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Laws of Nature at Λ~100 GeVLaws of Nature at Λ~100 GeV

Quarks Leptons

T3+ Y = Q

SU(3)C x SU(2)L x U(1)Y

• The fact that some gauge bosons and the fermions are massive implies that the 
electroweak symmetry must be necessarily broken:

SU(2)L x U(1)Y → U(1)EM

�there must exist an outside sector of interactions that break the electroweak 
symmetry: the “Higgs sector”.

• There is no preferred model of the Higgs sector, we just have theories of it. The 
above structure plus the minimal Higgs sector is what we call:

The Standard Model of electroweak and strong interactions

(3, 1/2,  1/6)    left-handed
(3,    0, -1/3)    right-handed down-type
(3,    0,  2/3)    right-handed up-type

(3, 1/2,  1/6)    left-handed
(3,    0, -1/3)    right-handed down-type
(3,    0,  2/3)    right-handed up-type

(3, 1/2,  1/6)    left-handed
(3,    0, -1/3)    right-handed down-type
(3,    0,  2/3)    right-handed up-type

(3, 1/2,  1/6)    left-handed
(3,    0, -1/3)    right-handed down-type
(3,    0,  2/3)    right-handed up-type

(3, 1/2,  1/6)    left-handed
(3,    0, -1/3)    right-handed down-type
(3,    0,  2/3)    right-handed up-type

(1, 1/2, -1/2)    left-handed
(1,    0,    -1)    right-handed down-type

Chiral fermion fields (T, T, Y):

Gauge Fields:

Gµ
i(=1,..,8) Wµ

1,2,3 Bµ
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EWSB within the Standard ModelEWSB within the Standard Model

• The most economical way is to introduce a single scalar field:

• Higgs self-interactions lead to:

• Fluctuations around <φ> are:

• Particles generated by ξa(x) will constitute the longitudinal degrees of freedom of 
the weak gauge bosons, whereas H(x) will become the neutral Higgs boson.

• Yukawa Interactions of φ(x) with fermions                                               
generate their masses and in general flavor                     
physics: CKM matrix and thus, CP-violation.

(T, T, Y)=(1, 1/2, 1/2)   Higgs doublet

0  0,  ;)( )(V 222 >λ<µφφλ+φφµ=φ ++

2/v)(eigenvaluem

2/vm

4/v)gg(m

4/vgm

v2m

Qq

ll

22'22

Z

222

W

22

H

λ=

λ=

+=
=

λ=

The Higgs mass is not predicted!
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Indirect constraints

• Precision EW observables at the one-
loop level.

mH< 157 GeV (95% CL)

114.4 < mH< 186 GeV (95% CL)

Stalking the Higgs BosonStalking the Higgs Boson

mH = 87−26

+35  GeV

Direct searches at LEP

• Tantalizing hints (~1.7σ) of a SM-like 
Higgs boson with mH~115 GeV:

Kinematic limit: √s-mZ~115.4 GeV

mH> 114.4 GeV (95% CL)
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Tevatron AcceleratorTevatron Accelerator

7.02.52.5# int./ crossing

3963963500Bunch crossing (ns)

50-6015-203∫ Ldt (pb-1/week)

2.8 ××××10321x10321.6 ×1030
Typical L (cm-2s-1)

1.961.961.8√s (TeV)

36 ×××× 3636 × 366 × 6Bunches in Turn

Run IIbRun IIaRun I

_
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Tevatron AcceleratorTevatron Accelerator

Excellent performance:

• Typical instantaneous luminosity: >3x1032 cm-2s-1

• Integrated lum./week: ~60 pb-1 � equiv. Run I dataset every 2 weeks!

• Can deliver ~2-2.5 fb-1/year. 

3x1032 cm-2s-1
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Tevatron AcceleratorTevatron Accelerator

Delivered to date: 8 fb-1

Expected by end of FY11: ~12 fb-1

7
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Tevatron AcceleratorTevatron Accelerator

Delivered to date: 8 fb-1

Expected by end of FY11: ~12 fb-1
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CDF and DØ DetectorsCDF and DØ Detectors

Multipurpose detectors:

• Central tracking system embedded in a 
solenoidal magnetic field:

• Silicon vertex detector 

• Tracking chamber (CDF)                     
Fiber tracker (DØ)

• Preshowers

• Electromagnetic and hadronic calorimeters

• Muon system

• All detector subsystems expected to 
survive till the end of the run.  

