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Quantum dimension witness with a single repeated operation
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We present a simple null test of a dimension of a quantum system, using a single repeated operation in the
method of delays, assuming that each instance is identical and independent. The test is well suited to current
feasible quantum technologies, with programed gates. We also analyze weaker versions of the test, assuming
unitary or almost unitary operations, and derive expressions for the statistical error. The feasibility of the test is
demonstrated on IBM Quantum. The failure in one of the tested devices can indicate a lack of identity between
subsequent gates or an extra dimension in the many worlds/copies model.
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Introduction. To supersede classical machines, quantum
technologies must become accurate, including on-demand
manipulations and error corrections. In particular, it is impor-
tant to have control over the dimension of the system, usually
a qubit or its multiplicity. Otherwise, external states lead to the
deterioration of the performance, accumulated in complicated
tasks.

A dimension witness is a control quantity, verifying if the
system remains in the expected Hilbert space, consisting of a
given (small) number of states. Its usual construction is based
on the two-stage protocol, the initial preparation and final
measurement [1], which are taken from several respective
possibilities, and are independent of each other. Importantly,
the preparation phase must be completed before the start of
the measurement. Such early witnesses were based on linear
inequalities, tested experimentally [2–5], but they could not
detect, e.g., small contributions from other states. In the latter
case, it would be better to use a nonlinear witness [6,7]. A
completely robust witness must be based on equality, i.e.,
a quantity, which is exactly zero up to a certain dimension
(a null test). The first such null dimension test was due to
Sorkin [8] in the three-slit experiment [9–11] testing Born’s
rule [12], belonging to a family of precision tests of quantum
mechanics, benchmarking our trust in fundamental quantum
models and their actual realizations. The Sorkin test assumes
a known measurement operation with arbitrary initial states,
and therefore does not provide the information of the initial
state dimension but rather the measurement space, which was
originally 3 but can be generalized to higher values.
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A more general witness test is the linear independence of
the specific outcome probability p(y|x) for the preparation
x independent from the measurement y by a suitable deter-
minant [13–15]. For a qubit (dimension 2) it requires five
preparations and four measurements. The difficulty is that
it takes minimally 4 × 5 × 2 = 40 logical operations (gates)
and 4 × 5 = 20 measurements to get a single data point.
Moreover, the choice of x and y is a matter of luck, e.g.,
generated randomly [16], because one cannot predict potential
deviations.

Here, we propose a different test, using only a single oper-
ation. The initial (prepared) state can be arbitrary and the final
measurement as well. However, the operation can be repeated
a given number of times, assuming that each time it remains
the same. It can be also random (e.g., picked from a specified
set), but independent from the previous choices. The linear
space spun by Toeplitz matrices of the outcome probabilities
has the rank limited by the dimension [6,7] (method of de-
lays). We construct the witness quantity as a determinant of
the matrix, additionally reduced by taking preserved normal-
ization into account. The test requires up to seven repetitions
of the operation for a qubit, leading to 28 logical operations
and eight measurements, i.e., significantly fewer resources
than the linear independence test. The test can be simplified
even more if one assumes that the operation is unitary or
almost unitary and generalized to an arbitrary dimension. We
also find maximal deviations from zero, in higher-dimensional
space. The feasibility of the test is demonstrated on IBM
Quantum. Most of the tested qubits passed the test, except one
that showed deviations at 30 standard deviations, deserving
further analysis.

Construction of witnesses. Our construction is based on
the method of delays [6,7]. The probability of the outcome
determined by the measurement operator 1̂ � M̂ � 0 after n
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TABLE I. Classical maxima of WN given by Eq. (2) for initial
values of N with corresponding lists of all probabilities that it de-
pends on. W4 = 1 + 4

√
6/9.

