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Termodynamika

1 Opis termodynamiczny

Uktad — w termodynamice pojecie podstawowe makroskopowy zbioér czasteczek, opisany pewna
liczba parametrow (liczb rzeczywistych). Wyrézniamy parametry ekstensywne. Paramterami
tymi moze by¢ np. U — energia (wewnetrzna), V' — objetosé¢, N — liczba moli, N, (wiele sktad-
nikow, indeksowanych a = 1,2,...), ¢ — tadunek, M — magnetyzacja. Uktad moze by¢ zbiorem
poduktadow i kazdy poduklad jest takze odpowiednio opisanym uktadem (analogicznie do po-
zdzbior6w w matematyce). Wartosé¢ parametru ekstensywnego dla catego uktadu jest suma ich
wartosci dla poduktadow, np.
U=U,+U;+---+U,

dla poduktadow 1,2,... n. Szczegdlnym uktadem jest jednorodny. Taki uktad mozna podzieli¢
na dowolna liczbe dowolnie matych (tj. np. U;/U jest dowolnie ograniczone) podukladow a
parametry ekstensywne rozktadaja sie proporcjonalnie, tj.

U)Vi=U/Vdlai=1,2,...,n

Przewaznie rozpatrujemy uklad jako skonczony zbior poduktadéw jednorodnych (wyjatki: w
polu grawitacyjnym, elektrycznym itp.). Oprocz ekstensywnych sa tez parametry intensywne,
definiowane w uktadzie jednorodnym, takie same dla kazdego poduktadu. Sa to m.in. ilorazy
U/V, U/N, ale takze ci$nienie p i temperatura T. Calego uktadu nie da sie opisa¢ wspolnym
parametrem intensywnym, jesli jest r6zny w réznych poduktadach jednorodnych. Nie wszystkie
parametry musza by¢ niezalezne. Uklad i poduktady moga zmienia¢ sie w czasie, np. U(t), po-
przez procesy termodynamiczne. Czas w termodynamice jest umowny, zadaje pewien porzadek,
najprosciej tradycyjnie oznaczaé go liczba rzeczywista ale tez mozna liczbami catkowitymi albo
symbolicznie, jako np. poczatek i koniec. Stan uktadu i poduktadéw (w danej chwili czasu) jest
opisany przez pierwotnie komplet wartosci niezaleznych parametréw ekstensywnych, ale potem
mozna zmienia¢ zbiér parametrow. Funkcja stanu — funkcja kompletu parametréow uktadu w da-
nej chwili czasu. Wyrdzniamy parametry ekstensywne zachowane — state globalne: U, V', N, N,
(jesli nie ma zmian chemicznych), ¢q. Uwaga 1: energia wewnetrzna jest zachowana razem z me-
chaniczna tj. U4+ E = const. Energia mechaniczna dotyczy zwykle duzych, makroskopowych ciat
jako specjalnych ukladéw opisanych masa M i predkoscia v jako Mv?/2 lub Mc?/+/1 — v2/c?

w teorii wzglednosci. Uwaga 2: M jest zachowana tylko w przyblizeniu, niezachowanie jest
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1. OPIS TERMODYNAMICZNY 3

Rysunek 1.1: Uktad z trzech poduktadéow A, B, C potaczonych sciankami, kazda moze dopusz-
czaC zmiany innej grupy parametréw zachowanych. W praktyce blokada np. wymiany energii
miedzy A i B nie zadziala, jesli moga ja wymienia¢ A i C' oraz B i C.

istotne w diamagnetyzmie. Poduktady sa rozdzielone wzajemnie $ciankami (Rys. , ktore
dopuszczaja zmiane parametréw zachowanych pomiedzy para ukladéw (suma nie zmienia sie):

zmiana? TAK NIE
energii diatermicza adiabatyczna
objetosci ruchoma nieruchoma
moli przepuszczalna | nieprzepuszczalna

Brak mozliwosci jakichkolwiek zmian: $cianka izolujaca. Scianki mozna zmienia¢ w czasie, ale
skokowo (tak/nie). Uktad jednorodny przy podziale ma Scianki, ktore wszystko przepuszczaja.
Uktad

e izolowany — zmiany wszystkich zachowanych parametréow niemozliwe,
e zamkniety — zmiany liczby moli niemozliwe.
e skonczony — o skonczonych parametrach ekstensywnych

e nieskoriczony rezerwuar — jednorodny w granicy nieskoriczonej, tj. np. U — oo ale U/N i
V/N sa ustalone. Opisujemy go tylko parametrami intensywnymi.

Stan
e stacjonarny — nie zmienia sie w czasie
e réwnowagowy — stacjonarny bez przeptywow

Dla uktadéw izolowanych skoniczony stacjonarny = rownowagowy. Przeplyw stacjonarny bez
réwnowagi moze by¢ realizowany przez umieszczenie uktadu w kontakcie w dwoma réznymi
rezerwuarami (Rys. [L.2). Jesli zastapimy rezerwuary skoniczonymi podukladami, to stan sta-
cjonarny musi jednocze$nie byé rownowagowy. Zasadniczo caly uktad jako zbiér poduktadow
skoniczonych jest izolowany, bo nie ma jak zmieni¢ swoich parametréow zachowanych.
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Rysunck 1.2: Srodkowy poduktad S jest polaczony z dwoma rezerwuarami A i B. Stan stacjo-
narny nie musi by¢ réwnowagowy, z powodu nieskonczonosci rezerwuarow.
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Rysunek 1.3: Zerowa zasada termodynamiki. Jesli AC' i BC' moga wymieniaé¢ jaki§ parametr
zachowany i jest rownowaga to bedzie nadal, jak zmienimy Scianki, aby AB mogty go wymieniaé¢
bezposrednio. Brak Scianek oznacza izolujace.

Proces kwazistatyczny (pseudostatyczny) — ciag stanéw réwnowagowych (przyktad: balon
z malenika dziurka przez ktora ucieka powietrze, w praktyce procesy dostatecznie powolne),
kwazistatyczny odwracalny w czasie — jesli moze przebiega¢ odwrotnie w czasie.

1.1 Zasady termodynamiki

Zerowa

Jesli uktad ABC jest rownowadze dla AB i BC potaczonych taka sama Scianka, to ABC' bedzie
takze w rownowadze jesli potaczymy AC ta sama $cianka (Rys. [1.3)).

Pierwsza

Energia jest parametrem zachowanym, tj. U + E = const w calym (izolowanym) uktadzie
(poza przypadkiem rezerwuaréw). Zmiana energii mechanicznej AE = —W, gdzie W — praca
mechaniczna (za pomocy sit) nad uktadem @ = AU — W lub dQ = dU —dW, gdzie ) —
ciepto dostarczone do uktadu, W praca nad uktadem. Ciepto jest niemechaniczna formg energii
przekazywang do poduktadu, a wiec suma jest zerowa,

Qa+0Qp+Qc=0
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Druga (2ZT)

Istnieje ekstensywna rozniczkowalna funkcja stanu (parametroéw zachowanych), entropia
S(U,V,N,...), addytywna (S = Sa + Sp dla poduktadéw AB), ktora nie maleje w uktadach
izolowanych, pozostaje stala w procesach odwracalnych w czasie (nadal uktad izolowany) i dazy
do maksimum, poprzez zmiany parametréow zachowanych dozwolone przez $cianki. Maksimum
osiagga w rownowadze. Uwaga historyczna: nazwe entropia wymyslit Clausius w 1865 roku,
na bazie greckiego stowa trope (zmiana) i podobienstwa stownego do energii, uzywajac litery S
prawdopodobnie na czesé¢ imienia tworcy nowozytnej termodynamiki, Sadi Carnot. Réwnowaga
termiczna oznacza, ze 0S/0U jest identyczne w poduktadach. Dowod z ekstremum zwiazanego.
Jesli U = Uy + Ug, to maksymalne S = S4(Ua) + Sp(Up) oznacza

0Ss _ 05
U4 0OUg

Stad definicja temperatury bezwzglednej T: 1/T = 90S/0U (przy ustalonych pozostatych para-
metrach ekstensywnych zachowanych). Stadd@) = T'dS w procesach kwazistatycznych. Warunek
rownowagi pomiedzy poduktadami z 2. zasady to rownosé (05/9X;) dla parametru ekstensyw-
nego zachowanego X;, ktérego wymiana jest mozliwa.

Z tak sformutowanej drugiej zasady mozna wyprowadzi¢ zerowa (lub uznaé, ze jest zawarta
w tym sformutowaniu). Jesli ABC ma maksymalng entropie to zmiana Scianek tego nie zmieni,
skoro parametr mozna byto juz wczesniej wymieni¢ posrednio przez C'.

Trzecia

S >01iS8(T =0)=0 oprocz przypadkéw zamrozonego nieporzadku.

Dodatkowe

T > 0. Zwiazane to jest z tym ze energia jest ograniczona od dotu, a nie od goéry. Jesli energia
jest ograniczona od gory, mozliwe sg ujemne temperatury.

1.2 Entropia jako funkcja wklesta

Okazuje sie, ze druga zasada termodynamiki implikuje wklestosé S(U, V, N) dla uktadow jedno-
rodnych. Przypomnienie, funkcja wklesta wybrzusza sie do gory, tj. dla y(z) mamy y”(x) < 0,
w przeciwienistwie do funkcji wypuktej, ktora wybrzusza sie do dotu, tj. y”(x) > 0, Rys. .
Dla funkcji wielu zmiennych macierz 2. pochodnych jest odpowiednio ujemnie lub dodatnio
okreslona.

Przypusémy, ze S nie zawsze jest wklesta, Rys. [[.J] Wtedy mozemy znalezé styczna do
S(U) powyzej wykresu (dla uproszezenia V' i N sa ustalone), taczaca punkty (Ui, S1) i (Us, Sa2),
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wypukta

wklesta
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Rysunek 1.4: Funkcja wklesta i wypukta
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Rysunek 1.5: Entropia jako funkcja energii. Kiedy nie jest wklesta, uklad jednorodny podzieli
sie na fazy 21 1 w proporcji x : y, poniewaz wtedy S > 5.
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Rysunek 1.6: Podzial uktadu na poduktady w sytuacji na Rys. [1.5] Wymiana energii zwieksza
entropie
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pomiedzy ktérymi na wykresie jest punkt (U,S). Niech x = U — Uy, y = Uy — U. Mozemy
zapisaé
T
U=U——+U,—
T+ r+y

Podzielmy uktad na poduklady x i y w proporcji z : y, Rys. [[.6] Wtedy

Uy=U——, U, =U—2

T +y r+y

Uktady moga wymienia¢ energie. Pokazemy, ze istnieje taki podzial energii, ktory zwickszy
entropie. Mianowicie

_ €T _
U, = U, U, =U,—~
T +y Tty

Wtedy entropie poduktadow sg rowne

_ T _
Sy = ——5, 5, = —2—3,
Tty T +y
co wynika z ekstentywnosci uktadu, a w zwiazku z tym proporcjonalnego przeskalowania wzgle-
dem rozmiaru catego uktadu. Catkowita entropia to z addytywnosci
B _ _ I y/
S=5+95,= Sy + S
Y '+ y/ 2 x + y/ 1

gdzie 2’ iy’ sa rzutami odcinkéw na prostej 1 —2 nie na U, jak = iy, ale na S (Rys.[L.5). Wtedy
jest zachowana proporcjonalnosé x : y = 2’ : y/. Zatem punkt (U, S) znajduje sie na tej prostej,
powyzej (U, S), a wiec S > S.

