Lessons from RHIC and Potential Discoveries at LHC with Ions

recent reviews:

M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30

pbm and J. Stachel, Nature 448 (2007) 302

pbm and J. Wambach, Rev. Mod. Phys. (2009) in print arXiv:0801.4256

see also: Heavy Ion Collisions at the LHC – Last Call for Predictions J. Phys. G35 (2008) 054001, arXiv:0711.0974

Warsaw, May 18, 2009

selective synopsis of RHIC results

focus is on:

- 1. particle multiplicity
- 2. hadron production mechanism
- 3. hydrodynamic flow results
- 4. jet quenching
- 5. charmonium physics

not covered:

particle correlations, photons, dileptons,

charm and beauty production, ultraperipheral collisions, ...

Critical energy density and critical temperature

 $T_c = 173 \not\models 12 \text{ MeV}$ $\epsilon P_c = 700 \mid \pm 200 \text{ MeV/fm}^3$ for the (2 + 1) flavor case: the phase transition to the QGP and its parameters are quantitative predictions of QCD.

The order of the transition is not yet definitively determined,

see also:

Aoki, Y., G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, 2006a, Nature 443, 675.
Aoki, Y., Z. Fodor, S. D. Katz, and K. K. Szabo, 2006b, Phys. Lett. B643, 46.

Peter Braun-Munzinger

current status of lattice QCD calculations -- critical temperature

F. Karsch, Erice Workshop, Sept. 2008

Peter Braun-Munzinger

Evolution of the Early Universe

characterizing QGP matter at LHC

equation of state number of degrees of freedom transport coefficients (viscosity etc) velocity of sound parton energy loss and opacity susceptibilities deconfinement

but also, look for the unexpected

UNIVERSITĂ

DARMSTADT

GEMEINSCHA

RHIC experiments: 2 large and 2 small

PHENIX: central 2 arm spectrometer plus forward/backward muon arms

STAR: large TPC at central rapidity

as well as **PHOBOS** and **BRAHMS**

(both completed)

TECHNISCHE UNIVERSITÄT DARMSTADT

Peter Braun-Munzinger

STAR event display

in central AuAu collsions at RHIC √s = 200 GeV about 7500 hadrons produced (BRAHMS)

about three times as much as at CERN SPS

The Space-Time Evolution of a Relativistic Nuclear Collision

DARMSTADT

Peter Braun-Munzinger

Day 1 Measurements – charged particle multiplicity

HELMHOLTZ GEMEINSCHAFT

RHIC energy too low for safe extrapolation, many differing models - strongly sensitive to initial condition at LHC

Peter Braun-Munzinger

differing predictions for multiplicity density

Charged multiplicity for $\eta=0$ in central Pb+Pb at $\sqrt{s_{NN}}=5.5$ TeV

compilation from: arXiv:0711.0974

day 1 results from LHC will define the ,,particle production landscape" -> insight into initial conditions and crucial test of different theoretical approaches (color glass cond., saturation, shadowing, ...)

HELMHOLTZ GEMEINSCHAFT

From AGS energy on, all hadron yields in central PbPb collisions reflect grandcanonical equilibration
Strangeness suppression observed in elementary collisions is lifted

For a recent review see:

pbm, Stachel, Redlich, QGP3, R. Hwa, editor, Singapore 2004, nucl-th/0304013

Hadro-chemistry at RHIC

All data in excellent agreement with thermal model predictions

chemical freeze-out at: $T = 165 \pm 8 \text{ MeV}$

fit uses vacuum masses most recent analysis: A. Andronic, pbm, J. Stachel, nucl-th/0511071 Nucl. Phys. A772(2006) 167

pbm, Magestro, Stachel, Redlich, Phys. Lett. B518 (2001) 41; see also Xu et al., Nucl. Phys. A698(2002) 306; Becattini, J. Phys. G28 (2002) 1553;

Broniowski et al., nucl-th/0212052.

