Cracow–Warsaw Workshop on LHC Faculty of Physics, University of Warsaw – 26 March 2010

Measurement of the W boson mass at Tevatron

Mikołaj Ćwiok

University of Warsaw

University of Warsaw

Motivation for precise W mass

- Δm_W has same impact on Δm_H for $\Delta m_W/\Delta m_t \approx 0.006$
 - for recent $\Delta m_t = 1.3 \text{ GeV}$ would need: $\Delta m_W = 8 \text{ MeV}$ (0.01%)
 - current world average:

- $\Delta m_W = 0$ MeV (0.01%) $\Delta m_W = 23$ MeV (0.03%)
- Additional contributions to $\Delta \mathbf{r}$ arise in SM extensions...

Aug 2009

Signatures & observables

E e' (u') Transverse plane Signature of W: wrt. the beam axis W⁺ - isolated, high p_T Electron lepton (e or μ) - missing E_{T} ν d **Use 3 kinematic variables:** (Jacobian edge) Neutrino $\mathbf{m}_{\mathbf{T}} = \sqrt{2 E_T^{\ell} \not\!\! E_T (1 - \cos \Delta \phi_{\ell \nu})}$ Underlying event Hadronic recoil \rightarrow affected by detector resolution (MET) П $\mathbf{p}_{\mathbf{T}}^{\ell}$ MET \rightarrow affected by motion of W boson (p_T^{W})

 \rightarrow sensitive to both effects, but is not 100% correlated with other 2 measurements

- 25 MeV precision on m_w requires :
 - accuracy of lepton (e or μ) energy scale: ~0.02%
 - accuracy of hadronic recoil scale: ~1%

Mikolaj Cwiok

Tevatron at Fermilab

8.1 fb⁻¹

- Proton-anitproton @ √s=1.96 TeV every 396 ns, 36x36 bunches
- Peak luminosity: **3.5 10**³² **cm**⁻²**s**⁻¹
- Recorded: ~7 fb⁻¹ / experiment

April 2002 – March 2010

Run II Integrated Luminosity

So far only up to ~1 fb⁻¹ used

in m_w and Γ_w analyses...

- By end of 2010: 9 fb⁻¹ / experiment
- Running in 2011 is considered

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

uminosity (/fb)

Apr-02 Aug-02 Dec-02 Apr-03 Aug-03 Dec-03 Apr-04 Aug-04 Dec-04 Apr-05 Aug-05 Dec-05 Apr-06 Aug-06 Dec-06 Apr-07 Aug-07 Dec-07 Apr-08 Aug-08 Dec-08 Apr-09 Aug-09 Dec-09 Apr-09 Apr-09 Aug-09 Dec-09 Apr-09 Aug-09 Dec-09 Apr-09 Apr-09 Aug-09 Dec-09 Apr-09 Apr

Delivered

-Recorded

Tevatron m_w analyses

	CDF	DØ
Luminosity	0.2 fb ⁻¹	1.0 fb ⁻¹
W decay channels	electron, muon	electron
Lepton Energy Scale	tracker information	Z→ee calorimeter data
Interpretation	absolute m _w	m _w /m _z ratio
MC closure test	_	full analysis performed first on Monte Carlo
Beyond m _w	M(W ⁺) and M(W ⁻) comparison	_

PRL 99, 151801 (2007) PRL 103, 141801 (2009)

+ their combination: arXiv:0908.1374v1 [hep-ex]

5

Analysis overview (DØ)

- The D0 analysis exploits W→ev channel only electron energy resolution ~4%, muon momentum scale ~10% @ p_T=50 GeV

Fast Monte Carlo for templates generation:
 ResBos – W and Z/γ^{*} boson production, decay kinematics perturbative NLO at high boson p_T, gluon resummation at low boson p_T
 PHOTOS – FSR radiation of ≤ 2 photons effect of full QED corrections assessed from WGRAD and ZGRAD
 Parametric MC Simulation (PMCS) – detector efficiencies, energy response & resolution for electrons and hadronic recoil parametric functions and binned look-up tables based on detailed GEANT simulation and fine-tuned from control data samples: Z→ee, Zero Bias, Minimum Bias

