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Termodynamika

1 Opis termodynamiczny
Układ – w termodynamice pojęcie podstawowe makroskopowy zbiór cząsteczek, opisany pewną
liczbą parametrów (liczb rzeczywistych). Wyróżniamy parametry ekstensywne. Paramterami
tymi może być np. U – energia (wewnętrzna), V – objętość, N – liczba moli, Na (wiele skład-
ników, indeksowanych a = 1, 2, . . . ), q – ładunek, M – magnetyzacja. Układ może być zbiorem
podukładów i każdy podukład jest także odpowiednio opisanym układem (analogicznie do po-
zdzbiorów w matematyce). Wartość parametru ekstensywnego dla całego układu jest sumą ich
wartości dla podukładów, np.

U = U1 + U2 + · · ·+ Un

dla podukładów 1,2,. . . ,n. Szczególnym układem jest jednorodny. Taki układ można podzielić
na dowolną liczbę dowolnie małych (tj. np. Ui/U jest dowolnie ograniczone) podukładów a
parametry ekstensywne rozkładają się proporcjonalnie, tj.

Ui/Vi = U/V dla i = 1, 2, . . . , n

Przeważnie rozpatrujemy układ jako skończony zbiór podukładów jednorodnych (wyjątki: w
polu grawitacyjnym, elektrycznym itp.). Oprócz ekstensywnych są też parametry intensywne,
definiowane w układzie jednorodnym, takie same dla każdego podukładu. Są to m.in. ilorazy
U/V , U/N , ale także ciśnienie p i temperatura T . Całego układu nie da się opisać wspólnym
parametrem intensywnym, jeśli jest różny w różnych podukładach jednorodnych. Nie wszystkie
parametry muszą być niezależne. Układ i podukłady mogą zmieniać się w czasie, np. U(t), po-
przes procesy termodynamiczne. Czas w termodynamice jest umowny, zadaje pewien porządek,
najprościej tradycynie oznaczać go liczbą rzeczywistą ale też można liczbami całkowitymi albo
symbolicznie, jako np. początek i koniec. Stan układu i podukładów (w danej chwili czasu) jest
opisany przez pierwotnie komplet wartości niezależnych parametrów ekstensywnych, ale potem
można zmieniać zbiór parametrów. Funkcja stanu – funkcja kompletu parametrów układu w da-
nej chwili czasu. Wyróżniamy parametry ekstensywne zachowane – stałe globalne: U , V , N , Na

(jeśli nie ma zmian chemicznych), q. Uwaga 1: energia wewnętrzna jest zachowana razem z me-
chaniczną tj. U+E = const. Energia mechaniczna dotyczy zwykle dużych, makroskopowych ciał
jako specjalnych układów opisanych masą M i prędkością v jako Mv2/2 lub Mc2/

√
1− v2/c2

w teorii względności. Uwaga 2: M jest zachowana tylko w przybliżeniu, niezachowanie jest
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1. OPIS TERMODYNAMICZNY 3

A B

C

Rysunek 1.1: Układ z trzech podukładów A, B, C połączonych ściankami, każda może dopusz-
czać zmiany innej grupy parametrów zachowanych. W praktyce blokada np. wymiany energii
między A i B nie zadziała, jeśli mogą ją wymieniać A i C oraz B i C.

istotne w diamagnetyzmie. Podukłady są rozdzielone wzajemnie ściankami (Rys. 1.1), które
dopuszczają zmianę parametrów zachowanych pomiędzy parą układów (suma nie zmienia się):

zmiana? TAK NIE
energii diatermicza adiabatyczna

objętości ruchoma nieruchoma
moli przepuszczalna nieprzepuszczalna

Brak możliwości jakichkolwiek zmian: ścianka izolująca. Ścianki można zmieniać w czasie, ale
skokowo (tak/nie). Układ jednorodny przy podziale ma ścianki, które wszystko przepuszczają.

Układ

• izolowany – zmiany wszystkich zachowanych parametrów niemożliwe,

• zamknięty – zmiany liczby moli niemożliwe.

• skończony – o skończonych parametrach ekstensywnych

• nieskończony rezerwuar – jednorodny w granicy nieskończonej, tj. np. U → ∞ ale U/N i
V/N są ustalone. Opisujemy go tylko parametrami intensywnymi.

Stan

• stacjonarny – nie zmienia się w czasie

• równowagowy – stacjonarny bez przepływów

Dla układów izolowanych skończony stacjonarny = równowagowy. Przepływ stacjonarny bez
równowagi może być realizowany przez umieszczenie układu w kontakcie w dwoma różnymi
rezerwuarami (Rys. 1.2). Jeśli zastąpimy rezerwuary skończonymi podukładami, to stan sta-
cjonany musi jednocześnie być równowagowy. Zasadniczo cały układ jako zbiór podukładów
skończonych jest izolowany, bo nie ma jak zmienić swoich parametrów zachowanych.
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1. OPIS TERMODYNAMICZNY 4

A BS

Rysunek 1.2: Środkowy podukład S jest połączony z dwoma rezeruwarami A i B. Stan stacjo-
narny nie musi być równowagowy, z powodu nieskończoności rezerwuarów.

