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Termodynamika

1 Opis termodynamiczny
Układ – w termodynamice pojęcie podstawowe makroskopowy zbiór cząsteczek, opisany pewną
liczbą parametrów (liczb rzeczywistych). Wyróżniamy parametry ekstensywne. Paramterami
tymi może być np. U – energia (wewnętrzna), V – objętość, N – liczba moli, Na (wiele skład-
ników, indeksowanych a = 1, 2, . . . ), q – ładunek, M – magnetyzacja. Układ może być zbiorem
podukładów i każdy podukład jest także odpowiednio opisanym układem (analogicznie do po-
zdzbiorów w matematyce). Wartość parametru ekstensywnego dla całego układu jest sumą ich
wartości dla podukładów, np.

U = U1 + U2 + · · ·+ Un

dla podukładów 1,2,. . . ,n. Szczególnym układem jest jednorodny. Taki układ można podzielić
na dowolną liczbę dowolnie małych (tj. np. Ui/U jest dowolnie ograniczone) podukładów a
parametry ekstensywne rozkładają się proporcjonalnie, tj.

Ui/Vi = U/V dla i = 1, 2, . . . , n

Przeważnie rozpatrujemy układ jako skończony zbiór podukładów jednorodnych (wyjątki: w
polu grawitacyjnym, elektrycznym itp.). Oprócz ekstensywnych są też parametry intensywne,
definiowane w układzie jednorodnym, takie same dla każdego podukładu. Są to m.in. ilorazy
U/V , U/N , ale także ciśnienie p i temperatura T . Całego układu nie da się opisać wspólnym
parametrem intensywnym, jeśli jest różny w różnych podukładach jednorodnych. Nie wszystkie
parametry muszą być niezależne. Układ i podukłady mogą zmieniać się w czasie, np. U(t), po-
przez procesy termodynamiczne. Czas w termodynamice jest umowny, zadaje pewien porządek,
najprościej tradycyjnie oznaczać go liczbą rzeczywistą ale też można liczbami całkowitymi albo
symbolicznie, jako np. początek i koniec. Stan układu i podukładów (w danej chwili czasu) jest
opisany przez pierwotnie komplet wartości niezależnych parametrów ekstensywnych, ale potem
można zmieniać zbiór parametrów. Funkcja stanu – funkcja kompletu parametrów układu w da-
nej chwili czasu. Wyróżniamy parametry ekstensywne zachowane – stałe globalne: U , V , N , Na

(jeśli nie ma zmian chemicznych), q. Uwaga 1: energia wewnętrzna jest zachowana razem z me-
chaniczną tj. U+E = const. Energia mechaniczna dotyczy zwykle dużych, makroskopowych ciał
jako specjalnych układów opisanych masą M i prędkością v jako Mv2/2 lub Mc2/

√
1− v2/c2

w teorii względności. Uwaga 2: M jest zachowana tylko w przybliżeniu, niezachowanie jest
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1. OPIS TERMODYNAMICZNY 3

A B

C

Rysunek 1.1: Układ z trzech podukładów A, B, C połączonych ściankami, każda może dopusz-
czać zmiany innej grupy parametrów zachowanych. W praktyce blokada np. wymiany energii
między A i B nie zadziała, jeśli mogą ją wymieniać A i C oraz B i C.

istotne w diamagnetyzmie. Podukłady są rozdzielone wzajemnie ściankami (Rys. 1.1), które
dopuszczają zmianę parametrów zachowanych pomiędzy parą układów (suma nie zmienia się):

zmiana? TAK NIE
energii diatermicza adiabatyczna

objętości ruchoma nieruchoma
moli przepuszczalna nieprzepuszczalna

Brak możliwości jakichkolwiek zmian: ścianka izolująca. Ścianki można zmieniać w czasie, ale
skokowo (tak/nie). Układ jednorodny przy podziale ma ścianki, które wszystko przepuszczają.

Układ

• izolowany – zmiany wszystkich zachowanych parametrów niemożliwe,

• zamknięty – zmiany liczby moli niemożliwe.

• skończony – o skończonych parametrach ekstensywnych

• nieskończony rezerwuar – jednorodny w granicy nieskończonej, tj. np. U → ∞ ale U/N i
V/N są ustalone. Opisujemy go tylko parametrami intensywnymi.

Stan

• stacjonarny – nie zmienia się w czasie

• równowagowy – stacjonarny bez przepływów

Dla układów izolowanych skończony stacjonarny = równowagowy. Przepływ stacjonarny bez
równowagi może być realizowany przez umieszczenie układu w kontakcie w dwoma różnymi
rezerwuarami (Rys. 1.2). Jeśli zastąpimy rezerwuary skończonymi podukładami, to stan sta-
cjonarny musi jednocześnie być równowagowy. Zasadniczo cały układ jako zbiór podukładów
skończonych jest izolowany, bo nie ma jak zmienić swoich parametrów zachowanych.
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1. OPIS TERMODYNAMICZNY 4

A BS

Rysunek 1.2: Środkowy podukład S jest połączony z dwoma rezerwuarami A i B. Stan stacjo-
narny nie musi być równowagowy, z powodu nieskończoności rezerwuarów.

A B

C

A B

C

Rysunek 1.3: Zerowa zasada termodynamiki. Jeśli AC i BC mogą wymieniać jakiś parametr
zachowany i jest równowaga to będzie nadal, jak zmienimy ścianki, aby AB mogły go wymieniać
bezpośrednio. Brak ścianek oznacza izolujące.

Proces kwazistatyczny (pseudostatyczny) – ciąg stanów równowagowych (przykład: balon
z maleńką dziurką przez którą ucieka powietrze, w praktyce procesy dostatecznie powolne),
kwazistatyczny odwracalny w czasie – jeśli może przebiegać odwrotnie w czasie.

1.1 Zasady termodynamiki

Zerowa

Jeśli układ ABC jest równowadze dla AB i BC połączonych taką samą ścianką, to ABC będzie
także w równowadze jeśli połączymy AC tą samą ścianką (Rys. 1.3).

Pierwsza

Energia jest parametrem zachowanym, tj. U + E = const w całym (izolowanym) układzie
(poza przypadkiem rezerwuarów). Zmiana energii mechanicznej ∆E = −W , gdzie W – praca
mechaniczna (za pomocą sił) nad układem Q = ∆U − W lub d̄Q = dU − d̄W , gdzie Q –
ciepło dostarczone do układu, W praca nad układem. Ciepło jest niemechaniczną formą energii
przekazywaną do podukładu, a więc suma jest zerowa,

QA +QB +QC = 0
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1. OPIS TERMODYNAMICZNY 5

Druga (2ZT)

Istnieje ekstensywna różniczkowalna funkcja stanu (parametrów zachowanych), entropia
S(U, V,N, . . . ), addytywna (S = SA + SB dla podukładów AB), która nie maleje w układach
izolowanych, pozostaje stała w procesach odwracalnych w czasie (nadal układ izolowany) i dąży
do maksimum, poprzez zmiany parametrów zachowanych dozwolone przez ścianki. Maksimum
osiąga w równowadze. Uwaga historyczna: nazwę entropia wymyślił Clausius w 1865 roku,
na bazie greckiego słowa trope (zmiana) i podobieństwa słownego do energii, używając litery S
prawdopodobnie na cześć imienia twórcy nowożytnej termodynamiki, Sadi Carnot. Równowaga
termiczna oznacza, że ∂S/∂U jest identyczne w podukładach. Dowód z ekstremum związanego.
Jeśli U = UA + UB, to maksymalne S = SA(UA) + SB(UB) oznacza

∂SA

∂UA

=
∂SB

∂UB

Stąd definicja temperatury bezwzględnej T : 1/T = ∂S/∂U (przy ustalonych pozostałych para-
metrach ekstensywnych zachowanych). Stądd̄Q = TdS w procesach kwazistatycznych. Warunek
równowagi pomiędzy podukładami z 2. zasady to równość (∂S/∂Xi) dla parametru ekstensyw-
nego zachowanego Xi, którego wymiana jest możliwa.

Z tak sformułowanej drugiej zasady można wyprowadzić zerową (lub uznać, że jest zawarta
w tym sformułowaniu). Jeśli ABC ma maksymalną entropię to zmiana ścianek tego nie zmieni,
skoro parametr można było już wcześniej wymienić pośrednio przez C.

Trzecia

S ≥ 0 i S(T = 0) = 0 oprócz przypadków zamrożonego nieporządku.

Dodatkowe

T ≥ 0. Związane to jest z tym że energia jest ograniczona od dołu, a nie od góry. Jeśli energia
jest ograniczona od góry, możliwe są ujemne temperatury.

1.2 Entropia jako funkcja wklęsła

Okazuje się, że druga zasada termodynamiki implikuje wklęsłość S(U, V,N) dla układów jedno-
rodnych. Przypomnienie, funkcja wklęsła wybrzusza się do góry, tj. dla y(x) mamy y′′(x) < 0,
w przeciwieństwie do funkcji wypukłej, która wybrzusza się do dołu, tj. y′′(x) > 0, Rys. 1.4.
Dla funkcji wielu zmiennych macierz 2. pochodnych jest odpowiednio ujemnie lub dodatnio
określona.

Przypuśćmy, że S nie zawsze jest wklęsła, Rys. 1.5. Wtedy możemy znaleźć styczną do
S(U) powyżej wykresu (dla uproszczenia V i N są ustalone), łączącą punkty (U1, S1) i (U2, S2),

5



1. OPIS TERMODYNAMICZNY 6

wklęsła

wypukła

Rysunek 1.4: Funkcja wklęsła i wypukła

Rysunek 1.5: Entropia jako funkcja energii. Kiedy nie jest wklęsła, układ jednorodny podzieli
się na fazy 2 i 1 w proporcji x : y, ponieważ wtedy S̄ > S.

Rysunek 1.6: Podział układu na podukłady w sytuacji na Rys. 1.5. Wymiana energii zwiększa
entropię
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2. POTENCJAŁY TERMODYNAMICZNE 7

pomiędzy którymi na wykresie jest punkt (U, S). Niech x = U − U1, y = U2 − U . Możemy
zapisać

U = U2
x

x+ y
+ U1

y

x+ y

Podzielmy układ na podukłady x i y w proporcji x : y, Rys. 1.6. Wtedy

Ux = U
x

x+ y
, Uy = U

y

x+ y

Układy mogą wymieniać energię. Pokażemy, że istnieje taki podział energii, który zwiększy
entropię. Mianowicie

Ūx = U2
x

x+ y
, Ūy = U1

y

x+ y

Wtedy entropie podukładów są równe

S̄x =
x

x+ y
S2, S̄y =

y

x+ y
S1

co wynika z ekstentywności układu, a w związku z tym proporcjonalnego przeskalowania wzglę-
dem rozmiaru całego układu. Całkowita entropia to z addytywności

S̄ = S̄x + S̄y =
x′

x′ + y′
S2 +

y′

x′ + y′
S1

gdzie x′ i y′ są rzutami odcinków na prostej 1−2 nie na U , jak x i y, ale na S (Rys. 1.5). Wtedy
jest zachowana proporcjonalność x : y = x′ : y′. Zatem punkt (U, S̄) znajduje się na tej prostej,
powyżej (U, S), a więc S̄ > S.

Takie zachowanie układu wynikające z 2ZT powoduje przemiany fazowe (1. rodzaju, bo
układ dzieli się na podukłady różniące się U/V i/lub N/V ). Układom opłaca się podzielić na
różne fazy, zamiast trwać w jednorodności. W szczególnych warunkach fizycznych może nie dojść
do przemiany fazowej i układ pozostanie w fazie metatrwałej, Rys. 1.7. Fazami metatrwałym
jest np. woda przegrzana powyżej 100◦C (przy normalnym ciśnieniu) lub para przechłodzona
poniżej 100◦C. Wymaga to dużej czystości i jednorodności fazy, bo przemianę inicjują nierów-
ności naczynia, mikroskopijne niejednorodności, a nawet wysokoenergetyczne cząstki (komory
pęcherzykowe). Takie fazy łatwiej uzyskać np. przy przechładzaniu roztworu cukru, kiedy się
nie wytrąca.

Pokazaliśmy, że S(U, V,N) jest funkcją wklęsłą U , analogicznie będzie od V,N , a wtedy
funkcja odwrotna U(S, V,N) będzie wypukła o ile T > 0.