Takie zachowanie ukladu wynikajace z 2ZT powoduje przemiany fazowe (1. rodzaju, bo
uklad dzieli si¢ na poduktady rézniace sie U/V i/lub N/V'). Uktadom oplaca sie podzieli¢ na
rozne fazy, zamiast trwaé¢ w jednorodnosci. W szczegdlnych warunkach fizycznych moze nie dojsé
do przemiany fazowej i uktad pozostanie w fazie metatrwalej, Rys. Fazami metatrwalym
jest np. woda przegrzana powyzej 100°C (przy normalnym ci$nieniu) lub para przechtodzona
ponizej 100°C. Wymaga to duzej czystosci i jednorodnoéci fazy, bo przemiane inicjuja nierdw-
nosci naczynia, mikroskopijne niejednorodnosci, a nawet wysokoenergetyczne czastki (komory
pecherzykowe). Takie fazy atwiej uzyskac¢ np. przy przechtadzaniu roztworu cukru, kiedy sie
nie wytraca.

Pokazalismy, ze S(U,V, N) jest funkcja wklesta U, analogicznie bedzie od V, N, a wtedy
funkcja odwrotna U(S,V, N) bedzie wypukta o ile T > 0.

2 Potencjaly termodynamiczne

Rozmiczka energii U(S,V, N) definiuje najwazniejsze parametry intensywne

ou ou ou
dU = %dS + de + (9—NdN =Tds — pdV + pdN

7
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U:

Rysunek 1.7: Stany metatrwale pojawiaja sie ponizej odcinka réwnowagi fazowej (czerwony)
jako lokalnie wkleste fragmenty wykresu (niebieskie). Jednak poza punktami przegiecia (zo6tte),
wykres jest wypukly (zielony) i uktad nie bedzie w ogodle takich stanéw osiggat.

gdzie mamy temperature

oUu
T = 2=
(55),..
ciSnienie
__(9U
P=7\ov ) s
i potencjal chemiczny
_(w
H=\aN ),

Na mocy ekstensywnosci

AU(S,V, N) = U(AS, AV, AN)

a rozniczkujac po A i wstawiajac A = 1 otrzymamy
U=TS—pV +uN

Zapis rozniczkowy (), uznacza ustalone z. Uwaga: Dla wickszej liczby parametrow eksten-
sywnych, wszystkie musza by¢ powyzej uwzglednione np. dla substancji wielkosktadnikowe;j
(:ua = aU/ ON, a)

Okazuje sie ze wygodnie w termodynamice postugiwaé sie innymi funkcjami, potencjatami
termodynamicznymi, ktore otrzymuje sie poprzez transformacje Legendre’a. Transformacja Le-
gendre’a polega na zastapieniu zmiennej (tu ekstensywnej) przez pochodna funkcji po niej (in-
tensywna) i odjeciu ich iloczynu. Jest ona jednoznaczna dla funkcji wklestych lub wypuktych),

patrz Rys. [L.§
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b U

Rysunek 1.8: Transformacja Legendre’a od funkeji U(S) do F(T'). Tu T jest nachyleniem stycz-
nej T'=0U/0S, a wartos¢ F' punktem przeciecia stycznej z osig U.
e cnergia swobodna Helmholtza
F(T,V,N)=U —TS
(transformacja U(S)) wtedy —S = 0F /0T a dokladnie;
dF = —SdT — pdV + udN

e entalpia
H(S,p,N)=U +pV
(transformacja S(V')) wtedy V = 0H/0p oraz

dH = TdS + Vdp + pudN

e cnergia swobodna Gibbsa (entalpia swobodna)
G(T,p,N)=U—-T8+pV
(transformacja U(S,V)) wtedy
dG = =Sdt + Vdp + pdN
a takze G = uN.
e wielki potencjal termodynamiczny
AT, V,u)=U—-TS — uN
(transformacja U(S, N)) wtedy
dQ) = —=SdT — pdV — Ndu
oraz () = pV
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U F
T

p p
T

H G

Rysunek 1.9: Transformacja Legendre’a od U do G prowadzi albo przez F' (najpierw S — T
potem V' — p) albo przez H (najpierw V — p potem S — T))

Potencjaty U, F', H, G mozna traktowac¢ jako wybieranie niezaleznie transformacji S — T i
V' — p patrz takze Rys. [[.9
Mozna (i jest to bardziej naturalne z 2ZT) rézniczkowac i transformowaé S(U, V, N),

dS = (1/T7)dU + (p/T)dV — (u/T)dN
a potencjaly sa podobne,
e S—U/T =—F/T jako funkcja 1/T, V', N czyli

d(—F/T) = —Ud(1)T) + (p/T)dV — (u/T)dN

e S—U/T —Vp/T =—-G/T jako funkcja 1/T, p/T, N czyli

d(=G/T) = =Ud(1/T) = Vd(p/T) — (u/T)dN

e S—U/T+ Nu/T =—-Q/T jako funkcja 1/T, V| u/T czyli

d(—Q/T) = —Ud(1/T) + (p/T)dV + Nd(u/T)

Spelniona jest takze relacja
S=U/T+Vp/T — uN/T

Transformacja Legendre’a wraca do pierwotnego réwnania po kolejnym zastosowaniu. np.
U=F+ ST, S=—0F/0T. Dlatego potencjaly termodynamiczne jako transformacje Legen-
dre’a sg zwigzkami podstawowymi.

Inne definicje

Cieplo wtasciwe C, = 0Q/T), = T(05/0T), (molowe ¢ = C/N), w tym C, = T(9S/0T)y =
(0U/oT)y i Cp, =T(05/0T), = (0H/0T )y,

Scisliwosé k, = —V 1OV /0p),, rozszerzalnosé a, = V1(0V/OT), (x = T izotermiczna, x = S
adiabatyczna)

10
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2.1 Gaz doskonaly

Rownanie stanu pV' = NRT jesli N jest liczba moli [Uwaga: stala gazowa R = kN4 jest
obecnie ustalona przez liczbe Avogadro Ny ~ 6,02214075 x 10%®/mol i stala Boltzmanna k ~
1,380649 x 10~ *kgm?/Ks?|. Wynika z niego, ze S = RN In(V/N) + N f(u) dla u = U/N, a
f jest pewna funkcja. Jesli przyjmiemy ustalone ciepto wlasciwe, ¢y = zR, x = 3/2 dla gazu
l-atomowego, x = 5/2 dla 2-atomowego, czyli U = ¢y NT+ AN, to f = cy In(u— A) + B, gdzie
A, B pewne stale. Gaz doskonaly ma klasyczny model statystyczny — czastki nieoddziatujace.
Zauwazmy, ze entropia jest ujemna przy 7' — 0 lub V' — 0, i wtedy model klasyczny zatamuje
sie (bo z 3. zasady S > 0)

Uwaga: kwantowy jednoatomowy gaz doskonaly ma nieco inne réwnanie stanu 3pV = 2U,
zgodne z klasycznym, ale pelny opis takze wymaga dodatkowej (innej) zaleznosci.

2.2 Gaz van der Waalsa

Roéwnanie stanu
(p+aN?/V*(V — Nb) = NRT, p= RT/(v — b) — a/v?

dla v = V/N, co daje takze U = Nf(T) — aN?/V i mozna przyjac¢ stale cieplo wlasciwe
cy = f(T). Gaz Van der Waalsa ma tylko przyblizone modele statystyczne. Entropia w tym
przypadku S = NeyInT + RN In(V/N) + NB, gdzie B jest nieznana stala. Do uzyskania
pelnej informacji musimy wyznaczyé¢ T(U,V, N) = (U+aN?/V — AN)/Ncy, gdzie A jest takze
nieznang stala (czesto przyjmuje sie A = 0).

Model gazu van der Waalsa pozwala na opis przemiany fazowej 1. rodzaju i punktu krytycz-
nego. Dla wysokich temperatur k7 jest dodatnie, ale w niskich, w pewnym zakresie objetosci,
jest ujemne co tamie zasade wklestosci S i wymusza podzial na 2 fazy. Dzieje sie tak poni-
zej temperatury krytycznej Tk okreslonej réwnaniami (Op/dv)r = (8°p/0v*)r = 0 co daje
punkt krytyczny (T, px,vi) okreslony RTx = 8a/27b, px = a/27b*, vk = 3b. Na Rys.
zaznaczone sa izotermy — zaleznosci p(V/N,T = const) gazu van der Waalsa dla temperatur
wiekszych, réownych i mniejszych od Tk (minimalna objetosé to Nb). Ponizej Ty fragment ro-
snacy daje ujemne kr, czyli jest niemozliwy z warunkéw stabilnosci. Obie fazy moga istnieé¢
jednoczesnie (wspotistnie¢) w temperaturze zaleznej od ci$nienia. Z kolei krzywa wspolistnienia
okresla zasada rownych pol tj. pozioma linia dzieli izoterme tak, aby pola miedzy nig i izoterma
byly rowne (oznaczone + i —). Jest to tzw. konstrukcja Maxwella, wynikajaca z réwnosci ci-
$nient i potencjatow chemicznych. Dla stalej temperatury p = [wvdp = pv — [ pdv czyli dla faz
1i2 v

p(vg — 1) = / pdv.
U1
Jak wida¢ w wykresu, Rys. obie fazy moga by¢ przedtuzone do stanéw metatrwalych, ale
tylko do konca obszaru stabilnosci Krzywa wspotistnienia faz mozna wyznaczy¢ parametrycznie,
Rys. [[.I1] patrz John Lekner, Parametric solution of the van der Waals liquid—vapor coezistence
curve, Am. J. Phys. 50, 161 (1982) http://dx.doi.org/10.1119/1.12877

11
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Nb 4 4

Rysunek 1.10: Izotermy dla gazu van der Waalsa i konstrukcja Maxwella réwnych pol wy-
znaczajaca rownowage fazowa. Linia kropkowana jest nieosiagalna jako wklesta, ale mozna ja
wykorzysta¢ do obliczen pamietajac, ze tak naprawde mamy cala zaleznosé¢ S(U,V, N) w tym
potencjal chemiczny.

12
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Rysunek 1.11: Dokladne wykresy przemiany fazowej dla gazu van der Waalsa (kolor, czarna
linia przemiany)
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Fizyka statystyczna

3 Prawdopodobienstwo

Prawdopodobienstwo jest funkcja 0 < p(A) < 1 dla podzbiorow A (zdarzen) pewnej przestrzeni
X, przy czym p(X) = 1, p(@) = 0, a dla zbiorow AN B = @ (roztacznych) p(AU B) =
p(A) + p(B) (takze dla przeliczalnej rodziny zbioréw). Jesli p(A N B) = p(A)p(B) to Ai B
sg niezalezne. Zmienne losowe: podzialy na rodziny roztacznych podzbioréw A, N A, = & jedli
x # y. Mozna wtedy rownowaznie zamieni¢ x = A, i pisa¢ p(z) — rozklad prawdopodobienstwa.
Dla ciagtych rozktadow stosujemy gestosé p(z) lub jej dystrybuante

xT

P(z) = p(< x) —/ p(y)dy
— 0o

gdzie P(x) jest skumulowanym prawdodobieristwiem zdarzen o wartosci zmiennej losowej mniej-
szej lub réownej od zadanej z, niemalejacg i prawostronnie ciagly — granica funkcji dazy do
wartosci od prawej do lewej [Uwaga: mozna zastapi¢ nier6wnos¢ silng < z i ciagtosé na lewo-
stronna|

W praktyce prawdopodobienistwo ma sens dla wielokrotnie powtarzanej takiej samej czyn-
nosci, gdzie wynik jest zmienia si¢ losowo. Trzeba zagwarantowaé¢ ze warunki pozostaja takie
same i poprzednie czynnosci i wyniki nie maja wpltywu na nastepna (w rzeczywistosci bywa z
tym problem, choé¢ rzadko). Srednia

T=FEx=(z)= pr(x) = /xp(x)dx

(zapis Fz zamiast (z) stosuja matematycy a T statystycy) a takze wariancja

0* = ((z = (x))*) = (2%) — (z)"

Zmiennych losowych moze by¢ wiecej np. x1, xo i wszystkie funkcje maja odpowiednio wiecej
argumentow, np. p(z, ) oraz

