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CONFORMAL PATTERSON–WALKER METRICS∗

MATTHIAS HAMMERL† , KATJA SAGERSCHNIG‡ , JOSEF ŠILHAN§ ,
ARMAN TAGHAVI-CHABERT¶, AND VOJTĚCH ŽÁDNÍK‖

Abstract. The classical Patterson–Walker construction of a split-signature (pseudo-)Rieman-
nian structure from a given torsion-free affine connection is generalized to a construction of a split-
signature conformal structure from a given projective class of connections. A characterization of
the induced structures is obtained. We achieve a complete description of Einstein metrics in the
conformal class formed by the Patterson–Walker metric. Finally, we describe all symmetries of the
conformal Patterson–Walker metric. In both cases we obtain descriptions in terms of geometric data
on the original structure.
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1. Introduction. Given a torsion-free affine connection D on a smooth n-
dimensional manifold M , the classical Patterson–Walker construction [30] yields a
split-signature (n, n) pseudo-Riemannian metric g on the total space of the cotangent
bundle T ∗M . The metric g is determined by the natural pairing of the vertical distri-
bution V of T ∗M and the horizontal distribution H ∼= TM on T ∗M . In particular,
V and H (as determined by D) are totally isotropic with respect to g. Such metrics
are endowed with a parallel pure spinor and a homothety, and satisfy an integra-
bility condition on the Riemann curvature tensor. We shall show in section 2 that
Patterson–Walker metrics are locally characterized by these data.

When n = 2, this construction is generalised in [12] where a conformal class
of Patterson–Walker metrics is assigned to a projective class of volume-preserving
torsion-free affine connections. As we shall see, this extends to any dimension. In
order to accommodate projective invariance in this construction, we must replace
T ∗M by the density-valued cotangent bundle T ∗M(2). Recall that the projective
class p containing D is formed by all torsion-free affine connections which share the
same geodesics (as unparametrized curves) as D. We shall suppose in addition that D
preserves a volume form on M , and as such will be referred to as special. Then special
connections D, D̂ ∈ p give rise to Patterson–Walker metrics g, ĝ on T ∗M(2) which
are conformally related, i.e. ĝ = e2fg for some smooth function f on M . In other
words, the projective structure (M,p) induces a split-signature conformal structure
(T ∗M(2), c), see section 3 for details.

Notice that certain geometrical data are to be expected on the conformal manifold
(M̃, c) induced from a projective class (M,p). Firstly, there is a distinguished vector
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field k corresponding to the Euler vector field on T ∗M(2). Secondly, there is an n-

dimensional integrable distribution V on M̃ corresponding to the vertical subbundle
of T ∗M(2). In fact, this distribution can be conveniently defined via a distinguished
pure spinor field χ annihilating V . Here purity of χ corresponds to V = kerχ being
maximally isotropic. Further, one expects an integrability condition imposed on the
curvature of metrics in c and this we shall formulate in terms of the (conformally

invariant) Weyl tensor W̃abcd of c. Our characterization result, proved in section 4, is
then

Theorem 1. A conformal spin structure c of split signature (n, n) on a man-

ifold M̃ is locally induced by an n-dimensional projective structure as a conformal
Patterson–Walker metric if and only if the following properties are satisfied:

(a) (M̃, c) admits a pure spinor χ with (maximally isotropic, n-dimensional) in-
tegrable kernel kerχ satisfying the twistor spinor equation

D̃aχ+
1

2n
γaD/ χ = 0 , (1)

where D/ = γcD̃c is the Dirac operator and γ denotes the Clifford multiplica-
tion.

(b) (M̃, c) admits a (light-like) conformal Killing field k with k ∈ kerχ.
(c) The Lie derivative of χ with respect to the conformal Killing field k is

Lkχ = −1

2
(n+ 1)χ . (2)

(d) The following integrability condition is satisfied for all vr, ws ∈ kerχ:

W̃abcdv
awd = 0 . (3)

In section 5, we achieve a complete description of Einstein metrics within the
induced conformal class in terms of the underlying geometric objects. In what follows,
R C

DA B is the curvature tensor of a torsion-free affine connection DA and W C
DA B is

the (projectively invariant) totally trace-free part of R C
DA B . That is, we use abstract

indices Ẽa ∼= TM̃ on M̃ and EA ∼= TM on M , and we shall not distinguish between
bundles and spaces of sections notationally. Let us emphasize that the theorems
below involve certain projectively invariant differential operators, and to formulate
the invariance precisely will require the use of density-valued tensor fields. Leaving
these details aside for the time being, the results can be stated as follows:

Theorem 2.

(a) If the affine connection D is Ricci-flat, then the induced Patterson–Walker
metric g is Ricci-flat.

(b) If the affine connection D admits an Euler-type vector field ξ satisfying the
projectively invariant equation

DCξ
A =

1

n
δACDP ξ

P (4)

and the integrability condition ξDW C
DA B = 0, then the induced Patterson–

Walker metric g is conformal to a Ricci-flat metric σ−2
ξ g off the zero-set of

a rescaling function σξ.
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In fact, any Einstein metric in the conformal class c can be uniquely decomposed
into two Einstein metrics of such types.

Part (a) is a well-known fact for Patterson–Walker metrics that was already ob-
served in [30, 9], and which we recover. To our knowledge, the construction of Ricci–
flat Einstein metrics of part (b) is new, as is the decomposition result for general
Einstein metrics. The decomposition of general Einstein metrics in c can be under-
stood explicitly: if the Patterson–Walker metric g is conformal to an Einstein metric
σ−2g, then there is a canonical decomposition

σ = σ+ + σ−

such that both g+ = σ−2
+ g and g− = σ−2

− g are Ricci-flat off the respective zero-sets
of σ±. Further, there is a Ricci-flat affine connection D− projectively related to D,
which induces the Ricci-flat Patterson–Walker metric g−, and an Euler-type vector
field ξ for D satisfying (4) and the integrability condition ξDW C

DA B = 0 such that
g+ = σ−2

ξ g.
Finally, in section 6 we study the Riemannian and conformal symmetries of the

induced Patterson–Walker metric and present their complete description in terms of
affine and projective properties of D and of p, respectively. Since the construction of
the conformal structure c on M̃ = T ∗M(2) is natural, symmetries of the projective
structure p give rise to conformal symmetries (i.e. conformal Killing fields) of c. In
fact, we can completely and explicitly understand the space of conformal Killing fields
of c in terms of solutions to projectively invariant equations:

Theorem 3.

(a) Any infinitesimal symmetry vA of the projective structure p induces a con-
formal Killing field ṽa0 of c.

(b) Any skew-symmetric bivector wAB satisfying the projectively invariant equa-
tion

DCw
AB = − 2

n− 1
δ
[A
C DPw

B]P (5)

and the integrability condition wB(AW
D)

B(C E) = 0 induces a conformal

Killing field ṽa+ of c.
(c) Any Killing 1-form, i.e. a 1-form αA satisfying D(AαB) = 0, induces a con-

formal Killing field ṽa− of c.
In fact, any conformal Killing field of c can be uniquely decomposed as a direct sum
ṽa+ + ṽa0 + ṽa− + c ka of components which correspond to solutions to the respective
projective equations and a constant multiple of k.

Likewise, the construction of the Patterson–Walker metric g from a torsion-free
affine connection D is natural, hence any symmetry of D gives a symmetry of g, i.e.
a Killing field. In fact, we obtain a complete description of the space of Killing fields
of g in terms of affine data:

Theorem 4.

(a) Any infinitesimal symmetry vA of the affine connection D induces a Killing
field ṽa0 of g.

(b) Any parallel bivector wAB for the affine connection D, DCw
AB = 0, which

satisfies the integrability condition wB(AR
D)

B(C E) = 0 induces a Killing field

ṽa+ of g.
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(c) Any Killing 1-form αA, D(AαB) = 0, induces a Killing field ṽa− of g.
In fact, any Killing field of g can be uniquely decomposed as a direct sum ṽa++ ṽa0 + ṽa−
of components which correspond to solutions to the respective affine equations.

The approach of the present paper is based on an extension of the two-spinor
calculus of [32] to higher dimensions, already used in [24], and developed more fully
in [34, 35]. We shall set up this spinor calculus in section 3 and employ it to di-
rectly derive relationships between the original projective geometry and the induced
conformal structure. A major step, which is particularly tailored for this approach,
is our parallelizability result for pure twistor spinors with integrable distributions,
Proposition 4.2, upon which Theorem 1 hinges.

