
Model Isinga

Model przemiany fazowej można uprościć do stanów (spinów) σi = ±1 (przez analogię ze
spinem sz = ±ℏ/2) i zamiast U = H,N, V i β, µ̃ = µβ i −Ωβ = pV β użyć zmiennych H i
umownej magnetyzacji

M =
∑
i

σi

Wtedy odpowiednikiem wielkiej sumy statystycznej jest

Ξ =
∑
{σ}

eB̃M−βH

B̃ = Bβ odpowiada umownemu polu zewnętrznemu, a prawopodobieństwo dane konfiguracji

p({σ}) = Ξ−1eB̃M−βH

i potencjał Ω = −β ln Ξ = U −BM .
Przemiana fazowa pierwszego roczaju oznacza niesiągłość pochodnej potencjału np.−∂pβ/∂β =

U/V oraz ∂pβ/µ̃ = N/V (skok energii i gęstości). W modelu Isinga oczekujemy skoku M czyli
średnej magnetyzacji, liczonej jako ∂ ln Ξ/∂B̃. Okazuje się, że nieciągłość wymaga układu nie-
skończonego i co najmniej 2-wymiarowego.

Jednowymarowy model Isinga (1925) opisuje łańcuch spinów oddziałujących z sąsiadami

H = −
∑
i

Jσiσi+1

Sumę statytyczną można znaleźć za pomoca macierzy przejścia (oddziaływań). Biorą sąsiednie
spiny macierz

exp(βJσ1σ2 + B̃(σ1 + σ2)/2)

ma postać

T =

(
eβJ+B̃ e−βJ

e−βJ eβJ−B̃

)
Wtedy dla pierścienia N spinów

Ξ = TrTN = λN
1 + λN

2

gdzie λ1,2 to wartości własne tutaj

λ1,2 = eβJ cosh B̃ ±
√

e2βJ sinh2 B̃ + e−βJ

W granicy N → ∞ liczy sie tylko większa wartośc własna, ale nie zmienia to faktu że jest
różniczowalna, nie ma skoku pochodnej i przemiany fazowej.



Dwuwymiarowy model Isinga

Teraz w modelu Isinga rozpatrujemy spiny na sieci prostokątnej oddziałujące jednokierunkowo
z najbliższymi sąsiadami. Modelowy hamiltonian ma postać

H = −
∑
ij

σjm(Jxσj+1,m + Jyσj,m+1)

gdzie σjm = ±1, Jx,y > 0 są stałymi oddziaływania zależnymi od kierunku,(całe zagadnienie
definiujemy bezwymiarowo). W sumie statystycznej Ξ sumujemy po wszystkich kombinacjach
σ, przy czym wynik czasem zależy od przyjętch warunków brzegowych (a) swobodnych – σ = 0
poza wytyczonym obszarem (b) ustalonych – σ = +1 na brzegu wytyczonego obszaru (c) perio-
dycznych σjm = σj+Nx,m, σjm = σj,m+Ny gdzie Nx,y to rozmiary sieci (można ją wyobrazić sobie
na torusie) (d) antyperiodycznych σjm = σj+Nx,m, ale σjm = −σj,m+Ny co można równoważnie
opisać przyjmując warunki periodyczne, ale Jy → −Jy na pomiędzy m = 1 i m = Ny. Ponadto
pytamy o występowanie spontanicznej magnetyzacji w zerowym polu tj. czy ⟨σ⟩B→0 ̸= 0.

Są dwa kierunki rozwiązywania modelu Isinga. W niskich temperaturach spodziewamy się,
że spiny tworzą duże obszary o jednym znaku spinu, rozdzielone "ścianami domenowymi" –
pętlami rozgraniczającami obszary różnych znaków (rysunek).

Wtedy
Ξ =

∑
eβN(B+Jx+Jy)(e−2βJx)lx(e−2βJy)ly(e−2Bβ)A

gdzie sumujemy po wszystkich układach domenowych lx oznacza liczbę ścian pionowych a ly –
poziomych natomiast A liczbę spinów +. Tu N jest liczbą wszystkich spinów (dla prostokąta
N = NxNy)



Z kolei w wysokich temperaturach można zapisać,

eCτ = coshC(1 + τ tanhC)

dla τ = ±1, Wzór ten stosujemy dla C = J i τ = σσ′ oraz C = B i τ = σ. We wzorze na
sumę statystyczną pojawiają się iloczyny różnych sigma. Tymczasem suma po wartościach ±
oznacza że zostają tylko wyrazy gdzie każdy spin występuje parzyście, tj. 0, 2 lub 4 razy (w
przypadku sieci kwadratowej). Zatem

Ξ = (2 cosh βJx cosh(βJy cosh βB)N
∑

tanhkx βJx tanh
ky βJy tanh

m βB

gdzie sumujemy po grafach (patrz rysunek), kx,y to liczba krawędzi poziomych i pionowych a
m liczba węzłów nieparzystych (do węzła wchodzi 1 lub 3 krawędzie).

