
ñ
def.=

σ

| m | , (8.10)

bazują w tym podejściu na dyspersji σ (gdyż skośność dla rozkładu Gaussa znika
a nadmiarowa kurtoza jest po prostu stała); oczywiście, współczynnik zmienności
jako miara względna opiera się także na wartości średniej.
Często używa się także wyrażenia odwrotnego do (8.10) nazywając go jakością

inwestycji a także stosunkiem sygnał-szum jak też stosunkiem Sharpe’a, który ozna-
cza się przez

S def.= Z−1G (8.11)

i zwykle określa w skali roku. Oczywiście, miary poziomu ryzyka (8.9) i (8.10) na-
leży traktowane komplementarnie. W takim podejściu (które siłą rzeczy jest tutaj
dwuparametrowe) straty i zyski są rozłożone symetrycznie wokół wielkości średniej
mR(t).

Zakres stosowalności

Poświęcimy teraz nieco więcej uwagi zakresowi stosowalności powyższego, tradycyj-
nego podejścia do oceny poziomu ryzyka.

1. Jak już powiedzieliśmy, straty i zyski podlegają tutaj rozkładowi symetrycz-
nemu dlatego występują, średnio rzecz biorąc, z jednakową częstością co na
ogół nie ma miejsca dla sytuacji rzeczywistych. Inaczej mówiąc, model taki
jest nierealistyczny.

2. Inna niedogodność modelu opiera się na założeniu relatywnie małych zmian
ceny waloru co pozostaje w sprzeczności z często obserwowanymi (zwłaszcza
w ostatnich dwóch dekadach) znacznymi, skokowymi zmianami cen walorów
wykraczającymi znacznie poza obszar trzysigmowy.
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3. Ponadto, samo założenie o skończonej wartości dyspersji może być kwestiono-
wane ze względu na istnienie zdarzeń rzadkich. Objawia się to w postaci niesta-
bilnego zachowania estymaty dyspersji ze wzrostem rozmiaru okna czasowego
(czyli liczby danych empirycznych budujących dyspersję). Zamiast stabilizo-
wania się tej wielkości, jak to przewiduje Prawo Wielkich Liczb Bernoullie-
go, obserwuje się co jakiś czas uskoki, których amplituda wyrażnie wzrasta ze
wzrostem wielkości okna czasowego z którego zbiera się dane. Inymi słowy, gdy
wzrasta wielkość okna czasowego to tym samym wzrasta prawdopodobieństwo
wystąpienia zdarzenia rzadkiego destabilizującego estymatę dyspersji.

8.1.1 Twierdzenia graniczne na giełdzie

Tytułem wielce pouczającego przykładu, postawimy pytanie kluczowe dla tradycyj-
nej analizy dynamiki walorów, a mianowicie: czy przewidywania CTG są czy
też nie są obserwowane na giełdzie? Odpowiedż na to pytanie jest złożona i
zależy od tego jaki papier wartościowy lub indeks a także jaki horyzont czasowy i
czasokres rozpatrujemy. Mianowicie, dla indeksu Standard & Poor 500 notowanego
na Nowojorskiej Giełdzie Papierów Wartościowych (NYSE) - jednej z największych
giełd świata, dla horyzontów czasowych od ∆t = 1 [min.] do rzędu ∆t = 1 [td]3

dane empiryczne przeskalowane za pomocą czynnika (∆t)−1/α kolapsują, z dobrym
przybliżeniem, do stabilnego, symetrycznego rozkładu Lévy’ego (o ile ich statysty-
ki przeskalujemy za pomocą czynnika odwrotnego), gdzie α jest indeksem rozkładu
Lévy’ego. Własność tą nazywa się Uogólnionym Centralnym Twierdzeniem Granicz-
nym (UCTG) lub granicznym twierdzeniem Lévy’ego-Khintchine’a (TLK). Wyniki
te zostały uzyskane przez R.N. Mantegnę i H.E.Stanley’a (patrz praca pt.: ”Scaling
behaviour in the dynamics of an economic index”, Nature, Vol.376, No.6 (1995)
46-49 oraz książka tych samych autorów pt.: ”Ekonofizyka. Wprowadzenie”, Wy-
dawnictwa Naukowe PWN SA, Warszawa 2001). Analogiczne rezultaty otrzymali
B.H.Wang i P.M.Hui dla indeksu Hang Seng giełdy w Hong Kongu (patrz praca pt.:
”The distribution and scaling of fluctuations for Hang Seng index in Hong Kong
stock market”, The European Physical Journal Vol.20, No.20 (2001) 573-579).

Oczywiście, istnieją także walory, których np. dzienne zmiany podlegają rozkła-
dowi Gaussa (patrz rys.8.1) i w związku z tym dają się zestandaryzować co umoż-
liwia gaussowski kolaps danych czyli zasadniczo różny od wspomnianego powyżej.
Poniżej omawiamy wnioski płynące z analizy oba rodzajów twierdzeń granicznych
jakim mogą podlegać dane empirycznych dostarczane przez rynki finansowe.

3Skrót ”td” jest akronimem angielskiej nazwy ”trading day” czyli ”dzień transakcyjny” lub
”dzień handlowy”.

345



Rysunek 8.1: Empiryczny rozkład prawdopodobieństwa różnic logarytmów dzien-
nych zmian ceny, czyli logarytmicznej stopy zwrotu, akcji S(t) = lnY (t + ∆t) −
lnY (t), gdzie Y (t + ∆t) oraz Y (t) są cenami akcji firmy Chevron notowanej na
giełdzie nowojorskiej w okresie od 1989 do 1995 roku, przy czym tutaj ∆t = 1 [td].
Gładka linia jest krzywą Gaussa o odchyleniu standardowym wyznaczonym z danych
empirycznych (połączonych linią zygzakowatą). Jest to rozkład typowy dla tej firmy
zarówno dla znacznie mniejszych jak i znacznie większych horyzontów czasowych.
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8.1.2 Uogólnione Centralne Twierdzenie Graniczne
na NYSE

Jak już powiedzieliśmy, złamanie Centralnego Twierdzenia Granicznego czyli za-
chodzenie Uogólnionego Centralnego Twierdzenia Granicznego dla rynków finanso-
wych pierwsi zaobserwowali Mantegna i Stanley badając indeks S&P 500 notowany
dla danych szybkozmiennych o wspomnianych powyżej horyzontach czasowych oraz
wspomnianym zakresie. Przedstawiono to na rys. 8.2 w postaci odpowiednich roz-
kładów prawdopodobieństw przy czym, w miarę wzrostu horyzontu czasowego, jak
należało się spodziewać, wartość początkowa rozkładu maleje ale za to (zgodnie z
normalizacją) rozwartość ramion krzywej dzwonowej rośnie. To co było zaskaku-
jące to wzrost spłaszczenia (leptokurtyczności) czyli wzrost nadmiarowej kurtozy
ze wzrostem horyzontu czasowego (np. najbardziej leptokurtyczna jest krzywa dla
∆t = 1000 [min.] a najmniej dla ∆t = 1 [min.]) co stoi w jawnej sprzeczności z prze-
widywaniem CTG, które mówi, że w miarę wzrostu horyzontu czasowego rozkład
sumarycznej zmiennej losowej coraz bardziej upodabnia się do rozkładu Gaussa a
więc jego leptokurtyczność maleje do zera4. Był to wynik, który wstrząsnął fizyka-
mi analizującymi notowania giełdowe i stał się faktycznym początkiem ekonofizyki,
czyli początkiem ogromnego wzrostu zainteresowania fizyków finansowymi szerega-
mi czasowymi.
Na rys. 8.3 przedstawiono rozkład prawdopodobieństwa standaryzowanej zmiany

tego indeksu Z/σ, gdzie Z(t) ≡ Z∆t(t) = Y (t + ∆t) − Y (t), przy czym Y (t + ∆t)
oraz Y (t) są wartościami indeksu S&P 500, odpowiednio, w chwilach t+∆t i t nato-
miast σ ≡ σ(∆t) jest estymatą dypersji obliczoną na podstawie przedstawionych na
rysunku danych empirycznych dla wybranego horyzontu czasowego ∆t = 1 [min.].
Wreszcie, na rys. 8.4 przedstawiono wspomiane na wstępie, przeskalowane sta-

tystyki indeksu S&P 500 w zależności od przeskalowanej zmiennej losowej tzn.

P̃ (Z̃) = (γ∆t)1/α · P∆t(Z(Z̃)), Z̃ =
Z

(γ∆t)1/α
, (8.12)

gdzie indeks α i współczynnik γ, wspólne dla wszystkich statystyk P∆t(Z), zostały
wyznaczony z ich wartości dla Z = 0 czyli z gęstości prawdopodobieństwa powrotu
do początku a dokładniej z nachylenia prostej P∆t(Z = 0) (w skali log−log) w funkcji
∆t (patrz rys.8.5). Uwaga, przy wyprowadzaniu poniżej w rozdz. 8.1.3 wzorów (8.12)
skorzystaliśmy z niezmienniczości prawdopodobieństw

P̃ (Z̃)dZ̃ = P∆t(Z)dZ (8.13)

jako skalarów5.

4Oczywiście, o ile wyjściowo mięliśmy także do czynienia z rozkładem Gaussa to nadmiarowa
kurtoza cały czas jest równa zeru niezależnie od wielkości horyzontu czasowego ∆t.
5W ogólności, równość (8.13) ma charakter zorientowany, tzn. P̃ (Z̃) = P∆t(Z(Z̃)) | dZ̃(Z)dZ |−1.
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Rysunek 8.2: Porównanie rozkładów prawdopodobieństw otrzymanych dla szyb-
kozmiennych danych empirycznych dotyczących indeksu S&P 500 dla horyzon-
tu czasowego ∆t = 1, 3, 10, 32, 100, 316, 1000 [min.], przy czy Z(t) ≡ Z∆t(t) =
Y (t + ∆t) − Y (t), gdzie Y (t + ∆t) oraz Y (t) są wartościami indeksu S&P 500,
odpowiednio, w chwilach t + ∆t i t. Zauważmy, że w zasadzie nadmiarowa kurto-
za rozkładu wzrasta czyli maksimum obniża się i trochę spłaszcza (co niestety nie
jest dostatecznie widoczne w przyjętej skali rysunku) a ramiona rozkładu rozchylają
się w miarę wzrostu horyzontu czasowego ∆t (tzn. rozkład dla ∆t = 1 [min.] jest
najwęższy a dla ∆t = 1000 [min.] najszerszy).
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Rysunek 8.3: Przykładowe porównanie rozkładów prawdopodobieństw otrzymanych
dla szybkozmiennych danych empirycznych dotyczących indeksu S&P 500 dla hory-
zontu czasowego ∆t = 1 [min.], przy czym Z(t) ≡ Z∆t(t) = Y (t+∆t)− Y (t), gdzie
Y (t+∆t) oraz Y (t) są wartościami indeksu S&P 500, odpowiednio, w chwilach t+∆t
i t natomiast σ = 0.0508 jest estymatą dypersji obliczoną na podstawie wszystkich
przedstawionych na rysunku danych empirycznych (kółka połączone odcinkami li-
nii). Linia ciągła przedstawia rozkład Lévy’ego o wykładniku kształtu α = 1.40 i
czynniku skalowania γ = 0.00375 (na rysunku 8.2 jest to ten najwęższy), natomiast
linia kropkowana jest rozkładem Gaussa centrowanym w Z/σ = 0 i sparametryzo-
wanym wspomnianą powyżej estymatą dyspersji σ.
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Rysunek 8.4: Porównanie odpowiednio zestandaryzowanych rozkładów prawdopodo-
bieństw, P̃ , otrzymanych dla szybkozmiennych danych empirycznych dotyczących
indeksu S&P 500 dla horyzontu czasowego ∆t = 1, 3, 10, 32, 100, 316, 1000 [min.],
przy czym Z̃(t) jest standaryzowaną zmienną losową. Jak widać, ma miejsce (z do-
brym przybliżeniem) kolaps danych.
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Rysunek 8.5: Prawdopodobieństwo powrotu do początku P∆t(Z = 0) (białe kółka) w
funkcji horyzontu czasowego ∆t. Nachylenie prostej (w skali log− log) utożsamiamy
z wykładnikiem 1/α = 0.712 ± 0.025 co daje α = 1.40 ∓ 0.05. Dla porównania
zamieszczono wyniki dla analogicznego prawdopodobieństwa PG(Z = 0) (czarne
kwadraty) otrzymanego z rozkładu Gaussa; wariancje takiego procesu wyznaczono
z dostępnych danych empirycznych dla każdej wartości ∆t z osobna.
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8.1.3 Stabilny, symetryczny rozkład Lévy’ego

Kolaps danych uzyskany dzięki skalowaniu (8.12) (patrz rys. 8.4), gdzie indeks α
uzyskano analizując prawdopodobieństwo powrotu do początku P∆t(Z = 0) (patrz
rys. 8.5) wskazuje, że statystyki dla omawianych horyzontów czasowych można wy-
razić za pomocą stabilnego, symetrycznego rozkładu Lévy’ego o indeksie α

P∆t(Z) =
1
π

∫ ∞

0
χ∆t(q) cos(qZ)dq, (8.14)

gdzie

χ∆t(q)
def.= exp (−γ∆t | q |α) , γ = γ0

τ
, ∆t = nτ, (8.15)

jest jego funkcją charakterystyczną (w przypadku rozkładu Gaussa, gdy α = 2,
γ0 = σ2/2). Z wyrażeń (8.14) i (8.15) otrzymujemy (po dokonaniu prostej zamia-
ny zmiennych q ⇒ q̃ = (γ∆t)1/αq), że prawdopodobieństwo powrotu do początku
wynosi:

P∆t(Z = 0) =
1
π
ΓEuler

( 1
α

)

· 1
α · (γ∆t)1/α =

1
π
ΓEuler

(

1 +
1
α

)

· (γ∆t)−1/α,

(8.16)

gdyż

ΓEuler
( 1
α

)

= α
∫ ∞

0
exp(− | q̃ |α)dq̃ =

∫ ∞

0
exp(−y) · y1/α−1dy, (8.17)

gdzie dokonaliśmy zamiany zmiennych y =| q̃ |α. Dysponując konkretną wartością
α, wyznaczamy czynnik skalujący γ z wyrażenia (8.16) i wielkości przesunięcia linii
prostej (białe kółka) na wykresie (8.5).
Zauważmy, że zarówno eksponent α jak też czynnik skalujący γ zmieniają się w

czasie - tutaj z miesiąca na miesiąc; te miesięczne wahania przedstawiono na rys.
8.6 i rys. 8.7. Jak widać, nawet największa wartość α jest znacznie mniejsza od 2
(typowy błąd pojedynczej wartości wykładnika α dla danego miesiąca podano w
opisie rys. 8.5).
Konsekwencją zamiany q na q̃ jest zamiana w wyjściowej całce (8.14) zmiennej

Z na Z̃ = Z/(γ∆t)1/α - dzięki temu otrzymujemy potrzebne wyrażenie

P̃ (Z̃) =
1
π

∫ ∞

0
exp(− | q̃ |α) cos(q̃Z̃)dq̃ (8.18)

niezależne od ∆t, przy czym jest ono powiązane z wyjściowym prawdopodobień-
stwem P∆t(Z) pierwszą relacją w (8.12). Zatem, opis zasadniczej części danych em-
pirycznych za pomocą rozkładu Lévy’ego jest dowiedziony chociaż problem opisu
kształtu samych ”ogonów”, jak też znaczny rozrzut danych na ”ogonach” (patrz
rys. 8.4 dla | Z̃ |>∼ 0.5) jest wciąż zagadnieniem otwartym budzącym wielkie zain-
teresowanie. Warto podkreślić, że np. prawdopodobieństwo powrotu do początku
dla rozkładu Gaussa skaluje się z wykładnikiem α = 2 co definiuje zupełnie inny
(normalny w przeciwieństwie do anomalnego) ”świat statystyczny”, w którym nie
ma miejsca na zdarzenia rzadkie.
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Rysunek 8.6: Zależność czasowa wykładnika α wyznaczona na podstawie zależności
prawdopodobieństwa powrotu do początku od wielkości horyzontu czasowego (li-
czonego w miesiącach). Pozioma ciągła linia została poprowadzona dla przeciętnej
wartości α = 1.40.
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Rysunek 8.7: Zależność czasowa czynnika skalującego γ wyznaczona na podstawie
zależności prawdopodobieństwa powrotu do początku od wielkości horyzontu cza-
sowego (liczonego w miesiącach). Pozioma ciągła linia została poprowadzona dla
przeciętnej wartości γ = 0.00375.
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8.2 Kolaps danych a Uogólnione Centralne
Twierdzenie Graniczne na NYSE

W roku 2006 ukazała się praca (K. Kiyono, Z.R. Struzik, Y. Yamamoto: ”Critica-
lity and Phase Transition in Stock-Price Fluctuations”, Phys.Rev. Lett. 96 (2006)
068701-1-068701-4), która porównuje ze sobą przebieg indexu S&P 500 w dwóch
istotnie różnych przedziałach czasowych:

(1) zawierającym tzw. ”czarny poniedziałek” (”black Monday”) czyli poniedziałek
19 października 1987 roku, w którym index stracił niespodziewanie, w prze-
ciągu ok. 10 min. blisko 1/3 swojej wartości (patrz rys. 8.8),

(2) w obszarze nie zawierającym czarnego poniedziałku.

Na rys. 8.8 przedstawiono (w skali półlogarytmicznej) przebieg dziennych war-
tości (na zamknięciu Z(t)) indexu S&P 500 w latach 1984-1995. Okres ten jest
szczególnie interesujący gdyż zawiera nie tylko tzw. czarny poniedziałek (”black
Monday”) 19 października 1987 roku, w którym wartość indeksu spadła o blisko
1/3, ale także przejawia wpływ wojny w Zatoce Perskiej. Oprócz tego, na rysunku
tym zamieszczono wariogram pokazujący wysokoczęstościowe, w 10 min. odstępach
czasu, zmiany logarytmu indeksu, Y (t) = lnZ(t). Oczywiście, analiza przedstawio-
nego tam szeregu czasowego wymaga jego wcześniejszego zdetrendowania.
Na rys. 8.9 przedstawiono (także w skali póllogarytmicznej statystykę, Ps(∆sZ),

zdetrendowanych zmian

∆sZ(t)
def.= Y ∗(t+ s)− Y ∗(t), (8.19)

(gdzie s jest horyzontem czasowym a gwiazdką oznaczono właśnie wielkość zdetren-
dowaną) dla jednego roku nie zawierającego wspomnianych powyżej szczególnych
wydarzeń. Widoczne jest przejście od rozkładu niegaussowskiego do rozkładu Gaus-
sa w miarę wzrostu horyzontu czasowego.
Na rys. 8.10 porównano statystykę Ps(∆sZ) dla dwóch kolejnych kwartałów ro-

ku 1987: rysunek po lewej stronie dotyczy kwartału bezpośrednio poprzedzającego
czarny poniedziałek, natomiast rysunek po prawej stronie dotyczy czwartego kwar-
tału tego roku zawierającego czarny poniedziałek. Jak widać, w drugim przypadku
brak jest przejścia do rozkładu Gaussa - widoczne są tylko rozkłady niegaussow-
skie, które można (na drodze odpowiedniego przeskalowania) doprowadzić do tzw.
kolapsu danych (patrz rys. 8.11); potwierdza to tym samym fakt, że mamy tutaj
do czynienia z rozkładem stabilnym a więc, że na NYSE spełnione jest Uogólnione
Centralne Twierdzenie Graniczne.

