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OPTICAL GEOMETRY*

Ivor Robinson

Programs in Mathematical Sciences
University of Texas at Dallas, Richardson, Texas 75083

and
Andrzej Trautman

Institute of Theoretical Physics
Warsaw University, Warsaw, Poland

ABSTRACT

The geometry of classical physics is Lorentzian; but weaker
geometries are often more appropriate : null geodesics and
electromagnetic fields, for example, are well known to be
objects of conformal geometry. To deal with a single null
congruence, or with the radiative electromagnetic fields
associated with it, even less is needed : "flag geometry"
for the first,"optical geometry", with which this paper is
chiefly concerned, for the second. We establish a natural
one-to-one correspondence between optical geometries,
considered 1locally, and three-dimensional Cauchy-Riemann
structures. A number of Lorentzian geometries are shown to
be equivalent from the optical point of view. For example
the Gd&del univerée,the Taub-NUT metric and Hauser's twisting
null solution have an optical geometry isomorphic to the one

underlying the Robinson congruence in Minkowski space. We
present general results on the problem of "lifting" a CR
structure to a Lorentz manifold and, in particular, to
Minkowski space ; and we exhibit the relevance of the

deviation form to this problem.

*

“Presented by A.Trautman
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1. INTRODUCTION

Much of the work done by theoretical physicists consists
in using perturbation methods to find approximate solutions
suitable for the description of the phenomena under
consideration. It is often important to know, however, not
only whether the perturbation series converges, but also

what is the form of the exact solution itself. Thus, for
example, in Einstein's theory of general relativity, a
rather rudimentary approximate description of the

gravitational field of the Sun suffices .to account for
effects such as the deflection of light and the motion of
planetary perihelia. The striking properties of black holes
are apparent only when the appropriate exact solutions of
Einstein's equations are considered. The development of
gauge theories of the Yang-Mills type has led physicists and
mathematicians to study self-dual connections on non-trivial
principal bundles over compact, Riemannian four-manifolds.
In this case, approximate and perturbation expansion methods
are also of little use.

Exact solutions of classical differential equations of
mathematical physics - such as those associated with the

names of Maxwell, Einstein, Dirac, Yang and Mills - are
often found by imposing symmetry restrictions on the
solutions. To be more precise, if one considers, say, the

Maxwell equation over a Riemannian or Lorentzian manifold
admitting a Lie group G of isometries, then, given a Lie
subgroup H of G, one can demand that the solution be
invariant with respect to the action of H. 1In many cases,
when H is sufficiently large, all such solutions can be
found in closed form. There is another method of singling
out and finding special solutions, adapted to the study of
classical fields on Lorentz manifolds. The method, which
may be traced back to Harry Bateman (1910)1 , makes use of
the existence, on such manifolds, of null (light-like,
optical) vectors and two-forms. Initially, the application
of the method had been restricted to electromagnetism, but
its real strength appeared in connection with work on
relativistic gravitation. Recently, it has become clear
what is the geometry underlying the method and how it is

; . 2)
related to the notion of Cauchy-Riemann structures (Wells™,
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3) . ) ) .
Chern and Moser™ ', Burns and Shnlder4, Penroses). In this
article, we present a self-contained account of the basis of
this "optical geometry".

The paper is organized as follows: a section summarizing
our notation and terminology is followed by one containing
examples and heuristic considerations that motivate this
research. The next section describes a rather weak "flag
geometry", adapted to account for the geodetic property of a
congruence of null curves. There then comes the main body
of the paper devoted to optical geometry proper and its
relation to CR structures and Lorentzian geometry. We give
a novel derivation of the Sachs equation describing the
propagation of complex expansion and shear. A final
section is devoted to a brief history of the subject.

2. NOTATION AND PRELIMINARIES

In this paper, most of the time, we adhere to the
standard terminology and notation of differential geometry
and its applications to mathematical physics; see, for
example, Abraham and Marsden . The following paragraphs
contain a summary of our conventions (see also Trautman ).

The Grassmann algebra of an n-dimensional real vector
space V 1is denoted by

+* nt+
AV = @& AV
l=o
where Aﬁv? = F and A1¥$ = v is tge dual of V. If s
is a linear map from V to A "'V (1 .= -1,0,...,n-1),
then 1i(s) is the graded derivation of AV of degree 1,
defined by
i(s) : a s AV is linear,

i(s)a = s(a) for any o = v .
is)(BAY) = (is)B) Ay + (-1X'E A i)y

for any g3 = AV’ ana Y = AV L OTf 1 = -1, i.e. if s = V.
then we write s J y instead of i(s}y. If u = V and E=vVv,
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then the tensor u ® £ is identified with the linear map
v > v given by (ue@fla = alu) and we have

iflue@ &)y =& A (udy).

The graded bracket im
[i(s), 1(t)] = i(s) o i(t) - (-1) i(t) o i(s)
of the derivations i(s) and i(t), of degrees 1 and m,
respectively, is a graded derivation of degree 1 + m.

Sometimes it is convenient to express tensors in terms
of their components with respect to a basis (e ) in V and
the dual basis (e } in V v »

A metric tensor on V 1is defined as a map g: V x V 3 [
which is bilinear, symmetric and non-singular. For any usV,
we denote by g(u) the one-form such that v d g(u) =
= g{u,v) for any v £ V ; in other words, we use the letter
g to denote also the isomorphism V & V induced by the
metric tensor. A metric g on a four-dimensional vector
gpace is said to be Lorent21an if its signature 1is (1,3),
i.e. if there is a basis (e ) in the complexified space
€ ® V such that

o 3 3 0 1 2 2 1
g=-—e@®e +e ®e-—e®e-e@e , (2.1)
where

0 3
e = e and e , e are real.

Following the tradition of classical differential geometry,
we shall omit the symbol of the tensor product in all

formulae for g ; instead of (2.1) we write
g = 2e°ea - 2ete? (2.2)
or
v
g =g eMe , where p,» = 0,...,3.
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A heavy dot denotes the contraction of covariant tensors -
and, in particular, forms - defined according to the pattern

(S+T) = 8 upT
wep  Cuvad g
where g“p g = & and
oV v
17
s=8 e"oe @ e ete.
MV p

If L is a vector subspace of V, then
L™ = {o = V“ : if usL then ud o« = 0}

*
is a vector subspace\of g . If K 1is another subspace of
€ i
Vand K - L, then L" < K and the vector spaces (L/K)
1 0 . N .
and K)/L are i1somorphic to one another in a natural

manner.

If V has an orientation and a metric tensor g, then
one can define the Hodge dual

*(g): AV 5 AV
in the usual way : and
u J *(gla = #(g) (et A glu)) (2.3)

for any u =V and o« = AV*. When g 1is fixed, then one
usually writes #o instead of =*(g)a : but we shall
occasionally need the more elaborate notation to account for
the dependence of the dual on the metric.

All manifolds and maps are of class Coo or real
analytic. The tangent and co;angent bundles of a manifold
M are denoted by TM and T M, respectively. If ¢ : M 5 N
is a diffegentiable map and g is covariant tensor field on
N, then ¢ g denotes its pull-back to M. A vector field
k on M generates a flow (pt)teﬁ on M, i.e. a local,

one-parameter group of local transformations of M. The Lie
derivative of the tensor field g with respect to k is
defined by
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d -
£kg = 3¢ 9

it=0

If o is a p-form field on M, then

£ka =k Jd doa + d(k 1 a), (2.4)
where d denotes the exterior derivative and the
contraction is defined "pointwise", (k J o) (x) = kix) J «(x)
for any X € M. There are similar pointwise extensions of
the algebraic operations defined on vector spaces to ™
and the associated fibre bundles over M ;. we use them

without further explanation. We often omit the word "field"
and speak of a metric tensor or a form on M when we mean a
metric tensor field or a field of forms.