2 Potencjały termodynamiczne
Różniczka energii U(S, V,N) definiuje najważniejsze parametry intensywne

dU =
∂U

∂S
dS +

∂U

∂V
dV +

∂U

∂N
dN ≡ Tds− pdV + µdN

7



2. POTENCJAŁY TERMODYNAMICZNE 8

Rysunek 1.7: Stany metatrwałe pojawiają się poniżej odcinka równowagi fazowej (czerwony)
jako lokalnie wklęsłe fragmenty wykresu (niebieskie). Jednak poza punktami przegięcia (żółte),
wykres jest wypukły (zielony) i układ nie będzie w ogóle takich stanów osiągał.

gdzie mamy temperaturę

T =

(
∂U

∂S

)
V,N

ciśnienie
p = −

(
∂U

∂V

)
S,N

i potencjał chemiczny

µ =

(
∂U

∂N

)
S,V

Na mocy ekstensywności
λU(S, V,N) = U(λS, λV, λN)

a różniczkując po λ i wstawiając λ = 1 otrzymamy

U = TS − pV + µN

Zapis różniczkowy ()x uznacza ustalone x. Uwaga: Dla większej liczby parametrów eksten-
sywnych, wszystkie muszą być powyżej uwzględnione np. dla substancji wielkoskładnikowej
(µa = ∂U/∂Na)

Okazuje się że wygodnie w termodynamice posługiwać się innymi funkcjami, potencjałami
termodynamicznymi, które otrzymuje się poprzez transformację Legendre’a. Transformacja Le-
gendre’a polega na zastąpieniu zmiennej (tu ekstensywnej) przez pochodną funkcji po niej (in-
tensywną) i odjęciu ich iloczynu. Jest ona jednoznaczna dla funkcji wklęsłych lub wypukłych),
patrz Rys. 1.8.

8



2. POTENCJAŁY TERMODYNAMICZNE 9

Rysunek 1.8: Transformacja Legendre’a od funkcji U(S) do F (T ). Tu T jest nachyleniem stycz-
nej T = ∂U/∂S, a wartość F punktem przecięcia stycznej z osią U .

• energia swobodna Helmholtza

F (T, V,N) = U − TS

(transformacja U(S)) wtedy −S = ∂F/∂T a dokładniej

dF = −SdT − pdV + µdN

• entalpia
H(S, p,N) = U + pV

(transformacja S(V )) wtedy V = ∂H/∂p oraz

dH = TdS + V dp+ µdN

• energia swobodna Gibbsa (entalpia swobodna)

G(T, p,N) = U − TS + pV

(transformacja U(S, V )) wtedy

dG = −Sdt+ V dp+ µdN

a także G = µN .

• wielki potencjał termodynamiczny

Ω(T, V, µ) = U − TS − µN

(transformacja U(S,N)) wtedy

dΩ = −SdT − pdV −Ndµ

oraz Ω = pV

9



2. POTENCJAŁY TERMODYNAMICZNE 10

Rysunek 1.9: Transformacja Legendre’a od U do G prowadzi albo przez F (najpierw S → T
potem V → p) albo przez H (najpierw V → p potem S → T )

Potencjały U , F , H, G można traktować jako wybieranie niezależnie transformacji S → T i
V → p patrz także Rys. 1.9.

Można (i jest to bardziej naturalne z 2ZT) różniczkować i transformować S(U, V,N),

dS = (1/T )dU + (p/T )dV − (µ/T )dN

a potencjały są podobne,

• S − U/T = −F/T jako funkcja 1/T , V , N czyli

d(−F/T ) = −Ud(1/T ) + (p/T )dV − (µ/T )dN

• S − U/T − V p/T = −G/T jako funkcja 1/T , p/T , N czyli

d(−G/T ) = −Ud(1/T )− V d(p/T )− (µ/T )dN

• S − U/T +Nµ/T = −Ω/T jako funkcja 1/T , V , µ/T czyli

d(−Ω/T ) = −Ud(1/T ) + (p/T )dV +Nd(µ/T )

Spełniona jest także relacja
S = U/T + V p/T − µN/T

Transformacja Legendre’a wraca do pierwotnego równania po kolejnym zastosowaniu. np.
U = F + ST , S = −∂F/∂T . Dlatego potencjały termodynamiczne jako transformacje Legen-
dre’a są związkami podstawowymi.

Inne definicje

Ciepło właściwe Cx = (∂̄Q/T )x = T (∂S/∂T )x (molowe c = C/N), w tym Cv = T (∂S/∂T )V =
(∂U/∂T )V i Cp = T (∂S/∂T )p = (∂H/∂T )V ,
ściśliwość κx = −V −1(∂V/∂p)x, rozszerzalność αx = V −1(∂V/∂T )x (x = T izotermiczna, x = S
adiabatyczna)

10



2. POTENCJAŁY TERMODYNAMICZNE 11

2.1 Gaz doskonały

Równanie stanu pV = NRT jeśli N jest liczbą moli [Uwaga: stała gazowa R = kNA jest
obecnie ustalona przez liczbę Avogadro NA ≃ 6, 02214075 × 1023/mol i stałą Boltzmanna k ≃
1, 380649 × 10−23kgm2/Ks2]. Wynika z niego, że S = RN ln(V/N) + Nf(u) dla u = U/N , a
f jest pewną funkcją. Jeśli przyjmiemy ustalone ciepło właściwe, cV = xR, x = 3/2 dla gazu
1-atomowego, x = 5/2 dla 2-atomowego, czyli U = cVNT +AN , to f = cV ln(u−A)+B, gdzie
A,B pewne stałe. Gaz doskonały ma klasyczny model statystyczny – cząstki nieoddziałujące.
Zauważmy, że entropia jest ujemna przy T → 0 lub V → 0, i wtedy model klasyczny załamuje
się (bo z 3. zasady S ≥ 0)
Uwaga: kwantowy jednoatomowy gaz doskonały ma nieco inne równanie stanu 3pV = 2U ,
zgodne z klasycznym, ale pełny opis także wymaga dodatkowej (innej) zależności.

2.2 Gaz van der Waalsa

Równanie stanu

(p+ aN2/V 2)(V −Nb) = NRT, p = RT/(v − b)− a/v2

dla v = V/N , co daje także U = Nf(T ) − aN2/V i można przyjąć stałe ciepło właściwe
cV = f ′(T ). Gaz Van der Waalsa ma tylko przybliżone modele statystyczne. Entropia w tym
przypadku S = NcV lnT + RN ln(V/N) + NB, gdzie B jest nieznaną stałą. Do uzyskania
pełnej informacji musimy wyznaczyć T (U, V,N) = (U+aN2/V −AN)/NcV , gdzie A jest także
nieznaną stałą (często przyjmuje się A = 0).

Model gazu van der Waalsa pozwala na opis przemiany fazowej 1. rodzaju i punktu krytycz-
nego. Dla wysokich temperatur κT jest dodatnie, ale w niskich, w pewnym zakresie objętości,
jest ujemne co łamie zasadę wklęsłości S i wymusza podział na 2 fazy. Dzieje się tak poni-
żej temperatury krytycznej TK okreslonej równaniami (∂p/∂v)T = (∂2p/∂v2)T = 0 co daje
punkt krytyczny (TK , pK , vK) określony RTK = 8a/27b, pK = a/27b2, vK = 3b. Na Rys. 1.10
zaznaczone są izotermy – zależności p(V/N, T = const) gazu van der Waalsa dla temperatur
większych, równych i mniejszych od TK (minimalna objętość to Nb). Poniżej TK fragment ro-
snący daje ujemne κT , czyli jest niemożliwy z warunków stabilności. Obie fazy mogą istnieć
jednocześnie (współistnieć) w temperaturze zależnej od ciśnienia. Z kolei krzywą współistnienia
określa zasada równych pól tj. pozioma linia dzieli izotermę tak, aby pola między nią i izotermą
były równe (oznaczone + i −). Jest to tzw. konstrukcja Maxwella, wynikająca z równości ci-
śnień i potencjałów chemicznych. Dla stałej temperatury µ =

∫
vdp = pv −

∫
pdv czyli dla faz

1 i 2
p(v2 − v1) =

∫ v2

v1

pdv.

Jak widać w wykresu, Rys. 1.10 obie fazy mogą być przedłużone do stanów metatrwałych, ale
tylko do końca obszaru stabilności Krzywą współistnienia faz można wyznaczyć parametrycznie,
Rys. 1.11, patrz John Lekner, Parametric solution of the van der Waals liquid–vapor coexistence
curve, Am. J. Phys. 50, 161 (1982) http://dx.doi.org/10.1119/1.12877

11



2. POTENCJAŁY TERMODYNAMICZNE 12

Rysunek 1.10: Izotermy dla gazu van der Waalsa i konstrukcja Maxwella równych pól wy-
znaczająca równowagę fazową. Linia kropkowana jest nieosiagalna jako wklęsła, ale można ją
wykorzystać do obliczeń pamiętając, że tak naprawdę mamy całą zależność S(U, V,N) w tym
potencjał chemiczny.

12



2. POTENCJAŁY TERMODYNAMICZNE 13
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Rysunek 1.11: Dokładne wykresy przemiany fazowej dla gazu van der Waalsa (kolor, czarna
linia przemiany)
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Fizyka statystyczna

3 Prawdopodobieństwo
Prawdopodobieństwo jest funkcją 0 ≤ p(A) ≤ 1 dla podzbiorów A (zdarzeń) pewnej przestrzeni
X, przy czym p(X) = 1, p(∅) = 0, a dla zbiorów A ∩ B = ∅ (rozłącznych) p(A ∪ B) =
p(A) + p(B) (także dla przeliczalnej rodziny zbiorów). Jeśli p(A ∩ B) = p(A)p(B) to A i B
są niezależne. Zmienne losowe: podziały na rodziny rozłącznych podzbiorów Ax ∩Ay = ∅ jeśli
x ̸= y. Można wtedy równoważnie zamienić x ≡ Ax i pisać p(x) – rozkład prawdopodobieństwa.
Dla ciągłych rozkładów stosujemy gęstość ρ(x) lub jej dystrybuantę

P (x) = p(≤ x) =

∫ x

−∞
ρ(y)dy

gdzie P (x) jest skumulowanym prawdodobieństwiem zdarzeń o wartości zmiennej losowej mniej-
szej lub równej od zadanej x, niemalejącą i prawostronnie ciągłą – granica funkcji dąży do
wartości od prawej do lewej [Uwaga: można zastąpić nierówność silną < x i ciągłość na lewo-
stronną]

W praktyce prawdopodobieństwo ma sens dla wielokrotnie powtarzanej takiej samej czyn-
ności, gdzie wynik jest zmienia się losowo. Trzeba zagwarantować że warunki pozostają takie
same i poprzednie czynności i wyniki nie mają wpływu na następną (w rzeczywistości bywa z
tym problem, choć rzadko). Średnia

x̄ = Ex = ⟨x⟩ =
∑
x

xp(x) =

∫
xρ(x)dx

(zapis Ex zamiast ⟨x⟩ stosują matematycy a x̄ statystycy) a także wariancja

σ2 = ⟨(x− ⟨x⟩)2⟩ = ⟨x2⟩ − ⟨x⟩2

Zmiennych losowych może być więcej np. x1, x2 i wszystkie funkcje mają odpowiednio więcej
argumentów, np. ρ(x1, x2) oraz

P (x1, x2) = p(< x1, < x2) =

∫ x1

−∞
dy1

∫ x2

−∞
dy2 ρ(y1, y2)

14



3. PRAWDOPODOBIEŃSTWO 15

Suma x = x1 + x2 daje splot

ρ(x) =

∫
dyρ(y, x− y)

Dla rozkładów niezależnych ρ(x1, x2) = ρ1(x1)ρ2(x2) a splot oznaczamy ρ = ρ1 ∗ ρ2. Rozkłady
brzegowe (marginalne) ignorują jedną (lub więcej) zmiennych,

ρ1(x1) = ρ(x1, ∗) =
∫
ρ(x1, x2)dx2

Funkcja charakterystyczna

χ(λ) =

∫
eiλxρ(x)dx

ma własność χ(0) = 1, daje średnią

dχ

dλ

∣∣∣∣
λ=0

= i⟨x⟩

i jej kwadrat
d2χ

dλ2

∣∣∣∣
λ=0

= −⟨x2⟩

Można równoważnie stosować logarytm lnχ(0) = 0

d lnχ

dλ

∣∣∣∣
λ=0

= i⟨x⟩

d2 lnχ

dλ2

∣∣∣∣
λ=0

= −σ2

Funkcja charakterystyczna zamienia splot na iloczyn, tj. dla ρ = ρ1∗ρ2 mamy χ(λ) = χ1(λ)χ2(λ).
Najbardziej znane rozkłady:

• dwupunktowy (Bernoulliego), x = 0, 1, 1 ≥ p(0) = p ≥ 0, p(1) = q = 1 − p, ⟨x⟩ = q,
σ2 = pq

• normalny (Gaussa)