No further upgrades, stable triggers.

• Data taking efficiency: ~85-90%
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Data SetData Set

Expect to ~double this dataset by the end of FY11.

Apr’02 Apr’10

Up to 5.4 fb-1 of data analyzed

(after data quality requirements)
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Data SetData Set

Apr’02 Apr’10

50E30  |   150E30  |    250E30    |  350E30 
Record

Inst. Lum.

Instantaneous luminosity has been steadily increasing
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The Challenges of Higher LuminosityThe Challenges of Higher Luminosity

Average number of interactions:

LHC: initial “low” lumi run
(L=2000E30 cm2s-1): <N>=3.5

TeV: (L=300E30 cm2s-1): <N>=10

A random crossing event at @ 60E30 cm2s-1 …and at @ 240E30 cm2s-1
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SM Higgs Production at the TevatronSM Higgs Production at the Tevatron

Main production mechanisms (115<mH<180 GeV):

• Gluon fusion (gg→H): σ~0.8-0.2 pb

• Associated production (VH, V=W,Z): σ~0.2-0.02 
pb

• Vector boson fusion (VBF): σ~0.1-0.02 pb
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SM Higgs Decay ModesSM Higgs Decay Modes

� Many decay modes being explored to increase the sensitivity 
of the search to both a SM and non-SM Higgs boson!
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Search Strategy at the TevatronSearch Strategy at the Tevatron

mH < 135 GeV:

VH (V=W,Z) production 
with H→bb decay

mH < 135 GeV:

VH (V=W,Z) production 
with H→bb decay

mH > 135 GeV:

gg→H production with 

H→WW→lνlν decay

mH > 135 GeV:

gg→H production with 

H→WW→lνlν decay
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Search Strategy at the TevatronSearch Strategy at the Tevatron

~600-1200 Higgs events produced at the Tevatron 
in the main search channels with 10 fb−1!



Low Mass SM Higgs SearchesLow Mass SM Higgs Searches

ZH→llbb:  dilepton+2 b-jets

Smallest signal rate

Smallest background

Kinematically constrained

WH→lνbb:  lepton+MET+2 b-jets

Largest signal rate

Larger V+jets background

ZH→lνbb:  MET+2 b-jets

Comparable signal rate to WH

(significant contribution  from 

WH→lνbb with missing lepton)

Challenging instrumental background
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Backgrounds are FerociousBackgrounds are Ferocious

• Instrumental backgrounds: measured directly 
from data

• QCD multijet production with mismeasured 
jets leadings to missing transverse energy 
or jets misidentified as leptons.
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Backgrounds are FerociousBackgrounds are Ferocious

• Instrumental backgrounds: measured directly 
from data

• QCD multijet production with mismeasured 
jets leadings to missing transverse energy 
or jets misidentified as leptons.

• Physics backgrounds: estimated using 
simulation and state-of-art theoretical 
predictions

• W/Z+jets production (w/ real or 
misidentified heavy flavor jets)
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Backgrounds are FerociousBackgrounds are Ferocious

• Instrumental backgrounds: measured directly 
from data

• QCD multijet production with mismeasured 
jets leadings to missing transverse energy 
or jets misidentified as leptons.

• Physics backgrounds: estimated using 
simulation and state-of-art theoretical 
predictions

• W/Z+jets production (w/ real or 
misidentified heavy flavor jets)

• Diboson production
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Backgrounds are FerociousBackgrounds are Ferocious

• Instrumental backgrounds: measured directly 
from data

• QCD multijet production with mismeasured 
jets leadings to missing transverse energy 
or jets misidentified as leptons.