A B

C

A B

C

Rysunek 1.3: Zerowa zasada termodynamiki. Jeśli AC i BC mogą wymieniać jakiś parametr
zachowany i jest równowaga to będzie nadal, jak zmienimy ścianki, aby AB mogły go wymieniać
bezpośrednio. Brak ścianek oznacza izolujące.

Proces kwazistatyczny (pseudostatyczny) – ciąg stanów równowagowych (przykład: balon
z maleńką dziurką przez którą ucieka powietrze, w praktyce procesy dostatecznie powolne),
kwazistatyczny odwracalny w czasie – jeśli może przebiegać odwrotnie w czasie.

1.1 Zasady termodynamiki

Zerowa

Jeśli układ ABC jest równowadze dla AB i BC połączonych taką samą ścianką, to ABC będzie
także w równowadze jeśli połączymy AC tą samą ścianką (Rys. 1.3).

Pierwsza

Energia jest parametrem zachowanym, tj. U + E = const w całym (izolowanym) układzie
(poza przypadkiem rezerwuarów). Zmiana energii mechanicznej ∆E = −W , gdzie W – praca
mechaniczna (za pomocą sił) nad układem Q = ∆U − W lub d̄Q = dU − d̄W , gdzie Q –
ciepło dostarczone do układu, W praca nad układem. Ciepło jest niemechaniczną formą energii
przekazywaną do podukładu, a więc suma jest zerowa,

QA +QB +QC = 0
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1. OPIS TERMODYNAMICZNY 5

Druga (2ZT)

Istnieje ekstensywna różniczkowalna funkcja stanu (parametrów zachowanych), entropia
S(U, V,N, . . . ), addytywna (S = SA + SB dla podukładów AB), która nie maleje w układach
izolowanych, pozostaje stała w procesach odwracalnych w czasie (nadal układ izolowany) i dąży
do maksimum, poprzez zmiany parametrów zachowanych dowolone przez ścianki. Maksimum
osiąga w równowadze. Uwaga historyczna: nazwę entropia wymyślił Clausius w 1865 roku,
na bazie greckiego słowa trope (zmiana) i podobieństwa słownego do energii, używając litery S
prawdopodobnie na cześć imienia twórcy nowożytnej termodynamiki, Sadi Carnot. Równowaga
termiczna oznacza, że ∂S/∂U jest identyczne w podukładach. Dowód z ekstremum związanego.
Jeśli U = UA + UB, to maksymalne S = SA(UA) + SB(UB) oznacza

∂SA

∂UA

=
∂SB

∂UB

Stąd definicja temperatury bezwzględnej T : 1/T = ∂S/∂U (przy ustalonych pozostałych para-
metrach ekstensywnych zachowanych). Stądd̄Q = TdS w procesach kwazistatycznych. Warunek
równowagi pomiędzy podukładami z 2. zasady to równość (∂S/∂Xi) dla parametru ekstensyw-
nego zachowanego Xi, którego wymiana jest możliwa.

Z tak sformułowanej drugiej zasady można wyprowadzić zerową (lub uznać, że jest zawarta
w tym sformułowaniu). Jeśli ABC ma maksymalną entropię to zmiana ścianek tego nie zmieni,
skoro parametr można było już wcześniej wymienić pośrednio przez C.

Trzecia

S ≥ 0 i S(T = 0) = 0 oprócz przypadków zamrożonego nieporządku.

Dodatkowe

T ≥ 0. Związane to jest z tym, że energia jest ograniczona od dołu, a nie od góry. Jeśli energia
jest ograniczona od góry, możliwe są ujemne temperatury.

1.2 Entropia jako funkcja wklęsła

Okazuje się, że druga zasada termodynamiki implikuje wklęsłość S(U, V,N) dla układów jedno-
rodnych. Przypomnienie, funkcja wklęsła wybrzusza się do góry, tj. dla y(x) mamy y′′(x) < 0,
w przeciwieństwie do funkcji wklęsłej, która wybrzusza się do dołu, tj. y′′(x) > 0, Rys. 1.4.
Dla funkcji wielu zmiennych macierz 2. pochodnych jest odpowiednio ujemnie lub dodatnio
określona.

Przypuśćmy że S nie zawsze jest wklęsła, Rys. 1.5. Wtedy możemy znaleźć styczną do
S(U) powyżej wykresu (dla uproszczenia V i N są ustalone), łączącą punkty (U1, S1) i (U2, S2),
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1. OPIS TERMODYNAMICZNY 6

wklęsła

wypukła

Rysunek 1.4: Funkcja wklęsła i wypukła

Rysunek 1.5: Entropia jako funkcja energii. Kiedy nie jest wklęsła, układ jednorodny podzieli
się na fazy 2 i 1 w proporcji x : y, ponieważ wtedy S̄ > S.