ρ(x) = Nµ,σ(x) =
1√
2πσ2

e−(x−µ)2/2σ2

dla µ = ⟨x⟩, a w szczególnym przypadku

ρ(x) = N0,1(x) =
1√
2π
e−x2/2

Rozkłady wielu niezależnych zmiennych dają zwykle rozkłady sumy x =
∑

i xi opisany w
przybliżeniu rozkładem normalnym (centralne twierdzenie graniczne). Dla rozkładu normalnego
z = (x − µ)/σ jest miarą rozsądku, czy dane zdarzenie jest przypadkiem czy wyjątkiem i np.
wyklucza daną hipotezę opartą na wytypowanym modelu statystycznym. Wartość |z| powyżej
3 a tym badziej 5 przyjmuje się jako granicę akceptacji, Rys. 1.12.
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4. MECHANIKA KLASYCZNA 16
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Rysunek 1.12: rozkład normalny ze średnią µ i wariancją σ2

4 Mechanika klasyczna
Klasyczny ruch opisują trajektorie, współrzędne jako funkcje czasu qi(t) (i = 1, 2, . . . ), t – czas.
Krócej piszemy q(t) mając na myśli wszystkie współrzędne (mogą to być nie tylko wektory
trójwymiarowe, ale też kąty, długości wzdłuż krzywych, itp.). Ważne są prędkości q̇i ≡ dqi/dt
(q̇ ≡ dq/dt). Dynamikę zadaje funkcja Lagrange’a L(q, q̇, t). Klasyczny ruch otrzymujemy mi-
nimalizując działanie

∫
Ldt przy ustalonych końcach tj. q(t1) i q(t2). Daje to równania Eulera-

Lagrange’a
ṗi = dpi/dt = ∂L/∂qi, pi = ∂L/∂q̇i

(p – nazywamy pędem, w ogólnym znaczeniu, nie musi to być tylko wektor trójwymiarowy).
Transformacja Legendre’a funkcji Lagrange’a daje funkcję Hamiltona

H(q, p, t) =
∑
i

q̇ipi − L

Jeśli L = L(q, q̇) (nie zależy jawnie od czasu) to H jest stałą ruchu – energią (mogą oczywiście
być i inne stałe ruchu, np. pęd, moment pędu). Równania ruchu mają wtedy postać

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

4.1 Przestrzeń fazowa

Przestrzeń fazową konstruuje się jako Γ = (q, p), bo dΓ(t) = dqdp nie zmienia się w czasie, na
mocy twierdzenia Liouville’a, które wynika wprost z równań Eulera-Lagrange’a∑

i

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
= 0

Dla elementu objętości Vx = dx1 · · · dxn zależnego od czasu mamy Vx = detMdy1 · · · dyn, gdzie
y stanowią współrzędne niezależne od czasu a M = (∂x/∂y) jest macierzą pochodnych ∂xi/∂yj.

16



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 17

Mamy dVx = d det(∂x/∂y)dy1 · · · dyn. Ze wzoru Jacobiego dla macierzy M

d detM = (detM)Tr(DdM),

gdzie TrA =
∑

iAii to ślad macierzy, a D jest macierzą dołączoną (transponowana macierz
minorów z naprzemiennie zmienionym znakami). Jeśli detM ̸= 0 to D = M−1 detM . Dowód
np. z rozwinięcia Laplace’a i wzorów na macierz odwrotną przez minory. Wtedy dostajemy

d det(∂x/∂y) = det(∂x/∂y)Tr(∂y/∂x)(∂dx/∂y) = det(∂x/∂y)Tr(∂dx/∂x)

(zapis macierzowy). Przy zależności od czasu zastępujemy dx przez ẋ, dostajemy zero dla
x = (q, p) na mocy twierdzenia Liouville’a i wnioskujemy, że objętość przestrzeni fazowej się
nie zmienia.

Równania ewolucji można zgrabnie zapisać za pomocą tzw. nawiasów Poissona dla dowol-
nych funkcji X(q, p) i Y (q, p) (nie tylko prostych współrzędnych!)

{X, Y } =
∑
i

(
∂X

∂qi

∂Y

∂pi
− ∂Y

∂qi

∂X

∂pi

)
bo q̇i = −∂H/∂pi = {qi, H} oraz ṗi = −∂H/∂qi = {pi, H}. Ponadto {qi, pj} = δij.

5 Entropia statystyczna i zasada maksimum
Podstawowym pojęciem fizyki statystycznej jest entropia. Punktem wyjścia jest entropia infor-
macyjna Shannona (który nazwę zapożyczył własnie z termodynamiki)

S = −kB
∑
j

pj ln pj

dla rozkładu prawdopodobieństwa pj dla zdarzeń j . Stała Boltzmanna kB stanowi tu jedynie
dowolny czynnik wymiarowy, ale ustalamy go tak dla późniejszej zgodności z termodynamiką.
Uwaga: W termodynamice posługujemy się liczbą moli Nmol, a w fizyce statystycznej liczbą cza-
stek Ncz = NANmol, gdzie NA jest liczbą Avogadra. Z tego powodu stała Boltzmanna zastępuje
stałą gazową R = NAkB.

Entropia informacyjna ma kilka ważnych własności, naturalnych dla ilośćowego opisu in-
formacji: nie zmienia się przy permutacji ("przetasowaniu") zdarzeń, jest subaddytywna tj.
S ≤ SA + SB dla podziału na podukłady A i B jeśli pAj =

∑
m pjm oraz pBm =

∑
j pjm (entropia

zwiększa się przy uniezależnieniu podukładów), addytywna tj. S = SA + SB jeśli części A i
B są niezależne pjm = pAj p

B
m. Okazuje się, że tylko entropia Shannona spełnia te warunki (z

dokładnością do czynnika i zdarzeń niemożliwych p = 0), J. Aczel, Z. Daroczy, On Measures of
Information and Their Characterizations (Academic Press, New York 1975)

Entropia w fizyce statystycznej jest entropią Shannona dla rozkładu prawdopodobieństwa ρ
a zdarzeniami są pozdbiory (przeliczalne sumy przedziałów) przestrzeni fazowej (mikrostany).

17



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 18

W celu zapewnienia odpowiedniego wymiaru trzeba jednak użyć bezwymiarowej miary prze-
strzeni fazowej

dΓ =
∏
k

dqkdpk
2πℏ

/
∏
j

kj!

Zamiast stałej Plancka ℏ można by użyć dowolnej stałej o jej wymiarze, ale ten szczególny wy-
bór pozwoli na utożsamienie póżniej entropii klasycznej i kwantowej kiedy różnica się zaciera.
Czynniki kj! uwzględniają nierozróżnialność cząstek w zbiorach kj elementowych. Niezmienność
przy permutacjach odpowiada niezmienniczości przestrzeni fazowej, co zapewnia nam twierdze-
nie Liouville’a.

S = −kB⟨ln ρ⟩ = −kB
∫
dΓ ρ(Γ) ln ρ(Γ)

5.1 Rozkłady/zespoły

Podstawowym zadaniem fizyki statystycznej jest konstrukcja rozkładu równowagowego ρ dla
dynamiki niezależnej jawnie od czasu w ustalonej objętości i na tej podstawie związków podsta-
wowych. Ponieważ ρ nie zmienia się w czasie, więc {ρ,H} = 0. Przyjmuje się zasadę maksymal-
nej entropii przy ustalonych warunkach, tj. wybieramy takie ρ, które daje największą entropię,
uzyskując różną postać ρ. Można wtedy stosować metodę mnożników Lagrange’a.

Mikrokanoniczny

Zakładamy H < U (ustalona energia U) bądź H ∈ [U,U +∆U ]. Klasycznie można także wziąć
H = U . Podobnie postępujemy z innymi wielkościami zachowanymi, zwykle ustalamy V , N .
Przyjmując że entropia ma byc maksymalna, otrzymuje się ρ = const w dozwolonym obszarze
(makrostanie). Dostajemy entropię w historycznej formule Boltzmanna S = kB lnW gdzie W
jest objęctością (miarą) dostępnej przestrzeni fazowej (mikrostanów).

Rozkład mikrokanoniczny prosty w definicji, jest bardzo niewygodny w stosowaniu ze względu
na sztuczne ostre warunki. Dlatego nadaje się tylko w przypadku prostych układów fizycznych.

Kanoniczny

Ustalamy ⟨H⟩ = U i np. N . Metoda mnożników Lagrange’a – f(x1, . . . xn) jest maksymalne
przy ustalonym g(x1, . . . , xn) jeśli

∂f/∂xi = λ∂g/∂xi

Dla S otrzymujemy (ustalone
∫
dΓρH oraz

∫
dΓρ)

− ln ρ− 1− λ = βH

18



5. ENTROPIA STATYSTYCZNA I ZASADA MAKSIMUM 19

a więc ρ = Z−1 exp(−βH), gdzie Z jest czynnikiem normalizacji czyli

Z =

∫
dΓ e−βH

Pokażemy, że β = 1/kBT a lnZ = −βF dla energii swobodnej Helmholtza F . Mamy bowiem

S/kB = lnZ + β⟨H⟩ = lnZ + βU

a także
U = ⟨H⟩ = −∂ lnZ/∂β

A z drugiej strony
1

kBT
=
∂S

∂U
=
∂ lnZ

∂β

∂β

∂U
+
∂β

∂U
U + β = β

Istnienie pochodnej ∂β/∂U wynika z faktu że

∂U/∂β = −∂2 lnZ/∂β2 = ⟨(δH)2⟩ > 0

dla δH = H − ⟨H⟩.

Wielki kanoniczny

W zespole wielki kanonicznym liczba cząstek N może się zmieniać. Będziemy pisać ρN(ΓN)
dla ustalonej liczby cząstek N , ale skracać do ρ(Γ) kiedy jest to jednoznaczne. Teraz nie tylko
całkujemy po przestrzeniu fazowej dla każdego N , ale także sumujemy

∞∑
N=1

∫
dΓN ≡

∫∑
dΓ

Ustalamy ⟨H⟩ = U , ⟨N⟩ = N̄ . Wtedy za pomocą 3 mnożników Lagrange’a dostajemy

− ln ρ− 1− λ = βH − µ̃N

ρ = Ξ−1 exp(µ̃N − βH) Podobnie jak w kanonicznym mamy

Ξ =

∫∑
dΓ eµ̃N−βH

Pokażemy ponownie, że β = 1/kBT a ln Ξ = −βΩ dla wielkiego potencjału termodynamicznego
Ω = −pV .

Mamy bowiem
S/kB = lnΞ + β⟨H⟩ − µ̃⟨N⟩ = lnZ + βU − µ̃N̄

a także
U = ⟨H⟩ = −∂ ln Ξ/∂β

19
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N̄ = ⟨N⟩ = ∂ ln Ξ/∂µ̃

A z drugiej strony

1

kBT
=
∂S

∂U
=
∂ ln Ξ

∂β

∂β

∂U
+
∂ ln Ξ

∂µ̃

∂µ̃

∂U
+
∂β

∂U
U − ∂µ̃

∂U
N̄ + β = β

Okazuje się także, że

− µ

kBT
=
∂S

∂N̄
=
∂ ln Ξ

∂β

∂β

∂N̄
+
∂ ln Ξ

∂µ̃

∂µ̃

∂N̄
+
∂β

∂N̄
U − ∂µ̃

∂N̄
N̄ − µ̃ = −µ̃

czyli µ̃ = µ/kBT gdzie µ jest potencjałem chemicznym. Istnienie pochodnych wynika dodatnio
określonej macierzy pochodnych odwrotnych(

∂U/∂β −∂U/∂µ̃
∂N̄/∂β ∂N̄/∂µ̃

)
=

(
∂2 ln Ξ/∂β2 ∂2 ln Ξ/∂β∂µ̃
∂2 ln Ξ/∂β∂µ̃ ∂2 ln Ξ/∂µ̃2

)
=

(
⟨(δH)2⟩ −⟨δHδN⟩
−⟨δNδH⟩ ⟨(δN)2⟩

)
dla δH = H − ⟨H⟩, δN = N − ⟨N⟩.

