

LHCb Trigger System and selection for B_s->J/Ψ(ee)φ(KK)

Artur Ukleja on behalf of LHCb Warsaw Group

Outline

- 1. Motivation
- 2. General scheme of LHCb trigger
 - Two trigger levels:
 - Level 0 (L0)
 - High Level Trigger (HLT)
 - Trigger rates division and efficiencies
- 3. High Level Trigger selection for $B_s -> J/\Psi(ee)\phi(KK)$
 - selection of exemplary cut variables
 - final signal efficiency and Minimum Bias rate
 - acceptances for angles
- 4. Conclusions

Motivation

If 1 Interactions/Crossing then L~2x10³² cm⁻²s⁻¹

 expected 100 kHz of bb-pairs only 15% (15 kHz) of these events will include at least one B with all its decay products contained in LHCb acceptance
BR of interesting B decays: typically < 10⁻⁵ 0(1)#z

Save: 2 kHz (This 5000 reduction is achieved in two trigger levels)

A.Ukleja (Inst. for Nuclear Studies)

Level 0 (L0) trigger overview

Due to large mass of B, decays produce particles with large E_{T} (p_{T}) Particles with the high E_{T} (p_{T}) are selected

L0 Calorimeter Trigger

Zone 2x2 of calorimeter cells is used to form clusters (by adding E_{T})

- large enough to contain most of ${\sf E}$
- small enough to avoid overlap of various particles

The highest E_{τ} candidate per type of particle hadron, electron, γ , π^{0} is selected and sent to the next stage

Required at least one cluster:

- in HCAL with E_{τ} (hadron)>3.5 GeV
- or in ECAL with $E_{T}(e,\gamma,\pi^{0})>2.5$ GeV

L0 Muon Trigger

Decision is made requiring at least:

- single muon candidate with the largest p_T p_>1.3 GeV
- or di-muon with the largest and the second largest p_T p_T of each > 0.1 GeV and sum of p_T >1 GeV

 p_{τ} can be measured with a resolution ~20%

L0 Pile-Up System

- Provides a rejection of events with multiple pp collisions through reconstruction of all primary vertices
- Consists of 2 VELO sensor planes (A,B)
- Hits of both planes are combined to find tracks
- Tracks are extrapolated to find vertices
- Cut is applied on number of tracks (3) coming from second vertex

 z_{u} – vertex position

L0 Decision Unit (DU)

DU collects all informations and derives final L0 decision

Detector: ~10 MHz

L0 output rate is large ~1 MHz and sent to next level (HLT)

A.Ukleja (Inst. for Nuclear Studies)

High Level Trigger (HLT) overview

- The software trigger is based on c++ algorithms running in the Event Filter Farm (2000 processors)
- HLT is divided in to two steps: HLT1 reduces rate to 40 kHz (25 times) HLT2 reduces rate to 2 kHz (written to discs)

HLT1 (called L0 confirmation)

- Confirms L0 objects by adding information from VELO & T-stations
- Consists of parallel sequences of algorithms (alleys) according to type of candidate on which L0 decision was taken
- 5 alleys (details Mariusz Witek talk): Muon, Muon+Track, Hadron, Electron and Photon

Event selected by at least one alley is sent to HLT2

HLT2

- Full reconstruction of event similar to offline analysis (there are differences with respect to offline tracking)
- Particle identification
- 2 types of selections (HLT2 lines):
 - Inclusive based on a few tracks,
 - a full decay tree is not required higher rate
 - Exclusive similar to offline selection but with loosen cuts requiring all decay product tracks produce a smaller rate

Possible scenario:

HLT2 output rate: 2 kHz

Inclusive: 1900 Hz Exclusive: 100 Hz

Note: decision is not final!

HLT2 Lines

1. Inclusive

A.Ukleja (Inst. for Nuclear Studies)

- **Leptons**: di-muons, J/Ψ, single muons, muon+track
- Charm: charm topological, D->X topological
- Topological: all remaining topological
- Phi: inclusive phi (φ->K⁺K⁻)
- 2. Exclusive (e.g. $B_s \rightarrow J/\Psi \phi$)

Topological trigger searches for 2, 3 and 4 body track combinations in a wide mass window (between 4 and 6 GeV).

Possible bandwidth division to distribute 2 kHz rate

Leptons	Charm	Topological	Phi	Exclusive
1200	200	400	100	<100

Sheme of LHCb trigger

06/11/2009

Example of trigger efficiencies

The Key Channels

	LO	HLT1	HLT2
B->hh	65%	79%	93%
B->µµ	98%	98%	97%
Β _d ->μμΚ*	91%	93%	92%
Β _s ->φγ	82%	72%	97%
B_s ->J/Ψ(μμ)φ	94%	92%	98%
B_{s} ->J/ Ψ (ee) ϕ	52%	53%	69%

Efficiencies are good for most channels

HLT2 selection for B_s ->J/ Ψ (ee) ϕ (KK)

Interference between B_s decays to J/ $\Psi \phi$ with or without oscillation gives rise to a CP violating phase Φ_s .

