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Termodynamika

1 Opis termodynamiczny

Uktad — w termodynamice pojecie podstawowe makroskopowy zbioér czasteczek, opisany pewna
liczba parametrow (liczb rzeczywistych). Wyrézniamy parametry ekstensywne. Paramterami
tymi moze by¢ np. U — energia (wewnetrzna), V' — objetosé¢, N — liczba moli, N, (wiele sktad-
nikow, indeksowanych a = 1,2,...), ¢ — tadunek, M — magnetyzacja. Uktad moze by¢ zbiorem
poduktadow i kazdy poduklad jest takze odpowiednio opisanym uktadem (analogicznie do po-
zdzbior6w w matematyce). Wartosé¢ parametru ekstensywnego dla catego uktadu jest suma ich
wartosci dla poduktadow, np.
U=U,+U;+---+U,

dla poduktadow 1,2,... n. Szczegdlnym uktadem jest jednorodny. Taki uktad mozna podzieli¢
na dowolna liczbe dowolnie matych (tj. np. U;/U jest dowolnie ograniczone) podukladow a
parametry ekstensywne rozktadaja sie proporcjonalnie, tj.

U)Vi=U/Vdlai=1,2,...,n

Przewaznie rozpatrujemy uklad jako skonczony zbior poduktadéw jednorodnych (wyjatki: w
polu grawitacyjnym, elektrycznym itp.). Oprocz ekstensywnych sa tez parametry intensywne,
definiowane w uktadzie jednorodnym, takie same dla kazdego poduktadu. Sa to m.in. ilorazy
U/V, U/N, ale takze ci$nienie p i temperatura T. Calego uktadu nie da sie opisa¢ wspolnym
parametrem intensywnym, jesli jest r6zny w réznych poduktadach jednorodnych. Nie wszystkie
parametry musza by¢ niezalezne. Uklad i poduktady moga zmienia¢ sie w czasie, np. U(t), po-
przes procesy termodynamiczne. Czas w termodynamice jest umowny, zadaje pewien porzadek,
najprosciej tradycynie oznacza¢ go liczba rzeczywista ale tez mozna liczbami catkowitymi albo
symbolicznie, jako np. poczatek i koniec. Stan uktadu i poduktadéw (w danej chwili czasu) jest
opisany przez pierwotnie komplet wartosci niezaleznych parametréw ekstensywnych, ale potem
mozna zmienia¢ zbiér parametrow. Funkcja stanu — funkcja kompletu parametréow uktadu w da-
nej chwili czasu. Wyrdzniamy parametry ekstensywne zachowane — state globalne: U, V', N, N,
(jesli nie ma zmian chemicznych), ¢q. Uwaga 1: energia wewnetrzna jest zachowana razem z me-
chaniczna tj. U4+ E = const. Energia mechaniczna dotyczy zwykle duzych, makroskopowych ciat
jako specjalnych ukladéw opisanych masa M i predkoscia v jako Mv?/2 lub Mc?/+/1 — v2/c?

w teorii wzglednosci. Uwaga 2: M jest zachowana tylko w przyblizeniu, niezachowanie jest
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1. OPIS TERMODYNAMICZNY 3

Rysunek 1.1: Uktad z trzech poduktadéow A, B, C potaczonych sciankami, kazda moze dopusz-
czaC zmiany innej grupy parametréw zachowanych. W praktyce blokada np. wymiany energii
miedzy A i B nie zadziala, jesli moga ja wymienia¢ A i C' oraz B i C.

istotne w diamagnetyzmie. Poduktady sa rozdzielone wzajemnie $ciankami (Rys. , ktore
dopuszczaja zmiane parametréw zachowanych pomiedzy para ukladéw (suma nie zmienia sie):

zmiana? TAK NIE
energii diatermicza adiabatyczna
objetosci ruchoma nieruchoma
moli przepuszczalna | nieprzepuszczalna

Brak mozliwosci jakichkolwiek zmian: $cianka izolujaca. Scianki mozna zmienia¢ w czasie, ale
skokowo (tak/nie). Uktad jednorodny przy podziale ma Scianki, ktore wszystko przepuszczaja.
Uktad

e izolowany — zmiany wszystkich zachowanych parametréow niemozliwe,
e zamkniety — zmiany liczby moli niemozliwe.
e skonczony — o skonczonych parametrach ekstensywnych

e nieskoriczony rezerwuar — jednorodny w granicy nieskoriczonej, tj. np. U — oo ale U/N i
V/N sa ustalone. Opisujemy go tylko parametrami intensywnymi.