T )
P(I1,$2) =p(< 21, < 29) = / dy1/ dys P(yla?h)

14



3. PRAWDOPODOBIENSTWO 15

Suma x = x1 + zo daje splot
p(x) = /dyp(y,:r —y)

Dla rozktadow niezaleznych p(xy,z5) = p1(z1)p2(x2) a splot oznaczamy p = p; * po. Rozklady
brzegowe (marginalne) ignoruja jedna (lub wiecej) zmiennych,

prlaer) = plor) = [ plas,za)da
Funkcja charakterystyczna
W) = [ pla)da

ma wlasnosé¢ x(0) = 1, daje srednia

i jej kwadrat
d*x
dX?|,_,

Mozna réwnowaznie stosowaé logarytm In x(0) = 0

dlny
d\

d*Iny
- = = —0
dX? |,_
Funkcja charakterystyczna zamienia splot na iloczyn, tj. dla p = py*pe mamy x () = x1(A)x2(N).
Najbardziej znane rozktady:

A=0

e dwupunktowy (Bernoulliego), x = 0,1, 1 > p(0) = p >0, p(l) = ¢ =1—1p, (x) = g,
o = pq

e normalny (Gaussa)

p(x) = Nyo(z) =
dla p = (x), a w szczegolnym przypadku

1
p(x) = Noa(r) = e/

Rozklady wielu niezaleznych zmiennych daja zwykle rozklady sumy x = ) . ; opisany w
przyblizeniu rozkladem normalnym (centralne twierdzenie graniczne). Dla rozkladu normalnego
z = (z — p)/o jest miarg rozsadku, czy dane zdarzenie jest przypadkiem czy wyjatkiem i np.
wyklucza dang hipoteze oparta na wytypowanym modelu statystycznym. Wartosé |z| powyzej
3 a tym badziej 5 przyjmuje sie jako granice akceptacji, Rys.

15



4. MECHANIKA KLASYCZNA 16
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Rysunek 1.12: rozklad normalny ze érednig p i wariancjg o2

4 Mechanika klasyczna

Klasyczny ruch opisuja trajektorie, wspohrzedne jako funkcje czasu ¢;(t) (i = 1,2,...), t — czas.
Krocej piszemy ¢(t) majac na mysli wszystkie wspohrzedne (moga to by¢ nie tylko wektory
trojwymiarowe, ale tez katy, dtugosci wzdtuz krzywych, itp.). Wazne sa predkosci ¢; = dg;/dt
(¢ = dq/dt). Dynamike zadaje funkcja Lagrange’a L(q, ¢, t). Klasyczny ruch otrzymujemy mi-
nimalizujac dziatanie | Ldt przy ustalonych koncach tj. ¢(t1) i g(f2). Daje to rownania Eulera-
Lagrange’a

pi = dp;/dt = OL/9q;, p;i = L /0q;

(p — nazywamy pedem, w og6lnym znaczeniu, nie musi to by¢ tylko wektor trojwymiarowy).
Transformacja Legendre’a funkcji Lagrange’a daje funkcje Hamiltona

H(g,p,t) =Y qipi— L

Jesli L = L(q, ) (nie zalezy jawnie od czasu) to H jest stala ruchu — energia (moga oczywiscie
by¢ i inne state ruchu, np. ped, moment pedu). Réwnania ruchu maja wtedy postacé

0H . 0OH

o D= —a—q-

4.1 Przestrzen fazowa

Przestrzen fazowa konstruuje sie jako I' = (¢, p), bo dI'(t) = dgdp nie zmienia sie w czasie, na
mocy twierdzenia Liouville’a, ktére wynika wprost z rownan Eulera-Lagrange’a

dq;  Opi\
Z (6% * api) =0

7

Dla elementu objetosci V,, = dxy - - - dx,, zaleznego od czasu mamy V, = det Mdy; - - - dy,, gdzie
y stanowia wspolrzedne niezalezne od czasu a M = (0x/0y) jest macierza pochodnych 0z;/0y;.

16



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 17

Mamy dV, = ddet(0z/0y)dy; - - - dy,. Ze wzoru Jacobiego dla macierzy M
ddet M = (det M)Tr(DdM),

gdzie TrA = ). A;; to §lad macierzy, a D jest macierza dolaczona (transponowana macierz
minoréw z naprzemiennie zmienionym znakami). Jesli det M # 0 to D = M~!det M. Dowod
np. z rozwiniecia Laplace’a i wzoréw na macierz odwrotna przez minory. Wtedy dostajemy

ddet(0x/0y) = det(0x/Jy)Tr(0y/0x)(ddx/0y) = det(Dx/dy)Tr(ddx/Ox)

(zapis macierzowy). Przy zaleznosci od czasu zastepujemy dz przez &, dostajemy zero dla
x = (¢,p) na mocy twierdzenia Liouville’a i wnioskujemy, ze objetos¢ przestrzeni fazowej sie
nie zmienia.

Roéwnania ewolucji mozna zgrabnie zapisa¢ za pomoca tzw. nawiaséw Poissona dla dowol-
nych funkcji X (q,p) 1 Y(q,p) (nie tylko prostych wspotrzednych!)

0X9JY 0Y o0X
{X7Y} B Xl: <a%’ Op; a g a]%)

bo ¢; = —0H/0p; = {q;, H} oraz p; = —0H/0q; = {p;, H}. Ponadto {¢;,p;} = 0;;.

5 Entropia statystyczna i zasada maksimum

Podstawowym pojeciem fizyki statystycznej jest entropia. Punktem wyjscia jest entropia infor-
macyjna Shannona (ktory nazwe zapozyczyt wlasnie z termodynamiki)

S =—kp ijlnpj

J

dla rozkladu prawdopodobienistwa p; dla zdarzenl j . Stala Boltzmanna kp stanowi tu jedynie
dowolny czynnik wymiarowy, ale ustalamy go tak dla pozniejszej zgodnosci z termodynamiks.
Uwaga: W termodynamice postugujemy sie liczba moli N,,,;, a w fizyce statystycznej liczbg cza-
stek N, = NaNpo, gdzie N4 jest liczba Avogadra. Z tego powodu stata Boltzmanna zastepuje
stala gazowa R = Nakp.

Entropia informacyjna ma kilka waznych wlasnosci, naturalnych dla ilos¢owego opisu in-
formacji: nie zmienia sie przy permutacji ("przetasowaniu") zdarzen, jest subaddytywna tj.
S <S4+ Sp dla podziatu na poduktady A i B jesli p}-“ = > Djm oraz pb = Zj pjm (entropia
zwicksza sie przy uniezaleznieniu podukladow), addytywna tj. S = Sa + Sp jesli czesci A i
B sa niezalezne pj,, = pfpﬁ. Okazuje sie, ze tylko entropia Shannona spelnia te warunki (z
dokladnoscia do czynnika i zdarzen niemozliwych p = 0), J. Aczel, Z. Daroczy, On Measures of
Information and Their Characterizations (Academic Press, New York 1975)

Entropia w fizyce statystycznej jest entropia Shannona dla rozktadu prawdopodobietistwa p
a zdarzeniami sa pozdbiory (przeliczalne sumy przedzialow) przestrzeni fazowej (mikrostany).

17



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 18

W celu zapewnienia odpowiedniego wymiaru trzeba jednak uzy¢ bezwymiarowej miary prze-
strzeni fazowej
dqy.dpy,
dl’ = k;!
12T,

Zamiast statej Plancka A mozna by uzy¢ dowolnej statej o jej wymiarze, ale ten szczegdlny wy-
boér pozwoli na utozsamienie pozniej entropii klasycznej i kwantowej kiedy réznica sie zaciera.
Czynniki k;! uwzgledniajg nierozroznialnosé czastek w zbiorach k; elementowych. Niezmienno$é
przy permutacjach odpowiada niezmienniczosci przestrzeni fazowej, co zapewnia nam twierdze-
nie Liouville’a.

S = —kp(lnp) = —kB/dF p(T) In p(T)

5.1 Rozklady/zespoty

Podstawowym zadaniem fizyki statystycznej jest konstrukcja rozktadu rownowagowego p dla
dynamiki niezaleznej jawnie od czasu w ustalonej objetosci i na tej podstawie zwigzkéw podsta-
wowych. Poniewaz p nie zmienia sie w czasie, wiec {p, H} = 0. Przyjmuje sie zasade maksymal-
nej entropii przy ustalonych warunkach, tj. wybieramy takie p, ktore daje najwieksza entropie,
uzyskujac r6zna postaé¢ p. Mozna wtedy stosowaé¢ metode mnoznikow Lagrange’a.

Mikrokanoniczny

Zaktadamy H < U (ustalona energia U) badz H € [U, U 4+ AU]. Klasycznie mozna takze wzia¢
H = U. Podobnie postepujemy z innymi wielko$ciami zachowanymi, zwykle ustalamy V', V.
Przyjmujac ze entropia ma byc maksymalna, otrzymuje sie p = const w dozwolonym obszarze
(makrostanie). Dostajemy entropie w historycznej formule Boltzmanna S = kgIln W gdzie W
jest objectoscia (miara) dostepnej przestrzeni fazowej (mikrostanow).

Rozktad mikrokanoniczny prosty w definicji, jest bardzo niewygodny w stosowaniu ze wzgledu
na sztuczne ostre warunki. Dlatego nadaje sie tylko w przypadku prostych uktadéw fizycznych.

Kanoniczny

Ustalamy (H) = U i np. N. Metoda mnoznikéw Lagrange’a — f(z1,...2,) jest maksymalne
przy ustalonym g(xy,...,x,) jesli

Of /0x; = Ndg/0x;
Dla S otrzymujemy (ustalone [ dI'pH oraz [ dT'p)

—lnp—-1-A=pH

18



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 19

a wiec p = Z lexp(—BH), gdzie Z jest czynnikiem normalizacji czyli

7 = /dF e PH

Pokazemy, ze § = 1/kgT alnZ = —BF dla energii swobodnej Helmholtza F'. Mamy bowiem
Slkg=InZ+ p(H) =InZ+ pU
a takze
U=(H)=-0InZ/0p
A z drugiej strony
1 oS 0lmzZop 0p

—_— = —_— —U =

kT o0~ ap ou Tout TP
Istnienie pochodnej 08/0U wynika z faktu ze

oU/OB = —0*InZ/0B* = ((6H)*) > 0
dla 6H = H — (H).

Wielki kanoniczny

W zespole wielki kanonicznym liczba czastek N moze si¢ zmienia¢. Bedziemy pisa¢ pn(I'y)
dla ustalonej liczby czastek N, ale skraca¢ do p(I") kiedy jest to jednoznaczne. Teraz nie tylko
calkujemy po przestrzeniu fazowej dla kazdego N, ale takze sumujemy

Ni::l/dFN Eidl“

Ustalamy (H) = U, (N) = N. Wtedy za pomoca 3 mnoznikéw Lagrange’a dostajemy
—lnp—1—-A=pH —aN

p=ZE"texp(iN — SH) Podobnie jak w kanonicznym mamy
E= idl“ MNP

Pokazemy ponownie, ze § = 1/kgT aln= = —pQ dla wielkiego potencjatu termodynamicznego
QO =—pV.
Mamy bowiem
S/kp =InZ+ B(H) — i(N) =InZ + BU — N

a takze

U= (H)=-0InZ/0p

19



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 20

N = (N)=0InZ/0u
A 7z drugiej strony

| 0S OWm=o8 om=op 08, O -
—_— = —_— R _ __N —
WeT oU o au  op au Taul “auy TAS

Okazuje sie takze, ze
ofi N

L 0S Om= o8 O0mEdn 9P o
B e —_— —_— —_— ——N— = —
kT ON 93 oN T on aN TonC any A=A

czyli i = pu/kpT gdzie p jest potencjatem chemicznym. Istnienie pochodnych wynika dodatnio
okreslonej macierzy pochodnych odwrotnych

oU/0B —0U/of\ [ *WnE/95*  9*InZ/980f
ON/os oNjop ) ~ \o*InZ/0sop  9*InZ o

(<(5H)2> —(6H5N>)
—(6NGH)  ((ON)?)

dla dH =H — (H), 60N = N — (N).
Zauwazmy takze ze fluktuacje np. energii sa inne w kanonicznym i wielkim kanonicznym,
ze wzgledu na korelacje z fluktuacjami liczby czastek

(6H ) an = 0*In Z/0B* = —(0U/0B) N = kgT*C

gdzie C' jest pojemnoscia cieplng C' = 0U/OT. Rosna liniowo ze wzrostem rozmiaru, ale wtedy
0H ~ v/N czyli w granicy termodynamicznej fluktuacje calej energii sa zaniedbywalne. Dla
wielkiego kanonicznego

(6H?) pran = 0*InZE/08% = —(0U/0B),

ale

((0H?))kan = (0U/0B)x = (OU/0B)s + (0U/0j1)5(0f1/OB)

sy (ON/0B)z)
- <5H >w/€an - <6H5N>Wkanm
= <(5H2>wkan - <5H5N>12ukan/<(5N)2>z2ukan

Roznica wynika z faktu, ze zmiany liczby czastek wiaza sie ze zmianami energii (przypisane;j
czasteczkom).

