Breaking the spell of the tensor product

Adam Bzowski

Universytet Warszawski

Norway
based on [2008.02810]
on work with Alessandra Gnecchi and Thomas Hertog: [1802.02580] and ongoing research with Ruben Monten and John Gardiner.

Motivation

Problem:

- Black hole evaporates in a finite boundary time.
- Thermal spectrum means that entropy rises and information is lost.
- Can we extract the information from beyond the horizon?
- Is the interior encoded in the exterior?.

We will explore the possibility that the tensor product factorization fails, $\mathcal{H} \cong \mathcal{H}_{\text {fine }} \otimes \mathcal{H}_{\text {coarse }}$.

Motivation

It's Equivalence principle.

- Minkowski vacuum $|\Omega\rangle$ vs. Rindler vacuum $|0\rangle$.
- Non-intertial frame \longmapsto fictitious force.

- Kruskal vacuum $|\Omega\rangle$ vs. Schwarzschild vacuum $|0\rangle$.
- Intertial frame \longmapsto physical force.

Motivation

Information paradox $=$ incompatibility among:

- Unitary black hole formation and evaporation
- Validity of the effective field theory description for the asymptotic observer
- Existence of black hole microstates visible to an asymptotic observer as states with exponentially small energy differences, thus
$S_{B H}=\log (\#$ dof $)$
- No drama at the horizon (equivalence principle): an infalling observer in the near horizon region sees nothing out of ordinary.
[AMPS, '13] suggests dropping the equivalence principle.
But then, why have a tensor product?

Motivation

Idea: analyze systems that violate the factorization property and have to do something with gravity.
(1) Wormholes:

- BDHM dictionary (AdS/CFT).
- BTZ black hole (factorizable) and JT wormhole (non-factorizable).
- Reproduce the known results from the new paradigm.
(2) Quantum mechanical model:
- What can we learn about black holes from double well potential?
- Approximate factorization, state-dependence and chaos.

Why wormholes?

- Holography: can we reach the left boundary from the right boundary in the two-sided black hole.
- From boundary to bulk: bulk reconstruction: [Hamilton, Kabat, Lifschytz, Lowe, '04; Penington, '20],
(1) Evolution in both boundaries related, $H_{L} \sim H_{R}$? [Guica, Ross, '14; Harlow, Jafferis, '18]
(2) Wormhole state: close to the thermofield double? [Maldacena, Stanford, Yang, '17]
(3 But is it a state in the tensor product $\mathcal{H}_{L} \otimes \mathcal{H}_{R}$? [Arias, Botta Cantcheff, Silva, '10; Harlow, Jafferis, '18].

BDHM dictionary

- The BDHM dictionary [Banks, Douglas, Horowitz, Martinec, '98] is the operatorial form of holography.
- The construction here follows [Kaplan, '16].
- Global anti-de Sitter (AdS) metric

$$
\mathrm{d} s^{2}=\frac{L^{2}}{\cos ^{2} \theta}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \Omega_{d-1}^{2}\right)
$$

- Let Φ be a Klein-Gordon field satisfying $\left(-\square+m^{2}\right) \Phi=0$.
- The mass is parameterized as $m^{2}=\Delta(\Delta-d)$.
- Two solutions: $\Phi \sim \operatorname{src}^{\cos }{ }^{d-\Delta} \theta+v e v \cos ^{\Delta} \theta$.

- We set src $=0$ and quantize Φ.

BDHM dictionary

- The solution is

$$
\Phi_{A d S}(\tau, \theta, \Omega)=\sum_{k=0}^{\infty} \sum_{\ell}\left(\phi_{k \ell} \alpha_{k \ell}+\phi_{k \ell}^{*} \alpha_{k \ell}^{*}\right)
$$

where

$$
\phi_{k \ell}(\tau, \theta, \Omega)=c_{k \ell} e^{-i \omega_{k \ell} \tau} Y_{\ell}(\Omega) \cos ^{\Delta} \theta \sin ^{\ell} \theta P_{k}^{\left(\ell+\frac{d}{2}-1, \Delta-\frac{d}{2}\right)}(\cos (2 \theta))
$$