Zauważmy że dla B = 0 oba wzory są podobne do siebie (rysunek poniżej). Widać to szcze-
gólnie jeśli zamienimy e−2βJx → tanh βJy oraz e−2βJy → tanh βJx lub równoważnie sinh 2βJx →
1/ sinh 2βJy oraz sinh 2βJy → 1/ sinh 2βJx. Widać także, że wzory pokrywają sie w takiej tem-
peraturze β, że sinh 2βJx sinh 2βJy = 1. Okaże się później, że to jest właśnie warunek na
temperaturę krytyczną.



Zanim przejdziemy do ścisłego rozwiązania ( tylko dla B = 0) przedstawimy ważny argument
Peierlsa (1936), którym wykażemy przez oszacowanie, że w dostatecznie niskiej temperaturze
jest przemiana fazowa – spontaniczna magnetyzacja dla B = 0, a w dostatecznie wysokiej nie
ma. Przyjmiemy dla uproszczenia Jx = Jy = J , choć argument jakościowo działa ogólnie. Jest
on szczególnie ważny, że bez problemu uogólnia się na inne modele, np. trójwymiarowy, dla
którego ścisłego rozwiązania nie udało się znaleźć.

Załóżmy ustalone warunki brzegowe, σ = +1. Wykażemy że w dostatecznie niskiej tem-
peraturze średnia liczba spinów − jest < cN gdzie c jest liczbą mniejszą od 1/2. Będzie to
dowodzić spontanicznej magnetyzacji. Zgodnie z przyjętym rozkładem prawdopodobieństwa
średnia liczba spinów − jest mniejsza niż

⟨N−⟩ <
∑

(e−2βJ)lA∑
(e−2βJ)l

gdzie l jest długością obwodu jednej domeny, A jej polem a sumujemy po wszystkich możliwych
konfiguracjach jednej domeny. Mianownik jest > 1 a licznik oszacujemy nastęująco. Mamy < N
początków obwodu, maksymalnie 3 kierunki na każdym kroku i dzielimy przez l początków. Z
kolei A < l2/16, bo największe pole ma kwadrat. Zatem

⟨N−⟩ < N
∑
l

(3e−2βJ)ll/16 = 3Ne−2βJ/16(1− 3e−2βJ)2

Warunkiem zbieżności jest oczywiście e2βJ > 3. Czynnik przy N po prawej stronie oczywiście
będzie < 1/2 dla dostatecznie dużego β = 1/kBT .

W wysokiej temperaurze o braku magnetyzacji świadczy zerowa korelacja

⟨σ00σij⟩



dla dużych wartości ij. Taką korelację można policzyć wykorzystując rozwinięcie wysokotem-
peraturowe dla K = tanh(βJ) i analizując ścieżki łączące te spiny (rysunek)

⟨σ00σij⟩ <
∑

K l

gdzie l jest długością ścieżki a sumujemy po wszystkich takich ścieżkach. Minimalna długość to
i+ j. Na każdym kroku mamy 3 wybory kierunku, więc

⟨σ00σjm⟩ <
∑

l=j+m

(3K)l = (3K)j+m/(1− 3K)

o ile 3K < 1 (dla małych β). Ponieważ K < 1, wtedy korelacje zanikają wykładniczo z odle-
głością i nie ma magnetyzacji sponatnicznej.

Przejdziemy teraz do ścisłego rozwiązania przy B = 0. Pierwsze ścisłe rozwiązanie podał
Onsager w 1944 a wzór na magnetyzację w 1949, który wykazał ściśle Yang w 1952. My po-
służymy się metodą Wdowiczenko (1964), zaprezentowaną także w książce L.D. Landau, E.M.
Lifshitz, Statisical Physics (Pergamon, Oxford, 1980). Model Isinga jest także szczegółowo prze-
analizowany w książce B.M. McCoy and T.T. Wu, The Two-Dimensional Ising Model (Harvard
University Press, Cambridge, 1973), z której częściowo także tu korzystamy.

Będziemy wykorzystywać rozwinięcie wysokotmeperaturowe. Musimy dokładnie obliczyć
wkład od każdej konfiguracji do sumy statystycznej. Konfiguracje są okreslone przez układ
grafów na sieci, taki że do każdego węzła wchodzi 0, 2 lub 4 krawędzie grafu. Zastosujemy pe-
riodyczne warunki brzegowe (później przydadzą się także antyperiodyczne). Takie grafy można
rozpartywać jako pętle, które w naturalny sposób pojawiają się w strukturze wynacznika, jako
rozbicie permutacji na cykle. Jednak w wyznaczniku istotny jest kierunek pętli, a u nas nie.
Dlatego musimy wziąć tylko "połowę" wyznacznika, a dokładnie pierwiastek. Ponadto w wy-
znaczniku kazda pętla ma jeszcze znak −, który musimy skomensować. Zrobimy to dokładając
− dla odpowienich zakrętów, tak aby każda zamknięta pętla bez samoprzecięć miała czynnik
−. Pojawia się jeszcze problem pętli wzdłuż całej sieci, wykorzystujące periodyczność. Trzeba
im przypisać − inaczej – przez "rozprowadzenie" czynnika −1 po całej sieci. Ostatecznie suma
statystyczna ma postać (2 cosh(βJx) cosh(βJy))