 Blind analysis – m_w returned by fits was deliberately shifted by some unknown offset before the final fitting

results were unblinded after completing all consistency checks for W and Z events

Event selection (DØ)

- 1 fb⁻¹ of data (Run IIa, 2002-2006)
- **W**→**e**ν sample **499,830** evts:
 - Electron: $|\eta| < 1.05$, spatial track match, $p_T^e > 25$ GeV
 - Missing E_T > 25 GeV
 - Recoil u_T < 15 GeV
 - $-50 < m_T < 200 \text{ GeV}$

96% purity, main backgrounds: Z \rightarrow ee, QCD multijet, W $\rightarrow \tau v \rightarrow e v v v$

- $Z \rightarrow ee$ sample for calibration **18,725** evts:
 - calibrate EM energy scale from Z pole
 - tune fast PMCS

cuts preserve the Jacobian edge

Mikolaj Cwiok

Electron efficiency (DØ)

Fast MC models various electron selection efficiencies:

- Electron-only: trigger, CAL-based ID, tracking from Z data; tag & probe; parameterized using: η^e, p_T^e, z_{vtx}
- W event topology: spatial proximity recoil ↔ electron from Z data; parameterized using: p_T^e, u_{||}
- Additional hadronic energy in CAL at high luminosity from full MC + ZB data; parameterized using: Scalar E_τ, u_μ

Electron model (DØ)

- Fit amount of uninstrumented material in front of the calorimeter with 0.01X₀ precision
- Use precise Z mass from LEP to calibrate absolute EM energy scale
- Simulate measured electron energy as:

 $E(smear) = R_{EM}(E) \otimes \sigma_{EM}(E) + \Delta E(\mathcal{L}, u_{\parallel})$

Energy response: $R_{EM}(E) = \alpha \cdot E + \beta$

- dominant source in m_w systematics: 34 MeV
- fitted from electron energy spread in $Z \rightarrow ee$ data

Energy resolution:
$$\frac{\sigma_{EM}(E)}{E} = \sqrt{C_{EM}^2 + \frac{S_{EM}(E,\theta)^2}{E}}$$

- S_{EM} depends on energy and incidence angle, from improved full GEANT simulation featuring: lower energy cut offs, updated interaction x-sections
- C_{EM} = 2.05% ± 0.10%; from fit to the m_{ee} distribution from Z→ee data

9

$W \rightarrow ev$ candidate event (DØ)

Hadronic recoil model (DØ)

- Neutrino p_T is simulated as: $\vec{E}_T = -\vec{p}_T^e - \vec{u}_T$
- Recoil model has HARD and SOFT components:

 $\vec{u}_T \left(smear \right) \;\; = \;\; \vec{u}_T^{\text{ HARD}} \; + \; \vec{u}_T^{\text{ SOFT}} \; + \; \vec{u}_T^{\text{ ELEC}} \; + \; \vec{u}_T^{\text{ FSR}}$

- Model is derived from detailed GEANT simulation (Z→vv) and control data samples (Z→ee, Zero Bias, Minimum Bias)
- Recoil response and resolution are fine-tuned from Z→ee data:
 - require balancing of u_T and p_T(ee)
 - $\qquad \text{mean and width of } \eta_{\text{imb}} \text{ distribution depend} \\ \text{on hadronic recoil response and resolution} \\$
- Scalar E_T is also modeled for electron selection efficiencies

, p⊤ ∎η p_ee

p_T ee λ

Hadronic recoil - details (DØ)

Backgrounds (DØ)

• Purity of W sample : 96%

- Backgrounds:
 - **Z**→**ee** : 0.80% (Data)
 - QCD multijet : 1.49% (Data)
 - $W \rightarrow \tau v \rightarrow evvv: 1.60\%$ (GEANT)
 - For 3 observables: estimated backgrounds are added to the simulated signal from W (PMCS)

W production & decay models (DØ)

• Generators for W and Z processes at hadron colliders:

Tool	Process	QCD	EW	
RESBOS	W,Z	NLO	-	jvnz
WGRAD	W	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon	$\frac{1}{p}$
ZGRAD	Z	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon	
PHOTOS			QED FSR, ≤ 2 photons	

- **ResBos+Photos** as main generator
 - reasonable $p_T^{w,z}$ spectra
 - leading EWK effects (1st and 2nd FSR photon)
- Balazs, Yuan; Phys Rev D56, 5558 Barbiero, Was; Comp Phys Com 79, 291
- WGRAD & ZGRAD to estimate effects of full EWK corrections

Baur, Wackeroth; Phys. Rev D70, 073015

- Final QED m_W uncertainties are 7,7,9 GeV for $m_T, p_T^e, \not\!\!\!E_T$
 - comparison of "FSR only" and "full EWK" from W/ZGRAD
 - comparison of "FSR only" W/ZGRAD and Photos

W mass fits (DØ)

- Templates for different m_W hypotheses at 10 MeV intervals: W signal (PMCS) + background
- Compute binned likelihood between data and template
- Fit m_w for each of 3 observables

 m_W = 80.401 ± 0.023 GeV (stat) Fit range: $65 < m_T < 90$ GeV

W mass fits (DØ)

Uncertainties (DØ)

		m _w uncertainty [MeV]		
	Source	m _T	p _T (e)	Missing E _T
<	Electron energy response	34	34	34
	Electron energy resolution	2	2	3
	Electron energy non-linearity	4	6	7
	Electron energy loss differences for W and Z	4	4	4
$\left\{ \right.$	Electron efficiencies	5	6	5
	Recoil model	6	12	20
	Backgrounds	2	5	4
	Subtotal Experimental	35	37	41
8	PDF CTEQ6.1M	10	11	11
	QED	7	7	9
ſ	Boson p _T	2	5	2
l	Subtotal Theory (W/Z production & decay)	12	14	14
	Total Systematics	37	40	43
	Total Statistics	23	2 7	<mark>23</mark>
	TOTAL	44	48	50

EXPERIMENT

THEORY

17

Combined DØ m_w result

PRL 103, 141801 (2009)

• Correlation matrix of the three methods:

 Partially correlated: 			p _T (e)	MET
Statistics, Electron response,	m _T	1	0.83	0.82
Recoil model, PDF	p _T (e)		1	0.68
Other sources: 100% correlated	MET			1

DØ Run II combination:

 $m_W = 80.401 \pm 0.021 \text{ (stat)} \pm 0.038 \text{ (syst) GeV}$ $\Delta m_W \text{ (total)} = 0.043 \text{ GeV}$

Combined Tevatron m_w result

- Combination performed with B.L.U.E. method: $CDF Run II (200 pb^{-1})$ $\rightarrow PRL 99, 151801 (2007)$ $D\emptyset Run II (1 fb^{-1})$ $\rightarrow PRL 103, 141801 (2009)$ $CDF Run 0/I, D\emptyset Run I, LEP2$
- For the first time Tevatron average is more precise than LEP2 direct measurement

arXiv:0908.1374v1 [hep-ex]

Tevatron 2009: m_W = 80.420 ± 0.031 GeV

World average: m_W = 80.399 ± 0.023 GeV

Mikolaj Cwiok

19

Combined Tevatron Γ_W result

- Combination performed with B.L.U.E. method: $CDF Run II (350 pb^{-1})$ $\rightarrow PRL 100, 071801 (2008)$ $D\emptyset Run II (1 fb^{-1})$ $\rightarrow PRL 103, 231802 (2009)$ CDF Run I, D0 Run I, LEP2
- New world average agrees with SM prediction of Γ_W = 2.093 ± 0.002 GeV

arXiv:1003.2826v1 [hep-ex]

Tevatron 2009: $\Gamma_{W} = 2.046 \pm 0.049 \text{ GeV}$

World average:
$$\Gamma_W = 2.085 \pm 0.042 \text{ GeV}$$

values have been corrected for the world averaged m_W value from Dec 2009

M_w prospects for Tevatron

- Expected total (stat) uncertainty:
 - CDF (2.3 fb⁻¹): 25 (15) MeV per channel
 - DØ (4.4 fb⁻¹) : 25 (11) MeV