A Lorentz space is a four-dimensional manifold M with a
metric tensor g such that g restricted to any tangent
space to M 1is Lorentzian. For example, the Minkowski
space R4 with coordinates (u,x,y.r) and

g =2 dudr - dx° - dy’ (2.5)

is a Lorentz space. The Levi-Civita connection 7 on a
Riemannian or Lorentz space may be computed from the
Christoffel formula

1 -1 1
VXY =5 9 ((ﬁxg)(Y) + (f&g)(x) - d(gi{X,Y))) + 2 [X,Y], (2.6)

where X and Y are vector fields, [X,Y] = ££Y is their
bracket, VXY denotes the covariant derivative of Y 1in the

direction of X and the Lie derivative £Xg is interpreted

*
as a vector bundle map T™M > T M so that (£&g)(Y) is
a one-form on M. Since %g = 0 one has also
7.9(Y) = X J dg(y) +% (£.9)(X) (2.7)
x? 2 v a¥ A&y : )

It is sometimes convenient to use the formula



£Xd = de + 1(VX) e (2.8)

valid for any p-form o« on M.

3. HEURISTIC CONSIDERATIONS AND EXAMPLES

Optical geometry evolved from the study of simple, null
electromagnetic fields and its extension to gravitation and
other classical, relativistic fields. Before presenting
formal definitions and results, we recall a few known facts
and examples, with the intention of "setting the stage" and
justifying the abstractions we make.

Consider an electromagnetic field described in Minkowski

space-time with Cartesian coordinates (t,x,¥,2) by the
vectors E = (E ,E ,E ) and B = (B ,B ,B ). Introducing the
X y z x Yy z
two-form
F = dIN(Edx + Edy + E dz) - B dyAdz - B dzAdx -B dxAdy
X y z x y z

and its dual

*F = dtA(B dx + B dy + B dz) + E dyAdz + E dzAdx + E dxAdy
x y z x Y z

we can write Maxwell's equations in a region free of

charges as
dfF = 0 and d*F = 0. (3.1)

These equations can be used, in the same form, in any
oriented Lorentz four-manifold with metric tensor g ; the
Hodge dual is then understood to be taken with respect to g.
A solution of (3.1) will be referred to as a
Maxwell field.

The ratio
v = E % B/%(E2+ Bz)

of the Poynting vector to the energy density 1is a vector
characterizing the velocity of propagation of the field :
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its magnitude is never greater than 1 ; it is equal to 1
if, and only if, the electromagnetic field is null, i.e. 1if
the vectors E and B are orthogonal to each other and of
equal length. Let

-F +¥-1 F F
X v z
F=E+VY-1B and f = Fx+ CI Fy

F

z

The property of being null is algebraic ; for this reason
let us restrict our attention to a point of space-time and
assume that F =2 0 1is the two-form of the electromagnetic
field at that point. The following conditions are then
equivalent :

(i) the electromagnetic field is null ;

(ii) there is a vector k # 0 such that kJ F = 0 and

kJd *F = 0 ;

{(iii) there is a one-form ##0 such that a#A*F=0 and »AF=0;

(iv) there is a vector k # 0 such that

kdF =0 and g(k) AF =0 ; (3.2)
(v} the two invariants of the field wvanish,
FAF=0 and F A #F = 0 ; (3.3)

(vi) the complex vector F 1is null, F* = 0 H
(vii) the matrix f is of rank 1.
It is an easy matter to check the equivalence of these
conditions; for example, if the field is null, then the
vector and the one-form referred to in (ii), (iii) and
(iv) may be taken, respectively, as

k = 8/t + v 38/dx + v 8/8y + vza/az
X y

and
# =dt - vdx - vdy - v dz.
X y z
Since F # 0, it follows from (iv) that k is null
(orthogonal to itself). The property of the symmetric

matrix f 1listed under (vii) is the basis of the spinor
interpretation of null two-forms : there 1is a complex
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vector (spinor) p = (Fﬁ'Pz) such that Fz =P, .

F oyl 7] 2 anda F +Y1F = ) . the spinor is
X y 1 x Y 4

determined by F up to a sign. The last remark shows that

the set of all non-zero null two-forms can be given the
structure of a four-manifold diffeomorphic to RPax E

A unimodular automorphism ¢ Up induces a complex
orthogonal transformation 3 (U) of the vector F
associated with ¢ and also a Lorentz transformation 1(U)
of the two-form F. 1In a standard manner one derives from
these considerations the exact sequences of group
homomorphisms occuring in the diagram

}/SO(],C \\u
NS

so (1,3)
(8}

15 ZZ » SL(2,0) 1 (3.4)

where the vertical arrog is an isomorphism of the group of
complex rotations in T onto the connected component of
the identity of the Lorentz group.

Maxwell's and Yang-Mills' equations on a four-manifold

are conformally invariant. This well-known fact follows
from the following simple lemma : Let M be a
four-manifold and g and g' be two metric tensors on M.
Then =(g)F = #(g')F for any two-form F on M if, and
only if, there exists a function h on M such that g' = hg.

Let now M be the open submanifold of R4, with

coordinates (u,x,y,r), such that both of the metric tensors
(2.5) and

g'=(1-2m/r)du’ + 2du dr - (r/(1+ f (x°+v%1)) 2 (ax>+ay’)

are well defined on M. Clearly, g is the Minkowski metric
tensor and g' is the Schwarzschild solution of mass m.
Let A be a smooth complex function on M and F = Re &,
where



$ = Adun (dx + Y-1 dy) (3.5)
One easily checks that
*(g)F = *(g"')F (3.6)

so that F is a null Maxwell field in both geometries 1if,

and only if, A depends on u and x + #CI y only. The
metric tensors g and g' are not conformally related to
each other. The equality (3.6) fails to hold for two-forms
F other than those represented by (3.5). Incidentally, the
interpretation of the solution F 1is different in the two
geometries : in Minkowski space-time, F represents a
plane-fronted electromagnetic wave whereas in the other case
F 1is a field with a spherical wave-front propagating over
the Schwarzschild background.

As another heuristic example, consider again the
Minkowski metric tensor (2.5) and introduce new coordinates
(u',x',¥y',r') by putting

u=u'+r'(x'2+y'2), X + ¥-1ly = 2(r'+¥-1)(x'+ ¥-1y'), r=r'.
Transforming (2.5) and dropping the primes one obtains

g = 2axdr - 2(r’ + 1) (dx° + dy’)
where
% = du + 2(xdy -ydx).

The two-form $=Ax A (dx + V-1 dy) is self-dual and null;
the real form F = Re & is a Maxwell field if, and only if,

the complex function A satisfies dA A 2 A (dx + v-1dy)=0.
This is equivalent to #A/dr = 0 and (Trautman55 )

aA

aAa 1f—_ AA
5; + ¥-1 5; - 2VCI (x + VCI‘y) - =0,

du

the homogeneous form of the celebrated Hans Lewye) equation
which gave impetus to the2 g?velopment of the modern theory
of CR structures (Wells ' ).
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Optical geometry has been developed to put into a
perspective observations such as those given above. Roughly
speaking, it is the weakest geometry sufficient to write
Maxwell's equations for null electromagnetic fields
associated with a line subbundle of the tangent bundle of a
four-manifold. The line bundle in question is spanned by
the vectors k appearing in the characterizations of null
electromagnetic fields given under (ii) and (iv). To
support null and nowhere vanishing Maxwell fields, the
geometry should be invariant with respect to the flow
generated by a section of the line bundle : if it is, then
the quotient geometry is that of a CR space. Its Levi
form is proportional to what physicists call the curl or
twist of the congruence (foliation) defined by the 1line
bundle.

