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Remarks on the history of the

notion of Lie differentiation1

Andrzej Trautman2

1. The derivative X(f) of a function f , defined on a smooth manifold, in the
direction of the vector field X and the bracket of two vector fields, introduced by
Sophus Lie himself, are the first examples of what is now called the Lie derivative.
Another early example comes from the Killing equation. David Hilbert [1], in his
derivation of the Einstein equations, used the expression

Xρ∂ρg
µν − gµρ∂ρX

ν − gρν∂ρX
µ

and stated that it is a tensor field for every tensor field g and vector field X. Around
1920, Élie Cartan defined a natural differential operator L(X) acting on fields of
exterior forms. He noted that it commutes with the exterior derivative d and gave,
in equation (5) on p. 84 in [2], the formula3

L(X) = d ◦ i(X) + i(X) ◦ d, (1)

where i(X) is the contraction with X.

2. W ladys law Ślebodziński, in his article of 1931 [5], wrote an explicit formula for
the Lie derivative (without using that name) in the direction of X of a tensor field

1Dedicated to Demeter Krupka on the ocasion of his 65th birthday
2Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoża 69, Warszawa, Poland

email: andrzej.trautman@fuw.edu.pl
3In this note, I transcribe all equations from the form given by their authors to the notation in

current usage. All manifolds and maps among them are assumed to be smooth. Good references
for my notation and terminology are [3] and [4].
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A of arbitrary valence. He gave also an equation equivalent to

L(X)(A⊗B) = (L(X)A) ⊗B +A⊗ L(X)B

and noted that L(X) commutes with contractions over pairs of tensorial indices. He
then applied his results to Hamilton’s canonical equations of motion. For a function
H(p, q), p = (pµ), q = (qµ), µ = 1, . . . , n, Ślebodziński defined the vector field

XH =
∂H

∂pµ

∂

∂qµ
− ∂H

∂qµ

∂

∂pµ
,

introduced the symplectic form A = dqµ ∧ dpµ, the Poisson bivector B = ∂/∂qµ ∧
∂/∂pµ and showed that L(XH)A = 0 and L(XH)B = 0. This allowed him to
generalize some results of Théophile de Donder in the theory of invariants [6].

The priority of Ślebodziński in defining the Lie derivative in the general case was
recognized by David van Dantzig who wrote, in footnote on p. 536 of [7], Der
Operator [the Lie derivative] wurde zum ersten Mal von W. Ślebodziński eingeführt .
It was van Dantzig who introduced, in the same paper, the name Liesche Ableitung .
Also Jan Arnoldus Schouten, in footnote 1 on p. 102 of [8], lists the 1931 paper by
Ślebodziński as the first reference for the notion of Lie differentiation. Van Dantzig
complemented the approach of Ślebodziński by pointing out that the Lie derivative
can be defined as the difference between the value of a geometric object A at a point
and the value of that object at the same point obtained by an infinitesimal ‘dragging
along’ a vector field. In contemporary notation this is expressed by the formula

L(X)A =
d

dt
ϕ∗

tA|t=0, (2)

where ϕ∗
tA is the pull-back of A by the flow (ϕt, t ∈ R) generated by X. In view of

the equation
d

dt
ϕ∗

tA = ϕ∗
tL(X)A,

the vanishing of L(X)A is equivalent to the invariance of A with respect to the flow
generated by X; see, e.g., §24 in [9].

3. For quite some time, physicists had been using Lie derivatives, without reference
to the work of mathematicians. Léon Rosenfeld [10] introduced what he called a
‘local variation’ δ∗A of a geometric object A induced by an infinitesimal transforma-
tion of coordinates generated by X. He noted that δ∗ commutes with differentiation.
It is easily seen that his δ∗A is −L(X)A; see, e.g., [11]. Assuming that A is a tensor
of type determined by a representation ρ of GL(4,R) in the vector space RN and
denoting by ρν

µ ∈ End RN the matrices of the corresponding representation of the
Lie algebra of GL(4,R), one can deduce from Rosenfeld’s equations the following
formula for the Lie derivative

L(X)A = Xµ∂µA− ∂νX
µρν

µA.
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In particular, assuming that L is a Lagrange function depending on the components
of A and on their first derivatives and such that

∫
Ld4x is an invariant, Rosenfeld

showed that
L(X)L = ∂µ(LXµ)

and used the formula

L(X)L =
∂L

∂A
L(X)A+

∂L

∂(∂µA)
∂µ(L(X)A)

to derive a set of identities of the Noether type, and the conservation laws of energy-
momentum and of angular momentum. One of the main results of that paper was
the symmetrization of the canonical energy-momentum tensor t achieved by adding
to it an expression linear in the derivatives of the spin tensor s.