NZ gdzie

Z =
∑∏

K
a(jm)
jm L

b(jm)
jm



gdzie Kjm i Ljm to wagi krawędzi od węzła jm do odpowiednio j + 1,m i j,m+ 1. gdzie a i b
są równe 0 jeśli danej krawędzi nie ma w grafie a 1, jeśli jest. Wtedy

2Z = (det(I − V−−))
1/2 + (det(I − V+−))

1/2 + (det(I − V−+))
1/2 − (det(I − V++))

1/2 (1)

Macierze V mają wymiar 4N × 4N , operują w przestrzeni wektorowej, której bazę opisujemy
krawedziami skierowanymi |jmν⟩, gdzie jm jest węzłem od którego skierowana jest krawędź,
a ν kierunkiem krawędzi → (do j + 1,m), ↑ (do j,m + 1), ← (do j − 1,m), ↓ (do j,m − 1).
Elementy macierzy V wyrażają się następująco

V |jm→⟩ = Kjm(|j + 1,m→⟩ − |j,m+ 1, ↑⟩+ |j,m− 1 ↓⟩

V |jm ↑⟩ = Ljm(−|j + 1,m→⟩+ |j,m+ 1, ↑⟩+ |j − 1,m ↓⟩)

V |jm←⟩ = +K∗
j−1,m(|j + 1,m ↑⟩+ |j − 1,m,←⟩+ |j,m− 1 ↓⟩

V |jm ↓⟩ = L∗
j,m−1(|j + 1,m→⟩+ |j,m+ 1,←⟩+ |j,m+ 1 ↓⟩

przy czym K+,± = K, K−,± = Keiπ/Nx oraz L±,+ = L, L±,− = Leiπ/Ny . Dzięki takim defi-
nicjom pętle będą miały prawidłowe znaki przy obejściu całej sieci dookoła. Macierz można
zwizualizować na poniższym rysunku, gdzie w kółko są wzięte wyrazy z dodatkowym minusem,
w kwadraty zerowe (nie można natychmiast zawracać).

Na sieci ze stałymi K = tanh(βJx) i L = tanh(βJy) opłaca się użyć bazy Fouriera

|pq⟩ =
∑
jm

eijp+imq|jm⟩

pownieważ wtedy macierz robi się blokowa i

Vp,q =


Ke−ip −Le−iq 0 Leiq

−Ke−ip Le−iq Keip 0
0 Le−iq Keip Leiq

Ke−ip 0 Keip Leiq





przy czym p+,± = 2πr/Nx, p−,± = 2π(r + 1/2)/Nx, q±,+ = 2πs/Ny, q±,− = 2π(s + 1/2)/Ny

a r ∈ {1, .., Nx} i s ∈ {1, .., Ny}. Dla dużych oznaczmy Qpq = ln det(1 − Vpq). Chcemy liczyć
Q =

∑
pq Qpq dla dużych Nx i Ny (w granicy termodynamicznej). Oznaczmy także szereg

Fouriera

P (kl) =

∫ 2π

0

dpdqQpqe
ipk+iql

Dla dużych Nx i Ny mamy

Qξη(2π)
2/(NxNy) = P (00) + ξP (Nx, 0) + ξP (−Nx, 0) + ηP (0, Ny) + ηP (0,−Ny) + . . .

dla ξ, η = ±. Jak się później okaże tak naprawdę dominujący jest pierwszy wyraz, następne
błyskawicznie maleją, ale będą nam jeszcze potrzebne do obliczenia napięcia powierzchniowego
(reszta ma postać ±P (aNx, bNy) gdzie a i b są całkowite. Mamy

det(I − Vpq) = (1 +K2)(1 + L2)− 2K(1− L2) cos p− 2L(1−K2) cos q

Obliczymy najpierw P (00) Dokonując zamiany zmiennych p = Ω + ω, q = Ω − ω z granicami
Ω ∈ [0, 2π] i ω ∈ [−2π, 2π] Wtedy

2P (00) =

∫ 2π

0

dΩ

∫ 2π

−2π

dω ln[(1 +K2)(1 + L2)

−2(K(1− L2) + L(1−K2)) cosΩ cosω + 2(K(1− L2)− L(1−K2)) sinΩ cos sinω]

Przez opowiednie przesunięcię ω → ω + α dla każdego Ω, można tą całkę sprowadzić do

P (00) =

∫ 2π

0

dΩ

∫ 2π

0

dω ln
[
(1 +K2)(1 + L2)

−2
√

(K(1− L2) + L(1−K2))2 cos2Ω + (K(1− L2)− L(1−K2))2 sin2Ωcosω

]
Wykorzystamy wzór∫ 2π

0

dϕ ln(A−B cosϕ) = 2π(ln(A+
√
A2 −B2)− ln 2)

Wtedy

P (00) + (2π)2 ln 2 = 2π

∫ 2π

0

dΩ ln
[
(1 +K2)(1 + L2)

+
√

(1−K2)2(1− L2)2 + 16K2L2 − 8KL(1− L2)(1−K2) cos 2Ω
]