• Physics backgrounds: estimated using 
simulation and state-of-art theoretical 
predictions

• W/Z+jets production (w/ real or 
misidentified heavy flavor jets)

• Diboson production

• Double and single top quark production

� Further constrain data modeling in “sideband regions”
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Dilepton + 2 b-jetsDilepton + 2 b-jets

Step 1: preselection

• 2 high pT isolated leptons

• dilepton mass ~ mZ

• 2 jets 

Dominant background is Z+jets
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Lepton IdentificationLepton Identification

• Major effort to improve lepton acceptance:

• electrons in inter-cryostat regions (D0)

• isolated tracks pointing to cracks between 
calorimeter cells (CDF) or consistent with MIP 
signal in the calorimeter (CDF+D0)

� Improvements ~10-30% acceptance

• Not all these lepton categories fire the trigger!

� collect events through other triggers (e.g. jets+MET)

D0 electrons

CDF muons CDF electrons
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Lepton + MET + 2 b-jetsLepton + MET + 2 b-jets

Step 1: preselection

• High pT isolated leptons

• High MET

• 2 jets 

Dominant background is W+jets

24



MET + 2 b-jetsMET + 2 b-jets

Step 1: preselection

• High MET

• 2 acoplanar jets 

Significant contribution from WH

Challenging background from QCD multijets

After careful selection, main bckg is W/Z+jets

Multijet

Z+jets

W+jets

Signal x 500

After multijet veto



MET + 2 b-jetsMET + 2 b-jets

Step 1: preselection

• High MET

• 2 acoplanar jets 

Significant contribution from WH
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Heavy Flavor IdentificationHeavy Flavor Identification

• Critical for searches involving H→bb.

• B-tagging exploits information on:

• Lifetime: displaced tracks and/or vertices

• Mass: secondary vertex mass

• Soft leptons

• Typical performance:

• B-tagging efficiency: ~40-70%

• Mistag rate: ~0.5-5%

• Calibrated in data control samples.
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Heavy Flavor IdentificationHeavy Flavor Identification

• Critical for searches involving H→bb.

• B-tagging exploits information on:

• Lifetime: displaced tracks and/or vertices

• Mass: secondary vertex mass

• Soft leptons

• Typical performance:

• B-tagging efficiency: ~40-70%

• Mistag rate: ~0.5-5%

• Calibrated in data control samples.

• Use multivariate techniques for improved 
performance:

• NN for b-to-c discrimination after 
secondary vertex tagging
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Heavy Flavor IdentificationHeavy Flavor Identification

• Critical for searches involving H→bb.

• B-tagging exploits information on:

• Lifetime: displaced tracks and/or vertices

• Mass: secondary vertex mass

• Soft leptons

• Typical performance:

• B-tagging efficiency: ~40-70%

• Mistag rate: ~0.5-5%

• Calibrated in data control samples.

• Use multivariate techniques for improved 
performance:

• NN for b-to-c discrimination after 
secondary vertex tagging

• NN for b-to-light: continuous tagger 
(multiple operating points)
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Heavy Flavor IdentificationHeavy Flavor Identification

• Critical for searches involving H→bb.

• B-tagging exploits information on:

• Lifetime: displaced tracks and/or vertices

• Mass: secondary vertex mass

• Soft leptons

• Typical performance:

• B-tagging efficiency: ~40-70%

• Mistag rate: ~0.5-5%

• Calibrated in data control samples.

• Use multivariate techniques for improved 
performance:

• NN for b-to-c discrimination after 
secondary vertex tagging

• NN for b-to-light: continuous tagger 
(multiple operating points)

…and further improved! (*)

(*) Not in analysis yet
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Heavy Flavor IdentificationHeavy Flavor Identification

• Critical for searches involving H→bb.

• B-tagging exploits information on:

• Lifetime: displaced tracks and/or vertices

• Mass: secondary vertex mass

• Soft leptons

• Typical performance:

• B-tagging efficiency: ~40-70%

• Mistag rate: ~0.5-5%

• Calibrated in data control samples.

