Seria 7

Statystyki kwantowe

Zadanie 1
Gestosé stanow g(e) jest funkcja opisujaca liczbe dostepnych stanéw kwantowych na jednostke energii. Dla
swobodnych fermionow (e, = h*k?/2m) o spinie o oblicz gestosci stanéw w granicy termodynamicznej dla

d =1,2,3, gdzie d to wymiarowos$¢ problemu. Poréownaj zaleznosé g(e) od € w tych przypadkach.

Zadanie 2

Bardziej realistyczne modele ciata stalego niz model Einsteina konstruujemy przyjmujac, iz cialo state moze
by¢ traktowane jako uklad 3N niezaleznych, jednowymiarowych i rozréznialnych oscylatoréw harmonicznych o
roznych czestosciach wlasnych. Rozktad czestosci charakteryzujemy przez podanie funkcji g(w) zdefiniowanej w
taki sposob, ze g(w)dw jest ilogcia oscylatorow o czestosci z przedziatu [w, w + dw]. Zgodnie z teoria Debye’a
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gdzie vy jest “Srednia” predkoscia dzwieku okreslong ze zwiazku
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gdzie v, jest predkoscia fal poprzecznych, a v; jest predkoscia fal podtuznych, zas wartos¢ wm,q, wynika ze zwiazku

/ " g(w)dw = 3N.
0

Wyznacz ciepto wlasciwe ¢y ciata statego zgodnie z ta teoria. Zbadaé¢ przypadek T > Tp oraz T' <« Tp, gdzie
Tp = h“]’g”;z jest temperatura Debye’a. Uklad znajduje sie w kontakcie z termostatem o temperaturze 7.

Zadanie 3
Kondensacja Bosego—FEinsteina w putapce harmonicznej — Rozwaz idealny gaz bozondéw w trojwymiarowej, izo-
tropowej putapce harmonicznej o czestosci w. Energie stanéw jednoczastkowych maja postaé

3
€ngnyn, = MW (nm +ny +n, + 5) , Ng,Ny,n, =0,1,2,...

Srednia liczba czastek spelnia

1
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gdzie v oznacza komplet liczb kwantowych. Mozemy rozdzieli¢ wktad stanu podstawowego:

(N) = (No) + > (N,),
v#0

(N) = Z(Nu> = ZNBE(Eu)a NBg(€) =

v

gdzie (Np) jest srednia obsada stanu podstawowego.
(a) Rozwazajac wylacznie stan podstawowy pokaz, ze potencjal chemiczny spetnia p < €, gdzie ¢y = %hw jest

energig stanu podstawowego. Wygodnie jest wprowadzi¢ przesuniety potencjal it = p — g i wykazaé, ze
i< 0.

Zalozmy teraz, ze obnizamy temperature przy stalej liczbie czastek (N). Utrzymanie stalej liczby czastek wymaga

zwickszania p, ale nie mozna tego robi¢ w nieskoriczono$é ze wzgledu na ograniczenie z punktu (a). Ponizej

pewnej temperatury krytycznej T, gdy nie da sie juz dalej zwiekszaé u, pojawia sie makroskopowa obsada stanu

podstawowego. Zjawisko to nazywamy kondensacja Bosego—Finsteina.



(b) Warunek kondensacji polega na tym, ze w temperaturze T, wszystkie czastki sa dokladnie w stanie za-
ja¢ stany wzbudzone przy maksymalnym dopuszczalnym potencjale chemicznym (i — 0). Uzasadnij, ze

prowadzi to do warunku
1
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(¢) W granicy ciaglej dla kT > hw suma po stanach wzbudzonych moze zosta¢ zastapiona caltka z uzyciem
gestosci stanéw putapki harmonicznej. Pokaz, ze mozna wtedy zapisaé
"0 Dyo(e
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gdzie € = € — €p, a gestosé stanow (dla 3D, izotropowo) ma postaé

Dho (6) =

(d) Korzystajac z tozsamosci
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wykaz, ze temperatura krytyczna spelnia

kgT. = hw (%) 1/3.

(e) Pokaz, ze dla T' < Tt liczba skondensowanych czastek No(T") jest dana przez
T 3
No(T) = (N) [1 — <i> ] .
Zadanie 4

Energia Fermiego i rozwiniecie Sommerfelda — Srednia liczba czastek w trojwymiarowym idealnym gazie Fermiego
jest dana przez

(N) = Nrp(ex),
k

gdzie Npp(ek) jest rozktadem Fermiego—Diraca.

1. Rozwaz granice ciagla powyzszego wyrazenia. DlaT" = 0 rozkltad Fermiego—Diraca staje sie funkcja skokowa
i fermiony moga zapelnia¢ stany tylko do pewnej energii, zwanej energia Fermiego ep. Pokaz, ze energia
Fermiego dana jest wzorem

h? ,
F =5 (67%p)*?,

gdzie p = (N)/V.
2. Chociaz ep zostala wyprowadzona dla T' = 0, rozszerzamy wyrazenie otrzymane w punkcie (a) rowniez na
temperatury niezerowe. Pokaz, ze w tym przypadku otrzymuje sie

(N = /0 ™ de D(€) Niep(e),

gdzie tzw. gesto$é¢ stanéw dana jest przez

3. Pokaz, ze dla T # 0 zachodzi



4.