N WN p0,...,2N−1

1 1 0,1
2 −1 1,1,0,0
3 1.25 1,0,0,1,0.5,1
4 2.088 0, 1, 0, 0, 1,

√
2/3, 1, 0

5 4 1,0,1,1,1,0,0,1,0,1
6 −8 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1
7 16 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1
8 18 0,1,0,0,1,1,1,0,1,0,1,0,0,1,1,0
9 64 0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,1,0

subsequent quantum operations E (superoperator, a linear map
on an operator) on the initial state P̂ (in our notation on the
left, meaning the time order from the left to the right) is

pn = Tr P̂EnM̂. (1)

The method applies to universal Markov processes (both
quantum and classical), continuous and stationary in time,
where E = etL†

for the time delay t and the constant Lindblad
operator L [17,18]. The operation must preserve normaliza-
tion, i.e., E 1̂ = 1̂ for identity 1̂. Suppose the linear space of
possible measurements is �N , including the identity. From
the Cayley-Hamilton theorem, the characteristic polynomial
w(E ) is of degree �N , divisible by E − 1 since one of the
eigenvalues is 1. We construct a N × N-dimensional Toeplitz
square matrix WN with entries

WN, jk = p j+k − p j+k+1 (2)

for j, k = 0 . . . N − 1. Then in our case det WN = 0. Alter-
natively, det WN = det W̃N with the N + 1 × N + 1 matrix
W̃N, j,k = p j+k for j � N and W̃N,N+1 k = 1.

A quantum operation (completely positive map) E has a
Kraus decomposition EM̂ = ∑

j K̂ jM̂K̂†
j ,

∑
j K̂ j K̂

†
j = 1̂. For

unitary operations, the sum consists of a single, unitary K̂ . A
general d-dimensional state can be written in terms of d2 − 1
traceless Gell-Mann matrices (Pauli matrices σx and σy for
each pair of indices and σz for pairs 1, n, with n = 2 . . . d),
and the trace component 1̂/d . Restricting to real space, we
get only half of the off-diagonal Gell-Mann matrices, giving
the dimension d (d + 1)/2 (including trace). The operation E
has then maximally d2 eigenvalues, with one of them equal
to 1 for trace preservation. All nonreal eigenvalues must ap-
pear in conjugate pairs as E also preserves Hermiticity. Then
det WN = 0 for N � d classically, N � d (d + 1)/2 in real
quantum space, and N � d2 in complex quantum space, be-
cause the number of linearly independent columns is limited
by the dimension of the space of accessible operations. A list
of the classical maxima of Eq. (2) and the corresponding prob-
abilities is given in Table I. In the unitary case, the eigenvalues
of K̂ have |λ j | = 1 and the eigenvalues of the adjoint operator
read λ jλ

∗
k for j, k = 1 . . . d . In the simplest quantum (either

real or complex) case, d = 2, we have eigenvalues, 1 (twice),
and e±iφ . Then, additionally for all pairs α, β in this set,

we have

(α − β )2(αβ − 1)(α − 1)(β − 1) = 0. (3)

Therefore, expanding pn = ∑
j A jλ

n
j ,

F1 = p2
1 + p0(p3 − p2) − p2(p1 − p3) − p2

3 + (p2 − p1)p4

(4)

must vanish, as it contains Eq. (3) for α, β = λ j . Witnesses for
d > 2 are analogous but lengthy due to various combinations
of eigenvalues. Another interesting case is when E is almost
unitary, meaning that |λ j | are close to 1. To discriminate
a higher dimension from minimal nonunitary effects (e.g.,
decoherence, relaxation) for d = 2, we use a modification of
Eq. (3),

[(α − β )(αβ − 1)(α − 1)(β − 1)]2 = 0, (5)

giving analogously the witness

F2 = (p2 − 2p3 + p4)(p6 − 2p3 + p0)

− (p2 − p1 + p4 − p5)2. (6)

If 1 − |λ j | ∼ ε, then Eq. (5) is ∼ε2, in contrast to Eq. (3), ∼ε.
In particular, taking P̂ = M̂ = |0〉〈0| and λ = 1,±i(1 − ε),
we get Eq. (4) equal to 8ε while Eq. (6) is equal to 32ε2.
Practical relaxation, depolarization, and phase damping lead
to nonunitarities of the order 10−4 in the existing implemen-
tations, so this kind of test, although less general than Eq. (2),
can verify the dimension with fewer resources.