• Use multivariate techniques for improved 
performance:

• NN for b-to-c discrimination after 
secondary vertex tagging

• NN for b-to-light: continuous tagger 
(multiple operating points)

…and further improved! (*)

• NN for b-to-(bb) discrimination (*)

(*) Not in analysis yet
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After B-TaggingAfter B-Tagging

Step 2: B-tagging �significant improvement to S:B

S:B ~ 1:4000 (S~20)

S:B ~ 1:300 (S~8)

S:B ~ 1:100 (S~2)

S:B ~ 1:75 (S~3)

Dijet invariant mass

� single most discriminant variable
WH→lνbb 

Search channels
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Control RegionsControl Regions

• Step 3: validate background modeling in control regions

• Example: MET+2 b-jets

Multijet-enriched

W+jets-enriched

Top-enriched
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Dijet Mass ResolutionDijet Mass Resolution

Significant efforts to improve the dijet mass resolution:

• Develop sophisticated corrections employing information 
from the tracker, preshower, jet shape variables, 
semileptonic B-decays, etc.

Example: ZH→ννbb (CDF) ~10% improvement in 
sensitivity.

• Exploit pT balance via kinematic fitting in topologies with no 
intrinsic MET.

Example:  ZH→llbb (CDF and D0) ~10% improvement in 
sensitivity.
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Multivariate TechniquesMultivariate Techniques

Step 4: final discrimination via 
multivariate techniques

• Exploit information from several 
discriminant variables and their 
correlations.

• Most commonly used: Neural 
Networks, Decision Trees, Matrix 
Element Discriminants,…

Typical sensitivity gain compared to 
single variable is ~15-20%.

Additional ~5-10% from smart 
combinations.

WH→lνbb 
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Systematic UncertaintiesSystematic Uncertainties

Example: ZH�ννbb (D0). Relative uncertainties in %

Systematic uncertainties

can affect both shape

and normalization of

signal and background.

� Main systematic uncertainties from b-tagging and background modeling. 

Total: ~15%   ~ 20-25%
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Building a Strong FoundationBuilding a Strong Foundation

• Validate experimental strategy and tools using SM 
backgrounds that share characteristics with the signal.

Electroweak single top production

• σ and kinematics sensitive to tbW
interaction.

• Large W+jets background.

• Required optimizations:

• Maximize acceptance.

• Use b-tagging. 

• Use multivariate techniques.

• Constrain systematic uncertainties 
using side-band regions in data.

� Same optimizations/techniques as for 
the Higgs searches!
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Building a Strong FoundationBuilding a Strong Foundation

Both experiments observe single top production!

• Validate experimental strategy and tools using SM 
backgrounds that share characteristics with the signal.

Electroweak single top production

• σ and kinematics sensitive to tbW
interaction.

• Large W+jets background.

• Required optimizations:

• Maximize acceptance.

• Use b-tagging. 

• Use multivariate techniques.

• Constrain systematic uncertainties 
using side-band regions in data.

Phys. Rev. Lett. 103, 092001 (2009)
Phys. Rev. Lett. 103, 092002 (2009)
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Building a Strong FoundationBuilding a Strong Foundation

Diboson production

• Probe of non-abelian structure of SM and 
sensitive to New Physics.

• Small signal in large background. 

Dijet mass is the most sensitive variable. 

• Required optimizations:

• Exploit dijet mass distribution.

• Use multivariate techniques.

• Constrain systematic uncertainties using 
side-band regions in data.

� Same optimizations/techniques as for the 
Higgs searches!

� Both experiments measure cross sections                         
consistent with the SM prediction.

WW/WZ→lνjj 

PRL 102, 161801 (2009)
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Interpreting the DataInterpreting the Data

• Use the final discriminant distribution (e.g. NN output) to 
perform hypothesis testing (S+B vs B-only).

• In absence of an excess, set limits using:

• The CLs method or

• A Bayesian method

CLs method

1. Compute the likelihood ratio for S+B vs B-only 
hypothesis using Poisson statistics:

1. Generate pseudo-experiments for S+B and B-
only hypotheses via Poisson trial.

• Systematics are folded in via Gaussian 
marginalization

• Correlations held amongst signals and 
backgrounds

2. Define CLs:

  

Q(
r 
d ;

r 
s ,

r 
b ) =

(s + b)ij

d ij e
−(s+b )ij

dij!j =1

Nbins

∏
i=1

Nchan

∏ /
bij

d ij e
−bij

dij!

