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From AdS to dS
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From AdS to dS (1/3)

> dS/CFT correspondence was proposed more than 20 years ago
[Strominger (2001)] (with earlier work in [Hull (1998)] [Witten (2001)]).

> The status has remained controversial.

\l

Different formulations/versions have appeared through the years
m Wavefunction of the universe [Maldacena (2002)] ...
m Domain-wall/cosmology correspondence [Skenderis, Townsend (2006)],
[AB, McFadden, Skenderis (2009-2013)]

m Cosmological bootstrap [Arkani-Hamed etal (2018)]
Iy .

> There is a useful and working version of dS/CFT perturbatively in
1/N.

> |t is unclear whether such dualities exist non-perturbatively in 1/N.
> There is no known embedding in/derivation from string theory.



From AdS to dS
O@0000

From AdS to dS (2/3)

CFT data

(O(k1) ... O(ky))

Depends on N, \ k;

Cosmology

(p@) (k1) - 00) (k1))
Depends on N, \, k;

AdS data
ds% ¢ = LAdS [dz + dx ]
holography | 74dS — 7 2 Ads
Zlp (]
Depends on EPA 5>, Lags, k;
analytic continuation
dS data
ds?q = LLQQ [—d7r? + dzgs?]
T —0" s (—7’)2 @
‘I’[w?osﬂ

Depends on f ds) ,Las. ki




From AdS to dS
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Outline

Goals:
@ Derive continuation formulas valid for renormalized correlators.
@ Investigate the effect of renormalization on both AdS and dS data.

Outline:
© Continuation from AdS to dS:
> The continuation formulas.
@ Need for regularization and renormalization:
> Dimensional regularization.
> Renormalization in AdS and dS.
> Continuation formulas for renormalized correlators.
© Some implications:

> Weight-shifting operators.
> Tools we developed.
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From AdS to dS (3/3)

Metrics:
L aqs? Lzsz
dshas = —3 [dz? + dz 4as”] ds3g = ——— [—dr? + dzas?]
Actions:
AdS ds —
Saas = (L5 *9)1- d/dd+1$ gAdS X Sas = — (£ d/dd“fﬂ —gas %
1 2 1 2 2
= AdS SMAdS AdS = das Smds das
[2@0 >+m 20 [5@0as)? + Smas®e
+ ()= 2Wﬁfs(¢Ads)] + ()= 2‘@%(%5)]
States:
Regularity: Bunch-Davies vacuum |0)
©Vags ~ e as 2 = 00 ©as ~ €*7 as T — o0

Correlators:
Euclidean (Schwinger) In-in correlators
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Analytic continuation in Planck units

We keep

VAdS _ y/dS

2 2
PAdS = PdS; int int> MAds™ = —Mds

Analytic continuation in Planck units

AdS) _ ,(dS)
=*tp

In Planck units KED = 1. Then we continue

L pas = iLgs, z = —ir, qds = qAds

> |n particular @2‘(‘)315 - (_i)d_AWEiﬁg)-

> This is the continuation used in [Maldacena (2002)].
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Analytic continuation in AdS units

Analytic continuation in AdS units
In AdS units L g5 = Lgs = 1. Then

: AdS . /(dS
qAds = 144s, ﬁﬁ; ) = —M;‘, ),

Y

In particular cpégs = 9‘7((169)-

This is the continuation used in [McFadden, Skenderis (2009)].

This continuation can be expressed purely in terms of the CFT data:
qaas® = —qas? and Nags? = —Nys? (when the gauge group in
SU(N)).

We will use it here and argue this is the form of the AdS/dS
dictionary best suited for renormalized correlators.
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Fourier transform in the boundary direction: & — k or q or p.
Consider scalar fields ¢; with generic 3- and 4-point interactions.

Masses are parameterized as
2 2 d
Mg = —Mmas = A(A —d), 3 < A <d.

By Kja] and G[a] we denote the associated propagators.

We are mostly interested in d = 3 with A = 2 or 3, i.e., conformally
coupled or massless scalars.

We use notation
(O(ky) ... Oky)) = (2m)%5 (Z k) (O(k1)...O(Kn)).
i=1

Momenta lengths (magnitudes), k; = |k;|, s = |k1 + k2.
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AdS amplitudes (1/2)

Os(ks)
Ol(kl) O4(k4)

01 (kl)

O (ks) Oy (k2) Os3(k3)
> The amplitudes are

A, Ay 05 (K1 K2, k3) =/ dz 27971 Kia,(2, k1) Kpag) (2, k) Kiag) (2, ks),
0

/I:[AIAQ;ABA_/lmAI] (k17 k?a k3a k47 S)

= / dz 2741 K[AI](Z,k’l)K:[AQ](Z,k‘Q)X
0

x /0 AC ¢4 Ga (2 5:C) Ky (G Ka) Kyag) (€ K).
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AdS amplitudes (2/2)

> One would need an action

1 ; 1
som = 2 [t S [uesones + gmd o]
7j=1,2,3

- (éngdS))—d—lk/dd$\/§<p1<p2<p3
> From action to diagrams:

(01811 (k1) Opay) (k2) Opa, (ks))) = (£51)) ~(@ D=2V AV
X i[AlﬁzAs] (kla kQa k3) + O()\Q)

with V = 1.