• Systematics:

- Some experimental sources will be reduced after collecting more data (DØ: larger Z sample ⇒ electron energy scale 34 → 16 MeV)
- Different techniques used by CDF & DØ for lepton energy scale are good for combination and cross checks
- Theory errors are 100% correlated between CDF and DØ
- Controlling systematics at ~10 MeV level requires:
 - including higher order QED radiation
 - better constrained PDFs

M_w prospects for LHC

In p-p collisions:

F.Fayette talk at EPS 2009

- Loss of charge symmetry $W^+ \Leftrightarrow W^-$
- Stronger dependencies from PDFs
- Need to measure: $\mathbf{m}_{W+} \& \mathbf{m}_{W-}$ or: $(\mathbf{m}_{W+}-\mathbf{m}_{W-}) \& (\mathbf{m}_{W+}-\mathbf{m}_{W-})$
- Ultimately expect <10 MeV precision from the LHC era

22

BACKUP Slides

Mikolaj Cwiok

DØ detector

Tracker:

- silicon microstrips + scintillating fibers
- covers |η| < 2.5 inside 2T superconducting solenoid

Calorimeter:

- sampling U/LAr
- hermetic coverage: $|\eta| < 4.2$

Muon system:

- wire chambers + scintillators
- covers |η| < 2 before and after
 1.8T toroid

DØ LAr calorimter

•

- 46,000 cells
- Segmentation (towers): Δ η x Δ φ = 0.1 x 0.1 (0.05 x 0.05 in third EM layer, near shower maximum)

- Active medium: Liquid argon
 - Absorber: Uranium (mostly)
- 3 cryostats: Central CAL (CC) and two End CALs (EC)
- Hermetic with full coverage: $|\eta| < 4.2$
- In Run II there is more uninstrumented material in front of the CAL than in Run I

25

Consistency checks (DØ)

• Vary fitting ranges for all 3 observables

- Split W & Z data samples into statistically independent categories or vary the cuts and compare relative change in m₇/m_w ratio:
 - Different electron η ranges

 - High and low instantaneous luminosity
 - Different data taking periods
 - High and low scalar E_T
 - Different recoil u_T cuts
 - Negative and positive u_{II}

Result is stable within one standard deviation !

MC closure test (DØ)

ZCandRecoilPt 0 ZCand Elec Pt 0 χ²/ndf = 65.7/45 χ²/ndf = 158.7/135 Test analysis methodology with --- FULL MC --- FULL MC Full GEANT MC treated as - FAST MC - FAST MC the collider data Good agreement between Full **р**₋(е) /→ee →ee: MC and Fast MC (PMCS) Fitted W mass and width agree with input values WCandMt Spatial Match 0 WCandMet Spatial Match 0 WCandElecPt_Spatial_Match_0 ²/ndf = 89.8/100 $\chi^2/ndf = 85.0/70$ χ^2 /ndf = 79.2/70 FULL MC - FULL MC - FULL MC FAST MC - FAST MC --- FAST MC W→ev: N→ev **p**_(e) →ev; GeV GeV GeV

Tevatron Γ_W analyses

- Use high-end tail of the transverse mass peak
 - CDF Run II (350 pb⁻¹):
 - DØ Run II (1 fb⁻¹) :

- $\Gamma_{\rm W}$ = 2.033 ± 0.072 GeV
- $\Gamma_{\rm W}$ = 2.034 ± 0.072 GeV
- using world average of m_W = 80.399 ± 0.023 GeV from Dec 2009
- Combined Tevatron Run I/II result:
- $\Gamma_{\rm W}$ = 2.046 ± 0.049 GeV
- surpassed average LEP2 direct measurements ($\delta\Gamma_W$ =83 MeV)
- far less precise than EWK fit using Z-pole data + m_{top} measurement ($\delta \Gamma_W$ =2 MeV)

$M_W \& \Gamma_W - today$ and future

W-Boson Mass [GeV]

