Model Isinga

Model przemiany fazowej mozna uprosci¢ do stanéw (spinéw) o; = £1 (przez analogie ze
spinem s, = +h/2) i zamiast U = H,N,V i 8, i = pf i —Qp = pV 3 uzy¢ zmiennych H i
umownej magnetyzacji

M = Z g;

Wtedy odpowiednikiem wielkiej sumy statystycznej jest

= Z oBM—BH

{o}
B = Bf odpowiada umownemu polu zewnetrznemu, a prawopodobienstwo dane konfiguracji
p{o}) == 1M

i potencjat Q = —fIn==U — BM.

Przemiana fazowa pierwszego roczaju oznacza niesiagtos¢ pochodnej potencjatu np. —dpfs/9p =
U/V oraz OpB/in = N/V (skok energii i gestosci). W modelu Isinga oczekujemy skoku M czyli
srednej magnetyzacji, liczonej jako dInZ=/ dB. Okazuje sie, ze nieciagtos¢ wymaga uktadu nie-
skoniczonego i co najmniej 2-wymiarowego.

Jednowymarowy model Isinga (1925) opisuje taiicuch spinéw oddziatujacych z sasiadami

H=-— Z JCTZ'O'H_l

Sume statytyczng mozna znalezé za pomoca macierzy przejscia (oddzialywan). Biora sasiednie
spiny macierz .
exp(BJoios + B(o1 + 02)/2)

o8I o BI-B

ma postac

~
I

Wtedy dla pierécienia N spinéw

gdzie \; o to wartosci wlasne tutaj

Ao =e? cosh B + V€287 sinh? B + e—87

W granicy N — oo liczy sie tylko wieksza wartosc wlasna, ale nie zmienia to faktu ze jest
rozniczowalna, nie ma skoku pochodnej i przemiany fazowej.



Dwuwymiarowy model Isinga

Teraz w modelu Isinga rozpatrujemy spiny na sieci prostokatnej oddziatujace jednokierunkowo
z najblizszymi sasiadami. Modelowy hamiltonian ma postaé

H = — Z O'Jm(e]mo']+1,m + Jyo-j,m‘i’l)

ij

gdzie 0j,, = £1, J,,, > 0 sa stalymi oddzialywania zaleznymi od kierunku,(cale zagadnienie
definiujemy bezwymiarowo). W sumie statystycznej = sumujemy po wszystkich kombinacjach
o, przy czym wynik czasem zalezy od przyjetch warunkoéw brzegowych (a) swobodnych — o = 0
poza wytyczonym obszarem (b) ustalonych — o = 41 na brzegu wytyczonego obszaru (c) perio-
dycznych 0jm = 04N, ms Ojm = Ojmsn, gdzie Ny, to rozmiary sieci (mozna jg wyobrazi¢ sobie
na torusie) (d) antyperiodycznych ¢jm, = 04N, m, ale 0jm = —0j min, CO MoOZna réwnowaznie
opisa¢ przyjmujac warunki periodyczne, ale J, — —J, na pomiedzy m = 1 i m = N,,. Ponadto
pytamy o wystepowanie spontanicznej magnetyzacji w zerowym polu tj. czy (o) # 0.

Sa dwa kierunki rozwigzywania modelu Isinga. W niskich temperaturach spodziewamy sie,
ze spiny tworza duze obszary o jednym znaku spinu, rozdzielone "S$cianami domenowymi" —
petlami rozgraniczajacami obszary roznych znakow (rysunek).

Wtedy
== Z e,BN(B+JI+Jy)(ef2,BJz)lI(6—25Jy)ly(€f2Bﬁ)A

gdzie sumujemy po wszystkich uktadach domenowych [, oznacza liczb¢ $cian pionowych a [, —
poziomych natomiast A liczbe spinéw +. Tu N jest liczba wszystkich spinéw (dla prostokata
N = N,N,)



7 kolei w wysokich temperaturach mozna zapisac,
e“T = cosh C(1 + 7 tanh C)

dla 7 = £1, Wzor ten stosujemy dla C = J i 7 = o0’ oraz C = Bi 1 = 0. We wzorze na
sume statystyczna pojawiajg sie iloczyny réznych sigma. Tymczasem suma po wartosciach =+
oznacza ze zostaja tylko wyrazy gdzie kazdy spin wystepuje parzyscie, tj. 0, 2 lub 4 razy (w
przypadku sieci kwadratowej). Zatem

= = (2cosh 3.J, cosh(B.J, cosh B)Y Z tanh® (.J, tanh™ pJ, tanh™ B

gdzie sumujemy po grafach (patrz rysunek), k,, to liczba krawedzi poziomych i pionowych a
m liczba weztow nieparzystych (do wezta wchodzi 1 lub 3 krawedzie).

