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1. — Notation

Standard terminology and notation of algebra and differential geometry is
used in this paper. The exterior algebra of an n-dimensional real vector space
V is denoted by

AV* = ké)() ARV,
where A°V* = IR and A1 V* = V* is the dual of V. If u € V, then
i(w) :AV* > AV*
is the (anti) derivation of degree —1 defined by
i(Wa =(u, o) foranya € V'*
and
iWEAY) =GB Ay + (= DFBAiw)y
for any f € A¥V*. Sometimes one writes u _|« instead of i (u)a. If
A:V->T
is a linear map, then
A AV > AV*
denotes the derivation of degree O defined by
(u, Aoy ={Au, ) foranyue€V andaeV*
and

ABAY=ABAY+BAAY, B yEAV*
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It is easy to check that
(1) li(w),Al =i(Au)

for any u€V and 4 € L (V). f u € V and a € V* then the map A defined by
Av =a(v)u is written as4 = u ® «.

A scalar product in V is defined as a bilinear symmetric map g : V' x V>R
which is non-degenerate, but the quadratic form u - g(u, u) needs not be posi-
tive-definite. The same letter g will be used to denote the isomorphism of V
onto V* defined by

(v,g(w)) = g(u, ), u,vev.
A linear map 4 : V - V is symmetric with respect to g if, forany u,v €V,
g(Au,v) =g(u, Av).

If A is symmetric, then g(Au) = Ag).
Let (e“), w=1,...,n, be a linear frame (basis) in V and let (e") denote its
dual:

(e“,e”)z«S:.
The n-form
(2) e=elANe?N... Ne"
spans A" V'* and

3)  Ae=eTrA.

Assume now that V has a preferred orientation and consider a frame which
agrees with the orientation and is unimodular, i.e.:

| det (g,,)] =1,
where
g,,=8(e,e).

The n-form (2) is now called an (oriented) volume element. The Hodge dual is an
isomorphism of the vector space AV * on itself,

x AV > AV*,

defined as follows. Let « € A¥V* and u, ,,,...,u, €V, then xa € A" ¥ V¥
is given by

4) # 0y, o u)e=aNgluy DA Ngw,).
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One has

%) i) » a=x(aAgu)
and, if A € £ (V) is symmetric,

(6) Ax+ %A= (Tra)*.

Let M be an n-dimensional smooth oriented manifold with a metric tensor g.
The algebraic notions and constructions described above are extended, in a
natural manner, to smooth fields on M. For example, if I'(M) = & I'*(M) is the
Cartan algebra of differential forms on M and u is a vector field, then
i(u) : (M) - T'(M) is a derivation of degree —1. The exterior derivative

d:TWM)->TWM)
is a derivation of degree +1. If 4 and v are vector fields, then
(7) Lw)y=doi(u) +i(u)ed

is a derivation of degree O (the Lie derivative with respect to u); we have:

(8) [Pw),d]=0
and
9 [ZLw),i(W)] =i(u,v]),

where [u, v] is the usual bracket of vector fields,
(10) L([u,v]) = [ L), LWO)].

If A : TM - TM is an endomorphism of the tangent bundle TM, then A denotes
the corresponding derivation of the Cartan algebra; there are obvious extensions
of formulae (1) - (6) to fields on M. If u and v are vector fields and g(z) denotes
the 1-form corresponding to u under the isomorphism g : TM - T*M, then the
map

v > L(u)(g®) —g([u, v])
defines a tensor field (the Lie derivative of g with respect to u),
.fug :TM—>T*M,
given by:
(11) (Z,8)W) = L) (gv) —g(lu,v)).

This tensor field is symmetric, (w, ( Yug)(v)) = (v, (gug)(w)), and it vanishes if
and only if u generates a group of isometries of g. The composed map
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(12) u=g'1° £,8:TM~>TM

occurs in the following lemma.