Oznaczymy κ = [sinh(2βJx) sinh(2βJy)]
−1 = (1−K2)(1− L2)/4KL. Daje to

P (00) = −(2π)2 ln 2− 2(2π)2 ln(cosh(βJx cosh βJy)

2π

∫ 2π

0

dϕ ln(cosh(2βJx) cosh(2βJy) + κ−1
√

1 + κ2 − 2κ cos 2ϕ)



i ostatecznie w granicy termodynamicznej

βΩ/N = −(ln 2)/2−
∫ π

0

dϕ

2π
ln(cosh(2βJx) cosh(2βJy) + κ−1

√
1 + κ2 − 2κ cos 2ϕ)

Widać nieanalityczność wzoru dla κ = 1 a więc to jest punkt krytyczny. W przypadku izotro-
powym Jx = Jy = J energia na spin wynosi

u = U/N = −J coth(2βJ)[1 + 2(2 tanh2(2βJ)− 1)K(2
√
κ/(1 + κ))/π]

gdzie

K(a) =

∫ π/2

0

dϕ(1− a2 sin2 ϕ)−1/2

jest całką eliptyczną (Uwaga: Wolfram Mathematica definiuje K bez kwadratu przy a!). Po-
niżej wykresy energii u(T ) i ciepła właściwego c = u′(T ) dla tego przypadku, które rozbiega
logarytmicznie w punkcie krytycznym TK = 2J/kB ln(1 +

√
2).
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Wróćmy do dyskusji P (0,±Ny) i P (±Ny), niech Z = Z∞Z ′ gdzie Z∞ jest wkładem, który
do tej pory obliczyliśmy. Ze wzoru∫ 2π

0

dϕe±iNϕ ln(A−B cosϕ) = 2π((A+
√
A2 −B2)/B)−N/N

Dostajemy

P (0,±Ny) = −(2π/Ny)

∫ ϕ

0

dϕf−Ny(ϕ), P (±Nx, 0) = −(2π/Nx)

∫ ϕ

0

dϕg−Nx(ϕ)

gdzie
2L(1−K2)f(ϕ) = (1 +K2)(1 + L2)− 2K(1− L2) cosϕ

+
√

[(1 +K2)(1 + L2)− 2K(1− L2) cosϕ]2 − 4L2(1−K2)2

2K(1− L2)f(ϕ) = (1 +K2)(1 + L2)− 2L(1−K2) cosϕ

+
√

[(1 +K2)(1 + L2)− 2L(1−K2) cosϕ]2 − 4K2(1− L2)2

Zauważmy że f, g > 1 poza punktem krytycznym, a więc całki będą szybko maleć. Jeśli Nx ∼ Ny

to wkłady P (0, Ny) i P (Nx, 0) maleją bardzo szybko do zera a więc są nieistotne. Sytuacja się



trochę zmienia, kiedy Nx ∼ lnNy. Wtedy wkład P (Nx, 0) maleje ale w sumie statystycznej jest
mnożony przez Nx więc pozostaje istotny. Ponieważ P (Nx, 0) jest ujemne , więc

Z ′ ≃ exp(−NxNyP (Nx, 0)/(2π)
2)

Nadal zatem wkład zanika w granicy termodynamicznej (lnZ ′ ∼ Nyg
−Nx).

Rozważymy jednak jeszcze inną sytuację – antyperiodyczne warunki brzegowe w kierunku x.
Odpowiada to wymuszeniu istnienia lini rozdziału faz poniżej temperatury krytycznej. Powinna
ona dać wkład do napięcia powierzchniowego (dokładniej liniowego tutaj). Nie możemy jednak
zamienić K → −K na zszyciu brzegów, bo zrujnuje to jednorodność macierzy. Okazuje się, że
równoważnie można zastąpić K → Keiπ/Nx . To jednak oznacza zamianę ξ → −ξ w Z ′,

2Z ′ = ea−b + ea+b + e−a−b − e−a+b

gdzie
a = NxNyP (Nx, 0)/(2π)

2, b = NxNyP (0, Ny)/(2π)
2

Dominujący jest teraz wyraz ea bo dwa ostatnie się odejmują (różnica jest dużo mniejsza niż
suma pierwszych dwóch), czyli

Z ′ ≃ exp(NxNyP (Nx, 0)/(2π)
2)

a więc podobnie jak poprzednio nie ma to znaczenia w granicy termodynamicznej. Wydawałoby
się, że na tym koniec, ale ... przeoczyliśmy ważny szczegół. Wzór (1) jest słuszny dla małych
V (czyli małych K i L). Użycie go dla dużych V wymaga przedłużania analitycznego. Ma to
znaczenie tylko w jednym wyrazie, kiedy p = q = 0 bo wtedy det(I − V00) = (1 − KL −
K −L)2. We wzorze (1) mamy pierwiastek. W oblliczeniach milczaco przyjmowaliśmy dodatni
czyli |1−KL−K −L|. Jednak w temperaturze krytycznej jest to 0, a więc powinniśmy wziąć
(1−KL−K −L) dla zachowania analityczności. Musimy wtedy zmienić znak przy wyrażeniu
ea+b (i tylko tym) poniżej temperatury krytycznej i wtedy