20
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Rownowaznosé

Wszystkie rozktady zasadniczo rozpatruje si¢ w granicy termodynamicznej, tj. V' — oo, ale przy
ustalonych (H)/V oraz (N)/V iogoélnie (X;)/V, i wtedy daja te same wyniki. Wtedy tez mozna
utozsamié¢ (X) i X. Trzeba jednak uwazaé jesli jest nietypowa wielkosé czuta na rozklad (np.
catka objetosciowa ze sredniej iloczynu koncentracji), w spornych sytuacjach rozstrzyga rozktad
wielki kanoniczny (najpoprawniejszy). Mozna od tej granicy odstapié jesli celowo rozpatrujemy
maly uklad, badz fragment duzego, ale wymaga to dyskusji oddzialywania z otoczeniem, tym
doktadniejszej im mniej kanoniczny rozktad bierzemy. Dla ciekawych wiecej na ten temat https:
//arxiv.org/abs/1403.6608

5.2 Opis kwantowy

W mechnice kwantowej punktem wyjscia jest przestrzen wektorowa (Hilberta) stanéw, ozncza-
nych

) = / dap(g)la)

w przypadku ciaglego parametru ¢, gdzie 1¢(q) jest zespolona funkcja falowa. Stany generalnie
sg unormowane tj.

/ dglip(q) =1

Przydatny jest formalizm braketowy, z wektorem sprzezonym

(] = / dgv*(g)d]

gdzie * oznacza sprzezenie zespolone. Pozwala to na wprowadzenie lioczynu skalarnego

(G = / dgd* (q)(q)

przyjmujac takze
(ald) = 0(a—q)
(delta Diraca [ dgd(q — x)f(q) = f(z) dla kazdej funkeji f). Wtedy takze mamy operatory

A— / dadd Ala, )| a){d.

Do zdefiniowania ewolucji uzywamy operator Hamiltona (istnieje takze odpowiednik formalizmu

A

Lagrange’a ale skomplikowany i tu niepotrzebny) H(t) = H(q,p,t), gdzie ¢ = [ qdq|q){q|
(operator polozenia) oraz p = [ |q)(—ihd{q|/0q)dq (operator pedu) lub

Py = / dg(~ihd(a)/00)|a)
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Jest tez operator identycznoéci 1, zawsze 1|1) = |1),

- /quQ><q\

W praktyce postugujemy sie H jako zwykta macierza. Operator Hamiltona jest hermitowski,
tj. H = Ht (nie zmienia sie przy transpozycji i sprzezeniu) Operatory potozenia i pedu sa takze
hermitowskie.

Bardzo czesto opis kwantowy jest drastycznie upraszczany, np. ciagle ¢ zastepuje sie liczbami

naturalnymi i wtedy mamy
ldlag=¢
(alg’) = dqq = { ’

0dlag+#q

(delta Kroneckera zamiast Diraca), 1 = 3 . 12){ql, a operator Hamiltona H jest przyblizony lub
wrecz zapostulowany za pomoca macierzy.
Analogicznie do mechaniki klasycznej mozemy dokonywaé ewolucji czasowej

Hp(t)) = ihd v (t))

Odpowiednikiem gestosci prawdopodobientwa jest hermitowski operator gestosci p, unormowa-
nia Trp =1 (slad TrA = [dqA(q,q) = > o Aqq) Zasadniczo p powinno by¢ dodatnio okreslone,
rozroézniamy stany czyste

p =)W

i mieszane czyli kombincje liniowe stanéw czystych
p="> pilt) (il

przy p; > 0, >, p; = 1. Mozna zawsze p zapisa¢ w tej formie diagonalnej dla |1);) ortonormalnych
tj.
<¢z|¢g> = 5ij
Ewolucja jest dana przez ) )
ihowp = Hp — pH
Kwantowa entropia jest dana
S =—kgTrplnp

Wzor jest niezaleZny od wyboru bazy, co réwniez oznacza, ze entropia nie zmienia sie przy
zmianach bazy p — U pU ! — odpowiednik niezmiennosci przy permutacjach dla operacji uni-
tarnej U czyli Ut =1 (identycznosé). Ewolucja zadana przez H jest unitarna. Zatem w bazie
diagonalnej p = >, p;|j)(j| mamy S = —kp>_,;p;Inp;, a wigc dokladnie entropi¢ Shannona

(niezmienniczo$¢ przy permutacjach jest tu wiec szczegdlnym przypadkiem dla kiedy U jest
macierza permutacji). Kwantowa entropia spelnia rowniez subaddytywnosé S < Sy + Sp jesli
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6. BOZONY I FERMIONY 23

pa = Trpp (i viceversa). Tutaj operujemy iloczynem tensorowym przestrzeni, tj. w bazie |q4 ¢p)
oraz py = Trgp = ZqB p(qa 98,44 q8)|qa){d4|. Entropia jest tez addytywna tj. S = Ss + Sp
jesli p = papp czyli p(qa aB,d4 d5) = palqa,ds)ps(qs,dy). Dowody tych i innych wlasno-
$ci mozna znalezé w ksigzce M.A. Nielsen, [.L. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, 2000).

Zespoly statystyczne wprowadza sie podobnie, ale najwygodniej jest przyja¢ baze stanow
wlasnych H czyli

f]|?/fz> = Esz)

Taka baze mozna skonstruowaé¢ w postaci ortonormalnej. Zaktadajac
p= ZMWQ@M
zespoly sprowadzaja sie do wyznaczenia p; a entropia od razu ma posta¢ Shannona

S =—kp sz' In p;

W rozktadzie mikrokanonicznym p; jest state np. dla E; < U, 1S = kglnW dla W — liczby
stanéw o F; < U, w kanonicznym ma postac

pi=2Z"'e PH

a w wielkim kanonicznym

pi = S eNi—0E:

przy czym N; jest wartoscia liczby czastek wyznaczana w tej same bazie co H. Pozostale WZOry
sa bez zmian, ale warto zauwazy¢ ze S > 0 z samej definicji co daje 3ZT.

6 Bozony i fermiony

6.1 Gaz fotonéw — promieniowanie

Klasyczny opis promieniowania (w prézni) opiera sie na rownaniach Maxwella na pole elek-
tryczne E 1 magnetyczne B (razem - elektromagnetyczne),

V'B:O,V'EZE()p,

Vx FE = —@tB, V xB= ILL()J ‘l—/.L()EOatE
gdzie p jest gestoscia tadunku elektrycznego, 5 gestoscia pradu, €, przenikalnoscia elektryczna
prozni, popg przenikalnoscia magnetyczng prozni. Tutaj V = (0,,0,,0,) (0, = 9/0z itd.) a
a-b=a,b, +ayb, + a.b, (iloczyn skalarny) i @ x b = (a,b, — a,by, a,b, — a,b,, a,b, — a,b,)
(iloczyn wektorowy)
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Obecnie ¢, jest okreslone przez warto$¢ tadunku elektronu (elementarnego) a o wynika ze
ustalonej predkosci $wiatta w prozni ¢ = 1/, /fo€g. Pole elektromagnetyczne dziata na tadunki
sila Lorentza

F:/(E,o+j « B)dV
w objetosci V. Dlatego promieniowaniu mozemy przypisa¢ gestosé energii
u=(cB* + B*/10)/2

i strumienia energii (Poyntinga)
P=Fx B/,uo

Mamy bowiem
8tu = EOE . @E + B . 8tB/M0

=V-P-FE -0FE
Z P jest powigzana gestosé pedu p = P/c?. Ped wynika z prawa zachowania
8tp = Eo(atE x B+ FE x 8tB)
=(VxB)xB/uy—jxB—-¢FE x (VE)
— (B-V)B — (VB)/2) /o — j x B+ (E-V)E — (VE?)/2)¢,
=V -T—-jxB-pE
gdzie T jest tensorem Maxwella

T;j = «E,Ej + B;Bj/no — 6 (0 E* + B/ o)

—_

(t,7 =

,2,3 lub z,y,2z and V - T oznacza iloczyn skalarny wzgledem jedneg z indeksow,
(V-T); r

> i 0;T;;). Klasyczna fala elektromagnetyczna ma postac

E = Egsin(w(t —mn-r/c))

B =nx Eysin(w(t—m-7/c))/c
gdzie Ey 1. n. Tu n jest kierunkiem fali, a E( natezeniem i polaryzacja. Fala ma predkosé¢
Swiatlta ¢ i czestosé w (czestotliwosé w/27), srednia gestosé pedu powiazang ze Srednig gestoscia
energii
p =nFE} /210 = nu/c.
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L

Strumienn promieniowania padajacy pod katem 6 na powierzchnie A w pudle od dtugosci
L na objetos¢ AL a ped w kierunku prostopadtym (u/c)cosf. Na przebycie pudta tam i z
powrotem potrzebuje czasu t = 2L/ccosf. Stad sila na jednostke czasu i powierchni wynosi
(u/c) cos? 0. Zakladajac izotropowsé (cos®0) = (k%/k*) = 1/3. Zatem zakladajac promieniowa-
nie w losowym kierunku w 3 wymiarach, srednie ci$nienie, czyli zmiana pedu przy odbiciu od
Sciany, na jednostke czasu i powierzchni wynosi

p=clu/c)/3 =u/3

czyli 3pV = U. Jest to klasyczne prawo, wyprowadzone tylko z réwnian Maxwella i sity Lorentza
(i modelu odbicia promieniowania). Okazuje sie, ze to wystarcza, aby wyprowadzi¢ entropie z
zasad termodynamiki, zaktadajac, ze promieniowanie jest okreslone jedynie przez energie U i
objetos¢ V' (bez liczby czastek N). Z ekstensywnosci entropii S(U, V') mamy bowiem

TS =U+pV =4U/3
czyli

1/T = 0S/oU = 3S/4U
Rozwigzaniem tego réwnania rézniczkowego jest S = A(V)U?* a jedynym uzupelnieniem eks-
tensywnym jest S = a(VU?)/4. Pozostaje jedna stata dowolna a, ale zauwazmy ze

1/T = (3/4)a(V/U)"*
a wiec

U =V(3T/4a)*

Energia promieniowania jest proporcjonalna do 7%. Jest to znane prawo, ale .... kwantowe!
Wiadomo, ze

U = V(kgT)*x*/15(hc)?

gdzie h jest stala Plancka, ktora w dodatku jest w mianowniku (nie mozna jej zaniedbac). Ale
wiemy to z opisu kwantowego, ktory wlasnie Planck wprowadzit. Jak widaé¢ potrzeba nowej

25
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statej byta ukryta juz w opisie klasycznym. Teraz mozemy juz oficjalnie przejs¢ do kwantowego
opisu promnieniowania.