LEMMA 1. Let
* :T'(M)->T (M)
be the Hodge dual acting on differential forms. If u is a vector field on M, then
(13) [Lw), *x]=(A,—(1/2) Tr A,id) *.
Moreover, according to (1), there holds
(14) liw),4,]1=i(4,uw,
where
gl4,u)=(ZL, 8w
and

Tr4,=2 div u.

It is also clear that [ £(u), ] anticommutes with % and

id | Dk = kid | T 5.

2. — Spacetime and the Maxwell Equations

A spacetime is a (space and time) orientable four-dimensional manifold M
with a metric tensor g of signature — 2. The Hodge dual acting on 2-forms is
invariant under conformal changes of g.It depends only on the conformal geome-
try of M. As a result of this, Maxwell’s equations in empty space,

(15) dF =0, d«F=0

where F € I'2(M), are conformally invariant.
Let k be a complete, nowhere vanishing vector field on M. There then exists
a smooth map

¢ :RxM->M, ¢(t,p) = ¢,(p),

such that

and
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d
— (fep)=ZLK)(foyp,)
dt

for any smooth function f. One says that (¢,) is the flow generated by k. Assume
that there exists a hypersurface S C M transversal to k and that the restriction ¥
of ¢ to R x S is a diffeomorphism of IR x S onto M. A system of (local) coordinates
(x',»',z') on S can be used to define coordinates (¢, x, y, z) in (a suitable region
of) M by putting (cf. fig. 1)

t =prl o) ll}“l
and

x=x"opryoy ! etc.

Fig. 1

It follows from the definition that k = 9/d¢ and
(k,dt)y=1, (k,dx)=0, etc.
p=v(py),  x(p)=x'(py), etc.
The following lemmas are straightforward.
LEMMA?2. Let a €T'(M) and B be an endomorphism of the tangent bundle of
M. If
a|S=0 and PL(k)a=Ba

then
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LEMMA3. Ifi(k)a=0and dt Na =0, then o = 0.

LEMMA 4. If
F(k)ya =0, i(k)a|S=O and (dt/\d(x)|S=0
then
i(k)a=0 and da =0.
Indeed,

Lk)ik)a) =i(k) Lk)a=0
implies i(k)a = 0 (Lemma 2). Moreover,
i(kyda = Llk)a—d(i(k)a) =0,
L) (dt Nda)=d L k)t Nda+dt Ad L k)a =0,

therefore,again by Lemma 2, d# A da = 0. Also, i(k)da = L(k)a —d(i(k)a) =0
so that da = 0 holds by Lemma 3. (Q.E.D.)

3. — Null Elements and the Robinson Theorem

A vector field k on M is null if g(k, k) = 0. It is, moreover, geodesic if
(16) (ipkg)(k)/\g(k)=0-

In this casethe lines of the flow generated by k are null geodesics.
The form o € I'(M) is null if there exists a nowhere vanishing vector field k
such that ’

i(k)a=0 and i(k) *a=0.

If « == 0 then the vector field & is necessarily null (use (5) to prove this).

THEOREM 1. Let k be null and geodesic. If
Lk)a=0 and i(k) *a|S=0

then i(k) * a = 0.

Proof. Since
i(k) * o= x (\g(k)),

the theorem is equivalent to the following: if k is null geodesic, ZL(k)a=0 and
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aAg(k)|S =0 then a Ag(k) = 0. Now,
L) aNgk) = (Lk)a) Ngk) + a A (Z, 8)k) =a N\ (L g) (k).

Since (.,ka g)(k) is parallel to g(k), the right-hand side of the last equation is
proportional to « A g(k) and Theorem 1 follows from Lemma 2. (Q.ED)

LEMMAS. Let FeTl'%2(M) be non-zero and null, i(k)F=0=i(k)*F, k+0
and let B be a traceless, symmetric endomorphism of TM. Condition BF=0
is equivalent to the existence of a vector field u such that

1
(17) B=u®g(k)+k®g(u)—;g(u,k)id.