Stan
e stacjonarny — nie zmienia sie w czasie
e réwnowagowy — stacjonarny bez przeptywow

Dla uktadéw izolowanych skoniczony stacjonarny = rownowagowy. Przeplyw stacjonarny bez
réwnowagi moze by¢ realizowany przez umieszczenie uktadu w kontakcie w dwoma réznymi
rezerwuarami (Rys. [L.2). Jesli zastapimy rezerwuary skoniczonymi podukladami, to stan sta-
cjonany musi jednoczesnie byé réwnowagowy. Zasadniczo caty uktad jako zbiéor poduktadow
skoniczonych jest izolowany, bo nie ma jak zmieni¢ swoich parametréow zachowanych.
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Rysunck 1.2: Srodkowy poduktad S jest potaczony z dwoma rezeruwarami A i B. Stan stacjo-
narny nie musi by¢ réwnowagowy, z powodu nieskonczonosci rezerwuarow.
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Rysunek 1.3: Zerowa zasada termodynamiki. Jesli AC' i BC' moga wymieniaé¢ jaki§ parametr
zachowany i jest rownowaga to bedzie nadal, jak zmienimy Scianki, aby AB mogty go wymieniaé¢
bezposrednio. Brak Scianek oznacza izolujace.

Proces kwazistatyczny (pseudostatyczny) — ciag stanéw réwnowagowych (przyktad: balon
z malenika dziurka przez ktora ucieka powietrze, w praktyce procesy dostatecznie powolne),
kwazistatyczny odwracalny w czasie — jesli moze przebiega¢ odwrotnie w czasie.

1.1 Zasady termodynamiki

Zerowa

Jesli uktad ABC jest rownowadze dla AB i BC potaczonych taka sama Scianka, to ABC' bedzie
takze w rownowadze jesli potaczymy AC ta sama $cianka (Rys. [1.3)).

Pierwsza

Energia jest parametrem zachowanym, tj. U + E = const w calym (izolowanym) uktadzie
(poza przypadkiem rezerwuaréw). Zmiana energii mechanicznej AE = —W, gdzie W — praca
mechaniczna (za pomocy sit) nad uktadem @ = AU — W lub dQ = dU —dW, gdzie ) —
ciepto dostarczone do uktadu, W praca nad uktadem. Ciepto jest niemechaniczna formg energii
przekazywang do poduktadu, a wiec suma jest zerowa,

Qa+0Qp+Qc=0
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Druga (2ZT)

Istnieje ekstensywna rozniczkowalna funkcja stanu (parametroéw zachowanych), entropia
S(U,V,N,...), addytywna (S = Sa + Sp dla poduktadéw AB), ktora nie maleje w uktadach
izolowanych, pozostaje stala w procesach odwracalnych w czasie (nadal uktad izolowany) i dazy
do maksimum, poprzez zmiany parametréw zachowanych dowolone przez Scianki. Maksimum
osiagga w rownowadze. Uwaga historyczna: nazwe entropia wymyslit Clausius w 1865 roku,
na bazie greckiego stowa trope (zmiana) i podobienstwa stownego do energii, uzywajac litery S
prawdopodobnie na czesé¢ imienia tworcy nowozytnej termodynamiki, Sadi Carnot. Réwnowaga
termiczna oznacza, ze 0S/0U jest identyczne w poduktadach. Dowod z ekstremum zwiazanego.
Jesli U = Uy + Ug, to maksymalne S = S4(Ua) + Sp(Up) oznacza

0Ss _ 05
U4 0OUg

Stad definicja temperatury bezwzglednej T: 1/T = 90S/0U (przy ustalonych pozostatych para-
metrach ekstensywnych zachowanych). Stadd@) = T'dS w procesach kwazistatycznych. Warunek
rownowagi pomiedzy poduktadami z 2. zasady to rownosé (05/9X;) dla parametru ekstensyw-
nego zachowanego X;, ktérego wymiana jest mozliwa.

Z tak sformutowanej drugiej zasady mozna wyprowadzi¢ zerowa (lub uznaé, ze jest zawarta
w tym sformutowaniu). Jesli ABC ma maksymalng entropie to zmiana Scianek tego nie zmieni,
skoro parametr mozna byto juz wczesniej wymieni¢ posrednio przez C'.

Trzecia

S >01iS8(T =0)=0 oprocz przypadkéw zamrozonego nieporzadku.

Dodatkowe

T > 0. Zwiazane to jest z tym, ze energia jest ograniczona od dotu, a nie od gory. Jedli energia
jest ograniczona od gory, mozliwe sg ujemne temperatury.