Measurement of Φ_{s} is one of the key goals of LHCb.

Although kinematics is the same for $B_s -> J/\Psi(ee)\phi$ and $B_s -> J/\Psi(\mu\mu)\phi$ (if neglect mass difference between electron and muons) electrons are measured worse then muons (Bremsstrahlung photons).

Analysis was done with co-operation with A.Hicheur, EPFL, Lausanne Results were presented for CPWG, August 2009

A.Ukleja (Inst. for Nuclear Studies)

HLT2 selection

Each trigger selection is made according to the following rules:

- 1. Optimized to achieve the highest efficiency for the events selected in the offline analysis.
- 2. Rejecting uninteresting background events as strongly as possible.
- 3. Bandwidth limited to a few Hz (~10 Hz or below, not decided yet).

A.Ukleja (Inst. for Nuclear Studies)

16

J/Ψ and ϕ reconstructions

J/ Ψ is built from e⁺e⁻ pairs and φ is built from K⁺K⁻ pairs.

B_{s} reconstruction (B_{s} ->J/Ψ ϕ)

Pseudo-mass of $\rm B_{s}$ obtained by replacing measured $\rm M_{J/\psi}$ by true $\rm M_{J/\psi}$

Additional cuts are introduced, not only on $M_{_{J/\Psi}}$ and $M_{_{\phi}}$

<u>was checked:</u> no significant bias for angular distributions and lifetime

Angular acceptance

 θ_{tr} – polar angle of positive lepton in J/Ψ rest frame and z axis Φ_{tr} – azimuthal angle of positive lepton in J/Ψ rest frame θ_{ϕ} – formed by positive kaon and x' axis in ϕ rest frame

No significant biases for angular distributions after all cuts are seen

A.Ukleja (Inst. for Nuclear Studies)

Summary and conclusions

LHCb has very efficient and robust trigger

- consists of two parts (L0, HLT)
- reduces rate up to 2 kHz
- Trigger selection for $B_s -> J/\Psi(ee)\phi$ is proposed
 - wider mass window 4.5<M_{вs}<6.2 GeV signal efficiency≈70% and MB rate=19 Hz
 - if necessary: MB rate maybe reduced by tighten M_{Bs} window to 2 Hz (signal efficiency≈70%)

Back-up

HLT2 lines – rates division

Three trigger scenarios to distribute 2kHz rate between categories depending on physics emphasis

Triggor ling	Trigger scenarios [Hz]			
rigger line	Leptonic	Hadronic	Charming	
Leptons	1200	400	600	
Charm	200	200	800	
Topological	400	1100	400	
Phi	100	200	100	
Exclusive	< 100	< 100	< 100	
Total	2000	2000	2000	

Example of trigger efficiencies

L0	HIt1	HIt2/1
65%	79%	93%
98%	98%	97%
100%	99%	<mark>96%</mark>
99%	98%	97%
84%	87%	64%
95%	93%	96%
91%	93%	92%
57%	67%	70%
55%	71%	85%
94%	92%	98%
94%	94%	97%
52%	53%	69%
51%	67%	76%
82%	72%	97%
43%	57%	95%
55%	64%	<mark>49%</mark>
	L0 65% 98% 100% 99% 84% 95% 91% 55% 55% 94% 52% 52% 51% 82% 43%	L0Hit1655%79%98%98%100%99%99%98%99%98%95%93%91%93%55%71%94%92%94%94%52%53%51%67%82%72%43%57%55%64%