A common problem of quantum manipulations is leakage
to external states, which no longer participate in the dynamics
but still affect the measurement. This case can be resolved
by adding an extra classical (sink) state so that the dimension
is shifted by 1, i.e., det WN = 0 for N > d2 in complex and
N > d (d + 1)/2 in real space.

Error analysis. The dominant source of errors is finite
statistics. For any witness, which is a function of binary
probabilities in independent experiments, F ({pj}) (here, F =
F1, F2,WN ), we can distinguish p̃ j = n j/Nj , the actual fre-
quency of n j successes (e.g., result 1) for Nj repetitions. In
contrast, p j is the limit at Nj → ∞. In the case of randomly
chosen j, we can assume independence between subsequent
experiments, so

〈δp j〉 = 0, 〈δp jδpk〉 = p j (1 − p j )

Nj
δ jk (7)

for δp j = p̃ j − p j . At large Nj we can expand

δF 	
∑

j

∂F

∂ p j
δp j +

∑
jk

∂2F

2∂ p j∂ pk
δp jδpk (8)

for δF = F ({ p̃ j}) − F ({p j}), which gives the dominant shift
of the average and variance

〈δF 〉 	
∑

j

∂2F

2∂ p2
j

b j/Nj,

〈(δF )2〉 	
∑

j

(
∂F

∂ p j

)2

b j/Nj, (9)
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TABLE II. The characteristics of the qubits used in the demonstration, times T1 (relaxation) and T2 (coherence), frequency between the 0
and 1 level, anharmonicity (frequency between 1 and 2 levels above 0-1 transition), and error of the gate S = √

X used in the test. The duration
of the single gate pulse is always 35 ns.

Device T1 (microsecond) T2 (microsecond) Frequency (GHz) Anharmonicity (GHz) Gate error

lima 117 169 5.03 −0.34 5 × 10−4

quito 16 38 5.30 −0.33 1.8 × 10−3

belem 118 122 5.09 −0.34 1.8 × 10−4

denoting b j = p j (1 − p j ). In the limit Nj → ∞ the variance
dominates. Setting equal Nj = N we can find the error for our
witnesses, using the derivative of actually measured F ({ p̃ j})
in place of F ({p j}), assuming they are close to each other. In
particular, for Eq. (2) the variance reads

〈(δF )2〉 	
∑

i

bi

⎛
⎝∑

j

(AdjWj,i− j − AdjWj−1,i− j )

⎞
⎠

2

, (10)

where Adj is the adjoint matrix (matrix of minors of W , with
a given row and column crossed out, and then transposed).
Here, the entries are 0 outside of the size. Note that the identity
W −1 det W = AdjW makes no sense here as det W = 0 in the
limit N → ∞. For Eq. (4), we have

〈(δF )2〉 	 b0(p3 − p2)2 + b1(2p1 − p2 − p4)2

+ b2(p0 + p1 − p4)2 + b3(2p3 − p2 − p0)2

+ b4(p1 − p2)2, (11)

and for Eq. (6),

〈(δF )2〉 	 (b0 + b6)(p2 − 2p3 + p4)2

+ (b1 + b5)(p2 − p1 + p4 − p5)2

+ (b2 + b4)(2p2 − 2p1 + 2p4 − 2p5 − p6

+ 2p3 − p0)2

+ 4b3(p2 + p6 − 4p3 + p0 + p4)2. (12)

0 67 134 202 269 336
Time (ns)

D0
5.03 GHz

FIG. 1. The actual waveform for the gate pulse (here, lima
qubit 0), here with k = 9 gates, π/2 rotations about the x axis,
Eq. (17). The two initial gates are for preparation and so k is from
2 to 9 to test all the witnesses for d = 2.

