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Abstract. Measurements in classical and quantum physics are described in
fundamentally different ways. Nevertheless, one can formally define similar
measurement procedures with respect to the disturbance they cause. Obviously,
strong measurements, both classical and quantum, are invasive—they disturb
the measured system. We show that it is possible to define general weak
measurements, which are noninvasive: the disturbance becomes negligible as the
measurement strength goes to zero. Classical intuition suggests that noninvasive
measurements should be time symmetric (if the system dynamics is reversible)
and we confirm that correlations are time-reversal symmetric in the classical
case. However, quantum weak measurements—defined analogously to their
classical counterparts—can be noninvasive but not time symmetric. We present
a simple example of measurements on a two-level system which violates time
symmetry and propose an experiment with quantum dots to measure the time-
symmetry violation in a third-order current correlation function.
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1. Introduction

The notion of a noninvasive measurement—a measurement that does not disturb the system
being measured—is undisputed in classical physics because one can assign a real physical
value to every point in phase space at all times. Even so, the situation becomes complicated
if we introduce explicit detectors since these may disturb the system. In quantum physics, the
notion of a noninvasive measurement is always problematic [1]. One cannot assign a value to an
observable without discussing the measurement procedure. Strong projective measurements [2]
(and therefore the majority of general measurements [3, 4]) are certainly invasive.

A good candidate for a noninvasive measurement scheme is a weak measurement [5]. In
general, by reducing the coupling of the detector system to the system under measurement, the
invasiveness is reduced at the price of an increased detector noise. This leads to paradoxes of
unusually large values for single measurement results after a subsequent postselection [5] or
a quasiprobability for the measured distribution after the detector noise has been removed [6].
There is growing interest in such measurements [7–11].

In this paper, we answer the question of when our intuitive criteria (defined below)
of noninvasiveness and time symmetry of measurements are satisfied, for both classical
and quantum cases. Time-reversal symmetry of observables is a fundamental symmetry of
physics, valid in classical physics and in general—because it is a good symmetry of quantum
electrodynamics—in low-energy physics (in high-energy physics combined with parity and
charge conjugation). This symmetry is generally probed by the measurement of single, non-
time-resolved measurements, such as the measurement of electric dipole moments of particles.
However, time-reversal symmetry also constrains the results of time-resolved measurements
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with multiple measurements. For such considerations, one must consider the invasiveness of the
measurements themselves which will tend to break time-reversal symmetry.

1.1. Measurement schemes

A measurement scheme is a description of how to measure observables—functions of phase
space for classical physics or Hermitian operators for quantum physics. A measurement takes
place on a system under measurement, which is a member of the ensemble under measurement.
As usual, systems of the ensemble are considered to be identically distributed and statistically
independent. Returning to the measurement scheme, it should be a description of (a) what the
detector system is and how it is prepared, (b) how the detector system is coupled to the system
under measurement and (c) how the detector system is itself measured and how the measured
value is interpreted. The measurement scheme, essentially a description of the detectors, should
be generally independent of the ensemble under measurement, and only (b), the coupling to
the system of interest, should depend on the observable. Also, the measurement of the detector
system must be defined in terms of axioms—both classical and quantum (e.g. by projection
postulate). The measurement result should contain the inherent statistical distribution Q of the
measured system. The measurement result also contains detector noise D resulting, in a similar
fashion, from the statistical and quantum properties of the detector system. By the measurement
of many systems from an ensemble, the probability distribution P of the measurement can
itself be measured. The detector noise probability distribution D of a null measurement—a
‘measurement’ where the detector system is prepared but not coupled to the system under
measurement—can be determined. We postulate that the measurement scheme is expressed by a
convolution, P = Q ∗ D, and in this case the detector noise may be removed by deconvolution.
The measurement schemes considered in this paper all possess this last property.

1.2. Noninvasiveness of measurements

We consider time-resolved measurements of observables A1, . . . , An measured at times
t1, . . . , tn, with outcomes a1, . . . , an occurring with probabilities Q(a1, . . . , an). The probability
density Q contains all the information about the experiment and we formulate criteria for
noninvasiveness and time symmetry in terms of Q, or more exactly, by requiring equality
between Q values measured in different experiments.

An arbitrary operation is nondisturbing if the probability density of other measurements is
unchanged by the test operation’s addition or removal. In other words, integrating over the single
measurement should yield the same distribution that would be obtained if that measurement
were never made. Therefore, our criterion of noninvasiveness of the kth measurement reads∫

dak Q(a1, . . . , an)= Q(a1, . . . , 6 ak, . . . , an). (1)

Equation (1) equates probabilities between two different experiments. In the first, the kth
measurement is integrated out, and in the second, the slash notation indicates that the variable
was not measured at all. This defines noninvasiveness of single measurements on a given
experiment.

More generally, if new measurements of observables Ak1, . . . , Akm can be inserted at
intermediate times without changing the previous probability density as in (1), then all of them
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are noninvasive. The noninvasiveness is stronger if (1) is satisfied for a fixed Ak but arbitrary
other measurements.