Projective and conformal geometries are instances of Cartan geometries, or more
specifically, parabolic geometries. The geometric relationship studied in this article
fits into the larger framework of so-called Fefferman-type constructions. These were
originally put forward by the authors of [17] and [20] in their investigation of CR
structures. In the present context, the recent article [23] takes the same perspective,
and includes a characterisation result closely related to Theorem 1. The relation
with the treatment set forth herein is briefly described in section 7.4. The spinor-
theoretic approach allows a succinct treatment, gives a shorter statement for the
characterization of the induced structures than the one presented in [23], and allows
us to give explicit descriptions of the Einstein metrics in the induced conformal class
of metrics.
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2. Patterson–Walker metrics. Riemann extensions of affine connected spaces
were first described in [30]. They are pseudo-Riemannian metrics on the total space
of the cotangent bundle π : T ∗M → M associated to torsion-free affine connections
on M as follows: An affine connection D determines a horizontal distribution H ⊂
T (T ∗M) complementary to the vertical distribution V of the bundle projection π.
Via the tangent map of π, the bundle H is isomorphic to TM , whilst V is canonically
isomorphic to T ∗M .

Definition 2.1. The Riemann extension or the Patterson–Walker metric asso-
ciated to a torsion-free affine connection D on M is the split-signature metric g on
M̃ := T ∗M fully determined by the following conditions:

(a) both V and H are isotropic with respect to g,
(b) the value of g with one entry from V and another entry from H is given by

the natural pairing between V ∼= T ∗M and H ∼= TM .
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It follows that V is parallel with respect to the Levi-Civita connection of the con-
structed metric. Hence Riemann extensions are special cases of pseudo-Riemannian
manifolds admitting a parallel isotropic distribution known as Walker manifolds or
Walker metrics.

We can give local coordinate expression for these Riemann extensions. Let us
introduce local coordinates {xA} on M and fibre coordinates {pA} so that θ = pA dxA

is the tautological 1-form on M̃ . Here, indices run from 1 to n, but we shall view
them as abstract indices. Let further Γ C

A B = Γ C
(A B) be the Christoffel symbols of a

torsion-free affine connection DA on M . The horizontal distribution H associated to
the affine connection DA is spanned by

∂

∂xA
+ Γ C

A B pC
∂

∂pB
. (6)

Defining α � β := 1
2 (α⊗ β + β ⊗ α) for any 1-forms α and β, we can write the

Patterson–Walker metric explicitly as

g = 2 dxA � dpA − 2Γ C
A B pC dxA � dxB , (7)

from which it is clear that both V =
〈

∂
∂pB

〉
and H spanned by (6) are indeed isotropic

with respect to (7).
Being oriented, the cotangent bundle T ∗M equipped with the Patterson–Walker

metric has structure group SO(n, n). Further, following [21, 25], since T (T ∗M) ∼=
TM ⊕ T ∗M , the manifold T ∗M is endowed with a spin structure. Since V and H
are totally isotropic and dual to each other via the metric, we can associate to them
a pair of pure spinors defined up to scale. These spinors will allow us to construct
projections from TM̃ to V and H. With a slight abuse of notation to be clarified
subsequently, it will be convenient to employ abstract index notation on spinor fields
(see [31]): sections of the irreducible spinor bundles S̃+ and S̃− will be adorned with

primed and unprimed upper-case Roman indices, i.e. αA′ ∈ S̃+ and βA ∈ S̃−, and
similarly for dual spinor bundles, κA′ ∈ S̃∗

+ and λA ∈ S̃∗
−. In particular, the Clifford

algebra of (TM̃, g) is generated by the γ-matrices γ B′
a A and γ B

a A′ , which satisfy

γ A′
(a C γ C

b) B′ = −gabδ̃
A′
B′ , γ A

(a C′ γ C′
b) B = −gabδ̃

B
A ,

where δ̃A
′

B′ and δ̃AB are the identity elements on S̃+ and S̃− respectively.

Let χA′ ∈ S̃+ be a spinor field annihilating V , and define a linear map

χA
a := γ A

a B′χB′
: TM̃ → S̃− .

Then V = kerχA
a since χA′

is pure. Similarly, let η̌A′ ∈ S̃∗
+ be a spinor field annihi-

lating H so that χA′
and η̌A′ are dual, and chosen such that η̌A′χA′

= − 1
2 . Defining

η̌aA := η̌B′γ B′
a A : TM̃ → S̃∗

− ,

we then have H = ker η̌aA since η̌A′ is pure.
Therefore, we can identify H with the image of χA

a , and V with the image of η̌aA.
In this situation the upper case Roman index refers to an n-dimensional representa-
tion. Viewed as projections, the spinors satisfy [34]

χA
a χ

aB = 0 , η̌aAη̌aB = 0 , χA
a η̌

a
B = δBA , (8)
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where δBA is the identity on im χA
a . In sum, we have a splitting

TM̃ = V ⊕H ∼= im η̌aA ⊕ im χA
a
∼= kerχA

a ⊕ ker η̌aA

where H ∼= V ∗, and for any ṽa ∈ V, w̃a ∈ H, we can write

ṽa = α̃Aχ
aA , for some α̃A ∈ im η̌aA,

w̃a = β̃Aη̌aA , for some β̃A ∈ im χaA.

There is the freedom in rescaling both χA′
and η̌A′ such that χA′

η̌A′ = − 1
2 , which

will be fixed by the following consideration. If the torsion-free affine connection D
preserves in addition a volume form on M , then the connection D is said to be
special, and all our affine connections will have this property. This means that we
can always choose our coordinates {xA} such that the preserved volume form is given
by dx1 ∧ . . . ∧ dxn, up to constant multiple, and thus, the Christoffel symbols satisfy
Γ C
A C = 0. Henceforth, we denote by D̃a the Levi-Civita connection of the Patterson–

Walker metric (7) on M̃ induced by a special torsion-free affine connection DA on M .

Since V =
〈

∂
∂pB

〉
and H is spanned by (6), we can choose χA′

and η̌A′ such that

χaAD̃a =
∂

∂pA
, η̌aAD̃a =

∂

∂xA
+ Γ C

A B pC
∂

∂pB
, (9)

and the non-trivial commutation relations

[χaAD̃a, η̌
b
BD̃b] = Γ A

B Cχ
cCD̃c , [η̌aAD̃a, η̌

b
BD̃b] = R C

AB DpCχ
cDD̃c ,

are satisfied. Here we use the convention R C
AB DvD = 2D[ADB]v

C for the curvature
tensor R D

BC A of DA. We can immediately see that H is integrable if and only if DA

is flat. We then obtain the Christoffel symbols Γ̃ c
a b of the connection D̃a

Γ̃abc = 2χA
a η̌[bBχ

C
c]Γ

B
A C + χA

a χ
B
b χ

C
c R

D
BC ApD .

In particular, using (8) and the fact Γ B
A C is trace-free, we immediately see that the

spinor χA′
determined by (9) is parallel. Writing ṽa = ṽAη̌aA + α̃Aχ

aA, we have(
D̃aṽ

b
)
η̌aAχ

B
b =

(
∂

∂xA
+ Γ C

A D pC
∂

∂pD

)
ṽB + Γ B

A C ṽ
C ,(

D̃aṽ
b
)
η̌aAη̌bB =

(
∂

∂xA
+ Γ C

A D pC
∂

∂pD

)
α̃B − Γ C

A Bα̃C − ṽCR D
CB ApD ,(

D̃aṽ
b
)
χaAη̌bB =

∂

∂pA
α̃B ,(

D̃aṽ
b
)
χaAχB

b =
∂

∂pA
ṽB .

In particular, if ṽB = vB(x) and α̃B = αB(x) do not depend on pA, then

D̃aṽ
b =

(
DAv

B
)
χA
a η̌

b
B +

(
DAαB − vCR D

CB ApD
)
χA
a χ

bB . (10)

Next, the Riemann tensor can be computed to be

R̃abcd = 2
(
χA
a χ

B
b η̌[cCχ

D
d] + χA

c χ
B
d η̌[aCχ

D
b]

)
R C

AB D

+ 2χA
[aχ

B
b]χ

C
c χ

D
d DAR

E
CD BpE ,

(11)
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from which we deduce that

R̃abcdv
awd = 0 for all va, wa ∈ V . (12)

We have a distinguished vector field k and a 2-form μ, defined by

k := 2 pA
∂

∂pA
, (13)

μ := 2 dpA ∧ dxA . (14)

Here, we follow the convention α ∧ β = 1
2 (α⊗ β − β ⊗ α) for any 1-forms α and β.