Rysunek 1.6: Podział układu na podukłady w sytuacji na Rys. 1.5. Wymiana energii zwiększa
entropię
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2. POTENCJAŁY TERMODYNAMICZNE 7

pomiędzy którymi na wykresie jest punkt (U, S). Niech x = U − U1, y = U2 − U . Możemy
zapisać

U = U2
x

x+ y
+ U1

y

x+ y

Podzielmy układ na podukłady x i y w proporcji x : y, Rys. 1.6. Wtedy

Ux = U
x

x+ y
, Uy = U

y

x+ y

Układy mogą wymieniać energię. Pokażemy, że istnieje taki podział energii, który zwiększy
entropię. Mianowicie

Ūx = U2
x

x+ y
, Ūy = U1

y

x+ y

Wtedy entropie podukładów są równe

S̄x =
x

x+ y
S2, S̄y =

y

x+ y
S1

co wynika z ekstentywności układu, a w związku z tym proporcjonalnego przeskalowania wzglę-
dem rozmiaru całego układu. Całkowita entropia to z addytywności

S̄ = S̄x + S̄y =
x′

x′ + y′
S2 +

y′

x′ + y′
S1

gdzie x′ i y′ są rzutami odcinków na prostej 1−2 nie na U , jak x i y, ale na S (Rys. 1.5). Wtedy
jest zachowana proporcjonalność x : y = x′ : y′. Zatem punkt (U, S̄) znajduje się na tej prostej,
powyżej (U, S), a więc S̄ > S.

Takie zachowanie układu wynikające z 2ZT powoduje przemiany fazowe (1. rodzaju, bo
układ dzieli się na podukłady różniące się U/V i/lub N/V ). Układom opłaca się podzielić na
różne fazy, zamiast trwać w jednorodności. W szczególnych warunkach fizycznych może nie dojść
do przemiany fazowej i układ pozostanie w fazie metatrwałej, Rys. 1.7. Fazami metatrwałym
jest np. woda przegrzana powyżej 100◦C (przy normalnym ciśnieniu) lub para przechłodzona
poniżej 100◦C. Wymaga to dużej czystości i jednorodności fazy, bo przemianę inicjują nierów-
ności naczynia, mikroskopijne niejednorodności, a nawet wysokoenergetyczne cząstki (komory
pęcherzykowe). Takie fazy łatwiej uzyskać np. przy przechładzaniu roztworu cukru, kiedy się
nie wytrąca.

Pokazaliśmy, że S(U, V,N) jest funkcją wklęsłą U , analogicznie będzie od U, V,N , a wtedy
funkcja odwrotna U(S, V,N) będzie wypukła o ile T > 0.

2 Potencjały termodynamiczne
Różniczka energii U(S, V,N) definiuje najważniejsze parametry intensywne

dU =
∂U

∂S
dU +

∂U

∂V
dV +

∂U

∂N
dN ≡ Tds− pdV + µdN
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2. POTENCJAŁY TERMODYNAMICZNE 8

Rysunek 1.7: Stany metatrwałe pojawiają się poniżej odcinka równowagi fazowej (czerwony)
jako lokalnie wklęsłe fragmenty wykresu (niebieskie). Jednak poza punktami przegięcia (żółte),
wykres jest wypukły (zielony) i układ nie będzie w ogóle takich stanów osiągał.

gdzie mamy temperaturę

T =

(
∂U

∂S

)
V,N

ciśnienie
p = −

(
∂U

∂V

)
S,N

i potencjał chemiczny

µ =

(
∂U

∂N

)
S,V

Na mocy ekstensywności
λU(S, V,N) = U(λS, λV, λN)

a różniczkując po λ i wstawiając λ = 1 otrzymamy

U = TS − pV + µN

Zapis różniczkowy ()x uznacza ustalone x. Uwaga: Dla większej liczby parametrów eksten-
sywnych, wszystkie muszą być powyżej uwzględnione np. dla substancji wielkoskładnikowej
(µa = ∂U/∂Na)

Okazuje się że wygodnie w termodynamice posługiwać się innymi funkcjami, potencjałami
termodynamicznymi, które otrzymuje się poprzez transformację Legendre’a. Transformacja Le-
gendre’a polega na zastąpieniu zmiennej (tu ekstensywnej) przez pochodną funkcji po niej (in-
tensywną) i odjęciu ich iloczynu. Jest ona jednoznaczna dla funkcji wklęsłych lub wypukłych),
patrz Rys. 1.8.
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2. POTENCJAŁY TERMODYNAMICZNE 9

Rysunek 1.8: Transformacja Legendre’a od funkcji U(S) do F (T ). Tu T jest nachyleniem stycz-
nej T = ∂U/∂S, a wartość F punktem przecięcia stycznej z osią U .