1.3. Time symmetry of measurements

We assume that time reversal is a good symmetry for the equations of motion of the system
and investigate whether this leads to a corresponding symmetry expressed in the results of
measurements made on the system. We should note that time-reversal symmetry holds only
for nondissipative, Hamiltonian systems. However, physical dissipation is always a result of
ignoring fast-changing and fine-grained degrees of freedom, often modeled by a heat bath
coupled weakly to the system. If one had access to all the degrees of freedom and the heat
bath, one could reverse the full phase space probability and restore time symmetry. Even if it
is not practically possible to reverse fine-grained degrees of freedom, an alternative solution is
to restrict ourselves to states in equilibrium coupled to a heat bath, which are time symmetric
themselves in the thermodynamic limit.

To express the expected time-reversal symmetry of a set of measurements, we begin by
denoting the time-reversed version of an object X by XT, i.e. position qT

= q and momentum
pT

= −p. The time-reversed experiment involves the time-reversed initial state ρ → ρT, time-
reversed measured quantities A → AT with results a → aT, and also reversed time—and
therefore, ordering—of the measurements. Hence, for the probability Q, our criterion of time
symmetry of measurements reads

Q(a1(t1), . . . , an(tn))= QT(aT
n (−tn), . . . , aT

1 (−t1)), (2)

where we compare the probability densities of the forward (Q) and reversed (QT) sets of
measurements. In such a form, classically (2) holds for equilibrium and non-equilibrium
systems and is independent of the validity of charge conjugation and parity symmetries and
also of relativistic invariance [12–14]. When fulfilled—assuming for the moment that the
measurements are non-invasive—the result (2) leads to the principle of detailed balance [15]
and reciprocity of thermodynamic fluxes [16].5

1.4. The main result

The above criteria (1) and (2) must be confronted with real detection protocols. For each
measurement, there is a detection protocol that includes some interaction between the original
system and an ancilla that is later decoupled with the imprinted information retrieved from the
system. We should add the remark that the internal dynamics of the detector may be irreversible,
but this is irrelevant, because we ask only about the behavior of the system. Note also that, for
the time symmetry to hold, the measurements should not disturb the system in the sense of the
criterion (1), since any disturbance would create an asymmetry between before and after the
measurement.

The majority of measurements are invasive and irreversible, both classical and quantum.
However, there exists a special class of measurements, defined both classically and quantum
mechanically, which are noninvasive under certain conditions. They are described by an
instantaneous interaction between the system and detector ∼gp A, where A is the measured

5 There exists also a different criterion of time symmetry, under the exchange of boundary conditions in pre- and
postselected ensembles [17, 18]. It is satisfied even by invasive measurements, so it is unrelated to ours.
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Table 1. Different types of measurements may satisfy noninvasiveness
and/or time symmetry. The exceptions include position and/or momentum
measurement in a simple harmonic oscillator, two-time correlations and other
accidental symmetries or quasiclassical systems.

Noninvasiveness Time symmetry

General, strong No No
Classical p = 0 (arbitrary g) Yes Yes
Compatible (arbitrary g) Yes Yes
Classical weak (g → 0) Yes Yes
Incompatible quantum weak (g → 0) Yes No
Quantum weak (g → 0)—exceptions Yes Yes

observable, p is the detector’s momentum and g is the coupling strength (see the details later in
the text). The initial state of the detector is the zero mean Gaussian. The observer finally registers
the position which is shifted by g A. The result contains also the internal detection noise, which
is subtracted/deconvoluted. For all finite g the scheme is invasive, except if the observables are
compatible (vanishing Poisson bracket or commutator) or if initially p = 0, which makes sense
only classically (we do not want divergent position).

However, the scheme becomes noninvasive (both classically and quantum) in the limit
g → 0, while rescaling the detector’s result by 1/g—this is the weak measurement [5].
Surprisingly, classical and quantum weak measurements differ with respect to time
symmetry (2). The behavior of different types of measurements is summarized in table 1. The
aim of this paper is to explain the origin of this difference between classical and quantum
measurements. We will also show the asymmetry explicitly by giving an example of a
measurement of a simple two-level system and propose an experimentally feasible realization
by charge measurements on a quantum dot connected to a reservoir.

2. Time symmetry violation

We will show in the next sections that in the classical weak measurement limit, one can find
that

Q(a)= 〈δ(an − An(tn)) · · · δ(a1 − A1(t1))〉, (3)

where the average 〈· · ·〉 =
∫

d0 · · · ρ is taken in the initial state ρ in the phase space 0 and
A(t) denotes a classical analogue of the Heisenberg picture for the observable A. This clearly
satisfies noninvasiveness and time symmetry, because A are commuting numbers and we can
reorder them under time reversal.

Now, in the quantum case, we will obtain

Q(a)= 〈δ(an − Ǎn(tn)) · · · δ(a1 − Ǎ1(t1))〉 (4)

for tn > · · ·> t2 > t1, where 〈· · · 〉 = Tr · · · ρ with the initial density matrix ρ. The
superoperators act as ǍB = (AB + B A)/2, for the observable operator A. This quantity is no
longer a probability but a quasiprobability [6] and still satisfies noninvasiveness (1). However,
the time symmetry (2) is violated, except for compatible measurements (e.g. space-like
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separated [12]). Mathematically, this is because we replace the classical c-number multiplication
(obviously a commuting operation) by the quantum anticommutator of operators (therefore
noncommuting). We cannot reorder superoperators Ǎ under time reversal.