2Z ′ = ea−b − ea+b + e−a−b − e−a+b = (ea + e−a)(e−b − eb)

Dominujący jest wyraz e−a (a jest ujemne) a b≪ 1 więc

Z ′ ≃ −be−a

bo b jest małe. Tym razem paradoksalnie ważny staje sie wkład b czyli

lnZ ′ ≃ ln

∫ 2π

0

dϕf−Ny(ϕ)

Dla dużych Ny dominuje wkład od minimum f które jest dla ϕ = 0 czyli

fmin = L(1 +K)/(1−K) = tanh(βJy)e
2βJx

Stąd mamy dodatkowy wkład do potencjału

Ω′/Ny = 2Jx + kBT ln tanh(Jy/kBT )



Można to interpretować jako napięcie powierzchniowe (liniowe), które w T = 0 jest równe
2Jx (co nie dziwi) a w temperaturze krytycznej znika (też nie dziwi). Jest pośredni dowód
występowania przemiany fazowej poniżej temperatury krytycznej, bo napięcie pojawia się tylko
między różnymi fazami.

Bezpośrednią identyfikacją fazy jest sponatniczna magnetyzacja. Znajdziemy ją badając
długozasięgowe korelacje, bo

M2 = lim
m→∞

⟨σ00σm0⟩

Napierw obliczymy tę granicę, a potem uzasadnimy czemu to wystarcza. W takiej korelacji
możemy skorzystać z faktu

σ00(1 +Kσ00σ10) · · · (1 +Kσm−1,0σm0)σm0 = Km(1 +K−1σ00σ10) · · · (1 +K−1σm−1,0σm0)

= Km(1 + (K +K ′)σ00σ10) · · · (1 + (K +K ′)σm−1,0σm0)

gdzie K ′ = K−1 −K. Mamy zatem V → V +K ′A gdzie elementy macierzy A są równe 1 dla
krawędzi między 00 i m0 oraz 0 w przeciwnym razie. Dlatego

⟨σ00σm0⟩ = Km

√
det(I − V −K ′A)√

det(I − V )
= Km

√
det(I − (1− V )−1A)

Tymczasem

⟨jl|(1− V )−1|j′l′⟩ =
∫ 2π

0

dpdq

(2π)2
ei(j−j′)p+i(l−l′)(1− Vpq)

−1

gdzie
(I − Vpq)

−1 det(I − Vpq) =
1 + L2 − 2L cos q − Keip(1 − L2) L(L − e−iq + eipK(e−iq + L)) 2iKLeip sin q L(eiq − L − Keip(eiq + L))

K(K − e−ip + Leiq(e−ip + K)) 1 + K2 − 2K cos p − Leiq(1 − K2) K(eip − K − Leiq(eip + K)) 2iKLeiq sin p

2iKLe−ip sin q L(e−iq − L − Ke−ip(e−iq + L)) 1 + L2 − 2L cos q − Ke−ip(1 − L2) L(eiq − L − Ke−ip(eiq + L))

K(e−ip − K − Le−iq(e−ip + K)) 2iKLe−iq sin p K(eip − K − Le−iq(eip + K)) (1 + K2 − 2K cos p − Le−iq(1 − K2)



Macierz A działa tylko na |j0 →⟩ dla j = 0, ..,m − 1 oraz |j0 ←⟩ dla j = 1, ..,m, a
więc mozemy ograniczyć się do przestrzeni rozpiętej na tych wektorach (w pozostałej części
(1 − V )−1A jest ściśle trójkątna, więc nie wpływa to na wartość wyznacznika). Stąd także
możemy ograniczyć się do l = l′ = 0 oraz 1. i 3. wiersza macierzu (I − Vpq)

−1. Co więcej,
okazuje się że nie ma elementów łączących wektory | →⟩ z | ←⟩, ponieważ

⟨j0← |(1− V )−1A|j′0→⟩ ∼
∫

dq

det(I − Vpq)
×

(2iKe−ip sin q − e−iq + L+K(e−iq + L) + eiq − L−Ke−ip(eiq + L))

oraz
⟨j0→ |(1− V )−1A|j′0←⟩ ∼

∫
dq

det(I − Vpq)
×

(L− e−iq +Keip(e−iq + L) + 2iKeip sin q + eiq − L−Keip(eiq + L))

W obu przypadkach w nawiasie pozostaje czynnik sin q który daje zero po scałkowaniu na mocy
antysymetrii q → −q (det(I − Vpq) jest symetryczne).