4. FLAG GEOMETRY

It is convenient to introduce optical geometry in two

steps : first, we define a "flag geometry" sufficient to
account for the null geodetic property of a congruence of
curves. It 1is known that conformally related Lorentz
metrics have the same null geodesics (light rays) .

Restricting one's attention to a particular congruence of
such curves, one can subject the metric to tranformations
more general than conformal without altering the null
geodetic property.

A flag geometry on an n-dimesional manifold M, n23, is a
pair (K,L) of vector bundles such that K< L « TM and the

fibre dimensions of K and L are 1 and n-1,

respective%y. Dually,oa flgg gegmetry can be defined by the
]

pair (f‘,L ), where L <« K < TM. If k and x» are any

sections of K 3 M and LU -+ M, respectively, then
kKl ax = 0. (4.1)

A metric tensor g on M is said to be adapted to the flag
geometry if
g(k) A»x =0

for any two such sections. If the meEric tensor is
considered as an isomorphism g : TM o TM of vector
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bundles, then the property of being adapted is expressed by
g(K) = L . 8Since g 1is symmetric the latter condition is
equivalent to g(L) = Kp. The bundle L may be thought of
as the bundle orthogonal to K with respect to each adapted

metric tensor g ; the elements of K are orthogonal to

themselves, i.e. null with respect to g. The notion of
"being adapted" to the flag geometry can be extended to
tensors of various types. For example, a tensor field of
valence (1,1), i.e. a vector bundle map s : TM 5 TM, 1is

said to be adapted if

s(K) © K (4.2a)
and

s(L) < L. (4.2hb)

Such a tensor field defines a 1linear endomorphism of the
quotient bundle

~

s: L/K s L/K
and ; =0 if, and only if,
s =k@f +u@u»
for some one-form § and vector u.
We say that a p-form F on M 1is adapted to (K,L) if

kJF=0 and 2 AF =0 (4.3)
for any sections k and » of Ka M and r > M,
respectively. It is clear that if a two-form is adapted,
then it is null with respect to any adapted metric ; given
a flag geometry and an adapted metric g, there are
two-forms that are null with respect to g, but not adapted
to the flags. It follows from (2.3) that if both the metric
tensor g and a p-form F are adapted, then so is *(g)F.

Let (¢t(k))t£P be the flow generated by a section k of

K 5 M. The vector bundle L 1is invariant with respect to
the flow if, and only if,

fk 2 A2 =0. (4.4)
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Clearly, if it is invariant with respect to (pt(ki), then it
is also invariant with respect to (pt(fk)), where r is

any function on M. It is meaningful, therefore, to define

L as being invariant with respect to K if condition (4.4)

holds for any sections k and & of K a3 M and Lo - M,

respectivel¥. We have proved elsewhere ({Robinson and

Trautmanig' 1))

PROPOSITION 1. The following properties of a flag geometry
are equivalent :

(i) L is invariant with respect to K ;

(ii) the three-form x N dx 1is adapted to (K,L);

(iii) the lines of the flow f(p (k)) define a congruence of
null geodesics with respect to any metric tensor
adapted to (K,L);

(iv) 1if F 1s any adapted form on M, then £kF is also

adapted;
(v) 1if F is an adapted (n-2)-form on M, then =z A dF=0;
{(vi} if g 1Is an adapted metric, then the tensor s =

g te fkg is adapted.

A flag geometry which has any - and therefore all - of
properties (i)-(vi) .is said to be geodetic. If the bundle
is integrable, i.e. such that % A dx = 0, then the flag
geometry is geodetic. An integrable bundle L defines on
M a foliation of co-dimension one ; in this case ‘the
congruence is said to be hypersurface-orthogonal. In the

non-integrable case, physicists say that the congruence is
twisting.

We assume throughout this paper that the foliation of M
defined by K is-regular in the sense that the quotient set
N = M/K has a natural structure of an (n-1)-manifold such
that the canonical projection

T : M3 N
is a submersion. If the flag geometry (K,L) on M is
geodetic, then L projects to a vector bundle H = TN of
co—dimensiog one on N. If XA Ois a section of HP + N,
then 2 = m A 1is a section of L 5+ M and

£kg = 0.

Clearly, the integrability of L is equivalent to that of H.
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5. OPTICAL GEOMETRY

A flag geometry is not sufficient to write the second
Maxwell equation (3.1) for adapted two-forms : the dual
*(g)F depends on the choice of g. Assume that M is a
four-dimensional oriented manifold with a flag geometry
(K,L) and denote by A the corresponding set of adapted
Lorentz metric tensors on M. If F is a nowhere vanishing
adapted two-form on M, then

gRg' iff *{g)F = =*(g')F (5.1)
defines an equivalence relation R in A . The relation R
does not depend on the choice of the nowhere vanishing
adapted two-form F : indeed, since any other such two-form

F' can be written as
F' = aF + b#(g)F,
for some functions a and b , and

*(g) #*(g) = -id on two-forms, (5.2)
we see that *(g)F' =+(g')F' is equivalent to *(g)F = *(g')F.
One easily checks that two adapted Lorentz metrics g

and g' are in relation R if, and only 1if, there 1is a
function f and a one-form ¢ such that

g' = fg + 2 (5.3)
where x is a nowhere vanishing section of ° > M. (our
considerations do not, in fact, depend on the existence of
nowhere vanishing and globally defined objects such as %

and F above ; all relevant definitions and propositions
can be "localized" by simple rephrasing).

Definition 1. An optical geometry on a four-dimensional
oriented manifold M consists of
(a) a flag geometry (K,L) and
(b) an equivalence class B, with respect to R, of adapted
Lorentz metric tensors on M.

Condition (b) occuring in the definition can be replaced
by an equivalent one. Let F and # be nowhere vanishing
adapted two- and one-forms, respectively. We have



F=2Ad
o)
where o 1is a section of K 3 M, which is defined by F
and # only up to addition of multiples of . In other
words, F and x define a section [a] of the quotient

bundle K'/L’ 5 M and it is clear that the bundle of adapted
two-forms is isomorphic to the bundle (KD/LP) ® ° > M.
Let g £ B and put

*(g)F = = A 3.
The linear map

J : L/K 5 L/K (5.4)
given by

<J (1 mod K ), [al > = <1 mod K_,[f3] >
p p D p D

where Kb is the fibre of K over p e M, 1 L, etc.,

D
defines, by virtue of (5.2),

(b') a complex structure in the real plane bundle L/K 5 M.

Conversely, given such a complex structure J, one
defines B by declaring that g = A belongs to B if, and
only if, g induces on L/K the same conformal geometry as J.