For slow measurements, each operator A(t) in (4) is replaced with
∫

f (t)A(t)dt , where
f (t) turns on and off slowly compared to relevant timescales of the system. This slow measuring
smoothes the resulting distribution Q so that any antisymmetric contributions vanish and
therefore time symmetry (2) will still apply. Roughly speaking, the more classical is the system,
the more time symmetric it is.

The time symmetry (2) can be tested by comparing moments of the distribution,

〈a1(t1) · · · an(tn)〉Q = 〈aT
n (−tn) · · · aT

1 (−t1)〉
T
Q. (5)

We emphasize that the quantities in (5) are expectation values of products of measurement
results, and should not be confused with expectation values of observables in an ensemble. The
ordering of a1 to an is mathematically irrelevant, but serves as a reminder of the ordering of
measurements in the experiment.

Linear correlations of quantum weak measurements—in the limit of zero measurement
strength—are given by [6, 19]〈∏

k

ak(tk)

〉
Q

= 〈 Ǎn(tn) . . . Ǎ2(t2) Ǎ1(t1)〉. (6)

We can freely permute the a in the left-hand side but not the Ǎ in the right-hand side (they
do not commute and the order reflects that tn > · · ·> t2 > t1). This asymmetry is only present
for fast measurements of three or more incompatible observables. This does not need a specific
system. In contrast, only specific systems and observables do not show the asymmetry; one
such exception is e.g. position measurement in a simple harmonic oscillator. In the case of
compatible or only two (not necessarily compatible) measurements the ordering is irrelevant
and the symmetry (5) holds.

3. Direct measurements

Let us take a classical system with the probability density ρ(0) in phase space0 = (01, . . . , 0N )

with 0i = (qi , pi) being a pair of canonical generalized position and momentum. The evolution
is given by the Hamiltonian H(0) and can be expressed compactly using the Liouville operator
Ľ , defined by Ľ A = (A, H) where

(A, B)=

∑
i

[
∂A

∂qi

∂B

∂pi
−
∂B

∂qi

∂A

∂pi

]
(7)

is the Poisson bracket. One has ∂tρ = −Ľρ or ρ(t)= e−t Ľρ(0).
Let us consider a direct sequential measurement of quantities A1 . . . An measured at times

t1 < t2 < · · ·< tn, with the results a1 . . . an, respectively. The probability distribution is naturally
postulated as

Q(a)=

∫
d0δ(an − An)e

(tn−1−tn)Ľ · · ·

δ(a2 − A2)e
(t1−t2)Ľδ(a1 − A1)e

−t1 Ľρ(0). (8)
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Alternatively, it can be written as

Q(a)=

∫
d0δ(an − An(tn)) · · · δ(a1 − A1(t1))ρ(0), (9)

where A(t)= et Ľ A. The above quantity coincides with (3), is positive and normalized, so it is a
normal probability. As we already noted, it satisfies noninvasiveness (1) and time symmetry (2).

Now, the quantum direct measurement is governed by the projection postulate [2]. It is
obviously invasive and violates (1) and (2), which is not at all surprising. Looking for quantum
noninvasiveness, we have to abandon direct measurements [3]. Since we want to compare
classical and quantum noninvasive measurements; we will consider indirect measurements, both
classical and quantum.

4. Weak measurements

Let us now construct a model of a weak measurement which functions both classically and
quantum mechanically [5]. We have no direct access to the quantity A at time t0 but we couple
a detector for an instant. The interaction Hamiltonian, added to the system, reads HI = gδ(t −

t0)p A where p is the detector’s momentum and g is the measurement’s strength. We will use a
very compact notation that highlights quantum-classical analogies and differences. This is why
many formulae below apply both to classical and quantum cases, with differences only in the
mathematical objects (e.g. numbers or operators, phase-space density or density matrix, operator
or superoperator). The quantum Liouville superoperator reads Ľ A = [A, H ]/ih̄ (commutator
[A, B] = AB − B A). As in the classical evolution of phase space density, operators in the
Heisenberg picture evolve as A(t)= et Ľ A. For a single measurement, the total initial state
is a product ρdρ(t0), where ρd is the state of the detector. After the measurement, the total
density is

ρdρ(t0)→ exp(g( Ǎ p̌q + p̌ Ǎq))ρdρ(t0), (10)

where classically Ǎ = A (multiplication by A), quantum-mechanically ǍB = {A, B}/2
(anticommutator {A, B} = AB + B A), and the (super)operator Ǎq is given classically by Ǎq B =

(A, B), and quantum mechanically by Ǎq B = [A, B]/ih̄. For a more conventional approach,
see appendix A. Note that classically p̌q

= −∂q for the canonically conjugated q. The analogy
between classical Poisson brackets and quantum commutators was recognized in the early days
of quantum mechanics [20]. The novel analogy here is between the classical multiplication by
an observable and the quantum anticommutator. The fact that we replace a (commuting) number
by a (noncommuting) superoperator helps us to understand why quantum weak measurements
do not obey time symmetry while classical weak measurements do.