• energia swobodna Helmholtza

F (T, V,N) = U − TS

(transformacja U(S)) wtedy −S = ∂F/∂T a dokładniej

dF = −SdT − pdV + µdN

• entalpia
H(S, p,N) = U + pV

(transformacja S(V )) wtedy V = ∂H/∂p oraz

dH = TdS + V dp+ µdN

• energia swobodna Gibbsa (entalpia swobodna)

G(T, p,N) = U − TS + pV

(transformacja U(S, V )) wtedy

dG = −Sdt+ V dp+ µdN

a także G = µN .

• wielki potencjał termodynamiczny

Ω(T, V, µ) = U − TS − µN

(transformacja U(S,N)) wtedy

dΩ = −SdT − pdV −Ndµ

oraz Ω == pV

9



2. POTENCJAŁY TERMODYNAMICZNE 10

Rysunek 1.9: Transformacja Legendre’a od U do G prowadzi albo przez F (najpierw S → T
potem V → p) albo przez H (najpierw V → p potem S → T )

Potencjały U , F , H, G można traktować jako wybieranie niezależnie transformacji S → T i
V → p patrz także Rys. 1.9.

Można (i jest to bardziej naturalne z 2ZT) różniczkować i transformować S(U, V,N),

dS = (1/T )dU + (p/T )dV − (µ/T )dN

a potencjały są podobne,

• S − U/T = −F/T jako funkcja 1/T , V , N czyli

d(−F/T ) = −Ud(1/T ) + (p/T )dV − (µ/T )dN

• S − U/T − V p/T = −G/T jako funkcja 1/T , p/T , N czyli

d(−G/T ) = −Ud(1/T )− V d(p/T )− (µ/T )dN

• S − U/T +Nµ/T = −Ω/T jako funkcja 1/T , V , µ/T czyli

d(−Ω/T ) = −Ud(1/T ) + (p/T )dV +Nd(µ/T )

Spełniona jest także relacja
S = U/T + V p/T − µN/T

Transformacja Legendre’a wraca do pierwotnego równania po kolejnym zastosowaniu. np.
U = F + ST , S = −∂F/∂T . Dlatego potencjały termodynamiczne jako transformacje Legen-
dre’a są związkami podstawowymi.

Inne definicje

Ciepło właściwe Cx = (∂̄Q/T )x = T (∂S/∂T )x (molowe c = C/N), w tym Cv = T (∂S/∂T )V =
(∂U/∂T )V i Cp = T (∂S/∂T )p = (∂H/∂T )V ,
ścisliwość κx = −V −1(∂V/∂p)x, rozszerzalność αx = V −1(∂V/∂T )x (x = T izotemiczna, x = S
adiabatyczna)

10



2. POTENCJAŁY TERMODYNAMICZNE 11

2.1 Gaz doskonały

Równanie stanu pV = NRT jeśli N jest liczbą moli [Uwaga: stała gazowa R = kNA jest
obecnie ustalona przez liczbę Avogadro NA ≃ 6, 02214075 × 1023/mol i stałą Boltzmanna k ≃
1, 380649 × 10−23kgm2/Ks2]. Wynika z niego że S = RN ln(V/N) + Nf(u) dla u = U/N , a
f jest pewną funkcją Jeśli przyjmiemy ustalone ciepło włąsiwe, cV = xR, x = 3/2 dla gazu
1-atomowego, x = 5/2 dla 2-atomowego, czyli U = cVNT +AN , to f = cV ln(u−A)+B, gdzie
A,B pewne stałe. Gaz doskonały ma klasyczny model statystyczny – cząstki nieoddziałujące.
Zauważmy, że entropia jest ujemna przy T → 0 lub V → 0, i wtedy model klasyczny załamuje
się (bo z 3. zasady S ≥ 0)
Uwaga: kwantowy jednoatomowy gaz doskonały ma nieco inne równanie stanu 3pV = 2U ,
zgodne z klasycznym, ale pełny opis także wymaga dodatkowej (innej) zależności.

2.2 Gaz van der Waalsa

Równanie stanu

(p+ aN2/V 2)(V −Nb) = NRT, p = RT/(v − b)− a/v2

dla v = V/N , co daje także U = Nf(T ) − aN2/V i można przyjąć stałe ciepło włąsciwe
cV = f ′(T ). Gaz van der Waalsa ma tylko przybliżone modele statystyczne. Entropia w tym
przypadku S = NcV lnT + RN ln(V/N) + NB, gdzie B jest nieznaną stałą. Do uzyskania
pełnej informacji musimy wyznaczyć T (U, V,N) = (U+aN2/V −AN)/NcV , gdzie A jest także
nieznaną stałą (często przyjmuje się A = 0).