1.2 Entropia jako funkcja wklesta

Okazuje sie, ze druga zasada termodynamiki implikuje wklestosé S(U, V, N) dla uktadow jedno-
rodnych. Przypomnienie, funkcja wklesta wybrzusza sie do gory, tj. dla y(z) mamy y”(x) < 0,
w przeciwienstwie do funkeji wklestej, ktora wybrzusza sie do dotu, tj. y”(z) > 0, Rys. .
Dla funkcji wielu zmiennych macierz 2. pochodnych jest odpowiednio ujemnie lub dodatnio
okreslona.

Przypusémy ze S nie zawsze jest wklesta, Rys. [[.L5] Wtedy mozemy znalez¢ styczna do
S(U) powyzej wykresu (dla uproszczenia V' i N sa ustalone), taczaca punkty (U, S1) i (Us, S2),
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wypukta
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Rysunek 1.4: Funkcja wklesta i wypukta
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Rysunek 1.5: Entropia jako funkcja energii. Kiedy nie jest wklesta, uklad jednorodny podzieli
sie na fazy 21 1 w proporcji x : y, poniewaz wtedy S > 5.

<>
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Rysunek 1.6: Podzial uktadu na poduktady w sytuacji na Rys. [1.5] Wymiana energii zwieksza
entropie
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pomiedzy ktérymi na wykresie jest punkt (U,S). Niech x = U — Uy, y = Uy — U. Mozemy
zapisaé
T
U=U——+U,—
T+ r+y

Podzielmy uktad na poduklady x i y w proporcji z : y, Rys. [[.6] Wtedy

Uy=U——, U, =U—2

T +y r+y

Uktady moga wymienia¢ energie. Pokazemy, ze istnieje taki podzial energii, ktory zwickszy
entropie. Mianowicie

_ €T _
U, = U, U, =U,—~
T +y Tty

Wtedy entropie poduktadow sg rowne

_ T _
Sy = ——5, 5, = —2—3,
Tty T +y
co wynika z ekstentywnosci uktadu, a w zwiazku z tym proporcjonalnego przeskalowania wzgle-
dem rozmiaru catego uktadu. Catkowita entropia to z addytywnosci
B _ _ I y/
S=5+95,= Sy + S
Y '+ y/ 2 x + y/ 1

gdzie 2’ iy’ sa rzutami odcinkéw na prostej 1 —2 nie na U, jak = iy, ale na S (Rys.[L.5). Wtedy
jest zachowana proporcjonalnosé x : y = 2’ : y/. Zatem punkt (U, S) znajduje sie na tej prostej,
powyzej (U, S), a wiec S > S.

Takie zachowanie ukladu wynikajace z 2ZT powoduje przemiany fazowe (1. rodzaju, bo
uklad dzieli si¢ na poduktady rézniace sie U/V i/lub N/V'). Uktadom oplaca sie podzieli¢ na
rozne fazy, zamiast trwaé¢ w jednorodnosci. W szczegdlnych warunkach fizycznych moze nie dojsé
do przemiany fazowej i uktad pozostanie w fazie metatrwalej, Rys. Fazami metatrwalym
jest np. woda przegrzana powyzej 100°C (przy normalnym ci$nieniu) lub para przechtodzona
ponizej 100°C. Wymaga to duzej czystosci i jednorodnoéci fazy, bo przemiane inicjuja nierdw-
nosci naczynia, mikroskopijne niejednorodnosci, a nawet wysokoenergetyczne czastki (komory
pecherzykowe). Takie fazy atwiej uzyskac¢ np. przy przechtadzaniu roztworu cukru, kiedy sie
nie wytraca.

Pokazalismy, ze S(U,V, N) jest funkcja wklesta U, analogicznie bedzie od U, V, N, a wtedy
funkcja odwrotna U(S,V, N) bedzie wypukta o ile T > 0.

2 Potencjaly termodynamiczne

Rozmiczka energii U(S,V, N) definiuje najwazniejsze parametry intensywne

ou ou ou
dU = %dU + de + 8_NdN =Tds — pdV + pdN

7
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U:

Rysunek 1.7: Stany metatrwale pojawiaja sie ponizej odcinka réwnowagi fazowej (czerwony)
jako lokalnie wkleste fragmenty wykresu (niebieskie). Jednak poza punktami przegiecia (zo6tte),
wykres jest wypukly (zielony) i uktad nie bedzie w ogodle takich stanéw osiggat.

gdzie mamy temperature

oUu
T = 2=
(55),..
ciSnienie
__(9U
P=7\ov ) s
i potencjal chemiczny
_(w
H=\aN ),

Na mocy ekstensywnosci

AU(S,V, N) = U(AS, AV, AN)

a rozniczkujac po A i wstawiajac A = 1 otrzymamy
U=TS—pV +uN

Zapis rozniczkowy (), uznacza ustalone z. Uwaga: Dla wickszej liczby parametrow eksten-
sywnych, wszystkie musza by¢ powyzej uwzglednione np. dla substancji wielkosktadnikowe;j
(:ua = aU/ ON, a)