A proof of the lemma is obtained by constructing a frame (e u) such that
g=g,e"'e e'=edoettetoed—cloel —ege? and F=felAe3, «F=
=fe?Ae3. One writes B=B" e ®e’ where B, =B, =g, B® and TrB =
=B* = 0. It follows from (6) that B anticommutes with * so that B * F = 0. The
rest is a computation. (Q.E.D.)

THEOREM 2. If F € I'2(M) is non-zero and null, i(k)F = 0,
0=i(k) * F, k+#0,

and
Lk)F =0, ZL(k)y« F=0,

then there exists a vector field u such that

1 1
(18) Ak—Z(TrAk)id=u®g(k)+k®g(u)—?g(u,k)id.

Proof. 1t follows from the assumptions of the theorem that [£(k), *]F = 0.
Lemmas 1 and 5 complete the proof. (Q.E.D.)

REMARK. Condition (18) is equivalent to the following: there exist a function
a and a vector field u such that
(19) &8 =2ag +g(u) ® g(k) +g(k) ®g(u).

Clearly, if (19) is satisfied, then (Ykg)(k) A g(k) = 0 so that & is geodesic. It has
been shown elsewhere [5] that the flow generated by k subject to (19) preserves
the distribution of subspaces orthogonal to k, together with their (degenerate)
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conformal structure induced by g. For this reason, the flow, and k itself, is said
to be null, geodesic and shearfree ([2]; cf. also [1], [3], [6])-

THEOREM 3. Consider a null geodesic and shearfree, non-zero vector field k and
a hypersurface S transversal to k and such that the flow generated by k determi-
nes a diffeomorphism of R xS onto M. If F €T %(M) satisfies the following
initial conditions

(20) i(k)F|S =0, i(k)* F|§ =0,
21 dtAdF|S =0, dtAd=F|S=0,
and is invariant by the flow,

L(k)F =0,
then F is a null solution of Maxwell’s equations,

dF =0 and dx F=0.

Proof. It follows from Lemma 4 that i(k)F = 0 and dF = 0. Theorem 1 yields
i(k) « F =0 so that F is null. Since £ (k) * F = [ £(k), *]F =0 by Lemmas 1
and 5, Lemma 4 can be applied toa = * Ftogetd =« F = 0. (Q.E.D))

REMARK. The initial data (21) contain derivatives of F' only in directions tan-
gential to S. There always are non-zero initial data statisfying (20 - 21). This can
be seen from the following argument [4]: let v be a unit vector field on S, tangent
to S and orthogonal to k. Then * (g(k) Ag(v)) =g(k) Ag(w) where w has unit
length and is orthogonal to both k and v; it may be chosen to be tangent to S.
Put F[ S = g(k) A (ag(v) + bg(w)) where a and b are functions on §. Conditions
(20 - 21) reduce to two first order linear differential equations for @ and » which
may be solved.

COROLLARY (The Robinson Theorem). With any null, geodesic and shearfree
vector field k there is associated a non-trivial null solution of Maxwell’s equations.
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The Remark and its Corollary are valid provided that the components of the vector field k are real-analytic functions of the coordinates.  See p. 222 in Penrose and Rindler, Spinors and space-time, vol. 2, and the paper by Tafel mentioned  there.
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Abstract. It is shown that if a 2-form F in a 4-dimensional conformal spacetime is
invariant by the action of the flow generated by a null, geodesic and shearfree
vector field k and satisfies the initial conditions: k JF =0=k * Fand dt AdF =
=0=dz Ad = F on a hypersurface t = const. transversal to k, then F is a null
Maxwell field. The proof depends on a useful formula for the commutator of the
Lie derivative with the Hodge * operator.

Received: May 8, 1983.

A. Trautman

Institute of Theoretical Physics
Warsaw University

ul. Hoza 69, 00-681 Warszawa, Poland