Noting that the bundle L is orthogonal to K with
respect to each g = B we arrive at the equivalent

Definition 1'. An optical geometry on a four-dimensional
oriented manifold M consists of a line bundle K - T™ and
a set B of Lorentz metric tensors on M such ~“that the
elements of K are null with respect to each g = B and the

following holds: 1if g B and Kk 1is a nowhere vanishing
section of K, then g'

B if, and only 1if, there 1is a
function f and a vector field u on M such that

M M

g' = fg + 2g(k)g(u) (5.5)

With this definition in mind, we shall often refer to an
optical geometry given by the pair (g,k), where g is a
Lorentz metric tensor and Kk a nowhere vanishing vector
field which is null with respect to g. Given such a pair,
K 1is defined as spanned by k and B 1is generated from g
and k according to (5.5).
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If F 1is a two-form adapted to (K,IL) and g = B, then
the complex two-form

& =F - /1 +()F

is also adapted and

*(g) 8 =718 |, ()8 = - V-1 & (5.6)

With a slight abuse of the language, we say that & and ¢
are adapted, self- and antiself-dual two-forms,
respectively. If F nowhere vanishes and &' is another
adapted self-dual two-form, then there is a complex function
X on M such that

' = & exp V-1 x (5.7)
and any adapted two-form is a linear combination of & and &.
Let s : TM 5 TM be a tensor adapted to (K,L); if F 1is

an adapted two-form, the so is i(s)F. Therefore, there
exist complex functions p and o on M such that

i(s)g = pd + ob . (5.8)
When & is replaced by (5.7), the function P is left
invariant, but the phase of ¢ changes by 2 Re y . The

absolute value of ¢ is an invariant called the shear of s.
Writing
i(s) = i(s)+ + i(s)

where
(i(s) F *(g)i(s)*(g))

B =

i(s) =

one obtains

*(g)i(s)+ = * i(s) #(qg) on two-forms
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so that
i,(s)¢ = pp and i (s)¢ = od

* -~
If s is symmetric with respect to g, i.e., s = goesSeq 1,
1
then (Trautman )

*#(g)li(s) + i(s)*(g) = (Tr s)*(qg)

so that 1
i (s} = i(s - 5 (Tr s)id) on two-forms.

If s 1is symmetric and adapted, then

i(s)@ = 0 iff s = k @ g(u) + u @ g(k) - % g(k,u)id

for some vector field u. The tensor s is said to be fully
adapted to (K,L) if it satisfies (4.2a) and

s(TM) < L.
This implies i(s) = 0 and
i(sz)F = i(s)zF

for any adapted two-form F. Moreover, if s is symmetric
and fully adapted, then its shear vanishes if, and only if,

s - % (Tr s)id = k @ g(u) + u @ g (k) (5.9)

Let M and ,MZ be two oriented manifolds with optical
geometrieé defined by (Ki'Bi)' i = 1,2. An orientation
preserving diffeomorphism P M1 > % is said to be an

optical isomorphism if

"
K =K n B = B.
P. 1 2 and ¢ 2 1

A diffeomorphism ¥ : M3 M is an optical automorphism if,
for any section k of K » M, the vector field ¢*k is

parallel to k and g' = p* g 1is of the form (5.5) for
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any g € B . A flow fbt) generated by a vector field X on

M consists of optical automorphisms if [X,k] 1is parallel
to k and £Xg is of the form given by the right-hand side

of (5.5).

If the optical geometries on M£ and Mz are defined by
the pairs (gl,kl) and (gz,kz). respectively, and ¢ is a
#*
conformal transformation, ¢ g2 = fg1 , mapping k1 into a
vector parallel to k2 ., then ¢ 1is an optical isomorphism.

Such a ¢ 1is called a trivial optical isomorphism.

PROPOSITION 2. The flow (pt) generated by a section kK

of K+ M consists of optical automorphisms 1if, and only
if, the tensor

s =g t, £kg , where g = B (5.10)

is adapted and its shear vanishes.

Indeed, we note first that the properties stated 1in
Proposition 2 are invariant by replacement of k by
another section of the same bundle and do not depend on the
choice of g in B. Secondly, if k generates a flow of
optical automorphisms, then the tensor (5.10) is of the form

s = f id + Kk ® g(u) + u & g(k).

It is adapted and i(s)® = 2f&¢, so that its shear vanishes.
Conversely, if s 1is adapted and its shear vanishes, then,
since g o s is symmetric, i(s)® = 2f%, where f 1is a real
function. Therefore, i(s - f id)® = 0 and £kg = ges is

of the form (5.5).

If the flow (pt) generated by Kk consists of optical

automorphisms, then the associated congruence 1is null
geodetic (Prop. 1., (iii) and (vi)) and the shear of s
vanishes : one says that the optical geometry - and the
associated congruence - 1is shear-free. An eqguivalent
characterization, which explains the term "shear-free", is
as follows : the flow (pt) consists of optical

automorphisms if, and only if, the associated congruence is
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null geodetic and the conformal geometry in the fibres of
L/K 1is preserved by the flow. The importance of shear-free
optical geometries results from

PROPOSITION 3. If an optical geometry admits an adapted
nowhere vanishing Maxwell field, then it is shear-free.

Indeed, let F be such a field on M with an optical
geometry defined by the pair (g,k). Since F is adapted,

k JF =0and k _ #(g)F = 0.
Maxwell's equations
dF = 0 and d*(g)F = 0 (5.11)

then imply

£RF

]
o

and £k*(g)F =0 (5.12)

so that both F and #(g)F are invariant with respect to
the flow (pt) generated by Kk,

+(9)F = ¢ " (+(g)F) = “lp, 9p F = “(p, 9IF.

By comparing this with (5.1) we see that the flow (pt)

consists of optical automorphisms. The converse to
Proposition 3 - which is true under suitable regularity
hypotheses - 1is presented in the next section. The

following Proposition is a simple consequence of our
definitions :

PROPOSITION 4. Optical isomorphisms transform adapted
Maxwell fields into fields of the same kind.

The first example in Section 3 contains the description
of an optical isomorphism transforming plane-fronted waves
in Minkowski space into spherically-fronted waves on a
Schwarzchild background. Another example of a non-trivial
isomorphism of optical geometries is obtained as follows.
Let t= (t%), M=20,1,2,3 be coordinates in Minkowski

-

sbace F' with the metric tensor

gwdt“dt“ = (at”)? - (ath)? - (@at?)? - (atH?. (5.13)
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Consider a time-like wordline T : [ » E4 parametrized so
that 3
g v%“' =1, where % (s) = ar"(s) zds.
Pl

Assume T to be such that, for any ¢t = F4 the wordline
meet§ the past lightcone of t, i.e. there is a function
u: B =+ E such that

% o ;
&5 e (£ - ¥y =0 anda t” 2 77 (ult))
M
for any t = E4 . Introduce a 1local coordinate chart

(u,x,y,r) in E* by putting

tu = TF(U) * rlu(X-Y)/D(U;X'Y) '

where (1“) is the null vector with components

(1 +%(x2 + ¥2), %, wid - % * + v,

@,V v T
r = Tt -1) and = T 1.
gF" P gpy

The domain of the new chart is the complement M' in R
of the two-dimensional submanifold with boundary

§' = {t = R‘i]tM = T"(u) + rn“, -0 <u<<omw r =20},

where (n') is the null vector with components (1,0,0,-1).
In this chart, the metric tensor (5.13) is

g' = (1 - 2p ! pridau® + 2 du dr - r'p “(dx° + dy")  (5.14)
where p = dp/fu. Let S = {t = E4 | ' = t2 = .0 and
t0+ta e Or &£i o+ t;3 € 0} take another copy of Minkowski
space, put M = R4\S and introduce a coordinate system
{u,x,y,r) on M by u = t? - ta, 2r = t° +t3. X = ti, ¥ =ik
so that the metric tensor g is of the form (3.4). Consider
now optical geometries in M and M' defined by the pairs
(g,k) and (g',k'), where g and g' are given by (3,4) and
(5.14), respectively, and k = k' = 8/dr. The map h from
M' to M which reduces to the identity when expressed in
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coordinates (u,X,y,r) is an optical isomorphism. If F is
a plane-fronted wave described in Section 3, then h F 1is a
spherically-fronted wave emanating from a point source whose
(accelerated) motion is given by the wordline T .