As a 1-form, ka is twice the tautological one-form θa on T ∗M . As a skew-symmetric
endomorphism, μa

b acts as the identity on H and as minus the identity on V :

μa
bη̌

b
B = η̌aB , μa

bχ
bB = −χaB . (15)

It is then straightforward to check that k satisfies the conformal Killing field equation

D̃akb − μab − gab = 0, (16)

and in particular, ka is a light-like vertical homothety, Lkg = 2 g.
Now, Patterson–Walker metrics can be locally characterized as follows:

Proposition 2.2. Let (M̃, g) be a spin structure of split signature (n, n) admit-
ting a parallel pure spinor χ with integrable associated distribution V , and a homothety
k tangent to V such that (16) holds. Suppose further that the Riemann tensor satisfies
(12).

Then, in a neighborhood of any point of M̃ , there exist coordinates {xA, pA} such
that the metric g takes the form (7) where Γ C

A B are the Christoffel symbols for a

special torsion-free affine connection D on the leaf space of V . In particular, (M̃, g)
is the Riemannian extension associated to D.

Proof. In a neighborhood of any point of M̃ , there exist coordinates {xA, pA}
such that the metric takes the form [4, 26]

g = 2 dpA � dxA − 2ΘAB dxB � dxA , (17)

where the distribution V is spanned by the vector fields ∂
∂pA

and {xA} are coordinates

on the leaf space M , and the functions ΘAB = Θ(AB)(x, p) satisfy the differential
conditions

∂

∂pB
ΘBA = 0 . (18)

Since k is a homothety tangent to V , we can write

k = kA
∂

∂pA
, g(k,−) = kA dxA ,

for some functions kA. The exterior derivative of this 1-form is given by

μ =
∂

∂xA
kB dxA ∧ dxB +

∂

∂pA
kB dpA ∧ dxB .
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This gives

μ

(
∂

∂pA
,−

)
=

1

2

∂

∂pA
kB dxB .

Since χ is parallel, differentiating kaχA
a = 0 yields

μabγ
bχ+ γaχ = 0,

according to (16). This means that μ, as an endomorphism of TM̃ , acts by minus
the identity on V . Hence 1

2
∂

∂pA
kB = δBA , i.e. kB = 2 pB + φB for some functions φB

of xA. We can perform a change of the coordinates pA to eliminate the functions φB

in kB while preserving the form of the metric. At this stage, we have the following
local coordinate forms for the homothety ka, its associated 1-form ka, and its exterior
derivative μab:

k = 2 pA
∂

∂pA
, g(k,−) = 2 pA dxA

μ = 2 dpA ∧ dxA .

Now, k is a homothety satisfying Lkgab = 2 gab, and the equivalent condition on ΘAB

is

pC
∂

∂pC
ΘAB = ΘAB . (19)

This says that ΘAB is homogeneous of degree 1 in pA. On the other hand, the
curvature condition (12) is equivalent to

∂2

∂pB∂pD
ΘAC = 0 , (20)

which tells us that ΘAC is linear in pA.
Putting things together we see that, given the metric (17), the conditions (18),

(19) and (20) are satisfied if and only if ΘAB takes the form

ΘAB = Γ C
A B pC , (21)

for some Γ C
A B = Γ C

(A B)(x), which is moreover trace-free by virtue of (18).

The condition (12) is the obstruction for the Levi-Civita connection to descend
to an affine connection on M , cf. [1, 9]. We have therefore recovered the Patterson–
Walker metric (7), and Γ C

A B can be identified with the Christoffel symbols of a special
affine connection D on the leaf space of V .

3. Conformal Patterson–Walker metrics. We now deal with a projective-
to-conformal analog of the construction from the previous section.

3.1. Calculus for projective geometry. As before, we shall use upper case
Roman abstract indices as in [31] for tensors on M . For instance, αA ∈ EA denotes a
1-form on M , vAB ∈ E [AB] denotes a bivector on M . This convention should not be
confused with unprimed spinor indices. By and large, we follow the treatment given
in [15, 14, 2].
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Two torsion-free affine connections DA and D̂A are in a given projective class p
if and only if for any ξA ∈ EA,

D̂Aξ
B = DAξ

B +Q B
AC ξC , Q C

AB = 2 δC(AΥB) , (22)

for some 1-form ΥA. Similar formulae can be obtained on 1-forms and tensors by
means of the Leibniz rule.

We shall assume M to be oriented. Let us fix a volume form εA1...An ∈ E[A1...An].

Then, by (22), for any two affine connections DA and D̂A in p, we have

D̂AεB1...Bn
= DAεB1...Bn

− (n+ 1)ΥAεB1...Bn
, (23)

for some 1-form ΥA. We can always choose εA1...An ∈ E [A1...An] such that
εA1...An

εB1...Bn = n!δB1

[A1
. . . δBn

An]
. In general, DA does not preserve εA1...An

so that if
we set

ΥA :=
1

(n+ 1)!
(DAεB1...Bn

) εB1...Bn , (24)

the connection D̂A given by (22) or (23) preserves εA1...An
. Thus, we can always

find a special connection, i.e. a connection that preserves a given volume form, in the
projective class p, and such a connection can be shown to be unique, cf. [6] and [13].

With no loss of generality, we shall henceforth restrict ourselves to special torsion-
free affine connections. These enjoy nice properties. In particular, if R C

AB D is
the curvature tensor of a special torsion-free affine connection D with Ricci tensor
RicAB := R P

PA B , then the Schouten tensor

PAB :=
1

n− 1
RicAB ,

is symmetric. Hence P vanishes if and only if D is Ricci-flat. The projective Weyl
curvature and the Cotton tensor are defined respectively by

W C
AB D = R C

AB D + PADδCB − PBDδCA , YCAB = 2D[APB]C . (25)

The connection D is called projectively flat if it is projectively equivalent to a flat
affine connection. For manifolds of dimension n = 2, the Weyl curvature vanishes
identically and the only obstruction to projective flatness is the Cotton tensor Y . For
n ≥ 3 projective flatness is equivalent to the vanishing of the Weyl curvature W .

By (23), any two volume forms ε and ε̂ related by ε̂ = e(n+1)φε correspond to two

special torsion-free affine connections D and D̂ differing by the 1-form ΥA = DAφ.
We note that under such a projective change, the Rho tensor transforms according to

P̂AB = PAB +ΥAΥB −DAΥB , (26)

so that the Schouten P̂AB associated to D̂A remains symmetric.
We therefore have a special subclass of torsion-free affine connections of p,

projectively related by exact 1-forms, and thus parametrized by smooth functions
on M . We can conveniently define the density bundle of projective weight w as
E(w) := (∧nTM)

− w
n+1 on M , where dim M = n. We will refer to everywhere pos-

itive sections of E(1) as projective scales. Any projective scale σ, say, determines a
special torsion-free affine connection DA in p, which extends to an affine connection,
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also denoted DA, on E(w), and for which DAσ = 0. For any two torsion-free affine
connections in p, we have

D̂Af = DAf + wΥAf , f ∈ E(w) , (27)

An oriented projective structure determines a distinguished section εA1...An
∈

E[A1...An](n+ 1), which we shall refer to as the projective volume form. Any choice of
projective scale σ corresponds to a special connection D preserving the volume form
ε = σ−(n+1)ε. Since, for any two connections D and D̂ in p, we have D̂ε = Dε by
(27) and (23), we conclude that Dε = 0 for any connection D in p.

3.2. Calculus for conformal geometry. As before, we shall use lower case
Roman indices for tensors on M̃ , e.g. gab ∈ Ẽ(ab) denotes a symmetric 2-tensor on M̃ .
The reader can refer to [2] for more details on conformal geometry and its calculus.

We define the density bundle of conformal weight w as Ẽ [w] :=
(
∧2nTM̃

)− w
2n

on M̃ , where dim M̃ = 2n. We will refer to everywhere positive sections of Ẽ [1]
as conformal scales. The Levi-Civita connection extends to an affine connection on
Ẽ [w]. The conformal structure can be equivalently seen as a density-valued metric

gab ∈ Ẽ(ab)[2] =
⊙2

T ∗M̃ ⊗ Ẽ [2] referred to as the conformal metric on M̃ . Any

conformal scale τ ∈ Ẽ [1] determines a metric gab = τ−2gab in c. The associated

Levi-Civita connection D̃a preserves gab, gab and τ . The conformal metric allows us
to identify TM̃ with T ∗M̃ [2]. Similarly, one can identify S̃± with S̃∗

±[1] when n is

even, and with S̃∗
∓[1] when n is odd, by means of weighted spin bilinear forms.

For a (pseudo-)Riemannian metric g, the Schouten tensor P̃ is given by

P̃ab =
1

2n− 2

(
R̃icab − S̃c

2(2n− 1)
gab

)
,

where R̃ic and S̃c are the Ricci and scalar curvature of g respectively. Since P̃ is a
trace modification of R̃ic, the Schouten tensor vanishes if and only if g is Ricci-flat.
The conformal Weyl curvature and the Cotton tensors of g are defined respectively
by

W̃ c
ab d = R̃ c

ab d − 2 δc[aP̃b]d + 2gd[aP̃b]
c , Ỹcab = 2D̃[aP̃b]c.