Historycznie Planck musial wprowadzi¢ kwantyzacje promieniowania (dzielenie na porcje,
kawalki, quantum znaczyto kiedy$ niewielks ilo$¢ np. leku, takze np. w tytule Quantum of
Solace). Przyjal, ze fale elektromagnetyczne o czestosci w sa podzielone na porcje (kwanty) o
energii iw = hf (oryginalna stala Plancka h jest mnozona przez czestotliwosé f, dzi§ zastepo-
wana przez h = h/27 dla podkreslenia odrebnosci opisu kwantowego). Kwantéw promieniowania
(Swiatta) — dzi§ mowimy fotondow — o ustalonej czestosci i polaryzacji moze by¢ wiele, ale w
ilo$ci nieujemnych liczb catkowitych, 0, 1, 2, 3, ... Mozemy postuzy¢ sie zespotem kanonicznym
aby znalez¢ a. Uwaga: co prawda mozna wyznaczy¢ $rednia liczbe fotonéw, ale nie jest to stala
ruchu. Fotony sa emitowane lub absorbowane, ich liczba w oddziatywaniu z fadunkami zmienia
sie. Dlatego zespo6t kanoniczny wyjatkowo jest rownowazny wielkiemu a takze F = 2 = —pV.

Musimy najpierw wyznaczy¢ dostepne czestosci. Jesli rozwazymy tréjwymiarowe pudto o
wymiarach L, x L, x L, =V i tzw. periodyczne warunki brzegowe, fala e’* "~ krazy dookota,
to wektor falowy k = wn/c musi speliaé

kpL, = 21Ny, kyL, = 27N, kL. = 27N,

gdzie N, . sa dowolnymi liczbami catkowitymi. Uwaga: mozna uzy¢ bardziej fizycznych wa-
runkoéw brzegowych np. 6 luster i wyznaczy¢ warunek na fale stojace, sin(k,L,) = 0, ale w
praktyce wynik bedzie ten sam, tylko obliczenia sa nieco trudniejsze. Poza tym lustro w po-
tocznym rozumieniu nie dziata dla fal o bardzo wysokich czestotliwosciach (np. 7).

Dla kazdego k mamy w = ck a zatem energia wynosi

E = Z m(k, e)hck
k

gdzie m jest liczba fotonéw o danym k i polaryzacji e (sa 2, prostopadle do k) Prawdopodo-
bieristwo danego stanu (okreslonego przez zespo6t liczb m) wynosi

p= Z—le—ﬁE

gdzie

Z = ZG’BE

{m}

Poniewaz wybor liczb m jest niezalezny, mozna te sume zapisaé¢ jako iloczyn

7 — H] Z efﬁm(k:,e)hck:

k.e m(k,e)

Tymczasem
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jako suma szeregu geometrycznego. Stad
7 — H 7,Bck

albo

InZ =— Z In(1 — ﬁhck _9 Z In(1 5hck
k.e

gdzie N = (N,, Ny, N,) = (kyL,, k,Ly, k.L,)/27. Pozostaje wykona¢ sume. Tu zrobimy przy-
blizenie w granicy L > [Shc przez catke po N

InZ = — / dN,dN,dN, In(1 — e P"*) = —(2m) 3L, L, L. / dkydk,dk, In(1 — e=7)
dokonujac zamiany zmiennych na sferyczne k = k(sin 6 cos ¢, sin 0 sin ¢, cos #) mozemy napisac
InZ = —2(2n) 73 (4n) / "k R In(1 — e k)

0

Jeszcze raz zamienimy zmienne na x = Shck aby dostac
InZ = —n%(Bhc)™? /00 dr 2°In(1 —e™)
0

Okazuje sie ze te ostatnig catke mozna obliczy¢ najpierw przez czesci

00 1 o] 3
—/ dr 2°In(1 — e %) = —/ dr —
0 3 0 e —1

o0
/ dz
0
a ostatnig liczbe (funkcja ¢ Riemanna) daje sie wyrazi¢ algebraicznie
=Y m*=x"/90
m=1

co mozna wyprowadzi¢ postugujac sie rozwinieciem szeregu Fouriera dla funkeji 2. Ostatecznie
mamy

potem przez szereg

1= g / dx x°e”™" = g — = 6¢(4)
- m=1"0 m

m=1

pV =InZ = (1/3)V=*/15(Bhc)?

a zatem

7T2(]€BT)4

U=3pV =V B
P 15(ch)?
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Obecnie stosujemy operatorowe podejscie do opisu kwantowego tj. potencjal wektorowy
A('ﬁ t) = h/2Vwe Z(edk,eeik""*m + edL’ee"“t*ik"‘)
k.e

oraz E = 8tA, B=VxAi mamy operatory kreacji i anihilacji
[d(ka 6), dT<k/a €/>] = 5k,k’5e,e’

(dla przypomnienia komutator [X,Y] = XY — Y X)) Taka forma umozliwia zapisanie
j /dV(eoE2 LB )2 = 3 heo(alk, e)il(k,€) + al (k, €)a(k, €)) /2
ke

co z kolei mozna inaczej

> hw(i(k,e) +1/2)

gdzie n jest operatorem liczby obsadzeni o wartosciach wtasnych 0,1,2,... a 1/2 jest niemie-
rzalng energia prozni (wykrywalna tylko przez tzw. efekt Casimira, w specjalnych warunkach
brzegowych)

6.2 Kwantowe gazy doskonale

Ogolna posta¢ operatora Hamiltona dla gazéw nieoddziatujacych jest
H = Z Ejﬁj
J

gdzie €; jest energia wlasng wyznaczong z problemu wilasnego jednoczastkowego. natomiast n
jest operatorem liczby obsadzeri danego stanu, 7 = a'a jak w przypadku oscylatora harmo-
nicznego. Wtedy baza stanéw wlasnych jest numerowana wartosciami wlasnymi n czyli n.)
Dla bozonéw (czastki skalarne, o spinie 0, 1, ..., nazwa pochodzi od nazwiska fizyka Bose, np.
fotony, ale nie tylko), n = 0,1,2,.... Uwaga: dla bozonéw powinnismy dodaé¢ 1/2 do n, ale
okazuje sie, ze nie ma to zwykle znaczenia, bo jedynie podnosi energie prozni. Jedyne przy-
padki, kiedy jest to wazne, to np. w efekcie Casimira — przyciaganiu metalowych powierzchni
wskutek zmiany tej wlasnie energii — a takze kiedy badamy wlasnosci prozni kwantowej. Po-
nadto liczba wszystkich obsadzen (czastek) N = > ;. Do policzenia pV 3 musimy sumowaé
wszystkie mozliwe obsadzenia niezaleznie dla kazdego j, dla bozonow

Z eBlu—e) — (1— eﬂ(u—E))—l

n>0

Zatem z zespotu wielkiego kanonicznego

mEZ=-0Q8=pVB=—> In(l—e't ")
J

28
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Latwo policzy¢ takze érednie liczby obsadzeni (;) = (e#(~#) —1)~1. W granicy termodynamicz-
nej wygodniejsza zmienna jest wektor falowy k, lub ped 7 = hk, k = 270(j1/ L1, jo/ Lo, j3/Ls3)
gdzie j przebiegaja wszystkie liczby catkowite. W granicy duzej objetosci sume mozna zastapi¢
calka . — [ d’j, a miar¢ zamieni¢ na pedowa [d*j =V [ @*p/(27h)? (bo V = LiLyL3), a
wiec .
_ d’p Blu—e(p
pB = —/Wln(l—e (u=e®))

Uwaga: czesto oprocz pedu stan opisuja dodatkowe zmienne, raczej indeksowane liczbami cat-
kowitymi, np. spin albo numer pasma (w krysztatach), i po nich takze trzeba sumowaé prawa
strone. Znalezienie termodynamicznego zwiazku podstawowego pB(3, uf) sprowadza sie wiec
to calki w ktorej musimy znaé €(p). Zauwazmy tez, ze granica klasyczna oznacza —uf > 1
czyli logarytm mozna rozwinaé¢ w szereg Taylora i wzia¢ najnizszy wyraz

d3_’
Bu—e(®))
pb = / 27h)3

Oczywiscie doktadna rownosé z przypadkiem klasycznym dostajemy tylko gdy klasycznie H (p) =
e(p) (a wiec np. H = |p]?/2m, c|p] lub ¢y/(mc)? + [p]?) i mamy tylko ped (nie ma np. spinu). W
przeciwnym razie musimy pomnozy¢ wynik przez liczbe dostepnych konfiguracji spinu, pasm
itp.

Teraz przedyskutujemy szczegétowo najwazniejsze przypadki w petni kwantowo. Technicznie
przydatna wielkoscig jest gesto$é standow

06) = [ (e~ (1)
poniewaz
p =~ [ degle)ln(1 - -9
Dla gazu nierelatywistycznego €(p) = |p?/2m a stad
gle) = 2m(m/2mh?)3/%e/?

a dla ultrarelatywistycznego

g(e) = 4ne®/(2mhe)?
Wykonamy ogoélng analize przypadku g(e) = Ae® (w ten sposob mozna jeszcze uwzglednié
wymiar przestrzenny D: nierelatywistycznie « = D/2 — 1 a ultrarelatywistycznie « = D — 1)

Wtedy
A
pp = —A/deea In(1 — ze™7¢) = iﬁaﬂ /d:ma In(1 — ze™®)

gdzie oznaczylismy z = e’ (tzw. aktywnosé). Calkujac przez czesci

A ze ®
- d atl _~~
Py (o + 1)pott / R gp—
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Z wtasnosci termodynamicznych wiadomo, ze d(pf) = —(U/V')dS + (N/V)d(pf3) skad mozemy
wyznaczy¢ energie licza pochodna po f. Dostajemy U = (a + 1)pV i jest to kwantowy odpo-
wiednik klasycznego réwnania stanu, ktore w formie pV = NkgT kwantowo nie obowiazuje w
ogolnosci! Wynik wyraza sie przez funkcje specjalne I' ( oraz tzw. polilogartym
J
Lig(z) =S =

(03
j=1 J

w nastepujacy sposob

pB = [(a+ 2)Ligy2(z), NV = [(a + 2)Ligy1(2)

(a +1)gett (a +1)get!
Wykresy przydatnych tutaj polilogarytmow (dla o = 1/2 i o = 2) sa nastepujace:

— Lis@ o — Lisp | 10

_ Lis@ — Lism | 99
-15 -1.0 -0. i 05 10

-15 -1.0 - 05 10 .

J ~1.0

Zobaczmy jak wygladaja mate poprawki do klasycznego réwnania stanu w drodze do granicy
klasycznej z < 1 Wezmy 2 najnizsze wyrazy z Li:

P~ [(a+2)(z + 22/2°%%)

(O./ + 1)5a+1

Mamy takze koncentracje

N (8pﬂ
n = — [ P2

a = L 2 j9a+2
g), e A )

v

Dzielac stronami dostajemy

1+Z/2a+2 0t
pﬂ/n:wzl—zﬂ ~1

B (O{+ 1)/604+1
ATl (o + 2)20+2

6.3 Gazy kwantowe w niskich temperaturach
Bozony dla =0

Tak samo dla nieustalonej liczby czastek pod warunkiem € > 0 (o € = p = 0 podyskutujemy
pozniej). Wtedy

Pg = —/deg(e) In(1 — e_’Be)
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Calka jest zbiezna jesli dla lng/Ine > —2 przy € — 0 co zwykle jest spetnione. Mimo ze liczba
czastek nie musi by¢ ustalona (jako stala ruchu), mozna ja obliczy¢ najpierw rézniczkujac
og6lny wzor a potem kladac p = 0. Wtedy

N = /cleg(e)(eﬁe —1)7!