If we discard the results of the measurement, then the resulting density reads
〈exp(gp Ǎq)ρ〉, where the average denotes

∫
d0d · · · ρd classically and Trd · · · ρd quantum

mechanically (subscript d denotes the detector’s subspace). The procedure can be repeated for
sequential measurements as depicted in figure 1.

We take the initial state of the detector given by

ρd ∝ exp(−q2/2α− p2/2β), (11)

where q, p are a pair of conjugate canonical observables (with the property (q, p)= 1 or
[q, p] = ih̄). This is a generic symmetric Gaussian state. If measured classically the initial
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Figure 1. A schematic diagram of weak measurements, analogous to figure 3
in [9]. The measured system (yellow) instantly interacts with a prepared ancilla
(red state), which is measured (projectively in the quantum case) afterwards
(green detector). The procedure is repeated with identical but independent
ancillae.

variances read 〈q2
〉 ≡ σq = α and 〈p2

〉 ≡ σp = β. Quantum mechanically (under projective
measurement) σq = (h̄/2)

√
α/β coth

√
h̄2/4αβ and σp = (h̄/2)

√
β/α coth

√
h̄2/4αβ. Note that

for αβ � h̄2 they reduce to the classical result, while σqσp > h̄2/4 is imposed by the Heisenberg
uncertainty principle.

We register directly the value of q. However, the way of measuring q is in principle
irrelevant, both classical and quantum, and may be well disturbing because the detector will not
interact with the system anymore. The detector (classical or quantum) can evolve irreversibly;
we are only interested in the data extracted from the system.

We apply a sequence of such measurements, using identical, independent detectors
q1, . . . , qn, but coupled at different times to possibly different observables. It is convenient
to define a result-conditioned density ρg(q), normalized by the final result-integrated density
ρg =

∫
dnq ρg(q). The probability density of a given sequence of results is given by P(q)=∫

d0ρg(q) or Trρg(q). Now, ρg(a) is given by

ρg(q)=

∫
dna %g(a)

∏
k

D(qk − gak), (12)

where D is the zero-mean Gaussian noise with the variance σq . The quantity .g(a) reads

%g(a)= eσp(g Ǎq
n )

2/2δ(an − Ǎn)e
(tn−1−tn)Ľ · · ·

× eσp(g Ǎq
2 )

2/2δ(a2 − Ǎ2)e
(t1−t2)Ľ eσp(g Ǎq

1 )
2/2δ(a1 − Ǎ1)e

−t1 Ľρ(0). (13)

This is classically a standard probability density but not a positive definite density matrix in
quantum mechanics. It is clear when defining Qg(a)=

∫
d0%g(a) and Qg(a)= Tr.g(a). Now

the quantum Qg is only a quasiprobability [6]. One can write down the convolution relation
analogous to (12),

P(q)=

∫
dna Qg(a)

∏
k

D(qk − gak). (14)
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Both .g and Qg have a well-defined limit g → 0, . ≡ .0 and Q ≡ Q0. Then (13) reduces to (8)
classically. In the quantum case,

Q(a)= Trδ(an − Ǎn(tn)) · · · δ(a1 − Ǎ1(t1))ρ(0) (15)

with Ǎ(t)B = {A(t), B}/2 or equivalently Ǎ(t)= et Ľ Ǎ e−t Ľ , which coincides with (4). The
effect of disturbance (both classical and quantum!) is of the order g2 so it vanishes in the limit
g → 0.

One can relate correlation functions

〈q1 · · · qn〉P = gn
〈a1 · · · an〉Q. (16)

The leading contribution to such correlation functions is of the order gn, while the lowest
correction due to disturbance is of the order gn+2, as follows from (12) and (13).

Both classical and quantum Q satisfy noninvasiveness (1), but only in the g → 0 limit.
There are exceptions when noninvasiveness holds for an arbitrary g. In particular, Qg = Q
is independent of g and always a real positive probability for compatible observables—if
(A j(t j), Ak(tk))= 0 classically or [A j(t j), Ak(tk)] = 0 quantum mechanically for all j, k.
We emphasize that the deconvolved result-conditioned density .(a) (13) changes with each
measurement because it gets the factor δ(a − A) or δ(a − Ǎ). This is because it must contain the
read-off knowledge (it is gaining information—not disturbance). It is impossible to preserve the
result-conditioned density unchanged by any measurement, both classical or quantum (unless
the measurement is void)—in this sense all measurements would be invasive. Hence, only after
integration it makes sense to distinguish between invasive and noninvasive measurements.

From (12) and (13) we see also that the result-integrated density after a single weak
measurement gets the factor eσp(g Ǎq )2/2, which reduces to identity in the limit g → 0. This is
why weak measurements (both classical and quantum) are noninvasive in a stronger sense:
their disturbance vanishes as g2 regardless of the type of measurements before/after. For a
comparison, strong measurements of compatible observables are mutually noninvasive but we
can find an incompatible observable whose results they disturb. The price of weak measurements
is that one has to repeat the experiment & 1/g2 times to get the weak signal out of statistics.