- These are standing waves: the frequencies are quantized:

$$
\omega_{k \ell}=\Delta+\ell+2 k, \quad k=0,1,2, \ldots
$$

- The coefficients are elevated to creation-annihilation operators

$$
\left[\hat{\alpha}_{k \ell}, \hat{\alpha}_{k^{\prime} \ell^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}} \delta_{\ell \ell^{\prime}}
$$

- The vacuum state is $|\Omega\rangle$ defined by the condition $\hat{\alpha}_{k \ell}|\Omega\rangle=0$.
- Hilbert space $\mathcal{H}_{A d S}$ is spanned by $\hat{\alpha}_{k_{1} \ell_{1}}^{\dagger} \ldots \hat{\alpha}_{k_{n} \ell_{n}}^{\dagger}|\Omega\rangle$.

BDHM dictionary

- At the boundary

$$
\mathcal{O}(\tau, \Omega)=\sum_{k=0}^{\infty} \sum_{\ell}\left(\hat{\alpha}_{k \ell} \varphi_{k \ell}+\hat{\alpha}_{k \ell}^{\dagger} \varphi_{k \ell}^{*}\right),
$$

where

$$
\varphi_{k \ell}(\tau, \Omega)=\lim _{\theta \rightarrow \frac{\pi}{2}} F^{-\Delta}(\theta) \phi_{k \ell}=\tilde{c}_{k \ell} e^{-\mathrm{i} \omega_{k \ell} \tau} Y_{\ell}(\Omega)
$$

- Check: Euclidean operators

$$
\mathcal{O}^{E u}(t, \Omega)=e^{-\Delta t} \mathcal{O}(\tau=-\mathrm{i} t, \Omega),
$$

produce the generalized free field correlators, e.g.,

$$
\langle\Omega| \mathcal{O}^{E u}(z, \bar{z}) \mathcal{O}^{E u}(0)|\Omega\rangle=\frac{1}{L} \frac{1}{|z|^{2 \Delta}} .
$$

Two boundaries

$$
\hat{\Phi}=\sum_{k}\left(\phi_{k} \hat{a}_{k}+\phi_{k}^{*} \hat{a}_{k}^{\dagger}\right)
$$

- Hilbert space: \mathcal{H}_{L},
- Boundary modes:
$\varphi_{k}^{L}=\lim _{L} \phi_{k}$,
- Operators: $\mathcal{O}_{L}=$ $\sum_{k}\left(\varphi_{k}^{L} \hat{\alpha}_{k}^{L}+\varphi_{k}^{L *} \hat{\alpha}_{k}^{L \dagger}\right)$
- Hilbert space: \mathcal{H}_{R},
- Boundary modes:

$$
\varphi_{k}^{R}=\lim _{R} \phi_{k},
$$

- Operators: $\mathcal{O}_{R}=$ $\sum_{k}\left(\varphi_{k}^{R} \hat{\alpha}_{k}^{R}+\varphi_{k}^{R *} \hat{\alpha}_{k}^{R \dagger}\right)$
- One can map some combinations of the bulk operators $\hat{a}_{k}, \hat{a}_{k}^{\dagger}$ to $\hat{\alpha}_{k}^{L, R}, \hat{\alpha}_{k}^{L, R \dagger}$.
- The constructed boundary Hilbert spaces depend on the bulk region considered.
- Reeh-Schlieder property for AdS holds [Morrison, '14; Banerjee, Bryan, Papadodimas, Raju, '16].