Model gazu van der Waalsa pozwala na opis przemiany fazowej 1. rodzaju i punktu krytycz-
nego. Dla wysokich temperatur κT jest dodatnie, ale w niskich, w pewnym zakresie objętości,
jest ujemne co łamie zasadę wklęsłości S i wymusza podział na 2 fazy. Dzieje się tak poni-
żej temperatury krytycznej TK okreslonej równaniami (∂p/∂v)T = (∂2p/∂v2)T = 0 co daje
punkt krytyczny (TK , pK , vK) określony RTK = 8a/27b, pK = a/27b2, vK = 3b. Na Rys. 1.10
zaznaczone są izotermy – zależności p(V/N, T = const) gazu van der Waalsa dla temperatur
większych, równych i mniejszych od TK (minimalna objętość to Nb). Poniżej TK fragment ro-
snący daje ujemne κT , czyli jest niemożliwy z warunków stabilności. Obie fazy mogą istnieć
jednocześnie (współistnieć) w temperaturze zależnej od ciśnienia. Z kolei krzywą współistnienia
określa zasada równych pól tj. pozioma linia dzieli izotermę tak, aby pola między nią i izotermą
były równe (oznaczone + i −). Jest to tzw. konstrukcja Maxwella, wynikająca z równości ci-
śnień i potencjałów chemicznych. Dla stałej temperatury µ =

∫
vdp = pv −

∫
pdv czyli dla faz

1 i 2
p(v2 − v1) =

∫ v2

v1

pdv.

Jak widać w wykresu, Rys. 1.10 obie fazy mogą być przedłużone do stanów metatrwałych, ale
tylko do końca obszaru stabilności Krzywą współistnienia faz można wyznaczyć parametrycznie,
Rys. 1.11, patrz John Lekner, Parametric solution of the van der Waals liquid–vapor coexistence
curve, Am. J. Phys. 50, 161 (1982) http://dx.doi.org/10.1119/1.12877

11



2. POTENCJAŁY TERMODYNAMICZNE 12

Rysunek 1.10: Izotermy dla gazu van der Waalsa i konstrukcja Maxwella równych pól wy-
znaczająca równowagę fazową. Linia kropkowana jest nieosiagalna jako wklęsła, ale można ją
wykorzystać do obliczeń pamiętając, że tak naprawdę mamy całą zależność S(U, V,N) w tym
potencjał chemiczny.

12
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Rysunek 1.11: Dokładne wykresy przemiany fazowej dla gazu van der Waalsa (kolor, czarna
linia przemiany)
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Fizyka statystyczna

3 Prawdopodobieństwo
Prawdopodobieństwo jest funkcją 0 ≤ p(A) ≤ 1 dla podzbiorów A (zdarzeń) pewnej przestrzeni
X, przy czym p(X) = 1, p(∅) = 0, a dla zbiorów A ∩ B = ∅ (rozłącznych) p(A ∪ B) =
p(A) + p(B) (także dla przeliczalnej rodziny zbiorów). Jeśli p(A ∩ B) = p(A)p(B) to A i B
są niezależne. Zmienne losowe: podziały na rodziny rozłącznych podzbiorów Ax ∩Ay = ∅ jeśli
x ̸= y. Można wtedy równoważnie zamienić x ≡ Ax i pisać p(x) – rozkład prawdopodobieństwa.
Dla ciągłych rozkładów stosujemy gęstość ρ(x) lub jej dystrybuantę

P (x) = p(≤ x) =

∫ x

−∞
ρ(y)dy

gdzie P (x) jest skumulowanym prawdodobieństwiem zdarzeń o wartości zmiennej losowej mniej-
szej lub równej od zadanej x, niemalejącą i prawostronnie ciągłą – granica funkcji dąży do
wartości od prawej do lewej [Uwaga: można zastąpić nierówność silną < x i ciągłość na lewo-
stronną]

W praktyce prawdopodobieństwo ma sens dla wielokrotnie powtarzanej takiej samej czyn-
ności, gdzie wynik jest zmienia się losowo. Trzeba zagwarantować że warunki pozostają takie
same i poprzednie czynności i wyniki nie mają wpływu na następną (w rzeczywistości bywa z
tym problem, choć rzadko). Średnia

x̄ = Ex = ⟨x⟩ =
∑
x

xp(x) =

∫
xρ(x)dx

(zapis Ex zamiast ⟨x⟩ stosują matematycy a x̄ statystycy) a także wariancja

σ2 = ⟨(x− ⟨x⟩)2⟩ = ⟨x2⟩ − ⟨x⟩2

Zmiennych losowych może być więcej np. x1, x2 i wszystkie funkcje mają odpowiednio więcej
argumentów, np. ρ(x1, x2) oraz

P (x1, x2) = p(< x1, < x2) =

∫ x1

−∞
dy1

∫ x2

−∞
dy2 ρ(y1, y2)