Note also that the scaling q ∼ ga is analogous in the classical and quantum cases. In
the classical case, however, one can take σp = 0, which makes the limit g → 0 unnecessary.
On the other hand, the quantum mechanical uncertainty principle allows only for the
limiting noninvasiveness. One could argue (both classically and quantum) that there is still
some invasiveness for large results because the result-conditioned density ρg(q) is affected
by different factors for different values of A. Namely, exp(−(q − g A)2/2σq)/ exp(−(q −

g A′)2/2σq) can be large even for small g. However, this requires q & q0 = σq/g A, which
happens very rarely for small g, with the estimated probability of the rapidly vanishing Gaussian
tail ∼e−q2

0/2σq = e−σq/2(g A)2 , so it is irrelevant for the discussion of noninvasiveness. Moreover,
ρg(q) also contains the read-off knowledge, although rescaled by g, while only the change of
result-integrated ρg quantifies invasiveness.

4.1. Causality

One may ask whether it is possible to enforce time symmetry (2) in any other measurements
scheme. Unfortunately, we would pay a high price—abandoning causality of measurements.
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All general quantum measurements appear in a causal way,

P(q)= TrǨ n(qn)e
(tn−1−tn)Ľ · · · Ǩ 1(q1)e

−t1 Ľρ(0) (17)

with normalized completely positive maps Ǩ [3, 4]. Even more generally,

P(q)= Tr T Ǩ [A, q]ρ, (18)

where T denotes time ordering of superoperators that depend on observables A(t) in the
Heisenberg picture. Now, every causal measurement of nonzero strength is disturbing (weak
measurements from section 3 create a disturbance ∼g2) but only forward in time. If we measure
at t1 < t2 < t3, then the measurement 1 disturbs 1, 2, 3, the measurement 2 disturbs only 2, 3 and
the last disturbs only itself. If there existed any measurement scheme with the time-symmetric
limit (with a vanishing parameter analogous to g), then it would have also time-symmetric
disturbance at finite strength—violating causality.

However, if we give up the above rule or are satisfied by only limiting causality (at g = 0),
we can e.g. define

Q(a)=

∫
dnχ

(2π)n
Tr exp

∑
k

i(ak − Ak(tk))χk ρ. (19)

The corresponding map Ǩ B = K BK † for n measurements reads

K (q)= (2π)−n/4 e
∑

k(2g Ak(tk)qk−q2
k )/4

[
Tse

−(
∑

k g Ak(tk))
2
/2

]1/2
, (20)

where Ts denotes the rule of complete symmetrization of operator products in Taylor expansion.
The probability P = Tr Ǩρ is related to Q by (12) with σq = 1. It is perfectly time symmetric
but the disturbance is time symmetric, too, for g > 0. In this work, we have not considered this
option, because all known experimental detection schemes confirm causality.

5. Examples

5.1. Double well

Let us demonstrate the paradox in a simple system consisting of a particle in a double-well
potential as in figure 2. For simplicity, we take an equilibrium state, but the asymmetry appears
also in a completely general case. The particle is effectively described by the ground states of
the left and right wells, |l〉 and |r〉, respectively. Higher excited states have much more energy
and for low temperatures can be ignored, leaving an effective two-state system. Using the basis
states, the operator for the expected location is Z = |l〉〈l| − |r〉〈r |, and the effective Hamiltonian
reads

H = ε(|l〉〈l| − |r〉〈r |)+ τ(|l〉〈r | + |r〉〈l|), (21)

where 2ε is the energy difference between wells and τ is the tunneling amplitude.
For low-energy physics, time reversal alone is already a good symmetry in the equations of

motion, so, in the absence of an external magnetic field, the equilibrium state is time symmetric.
Hence, H and Z are even under time reversal (H T

= H , ZT
= Z ). We are now in a position

to test equation (5) with z measured at three separate times and with the initial thermal state
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Figure 2. The double well, described effectively by two states |l〉 and |r〉, with
energy shift 2ε and tunneling amplitude τ . Even in the ground state, quantum
fluctuations allow jumps between the wells, which turn out to be non-time
symmetric under weak measurement.

ρ ∝ exp(−H/kT ). The correlation for three weak measurements can be calculated using (6)
and Z(t)= eiHt/h̄ Z e−iHt/h̄:

〈z(t1)z(t2)z(t3)〉 = α(ε2 + τ 2 cos(2(t3 − t2)1/h̄)), (22)

where 1=
√
ε2 + τ 2, α = −(ε/13)tanh(1/kT ). For this system and measurements, the

expression corresponding to the right-hand side of (5) differs from (22) only by the exchange of
t3 − t2 with t2 − t1. However, (22) is clearly asymmetric under this exchange, demonstrating that
time-reversal symmetry is broken for correlations of quantum weak measurements. As a side
note, it can be shown that the correlation (22) is independent of measurement strength; however,
this coincidence does not hold in general.