BTZ black hole

- The BTZ black hole

$$
\mathrm{d} s^{2}=-\left(\rho^{2}-\rho_{h}^{2}\right) \mathrm{d} t^{2}+\frac{L^{2} \mathrm{~d} \rho^{2}}{\rho^{2}-\rho_{h}^{2}}+\rho^{2} \mathrm{~d} \varphi^{2}
$$

- General solution:

$$
\phi_{\omega n}(t, \rho, \varphi)=c_{\omega n}^{B T Z} e^{-\mathrm{i} \omega t+\mathrm{i} n \varphi} R_{\omega n}(\rho),
$$

- Field decomposition in all wedges:

$$
\hat{\Phi}_{B T Z}=\int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \sum_{n=-\infty}^{\infty}\left(\phi_{\omega n}^{L *} \hat{a}_{\omega n}^{L}+\phi_{\omega n}^{R} \hat{a}_{\omega n}^{R}+\text { h.c. }\right)
$$

- In Schwarzschild modes $\phi_{\omega n}^{L, R}$ the split of the Hilbert space is explicit:

$$
\mathcal{H} \cong \mathcal{H}_{L} \otimes \mathcal{H}_{R}, \quad|0\rangle=|0\rangle_{L} \otimes|0\rangle_{R},
$$

with \mathcal{H}_{L} spanned by $\hat{a}_{\omega n}^{L \dagger}$ and \mathcal{H}_{R} spanned by $\hat{a}_{\omega n}^{R \dagger}$.

BTZ black hole

- What if we used Kruskal modes?

$$
\chi_{\omega n}^{R}=\frac{\phi_{\omega n}^{R}+e^{-\frac{\pi \omega L}{\rho_{h}}} \phi_{\omega n}^{L}}{\sqrt{1-e^{-\frac{2 \pi \omega L}{\rho_{h}}}}}, \quad \chi_{\omega n}^{L}=\frac{\phi_{\omega n}^{L}+e^{-\frac{\pi \omega L}{\rho_{h}}} \phi_{\omega n}^{R}}{\sqrt{1-e^{-\frac{2 \pi \omega L}{\rho_{h}}}} .}
$$

- The action of the corresponding creation-annihilation operators $\hat{b}_{\omega n}^{L, R \dagger}, \hat{b}_{\omega n}^{L, R}$ is not limited to a single boundary, $\lim _{R} \hat{\Phi}_{\omega n}(t, \varphi)=\lim _{R} \chi_{\omega n}^{L *} \hat{b}_{\omega n}^{L}+\lim _{R} \chi_{\omega n}^{R} \hat{b}_{\omega n}^{R}+\lim _{R} \chi_{\omega n}^{L} \hat{b}_{\omega n}^{L \dagger}+\lim _{R} \chi_{\omega n}^{R *} \hat{b}_{\omega n}^{R \dagger}$
- The Hilbert spaces spanned by $\hat{b}_{\omega n}^{L \dagger}$ and $\hat{b}_{\omega n}^{R \dagger}$ are not boundary Hilbert spaces.
- But the full Hilbert space still splits, up to the Bogoliubov transformation, $\mathcal{S} \mathcal{H}_{\Omega} \cong \mathcal{H} \cong \mathcal{H}_{L} \otimes \mathcal{H}_{R}$, where \mathcal{S} implements

$$
\hat{a}_{\omega n}^{R}=\frac{\hat{b}_{\omega n}^{R}+e^{-\frac{\pi \omega L}{\rho_{h}}} \hat{b}_{\omega n}^{L \dagger}}{\sqrt{1-e^{-\frac{2 \pi \omega L}{\rho_{h}}}}}, \quad \hat{a}_{\omega n}^{L}=\frac{\hat{b}_{\omega n}^{L}+e^{-\frac{\pi \omega L}{\rho_{h}}} \hat{b}_{\omega n}^{R \dagger}}{\sqrt{1-e^{-\frac{2 \pi \omega}{\rho_{h}}}}} .
$$

- Kruskal vacuum $|\Omega\rangle$ is the thermofield double. It satisfies $\hat{b}_{\omega n}^{L, R}|\Omega\rangle=0$.

BTZ black hole

(1) Universality: the boundary Hilbert spaces are the same as if the bulk was replaced by empty AdS.
(2) Decoupling: the action of the boundary operator is limited to the corresponding boundary.
Conclusions:

- $\mathcal{H}_{L, R}$ spanned by $\hat{a}_{\omega n}^{L, R \dagger}$ are boundary Hilbert spaces, those spanned by $\hat{b}_{\omega n}^{L, R \dagger}$ are not.
- The split does not depend on quantization choice, but it is more explicit is some.
- If the Hilbert space splits, there exist complex bulk modes vanishing on all boundaries but one.