Pozostaje do policzenia

⟨j0→ |(1− V )−1A|j′0→⟩ =
∫

dqdp

(2π)2 det(I − Vpq)
ei(j−j′−1)p×

(1 +L2− 2L cos q−Keip(1−L2)−L2 +Le−iq −LKeip(e−iq +L) +Leiq −L2−KLeip(eiq +L)

=

∫
dqdp

(2π)2 det(I − Vpq)
ei(j−j′)p((1− L2)e−ip −K(1 + 2L cos q + L2))

oraz
⟨j0← |(1− V )−1A|j′0←⟩ =

∫
dqdp

(2π)2 det(I − Vpq)
ei(j−j′+1)p×

(1+L2−2L cos q−Ke−ip(1−L2)−L2+Le−iq−LKe−ip(e−iq+L)+Leiq−L2−KLe−ip(eiq+L)

=

∫
dqdp

(2π)2 det(I − Vpq)
ei(j−j′)p((1− L2)eip −K(1 + 2L cos q + L2))

Wykorzystamy wzór ∫ 2π

0

dϕ(A−B cosϕ)−1 = 2π(A2 −B2)−1/2

i wprowadzimy oznaczenie
w± = 1± L−Keip(1∓ L)

Wtedy np. A2 −B2 = |w+w−|2 Ostatecznie

⟨j0→ |1− (1− V )−1K ′A|j′0→⟩ = −
∫ 2π

0

dp

2π

w+w−e
i(j−j′−1)p

|w+w−|

i podobnie

⟨j0← |1− (1− V )−1K ′A|j′0←⟩ = −
∫ 2π

0

dp

2π

w∗
+w

∗
−e

i(j−j′+1)p

|w+w−|2

W dalszej analizie rozparzymy dwa przypadki, poniżej i powyżej temperatury krytycznej.
Zwróćmy uwagę że poniżej krytycznej w− = −eipK(1 + L)(1 − e−ip(1 − L)/K(1 + L)) i
(1− L)/K(1 + L) < 1 czyli możemy napisać

K⟨j0→ |1− (1− V )−1K ′A|j′0→⟩ = C(j − j′) =

∫ 2π

0

dp

2π
ei(j−j′)p×

(
(1− eipK(1− L)/(1 + L))(1− e−ip(1− L)/K(1 + L))

(1− e−ipK(1− L)/(1 + L))(1− eip(1− L)/K(1 + L))

)1/2

Wyznaczniki macierzy o elementach

C(j − j′) =

∫ 2π

0

dp

(2π)
eip(j−j′)f(p)

to tzw. wyznacznik Toeplitza. O jego zachowaniu dla dużych wymiarów m mówi (silne) twier-
dzenie Szego (dowód na końcu)

detC → expmf̃(0) exp
∞∑
k=1

kf̃(k)f̃(−k)



gdzie

f̃(k) =

∫ 2π

0

dp

2π
eipk ln f(p)

U nas
2 ln f(p) = ln(1− aeip) + ln(1− be−ip)− ln(1− ae−ip)− ln(1− beip)

dla a = K(1− L)/(1 + L) i b = (1− L)/K(1 + L). Korzystając z faktu, że∫ 2π

0

dp ln(1− Aeip) = 0

znika pierwszy czynnik w twierdzeniu Szego. Zostaje zatem

M2 = exp
∞∑
k=1

kf̃(k)f̃(−k).

Korzystając z rozwinięcia

− ln(1− z) =
∞∑
l=1

zl/l

mamy
f̃(±k) = ±(ak − bk)/2k

a stąd

M2 = exp
∞∑
k=1

(2(ab)k − a2k − b2k)/4k = exp ln((1− a2)(1− b2)/4(1− ab)2)

=

(
(1− a2)(1− b2)

(1− ab)2

)1/4

= (1− κ2)1/4

(oczywiście dla κ < 1) a więc M = ±(1− κ2)1/8. Stąd też wykładnik krytyczny β = 1/8.
Dla temperatur powyżej kryrycznej musimy skorzystać z dodatku do twierdzenia Szego.

Niech ⟨σ00σN0⟩ = M2
N Jeśli pominiemy czynnik e−ip w definicji C możemy wykorzystać zwykłe

twierdzenia Szego i wtedy
M2

N = xN detC

gdzie xN jest rozwiązaniem równania C|x⟩ = |0⟩. Rozkładając C na

C+(z) = [(1− az)(1− b−1z)]1/2, C−(z
−1) = [(1− az−1)(1− b−1z−1)]1/2

i Ĉ± = C±(P̂±) znajdujemy w pierwszym przybliżeniu |x⟩ = Ĉ−1
+ |0⟩. Ogólne zachowanie xN

znajdujemy z rozwinięcia ∑
N

xNz
N = [(1− az)(1− b−1z)]−1/2

Z drugiej strony

(1− z)−1/2 =
∑
k

(2k)!

4k(k!)2
zk



a więc

xN =
∑
k

(2k)!(2(N − k))!

4N(N − k)!2(2k!)2
akbk−N

Dla dużych N − k i 2(N − k) można wykorzystać wzór Stirlinga N ! ≃
√
2πN(N/e)N Wtedy

xN ≃ b−N(πN)−1/2
∑
k

(2k)!

4k(N − k)!2(2k!)2
(ab)k = b−N(πN)−1/2(1− ab)−1/2

Kluczowe jest zachowanie b−N/N a więc korelacje maleją wykładniczo, jednak pozostałe czyn-
niki są niedokładne.