Zauważmy także że fluktuacje np. energii są inne w kanonicznym i wielkim kanonicznym,
ze względu na korelacje z fluktuacjami liczby cząstek

⟨δH2⟩kan = ∂2 lnZ/∂β2 = −(∂U/∂β)N = kBT
2C

gdzie C jest pojemnością cieplną C = ∂U/∂T . Rosną liniowo ze wzrostem rozmiaru, ale wtedy
δH ∼

√
N czyli w granicy termodynamicznej fluktuacje całej energii są zaniedbywalne. Dla

wielkiego kanonicznego

⟨δH2⟩wkan = ∂2 ln Ξ/∂β2 = −(∂U/∂β)µ̃

ale
⟨(δH2)⟩kan = (∂U/∂β)N = (∂U/∂β)µ̃ + (∂U/∂µ̃)β(∂µ̃/∂β)N̄

= ⟨δH2⟩wkan − ⟨δHδN⟩wkan
(∂N̄/∂β)µ̃)

(∂N̄/∂µ̃)β)

= ⟨δH2⟩wkan − ⟨δHδN⟩2wkan/⟨(δN)2⟩2wkan

Różnica wynika z faktu, że zmiany liczby cząstek wiążą się ze zmianami energii (przypisanej
cząsteczkom).
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Równoważność

Wszystkie rozkłady zasadniczo rozpatruje się w granicy termodynamicznej, tj. V → ∞, ale przy
ustalonych ⟨H⟩/V oraz ⟨N⟩/V i ogólnie ⟨Xi⟩/V , i wtedy dają te same wyniki. Wtedy też można
utożsamić ⟨X⟩ i X. Trzeba jednak uważać jeśli jest nietypowa wielkość czuła na rozkład (np.
całka objętościowa ze średniej iloczynu koncentracji), w spornych sytuacjach rozstrzyga rozkład
wielki kanoniczny (najpoprawniejszy). Można od tej granicy odstąpić jeśli celowo rozpatrujemy
mały układ, bądź fragment dużego, ale wymaga to dyskusji oddziaływania z otoczeniem, tym
dokładniejszej im mniej kanoniczny rozkład bierzemy. Dla ciekawych więcej na ten temat https:
//arxiv.org/abs/1403.6608

5.2 Opis kwantowy

W mechnice kwantowej punktem wyjścia jest przestrzeń wektorowa (Hilberta) stanów, ozncza-
nych

|ψ⟩ =
∫
daψ(q)|q⟩

w przypadku ciągłego parametru q, gdzie ψ(q) jest zespoloną funkcją falową. Stany generalnie
są unormowane tj. ∫

dq|ψ(q)|2 = 1

Przydatny jest formalizm braketowy, z wektorem sprzężonym

⟨ψ| =
∫
dqψ∗(q)⟨q|

gdzie ∗ oznacza sprzężenie zespolone. Pozwala to na wprowadzenie lioczynu skalarnego

⟨ϕ|ψ⟩ =
∫
dqϕ∗(q)ψ(q)

przyjmując także
⟨q|q′⟩ = δ(q − q′)

(delta Diraca
∫
dqδ(q − x)f(q) = f(x) dla każdej funkcji f). Wtedy także mamy operatory

Â =

∫
dqdq′A(q, q′)|q⟩⟨q′|.

Do zdefiniowania ewolucji używamy operator Hamiltona (istnieje także odpowiednik formalizmu
Lagrange’a ale skomplikowany i tu niepotrzebny) Ĥ(t) = H(q̂, p̂, t), gdzie q̂ =

∫
qdq|q⟩⟨q|

(operator położenia) oraz p̂ =
∫
|q⟩(−iℏ∂⟨q|/∂q)dq (operator pędu) lub

p̂|ψ⟩ =
∫
dq(−iℏ∂ψ(q)/∂q)|q⟩
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Jest też operator identyczności 1̂, zawsze 1̂|ψ⟩ = |ψ⟩,

1̂ =

∫
dq|q⟩⟨q|

W praktyce posługujemy się Ĥ jako zwykłą macierzą. Operator Hamiltona jest hermitowski,
tj. Ĥ = Ĥ† (nie zmienia się przy transpozycji i sprzężeniu) Operatory położenia i pędu są także
hermitowskie.

Bardzo często opis kwantowy jest drastycznie upraszczany, np. ciągłe q zastępuje się liczbami
naturalnymi i wtedy mamy

⟨q|q′⟩ = δqq′ =

{
1 dla q = q′

0 dla q ̸= q′

(delta Kroneckera zamiast Diraca), 1̂ =
∑

q |q⟩⟨q|, a operator Hamiltona Ĥ jest przybliżony lub
wręcz zapostulowany za pomocą macierzy.

Analogicznie do mechaniki klasycznej możemy dokonywać ewolucji czasowej

Ĥ|ψ(t)⟩ = iℏ∂t|ψ(t)⟩

Odpowiednikiem gęstości prawdopodobieńtwa jest hermitowski operator gęstości ρ̂, unormowa-
nia Trρ̂ = 1 (ślad TrÂ =

∫
dqA(q, q) =

∑
q Aqq) Zasadniczo ρ̂ powinno być dodatnio określone,

rozróżniamy stany czyste
ρ̂ = |ψ⟩⟨ψ|

i mieszane czyli kombincje liniowe stanów czystych

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|

przy pi ≥ 0,
∑

i pi = 1. Można zawsze ρ̂ zapisać w tej formie diagonalnej dla |ψi⟩ ortonormalnych
tj.

⟨ψi|ψj⟩ = δij

Ewolucja jest dana przez
iℏ∂tρ̂ = Ĥρ̂− ρ̂Ĥ

Kwantowa entropia jest dana
S = −kBTrρ̂ ln ρ̂

Wzór jest niezależny od wyboru bazy, co również oznacza, że entropia nie zmienia się przy
zmianach bazy ρ̂ → Û ρ̂Û−1 – odpowiednik niezmienności przy permutacjach dla operacji uni-
tarnej Û czyli Û †Û = 1̂ (identyczność). Ewolucja zadana przez Ĥ jest unitarna. Zatem w bazie
diagonalnej ρ̂ =

∑
j pj|j⟩⟨j| mamy S = −kB

∑
j pj ln pj, a więc dokładnie entropię Shannona

(niezmienniczość przy permutacjach jest tu więc szczególnym przypadkiem dla kiedy Û jest
macierzą permutacji). Kwantowa entropia spełnia również subaddytywność S ≤ SA + SB jeśli
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ρ̂A = TrBρ̂ (i viceversa). Tutaj operujemy iloczynem tensorowym przestrzeni, tj. w bazie |qA qB⟩
oraz ρ̂A = TrBρ̂ =

∑
qB
ρ(qA qB, q

′
A qB)|qA⟩⟨q′A|. Entropia jest też addytywna tj. S = SA + SB

jeśli ρ̂ = ρ̂Aρ̂B czyli ρ(qA qB, q
′
A q′B) = ρA(qA, q

′
A)ρB(qB, q

′
B). Dowody tych i innych własno-

ści można znaleźć w książce M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, 2000).

Zespoły statystyczne wprowadza się podobnie, ale najwygodniej jest przyjąć bazę stanów
własnych Ĥ czyli

Ĥ|ψi⟩ = Ei|ψi⟩

Taką bazę można skonstruować w postaci ortonormalnej. Zakładając

ρ̂ =
∑
i

pi|ψi⟩⟨ψi|

zespoły sprowadzają się do wyznaczenia pi a entropia od razu ma postać Shannona

S = −kB
∑
i

pi ln pi

W rozkładzie mikrokanonicznym pi jest stałe np. dla Ei < U , i S = kB lnW dla W – liczby
stanów o Ei < U , w kanonicznym ma postać

pi = Z−1e−βEi

a w wielkim kanonicznym
pi = Ξ−1eµ̃Ni−βEi

przy czym Ni jest wartością liczby cząstek wyznaczaną w tej same bazie co Ĥ. Pozostałe wzory
są bez zmian, ale warto zauważyć że S ≥ 0 z samej definicji co daje 3ZT.

6 Bozony i fermiony

6.1 Gaz fotonów – promieniowanie

Klasyczny opis promieniowania (w próżni) opiera się na równaniach Maxwella na pole elek-
tryczne E i magnetyczne B (razem - elektromagnetyczne),

∇ ·B = 0, ∇ ·E = ϵ0ρ,

∇×E = −∂tB, ∇×B = µ0j + µ0ϵ0∂tE

gdzie ρ jest gęstością ładunku elektrycznego, j gęstością prądu, ϵ0 przenikalnością elektryczną
próżni, poµ0 przenikalnością magnetyczną próżni. Tutaj ∇ = (∂x, ∂y, ∂z) (∂x = ∂/∂x itd.) a
a · b = axbx + ayby + azbz (iloczyn skalarny) i a × b = (aybz − azby, azbx − axbz, axby − aybx)
(iloczyn wektorowy)
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Obecnie ϵ0 jest określone przez wartość ładunku elektronu (elementarnego) a µ0 wynika ze
ustalonej prędkości światła w próżni c = 1/

√
µ0ϵ0. Pole elektromagnetyczne działa na ładunki

siłą Lorentza

F =

∫
(Eρ+ j ×B)dV

w objętości V . Dlatego promieniowaniu możemy przypisać gęstość energii

u = (ϵ0E
2 +B2/µ0)/2

i strumienia energii (Poyntinga)
P = E ×B/µ0.

Mamy bowiem
∂tu = ϵ0E · ∂tE +B · ∂tB/µ0

= E · ∇ ×Bµ0 − j ·B −B · ∇ ×E/µ0

= ∇ · P −E · ∂tE

Z P jest powiązana gęstość pędu p = P /c2. Pęd wynika z prawa zachowania

∂tp = ϵ0(∂tE ×B +E × ∂tB)

= (∇×B)×B/µ0 − j ×B − ϵ0E × (∇E)

= ((B · ∇)B − (∇B2)/2)/µ0 − j ×B + (E · ∇)E − (∇E2)/2)ϵ0

= ∇ · T̄ − j ×B − ρE

gdzie T̄ jest tensorem Maxwella

T̄ij = ϵ0EiEj +BiBj/µ0 − δij(ϵ0E
2 +B2/µ0)

(i, j = 1, 2, 3 lub x, y, z and ∇ · T̄ oznacza iloczyn skalarny względem jedneg z indeksów,
(∇ · T̄ )i =

∑
j ∂iT̄ij). Klasyczna fala elektromagnetyczna ma postać

E = E0 sin(ω(t− n · r/c))

B = n×E0 sin(ω(t− n · r/c))/c

gdzie E0 ⊥ n. Tu n jest kierunkiem fali, a E0 natężeniem i polaryzacją. Fala ma prędkość
światła c i częstość ω (częstotliwość ω/2π), średnią gęstość pędu powiązaną ze średnią gęstością
energii

p = nE2
0/2c

3µ0 = nu/c.
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θ
A

L

Strumień promieniowania padający pod kątem θ na powierzchnię A w pudle od długości
L na objętość AL a pęd w kierunku prostopadłym (u/c) cos θ. Na przebycie pudła tam i z
powrotem potrzebuje czasu t = 2L/c cos θ. Stąd siła na jednostkę czasu i powierchni wynosi
(u/c) cos2 θ. Zakładając izotropowść ⟨cos2 θ⟩ = ⟨k2z/k2⟩ = 1/3. Zatem zakładając promieniowa-
nie w losowym kierunku w 3 wymiarach, średnie ciśnienie, czyli zmiana pędu przy odbiciu od
ściany, na jednostkę czasu i powierzchni wynosi

p = c(u/c)/3 = u/3

czyli 3pV = U . Jest to klasyczne prawo, wyprowadzone tylko z równiań Maxwella i siły Lorentza
(i modelu odbicia promieniowania). Okazuje się, że to wystarcza, aby wyprowadzić entropię z
zasad termodynamiki, zakładając, że promieniowanie jest określone jedynie przez energię U i
objętość V (bez liczby cząstek N). Z ekstensywności entropii S(U, V ) mamy bowiem

TS = U + pV = 4U/3

czyli
1/T = ∂S/∂U = 3S/4U

Rozwiązaniem tego równania różniczkowego jest S = A(V )U3/4 a jedynym uzupełnieniem eks-
tensywnym jest S = α(V U3)1/4. Pozostaje jedna stała dowolna α, ale zauważmy że

1/T = (3/4)α(V/U)1/4

a więc
U = V (3T/4α)4

Energia promieniowania jest proporcjonalna do T 4. Jest to znane prawo, ale .... kwantowe!
Wiadomo, że

U = V (kBT )
4π2/15(ℏc)3

gdzie ℏ jest stałą Plancka, która w dodatku jest w mianowniku (nie można jej zaniedbać). Ale
wiemy to z opisu kwantowego, który właśnie Planck wprowadził. Jak widać potrzeba nowej

25



6. BOZONY I FERMIONY 26

stałej była ukryta już w opisie klasycznym. Teraz możemy już oficjalnie przejść do kwantowego
opisu promnieniowania.