> There exists an AdS action turning a single scalar (no gauge
symmetries) AdS amplitude into the full correlator.

> We can work digram by diagram. Also in the context of
renormalization.
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dS amplitudes (1/3)

> Use Schwinger-Keldysh formalism to implement the in-in
calculations,

(wrm)..ore) = [ DprDo (ITextr2)
i=1

X exp (z’S+ [o4] — 05— [@—])»

where both fields ¢ coincide at late times.

> The boundary (cosmological) field is

A—d

@) () = lim [(—To) @(T,w)} .

T0—>0

> Apply correct integration contours to make sure we use the
Bunch-Davies vacuum.
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dS amplitudes (2/3)

(p1(0) (F1)@a(0) (k2)@3(0) (Ra))) = (599~ D=2V X\ dsn, a, 0] + O(N2).

$1(0) ¥2(0) ¥3(0) #1(0) ¥2(0) ¥3(0)

GE_AZ] GL-AS] 4

G

dS[AlAQAg] =2Re

[ dr G[AI] G[ 2] G[As]
—1 a le)m (q1,7) (g2, 7)G 7 (g3, 7)
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dS amplitudes (3/3)

z Analytic continuations:
/ - / izd /OO dz
= e —,
f oo (1—ie) d+1 0 Zd+1

G[ Vg, +iz) = e F A Ddsa01(q) Kiag (g, 2)-

3
dS[A1A2A3]:2SiII[ At72d} H XL[A Ay Ay

> where Ay = A1 + Ag + As.
> Since Im(iq)? = sin(7D/2)q" and A; — 2d is the total dimension
of ija,A,n,) We can write

K . . L
sin b(At - Qd)}l[AlAzag,]((h’ q2,q3) = Imija, a,a41(1q1, 192, 1g3).
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Continuation formulas

1
1Imia, ap04) (91,192, ig3)
4 H?:l Imi[AjAj](iqf)
1 Imija, ay054,)(19)
81—y Imija,a,(ig;)
4

dsjan)(q) =

dsia, ay05)(41,92,93) = —

dS[A; Ay Az Al (qi) =

1 . L
8 H ) [ImZ[AlAQ;A;;AMcAw](l‘Hy15)

dS[A; Ag; Az ALz, (3is8) = i i
[A1A2;83842085] 0 i Imia;a;(igs

_ Imiga, aya,) (91,192, 15) Tmija, aga4 (38, 193, g4)
Imija, a,(s)

> Various forms of these exist in the literature, [Maldacena (2002)]
[McFadden, Skenderis (2010-11)] [AB, McFadden, Skenderis (2011-13)]
[Pimentel, Maldacena (2011)] [Hartle, Hawking, Hertog (2012)] [Anninos,
Denef, Harlow (2012)] [Anninos, Hartman, Strominger (2012)] [Mata,
Raju, Trivedi (2012)] [Kundu, Shukla, Trivedi (2014)] [Arkani-Hamed, Maldacena
(2015)] [Sleight, Toronna (2018-2022)] [Arkani-Hamed, Baumann, Lee,
Pimentel (2018)] [Baumann et al (2019-21)] [Pajer et al (2021-23)] [Melville et
al (2020)] [Di Petro, Gorbenko, Komatsu (2021)] [Raju et al (2023)] [Wang,

™+ 1 AL Aanna\1
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Example

> We are interested in d = 3 and scalars with A = 2,3, i.e.,
conformally coupled and massless scalars

> Propagators simplify to elementary functions.
> In d = 3 we have K5(z,k) = ze™** and thus

oo e—ktz
1[222] = / dz = 00
0 z

where k; = k1 + ko + k3.

> On the dS side A; — 2d = 0 and thus the sine vanishes. Does the
amplitude vanish?

> Must regulate and renormalize.
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Divergences in AdS amplitudes

> We are mostly interested in d = 3 with A = 2 or 3, i.e., conformally
coupled or massless scalars.