8.3 Statistics of extremes

The central values and typical fluctuations are not sufficient to characterize natural
systems which exhibit rare but extreme events often dominating the long-term be-
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Rysunek 8.8: Dzienne wartości indeksu S&P 500 w latach 1984-1996, przy czym w
prawej dolnej części zamieszczono powiększony wariogram przedziału C, w którym
znajduje się czarny poniedziałek widoczny w postaci najdłuższego odcinka leżącego
po stronie ujemnej; szary pasek znajdujący się w centrum wariogramu ciagnący
się poprzez całą jego wysokość oznacza po prostu pełny dzień transakcyjny czarny
poniedziałek 19 października 1987 roku.
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Rysunek 8.9: Statystyka Ps(∆sZ) zdetrendowanych zmian ∆sZ w zależności od wiel-
kości tych zmian po standaryzacji ∆sZ/σs dla różnych horyzontów czasowych (idąc
od góry s = 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 min.). Dane dla poszczegól-
nych horyzontów czasowych zostały rozsunięte aby można je było rozróżnić.
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Rysunek 8.10: Statystyka Ps(∆sZ) zdetrendowanych zmian ∆sZ w zależności od
wielkości tych zmian po standaryzacji ∆sZ/σs dla różnych horyzontów czasowych
(idąc od góry s = 8, 16, 32, 64, 128, 256, 512, 1024, 2048 min.) dla kwartału poprze-
dzającego czarny poniedziałek (rysunek po lewej stronie) i dla kwartału zawiera-
jącego czarny poniedziałek (rysunek po prawej stronie). Dane dla poszczególnych
horyzontów czasowych zostały rozsunięte aby można je było rozróżnić.

haviour. Therefore the statistics of extrema is a classical subject of great interest in
mathematics, physics and economical and social sciences [1, 2, 3]. In physics, extre-
me events have been studied in a number of fields [4] (and refs. therein) including
self-organized fluctuations and critical phenomena, material fracture, disordered sys-
tems at low temperatures, and turbulence. Knowledge of extreme event statistics is
of fundamental importance to predict and estimate the risk in a variety of natural
and man-made phenomena such as earthquakes, changes in climate conditions, flo-
ods and large movement in financial markets. A new field where extreme statistics
is of interest are complex networks [4].
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Rysunek 8.11: Kolaps danych czyli statystyka Ps(∆sZ) zdetrendowanych zmian
∆sZ w zależności od wielkości tych zmian po przeskalowaniu zmiennej ∆sZ/σs
i tegoż rozkładu dla kolejnych horyzontów czasowych (idąc od góry s =
8, 16, 32, 64, 128, 256, 512, 1024, 2048 min.) dla kwartału zawierającego czarny po-
niedziałek.
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8.3.1 Twierdzenie Graniczne Maksimów

Filarem statystycznej Teorii Zdarzeń Ekstremalnych (ang. Extreme Value Theory
w skrócie EVT zwanej też Theory of Extreme Values) jest Twierdzenie Graniczne
Maksimów (ang. Maximum Limit Theorem) autorstwa Gniedenki [5, 11, 6]. Przed-
stawiamy je tutaj bez dowodu w wersji dla ciągłej zmiennej losowej, wskazując (w
następnym paragrafie) na jego praktyczne znaczenie.

Twierdzenie 8.3.1.1 (Maximum Limit Theorem) Niech dany będzie ciąg nie-
zależnych, ciągłych zmiennych losowych (x1, x2, . . . , xn) o identycznym rozkładzie
i niech xmaxn = max(x1, x2, . . . , xn). Jeśli istnieje ciąg zbieżny trójek liczb (an(>
0), bn, γn) → (a(> 0), b, γ), czyli parametry odpowiedzialne, odpowiednio, za standa-
ryzację, centralizację i kształt, a niezdegenerowana dystrybuanta graniczna

lim
n→∞P (x

max
n ¬ x) = lim

n→∞Hγn

(

x− bn
an

)

= Hγ

(

x− b
a

)

,

jest dobrze określona dla każdego x, to ta dystrybuanta może przybierać tylko jedną
z trzech następujących postaci granicznych:

(i) Frécheta

HFr(x) =

{

0, for x ¬ 0
exp (−x−α) , for x > 0, α > 0.

(8.20)

(ii) Gumbela

HGu(x) = exp (− exp(−x)) , for x ∈ R. (8.21)

(iii) Weibulla6

HWei(x) =

{

exp (−(−x)−α) , for x < 0, α < 0
0, for x ­ 0.

(8.22)

Oczywiście, rozkłady Frécheta, Gumbela i Weibulla uzyskuje się jako pochodne
odpowiednich, powyżej podanych dystrybuant, po ich górnych granicach, czyli po
zmiennej x.
Warto zauważyć, że rozkłady Weibulla i Frécheta są komplementarne w takim

sensie, że cała ich zmienność lokuje się na nośnikach komplementarnych. Jednakże,
ich kształty różnią się istotnie (pomimo formalnego podobieństwa), gdyż określające
je parametry kształtu są przeciwnego znaku.

6Dokładniej rzecz biorąc, jest to tzw. odwrotny rozkład Weibulla. Rozkład Weibulla [7] opisuje
statystykę wartości minimalnych.
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Okazuje się, że powyższe trzy dystrybuanty można wyrazić za pomocą uogólnio-
nej dystrybuanty wartości ekstremalnych (ang. Generalized Extreme Value Distri-
bution, w skrócie GEVD)

Hγ(x) = exp
(

− (1 + γ · x)−1/γ+

)

, (8.23)

gdzie (. . .)+ = max(0, (. . .)). Dziedzina tej uogólnionej dystrybuanty zależy od pa-
rametru kształtu7 γ w następujący sposób:

1) gdy γ > 0 wówczas x ∈]−1/γ, ∞] i wtedy mamy do czynienia z dystrybuantą
(przesuniętego i przeskalowanego) rozkładu Frécheta (patrz wzór (8.20)), gdzie
1/γ = α;

2) dla γ < 0 dysponujemy x ∈ [−∞, −1/γ[ i wtedy mamy do czynienia z dys-
trybuantą (przesyniętego i przeskalowanego) rozkładu Weibulla (patrz wzór
(8.22)), gdzie 1/γ = α;

3) w przypadku γ → 0 dziedzina x nie jest ograniczona - mamy wtedy do czy-
nienia z dystrybuantą rozkładu Gumbela (patrz wzór (8.21)).

Należy podkreślić, że wyznaczenie parametrów granicznych a i b a zwłaszcza
parametru kształtu γ z danych empirycznych jest podstawowym, prag-
matycznym zadaniem Teorii Zdarzeń Ekstremalnych.
W rozdz. 8.3.2 przedstawiamy alternatywne, nie tak wyspecyfikowane podej-

ście do statystyk zdarzeń ekstremalnych oparte na rozkładach bazowych, z których
odlosowywane są wspomniane w Twierdzeniu 8.3.1.1 ciągi niezależnych zmiennych
losowych (x1, x2, . . . , xn).

Wartość Zagrożona Ryzykiem
a uogólniony rozkład wartości ekstremalnych

Wyznaczenie tzw. ’Wartości Zagrożonej Ryzykiem’ (ang. Value at Risk, VaR), ozna-
czającej maksymalną dopuszczalną stratę, za pomocą GEVD stanowi jeden z naj-
ważniejszych sukcesów EVT - wyznaczenia tego dokonamy w niniejszym podroz-
dziale.
Przypuśćmy zatem, że zadaliśmy poziom ufności 1 − α (tego typu oznaczenie8

stanie się jaśniejsze w rozdz. 8.1, gdzie dokładniej analizujemy własności VaR) -
stowarzyszona z tym poziomem wartość dystrybuanty9

F (V aR1−α) = P(x < V aR1−α) = 1− α. (8.24)

7Parametr kształtu γ ∝ 1α , gdzie α to wykładnik definiujący rozkład Frécheta i rozkładWeibulla
w Twierdzeniu 8.3.1.1.
8Proszę nie mylić tego, powszechnie używanego oznaczenia, z oznaczeniem wykładnika wpro-

wadzonego w rozdz. 8.3.1.
9Dokładniej rzecz biorąc, przez dystrybuantę rozumiemy wyrażenie F (V aR1−α) = P(x ¬

V aR1−α) - w naszym przypadku ciągłej zmiennej losowej jest to bez znaczenia. Dodajmy, że
wtedy o dystrybuancie (8.24) mówimy, że jest kwantylem rzędu 1− α.
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Możemy teraz łatwo wyznaczyć dystrybuantę wartości ekstremalnej pamiętając, że
z założenia bierzemy pod uwagę tylko takie odlosowane wartości zmiennej x, jakie
są nie większa od wartości progowej V aR1−α. Mianowicie, dla dostatecznie dużych
wartości n, na mocy Tw. 8.3.1.1, zachodzi z dobrym przybliżeniem

Hγ

(

V aR1−α − b
a

)

≈ P(xmaxn < V aR1−α) = [P(x < V aR1−α)]
n = (1− α)n,(8.25)

gdzie n-ta potęga występująca po prawej stronie bierze się stąd, że każda z n � 1
odlosowywanych wartości ciągu (x1, . . . , xn) musi być mniejsza od przyjętej wartości
progowej V aR1−α.
Podstawiajac teraz (8.23) do lewej strony (8.25) otrzymujemy ostatecznie po

prostych przekształceniach

V aR1−α ≈ b+
a

γ

[

(−n ln(1− α))−γ − 1
]

. (8.26)

Do analizy własności VaR i szerzej, do analizy ryzyka oraz związanych z nim strat,
powrócimy w rozdz. 8.4.

8.3.2 Rozkład maksimów a rozkład bazowy - ogólna formuła

If one observes a series of L independent realizations of the same random pheno-
menon (or its stochastic replica), the central question of the Extreme Value Theory
(EVT) imposes how to characterize the maximum observed value of random va-
riables10 xmax

def.= max{xl}l=1,...,L. For example, the maximum value could be the
deepest trap encountered by the walker in a disordered medium (then we would ha-
ve x ≡ ε, where ε is the energetic depth of the trap) or the longest mean residence
time (called also the sojourn time of the walker) in such a trap (then we would have
x ≡ τ , where τ is the mean residence time).
The main goal of the EVT is to characterize xmax by determination of the proba-

bilty distribution, P (xmax = Λ), of the maximal value xmax, where Λ is an arbitrary
threshold. In the case of dispersive transport and diffusion we apply the EVT to
characterize, the mentioned above two, related, stochastic variables (ε and τ).
First, we calculate the cumulative probability distribution P(xmax < Λ) of the

random variable xmax by noting that if the maximum xmax is smaller than Λ then all
xl’s are also smaller than this threshold and vice versa. As these random variables
are idependent and identically distributed (iid), we can put

P(xmax < Λ) = [ρ<(Λ)]L = [1− ρ>(Λ)]L, (8.27)

by assuming the cumulative probability distribution of random variable x

ρ<(Λ) =
∫ Λ

xdown
ρ(x)dx, (8.28)

10We developed the Extreme Value Theory by considering continuous variables and assuming
simplied notation xmax instead of xmaxn used in Sec. 8.3.1, where n ≡ L.
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where ρ(x)dx is the basic probability that the random variable x can be found in
the interval x, x+ dx, and xdown is the lowest value which this variable can assume.
Of course, the second equality in expression (8.27) comes from the normalization of
the probability density (or distribution) ρ(. . .) where

ρ>(Λ) =
∫ xup

Λ
ρ(x)dx, (8.29)

here xup is the largest value which the variable x can assume. We set here xdown �
Λ ¬ xup so that the strong inequality ρ>(Λ) � 1 is obeyed. Therefore, the second
equality in expression (8.27) takes, with a good approximation, the useful form

P(xmax < Λ) ≈ exp(−L · ρ>(Λ)). (8.30)

In this way, we reached our second step, namely the intermediate formula useful for
further transformations

P (xmax = Λ) =
dP(xmax < Λ)

dΛ
≈ L · ρ(Λ) · exp(−L · ρ>(Λ)), (8.31)

where the notation ρ(Λ) = ρ(x = Λ) and definition (8.29) have been introduced.
In the third step, we relate the number of observations (L) to the rare event.

The law of large numbers tells us that one can expect to observe (typically) such
events which have a probability at least equal to 1/L. Hence, it would be surprising
to encounter an event which has a probability much smaller than 1/L. The largest
event Λmax, observed in a series of L� 1 iid random variables (which we call indeed
the rare one), is thus given by relation

ρ­(Λmax) =
1
L
. (8.32)

We can call the above definition of the rare event the weak one; the stronger defintion
(which seems to be even easier to interpret) could have the form

ρ(Λmax) =
1
L
, (8.33)

which is, however, less convenient (from the technical point of view of the general
approach)11. Since now we operate with two types of max-variables our aim is to
find the probabilistic relation between them.
By combining eqs.(8.30), (8.31) and (8.32) we finally find the general formula for

the searched distribution

P (xmax = Λ) ≈
ρ(Λ)

ρ­(Λmax)
· exp

(

− ρ>(Λ)
ρ­(Λmax)

)

. (8.34)

11Note that for most cases analytically solvable both definitions give identical shapes of distribu-
tions of random variables which require only rescaling by additive and/or multiplicative constants.
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It is just the above formula that we use to get the Gumbel and Fréchet distributions
as well as to find a relation between them.
Warto dodać dla kompletności, że dystrybuanta (8.30) przybiera teraz postać

P(xmax < Λ) ≈ exp
(

− ρ>(Λ)
ρ­(Λmax)

)

. (8.35)

nie tak wyspecyfikowaną jak GEVD podana w rozdz. 8.3.1.

8.3.3 The Gumbel distribution versus the Fréchet one

We assume that disordered substrate (medium) is characterized by the random-trap
or valley model defined on a regular lattice. Therefore, all valleys are equally spaced
but have different (energetic) depths, {ε > 0}, while the mountain peaks are all at
the same energy level. It is assumed that the distribution of depths is exponential

ρ(ε) =
1
〈ε〉 exp

(

− ε

〈ε〉

)

(8.36)

which was done by many authors. The visible aspect of the random-trap model
is its symmetry where (in absence of a bias) there is no tendency for the carrier
to drift from any configuration of traps. Hence the carrier hops in any possible
direction have an equal probability and the different hops between valleys are, of
course, uncorrelated. We use the above given distribution as a basis for further
considerations.
The Gumbel distribution. As we already mentioned in Sec.8.3.2, we can identify

the random variables x ≡ ε. Moreover, from expression (8.36) we find

ρ(Λ) =
1
〈ε〉 exp

(

− Λ〈ε〉

)

,

ρ>(Λ) = exp

(

− Λ〈ε〉

)

, ρ­(Λmax) = exp

(

−Λmax〈ε〉

)

, (8.37)

required to express formula (8.34) in an explicit form. Note that the third expression
(8.37) together with (8.33) gives an explicit, unique relation between the value of
the rare event Λmax and the number of observations L

Λmax
〈ε〉 = ln(L), (8.38)

which points to a slow (logarithmic) growth12 with increasing L.

12For the stronger definition of the rare event (8.33) we obtain Λmax/〈ε〉 = ln(L/〈ε〉) while the
Gumbel distribution (8.41) of variable u defined by (8.40) is unaffected.
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By using (8.37), formula (8.34) takes an intermediate form

P (εmax = Λ) ≈
1
〈ε〉 exp

(

−Λ− Λmax〈ε〉

)

exp

(

− exp
(

−Λ− Λmax〈ε〉

))

. (8.39)

To obtain the searched distribution in a closed, explicit form the following transfor-
mation of variable εmax or Λ should be made

u
def.=

εmax − Λmax
〈ε〉 =

Λ− Λmax
〈ε〉 ⇒ du =

Λ
〈ε〉 ; (8.40)

hence and by expression (8.39) we finally obtain the well known Gumbel distribution

P (u) = exp(−u) exp(− exp(−u)) (8.41)

of the u random variable, where we tacitly use the invariance of the probability
under the monotonic transformation of random variable (invariant measure); thus
we used the equality

P (εmax = Λ)dΛ = P (u)du. (8.42)

Zauważmy, że rozkład (8.41) można otrzymać, jak trzeba, jako pochodną dystrybu-
anty rozkładu Gumbela danej wzorem (8.21), przy czym u ≡ x.
Note that the most probable value of the distribution (8.41) is u = 0 which

shows that, paradoxally, the rare event Λmax is the most probable value among
εmax’s. On the other hand, when u → ∞ the Gumbell distribution P (u → ∞) →
exp(−u). Hence, the distribution of random variable ε and the analogous (although
asymptotic) one of variable εmax are exponential. We can say that the exponential
distribution is asymptotically stable with respect to the ’max’ operation.
The Fréchet distribution. Now we are ready to answer the question concerning the

distribution of sojourn times of the walker in traps and find (by using formula (8.34))
the distribution of its longest values present within a given series of observations.
Then (as we mentioned at the beginning of Sec. 8.3.2) we assume that the random
variable x ≡ τ .
Accordingly, as the first step we perform the transformation

ε⇒ τ(ε) = τ0 exp(β ′ε) = τ0 · (τ ′)ε/∆,
ρ(ε)⇒ ρ′(τ(ε)) =

1
τ0

α

(τ/τ0)α+1
(8.43)

where we set τ ′ = exp(β ′ · ∆), as we consider over-barrier jumps of a carrier (here
∆ denotes the energy unit), and the exponent

α =
ln(N)
ln(τ ′)

=
1

β ′ · 〈ε〉 . (8.44)
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To derive of the second equality in (8.43) we used again the invariance of the proba-
bility under the monotonic transformation of random variable (as given by the first
equation of (8.43)), i.e. we used the positively oriented equality

ρ′(τ)dτ = ρ(ε)dε. (8.45)

Note that the exponential transformation of the random variable leads to the trans-
formation of its (invariant) probability distribution from the exponential one to the
power-law. Conversely, the logarithmic transformation of random variable leads to
the transformation of its probability distribution from the power-law to exponential
ones.
From the second relation in (8.43) and definition (8.29) we can easily calculate

the probability

ρ′>(Λ) =
1

(Λ/τ0)α
. (8.46)

and hence

ρ′­(Λmax) =
1

(Λmax/τ0)α
. (8.47)

necessary to obtain probabiliy distribution (8.34) in an explicit form13. Note that
by using eq. (8.32) we obtain Λmax as a power-law function of L14

Λmax
τ0
= L1/α. (8.48)

It should be noted that the same result is obtained if we use the rare event of energy
depth of traps (8.38) as a power (divided by ∆) of τ ′ which gives self-consistency of
the approach.
By introducing formulae (8.46) and (8.47) into (8.34) we obtain after straight-

forward calculations

P (τmax = Λ) =
1
Λmax

· α

(Λ/Λmax)α+1
exp(−1/(Λ/Λmax)α) (8.49)

Hence we finally obtain the Fréchet distribution

P (u) =
α

uα+1
exp

(

− 1
uα

)

(8.50)

of u def.= Λ/Λmax variable, where as usual we used the invariance of the probability
under the monotonic transformation of random variable, i.e. we used the equality

P (τmax = Λ)dΛ = P (u)du. (8.51)

13The Λ variable used here relates to τ and not ε one.
14By using the stronger definition (8.33) of the rare event one gets a related scaling law Λmax/τ0 =
(L/(τ0 · α))1/(α+1).
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Zauważmy, że rozkład ten można uzyskać, jak trzeba, jako pochodną dystrybuanty
Frécheta (8.20), gdzie u ≡ x.
It can be easily found that the most probable value of τmax is proportional to

the value of the rare event Λmax15.
As it is seen, for u � 1 the Fréchet distribution is the power-law of exponent

1 + α with the power-law correction to the scaling of exponent α since

P (u) ≈ α

uα+1

(

1− 1
uα

)

. (8.52)

Analogously to the Gumbel distribution, we can again say that the power-law tail
is asymptotically stable with respect to the ’max’ operation.
Relation between the Gumbel and Fréchet distributions. The above cosiderations

show that, when we made the transformation from the random variable ε to its expo-
nential representation τ(ε) (cf. the first relation in (8.43)) as a result we transformed
the Gumbel to the Fréchet distributions. In other words, the Gumbel distribution
characterizes an additive stochastic process while the multiplicative one is charac-
terized by the Fréchet distribution (where relation between both processes is given
by the log operation).