5.2. Quantum dot

Despite the simplicity of the above example, a genuine, fast weak detection scheme is probably
difficult to implement experimentally in this case. Below, we present a more realistic example,
leveraging recent developments in quantum dots [21]. We consider a quantum dot containing a
single energy level ε, coupled to a Fermi reservoir by an energy-independent coupling described
effectively by the tunneling rate 0/h̄, as depicted in figures 3(a) and (b). The occupation n on
the dot (classically either 0 or 1 in elementary charge units) is the measured observable N . The
quantum observable and the Hamiltonian read [22]

N = c†c, H = εN +
∫

dE [
√
0/2πc†ψ(E)+ h.c. + Eψ†(E)ψ(E)], (23)

which describes energy-independent tunneling between the dot and reservoir, where ε is the dot
level energy. We assume usual fermion anticommutation relations {ψ, φ} = 0, {ψ†, φ} = 0 if
ψ 6= φ, {c†, c} = 1 and {ψ†(E), ψ(E ′)} = δ(E − E ′). Spin is neglected here but if necessary all
results can be simply multiplied by 2. The initial state is ρ ∝ exp (−H/kT ). The Hamiltonian
(23) and the occupation are certainly symmetric under time reversal, H T

= H and N T
= N .

To show the time asymmetry we will use the frequency domain, defining the third cumulant

SN
3 (ω, ω

′)=

∫
dt dt ′ eiωt+iω′t ′

〈δn(t)δn(t ′)δn(0)〉 (24)
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Figure 3. (a) The system consists of the dot (red) exchanging the elementary
charge with a reservoir (blue). (b) The diagram of energy levels. At zero
temperature, the Fermi sea of blue levels is full but electrons may still jump on
and off the dot’s red level. (c) Proposed detection by an electric junction (yellow).
The junction and dot are weakly coupled capacitively and the directly measured
quantity is the current I through the junction biased with the voltage. The charge
is allowed to jump between the dot and the lower reservoir but not the junction.

with δn = n − 〈n〉. The asymmetry-probing quantity is the imaginary part of the third cumulant
Im SN

3 (ω, ω
′), which should vanish if (5) holds. To calculate (24) we use the close-time-path

formalism [23, 24], defining matrices in 2 × 2 Keldysh space

Ň =

(
1 0
0 1/4

)
, Ǧ =

(
G K G R

G A 0

)
(25)

with G R(ω)= ih̄/(h̄ω− ε + i0/2)= −G A∗(ω) and G K (x)= tanh(h̄x/2kT )h̄0/(2(h̄x − e)2 +
02/2). Then

SN
3 (ω, ω

′)= −

∫
dα

2π
Tr Ǧ(α)Ň [Ǧ(α +ω)+ Ǧ(α +ω′)]Ň Ǧ(α +ω +ω′)Ň . (26)

The integral can be performed analytically but the result contains digamma functions at finite
temperatures. As suspected, Im SN

3 is not zero, see figure 4. Both imaginary and real parts
vanish far from resonance. The asymmetry is the strongest at low temperatures (kT � ε) and for
comparable energy, tunneling and frequency scales (ε ∼ 0 ∼ h̄ω). This suggests that zero-point
fluctuations of the charge jumping on and off the dot are responsible for the asymmetry. The
symmetry is restored if any one of ω, ω′, or ω +ω′ is equal to 0. As expected, Im SN

3 vanishes
for slow measurements ω,ω′

� 0/h̄. In the limit ω,ω′
→ 0, the result for SN

3 is a special case
of the application of full counting statistics [24].
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Figure 4. Time asymmetry of the third-order correlation of dot occupation
fluctuations SN

3 (ω, ω
′) in frequency domain at kT � 0. The symmetry is broken

if ImSN
3 6= 0. (a) For ε/0 = 0.5 and arbitrary ω,ω′ the asymmetry vanishes

(white lines) when ω, ω′ or ω +ω′ is equal to 0. The hexagonal structure reflects
the symmetry under permutations of frequencies. (b) Taking different values
ε/0 = 1, 0.5, 0.2 and ω = ω′ it is clear that the maximal asymmetry occurs for
energy/frequency parameters of the same order.

For the experimental confirmation of the asymmetry, one must introduce a weakly coupled
detector. We propose an electric voltage-biased junction coupled weakly to the dot, so that its
conductance depends on the charge on the dot, see figure 3(c). The externally measured quantity
is the current I through the junction, in particular I ' I 0 +χN , where I 0 is the intrinsic current
in the junction and χ is its susceptibility due to the dot’s charge. Then S I

3 ' S I 0
3 +χ3SN

3 where
S I 0

3 is the internal current noise of the junction in the absence of the dot. Measurements of S I 0
3

have been demonstrated [25]; therefore we expect the measurement of S I
3 to be feasible. Such an

experiment will confirm the time-reversal symmetry violation only if the dot is not driven out of
equilibrium. It is always possible for a certain parameter range—see appendix B for the detailed
model. Note that the dynamics of the detector here is clearly irreversible as it is initially in a
nonequilibrium stationary state. However, we are only interested in the behavior of the system.
Anyway, in the range of frequencies of possible asymmetry, S I 0 is frequency independent, so
the asymmetry of S I will show asymmetry of SN .

6. Conclusions

We have shown that neither noninvasiveness (1) nor time symmetry (2) is automatically satisfied
in the results of measurements, both classical and quantum. Only a subclass of detection
schemes, parameterized by the measurement strength g, may satisfy (1) and/or (2). Classically,
the measurement can be strictly noninvasive either at a finite g and zero detector’s momentum or
in the weak measurement limit, g → 0. However, quantum noninvasiveness is satisfied only in
the limit of zero strength g → 0. Moreover, the time symmetry of measurements (2) is broken in
the quantum case, in contrast to classical mechanics. This is the fundamental difference between
classical and quantum noninvasive measurements. One could argue that the weak measurement
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still affects the system and forces a time direction in this way. On the other hand, one expects a
natural limit in which the influence on the system is negligible and the time symmetry should
hold.