AdS_{2} wormhole

- Motivation: Jackiw-Teitelboim gravity [Arias, Botta Cantcheff, Silva, '10; Harlow, Jafferis, '18].
- AdS_{2} spacetime

$$
\mathrm{d} s^{2}=\frac{L^{2}}{\cos ^{2} \theta}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \theta^{2}\right)
$$

has 2 asymptotic boundaries at $\theta= \pm \frac{\pi}{2}$.

- The bulk field satisfies

$$
\left[-\frac{\partial^{2}}{\partial \tau^{2}}+\frac{\partial^{2}}{\partial \theta^{2}}-\frac{\Delta(\Delta-1)}{\cos ^{2} \theta}\right] X(\tau, \theta)=0 .
$$

- Field decomposition reads

$$
X(\tau, \theta)=\sum_{n=0}^{\infty}\left[a_{n} \phi_{n}+a_{n}^{*} \phi_{n}^{*}\right] .
$$

AdS_{2} wormhole

- Take $\Delta=1$. The solutions are

$$
\chi_{m}^{0}(\tau, \theta)=\frac{1}{\sqrt{\pi m}} e^{-\mathrm{i} m \tau} \sin \left[m\left(\theta-\frac{\pi}{2}\right)\right], \quad n+1=m=1,2,3 \ldots
$$

- At the two boundaries:

$$
\begin{gathered}
\Pi_{R}(\tau)=\partial_{\theta} X\left(\tau, \frac{\pi}{2}\right)=2 \sum_{m=1}^{\infty} \sqrt{\frac{m}{\pi}}\left[\operatorname{Re} a_{m} \cos (m \tau)+\operatorname{Im} a_{m} \sin (m \tau)\right], \\
\Pi_{L}(\tau)=\partial_{\theta} X\left(\tau,-\frac{\pi}{2}\right)=2 \sum_{m=1}^{\infty}(-1)^{m} \sqrt{\frac{m}{\pi}}\left[\operatorname{Re} a_{m} \cos (m \tau)+\operatorname{Im} a_{m} \sin (m \tau)\right] .
\end{gathered}
$$

- At the right boundary $\chi_{n} \sim \cos \theta \varphi_{n}$, so we identify $\hat{a}_{n}=\hat{a}_{n}^{R}$.
- At the right boundary $\chi_{n} \sim \cos \theta(-1)^{n} \varphi_{n}$, so we identify $\hat{a}_{n}=(-1)^{n} \hat{a}_{n}^{L}$.

AdS_{2} wormhole

- The Hilbert space \mathcal{H} does not split. In fact $\mathcal{H}=\mathcal{H}_{L}=\mathcal{H}_{R}$.
- Left and right operators satisfy

$$
\hat{a}_{n}^{L}=(-1)^{n} \hat{a}_{n}^{R}=\hat{P} \hat{a}_{n}^{R} \hat{P}=e^{\mathrm{i} \pi H} \hat{a}_{n}^{R} e^{-\mathrm{i} \pi H} .
$$

- Hamiltonians are all equal, $H_{L}=H_{R}=H$.
- Correct corrrelators, [Maldacena, Qi, '18]

$$
\begin{aligned}
\langle\Omega| \hat{X}_{R}(\tau) \hat{X}_{R}\left(\tau^{\prime}\right)|\Omega\rangle & =\frac{\Gamma(\Delta)}{2^{2 \Delta+1} \sqrt{\pi} \Gamma\left(\Delta+\frac{1}{2}\right)} \frac{e^{-\mathrm{i} \pi \Delta}}{\sin ^{2 \Delta}\left(\frac{\tau-\tau^{\prime}-\mathrm{i} \epsilon}{2}\right)} \\
\langle\Omega| \hat{X}_{L}(\tau) \hat{X}_{R}\left(\tau^{\prime}\right)|\Omega\rangle & =\frac{\Gamma(\Delta)}{2^{2 \Delta+1} \sqrt{\pi} \Gamma\left(\Delta+\frac{1}{2}\right)} \frac{1}{\cos ^{2 \Delta}\left(\frac{\tau-\tau^{\prime}-\mathrm{i} \epsilon}{2}\right)} .
\end{aligned}
$$

- Similar conclusions: [Arias, Botta Cantcheff, Silva, '10].