3-point amplitude %[A1A2A3]

[222] 1

[322] 1

(332] 1

[333] 1

External operators Contact Ar =2 Ay =3

[22; 2227 ;] 0 0 0
[32; 2204, 1 2 1
[33; 220A,] 1 1 2
[32; 3224 ] 1 2 1
[33; 322A 4] 1 2 2
[33; 3324 ,] 1 1 2




Ay, =

T
22; 220,

-
22; 320/,

N O N

-
22; 332A,]

—_

-
32; 220 ]

-
32;332A,]

=N =]

-
33;22zA,]

-
33;322A,]

= | O

[

[

[

[T_T

[32; 3204,
[

[

[

[

-
33;332A,]

oo | O

Renormalization
[e]e] le]ele]ele]

Divergences in derivative amplitudes

>
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Il
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ojlo|lo|lo|lo|lo|O

o |||l |o|w

Ay =

[22 3227

[32 222

[33 222

o || |O | W

[33 3221

2]
2]
2]
[32 3227,
o]
o]

[33; 33zA
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Divergences in dS amplitudes

ds AdS

[222] 0 1

[322] 1 1

[332] 0 1

[333] 1 1
de Sitter Anti-de Sitter
Ay = C 2 3 C 2 3
[22; 222A 4] 0 0 2 0 0 0
[32;222A,] 0 1 1 1 2 1
[33; 220A,] 1 1 2 1 1 2
[32; 322A 4] 1 2 1 1 2 1
[33; 320A,] 0 1 1 1 2 2
[33; 3327 ] 1 1 2 1 1 2




Renormalization
[e]e]e]e] lelele]

Dimensional regularization

> We use dimensional regularization
d—s d=d+ 2ue, Ajn—>Aj+(u—|—vj)e,

where ¢ is the regulator and u, v fixed parameters.

> Things simplify considerably in the beta scheme: w =1 and v; =0
since

> Regulated amplitude

4 e e_ktz _
1[222] :/ T—c dz = kt EF(E)
0 z
1
== log ki — v + O(e).

@ There is no cut-off.
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Renormalization (1/2)

> Renormalize by adding boundary counterterms built up with the
sources ¢(g); and operators O;.

> In our example

Set = *)\F(E)a/ddx VYP1(0)P2(0)P3(0) 1

where
w I'(e) =1 — g + O(e) is the required divergence.
w oa=1+ea® +e2a® + O(€*) keeps scheme-dependence.
/i is the renormalization scale, due to the shift in dimensions.
" ;) is the source for O[AJ].

> |n total

gy = 1

in% [%[222] - F(E)C‘M—ﬂ

—

1%<h>¢u
1%



Renormalization

00000080

Renormalization (2/2)

> Condition for divergences at each
subdiagram:

d— A, d— A, B
(80 {455 o

forr€{0,1,2,...}.
> The condition is of type n if the
bottom row is chosen n times.

> Divergences accumulate from each
subdiagram.

> The corresponding counterterm:

Set ~ /d‘ix ﬁuwv)f@”{ 308_(0) } X ... X { @g(o) }

v
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Example 1: i

> All A; are such that ‘QJ < Aj < d: only type-0 divergences appear.

> Type-0 condition: the total dimension D = A; — (n — 1)d satisfies
D=2r,re{0,1,2,...}

> The counterterm generates anomaly

Set N/ddxﬁu(Q’V)652T<P1<0>-~-%‘n(0>

> Btw: the sine sin(wD/2) in the continuation formulas vanishes when
D = 2n for integral n.

> Almost always the vanishing sine implies divergence of the
amplitude.
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Example 2: i[33.09,3]

The counterterms
C1M76/90[3]¢[2]0[2]
—€ 2 O
Cofl P31YI3]

cap / 99[23]99[2] O

o If ‘21 < Aj < d only type-0 and type-1 conditions can be satisfied.

@ Source renormalization
P2] — P2 [1 T Py eap” oy + 0(80?3})] ’
P31 P[] [1 +cop” P + O(@fg])} ~

@ Induces beta functions.
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Renormalization in dS

> Renormalize dS amplitudes by introducing counterterm living at
T=0.

> In the Schwinger-Keldysh formalism we renormalize both actions Sy,

Stlpx] > Sxlpx] + Scilp(0), J£]

> Counterterms with no J cancel.

4

No anomalies in de Sitter.

> Only source renormalization: only beta functions.

S& ey (T4 = J=)s €, p, 0] = /ddm(h — J2)f ()i € 1, a%9)
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Continuation formulas

> When the dust settles the continuation formulas hold except that

the map A;; : a/'%® — a$® may be non-trivial.