Parameterization of all freeze-out points

Peter Braun-Munzinger

Horn structure well described

rapid saturation of contributions from higher resonances in conjunction with additional pions from the sigma describes horn structure well

crucial input is saturation of T due to the phase boundary

solid prediction for LHC energy

Andronic, pbm, Stachel ArXiv:0812.1186 [nucl-th] Phys. Lett. B673 (2009) 142

Peter Braun-Munzinger

Summary of statistical model interpretation

- hadron yields quantitatively described at all energies
- by 3 parameters: T, mu_b, V
- limiting temperature established
- connection to QCD phase boundary
- first data from LHC will provide a crucial test of this picture: does limiting temperature picture survive a 20 fold increase in cm energy?

anything else would be a major surprize already day 1 data from LHC will be decisive

The fireball expands collectively like an ideal fluid

hydrodynamic flow characterized by azimuthal anisotropy coeffient v_2

Elliptic Flow Results from RHIC

Quark number scaling violations

TECHNISCHE

DARMSTADT

UNIVER

What will come from LHC measurements? 1st data will tell!

Peter Braun-Munzinger

QGP and Ultra-cold Quantum Gases

DARMSTADT

exploring the importance of viscous effects

DARMSTAD

summary of all existing data

note: the initial eccentricity must be computed in a model

$$= \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

 \mathcal{E}

UNIVERSITAT

extrapolations to LHC

'Busza' extrapolation – too much for hydro?

evolution of flow in a simple scaling model

DARMSTAD

Summary of RHIC Hydro Results

- spectra and flow well explained by ideal hydrodynamics calculations
- viscosity/entropy density close to AdS/CFT limit
- is hydro limit reached at RHIC, will it be ,,exceeded at LHC"?
- is viscosity only low near phase boundary?
- is quark scaling universal?

day 1 results from LHC will be decisive

The fireball is opaque for high momentum partons

- HELMHOLTZ GEMEINSCHAFT
- suppression of high p_t particles in AA relative to pp collisions
- disappearance of jet-like correlations
- connected to large gluon density in hot (QGP) fireball

Jet quenching

- Hard parton scattering observed via leading particles
- Expect strong Δφ=π azimuthal correlations

However, the scattered partons may lose energy (several GeV/fm) in the colored medium

- \rightarrow momentum reduction (fewer high p_T particles in jet)
- ightarrow no jet partner on other side

Jet Quenching

Peter Braun-Munzinger

Definition of R_{AA}

Leading hadrons and hard photons

- Direct photons are not suppressed, follow pQCD predictions.
- Common suppression for π^0 and η .
- $\epsilon > 15 \text{ GeV/fm}^3$; $dN_q/dy > 1100$

but what about photons at very large p_t?

elucidation is LHC territory

DARMSTADT

	$ au_0[fm]$	T[MeV]	ε [GeV / fm ³]	$\tau_{tot}[fm]$	dN^g / dy
SPS	0.8	210-240	1.5-2.5	1.4-2	200-350
RHIC	0.6	380-400	14-20	6-7	800-1200
LHC	0.2	710-850	190-400	18-23	2000-3500

I. Vitev, JPG 30 (2004) S791

•Estimates consistent with hydrodynamic analysis

further big surprize at RHIC: strong energy loss of heavy quarks

electrons from heavy flavor mesonsstrong energy losshydrodynamic flow

these data are not well explained, measure heavy quarks ,,directly" at LHC

the ultimate hard probes machine

Predictions for jet quenching at LHC

S. Wicks and M. Gyulassy

more predictions...