GJW wormhole

In [Gao, Jafferis, Wall, '17] a wormhole has been opened by coupling CFTs living on two boundaries of a BTZ black hole:

$$
S=S_{L}+S_{R}+\int d^{2} x h(t, x) \mathcal{O}_{L}(-t, x) \mathcal{O}_{R}(t, x)
$$

- Violation of the averaged null energy condition (ANEC) is a prerequisite,

$$
\int_{-\infty}^{\infty} T_{\mu \nu} k^{\mu} k^{\nu} \mathrm{d} \lambda<0
$$

- Negative energy can be provided by the non-local coupling the boundary theories.

Effective interaction

What if we pretended to work on the tensor product $\mathcal{H}_{L} \otimes \mathcal{H}_{R}$?

- Let

$$
\hat{\alpha}_{n}=\hat{\alpha}_{n}^{R}+(-1)^{n} \hat{\alpha}_{n}^{L}, \quad \hat{\beta}_{n}=\hat{\alpha}_{n}^{R}-(-1)^{n} \hat{\alpha}_{n}^{L} .
$$

- We need

$$
\hat{\beta}_{n}|\psi\rangle=\hat{\beta}_{n}^{\dagger}|\psi\rangle=0 \quad \text { for all } n=0,1,2, \ldots
$$

and the Hamiltonian

$$
H_{\alpha}=\sum_{n=0}^{\infty}(\Delta+n) \hat{\alpha}_{n}^{\dagger} \hat{\alpha}_{n} .
$$

- Thus, formally,

$$
\begin{aligned}
H_{\text {int }} & =\sum_{n=0}^{\infty}(\Delta+n)(-1)^{n}\left[\hat{\alpha}_{n}^{L \dagger} \hat{\alpha}_{n}^{R}+\hat{\alpha}_{n}^{R \dagger} \hat{\alpha}_{n}^{L}\right] \\
& =\sum_{n=0}^{\infty}(\Delta+n)\left[e^{-\mathrm{i} \Delta \pi} \hat{\alpha}_{n}^{L \dagger}(\tau+\pi) \hat{\alpha}_{n}^{R}(\tau)+e^{\mathrm{i} \Delta \pi} \hat{\alpha}_{n}^{R \dagger}(\tau) \hat{\alpha}_{n}^{L}(\tau+\pi)\right] .
\end{aligned}
$$

Summary

- The Hilbert space of excitations over the wormhole does not factorize into the tensor product of boundary Hilbert spaces.
- This results in the operatorial relation between boundary operators, e.g., $\hat{a}_{n}^{R}=(-1)^{n} \hat{a}_{n}^{L}$ and $H_{L}=H_{R}$.
- The interaction is an avatar of the description of the system on the tensor product.
- The interaction Hamiltonian is that of 'infinite squeezing'.
- Thermal partition function does not factorize, $\operatorname{Tr} e^{-\beta H} \neq \operatorname{Tr} e^{-\beta\left(H_{L}+H_{R}\right)}$.

Firewalls

Pick a single mode n : $\hat{a}_{n}^{L, R} \mapsto \hat{a}_{L, R}$.

- Firewalls: Among 3 number operators
$N_{L}=\hat{a}_{L}^{\dagger} \hat{a}_{L}, N_{R}=\hat{a}_{R}^{\dagger} \hat{a}_{R}, N_{A}=\hat{a}^{\dagger} \hat{a}$ only 2 can be small.
- Give up the Equivalence principle: the near horizon region is not vacuum. In a generic microstate $|\Psi\rangle$ the infalling observer sees the firewall,

$$
\langle\Psi| N_{A}|\Psi\rangle \sim N \gg 1 .
$$

- State Dependence, [Papadodimas, Raju '13]: The notion of particles for the infalling observer is microstate-dependent. Tells us something about the structure of the Hilbert space describing quantum fluctuations.
- According to [Marolf, Polchinski, '15] state dependence violates rules of quantum mechanics (Born rule).