The metric g is called conformally flat if it can be (locally) rescaled to a flat metric.
For manifolds of dimension 2n ≥ 4 conformal flatness is equivalent to the vanishing
of the Weyl curvature W̃ . The transformation rules for Levi-Civita connections and
Schouten tensors under conformal changes can be given explicitly, see e.g. [2].

3.3. Conformal extensions of projective structures. The Riemann exten-
sion of an affine connected space can be adapted to weighted cotangent bundles
T ∗M(w) = T ∗M ⊗ E(w). The only difference in the weighted case is that a choice
of torsion-free affine connection D gives rise to a weighted metric. This means that
the natural pairing between H ∼= TM and V ∼= T ∗M(w) defines a symmetric bilinear
form on the tangent bundle of T ∗M(w) with values in π∗E(w), the pull-back of the
line bundle over M with respect to the natural projection π : T ∗M(w) → M . A spe-
cial connection D yields a trivialization of E(w), and thus the pairing can be regarded
as R-valued. In particular, D defines a Patterson–Walker metric on T ∗M(w).
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We shall denote by θ the (weighted) tautological 1-form on T ∗M(w). This bundle
is trivialized by any choice of projective scales. Let σ and σ̂ be two such scales related
by σ̂ = e−φσ for some smooth function φ. Then, θ := σ−wθ and θ̂ := σ̂−wθ are
two (tautological) 1-forms related by θ̂ = ewφθ. In both cases, there exists canonical

coordinates {xA, pA} and {xA, p̂A} in which θ = pA dxA and θ̂ = p̂A dxA. Thus, a
projective change induces the change of canonical fiber coordinates pA �→ p̂A = ewφpA.

Let DA and D̂A ∈ p be the special affine connections in p associated to σ and
σ̂ respectively, so that D̂A differs from DA via (22) by ΥA = DAφ. This means that

the Christoffel symbols of DA and D̂A are related by

Γ̂ C
A B = Γ C

A B + δCAΥB + δCBΥA .

A straightforward computation then gives

dp̂A − Γ̂ C
A B p̂C dxB = ewφ

(
dpA − Γ C

A BpC dxB
)

+ ewφ ((w − 1)pAΥB − pBΥA) dx
B ,

(28)

so that using (7) yields

ĝ = ewφ(g + 2 (w − 2)pBΥA dxB � dxA) ,

As a consequence, we immediately conclude:

Proposition 3.1. Let D and D̂ be projectively equivalent special torsion-free
affine connections on M and let g and ĝ be the associated Patterson–Walker metrics
on T ∗M(w). Then g and ĝ are conformally equivalent if and only if w = 2.

Setting M̃ := T ∗M(2) we have thus obtained the notion of the conformal exten-

sion (M̃, c) of a projective structure (M,p):

Definition 3.2. The conformal extension or the conformal Patterson–Walker
metric associated to an oriented projective structure p on M is the split-signature
conformal structure c on M̃ = T ∗M(2) represented by the Patterson–Walker metric
of a special torsion-free affine connection D ∈ p.

Remark 3.3. A slightly different construction, which was first introduced in [12]
when n = 2, involves the so-called Thomas projective parameters. In dimension n,
these are defined by [16, 36]

Π C
A B := Γ C

A B − 2

n+ 1
δC(AΓ

D
B) D , (29)

where Γ C
A B are the Christoffel symbols of any affine connection in p with respect

to some coordinate system {xA}. In fact, the Π C
A B do not depend on the choice

of connection in p, and are thus a set of projectively invariant functions. However,
the Π C

A B depend on the choice of coordinates {xA} in the sense that they do not
transform as Christoffel symbols, let alone as a tensor in general. Consider a general

coordinate transformation xA �→ yA on M with Jacobian JA
B := ∂yA

∂xB , and set φ :=
1

n+1 log
(
det JA

B

)
. Then, we have [16]

Π D
A BJ

C
D = Π′ C

D EJ
D
A JE

B +
∂

∂xA
JC
B − 2JC

(A

∂φ

∂xB)
, (30)
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where Π′ C
A B are the Thomas projective parameters defined by the Christoffel symbols

with respect to {yA}.
The coordinate systems {xA} and {yA} define volume forms ε := dx1 ∧ . . .∧ dxn

and ε̂ := dy1 ∧ . . . ∧ dyn, respectively, preserved by special connections DA and D̂A

in p respectively. These are projectively related by ΥA = DAφ. We therefore have
an induced change of canonical fiber coordinates on T ∗M(w) given by pA �→ qA :=
ewφpB(J

−1)BA . Define two metrics on the open subset of T ∗M(w) over the overlap of
the charts of {xA} and {yA} by

g := 2 dxA � dpA − 2Π C
A B pC dxA � dxB , (31)

ĝ := 2 dyA � dqA − 2Π′ C
A B qC dyA � dyB .

Then, using (30), one can immediately check that

ĝ = ewφ

(
g + 2(w − 2)qA

∂φ

∂yB
dyA � dyB

)
.

In particular, g and ĝ are conformally equivalent if and only if w = 2. We have
therefore constructed a conformal class of metrics of the form (31) on M̃ = T ∗M(2)
from the projective class p on M : a metric in the conformal class corresponds to the
Thomas projective parameters representing p in a given coordinate system {xA}, up
to coordinate transformations that preserve the volume form dx1 ∧ . . . ∧ dxn. Differ-
ent Thomas projective parameters for different coordinate systems yield conformally
related metrics.

Finally, with no loss, we can take Π C
A B = Γ C

A B in the definition (29), where
Γ C
A B are the Christoffel symbols of the special connection DA preserving the volume

form ε, up to constant multiple, on (M,p). In this case, the metric (31) can be
identified with the Patterson–Walker metric (7). As this identification holds for any

choice of coordinate system, the conformal class of metrics of the form (31) on M̃ is
none other than the conformal Patterson–Walker metric of Definition 3.2.

To deal with the conformal class of Patterson–Walker metrics of Definition 3.2,
rather than a metric, we shall henceforth view the quantities introduced in section 2
as being weighted. In particular, γ A

a B′ and γ A′
a B have conformal weight 1, M̃ being

endowed with a conformal spin structure, see also [23]. By definition, the conformal
Killing field ka has weight 0, so that the 1-form ka is twice the weighted tautological
1-form θa on M̃ , i.e. ka = 2θa ∈ Ẽa[2]. Next, requiring that the spinor χA′

remain
parallel with respect to the Levi-Civita connection of any Patterson–Walker metric,
restricts its possible conformal weight. Following the conventions of [31, 34], and for
convenience, χA′

will have weight 0, from which it follows that η̌A′ has weight 0.

Lemma 3.4. Any projective scale σ ∈ E(1) lifts to a conformal scale σ̃ ∈ Ẽ [1],
and thus by extension any section of E(w) lifts to a section of Ẽ [w]. Conversely, any

section σ̃ of Ẽ [w] such that χaAD̃aσ̃ = 0, with respect to any Patterson–Walker metric
in c, descends to a section of E(w).

Further, any section σB1...B�

A1...Ak
∈ EB1...B�

A1...Ak
(w) gives rise to a section of ẼB1...B�

A1...Ak
[w−

k+ �]. For contravariant tensors, the lifts depend on the choice of special torsion-free
affine connection on p.

Proof. Proposition 3.1 assigns to a special affine connection on M , i.e. a section
of σ ∈ E(1), a Patterson–Walker metric on M̃ , i.e. a section of σ̃ ∈ Ẽ [1]. This can also
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be verified by noting that the volume form on M̃ induced by gab = σ̃−2gab takes the
form

ε̃ =
(
εA1...An dxA1 . . . dxA1

) ∧ (
εB1...Bn dpB1 . . . dpBn

)
.

where εA1...An is the volume form determined by σ, and εA1...An its inverse. Since
a special projective change induces a change p̂A = e2φpA for some function φ, the

volume form ε̃ transforms to ̂̃ε = e2nφε̃ as expected. The converse statement follows
from the fact that the vectors χaAD̃a, for any Patterson–Walker metric in c, span the
vertical distribution.

According to our conventions, we obtain weighted projectors and injectors χA
a ∈

ẼA
a [1] and η̌aA ∈ Ẽa

A[−1]. Now choosing an affine connection D ∈ p, any section

vA ∈ EA(w) can be canonically lifted ṽa ∈ Ẽa[w]. This means in particular that

as a spinor field, vA = ṽaχA
a gives rise to a section of ẼA[w + 1]. Similarly (but

independently of the choice of D ∈ p), any section αA ∈ EA(w) gives rise to a section

of ẼA[w − 1]. This generalizes to tensor fields of higher valence.