Proposition ?3 and 4 can be extended to Yang-Mills
fields (Trautman ).
6. CR SPACES ASSOCIATED WITH SHEAR-FREE OPTICAL GEOMETRIES

The complex structure in the fibres of the bundle L/K > M
is invariant under the action of the flow generated by any

section of the 1ine bundle K underlying an optical
geometry without shear. Therefore, the complex structure
descends to the plane bundle H = TN associated with the
quotient manifold N. By definition, such a complex
structure makes the three-dimensional manifold N into a
Cauchy-Riemann space. To simplify the notation, we use the
same letter J to denote the comglex structure on H and

on L/K. Let X\ be a section of H 5 N (cf. Sec.4) and let X
be a nowhere vanishing section of H 3+ N. The vector field
J(X) 1is also a section of H 3 N ; if v is a vector
field on N such that V1A = 1, then the triple (V,X,J(X))
of vector fields spans at each point the tangent space of N
at that point. It is convenient to introduce the complex

vector field Z = X - ¥-1 J(X) and its complex conjugate Z.
Let u be a complex one-form on N such that the triple

(A ,u,d) constitutes a basis dual to (V,Z,Z) in the sense

that one has also ZJdu =1, Zdu =0 and VJdu = 0. The
forms A and u -are defined by the structure of the CR
space up to replacements by

A' = o (6.1a)
and

M' = fBu + X, (6.1b)

where o is a real function and both # and p are complex
functions on N ; both o and ﬁ are nowhere zero.

Given a CR space N, one can construct an associated
shear-free optical geometry as follows. Take M = N x [,
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let T : M 3 N be the projection on the first factor and

denote by r the standagd coordinate on [. To simplify
the notation, we omit when considering pull-backs of
forms from N to M. The optical geometry on M defined

by the pair (g,k), where

g = 2Adr - 2uu and k = 8/dr ,
is invariant with respect to transformations (6.1). It is
shear-free since £kg = 0. Therefore, as far as local

properties are concerned, there is a one-to-one, natural
correspondence between CR spaces and optical geometries
without shear.

The differential of any complex function £ on N can
be represented as
S fA+fu+ fp 6.2
daf 5 M M ( )
where

f =vl1df, £ =2 Jaf, £ =2z J df.
[s] 1 2

The tangential Cauchy-Riemann equation

f =0, (6.3)

2
which is equivalent to

df AN A u =0, (6.4)

is of the type considered by Hans Lewy ; the assumption of
C smoothness on N, H and J is not sufficient to
guarantee the existence of14)n0n—trivial solutions to
(6.3) (Jacobowitz and Tréves ). If the CR space is

real-analytic, then such solutions can be found. Assume now
that there do exist two solutions w and 2z of (6.3) such
that the map

(w,2) : N > @2 (6.5)

is an immersion, i.e. that its tangent map is og rank 3.
The image of N by (6.5) is a hypersurface in €  ; let
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G(w,z,w,2) = 0 (6.6)

be its equation. Here G is a real function vanishing
identically when its arguments are replaced by the solutions

w and z of (6.3); moreover, G may be chosen so that its
gradient is nowhere zero,

2 2
]Gw; + [GZ| >0

where Gw = 8G/@w, etc. The one-form

41 (6 dw + G_dz) (6.7)

is real, nowhere zero and annihilated by Z and zZ. It
is, therefore, proportiocnal to A ; without changing the
CR structure we may now assume A to be given by (6.7),
Z =G 8/8z - G @/dw,
W z
and

2z 2
u = (Gﬁdz - szw)/(]Gz[ + IGwl ).

15)

If the "Levi form" (Levi )

2a = (2,2) 1 A/v-1

=G6GG6_.G6_.+6GG.6 _-GGG_. -GGG _
W W ZZ Z Z WW Z W ZW Z W ZW
is nowhere zero, then the real vector field ¥-1 [Z,Z] is at

no point linearly dependent on Z and 2. At any point of
N at least one of the partial derivatives Gw and Gz is

different from =zero. Restricting our attention to a
sufficiently small neighbourhood of a point where Gw # 0,

we can replace Z and u by
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and

p' = dz,

respectively, without changing the CR structure. The

triple (V.Z',E'), where

vV = |Gw|2 (z',2'1/27-1 a,

constitutes at any point of N a linear basis dual to
[0 YT TAN I

The immersion (6.5) provides a (local) embedding of the
CR space into C; one says thatzthe CR structure of N
is realized on a hypersurface in €. Roger Penrose has

pointed out that there may be non-realizable CR structures
of interest in physics.

Let (@,{) be a (possibly local) biholomorphic

transformation of € into itself. The functions
W' o= wi(w,z) and z' = {(w,z)
are also solutions of (6.4) and

2
(w',2') : N> C
is another realization of N in C° ; the equation of the

corresponding hypersurface is G'(w,z,w,z) = 0, where

G'(w',z2',w',2') = G(w,2,w,2).

Elie Cartanlo) solved the local equivalence problem for
such hypersurfaces : he found a set of differential
invariants associated with hypersurfaces in {2 such that
the pointwise equality of the corresponding invariants for
two hypersurfaces is a necessary and sufficient condition
for the existence of a biholomorphic map transforming one
hypersurface into another. Cartan's method was simplified

and generali%ed to hypersurfaces in {n by Chern and Moser

Iy

and Tanaka .
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If the CR space is realizable in Cz and A denotes
an arbitrary analytic function of two complex variables,
then the complex two-form

$ = A(w,z)dw A dz, (6.8)

is closed; 1its pull-back to M 1is self-dual and adapted to
the optical geometry defined by (6.2) with A given by (6.7)
and u = dz. This proves

PROPOSITION 5. If the CR space associated gith a
shear-free optical geometry on M 1is realizable in €, then
M admits an adapted, non-zero Maxwell field.

If one is given a solution 2z of (6.3) such that

AAdz Adz %0

then one can take
M = dz

and find a real function u on N such that the triple (u,
Re z, Im z) is a system of (local) coordinates, i.e.,

du A dz A dz = 0.

Putting

one obtains
Z = 48/dz + q 4/du.
If w is another solution of (6.3) such that (6.5) 1is an

immersion then dw A dz A dz # 0, therefore w_ # 0 and one
8]

can express u in function of w, z and =z,

u = U(w,z,2).

Since w =2z =0 and z = 1, we have
2 2 2
q = du/dz (6.9)

and the equation (6.6) of the hypersurface 1is obtained by
taking

Y-1 G(w.,z,w,2) = Ulw,2z,2) - Ulw,z,2) (6.10)
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so that
/-1 (6, dw + G dz)= du - q dz - q dz. (6.11)

If the bundle H 1is integrable, then there exists a real
function u on N and a choice of the integrating factor
o such that A = du. One of the solutions of (6.3) is w=u
and the equation (6.6) of the embedded hypersurface may be

taken as w - w = 0. The field (6.8) coincides with (3.5)
and is a solution of Maxwell's equations if A depends
analytically on 2; the dependence on the real variable u
may be merely smooth; waves associated with an integrable
flag geometry can be encoded with information (Trautman1 ¥
Optical geometries with integrable L have been used 1in
general relativity in connection with research on

] . . 19
gravitational waves (Robinson and Trautman . Kramer
et al. ). From now on we consider exclusively optical
geometries without shear, and the associated CR spaces,

such that X\ A dA. nowhere vanishes.