Zauwazmy ze dla B = 0 oba wzory sa podobne do siebie (rysunek ponizej). Widaé to szcze-
golnie jesli zamienimy e~?*/= — tanh 8.J, oraz e /v — tanh 8.J, lub réwnowaznie sinh 23.J, —
1/sinh 23J, oraz sinh 28.J, — 1/sinh 23.J,. Widac¢ takze, ze wzory pokrywaja sie w takiej tem-
peraturze [, ze sinh23J,sinh28J, = 1. Okaze si¢ pozniej, ze to jest wlasnie warunek na
temperature krytyczna.



Zanim przejdziemy do $cistego rozwiazania ( tylko dla B = 0) przedstawimy wazny argument
Peierlsa (1936), ktorym wykazemy przez oszacowanie, ze w dostatecznie niskiej temperaturze
jest przemiana fazowa — spontaniczna magnetyzacja dla B = 0, a w dostatecznie wysokiej nie
ma. Przyjmiemy dla uproszczenia J, = J, = J, cho¢ argument jakosciowo dziala ogolnie. Jest
on szczegblnie wazny, ze bez problemu uogolnia sie na inne modele, np. tréjwymiarowy, dla
ktorego Scistego rozwiazania nie udato si¢ znalezé.

Zatozmy ustalone warunki brzegowe, 0 = +1. Wykazemy ze w dostatecznie niskiej tem-
peraturze $rednia liczba spinéw — jest < ¢N gdzie ¢ jest liczba mniejsza od 1/2. Bedzie to
dowodzi¢ spontanicznej magnetyzacji. Zgodnie z przyjetym rozktadem prawdopodobienstwa
Srednia liczba spinéw — jest mniejsza niz

Y(e )4
> ()

gdzie [ jest dlugoscia obwodu jednej domeny, A jej polem a sumujemy po wszystkich mozliwych
konfiguracjach jednej domeny. Mianownik jest > 1 a licznik oszacujemy nasteujaco. Mamy < N
poczatkéw obwodu, maksymalnie 3 kierunki na kazdym kroku i dzielimy przez [ poczatkow. Z
kolei A < [?/16, bo najwigksze pole ma kwadrat. Zatem

(N_) <

(N_) <N (3¢7)'1/16 = 3Ne > /16(1 — 3¢ )
l

Warunkiem zbieznogci jest oczywiscie e?#7 > 3. Czynnik przy N po prawej stronie oczywiscie
bedzie < 1/2 dla dostatecznie duzego 8 = 1/kgT.
W wysokiej temperaurze o braku magnetyzacji $wiadczy zerowa korelacja

(0000735)



dla duzych wartosci ij. Taka korelacje mozna policzy¢ wykorzystujac rozwiniecie wysokotem-
peraturowe dla K = tanh(f8.J) i analizujac $ciezki taczace te spiny (rysunek)
<0000ij> < ZKI

gdzie [ jest dtugoscia Sciezki a sumujemy po wszystkich takich $ciezkach. Minimalna dtugosé to
1+ 7. Na kazdym kroku mamy 3 wybory kierunku, wiec

(0000 jm) < Z (3K)' = 3K)"*™ /(1 — 3K)

oile 3K < 1 (dla malych (3). Poniewaz K < 1, wtedy korelacje zanikaja wyktadniczo z odle-
glodcia i nie ma magnetyzacji sponatniczne;.

Przejdziemy teraz do $cistego rozwiazania przy B = (0. Pierwsze $ciste rozwiazanie podat
Onsager w 1944 a wzoér na magnetyzacje w 1949, ktory wykazat Scisle Yang w 1952. My po-
stuzymy sie metoda Wdowiczenko (1964), zaprezentowana takze w ksiazce L.D. Landau, E.M.
Lifshitz, Statisical Physics (Pergamon, Oxford, 1980). Model Isinga jest takze szczegdtowo prze-
analizowany w ksiazce B.M. McCoy and T.T. Wu, The Two-Dimensional Ising Model (Harvard
University Press, Cambridge, 1973), z ktorej czesciowo takze tu korzystamy.