Okazuje sie ze wygodnie w termodynamice postugiwaé sie innymi funkcjami, potencjatami
termodynamicznymi, ktore otrzymuje sie poprzez transformacje Legendre’a. Transformacja Le-
gendre’a polega na zastapieniu zmiennej (tu ekstensywnej) przez pochodna funkcji po niej (in-
tensywna) i odjeciu ich iloczynu. Jest ona jednoznaczna dla funkcji wklestych lub wypuktych),

patrz Rys. [L.§
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b U

Rysunek 1.8: Transformacja Legendre’a od funkeji U(S) do F(T'). Tu T jest nachyleniem stycz-
nej T'=0U/0S, a wartos¢ F' punktem przeciecia stycznej z osig U.
e cnergia swobodna Helmholtza
F(T,V,N)=U —TS
(transformacja U(S)) wtedy —S = 0F /0T a dokladnie;
dF = —SdT — pdV + udN

e entalpia
H(S,p,N)=U +pV
(transformacja S(V')) wtedy V = 0H/0p oraz

dH = TdS + Vdp + pudN

e cnergia swobodna Gibbsa (entalpia swobodna)
G(T,p,N)=U—-T8+pV
(transformacja U(S,V)) wtedy
dG = =Sdt + Vdp + pdN
a takze G = uN.
e wielki potencjal termodynamiczny
AT, V,u)=U—-TS — uN
(transformacja U(S, N)) wtedy
dQ) = —=SdT — pdV — Ndu
oraz {2 == pV
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U F
T

p p
T

H G

Rysunek 1.9: Transformacja Legendre’a od U do G prowadzi albo przez F' (najpierw S — T
potem V' — p) albo przez H (najpierw V — p potem S — T))

Potencjaty U, F', H, G mozna traktowac¢ jako wybieranie niezaleznie transformacji S — T i
V' — p patrz takze Rys. [[.9
Mozna (i jest to bardziej naturalne z 2ZT) rézniczkowac i transformowaé S(U, V, N),

dS = (1/T7)dU + (p/T)dV — (u/T)dN
a potencjaly sa podobne,
e S—U/T =—F/T jako funkcja 1/T, V', N czyli

d(—F/T) = —Ud(1)T) + (p/T)dV — (u/T)dN

e S—U/T —Vp/T =—-G/T jako funkcja 1/T, p/T, N czyli

d(=G/T) = =Ud(1/T) = Vd(p/T) — (u/T)dN

e S—U/T+ Nu/T =—-Q/T jako funkcja 1/T, V| u/T czyli

d(—Q/T) = —Ud(1/T) + (p/T)dV + Nd(u/T)

Spelniona jest takze relacja
S=U/T+Vp/T — uN/T

Transformacja Legendre’a wraca do pierwotnego réwnania po kolejnym zastosowaniu. np.
U=F+ ST, S=—0F/0T. Dlatego potencjaly termodynamiczne jako transformacje Legen-
dre’a sg zwigzkami podstawowymi.

Inne definicje

Cieplo wtasciwe C, = 0Q/T), = T(05/0T), (molowe ¢ = C/N), w tym C, = T(9S/0T)y =
(0U/oT)y i Cp, =T(05/0T), = (0H/0T )y,

Scisliwosé k, = —V1(AV/dp).,, rozszerzalnosé a, = V-1HOV/IT), (x = T izotemiczna, x = S
adiabatyczna)

10
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2.1 Gaz doskonaly

Rownanie stanu pV' = NRT jesli N jest liczba moli [Uwaga: stala gazowa R = kN4 jest
obecnie ustalona przez liczbe Avogadro Ny ~ 6,02214075 x 10%®/mol i stala Boltzmanna k ~
1,380649 x 10~ **kgm?/Ks?|. Wynika z niego ze S = RNIn(V/N) + Nf(u) dla w = U/N, a
f jest pewna funkcja Jesli przyjmiemy ustalone ciepto wlasiwe, ¢y = xR, x = 3/2 dla gazu
l-atomowego, x = 5/2 dla 2-atomowego, czyli U = ¢y NT+ AN, to f = cy In(u— A) + B, gdzie
A, B pewne stale. Gaz doskonaly ma klasyczny model statystyczny — czastki nieoddziatujace.
Zauwazmy, ze entropia jest ujemna przy 7' — 0 lub V' — 0, i wtedy model klasyczny zatamuje
sie (bo z 3. zasady S > 0)

Uwaga: kwantowy jednoatomowy gaz doskonaly ma nieco inne réwnanie stanu 3pV = 2U,
zgodne z klasycznym, ale pelny opis takze wymaga dodatkowej (innej) zaleznosci.