Historycznie Planck musiał wprowadzić kwantyzację promieniowania (dzielenie na porcje,
kawałki, quantum znaczyło kiedyś niewielką ilość np. leku, także np. w tytule Quantum of
Solace). Przyjął, że fale elektromagnetyczne o częstości ω są podzielone na porcje (kwanty) o
energii ℏω = hf (oryginalna stała Plancka h jest mnożona przez częstotliwość f , dziś zastępo-
wana przez ℏ = h/2π dla podkreślenia odrębności opisu kwantowego). Kwantów promieniowania
(światła) – dziś mówimy fotonów – o ustalonej częstości i polaryzacji może być wiele, ale w
ilości nieujemnych liczb całkowitych, 0, 1, 2, 3, ... Możemy posłużyć się zespołem kanonicznym
aby znaleźć α. Uwaga: co prawda można wyznaczyć średnią liczbę fotonów, ale nie jest to stała
ruchu. Fotony są emitowane lub absorbowane, ich liczba w oddziaływaniu z ładunkami zmienia
się. Dlatego zespół kanoniczny wyjątkowo jest równoważny wielkiemu a także F = Ω = −pV .

Musimy najpierw wyznaczyć dostępne częstości. Jeśli rozważymy trójwymiarowe pudło o
wymiarach Lx×Ly×Lx = V i tzw. periodyczne warunki brzegowe, fala eik·r−iωt krąży dookoła,
to wektor falowy k = ωn/c musi spełniać

kxLx = 2πNx, kyLy = 2πNy, kzLz = 2πNz

gdzie Nx,y,z są dowolnymi liczbami całkowitymi. Uwaga: można użyć bardziej fizycznych wa-
runków brzegowych np. 6 luster i wyznaczyć warunek na fale stojące, sin(kxLx) = 0, ale w
praktyce wynik będzie ten sam, tylko obliczenia są nieco trudniejsze. Poza tym lustro w po-
tocznym rozumieniu nie działa dla fal o bardzo wysokich częstotliwościach (np. γ).

Dla każdego k mamy ω = ck a zatem energia wynosi

E =
∑
k

m(k, e)ℏck

gdzie m jest liczbą fotonów o danym k i polaryzacji e (są 2, prostopadłe do k) Prawdopodo-
bieństwo danego stanu (określonego przez zespół liczb m) wynosi

p = Z−1e−βE

gdzie
Z =

∑
{m}

e−βE

Ponieważ wybór liczb m jest niezależny, można tę sumę zapisać jako iloczyn

Z =
∏
k,e

]
∑

m(k,e)

e−βm(k,e)ℏck

Tymczasem
∞∑
j=0

e−βjck =
1

1− e−βℏck
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jako suma szeregu geometrycznego. Stąd

Z =
∏
k,e

(1− e−βck)−1

albo
lnZ = −

∑
k,e

ln(1− e−βℏck) = −2
∑
N

ln(1− e−βℏck)

gdzie N = (Nx, Ny, Nz) = (kxLx, kyLy, kzLz)/2π. Pozostaje wykonać sumę. Tu zrobimy przy-
bliżenie w granicy L≫ βℏc przez całkę po N

lnZ = −
∫
dNxdNydNz ln(1− e−βℏck) = −(2π)−3LxLyLz

∫
dkxdkydkz ln(1− e−βℏck)

dokonując zamiany zmiennych na sferyczne k = k(sin θ cosϕ, sin θ sinϕ, cos θ) możemy napisać

lnZ = −2(2π)−3(4π)

∫ ∞

0

dk k2 ln(1− e−βℏck)

Jeszcze raz zamienimy zmienne na x = βℏck aby dostać

lnZ = −π−2(βℏc)−3

∫ ∞

0

dx x2 ln(1− e−x)

Okazuje się że tę ostatnią całkę można obliczyć najpierw przez części

−
∫ ∞

0

dx x2 ln(1− e−x) =
1

3

∫ ∞

0

dx
x3

ex − 1

potem przez szereg ∫ ∞

0

dx
x3

ex − 1
=

∞∑
m=1

∫ ∞

0

dx x3e−mx =
∞∑

m=1

3!

m4
= 6ζ(4)

a ostatnią liczbę (funkcja ζ Riemanna) daje się wyrazić algebraicznie

ζ(4) =
∞∑

m=1

m−4 = π4/90

co można wyprowadzić posługując się rozwinięciem szeregu Fouriera dla funkcji x2. Ostatecznie
mamy

pV = lnZ = (1/3)V π2/15(βℏc)3

a zatem
U = 3pV = V

π2(kBT )
4

15(cℏ)3
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Obecnie stosujemy operatorowe podejście do opisu kwantowego tj. potencjał wektorowy

Â(r, t) =
√

ℏ/2V ωϵ0
∑
k,e

(eâk,ee
ik·r−iωt + eâ†k,ee

iωt−ik·r)

oraz Ê = ∂tÂ, B̂ = ∇× Â i mamy operatory kreacji i anihilacji

[â(k, e), â†(k′, e′)] = δk,k′δe,e′

(dla przypomnienia komutator [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂) Taka forma umożliwia zapisanie

Ĥ =

∫
dV (ϵ0Ê

2 + B̂2/µ0)/2 =
∑
k,e

ℏω(â(k, e)â†(k, e) + â†(k, e)â(k, e))/2

co z kolei można inaczej ∑
k,e

ℏω(n̂(k, e) + 1/2)

gdzie n̂ jest operatorem liczby obsadzeń o wartościach własnych 0, 1, 2, . . . a 1/2 jest niemie-
rzalną energią próżni (wykrywalną tylko przez tzw. efekt Casimira, w specjalnych warunkach
brzegowych)

6.2 Kwantowe gazy doskonałe

Ogólna postać operatora Hamiltona dla gazów nieoddziałujących jest

Ĥ =
∑
j

ϵjn̂j

gdzie ϵj jest energią własną wyznaczoną z problemu własnego jednocząstkowego. natomiast n̂
jest operatorem liczby obsadzeń danego stanu, n̂ = â†â jak w przypadku oscylatora harmo-
nicznego. Wtedy baza stanów własnych jest numerowana wartościami własnymi n̂ czyli n.)
Dla bozonów (cząstki skalarne, o spinie 0, 1, . . . , nazwa pochodzi od nazwiska fizyka Bose, np.
fotony, ale nie tylko), n = 0, 1, 2, . . . . Uwaga: dla bozonów powinniśmy dodać 1/2 do n, ale
okazuje się, że nie ma to zwykle znaczenia, bo jedynie podnosi energię próżni. Jedyne przy-
padki, kiedy jest to ważne, to np. w efekcie Casimira – przyciąganiu metalowych powierzchni
wskutek zmiany tej właśnie energii – a także kiedy badamy własności próżni kwantowej. Po-
nadto liczba wszystkich obsadzeń (cząstek) N̂ =

∑
j n̂j. Do policzenia pV β musimy sumować

wszystkie możliwe obsadzenia niezależnie dla każdego j, dla bozonów∑
n≥0

enβ(µ−ϵ) = (1− eβ(µ−ϵ))−1

Zatem z zespołu wielkiego kanonicznego

ln Ξ = −Ωβ = pV β = −
∑
j

ln(1− eβ(µ−ϵj))
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Łatwo policzyć także średnie liczby obsadzeń ⟨n̂j⟩ = (eβ(ϵj−µ)−1)−1. W granicy termodynamicz-
nej wygodniejszą zmienną jest wektor falowy k⃗, lub pęd p⃗ = ℏk⃗, k⃗ = 2π(j1/L1, j2/L2, j3/L3)
gdzie j przebiegają wszystkie liczby całkowite. W granicy dużej objetości sume można zastapić
całką

∑
j →

∫
d3j, a miarę zamienić na pędową

∫
d3j = V

∫
d3p⃗/(2πℏ)3 (bo V = L1L2L3), a

więc

pβ = −
∫

d3p⃗

(2πℏ)3
ln(1− eβ(µ−ϵ(p⃗)))

Uwaga: często oprócz pędu stan opisują dodatkowe zmienne, raczej indeksowane liczbami cał-
kowitymi, np. spin albo numer pasma (w kryształach), i po nich także trzeba sumować prawą
stronę. Znalezienie termodynamicznego związku podstawowego pβ(β, µβ) sprowadza się więc
to całki w której musimy znać ϵ(p⃗). Zauważmy też, że granica klasyczna oznacza −µβ ≫ 1
czyli logarytm można rozwinąć w szereg Taylora i wziąć najniższy wyraz

pβ =

∫
d3p⃗

(2πℏ)3
eβ(µ−ϵ(p⃗))

Oczywiście dokładną równość z przypadkiem klasycznym dostajemy tylko gdy klasycznieH(p⃗) =
ϵ(p⃗) (a więc np. H = |p⃗|2/2m, c|p⃗| lub c

√
(mc)2 + |p⃗|2) i mamy tylko pęd (nie ma np. spinu). W

przeciwnym razie musimy pomnożyć wynik przez liczbę dostępnych konfiguracji spinu, pasm
itp.

Teraz przedyskutujemy szczegółowo najważniejsze przypadki w pełni kwantowo. Technicznie
przydatną wielkością jest gęstość stanów

g(ϵ) =

∫
d3p⃗

(2πℏ)3
δ(ϵ− ϵ(|p⃗|))

ponieważ

pβ = −
∫
dϵg(ϵ) ln(1− eβ(µ−ϵ))

Dla gazu nierelatywistycznego ϵ(p) = |p⃗2/2m a stąd

g(ϵ) = 2π(m/2πℏ2)3/2ϵ1/2

a dla ultrarelatywistycznego
g(ϵ) = 4πϵ2/(2πℏc)3

Wykonamy ogólną analizę przypadku g(ϵ) = Aϵα (w ten sposób można jeszcze uwzględnić
wymiar przestrzenny D: nierelatywistycznie α = D/2 − 1 a ultrarelatywistycznie α = D − 1)
Wtedy

pβ = −A
∫
dϵϵα ln(1− ze−βϵ) = ± A

βα+1

∫
dxxα ln(1− ze−x)

gdzie oznaczyliśmy z = eµβ (tzw. aktywność). Całkując przez części

pβ =
A

(α + 1)βα+1

∫
dxxα+1 ze−x

1− ze−x
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Z własności termodynamicznych wiadomo, że d(pβ) = −(U/V )dβ+(N/V )d(µβ) skąd możemy
wyznaczyć energię liczą pochodną po β. Dostajemy U = (α + 1)pV i jest to kwantowy odpo-
wiednik klasycznego równania stanu, które w formie pV = NkBT kwantowo nie obowiązuje w
ogólności! Wynik wyraża się przez funkcję specjalne Γ ( oraz tzw. polilogartym

Liα(z) =
∑
j≥1

zj

jα

w następujący sposób

pβ =
A

(α + 1)βα+1
Γ(α + 2)Liα+2(z), N/V =

A

(α + 1)βα+1
Γ(α + 2)Liα+1(z)

Wykresy przydatnych tutaj polilogarytmów (dla α = 1/2 i α = 2) są nastepujące:
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Zobaczmy jak wyglądają małe poprawki do klasycznego równania stanu w drodze do granicy
klasycznej z ≪ 1 Weźmy 2 najniższe wyrazy z Li:

pβ ≃ A

(α + 1)βα+1
Γ(α + 2)(z + z2/2α+2)

Mamy także koncentrację

n =
N

V
=

(
∂pβ

∂µβ

)
β

≃ A

(α + 1)βα+1
Γ(α + 2)(z + 2z2/2α+2)

Dzieląc stronami dostajemy

pβ/n ≃ 1 + z/2α+2

1 + 2z/2α+2
≃ 1− z/2α+2 ≃ 1− (α + 1)βα+1

AΓ(α + 2)2α+2

6.3 Gazy kwantowe w niskich temperaturach

Bozony dla µ = 0

Tak samo dla nieustalonej liczby cząstek pod warunkiem ϵ > 0 (o ϵ = µ = 0 podyskutujemy
później). Wtedy

Pβ = −
∫
dϵg(ϵ) ln(1− e−βϵ)
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Całka jest zbieżna jeśli dla ln g/ ln ϵ > −2 przy ϵ→ 0 co zwykle jest spełnione. Mimo że liczba
cząstek nie musi być ustalona (jako stała ruchu), można ją obliczyć najpierw różniczkując
ogólny wzór a potem kładąc µ = 0. Wtedy

N =

∫
dϵg(ϵ)(eβϵ − 1)−1

Całka jest zbieżna, jeśli ln g/ ln ϵ > 0 co jest prawdą np. dla gazu nierelatywistycznego w
3 wymiarach (ale nie w 2 ani 1!) Dla g = Aϵα otrzymujemy Pβ = AΓ(α + 2)ζ(α + 2)/((α +
1)βα+1) ponieważ Liα(1) = ζ(α), gdzie ζ jest funkcją specjalną zeta Riemanna. Wartości ζ(j) dla
parzystych liczb naturalnych j wyrażają się przez wπj, gdzie w jest wymierne, np. ζ(2) = π2/6,
ζ(4) = π4/90 (dowody wykorzystują szeregi Fouriera albo funkcje holomorficzne), dla innych
liczb można je tylko wyznaczyć numerycznie (np. z definicji granicy szeregu).