8.3.4 Pictorial analysis of rank ordering

The main goal of this section is to show the decisive role of rare events in Hierarchical
Continuous-Time Random Walk (HCTRW) for asymptotic many time-steps. To
make our analysis more convenient we treat variable ε/∆ as a discrete one which
is possible as ∆ can be always assumed to be sufficiently small (i.e. by assuming
∆� ε̄). Again, we assume that x ≡ τ is our random variable distributed according
to the power-law defined by the second expression in (8.43). Now, we introduce the
discrete notation j = ε

∆
, j = 0, 1, 2, . . . , and define N = exp( ∆〈ε〉); hence, with a

good approximation, ∆〈ε〉 ≈ 1 − 1
N
, which makes the transformation to the discrete

distribution

ρ(ε)⇒ ρ′′(j) =
(

1− 1
N

)

· 1
N j

, j = 0, 1, 2, . . . , (8.53)

and the definition of the rare event

ρ′′(jmax) =
(

1− 1
N

)

· 1
N jmax

, (8.54)

clear16.
Hierarchical waiting-time distribution in a discrete representation. Note that

our hierarchical waiting-time distribution, ψ(t) (which is the basic function of the

15More precisely, τmax = (α/(1 + α))1/α · Λmax and only for α→∞ variable τmax = Λmax.
16In the above derivation we simply exchanged d

(
ε
∆

)
for 1. Note that the distribution has still

an exponential form and its normalization is conserved, as it should be.
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HCTRW) assumes, within the above introduced discrete representation, the follo-
wing useful form

ψ(t) =
∞∑

j=0

ρ′′(j) · ψj(t), (8.55)

where the conditional Poisson waiting-time distribution

ψj(t) =
1

τ0(τ ′)j
· exp

(

− t

τ0 · (τ ′)j
)

, (8.56)

and ρ′′(j) is the weight which plays a fundamental role in these considerations. (Of
course, this discretized ψ(t) conserves the normalization and scaling). For example,
the sojourn time can be easily calculated by using the weight,

〈t〉 =
∞∑

j=0

ρ′′(j) · 〈t〉j, 〈t〉j = τ(j) =
∫ ∞

0
t · ψj(t)dt = τ0 · (τ ′)j. (8.57)

Note that the partial residence time 〈t〉j, j = 0, 1, 2, . . . , is always finite but the
total residence time is finite only when α > 1 and equal to

〈t〉 = τ0 ·
1− 1

N

1− τ
N

; (8.58)

otherwise it diverges which fully agrees with the result shown in Sec.2.2. Hence, to
obtain 〈t〉 finite the weight ρ′′(j) must converge sufficiently quickly with the increase
of variable j.
It is decisive for our present considerations that the ratio of successive weights

ρ′′(j + 1)
ρ′′(j)

=
1
N
, (8.59)

be already j-independent. This means that in each single-step the residence of a
carrier in a trap with sojourn time τ0 · (τ ′)j or in state (or hierarchy level) j is
N times more likely than those of the next larger order j + 1. Hence, one expects
(on the average) that the walker will visit N j traps having the shortest sojourn
time τ0 before he encounters a sufficiently deep trap with a mean residence time
τ(j) = τ0 · (τ ′)j, j = 1, 2, . . ..
Practical aims. In Fig.8.12 the schematic illustration of this essential observation

is given in the form of one-dimensional hierarchically ordered time-intervals or mean
residence (sojourn) times in the corresponding traps. Here

(i) we neglect (due to the Bernoulli law of large numbers) the fluctuation of the
number of hierarchy levels as well as their succession (as we calculate the
summarized quantities), and
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Rysunek 8.12: The part of the stochastic hierarchy of the carrier residence times in
random traps presented in the form of ordered two-dimensional zig-zag intervals (the
art-view) where the length of each interval is given by τ(j) = τ0 ·(τ ′)j, j = 0, 1, 2, . . ..

(ii) plot only the length of the average time-intervals 〈t〉j, j = 0, 1, 2, . . ..

As it is seen, we made the transformation from the stochastic hierarchy to its deter-
ministic representation. This makes it easier to realize our practical aims, namely
to discuss

(1) the rank ordering of residence times,

(2) the finite-size effect as scaling of characteristic quantities with the size of the
hierarchy.

From Fig.8.12 one gets the useful relation between the size of hierarchy L and
the number of its levels j(� 1 and τ ′, N > 1),

L(j) = N j +N j−1 + . . .+N1 +N0 ≈ 1
1− 1/N ·N

j. (8.60)
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Rysunek 8.13: The rank ordering of residence times and depths of traps described
by the power-law (function F1, where Λ?n is given by eq.(8.77)) and logarithmic (F2,
where Λ?n is given by eq.(8.76)) dependences, respectively.

The quantity L(j) is also the total number of steps after which the walker encoun-
tered the trap with sojourn time τ0 · (τ ′)j.
Now, we can set the rank n = L(j) and look for the corresponding sojourn time

as a function of n ranked according to its decreasing amplitude. Hence, we can write
the one-to-one correspondence in the form: n = L(j) ⇔ (τ ′)jmax−j, where jmax is
related to the total number of observations L; by using relation (8.60) we can write

L = L(jmax) ≈
1

1− 1/N ·N
jmax. (8.61)

From expressions (8.60) and (8.61) we calculate exponent jmax−j and by introducing
it into the formula for n given the above, we finally find the searched rank dependence

τ(n) = τ0 · (τ ′)jmax−j = τ0 ·
(
L

n

)1/α

, (8.62)

which is (for large L) the power-law with exponent −1/α. In Fig.8.13 we presented
this dependence, for example, for α = 0.792 (or N = 3 and τ ′ = 4) and L = 9841.
Eq.(8.62) shows that hierarchically organized encountered random variables lead
to the power-law rank of their amplitudes. Speaking more precisely, we obtained a
kind of descending devil’s staircase whose average slope is asymptotically given by
exponent −1/α.
Empirical verification of the tail. The rank relation (8.62) is very useful in iden-

tifying the nature of the tails of probability distributions. The single-step procedure
is as follows: one sorts in decreasing order the series of observed random variables
(for example, τ ’s) and one simply draws Λn (here equil to τ(n)) as a function of n. If
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variables are power-law distributed, this graph should be a straight line in a log-log
plot, with a slope given by exponent −1/α (as shown, e.g., by expression (8.62)).
Decisive role of rare events. Our second aim is realized in connection with rare

events. Now, we can prove that the (average) total time for which carrier stays in
the traps encountered during L steps obeys the same scaling law with L as a rare
event.
First, from (8.53) and (8.54) we easily obtain

ρ′′­(Λ) =
∞∑

j=Λ

ρ′′(j) =
1
NΛ
⇒ ρ′′­(Λmax) =

1
NΛmax

=
1
L

≡ Λmax =
ln(L)
ln(N)

, (8.63)

where the second relation defines the rare event in agreement with weaker definition
(8.33). Hence, we have

(τ ′)Λmax = L1/α. (8.64)

By using relations (8.61) and (8.54), we find that just jmax is the rare event in the
stronger sense given by (8.33); thus,

(τ ′)jmax = [(1− 1
N
) · L]1/α, (8.65)

which means that the difference Λmax− jmax = lnN/ ln(1− 1/N) is an unimportant
constant.
The total time mentioned above is given by the following sum

t

τ0
≈ N0(τ ′)jmax +N1(τ ′)jmax−1 + . . .+N jmax−1(τ ′)1 +N jmax(τ ′)0

= N jmax
( τ
′

N
)jmax+1 − 1
τ ′

N
− 1 ≈







1
1−N
τ ′
· (τ ′)jmax, for α < 1

1

1− τ ′
N

·N jmax, for α > 1, (8.66)

By introducing eq.(8.65) and eq.(8.61) into (8.66) we obtain the important relations

t

τ0
≈







(1− 1
N
)1/α

1−N
τ ′
· L1/α, for α < 1

1− 1
N

1− τ ′
N

· L, for α > 1.
(8.67)

Note that both relations (8.66) and (8.67) distinguish two essentially different ranges
of exponent α (the marginal case α = 1 is not considered here). For the first range
(α < 1) we found t proportional to the rare event, i.e. it scales with the number of
steps L in the same manner as the rare event; this is the main result of this section.
The proportionality coefficient is called the (dimensionless) fractional residence time.
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For the opposite, regular case the analogous coefficient is simply the residence time
given above (cf. eq.(8.58) and second relation (7.34)).
Now, it is easy to calculate the dependence of the mean-time, 〈t〉, used by the

walker for a single step, on L. For the asymptotic long L one can write the following
average calculated along the L-step trajectory

〈t〉
τ0
≈ N jmax

L
(τ ′)0 +

N jmax−1

L
(τ ′)1 + . . .+

N0

L
(τ ′)jmax

≈







(1− 1
N
)1/α

1−N
τ ′

L
1
α
−1, for α < 1

1− 1
N

1− τ ′
N

, for α > 1,
(8.68)

Of course, this result can be obtained straightforward from expression (8.67) by
deviding it simply by L.
Additional properties of rare events. It is useful to have a list of several simple

properties of the rare events. The first question which we can easily answer is: how
many potential rare events, lmax, typically appear within L(� 1) events17? From
(8.60) we immediately get (exchanging simply j for lmax): lmax ≈ ln(L(lmax))ln(N)

.
The second question is: how the distance between the successive rare events

increases with L? Again from (8.60) we obtain

∆L(j) = L(j + 1)− L(j) = N j+1 ≈ (N − 1) · L(j); (8.69)

i.e. this distance increases linearly with L.
The third question concerns the ratio of the value of the potential rare events

and their difference. Directly from Fig.8.12 we find that this ratio is simply equal to
τ ′ independently of L while their difference

τ0 · [(τ ′)lmax+1 − (τ ′)lmax] ≈ τ0 · (τ ′ − 1) · L1/α, (8.70)

scales with L as a single rare event.

8.3.5 Generalized Extreme Value Theory

In this section we ask a more general question than in Sec.8.3.2 although we consi-
der again a series of L independent observations of random, identically distributed
variables. We can rank variables xl, l = 1, 2, . . . , L, in decreasing order of their
amplitude. We denote by Λn the nth encountered value among these random varia-
bles. Hence, for example, Λ1 = xmax and ΛL = xmin (i.e. the minimal value of the
variables xl).
As the first step we are interested in the probability distribution Pn(Λn) =

Pn(x = Λn) of the random variable Λn. We can write the exact formula

Pn(Λn) = L · Cn−1
L−1 ρ(x = Λn)[ρ>(Λn)]

n−1[ρ<(Λn)]L−n, (8.71)

17The potential rare event is such an event which is the maximal one but within the given number
of steps smaller than L.
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where Cn−1
L−1 denotes the combinatorial (or Newton binomial) factor. The product

L · Cn−1
L−1 gives the total number of ways to set Λn within all possible configurations

of L− 1 elements, which remain random variables of the series. Note that for n = 1
the above formula simplifies to expression (8.31), as it is expected be.
In the second step we find the most probable value of Λ?n (for a given rank n). By

differentiating probability distribution (8.71) and setting it equal to zero we obtain
the formula

1
L
· dρ(Λn)
dΛn

· ρ>(Λn) · ρ<(Λn) −
n− 1
L
· [ρ(Λn)]2 · ρ<(Λn)

+ (1− n

L
) · [ρ(Λn)]2 · ρ>(Λn) = 0 (8.72)

useful for further considerations particularly when n, L→∞ with fixed ratio n/L.
Then the first term in (8.72) vanishes and we obtain the formula

ρ>(Λ?n) ≈
n

L
. (8.73)

which generalizes (8.32)18.
To complete information about distribution Pn(Λn) in the vicinity of Λ?n we

calculate, as our third step, its width σn. We find σn by using the saddle-point (or
Gaussian) approximation from the second derivative of lnPn(Λn) calculated at Λ?n
since in this approximation one can use

d2

dΛ2n
lnPn(Λn) |Λ?n= −

1
σ2n
. (8.74)

Hence and from (8.71), we obtain immediately the width of the probability distri-
bution Pn(Λn) in the form

σn ≈
1√
L
·
√

n
L
· (1− n

L
)

ρ(Λ?n)
(8.75)

which is more and more sharply peaked around its most probable value Λ?n as L
tends to infinity (with fixed ratio n/L).
Two useful cases. Let’s assume the case of exponential tail (given in Sec.8.3.3 by

eq.(8.36)). By applying the second relation of eq.(8.37) to eq.(8.72) we obtain that

Λ?n ≈ 〈ε〉 · ln
(
L

n

)

. (8.76)

In the case of the power-law tail (given again in Sec.8.3.3 by the second equation
in (8.43)) we obtain

Λ?n ≈ τ0 ·
(
L

n

)1/α

, (8.77)

18We used here the normalization condition ρ<(Λn) = 1−ρ>(Λn) which is valid for the continuous
random variable.
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which was already derived in Sec.8.3.4 by the simplified approach (of course, Λ?n
present in the above formula is equivalent to τ(n) in formula (8.62)).
In Fig.8.13 we compare both the above derived results in the log-log plot (where

we used L = 9841 and α = 0.792). For the exponential distribution we observe an
effective slope which is smaller and smaller as the rank variable n increases, i.e. the
remarkable difference between both rank plots is well seen.

8.3.6 Concluding remarks

In the paper we present, in the context of amorphous materials, two essentially dif-
ferent types of transport and diffusion: above the temperature threshold 1/β ′ = 〈ε〉
they are regular (normal) while below they are anomalous (i.e. non-Gaussian). We
discuss, for these two regions, the asymptotic form of the spatial-temporal pro-
pagator, the time-dependent drift and the variance emphasizing their subdiffusive
character. Moreover, we were able to show the decisive role of rare events in the-
se anomalous types of transport and diffusion by matching the biased Hierarchical
Continuous-Time Random Flight model and the Extreme Value Theory. We ho-
pe that this approach makes possible a deeper understanding of the transport and
diffusaion phenomena.

8.4 Nowoczesne podejście do oceny ryzyka

Przypuśćmy, że chcemy ocenić pojedynczą stratę ∆X < 0 jaką moglibyśmy po-
nieść w horyzoncie czasowym τ , czyli np. na koniec dnia transakcyjnego (wówczas
τ = 1 [td]). W tym celu wprowadźmy bazową gęstość prawdopodobieństwa
strat, Pτ (∆X), dla ustalonego horyzontu czasowego τ . Unormujmy ją (dla prosto-
ty) w taki sposób, że

∫ −Λup
−∞ Pτ (∆X)d(∆X) = 1. W miarę potrzeb można wziąć pod

uwagę pełniejszy sposób normalizacji, uwzględniający także zyski (∆X > 0). Tą
gęstość prawdopodobieństwa należy rozumieć w taki sposób, że budująca ją staty-
styka empiryczna jest zbierana na koniec każdego dnia transakcyjnego τ . Oznacza
to jednak, że nie bierze się tutaj pod uwagę dwóch istotnych efektów

1) kumulowania się strat w trakcie dnia transakcyjnego, z których każda z osobna
jest mniejsza od dopuszczalnej straty, ale które w sumie przewyższają ją,

2) pojawienia się straty większej od dopuszczalnej w trakcie danego dnia trans-
akcyjnego a nie na jego koniec.

Do zagadnień tych powrócimy w dalszej częsci tego rozdziału.
Na wstępie, dysponując rozkładem Pτ (∆X), określamy np. prawdopodobieństwo

(absolutnej wartości) straty −∆X =| ∆X | nie mniejszej niż jakaś (dowolnie) usta-
lona przez nas dopuszczalna wielkość progowa Λ (tutaj Λ ­ 0):

P(∆X ¬ −Λ) = P¬(−Λ) =
∫ −Λ

−Λdown
Pτ (∆X)d∆X, (8.78)
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gdzie prawdopodobieństwo P¬(−Λ) (wyrażane najczęściej w procentach) nosi nazwę
oceny ryzyka (ang. risk estimation) lub poziomu ufności (ang. confidence level),
wartość Λ nazywana jest poziomem strat (ang. level of loss), poziomem ryzyka
(ang. level of risk) lub po prostu ryzykiem (ang. risk), wartość Λdown(­ 0) jest
maksymalną absolutną wartością potencjalnej straty jaką możemy ponieść, przy
czym zakładamy, że Λ� Λdown; w związku z tym można przyjąć, że Λdown ≈ ∞, co
upraszcza obliczenia nie wpływając na (przybliżoną) postać ostatecznych wzorów.
W dalszym ciągu wprowadźmy w równaniu (8.78) jakąś konkretną wartość po-

ziomu strat, którą nazwiemy ’Wartością Zagrożoną Ryzykiem’, i oznaczmy przez
−ΛV aR (skrót VaR jest akronimem angielskiej nazwy Value at Risk) - niech będzie
to taki poziom strat, który odpowiada przyjętej ocenie ryzyka

α = PV aR def.= P¬(−ΛV aR), (8.79)

równej np. 1%. Oznacza to, że absolutna wartość straty większej lub równej stracie
progowej −ΛV aR wystąpi (średnio rzecz biorąc) raz na N = 100 [td]; w przypadku
5% zaledwie raz na N = 20 [td]. Zatem, z dobrym przybliżeniem, dla N � 1, można
przyjąć, że

PV aR ≈
1
N
. (8.80)

Ogólnie rzecz biorąc, im większy jest poziom ufności tym mniejszy jest poziom strat.
Zaznaczmy, że na wielkość N można patrzeć jak na średnią odległość (tutaj liczo-
ną w dniach transakcyjnych) pomiędzy dwiema kolejnymi stratami nieprzewyższa-
jącymi tej progowej −Λ. Zatem, 1/N to średnia częstość występowania tych strat.
Dodajmy, że badanie fluktuacji czasów międzytransakcyjnych jest jednym z ważniej-
szych zagadnień nie tylko ekono- i socjofizyki (patrz A. Bunde, J. Kropp, and H.J.
Schellnhuber: The Science of Disasters, Springer-Verlag, Berlin 2002). Na tej drodze
odkryto, na przykład, zjawisko grupowania się (klastrowania) dużych strat (warto
tutaj przypomnieć sobie porzekadło, że ”nieszczęścia chodzą parami”), co w istotny
sposób wpływa na nasze rozumienie ryzyka. Co więcej, dla monofraktalnych szere-
gów czasowych przejawiających długookresowe korelacje, rozkład P−Λ(∆t) czasów
międzytransakcyjnych strat nie mniejszych od −Λ jest rozciągniętym eksponensem.
Dla multifraktalnych szeregów czasowych stóp zwrotu rozkład ten przyjmuje postać
q-wykładniczej funkcji Tsallisa (patrz J. Ludescher and A. Bunde: Universal beha-
vior of the interoccurrence times between losses in financial markets. Independence
of the time resolution, Physical Review E (2014), w druku).
Jak widać, równanie (8.79) wprowadza nas w świat parametrów pozycyjnych -

kwantyli (patrz R. Nowak: Statystyka dla fizyków, Wydawnictwo Naukowe PWN,
Warszawa 2002), gdyż Wartość Zagrożona Ryzykiem, −ΛV aR, jest po prostu kwan-
tylem rzędu α. Zaletą tego podejścia jest fakt, że kwantyle dowolnego rzędu istnieją
nawet wtedy gdy momenty rozkładu nie istnieją. Wydaje się, że jest ono najczęściej
używanym we współczesnej ocenie ryzyka (patrz P. Jorin: Value at Risk: The New
Benchmark for Managing Financial Risk, McGraw-Hill, New York 2001).
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Naszym celem jest wyznaczenie poziomu ryzyka −ΛV aR przy zadanej
wielkości poziomu ufności PV aR, tzn. odwrócenie równości (8.79)

ΛV aR = −P−1¬ (α) = −P−1¬ (PV aR) ≈ −P−1¬
( 1
N

)

. (8.81)

W ogólności jest to zagadnienie rozwiązywalne tylko na drodze numerycznej jednak-
że dla kilku charakterystycznych przypadków można uzyskać rozwiązanie analitycz-
ne o czy mówimy poniżej. Zauważmy, że równanie (8.81) zależy w sposób globalny
(sumaryczny) od nieznanej bazowej gęstości prawdopodobieństwa - jego postać jest
wynikiem przyjętego modelu i musi, rzecz jasna, podlegać weryfikacji empirycznej.