2.2 Gaz van der Waalsa

Roéwnanie stanu
(p+aN?/V*(V — Nb) = NRT, p= RT/(v — b) — a/v?

dla v = V/N, co daje takze U = Nf(T) — aN?/V i mozna przyjac¢ stale cieplo wiasciwe
cy = f/(T). Gaz van der Waalsa ma tylko przyblizone modele statystyczne. Entropia w tym
przypadku S = NeyInT + RN In(V/N) + NB, gdzie B jest nieznana stala. Do uzyskania
pelnej informacji musimy wyznaczyé¢ T(U,V, N) = (U+aN?/V — AN)/Ncy, gdzie A jest takze
nieznang stala (czesto przyjmuje sie A = 0).

Model gazu van der Waalsa pozwala na opis przemiany fazowej 1. rodzaju i punktu krytycz-
nego. Dla wysokich temperatur k7 jest dodatnie, ale w niskich, w pewnym zakresie objetosci,
jest ujemne co tamie zasade wklestosci S i wymusza podzial na 2 fazy. Dzieje sie tak poni-
zej temperatury krytycznej Tk okreslonej réwnaniami (Op/dv)r = (8°p/0v*)r = 0 co daje
punkt krytyczny (T, px,vi) okreslony RTx = 8a/27b, px = a/27b*, vk = 3b. Na Rys.
zaznaczone sa izotermy — zaleznosci p(V/N,T = const) gazu van der Waalsa dla temperatur
wiekszych, réownych i mniejszych od Tk (minimalna objetosé to Nb). Ponizej Ty fragment ro-
snacy daje ujemne kr, czyli jest niemozliwy z warunkéw stabilnosci. Obie fazy moga istnieé¢
jednoczesnie (wspotistnie¢) w temperaturze zaleznej od ci$nienia. Z kolei krzywa wspolistnienia
okresla zasada rownych pol tj. pozioma linia dzieli izoterme tak, aby pola miedzy nig i izoterma
byly rowne (oznaczone + i —). Jest to tzw. konstrukcja Maxwella, wynikajaca z réwnosci ci-
$nient i potencjatow chemicznych. Dla stalej temperatury p = [wvdp = pv — [ pdv czyli dla faz
1i2 v

p(vg — 1) = / pdv.
U1
Jak wida¢ w wykresu, Rys. obie fazy moga by¢ przedtuzone do stanéw metatrwalych, ale
tylko do konca obszaru stabilnosci Krzywa wspotistnienia faz mozna wyznaczy¢ parametrycznie,
Rys. [[.I1] patrz John Lekner, Parametric solution of the van der Waals liquid—vapor coezistence
curve, Am. J. Phys. 50, 161 (1982) http://dx.doi.org/10.1119/1.12877

11
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Nb 4 4

Rysunek 1.10: Izotermy dla gazu van der Waalsa i konstrukcja Maxwella réwnych pol wy-
znaczajaca rownowage fazowa. Linia kropkowana jest nieosiagalna jako wklesta, ale mozna ja
wykorzysta¢ do obliczen pamietajac, ze tak naprawde mamy cala zaleznosé¢ S(U,V, N) w tym
potencjal chemiczny.

12
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Rysunek 1.11: Dokladne wykresy przemiany fazowej dla gazu van der Waalsa (kolor, czarna
linia przemiany)

13



Fizyka statystyczna

3 Prawdopodobienstwo

Prawdopodobienstwo jest funkcja 0 < p(A) < 1 dla podzbiorow A (zdarzen) pewnej przestrzeni
X, przy czym p(X) = 1, p(@) = 0, a dla zbiorow AN B = @ (roztacznych) p(AU B) =
p(A) + p(B) (takze dla przeliczalnej rodziny zbioréw). Jesli p(A N B) = p(A)p(B) to Ai B
sg niezalezne. Zmienne losowe: podzialy na rodziny roztacznych podzbioréw A, N A, = & jedli
x # y. Mozna wtedy rownowaznie zamieni¢ x = A, i pisa¢ p(z) — rozklad prawdopodobienstwa.
Dla ciagtych rozktadow stosujemy gestosé p(z) lub jej dystrybuante

xT

P(z) = p(< x) —/ p(y)dy
— 0o

gdzie P(x) jest skumulowanym prawdodobieristwiem zdarzen o wartosci zmiennej losowej mniej-
szej lub réownej od zadanej z, niemalejacg i prawostronnie ciagly — granica funkcji dazy do
wartosci od prawej do lewej [Uwaga: mozna zastapi¢ nier6wnos¢ silng < z i ciagtosé na lewo-
stronna|