The second example of Section 2 corrg??onds to a
structure considered already by Henri Poincare : since, in

this case X = du + ¥-1 (zd; - zdz), a solution of (6.4) is

provided by w = u + ¥-1 zz and the equation (6.6) is that
of a "hyperquadric",

W —w - 2/-1 zz = o. (6.12)

The fractional linear map

w' = (w - ¥-1)/(w + ¥-1), z' = 2z/(w + ¥-1)
transforms (6.12) into the equation of Sa'

w'w' + z'z' = 1. (6.13)

Introducing the Euler angles (y.,¢,6) on S9 by

-} e
w' o= expi YCE-(V - ¢) sin;. z' = expif—l(v + ¢)cos;
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one easily finds that the forms characterizing the CR
structure associated with (6.12) can be chosen as

A = 2(dy + cosf dp) and u = d@ - V-1 sing dg.

With this nota%%on, the Taub-NUT metric tensor can be
written (Misner )

g = 1°[2A (dr+ %ck)—(r2+1)y; ],where ¢ = 1 - 2(mr £1) /7 (r2+1) .

The pair (g,k), where k = 38/8r, defines an optical geometry
without shear ; 1its quotient CR structure is equivalent to
that of the hyperquadric.

The Cartan invariants characterizing CR spaces are fairly
complicated ; the simplest among them is a (relative)
invariant I that vanishes if, and only if, the CR space is
locally equivalent to the hyperquadric. To give the
explicit formula for I Cartan normalizes the forms A and
4 so as to have

dy = 0 and dA = ¥-1 M A ;'+ A A (Eu + b;)

for some complex function b. Such a normalization is always
possible if A A d\ # 0 and then

I-b -3b -bb+ 2b°b + 2/-1 b - 4/~1 bb . (6.14)
122 iz i 2 i 02 0

An automorphism of an optical geometry without shear
permutes the curves of the underlying congruence of null
geodesics and preserves the complex structure in the fibres
of the bundle L/K. Therefore, it descends to an
automorphism of the quotient CR space and may be
characterized in terms of its structure as follows : if A
and U are forms defining the CR space N, then a
diffeomorphism ¢ : N > N *is an automo;phism if, and only
if, the pull-backs A' = @ A and u' = ¢ 4 are related to2 A
and u by a transformation (6.1). From the work of B.Segrd
it follows that the automorphism group of CR space with
non-integrable H 1is a Lie group. E. Cartan ° has
classified all homogeneocus CR spaces. Locally, each such
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space is equivalent to either the hyperquadric or a hyper-
surface in C admitting a three-dimensional group of gg;o—
morphisms of Bianchi type IV, VI, VII, VIII or IX (Taub ).
The hyperquadric admits an eight-dimensional group of CR
automorphisms, locally isomorphic to 8SU(2,1).

7.0PTICAL GEOMETRY AND LORENTZ MANIFOLDS

A Lorentz metric g on an oriented four-manifold M,
together with a line bundle < T™ of null directions,
defines a structure which is richer than optical geometry.
All optical notions can be expressed in terms of the data
derived from the pair (g,K), but there is more, as we now
proceed to show. From now on we assume that the pair (g,kK)
is given, L 1is the orthogonal bundle to K and the optical
geometry is defined in terms of the metric induced by g
in the fibres of L/K. All covariant derivatives are taken
Wwith respect to the Levi-Civita connection associated with
g and the Hodge dual * is evaluated with the help of g.

Let & be a non-zero self-dual two-form, adapted to
(K,L). Clearly, the contraction & * & vanishes; the real

symmetric tensor & * & 1is a section of the bundle N 5 M of
squares of non-zero elements of L. This section does not
change if & is multiplied by a point-dependent phase
factor. 1In other words, there is a circle bundle

U(l) » Fa N

where F 1is the bundle of non-zero, self-dual adapted
two-forms. Locally, any section of F 3 M defines two
(opposite) sections of L 3 M. We choose one of them, call
it 2 : M s L , and say that it is associated with &: M 5 F
so that

P - =a0 2 (7.1)
This being so, let X be a vector field on M; the
two-form x A ?XM is adapted and depends linearly on X;

there thus exists a complex one-form & such that
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where » 1is associated with &. If L) is replaced by

(expv-1x)& where x is a real fuggtion, then 2t_he
"deviation" form (Plebanski and Robinson , Robinson °%)

& 1is replaced by (expf—lx)é. By contracting both sides
of (7.2) with & and using (7.1) one obtains

i(VK)® = 2 A S, (7.3)

where 7k 1is the covariant derivative of the vector field
k = gl(x). With the above notation in mind, we formulate

PROPOSITION 6. For any four-manifold M with a Lorentz
metric g, a line bundle K of null directions, and the
associated optical geometry, the following conditions are
egquivalent:

(i) the underlying flag geometry is geodetic;
(ii) the temsor Wk 1s adapted to it;
(iii) the tensor Vk 1is fully adapted;
(iv) &(k) = 0;
(v) there exist complex functions p and o on M such that

NS =pp + 0% . (7.4)

Indeed, by Progpsition 1, condition (i) is equivalent to
the property of g o £kg being adapted and this implies

(ii) and conversely ; since Kk is null, the tensor Yk is
adapted if, and only if, it is fully adapted; by virtue of
(7.2), the geodetic property 1is equivalent to (iv);
finally, if s = Yk 1is adapted, then one can define p and
o by (5.8) and use (7.3) to prove (7.4); conversely, (7.4)
implies (iv).

Consider now a geometry (g,K) which is geodetic in the
gense that it satisfies the conditions of Proposition 6.
There then exists (locally) a nowhere zero section k of the
bundle such that

V.k=0 (7.5)
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Since covariant differentiation commutes with the Hodge

dual, there also exist on M (local) sections & of F
such that
= 0. 7.6
Vk§ ( )
Let

(3] el

then equation (5.8) for s = VYK implies the matrix equation

i(Vk)¥ = Z¥. (7.7)

Denoting vkz by ZI', computing the covariant derivative of

both sides of (7.7) in the direction of k and using (7.6),
one obtains

i(Vka)W = I'¥w. (7.8)

On the other hand, from the definition of the curvature
tensor R 1in terms of ¥V and vector fields X,Y,Z2,

Ve ~ Y% T Vix,v

) Z = R(X,Y)Z
and taking into account (7.5), one derives

(V,9K) (X) = R(k,X)k - (vk) 2 (x) .

From the symmetries of the curvature tensor it follows that
the tensor 8, defined by 8(X) = R(k,X)k, is fully adapted.
Since Vk is also fully adapted, i((Vk)’)¥ = i (Vk)¥ and
(7.8) implies the Sachs equation (Sachszﬂ).

e ot yepaitel (7.9)
where the matrix P is defined by

i(s)¥ = pPY.