8.4.1 Zasadnicze pytania

Możemy teraz postawić pytanie charakterystyczne dla Teorii Zdarzeń Ekstremal-
nych (ang. Extreme Value Theory) (patrz rozdz. IV) mianowicie, jaka jest gę-
stość prawdopodobieństwa wystąpienia największej pojedynczej straty,
P (−Λ;N), o zadanej wartości −Λ w czasie równym N dni transakcyjnych?
Jak widać, w tak postawionym pytaniu właśnie −Λ pełni rolę zdarzenia ekstremal-
nego. Odpowiedź na to pytanie uzyskujemy (analogicznie jak w rozdz. IV) w oparciu
o założenie mówiące o statystycznej niezależności strat. Zatem,

P (−Λ;N) = N · [P>(−Λ)]N−1 · Pτ (−Λ) = N · [1− P¬(−Λ)]N−1 · Pτ (−Λ)
≈ N · Pτ (−Λ) · exp(−N · P¬(−Λ)), N � 1, (8.82)

gdzie przy wyprowadzeniu przybliżonej równości w (8.82) przyjęliśmy, że prawdo-
podobieństwo P¬(−Λ) jest co najwyżej rzędu 10% tzn., że mamy do czynienia ze
stosunkowo dużym ryzykiem czyli stosunkowo niskim poziomem ufności. Zauważmy,
że skorzystaliśmy tutaj z warunku normalizacji postaci:

1 = P¬(−Λ) + P>(−Λ), P>(−Λ) =
∫ −Λup

−Λ
Pτ (∆X)d(∆X), (8.83)

gdzie −Λup jest stratą minimalną.
Innymi słowy, równanie (8.82) odpowiada na pytanie jaki jest rozkład prawdo-

podobieństwa tego, że −Λ jest maksymalną pojedynczą stratą jaka pojawiła się w
przeciągu N dni transakcyjnych.
Wyrażenie (8.82) można zapisać w alternatywnej postaci, którą wykorzystujemy

w dalszej części

P (−Λ;N) ≈ Pτ (−Λ)
PV aR

· exp
(

−P¬(−Λ)PV aR

)

. (8.84)

Zwróćmy uwagę, że powyższe wyrażenie jest, w istocie rzeczy, takie samo jak tamto
(8.34) wyprowadzone w rozdz. IV - różnica polega tylko na tym, że straty są tutaj
wyrażane liczbami ujemnymi
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Postawmy teraz zasadnicze pytanie: dla jakiej wartości −Λ gęstość praw-
dopodobieństwa P (−Λ;N) osiąga maximum? Czyli poszukujemy najbardziej
prawdopodobnej wielkości straty. W języku teorii parametrów pozycyjnych oznacza
to, że poszukujemy tzw. mody zwanej też dominantą. Z równości w (8.82) otrzymu-
jemy konieczny warunek, różniczkując ją stronami po −Λ i przyrównując otrzymane
wyrażenie do zera

(N − 1) · Pτ (−Λmax) = P>(−Λmax) ·
d ln(Pτ (−Λ))

d(−Λ) |max

≈ exp (−P¬(−Λmax)) ·
d ln(Pτ (−Λ))

d(−Λ) |max, (8.85)

który wykorzystamy do analizy wielce użytecznych przykładów.
Podkreślmy, że to właśnie wielkość Λmax jest tą charakterystyką poziomu ryzyka,

o którą nam chodzi - niestety, możliwości jej praktycznego wykorzystania są (jak na
razie) mniejsze niż wielkości ΛV aR, ze względu na trudność związaną z wyznaczeniem
w jawnej postaci Pmax(def.= P¬(−Λmax)). Nie mniej, wszędzie tam gdzie to jest
tylko możliwe należy dążyć do uzyskania obu tych wielkości w jawnej
(przynajmniej przybliżonej) postaci.
Dodatkową wielkością związaną z analizą ryzyka rynkowego jest oczekiwana

wielkość straty przekraczającej V aR (ang. Expected Tail Loss, ETL19). Oczywi-
ście, wyznaczenie tego (pierwszego, cząstkowego) momentu jest możliwe tylko wtedy,
gdy on istnieje. Zatem, nie jest to możliwe w sytuacji, gdy dystrybuanta rozkładu
strat ma gruby ogon zanikający jak 1/(∆X)2 lub wolniej. Chociaż często pogru-
bione ogony zanikają szybciej niż 1/(∆X)2, a więc umożliwiają wyznaczenie ETL,
to w dalszym ciągu nasze rozważania będą oparte głównie na pojęciu parametrów
pozycyjnych (kwantyli) a nie na momentach rozkładów20, gdyż takie podejście jest
bardziej uniwersalne i więcej mówiące.

8.4.2 Rachunek skumulowanych strat.
Podejście dynamiczne w ramach formalizmu CTRW

Jak to zostało wskazane w poprzednim podrozdziale, zawarte tam rozważania nie
uwzględniały strat wewnątrzdziennych - obecnie zajmiemy się tym nadzwyczaj waż-
nym zagadnieniem. Często właśnie straty wewnątrzdzienne, a w tym straty skumu-
lowane, stanowią istotne zagrożenie dla inwestora przekraczając dopuszczalny próg
przed upływem dnia transakcyjnego. Zatem teraz, naszym celem jest wyznacze-
nie rozkładu prawdopodobieństwa warunkowego, P (∆SX,∆t), wystąpie-
nia skumulowanej (sumarycznej) straty ∆SX w przedziale czasu ∆t pod
warunkiem, że wyjściowo (w chwili początkowej) nie było żadnej straty ani zysku

19Patrz G. Trzmiel: Wybrane modele oceny ryzyka. Podejście nieklasyczne, Wydawnictwo Aka-
demii Ekonomicznej im, Karola Adamieckiego w Katowicach, Katowice 2008.
20R. Nowak: Statysyka dla fizyków, Wydawnictwo Naukowe PWN SA, Warszawa 2002.
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(dla uproszczenia warunek ten został opuszczony w powyższym zapisie). Ponieważ
dopuszczamy tutaj zarówno straty jak i zyski więc ∆SX może być dowolnego znaku.
Rozwiązania tego problemu będziemy poszukiwać w ramach rozwiniętego w rozdz.
6.1 formalizmu CTRW, reinterpretując występujące tam zmienne. Wykorzystamy
tutaj formułę (6.35) - przypomnijmy

P̃ (k, s) =
1
s

1− φ̃(s)
1− φ̃(s) p̃(k)

, (8.86)

teraz P̃ (k, s) jest transformatą Laplace’a i Fouriera rozkładu P (∆SX,∆t), wielkość
φ̃(s) jest transformatą Laplace’a rozkładu φ(δt) pojedynczych czasów δt pomiędzy
kolejnymi zdarzeniami (tutaj są nimi straty lub zyski w dowolnym zestawieniu),
natomiast p̃(k) jest transformatą Fouriera rozkładu p(∆X) pojedynczej (jednokro-
kowej) straty lub zysku ∆X. Jak widać (mówiliśmy już o tym w rozdz. 6.1), oba
rozkłady jednokrokowe φ(δt) oraz p(∆X) są podstawowymi dla użytego formalizmu
CTRW.
Otrzymany rozkład, P (∆SX,∆t), pozwala obliczyć trzy nadzwyczaj ważne wiel-

kości:

(i) prawdopodobieństwo, P¬(−ΛV aR,∆ΛV aRt) =
∫−ΛV aR
−∞ P (∆SX,∆ΛV aRt)d(∆SX),

wystąpienia sumarycznej straty nie mniejszej niż ustalona progowa (np. nie
mniejszej niż −ΛV aR) w dowolnie wybranej chwili ∆ΛV aRt oraz

(ii) prawdopodobieństwo, F (∆SX,∆t), pierwszego pojawienia się sumarycznej stra-
ty ∆SX w chwili ∆t a stąd prawdopodobieństwo, F¬(−ΛV aR,∆ΛV aRt) =∫−ΛV aR
−∞ F (∆SX,∆ΛV aRt)d(∆SX), pierwszego wystąpienia sumarycznej straty
nie mniejszej niż ustalona progowa (np. nie mniejszej niż −ΛV aR) w dowolnie
wybranej chwili ∆ΛV aRt. Prawdopodobieństwo to można nazwać dynamiczną
oceną ryzyka.

Dodajmy, tytułem uzupełnienia punktu (ii), że prawdopodobieństwo, F (∆SX,∆t),
pierwszego pojawienia się sumarycznej straty ∆SX w chwili ∆t jest związane relacją

F̃ (∆SX, s) =
P̃ (∆SX, s)

P̃ (0, s)
, dla ∆SX 6= 0, (8.87)

z rozkładem P (∆SX,∆t) (patrz J.W. Haus and K.W. Kehr: Diffusion in regular
and disordered lattices, Physics Reports 150 (1987) 263-406).

Rozkład czasów pomiędzy nadmiernymi stratami

Znajdziemy teraz odpowiedź na inne ważne pytanie21 związane z dynamiką występo-
wania jednorazowych strat nie mniejszych od progowej −Λ. Powyżej zajmowaliśmy
21Rozważania zawarte w niniejszym podrozdziale powstały z inspiracji dr Tomasza Gubca.
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się stratami skumulowanymi - teraz zajmiemy się podejściem bardziej szczegółowym
- jego mikroskopią. Mianowicie, chodzi o rozkład ψΛ(∆Λt) przedziałów czasu ∆Λt po-
między takimi stratami (patrz rysunek 8.14) przy założeniu, że straty wyznaczamy
zawsze na koniec dnia transakcyjnego22 W tym celu skonstruujemy cząstkowe, wie-
lokrokowe (n-krokowe) reprezentacje, ψnΛ(∆Λt), tego rozkładu rzędu n = 0, 1, 2, . . . ,
postaci

ψn=0Λ (∆Λt) = ψ(∆Λt)P¬(−Λ),
. . . ,

ψn=2Λ (∆Λt) =
∫ ∆Λt

0
dt2

∫ t2

0
dt1 [ψ(t1)P>(−Λ)]

× [ψ(t2 − t1)P>(−Λ)] ψ(∆Λt− t2)P¬(−Λ),
. . . , (8.88)

gdzie 0 ¬ t1 ¬ t2, . . . , ¬ tn ¬ ∆Λt, przy czym z definicji poprzednia strata nie mniej-
sza od −Λ jest tutaj ulokowana w zerze (patrz pomocniczy rys. 8.15). Zauważmy,
że wyrażenie dla n = 2 pozwala już podać wzór na rozkład wielokrokowy dowolnego
rzędu. Użyty tutaj rozkład ψ(∆t) czasów ∆t = tj− tj−1, j = 1, 2, . . . , pomiędzy ko-
lejnymi stratami jest niezależny od ich wielkości. Przypomnijmy, że komplementar-
ne prawdopodobieństwa P¬(−Λ) i P>(−Λ) zostały zdefiniowane za pomocą wzoru
(8.78) i warunku normalizacyjnego (8.83). Zauważmy jeszcze, że analogiczną stra-
tegię wielokrokową stosowaliśmy już w podrozdz. 6.1.3 do obliczenia propagatorów
cząstkowych a za ich pomocą sumarycznego propagatora.
Dysponując rozkładami wielokrokowymi możemy już teraz skonstruować suma-

ryczny rozkład

ψΛ(∆Λt) =
∞∑

n=0

ψnΛ(∆Λt), (8.89)

który w zmiennej Laplace’a s (sprzężonej ze zmienną ∆Λt) przybiera prostą, za-
mkniętą postać

ψ̃Λ(s) =
ψ̃(s)

1− ψ̃(s) [1− P¬(−Λ)]
P¬(−Λ), (8.90)

gdzie po drodze skorzystaliśmy z warunku normalizacyjnego P¬(−Λ)+P>(−Λ) = 1
oraz warunku ograniczającego | ψ̃(s) |< 1.
Aby zilustrować przydatność wzoru (8.90), rozważmy szczególnie prosty przypa-

dek wykładniczej zależności rozkładu ψ(∆t) od czasu ∆t. Jego transformata Lapla-
ce’a jest postaci 1/τ

1/τ+s
(gdzie τ jest czasem relaksacji rozkładu ψ lub, inaczej mówiąc,

22Dzień transakcyjny ma tutaj charakter czysto umowny - ogólniej rzecz biorąc, chodzi tutaj o
jednostkę transakcyjną, którą może być np. godzina transakcyjna.
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Rysunek 8.14: Schematyczny wykres strat (pionowe odcinki) wyznaczanych na ko-
niec każdego przedziału czasowego τ (tutaj dnia transakcyjnego). Zmienne odległo-
ści czasowe pomiędzy nadmiernymi stratami (niebieskie pionowe odcinki) oznaczono
przez ∆Λt(­ τ).
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Rysunek 8.15: Schematyczny wykres strat (pionowe odcinki) poniesionych pomię-
dzy dwiema kolejnymi stratami nie mniejszymi od wartości progowej równej −Λ
(pionowe odcinki zaznaczone na niebiesko). Tą wartość progową oznaczono pozio-
mą czerwoną linią. Czasy tj, j = 1, 2, . . . , oznaczają chwile w których pojawiła się
kolejna j-ta strata.
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średnim czasem pomiędzy kolejnymi stratami), co pozwala po prostych algebraicz-
nych przekształceniach uzyskać także rozkład wykładniczy

ψΛ(∆Λt) =
1
τΛ
exp (−∆Λt/τΛ) , τΛ def.=

τ

P¬(−Λ)
, (8.91)

ale o odpowiednio przeskalowanym czasie relaksacji τΛ. Aby być w zgodzie z roz-
ważaniami w rozdz. 8.4 przyjmujemy, że τ = 1 td. Wielkość τΛ występująca w tym
wzorze to (w istocie rzeczy) nic innego jak wielkość N występująca we wzorze (8.80).
Oznacza to, że kolejne straty mogą pojawiać się zarówno wcześniej jak i później ale
średnio co τΛ (co oznacza, że przedział pomiędzy kolejnymi stratami w tym przy-
padku fluktuuje). Oczywiście, gdy rozkład ψ ma bardziej skomplikowaną postać to
otrzymanie rozkładu ψΛ staje się bardziej skomplikowane; mimo to, przydatność
wzoru (8.91) jest wprost trudno przecenić.
Zauważmy, że w sytuacji gdy za próg przyjmujemy Wartość Zagrożoną Ryzy-

kiem, ΛV aR, wówczas wzór (8.91) można przepisać w formalnie prostszej postaci

ψ̃Λ(s) =
ψ̃(s)

1− ψ̃(s) (1− α)
α. (8.92)

Pozostaje nam jeszcze wyprowadzić związek pomiędzy rozkładem ψ(∆t) a roz-
kładem podstawowym φ(δt). Zauważmy w tym celu (patrz rysunek 8.16), że pomię-
dzy kolejnymi stratami (niebieskie pionowe odcinki) może być dowolnie wiele zysków
(pionowe czarne odcinki). Pozwala to ponownie wykorzystać (powyżej użytą) strate-
gię reprezentacji wielokrokowej do opisu cząstkowych rozkładów ψn(∆t) - ich suma
daje ψ(∆t). Oznacza to, że

ψ̃(s) =
φ̃(s)

1− φ̃(s) p>
p¬ =

φ̃(s)

1− φ̃(s) (1− p¬)
p¬, (8.93)

gdzie p> =
∫∞
0 p(∆X)d(∆X) jest prawdopodobieństwem wystąpienia zysku w poje-

dynczym kroku czasowym, natomiast p¬ =
∫ 0
−∞ p(∆X)d(∆X) straty, przy czym ma

miejsce normalizacja p>+p¬ = 1. Dodajmy, że tutaj rolę rozkładu ψ występującego
we wzorach (8.88) przejmuje rozkład bazowy φ natomiast rolę prawdopodobieństwa
P>(−Λ) prawdopodobieństwo p> (odpowiednio, rolę P¬ komplementarne prawdo-
podobieństwo p¬).
Podstawiając wyrażenie (8.93) do (8.90) otrzymujemy ostatecznie, że

ψ̃Λ(s) =
φ̃(s)

1− φ̃(s) (1− p¬P¬(−Λ))
p¬P¬(−Λ). (8.94)

Jak widać, udało się wyrazić rozkład złożony ψ̃Λ(s) za pomocą rozkładu bazowego
φ̃(s), znacznie łatwiejszego do uzyskania z danych empirycznych. Oczywiście, jest
także możliwa sytuacja odwrotna gdy ze znajomości rozkładu złożonego (uzyskanego
np. z danych empirycznych) wyprowadza się rozkład bazowy.
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Rysunek 8.16: Schematyczny wykres chwilowych zysków (pionowe czarne odcinki)
jakie mogą pojawić się pomiędzy kolejnymi stratami (pionowe czarno-niebieskie od-
cinki). Zmienne odległości czasowe pomiędzy nimi podkreślają dynamiczny charak-
ter sytuacji.
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Tytułem referencyjnego przykładu (ściśle związanego z poprzednim), rozważmy
sytuację gdy φ(t) jest dane rozkładem wykładniczym - wtedy jego transformata
Laplace’a przybiera postać φ̃(s) = 1/τ0

s+1/τ0
. Pozwala to wyrazić (8.93) i (8.94) odpo-

wiednio

ψ̃(s) =
1/τ1

s+ 1/τ1
, τ1 = τ0/p¬ , (8.95)

czyli

ψ(t) =
1
τ1
exp (−t/τ1) (8.96)

oraz

ψ̃Λ(s) =
1/τ2

s + 1/τ2
, τ2 = τ0/p¬P¬(−Λ), (8.97)

tzn.

ψΛ(∆Λt) =
1
τ2
exp (−∆Λt/τ2) . (8.98)

Tytułem użytecznego przykładu rozważmy sytuację, gdy rozkład φ(t) przybiera
postać daną ostatnim wyrażeniem w (6.64), która dla asymptotycznie długich czasów
przechodzi w rozkład potęgowy (6.66) - jego transformata Laplace’a jest (dla s→ 0)
dana wzorem (6.69). Ze wzoru (8.93) otrzymujemy po prostych przekształceniach,
że

ψ̃(s) =
1

1 + 1
γ′′
f

(
s
γ0

)α ≈ 1−
1
γ′′f

(

s

γ0

)α

, γ′′f = γ
′
fp¬, (8.99)

co oznacza, że

ψ(∆t) =
γ0
p¬

αΓEuler(1 + α)
(γ0∆t)1+α

(8.100)

a ze wzoru (8.94) ostatecznie, że

ψ̃Λ(s) =
1

1 + 1
γ′′′
f

(
s
γ0

)α ≈ 1−
1
γ′′′f

(

s

γ0

)α

, γ′′′f = γ
′′
fP¬(−Λ), (8.101)

czyli

ψΛ(∆Λt) =
γ0

p¬P¬(−Λ)
αΓEuler(1 + α)
(γ0∆Λt)1+α

. (8.102)

Jak widać, zarówno rozkład wykładniczy jak i asymptotycznie potęgowy są nie-
zmiennicze (co do kształtu) ze względu na transformację CTRW (typu (8.90)). Py-
tanie, jakie inne rozkłady posiadają tą własność pozostaje na razie bez odpowiedzi.
Należy podkreślić, że dynamiczna ocena ryzyka może pozwolić znacząco zwięk-

szyć bezpieczeństwo inwestowania.
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8.4.3 Charakterystyczne przykłady

Omówimy teraz trzy charakterystyczne, niezwykle użyteczne przykłady dotyczące,
różniących się w sposób istotny, bazowych rozkładów prawdopodobieństw. Zakłada-
my przy tym dla prostoty, że ograniczamy się tylko do statystyki strat czyli przyj-
mujemy, że wielkość Λ jest nieujemna. Ponadto, dwa pierwsze pierwsze przykłady
dostarczą nam rozwiązań analitycznych równania (8.81).

