

Parton Distribution Functions and the LHC

James Stirling Cambridge University

- introduction: parton distribution functions
- the MSTW* project
- implications for LHC physics

*with Alan Martin, Robert Thorne, Graeme Watt

deep inelastic scattering and parton distributions

parton distribution functions

 $f_{i/A}(x,Q^2)$

- introduced by Feynman (1969) in the *parton model*, to explain Bjorken scaling in deep inelastic scattering data; interpretation as probability distributions
- according to the QCD *factorisation theorem* for inclusive hard scattering processes, universal distributions containing long-distance structure of hadrons; related to parton model distributions at leading order, but with logarithmic scaling violations
- key ingredients for Tevatron and LHC phenomenology

for example, in Deep Inelastic Scattering

$$\begin{aligned} \frac{1}{x}F_2^{lp}(x,Q^2) &= x\sum_q e_q^2 \int_x^1 \frac{dy}{y} q(y,Q^2) \left\{ \delta(1-\frac{x}{y}) + \frac{\alpha_s(Q^2)}{2\pi} C_q(x/y) \right\} \\ &+ x\sum_q e_q^2 \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} g(y,Q^2) C_g(x/y) + \mathcal{O}(\alpha_S^2) \\ &+ \mathcal{O}(1/Q^2) \quad \text{(higher twist, mass corrections)} \end{aligned}$$

where the scale dependence of the parton distributions is calculable in QCD perturbation theory

$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(x,\mu^2) = \frac{\alpha_S(\mu^2)}{2\pi} \sum_j \int_x^1 \frac{dy}{y} f_j(y,\mu^2) P_{ij}(x/y,\alpha_S(\mu^2))$$

... and $f_i(x, \mu_0^2)$ determined from

- lattice QCD
- 🔹 fits to data 🛛 🔶

Dokshitzer Gribov Lipatov Altarelli Parisi

 O^2

C

 y, μ^2

 $f_{i/p}$

beyond leading order in pQCD:

$$P(x, \alpha_S) = P^{(0)}(x) + \left(\frac{\alpha_S}{2\pi}\right) P^{(1)}(x) + \left(\frac{\alpha_S}{2\pi}\right)^2 P^{(2)}(x) + \dots$$

the 2004 calculation of the complete set of $P^{(2)}$ splitting functions by Moch, Vermaseren and Vogt completes the calculational tools for a consistent NNLO (massless) pQCD treatment of lepton-hadron and hadron-hadron collider hard-scattering cross sections

Note:

- f_i^{LO} , f_i^{NLO} and f_i^{NNLO} are different quantities!
- beyond LO, they depend on the factorisation prescription (e.g. MS)

and in hadron-hadron collisions

$$\sigma^{pp \to X + \dots} = \sum_{ij} \int_0^1 dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \times \hat{\sigma}_{ij \to X + \dots} \left(x_1, x_2, \{p_i^{\mu}\}, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right) \qquad \begin{array}{ll} \text{Collins} \\ \text{Soper} \\ \text{Sterman} \end{array}$$

where Q is the 'hard scale' (e.g. = M_X), usually μ_F , $\mu_R = cQ$, and $\hat{\sigma}$ is known to fixed order in pQCD (sometimes with additional resummed large log corrections, QED corrections,)

pdfs in 1993

	μ-DIS	v-DIS	Prompt γ	D-Yan	W, Z
MRS '88	EMC +	CDHSW	$ ext{AFS}(+J/\psi)$	-	-
DFLM '88	(EMC +)	CHARM +	-	E288 +	-
ABFOW '89	BCDMS	-	WA70	-	-
HMRS '90	$\begin{array}{c} \text{EMC} \\ \text{BCDMS} \\ \text{NMC}(n/p) \end{array}$	CDHSW	WA70	E605	-
MT '90	EMC BCDMS	CDHSW	-	E288 E605	-
KMRS '90 (sets B ₀ ,B_)	BCDMS MMC(n/p)	CDHSW	WA70	E605	-
MRS (Apr '92) (sets D ₀ ,D ₋)	$BCDMS \\ NMC(p, n)^{\dagger}$	CDHSW CCFR [†]	WA70	E605	(UA2, CDF
MRS (Nov '92) (sets D'_0,D'_)	$\begin{array}{c} \operatorname{BCDMS} \\ \operatorname{NMC}(p,n) \end{array}$	CCFR	WA70	E605	(UA2, CDF)
CTEQ ('93)	$\begin{array}{c} \text{BCDMS} \\ \text{NMC}(p,n) \end{array}$	CCFR	WA70 E706,UA6	E605	

MRS, DIS93, Durham

pdfs in 2009

Data set	$N_{ m pts.}$
H1 MB 99 e ⁺ p NC	8
H1 MB 97 e ⁺ p NC	64
H1 low Q^2 96–97 e^+p NC	80
H1 high <i>Q</i> ² 98–99 <i>e⁻p</i> NC	126
H1 high <i>Q</i> ² 99–00 <i>e</i> + <i>p</i> NC	147
ZEUS SVX 95 e^+p NC	30
ZEUS 96-97 e ⁺ p NC	144
ZEUS 98–99 e ⁻ p NC	92
ZEUS 99–00 e^+p NC	90
H1 99–00 e ⁺ p CC	28
ZEUS 99–00 e ⁺ p CC	30
H1/ZEUS $e^{\pm}p F_2^{charm}$	83
H1 99–00 <i>e</i> + <i>p</i> incl. jets	24
ZEUS 96–97 e^+p incl. jets	30
ZEUS 98–00 $e^{\pm}p$ incl. jets	30
DØ II <i>p</i> p̄ incl. jets	110
CDF II <i>pp</i> incl. jets	76
CDF II $W \rightarrow l \nu$ asym.	22
DØ II $W \rightarrow l\nu$ asym.	10
DØ II Z rap.	28
CDF II Z rap.	29

