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1. In this note we shall deal with a tensor field (or set of tensor
fields) the components of which will be denoted by w4(#*)(4=1,...,N;
»y=0,...,3). The field equations for the pure field case are supposed to
be derivable from a variational prineiple

(1) ol =0,

where:

(2) I=8d,z, Q—y gL,
(2

3) L=L(GuGpwc1¥4>¥4s), 9= det(gu);

gu(@?) is the metric tensor of the space-time V, (in general non - Euclidean).
We assume that L is an invariant with respect to general co-ordinate
transformations in V,.

The purpose of this paper is to obtain a conservation law for the
y-field and to derive the equations of motion for a ‘“‘cluster of particles”
moving in such a field. The latter problem is closely related to a paper
by Infeld [1] on the equations of motion in linear field theories.

2. We use the notation of the general relativity theory (summation
convention, ordinary (covariant) differentiation denoted by a comma
(semicolon), Dg4=¢4,,da*).

The field equations resulting from (1) are:

(4) 1 (953 o 98 \)20.

get. ¥V ——q Mg Oar g,

We generalise (4), assuming that the sources of the field are described
by a tensor field j4; the equations in the presence of sources become
LA=j4.
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We define a symmetric energy -momentum density tensor:

$ 48 4.9
5 T A )
- ey —g(agﬂf’ 9ar 3g°s,

It is well known [2], [3] that the conservation laws for physical
systems are intimately connected with the invariance properties of the
Lagrangian function. The invariance under the group of general co-
ordinate transformations in V, leads to four identities connecting Tos,
IA and the y's.

Let us take an infinitesimal co-ordinate transformation a*—uv —
= a*+4 0f*, where 00*(x®) is a vector field. We form the “substantial’
variation of y,:

(6) 0*a g Ya(P) — pa(2?), where ‘@'='a*dr—ar,*)
and assume, following Belinfante [5] and Bergmann [6], that

(7) 6*1/)A =2 —QPA,,.(SZ” e FAﬂBv'PB(SC,”, o

F,..” is a constant (numerical) tensor depending on the transformation
properties of y, and fulfilling certain commutation relations [6]. From (7),
we obtain:

(8) wA R == wA,a +FA/.¢BVI?I‘1!WB

]
The original region of integration £ is mapped, by the transformation
»—x", to a new region Q. We can now write:

(9) M oo [Rdya’ — (R0
o Q

Further, evaluating this difference:

(10) oI = [(5*Q@ +(R007), ) d,a,
Q

or explicitly:

(o

*¢ d " S
5J“+9g,,,, 0*g¢, +9w,4

(11) o*I= | ( (86:”),,)0141‘.

dgel

3. The field 6, being arbitrary, let us assume that 6 and its first
derivatives vanish on the boundary of £. Thus, bearing in mind that
0*¢,=(0%p),, and integrating by parts we obtain from (11):

(12) T = [1 =g (1 T,58*g + LAS*p,) dyr;
2

*) More precisely, d*y, denotes the principal part of this difference. %y  differs
only in sign from the Lie differential treated in [4].
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d*g*# can be easily computed:
(13) 0% gof = 0L + OLPie.
Substituting (7) and (13) in (12) and integrating by parts we have:

6*1_—j ]/—gaca(Ta,,8+LA1pAa+] — (1 LA 4Py) ) da =0

and, by virtue of (8) and the arbitrariness of 2 and d(*:
(14) (Tﬁa +LAFAaBﬁWB);ﬁ+LA1PA;aEO-

This is a set of ‘“strong’’ equations, holding independently, whether
the field equations (4) are satisfied or not. When E£-—=0, we obtain
from (14) a ‘“weak’ conservation law for the energy-momentum tensor:
T5=0

4. Introducing the canonical (in - general non-symmetric) energy-

momentum density tensor i} a;'f,——aﬁL—i-ﬁ%IJ—sz;a, we can, by a method
A’ﬁ

developed by Hilbert [7] or de Wet [8], obtain a general relation bet-

ween T, and t5. We give the formula in question for the case when

L does not depend on g, (this assumption will be made throughout

section 4): :

L oL
15 Tﬁ~tﬁ—-F,1-(c o s )
( ) A 5 {71 QW

It is worth observing that in a non-Euclidean space-time, the canonical
energy -momentum tensor ig, S‘ixergenceless even when (4) holds, viz.:

oL ’
(16) t, ,5=~—LA¢A a—-a——— wBFAumRﬂmﬁ

Ya,
When the field equations (4) are satisfied, we can write’( 15) in the form:
Tr=tf+87.,, where :

oL
Sa def. FA!X ﬁwﬂa o —Sa"ﬁ'

The tensor s# . 8P~ — 8% corresponds — when the V, is flat — to the
spin angular momentum density tensor [5].

5. The problem of the motion of bodies in the” general relativity
theory has been investigated by many authors. Einstein and Infeld re-
presented the bodies as singularities of the field (see for example [9]).
In this paper, we assume that matter is characterised by a scalar den-
sity of mass p(2*) and a velocity field ue=dx*/ds (perfect fluid without
pressure).
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We assume that the left hand side of the gravitational equations
can be obtained by varying the integral

J = [Ky =gd,a.
o2

K is an invariant built from g, and their derivatives. The gravitational
field equations are

(17)

uﬂdef 69“5 = O 'NﬁJ—Taﬁ

For K==x=R, we have Kop=x%(Ry— 3 gusR), and (17) becomes Einstein’s
equation. In a manner similar to that used in section 3, we get Ka8 p=0.
Equation (17) can be integrated only when

(18) : (ouuP + Ty 5= 0.
Assuming LA —j4, we obtain by virtue of (14), and w*zuf=Dus/ds:

Du, ; ; 5
@ g T %al0UP);5= 144; 0 +F 4 (yp); 5

(19)

Transvecting (19) with w2, we get the law of “conservation of mass”:
(20) (0W);p= ([ Pasu+ F 4B (14p5).5).
From (19) and (20) we have the equations of motion:

Dwa

21
(#) (ls

= (97— ww) (1) ;s F 4% + j49a. ).

The equations of motion appear as nvces\al\ integrability conditions for
the gravitational field equations.

The author wishes to thank R. Gajewski for valuable discussions
and collaboration in writing section 4.
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