In the case of small ∂F/∂ p j , which happens in the degen-
erate case, when, e.g., the operations are restricted near the
real subspace, there is a competitive contribution to 〈(δF )2〉,

∑
i j

(
∂2F

∂ pi∂ p j

)2
bib j

2NiNj
, (13)

which reads for (6),

[(b0 + 2b3 + b6)(b2 + 2b3 + b4)/2 + 2b2
3

+ (b1 + b2 + b4 + b5)2 + b2
1 + b2

2 + b2
4 + b2

5]/N2.

(14)

In principle, one should also consider the cross term

∑
i

∂2F

∂ p2
i

∂F

∂ pi
ti/N2

i , (15)

where ti = pi(1 − pi )(1 − 2pi ) is the third cumulant. By
2ab � a2 + b2 inequality applied to

a = ∂F

∂ pi

√
pi(1 − pi )/N1/2

i ,

b = ∂2F

∂ p2
i

√
pi(1 − pi )(1 − 2pi )/Ni, (16)

we see that it is by ∼N−1/2
i smaller than the previous terms in

the limit of large Nj .
Demonstration on IBM Quantum. We have tested the wit-

ness (2) for N = 3, 4 and (6) for qubits on IBM Quantum.
The initial state |1〉 undergoes k rotations π/2 about the X

FIG. 2. Averaged probabilities of the measurement of the states
|1〉 for k = 2 . . . 9 gates in the case of our demonstrations. The
data show relatively faithful oscillations, with small variations to be
checked by the witnesses.
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TABLE III. The values to the witnesses inferred from the demonstration on IBM Quantum. Here, �F is the shift according to Eq. (9), σF

is the error with both Eqs. (9) and (13) taken into account, and σ ′
F is the error taking only (9) for comparison.

Device Witness F F − �F σF σ ′
F

lima F2 −1.054×10−4 −1.049×10−4 7.329×10−6 7.325×10−6

W3 1.018×10−4 1.023×10−4 7.469146×10−5 7.469140×10−5

W4 2.65×10−5 2.54×10−5 7.6×10−7 7.4×10−7

quito F2 −1.38×10−5 −1.30×10−5 5.094×10−6 5.086×10−6

W3 1.895×10−4 1.899×10−4 8.63552×10−5 8.63551×10−5

W4 1.2×10−6 1.5×10−7 4.0×10−7 3.5×10−7

belem F2 6.08×10−5 6.12×10−5 6.935×10−6 6.931×10−6

W3 −3.837×10−4 −3.831×10−4 8.20748×10−5 8.20747×10−5

W4 1.6×10−6 5.04×10−7 3.7×10−7 3.2×10−7

direction, i.e.,

Ŝ =
√

X = 1√
2

(
1 −i
−i 1

)
, (17)

in the basis |0〉, |1〉, and finally measures the state |1〉. In
the ideal case, it is a perfect unitary operation with eigen-
values ±i and 1. Then W3 = W4 = F1 = F2 = 0. However,
due to decoherence and decay, this is inexact, leading to
the tolerance at the level ∼10−6 for F2 assuming a decay
rate ∼10−3. In principle, the decay should not affect W3 as
the quantum operation is restricted to the Bloch great cir-
cle (with the interior) and the operation (gate) should have
a calibrated phase. Nevertheless, this assumption may be
still not perfect and so only W4 is the full test to the qubit
space.