14



3. PRAWDOPODOBIEŃSTWO 15

Suma x = x1 + x2 daje splot

ρ(x) =

∫
dyρ(y, x− y)

Dla rozkładów niezależnych ρ(x1, x2) = ρ1(x1)ρ2(x2) a splot oznaczamy ρ = ρ1 ∗ ρ2. Rozkłady
brzegowe (marginalne) ignorują jedną (lub więcej) zmiennych,

ρ1(x1) = ρ(x1, ∗) =
∫

ρ(x1, x2)dx2

Funkcja charakterystyczna

χ(λ)

∫
eiλxρ(x)dx

ma własność χ(0) = 1, daje średnią

dχ

dλ

∣∣∣∣
λ=0

= i⟨x⟩

i jej kwadrat
d2χ

dλ2

∣∣∣∣
λ=0

= −⟨x2⟩

Można równoważnie stosować logarytm lnχ(0) = 0

d lnχ

dλ

∣∣∣∣
λ=0

= i⟨x⟩

d2 lnχ

dλ2

∣∣∣∣
λ=0

= −σ2

Funkcja charakterystyczna zamienia splot na iloczyn, tj. dla ρ = ρ1∗ρ2 mamy χ(λ) = χ1(λ)χ2(λ).
Najbardziej znane rozkłady:

• dwupunktowy (Bernoulliego), x = 0, 1, 1 ≥ p(0) = p ≥ 0, p(1) = q = 1 − p, ⟨x⟩ = q,
σ2 = pq

• normalny (Gaussa)

ρ(x) = Nµ,σ(x) =
1√
2πσ2

e−(x−µ)2/2σ2

dla µ = ⟨x⟩, a w szczególnym przypadku

ρ(x) = N0,1(x) =
1√
2π

e−x2/2

Rozkłady wielu niezależnych zmiennych dają zwykle rozkłady sumy x =
∑

i xi opisany w
przybliżeniu rozkładem normalnym (centralne twierdzenie graniczne). Dla rozkładu normalnego
z = (x − µ)/σ jest miarą rozsądku, czy dane zdarzenie jest przypadkiem czy wyjątkiem i np.
wyklucza daną hipotezę opartą na wytypowanym modelu statystycznym. Wartość |z| powyżej
3 a tym badziej 5 przyjmuje się jako granicę akceptacji, Rys. 1.12.
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Rysunek 1.12: rozkład normalny ze średnią µ i wariancją σ2

4 Mechanika klasyczna
Klasyczny ruch opisują trajektorie, współrzędne jako funkcje czasu qi(t) (i = 1, 2, . . . ), t – czas.
Krócej piszemy q(t) mając na myśli wszystkie współrzędne (mogą to być nie tylko wektory
trójwymiarowe, ale też kąty, długości wzdłuż krzywych, itp.). Ważne są prędkości q̇i ≡ dqi/dt
(q̇ ≡ dq/dt). Dynamikę zadaje funkcja Lagrange’a L(q, q̇, t). Klasyczny ruch otrzymujemy mi-
nimalizując działanie

∫
Ldt przy ustalonych końcach tj. q(t1) i q(t2). Daje to równania Eulera-

Lagrange’a
ṗi = dpi/dt = ∂L/∂qi, pi = ∂L/∂q̇i

(p – nazywamy pędem, w ogólnym znaczeniu, nie musi to być tylko wektor trójwymiarowy).
Transformacja Legendre’a funkcji Lagrange’a daje funkcję Hamiltona

H(q, p, t) =
∑
i

q̇ipi − L

Jeśli L = L(q, q̇) (nie zależy jawnie od czasu) to H jest stałą ruchu – energią (mogą oczywiście
być i inne stałe ruchu, np. pęd, moment pędu). Równania ruchu mają wtedy postać

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

4.1 Przestrzeń fazowa

Przestrzeń fazową konstruuje się jako Γ = (q, p), bo dΓ(t) = dqdp nie zmienia się w czasie, na
mocy twierdzenia Liouville’a, które wynika wprost z równań Eulera-Lagrange’a∑

i

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
= 0

Dla elementu objętości Vx = dx1 · · · dxn zależnego od czasu mamy Vx = detMdy1 · · · dyn, gdzie
y stanowią współrzędne niezależne od czasu a M = (∂x/∂y) jest macierzą pochodnych ∂xi/∂yj.

16



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 17

Mamy dVx = d det(∂x/∂y)dy1 · · · dyn. Ze wzoru Jacobiego dla macierzy M

d detM = (detM)Tr(DdM),

gdzie TrA =
∑

iAii to ślad macierzy, a D jest macierzą dołączoną (transponowana macierz
minorów z naprzemiennie zmienionym znakami). Jeśli detM ̸= 0 to D = M−1 detM . Dowód
np. z rozwinięcia Laplace’a i wzorów na macierz odwrotną przez minory. Wtedy dostajemy

d det(∂x/∂y) = det(∂x/∂y)Tr(∂y/∂x)(∂dx/∂y) = det(∂x/∂y)Tr(∂dx/∂x)

(zapis macierzowy). Przy zależności od czasu zastępujemy dx przez ẋ, dostajemy zero dla
x = (q, p) na mocy twierdzenia Liouville’a i wnioskujemy, że objętość przestrzeni fazowej się
nie zmienia.