Double well potential

What if we replace $\hat{a}^{L}=\hat{a}^{R}$ by $\hat{a}^{L}=\hat{a}^{R}+c \mathbf{1}$?

- Minima at $x_{L, R}=\frac{1}{2 \omega \sqrt{\lambda}}$.
- One can think $\lambda=\frac{1}{N^{2}}$,
$V(x)=\frac{1}{32 \lambda}-\frac{1}{4} \omega^{2} x^{2}+\frac{\lambda}{2} \omega^{4} x^{4}$
- At maximum $V_{*}=\frac{1}{32 \lambda}$,
- We set $\omega=1$.
- Field operators satisfy $\hat{x}_{R}-\hat{x}_{L}=N 1$.
- Define a decoupling limit as $\lambda \rightarrow 0$. Physically, the system can be thought of two decoupled harmonic oscillators, described by a tensor product Hilbert space.

Toy model interpretation

- Asymptotic regions
- BH microstates
- Excitations on top of $\left|0_{k}\right\rangle_{R}\left|0_{-k}\right\rangle_{L}$
- Decoupling

- Two minima
- Lowest energy states
- Excitations of two HO of frequency k
- $\lambda \rightarrow 0$

Energy levels

Energy eigenstates of a given \pm parity, $H \Psi_{n}^{ \pm}=E_{n}^{ \pm} \Psi_{n}^{ \pm}$.

- Energy differences are non-perturbatively small

$$
\Delta E_{n}=E_{n}^{-}-E_{n}^{+}=e^{-\frac{1}{\sigma \lambda}} P_{n}\left(\lambda^{-1 / 2}\right)=o\left(\lambda^{\infty}\right) .
$$

- When $n \sim 1 / \lambda \sim N^{2}, \Delta E_{N} \sim N^{N^{2}} e^{-N^{2}}$: non-perturbative effects become dominant.

Microstates

- States $\Psi_{n}^{ \pm}$are indistinguishable to a single asymptotic observer within the perturbation thoery. We have microstates:

$$
\mathcal{M}=\left\{\alpha_{+} \Psi_{0}^{+}+\alpha_{-} \Psi_{0}^{-}: \alpha_{ \pm} \in \mathbb{C}\right\} .
$$

- Each $\mu \in \mathcal{M}$ is a perturbative vacuum.
- We have semi-classical degeneracy and hence entropy,

$$
S_{B}=\log \operatorname{dim} \mathcal{H}_{\text {fine }}=\log 2 .
$$

Excitations

- HO normalized eigenfunctions,

$$
\varphi_{n}(x)=\frac{1}{\pi^{1 / 4} \sqrt{2^{n} n!}} H_{n}(x) e^{-\frac{x^{2}}{2}},
$$

- Define

$$
\begin{aligned}
& \left|n_{R}\right\rangle: \varphi_{n}^{R}(x)=\varphi_{n}\left(x-x_{R}\right), \\
& \left|n_{L}\right\rangle: \varphi_{n}^{L}(x)=\left(\Theta \varphi_{n}^{R}\right)(x)=\varphi_{n}\left(x-x_{L}\right) .
\end{aligned}
$$

- Assign creation and annihilation operators $a_{L}, a_{L}^{+}, a_{R}, a_{R}^{+}$.
- Total Hilbert space \mathcal{H} is isomorphic to each Fock space \mathcal{F}_{L} and \mathcal{F}_{R} separately,

$$
\mathcal{H} \cong \mathcal{F}_{R} \cong \mathcal{F}_{L} ;
$$

There is no tensor product.