LLR = −2lnQ

CLs =
CLs+b

CLb
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Interpreting the DataInterpreting the Data

• Use the final discriminant distribution (e.g. NN output) to 
perform hypothesis testing (S+B vs B-only).

• In absence of an excess, set limits using:

• The CLs method or

• A Bayesian method

CLs method

1. Compute the likelihood ratio for S+B vs B-only 
hypothesis using Poisson statistics:

1. Generate pseudo-experiments for S+B and B-
only hypotheses via Poisson trial.

• Systematics are folded in via Gaussian 
marginalization

• Correlations held amongst signals and 
backgrounds

2. Define CLs:

  

Q(
r 
d ;

r 
s ,

r 
b ) =

(s + b)ij

d ij e
−(s+b )ij

dij!j =1

Nbins

∏
i=1

Nchan

∏ /
bij

d ij e
−bij

dij!

LLR = −2lnQ

CLs =
CLs+b

CLb

Signal cross sections for which CLs<0.05 

are excluded at the ≥95% CL.
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Interpreting the DataInterpreting the Data

ZH→ννbb

Data deficit

Data excess

• Dashed lines show S+B and B-only mean value.

• Shaded bands indicate 1 and 2σ variation of B-only distribution

• Solid black line indicates data observation
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LEP:  small background, small systematic uncertainties

Tevatron:  large background, large systematic uncertainties (particularly at low mass)

NEW wrt LEP: to counteract the degrading effects of systematic uncertainties, we use 
a “profile likelihood”, obtained by fitting MC expectations to data for each outcome 
(analogous to “side-band fitting”).

• Capitalizes on shape and statistics of data to constrain background uncertainties.

Constraining Systematic UncertaintiesConstraining Systematic Uncertainties

profiling

Nominal background prediction and 

uncertainty band 

Data

Improved background prediction 

and uncertainty

LLR = −2lnQ = −2ln
L(data | s + b; ˆ θ )

L(data | b; ˆ θ )
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Individual Low Mass ResultsIndividual Low Mass Results

Channel Limit (σσσσ/SM)

CDF 

(exp/obs)

D0 

(exp/obs)WH→lνbb 3.8/3.3 5.1/6.9

ZH→ννbb 4.2/6.1 4.6/3.7

ZH→l+l-bb 6.8/5.9 8.0/9.1

WH→τνbb 22/14

95% CL Limits at mH = 115 GeV 

• Limits from individual channels typically a 
factor of ~4-8 larger than the SM cross 
section at mH = 115 GeV.

� Combination of all contributing channels 
crucial.

• Note fast degradation of limits for higher mH.

Example LLR plot: ZH→ννbb
WH→lνbb
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High Mass SM Higgs SearchesHigh Mass SM Higgs Searches

• Two opposite-sign leptons plus MET.

• Dominant contribution from gg→H→WW, 
but consider also VH and VBF production 
(~35% more signal).

• Highest sensitivity channel for mH>135 GeV.

• Two same-sign leptons and trilepton 
signatures.

• Provide useful sensitivity both at 
intermediate and high mass.

� Capitalize on improvements in lepton identification and multivariate techniques

  H + X →l +l − + MET

  VH →VW
+
W

− →l ±l ± + X,  l ±l ±l m + X W/Z

W/Z
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H+X→l+l-+MET: Selection and BackgroundsH+X→l+l-+MET: Selection and Backgrounds

Signature:

• Two opposite-sign high pT isolated leptons

• Large MET

• Broad invariant mass distribution

Instrumental backgrounds:

• Z/γ*→l+l-: mismeasured MET

• W+jet/γ: jet/photon misidentified as lepton

• Multijet: both fake jets and MET 

Physics backgrounds:

• Diboson: dominated by WW→lνlν

• Top pair production

Signal and background processes normalized 
with highest order cross section available         
(NLO or better).

NLO corrections to pT(H) and pT(WW). 