Now let D be a special torsion-free affine connection on M and g its Patterson–
Walker metric on M̃ . We can decompose (11) further so as to express the conformal

Weyl, Schouten and Cotton tensors W̃abcd , P̃ab, Ỹcab of the Patterson–Walker metric
g in terms of the projective Weyl, Schouten respectively Cotton tensors W D

AB C , PAB

and YABC :

W̃abcd = 2
(
χA
a χ

B
b χ

C
[c η̌d]D + χA

c χ
B
d χ

C
[aη̌b]D

)
W D

AB C

+ 2χA
[aχ

B
b]χ

C
[cχ

D
d]

(
DAW

E
CD B pE + pCYDAB

)
, (32)

P̃ab = χA
a χ

B
b PAB , (33)

Ỹcab = χC
c χ

A
a χ

B
b YCAB . (34)

Remark 3.5. By direct inspection, we find:
(a) By (32), the induced Patterson–Walker metric is conformally flat if and only

if the original affine connection is projectively flat.
(b) By (33), the induced Patterson–Walker metric is Ricci-flat if and only if the

original affine connection is Ricci-flat.
(c) By (7) and (33), a Patterson–Walker metric is Einstein if and only if it is

already Ricci-flat.

Remark 3.6. In contrast with the projective-to-conformal construction de-
scribed above, the authors of [11] canonically associate to a projective structure a
split-signature Einstein metric with non-zero scalar curvature.

4. Characterization of conformal Patterson–Walker metrics. We shall
now prove our characterization Theorem 1 which exactly specifies those split-signature
conformal spin structures that are associated to a projective structure via the confor-
mal extension in the sense of definition 3.2. For this purpose we start by collecting
properties of the induced conformal structures:

Proposition 4.1. The conformal extension (M̃, c) associated to an oriented
projective structure (M,p) satisfies all the properties (a)–(d) of Theorem 1.
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Proof. Since χ is parallel with respect to D̃, it trivially satisfies the twistor spinor
equation (1).

We have already observed in (16) that k ∈ V is a (light-like) conformal Killing
field.

The general formula for the Lie derivative of χ with respect to the conformal
Killing field k is

Lkχ = kaD̃aχ− 1

4
(D̃[akb])γ

aγbχ− 1

4n
(D̃pk

p)χ. (35)

Hence it is immediate that D̃aχ = 0, D̃akb = μab+gab and μabχ
bB = −χB

a (according
to (15) and (16)) imply (2).

The integrability condition (3) follows immediately from (32).

For the converse direction we begin with two technical results which will provide
a normal form for structures satisfying the above conformal properties.1

Proposition 4.2. Let χ be a pure real twistor spinor on a conformal pseudo-
Riemannian manifold (M̃, c) of signature (n, n) with associated totally isotropic n-
plane distribution V . Suppose V is integrable. Then locally, there is a conformal
subclass of metrics in c for which χ is parallel, i.e. if g is any such metric with Levi-
Civita connection D̃, D̃χ = 0. Any two such metrics are related by a conformal factor
constant along the leaves of V .

Proof. In abstract index notation for spinors we write χA′
and χ̌A := 1√

2n
(D/ χ)A.

The key idea is to use the transformation rule for χ̌A under a conformal change of
metric: For a smooth function φ ∈ C∞(M̃) and ĝ = e2φg a rescaled metric, the spinor
χ̌A transforms according to (see e.g. [3, 22])

χ̌A �→ χ̌A +
1√
2
(D̃aφ)χ

aA. (36)

Thus, to find a conformal scaling for which χA′
is parallel, we must first show that

χ̌A can be expressed as

χ̌A =
1√
2
χaAD̃aφ , (37)

for some smooth function φ. We assume of course that χ̌A is non-vanishing, for
otherwise our spinor was already parallel.

We write the twistor equation on χ as D̃aχ
B′

= − 1√
2
χ̌B′
a , and contracting with

χaA this gives

χaAD̃aχ
B′

= − 1√
2
χaAχ̌B′

a . (38)

The condition that V is integrable can be re-expressed as [24, 34]

χaAD̃aχ
B′

= αAχB′
, (39)

1AT-C thanks Andree Lischewski for pointing out an unnecessary curvature condition in the
statement of Proposition 4.2, which appeared in an earlier version of [34] (preprint arXiv:1212.3595).
See also his analogous result in [27].
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for some spinor αA, which necessarily lies in the image of χaA. The equations (38)
and (39) together imply

− 1√
2
χaAχ̌B′

a = αAχB′
.

It is shown in [34], that since χ is pure, the last formula implies that

αA =
√
2χ̌A. (40)

In particular, this implies that χ̌A also lies in the image of χaA and thus

χaAχ̌B′
a = −2 χ̌AχB′

. (41)

By differentiating (37) one obtains the integrability conditions

χa[AD̃aχ̌
B] = α[Aχ̌B] (42)

for the existence of φ (see e.g. [24, 34]). By (40), the right-hand-side of (42) vanishes.

On the other hand, the prolongation of the twistor equation D̃aχ̌
A = − 1√

2
P̃abχ

bB

leads to the vanishing of the left-hand-side of (42). Hence both sides of (42) are zero,
and the integrability conditions are therefore satisfied and we can find a local solution
φ of (37).

Finally, by (36), adding to φ a smooth function constant along V yields a metric
in c conformal related to ĝ, for which χ is also parallel. This produces the required
conformal subclass of c.

Remark 4.3.

(a) The relation between pure twistor spinors and the integrability of their asso-
ciated distributions is already given in [34]. Similar results are obtained in
odd dimensions in [35].

(b) A similar argument is employed in [10] in the four-dimensional case to show
the existence of a suitable parallelizing scale.

(c) Formula (41) is in fact equivalent to χ̌A = 1√
2n

(D/ χ)A being pure with asso-

ciated n-plane distribution intersecting that of χA′
maximally in an (n− 1)-

dimensional distribution [34].

Lemma 4.4. Let χ be a parallel pure spinor with associated distribution V and
ka a conformal Killing field tangent to V such that Lkχ = − 1

2 (n+ 1)χ. Then ka is a
homothety satisfying (16).

Proof. We write the conformal Killing field equation as D̃akb − μab + gabϕ = 0
with μab = D̃[akb] and ϕ = − 1

2nD̃
pkp. Since χ is parallel, differentiating kaχA

a = 0
yields

μabγ
bχ− ϕγaχ = 0 (43)

so that

μabγ
aγbχ+ 2nϕχ = 0 . (44)

On the other hand, Lkχ = − 1
2 (n+ 1)χ now reads as

−1

4
μabγ

aγbχ+
1

2
ϕχ = −1

2
(n+ 1)χ , (45)
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where we have used (35) and the fact that χ is parallel. Combining (44) and (45)
yields ϕ = −1, hence (16) follows.

Proposition 4.5. Let (M̃, c) be a conformal spin structure of split signature
(n, n) satisfying the properties (a)–(d) of Theorem 1. Then the local leaf space of
the integrable distribution associated to the pure twistor spinor admits a projective
structure p such that (M̃, c) is the conformal extension associated to p.

Proof. From Proposition 4.2 we know that, locally, we can find metrics g and
ĝ in c such that the twistor spinor χ is parallel with respect to the corresponding

Levi-Civita connections D̃ and
̂̃
D, and ĝ = e2φg for some smooth function φ on

M̃ which is constant on the leaves of V . From Lemma 4.4 we know that ka is a
homothety satisfying (16). Since χ is parallel with respect to D̃, the Schouten tensor

P̃ab is annihilated by V , and thus the integrability condition (3) is equivalent to the

condition (12) on the Riemann tensor R̃abcd. The same argument applies also to
̂̃
D

and the corresponding Riemann tensor. We can therefore apply Proposition 2.2 to
each of the metrics g and ĝ with respective special torsion-free affine connections D
and D̂ on M .

We shall show thatD and D̂ are projectively related. The Levi-Civita connections

D̃ and
̂̃
D are related by

̂̃
Daξ

b = D̃aξ
b +Υaξ

b +Υcξ
cδba − ξaΥ

b,

where Υa = D̃aφ. Since φ is constant along the leaves of V , the corresponding 1-form
Υa is strictly horizontal. Hence we consider both φ and Υa as the pull-back of a
smooth function φ and a 1-form ΥA on the leaf space M , respectively. Therefore, for
ξa being a projectable vector field on M̃ and ξA denoting its projection to M , the
two underlying affine connections differ by

D̂Aξ
B = DAξ

B +ΥAξ
B +ΥCξ

CδBA .