We have probed our witnesses on three devices, lima, quito,
and belem, qubit 0, applying k gates Ŝ to the ground state |0〉.
Two gates prepare the initial state |1〉 so the test requires k =
2 . . . 9. Their technical characterization is listed in Table II.
The test consisted of circuits with randomly shuffled k, with
239, 160, and 200 jobs, respectively (see Fig. 1 for the pulse
realization). Each job contains 12 repetitions of the circuit due
to the limit of 100 circuits and 20 000 shots (repetitions of
each circuit). The probability roughly repeats 1, 0.5, 0, 0.5, as
the gates rotate between the basis states with the middle super-
position (see Fig. 2). Due to calibration drifts and nonlinearity
of our witnesses we decided to calculate the witness for each

FIG. 3. Averaged probabilities of the measurement of the states
|1〉 for k = 2 . . . 9 gates in the case of simulations, compared to
Fig. 2.

job and then average them, averaging the variances and shifts,
too. Since the first-order errors of W4 and F2 can be very small,
we have checked also the higher-order contribution, Eq. (13),
and the shift of the average, Eq. (9). It turned out that the
shift is about 1% of the observed value while the dominant
error comes from Eq. (9). We have collected these results with
errors in Table III.

Only in the case of lima, we see W4 more than 30 standard
deviations from 0, indicating failure of the assumed dimen-
sion or identity between subsequent gates. For other devices,
the values are apparently moderate but after shift correction
they are within the error. The standard error from Eq. (9) is
dominating the next correction, Eq. (13). Other witnesses also

FIG. 4. The witness W4 − �W4 for individual jobs (indexed) for
lima in the real experiment (top) and simulations (bottom). Note the
drift in the real experiment.
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TABLE IV. The values to the witnesses from simulations, with the same number of jobs and notation as in Table III.

Device Witness F F − �F σF σ ′
F

lima(s) F2 1.3×10−7 4.9×10−7 6.0×10−7 5.6×10−7

W3 4.86×10−5 4.91×10−5 7.626514×10−5 7.626508×10−5

W4 1.1×10−6 3.7×10−8 2.9×10−7 2.4×10−7

quito(s) F2 −1.34×10−6 −6.3×10−7 8.9×10−7 8.4×10−7

W3 −2.00×10−5 −1.95×10−5 8.71329×10−5 8.71328×10−5

W4 9.5×10−7 −1.4×10−7 3.4×10−7 2.8×10−7

belem(s) F2 1.8×10−6 2.3×10−6 7.6×10−7 7.2×10−7

W3 −2.36×10−5 −2.31×10−5 8.117147×10−5 8.117140×10−5

W4 1.3×10−6 1.9×10−7 3.3×10−7 2.8×10−7

indicate a nonzero value, but these can be in principle due to
some technical imperfections.

We have also checked the simulated experiments using
the noise models from lima, quito, and belem, for the same
number of jobs as in real experiments (see Fig. 3). All the
witnesses remain zero up to the experimental error, as shown
in Table IV. A moderate exception is F2 for belem, about
3 standard deviations. We believe it can be attributed to
second-order deviations from the simulated decay rate. The
data and scripts are available in the open repository [19]. To
investigate a large deviation of W4 for lima, we have checked
the witnesses for the individual jobs. See Fig. 4. One can
notice that the deviation changes with the job index, indi-
cating some calibration drift. No such effect is observed in
simulations.

Discussion. The presented test of dimension using a single
repeated operation turns out to be a reliable diagnostic tool
to check the dimension of a qubit and other finite systems.
The advantage of the test is its simplicity, not demanding the
specific form of the quantum operation, just its dimension,
requiring minimal resources in terms of the number of oper-
ations and parameters, fewer than in Refs. [13,16]. Although

we test the zero of the special determinant as in Refs. [13–15],
we rely on different assumptions making the test comple-
mentary to the previous proposals. The observed significant
deviations need further investigation of their cause. It may
be just technical due to unspecified transitions to other states
[due to anharmonicity (Table II), a transition to higher excited
state is unlikely] or fundamental due to states beyond simple
models predicting extra dimensions, as many worlds/copies
[20,21]. The tests can be also further developed in various
directions, higher dimensions, entangled states, or combined
operations. We believe that the test can be conducted also
on other implementations of qubits such as photons and
ion traps.
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