W praktyce prawdopodobienistwo ma sens dla wielokrotnie powtarzanej takiej samej czyn-
nosci, gdzie wynik jest zmienia si¢ losowo. Trzeba zagwarantowaé¢ ze warunki pozostaja takie
same i poprzednie czynnosci i wyniki nie maja wpltywu na nastepna (w rzeczywistosci bywa z
tym problem, choé¢ rzadko). Srednia

T=FEx=(z)= pr(x) = /xp(x)dx

(zapis Fz zamiast (z) stosuja matematycy a T statystycy) a takze wariancja

0* = ((z = (x))*) = (2%) — (z)"

Zmiennych losowych moze by¢ wiecej np. x1, xo i wszystkie funkcje maja odpowiednio wiecej
argumentow, np. p(z, ) oraz

T )
P(I1,$2) =p(< 21, < 29) = / dy1/ dys P(yla?h)

14



3. PRAWDOPODOBIENSTWO 15

Suma x = x1 + zo daje splot
p(x) = /dyp(y,:r —y)

Dla rozktadow niezaleznych p(xy,z5) = p1(z1)p2(x2) a splot oznaczamy p = p; * po. Rozklady
brzegowe (marginalne) ignoruja jedna (lub wiecej) zmiennych,

prlaer) = plor) = [ plas,za)da
Funkcja charakterystyczna
W [ e

ma wlasnosé¢ x(0) = 1, daje srednia

i jej kwadrat
d*x
dX?|,_,

Mozna réwnowaznie stosowaé logarytm In x(0) = 0

dlny
d\

d*Iny
- = = —0
dX? |,_
Funkcja charakterystyczna zamienia splot na iloczyn, tj. dla p = py*pe mamy x () = x1(A)x2(N).
Najbardziej znane rozktady:

A=0

e dwupunktowy (Bernoulliego), x = 0,1, 1 > p(0) = p >0, p(l) = ¢ =1—1p, (x) = g,
o = pq

e normalny (Gaussa)

p(x) = Nyo(z) =
dla p = (x), a w szczegolnym przypadku

1
p(x) = Noa(r) = e/

Rozklady wielu niezaleznych zmiennych daja zwykle rozklady sumy x = ) . ; opisany w
przyblizeniu rozkladem normalnym (centralne twierdzenie graniczne). Dla rozkladu normalnego
z = (z — p)/o jest miarg rozsadku, czy dane zdarzenie jest przypadkiem czy wyjatkiem i np.
wyklucza dang hipoteze oparta na wytypowanym modelu statystycznym. Wartosé |z| powyzej
3 a tym badziej 5 przyjmuje sie jako granice akceptacji, Rys.

15



4. MECHANIKA KLASYCZNA 16
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Rysunek 1.12: rozklad normalny ze érednig p i wariancjg o2

4 Mechanika klasyczna

Klasyczny ruch opisuja trajektorie, wspohrzedne jako funkcje czasu ¢;(t) (i = 1,2,...), t — czas.
Krocej piszemy ¢(t) majac na mysli wszystkie wspohrzedne (moga to by¢ nie tylko wektory
trojwymiarowe, ale tez katy, dtugosci wzdtuz krzywych, itp.). Wazne sa predkosci ¢; = dg;/dt
(¢ = dq/dt). Dynamike zadaje funkcja Lagrange’a L(q, ¢, t). Klasyczny ruch otrzymujemy mi-
nimalizujac dziatanie | Ldt przy ustalonych koncach tj. ¢(t1) i g(f2). Daje to rownania Eulera-
Lagrange’a

pi = dp;/dt = OL/9q;, p;i = L /0q;

(p — nazywamy pedem, w og6lnym znaczeniu, nie musi to by¢ tylko wektor trojwymiarowy).
Transformacja Legendre’a funkcji Lagrange’a daje funkcje Hamiltona

H(g,p,t) =Y qipi— L

Jesli L = L(q, ) (nie zalezy jawnie od czasu) to H jest stala ruchu — energia (moga oczywiscie
by¢ i inne state ruchu, np. ped, moment pedu). Réwnania ruchu maja wtedy postacé

0H . 0OH

o D= —a—q-

4.1 Przestrzen fazowa

Przestrzen fazowa konstruuje sie jako I' = (¢, p), bo dI'(t) = dgdp nie zmienia sie w czasie, na
mocy twierdzenia Liouville’a, ktére wynika wprost z rownan Eulera-Lagrange’a

dq;  Opi\
Z (6% * api) =0

7

Dla elementu objetosci V,, = dxy - - - dx,, zaleznego od czasu mamy V, = det Mdy; - - - dy,, gdzie
y stanowia wspolrzedne niezalezne od czasu a M = (0x/0y) jest macierza pochodnych 0z;/0y;.