That is why D and D̂ are projectively equivalent, cf. (22).

Finally, from Proposition 3.1 it follows that M̃ is locally identified with T ∗M(2).

Combining propositions 4.1 and 4.5 we immediately obtain our characterization
Theorem 1.

The conformal Patterson–Walker metric constructed above is also equipped with
another distinguished spinor as explained below.

Proposition 4.6. The conformal extension (M̃, c) admits a spinor field ηA ∈
ẼA[1], which, for any choice of Patterson–Walker metric, takes the form

ηA =
1

2
√
2
kbη̌bA . (46)

This spinor is pure off the zero-set of k and satisfies

ηaA′ η̌aB = −2 ηB η̌A′ , (47)

where ηaA′ := ηBγ
a B
A′ , i.e. the totally isotropic n-plane distribution U := ker η̌aA′

intersects the horizontal distribution H maximally and intersects the vertical distri-
bution V in the line distribution spanned by ka. In particular, ka = 2

√
2ηAχ

aA.
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Further, ηA satisfies the conformally invariant equation

D̃aηA − 1√
2
γ B′
a A η̌B′ =

1

8
kdW̃dabc(γ

bγc)BAηB . (48)

In particular, ηA is a twistor spinor if and only if (M̃, c) is conformally flat, i.e.
(M,p) is projectively flat.

Proof. That ηA is pure follows from the fact that it lies in the image of η̌aA
since η̌A′ is a pure spinor. That it satisfies (47) follows from a direct computation and
commuting γ-matrices. Since ka and η̌aA have conformal weights 0 and 1 respectively,
ηA has conformal weight 1 by (46).

We now check that (46) is independent of the choice of connection in p. Consider

any two projectively related special connections DA and D̂A in p corresponding to
horizontal distributions H and Ĥ on M̃ annihilated by pure spinors η̌A′ and ̂̌ηA′

respectively. Note that with a choice of trivialization, (13) allows us to make the
identification

ηA =
1√
2
pA , (49)

and similarly for ̂̌ηA′ . Since the 1-forms annihilating H and Ĥ are related as in
(28) with w = 2, we can then readily check that ̂̌ηA′ and η̌A′ are related by ̂̌ηA′ =
η̌A′ − 1√

2
Υaη

a
A′ where Υa = ΥAχ

A
a , or equivalently, by

̂̌ηaA = η̌aA +
√
2(ηAΥB − ηBΥA)χ

B
a . (50)

Since ka annihilates χA′
, the result follows immediately.

The final part of the proposition follows from a direct, albeit lengthy, computa-
tion.

The identification (49) will prove to be very convenient in explicit computations,
and will be used ubiquitously in sections 5 and 6.

Remark 4.7. We can investigate the geometric properties of the distributions
V = kerχA

a , U = ker η̌aA′ and V ∩ U = 〈ka〉 viewed as G-structures on M̃ with
structure group taken to be the stabilizer of 〈χA′〉, 〈ηA〉 or 〈ka〉 in Spin(n, n) at a
point. These can be expressed in terms of differential conditions on the fields χA′

,
ηA or ka defined up to scale, and are related to the notion of intrinsic torsion of the
G-structure. For pure spinor fields, this is the topic of the articles [34, 35], to which
we refer for details.

(a) For χA′
parallel, the intrinsic torsion is trivial. This implies in particular(

χaAD̃aχ
bB

)
χC
b = 0, i.e. V , as any integrable totally isotropic n-plane dis-

tribution on (M, c), is totally geodetic [24, 33, 34].

(b) From (48), we deduce
(
ηaA′D̃aη

b
B′

)
ηbC′ = kdW̃dabcη

a
A′ηbB′ηcC′ , which by the

Bianchi identity implies that
(
ηa[A′D̃aη

b
B′

)
ηbC′] = 0. The distribution U is

integrable, i.e.
(
ηaA′D̃aη

b
B′

)
ηbC′ = 0, if and only if (M̃, c) is conformally flat.

(c) Being light-like and conformal Killing, ka generates a shear-free congruence

of null geodesics tangent to U ∩ V , i.e.
(
kcD̃ck

[a
)
kb] = 0 and Lkgab =

f gab + t(akb) for some function f and 1-form ta.
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(d) Moreover, this congruence is also twisting, i.e. k[aD̃bkc] does not vanish. Since
ka annihilates the rank-(2n− 1) distribution U + V , this means that U + V
is not integrable.

Remark 4.8. In four dimensions, i.e. n = 2, we can identify TM̃ with S̃+ ⊗
S̃−, and use the two-spinor calculus of [31]. We can choose a spin invariant skew-

symmetric bilinear form εAB on S̃−, with inverse εAB , to be preserved by the Levi-

Civita connection D̃a of a Patterson–Walker metric in c, and identify εAB as the
volume form on M preserved by the corresponding special connection DA ∈ p. It can
be shown [5, 10] that the function ΘAB can be expressed in terms of a single function

Θ = Θ(x, p), i.e. ΘAB = εACεBD
∂2

∂pC∂pD
Θ. Then equations (19) and (20) tell us that

the function Θ must be a polynomial of degree 3 in the coordinates pA, i.e. where
Γ B
A C are the Christoffel symbols for an affine connection on the projective surface

M .
The Weyl tensor can be expressed as

W̃abcd = Ψ̃A′B′C′D′εABεCD + Ψ̃ABCDεA′B′εC′D′ ,

where Ψ̃A′B′C′D′ and Ψ̃ABCD are the self-dual and anti-self-dual parts of the Weyl
tensor. Writing va = χA′

vA and wa = χA′
wA for two arbitrary elements of V for

some spinors vA and wA, we see that (3) is equivalent to

χA′
χC′

Ψ̃A′B′C′D′vBwD + vAwCΨ̃ABCDχB′χD′ = 0 .

The integrability condition W̃abcdγ
cγdχ = 0 for the existence of a twistor spinor χA′

is Ψ̃A′B′C′D′χA′
= 0, i.e. the self-dual Weyl tensor is of Petrov type N. Combined

with (3), we immediately conclude Ψ̃ABCD = 0, i.e. the Weyl tensor is self-dual.

5. Einstein metrics. We say that a non-trivial density σ̃ ∈ Ẽ [1] is an almost

Einstein scale if the metric gab = σ̃−2gab is Einstein off the zero-set of σ̃, i.e. R̃icab =
λ gab for some constant λ. One can show that this is equivalent to σ̃ satisfying the
conformally invariant equation(

D̃(aD̃b) + P̃ab

)
0
σ̃ = 0 . (51)

We now show that any Einstein scale on (M̃, c) gives rise to solutions to overdeter-
mined projectively invariant differential equations.

One of these is a projective analogue of equation (51), to be precise, a solution
σ ∈ E(1) to (

D(ADB) + PAB

)
σ = 0 . (52)

Away from their singularity sets, solutions to this equation determine Ricci-flat affine
connections DA in p. Thus, they are sometimes referred to as almost Ricci-flat scales.

We shall also consider a generalization of Euler vector fields to weighted vector
fields: i.e. a solution ξA ∈ EA(−1) satisfying

DAξ
B − 1

n
δBA (DCξ

C) = 0 , (53)
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Equation (53) implies

D(ADB)ξ
C + δC(APB)DξD = 0 , (54)

W C
AB D ξD = 0 . (55)

With reference to Lemma 3.4 and the fact that ηA has conformal weight 1 we
prove:

Lemma 5.1. Let σ ∈ E(1) and ξA ∈ EA(−1). Then

σ̃− := π∗σ , σ̃+ :=
√
2 ξAηA (56)

are sections of Ẽ [1]. Here, π is the projection from M̃ to M , and ξA is viewed as a

section of ẼA.

Before we proceed, we note that for any ka ∈ Ẽa, σ ∈ Ẽ [w] and σa ∈ Ẽa[w], we
have

Lkσ̃ = kaD̃aσ̃ − w

2n
σ̃D̃ak

a , Lkσ̃
a = kbD̃bσ̃

a − σ̃bD̃bk
a − w

2n
σ̃aD̃bk

b .

Choosing a Patterson–Walker metric, these simplify to

Lkσ̃ = kaD̃aσ̃ − wσ̃ , Lkσ̃
a = kbD̃bσ̃

a − σ̃bμ a
b − (w + 1)σ̃a , (57)

where we have made use of (16). Similar formulae for the Lie derivative on weighted
forms can be obtained using the Leibniz rule or the fact that ka is a conformal Killing
field.

Lemma 5.2. The lifts satisfy Lkσ̃± = ±σ̃±.

Proof. By (13), we have kaD̃aσ̃+ = 2 σ̃+ and kaD̃aσ̃− = 0. Applying (57) with
w = 1 completes the proof.