Before MET cut
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H+X→l+l-+MET: Analysis StrategyH+X→l+l-+MET: Analysis Strategy

• Suppress Z/γ*�l+l- via selections on 
MET and its significance.

Cut at 25 GeV (15 GeV for eµ)

already applied

• Exploit spin correlation between W bosons:

� Small angular separation between leptons

Spin 0

Signal



48

H+X→l+l-+MET: Control SamplesH+X→l+l-+MET: Control Samples

Validate background modeling in signal

depleted “side-bands”: 

• Low MET significance events: Z/γ*�l+l-

• Same-sign events: W+jet/γ

• High HT events: top quark pairs
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H+X→l+l-+MET: Final DiscriminationH+X→l+l-+MET: Final Discrimination

To increase the sensitivity:

• Split samples with different S:B and         
combine at the end:

• by lepton flavor (D0)

• by lepton quality or # jets (CDF)

• Add additional requirements for          
particular subsamples:

• Veto b-tag in 2-jet events (CDF): 
suppress top quark pairs

• Build multivariate discriminants         
combining several variables:

After final selection:

~30 signal events/exp (mH=160 GeV)

S:B~1:50

E.g. D0:
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H+X→l+l-+MET: Systematic UncertaintiesH+X→l+l-+MET: Systematic Uncertainties

Main systematic uncertainties:
• Signal (total 10%): cross section, lepton ID/trigger
• Background (total 13%): cross sections, jet→lepton   

fake rate, jet ID/resolution/calibration

Relative uncertainties in % Data after background subtraction

Constrained syst. uncertainty on background
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VH→VW+W-VH→VW+W-

• Additional sensitivity at intermediate/high mass from VH production with H�WW.

• Control backgrounds via same-sign leptons or trilepton requirements.

Exp/obs limit (σσσσ/SM) at mH = 160 GeV:

CDF:  6.2/5.7 (4.8 fb-1) 
D0:   10.7/18.2 (3.6 fb-1)     

  VH →VW
+
W

− →l ±l ± + X

  VH →VW
+
W

− →l ±l ±l m + X 

• Split events w/ and w/ Z�ll candidate.

• Main backgrounds: 

• WZ, ZZ

• WW, Z+jet/γ (fake lepton)

• Main backgrounds are instrumental:

• Z/γ*�l+l- with charge mismeasurement

• Multijet, W+jet/γ

e
±µ± + X

Trileptons (Z):       S/B = 0.6/33 
Trileptons (no Z):  S/B = 0.8/14 

CDF (5.3 fb-1) mH=165 GeV
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Individual High Mass ResultsIndividual High Mass Results

Exclusion limits per experiment (Nov 2009):

Exp/obs limit (σσσσ/SM) at mH = 165 GeV:

D0 (5.4 fb-1)   :  1.36/1.55 (only H+X→l+l-+MET)
CDF (4.8 fb-1):  1.21/1.23  (includes also 
VH→l±l±+X)

� With additional luminosity and improvements, expect single-experiment 
exclusions in the near future.

Note sensitivity at lower mass!
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Individual High Mass ResultsIndividual High Mass Results

Exclusion limits per experiment:

Exp/obs limit (σσσσ/SM) at mH = 165 GeV:

D0 (5.4 fb-1)   :  1.36/1.55 (only H+X→l+l-+MET)
CDF (5.3 fb-1):  1.03/1.13  (includes also VH→l±l±+X and 
trileptons)

� In fact, CDF’s latest update in Moriond 2010 got very close!

NEW!
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Combined Tevatron Limits Combined Tevatron Limits 

Full combination of all analyses from CDF and D0 for best sensitivity

• Combining more than 30 different channels per experiment.

• More than 50 different sources of systematic uncertainties are considered 
(including correlations among channels and experiments), and constrained in 
sidebands.

• Use different techniques to cross check calculations (Bayesian, modified 
frequentist) → results agree within ~5-10%.

A
nalyses available as of H

C
P
09.

Latest updates not included.
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Visualizing the Tevatron DataVisualizing the Tevatron Data

• The background model has been constrained by the data.