Przykład 1.

Przypuśćmy, że bazowy rozkład (gęstość) prawdopodobieństwa

Pτ (−Λ) =
1
〈Λ〉 · exp

(

− Λ〈Λ〉

)

, Λ ­ 0, (8.103)

gdzie przeciętna (oczekiwana) wielkość strat 〈Λ〉(> 0) jest możliwa do bezpośredniej
estymacji na drodze empirycznej. Stąd,

P¬(−Λ) = exp
(

− Λ〈Λ〉

)

. (8.104)

Podstawiając wyrażenia (8.103) i (8.104) do warunku (8.85) oraz korzystając z roz-
winięcia exp (−P¬(−Λmax)) ≈ 1− P¬(−Λmax) otrzymujemy, że

Pmax = P¬(−Λmax) ≈
1
N
≈ PV aR = P¬(−ΛV aR), (8.105)

czyli, że

Λmax = ΛV aR = −〈Λ〉 · ln(PV aR) = 〈Λ〉 · ln(N), (8.106)

co stanowi poszukiwane jawne rozwiązanie równania (8.81).
Jak widać, przy zadanej ocenie ryzyka, PV aR, odpowiadający jej poziom ryzyka,

ΛV aR, jest (w tym przypadku) najbardziej prawdopodobną stratą spośród wszelkich
możliwych strat jakie mogą mieć miejsce w przeciągu N dni transakcyjnych i wolno
(logarytmicznie) rośnie ze wzrostem N .
Jak już wspomnieliśmy (przy wyprowadzaniu wzoru (8.82)), próg −Λ pełni

rolę zdarzenia ekstremalnego dlatego jest celowym pytanie o jego rozkład.
Podstawiając wyrażenia (8.103) i (8.104) do wzoru (8.84) otrzymujemy, że

P (−Λ;N) ≈ 1〈Λ〉 · exp
(

−Λ− ΛV aR〈Λ〉

)

exp

(

− exp
(

−Λ− ΛV aR〈Λ〉

))

, (8.107)

czyli ostatecznie, po dokonaniu zamiany zmiennych (−Λ − ΛV aR)/〈Λ〉 ⇒ u, otrzy-
mujemy, że

P (−Λ;N)⇒ P (u) ≈ exp(−u) · exp(− exp(−u)), (8.108)
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Rysunek 8.17: Rozkład Gumbela zdarzeń ekstremalnych dany wzorem (8.108), przy
czym zmienna u def.= Λ − ΛV aR. Jak widać, najbardziej prawdopodobną wartością
zmiennej u jest u = 0, czyli Λmax = ΛV aR, gdzie Λmax jest najbardziej prawdopo-
dobną wartością Λ. Jak wynika ze wzoru (8.108), wartość tego prawdopodobieństwa
wynosi P (u = 0) = 1/e ≈ 0.368. Można łatwo obliczyć, że prawdopodobieństwo
straty Λ ­ ΛV aR wynosi dla rozkładu Gumbela 63% (co zostało zaznaczone po pra-
wej stronie wykresu), czyli jest wyraźnie większe niż prawdopodobieństwo mniejszej
straty.
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czyli rozkład Gumbela (8.41) zdarzeń ekstremalnych, który omawialiśmy w rozdz.
IV (patrz rysunek 8.17). Oczywiście, taki rozkład jest wynikiem wykładniczego cha-
rakteru rozkładu bazowego (8.103). Ponownie widać (nie mogło być inaczej), że naj-
bardziej prawdopodobną wartością straty jest wartość zagrożona ryzykiem ΛV aR,
która jest zarazem ekstremalną wartością straty odpowiadającą przyjętej ocenie ry-
zyka PV aR (patrz wzór (8.81)) oraz zdarzeniem rzadkim - zagadnienie to zostało
dokładniej omówiane w rozdz. 8.3. Ponadto widać, że ma miejsce asymetria typu
strata/zysk wynosząca 63/37 = 1.703. Tego typu asymetria stanowi istotną infor-
mację dla inwestora.

Przykład 2.

Załóżmy teraz, że gęstość prawdopodobieństwo bazowego Pτ (−Λ) jest zadane (dla
dużych wartości Λ) w postaci potęgowego rozkładu Pareto-Lévy’ego

Pτ (−Λ) =
βAβ

| −Λ |1+β , β > 0, Λ ­ A, A > 0, (8.109)

unormowanego następująco

1 = Aβ
∫ ∞

A

β

Λ1+β
dΛ. (8.110)

Stąd

P¬(−Λ) =
1

(Λ/A)β
, (8.111)

gdzie A pełni rolę jednostki zwanej amplitudą ogona (ang. tail amplitude), w której
można najprościej wyrazić Λ. Zatem, poziom ryzyka

ΛV aR = A · P−1/βV aR = A ·N1/β (8.112)

jest potęgową funkcją poziomu ufności o wykładniku −1/β.
Podstawiając wyrażenia (8.109) i (8.111) do równości (8.85) oraz korzystając z

(8.112) otrzymujemy po prostych przekształceniach, że dla N � 1/β,

Λmax ≈
(

β

1 + β

)1/β

· ΛV aR. (8.113)

Inaczej niż w poprzednim przykładzie, tylko dla β � 1 wielkość progowa ΛV aR jest
(z dobrym przybliżeniem) najbardziej prawdopodobną wielkością straty. Widać więc
jak ważny jest wybór modelu czyli bazowego rozkładu prawdopodobieństwa.
Odpowiemy teraz na pytanie dotyczące zamkniętej postaci rozkładu P (−Λ;N).

Podstawmy w tym celu (8.109) i (8.111) do wyrażenia (8.84)

P (−Λ;N) ≈ 1
Λ
· β

(Λ/ΛV aR)β
exp

(

−1/(Λ/ΛV aR)β
)

, (8.114)
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Rysunek 8.18: Rozkład Frécheta zdarzeń ekstremalnych dany wzorem (8.115) dla
β = 3, przy czym zmienna u def.= Λ/ΛV aR. Jak widać, najbardziej prawdopodob-
na wartość zmiennej u wynosi umax = Λmax/ΛV aR = 0.909 (patrz także wzór
(8.113)), czyli Λmax < ΛV aR, gdzie −Λmax jest najbardziej prawdopodobną war-
tością największej jednorazowej straty −Λ, przy czym rozkład prawdopodobieństwa
P (u = 1) = β/e = 1.104 jest tylko nieznacznie mniejszy od P (umax). Dobrze wi-
doczna jest też znaczna asymetria typu strata/zysk stanowiąca istotną informację
dla inwestora.

co po prostej zamianie zmiennych Λ ⇒ u = Λ/ΛV aR, tak jak to miało miejsce w
rozdz.IV, otrzymujemy dyskutowany tam rozkład Frécheta (8.50)

P (−Λ;N)⇒ P (u) =
β

uβ+1
exp

(

− 1
uβ

)

(8.115)

dla zdarzeń ekstremalnych (patrz rysunek 8.18).
Zatem, nawet w przypadku gdy mamy do czynienia z rozkładem (8.109) posiada-

jącym pogrubiony ogon, pojęcia oceny ryzyka i poziomu ryzyka są dobrze określone
i pozwalają na prowadzenie skutecznej analizy danych rynkowych. Jest to właśnie
zasadnicza korzyść płynąca z takiego podejścia do problemu ryzyka rynkowego, czyli
podejścia w którym posługujemy się parametrami pozycyjnymi a nie momentami
rozkładu.
Warto podkreślić, że niestety w obu charakterystycznych przykładach

ma miejsce znacząca asymetria prawdopodobieństwa typu strata/zysk na
rzecz straty.
Celem dokładniejszego rozważenia otrzymanych w tym przykładzie wyników

wprowadźmy bazowy rozkład prawdopodobieństwa w postaci, której transformata
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Fouriera jest funkcją Weierstrassa, czyli

Pτ (∆X) =
1
2

(

1− 1
M

)

·
∞∑

j=0

1
M j

δ(| ∆X | −b0bj), M, b > 1, (8.116)

dyskutowaną już przez nas w rozdz. 6.4 w kontekście przelotów Weierstrassa (czyli
teraz ∆X może być dowolnego znaku). Stąd po podstawieniu do definicji (8.78)
otrzymujemy natychmiast, że

P¬(−Λ) =
1

(Λ/b0)
β , β

def.=
lnM
ln b

, (8.117)

gdzie milcząco przyjęliśmy, iż rozważamy tylko takie wartości Λ, dla których zachodzi
równość Λ(j) = b0bj. W dalszym ciągu przyjmiemy, że 1Mj − 1

Mj+1
� 1 co odpowiada

dużym watościom indeksu j pozwalając, z dobrym przybliżeniem, uciąglić zmienną
Λ w wyrażeniu (8.117) i wykonać różniczkowanie po zmiennej −Λ. W rezultacie
otrzymujemy bazowy rozkład prawdopodobieństwa dla dużych wartości Λ

Pτ (−Λ) ≈
β(b0)β

Λ1+β
. (8.118)

Jak widać, otrzymaliśmy wyrażenia równoważne odpowiednio (8.109) i (8.111), przy
czym stała A = b0.
Obliczmy jeszcze, tytułem pouczającego ćwiczenia, wariancję jednokrokowej zmien-

nej ∆X dla jednostkowego horyzontu czasowego τ

σ(τ)2 =
∫ ∞

−∞
∆X2Pτ (∆X)d∆X = (b0)2

(

1− 1
M

) ∞∑

j=0

(

b2

M

)j

=







(b0)2
1− 1
M

1− b2
M

, gdy β > 2

∞, gdy β < 2.
(8.119)

Pozwoliło to powiązać tą wariancję z mikroskopowymi parametrami rozkładu M
oraz b.
W dalszym ciągu (patrz podrozdz. ??) wariancja zostanie wykorzystana do po-

równania zależności poziomu ryzyka od poziomu ufności dla różnych postaci bazo-
wego rozkładu prawdopodobieństwa.

Przykład 3.

Rozważmy teraz bazowy rozkład prawdopodobieństwa zadany w postaci funkcji
Gaussa

Pτ (∆X) =
1√
2π

1
σ(τ)
· exp



−1
2
·
(

∆X − 〈∆X〉
σ(τ)

)2


 , (8.120)
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przy czym teraz ∆X może być zarówno wielkością ujemną jak też dodatnią, czyli
może być zarówno stratą jak też zyskiem, 〈∆X〉 jest przeciętną wielkością straty
wyznaczaną najczęściej bezpośrednio z danych empirycznych (często jest ujemna),
natomiast wariancja σ2(τ) = σ20 · τ , jest (na mocy CTG) liniową funkcją czasu τ
(σ0 jest dyspersją jednodniowej straty liczonej na zamknięciu, po zespole złożonym
z wielu dni transakcyjnych).
Zauważmy, że z wyrażenia (8.120), w oparciu o definicję (8.78), otrzymujemy

natychmiast:

P¬(−Λ) =
1
2
erfc

(

Λ + 〈∆X〉√
2σ(τ)

)

, (8.121)

gdzie (przypomnijmy)

erfc(x) def.=
2√
π

∫ ∞

x
exp(−y2)dy. (8.122)

Teraz, podstawiając (8.121) do równania (8.81) otrzymujemy, że poszukiwany
poziom ryzyka dla rozkładu Gaussa

ΛV aR + 〈∆X〉√
2σ(τ)

= erfc−1(2PV aR) = erfc−1
( 2
N

)

⇔

ΛV aR =
√
2σ0
√
τ · erfc−1(2PV aR)− 〈∆X〉 (8.123)

wolno rośnie ze wzrostem wielkości horyzontu czasowego τ oraz liczbą dni transak-
cyjnych N (co będzie pokazane poniżej na rysunkach 8.20 i 8.21). Inaczej mówiąc, w
przybliżeniu gaussowskim poziom ryzyka, jak można było się spodziewać, jest pro-
porcjonalny do dyspersji σ(τ) oraz maleje w sposób monotonicznyny ze wzrostem
poziomu ufności PV aR - zależność tą można wizualizować tylko na drodze numerycz-
nej, w przeciwieństwie do omawianych wcześniej dwóch przykładów.
Co więcej, zarówno prawdopodobieństwo

P (−Λ; 1/PV aR) ≈
1
PV aR

1√
2π
1

σ(τ)
exp



−1
2

(

Λ+ 〈∆X〉
σ(τ)

)2




× exp
(

− 1
2PV aR

erfc

(

Λ + 〈∆X〉√
2σ(τ)

))

, (8.124)

które łatwo można wyprowadzić korzystając z ogólnego wzoru (8.84), jak też (uzy-
skane powyżej) wyrażenie na ΛV aR a także wyrażenie na Λmax wynikające bezpośred-
nio z równania (8.85), przybierają skomplikowane postacie. Mianowicie, P (−Λ;N)
nie daje się wyrazić za pomocą funkcji elementarnych natomiast uzyskanie Λmax jest
możliwe tylko na drodze numerycznego rozwiązania równania przestępnego (patrz
(8.123)). Jak widać, komplikuje to analizę zarówno poziomu jak też oceny ryzyka.

390



2 4 6 8 10 12 14
â��uâ��

2

4

6

8

10

12

14
â��Pâ��

Rysunek 8.19: Porównanie przebiegów funkcji P (u) danej wzorem (8.125) dla dwóch
wartości oceny ryzyka PV aR = 0.01 (linia czerwona) i PV aR = 0.05 (linia niebieska).

Wprowadzenie zmiennej standaryzowanej u def.= Λ+〈∆X〉√
2σ(τ)

pozwala wyrazić rozkład
(8.124) w nieco prostszej postaci

P (−Λ; 1/PV aR)⇒ P (u) =
1
PV aR

1√
π
exp(−u2) exp

(

− 1
2PV aR

erfc(u)
)

. (8.125)

Jak widać, wprowadzenie zmiennej standaryzowanej u sprowadziło rozkład do prost-
szej, jednoparametrowej postaci, przy czym parametrem jest wielkość PV aR odgry-
wająca kluczową rolę w teorii ryzyka. Mimo wszystko, rozkład ma nadal zbyt skom-
plikowaną postać dla prowadzenia rozważań o charakterze analitycznym.
Na rysunku 8.19 porównano przebiegi funkcji P (u) danej powyższym wzorem

(gdzie przyjęto u > 0) dla dwóch wartości oceny ryzyka PV aR = 0.01 (linia czer-
wona) i PV aR = 0.05 (linia niebieska). Widać, że prawdopodobieństwo najbardziej
prawdopodobnej straty w pierwszym przypadku jest znacznie większe niż w drugim.
Co więcej, strata ta w pierwszym przypadku jest wyraźnie większa niż w drugim.
Innymi słowy, inwestowanie według oceny ryzyka PV aR = 0.01 (dopuszczonej przez
Bazyleę II) jest wyraźnie bardziej ryzykowne niż według PV aR = 0.05 (dopuszczonej
przez Bazyleę I).
Niestety, równanie pozwalające wyznaczyć umax jest teraz równaniem przestęp-

nym, możliwym do rozwiązania tylko na drodze numerycznej

2
√
πPV aR umax = exp

(

−u2max
)

. (8.126)
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Rysunek 8.20: Porównanie zależności trzech wartości zagrożonych ryzykiem od liczby
dni transakcyjnych 1 ¬ N ¬ 1000 dla trzech przedstawionych powyżej rozkładów:
linia czerwona wzór (8.112), linia niebieska wzór (8.106) i linia zielona wzór (8.123).
Jak widać, dla dużej liczby dni transakcyjnych wartość zagrożona ryzykiem dla
rozkładu potęgowego (linia czerwona) szybciej rośnie w porównaniu z pozostałymi
dwoma rozkładami (wykładniczym - linia niebieska i Gaussa - linia zielona).
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Rysunek 8.21: Porównanie zależności trzech wartości zagrożonych ryzykiem od liczby
dni transakcyjnych 1 ¬ N ¬ 150 dla trzech przedstawionych powyżej rozkładów:
linia czerwona wzór (8.112), linia niebieska wzór (8.106) i linia zielona wzór (8.123).
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Otrzymuje się je z ogólnego równania (8.85) po wykorzystaniu (8.120) i (8.121).
Istnienie tak różnych równań jak (8.123) i (8.126) wskazuje na to, że ΛV aR i Λmax są
dwiema zasadniczo różnymi wielkościami różniącymi się także od 〈∆X〉. Świadczy to
o komplikacji i nieprzejrzystości jaką wprowadzałby rozkład Gaussa gdyby chciano
go stosować do analizy ryzyka rynkowego.
Należy podkreślić, że w ogólności nie istnieje liniowa zależność pomiędzy pozio-

mem ryzyka ΛV aR a zmiennością σ(τ) nawet jeżeli ta ostatnia wielkość jest skończo-
na. Dysponujemy jedynie nierównością Czebyszewa, będącą najlepszą z oszacowań

PV aR ¬
σ2(τ)
(ΛV aR)2

⇔ ΛV aR ¬ σ20 · τ P−1/2V aR , (8.127)

przy czym druga z nierówności może być przydatna do oszacowania górnej wartości
ΛV aR - jej zaletą jest nadzwyczajna efektywność (oczywiście o ile σ0 istnieje).

8.5 Podsumowanie tabelaryczne

Podsumowanie przedstawiamy w postaci zbiorczej tabeli 8.5 pokazującej jawne re-
lacje pomiędzy wielkościami charakteryzującymi ryzyko w omawianych przez nas
przykładach. Termin ’brak’ występujący w tabeli oznacza, że brak jest jawnej rela-

Tabela 8.1: Zestawienie jawnych relacji określających poziom ryzyka ΛV aR.

Przykład No. Jawna relacja ΛV aR(σ,PV aR) Jawna relacja Λmax(ΛV aR)
1 ΛV aR ≈ −σ lnPV aR Λmax = ΛV aR

2 ΛV aR = AP−1/βV aR Λmax =
(

β
1+β

)1/β
ΛV aR

3 ΛV aR =
√
2 σ erfc−1(2PV aR)− 〈∆X〉 brak

cji pomiędzy Λmax i ΛV ar. Łatwo się o tym można przekonać zestawiając równanie
(8.123) z (8.126). Zatem, podkreślmy raz jeszcze, posługiwanie się rozkładem Gaussa
w analizie ryzyka opartej na parametrach pozycyjnych jest niecelowe.