Dla gazu nierelatywistycznego dostajemy

U/V = (3/2)(m/2πℏ2)3/2(kBT )5/2ζ(5/2), p = (m/2πℏ2)3/2(kBT )5/2ζ(5/2) (A)

oraz
n = (m/2πℏ2)3/2(kBT )3/2(kBT )3/2ζ(3/2) (B)

gdzie ζ(5/2) ≃ 1, 341, ζ(3/2) ≃ 2, 612.

Kondensacja Bosego-Einsteina

Dla bozonów z µ nie może przewyższyć dolnej granicy energii (zwykle umownie 0) bo inaczej Li
wybucha (dla z > 1). Tymczasem dla ustalonej temperatury liczba bozonów jest rosnącą funk-
cją µβ, więc maksymalną wartość osiąga dla µ = 0. Z drugiej strony ze wzoru (B) wynika, że
wartość ta maleje z temperaturą. Zatem im niższa temperatura, tym niższa maksymalna liczba
cząstek. Jeśli więc obniżamy temperaturę przy ustalonej objętości i liczbie cząstek (ustalone
n) to w pewnym momencie dotrzemy do takiej temperatury krytycznej, kiedy zachodzi (B).
Jeśli dalej obniżamy temperaturę, to liczba cząstek zaczyna przekraczać dopuszczalną wartość
(która maleje z malejącą temperaturą). Ale przecież cząstki nie mogą zniknąć, bo ich liczba jest
zachowana! To gdzie się ukryły? Okazuje się, że przeoczyliśmy ważny szczegół przy liczeniu gra-
nicy termodynamicznej. Beztrosko zamieniliśmy sumę na całkę. Przeważnie jest to poprawne,
ale nie w sytuajach, kiedy sumowana funkcja gwałtownie rośnie. A tak się dzieje w stanie pod-
stawowym p⃗ = 0, ϵ = 0. Musimy ten stan wyizolować i policzyć osobno jego wkład do ciśnienia
i liczby cząstek (nie ma wkładu do energii) dla małego µβ (blisko zera). Mamy

p0βV = − ln(1− eµβ) ≃ − ln(−βµ), N0 = (e−µβ − 1)−1 ≃ (−µβ)−1

a więc wybucha obsadzenie stanu podstawowego i to tam gromadzą się nadmiarowe cząstki.
Na tym polega kondensacja Bosego-Einsteina. Nie działa zwykła granica termodynamiczna, bo
pojawia się zależność między ekstensywnym N0 i intenyswnym µβ i mamy p0βV = ln(N0 + 1).
Widać więc także, że zwiększając ciśnienie powodujemy, że liczba cząstek rośnie wykładniczo z
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objętością, czyli objętość właściwa cząstek V/N w granicy termodynamicznej maleje do zera, a
podobnie energia, bo prawie wszystkie cząstki przechodzą na stan podstawowy. Ten argument
podaje się uzasadniając, że jest to przemiana pierwszego rodzaju (bo energia i objętość na
cząstkę zeskakują od skończonej wartości do zera). Można to też tak ująć, że µβ(β, pβ) dla
ciśnień poniżej (A) jest funkcją o skończonych pochodnych, także na linii µβ = 0, ale powyżej
(A) mamy µβ = 0 a więc wszystkie pochodne są zerowe. Skomentujemy to jeszcze krytycznie
na końcu.

Wielu fizyków twierdzi jednak, że mam tu do czynienia z przemianą trzeciego rodzaju,
analizując zachowanie energii względem temperatury przy ustalonej liczbie cząstek i objętości.
Przedstawimy to uzasadnienie, ale na końcu je skrytykujemy. W rozpatrywanej sytuacji istnieje
specjalna temperatura krytyczna dla przemiany TK , wyznaczona przez (B) dla tutaj ustalonego
n i będziemy się do niej często odnosić. W T = TK energia ma wartość określoną przez (A) i
nie ma skoku. Przeanalizujemy cV = (∂U/∂T )n/N . Poniżej TK wystarczy zróżniczkować (A) i
wziąć N = N(TK) dane przez (B) (bo bierzemy pod uwagę także cząstki zgromadzone w stanie
podstawowym):

cV = kB(15/4)(T/TK)
3/2ζ(5/2)/ζ(3/2)

a w punkcie krytycznym cV = kB(15/4)ζ(5/2)/ζ(3/2) ≃ 1, 926kB. Powyżej punktu krytycznego
mamy

ncV = −kBβ2

[(
∂2pβ

∂β2

)
µβ

− (∂pβ/∂µβ∂β)2

(∂2pβ/∂µβ2)β

]
Dochodząc do punktu krytycznego rozważamy granicę µβ → 0. Wtedy pierwszy wyraz jest
taki sam jak poniżej TK a drugi dąży do zera. Zachowuje się bowiem jak Li23/2/Li1/2 co dąży do
ζ2(3/2)/ζ(1/2) a ζ(3/2) jest skończona podczas gdy ζ(1/2) = ∞. Zatem nie ma skoku cV . Jest
za to skok pochodnej cV . Poniżej TK mamy

(∂cV /∂T )n = 3cV /2T

a więc w punkcie krytycznym 45ζ(5/2)kB/8ζ(3/2)TK ≃ 2, 889kB/TK . Z kolei powyżej TK
żmudne przekstałcenia prowadzą do(

∂cV
∂T

)
=
k2Bβ

4

n

[
−2β−1

(
∂2pβ

∂β2

)
µβ

+

(
∂3pβ

∂β3

)
µβ

+2β−1 (∂pβ/∂µβ∂β)
2

(∂2pβ/∂µβ2)β
+ 3

(∂2pβ/∂µβ∂β)(∂3pβ/∂µβ∂β2)

(∂2pβ/∂µβ2)β

−3
(∂2pβ/∂µβ∂β)2(∂3pβ/∂β∂µβ2)

(∂2pβ/∂µβ2)2β
+

(∂2pβ/∂µβ∂β)3(∂3pβ/∂µβ3)β
(∂2pβ/∂µβ2)3β

]
W granicy µβ → 0 pierwsza linia daje ten sam wynik co poniżej TK , druga linia i pierwszy
wyraz ostatniej znikają podobnie jak poprzednio bo ζ(1/2) = ∞ jedynie ostatni wyraz daje
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skończony wynik, właśnie szukany skok. Co prawda mianownik wybucha jak (−µβ)−3/2, ale
okazuje się, że licznik tak samo i będzie skończona granica. Obliczamy ją dyskutując całkę z
mianownika ∫

dx
x3/2 cosh((x− µβ)/2)

4 sinh3((x− µ/β)/2)
≃ (3π/4)(−µβ)−1/2

podstawiajac x = (−µβ)1/2tg2ϕ, i rozwijając sinh y ≃ y. Całka z licznika jest jej pochodną.
Ostatecznie skok pochodnej jest −27ζ2(3/2)kB/16πTK ≃ −3, 666kB/TK a cała pochodna po-
wyżej TK wynosi (45ζ(5/2)/8ζ(3/2)− 27ζ2(3/2)/16π)kB/TK ≃ −0, 778kB/TK . Wykresy u i cV
są następujące:
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Dla dużych temperatur ciepło dąży do wartości klasycznej 3kB/2. Widoczna ciągłość, ale skok
pochodnej cV miałby dowodzić 3 rzędu przemiany. Jednak mamy ustalone N i V a nie p, a więc
jest to niezgodne z ideą Ehrenfesta. Z drugiej strony uzasadnienie pierwszego rzędu przemiany
jest także dyskusyjne. Cząstki masowo zgromadzone w stanie podstawowym zaczną ujawniać
swoje oddziaływanie (zaniedbaliśmy je na samym początku) co spowoduje modyfikację zależno-
ści termodynamicznych, np. wkład do ciśnienia może być proporcjonalny do obsadzenia stanu
podstawowego na jednostkę objętości. Może (ale nie musi) to spowodować ciągłą zmianę obję-
tości zamiast skoku do zera i przemianę drugiego lub wyższego rodzaju. Wymaga to dokładnej
analizy możliwych oddziaływań, czego tutaj się nie podejmiemy. Warto także wspomnieć, że
doświadczalnie używa się raczej pułapek o potencjale harmonicznym co zmienia ilościowo opis
kondensacji choć główna idea pozostaje i jest to obszar aktywnych badań naukowych.
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6.4 Gaz fermionów

Fermiony (statystyka Fermiego-Diraca) to cząstki o spinie 1/2 (ogólnie także 3/2, n + 1/2) o
antyprzemiennych opratorach kreacji i anihilacji tj.

â2 = 0, âb̂+ b̂â = 0, â†b̂+ b̂â† = 0, â†â+ ââ† = 1

dla stanów a i b. Z innymi operatorami są przemienne. Oznacza to że obsadzenia stanów n̂a =
â†â mogą mieć wartości własane tylko 0 i 1. Ogólna postać operatora Hamiltona dla gazów
nieoddziałujących jest nadal

Ĥ =
∑
j

ϵjn̂j

gdzie ϵj jest energią własną wyznaczoną z problemu własnego jednocząstkowego. natomiast n̂
jest operatorem liczby obsadzeń danego stanu, n̂ = â†â. Ponadto liczba wszystkich obsadzeń
(cząstek) N̂ =

∑
j n̂j. Stany mogą być superpozycjami tylko dla ustalonego N . Różne N można

tylko dokładać jako stany mieszane. Do policzenia pV β musimy znowy sumować wszystkie
możliwe obsadzenia niezależnie dla każdego j, ale dla fermionów jest to prostsze niż dla bozonów.∑

n≥0

enβ(µ−ϵ) = 1 + eβ(µ−ϵ)

Zatem z zespołu wielkiego kanonicznego

ln Ξ = −Ωβ = pV β =
∑
j

ln(1 + eβ(µ−ϵj))

Łatwo policzyć także średnie liczby obsadzeń ⟨n̂j⟩ = (eβ(ϵj−µ) + 1)−1. Stosujmey wektor falowy
k⃗, lub pęd p⃗ = ℏk⃗, k⃗ = 2π(j1/L1, j2/L2, j3/L3) gdzie j przebiegają wszystkie liczby całkowite.
W granicy dużej objetości sume można zastapić całką

∑
j →

∫
d3j, a miarę zamienić na pędową∫

d3j = V
∫
d3p⃗/(2πℏ)3 (bo V = L1L2L3), a więc

pβ =

∫
d3p⃗

(2πℏ)3
ln(1 + eβ(µ−ϵ(p⃗)))

Możemy także wyznaczyć

N̄/V =

∫
d3p⃗

(2πℏ)3
(1 + eβ(µ−ϵ(p⃗)))−1

Uwaga: powinniśmy jeszcze wyniki pomnożyć przez 2 ze względu na degenrerację spinu (góra i
dół), będziemy to zapisywać jako 2s. Funkcja ⟨nϵ⟩ = 1/(eβ(µ−ϵ+1) Przebiega od 1 do 0 w miarę
zwięksania ϵ. Dla T → 0 czyli β → ∞ jest równa 1 dla ϵ < µ i 0 w przeciwnym razie. Wtedy

N̄/V = 2s

∫
ϵ<µ

d3p⃗

(2πℏ)3
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oraz
p = 2s

∫
ϵ<µ

d3p⃗

(2πℏ)3
(µ− ϵ(p⃗))

Wartość µ zależy od N̄ i oznaczamy jako energię Fermiego EF = µ(T = 0).
Jeśli stan opisują dodatkowe zmienne, raczej indeksowane liczbami całkowitymi, np. numer

pasma (w kryształach), po nich także trzeba sumować prawą stronę. Znalezienie termodyna-
micznego związku podstawowego pβ(β, µβ) sprowadza się więc to całki w której musimy znać
ϵ(p⃗). Zauważmy też, że granica klasyczna jak dla bozonów oznacza −µβ ≫ 1 czyli logarytm
można rozwinąć w szereg Taylora i wziąć najniższy wyraz

pβ = 2s

∫
d3p⃗

(2πℏ)3
eβ(µ−ϵ(p⃗))

Oczywiście dokładną równość z przypadkiem klasycznym dostajemy tylko gdy klasycznieH(p⃗) =
ϵ(p⃗) (a więc np. H = |p⃗|2/2m, c|p⃗| lub c

√
(mc)2 + |p⃗|2) i mamy tylko pęd (nie ma np. spinu). W

przeciwnym razie musimy pomnożyć wynik przez liczbę dostępnych konfiguracji spinu, pasm
itp.