Bedziemy wykorzystywaé rozwiniecie wysokotmeperaturowe. Musimy doktadnie obliczy¢
wktad od kazdej konfiguracji do sumy statystycznej. Konfiguracje sa okreslone przez uklad
grafoéw na sieci, taki ze do kazdego wezta wchodzi 0, 2 lub 4 krawedzie grafu. Zastosujemy pe-
riodyczne warunki brzegowe (pozniej przydadza sie takze antyperiodyczne). Takie grafy mozna
rozpartywaé jako petle, ktére w naturalny sposéb pojawiaja sie w strukturze wynacznika, jako
rozbicie permutacji na cykle. Jednak w wyznaczniku istotny jest kierunek petli, a u nas nie.
Dlatego musimy wzia¢ tylko "polowe" wyznacznika, a doktadnie pierwiastek. Ponadto w wy-
znaczniku kazda petla ma jeszcze znak —, ktory musimy skomensowaé. Zrobimy to doktadajac
— dla odpowienich zakretow, tak aby kazda zamknieta petla bez samoprzecie¢ miata czynnik
—. Pojawia si¢ jeszcze problem petli wzdtuz catej sieci, wykorzystujace periodycznosé. Trzeba
im przypisa¢ — inaczej — przez "rozprowadzenie" czynnika —1 po calej sieci. Ostatecznie suma
statystyczna ma postaé¢ (2 cosh(8J,) cosh(8.J,))NZ gdzie

z=>"[[xm L



gdzie K, i L;n, to wagi krawedzi od wezta jm do odpowiednio j 4+ 1,m i j,m + 1. gdzie a i b
sg rowne 0 jesli danej krawedzi nie ma w grafie a 1, jesli jest. Wtedy

27 = (det(I — V__))"* + (det(I = V{))"? + (det(I = V_))"* = (det(/ =V, ))Y* (1)

Macierze V majg wymiar 4N x 4N, operuja w przestrzeni wektorowej, ktérej baze opisujemy
krawedziami skierowanymi |[jmv), gdzie jm jest weztem od ktorego skierowana jest krawedz,
a v kierunkiem krawedzi — (do j + 1,m), T (do j,m + 1), < (do j — 1,m), | (do j,m — 1).
Elementy macierzy V wyrazaja sie nastepujaco

Vijm =) = Kjn(lj+1,m =) = |jm+ 1,1+ [j,m—1])

Vijm <) = +K; (i +Lm ) + i — Lm, ) + |j,m— 1)
Vijm ) =L;, (li+1Lm—=)+[jm+1)+]jm+1])

przy czym K, = K, K_4 = Ke™/Ne oraz Ly, = L, Ly = Le"™™v. Dzieki takim defi-
nicjom petle beda mialy prawidtowe znaki przy obejsciu calej sieci dookota. Macierz mozna
zwizualizowaé¢ na ponizszym rysunku, gdzie w kotko sa wziete wyrazy z dodatkowym minusem,
w kwadraty zerowe (nie mozna natychmiast zawracac).

H@QL
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Na sieci ze stalymi K = tanh(SJ,) 1 L = tanh(5J,) oplaca si¢ uzy¢ bazy Fouriera

pg) = €| jm)
jm

powniewaz wtedy macierz robi sie blokowa i

Ke™ ™ —Le™ 0 Le
—Ke ™™ Le ™ Ke? 0

0 Le™  Ke® Le"

Ke P 0 Ke® Le"

Vp,q =



przy czym pi = 271 /Ny, p— + = 2n(r + 1/2)/Ny, g+ + = 27s/Ny, qe— = 27w(s + 1/2)/N,
are{l,..,N,}is e {1,..,N,}. Dla duzych oznaczmy @), = Indet(1 — V,,). Chcemy liczy¢
Q = > ,,@p dla duzych N, i N, (w granicy termodynamicznej). Oznaczmy takze szereg
Fouriera

2
P(kl) = / dpdqQpge™ i
0
Dla duzych N, i N, mamy
Qe (27)%/ (N, N,) = P(00) 4+ £P(N,, 0) + EP(—N,, 0) + nP(0, Ny) + nP(0,—N,) + ...
dla &,7 = +. Jak sie pozniej okaze tak naprawde dominujacy jest pierwszy wyraz, nastepne
blyskawicznie maleja, ale beda nam jeszcze potrzebne do obliczenia napiecia powierzchniowego
(reszta ma posta¢ £P(aN,,bN,) gdzie a i b sa catkowite. Mamy
det(I —V,,) = (1+ K*)(1+ L*) —2K(1 — L*) cosp — 2L(1 — K?) cosq

Obliczymy najpierw P(00) Dokonujac zamiany zmiennych p =  + w, ¢ = Q — w z granicami
Qe [0,27] i w € [—-27, 27| Wtedy

2P(00) = /27r dQ /% dwln[(1+ K*)(1+ L?)