Calka jest zbiezna, jesli Ing/Ine > 0 co jest prawda np. dla gazu nierelatywistycznego w
3 wymiarach (ale nie w 2 ani 1!) Dla g = Ae® otrzymujemy PS = AT'(a + 2)((a + 2)/(( +
1)B**1) poniewaz Li, (1) = ((a), gdzie ¢ jest funkcja specjalng zeta Riemanna. Wartosci (j) dla
parzystych liczb naturalnych j wyrazaja si¢ przez wn’, gdzie w jest wymierne, np. ((2) = 72/6,
¢(4) = /90 (dowody wykorzystuja szeregi Fouriera albo funkcje holomorficzne), dla innych
liczb mozna je tylko wyznaczy¢ numerycznie (np. z definicji granicy szeregu).

Dla gazu nierelatywistycznego dostajemy

U/V = (3/2)(m/2x1?)*P* (ksT)*2¢(5/2), p = (m/2n1%)*(ksT)*?¢(5/2) (A)

oraz

n = (m/2nh2)* (kpT)"2(ksT)**¢(3/2) (B)
gdzie ¢(5/2) ~ 1,341, ¢(3/2) ~ 2,612.

Kondensacja Bosego-Einsteina

Dla bozonéw z p nie moze przewyzszy¢ dolnej granicy energii (zwykle umownie 0) bo inaczej Li
wybucha (dla z > 1). Tymczasem dla ustalonej temperatury liczba bozonéw jest rosnaca funk-
cja pf3, wiec maksymalng wartos¢ osiaga dla p = 0. Z drugiej strony ze wzoru (B) wynika, ze
warto$¢ ta maleje z temperatura. Zatem im nizsza temperatura, tym nizsza maksymalna liczba
czastek. Jesli wiec obnizamy temperature przy ustalonej objetosci i liczbie czastek (ustalone
n) to w pewnym momencie dotrzemy do takiej temperatury krytycznej, kiedy zachodzi (B).
Jesli dalej obnizamy temperature, to liczba czastek zaczyna przekracza¢ dopuszczalng wartosé
(ktora maleje z malejaca temperatura). Ale przeciez czastki nie moga zniknaé, bo ich liczba jest
zachowana! To gdzie sie ukryly? Okazuje sie, ze przeoczyliSmy wazny szczegdt przy liczeniu gra-
nicy termodynamicznej. Beztrosko zamieniliémy sume na calke. Przewaznie jest to poprawne,
ale nie w sytuajach, kiedy sumowana funkcja gwattownie rosnie. A tak sie dzieje w stanie pod-
stawowym p = 0, € = 0. Musimy ten stan wyizolowa¢ i policzy¢ osobno jego wktad do ci$nienia
i liczby czastek (nie ma wkladu do energii) dla matego S (blisko zera). Mamy

poBV = —In(1 — e?) = —In(—Bp), No = (e — 1) =~ (—pfB) !

a wiec wybucha obsadzenie stanu podstawowego i to tam gromadza si¢ nadmiarowe czastki.
Na tym polega kondensacja Bosego-Einsteina. Nie dziala zwykta granica termodynamiczna, bo
pojawia sie zaleznosé¢ miedzy ekstensywnym Ny i intenyswnym pf i mamy poSV = In(Ny + 1).
Wida¢ wiec takze, ze zwiekszajac cisnienie powodujemy, ze liczba czastek rosnie wyktadniczo z
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objetoscia, czyli objetos¢ wlasciwa czastek V/N w granicy termodynamicznej maleje do zera, a
podobnie energia, bo prawie wszystkie czastki przechodza na stan podstawowy. Ten argument
podaje sie uzasadniajac, ze jest to przemiana pierwszego rodzaju (bo energia i objeto$¢ na
czastke zeskakuja od skonczonej wartosci do zera). Mozna to tez tak ujac, ze uB(5,pB) dla
ci$nieri ponizej (A) jest funkcja o skoriczonych pochodnych, takze na linii pf = 0, ale powyze]
(A) mamy pf = 0 a wiec wszystkie pochodne sg zerowe. Skomentujemy to jeszcze krytycznie
na koncu.

Wielu fizykow twierdzi jednak, ze mam tu do czynienia z przemiana trzeciego rodzaju,
analizujac zachowanie energii wzgledem temperatury przy ustalonej liczbie czastek i objetosci.
Przedstawimy to uzasadnienie, ale na koricu je skrytykujemy. W rozpatrywanej sytuacji istnieje
specjalna temperatura krytyczna dla przemiany Tk, wyznaczona przez (B) dla tutaj ustalonego
n 1 bedziemy si¢ do niej czesto odnosié. W T' = T energia ma warto$é okreslona przez (A) i
nie ma skoku. Przeanalizujemy ¢y = (0U/JT),,/N. Ponizej Tk wystarczy zrozniczkowaé (A) i
wzia¢ N = N(Tk) dane przez (B) (bo bierzemy pod uwage takze czastki zgromadzone w stanie
podstawowym):

cv = kp(15/4)(T/Tx)**¢(5/2)/¢(3/2)
a w punkcie krytycznym cy = kg(15/4)((5/2)/((3/2) ~ 1,926kp. Powyzej punktu krytycznego

marny
ney — —ion [(82196) ) (3pﬂ/0u685)1
uB

op* (0°pB/0u3?)s

Dochodzac do punktu krytycznego rozwazamy granice uf — 0. Wtedy pierwszy wyraz jest
taki sam jak ponizej Tk a drugi dazy do zera. Zachowuje sie bowiem jak LiZ /2 /Lii /2 co dazy do
€%(3/2)/¢(1/2) a (3/2) jest skonczona podczas gdy ((1/2) = co. Zatem nie ma skoku cy. Jest
za to skok pochodnej ¢y . Ponizej Tk mamy

(Dey /0T, = 3y /2T

a wiec w punkcie krytycznym 45((5/2)kp/8((3/2)Tx =~ 2,889kp/Tk. Z kolei powyzej Tk

zmudne przekstalcenia prowadza do
2 3
o (5), ()
& uB s uB

8cv . k%64

(57) -

(9pB/0uBop)? N 3(32195/3#685)(33pﬁ/3u6352)
(O%pB/0uB?)s (9?pB/0uB?)s

(908 0nB08)*(°p5/050B) | (32pﬁ/8u505)3(83pf3/3u53)ﬂ]

+2471

-3

(0°pB/0uB?)} (0°pB/0uB?);

W granicy pf — 0 pierwsza linia daje ten sam wynik co ponizej Tk, druga linia i pierwszy
wyraz ostatniej znikaja podobnie jak poprzednio bo ((1/2) = oo jedynie ostatni wyraz daje
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skoniczony wynik, wtasnie szukany skok. Co prawda mianownik wybucha jak (—uB)~%/2, ale

okazuje sie, ze licznik tak samo i bedzie skoriczona granica. Obliczamy ja dyskutujac catke z

mianownika
/ %% cosh((z — 1) /2)
dr————3
dsinh’((z — p/F)/2)
podstawiajac x = (—u3)"/?tg?¢, i rozwijajac sinhy ~ y. Calka z licznika jest jej pochodna.
Ostatecznie skok pochodnej jest —27¢%(3/2)kp /167 Ty ~ —3,666kp/Tx a cala pochodna po-
wyzej Tk wynosi (45¢(5/2)/8¢(3/2) — 27¢*(3/2)/16m)kp/Tx ~ —0, T78kp/Tx. Wykresy u i cy
sg nastepujace:

~ (3m/4)(—uB) "2

u/ks Tk
35
3.0
25 ok
2.0 Or ;
15; 15 /\\\“
10 1.0
05 05 |
05 1.0 1.5 2.0 25 Tk 05 1.0 1.5 2.0 25 Tk

Dla duzych temperatur ciepto dazy do wartosci klasycznej 3kp/2. Widoczna ciagtosé, ale skok
pochodnej ¢y miatby dowodzi¢ 3 rzedu przemiany. Jednak mamy ustalone N i V' a nie p, a wiec
jest to niezgodne z idea Ehrenfesta. Z drugiej strony uzasadnienie pierwszego rzedu przemiany
jest takze dyskusyjne. Czastki masowo zgromadzone w stanie podstawowym zaczna ujawniac
swoje oddzialywanie (zaniedbali$émy je na samym poczatku) co spowoduje modyfikacje zalezno-
Sci termodynamicznych, np. wktad do ci$nienia moze by¢ proporcjonalny do obsadzenia stanu
podstawowego na jednostke objetosci. Moze (ale nie musi) to spowodowaé ciagta zmiane obje-
tosci zamiast skoku do zera i przemiane drugiego lub wyzszego rodzaju. Wymaga to doktadnej
analizy mozliwych oddzialywarn, czego tutaj sie nie podejmiemy. Warto takze wspomnieé, ze
doswiadczalnie uzywa sie raczej putapek o potencjale harmonicznym co zmienia ilociowo opis
kondensacji choé¢ gtéwna idea pozostaje i jest to obszar aktywnych badan naukowych.
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6.4 Gaz fermionow

Fermiony (statystyka Fermiego-Diraca) to czastki o spinie 1/2 (ogoélnie takze 3/2, n + 1/2) o
antyprzemiennych opratorach kreacji i anihilacji t;j.

a2 =0, ab+ba=0, a'b+bat =0, ata+aat =1

dla stanéw a i b. Z innymi operatorami sg przemienne. Oznacza to ze obsadzenia stanéw n, =
a'a moga mie¢ wartosci wlasane tylko 0 i 1. Ogolna postaé¢ operatora Hamiltona dla gazow
nieoddziatujacych jest nadal
H = Z Ejﬁj
J

gdzie €; jest energig wlasng wyznaczong z problemu wilasnego jednoczastkowego. natomiast n
jest operatorem liczby obsadzeri danego stanu, 7 = afa. Ponadto liczba wszystkich obsadzen
(czastek) N = >, f;. Stany moga by¢ superpozycjami tylko dla ustalonego N. Rézne N mozna
tylko dokladaé¢ jako stany mieszane. Do policzenia pV [ musimy znowy sumowaé wszystkie
mozliwe obsadzenia niezaleznie dla kazdego 7, ale dla fermionéw jest to prostsze niz dla bozonow.

$ ) = 1 4 B0
n>0

Zatem z zespotu wielkiego kanonicznego

InE=-Q8=pVB =) In(l+e’ )
J

Latwo policzy¢ takze §rednie liczby obsadzen (f;) = (e#(&=#) 4+ 1)~1. Stosujmey wektor falowy
k, lub ped p'= hk, k = 27(j1/ L1, jo/ Lo, j3/ L3) gdzie j przebiegaja wszystkie liczby catkowite.
W granicy duzej objetosci sume mozna zastapi¢ catka > i [ d*j, a miare zamieni¢ na pedowy
[ &3 =V [d®p/(2mh)? (bo V = Ly1LyL3), a wiec

08 = / P s
(2mh)3

Mozemy takze wyznaczyé¢

_ d3ﬁ
N/V_/(2 h)3(1+65<u—e(m>)—1
™

Uwaga: powinnismy jeszcze wyniki pomnozy¢ przez 2 ze wzgledu na degenreracje spinu (gora i
dot), bedziemy to zapisywaé jako 2,. Funkcja (n.) = 1/(e®#~¢+1) Przebiega od 1 do 0 w miare
zwieksania €. Dla T' — 0 czyli  — oo jest rowna 1 dla € < p i 0 w przeciwnym razie. Wtedy

3y

ww=a | G
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oraz

p:%[wé%%m—dm>

Wartoéé p zalezy od N i oznaczamy jako energie Fermiego Er = u(T = 0).