BCDMS $\mu p F_2$ 163 BCDMS $\mu d F_2$ 151 NMC $\mu p F_2$ 123 NMC $\mu d F_2$ 123 NMC $\mu n/\mu p$ 148 E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	Data set	$N_{ m pts.}$
BCDMS $\mu d F_2$ 151 NMC $\mu p F_2$ 123 NMC $\mu d F_2$ 123 NMC $\mu n/\mu p$ 148 E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	BCDMS $\mu p F_2$	163
NMC $\mu p F_2$ 123 NMC $\mu d F_2$ 123 NMC $\mu n/\mu p$ 148 E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	BCDMS $\mu d F_2$	151
NMC $\mu d F_2$ 123 NMC $\mu n/\mu p$ 148 E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu\mu X$ 86 NuTeV $\nu N \rightarrow \mu\mu X$ 84	NMC $\mu p F_2$	123
NMC $\mu n/\mu p$ 148 E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu\mu X$ 86 NuTeV $\nu N \rightarrow \mu\mu X$ 84	NMC $\mu d F_2$	123
E665 $\mu p F_2$ 53 E665 $\mu d F_2$ 53 SLAC $ep F_2$ 37 SLAC $ed F_2$ 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu\mu X$ 86 NuTeV $\nu N \rightarrow \mu\mu X$ 84	NMC $\mu n/\mu p$	148
E665 $\mu d F_2$ 53 SLAC ep F_2 37 SLAC ed F_2 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	E665 $\mu p F_2$	53
SLAC ep F_2 37 SLAC ed F_2 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	E665 $\mu d F_2$	53
SLAC ed F_2 38 NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	SLAC ep F_2	37
NMC/BCDMS/SLAC F_L 31 E866/NuSea pp DY 184 E866/NuSea pd/pp DY 15 NuTeV $\nu N F_2$ 53 CHORUS $\nu N F_2$ 42 NuTeV $\nu N xF_3$ 45 CHORUS $\nu N xF_3$ 33 CCFR $\nu N \rightarrow \mu \mu X$ 86 NuTeV $\nu N \rightarrow \mu \mu X$ 84	SLAC ed F_2	38
E866/NuSea pp DY184E866/NuSea pd/pp DY15NuTeV $\nu N F_2$ 53CHORUS $\nu N F_2$ 42NuTeV $\nu N \times F_3$ 45CHORUS $\nu N \times F_3$ 33CCFR $\nu N \rightarrow \mu\mu X$ 86NuTeV $\nu N \rightarrow \mu\mu X$ 84	NMC/BCDMS/SLAC F _L	31
E866/NuSea pd/pp DY15NuTeV $\nu N F_2$ 53CHORUS $\nu N F_2$ 42NuTeV $\nu N xF_3$ 45CHORUS $\nu N xF_3$ 33CCFR $\nu N \rightarrow \mu\mu X$ 86NuTeV $\nu N \rightarrow \mu\mu X$ 84	E866/NuSea <i>pp</i> DY	184
NuTeV $\nu N F_2$ 53CHORUS $\nu N F_2$ 42NuTeV $\nu N \times F_3$ 45CHORUS $\nu N \times F_3$ 33CCFR $\nu N \rightarrow \mu \mu X$ 86NuTeV $\nu N \rightarrow \mu \mu X$ 84	E866/NuSea <i>pd/pp</i> DY	15
CHORUS $\nu N F_2$ 42NuTeV $\nu N \times F_3$ 45CHORUS $\nu N \times F_3$ 33CCFR $\nu N \rightarrow \mu \mu X$ 86NuTeV $\nu N \rightarrow \mu \mu X$ 84	NuTeV $\nu N F_2$	53
NuTeV $\nu N \times F_3$ 45CHORUS $\nu N \times F_3$ 33CCFR $\nu N \rightarrow \mu \mu X$ 86NuTeV $\nu N \rightarrow \mu \mu X$ 84	CHORUS $\nu N F_2$	42
CHORUS $\nu N \times F_3$ 33CCFR $\nu N \rightarrow \mu \mu X$ 86NuTeV $\nu N \rightarrow \mu \mu X$ 84	NuTeV $\nu N \times F_3$	45
CCFR $\nu N \rightarrow \mu \mu X$ 86NuTeV $\nu N \rightarrow \mu \mu X$ 84	CHORUS $\nu N \times F_3$	33
NuTeV $\nu N \rightarrow \mu \mu X$ 84	$CCFR \ \nu N \to \mu \mu X$	86
	NuTeV $ u N ightarrow \mu \mu X$	84
All data sets 2743	All data sets	2743

how pdfs are obtained

- choose a factorisation scheme (e.g. MSbar), an order in perturbation theory (LO, NLO, NNLO) and a 'starting scale' Q₀ where pQCD applies (e.g. 1-2 GeV)
- parametrise the quark and gluon distributions at Q_{0} , e.g.

$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

- solve DGLAP equations to obtain the pdfs at any x and scale $Q > Q_0$; fit data for parameters $\{A_{i}, a_{i}, \dots, \alpha_{S}\}$
- approximate the exact solutions (e.g. interpolation grids, expansions in polynomials etc) for ease of use; thus the output 'global fits' are available 'off the shelf", e.g.

SUBROUTINE PDF (X, Q, U, UBAR, D, DBAR, ..., BBAR, GLU)inputoutput

the pdf industry

- many groups now extracting pdfs from 'global' data analyses (MSTW, CTEQ, NNPDF, HERAPDF, ABKM, GJR, ...)
- broad agreement, but differences due to
 - choice of data sets (including cuts and corrections)
 - treatment of data errors
 - treatment of heavy quarks (s,c,b)
 - order of perturbation theory
 - parameterisation at Q_0
 - theoretical assumptions (if any) about:
 - flavour symmetries
 - $x \rightarrow 0, 1$ behaviour

recent global fits

ABKM (Alekhin, Blumlein, Klein, Moch): global (DIS + DY) NNLO fits in FFNS, BMSN-VFNS [arXiv:0908.2766]

CTEQ (Nadolsky et al): global LO, NLO VFNS fit [arXiv:0802.0007]

GJR (Jimenez-Delgado, Reya): global (DIS + DY) NLO, NNLO FFNS, VFNS fits [arXiv:0909.1711]

HERAPDF (H1+ZEUS): NLO VFNS fit to DIS data [arXiv:0906.1108]