—2(K(1—L*) + L(1 — K?))cos Qcosw + 2(K (1 — L*) — L(1 — K?)) sin Q cos sin w]

Przez opowiednie przesuniecic w — w + « dla kazdego €2, mozna ta catke sprowadzié¢ do

P(00) :/O%dQ/O%dwln [(1+K2)(1+L2)

—2\/(K(1 — L)+ L(1 — K2))2cos2 Q + (K(1 — L?) — L(1 — K2))2sin®* Q cosw
Wykorzystamy wzor
27
/ dpIn(A — Bceos¢) = 2n(In(A + VA2 — B?) —In2)
0

Wtedy
27
P(00) + (27)*In2 = 27r/ dQ1n [(1 + K%)(1+ L)
0

+/(1 — K2)2(1 — L?)2 + 16K2L2 — 8K L(1 — L?)(1 — K?) cos 2Q
Oznaczymy k = [sinh(23J,)sinh(23J,)]"! = (1 — K?)(1 — L?)/4K L. Daje to

P(00) = —(27)*In2 — 2(27)* In(cosh(B.J, cosh 3.J,)

2m
27?/ déIn(cosh(28.J,) cosh(28.,) + £~ 1\/1 4 K2 — 2k cos 2¢)
0



i ostatecznie w granicy termodynamiczne;j

BQ/N = —(In2)/2 — /07r ;l—f In(cosh(283.J,) cosh(28.J,) + £~ y/1 + k2 — 2k cos 2¢)

Wida¢ nieanalitycznosé wzoru dla kK = 1 a wiec to jest punkt krytyczny. W przypadku izotro-
powym J, = J, = J energia na spin wynosi

u=U/N = —Jcoth(28J)[1 + 2(2tanh?(23.J) — 1)K (2v/k/(1 + K)) /7]
gdzie /
K(a) = /0 do(1 — a?sin? ¢) /2

jest calka eliptyczna (Uwaga: Wolfram Mathematica definiuje K bez kwadratu przy a!). Po-
nizej wykresy energii u(7) i ciepla wtasciwego ¢ = «/(T") dla tego przypadku, ktore rozbiega
logarytmicznie w punkcie krytycznym Tx = 2J/kgIn(1 + v/2).

keT/J
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Wr6émy do dyskusji P(0, £N,) i P(£N,), niech Z = ZZ" gdzie Z, jest wkladem, ktory
do tej pory obliczyliSmy. Ze wzoru

/27T dpe*™N?In(A — Bcos¢) = 2r((A + VA2 — B2)/B)"" /N

Dostajemy

¢
P(0,+N,) = —(27T/Ny)/0 dof~(¢), P(£N;,0) = —(27T/Nm)/0 dég~""(9)

gdzie
2L(1 — K*)f(¢) = (1 + K*)(1 + L*) — 2K (1 — L*) cos ¢
+V/[(1+ K2)(1 + L2) — 2K (1 — L2) cos ¢]2 — 4L2(1 — K?2)?
2K (1 — L) f(¢) = (1 + K*)(1+ L*) —2L(1 — K*)cos ¢

+/[(1+ K2)(1 + L2) — 2L(1 — K?2)cos ¢]2 — 4K2(1 — L?)?

Zauwazmy ze f, g > 1 poza punktem krytycznym, a wiec catki bedg szybko male¢. Jesli N, ~ N,
to wktady P(0, N,) i P(N,,0) maleja bardzo szybko do zera a wiec sa nieistotne. Sytuacja sie



troche zmienia, kiedy N, ~ In N,. Wtedy wklad P(N,,0) maleje ale w sumie statystycznej jest
mnozony przez N, wiec pozostaje istotny. Poniewaz P(N,,0) jest ujemne , wiec

AR eXp(_NzNyP<NI7 O)/(QW)Q)

Nadal zatem wklad zanika w granicy termodynamicznej (In Z’ ~ N,g~ ).

Rozwazymy jednak jeszcze inng sytuacje — antyperiodyczne warunki brzegowe w kierunku x.
Odpowiada to wymuszeniu istnienia lini rozdziatu faz ponizej temperatury krytycznej. Powinna
ona da¢ wktad do napiecia powierzchniowego (dokladniej liniowego tutaj). Nie mozemy jednak
zamieni¢ K — —K na zszyciu brzegéw, bo zrujnuje to jednorodnosé macierzy. Okazuje sie, ze
réwnowaznie mozna zastapi¢ K — Ke™/Ne To jednak oznacza zamiane ¢ — —¢ w Z/,

27" — ea—b + ea+b + e—a—b _ e—a—l—b

gdzie
a = N,N,P(N,,0)/(2r)? b= N,N,P(0,N,)/(2r)?