1 Imz[A1A2A3] (igs; p, A(a;))
4 szl Imz[AjAj](iqj)

ds[eA]lAgAS](%m a;) = —

)

ren 1 Im iEX1A2A3A4] (iQi§ Wy A(ul))
SR, Mg gy (@031, 00) = — . -
H mz[A A ](1%)

)

1 1
ISR, Agiag Agon,) (@ 54 0i) = 'y H

[A Aj ](lqa)
ImiX AyiAgAsza.] (l‘h'v is; p, A(a;))
Im a0 A, A, 10915102, 185 1, (i) Tm a0 A A (15,193, 1945 1, A(as))

Im zEeA" Au] (is)
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sren

DEE U299

> We found
-ren kt
i[509] = —log (H) — oM.

> Use

> We get

1 Imii55, (g1, ig2, igs)

n 3 . .

4 1T Im a5, (ig5)
s

8¢1q2q3

g = -




yren

Example 2:

dsaptX(3, (3, 3, 2, 2, 3}]

[33;222:3]

[SEES
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sk ] (63,3, k3
1 Log| e | (oK -kg 2 1 seky+kpi2
+ =72 (ks + ke) + — Log| 221" (k; - k{ -
8k k3 ks kg 352 24 12 s+ ks - kg
11 ckivky 12 1 ckycky 12 Sseky+k ~s+ks+k
TP R e ~ g/ it - Polylog|2, 1752 polylog2, —— 2T
6|2 ki-ky-ks+ ke 2 ki-ky - ks + ke ki-k - ks -
+ _stkatky Stkytke N stiqke ], stkatka 1) (k3 L k3
Log| 2| Log| [ Eke | - polylog[2, 2] L polylog[2, i ]) (14 i
3 ks +ka) -
s
Ky tkp tk3 kg 2 + k2) + + +
Log Stk ks R 1‘ 7s ok ki -kyky -k 43 ok
352 3073 797" s 18 ok |
1 sk -k 4 1 s+ks <k
3 Los 21878 s+ (ks +ke) ERGIEE e pgs 1+0[333](1 + (ks +ke) |-1+Log| 2222 L0322
4 \
[askiky- (s-ky+ky) (sky=sky+kyka) = [-5 - tos +ar3331 (1] || -

1 { 1
gk3~k,, 1+a[333][1] +a[333] [2] - J0[33223] (2 ‘



[SEES
[e]e]e]e]e] lele]

Our repository

Repository of AdS amplitudes

You can find all regulated and renormalized 2-, 3-, and 4-point amplitudes
for d =3 and A =2 or 3 in the HANDBOOK Mathematica package.

> The package is attached to the arXiv paper at
https://arxiv.org/abs/2207.02872.

> The package provides all regulated and renormalized 2-, 3- and
4-point amplitudes for d = 3 and A = 2, 3.

> Regulated amplitudes are evaluated in an arbitrary (u,v)-scheme.
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Raising/lowering operators (1/2)

> Explicit expressions for amplitudes give us opportunity to test
implicit results.

> Raising/lowering operators W52 were introduced in [Karateev,

Kravchuk, Simmons-Duffin (2017)] [Arkani-Hamed, Maldacena (2018)]
[Baumann et al (2019)],

Ao r— Ao+ 019, 01,2 = £1.
> For example, W1+2+7;[22,22$3] ~ Z.[gg’ggajg]? Impossible!
1( 0 o \?
> The lowering operator is Wi, = = (7 + 7) .
g op 12 2 \okT T KT

> The raising operator uses inversion,

Silf) =k, WET =878 Wi §iSs
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Raising/lowering operators (2/2)

Resolution

Combinations of exchange and contact diagrams,

o102 & _ 0102 7
Wiy AL, A2,A3,A5 2 A;] = Negeh, YAr1+01,A0402,A3,A5 2 AL]

0102 B
+ Ncont. UA1+01,A0+02,A5,A4]

> Sometimes WY, 2 can yield an amplitude associated with a
derivative vertex in the action, such as 0,,¢10" ¢ 3. This requires
a special condition to be satisfied.

> Action of W{3?2 on renormalized correlators can yield additional,
local contributions, e.g.,

-ren -ren 1 -ren
W1+2+Z[22,22w2] = 733,222 — 52[3322]
k3 + ky ) (1)
T3 (3 + 203305 — 2“[33,22962])
> For WE+%[22,22x3] we have NJ'%2 = 75(73 + €)e. One cannot

obtain %[33,221.3] from g[QQ,an;g] at all.
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Summary

> We present the detailed renormalization procedure for 2-, 3-, and
4-point dS and AdS amplitudes.

> This includes most of the amplitudes involving conformally coupled
and massless scalars.

> Qur continuation formulas hold for renormalized amplitudes (up to
scheme-dependence).

> Be very careful when using raising/lowering operators: they mix
exchange and contact amplitudes.

> Continuation formulas are not just the shadow transform.

> You don't have to renormalize every time: use renormalized
amplitudes.

> Use our package HANDBOOK from [2207.02872] for 2-, 3- and
4-point amplitudes.
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