MSTW (Martin, Stirling, Thorne, Watt): global LO, NLO and NNLO VFNS fits [arXiv:0901.0002]

NNPDF (Ball et al): NLO VFNS fit to DIS data using neural net technology to avoid parameterisation dependence [arXiv:0906.1958]

+ older fits

*Alan Martin, WJS, Robert Thorne, Graeme Watt

arXiv:0901.0002 [hep-ph], arXiv:0905.3531 [hep-ph]

the MRS/MRST/MSTW project

- since 1987 (with Alan Martin, Dick Roberts, Robert Thorne, Graeme Watt), to produce 'stateof-the-art' pdfs
- combine experimental data with theoretical formalism to perform 'global fits' to data to extract the pdfs in user-friendly form for the particle physics community
- currently widely used at HERA and the Fermilab Tevatron, and in physics simulations for the LHC
- currently, the only available NNLO pdf sets with rigorous treatment of heavy quark flavours

MSTW 2008

- supersedes MRST sets
- new data (see next slide)
- new theory/infrastructure

- δf_i from new dynamic tolerance method: 68%cl $~(1\sigma)$ and 90%cl ~(cf. MRST) sets available
- new definition of α_s (no more Λ_{QCD})
- new GM-VFNS for c, b (see Martin et al., arXiv:0706.0459)
- new fitting codes: FEWZ, VRAP, fastNLO
- new grids: denser, broader coverage
- slightly extended parametrisation at Q_0^2 :34-4=30 free parameters including α_s

code, text and figures available at: http://projects.hepforge.org/mstwpdf/

data sets used in fit

	Data ast	Δ/	
	Data set	$N_{\rm pts.}$	Data set
	H1 MB 99 <i>e</i> + <i>p</i> NC	8	BCDMS
	H1 MB 97 e ⁺ p NC	64	BCDMS
	H1 low Q^2 96–97 e^+p NC	80	NMC ur
	H1 high <i>Q</i> ² 98–99 <i>e⁻p</i> NC	126	NMC $\mu\rho$
	H1 high Q^2 99–00 $e^+ p$ NC	147	
	ZEUS SVX 95 e^+p NC	30	E665 μ
	ZEUS 96–97 e^+p NC	144	Ε005 μp
	ZEUS 98-99 e ⁻ p NC	92	$E005 \mu a$
	ZEUS 99–00 e^+p NC	90	SLAC ep
	H1 99–00 e ⁺ p CC	28	
	ZEUS 99–00 e^+p CC	30	
	H1/ZEUS $e^{\pm}p F_{2}^{charm}$	83	
	H1 99–00 e^+p incl. iets	24	
	ZEUS 96–97 $e^+\rho$ incl. iets	30	
	ZEUS 98–00 $e^{\pm}p$ incl. jets	30	
•	$D\emptyset p\bar{p}$ incl. jets	110	
	$CDF \prod p\bar{p}$ incl. jets	76	CHURU
	CDF II $W \rightarrow l\nu$ asym	22	$CCFR \nu I$
	$D\emptyset \parallel W \rightarrow ly$ asym	10	Nu leV 1
	$D\emptyset \parallel Z$ rap.	28	All data
	CDF II Z rap.	29	Red
	-		

Data set	$N_{ m pts.}$
BCDMS $\mu p F_2$	163
BCDMS $\mu d F_2$	151
NMC $\mu p F_2$	123
NMC $\mu d F_2$	123
NMC $\mu n/\mu p$	148
E665 $\mu p F_2$	53
E665 $\mu d F_2$	53
SLAC ep F ₂	37
SLAC ed F_2	38
NMC/BCDMS/SLAC F_L	31
E866/NuSea <i>pp</i> DY	184
E866/NuSea <i>pd/pp</i> DY	15
NuTeV $\nu N F_2$	53
CHORUS $\nu N F_2$	42
NuTeV $\nu N \times F_3$	45
CHORUS $\nu N \times F_3$	33
$CCFR \ \nu N o \mu \mu X$	86
NuTeV $ u N ightarrow \mu \mu X$	84
All data sets	2743

• Red = New w.r.t. MRST 2006 fit.