Dominujacy jest teraz wyraz e* bo dwa ostatnie sie odejmuja (réznica jest duzo mniejsza niz
suma pierwszych dwoch), czyli

7" =~ exp(N,N,P(N,,0)/(27)?)

a wiec podobnie jak poprzednio nie ma to znaczenia w granicy termodynamicznej. Wydawatoby
sie, ze na tym koniec, ale ... przeoczylismy wazny szczegot. Wzor (1) jest stuszny dla matych
V' (czyli matych K i L). Uzycie go dla duzych V' wymaga przedtuzania analitycznego. Ma to
znaczenie tylko w jednym wyrazie, kiedy p = ¢ = 0 bo wtedy det(I — Vpo) = (1 — KL —
K — L)%. We wzorze (1) mamy pierwiastek. W oblliczeniach milczaco przyjmowalismy dodatni
czyli |1 — KL — K — L|. Jednak w temperaturze krytycznej jest to 0, a wiec powinnismy wziac¢
(1 - KL — K — L) dla zachowania analitycznosci. Musimy wtedy zmieni¢ znak przy wyrazeniu
e?*? (i tylko tym) ponizej temperatury krytycznej i wtedy

97" = ¢80 — ¢o+b | gmamb _ gmatb — (g0 4 gmay(gmb _ b
Dominujacy jest wyraz e~® (a jest ujemne) a b < 1 wiec
7'~ —be
bo b jest mate. Tym razem paradoksalnie wazny staje sie wktad b czyli
2
InZ' ~In /O dofNv (o)
Dla duzych N, dominuje wktad od minimum f ktére jest dla ¢ = 0 czyli
fmin = L(1 + K)/(1 — K) = tanh(3.J,)e*”
Stad mamy dodatkowy wktad do potencjatu

/N, = 2J, + kpT Intanh(J,/kpT)



Mozna to interpretowaé¢ jako napiecie powierzchniowe (liniowe), ktore w 7' = 0 jest réwne
2J, (co nie dziwi) a w temperaturze krytycznej znika (tez nie dziwi). Jest posredni dowod
wystepowania przemiany fazowej ponizej temperatury krytycznej, bo napiecie pojawia sie tylko
miedzy réznymi fazami.

Bezposrednia identyfikacja fazy jest sponatniczna magnetyzacja. Znajdziemy ja badajac
dtugozasiegowe korelacje, bo

M2 = lim <O'000'm0>
m—00

Napierw obliczymy te granice, a potem uzasadnimy czemu to wystarcza. W takiej korelacji
mozemy skorzysta¢ z faktu

oo0(1 + Koggo10) -+ + (L + KOp—1,00m0)0mo = K™(1 4+ K 090010) - -+ (1 + K ' 0yn—1,00m0)

= Km<1 + (K —|— K/)O'O()O'lo) s (]_ —|— (K —|— K/)Um—1,00m0>

gdzie K/ = K=! — K. Mamy zatem V — V + K'A gdzie elementy macierzy A sa réwne 1 dla
krawedzi miedzy 00 i m0 oraz 0 w przeciwnym razie. Dlatego

:Km¢®uﬁ4v—K%)

<O’000‘m0> = Km\/det(] — (1 — V)_lA)
det(I — V)
Tymczasem
" dpd
. =10 _ PAq i(j—5")p+i(i—1') -1
Gl =V)= 7)) = 7€ (1= Vi)
o (2m)
gdzie
—1 o
(I — Vi) " det(T — V) =
14+ L% —2Lcosq — Ke'P(1 — L?) L(L—e % 4 ePK(e™% 4+ L)) 2iK Le'P sin g L(e'® — L — Ke'™ (e’ + L))
K(K —e P 4 Le'(e™ " 4+ K)) 1+ K? —2Kcosp— Le*9(1 — K?) K(e'? — K — Le'd(e'P 4+ K)) 2iK Le' sinp
2iKLe™ *Psing L(e™% — L — Ke *"(e"% 4+ L)) 14 L?—2Lcosq— Ke *P(1 — L?) L(e'? — L — Ke~ (' + L))
K(e ' — K — Le % (e™ P 4 K)) 2iKLe %I sinp K(e'? — K — Le % (e'P 4 K)) (14+ K? —2Kcosp— Le™%(1 — K?)

Macierz A dziata tylko na |jO —) dla j = 0,..,m — 1 oraz [jO <) dla j = 1,..,m, a
wiec mozemy ograniczy¢ sie do przestrzeni rozpietej na tych wektorach (w pozostalej czesci
(1 — V) A jest scisle trojkatna, wiec nie wplywa to na wartos¢ wyznacznika). Stad takze
mozemy ograniczy¢ sie do [ = I' = 0 oraz 1. i 3. wiersza macierzu (I — V,,)~'. Co wiecej,
okazuje sie ze nie ma elementow laczacych wektory | —) z | <), poniewaz

dq
0 1—V) A0 =)~ [ ——————
G0 (1= V)40 =) ~ [
(2iKe Psing— e+ L+ K(e ™+ L) + ¢ — L — Ke (" + L))
oraz
@m»M—vrmmmqw/ﬁ_ﬁL_ﬁ
det(I — Vpq)
(L—e ™+ Ke(e " + L) + 2iKesing + €' — L — Ke® (e + L))

W obu przypadkach w nawiasie pozostaje czynnik sin ¢ ktory daje zero po scatkowaniu na mocy
antysymetrii ¢ — —¢q (det( — V},) jest symetryczne).