Zauwaz, ze Njp(€) jest funkeja silnie skoncentrowang (ostro ,spikowang’) wokot p. Dla T = 0 przechodzi
ona w delte Diraca. W rezultacie mozemy rozwinaé (e/er)>? w wyrazeniu otrzymanym w punkcie (c) wokol
1. Wykonaj to rozwiniecie i udowodnij rozwiniecie Sommerfelda

= ()% () () +

5. Pokaz, ze dla kpT' < er potencjal chemiczny maleje kwadratowo, az osiaga energie Fermiego. To znaczy,
pokaz ze
72 (kpT\?>
= 1—— codl
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W obliczeniach moze byé¢ przydatna nastepujaca catka:
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Zadanie 5

Gwiazdy ciggu gtéwnego takie jak Storice pozostajag w réwnowadze dzieki rownowadze pomiedzy ci$nieniem
grawitacyjnym starajacym sie dokonaé¢ kolapsu gwiazdy, a cisnieniem wywieranym przez promieniowanie pro-
dukowane w trakcie fuzji termojadrowej w jej wnetrzu. U kresu ich zycia fuzja ustaje i zaczyna dominowaé
grawitacja zgniatajac je. Jezeli dana gwiazda jest odpowiednio malo masywna cinienie Pauliego zdegenero-
wanego gazu elektrondéw w jej wnetrzu jest w stanie zrownowazy¢ cisnienie grawitacyjne i zapobiega¢ dalszemu
kolapsowi. Powstala w ten sposéb gwiazda jest nazywana biatym kartem. Rozwazymy prosty model takich gwiazd
i przedyskutujemy ich stabilno$¢.

(a)

Energia catkowita biatego karta moze by¢ zapisana w postaci £ = K + U, gdzie K jest energia kinetyczna
silnie zdegenerowanego gazu elektrondéw, a U jest grawitacyjna energia potencjalng gwiazdy. Przyjmujac
najprostszy model w ktorym gwiazda jest jednorodna kula o promieniu R i masie M oblicz ile wynosi
U w tym przypadku. Wnetrze bialego karta sktada sic gléwnie z atomoéw takich jak C'2, O6, etc., ktore
zawierajg rowng liczbe protonéw, neutronow i elektronow, czyli M ~ 2N'm,,, gdzie N jest liczbg elektronéw,
a my, jest masg protonu (m, ~ m,, m, —masa neutronu). Wzbudzenia termiczne dla zdegenerowanego gazu
fermion6éw moga zachodzi¢ tylko w poblizu powierzchni Fermiego, ktora dla olbrzymiej liczby fermionow jest
pomijalna z wnetrzem morza Fermiego. Oznacza to, ze mozemy przyblizy¢ zdegenerowany gaz elektronow
w bialym karle przyjmujac, ze jego temperatura wynosi zero (mimo iz powierzchnia typowego biatego karta
ma temperature powyzej 25000 K!). Korzystajac z tego przyblizenia oblicz K zakladajac, ze elektrony w
tym przypadku sa opisywane relacja dyspersji
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gdzie m, to masa elektronu.
Znajdujac minimum energii caltkowitej E biatego karta znajdZ rownowagowy promien R, takiej gwiazdy.
Jak zalezy uzyskany promient w funkcji masy gwiazdy? Wyraz uzyskany wynik przy pomocy masy Stoiica
Mg i jego promienia R. w postaci
R M
i)

Rq Mg
gdzie C to jakas stala liczbowa, a f(-) to pewna funkcja.
Im wieksza mase ma gwiazda tym wieksza musza mieé energie kinetyczng elektrony w jej wnetrzu, aby
zrownowazy¢ cisnienie grawitacyjne. Oznacza to, ze dla dostatecznie ciezkich gwiazd elektrony trzeba bedzie

traktowaé relatywistycznie, tj.
er = \/R2k2c2 + m2ct,

gdzie ¢ to predkos¢ swiatta. W przypadku ultrarelativistycznym, tj. p > mec uwzgledniajac dwa pierwsze
wyrazy w rozwinieciu powyzszego pierwiastka w e, oblicz energie kinetyczna K ultrarelativistycznego silnie
zdegenerowanego gazu elektronow.




(d) W przypadku ultrarelativistycznym dla odpowiednio duzych mas gwiazdy M jej kolaps spowodowany
ci$nieniem grawitacyjnym nie moze zostaé¢ zrownowazony przez cisnienie zdegenerowanego gazu w jej wne-
trzu. Znajdz warto$é masy krytycznej M, przy ktorej wygrywa przyciaganie grawitacyjne i wyraz ja przy
pomocy masy Stonica Mg. Wynik ten jest nazywany granicg Chandrasekhara, przy czym w swojej orygi-
nalnej pracy z 1931 roku Chandrasekhar uwzglednil, Zze rozklad masy w realistycznej gwiezdzie nie jest
jednorodny uzyskujac tym samym wynik M = 1.4Mg. Wynik ten jest niezwykle wazny dla astronomii
obserwacyjnej. Majac biatego karta w ukladzie podwojnym z inng masywng gwiazda nastepuje transfer
masy w kierunku biatego karta. Osiggajac mase przewidywang przez Chandrasekhara wybucha on dajac
poczatek supernowej typu Ia o $cisle okreslonej jasnosci (jasnosé supernowej zalezy od masy wybuchajacej
gwiazdy). Oznacza to, ze tego typu supernowa moze by¢ wykorzystana jako swiece standardowa za pomoca
ktorej mozna wyznaczy¢ odlegto$é do takiego obiektu.