values of χ^2/N_{pts} for the data sets included in the MSTW2008 global fits

Data set	LO	NLO	NNLO
BCDMS $\mu p F_2$ [32]	165 / 153	182 / 163	170 / 163
BCDMS $\mu d F_2$ [102]	162 / 142	190 / 151	188 / 151
NMC $\mu p F_2$ [33]	137 / 115	121 / 123	115 / 123
NMC $\mu d F_2$ [33]	120 / 115	102 / 123	93 / 123
NMC $\mu n / \mu p$ [103]	131 / 137	130 / 148	135 / 148
E665 $\mu p F_2$ [104]	59 / 53	57 / 53	63 / 53
$E665 \ \mu d \ F_2 \ [104]$	49 / 53	53 / 53	63 / 53
SLAC $ep F_2$ [105, 106]	24 / 18	30 / 37	31 / 37
SLAC <i>ed</i> F_2 [105, 106]	12 / 18	30 / 38	26 / 38
NMC/BCDMS/SLAC F_L [32–34]	28 / 24	38 / 31	32 / 31
E866/NuSea pp DY [<u>107</u>]	239 / 184	228 / 184	237 / 184
E866/NuSea pd/pp DY [108]	14 / 15	14 / 15	14 / 15
NuTeV $\nu N F_2$ [37]	49 / 49	49 / 53	46 / 53
CHORUS $\nu N F_2$ [38]	21 / 37	26 / 42	29 / 42
NuTeV $\nu N xF_3$ [37]	62 / 45	40 / 45	34 / 45
CHORUS $\nu N xF_3$ [38]	44 / 33	31 / 33	26 / 33
CCFR $\nu N \rightarrow \mu \mu X$ [39]	63 / 86	66 / 86	69 / 86
NuTeV $\nu N \rightarrow \mu \mu X$ [39]	44 / 40	3 9 / 40	45 / 40
H1 MB 99 e ⁺ p NC <u>[31]</u>	9 / 8	9 / 8	7 / 8
H1 MB 97 e ⁺ p NC [109]	46 / 64	42 / 64	51 / 64
H1 low Q^2 96–97 e^+p NC [109]	54 / 80	44 / 80	45 / 80
H1 high Q^2_{-} 98–99 e^-p NC [110]	134 / 126	122 / 126	124 / 126
H1 high Q^2 99–00 e^+p NC [35]	153 / 147	131 / 147	133 / 147
ZEUS SVX 95 e^+p NC [111]	35 / 30	35 / 30	35 / 30
ZEUS 96–97 e ⁺ p NC [<u>112</u>]	118 / 144	86 / 144	86 / 144
ZEUS 98–99 e ⁻ p NC [113]	61 / 92	54 / 92	54 / 92
ZEUS 99–00 e ⁺ p NC [<u>114</u>]	75 / 90	63 / 90	65 / 90
H1 99–00 e ⁺ p CC [<u>35]</u>	28 / 28	29 / 28	29 / 28
ZEUS 99–00 e ⁺ p CC [<u>36</u>]	36 / 30	38 / 30	37 / 30
$H1/ZEUS ep F_2^{charm}$ [41–47]	110 / 83	107 / 83	95 / 83
H1 99–00 e ⁺ p incl. jets [<u>59</u>]	109 / 24	19 / 24	—
ZEUS 96–97 e ⁺ p incl. jets [<u>57</u>]	88 / 30	30 / 30	—
ZEUS 98–00 $e^{\pm}p$ incl. jets [58]	102 / 30	17 / 30	—
DØ II $p\bar{p}$ incl. jets [56]	193 / 110	114 / 110	123 / 110
CDF II $p\bar{p}$ incl. jets [54]	143 / 76	56 / 76	54 / 76
CDF II $W \rightarrow \ell \nu$ asym. [48]	50 / 22	29 / 22	30 / 22
DØ II $W \rightarrow \ell \nu$ asym. [49]	23 / 10	25 / 10	25 / 10
DØ II Z rap. [53]	25 / 28	19 / 28	17 / 28
CDF II Z rap. [52]	52 / 29	49 / 29	50 / 29
All data sets	3066 / 2598	2543 / 2699	2480 / 2615

MSTW input parametrisation

At input scale $Q_0^2 = 1$ GeV²:

$$\begin{aligned} xu_{v} &= A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x) \\ xd_{v} &= A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x) \\ xS &= A_{S} x^{\delta_{S}} (1-x)^{\eta_{S}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x\bar{d} - x\bar{u} &= A_{\Delta} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Delta} x + \delta_{\Delta} x^{2}) \\ xg &= A_{g} x^{\delta_{g}} (1-x)^{\eta_{g}} (1+\epsilon_{g} \sqrt{x} + \gamma_{g} x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ xs + x\bar{s} &= A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ xs - x\bar{s} &= A_{-} x^{\delta_{-}} (1-x)^{\eta_{-}} (1-x/x_{0}) \end{aligned}$$

<u>Note:</u> **20 parameters** allowed to go free for eigenvector PDF sets, *cf.* 15 for MRST sets

which data sets determine which partons?

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q,ar q,g	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u o d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
$ u(\bar{\nu}) N \to \mu^-(\mu^+) X $	$W^*q \to q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d,s	$x \gtrsim 0.01$
$e^{\pm}p \to e^{\pm} c \bar{c} X$	$\gamma^* c \to c, \ \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
$p\bar{p} \to (Z \to \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

MSTW2008(NLO) vs. CTEQ6.6

Note:

CTEQ error bands comparable with MSTW 90%cl set (different definition of tolerance)

CTEQ light quarks and gluons slightly larger at small x because of imposition of positivity on gluon at Q_0^2

the asymmetric sea

•the sea presumably arises when 'primordial' valence quarks emit gluons which in turn split into quark-antiquark pairs, with suppressed splitting into heavier quark pairs

•so we naively expect

 $u \approx d > s > c > \dots$

• but why such a big d-u asymmetry? Meson cloud, Pauli exclusion, ...? The ratio of Drell-Yan cross sections for $pp,pn \rightarrow \mu^+\mu^- + X$ provides a measure of the difference between the *u* and *d* sea quark distributions

strange

earliest pdf fits had SU(3) symmetry: $s(x,Q_0^2) = \bar{s}(x,Q_0^2) = \bar{u}(x,Q_0^2) = \bar{d}(x,Q_0^2)$

later relaxed to include (constant) strange suppression (cf. fragmentation):

$$s(x,Q_0^2) = \bar{s}(x,Q_0^2) = \frac{\kappa}{2} \left[\bar{u}(x,Q_0^2) + \bar{d}(x,Q_0^2) \right]$$

with $\kappa = 0.4 - 0.5$

nowadays, dimuon production in vN DIS (CCFR, NuTeV) allows 'direct' determination:

$$\frac{d\sigma}{dxdy}\left(\nu_{\mu}(\bar{\nu}_{\mu})N \to \mu^{+}\mu^{-}X\right) = B_{c} \mathcal{NA} \frac{d\sigma}{dxdy}\left(\nu_{\mu}s(\bar{\nu}_{\mu}\bar{s}) \to c\mu^{-}(\bar{c}\mu^{+})X\right)$$

in the range 0.01 < x < 0.4 data seem to prefer $s(x, Q_0^2) - \overline{s}(x, Q_0^2) \neq 0$ theoretical explanation?!