Consequences

Naive number operators for left/right asymptotic observers

$$
N_{L}=H_{L}^{(0)}=a_{L}^{+} a_{L}, \quad N_{R}=H_{R}^{(0)}=a_{R}^{+} a_{R}
$$

are weird

$$
\begin{aligned}
& \left\langle\varphi_{0}^{L}\right| N_{L}\left|\varphi_{0}^{L}\right\rangle=\left\langle\varphi_{0}^{R}\right| N_{R}\left|\varphi_{0}^{R}\right\rangle=0, \\
& \left\langle\varphi_{0}^{L}\right| N_{R}\left|\varphi_{0}^{L}\right\rangle=\left\langle\varphi_{0}^{R}\right| N_{L}\left|\varphi_{0}^{R}\right\rangle=\frac{1}{2} N^{2}
\end{aligned}
$$

and diverge in the decoupling limit $N \rightarrow \infty$.

$$
(-1)^{n}\left\langle\varphi_{0}^{L} \mid \varphi_{n}^{R}\right\rangle
$$

For the right observer, semiclassical left states are highly excited

$$
\left\langle\varphi_{0}^{L} \mid \varphi_{n}^{R}\right\rangle=\frac{(-1)^{n} e^{-\frac{1}{4 \lambda}}}{\sqrt{2^{n} \lambda^{n} n!}}
$$

Defining effective theory

- There is no state where N_{L}, N_{R} and $N_{A}=N_{L}+N_{R}$ are all small: a firewall?
- No, a_{R}, a_{R}^{+}are non-local, ie., they do something horrible to φ_{n}^{L}.
- We cannot define

$$
\begin{array}{ll}
\hat{a}_{R} \varphi_{n}^{R} \stackrel{?}{=} \sqrt{n} \varphi_{n-1}^{R}, & \hat{a}_{R} \varphi_{n}^{L} \stackrel{?}{=} 0, \\
\hat{a}_{R}^{+} \varphi_{n}^{R} \stackrel{?}{=} \sqrt{n+1} \varphi_{n+1}^{R}, & \hat{a}_{R}^{+} \varphi_{n}^{L} \stackrel{?}{=} 0
\end{array}
$$

because the set $\left\{\varphi_{n}^{L}, \varphi_{n}^{R}\right\}$ is overcomplete [Jafferis '17].

- A solution: truncate the basis at finite $n \leq N$, [Papadodimas, Raju '13].
- Better solution: orthogonalize $\left\{\varphi_{n}^{L}, \varphi_{n}^{R}\right\}_{n}$.

Effective theory

- Symmetric and antisymmetric combinations of all energy eigenstates,

$$
\Psi_{n}^{L}=\frac{1}{\sqrt{2}}\left(\Psi_{n}^{+}-\Psi_{n}^{-}\right), \quad \Psi_{n}^{R}=\frac{1}{\sqrt{2}}\left(\Psi_{n}^{+}+\Psi_{n}^{-}\right)
$$

span two Hilbert subspaces (perturbative Hilbert spaces)

$$
\mathcal{H}_{L}=\operatorname{span}\left\{\Psi_{n}^{L}\right\}_{n}, \quad \mathcal{H}_{R}=\operatorname{span}\left\{\Psi_{n}^{R}\right\}_{n} .
$$

- $\left\langle\Psi_{m}^{L} \mid \Psi_{n}^{R}\right\rangle=0$

$$
\mathcal{H}=\mathcal{H}_{L} \oplus \mathcal{H}_{R}, \quad \mathcal{H}_{L} \perp \mathcal{H}_{R}, \quad \Theta \mathcal{H}_{L}=\mathcal{H}_{R}, \quad \Theta \mathcal{H}_{R}=\mathcal{H}_{L} .
$$

- Projected operators :

$$
\hat{a}_{L}=P_{L} a_{L} P_{L}, \quad \hat{a}_{R}=P_{R} a_{R} P_{R} .
$$

- Number operators are

$$
\hat{N}_{L}=\hat{a}_{L}^{+} \hat{a}_{L}, \quad \hat{N}_{R}=\hat{a}_{R}^{+} \hat{a}_{R}, \quad \hat{N}_{A}=\hat{N}_{L}+\hat{N}_{R} .
$$