• Data consistent with the background-only hypothesis within the 
systematic uncertainties.

• Significant sensitivity at high mass!
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Any Hints of a Higgs Boson?Any Hints of a Higgs Boson?

• A-priori sensitivity >1σ up to mH=185 GeV and >2σ for mH=158-170 
GeV.

• “Signal-like” excess at low mass but also consistent with background-
only hypothesis.  

Data deficit

Data excess
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Improved SensitivityImproved Sensitivity

Significant improvements across the whole mass range since Moriond 2009:

• Expected exclusion range from 159 to 168 GeV

• Better than 2.2 x SM sensitivity for all mass points below 185 GeV

• At mH=115 GeV expected limit 1.8 x σSM

Moriond 2009

Expected Limit

HCP 2009

Expected Limit
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Improved SensitivityImproved Sensitivity

Significant improvements across the whole mass range since Moriond 2009:

• Expected exclusion range from 159 to 168 GeV

• Better than 2.2 x SM sensitivity for all mass points below 185 GeV

• At mH=115 GeV expected limit 1.8 x σSM

HCP 2009

Observed Limit
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• First joint CDF+D0 publication on SM Higgs:  Phys. Rev. Lett. 104, 061802 (2010).

• Set 95% C.L. exclusion: 162-166 GeV (159-169 expected).



4th Generation Interpretation4th Generation Interpretation

• Sequential 4th generation of fermions.

• Main constraints:

• Invisible Z width at LEPI: Mν4>50 GeV

• Direct searches at Tevatron: Mu4>256 GeV

• Generational mixing, EWK oblique parameters

• LEP2 bounds for unstable ν4 : Mν4>100 GeV

• Additional quarks enhance by x3 ggH coupling.

• Higgs production cross sections:

• gg�H enhanced by ~x9!

• VH and VBF remain at SM rate.

arXiv:0908.2653 [hep-ph]
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4th Generation Interpretation4th Generation Interpretation

• Sequential 4th generation of fermions.

• Main constraints:

• Invisible Z width at LEPI: Mν4>50 GeV

• Direct searches at Tevatron: Mu4>256 GeV

• Generational mixing, EWK oblique parameters

• LEP2 bounds for unstable ν4 : Mν4>100 GeV

• Additional quarks enhance by x3 ggH coupling.

• Higgs production cross sections:

• gg�H enhanced by ~x9!

• VH and VBF remain at SM rate.

• Higgs decay BRs:

• H�gg significantly increased at low mass.

• H�WW dominant mode for mH>135 GeV.

PRD 76, 075016 (2007)
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4th Generation Interpretation4th Generation Interpretation

• Reinterpretation of SM high mass searches: 

• Consider gg�H�WW signal only.

• Extend mass range to 260 GeV.

• Re-optimize analysis (relax Δϕ cuts, retrain NNs).

• Assuming a 4th generation of 
fermions masses beyond currently 
experimental bounds:

is excluded at 95% CL.

130<mH<210 GeV
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SM Higgs ProspectsSM Higgs Prospects

• Limits have improved faster than 1/√L due to analysis improvements.

• Major effort underway to continue to improve sensitivity:

• Optimized object identification/resolution 

• Optimized selections and signal-to-bckg discrimination

• Reduced systematic uncertainties

• Adding new channels, adding more data!

Orange band: assumed analysis improvements wrt 2007 analysis (x1.5 and x2.25)
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SM Higgs ProspectsSM Higgs Prospects

• These are “a-priori sensitivities” (i.e. not taking into account current observed limits).

• Median projected reach assuming improvements (“bottom of orange band”) 

and 10 fb-1/exp:

• Exclude at 95% CL up to mH~185 GeV.

• Considerable probability of 3σ evidence at low and high mass.

� Tevatron complements LHC at low mass (H�bb vs H�γγ, ττ)
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ConclusionsConclusions

• The Tevatron Higgs program continues to make steady progress in sensitivity 
thanks to the excellent performance of the accelerator and detectors and 
continued improvements in algorithms and analysis techniques.