Pozostaje do policzenia

dqdp .
(2m)2 det(I — V)

(1+L*—2Lcosq— Ke?(1—L?) — L*+ Le " — LKe"®(e "+ L) + Le' — L* — KLe™ (' + L)

iG—3'—Dp o

(O — |(1 - V)1 A0 —) = /

dgqdp i .
B / (27T)2det(] -V )e b )p((l - L2>€ P K(l + 2L cosq + L2>>
Ppq

oraz

(GO (1 — V)" A|f0 ) = / (gﬂ)wff(if— Vo)

(14+L*—2Lcosq— Ke P(1—L*)—L*+ Le ™~ LKe (e + L)+ Le"' — L* — K Le "P(e" + L)

i3+ 1)p

dqdp i(j=3")p 2)i 2
= e (1= L*e® — K(1+2Lcosq+ L7))
/ (2m)2 det(I — V)

Wykorzystamy wzor
2m
/ dp(A — Bcos ) ™! = 2r(A% — B?)~1/2
0
i wprowadzimy oznaczenie .
wy=1+£L—-KeP(1FL)
Wtedy np. A% — B? = |w,w_|? Ostatecznie

27 dp w+w7€i(j_‘j/—1)p

0= |1—(1-V)'K'A|j/0 =) = —
G0~ 1= (1= V) KA =) = - [ =t

i podobnie

, o
T dp w* w* =i +1p
(O |1 = (1= V) ' K'A|j'0 ) = _/ ap Ly w-c

o 27 |wiw_|?

W dalszej analizie rozparzymy dwa przypadki, ponizej i powyzej temperatury krytyczne;.
Zwroémy uwage ze ponizej krytycznej w_ = —ePK(1 + L)(1 — e (1 — L)/K(1 + L)) i
(1-L)/K(1+ L) <1 czyli mozemy napisac

K(jo— [1— (1= V) K'A|j'0 =) = C(j — j') = / & i
0

(1—ePK(1—L)/(1+ L)1 —e#(1— L)/K(1+ L))\ "*
((1 —eK(1—-L)/(1+L))(1—e?(1—-L)/K(1+ L)))
Wyznaczniki macierzy o elementach
2w
Cli=i)= [ e 1)
to tzw. wyznacznik Toeplitza. O jego zachowaniu dla duzych wymiaréw m mowi (silne) twier-
dzenie Szego (dowdd na koncu)

det C' — expm.f(0) expikf(k)f(—k)
k=1



gdzie

~ 27( .
F) = [ §Ee i pp

U nas ' ' ' '
2In f(p) = In(1 — ae”®) +In(1 — be™?) —In(1 — ae™ ) — In(1 — be')

dlaa=K(1—-L)/(1+L)ib=(1—-L)/K(1+ L). Korzystajac z faktu, ze

2w
/ dpIn(1 — Ae™) =0
0

znika pierwszy czynnik w twierdzeniu Szego. Zostaje zatem
M2 = exp 3 TR
k=1

Korzystajac z rozwiniecia
[e.9]

—In(l—z)=)» 2/
=1
mamy

f(£k) = £(a* — %) /2k
a stad

M? = exp i@(ab)k —a® — b*) /4k = expIn((1 — a®)(1 — b*)/4(1 — ab)?)

(M) e

(oczywiscie dla k < 1) a wiec M = +(1 — x?)'/®. Stad tez wykladnik krytyczny 3 = 1/8.

Dla temperatur powyzej kryrycznej musimy skorzystaé¢ z dodatku do twierdzenia Szego.
Niech {ogoong) = M% Jesli pominiemy czynnik e~ w definicji C' mozemy wykorzysta¢ zwykte
twierdzenia Szego i wtedy

M3 =z det C

gdzie zy jest rozwiazaniem rownania C|z) = |0). Rozkladajac C' na
Co(z) = [(1 — az)(1 — b7 2)2, C_ (=) = [(1 = az~)(1 — b= ]2

i Cy = C.(Py) znajdujemy w pierwszym przyblizeniu |z) = C’;1|0). Ogolne zachowanie xy
znajdujemy z rozwiniecia

Dy =1 —az)(1 b))

7, drugiej strony




a wiec

— k)
Z )) ak,’bk’—N
N k 2(2k1)?
k
Dla duzych N — ki 2(N — k) mozna wykorzysta¢ wzor Stirlinga N! ~ v/2rN(N/e)N Wtedy

N b N (N ; N _(2:))!!2 G (ab)t = b~N(xN)~V2(1 — ab)~1/?