484

If the optical geometry is shear-free, then ¢ = 0 and
the matrix I is diagonal. The Sachs equation implies that
the shear of S8 also vanishes. Since S 1is symmetric and
fully adapted, equation (5.9) easily leads to

PROPOSITION 7. If the pair (g,K) defines on M an

optical geometry without shear, then the symmetric traceless
tensor E,

E(X) = C(k,X)k,
where C 1is the Weyl (conformal curvature) tensor of g, 1is

fully adapted and shear-free; the complex expansion p of Vk,
subject to (7.5) satisfies the propagation equation

Pl t pi= 5T 8. (7.10)

In the notation of tensor calculus, in terms of 1local
, M 14 v
coordinates x“, one puts x = kdx , k = k"e , e 1dx = 6H'
0 H K

R(e ,e e = R" e and similarly for the Weyl tensor. One
Fp oV Vpa n

can then write

Tr S = Ric (k,k),

where Ric 1is the Ricci tensor, Ric(X,Y) = <R(X,e )Y,dx“>.
[

The property of E being fully adapted and shear-free reads

v P

k.. T k . kk =20 7.11
W vp Lo ] (el

and is referred to by saying that K is a bung}e of
principal null directions of the Weyl tensor (Penrose )).

The tensor D,

D(X,Y) = C(X,Y)k,
defines a graded derivation 1i(D) of degree 1 and

[i(D),i(k)] = i(E). (7.12)
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If the optical geometry is shear-free and & 1is a section
of F, then i(E)® = 0 and (7.12) implies that i(D)@ is
an adapted three-form. There thus exists a complex function
A such that

»i(D)$ = AX (7.13)
It can be shown (Robinsonzﬂ, Egs (8.32}) and(9.23)) that

4Y-1 *(&6 A d8) = AS + & + Ric - &. (7.14)

Moreover, the following conditions are equivalent :

(i) A = 0;
(ii) the tensor field E 1is a section of the bundle
Ke L - M;

(iii) the bundle K consists of multiple principal null
directions of the Weyl tensor,

ok k" = o,
velo ]

which is then said to be algebraically special or
degenerate.

If o
Ric(L) < L (7.15)

then A =0 by the generalized Goldberg-Sachs theorem
(Robinson and Schild?%) and

¢ - Ric - &6 =0
so that (7.14) implies the integrability of &,

& Add = 0. (7.16)

8.LIFTINGS OF CR SPACES TO LORENTZ MANIFOLDS

We say that the pair (g,K), where g is a Lorentz metric
on M and K5 M is a bundle of null directions is a
lifting of a CR space N to M if the optical geometry
defined by (g,K) is shear-free and the quotient M/K is a
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CR space equivalent to N. We restict our attention to
realizable CR spaces.

Let A and u be one-forms on N giving its CR
structure; we use the same letters to denote their
pull-backs to M and define the functions a and b on N by
requiring

du = 0 and An = 2/-1 ap A g + A A (bu+by) (8.1)

Since M is locally diffeomorphic to [R x N, we can choose
the vector field k to be @&/dr, where r 1is a coordinate
on [K. Any Lorentz metric which, together with k, defines
a lifting of N to M is of the form

g = 2x(dr + ») - 2Py, (8.2)

where P 1is a nowhere vanishing function and

Vv = i ch + fu + fu (8.3)
is a one-form on M. The form (8.2) of the metric is
invariant under the replacements (6.1), combined with
appropriate transformations of P and V. In many cases
the process of lifting singles out a simple relation between
the forms y and &6. In particular, if M is partially

Ricci-flat in the sense that (7.15) is satisfied, then § is
proportional to a gradient lving in the plane spanned by A
and u. We may, therefore, specify the direction of u by
requiring that it be parallel to &. Alternatively, having
fixed the direction of u in advance, we can restrict the
lifting to satisfy

S Au=0. (8.4)

To do this we remark that the two-form & = PA A u is
self-dual and adapted to (g,k), where g is given by (8.2)

and k = 8/dr. Moreover, & *+ & = A ® A and the deviation
form & can be read off from (7.2) with 2 = X = gl(k),
after the covariant derivative has been evaluated with the
help of (2.7),
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& =pPu - > P (b + £A (8.5)

where
p=p'p -1 ap? (8.6)
and prime denotes differentiation with respect to r. We

can, therefore, satisfy the condition (8.4) by putting
f' = -b. (8.7)
Since, in general,
6+ PV, i = 0, (8.8)

the restriction (8.4) may be interpreted as consisting in
choosing the local frame of reference along the lines of the
null congruence so as to have the 1least possible rotation
and to eliminate the "centrifugal forces" which would have
made appearance had f not been constrained by (8.7) to be
linear in r.

Any CR space admits many inequivalent liftings; we have
already noted that the hyperquadric 1lifts to Minkowski
space and to the Taub-NUT geometry. Transforming the metric
of the Gd&del universe to the form

g = x 2[2(xdu - dy) (xdv - dy) - dx° - dy’]

one sees that both (g,8/8u) and (g,8/3v) define an optical
geometry correspondin to the hyperquadric, as  recently
noticed by %.K. Koch ~. Hauser's metric (Hauser3 . Ernst
and Hauser ') 1is vyet another 1lifting of the same CR
geometry, corresponding to the same choice of pu as in the
standard 1lifting to Minkowski space.

If the components of the Ricci tensor in the direction of
K vanish,
Tr S = 0, (8.9)

then, after a suitable adjustment of the coordinate : o
solutions of (7.10) and (8.6) can be represented as



p =1/(r + Y-1 ap)) (8.10)
and

pZ = pzpp or P =pi? 4 p’aZ, (8.11)

where p is a function on N.

It seems reasonable to ask what further conditions can be

imposed on the Riemann tensor of M over N. Given a CR
space, one can ask whether it lifts to Minkowski space, a
Ricci-flat space, an Einstein space, etc. These are
difficult questions. From the twistor description of

shear-free congruences of null geodesics (Penrosea ) it is
clear that very few CR spaces 1lift to Minkowski space
(Penrosew). It is not known to us whether there are any
CR spaces which have a 1lifting to a Ricci-flat Lorentz
manifold without having any 1liftings to Minkowski space.
The most thoroughly studied solutions of Einstein's
equations admitting a twisting shear-free congruence of null
geodesics are optically isomorphic to the geometry of either
the Robinson (Penrose ') or the Kerr congruence, but
there are many solutions with an underlying CR structure
different from those two (Robinson and Robinson” ).

If the Ricci tensor is restricted to satisfy (7.15) - and
therefore also (8.9) - then the metric (8.2) can be subject
to (8.7), (8.10) and (8.11). The remaining information

contained in (7.15) leads to

£=-pp" + 1 (ap) (8.12)
and

¢ =K - 2Hr - (mp + ;E) (8.13)

where

% -
K = p(p12 + p21) - 29192 o) (b1 + bz), (8.14)
H=p p, (8.15)
[a]

and m 1is a complex function on N whose imaginary part is
determined by o] and the CR geometry as follows :



introduce a real function U on N such that

U =p; (8.16)

then

Im (m + pU ) = 0. (8.17)
1122

The conditions for the remaining components of the Ricci
tensor to vanish have been discussed extensively elsewhere
(Kramer et al. 0). Here we shall confine ourselves to the
special case when M 1is flat. :

9. LIFTINGS TO MINKOWSKI SPACE
. . . 38 .
According to Robinson, Robinson and Zund if m = 0
and

u =20, (9.1)
22

then the metric defined in the preceding Section is flat;
conversely if the metric is flat, then the first of these
equations holds and the second can be satisfied by a
suitable choice of H = dz and u. After this
specialization, we still have at our disposal the fractional
linear transformations of =z, which correspond to Lorentz
tranformations in Minkowski space and induce a suitable
change of U; there are also "gauge transformations" of )
induced by the translations.