Aby znaleźć dokładniejsze zachowanie xN zauważmy, że w naszym rozwiązaniu nie powinno
być xk dla k > N . Pamiętajmy, że Ĉ = Ĉ+Ĉ−, ale obcinamy macierz do N + 1 wymiarów.
Niech |x⟩ = |x≤⟩ + |x>⟩, gdzie |x≤⟩ jest rzutem na bazę |0⟩,..,|N⟩ a |x>⟩ dopełnieniem. Niech
|y⟩ = Ĉ+Ĉ−|x>⟩.Jest to wektor zlokalizowany niedaleko |N⟩. Nas interesuje tylko jego rzut na
bazę do |N⟩ czyli |y≤⟩ (dlatego też kolejność C+C− a nie C−C+). Niech Ĉ−1

+ |y≤⟩ = |q⟩ Poprawka
do xN to

δxN = ⟨NĈ−1
− |q≤⟩ = ⟨N |q≤⟩ = ⟨N |q⟩

bo Ĉ− przesuwa wektory do mniejszych a na przekątnej ma 1. Z kolei

⟨N |q⟩ = ⟨N |Ĉ−1
+ |y≤⟩ = ⟨N |Ĉ−1

+ |y⟩

bo Ĉ+ przesuwa do większych (na przekątnej 1). Dalej

⟨N |Ĉ−1
+ |y⟩ = ⟨N |Ĉ−1

+ Ĉ+Ĉ−|x>⟩ = ⟨N |Ĉ−|x>⟩

Zatem
xN + δxN = ⟨N |Ĉ−1

+ |0⟩+ ⟨NĈ−|x>⟩

Z drugiej strony

⟨N |Ĉ−Ĉ
−1
+ |0⟩ = ⟨N |Ĉ−|x≤⟩+ ⟨N |Ĉ−|x>⟩ = ⟨N |x≤⟩+ ⟨N |Ĉ−|x>⟩

także wykorzystując, że Ĉ− zmniejsza indeks. Stąd

xN + δxN = ⟨N |Ĉ−Ĉ
−1
+ |0⟩

Z rozwinięcia

C− =
∑
k

(2k)!

4k(k!)2
(akz−k)

∑
l

(2l)!

4l(l!)2
(b−lz−l)

oraz C+ w pobliży zN

C−1
+ ≃ b−q(πN)−1/2(1− ab)−1/2zq

mamy, biorąc q = N + k + l,

C−C
−1
+ ≃ b−N(πN)−1/2(1− ab)−1/2

∑
k

(2k)!

4k(k!)2
((a/b)kz−k)

∑
l

(2l)!

4l(l!)2
(b−2lz−l)



Czyli
xN + δxN → b−N(πN)−1/2(1− ab)−1/2[(1− a/b)(1− b−2)]−1/2

Z drugiej strony z twierdzenia Szego

detC → [(1− a2)(1− b−2)(1− a/b)2]1/4

czyli ostatecznie

M2
N → b−N(πN)−1/2(1− ab)−1/2[(1− a)/(1− b−2)]1/4

Podobnie można wyznaczyć korelacje ⟨σ00σNN⟩, jednak wygodniej jest pomocniczo prowa-
dzić krawędzie ukośne, którym przypiszemy wagę R, jak na rysunku

Wtedy macierz V powiększa się o wektory ukośne ↗ i ↙. Podobnie jak poprzednio trzeba
opisać zakręty, co symbolicznie oznaczamy



Dalsza analiza jest analogiczna to sieci kwadratowej, jednak zapis jest na tyle uciążliwy, że
lepiej wykorzystać programy do obliczeń symbolicznych (np. Mathematica). Po drodze trzeba
zmienić wagi wzdłuż przekątnej dla korelacji, zauważyć, że wystarczy ograniczyć macierz do
wektorów ukośnych, i tworzą się dwa sprzężone bloki, niezależne dla ↗ i ↙ (bez elementów
łączących je), a na koniec przęjść z R→ 0. Wynikiem jest znów wyznacznik Toeplitza z funkcją

C(z) =
1− κz√

(1− κz)(1− κz−1)

Poniżej temperatury krytycznej otrzymujemy korelacje jak wcześniej, a powyżej krytycznej

M2
N → κ−N(πN)−1/2/(1− κ−2)1/4

Natomiast dokładnie w temperaturze krytycznej Cnm = (π(n−m+1/2))−1 Dla takiej macierz
można wykorzystać proste twierdzenie, że jeśli Cnm = (xn + ym)

−1 to

detC =

∏
n>m(xn − xm)(yn − ym)∏

nm(xn + ym)

W naszym przypadku

detC = (2/π)N
N−1∏
k=1

(1− (2k)−2)k−N

Korzystając z tożsamości
sin z/z =

∏
n≥1

(1− (z/nπ)2)



(dowód np. przez porównanie miejsc zerowych, holomoficzność na płaszczyźnie zespolonej i
twierdzenie Weierstrassa o faktoryzacji lub formułę sumacyjną Poissona ). Zatem

ln detC =
N−1∑
k=1

k ln(1− (2k)−2) +N
∞∑

k=N

ln(1− (2k)−2)