8.5.1 Kanoniczny algorytm symulacji kwantyli - prawdopo-
dobieństwo strat a VaR

W niniejszym podrozdziale przedstawiony jest kanoniczny, prosty algorytm Mon-
te Carlo (MC) umożliwiający obliczanie na drodze symulacji numerycznej kwantyli
dowolnego rzędu wybranej wielkości23 a w tym zwłaszcza dopuszczalnej wartości
23Patrz Ph. Jorion: Value At Risk. The New Benchmark for Managing Financial Risk (Third Ed-
dition), podrozdz. 12.2.1, 12.2.4, 12.2.5, McGraw-Hill, New York 2007, oraz P. Glasserman: Monte
Carlo Methods in Financial Engineering, podrozdz. 9.1.2 a tam paragraf Monte Carlo Simulation,
str. 489-491, Springer Science+Business Media, LLC, New York 2004.
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Tabela 8.2: Ranking symulowanych strat
Strata Krotność
Λj1T N j1

T

Λj2T N j2
T

. . . . . .

Λjn−1T N
jn−1
T

ΛjnT N jn
T

narażonej na ryzyko, czyli VaR. Algorytm ten stanowi punkt wyjścia wszyst-
kich innych - przedstawiamy go tutaj przykładowo dla strat. Ponadto, podajemy
zasadniczy powód, dla którego w praktyce należy stosować algorytmy ulepszone -
omawiamy te, które mogą być szczególnie przydatne.

Przykładowy algorytm dla strat

W pierwszej kolumnie tabeli 8.5.1 wypisano przykładowo ranking absolutnych war-
tosci strat portfela ΛjT =| V j(T )−V j(T −∆t) |, j = 1, 2, . . . , n, jakie zanotowano w
wybranej chwili T dla różnych trajektorii j symulowanych metodą MC w przedziale
czasu [T−∆t, T ], wielkości V j(T−∆t) oraz V j(T ) są tutaj wartościami portfela dla
j-ej trajektorii odpowiednio w chwili T −∆T i T . Ranking oznacza, że mamy tutaj
do czynienia z uszeregowaniem ”według wzrostu” absolutnych wartości strat, tzn.
Λj1T < Λj2T < . . . < Λjn−1T < ΛjnT , gdzie ji jest numerem wysymulowanej trajektorii.
Na przykład, gdy j1 = 7 to znaczy, że najmniejszą, pierwszą w kolejności stratę
zanotowano dla trajektorii numer 7, którą w związku z tym usytuowano w tabeli
8.5.1 na miejscu pierwszym, itd, itp. Zatem, indeks i mówi, że strata ΛjiT jest i-tą co
do wielkości stratą. W drugiej kolumnie tabeli przedstawiono krotności występowa-
nia poszczególnych strat. Występowanie krotności większych od 1 oznacza, że dla
niektórych trajektorii odnotowano jednakowe straty. Zatem, N ­ ∑n

i′=1N
ji′
T , gdzie

N jest liczbą wszystkich wysymulowanych trajektorii (zarówno tych, dla których
odnotowano straty jak i takich, dla których zanotowano zyski), natomiast n jest
całkowitą liczbą różnych wartości strat.
Wyznaczenie kwantyla rzędu 1− p, czyli wielkości xp24, sprowadza się do wyko-

nania dwóch następujących kroków,

1) sumowania po kolei wszystkich krotności (idąc od dołu tabeli ku górze) tak
długo jak długo spełniony jest warunek:

p ­
maxi

[
∑i
i′=0N

jn−i′
T

]

N
, (8.128)

24Stosujemy tutaj oznaczenie zaczerpniete z książki P. Glasserman: Monte Carlo Methods in
Financial Engineering.

394



przy czym operacja maxi oznacza, że wybierane jest największe i, dla którego
warunek (8.128) jest jeszcze spełniony. Pójście o krok dalej i dołączenie do su-
my krotności N jn−i−1

T zmieniłoby ten warunek na nierówność ostrą skierowaną
w przeciwną stronę - jest to realizowane w drukim kroku.

2) Dzięki znalezieniu w pierwszym kroku indeksu i, odczytujemy w tabeli 8.5.1
wielkość strat Λjn−i−1T oraz Λjn−iT jakie wyznaczają, odpowiednio, dolną i górną
granice przedziału ufności wewnątrz którego mieści się (z określonym prawdo-
podobieństwem) prawdziwa wartość poszukiwanego kwantyla. Prawdopodo-
bieństwo to można obliczyć25 z rozkładu dwumianowego, wykorzystując wła-
sność statystycznej niezależności strat (patrz podrozdz. 8.4.1).

Oczywiście, jeżeli na tej drodze chcemy wyznaczyć V aR1−α należy przyjąć w po-
wyższej procedurze p = α. Jak widać, (w tej konwencji) V aR1−α jest po prostu
kwantylem rzędu 1− α.
Jeżeli przedstawiona powyżej procedura pozwala zadowalająco oszacować na dro-

dze symulacji MC zarówno skumulowane prawdopodpodobieństwo strat P (Λ > xp)
jak też prawdziwą wartość xp, to powinny być spełnione następujące, zdroworozsąd-
kowe warunki

a) wielkość przedziału ufności Λjn−iT −Λjn−i−1T wewnątrz którego może się znajdo-
wać prawdziwa wartość poszukiwanego kwantylu powinna być dużo mniejsza
od Λjn−iT ,

b) obie strony równości (8.128) powinny się od siebie różnić o małą wyższego
rzędu; to samo powinno dotyczyć analogicznej (nie wypisanej tutaj w jawnej
postaci) nierówności dla prawdopodobieństwa dopełniającego 1−p (bazującego
zarówno na sumie wszystkich zysków jak też na sumie strat liczonej od góry
tabeli 8.5.1 w dół aż do xp).

Wskażemy teraz dlaczego spełnienie wprost powyższych dwóch warunków (czy-
li poprzez proste zwiększanie liczby symulowanych trajektorii) może prowadzić do
nieefektywnej metody Monte Carlo oraz co należy zrobić aby przywrócić jej efek-
tywność.

Problem dużej dyspersji estymaty wielkości xp

Traktując straty jak wielkości statystycznie niezależne można, korzystając z rozkła-
du dwumianowego oraz stosując przybliżenie punktu siodłowego (ang. saddle-point

25Ściślej rzecz biorąc, oblicza się ”pojemniejsze” prawdopodobieństwo. Jeżeli jest ono, z dokład-
nością do małej wyższego rzędu, równe 1 − p to można je traktować jak poziom ufności. Jeżeli
tak nie jest, należy odpowiednio zwiększyć liczbę symulowanych trajektorii; patrz P. Glasserman:
Monte Carlo Methods in Financial Engineering, podrozdz. 9.1.2, paragraf Quantile Estimation,
str. 491.
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approximation26), wyznaczyć dyspersje estymaty poszukiwanego kwantyla. Przybie-
ra ona nastepującą postać27,

σp ≈
1
2
1√
N

1
ρ(x?p)

, (8.129)

gdzie ρ jest gęstością prawdopodobieństwa wystąpienia pojedynczej starty (albo zy-
sku) natomiast x?p jest (zależną od N) estymatą wielkości xp . Zwykle, gęstość ta
maleje ze wzrostem N szybciej niż 1/

√
N . Na przykład, gdy ρ ma postać wykładni-

czą wówczas ρ(x?p) ∼ 1/N , natomiast gdy ρ jest funkcją potęgową o wykładniku po-
tęgi α to ρ(x?p) ∼ 1/N1+1/α. Zatem najczęściej, dyspersja σp rośnie ze wzrostem
N , a nie maleje jak byśmy chcięli. Jest to sytuacja paradoksalna, wymagająca
wprowadzenia metod redukujących dyspersję.

8.5.2 Wybrane metody redukcji dyspersji

Metody redukcji dyspersji, które omawiamy poniżej opierają się na traktowaniu
strat w sposób przybliżony, uwzględniając co najwyżej wyrazy kwadratowe w nieza-
leżnych zmiennych stochastycznych obarczonych ryzykiem. Takie podejście pozwala
(dzięki faktoryzacji Choleskiego) na wyrażenie strat za pomocą nieskorelowanych
zmiennych normalnych. Dzięki temu oraz wykorzystaniu rozwinięcia kumulantowe-
go, znalezienie rozkładu tych strat, a stąd VaR, jest znacznie ułatwione.

Paraboliczne przybliżenie delta-gamma

26Przybliżenie to jest także znane pod nazwą metody największego spadku (ang. steepest-descend
method.
27Patrz M. Kozłowska, R. Kutner: Anomalous transport and diffusion versus extreme value the-
ory, Physica A 357 (2005) 282-304; .
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Dodatek A

Pochodna fraktalna dowolnego
stopnia - definicja Riemanna
Liouville’a

W niniejszym dodatku przedstawimy definicję Riemanna-Liouville’a pochodnej frak-
talnej (czyli ułamkowej). Podejście składa się z trzech kroków.

Krok pierwszy: definicja ujemnej pochodnej całkowitej stopnia −n.

Jak już wspomnieliśmy w rozdz.2.4 ujemna pochodna stopnia −1 to po prostu po-
jedyncza całka Riemanna (patrz wzór (2.30)). Naturalnie, pochodna stopnia całko-
witego −n (gdzie n jest liczbą naturalną) to całka n-krotna; zatem,
d−nf(t)
dt−n

=
∫ t

0
dtn−1

∫ tn−1

0
dtn−2 . . .

∫ t1

0
dt0f(t0) =

1
(n− 1)!

∫ t

0
dt′

f(t′)
(t− t′)1−n , (A.1)

co stanowi punkt wyjścia ogólniejszej definicji.

Krok drugi: definicja ujemnej pochodnej fraktalnej stopnia −α.

Bezpośrednim uogólnieniem pochodnej stopnia −n na pochodną dowolnego ujemne-
go stopnia −α (gdzie α jest dodatnią liczbą rzeczywistą) jest zastąpienie w ostatniej
całce po prawej stronie wyrażenia (A.1) znajdującej sią tam silni (n − 1)! przez
ΓEulera(α) oraz wykładnika n przez α. Wówczas możemy wprowadzić definicję

d−αf(t)
dt−α

def.
=

1
ΓEulera(α)

∫ t

0
dt′

f(t′)
(t− t′)1−α ; (A.2)

warto wiedzieć, że w przypadku ogólniejszym, gdy dolna granica całkowania może
być różna od zera, stosuje się oznaczenie

aD
−α
t f(t)

def.
=

1
ΓEulera(α)

∫ t

a
dt′

f(t′)
(t− t′)1−α , (A.3)
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skąd dla a = 0 mamy oczywiście

0D
−α
t f(t) =

d−αf(t)
dt−α

. (A.4)

Teraz możemy już odpowiedzieć na pytanie: jak zdefiniować pochodną fraktalną
stopnia α?

Krok trzeci: definicja pochodnej fraktalnej stopnia α > 0.

Odpowiedż na postawione powyżej pytanie jest już bardzo prosta. Wystarczy bo-
wiem n razy zróżniczkować pochodną fraktalną stopnia α− n(< 0)

aD
α
t f(t)

def.
=

dn

dtn
(aDα−n

t f(t)), (A.5)

co stanowi definicję Riemanna-Liouville’a pochodnej fraktalnej (dodatniego stop-
nia rzeczywistego). W dalszym ciągu używać będziemy tej pochodnej jedynie dla
a = 0. Inny wykorzystywany szczególny przypadek to gdy a = ∞ - wtedy nazywa
się ona pochodną fraktalną Weyla. Oczywiście, z tego punktu widzenia zarówno rów-
nanie relaksacji fraktalnej (2.33) jak i dyfuzji fraktalnej (2.55) są niejednoznaczne
ze względu na dowolność wyboru dolnej granicy całkowania.

A.1 Podstawowe własności pochodnej fraktalnej

Podamy teraz szereg własności pochodnej fraktalnej, które umożliwią nam opero-
wanie tym narzędziem wielce użytecznym w analizie procesów niegaussowskich.
Po pierwsze, zauważmy, że dowolna pochodna fraktalna funkcji potęgowej wynosi

0D
α
t t
µ =

ΓEuler(µ+ 1)
ΓEuler(µ+ 1− α)

tµ−α (A.6)

skąd

0D
α
t exp(t) = 0D

α
t

∞∑

m=0

tm

ΓEuler(m+ 1)
=
∞∑

m=0

tm−α

ΓEuler(m + 1− α)

=
t−α

ΓEuler(1− α) 1
F1(1, 1− α, t). (A.7)

Przy okazji warto zaznaczyć, że pochodna fraktalna Weyla daje (podobnie jak zwy-
kła pochodna)

∞D
α
t exp(t) = exp(t), (A.8)

dla dowolnego rzeczywistego α.
Po drugie, pokażemy czemu równa jest transformata Laplace’a pochodnej frak-

talnej.
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Dodatek B

Obliczenie średniej nadwyżki 〈∆n〉

Aby wyznaczyć średnią nadwyżkę 〈∆n〉 podstawmy najpierw wzór (3.2) do (3.1) -
daje to wyrażenie przejściowe

〈∆n〉 = 1
2n

n∑

∆n>0

∆n

(

n
n+∆n
2

)

=
1
2n

n∑

∆n>0

∆n exp

(

lnn!− ln
(

n+∆n
2

)

!− ln
(

n−∆n
2

)

!

)

(B.1)

dobrze nadające się do kolejnych, niezbędnych przekształceń.
W tym celu korzystamy ze wzoru Stirlinga postaci:

lnn! ≈
(

n +
1
2

)

lnn− n+ 1
2
ln 2π +Θ

(

n−1
)

, (B.2)

zakładając przy tym, że n� 1 oraz |∆n|
n
� 1. Zatem,

〈∆n〉 ≈
n∑

∆n>0

∆n exp



−n
2

(

1 +
∆n
n

)


∆n
n
− 1
2

(

∆n
n

)2

+
1
3

(

∆n
n

)3






×

× exp



n

2

(

1− ∆n
n

)


∆n
n
+
1
2

(

∆n
n

)2

+
1
3

(

∆n
n

)3






×

× exp
(

ln

(

2√
n

)

− 1
2
ln

(

1 +
∆n
n

)

− 1
2
ln

(

1− ∆n
n

)

− ln
√
2π

)

. (B.3)

Rozwijając w szereg, do trzeciego stopnia w ∆n/n, funkcję ln

ln(1± x) ≈ ±x − 1
2
x2 ± 1

3
x3, (B.4)

możemy wyrażenie (B.3) przekształcić do postaci

〈∆n〉 ≈
( 2
πn

)1/2 n∑

∆n>0

∆n exp

(

−1
2
∆n2

n
+
1
2
∆n2

n2

)

≈
( 2
πn

)1/2 n∑

∆n>0

∆n exp

(

−1
2
∆n2

n

)

≈
√

2
π

√
n, (B.5)
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gdzie ostatnia równość została otrzymana dzięki przejściu od sumy po n do od-
powiadającej jej, ważonej połówkową całką gaussowską. Przy okazji zaznaczmy, że
powyższe wyprowadzenie sprowadziło się po prostu (przy narzuconych ogranicze-
niach) do przejścia od rozkładu dwumianowego do rozkładu Gaussa.
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Dodatek C

Metoda Punktu Siodłowego

Metoda Punktu Siodłowego (ang. Saddle-Point Approximation) zwana także Meto-
dą Największego Spadku1 (ang. Steepest Descent Method). Metoda ta pozwala na
przybliżone obliczenie szerokiej klasy całek.
Zatem, niech wyznaczenia wymaga całka

I =
∫

exp(−NF (x))dx, (C.1)

dla której funkcja F (x) ma minimum w punkcie siodłowym x = x∗, czyli punkt ten
jest określony za pomocą równości F ′(x∗) = 0, przy czym druga pochodna w tym
punkcie2 F ′′(x∗) > 0. Rozwińmy funkcję F (x) w szereg Taylora w punkcie x = x∗.
Otrzymujemy,

I ≈ exp(−NF (x∗))
∫

exp[−NF ′′(x∗)(x− x∗)2/2]dx. (C.2)

Jak widać, sprowadziliśmy obliczenie wyjściowej całki (C.1) do wyznaczenia całki
gaussowskiej. Ostatecznie, dla N � 1 możemy z dobrym (kontrolowanym) przybli-
żeniem napisać, że

I ≈ exp(−NF (x∗))
√

2π
NF ′′(x∗)

. (C.3)

Widać, że tak obliczona całka I jest obarczona tym mniejszym błędem im
dyspersja 1/

√

NF ′′(x∗) funkcji NF (x) jest mniejsza. Dlatego właśnie potrzebne
było tutaj przyjęcie dużej wartości N.

1Metoda ta jest też znana pod nazwą Przybliżenia Parabolicznego (ang. Parabolic Approxima-
tion) czasami nazywa się ją też Metodą Stacjonarnej Fazy (ang. Method of Stationary Phase.).
2Punkt ten nazywamy siodłowym a nie po prostu minimum, gdyż w nieuwidocznionych tutaj

(dla prostoty) zmiennych może w tym punkcie być maximum.
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Dodatek D

Własności funkcji rozkładu czasów
oczekiwania

Po pierwsze, rozważamy sytuację dla krótkich czasów tzn. gdy γ0t � 1; wówczas
funkcję wykładniczą w funkcji podcałkowej można rozwinąć w szereg potęgowy,
ograniczając się tylko do trzech pierwszych wyrazów,

φ(t) ≈ γ0α

(γ0t)1+α

∫ γ0t

0
yα
(

1− y + 1
2
y2
)

dy

= γ0α[
1
1 + α

− 1
2 + α

γ0t+
1
2
1
3 + α

(γ0t)2]

= γ0
α

1 + α
exp

(

−1 + α
2 + α

γ0t
)

. (D.1)

Widać, że φ(t = 0) = γ0 α
1+α
jest nieznikającą, skończoną wartością. Ponadto, z (D.1)

wynika, że trzeci wyraz rozwinięcia jest znacznie mniejszy od drugiego co oznacza, że
funkcja φ(t) maleje (z dobrym przybliżeniem) liniowo z czasem dla krótkich czasów.
Po drugie zauważmy, że dla 0 ¬ α ¬ 1 oraz y ­ 1 funkcja podcałkowa podlega

prostemu oszacowaniu

exp(−y) ¬ yα exp(−y) ¬ y exp(−y), (D.2)

przy czym dla α 6= 0, 1, obie równości zachodzą jednocześnie tylko dla skrajnych
wartości y = 1 albo y = ∞. W ogólności dla m ¬ α ¬ m + 1, m = 0, 1, 2, . . ., ma
miejsce oszacowanie

ym exp(−y) ¬ yα exp(−y) ¬ ym+1 exp(−y); (D.3)

dalsze rachunki prowadzimy tylko dla przypadku m = 0, pozostawiając sytuację
dowolnego naturalnego m zainteresowanemu Czytelnikowi. Należy zaznaczyć, przy-
padki marginalne α = m, m = 0, 1, 2, . . ., można obliczyć wprost (patrz poniżej, na
zakończenie przykładowy rachunek dla α = 1).
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Z relacji (D.2) otrzymujemy dla γ0t ­ 1 oszacowanie całkowe,
∫ ∞

γ0t
exp(−y)dy ¬

∫ ∞

γ0t
yα exp(−y)dy ¬

∫ ∞

γ0t
y exp(−y)dy, (D.4)

przy czym dla α 6= 0, 1, obie równości zachodzą jednocześnie tylko w granicy γ0t→
∞; z (D.4) wynika poszukiwane oszacowanie

exp(−γ0t) ¬
∫ ∞

γ0t
yα exp(−y)dy ¬ 2 exp(−γ0t). (D.5)

Co więcej, zgodnie z definicją funkcji Γ mamy,
∫ γ0t

0
yα exp(−y)dy = Γ(1 + α)−

∫ ∞

γ0t
yα exp(−y)dy. (D.6)

Dalej, korzystając z oszacowania (D.5) oraz równości (D.6), otrzymujemy

Γ(1 + α)− 2 exp(−γ0t) ¬
∫ γ0t

0
yα exp(−y)dy

¬ Γ(1 + α)− exp(−γ0t). (D.7)