This violation is effectively a failure of weak measurements to accurately reflect the
time-reversal symmetry inherent in a system. As such, it is independent of the validity of
other symmetries such as charge parity time. Since quantum measurements of finite strength
manifestly break time-reversal invariance, our result shows that, in contrast to classical
measurements, all quantum measurements break time-reversal invariance regardless of their
strength. Weak measurements are then still disturbing in some sense, although they do not
disturb the state or later measurements.

Our result shows not only the quantum violation of time symmetry, but also the importance
of a classical-quantum analogy of detection schemes. An open question is: to what extent is
the analogy correct? For instance, maybe not all system–detector interactions are allowed and
possibly they cannot be instantaneous but rather time-extended. This needs further research,
referring also to realistic experimental detection schemes.
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Appendix A

To justify (6) we consider a series of weak measurements. Following Aharonov et al [5],
each weak measurement introduces an ancilla system and creates entanglement via an instant
interaction Hamiltonian Ĥ I = h̄δ(t)g p̂ Â, where g is the strength of interaction, p̂ is the
momentum operator of the ancilla, conjugate to position q̂ ( [q̂, p̂] = ih̄) and Â is the measured
observable. The interaction is followed by von Neumann projection [2] of the ancilla onto a
position eigenstate which destroys the ancilla. The system can, however, be measured again
with the next ancilla, as shown in figure 1. The density matrix after the j th measurement is

ρ̂ j = e−ig j p̂ j Â j/h̄
(
ρ̂ j−1 ⊗ |φ j〉〈φ j |

)
eig j p̂ j Â j/h̄, (A.1)

where |φ j〉 is the initial prepared state of ancilla j . By inserting identity operations∫
da |a〉〈a| = 1̂, the measurement interaction can be expressed as shifts of the ancilla

wavefunction,

ρ̂ j =

∫
da′

j da′′

j |φ j(q j − g ja
′

j)〉〈φ j(q j − g ja
′′

j )||a
′

j〉〈a
′

j |ρ̂ j−1|a
′′

j 〉〈a
′′

j |. (A.2)

In (A.2), the state of ancilla j which has the shifted wavefunction φ j(x j − g ja′

j) is written as
|φ j(x j − g ja′

j)〉. The joint probability P(q1, . . . , qn)=: P(q) is the probability of measuring
the ancillas in a set of position eigenstates with positions given by qk

P(q)= Tr

{
ρ̂n

∏
k

|qk〉〈qk|

}
(A.3)

=

∫
da′ da′′ δ(a′

n − a′′

n )ρ̃n

(
a′, a′′

) ∏
k

φ
(
qk − gka′

k)
)
φ∗

(
qk − gka′′

k )
)
.
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In (A.3), ρ̃ j is defined recursively by

ρ̃ j(a
′

1, a′′

1 , . . . , a′

j , a′′

j )= 〈a′

j |a
′

j−1〉ρ̃ j−1〈a
′′

j−1|a
′′

j 〉. (A.4)

Using Gaussian wavefunctions φ(q)= (2π)−1/4 e−q2/4, a change of variables to ā = (a′ + a′′)/2
and δa = a′

− a′′ separates the joint probability density into a quasiprobability signal (Q) and
detector noise (D).

P(q)=

∫
d(ā) D(q − g · ā) Q(ā),

D(q − g · ā)=

∏
k

|φ(qk − gk āk)|
2, (A.5)

Q(ā)=

∫
dδa e−(g·δa)2/2 ρ̃n(ā, δa)δ(δan).

Equation (A.5) defined the joint quasiprobability density Q for the series of von Neumann
measurements. The quasiprobability has a well-defined limit g → 0. In this limit for time-
resolved measurement, the averages with respect to this quasiprobability are given by

〈a1 · · · an〉 =

∫
da′da′′ δ(a′

n − a′′

n )ρ̃(a
′, a′′)

∏
k

a′

k + a′′

k

2
, (A.6)

which is equivalent to (6). The genuine, measured probability P = Q ∗ D is positive definite
because it contains also the large detection noise ∼1, which is Gaussian, white and completely
independent of the system, compared to the signal ∼g.

An alternative, equivalent approach is based on Gaussian positive operator-valued
measures (POVMs) and special Kraus operators [3, 4, 26]. Let us begin with the basic properties
of POVM. The Kraus operators K̂ (a) for an observable described by Â with continuous
outcome a need only satisfy

∫
daK̂ †(a)K̂ (a)= 1̂. The act of measurement on the state defined

by the density matrix ρ̂ results in the new state ρ̂(a)= K̂ (a)ρ̂ K̂ †(a). The new state yields
a normalized and positive definite probability density P(a)= Tr ρ̂(a). The procedure can
be repeated recursively for an arbitrary sequence of (not necessarily commuting) operators
Â1, . . . , Ân,

ρ̂(a1, . . . , an)= K̂ (an)ρ̂(a1, . . . , an−1)K̂
†(an). (A.7)