• With 10 fb-1/exp + additional improvements underway expect to be able to   
exclude at 95% C.L. up to mH~185 GeV (if the Higgs doesn’t exist)….

Expect to double dataset 

with FY11 running!
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ConclusionsConclusions

• The Tevatron Higgs program continues to make steady progress in sensitivity 
thanks to the excellent performance of the accelerator and detectors and 
continued improvements in algorithms and analysis techniques.

• With 10 fb-1/exp + additional improvements underway expect to be able to   
exclude at 95% C.L. up to mH~185 GeV (if the Higgs doesn’t exist)….

… or we may have first evidence!

First hints??

Exciting prospects for concurrent analysis of Tevatron and LHC data!
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SM Higgs Combined LimitsSM Higgs Combined Limits

• Calculation of limits and combination:

• Using Bayesian and CLs approaches (consistent within ~5%).

• Incorporate systematic uncertainties (including correlations) using pseudo-experiments.

• Some uncertainties are effectively constrained by data.

At mH = 115 GeV:

Exp. limit: 2.80 x 
SM
Obs. limit: 4.05 x 
SM

At mH = 165 GeV:

Exp. limit: 1.35 x 
SM
Obs. limit: 1.53 x 
SM

At mH = 115 GeV:

Exp. limit: 2.38 x 
SM
Obs. limit: 3.12 x 
SM

At mH = 165 GeV:

Exp. limit: 1.19 x 
SM
Obs. limit: 1.18 x 
SM
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Exclusion Probability vs mH
Exclusion Probability vs mH

Still, 160-170 GeV excluded ≥90% C.L.

As the a-priori sensitivity continues to improve, it will become more stable. 
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Reminder: Moriond 2009 LimitsReminder: Moriond 2009 Limits

• Observed exclusion range from 160 to 170 GeV.

• No a-priori expected exclusion.
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Tevatron AcceleratorTevatron Accelerator

FY11

We are here

~12 fb-1

8 fb-1
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Visualizing the Tevatron DataVisualizing the Tevatron Data

(*) Log(s/b) evaluated using best fit to data.
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Higgs Production at the TevatronHiggs Production at the Tevatron

Experimental conditions:

• like drinking from a fire hose: σinel ~ 70 mb

Collision rate: 2.5 MHz

10 “uninteresting” events/crossing @300E30 cm2s-1

• like panning for gold: σinel/σH+X ~ 1012

Only 1 in 1012 events may be a Higgs event!

� High luminosity and highly efficient and 

selective triggers crucial
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The Success of the Standard ModelThe Success of the Standard Model

• During the last decade the SM has been 
confirmed experimentally beyond 
reproach.

• However, the dynamics for EWSB still 
awaits direct experimental verification.

• The high accuracy achieved allows to 
perform tests at the quantum level: 

δmW ∝ mt
2, ln(mH/mW)

W W
t

b

W W
h

� some sensitivity to the EWSB sector
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ττjj Final Statesττjj Final States

• H→ττ: second largest BR(~8%) at low mass.

• Select events with τlτhjj final state

� sensitive to ZH (Z→ττ, H→bb),VH (V→jj, 
H→ττ) and vector boson/gluon fusion with 
H→ττ

Exp/obs limit (σσσσ/SM) at mH = 115 GeV:

CDF: 25/26 (2.0 fb-1)
D0:    16/27 (4.9 fb-1)     

83
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H(�γγ)+XH(�γγ)+X

• Tiny BR in SM (~0.2%) but large 
enhancements possible in some beyond-SM 
scenarios (e.g. fermiophobic Higgs).

• One of the most promising channels at the 
LHC. It also contributes at the Tevatron!

• Event selection:

2 photons with pT>25 GeV and |η|<1.1

NN-based photon ID (D0).

• Consider all Higgs boson production modes.

• Main backgrounds estimated from data:

• Direct QCD γγ (~60%)

• γ+j and dijet  (jet →γ)

• Use diphoton mass spectrum:

Exp/obs limit (σσσσ/SM) at mH = 115 GeV:

CDF: 19/22 (5.4 fb-1) 
D0:    18/16 (4.2 fb-1)     84