MSTW

charm, bottom

considered sufficiently massive to allow pQCD treatment: $g \rightarrow Q\overline{Q}$

distinguish two regimes:

(i) $Q^2 \sim m_H^2$ include full m_H dependence to get correct threshold behaviour (ii) $Q^2 \gg m_H^2$ treat as ~massless partons to resum $\alpha_s^n \log^n(Q^2/m_H^2)$ via DGLAP

FFNS: OK for (i) only ZM-VFNS: OK for (ii) only

consistent **GM**(=general mass)-**VFNS** now available (e.g. ACOT(χ), Roberts-Thorne) which interpolates smoothly between the two regimes

Note: definition of these is tricky and non-unique (ambiguity in assignment of $O(m_H^2/Q^2)$ contributions), and the implementation of improved treatment (e.g. in going from MRST2006 to MSTW 2008) can have a big effect on light partons

charm and bottom structure functions

- MSTW 2008 uses *fixed* values of $m_c = 1.4 \text{ GeV}$ and $m_b = 4.75 \text{ GeV}$ in a GM-VFNS
- can study the sensitivity of the fit to these values

charm and bottom structure functions

dependence on m_c at NLO in 2008 fits (preliminary)

m_c (GeV)	χ^2_{global}	$\chi^2_{F_2^c}$	$\alpha_s(M_Z^2)$
	2699 pts	83 pts	
1.1	2730	264	0.1181
1.2	2626	188	0.1187
1.3	2563	134	0.1194
1.4	2543	107	0.1202
1.5	2545	97	0.1208
1.6	2574	104	0.1214
1.7	2627	129	0.1221

- correlation between m_c and α_s
- for low m_c overshoot low Q² medium x data badly
- preferred value (1.4 GeV) towards lower end of pole mass determination
- (asymmetric) uncertainty from global fit of order ± 0.15 GeV
- in contrast, only weak sensitivity to m_b

impact of Tevatron jet data on fits

- a distinguishing feature of pdf sets is whether they use (MRST/MSTW, CTEQ,...) or do not use (H1, ZEUS, Alekhin, NNPDF,...) Tevatron jet data in the fit: the impact is on the *high-x gluon* (*Note: Run II data requires slightly softer gluon than Run I data*)
- the (still) missing ingredient is the full NNLO pQCD correction to the cross section, but not expected to have much impact in practice

dijet mass distribution from D0

Rominsky, DIS09 ³⁴

a note on α_{S}

• world average value (PDG 2008):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1176 \pm 0.002$$

• MSTW global fit value (minimum χ^2):

$$\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171$$

 the pdf error sets are generated with α_S fixed at its 'best fit' value, therefore variation of (e.g. jets, top, etc at LHC) cross sections with α_S is not explicitly included in the 'pdf error'

Note:
$$\alpha_S^{\overline{MS},NLO}(M_Z^2) = 0.1202$$

MSTW variable- α_s sets*

- allow $\alpha_{\rm S}$ to vary in global fit $\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171^{+0.0014}_{-0.0014}$
- for fixed $\alpha_{s} \pm \delta \alpha_{s}$, produce sets with 'pdf errors', as before
- note gluon α_{s} anticorrelation at small x and quark – α_{s} anticorrelation at large x
- use resulting sets to quantify combined 'pdf + α_s ' error on observables
 - * arXiv:0905.3531 [hep-ph]

MSTW 2008 NNLO (ag) PDF fit

 $\alpha_{g}(M_{\chi}^{2}) = 0.1171^{+0.0014}_{-0.0014}$ (68% C.L.) $^{+0.0034}_{-0.0014}$ (90% C.L.)

 $\Delta \chi^2_{global}$

500 E

400

300

pdf, α_{S} uncertainties in jet cross sections

Inclusive jet cross sections with MSTW 2008 NLO PDFs

pdfs at LHC:

- impact on precision phenomenology
- can we constrain pdfs further?

the QCD **factorization theorem** for hard-scattering (short-distance) inclusive processes

$$\begin{split} \sigma_{X} &= \sum_{\mathbf{a},\mathbf{b}} \int_{\mathbf{0}}^{\mathbf{1}} d\mathbf{x}_{1} d\mathbf{x}_{2} \ \mathbf{f}_{\mathbf{a}}(\mathbf{x}_{1},\mu_{\mathrm{F}}^{2}) \ \mathbf{f}_{\mathbf{b}}(\mathbf{x}_{2},\mu_{\mathrm{F}}^{2}) \\ &\times \quad \hat{\sigma}_{\mathbf{a}\mathbf{b}\to X} \left(\mathbf{x}_{1},\mathbf{x}_{2},\{\mathbf{p}_{i}^{\mu}\}; \alpha_{\mathbf{S}}(\mu_{\mathrm{R}}^{2}), \alpha(\mu_{\mathrm{R}}^{2}), \frac{\mathbf{Q}^{2}}{\mu_{\mathrm{R}}^{2}}, \frac{\mathbf{Q}^{2}}{\mu_{\mathrm{F}}^{2}} \right) \end{split}$$

where X=W, Z, H, high-E_T jets, SUSY sparticles, black hole, ..., and Q is the 'hard scale' (e.g. = M_X), usually $\mu_F = \mu_B = Q$, and $\hat{\sigma}$ is known ...

- to some fixed order in pQCD (and EW), e.g. high- $E_{\rm T}$ jets

 $\hat{\sigma} = A\alpha_S^2 + B\alpha_s^3$

• or 'improved' by some leading logarithm approximation (LL, NLL, ...) to all orders via resummation

pdfs at LHC – the issues

- high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$
 - \rightarrow improved signal and background predictions
 - \rightarrow easier to spot new physics
- 'standard candle' processes (e.g. σ_Z) to
 - check formalism (factorisation, DGLAP, ...)
 - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
 - high- E_T jets \rightarrow gluon?
 - W⁺, W⁻, Z⁰ \rightarrow quarks?

. . . .

- forward Drell-Yan \rightarrow small x?

how important is pdf precision?

• Example 2: $\sigma(Z^0)$ @ LHC $\delta \sigma_{pdf} \approx \pm 2\%, \quad \delta \sigma_{ptNNL0} \approx \pm 2\%$ $\rightarrow \quad \delta \sigma_{theory} \approx \pm 3\%$

pdf uncertainty on $\sigma(gg \rightarrow H)$

parton luminosity functions

• a quick and easy way to assess the mass and collider energy dependence of production cross sections

$$\hat{\sigma}_{ab\to X} = C_X \delta(\hat{s} - M^2)$$

$$\sigma_X = \int_0^1 dx_a dx_b f_a(x_a, M^2) f_b(x_b, M^2) C_X \delta(x_a x_b - \tau)$$

$$\equiv C_X \left[\frac{1}{s} \frac{\partial \mathcal{L}_{ab}}{\partial \tau} \right] \qquad (\tau = M^2/s)$$

$$\frac{\partial \mathcal{L}_{ab}}{\partial \tau} = \int_0^1 dx_a dx_b f_a(x_a, M^2) f_b(x_b, M^2) \delta(x_a x_b - \tau)$$