Równania ewolucji można zgrabnie zapisać za pomocą tzw. nawiasów Poissona dla dowol-
nych funkcji X(q, p) i Y (q, p) (nie tylko prostych współrzędnych!)

{X, Y } =
∑
i

(
∂X

∂qi

∂Y

∂pi
− ∂Y

∂qi

∂X

∂pi

)
bo q̇i = −∂H/∂pi = {qi, H} oraz ṗi = −∂H/∂qi = {pi, H}. Ponadto {qi, pj} = δij.

5 Entropia statystyczna i zasada maksimum
Podstawowym pojęciem fizyki statystycznej jest entropia. Punktem wyjścia jest entropia infor-
macyjna Shannona (który nazwę zapozyczył własnie z termodynamiki)

S = −kB
∑
j

pj ln pj

dla rozkładu prawdopodobieństwa pj dla zdarzeń j . Stała Boltzmanna kB stanowi tu jedynie
dowolny czynnik wymiarowy, ale ustalamy go tak dla późniejszej zgodności z termodynamiką.
Uwaga: W termodynamice posługujemy się liczbą moli Nmol a w fizyce statystycznej liczbą cza-
stek Ncz = NANmol, gdzie NA jest liczbą Avogadra. Z tego powodu stała Boltzmanna zastępuje
stałą gazową R = NAkB.

Entropia informacyjna ma kilka ważnych własności, naturalnych dla iloścowego opisu in-
formacji: nie zmienia się przy permutacji ("przetasowaniu") zdarzeń, jest subaddytywna tj.
S ≤ SA + SB dla podziału na podukłady A i B jeśli pAj =

∑
m pjm oraz pBm =

∑
j pjm (entropia

zwiększa się przy uniezależnieniu podukładów), addytywna tj. S = SA + SB jeśli części A i
B są niezależne pjm = pAj p

B
m. Okazuje się, że tylko entropia Shannona spełnia te warunki (z

dokładnością do czynnika i zdarzeń niemożliwych p = 0), J. Aczel, Z. Daroczy, On Measures of
Information and Their Characterizations (Academic Press, New York 1975)

Entropia w fizyce statystycznej jest entropią Shannona dla rozkładu prawdopodobieństwa ρ
a zdarzeniami są pozdbiory (przeliczalne sumy przedziałów) przestrzeni fazowej (mikrostany).

17



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 18

W celu zapewnienia odpowiedniego wymiaru trzeba jednak użyć bezwymiarowej miary prze-
strzeni fazowej

dΓ =
∏
k

dqkdpk
2πℏ

/
∏
j

kj!

Zamiast stałej Plancka ℏ można by użyć dowolnej stałej o jej wymiarze, ale ten szczególny wy-
bór pozwoli na utożsamienie póżniej entropii klasycznej i kwantowej kiedy różnica się zaciera.
Czynniki kj! uwzględniają nierozróżnialność cząstek w zbiorach kj elementowych. Niezmienność
przy permutacjach odpowiada niezmienniczości przestrzeni fazowej, co zapewnia nam twierdze-
nie Liouville’a.

S = −kB⟨ln ρ⟩ = −kB

∫
dΓ ρ(Γ) ln ρ(Γ)

5.1 Rozkłady/zespoły

Podstawowym zadaniem fizyki statystycznej jest konstrukcja rozkładu równowagowego ρ dla
dynamiki niezależnej jawnie od czasu w ustalonej objętości i na tej podstawie związków podsta-
wowych. Ponieważ ρ nie zmienia się w czasie, więc {ρ,H} = 0. Przyjmuje się zasadę maksymal-
nej entropii przy ustalonych warunkach, tj. wybieramy takie ρ, które daje największą entropię,
uzyskując różną postać ρ. Można wtedy stosować metodę mnożników Lagrange’a.

Mikrokanoniczny

Zakładamy H < U (ustalona energia U) bądź H ∈ [U,U +∆U ]. Klasycznie można także wziąć
H = U . Podobnie postępujemy z innymi wielkościami zachowanymi, zwykle ustalamy V , N .
Przyjmując że entropia ma byc maksymalna, otrzymuje się ρ = const w dozwolonym obszarze
(makrostanie). Dostajemy entropię w historycznej formule Boltzmanna S = kB lnW gdzie W
jest objęctością (miarą) dostępnej przestrzeni fazowej (mikrostanów).