L0 – L0 eff HLT1 – HLT1 eff. when L0 on HLT2/1 – HLT2 eff. when L0 and HLT1 on

DV v24r1p1

HLT2 efficiencies

Signal	Hlt2/1	Best Sel	2nd Sel	3rd Sel
B2HH	93%	B2HH: 87 %	TopoTF2BodyReq2Yes: 81 %	TopoTF3BodyReq2Yes: 54 %
B2MuMu	97%	UnbiasedBmm: 92 %	BiasedDiMuonMass: 91 %	IncMuTrackMid: 81 %
Bc2JpsiMuNu	96%	UnbiasedJPsi: 81 %	B2JpsiX_MuMu: 71 %	BiasedDiMuonMass: 62 %
Bc2JpsiPi	97%	UnbiasedJPsi: 86 %	BiasedDiMuonMass: 84 %	IncMuTrackMid: 68 %
Bd2DstarMu	64%	IncMuTrackMid: 47 %	TopoTF4BodyReq3Yes: 28 %	TopoTF3BodyReq3Yes: 27 %
Bd2JpsiMuMuKs	96%	UnbiasedJPsi: 92 %	BiasedDiMuonMass: 78 %	IncMuTrackMid: 53 %
Bd2MuMuKstar	92%	IncMuTrackMid: 79 %	TopoTF3BodyReq3Yes: 65 %	TopoTF4BodyReq3Yes: 64 %
Bd2eeKstar	70%	TopoTF3BodyReq3Yes: 54 %	TopoTF4BodyReq3Yes: 53 %	TopoTF4BodyReq4Yes: 43 %
Bs2DsH	85%	TopoTF4BodyReq3Yes: 74 %	TopoTF3BodyReq3Yes: 72 %	TopoTF4BodyReq4Yes: 56 %
Bs2JpsiPhi	98%	UnbiasedJPsi: 91 %	BiasedDiMuonMass: 78 %	Bs2JpsiPhiDetached: 70 %
Bs2JpsiPhiBiased	97%	UnbiasedJPsi: 85 %	BiasedDiMuonMass: 80 %	Bs2JpsiPhiDetached: 72 %
Bs2JpsieePhi	69%	IncPhi: 59 %	TopoTF4BodyReq4Yes: 33 %	TopoTF4BodyReq3Yes: 33 %
Bs2KstarKstar	76%	TopoTF3BodyReq3Yes: 67 %	TopoTF4BodyReq3Yes: 65 %	TopoTF4BodyReq4Yes: 48 %
Bs2PhiGamma	97%	PhiGamma: 93 %	IncPhi: 85 %	KstGamma: 77 %
Bs2PhiPhi	95%	IncPhi: 89 %	TopoTF4BodyReq4Yes: 60 %	TopoTF4BodyReq3Yes: 50 %
Bu2D0K_KsHH	49%	TopoTF3BodyReq3Yes: 39 %	TopoTF4BodyReq3Yes: 35 %	TopoTF4BodyReq4Yes: 24 %

HLT2/1 – HLT2 eff. when L0 and HLT1 on

DV v24r1p1

HLT2 Topological lines

It searches for 2, 3 and 4 body track combinations in a wide mass window (between 4 and 6 GeV).

- 2 and 3 body lines explore combinations of π and K
- 4 body line excluded because of unbearable timing from huge number of combinations

Tighten MB rate by DIRA (B_s) cut

DIRA (direction angle)

cosine of angle between momentum of particle and direction of flight from PV to decay vertex

4	Events / Candidates for B _s			
CUI	signal	signal eff. [%]	MB	
DIRA (B _s)>0.99	3 153 / 3 704	70	19 Hz / 24	
DIRA (B _s)>0.995	3 151 / 3 700	70	14 Hz / 15	
DIRA (B _s)>0.995 5.2 <m<sub>Bs,pseudo<5.5 GeV</m<sub>	3 140 / 3 611	70	<mark>2 Hz</mark> / 2	

Cut summaries for New Trigger Selection

	cut	Signal efficiency[%]	MB rate [Hz]
0	Standard Di-electron: Hlt2Electrons P _t (e)>800 MeV Vtx chi2 J/Ψ<25 M _{J/Ψ} <6 GeV Non-standard φ: NoCutKaons (Hlt2GoodKaons) Vtx chi2 φ<25 IM I <pdg+50mev< td=""><td>100</td><td>9 642</td></pdg+50mev<>	100	9 642
	B_s : all built candidates		
1	P _t (φ)>1 GeV	98	8 538
2	1000 <m<sub>o<1040 MeV</m<sub>	96	7 006
3	2700<Μ _{J/ψ} <3300 MeV	90	2 639
4	MIN IPS (e)>2	81	523
5	MIN IPS (K)>2	74	260
6	Vtx chi2 B _s <6	70	88
7	4500 <m<sub>B,pseudos<6200 MeV</m<sub>	70	71
8	DIRA (B _s)>0.99	70	19

Unbiased Pt Selection (above cuts without MIN IPS(e) and MIN IPS(K)) for prescaling=0.01 MB rate=7 Hz

for: DV **v23r1** and **OLD** reference sample (Roadmap, Feb.2009)

Curiosity

1 event ~ 35 kB

HLT2: 2 kHz -> 2 kHz x 35 kB= 70 MB/s

1 minute 4.2 GB (120kevents) Standard DVD every one minute

Pile-Up system (VELO)

Pile-Up trigger rejects good B meson candidates (events with two vertexes: 1. pp interac. 2. B decay vertex)

but on opposite side of detector

Track finding algorithm (L0 muon trigger)

It is implemented using only logical operations.

It starts in M3.

For each logical pad hit in M3, an extrapolated position is set in M2, M4, M5 along the straight line passing through the hit in M3 and interaction point.

Pad hits are looked for M2, M4, M5 closed to the extrap. position.

Track position in M1 is determined by making straight line extrapolation from M3 and M2, and identifying the pad hit closest to extrapolation point.