- i.e. all the mass and energy dependence is contained in the X-independent parton luminosity function in []
- useful combinations are $ab = gg, \sum_q q\bar{q}, \dots$
- and also useful for assessing the uncertainty on cross sections due to uncertainties in the pdfs

$$= \sum_{i} (gq_i + g\bar{q}_i + q_ig + \bar{q}_ig)$$
$$= \sum_{i} (q_i\bar{q}_i + \bar{q}_iq_i)$$

Huston, Campbell, S (2007)

parton luminosity (68%cl) uncertainties at LHC

LHC at 7 and 10 TeV

comparison of gg luminosities at LHC (7 TeV) with 90%cl pdf uncertainty bands

pdfs at LHC – the issues

• high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$

 \rightarrow improved signal and background predictions

- \rightarrow easier to spot new physics
- 'standard candle' processes (e.g. σ_z) to
 - check formalism (factorisation, DGLAP, ...)
 - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
 - high- E_T jets \rightarrow gluon?
 - W⁺, W⁻, Z⁰ \rightarrow quarks?

. . .

- forward DY \rightarrow small x?

standard candles: $\sigma(W,Z)$ @ LHC

- cross sections (total and rapidity distributions) known to NNLO pQCD and NLO EW; perturbation series seems to be converging quickly
- EW parameters well measured at LEP
- samples pdfs where they are well measured (in x) in DIS
- ... although the mix of quark flavours is different: F_2 and $\sigma(W,Z)$ probe *different* combinations of $u,d,s,c,b \rightarrow sea$ quark distributions important
- precise measurement of cross section *ratios* at LHC (e.g. $\sigma(W^+)/\sigma(W^-)$, $\sigma(W)/\sigma(Z)$) will allow these subtle effects to be explored further

Tevatron, $\sqrt{s} = 1.96$ TeV	$B_{l\nu} \cdot \sigma_W $ (nb)	$B_{l^+l^-} \cdot \sigma_Z $ (nb)	R_{WZ}
MSTW 2008 LO	$1.963^{+0.025}_{-0.028} \begin{pmatrix} +1.2\%\\ -1.4\% \end{pmatrix}$	$0.1788^{+0.0023}_{-0.0025} \begin{pmatrix} +1.3\%\\ -1.4\% \end{pmatrix}$	$10.98^{+0.02}_{-0.03} \begin{pmatrix} +0.2\%\\ -0.3\% \end{pmatrix}$
MSTW 2008 NLO	$2.659^{+0.057}_{-0.045} \begin{pmatrix} +2.1\%\\ -1.7\% \end{pmatrix}$	$0.2426^{+0.0054}_{-0.0043} \begin{pmatrix} +2.2\% \\ -1.8\% \end{pmatrix}$	$10.96^{+0.03}_{-0.02} \begin{pmatrix} +0.3\%\\ -0.2\% \end{pmatrix}$
MSTW 2008 NNLO	$2.747^{+0.049}_{-0.042} \left(^{+1.8\%}_{-1.5\%} \right)$	$0.2507^{+0.0048}_{-0.0041} \left(^{+1.9\%}_{-1.6\%}\right)$	$10.96^{+0.03}_{-0.03} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$

LHC, $\sqrt{s} = 10$ TeV	$B_{l\nu} \cdot \sigma_W $ (nb)	$B_{l^+l^-} \cdot \sigma_Z $ (nb)	R_{WZ}
MSTW 2008 LO	$12.57^{+0.13}_{-0.19} \begin{pmatrix} +1.1\% \\ -1.5\% \end{pmatrix}$	$1.163^{+0.011}_{-0.017} \begin{pmatrix} +1.0\%\\ -1.5\% \end{pmatrix}$	$10.81^{+0.02}_{-0.02} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$
MSTW 2008 NLO	$14.92^{+0.31}_{-0.24} \begin{pmatrix} +2.1\% \\ -1.6\% \end{pmatrix}$	$1.390^{+0.029}_{-0.022} \begin{pmatrix} +2.1\% \\ -1.5\% \end{pmatrix}$	$10.73^{+0.02}_{-0.02} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$
MSTW 2008 NNLO	$15.35^{+0.26}_{-0.25} \begin{pmatrix} +1.7\%\\ -1.6\% \end{pmatrix}$	$1.429^{+0.024}_{-0.022} \begin{pmatrix} +1.7\%\\ -1.6\% \end{pmatrix}$	$10.74^{+0.02}_{-0.02} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$

LHC, $\sqrt{s} = 14$ TeV	$B_{l\nu} \cdot \sigma_W $ (nb)	$B_{l^+l^-} \cdot \sigma_Z $ (nb)	R_{WZ}
MSTW 2008 LO	$18.51^{+0.22}_{-0.32} \begin{pmatrix} +1.2\%\\ -1.7\% \end{pmatrix}$	$1.736^{+0.019}_{-0.028} \begin{pmatrix} +1.1\% \\ -1.6\% \end{pmatrix}$	$10.66^{+0.02}_{-0.02} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$
MSTW 2008 NLO	$21.17^{+0.42}_{-0.36} \begin{pmatrix} +2.0\%\\ -1.7\% \end{pmatrix}$	$2.001^{+0.040}_{-0.032} \begin{pmatrix} +2.0\% \\ -1.6\% \end{pmatrix}$	$10.58^{+0.02}_{-0.02} \begin{pmatrix} +0.2\%\\ -0.2\% \end{pmatrix}$
MSTW 2008 NNLO	$21.72^{+0.36}_{-0.36} \left(^{+1.7\%}_{-1.7\%} \right)$	$2.051^{+0.035}_{-0.033} \left(\substack{+1.7\% \\ -1.6\%} \right)$	$10.59^{+0.02}_{-0.03} \begin{pmatrix} +0.2\%\\ -0.3\% \end{pmatrix}$

<u>Note</u>: at NNLO, factorisation and renormalisation scale variation M/2 \rightarrow 2M gives an additional ± 2% change in the LHC cross sections

predictions for $\sigma(W,Z)$ @ LHC (Tevatron)