Rozkład mikrokanoniczny prosty w definicji, jest bardzo niewygodny w stosowaniu ze względu
na sztuczne ostre warunki. Dlatego nadaje się tylko w przypadku prostych układów fizycznych.

Kanoniczny

Ustalamy ⟨H⟩ = U i np. N . Metoda mnożników Lagrange’a – f(x1, . . . xn) jest maksymalne
przy ustalonym g(x1, . . . , xn) jeśli

∂f/∂xi = λ∂g/∂xi

Dla S otrzymujemy (ustalone
∫
dΓρH oraz

∫
dΓρ)

− ln ρ− 1− λ = βH

18



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 19

a więc ρ = Z−1 exp(−βH), gdzie Z jest czynnikiem normalizacji czyli

Z =

∫
dΓ e−βH

Pokażemy, że β = 1/kBT a lnZ = −βF dla energii swobodnej Helmholtza F . Mamy bowiem

S/kB = lnZ + β⟨H⟩ = lnZ + βU

a także
U = ⟨H⟩ = −∂ lnZ/∂β

A z drugiej strony
1

kBT
=

∂S

∂U
=

∂ lnZ

∂β

∂β

∂U
+

∂β

∂U
U + β = β

Istnienie pochodnej ∂β/∂U wynika z faktu że

∂U/∂β = −∂2 lnZ/∂β2 = ⟨(δH)2⟩ > 0

dla δH = H − ⟨H⟩.

Wielki kanoniczny

W zespole wielki kanonicznym liczba cząstek N może się zmieniać. Będziemy pisać ρN(ΓN)
dla ustalonej liczby cząstek N , ale skracać do ρ(Γ) kiedy jest to jednoznaczne. Teraz nie tylko
całkujemy po przestrzeniu fazowej dla każdego N , ale także sumujemy

∞∑
N=1

∫
dΓN ≡

∫∑
dΓ

Ustalamy ⟨H⟩ = U , ⟨N⟩ = N̄ . Wtedy za pomocą 3 mnożników Lagrange’a dostajemy

− ln ρ− 1− λ = βH − µ̃N

ρ = Ξ−1 exp(µ̃N − βH) Podobnie jak w kanonicznym mamy

Ξ =

∫∑
dΓ eµ̃N−βH

Pokażemy ponownie, że β = 1/kBT a ln Ξ = −βΩ dla wielkiego potencjału termodynamicznego
Ω = −pV .

Mamy bowiem
S/kB = lnΞ + β⟨H⟩ − µ̃⟨N⟩ = lnZ + βU − µ̃N̄

a także
U = ⟨H⟩ = −∂ ln Ξ/∂β
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N̄ = ⟨N⟩ = ∂ ln Ξ/∂µ̃

A z drugiej strony

1

kBT
=

∂S

∂U
=

∂ ln Ξ

∂β

∂β

∂U
+

∂ ln Ξ

∂µ̃

∂µ̃

∂U
+

∂β

∂U
U − ∂µ̃

∂U
N̄ + β = β

Okazuje się także, że

− µ

kBT
=

∂S

∂N̄
=

∂ ln Ξ

∂β

∂β

∂N̄
+

∂ ln Ξ

∂µ̃

∂µ̃

∂N̄
+

∂β

∂N̄
U − ∂µ̃

∂N̄
N̄ − µ̃ = −µ̃

czyli µ̃ = µ/kBT gdzie µ jest potencjałem chemicznym. Istnienie pochodnych wynika dodatnio
określonej macierzy pochodnych(

∂U/∂β −∂U/∂µ̃
∂N̄/∂β ∂N̄/∂µ̃

)
=

(
∂2 ln Ξ/∂β2 ∂2 ln Ξ/∂β∂µ̃
∂2 ln Ξ/∂β∂µ̃ ∂2 ln Ξ/∂µ̃2

)
=

(
⟨(δH)2⟩ −⟨δHδN⟩
−⟨δNδH⟩ ⟨(δN)2⟩

)
Równoważność

Wszystkie rozkłady zasadniczo rozpatruje się w granicy termodynamicznej, tj. V → ∞, ale przy
ustalonych ⟨H⟩/V oraz ⟨N⟩/V i ogólnie ⟨Xi⟩/V , i wtedy dają te same wyniki. Wtedy też można
utożsamić ⟨X⟩ i X. Trzeba jednak uważać jeśli jest nietypowa wielkość czuła na rozkład (np.
całka objętościowa ze średniej iloczynu koncentracji), w spornych sytuacjach rozstrzyga rozkład
wielki kanoniczny (najpoprawniejszy). Można od tej granicy odstąpić jeśli celowo rozpatrujemy
mały układ, bądź fragment dużego, ale wymaga to dyskusji oddziaływania z otoczeniem, tym
dokładniejszej im mniej kanoniczny rozkład bierzemy. Dla ciekawych więcej na ten temat https:
//arxiv.org/abs/1403.6608
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