16



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 17

Mamy dV, = ddet(0z/0y)dy; - - - dy,. Ze wzoru Jacobiego dla macierzy M
ddet M = (det M)Tr(DdM),

gdzie TrA = ). A;; to §lad macierzy, a D jest macierza dolaczona (transponowana macierz
minoréw z naprzemiennie zmienionym znakami). Jesli det M # 0 to D = M~!det M. Dowod
np. z rozwiniecia Laplace’a i wzoréw na macierz odwrotna przez minory. Wtedy dostajemy

ddet(0x/0y) = det(0x/Jy)Tr(0y/0x)(ddx/0y) = det(Dx/dy)Tr(ddx/Ox)

(zapis macierzowy). Przy zaleznosci od czasu zastepujemy dz przez &, dostajemy zero dla
x = (¢,p) na mocy twierdzenia Liouville’a i wnioskujemy, ze objetos¢ przestrzeni fazowej sie
nie zmienia.

Roéwnania ewolucji mozna zgrabnie zapisa¢ za pomoca tzw. nawiaséw Poissona dla dowol-
nych funkcji X (q,p) 1 Y(q,p) (nie tylko prostych wspotrzednych!)

0X9JY 0Y o0X
{X7Y} B Xl: <a%’ Op; a g a]%)

bo ¢; = —0H/0p; = {q;, H} oraz p; = —0H/0q; = {p;, H}. Ponadto {¢;,p;} = 0;;.

5 Entropia statystyczna i zasada maksimum

Podstawowym pojeciem fizyki statystycznej jest entropia. Punktem wyjscia jest entropia infor-
macyjna Shannona (ktory nazwe zapozyczyt wlasnie z termodynamiki)

S =—kp ijlnpj

J

dla rozkladu prawdopodobienistwa p; dla zdarzenl j . Stala Boltzmanna kp stanowi tu jedynie
dowolny czynnik wymiarowy, ale ustalamy go tak dla pozniejszej zgodnosci z termodynamiks.
Uwaga: W termodynamice postugujemy sie liczbg moli V,,,,; a w fizyce statystycznej liczba cza-
stek N, = NaNpo, gdzie N4 jest liczba Avogadra. Z tego powodu stata Boltzmanna zastepuje
stala gazowa R = Nakp.

Entropia informacyjna ma kilka waznych wtasnosci, naturalnych dla iloscowego opisu in-
formacji: nie zmienia sie przy permutacji ("przetasowaniu") zdarzen, jest subaddytywna tj.
S <S4+ Sp dla podziatu na poduktady A i B jesli p}-“ = > Djm oraz pb = Zj pjm (entropia
zwicksza sie przy uniezaleznieniu podukladow), addytywna tj. S = Sa + Sp jesli czesci A i
B sa niezalezne pj,, = pfpﬁ. Okazuje sie, ze tylko entropia Shannona spelnia te warunki (z
dokladnoscia do czynnika i zdarzen niemozliwych p = 0), J. Aczel, Z. Daroczy, On Measures of
Information and Their Characterizations (Academic Press, New York 1975)

Entropia w fizyce statystycznej jest entropia Shannona dla rozktadu prawdopodobietistwa p
a zdarzeniami sa pozdbiory (przeliczalne sumy przedzialow) przestrzeni fazowej (mikrostany).

17



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 18

W celu zapewnienia odpowiedniego wymiaru trzeba jednak uzy¢ bezwymiarowej miary prze-
strzeni fazowej
dqy.dpy,
dl’ = k;!
12T,

Zamiast statej Plancka A mozna by uzy¢ dowolnej statej o jej wymiarze, ale ten szczegdlny wy-
boér pozwoli na utozsamienie pozniej entropii klasycznej i kwantowej kiedy réznica sie zaciera.
Czynniki k;! uwzgledniajg nierozroznialnosé czastek w zbiorach k; elementowych. Niezmienno$é
przy permutacjach odpowiada niezmienniczosci przestrzeni fazowej, co zapewnia nam twierdze-
nie Liouville’a.

S = —kp(lnp) = —kB/dF p(T) In p(T)

5.1 Rozklady/zespoty

Podstawowym zadaniem fizyki statystycznej jest konstrukcja rozktadu rownowagowego p dla
dynamiki niezaleznej jawnie od czasu w ustalonej objetosci i na tej podstawie zwigzkéw podsta-
wowych. Poniewaz p nie zmienia sie w czasie, wiec {p, H} = 0. Przyjmuje sie zasade maksymal-
nej entropii przy ustalonych warunkach, tj. wybieramy takie p, ktore daje najwieksza entropie,
uzyskujac r6zna postaé¢ p. Mozna wtedy stosowaé¢ metode mnoznikow Lagrange’a.