	$B_{lv} . \sigma_W$ (nb)	$B_{\parallel}.\sigma_{Z}$ (nb)
MSTW 2008 NLO	21.17 (2.659)	2.001 (0.2426)
MSTW 2008 NNLO	21.72 (2.747)	2.051 (0.2507)

MRST 2006 NLO	21.21 (2.645)	2.018 (0.2426)
MRST 2006 NNLO	21.51 (2.759)	2.044 (0.2535)
MRST 2004 NLO	20.61 (2.632)	1.964 (0.2424)
MRST 2004 NNLO	20.23 (2.724)	1.917 (0.2519)
CTEQ6.6 NLO	21.58 (2.599)	2.043 (0.2393)
Alekhin 2002 NLO	21.32 (2.733)	2.001 (0.2543)
Alekhin 2002 NNLO	21.13 (2.805)	1.977 (0.2611)

predictions for $\sigma(W,Z)$ @ Tevatron, LHC

- MRST/MSTW NNLO: 2008 ~ 2006 > 2004 mainly due to changes in treatment of *charm*
- CTEQ: 6.6 ~ 6.5 > 6.1 due to changes in treatment of s,c,b
- NLO: CTEQ6.6 2% higher than MSTW 2008 at LHC, because of slight differences in quark (u,d,s,c) pdfs, difference within quoted uncertainty

$\boldsymbol{\sigma}_{\boldsymbol{W}^{\star}} \cdot \boldsymbol{B}(\boldsymbol{W}$	$I^+ \rightarrow I^+ v$) (nb)
--	-------------------------	--------

LHC, $\sqrt{s} = 10$ TeV	$B_{l\nu} \cdot \sigma_{W^+} (\mathrm{nb})$	$B_{l u} \cdot \sigma_{W^-} (\mathrm{nb})$	R_{\pm}
MSTW 2008 LO	$7.35^{+0.08}_{-0.12} \begin{pmatrix} +1.1\% \\ -1.6\% \end{pmatrix}$	$5.22^{+0.06}_{-0.09} \begin{pmatrix} +1.1\%\\ -1.7\% \end{pmatrix}$	$1.408^{+0.015}_{-0.012} \begin{pmatrix} +1.0\% \\ -0.8\% \end{pmatrix}$
MSTW 2008 NLO	$8.62^{+0.18}_{-0.14} \begin{pmatrix} +2.1\%\\ -1.7\% \end{pmatrix}$	$6.30_{-0.11}^{+0.14} \left(\substack{+2.2\%\\-1.7\%} \right)$	$1.367^{+0.012}_{-0.010} \begin{pmatrix} +0.9\%\\ -0.7\% \end{pmatrix}$
MSTW 2008 NNLO	$8.88^{+0.15}_{-0.15} \begin{pmatrix} +1.7\% \\ -1.6\% \end{pmatrix}$	$6.47^{+0.11}_{-0.11} \begin{pmatrix} +1.7\%\\ -1.6\% \end{pmatrix}$	$1.373^{+0.012}_{-0.010} \begin{pmatrix} +0.8\%\\ -0.7\% \end{pmatrix}$
LHC, $\sqrt{s} = 14 \text{ TeV}$	$B_{l\nu} \cdot \sigma_{W^+} (\mathrm{nb})$	$B_{l u} \cdot \sigma_{W^-} (\mathrm{nb})$	R_{\pm}
MSTW 2008 LO	$10.69^{+0.14}_{-0.19} \begin{pmatrix} +1.3\%\\ -1.8\% \end{pmatrix}$	$7.83^{+0.10}_{-0.14} \begin{pmatrix} +1.2\% \\ -1.8\% \end{pmatrix}$	$1.366^{+0.013}_{-0.010}$ $(+0.9\%)_{-0.8\%}$
MSTW 2008 NLO	$12.06^{+0.24}_{-0.21} \begin{pmatrix} +2.0\% \\ -1.8\% \end{pmatrix}$	$9.11^{+0.19}_{-0.16} \begin{pmatrix} +1.2\% \\ -1.6\% \end{pmatrix}$	$1.325^{+0.011}_{-0.009} \begin{pmatrix} +0.8\%\\ -0.7\% \end{pmatrix}$
MSTW 2008 NNLO	$12.39^{+0.22}_{-0.21} \left(^{+1.8\%}_{-1.7\%}\right)$	$9.33_{-0.16}^{+0.16} \left(\substack{+1.7\\-1.7\%}\right)$	$1.328^{+0.011}_{-0.009} \left(\substack{+0.8\%\\-0.7\%} \right)$

$W \rightarrow I v_I$ charge asymmetry at LHC

using the W⁺⁻ charge asymmetry at the LHC

- at the Tevatron $\sigma(W^{\scriptscriptstyle +})=\sigma(W^{\scriptscriptstyle -}),$ whereas at LHC $\sigma(W^{\scriptscriptstyle +})\sim 1.3\sigma(W^{\scriptscriptstyle -})$
- can use this asymmetry to calibrate backgrounds to new physics, since typically $\sigma_{NP}(X \rightarrow W^+ + ...) = \sigma_{NP}(X \rightarrow W^- + ...)$
- example:

$$gg \rightarrow t\overline{t} \rightarrow W^+W^-b\overline{b} \rightarrow W^{\pm}(\rightarrow l^{\pm} + \nu) + 4$$
jets

in this case

$$\sigma_{\text{signal}}(W^+ + 4\text{jets}) = \sigma_{\text{signal}}(W^- + 4\text{jets})$$

whereas...

$$\sigma_{\text{QCDbkgd}}(W^+ + 4 \text{jets}) \neq \sigma_{\text{QCDbkgd}}(W^- + 4 \text{jets})$$

which can in principle help distinguish signal and background

pdfs at LHC – the issues

- high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$
 - \rightarrow improved signal and background predictions
 - \rightarrow easier to spot new physics
- 'standard candle' processes (e.g. σ_Z) to
 - check formalism (factorisation, DGLAP, ...)
 - measure machine luminosity?
- Iearning more about pdfs from LHC measurements. e.g.
 - high- E_T jets \rightarrow gluon?
 - W⁺, W⁻, Z⁰ \rightarrow quarks?