Teraz przedyskutujemy szczegółowo najważniejsze przypadki w pełni kwantowo. Technicznie
przydatną wielkością jest gęstość stanów

g(ϵ) = 2s

∫
d3p⃗

(2πℏ)3
δ(ϵ− ϵ(p⃗))

ponieważ

pβ = −
∫
dϵg(ϵ) ln(1− eβ(µ−ϵ))

Dla gazu nierelatywistycznego ϵ(p) = |p⃗2/2m a stąd

g(ϵ) = 2s2π(m/2π
2ℏ2)3/2ϵ1/2

a dla ultrarelatywistycznego
g(ϵ) = 2s4πϵ

2/(2πℏc)3

W niskich temperaturach duże β powoduje nagłą zmianę w okolicach µ ≃ ϵ. Wtedy

ln(1 + eβ(µ−ϵ)) ≃
{
β(µ− ϵ) dla µ > ϵ

0 dla µ < ϵ

co daje w granicy T = 0

p =

∫ µ

−∞
dϵg(ϵ)(µ− ϵ)

a także
n =

∫ µ

−∞
dϵg(ϵ), U/V =

∫ µ

−∞
dϵg(ϵ)ϵ
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Parametr µ nazywamy poziomem Fermiego EF , poniżej niego wszystkie stany w T = 0 są
obsadzone a powyżej puste. Jest to naturalna konsekwencja zakazu Pauliego. Cząstki chcą
zajmować jak najniższe stany, ale różne. Zobaczmy jeszcze jak się zachowuje ciepło właściwe
dla ustalonej objętości i liczby cząstek

CV =

(
∂U

∂T

)
N,V

= −(kBT
2)−1

(
∂U

∂β

)
n

Tymczasem(
∂U

∂β

)
n

=

(
∂U

∂β

)
µβ

+

(
∂U

∂µβ

)
β

(
∂µβ

∂β

)
n

=

(
∂U

∂β

)
µβ

−
(
∂U

∂µβ

)
β

(∂N/∂β)µβ
(∂N∂µβ)β

= −
(
∂2pV β

∂β2

)
µβ

+
(∂2pV β/∂µβ∂β)2

(∂2pV β/∂µβ2)β

Korzystając z ogólnego wzoru na pβ dostajemy(
∂2pβ

∂β2

)
µβ

=

∫
dϵg(ϵ)

ϵ2

4 cosh2((ϵ− µ)β/2)(
∂2pβ

∂β∂µβ

)
= −

∫
dϵg(ϵ)

ϵ

4 cosh2((ϵ− µ)β/2)(
∂2pβ

∂µβ2

)
β

=

∫
dϵg(ϵ)

1

4 cosh2((ϵ− µ)β/2)

Dokonując zamiany zmiennych x = (ϵ− µ)β/2, otrzymamy(
∂U/V

∂β

)
n

= 2β−3

((∫
dxgx cosh−2 x

)2∫
dxg cosh−2 x

−
∫
dxg

x2

cosh2 x

)
gdzie g liczymy w punkcie µ+ 2x/β. Jeśli β jest duże to g jest praktycznie stałe i całki można
obliczyć, pierwsza się zeruje z nieparzystości funkcji podcałkowej a druga jest równa π2/6
(tablice albo całka zespolona po prostych oddalonych o iπ) czyli (∂(U/V )/∂β)n = −π2g/3β3

i ostatecznie CV = V k2BTπ
2g/3 gdzie obliczamy g dla µ. Uwaga: nie warto przeliczać tego

na ciepło molowe, bo w niskich temperaturach większość fermionów jest "uśpiona" w stanach
głęboko poniżej poziomu Fermiego µ i przypisywanie im aktywności cieplnej jest nieuzasadnione.

7 Mieszaniny
Załóżmy że układ ma wiele składników, np. różnych cząsteczek. Niech Ni, i = 1, 2, 3, . . . będą
liczbami cząteczek każdego rodzaju i są globalnie zachowane. Wtedy można użyć wielkiego
zespołu kanonicznego, z osobnymi potencjałami chemicznymi dla każdego rodzaju.

ρ = Ξ−1 exp(
∑
i

µ̃iNi − βH)
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z wielką sumą statystyczną

epV β = Ξ =

∫∑
exp(

∑
i

µ̃iNi − βH)

Jeśli energia jest sumą energii składników H =
∑

iHi to możemy zapisać

pV β = lnΞ =
∑
i

ln Ξi(µ̃i, β, V ) =
∑
i

piV β

gdzie Ξi jest wielką sumą statystyczną pojedynczego składnika (czystego). Daje to proste prawo
dla mieszanin idealnych

p =
∑
i

pi

ale potrzebujemy jeszcze warunku na średnie liczby cząsteczek

N̄i = ∂ ln Ξ/∂µ̃i

Jeśli cząsteczki są niezależne czyli Hi =
∑

j Hi(p⃗j) dla każdej cząsteczki (tak możemy zrobić
zasadniczo w granicy klasycznej),

ln Ξi = eµ̃iV

∫
dΓ1e

−βH1(Γ1)

gdzie Γ1 oznacza przestrzeń jednocząstkową. Dla prostego gazu jednoatomowego dΓ = d3p⃗/(2πℏ)3
i H1 = |p⃗|2/2, ale w przypadku czątek dwuatomowych, wirujących, trzeba rozważyć także ką-
tową przestrzeń fazową. Mamy wtedy N̄i = piV β czyli prawo gazu doskonałego. Zatem

pV β =
∑
i

N̄i

a także mamy stałe µi(p, T ) = µ0
i (p, T ) + kBT lnxi gdzie xi = N̄i/N̄ jest ułamkiem molowy

(jaką część stanowią cząsteczki rodzaju i) a µ0
i jest potencjałem chemicznym pojedynczego

składnika.
Paradoks Gibbsa. Wielki potencjał chemiczny Ω = −pV jest sumą od składników miesza-

niny, ale już nie np. energia swobodna Gibbsa

G =
∑
i

µiN̄i

Jeśli np. weźmiemy 2 identyczne gazy doskonałe to otrzymamy

Gβ = µ0
i (p, T )N̄ +

∑
i

N̄xi ln(xi)

37



7. MIESZANINY 38

czyli mamy energię swobodną mieszania (także entropię)

G′β/N =
∑
i

xi lnxi

Bierze się ona stąd, że podczas mieszania tracimy informację, którą mogliśmy wykorzystać, np.
budująć silinik cieplny, który umie odróżniać cząsteczki obu gazów. Uwaga: w wyjątkowych
sytuajach wzory obowiązują także dla słabych roztworów, kiedy jeden składnik nie jest gazem
doskonałym. Drugi musi być na tyle rozrzedzony że jego cząsteczki zachowują się niezależnie
od siebie, choć oddziałują silnie z drugim składnikiem.

7.1 Reakcje chemiczne

Podczas reakcji chemicznej atomy są przekazywane pomięczy cząsteczkani, a więc liczba czą-
steczek Nα związku chemicznego α nie jest zachowana. Zachowana jest za to całkowita liczba
atomów Na danego pierwiastka a. Zastosujemy wielki zwspół kanonicznych, formalnie wprowa-
dzając potencjały chemiczne dla każdego pierwiastka µa oraz µ̃a = βµa. Teraz rozkład staty-
styczny ma postać

p(Γ) = Ξ−1 exp

(∑
aα

µ̃akaαNα −H

)
gdzie kaα jest liczba atomów a w związku α a H jest energią. Energia może się zmienić w czasie
reakcji. Zwykle możemy traktować reagujące związki jak gazy (także np. kiedy są rozpuszczone
w wodzie) i wtedy energia jest sumą

H =
∑
α

Hα

a także

HαN =
N∑
i=1

|p⃗i|2/2mα +NEα

(czyli energia jest sumą energii kinetycznych i wewnętrznej energii cząsteczki Eα) a przestrzeń
fazowa iloczynem

dΓ =
∏
α

dΓα

Wtedy mamy
ln Ξ = pV β =

∑
α

V eµ̃α−βEα(2πℏmα/β)
3/2

gdzie µ̃α =
∑

a µ̃akaα a także

N̄α = V eµ̃α−βEα(2πℏmα/β)
3/2
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Potencjały chemiczne µ̃α nie są niezależne bo wyrażają się przez potencjały atomowe. Zwykle
równanie reakcji piszemy za pomocą współczynników stechiometrycznych sα,∑

α

sαAα = 0

dla związków chemicznych Aα. Przykład: spalanie metanu

CH4 + 2O2 − CO2 − 2H2O

dla α = 1, 2, 3, 4 przyporządkowanych odpowiednio CH4,O2, CO2,H2O daje s1,2,3,4 = 1, 2,−1,−2
oraz kC 1,2,3,4 = 1, 0, 1, 0, kH 1,2,3,4 = 4, 0, 0, 2, kO 1,2,3,4 = 0, 2, 2, 1. Mamy więc 3 niezależne po-
tencjały µ̃C , µ̃H , µ̃O, a równanie reakcji daje∑

α

kaαsα = 0

dla wszystkich a, w naszym przykładzie

1 0 1 0
4 0 0 2
0 2 2 1




1
2
−1
−2

 =

0
0
0


a więc algebraicznie s jest jądrem k. W takim razie∑

α

µ̃αsα =
∑
α

µ̃akaαsα = 0

Dlatego N̄α nie są niezależne, ale ∏
α

(N̄α/V )sα = K(β)

jest stałą równowagi chemicznej zależne tylko od temperatury, tutaj

N̄CH4N̄
2
O2
/N̄CO2N̄

2
H2O

Stała rownowagi zależy od temperatury ale także od rodzaju atomów, i wiązań.

8 Drgania kryształów – teoria Debye’a
Sieć krystaliczną polega drganiom względnym, poprzez naturalne oddziaływanie wzajemne jej
elementów. Oddziaływania muszą być jednak względne, tj. zależne od względnego położenia.
Możemy ten ruch opisywać przez wychylenie położeń środków masy komórek elementarnych
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od umownego położenia równowagi, u⃗ = r⃗ − r⃗0 (środek masy komórki może być zdefiniowany
dość dowolnie, najlepiej aby możliwie naturalnie). Klasyczny wkład do funkcji Hamiltona (tylko
ważna tutaj część!)

H =
∑
j

|p⃗j|2/2m+
∑
jn

Vj−n(∆u⃗jn), ∆u⃗jn = u⃗j − u⃗n

Dokładna postać Vl (dla l = j − n) jest nieistotna, istotna jest natomiast zależność od różnicy
wychyleń, bo krzystał może się swobodnie przesuwać jako całość. Zakładamy, że wychylenia
są małe względem wymiarów komórki elementarnej, bo duże wychylenia prowadzą do utraty
porządku krystalicznego – stopienia. Dlatego przybliżymy rozwijając wokół równowagi, wtedy
V ≃ A(e⃗ · ∆u⃗)2/2, gdzie e⃗ jest pewnym wektorem kierunkowym (o jednostkowej długości
|e⃗| = 1). Np. dla trójwymiarowej sieci sześciennej (komórka elementarna l(e⃗x, e⃗y, e⃗z) gdzie l
jest bokiem sześcianu) możemy uwzględnić oddziaływania wzdłuż kierunków osi, przekątnych
prostopadłych do osi i przekątnych sześcianu. Następny krok to przejście do bazy falowej (szereg
Fouriera)

u⃗j = N−1/2
∑
k

w⃗ke
ik⃗r⃗j

tutaj wk = w∗
−k jest amplitudą zespoloną a N liczbą komórek (często odpowiada liczbie węzłów

sieci, ale nie zawsze, np. nie w graficie). Teraz

H ≃
∑
k

[
|p⃗k|2/2m+

∑
e

2Ae|e⃗ · w⃗k|2 sin2(k⃗ · r⃗e/2)

]

gdzie r⃗e jest wektorem łączącym komórki elementarne wdłuż kierunku e⃗, r⃗e = ree⃗ (jeśli uwzględ-
niamy następych sąsiadów, wtedy więcej takich wektorów ma ten sam kierunek i po wszyskich
sumujemy). Uwaga: tak naprawdę musimy rozbić wk na część rzeczywistą i urojoną i sumować
po połowie k (po jednym z par k,−k), ale uproszczenie zapisu nie wpłynie na wynik. Istotne
będą dla nas częstości drgań własnych ωk. Otrzymujemy je rozwiązując problem własny dla ma-
cierzy

∑
e 4Aee⃗e⃗ sin

2(k⃗ · r⃗e/2) (e⃗e⃗ jest macierzą iloczynów składowych e) której wartości własne
λ = mω2. Dla małych k możemy rowinąć sin i dostajemy

H ≃
∑
k

[
|p⃗k|2/2m+

∑
e

Ae|e⃗ · w⃗k|2(k⃗ · r⃗e)2/2

]

W ogólności drugi wyraz można zapisać w⃗w⃗∗ : Ǎ : k⃗k⃗/2 gdzie Ǎ jest tensorem 4 rzędu (ma
34 = 81 składowych Aabcd, ale jest symetryczny Aabcd = Abacd = Aabdc i także zwykle = Aacbd).
Jego dokładna postać nie ma znaczenia w teorii Debye’a, ale warto spojrzeć na przypadek
izotropowy tj.∑

e

Ae|e⃗ · w⃗|2(k⃗ · r⃗e)2 = α1k
2|w⃗|2 + α2 |⃗k · w⃗|2 = α1|⃗k × w⃗|2 + (α1 + α2)|⃗k · w⃗|2
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wtedy α2 = mc2L oraz α1 + α2 = mc2T gdzie cL,T to prędkości fali (dźwiękowej) spolaryzowanej
wdłuż kierunku przemieszczania się (L – podłużna) oraz prostopadle (T – 2 transwersalne).
Falowość wiąże się z częstością drgań własnych liniowo zależną od k, tj. ω = c|k|. Prędkości cL i
cT mogą być zupełnie różne. Przypadek izotropowy można otrzymać np. dla sieci przestrzennej,
definiując A1 wzdłuż osi, A2 – przekątnych prostopadłych do osi i A3 – przekątnych sześcianu
(rysunek). Wtedy ten przypadek otrzymujemy dla A1 = A2 + 8A3/3, α1 = l2(A2 + 4A3/3),
α2 = l2(2A2 + 8A3/3), a więc c2T = l2(A2 + 4A3/3)/m, c2L = l2(3A2 + 4A3)/m.