Jesli stan opisuja dodatkowe zmienne, raczej indeksowane liczbami catkowitymi, np. numer
pasma (w krysztatach), po nich takze trzeba sumowaé¢ prawa strone. Znalezienie termodyna-
micznego zwiazku podstawowego pS(3, uf) sprowadza sie wiec to catki w ktorej musimy znaé
€(p). Zauwazmy tez, ze granica klasyczna jak dla bozonoéw oznacza —uf > 1 czyli logarytm
mozna rozwinaé¢ w szereg Taylora i wziaé¢ najnizszy wyraz

3y
_o Blu—e(7))
P / (2mh)3 €

Oczywiscie doktadna rownosé z przypadkiem klasycznym dostajemy tylko gdy klasycznie H (p) =
e(p) (a wiec np. H = |p]?/2m, c|p] lub ¢/ (mc)? + |p]?) i mamy tylko ped (nie ma np. spinu). W
przeciwnym razie musimy pomnozy¢ wynik przez liczbe dostepnych konfiguracji spinu, pasm
itp.

Teraz przedyskutujemy szczegétowo najwazniejsze przypadki w petni kwantowo. Technicznie
przydatna wielkoscia jest gesto$é standow

o) =2 [ tsdle = @)

poniewaz
po =~ [ degle)n(1 - 0-9)
Dla gazu nierelatywistycznego €(p) = |[p?/2m a stad
gle) = 2,2m(m /2w h?)3/ 24/

a dla ultrarelatywistycznego
g(e) = 2,4ne*/(2mhc)?

W niskich temperaturach duze § powoduje nagta zmiane w okolicach p ~ e. Wtedy

mu+a%*ng{5W—% one

co daje w granicy T'=0

p= [ deglen-o

a takze
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Parametr p nazywamy poziomem Fermiego E, ponizej niego wszystkie stany w T = 0 sa
obsadzone a powyzej puste. Jest to naturalna konsekwencja zakazu Pauliego. Czastki chca
zajmowacl jak najnizsze stany, ale rézne. Zobaczmy jeszcze jak sie zachowuje ciepto wlasciwe
dla ustalonej objetosci i liczby czastek

_(oU . o1 [OU
ov=(57),,, =057 (55),
Tymczasem

(3.~ (329,39, (5, -2,
08/, \0B),; \ouB)z\08 ), \9B), \ouB); (ONOupB)s
__ (anvg ) . 0PV B/01B0B)’

8% )5 (O°PVB/0uB?)s

Korzystajac z ogblnego wzoru na pf3 dostajemy

(%gﬂ )w - / d€g<€>4cosh2<<:2— 1)B/2)
(a33) =~ | 9 e =
(gu%ﬁz)ﬁ -/ O e T

Dokonujac zamiany zmiennych = = (e — p)3/2, otrzymamy

(8U/V> _ 957 (fda:gyccosh:2 :1:)2 B /d;vg x?

aB ), J dxg cosh 2y cosh?

gdzie g liczymy w punkcie p + 2x/8. Jesli 5 jest duze to g jest praktycznie state i catki mozna
obliczy¢, pierwsza sie zeruje z nieparzystosci funkcji podcatkowej a druga jest réwna w2/6
(tablice albo caltka zespolona po prostych oddalonych o in) czyli (O(U/V)/9B), = —n*g/333
i ostatecznie Cy = VEk3T72g/3 gdzie obliczamy ¢ dla u. Uwaga: nie warto przelicza¢ tego

na ciepto molowe, bo w niskich temperaturach wiekszo$¢ fermionoéw jest "uspiona" w stanach
gleboko ponizej poziomu Fermiego p i przypisywanie im aktywnosci cieplnej jest nieuzasadnione.

7 Mieszaniny

Zatozmy ze uklad ma wiele sktadnikéw, np. réznych czasteczek. Niech N;, 1 = 1,2,3,... beda
liczbami czateczek kazdego rodzaju i sa globalnie zachowane. Wtedy mozna uzy¢ wielkiego
zespotu kanonicznego, z osobnymi potencjatami chemicznymi dla kazdego rodzaju.

p=E"exp(}_ iul; — BH)
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z wielka suma statystyczna

Jesli energia jest suma energii sktadnikow H = . H; to mozemy zapisac
pVB=IE=> WEZ(i, 5, V) =Y pVp

gdzie =; jest wielka suma statystyczna pojedynczego sktadnika (czystego). Daje to proste prawo
dla mieszanin idealnych
p= sz‘

ale potrzebujemy jeszcze warunku na srednie liczby czasteczek

Jesli czasteczki sa niezalezne czyli H; =}, H;(p;) dla kazdej czasteczki (tak mozemy zrobi¢
zasadniczo w granicy klasycznej),

In=; = e‘liV/dFle_BHl(Fl)

gdzie 'y oznacza przestrzen jednoczastkowa. Dla prostego gazu jednoatomowego dI’' = d*p/(27h)?
i Hy, = |p]*/2, ale w przypadku czatek dwuatomowych, wirujacych, trzeba rozwazy¢ takze ka-
towa przestrzen fazowa. Mamy wtedy N; = p;V 8 czyli prawo gazu doskonatego. Zatem

pVp = ZNi

a takze mamy state p;(p,T) = pd(p, T) + kT Inz; gdzie ; = N;/N jest utamkiem molowy
(jaka czes¢ stanowia czasteczki rodzaju i) a p? jest potencjalem chemicznym pojedynczego
sktadnika.

Paradoks Gibbsa. Wielki potencjal chemiczny 2 = —pV jest suma od sktadnikow miesza-
niny, ale juz nie np. energia swobodna Gibbsa

G = Z MiNz‘
Jesli np. weZmiemy 2 identyczne gazy doskonale to otrzymamy

G = u)(p, T)N + ) Na;In(x,)
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czyli mamy energie swobodna mieszania (takze entropie)
G'B/N = Z x; Inz;

Bierze si¢ ona stad, ze podczas mieszania tracimy informacje, ktoéra moglismy wykorzystac, np.
budujaé silinik cieplny, ktéry umie odrézniaé czasteczki obu gazéow. Uwaga: w wyjatkowych
sytuajach wzory obowiazuja takze dla stabych roztworéw, kiedy jeden sktadnik nie jest gazem
doskonatym. Drugi musi by¢ na tyle rozrzedzony ze jego czasteczki zachowuja sie niezaleznie
od siebie, cho¢ oddzialtuja silnie z drugim sktadnikiem.

7.1 Reakcje chemiczne

Podczas reakcji chemicznej atomy sa przekazywane pomieczy czasteczkani, a wiec liczba cza-
steczek N, zwiazku chemicznego o nie jest zachowana. Zachowana jest za to catkowita liczba
atomow N, danego pierwiastka a. Zastosujemy wielki zwspét kanonicznych, formalnie wprowa-
dzajac potencjaly chemiczne dla kazdego pierwiastka u, oraz fi, = [u,. Teraz rozktad staty-

styczny ma postac
p(l) =Z""exp (Z fiakaaNa — H)

acx

gdzie k,, jest liczba atomoéw a w zwiazku o a H jest energia. Energia moze sie zmieni¢ w czasie
reakcji. Zwykle mozemy traktowaé reagujace zwiazki jak gazy (takze np. kiedy sa rozpuszczone
w wodzie) 1 wtedy energia jest suma

H=> H,

a takze

N
Hon =Y _|pi*/2ma + NE,
i=1
(czyli energia jest suma energii kinetycznych i wewnetrznej energii czasteczki E,) a przestrzen

fazowa iloczynem
dl' =[] dra

Wtedy mamy
InZ=pVE =Y Vel P (2rhm,/B)"”

gdzie fiq = ), flakaa @ takze

N, = Vele=PEx(2nhm, / 5)*/?
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Potencjaty chemiczne fi, nie sa niezalezne bo wyrazaja sie przez potencjaly atomowe. Zwykle
rOwnanie reakcji piszemy za pomoca wspotczynnikéw stechiometrycznych s,

ZsaAa =0

dla zwiazkow chemicznych A,. Przyktad: spalanie metanu
CHy+ 205 — COy — 2H50

dlaa =1, 2, 3, 4 przyporzadkowanych odpowiednio C'Hy, Oy, COs, HyO daje 81934 = 1,2, —1, =2
oraz k1234 = 1,0,1,0, k1234 = 4,0,0,2, ko1234 = 0,2,2,1. Mamy wigc 3 niezalezne po-
tencjaly fic, fig, flo, a rtownanie reakcji daje

> kaasa =0

dla wszystkich a, w naszym przyktadzie

1010 ; 0
40027 |=(0
022 1) | 0

a wiec algebraicznie s jest jadrem k. W takim razie
Zﬂasa = Zﬁakaasa =0

Dlatego N, nie sa niezalezne, ale

jest stata rownowagi chemicznej zalezne tylko od temperatury, tutaj
New,Né,/Neo, Nio

Stata rownowagi zalezy od temperatury ale takze od rodzaju atomoéw, i wigza.

8 Drgania krysztaléw — teoria Debye’a

Sie¢ krystaliczna polega drganiom wzglednym, poprzez naturalne oddziatywanie wzajemne jej
elementéw. Oddziatywania musza by¢ jednak wzgledne, tj. zalezne od wzglednego potozenia.
Mozemy ten ruch opisywa¢ przez wychylenie potozeri srodkow masy komorek elementarnych
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od umownego polozenia rownowagi, © = 7 — 7y ($rodek masy komoérki moze byé zdefiniowany
dos¢ dowolnie, najlepiej aby mozliwie naturalnie). Klasyczny wktad do funkcji Hamiltona (tylko
wazna tutaj czesc!)

H =[5 2/2m+ 3 Viea(Ady), Ailyy = i@ — @,
J jn

Doktadna posta¢ V; (dla I = j — n) jest nieistotna, istotna jest natomiast zaleznosé¢ od roznicy
wychylen, bo krzystal moze sie swobodnie przesuwaé jako catos¢. Zakladamy, ze wychylenia
sa mate wzgledem wymiaréw komorki elementarnej, bo duze wychylenia prowadza do utraty
porzadku krystalicznego — stopienia. Dlatego przyblizymy rozwijajac wokot rownowagi, wtedy
V ~ A(€- Au)?/2, gdzie € jest pewnym wektorem kierunkowym (o jednostkowej dtugosci
le] = 1). Np. dla trojwymiarowej sieci szesciennej (komorka elementarna [(€,, €,, €,) gdzie [
jest bokiem szescianu) mozemy uwzgledni¢ oddziatywania wzdtuz kierunkoéw osi, przekatnych
prostopadtych do osi i przekatnych szescianu. Nastepny krok to przejscie do bazy falowej (szereg
Fouriera)

ﬁj _ N71/2 E :u—jkezkrj
k

tutaj wy, = w*, jest amplituda zespolona a N liczba komorek (czesto odpowiada liczbie wezlow
sieci, ale nie zawsze, np. nie w graficie). Teraz

S 152 /2m+ S 24,08 - a2 sin® (% - 7./2)
k e

gdzie 77, jest wektorem taczacym komorki elementarne wdtuz kierunku €, 7, = r.€ (jesli uwzgled-
niamy nastepych sasiadow, wtedy wiecej takich wektoréw ma ten sam kierunek i po wszyskich
sumujemy). Uwaga: tak naprawde musimy rozbi¢ wy na czes¢ rzeczywista i urojona i sumowac
po polowie k (po jednym z par k, —k), ale uproszczenie zapisu nie wplynie na wynik. Istotne
beda dla nas czestosci drgan wlasnych wy. Otrzymujemy je rozwiazujac problem witasny dla ma-
cierzy ) 4A.ee sin®(k - 7, /2) (€€ jest macierzg iloczynow skladowych e) ktorej wartosci wlasne
A = mw?. Dla matych k& mozemy rowina¢ sin i dostajemy

H ~ Z |ﬁk|2/2m + ZA6|€ wk|2(lg Fe)2/2
k e

W ogoélnosci drugi wyraz mozna zapisa¢ Wi : A : EE/ 2 gdzie A jest tensorem 4 rzedu (ma
31 = 81 sktadowych Agpeq, ale jest symetryczny Agped = Apacd = Aavde 1 takze zwykle = Aypq)-
Jego dokladna posta¢ nie ma znaczenia w teorii Debye’a, ale warto spojrzeé¢ na przypadek
izotropowy tj.