Ostatni wyraz asymptotycznie dąży do−1/4, natomiast pierwszy ma wiodący wkład−(1/4) lnN .
Czynnik mnożący jest skończony. Ostatecznie

detC → N−1/421/12e1/4/A3 ≃ 0, 645N−1/4

gdzie A jest tzw. stałą Glaishera-Kinkelina A ≃ 1, 282, zdefiniowaną jako

A = lim
n→∞

en
2/4n−n2/2−n/2−1/12

n∏
k=1

kk

(stała ta jest często wiązana z pochodną funkcji zeta Riemanna: lnA = 1/12− ζ ′(−1))
To nie wszystko. Aby upewnić się o skończonej magnetyzacji (lub jej braku) powinniśmy

pokazać, że
⟨σ00σNxNy⟩ →M2, ⟨σ00σNxNyσDxDyσGxGy⟩ →M4

Można to zrobić powołując się na asymptotyczną faktoryzację wyznacznika, w którym tworzymy
oddalone ciągi zmienionych wag (tak jak robiliśmy to obliczając ⟨σ00σN0⟩ i ⟨σ00σNN⟩) tak jak
na poniższych rysunkach



Pełną analizę można przeczytać w książce B.M. McCoy and T.T. Wu, The Two-Dimensional
Ising Model (Harvard University Press, Cambridge, 1973), a w skrócie na stronie
http://www.scholarpedia.org/article/Ising_model:_exact_results

Twierdzenie Szego

Macierz N ×N Ĉ ma elementy Cjl

Cjl = C(j − l) =

∫ 2π

0

dp

(2π)
eip(j−l)f(p)

Jej wyznacznik to tzw. wyznacznik Toeplitza. Twierdzenie Szego mówi że dla n→∞

detC → expmf̃(0) exp
∞∑
k=1

kf̃(k)f̃(−k)

gdzie

f̃(k) =

∫ 2π

0

dp

2π
eipk ln f(p)

o ile f istnieje i jest zbieżna. Twierdzenie i dowód przedstawił pierwszy G. Szego, Comm. Sem.
Math. de L’Univ. Lund, T. Supp. D. M. Riesz, 228 (1952). My posłużymy się skróconą wersją
dowodu B.N. Valuev, Teor. i Mat. Fiz. 55, 475 (1983).

Macierz Ĉ można rozparywać jako nieskończonie wymiarową. Załóżmy, że

ln f(p) = L0 + L+ + L−

gdzie L0 = f̃(0) oraz

L+ =
∞∑
k=1

f̃(k)e−ipk, L− =
∞∑
k=1

f̃(−k)eipk

Wprowadzimy także macierze przesuniecia P̂± takie że P±jl = δj±1−l czyli P̂ przesuwa index w
górę, a P̂− w dół. Wtedy także

Ĉ = expL0 exp L̂− exp L̂+

gdzie

L̂+ =
∞∑
k=1

f̃(k)P̂ k
+, L̂− =

∞∑
k=1

f̃(−k)P̂ k
−

Macierz L̂+ jest dolnotrójkątna, a L̂− górnotrójkątna. Jak łatwo sprawdzić przy obcięciu do N
wymiarów mamy

det
N

ÂB̂ = det
N

Â det
N

B̂

jeśli B̂ jest górnotrójkątna. Zatem

det
N

Ĉ = eNL0 det
N
(eL̂−eL̂+e−L̂−)



Z kolei
eL̂−L̂+e

−L̂− = L̂+ + [L̂−, L̂+] + . . .

gdzie [Â, B̂] = ÂB̂ − B̂Â jest komutatorem. Pominięte wyrazy to komutatory wyższego rzędu.
Stąd

eL̂−eL̂+e−L̂− = exp(L̂+ + [L̂−, L̂+] + . . . )

Tu możemy skorzystać ze wzoru det eÂ = expTrÂ, ale wymaga to subtelnego założenia, że
elementy górnotrójkatne Â dostatecznie szybko znikają (

∑
k k|f̃(k)| skończone), co na szczęście

jest spełnione dla zbieżnych f . Dla macierzy TrÂB̂ = TrB̂Â więc ślad komutatora znika. Wyjąt-
kiem są obie macierze nieskończone. Wtedy właśnie mamy wkład od wyróżnionego komutatora
(od wyższych znika bo wtedy pojawia się macierz skończona). Mamy za to

[L̂−, L̂+] =
∑
k

f̃(−k)f̃(k)Îk + . . .

gdzie Îk jest macierzą jednostkową w pierwszych k wymiarach a dalej zero. Pominęliśmy także
wyrazy pozadiagonalne. Ponieważ TrÎk = k, więc otrzymujemy tezę.

W przypadku gdy mamy funkcję f̄(p) = e−ipf(p) Wtedy det C̄ → xN(−1)N detC gdzie

C|x⟩ = |0⟩

ze wzorów Cramera. Ogólne zachowania xN można więc znaleźć z rowninięcia szeregu a więc
e−L− (do znalezienia dokładnego zachowania trzeba uwzglęnić fakt, że macierz C ma zawsze
skończony wymiar)