Możemy wreszcie przystąpić do obliczania energii swobodnej. W przypadku klasycznym

βF =
∑
k,a

ln(βωkaℏ)

gdzie sumujemy dodatkowo po indeksie wartości własnej a (po 3 na każde k) Stąd też U =
∂βF/∂β = 3NkBT oraz cV = 3kB bo liczba drgań jest równa liczbie zmiennych niezależnych
(3N). Jest to charakterystyczny klasyczny wynik, który można interpretować zasadą ekwipar-
tycji energii (kB/2 na każdy "stopień swobody", tutaj po 1 "kinetycznym" i 1 "potencjalnym"
na każdy z 3 wymiarów, w sumie 6). Kwantowo z kolei

βF =
∑
k,a

ln(2 sinh(βℏωka/2))

Trzeba zaznaczyć, że dość beztrosko przełożyliśmy klasyczną funkcję Hamiltona na kwantowy
operator, chociaż zmienne u wcale nie są fundamentalnym polem, kiedy mielibyśmy pełne prawo
tak zrobić. Okazuje się że można tak robić dla niefundamentalnych zmiennych, jest to tzw.
kwantowanie kanoniczne, o ile rozpatrywane zmienne można wydzielić jako operujące w za-
kresie znacznie niższych energii od innych lub są w inny sposób niezależne od pozostałych w
rozpartywanym zakresie energii (w fizyce statystycznej skalę istotnych energii wyznacza kBT )

Teraz
U =

∑
k,a

coth(βℏωka/2)ℏωka/2 =
∑
k,a

ℏωka(1/2 + (eβℏωka − 1)−1)

Pierwszy wyraz to tzw. energia próżni. Drugi wyraz to część zależna od temperatury, ma tę
samą postać co dla bozonów przy µ = 0. Nie jest to przypadek, bo bozonami są tu kwanty
drgań, tzw. fonony (bo związane z falami dźwiękowymi, podczas gdy fotony są związane z falami
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świetlnymi), także o niezachowanej liczbie. Granica klasyczna oznacza teraz jednak tylko małe
β, bo stale z = eµβ = 1. Tak jak w przypadku gazów, wygodnie jest przejść do granicy dużej
objętości, wtedy

∑
k → V

∮
d3k/(2π)3 Tym razem całka jest po skończonym zakresie k (co

wyraźnie zaznaczyliśmy), bo w krzyształach ograniczamy się do jednej strefy Brillouina (patrz
część 8.1). Ogólnie (2π)−3

∮
d3k = n (koncentracja komórek elementarnych) bo liczba k jest

równa liczbie komórek elementarnych N . Wprowadzimy także gęstość częstości

g(ω) =
∑
a

∮
d3k

(2π)3
δ(ω − ωka)

Jest ona unormowana,
∫
dωg(ω) = 3n (po 3 drgania na każde k a odpowiednio więcej gdy

krzystały są wieloatmowe, musi się zgadzać liczba stopni swobody) oraz

βF

V
=

∫
dωg(ω) ln(2 sinh(βℏω/2)),

U

V
=

∫
dωg(ω)ℏω(1/2 + (eβℏω − 1)−1)

W wysokich temperaturach otrzymujemy oczywiście zachowanie klasyczne, za to w niskich
ważne będą tylko małe energie, dla których znajdziemy w przybliżeniu g(ω). Niech k⃗ = ke⃗k
gdzie e⃗k jest kierunkiem k⃗. Dla każdego k możemy napisać macierz

D̂(e⃗k) = Ǎ : e⃗ke⃗k/m =
∑
e

Aee⃗e⃗(e⃗k · r⃗e)2/m

której 3 wartości własne są kwadratami prędkości dźwięku, można zatem napisać D̂ = Ĉ2

gdzie Ĉ jest macierzą prędkości dźwięku o wartościach własnych ca(e⃗k) (a = 1, 2, 3) Mamy
ωka = kca(e⃗k) a więc

g(ω) ≃ ω2

∫
d2e⃗k
(2π)3

∑
a

c−3
a (e⃗k)

ostatnią sumę można także zapisać TrĈ−3 = TrD̂−3/2. W przypadku izotropowym
∑

a c
−3
a =

c−3
L + 2c−3

T i g(ω) = ω2(c−3
L + 2c−3

T )/2π2, jednak w każdym przypadku możemy napisać g(ω) =
αω2, gdzie α jest pewną stałą. Zatem w niskich temperaturach

U

V
≃ U0

V
+ ℏα

∫
dω

ω3

eβℏω − 1
=
U0

V
+ π4(kBT )

4α/15ℏ3

oraz cV ≃ 4π4αk4BT
3/15ℏ3. Jest to charakterystyczne kwantowe zachowanie ciepła właściwego w

niskich temperaturach ∼ T 3. W wysokich otrzymamy klasyczne wyniki (co ważne, kompensuje
się U0). Często interpoluje sie zachowanie cV w pośrednich temperaturach, upraszczając g = αω2

dla ω < ωD a zero powyżej ωD (jest to drastyczne uproszczenie, nawet nie przybliżenie, bo dla
dużych czestości g zachowuje się zupełnie inaczej, ale faktycznie maleje do zera). Częstość
Debye’a ωD wyznacza się z normalizacji g, czyli ωD = (9n/α)1/3. Częstość ta powinna mniej
więcej odpowiadać maksymalnej częstości drgań (pamiętamy, że takie ograniczenie istnieje bo
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ω zmienia się w sposób ciągły w obszarze zwartej strefy Brillouina). Można też zdefiniować
temperaturę Debye’a TD = ℏωD/kB, która może być traktowana jako umowna granica między
zachowaniem klasycznym i kwantowym. W takim uproszczeniu

u = U/V ≃ u0 + 9kBT (T/TD)
3

∫ TD/T

0

dx
x3

ex − 1

Wynik można wyrazić przez kombinację polilogarytmów (nie będziemy tego wypisywać). Osta-
tecznie wykres cV wygląda następująco:

0.2 0.4 0.6 0.8 1.0

T

TD

0.5
1.0
1.5
2.0
2.5
3.0
cV �kB

Drgania sieci mają także znacznie przy topnieniu – utracie uporządkowania krystalicznego. Z
opisu drgań wyłaczyliśmy jednostajne przesuwanie krzystału. Można się obawiać, że drgania
o niskich częstościach doprowadzą do rozchwiania kryształu i utratę porządku. Warunkiem
"bezpieczeństwa" kryształu, tzw. kryterium Lindemanna, jest nierowność

⟨|u⃗|2⟩ = N−1
∑
j

⟨|u⃗2j |⟩ ≪ l2

gdzie l jest wymiarem komórki elementarnej. Oznacza to, że wychylenia są małe w porównaniu
z rozmiarami komórek, czyli zasadniczo tkwią w miejscu; często po prawej stronie dopisuje
sie tzw. czynnik Lindemanna – umowną bezwymiarową liczbę mniejszą od 1. Wykorzystując
otrzymany wcześniej rozkład kanoniczny można to wyrazić

⟨|u⃗|2⟩ = N−1
∑
kb

⟨| ˆ⃗wkb|2⟩ = (3/2)n−1

∫
dωg(ω)(ℏ/mω)(1/2 + (eβℏω − 1)−1)

Tutaj skorzystaliśmy z rozkładu operatora położenia na drgania własne

ˆ⃗wkb = e⃗kb(âkb + â†kb)
√

ℏ/2mωkb

a więc
⟨|w⃗kb|2⟩ = ⟨(n̂kb + 1/2)⟩(ℏ/mωk)

jeśli uprościmy model do niezależnych drgań w kierunkach b = xyz.
Kluczem do stabliności jest zachowanie dla małych ω, ponieważ w skończonych temperatu-

rach g konkuruje z 1/mω2. Dlatego kryształy 1-wymiarowe nie są stabilne, 2-wymiarowe tylko w

43



8. DRGANIA KRYSZTAŁÓW – TEORIA DEBYE’A 44

zerowej temperaturze a w pełni stabilne dopiero 3-wymiarowe, bo wtedy g ∼ ω2 daje skończoną
prawą stronę. Niestabilność objawia się rosnącą liczbą defektów sieci, które w końcu niszczą
cały porządek. W 3 wymiarach w granicy klasycznej

⟨|u⃗|2⟩ ≃ kBT

∫
dωg(ω)/mnω2

a w kwantowej (niskie temperatury)

⟨|u⃗|2⟩ ≃
∫
dωg(ω)ℏ/2mnω

(jak widać w zerowej temperaturze drgania wcale nie zamierają). Z kolei uproszczeniu przez
częstość Debye’a:

⟨|u⃗|2⟩ ≃ (9ℏ/mωD)(T/TD)
2

∫ TD/T

0

dxx(1/2 + (ex − 1)−1)

co daje w wysokich temperaturach 9kBT/mω
2
D a w niskich temperaturach 9ℏ/4mωD a ogólnie:

0.2 0.4 0.6 0.8 1.0

T

TD

0.2
0.4
0.6
0.8
1.0

m ΩD Yu2]�9 Ñ

8.1 Kryształy – twierdzenie Blocha

Jeśli operator Hamiltona nie zmienia się przy pewnych przesunięciach tj. H(r⃗) = H(r⃗ + a⃗)
(najczęściej stosujemy to przypadku jednocząstkowego, ale idea jest calkiem ogólna), to można
go zdiagonalizować wzgodnie z tymi przesunięciami, tj. stan własny |ψ⟩ =

∫
d3rψ(r⃗)|r⃗⟩ ma

własność ψ(r⃗ + a⃗) = eiϕψ(r⃗). Przyjmuje sie konwencję falową, tj. ϕ = k⃗ · a⃗. Widać, że k⃗ ma
ograniczony zakres do k⃗ · a⃗ = 2π, bo potem ϕ się powtarza. W trójwymiarowym kryszale mamy
trzy wektory a⃗j, j = 1, 2, 3, rozpinajace równoległościan, komórkę elementarną. Nakłada to
ograniczenie na k⃗, które są zamnięte w komórce elementarnej sieci odwrotnej rozpiętej przez
k⃗j zadanej przez k⃗j · a⃗m = 2πδjm. Wektory kj mają wartości k⃗1 = 2πa⃗2 × a⃗3/(⃗a1 · (⃗a2 × a⃗3) a
pozostałe cykliicznie (1 → 2 → 3 → 1) lub macierzowo (k⃗1k⃗2k⃗3)

T = 2π(⃗a1a⃗2a⃗3)
−1. Komórka

sieci odwrotnej to tzw. pojedyncza strefa Brillouina. Licząc stany własne zawsze oganiczamy
się do niej, aby nie liczyć stanów wielokrotnie. Wartość własna H staje się wtedy funkcją
E(k⃗). Widać więc, że stany własne można pogrupować w tzw. pasma, w każdym z nich w
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sposób ciągły zmieniamy k⃗ a więc i E. Dla każdego pasma E musi mieć ograniczony zakres.
Dla różnych pasm przedziały E mogą zachodzić na siebie. Może się zdarzyć, że żadne pasmo
nie osiąga pewnej energii, wtedy mamy do czynienia z przerwą energetyczną, co ma kolosalne
znaczenie w elektronice. Ze względu na szczególne dodatkowe symetrie bądź ważne zastosowania
w opisie pasm i komórek wprowadza się liczne konwencje oznaczeniowe, których nie będziemy
tu dyskutować.
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