Stąd, dla asymptotycznie długiego czasu (czyli γ0t� 1) mamy z dobrym przybliże-
niem

∫ γ0t�1

0
yα exp(−y)dy ≈ Γ(1 + α). (D.8)

Zatem, przy tych warunkach uzyskujemy z dobrym przybliżeniem, że

φ(t) ≈ γ0αΓ(1 + α)
1

(γ0t)1+α
. (D.9)

Zauważmy, że zależność (D.9) jest spełniona dla dowolnego, nieujemnego wykładnika
α przy czym w dalszym ciągu główny nurt naszych zainteresowań dotyczy przypadku
α < 1.
Przypadek marginalny α = 1. Całkując przez części całkę stojącą (w trzeciej

równości) w wyrażeniu (6.64) otrzymujemy, że
∫ γ0t

0
yα=1 exp(−y)dy = 1− exp(−γ0t). (D.10)

Zatem dla γ0t� 1, φ(t) przybiera natychmiast asymptotyczną postać

φ(t) ≈ γ0
(γ0t)2

, (D.11)

która wynika także z wyrażenia (D.9) (uzyskanego na znacznie dłuższej drodze).
Po trzecie, omawiamy przypadek pośredni gdy α<∼γ0t

<
∼1 (w dalszym ciągu roz-

ważamy sytuacje dla których α < 1). Ze wzoru (6.66) widać, że funkcja φ jest
iloczynem funkcji malejącej (potęgowo w czasie) i rosnącej (w czasie, danej w posta-
ci całkowej). Można zatem poszukiwać takiego czasu, dla którego funkcja rozkładu
φ posiada lokalne maksimum.
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Dodatek E

Ścisła funkcja rozkładu czasów
oczekiwania

Punktem wyjścia jest przedstawienie poniższej funkcji wykładniczej za pomocą trans-
formaty Mellina (patrz, Harry Bateman, Arthur Erdéley, ”Tables of Integral Trans-
forms”, Vol.I, McGraw-Hill Book Comp., Inc., New York 1954),

exp
(

−γ0 exp
(

− E
kBT

)

t
)

=
1
2πi

∫ c+i∞

c−i∞
ds(γ0t)−sΓ(s) exp

( E
kBT

s
)

,

0 < c = <s < 1. (E.1)

Następnie, podstawiając (E.1) do (6.62) otrzymujemy,

φ(t) =
1
2πi

γ0α
∫ c+i∞

c−i∞
ds(γ0t)−sΓ(s)

∫ ∞

0
d
( E
kBT

)

exp
(

− E
kBT
(1 + α− s)

)

=
1
2πi

γ0α
∫ c+i∞

c−i∞
ds(γ0t)−s

Γ(s)
1 + α− s, 0 < c = <s < 1. (E.2)

Wprowadzając powiększający się kontur K przedstawiony na rys...., którego góra
(Ku), prawy bok (Kr) oraz podstawa (Kd) odsuwają się do nieskończoności, można
całkę w (E.2) zamienić na całkę konturową

∫ c+i∞

c−i∞
ds(γ0t)−s

Γ(s)
1 + α− s = −

1
2πi

γ0α
∮

K∞
ds(γ0t)−s

Γ(s)
1 + α− s (E.3)

gdzie K∞ jest konturem K, który uległ nieskończonemu powiększeniu (orientacja
całki konturowej jest ujemna stąd znak ” − ” stojący po prawej stronie równości).
Skorzystaliśmy tutaj z faktu, że gdy x→∞ (gdzie s = x+ iy) wówczas,

∫

Kr
ds(γ0t)−s

Γ(s)
1 + α− s → 0, (E.4)

gdyż (γ0t)−x−iy → 0 (gdy x → ∞) dla γ0t > 1; czyli powyższa całka na prawym
brzegu (boku) konturu (prostokąta) Kr znika gdy brzeg ten oddala się do nieskoń-
czoności. Ponadto skorzystaliśmy z własności mówiącej, że gdy | y |→ ∞ wówczas,

∫

Ku,d
ds(γ0t)−s

Γ(s)
1 + α− s → 0. (E.5)
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Dowód powyższej własności wynika bezpośrednio z asymptotycznego przedstawienia
funkcji Γ(s(= x + iy)) dla | y |→ ∞ (patrz, I.M. Ryżyk i I.S. Gradsztajn, ”Tablice
całek, sum, szeregów i iloczynów”, PWN, Warszawa 1964),

| Γ(x+ iy) |→ (2π)1/2 | y |x−1/2 exp(−π
2
| y |), (E.6)

w którym czynnik wykładniczy decyduje o zanikaniu ze wzrostem | y | przy ustalo-
nym x.
Zatem, naszym zadaniem jest teraz obliczenie całki konturowej po prawej stro-

nie równości (E.3); można to przeprowadzić korzystając z metody residuów (patrz,
Krzysztof Maurin, ”Analiza. Cz.II. Wstęp do analizy globalnej”, PWN, Warszawa
1971). Zauważmy w tym celu, że jedyny biegun funkcji podcałkowej (oznaczmy ją
przez F ) jaki znajduje się na dodatniej osi rzeczywistej to zero mianownika 1+α−s
tzn. biegun funkcji F jest w punkcie s0 = 1+ α. Ponadto, jak widać biegun ten jest
rzędu pierwszego.
Metoda residuów mówi, że wspomniana powyżej całka konturowa

∮

K∞
ds(γ0t)−s

Γ(s)
1 + α− s = −2πi Res F (s0), (E.7)

gdzie Res F (s0) to residuum funkcji podcałkowej F w punkcie s0. Metoda residuów
podaje przepis pozwalający wyznaczyć residuum w punkcie będącym np. biegunem
rzędu pierwszego mianowicie, jest to następująca granica

Res F (s0) = lim
s→s0
((s− s0)F (s)). (E.8)

Obliczenie powyższej granicy jest natychmiastowe i daje

lim
s→s0
(s− s0)F (s) = −(γ0t)−1−αΓ(1 + α). (E.9)

Wreszcie, podstawiając kolejno (E.9) do (E.8), następnie (E.8) do (E.7) a to do (E.3)
możemy za pomocą takiego przekształconego wyrażenia zapisać ostatecznie (E.2) w
postaci (D.9)

φ(t) ≈ γ0
αΓ(1 + α)
(γ0t)1+α

, (E.10)

wyprowadzonej na alteratywnej drodze w Dodatku D.
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Dodatek F

Funkcja rozkładu czasów
oczekiwania
Weierstrassa-Mandelbrota

I. Metoda bezpośrednia. Wyprowadzimy ścisłą postać funkcji rozkładu czasów ocze-
kiwania Weierstrassa-Mandelbrota, korzystając z transformaty Mellina oraz metody
całkowania przez residua. Takie podejście pozwoli na bezpośrednie uzyskanie potęgo-
wego zaniku funkcji rozkładu φ(t) w zależności od czasu t bez potrzeby wykonywania
dwukrotnej transformaty Laplace’a, raz wyjściowej prostej do przestrzeni odwrot-
nej i drugi raz (na zakończenie procedury) powrót do przestrzeni prostej za pomocą
odwrotnej transformaty Laplace’a. Jest to podejście oryginalne, alternatywne w sto-
sunku do istniejącego już w literaturze.
Nasz wywód rozpoczniemy od funkcji rozkładu danej wyrażeniem (6.98)

φ(t) = γ0(1−
1
M
)
∞∑

j=0

1
M j

γj exp(−γ0γjt). (F.1)

Korzystając z transformaty Mellina funkcji wykładniczej (patrz, Harry Bateman,
Arthur Erdéley, ”Tables of Integral Transforms”, Vol.I, McGraw-Hill Book Comp.,
Inc., New York 1954),

exp(−γ0γjt) =
1
2πi

∫ c+∞

c−i∞
ds(γ0t)−sΓ(s)γ−js, 0 < <s = c < 1, (F.2)

można funkcję rozkładu daną wyrażeniem (F.1) przekształcić do postaci

φ(t) = γ0(1−
1
M
)
1
2πi

∫ c+∞

c−i∞
ds(γ0t)−sΓ(s)

∞∑

j=0

(
γ1−s

M
)j, (F.3)

którą dalej przekształcamy korzystając z faktu, iż dla γ < 1 oraz M > 1 zawsze
można dobrać liczbę 0 < c < 1 tak aby wartość ilorazu kolejnych składników szeregu
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geometrycznego (występującego w (F.3)), czyli | γ1−s/M |= γ1−c/M , była mniejsza
od jednści. Zatem, wyrażenie (F.3) przybiera postać

φ(t) = γ0(1−
1
M
)
1
2πi

∫ c+∞

c−i∞
ds(γ0t)−s

Γ(s)

1− γ1−s

M

, (F.4)

którą w dalszym ciągu przekształcamy korzystając z metody residuów (patrz, Krzysz-
tof Maurin, ”Analiza. Cz.II. Wstęp do analizy globalnej”, PWN, Warszawa 1971).
Zatem, wprowadżmy kontur prostokątny K(= Kl +Ku +Kr +Kd) na płaszczyżnie
zespolonej schematycznie przedstawiony na rys.... Wykażemy, że

∫ c+∞

c−i∞
ds(γ0t)−s

Γ(s)

1− γ1−s

M

= −
∮

K∞
ds(γ0t)−s

Γ(s)

1− γ1−s

M

, (F.5)

gdzie całkowanie po prawej stronie powyższej równości przeprowadzono wzdłuż kon-
turu K, którego prawy bok oraz podstawa i górna krawędż oddalają się do nieskoń-
czoności (stąd oznaczenie K∞) ponadto, orientacja całki konturowej jest ujemna
(stąd znak ”− ” przed nią). Po pierwsze zauważmy, że gdy x→∞ wówczas,

∫

Kr
ds(γ0t)−s

Γ(s)

1− γ1−s

M

→ 0, (F.6)

gdzie s = x + iy, gdyż γ0t > 1 i (γ0t)−x−iy → 0 gdy x → ∞; czyli powyższa całka
na prawym brzegu (boku) konturu (prostokąta) Kr znika gdy brzeg ten oddala się
do nieskończoności.
Po drugie wykażemy, że gdy | y |→ ∞ wówczas,

∫

Ku,d

ds(γ0t)−s
Γ(s)

1− γ1−s

M

→ 0. (F.7)

Dowód powyższego twierdzenia wynika bezpośrednio z asymptotycznego przedsta-
wienia funkcji Γ dla | y |→ ∞ (patrz, I.M. Ryżyk i I.S. Gradsztajn, ”Tablice całek,
sum, szeregów i iloczynów”, PWN, Warszawa 1964),

| Γ(x+ iy) |→ (2π)1/2 | y |x−1/2 exp(−π
2
| y |). (F.8)

Zatem, naszym zadaniem jest teraz obliczenie całki konturowej po prawej stronie
równości (H.16); można to przeprowadzić korzystając z metody residuów. Zauważmy
w tym celu, że jedyne bieguny funkcji podcałkowej jakie znajdują się po dodatniej
stronie osi rzeczywistej to zera mianownika 1− γ1−s

M
czyli

1− γ1−s

M
= 0⇒ sn = 1 + α−

2πi
ln(γ)

n, n = 0,±1,±2, . . . , (F.9)
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gdzie przez sn, n = 0,±1,±2, . . . , oznaczono poszukiwane bieguny. Ponadto, jak wi-
dać bieguny te są rzędu pierwszego. Metoda residuów mówi, że wspomniana powyżej
całka konturowa

−
∮

K∞
ds(γ0t)−s

Γ(s)

1− γ1−s

M

= 2πi
∞∑

n=−∞
Res F (sn), (F.10)

gdzie Res F (sn) to residuum funkcji podcałkowej, którą oznaczyliśmy tutaj przez
F , w punkcie sn. Metoda residuów podaje m.in. przepis jak wyznaczyć residuum w
punkcie będącym biegunem rzędu pierwszego mianowicie, jest to następująca granica

Res F (sn) = lim
s→sn
[(s− sn)F (s)]. (F.11)

W naszym przypadu, obliczenie tej granicy sprowadza się w zasadzie do obliczenia
granicy poniższego wyrażenia,

lim
s→sn

s− sn
1− γ1−s

M

= lim
s→sn

s− sn
1− 1

M
exp((1− sn) ln(γ)) exp((sn − s) ln(γ))

= lim
s→sn

s− sn
1− exp((sn − s) ln(γ))

=
1
ln(γ)

. (F.12)

Stąd oraz ze (F.11), (F.10), (H.16) i (F.4) otrzymujemy wreszcie,

φ(t) = −γ0(1−
1
M
)
∮

K∞
ds(γ0t)−s

Γ(s)

1− γ1−s

M

= − γ0
ln(γ)
(1− 1

M
)(γ0t)−1−α ×

∞∑

n=−∞
Γ(sn)(γ0t)

2πi
ln(γ)

n

= − γ0
ln(γ)
(1− 1

M
)(γ0t)−1−α × {Γ(s0)

+
∞∑

n=1

[Γ(sn)(γ0t)
2πi
ln(γ)

n + Γ(s−n)(γ0t)
−2πi
ln(γ)

n]}. (F.13)

Można wykazać na drodze numerycznej, że (dla γ0t > 1)

Γ(s0)�
∞∑

n=1

[Γ(sn)(γ0t)
2πi
ln(γ)

n + Γ(s−n)(γ0t)
−2πi
ln(γ)

n]; (F.14)

dowód analityczny, jak dotychczas, nie jest znany. Rys.... przedstawia ... Zatem, z
dobrym przybliżeniem można zapisać

φ(t) ≈ − γ0
ln(γ)
(1− 1

M
)Γ(1 + α)(γ0t)−1−α. (F.15)
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Dodatek G

Użyteczne transformaty Laplace’a

Wyprowadzimy wzór na transformatę Laplace’a φ̃(s)( ozn.= Ls(φ(t))) funkcji rozkładu
czasów oczekiwania. W tym celu skorzystamy z pomocniczej relacji,

Ls
(

− d
dt
Φ(t)

)

= Φ(0)− sΦ̃(s), (G.1)

spełnionej dla dowolnej, różniczkowalnej funkcji Φ posiadającej transformatę Lapla-
ce’a Φ̃(s) (patrz, I.M. Ryżyk i I.S. Gradsztajn, ”Tablice, sum, szeregów i iloczynów”,
PWN, Warszawa 1964).
Z (6.66) widać, że dla t→∞,

φ(t) ≈ kBT Γ(1 + α)
γα0 Ē

1
t1+α
= −kBT Γ(1 + α)

αγα0 Ē
d

dt
(t−α + const)

= − d
dt
Φ(t), (G.2)

gdzie asymptotyczna postać funkcji

Φ(t) ≈ kBT Γ(1 + α)
αγα0 Ē

(t−α + const), (G.3)

posiada dla α < 1 transformatę Laplace’a daną wzorem (patrz, I.M. Ryżyk i I.S.
Gradsztajn, ”Tablice, sum, szeregów i iloczynów”, PWN, Warszawa 1964),

Φ̃(s) ≈ kBT Γ(1 + α)
αγα0 Ē

(

Γ(1− α)
s1−α

+
const

s

)

, (G.4)

Z relacji (G.1), (G.2) oraz (G.4) wynika, że

φ̃(s) = Ls
(

− d
dt
Φ(t)

)

= Φ(0)− kBT Γ(1 + α)
αγα0 Ē

(Γ(1− α)sα + const). (G.5)

Stałą const należy wybrać tak aby funkcja rozkładu φ spełniała warunek nor-
malizacji (6.61), który można wyrazić w postaci

φ̃(s = 0) = 1. (G.6)
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Stąd oraz z (G.5) wynika, że

const = (Φ(0)− 1)
(

kBT Γ(1 + α)
αγα0 Ē

)−1
(G.7)

Z powyższego oraz ze (G.5) otrzymujemy ostatecznie, że

φ̃(s) = 1− πα

sin(πα)

(

s

γ0

)α

, (G.8)

gdzie milcząco skorzystaliśmy z pomocniczych wzorów

α =
kBT
Ē ,

Γ(1 + α) = αΓ(α),

Γ(α)Γ(1− α) = π

sin(πα)
. (G.9)

Wprowadzając bezwymiarowy współczynnik

γ′f =
sin(πα)
πα

, (G.10)

możemy (G.8) zapisać następująco,

φ̃(s) = 1− 1
γ′f

(

s

γ0

)α

. (G.11)

Przy okazji zauważmy, że ze (G.2) otrzymujemy

Φ(t) = Φ(0)−
∫ t

0
dt′φ(t′). (G.12)

Wybierając stałą Φ(0) = 1 (co na mocy (G.7) daje const = 0) oraz korzystając z
warunku normalizacji (6.61), otrzymujemy, że

Φ(t) =
∫ ∞

t
dt′φ (t′) , (G.13)

stając się tym samym gęstością prawdopodobieństwa przetrwania cząsteczki w ja-
kiejś dolinie potencjału przynajmniej przez czas t; jest to funkcja, która odgrywa
wspomagającą, ważną rolę w modelu błądzenia cząsteczki w czasie ciągłym. Z (G.12)
oraz (G.11) wynika bezpośrednio (patrz, I.M. Ryżyk i I.S. Gradsztajn, ”Tablice, sum,
szeregów i iloczynów”, PWN, Warszawa 1964), że transformata Laplace’a

Φ̃(s) =
1− φ̃(s)

s
=
1

γ0γ
′
f

(
γ0
s

)1−α
. (G.14)

Z powyższego oraz z (6.88) widać, że średni czas oczekiwania

〈t〉 = Φ̃(s = 0) (G.15)

jest, dla α < 1, nieskończony.
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Dodatek H

Sferyczne przeloty Weierstrassa

Dla sferycznych przelotów Weierstrassa w czasie dyskretnym część przestrzenna p(~x)
gęstości prawdopodobieństwa przemieszczenia się cząsteczki o wektor ~x w wyniku
pojedynczego przelotu posiada własność sferycznej symetrii,

p(~x) =
1

Sd | ~x |d−1
p0(| ~x |), (H.1)

spełniając warunek normalizacji
∫

d~xp(~x) =
∫ ∞

0
d|~x|p0(| ~x |) = 1 (H.2)

gdzie Sd = 2πd/2/Γ(d/2) jest powierzchnią d − 1 wymiarowej hipersfery o promie-
niu jednostkowym (gdzie d jest wymiarem przestrzeni Euklidesowej). Zauważmy, że
Sd=3 = 4π, Sd=2 = 2π, Sd=1 = 2. W dalszym ciągu przyjmujemy, analogicznie jak
dla jednowymiarowych przelotów Weierstrassa, że

p0(| ~x |) =
N − 1
N

∞∑

j=0

1
N j

δ
(

| ~x | −bj
)

; (H.3)

widać, że w szczególnym przypadu d = 1, p(x) = p0(x)/2 (gdzie dla uproszczenia
opuściliśmy oznaczenie ”~ ”).
Tytułem pouczającego przykładu, wyznaczamy czynnik strukturalny sferycznych

przelotów Weierstrassa dla d = 3. Z definicji,

p̃
(

~k
)

=
∫

d~x exp
(

−i~k · ~x
)

p (~x)

=
2π
Sd

∫ ∞

0
d | ~x |

∫ π

0
dϑ sin(ϑ) exp

(

−i | ~x || ~k | cos(ϑ)
)

p0 (| ~x |)

=
∫ ∞

0
d | ~x |

(

π

2 | ~x || ~k |

)1/2

J1/2
(

| ~x || ~k |
)

p0(| ~x |), (H.4)

gdzie przez J1/2(z) oznaczono, jak zwykle, funkcję Bessela (walcową pierwszego ro-
dzaju).
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Natomiast, dla sytuacji ogólnej (d-wymiarowej) otrzymujemy,

p̃
(

~k
)

= Γ

(

d

2

)
∫ ∞

0
d | ~x |

(1
2
| ~x || ~k |

)1−d/2
Jd/2−1

(

| ~x || ~k |
)

p0 (| ~x |)

=
N − 1
N
Γ

(

d

2

) ∞∑

j=0

1
N j




| ~k | bj
2





1−d/2

Jd/2−1
(

| ~k | bj
)

, (H.5)

gdzie przez Jd/2−1(z) oznaczono funkcję Bessela (walcową pierwszego rodzaju).
W tym miejscu, podobnie jak dla przypadku jednowymiarowego, rodzi się pyta-

nie o warunki w jakich uzyskana powyżej postać czynnika strukturalnego
da się przedstawić w postaci zamkniętej? Aby odpowiedzieć na to pytanie
zauważmy, że p̃

(

~k
)

spełnia niejednorodne równanie skalowania postaci,

p̃(b~k) = Np̃(~k)− (N − 1)Γ
(

d

2

)(1
2
| ~k |

)1−d/2
Jd/2−1

(

| ~k |
)

. (H.6)

Rozwiązanie tego równania (podobnie jak to robiliśmy dla równania (6.129) w rozdz.
6.4.2) poszukujemy w postaci sumy

p̃
(

~k
)

= p̃reg
(

~k
)

+ p̃sing
(

~k
)

, (H.7)

przy czym rozwiązanie regularne (normalne, ogólne) p̃reg
(

~k
)

spełnia równanie nie-

jednorodne (H.6) a rozwiązanie singularne p̃sing
(

~k
)

jednorodną część tego równania.
Jak zwykle, postać rozwiązania ogólnego jest narzucona przez niejednorodność.