Mikrokanoniczny

Zaktadamy H < U (ustalona energia U) badz H € [U, U 4+ AU]. Klasycznie mozna takze wzia¢
H = U. Podobnie postepujemy z innymi wielko$ciami zachowanymi, zwykle ustalamy V', V.
Przyjmujac ze entropia ma byc maksymalna, otrzymuje sie p = const w dozwolonym obszarze
(makrostanie). Dostajemy entropie w historycznej formule Boltzmanna S = kgIln W gdzie W
jest objectoscia (miara) dostepnej przestrzeni fazowej (mikrostanow).

Rozktad mikrokanoniczny prosty w definicji, jest bardzo niewygodny w stosowaniu ze wzgledu
na sztuczne ostre warunki. Dlatego nadaje sie tylko w przypadku prostych uktadéw fizycznych.

Kanoniczny

Ustalamy (H) = U i np. N. Metoda mnoznikéw Lagrange’a — f(z1,...2,) jest maksymalne
przy ustalonym g(xy,...,x,) jesli

Of /0x; = Ndg/0x;
Dla S otrzymujemy (ustalone [ dI'pH oraz [ dT'p)

—lnp—-1-A=pH

18



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 19

a wiec p = Z lexp(—BH), gdzie Z jest czynnikiem normalizacji czyli

7 = /dF e PH

Pokazemy, ze § = 1/kgT alnZ = —BF dla energii swobodnej Helmholtza F'. Mamy bowiem
Slkg=InZ+ p(H) =InZ+ pU
a takze
U=(H)=-0InZ/0p
A z drugiej strony
1 oS 0lmzZop 0p

—_— = —_— —U =

kT o0~ ap ou Tout TP
Istnienie pochodnej 08/0U wynika z faktu ze

oU/OB = —0*InZ/0B* = ((6H)*) > 0
dla 6H = H — (H).

Wielki kanoniczny

W zespole wielki kanonicznym liczba czastek N moze si¢ zmienia¢. Bedziemy pisa¢ pn(I'y)
dla ustalonej liczby czastek N, ale skraca¢ do p(I") kiedy jest to jednoznaczne. Teraz nie tylko
calkujemy po przestrzeniu fazowej dla kazdego N, ale takze sumujemy

Ni::l/dFN Eidl“

Ustalamy (H) = U, (N) = N. Wtedy za pomoca 3 mnoznikéw Lagrange’a dostajemy
—lnp—1—-A=pH —aN

p=ZE"texp(iN — SH) Podobnie jak w kanonicznym mamy
E= idl“ MNP

Pokazemy ponownie, ze § = 1/kgT aln= = —pQ dla wielkiego potencjatu termodynamicznego
QO =—pV.
Mamy bowiem
S/kp =InZ+ B(H) — i(N) =InZ + BU — N

a takze

U= (H)=-0InZ/0p

19
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N = (N)=0InZ/0u
A 7z drugiej strony

| 0S OWm=o8 om=op 08, O -
—_— = —_— R _ __N —
WeT oU o au  op au Taul “auy TAS

Okazuje sie takze, ze

i 0S O0lmzZop JdlmZop 0p op - .

_— = —— = —_— _— —_— — —,N — = —
WeT 0N 08 oN ' of oN T onU on A=

czyli i = pu/kpT gdzie p jest potencjatem chemicznym. Istnienie pochodnych wynika dodatnio
okreslonej macierzy pochodnych

oU/op —0UJop\ _ ( 9*InZ/9B? PInZ/0pop\ [ ((§H)?) —(SHGSN)
(aN/a,B 8N/8ﬂ)_(821n5/8ﬁ8ﬂ a?mz/&g?)_(—wwm <(5N)2))

Rownowaznosé

Wszystkie rozktady zasadniczo rozpatruje si¢ w granicy termodynamicznej, tj. V' — oo, ale przy
ustalonych (H)/V oraz (N)/V iogoélnie (X;)/V, i wtedy daja te same wyniki. Wtedy tez mozna
utozsami¢ (X) i X. Trzeba jednak uwazaé jesli jest nietypowa wielkosé czuta na rozklad (np.
catka objetosciowa ze sredniej iloczynu koncentracji), w spornych sytuacjach rozstrzyga rozktad
wielki kanoniczny (najpoprawniejszy). Mozna od tej granicy odstapié jesli celowo rozpatrujemy
maly uklad, badz fragment duzego, ale wymaga to dyskusji oddzialywania z otoczeniem, tym
doktadniejszej im mniej kanoniczny rozktad bierzemy. Dla ciekawych wiecej na ten temat https:
//arxiv.org/abs/1403.6608
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