. . .

- forward DY \rightarrow small x?

impact of LHC measurements on pdfs

- the standard candles: central σ(W,Z,tt,jets) as a probe and test of pdfs in the x ~ 10 ^{-2±1}, Q² ~ 10⁴⁻⁶ GeV² range where most New Physics is expected (H, SUSY,)
- forward production of (relatively) low-mass states (e.g. γ*,dijets,...) to access partons at x<<1 (and x~1)

Unique features

- pseudo-rapidity range 1.9 4.9
 - 1.9 2.5 complementary to ATLAS/CMS
 - -> 2.5 unique to LHCb
- beam defocused at LHCb: 1 year of running = 2 fb⁻¹
- trigger on low momentum muons: p > 8 GeV, $p_T > 1 \text{ GeV}$

access to unique range of (x,Q²)

LHCb

 \rightarrow detect forward, low p_T muons from $q\bar{q} \rightarrow \mu^+ \mu^-$

summary

- precision phenomenology at high-energy colliders such as the LHC requires an accurate knowledge of the distribution functions of partons in hadrons
- determining pdfs from global fits to data is now a major industry... the MSTW collaboration has released its latest (2008) LO, NLO, NNLO sets
- pdf uncertainty for 'new physics' cross sections not expected to be too important (few % level), apart from at very high mass
- ongoing high-precision studies of standard candle cross sections and ratios (→ new PDF4LHC benchmarking initiative)
- potential of LHCb to probe very small *x* via low-mass Drell-Yan
- 7 TeV LHC is already interesting!

extra slides

Higgs (M_{H} = 120 GeV) with MSTW 2008 NNLO PDFs

inclusive jet production at Tevatron ($\eta^{jet} = 0$)

inclusive jet production at LHC ($\eta^{jet} = 0$)

MSTW 2008 NNLO (α_s) PDF fit

$\gamma * - > \mu \mu$ selection

• 4-vector Pythia + LHCb acceptance

using the W⁺⁻ charge asymmetry at the LHC

- at the Tevatron $\sigma(W^{\scriptscriptstyle +})=\sigma(W^{\scriptscriptstyle -}),$ whereas at LHC $\sigma(W^{\scriptscriptstyle +})\sim 1.3\sigma(W^{\scriptscriptstyle -})$
- can use this asymmetry to calibrate backgrounds to new physics, since typically $\sigma_{NP}(X \rightarrow W^+ + ...) = \sigma_{NP}(X \rightarrow W^- + ...)$
- example:

$$gg \rightarrow t\overline{t} \rightarrow W^+W^-b\overline{b} \rightarrow W^{\pm}(\rightarrow l^{\pm} + \nu) + 4$$
jets

in this case

$$\sigma_{\text{signal}}(W^+ + 4\text{jets}) = \sigma_{\text{signal}}(W^- + 4\text{jets})$$

whereas...

$$\sigma_{\text{QCDbkgd}}(W^+ + 4 \text{jets}) \neq \sigma_{\text{QCDbkgd}}(W^- + 4 \text{jets})$$

which can in principle help distinguish signal and background

W+/W- ratio:

- very sensitive to u/d pdf ratio
- varies with y_w
- depends slightly on n_{iet} and E_{Ti}(min)
- fairly independent of scale choice etc

Х

MSTW2008 vs MRST2006

MSTW2008 vs Alekhin2002

MSTW2008 vs NNPDF1.0

$R(W/Z) = \sigma(W)/\sigma(Z)$ @ Tevatron & LHC

CDF 2007: $R = 10.84 \pm 0.15$ (stat) ± 0.14 (sys)

scaling violations measured at HERA

89

pdf uncertainties

$$\Delta \chi_{\text{global}}^2 \equiv \chi_{\text{global}}^2 - \chi_{\text{min}}^2 = \sum_{i,j=1}^n H_{ij}(a_i - a_i^0)(a_j - a_j^0)$$

$$\vec{a} - \vec{a}^0 = \sum_{k=1,n} z_k \vec{e}_k \text{ where } (H^{-1}) \cdot \vec{e}_k = \lambda_k \vec{e}_k, \ \vec{e}_k \cdot \vec{e}_l = \lambda_k \delta_{kl}$$

then
$$\Delta \chi^2_{\text{global}} = \sum_{k=1,n} z_k^2 \le T^2$$
 (T = tolerance)

this defines a set of n 'error' pdfs, spanning the allowed variation in the parameters, as determined by *T*:

$$\vec{a}(S_k^{\pm}) = \vec{a}^0 \pm T\vec{e}_k$$

rather than using a fixed value of T (*cf.* MRST, CTEQ), we determine the 'dynamic' tolerance for each eigenvector from the condition that all data sets should be described within their 68% or 90% or ... confidence limit ⁹⁰

Pumplin et al., arXiv:0904.2424 [hep-ph]

Pumplin et al., arXiv:0904.2424 [hep-ph]

CDF Run II inclusive jet data, χ^2 = 119 for 72 pts.

A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, arXiv:0901.0002 [hep-ph]

CDFI [<u>179</u>]	DØI <u>[176]</u>	CDFII $[54]$	DØII [<u>56</u>]	$\Delta \chi^2_{\rm non-jet}$	$\alpha_S(M_Z^2)$
(33 pts.)	(90 pts.)	(76 pts.)	(110 pts.)	(2513 pts.)	
53	119	64	117	0	0.1197
51	48	132	180	9	0.1214
56	110	56	114	2	0.1202
53	85	68	117	1	0.1204

Table 8: χ^2 values for Tevatron data on inclusive jet production from various global fits. The large bold values indicate the data sets explicitly included in each fit. The "MSTW 2008" fit includes only the Run II data. We also indicate the increase in the χ^2 for all data sets other than Tevatron inclusive jets when these data are added to the fit. Finally, the value of $\alpha_S(M_Z^2)$ is given for each fit. All fits are carried out at NLO with a scale choice of $\mu_R = \mu_F = p_T$.

A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, arXiv:0901.0002 [hep-ph] (revised)