"Zegar atomowy" do pomiaru czasu życia stanów jądrowych

Zenon Janas

Zakład Spektroskopii Jądrowej IFD UW

Przemiany β jąder n - deficytowych

rozpad z emisją pozytonu

• wychwyt elektronu

Czas życia dziury na powłoce K

Emitery opóźnionych protonów

Emisja protonów opóźnionych

Emisja protonu ze stanu wzbudzonego

Kształt widma protonów opóźnionych

 $\mathbf{I}_{p}(\mathbf{E}_{p}) = |\mathbf{M}_{\beta}|^{2} \cdot f(Q - E^{*}) \times \frac{\mathbf{I}_{p}}{\Gamma_{v} + \Gamma_{p}}$

Emisja protonów opóźnionych

Emisja protonu po wychwycie elektronu

Metoda PXCT (J. Hardy PRL 37 (1976))

- pomiar widma prom. X w koincydencji z protonami
- szerokość poziomu jądrowego

$$\Gamma_{\rm nucl} = \left(\frac{{\rm Te}}{{\rm I}}\right) \cdot \Gamma_{\rm K}$$

gdzie

$$\Gamma_{\rm K}({\rm I}) = 10.7 \ {\rm eV}$$

 $\Gamma_{\rm nucl} = \Gamma_{\gamma} + \Gamma_{\rm p0} + \Gamma_{\rm p1} + \cdots$

Badanie rozpadu ¹¹³Xe

• produkcja

⁵⁸Ni + ⁵⁸Ni \rightarrow ¹¹⁶Ba^{*} \rightarrow ¹¹³Xe + 2p + 1n

- separacja masowa
- detekcja promieniowania

Spektrometr TAS

Rejestracja opóźnionych protonów

Wyniki pomiarów PXCT dla ¹¹³Xe

Szerokości poziomów vs energia wzbudzenia

Model statystyczny

• szerokość poziomu związana z emisją cząstki

$$\langle \Gamma_{\mathbf{p}} \rangle = \hbar \cdot \mathbf{v}_0 \cdot \mathbf{T}_{\mathbf{p}} = \frac{1}{2\pi} \frac{1}{\rho(\mathbf{E}^*)} \cdot \mathbf{T}_{\mathbf{p}}$$

gdzie

- ν_0 liczba prób w jednostce czasu
- T_p współczynnik transmisji
- $\rho(E^*)$ gęstość poziomów jądrowych

szerokość radiacyjna poziomu

$$\left<\Gamma_{\gamma}\right> = \sum_{f}\left<\Gamma_{\gamma}^{if}\right> \propto \sum_{f} \frac{\rho(E^*-E_{\gamma})}{\rho(E^*)}\sigma_{abs}(E_{\gamma})$$

gdzie

 σ_{abs} - przekrój czynny na fotoabsorpcję

całkowita szerokość poziomu

$$\langle \Gamma_{nucl} \rangle = \langle \Gamma_{\gamma} \rangle + \langle \Gamma_{p} \rangle + \cdots$$

Wyniki obliczeń dla ¹¹³I

Podsumowanie

- metoda PXCT umożliwia pomiar czasu życia poziomów jądrowych w zakresie 10⁻¹⁵ – 10⁻¹⁶ s
- uzyskujemy informacje o szerokościach stanów wzbudzonych jąder egzotycznych
- możliwość testowania modelu statystycznego
- pomiary TAS umożliwiają prostą interpretację danych