Renk and Eskola

important: perturbative QCD regime may never be reached!

synopsis of jet quenching predictions for LHC energy

UNIVERSITĂT

Peter Braun-Munzinger

Summary of jet quenching results

- for p_t > 3 GeV hadron production is strongly suppressed compared to pQCD expectations
- only viable explanation: large energy loss of fast partons in fireball
- even heavy quarks lose large amount of energy
- both gluon radiation and collisional energy loss seem important but no unique theoretical description of RHIC data

first month of LHC data with p_t reach up to 50 GeV will bring decisive new insights

Another provocative issue: Long range rapidity correlations (the ridge)

The fireballs modifies charmonium production

Charmonium as a probe for the properties of the QGP

the main idea: implant charmonia into the QGP and observe their modification, in terms of suppressed (or enhanced) production in nucleus-nucleus collisions with or without plasma formation

original proposal: H. Satz and T. Matsui, Phys. Lett. B178 (1986) 416

assumptions:

- all charmonia are produced before QGP formation
- suppression takes place in QGP
- some charmonia might survive beyond T_c

 \rightarrow sequential suppression pattern due to feeding

Review of results from RHIC

new aspects compared to SPS results

- absolute normalization of yields
- rapidity dependence
- comparison to results from pp collisions

Definition of Modification of Charmonium in the Fireball

use R_{AA} to define charmonium modification experimentally no need to normalize to Drell-Yan process

$$R_{AA}^{J/\psi} = \frac{\mathrm{d}N_{J/\psi}^{AuAu}/\mathrm{d}y}{N_{coll}\cdot\mathrm{d}N_{J/\psi}^{pp}/\mathrm{d}y}$$

if $\sigma_{\text{Drell-Yan}} \propto N_{\text{coll}}$, R_{AA} is equivalent to NA50 definition, except for 'cold nuclear matter' effects

Comparison of RHIC and SPS Results

surprize: no energy dependence but unexpected rapidity dependence

Too much suppression at RHIC in Standard QGP Scenario

standard scenario: all charmonia melt near T_c

models tuned for SPS data fail at RHIC

TECHNISCHI

DARMSTADT

Comparison of model predictions to RHIC data: rapidity dependence

large rates and cross sections for heavy quark production at the LHC

Quarkonium as a probe for deconfinement at the

at hadronization of QGP J/ψ can form again from deconfined quarks, in particular if number of ccbar pairs is large

$$N_{J/\psi}\!\!\propto\!\!N_{cc}^{-2}$$

(P. Braun-Munzinger and J.Stachel, PLB490 (2000) 196)

LHC

charmonium enhancement as fingerprint of deconfinement at LHC energy

Summary of RHIC data on charmonium production

- major surprize: suppression equal to that observed at SPS
- major surprize: suppression is minimal at midrapidity
- LHC: expect qualitatively new features due to very large charm quark density

•first month of LHC data with a few thousend charmonia will bring decisive new insights

the discoveries at RHIC, principally on

thermalization and flow --> ideal fluid scenario

jet quenching --> parton energy loss in dense fireball

have led to major progress in our understanding of the QGP

These discoveries raise many new questions. Even a short heavy ion run in 2009/2010 can bring fundamentally new insights. The experiments are ready.

additional slides

Viscosity of QCD matter

To the rescue: String theory and lattice QCD.

General argument [Kovtun, Son & Starinets] based on duality betwe

Grand Canonical Ensemble

$$\begin{split} \ln Z_i &= \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T)) \\ n_i &= N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp((E_i - \mu_i)/T) \pm 1} \\ \mu_i &= \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3 \end{split}$$

Fit at each energy provides values for T and µ_b

for every conserved quantum number there is a chemical potential μ but can use conservation laws to constrain:

• Baryon number: $V \underset{i}{\Sigma} n_i B_i = Z + N \longrightarrow V$ • Strangeness: $V \underset{i}{\Sigma} n_i S_i = 0 \longrightarrow \mu_S$ • Charge: $V \underset{i}{\Sigma} n_i I_i^3 = \frac{Z - N}{2} \longrightarrow \mu_{I_3}$

This leaves only μ_b and T as free parameter when 4π considered for rapidity slice fix volume e.g. by dN_{ch}/dy

Main result: chemical freeze-out points seem to delineate the QCD phase boundary at small baryochemical potential $(\mu < 400 \text{ MeV})$