H.1 Rozwiązanie regularne

Zatem, korzystając z rozwinięcia funkcji Bessela pierwszego rodzaju

Jd/2−1(| ~k |) =
| ~k |d/2−1
2d/2−1

∞∑

l=0

(−1)l | ~k |2l
22ll!Γ

(
d
2
+ l
) (H.8)

możemy przyjąć rozwiązanie p̃reg
(

~k
)

w postaci szeregu potęgowego zawierającego

także tylko parzyste potęgi zmiennej | ~k | a mianowicie,

p̃reg
(

~k
)

= 1 +
∞∑

j=1

(−1)j 1
j!
aj | ~k |2j, (H.9)

gdzie aj, j = 1, 2, . . . , są poszukiwanymi współczynnikami (wprzedzając nieco nasze
rozważania, przyjęliśmy a0 = 1). Podstawiając (H.8) i (H.9) do (H.6) i porównując
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współczynniki przy tych samych potęgach | ~k |, otrzymujemy (po prostych algebra-
icznych przekształceniach) poszukiwane wyrażenie na współczynnik,

aj =
1
22j
Γ
(
d
2

)

Γ
(
d
2
+ j

)
1− 1

N

1− b2j

N

, j = 0, 1, 2, . . . . (H.10)

Na przykład, ograniczając się jedynie do wyrazów co najwyżej kwadratowych w | ~k |
otrzymujemy,

p̃reg(| ~k |) ≈ 1−D′ | ~k |2, D′ = a1 =
1
2d
1− 1

N

1− b2

N

, (H.11)

co stanowi uogólnienie wyrażeń (6.131) i (6.132) słusznych w jednym wymiarze na
dowolną liczbę wymiarów d ­ 1.

H.2 Rozwiązanie singularne

Rozwiązanie singularne, p̃sing
(

~k
)

, można od razu zapisać w postaci analogicznej do
(6.133) z pomocniczym wyrażeniem (6.135) (gdzie zamiast | k | należy podstawić
| ~k | /2) i wykładnikiem danym wzorem (6.136), gdyż spełnia ono równanie for-
malnie identyczne do (6.130), Współczynniki Aj (dla procesu przelotów Wierstrassa
zachodzącego w przestrzeni o dowolnej liczbie wymiarów d ­ 1) wyznaczamy poni-
żej, korzystajac z ogólnej metody wykorzystującej transformatę Mellina i całkowanie
przez residua.
W szczególnym przypadku ograniczenia się tylko do stałego współczynnika A0,

otrzymujemy

p̃sing(~k) ≈ −D′f | ~k |β, D′f = A0, (H.12)

co jest formalnie identyczne z drugim wyrażeniem w równaniu (6.138) (dla β < 2).

H.2.1 Pełna postać rozwiązania singularnego

Strategia postępowania polega na dokonaniu najpierw transformaty Mellina funkcji
(H.5) a nastepnie (po przeprowadzeniu odpowiednich obliczeń) obliczenie odwrotnej
transformaty Mellina. Na tej drodze wydobędziemy z funkcji (H.5) pełne rozwiązanie
singularne.
Przypomnijmy na wstępie, że transformata Mellina (TM) funkcji f(x) jest zde-

finiowana nastepujaco

f̃(s) (≡M[f ; s]) def.=
∫ ∞

0
f(x)xs−1dx, (H.13)
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gdzie s jest zmienną zespoloną. Natomiast, odwrotna transormata Mellina (TM−1)
przybiera bardziej skomplikowaną, ale nadzwyczaj użyteczną postać

f(x)
(

≡M−1[f̃ ; x]
)
def.=
1
2πı

∫ c+ı∞

c−ı∞
f̃(s)x−sds, 0 < c < 1, 0 < <s ¬ c (H.14)

Zauważmy, że TM zastosujemy do funkcji f(x) = x−ν/2 Jν(2x1/2), gdzie Jν(. . .)
jest funkcją Bessela (walcową pierwszego rodzaju). Transformata Mellina tej funkcji
wynosi f̃ = Γ(s)/Γ(ν − s + 1), 0 < <s < 2−1<ν + 3/4. W naszym przypad-
ku obowiązuje następujące podstawienie: ν = d/2 − 1, 2x1/2 = | ~k | bj ≡ x =
(
1
2
| ~k |

)2
b2j ≡

(

x1/2
)1−d/2

=
(
1
2
| ~k | bj

)1−d/2
. Wykorzystując powyższe, możemy

naszą funkcję (H.5) wyrazić w następujący sposób:

p̃(~k) =
1
2πı

∫ c+ı∞

c−ı∞

N − 1
N

1
((
1
2
| ~k |

)2
)s

Γ
(
d
2

)

Γ(s)

Γ
(
d
2
− s

)
1

1− (Nb2s)−1
ds, (H.15)

gdzie wykorzystaliśmy przemienność sumowania (występującego we wzorze (H.5)) i
całkowania we wzorze (H.14)), gdyż zarówno całka jak i suma są zbieżne. Ponadto,
zamiast sumowania szeregu geometrycznego wyraz po wyrazie, po prostu, wsta-
wiliśmy odpowiednią sumę szeregu geometrycznego. Podkreślmy, że całkowanie we
wzorze (H.15) wykonamy za pomocą residuów, dzięki ulokowaniu biegunów funkcji
podcałkowej w lewej półpłaszczyźnie (patrz rysunek H.1) i założeniu (w dalszym
ciągu), że 1

2
| ~k |< 1.

Wykażemy teraz, że całka w (H.15) znika na lewym brzegu konturu i na jego
dolnej i górnej krawędzi. Jej znikanie na lewym brzegu wynika wprost z powyższego
założenia. Natomiast wzór

| Γ(s = x+ ı y) | →
√
2π | y |x−1/2 exp

(

−π | y |
2

)

, | y |→ ∞, (H.16)

pokazuje bezpośrednio, jak zanika zarówno stosunek gam Eulera Γ(s)

Γ( d2−s)
→| y |2x−d/2

występujący w funkcji podcałkowej w wyrażeniu (H.15), za nim pełna funkcja pod-
całkowa a stąd i całka, gdy górna i dolna krawędź konturu oddalają się nieograni-
czenie.
Zatem, możemy zapisać, że

p̃(~k) =
∑

s0

Res F (s0), (H.17)

gdzie prawa strona powyższej równości oznacza sumę residuów związaną ze wszyst-
kimi biegunami funkcji podcałkowej F (s).
Zajmiemy się teraz wyznaczaniem tych biegunów oraz związanymi z nimi resi-

duami.
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Rysunek H.1: Prostkątny, zamknięty, rozbiegający się kontur całkowania przedsta-
wiony na płaszczyźnie zespolonej s = x+ ı y.
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H.2.2 Bieguny i residua

Bieguny funkcji podcałkowej są dwojakiego rodzaju:

a) całkowite ujemne wraz zerem, będące biegunami funkcji Γ(s),

b) zespolone (za wyjątkiem jednego rzeczywistego), stanowiące bieguny funkcji
1/
(

1− (Nb2s)−1
)

.

W przypadku a) bieguny można łatwo znaleźć pamiętając, że Γ(s) = π/(Γ(1−
s) sin(πs)). Stąd, s0 = −l, l = 0, 1, 2, . . . .
W przypadku b) bieguny wyznaczamy z równości:

N = (b2)−s0 = exp (−s0 ln b2 + 2πı n) , n = 0, 1, 2, . . . . Czyli, s0 = −12β + πı n
ln b
, n =

0,±1,±2, . . . .
Teraz przypomnijmy, że residuum (pierwszego rzędu - ale tylko z takimi residu-

ami mamy tutaj do czynienia) dowolnej funkcji zespolonej F (s) zmiennej zespolonej
s wyznacza się z prostego wzoru

Res F (s0) = lim
s→s0

F (s)(s− s0). (H.18)

Zatem,

ResΓ(s0) =
(−1)l
l!

, l = 0, 1, 2, . . . . (H.19)

Residua te prowadzą bezpośrednio do wyrażenia (H.9) z pomocniczym (H.10), czyli
do rozwiązania regularnego - nie możemy go więc tutaj brać pod uwagę.
Rozważmy teraz przypadek b). Korzystając ze wzoru (H.18) otrzymujemy, że

Res 1

1− (Nb2s0)−1
= lim

s→s0
s− s0

1− b−2s0
N

b−2(s−s0)
= lim

s→s0
s− s0

1− b−2(s−s0)

= lim
s→s0

s− s0
1− exp (−2(s− s0) ln b)

=
1
2 ln b

, (H.20)

gdzie wykorzystaliśmy równość b
−2s0

N
= 1, obecną powyżej w objaśnieniach przypad-

ku b).
W świetle powyższego, pełne rozwiązanie singularne przyjmuje postać,

p̃sing(~k) =
(

1− 1
N

) 1
2 ln b
Γ

(

d

2

)(1
2
| ~k |

)β

×
∞∑

n=−∞

Γ
(

−1
2
β + πı n

ln b

)

Γ
(
d
2
+ 1
2
β − πı n

ln b

) exp



−2πı n
ln
(
1
2
| ~k |

)

ln b



 , (H.21)

co, w połączeniu z pełnym rozwiązaniem regularnym (H.9) i wyrażeniem (H.10),
daje pełne rozwiązanie p̃(~k).
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Dodatek I

Ścisły czynnik strukturalny dla
jednowymiarowych przelotów
Weierstrassa

Wyprowadzimy ścisłą postać czynnika strukturalnego dla jednowymiarowego błą-
dzenia Weierstrassa, korzystając z transformaty Mellina oraz całkowania przez resi-
dua, czyli postępując analogicznie jak dla sferycznych przelotów Weierstrassa (patrz
Dodatek H) ale bez wyjściowego rozłożenia poszukiwanego rozwiązania na część
regularną i singularną.
Naszym wyjściowym wzorem jest (6.128). Ponieważ transformata Mellina funkcji

cos(| k | bj) wynosi (bj)−s Γ(s) cos
(
π
2
s
)

, więc poszukiwany czynnik strukturalny
można przedstawić w postaci

p̃(k) =
N − 1
N

1
2πı

∞∑

j=0

∫ c+ı∞

c−ı∞
| k |−s Γ(s) cos

(
π

2
s
)

(Nbs)−j ds

=
N − 1
N

1
2πı

∫ c+ı∞

c−ı∞
| k |−s Γ(s) cos

(
π

2
s
) 1

1− (Nbs)−1
ds. (I.1)

Postać ta pozwala już na obliczenie całki metodą residuów dla | k |< 1. Zaznaczmy,
że druga równość została uzyskana dzięki zamiania sumowania z całkowaniem, co
było możliwe ponieważ obie są zbieżne.
W tym celu, podobnie jak w Dodatku H, otaczamy bieguny funkcji podcałko-

wej (oznaczmy ją podobnie jak w poprzednim Dodatku przez F (s)) znajdujące się
w lewej półpłaszczyźnie, prostokątnym rozbiegającym się konturem (patrz rysunek
H.1). Znikanie całki na dolnej i górnej krawedzi konturu wynika bezpośrednio ze
wzoru (H.16) natomiast na lewej krawędzi z faktu, że prowadzimy obliczenia przy
założeniu | k |< 1.
Mamy (podobnie jak poprzednio) dwa rodzaje biegunów: pierwszy pochodzący

od iloczynu funkcji Γ(s) cos
(
π
2
s
)

i drugi od funkcji 1
1−(Nbs)−1 . Pierwszy zbiór biegu-

nów dany jest wyrażeniem (H.19), gdzie l (dzięki cos
(
π
2
s
)

) przebiega tylko liczby
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parzyste, natomiast drugi wyrażeniem (analogicznym do tego dotyczącego przypad-
ku b) w Dodatku H) s0 = −β + 2πı nln b , n = 0,±1,±1, . . . . Pozostaje jeszcze tylko
problem znalezienia residuów dla obu rodzajów biegunów. Postępując analogicznie
jak w Dodatku H, otrzymujemy odpowiednio (−1)

l

(2l)!
, l = 0, 1, 2, . . . , oraz 1

ln b
. Osta-

tecznie, pełna postać czynnika strukturalnego składa się z dwóch zasadniczo różnych
wyrażeń

p̃(k) =
∞∑

j=0

(−1)j
(2j)!

1− 1
N

1− b2j

N

| k |2j + | k |β 1−
1
N

ln b

×
∞∑

n=−∞
Γ
(

−β + 2πı n
ln b

)

cos
(
π

2

(

−β + 2πı n
ln b

))

× exp
(

−2πı n
ln b
ln | k |

)

, (I.2)

jawnie zawierająca zarówno część regularną (opartą o pierwszy nieskończony szereg)
jak i singularną (opartą o drugi).
Powyższy wzór oraz formuła na p̃( 1

2
| ~k |) z Dodatku H są kluczowymi dla

przelotów Weierstrassa (zarówno jedno- jak i wielowymiarowych).
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Dodatek J

Twierdzenie Abeliana i
twierdzenie Tauberina

Twierdzenie Abeliana

I. Przypadek α > −1

Przypuśćmy, że dla t→∞ funkcja ma przebieg potęgowy, tzn.

f(t) ≈ tαF (t), (J.1)

gdzie F (t) jest funkcją asymptotycznie jednorodną tzn.

lim
t→∞

F (ct)
F (t)

= 1, (J.2)

dla każdego c > 0 (np. F (t) = ln(t)) oraz nie malejącą szybciej niż t−(1+α). Wówczas,
transformata Laplace’a f̃(s) funkcji f(t) dla s→ 0 przyjmuje postać

f̃(s) ≈ Γ(1 + α)
s1+α

F (
1
s
). (J.3)

Dowód tego twierdzenia składa się z dwóch części. Po pierwsze, zapisujemy trans-
formatę Laplace’a f̃(s) w postaci

f̃(s) =
∫ ∞

0
f(t) exp(−st)dt

≈
∫ tmax

0
[f(t)− tαF (t)] exp(−st)dt +

∫ ∞

0
tαF (t) exp(−st)dt,

(J.4)

gdzie tmax jest czasem powyżej którego funkcja f(t) przyjmuje, z dobrym przybli-
żeniem, swoją postać asymptotyczną. Po drugie, używamy zmiennej s spełniającej
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warunek <stmax � 1 (czyli posiadającej znikomo małą część rzeczywistą) wówczas,
powyższe wyrażenie można przekształcić do postaci,

f̃(s) ≈
∫ tmax

0
[f(t)− tαF (t)]dt− s

∫ tmax

0
[f(t)− tαF (t)]tdt

+
1

s1+α

∫ ∞

0
yαF (

y

s
) exp(−y)dy

≈ const0 − s× const1 +
1

s1+α
F (
1
s
)
∫ ∞

0
yα exp(−y)dy, (J.5)

gdzie stałe const0 (pierwszy wyraz w pierwszym rzędzie) oraz const1 (wyrażenie
całkowe stojące w drugim wyrazie także w pierwszym rzędzie) są skończone (co
jest dodatkowym warunkiem narzuconym na funkcję F ) i zależą od parametru tmax
ponadto, podstawiliśmy y = st oraz skorzystaliśmy po drodze z asymptotycznej
postaci (J.1) funkcji f(t) i z własności (J.2) (a także z definicji funkcji Γ). Oczywiście,
dla s→ 0 w wyrażeniu (J.5) dominuje trzeci składnik zatem,

f̃(s) ≈ Γ(1 + α)
s1+α

F (
1
s
). (J.6)

II. Przypadek α = −1− β, 0 < β < 1

Przypuśćmy, że dla t→∞ funkcja f zanika w sposób potęgowy, tzn.

f(t) ≈ t−(1+β)F (t), (J.7)

gdzie F (t) jest funkcją asymptotycznie jednorodną tzn.

lim
t→∞

F (ct)
F (t)

= 1, (J.8)

dla każdego c > 0 (np. F (t) = ln(t)) oraz malejącą wolniej od t−(1+β); ponadto, dla
t → 0 funkcja F (t) maleje nie wolniej niż t. Wówczas, transformata Laplace’a f̃(s)
funkcji f(t) dla s→ 0 przyjmuje postać

f̃(s) ≈ const+ sβΓ(−β)F (1
s
), (J.9)

gdzie Γ(−β) = −Γ(1− β)/β dla wykładnika β należącego do podanego wyżej prze-
działu.
Pierwszy krok dowodu jest analogiczny jak w poprzednim przypadku zatem,

f̃(s) =
∫ ∞

0
f(t) exp(−st)dt

≈
∫ tmax

0
[f(t)− t−(1+β)F (t)] exp(−st)dt+

∫ ∞

0
t−(1+β)F (t) exp(−st)dt,

(J.10)
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gdzie tmax jest czasem powyżej którego funkcja f(t) przyjmuje, z dobrym przybli-
żeniem, swoją postać asymptotyczną. Po drugie, używamy zmiennej s spełniającej
warunek <stmax � 1 (czyli posiadającej znikomo małą część rzeczywistą) wówczas,
powyższe wyrażenie można przekształcić do postaci (wykorzystując całkowanie przez
części),

f̃(s) ≈
∫ tmax

0
[f(t)− t−(1+β)F (t)]dt− s

∫ tmax

0
[f(t)− t−(1+β)F (t)]tdt

+ sβ
∫ ∞

0
y−(1+β)F (

y

s
) exp(−y)dy

≈ const− s× const1 + sβΓ(−β)F (
1
s
)

≈ const+ sβΓ(−β)F (1
s
), (J.11)

gdzie stałe const (pierwszy wyraz w pierwszym rzędzie) oraz const1 (wyrażenie cał-
kowe stojące w drugim wyrazie w tym samym rzędzie) są skończone (co jest, analo-
gicznie jak w poprzedni przypadku, dodatkowym warunkiem narzuconym na funkcję
F ) i zależą od parametru tmax ponadto, podstawiliśmy y = st oraz skorzystaliśmy
po drodze z asymptotycznej postaci (J.1) funkcji f(t) i z własności (J.2) (a także z
definicji funkcji Γ). Oczywiście, dla s→ 0 w wyrażeniu (J.11) dominuje wyraz rzędu
zerowego w s oraz wyraz subliniowy w s.
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