Consequences

- Every state φ_{n}^{R} can be approximated by a perturbative state up to non-perturbative effects, $\varphi_{n}^{R} \notin \mathcal{H}_{R}$ but $\left\|P_{R} \varphi_{n}^{R}\right\|=1-o\left(\lambda^{\infty}\right)$.
- Hatted operators are non-local up to non-perturbative effects, $\left[\hat{a}_{R}, \hat{a}_{R}^{+}\right] \neq 1$, but $\left[\hat{a}_{R}, \hat{a}_{R}^{+}\right]=1+o\left(\lambda^{\infty}\right)$, [Kabat Lifshitz '14, Raju '17, Anninos, Monten '19]
- No firewall: number operators $\hat{N}_{L, R, A}$ are non-perturbatively close to $N_{L, R, A}$, but are well-behaved:

$$
\langle\mu| \hat{N}_{L, R, A}|\mu\rangle=O(\sqrt{\lambda}), \quad \text { for generic } \mu \in \mathcal{M}
$$

- The Hilbert space factorizes into the tensor product $\mathcal{H} \sim \mathcal{H}_{L} \otimes \mathcal{H}_{R}$ only approximately at low energies. Effective operators are microstate-dependent.
- Only some states in $\mathcal{F}_{L} \otimes \mathcal{F}_{R}$ are physical.
- Effective theory breaks for energies $\sim V_{*} \sim N^{2}$ or times $t \sim 1 / E$, [Raju '17]

Hawking radiation as tunneling

- BH evaporation as tunneling:
[Parhik, Wilczek '99, Gaddam,
Papadoulaki, Betzios '16].
- Tunneling rate in WKB:
$\Gamma=e^{-2 \Lambda}$,
$\Lambda=\int_{-x_{1}}^{x_{1}} \sqrt{2(V(x)-E)} d x$,
- At $E \sim V_{*}$ with $\delta=V_{*}-E$ the potential can be approximated by the inverted harmonic oscillator.
- One finds
$\Lambda(\lambda, \delta)=\sqrt{2} \pi \delta+3 \sqrt{2} \pi \lambda \delta^{2}+O\left(\delta^{3}\right)$,
which means that in our model $\omega \sim \sqrt{\lambda} \delta$,
$M \sim 1 / \sqrt{\lambda}=N$.

monornonow

Chaotic evolution

- Classical particle with $E \ll V_{*}$ stays on a closed orbit.
- The period diverges logarithmically when $E \rightarrow V_{*}$:

$$
T_{\text {trapped }}=\sqrt{2} \log \left(\frac{2}{\lambda \delta}\right)+O(\lambda)
$$

- Close to the tip: $x(t)=x_{0} \cosh (\nu t)+v_{0} / \nu \sinh (\nu t)$. Hence

$$
\delta x(t) \sim e^{\nu t}\left(\delta x_{0}+\delta v_{0} / \nu\right) .
$$

This is by definition chaotic behavior with the Lapunov exponent $\nu=\omega / \sqrt{2}=1 / \sqrt{2}$.

Summary

Quantum mechanical system of the double well potential exhibits characteristic behavior associated with a pair of entangled modes in the quantum black holes:

- The Hilbert space does not factorize into the tensor product $\mathcal{F}_{L} \otimes \mathcal{F}_{R}$. Instead $\mathcal{H} \cong \mathcal{H}_{L} \oplus \mathcal{H}_{R}$.
- One can define natural creation-annihilation and firewall-free number operators, which agree with naive ones up to non-perturbative effects. The new operators remain local, up to non-perturbative terms.
- The factorization into the tensor product is approximate at low energies up to non-perturbative effects.
- A choice of non-perturbative vacuum leads to state-dependence.
- Hawking radiation has a natural interpretation as tunneling.

Summary

Ideas presented:

- Weirdness of black holes can be realized in simple toy models.
- The split of the Hilbert space into the tensor product of the boundary spaces is questionable.
- Interactions between boundaries of a wormhole can be seen as the avatar of the non-trivial tensor structure.
- Possibility of building new models quantum black holes?

Summary

Thank you!