S A WPk 7)? = on ki + aslk - @] = aq |k x @) + (on + )|k -]
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wtedy az = mc} oraz a; + ag = mc gdzie ¢p 1 to predkosei fali (dZzwiekowej) spolaryzowanej
wdluz kierunku przemieszczania si¢ (L — podiuzna) oraz prostopadle (T' — 2 transwersalne).
Falowos¢ wiaze sie z czestoscia drgan wlasnych liniowo zalezna od k, tj. w = c|k|. Predkosci ¢y, 1
cr moga by¢ zupetnie rozne. Przypadek izotropowy mozna otrzymaé np. dla sieci przestrzennej,
definiujac A; wzdluz osi, As — przekatnych prostopadlych do osi i A3 — przekatnych szescianu
(rysunek). Wtedy ten przypadek otrzymujemy dla A; = Ay + 843/3, ay = [2(Ay + 4A3/3),
g = 12(2A5 4+ 843/3), a wiec 3 = [?(Ay + 4A3/3)/m, 2 = [2(3Ay + 4A3)/m.

Mozemy wreszcie przystapi¢ do obliczania energii swobodnej. W przypadku klasycznym

BF = Z In(Bwy.h)

k,a

gdzie sumujemy dodatkowo po indeksie wartosci wtasnej a (po 3 na kazde k) Stad tez U =
OBF/0B = 3NkgT oraz ¢y = 3kp bo liczba drgan jest rowna liczbie zmiennych niezaleznych
(3N). Jest to charakterystyczny klasyczny wynik, ktory mozna interpretowac zasada ekwipar-
tycji energii (kp/2 na kazdy "stopienn swobody", tutaj po 1 "kinetycznym" i 1 "potencjalnym"
na kazdy z 3 wymiaréw, w sumie 6). Kwantowo z kolei

BF = In(2sinh(Bhwi,/2))

k,a

Trzeba zaznaczy¢, ze dos¢ beztrosko przetozylismy klasyczna funkcje Hamiltona na kwantowy
operator, chociaz zmienne u wcale nie sa fundamentalnym polem, kiedy mieliby$my petne prawo
tak zrobi¢. Okazuje sie ze mozna tak robié¢ dla niefundamentalnych zmiennych, jest to tzw.
kwantowanie kanoniczne, o ile rozpatrywane zmienne mozna wydzieli¢ jako operujace w za-
kresie znacznie nizszych energii od innych lub sa w inny sposoéb niezalezne od pozostatych w
rozpartywanym zakresie energii (w fizyce statystycznej skale istotnych energii wyznacza kgT)
Teraz
U= coth(Bhwia/2)hwia/2 =Y hwga(1/2+ (e — 1))

k,a k,a

Pierwszy wyraz to tzw. energia prézni. Drugi wyraz to czesé zalezna od temperatury, ma te
sama posta¢ co dla bozonéw przy p = 0. Nie jest to przypadek, bo bozonami sg tu kwanty
drgan, tzw. fonony (bo zwiazane z falami dZzwickowymi, podczas gdy fotony sa zwigzane z falami
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Swietlnymi), takze o niezachowanej liczbie. Granica klasyczna oznacza teraz jednak tylko mate
B, bo stale z = e"® = 1. Tak jak w przypadku gazéw, wygodnie jest przejs¢ do granicy duzej
objetosci, wtedy Y, — V ¢ d*k/(2m)? Tym razem calka jest po skoniczonym zakresie k (co
wyraznie zaznaczyliémy), bo w krzysztatach ograniczamy sie do jednej strefy Brillouina (patrz
czes¢ . Ogolnie (27)73 § d*k = n (koncentracja komorek elementarnych) bo liczba k jest
rowna liczbie komorek elementarnych N. Wprowadzimy takze gestos$é czestosci

g(w) = Z]{ (Zﬁl;é(w — Wka)

Jest ona unormowana, [ dwg(w) = 3n (po 3 drgania na kazde k a odpowiednio wiecej gdy
krzystaly sa wieloatmowe, musi sie zgadzaé¢ liczba stopni swobody) oraz

%F _ /dwg(w) In(2 sinh(Bhw/2)), % _ /dwg(w)hw(l/Q + (e —1)7Y)

W wysokich temperaturach otrzymujemy oczywiscie zachowanie klasyczne, za to w_niskich
wazne beda tylko mate energie, dla ktorych znajdziemy w przyblizeniu g(w). Niech k = kéj,
gdzie €} jest kierunkiem k. Dla kazdego k mozemy napisa¢ macierz

D(&) = A:@é/m =Y Afe(E 7.)/m

ktorej 3 wartosci wlasne sa kwadratami predkosci dzwigku, mozna zatem napisac D = C?
gdzie C' jest macierza predkosci dzwieku o wartosciach wlasnych ¢,(€x) (¢ = 1,2,3) Mamy
Wka = kcq(€r) a wiec

ostatnia sume mozna takze zapisac TeC—3 = TrD~3/2. W przypadku izotropowym Y c;? =

c® +2¢7% 1 g(w) = w(ep® 4+ 2¢5%) /272, jednak w kazdym przypadku mozemy napisaé g(w) =
aw?, gdzie a jest pewng staly. Zatem w niskich temperaturach
U U

3 Ui
V = 7 + hoz/dweﬁh(:)—_l = VO + 7T4(k’BT)4Oé/15FL3

oraz cy ~ 4ntak}T? /1503, Jest to charakterystyczne kwantowe zachowanie ciepla wlasciwego w
niskich temperaturach ~ T3. W wysokich otrzymamy klasyczne wyniki (co wazne, kompensuje
sie Up). Czesto interpoluje sie zachowanie ¢y w posrednich temperaturach, upraszczajac g = aw?
dla w < wp a zero powyzej wp (jest to drastyczne uproszczenie, nawet nie przyblizenie, bo dla
duzych czestosci g zachowuje sie zupelnie inaczej, ale faktycznie maleje do zera). Czestosé
Debye’a wp wyznacza sie z normalizacji g, czyli wp = (9n/a)/3. Czestosé ta powinna mniej
wiecej odpowiada¢ maksymalnej czestosci drgan (pamietamy, ze takie ograniczenie istnieje bo

42



8. DRGANIA KRYSZTALOW — TEORIA DEBYE’A 43

w zmienia sie¢ w sposob ciagly w obszarze zwartej strefy Brillouina). Mozna tez zdefiniowaé
temperature Debye’a Tp = hwp/kp, ktora moze by¢ traktowana jako umowna granica miedzy
zachowaniem klasycznym i kwantowym. W takim uproszczeniu

x3

er —1

Tp/T
u=U/V ~uy+ 9kBT(T/TD)3/ dx
0

Wynik mozna wyrazi¢ przez kombinacje polilogarytméw (nie bedziemy tego wypisywac). Osta-
tecznie wykres ¢y wyglada nastepujaco:

0.2 04 06 0.8 1.0Tp
Drgania sieci maja takze znacznie przy topnieniu — utracie uporzadkowania krystalicznego. Z
opisu drgan wylaczyliSmy jednostajne przesuwanie krzystatu. Mozna sie obawiaé, ze drgania

o niskich czestosciach doprowadza do rozchwiania krysztatu i utrate porzadku. Warunkiem
"bezpieczenstwa" krysztatu, tzw. kryterium Lindemanna, jest nierownosé

(lal) = N_lz<|ﬁ§|> <

gdzie [ jest wymiarem komorki elementarnej. Oznacza to, ze wychylenia sg mate w poréwnaniu
z rozmiarami komorek, czyli zasadniczo tkwia w miejscu; czesto po prawej stronie dopisuje
sie tzw. czynnik Lindemanna — umowna bezwymiarowa liczbe mniejsza od 1. Wykorzystujac
otrzymany wczesniej rozklad kanoniczny mozna to wyrazié

([ = N~' Y (jaif?) = (3/2)n™" /dwg(W)(f’l/mu))(l/2 + (e = 1))

Tutaj skorzystaliSmy z rozktadu operatora potozenia na drgania wtasne

UA_;kb = gkb(&kb + CALL))\/ h/Qmwkb
a wiec
(lWo]*) = (s + 1/2)) (h/mewr,)

jesli upro$cimy model do niezaleznych drgan w kierunkach b = xyz.
Kluczem do stablinosci jest zachowanie dla matych w, poniewaz w skonczonych temperatu-
rach g konkuruje z 1/mw?. Dlatego krysztaly 1-wymiarowe nie sg stabilne, 2-wymiarowe tylko w
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zerowe]j temperaturze a w pelni stabilne dopiero 3-wymiarowe, bo wtedy g ~ w? daje skonczong
prawa strone. Niestabilno$é objawia sie rosnaca liczba defektéw sieci, ktore w koricu niszcza
caly porzadek. W 3 wymiarach w granicy klasycznej

(|a]?) ~ k:BT/dwg(w)/mnw2
a w kwantowej (niskie temperatury)
(|id]?) ~ /dwg(w)h/anw

(jak wida¢ w zerowej temperaturze drgania wcale nie zamieraja). Z kolei uproszczeniu przez
czestosé Debye’a:

Tp/T
(|ad]?) ~ (9h/me)(T/TD)2/O drz(1/2 4+ (e —1)71)

co daje w wysokich temperaturach 9kpT /mw?% a w niskich temperaturach 95/4mwp a ogolnie:

Mwp (U?)/97

Cooom
 NBhoO®O

0.20.4 0.6 0.8 1.0Tp

8.1 Krysztaly — twierdzenie Blocha

Jesli operator Hamiltona nie zmienia si¢ przy pewnych przesunieciach tj. H(7) = H(r + a)
(najczesciej stosujemy to przypadku jednoczastkowego, ale idea jest calkiem ogdlna), to mozna
go zdiagonalizowaé¢ wzgodnie z tymi przesunieciami, tj. stan wlasny |1p [ Priyp(r) f’) ma
wlasnosé (7 + @) = €Z¢1/)< ). Przyjmuje sie konwencje falowa, tj. ¢ = k- a. Wida¢, ze k ma
ograniczony zakres do k@ = 2w, bo potem ¢ sie powtarza. W trojwymiarowym kryszale mamy
trzy wektory dj, j = 1,2, 3, rozpinajace réwnolegloécian, komorke elementarna. Naktada to
ograniczenie na k ktore sg zamnigte w komorce elementarnej sieci odwrotnej rozpigtej przez
k:j zadanej przez k‘ © Oy, = 270m. Wektory k; maja wartosci ki = 21y X a3/ (d; - (ag X ds3) a
pozostate cykliicznie (1 — 2 — 3 — 1) lub macierzowo (kiksks)T = 2m(d@1d,ds) ", Komorka
sieci odwrotnej to tzw. pojedyncza strefa Brillouina. Liczac stany wlasne zawsze oganiczamy
sie do niej, aby nie liczyé¢ stanéw wielokrotnie. Warto$¢ wlasna H staje sie¢ wtedy funkcja
E(E) Wida¢ wiec, ze stany wtasne mozna pogrupowaé¢ w tzw. pasma, w kazdym z nich w
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spos6b ciagly zmieniamy ka wiec i F. Dla kazdego pasma E musi mie¢ ograniczony zakres.
Dla réznych pasm przedziaty E moga zachodzi¢ na siebie. Moze sie zdarzyé¢, ze zadne pasmo
nie osigga pewnej energii, wtedy mamy do czynienia z przerwa energetyczna, co ma kolosalne
znaczenie w elektronice. Ze wzgledu na szczegélne dodatkowe symetrie badZ wazne zastosowania
w opisie pasm i komorek wprowadza sie liczne konwencje oznaczeniowe, ktorych nie bedziemy
tu dyskutowac.
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