Kluczowe jest zachowanie b=V /N a wiec korelacje maleja wyktadniczo, jednak pozostate czyn-
niki sg niedoktadne.

Aby znalez¢ dokladniejsze zachowanie xy zauwazmy, Ze w naszym rozwiazaniu nie powinno
by¢ xp dla k£ > N. Pamietajmy, ze C = C’+C’_, ale obcinamy macierz do N + 1 wymiaréw.
Niech |z) = |x<) + |2~), gdzie |z<) jest rzutem na baze |0),..,|V) a |z~) dopemhieniem. Niech
ly) = C,C_|x-).Jest to wektor zlokalizowany niedaleko |N). Nas interesuje tylko jego rzut na
baze do | N) czyli |y<) (dlatego tez kolejnosé €', C_ anie C_C.). Niech C7|y<) = |q) Poprawka
do zx to

Sy = (NCZ'|g<) = (Nlg<) = (Nlq)

bo C_ przesuwa wektory do mniejszych a na przekatnej ma 1. Z kolei
(Nlg) = (N|CT'y<) = (NICTy)
bo C, przesuwa do wiekszych (na przekatnej 1). Dalej
(NIC'y) = (N|CF'CLC o) = (N|C-|s)

Zatem R X
Ty +6xy = (N|CTH0) + (NC_|zs)

7 drugiej strony
(N|C_C7H0) = (N|C-|x<) + (N|C_|2-) = (N]<) + (N|C_|-)
takze wykorzystujac, ze C_ zmniejsza indeks. Stad
ey + dxy = (N|C_CT0)

Z rozwiniecia

2k)! _ 200,
0= 3 i@ )Y g
oraz C w poblizy 2V

mamy, biorac ¢ = N + k + [,

C_C:l ~ b—N(ﬂ_N)—l/2(1 o ab)_1/2 Z (Qk)| ((a/b)kz—k> Z (QZ)' (b—ZZZ—l)
k l



Czyli
zn + 0y = b N(rN)TV2 1 — ab)V2[(1 = a/b)(1 — b72)] 72

Z drugiej strony z twierdzenia Szego
det C' — [(1 —a®)(1 — b~2)(1 — a/b)*]Y/*
czyli ostatecznie
My — b N (aN)TV2 (1 —ab) V21— a) /(1 — b7

Podobnie mozna wyznaczy¢ korelacje (ogoonn), jednak wygodniej jest pomocniczo prowa-
dzi¢ krawedzie ukosne, ktorym przypiszemy wage R, jak na rysunku

Wtedy macierz V powieksza sie o wektory ukosne i . Podobnie jak poprzednio trzeba
opisa¢ zakrety, co symbolicznie oznaczamy



w
N
N
e
"

Dalsza analiza jest analogiczna to sieci kwadratowej, jednak zapis jest na tyle uciazliwy, ze
lepiej wykorzystaé¢ programy do obliczenn symbolicznych (np. Mathematica). Po drodze trzeba
zmieni¢ wagi wzdluz przekatnej dla korelacji, zauwazy¢, ze wystarczy ograniczy¢ macierz do
wektorow ukosnych, i tworza sie dwa sprzezone bloki, niezalezne dla i /" (bez elementow
taczacych je), a na koniec przejsé z R — 0. Wynikiem jest znéw wyznacznik Toeplitza z funkcja

1—kz
V(1 —k2)(1— k2 1)

Ponizej temperatury krytycznej otrzymujemy korelacje jak wczesniej, a powyzej krytycznej

C(z) =

M% — k™ N(zN)"Y2 /(1 — g~H1/4

Natomiast dokladnie w temperaturze krytycznej Cy,,,, = (7(n —m+1/2))~! Dla takiej macierz
mozna wykorzystaé¢ proste twierdzenie, ze jesli Cpy, = (2, + Ym) ' to

Hn>m(xn - xm)(yn - ym)

det C' =
W naszym przypadku
N-1
det C = (2/m)N =N
k=1

Korzystajac z tozsamosci

sinz/z = H(l — (z/n7)?)

n>1



(dowod np. przez poréwnanie miejsc zerowych, holomoficzno$é na plaszczyznie zespolonej i
twierdzenie Weierstrassa o faktoryzacji lub formute sumacyjna Poissona ). Zatem