Proposition 5.3.

(a) Suppose σ ∈ E(1) satisfies (52). Then its lift σ̃− given by (56) is an almost
Einstein scale, i.e. a solution to (51).

(b) Suppose ξA ∈ EA(−1) satisfies (53) together with the integrability condition

ξDW C
DA B = 0 . (58)

Then its lift σ̃+ given by (56) is an almost Einstein scale.
In both cases, the rescaled metrics they define are Ricci-flat off the singular sets of
σ̃±.

Proof.
(a) Let σ be a Ricci-flat scale with associated torsion-free affine connection DA

in p on M that is Ricci-flat, i.e. PAB = 0. Then DA is special and determines
a Patterson–Walker metric g with corresponding conformal scale σ̃− as given

by (56). Reading off (33), we see that P̃ab = 0, i.e. g is Ricci-flat.
(b) Let us rewrite (56) as σ̃+ = 1

2

(
ξAη̌aA

)
ka. Then, using the Leibniz rule, (10),

with vA = ξA and αA = 0, (15) and (16), we obtain

D̃aσ̃+ =
(
DAξ

B
)
pBχ

A
a + ξB η̌aB . (59)
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Similarly,

D̃aD̃bσ̃+ =
(
DADBξ

C − ξDR C
DB A

)
χA
a χ

B
b pC + 2

(
DAξ

B
)
χA
(aη̌b)B . (60)

Finally, using (11), (25) and (33), we find

(
D̃(aD̃b)σ̃+ + P̃abσ̃+

)
0
= 2

(
DAξ

B − 1

n
δBADCξ

C

)
χA
(aη̌b)B

+
(
DADBξ

C + δCAPBDξD − ξDW C
DA B

)
pCχ

A
a χ

B
b . (61)

That σ̃+ is an almost Einstein scale follows immediately from (53), (54) and
(58). To show that the rescaled metric is Ricci-flat, we compute the tracễ
P of the Rho tensor of the rescaled metric via the transformation rule

̂̃
P =

P̃−D̃aΥa+(1−n)ΥaΥa, where P̃ := P̃
a

a and Υa := −σ−1
+ D̃aσ+. Using (59),

(60) and the fact P̃ = 0 for a Patterson–Walker metric, one easily verifieŝ̃
P = 0 as required.

Lemma 5.4. Let σ̃ ∈ Ẽ [1] with Lkσ̃ = r σ̃ for some real constant r. Then σ̃ is
homogeneous of degree r+1

2 in pA. In particular, σ̃+ is homogeneous of degree 1 and
σ̃− of degree 0.

Proof. This follows from (57) with w = 1 and (13).

Proposition 5.5. Let σ̃ ∈ Ẽ [1] be an almost Einstein scale. Then

σ̃ = σ̃+ + σ̃−

where Lkσ̃± = ±σ̃±. Further, for any choice of Patterson–Walker metric, σ̃± can be
expressed as the lifts (56), where

(a) σ = σ̃−(x) is an almost Ricci-flat scale on (M,p).

(b) ξA = χaAD̃aσ̃+ satisfies (53) together with the integrability condition (58).

Proof. We use a Patterson–Walker metric throughout. Using (57) with w = 1,
together with the Leibniz rule and the fact that μa

bk
b = −ka, we compute

L2
kσ̃ = kakbD̃aD̃bσ̃ + σ̃ .

Since σ̃ is an almost Einstein scale, kakb
(
D̃(aD̃b) + P̃ab

)
0
σ̃ = kakbD̃aD̃bσ̃ = 0, where

we have used the fact that, for a Patterson–Walker metric, P̃abk
b = 0 by (33). Hence

L2
kσ̃ = σ̃, i.e. (Lk−1)(Lk+1)σ̃ = 0. This equation is the characteristic polynomial for

Lk viewed as a linear operator acting on the finite-dimensional space of Einstein scales,
and the decomposition of this space follows immediately. Details and generalizations
are given in [19].

Next, assume that σ̃± are almost Einstein scales with Lkσ̃± = ±σ̃±, so that

χaAχbBD̃aD̃bσ̃± = 0. In coordinates, this condition reads

∂2

∂pApB
σ̃± = 0 .
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This means that σ̃± are polynomials of degree 1 in pA with coefficients depending on
xA only, i.e. σ̃± = ξApA + σ, where ξA = ξA(x) and σ = σ(x). Now, using (57) with
w = 1, Lkσ̃± = ±σ̃ can be recast as

kaD̃aσ̃+ = 2 σ̃+ , kaD̃aσ̃− = 0 .

Using (13), these conditions tell us that σ̃+ is homogeneous of degree 1 in pA and σ̃−
homogeneous of degree 0 in pA. Since they are also polynomials in pA, we conclude
that σ̃± take the form (56).

For the last part of the proposition, we assume σ̃± are almost Einstein scales with
Lkσ̃± = ±σ̃± so that σ̃± are given by (56). We proceed as follows.

(a) The almost Einstein scale σ̃− defines a conformally related Patterson–Walker

metric σ̃−2
− gab with P̃ab = 0. By (33), we conclude immediately PAB = 0, i.e.

the corresponding affine connection on M is Ricci-flat.
(b) Equation (51) with σ̃ = σ̃+ implies that the left-hand side of (61) vanishes,

and in particular, each term of the right-hand side must vanish separately,
i.e. ξA satisfies (53) and

D(ADB)ξ
C + δC(APB)DξD − ξDW C

D(A B) = 0 . (62)

But with reference to (55) and (54), together with the Bianchi identity, equa-
tion (62) implies (58), i.e. ξDW C

DA B = 0.

Combining Proposition 5.3 and Proposition 5.5 now gives Theorem 2.

6. Symmetries. We now show that any conformal Killing vector ṽa on (M̃, c),
i.e. a solution of

D̃aṽb = φ̃ab − ψ̃ gab , (63)

where φ̃ab = D̃[aṽb] and ψ̃ = − 1
2ng

abD̃aṽb, gives rise to solutions of overdetermined
projectively invariant differential equations on (M,p) as claimed by Theorem 3.

Before we proceed, we recall the prolongation equations for (63):

D̃aψ̃ = P̃abṽ
b − β̃a , (64)

D̃aφ̃bc = −2ga[bβ̃c] − 2 P̃a[bṽc] + ṽdW̃dabc , (65)

D̃aβ̃b = P̃
c

a φ̃cb − ψ̃ P̃ab − ṽdYabd . (66)

Here, β̃a is defined by (64).

6.1. Projectively invariant equations. An infinitesimal projective symmetry
is a vector field vA that preserves the projective structure, i.e. for any DA in p and
vector field XA,

LvDAX
B −DALvX

B = Q B
AC XC , where Q C

AB = 2 δC(AΥB) , (67)

for some 1-form ΥA.
It can be shown that vA is an infinitesimal projective symmetry if and only

if it satisfies the following projectively invariant overdetermined system of partial
differential equations [15](

D(ADB)v
C + PABv

C + vDW C
D(A B)

)
0
= 0 . (68)
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Define

φB
A := DAv

B − 1

n
δBADCv

C ψ :=
1

n
DCv

C ,

βA := − 1

n+ 1
DADBv

B − PABv
B .

(69)

Then, under a projective transformation, using (22), the fields transform as

v̂A = vA , φ̂A
B = φA

B − 1

n
ΥCv

CδAB +ΥBv
A ,

ψ̂ = ψ +
n+ 1

n
ΥCv

C , β̂A = βA −ΥBφ
B
A −ΥAψ −ΥAΥBv

B .

(70)

Equation (68) can be written in prolonged form as

DAv
B − φB

A − δBAψ = 0 ,

DAψ +
n+ 1

n

(
βA + PABv

B
)
= 0 ,

D(Aφ
C
B) + PABv

C+ vDW C
D(A B) −

1

n
δC(A

(
PB)DvD− (n−1)βB)

)
=0 , (71)

DAβB − PABψ − PACφ
C
B − vCYABC = 0 .

The first two equations immediately follow from (69), the third one from (68), and
the last one from the divergence of the latter equation.

Next, we shall consider the following projectively invariant equation

DCw
AB +

2

n− 1
δ
[A
C DDwB]D = 0 , (72)

where wAB ∈ E [AB](−2). Defining

νA :=
1

n− 1
DCw

CA , (73)

one can easily verify the transformation rules under a projective change

ŵAB = wAB , ν̂A = νA − wABΥB . (74)

Differentiating (73), one can show that equation (72) is equivalent to the system

DCw
AB − 2 δ

[A
C νB] = 0 ,

DAν
B + PACw

CB +
1

2(n− 2)
wCDW B

CD A = 0 .
(75)

Finally, we shall consider a weighted 1-form αA ∈ EA(2) that satisfies the Killing
equation

D(AαB) = 0 . (76)
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6.2. Projectively invariant lifts. Let vA ∈ EA, wAB ∈ E [AB](−2) and αA ∈
EA(2), and φB

A , ψ, and νA are given by (69) and (73). At this stage, we do not assume
that vA, wAB and αA satisfy (68), (72) and (76) respectively.