Incidentally, it is remarkable that this symmetrization, derived independently also by
F. J. Belinfante, is a natural consequence of the Einstein–Cartan theory of gravita-
tion. In that theory, based on a metric tensor g and a linear connection ωµ

ν = Γµ
νρdx

ρ

which is metric, but may have torsion, there are field equations relating curvature
and torsion to t and s, respectively; see [12] and the references given there. If
these Sciama–Kibble field equations are satisfied and X is a vector field generating
a symmetry of space-time so that

L(X)g = 0 and L(X)ω = 0

then, denoting by tµ and sµν the 3-forms (densities) of energy-momentum and spin,
and the covariant derivative with respect to the transposed connection ω̃µ

ν = Γµ
ρνdx

ρ

by ∇̃, one has the conservation law dj = 0, where

j = Xµtµ + 1

2
∇̃νXµsµν .

In the limit of special relativity, if X generates a translation, then j reduces to the
corresponding component of the density of energy-momentum; for X generating a
Lorentz transformation, one obtains a component of the density of total angular
momentum.

4. The Lie derivative defines a homomorphism of the Lie algebra V(M) of all vector
fields on an n-dimensional manifold M into the Lie algebra of derivations of the
algebra of all tensor fields on M ,

L([X,Y ]) = [L(X),L(Y )].

The Cartan algebra C(M) =
⊕n

p=0Cp(M) of all exterior forms on M is Z-graded by
the degree p of the forms. A derivation D of degree q ∈ Z maps linearly Cp(M) to
Cp+q(M) and satisfies the graded Leibniz rule,

D(α ∧ β) = (Dα) ∧ β + (−1)pqα ∧Dβ for every α ∈ Cp(M).
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Derivations of odd degree are often called antiderivations. The vector space
DerC(M) of all derivations of C(M) is a super Lie algebra with respect to the
bracket

[D,D′] = D ◦D′ − (−1)deg D deg D′

D′ ◦D. (3)

The degree of [D,D′] is the sum of the degrees of D and D′ and there holds a
super Jacobi identity; see [13] for an early review of super Lie algebras, written for
physicists. In particular, d is a derivation of degree +1 and, if X ∈ V(M), then L(X)
and i(X) are derivations of degrees 0 and −1, respectively. The Cartan formula (1)
represents L(X) as a bracket, as defined in (3), of d and i(X).

The contraction i(X) generalizes to fields of vector-valued exterior forms. Let X ∈
V(M), ξ ∈ Cp(M), p = 0, . . . , n, and Y = X ⊗ ξ, then Y is a vector-valued p-form
and i(Y ) is a derivation of the Cartan algebra, of degree p− 1, defined by

i(Y )α = ξ ∧ i(X)α, α ∈ C(M).

By linearity one extends i(Y ) to arbitrary vector-valued p-forms. The bracket
[d, i(Y )] is now a derivation of degree p; by the super Jacobi identity its bracket
with d is zero and every derivation (super) commuting with d is of this form. If
Y and Z are vector-valued forms of degrees p and q, respectively, then the bracket
[[d, i(Y )], [d, i(Z)]] super commutes with d and, therefore, there exists a vector-
valued (p+ q)-form [Y, Z] such that

[d, i([Y, Z])] = [[d, i(Y )], [d, i(Z)]]. (4)

The Fröhlicher–Nijenhuis [14] bracket [Y, Z], defined by (4), generalizes the Lie
bracket of vector fields; it is super anticommutative,

[Z, Y ] = −(−1)pq[Y, Z],

and makes the vector space of all vector-valued forms into a super Lie algebra.
For example, an almost complex structure J on an even-dimensional manifold is a
vector-valued 1-form and [J, J ] is its Nijenhuis torsion.

5. A convenient framework to generalize the definition (2) of Lie derivatives is
provided by natural bundles. A natural bundle is a functor F from the category
of manifolds to that of bundles such that πM : F (M) → M is a bundle and if
ϕ : M → N is a diffeomorphism, then F (ϕ) : F (M) → F (N) is an isomorphism
of bundles covering ϕ. If A is a section of πN : F (N) → N , i.e. a field on N of
geometric objects of type F , then ϕ∗A = F (ϕ−1) ◦ A ◦ ϕ is its pull-back by ϕ to
M . All tensor bundles are natural, but spinor bundles are not. The vertical bundle
V F (M) is the subbundle of the tangent bundle TF (M) consisting of all vertical
vectors, i.e. vectors that are annihilated by TπM . Let (ϕt, t ∈ R) be the flow
generated by X ∈ V(M) and let A be a section of πM . The curve t 7→ (ϕ∗

tA)(x) is
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vertical for every x ∈M and the Lie derivative L(X)A is now defined as the section
of the vector bundle V F (M) → M such that (L(X)A)(x) is the vector tangent to
t 7→ (ϕ∗

tA)(x) at t = 0. The monograph by Kolář, Michor and Slovák [15] contains
a full account of this approach and, in Ch. XI, an even more general definition of
Lie differentiation.
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