Since the tangential CR equation (6.3) has only two
functionally independent solutions on N, it follows from

(9.1) that the three functions Uo' U - zU2 and z are

functionally dependent. Introduciﬁg Cartesian coordinates,
as in (Robinson, Robinson and Zund3 ), we recognize this
observation to impl*ﬂthe Kerr theorem (Kerr and Schildgf,
Penrose and Rindler 7).

It follows from (8.16) that U cannot be a function of

z and 2z only : consequently, the functions Uz and U—zU2

cannot both depend only on z. We may, therefore, take one
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of them to be W and express the other as a function of '
and z. Consider first the case when U2 is not a function

of z only; put u="U, w = U2 and

U - ZUZ = h(w,z), i.e. u = wz + h(w,z). (9.2)

Using (6.2) to evaluate du, we obtain
A = p '(du - wdz - wdz). (9.3)

If U2 is a function of 2z only, say U2 = 1(z), then we

put

w="U- zUz, i.e. u=w+ zl(z), (9.4)

and obtain

A =p '(du - 1(z)dz - 1(z)dz) (9.5)

The second case is, in fact, a special case of the first, as
may be seen by making in (9.4) and (9.5) the replacements

u = u/z;, z 3 1/z, w 3 w/z and identifying zf(1/z) with
hi{w,z).

The most general expression for the differential form A
which, together with u = dz defines a CR structure
liftable to Minkowski space, is given by (9.3) with W
determined by (9.2) as a function of the coordinates u,Re z,
and Im z. The factor p is disposable; we can use it,
for example, to impose the Cartan normalization, a = 1/2,
or, in very special cases, to obtain b = 0. From the
expression for A, one obtains the lifted metric by means of
Egs (8.2,3,10-16) with m = 0. Incidentally, the special
case when h(w,z) 1is linear in w is used to provide the
"Minkowski background" for the construction of a fairly

large clgss of Ricci-flat Lorentz metrics (Robinson and
Robinson ).
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10. A LITTLE OF HISTORY AND CONCLUDING REMARKS

Shortly after E. Cunnighamam(1910) had established the
conformal invariance of Maxwell's equations, H. Batemanﬂ
observed that null electromagnetic fields admit a larger
group of automorphisms, consisting of what we now call
optical transformations. He also developed general methods
of constructing such null fields. 1In a short note published
in 1922, E. Cartan reported the existence of four
privileged null ("optical", as he called them) directions at
any point of a Lorentz space where the tensor of conformal
curvature does not vanish. He also mentioned that, in the
case of the Schwarzschild solution, these directions
degenerate to two pa}rs of coinciding null 1lines; see
(Robinson and Robinson ) for further remarks on that paper.
Cartan's observations went unnoticed for about 50 years. 1In
the meantime, A.Z. Petrov4a(1954) developed an algebraic
classification of the Weyl tensor and F.A.E. Pirani® (1957)
pointed out its physical relevance. Using spinors, R.
Penrose sharpened the Petrov classification and gave a
simple description of the four principal null directions.
This and subsequent work by Penrose (Penrose and Rindler® )
played a fundametal role in the development of the subject.
Another significant discovery was that of the shear-free
property of congruences of null geodesics associated with
null Maxwell fields (Robinson44)and of the relation between
the existence of such congruences and the properties of the

Weyl tensor : the Goldberg—Sachs‘m theorem (1962) and its
generalization (Robinson and Schildzm). R.K. Sachsz

established an optical interpretation of the scalars
associated with null congruences and derived their

propagation equations. During the years 1958-1967 L. Bel,
M. Cahen, R. Debever, J. Ehlers, A. Lichnerowicz, E.T.
Newman, A. Schild and several other scientists made
important contributions to the study of algebraically
degenerate Weyl tensors, the associated Lorentz spaces and
their gﬁlation to gravitational waves and radiation (Kramer
et al.” ).

The shear-free condition turned out to be a restriction
on the Lorentzian metric tensor well-suited for the study of
solutions of Einstein's equations. On the one hand, the
restriction is strong enough to reduce the equations to a
manageable form; on the other, it is sufficiently weak to
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allow for metrics and gravitational fields of interest to
physics. The integrable case is easy and was studied first:
the corresponding solutions include gravitational waves with
plane and spherica%nfronts as well as the Schwarzschild
metric. R.P. Kerr had discovered the metric that bears
his name looking for solutions admitting twisting shear-free
congruences of null geodesics: its significance for the
description of rotating black holes was understood later.

The study of twisting congruences was initiated by
performing complex transformations of coordinates in
Minkowski space, such as (3.7), and of the associated null
Maxwell fields; c¢f. the work by I. Robinson reported by A.
Trautman ~. It influenced Penrose314’(1967) in the early
stages of his work on twistors; he coined the expression
"Robinson congruence" to denote the one described at the end
of Section 3. The projective twistor space is CP3 with

the quadric @ gefined, in terms of homogeneocus coordinates
(21.22,23.24) s C\{0} , by

= 0. (10.1)

The quadric is a five-dimensional CR manifold and its points
are in a bijective correspondence with null lines 1in
compactified Minkowski space. According to the twistor form
of the Kerr theorem any analytic shear-free congruence of
null geodesics in compactified Minkowski space corresponds
to the intersection N of Q with a complex surface of

equation h(zi,zz,za,z4) = 0, where h is a holomorphic and
homogenggus function of its arguments (Penrose and
Rindler™ "(1986)). If h is linear, then by means of a
transformation belonging to SU(2,2) and thus preserving
(10.1), it can be reduced to h(zi,...,z4) = z1 or z4, say;
. . 2 2 2 , .
and N= S is then given by ]z |7+ |z l = |z_|"; this is
3 1 2 3

the case of the Robinson congruence. The submanifold N of
Q 1is a three-dimensional CR space; however, as Penrose
points out, the freedom in defining N involves one complex
holomorphic function of two variables whereas a general,
realizable CR space may be defined by an analytic function
of three variables. In other words, most CR spaces do not
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lift to Minkowski space. Penroseﬁ extends the construction
of the five-dimensional CR manifold Q to arbitrary Lorentz
gpaces. His construction depends, in an essential manner,
on the choice of a space-like hypersurface 1in the Lorentz
space—-time. Our approach is more restricted: it is limited
to Lorentz manifolds with a shear-free congruence of null
geodesics; however, the construction of our CR space N 1Is
natural 1in the sense that it does not require the
introduction of any extraneous elements.

The relation between shear-free congruences of null
geodesics and CR geometry has been in the air for a long
time. It is already apparent in the occurence of the
Cauchy-Riemann operator in the process of solving Einstein's
equations in the twist-free case (Robinson and

19) 48,49) 50, .
Trautman (1962)). P.Sommers and J. Tafel pointed
out the appearence of the tangential CR operator in
connection with twisting congruences. In particular, Tafel
observed that the proof of the Robinson theorem requires
finding a non-trivial solution to Eq. (6.4) and, therefore,
for the theorem to be valid, it is not enough to assume that
the underlying geometry is of class C . The Cauchy-Riemann
aspect of the geometry of light rays was implicit in early
work on twistors; explicitly, it seems to have been
mentioned for the first time by Penrose at the Helsinki
Congress of Mathematicians (1978) (Penrose l)). C.L.
Fefferman5 defined a natural conformal Lorentz geometry on
a circle bundle over a CR sgace realized as the boundary rof

a pseudoconvex domaln in C (see also Lewandowski™ )
and G.A.J. Sparllng studied 1its relation to twistor
theory.
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