The corresponding probability density is given by P(a1, . . . , an)= Tr ρ̂(a1, . . . , an). We now
define a family of Kraus operators, namely K̂ g(a)= (g2/2π)1/4 exp(−g2( Â − a)2/4). It is clear
that g → ∞ should correspond to exact, strong, projective measurement, while g → 0 is a weak
measurement and gives a large error. In fact, these Kraus operators are exactly those associated
with the von Neumann measurements previously described. We also see that strong projection
changes the state (by collapse), while g → 0 gives ρ̂(a)∼ ρ̂, and hence this case corresponds to
weak measurement. However, the repetition of the same measurement k times effectively means
one measurement with g → kg so, with k → ∞, even a weak coupling g � 1 results in a strong
measurement. For an arbitrary sequence of measurements, we can write the final density matrix
as the convolution

ρ̂ g(a)=

∫
da′ %̂g(a′)

∏
k

dk(ak − a′

k) (A.8)
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with dk(a)= e−g2a2/2
√

g2
k/2π . Here g = (g1, . . . , gn), a = (a1, . . . , an), and da = da1 . . . dan.

The quasi-density matrix %̂ is given recursively by

%̂g(a)=

∫
dξ

2π
e−iξan

∫
dφ√
πg2

n/2
e−2φ2/g2

n

× ei(ξ/2+φ) Ân %̂g(a1, . . . , an−1)e
i(ξ/2−φ) Ân (A.9)

with the initial density matrix %̂ = ρ̂ for n = 0. We can interpret d in (A.8) as some internal
noise of the detectors which, in the limit g → 0, should not influence the system. We define the
quasiprobability [6] Q g = Tr %̂g and abbreviate Q ≡ Q0. In this limit (A.9) reduces to

%̂(a)=

∫
dξ

2π
e−iξan eiξ Ân/2%̂(a1, . . . , an−1)e

iξ Ân/2 . (A.10)

Note that Q0...0,g = Q, so the last measurement does not need to be weak (it can be even a
projection). The averages with respect to Q are easily calculated by means of the generating
function (A.10), e.g. 〈a〉Q = Tr Âρ̂, 〈ab〉Q = Tr { Â, B̂}ρ̂/2, 〈abc〉Q = Tr Ĉ{B̂, { Â, ρ̂}}/4 for
a = (a, b, c). As a straightforward generalization to continuous measurement, we obtain

〈a1(t1) · · · an(tn)〉Q =

Trρ̂{ Â1(t1), {· · · { Ân−1(tn−1), Ân(tn)} · · ·}}/2n−1 (A.11)

for time ordered observables, t1 6 t2 6 · · ·6 tn.

Appendix B

An effective model of weakly detecting the dot’s charge using an electric junction is shown in
figure B.1. The junction is treated as another dot between two reservoirs but in a broad level
regime. The complete Hamiltonian, consisting of the dot part (23), and the junction part, reads

Ĥ + ε′ N̂ ′ + Ĥ V + e2 N̂ N̂ ′/C + eV Q̂L +
∫

dE

×

∑
A=L,R

[
√
0′/2π d̂†ψ̂ A(E)+ h.c. + Eψ̂ A(E)ψ̂ A(E)],

N̂ L = ψ̂
†
L(E)ψ̂L(E), N̂ ′

= d̂†d̂, (B.1)

where N̂ L is the total number of elementary charges e in the left reservoir, C is the capacitance
between the dot and the QPC, 0′, ε′ denote effective tunneling rate and level energy of the QPC
and V is the bias voltage.

We measure current fluctuations in the junction, I (t), with the current in the Heisenberg
picture defined as Î (t)= −edN̂ L(t)/dt . Such fluctuations have already been measured
experimentally at low and high frequencies [25]. Most of the fluctuations are just generated
by the shot noise in the junction. Now, we consider a finite, but still very large capacitance.
We expect a contribution from the system dot’s charge fluctuation to S I

3 of the order C−3. We
assume separation of the system’s and detector’s characteristic frequency scales, namely

(0, ε, kT )� eV � (0′, ε′), (B.2)
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Figure B.1. The model of detecting the dot’s charge. An electric junction
contains another dot with effective occupation N ′, coupled capacitively to the
measured dot. The fluctuations of the current I in the junction biased by the
voltage V depend on the dot’s occupation N with the proportionality constant χ .

which also includes the broad level approximation for the detector’s dot. There exists a special
parameter range

e2

0′C
�

0

eV
�

(
e2

0′C

)2

, (B.3)

where the coupling is strong enough to extract information about N (t) which is not blurred by
feedback and cross-correlation terms (left inequality), but weak enough not to drive the system
dot out of equilibrium (right inequality). In this limit the dominating contributions to the detector
current’s third cumulant are given by S I

3 ' S I 0
3 +χ3SN

3 with

S I 0
3 = T (1 − T )(1 − 2T )e4V/h,

χ = −e2d〈I 〉/Cdε′, (B.4)

where 〈I 〉 = T e2V/h and effective transmission T = 0′2/(ε′2 +0′2). Although the ∼χ3 term in
S I

3 is much smaller than the first one, other terms, corresponding to cross correlations and back
action, are negligible compared to the last term.
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