N—-1 [e%S)
Indet C = kIn(1— (2k)*) + N > In(1 — (2k) %)
k=1 k=N
Ostatni wyraz asymptotycznie dazy do —1/4, natomiast pierwszy ma wiodacy wktad —(1/4)In N.
Czynnik mnozacy jest skoriczony. Ostatecznie

det C' — N~V/4M12p1/4 /A3 ~ 0, 645N ~1/4
gdzie A jest tzw. stala Glaishera-Kinkelina A ~ 1,282, zdefiniowana jako

A= lim en2/4n—n2/2—n/2—1/12 H LF

n—00
k=1

(stata ta jest czesto wiazana z pochodna funkeji zeta Riemanna: In A = 1/12 — {'(—1))
To nie wszystko. Aby upewnié sie o skonczonej magnetyzacji (lub jej braku) powinni$my
pokazac, ze
<0000N1Ny> - Mz, <UOOUNZNyO'DIDyUG’EGy> — M*
Mozna to zrobi¢ powotujac sie na asymptotyczna faktoryzacje wyznacznika, w ktorym tworzymy
oddalone ciagi zmienionych wag (tak jak robiliSmy to obliczajac (ogoono) 1 (0ooonn)) tak jak
na ponizszych rysunkach




Pelna analize mozna przeczyta¢ w ksiazce B.M. McCoy and T.T. Wu, The Two-Dimensional
Ising Model (Harvard University Press, Cambridge, 1973), a w skrocie na stronie
http://www.scholarpedia.org/article/Ising model: exact results

Twierdzenie Szego

Macierz N x N C ma elementy C};

2w
le == C(] - l) = /(; (Sf_) eip(jil)f(p)

Jej wyznacznik to tzw. wyznacznik Toeplitza. Twierdzenie Szego moéwi ze dla n — oo
det C' — exp mf(O) exp Z k:f(k)f(—k)
k=1

gdzie )
~ “dp ok
k) = —e"]
f(k) /0 5 ¢ n f(p)

™

o ile f istnieje i jest zbiezna. Twierdzenie i dowdd przedstawil pierwszy G. Szego, Comm. Sem.
Math. de L'Univ. Lund, T. Supp. D. M. Riesz, 228 (1952). My postuzymy sie skrocona wersja

dowodu B.N. Valuev, Teor. i Mat. Fiz. 55, 475 (1983).
Macierz C' mozna rozparywaé jako nieskoriczonie wymiarowa. Zatézmy, ze

Inf(p) =Lo+ Ly +L_

gdzie Ly = f(0) oraz

Lo=Y" f(he ™, Lo =3 f(~k)e™
k=1 k=1

Wprowadzimy takze macierze przesuniecia P, takie ze Py =011 czyli P przesuwa index w
gore, a P_ w dol. Wtedy takze

C = exp Lo exp L_ exp I:+
gdzie
S (I gy (T
k=1 k=1
Macierz Lr jest dolnotrojkatna, a L_ gornotrojkatna. Jak tatwo sprawdzi¢ przy obcieciu do N
wymiaréw mamy o R R
det AB = det Adet B
N N N
jesli B jest gornotrojkatna. Zatem

det C' = NVEo det(eL‘e’i+e’L‘)
N N



Z kolei o ) X o
el-Liye =L, +[L_,L+...
gdzie [A, B] = AB — BA jest komutatorem. Pominiete wyrazy to komutatory wyzszego rzedu.
Stad -
el-elre™l- —exp(Ly + [L_,Ly]+...)

Tu mozemy skorzysta¢ ze wzoru det eA = exp TrA, ale wymaga to subtelnego zaltozenia, ze
elementy gornotrojkatne A dostatecznie szybko znikaja (32 . k| f(k)| skoriczone), co na szczescie
jest spetnione dla zbieznych f. Dla macierzy TrAB = TrBA wiec $lad komutatora znika. Wyjat-
kiem sa obie macierze nieskoniczone. Wtedy wlasnie mamy wktad od wyréznionego komutatora
(od wyzszych znika bo wtedy pojawia sie macierz skoriczona). Mamy za to

(L, Ly] = Z F(=k)F(k) Ik + ..

gdzie I, jest macierzg jednostkowa w pierwszych k wymiarach a dalej zero. Pominglismy takze
wyrazy pozadiagonalne. Poniewaz Trl = k, wigc otrzymujemy teze.
W przypadku gdy mamy funkcje f(p) = e=®f(p) Wtedy det C — zn(—1)" det C gdzie

Cla) = 10)

ze wzorow Cramera. Ogoélne zachowania xy mozna wiec znalezé z rowniniecia szeregu a wiec
e L= (do znalezienia doktadnego zachowania trzeba uwzgleni¢ fakt, ze macierz C' ma zawsze
skoriczony wymiar)