Lemma 6.1. Choosing a special torsion-free affine connection D ∈ p, we define
the vector fields

ṽa0 := vAη̌aA −
√
2φA

BηAχ
aB +

n− 1

2(n+ 1)
ψka , (77)

ṽa+ :=
√
2wABηAη̌

a
B − 1√

2
(νBηB)k

a , (78)

ṽa− := αAχ
aA , (79)

on M̃ . Then the forms of these vectors are independent of the choice of D ∈ p.

Proof. We first check the conformal weight of each expression using Lemma 3.4.
For instance, we view wAB and νA as sections of ẼAB and ẼA[1] respectively. Since
ηA and η̌aB have weight 1 and −1 respectively, we see that the both terms in (78), and
thus ṽa+, have weight 0 as required.

Next, under a projective change of affine connections in p, ηA, χ
A
a and ka are

invariant. In particular, ṽa− is invariant. The invariance of ṽa0 and ṽa+ can be verified
by observing that the change of horizontal distribution as given (50) induced by a
projective change, and using (49), counterbalances the transformation rules (70) and
(74).

Lemma 6.2. The vector fields in Lemma 6.1 satisfy the following properties:
(a) Lkṽ

a
± = ±2 ṽa± and Lkṽ

a
0 = 0;

(b) ṽa+ and ṽa− are tangent to U = ker ηaA′ and V = kerχA
a respectively, i.e.

ṽa+ηaA′ = 0 and ṽa−χ
A
a = 0;

(c) ṽa0 is not tangent to U + V = ker ka, i.e. ṽ
a
0ka is not identically zero.

Proof.
(a) First observe that [2pA

∂
∂pA

, ∂
∂pB

] = −2 ∂
∂pB

which, using (9) is equivalent to
the first relation in the display

[kaD̃a, χ
bAD̃b] = −2χbAD̃b , [kaD̃a, η̌

b
AD̃b] = 0 , LkpA = 2 pA. (80)

The second relation follows similarly using (9) and the last one is obvious.
Further, Lkv

A = 0 and similarly for all sections depending only on xA. Using
(49), these relations and the Leibniz rule, it is a straightforward computation
to verify part (a).

(b) Here ṽa−χ
A
a = 0 follows from (8). Further recall ηaA′ η̌aB = −2 ηB η̌A′ from

(47). Since wAB is skew-symmetric, the first summand of ṽa+ inserts trivially
into ηaA′ . The second summand inserts trivially using (46) since k is null.

(c) It follows from (49), and the properties of ka and χA
a that ṽa0ka = 2 vApA

which is zero if and only if vA is zero. But if vA is zero then φB
A and ψ are

zero since they are defined by (69).

Proposition 6.3.

(a) Suppose vA ∈ EA is an infinitesimal projective symmetry, i.e. satisfies (68).
Then its lift ṽa0 given by (77) is a conformal Killing field.
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(b) Suppose wAB ∈ E [AB](−2) satisfies (72) together with the integrability condi-
tion

wB(AW
D)

B(C E) = 0 . (81)

Then its lift ṽa+ given by (78) is a conformal Killing field.
(c) Suppose αA ∈ EA(2) satisfies the Killing equation (76). Then its lift ṽa− given

by (79) is a (conformal) Killing field.

Proof. In the following we work with a choice of Patterson–Walker metric g ∈ c.
(a) Suppose vA satisfies (68), so that φB

A , ψ and βA are given by (69), and lift
vA to ṽa := ṽa0 as given by (77). Then, using (10),

D̃(aṽb) =

(
DAv

B − 1

n
DCv

CδBA − φB
A

)
χA
(aη̌b)B+

1

2

(
1

n
DCv

C +
n− 1

n+ 1
ψ

)
gab

−
(
DAφ

C
B + PABv

C + vDW C
DA B

− 1

n
δCA

(
PBDvD − (n− 1)βB

))
pCχ

A
(aχ

B
b) . (82)

Since (68) is equivalent to (71), it is clear that the first and third terms of
(82) vanish, and so (82) is proportional to the metric, i.e ṽa is a conformal
Killing field.

(b) Suppose wAB satisfies (72), and lift wAB to ṽa := ṽa+ as given by (78). Then,
using (10),

D̃(aṽb) =
(
DAw

BC − 2δ
[B
A νC]

)
χA
(aη̌b)BpC − (νCpC)gab

− χA
(aχ

B
b)

((
DAν

C + PAEw
EC

)
δDB − wECW D

EA B

)
pCpD . (83)

Since (72) is equivalent to (75), and we assume in addition (81), we immedi-

ately conclude D̃(aṽb) = −(νCpC)gab, i.e. ṽ
a is conformal Killing.

(c) Suppose αA is a solution to (76), and lift αA to ṽa := ṽa− as given by (79).
Then, using (10),

D̃(aṽb) = (DAαB)χ
A
(aχ

B
b) . (84)

By (76), we now conclude that ṽa is a (conformal) Killing field.

6.3. Decomposition of conformal Killing fields. Before we proceed, we
record the following technical lemma.

Lemma 6.4. Let ṽa ∈ Ẽa be a vector field on M̃ . Choose a Patterson–Walker
metric so that ṽa = ṽAη̌aA + α̃Aχ

aA for some ṽA and α̃A. Then Lkṽ
a = 2 r ṽa for

some real constant r if and only if ṽA and α̃A are homogeneous of degree r and r+ 1
in pA respectively. In particular,

(a) Lkṽ
a = 0 if and only if ṽA and α̃A are homogeneous of degree 0 and 1 in pA

respectively.
(b) Lkṽ

a = 2 ṽa if and only if ṽA and α̃A are homogeneous of degree 1 and 2 in
pA respectively;

(c) Lkṽ
a = −2 ṽa if and only if ṽA and α̃A are homogeneous of degree −1 and 0

in pA respectively;
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Proof. This follows from (57), or (80), and (13).

Proposition 6.5. A conformal Killing field ṽa ∈ Ẽa can be uniquely decomposed
as

ṽa = ṽa+ + ṽa0 + ṽa− + c ka (85)

where Lkṽ
a
± = ±2 ṽa±, Lkṽ

a
0 = 0, c is some constant, and μa

bD̃aṽ
b
0 − 1

nD̃cṽ
c
0 = 0 with

μab = D̃[akb], with respect to any Patterson–Walker metric. Further, ṽa0 , ṽ
a
+ and ṽa−

can be expressed as the lifts (77), (78) and (79) respectively, where

(a) vA = 1
2χ

aAD̃a

(
kbṽ

b
0

)
is an infinitesimal projective symmetry, i.e. satisfies

(68).

(b) wAB = 1
2χ

aAχB
b D̃aṽ

b
+ satisfies (72) together with the integrability condition

(81).
(c) αA = η̌aAṽ

a
− satisfies the Killing equation (76).

Proof. We work with a Patterson–Walker metric gab and the relation (49) through-
out. Following the argument given in the proof of Proposition 5.5, we first show that
for any conformal Killing field ṽa,

Lk (Lk − 2) (Lk + 2) ṽa = 0 . (86)

Differentiating (63) once and substituting (65) and (64) yield

D̃aD̃bṽc = −ga[bβ̃c] − 2Pa[bṽc] + ṽdW̃dabc − gbcPadṽ
d − gbcβ̃a . (87)

Now, using (57) with w = 0 gives

Lkṽa = kbD̃bṽa + ṽbμ
b

a − ṽa .

We note that Lkμ
b

a = 0 and using (87), kakbD̃aD̃bṽc = 0, where we have made use

of the fact that kaW̃abcdk
d = 0, and, for a Patterson–Walker metric, P̃abk

b = 0 — see
(32) and (33). Then we compute

L2
kṽa = 2

(
kdD̃dṽc

)
μ c
a − 2 ṽcμ

c
a + 2 ṽa , L3

kṽa = 4Lkṽa ,

which is equivalent to (86). The result follows immediately.
Next, we write ṽa = ṽAη̌aA + α̃Aχ

aA. Then contracting (87) with three vertical
fields yields

χaAχbBχcCD̃aD̃bṽc =
∂2

∂pApB
ṽC = 0 , i.e. ṽA = wABpB + ψA ,

where wAB and ψA only depend on xA. Similarly,

χaAχbBχcC η̌dDD̃aD̃bD̃cṽd =
∂3

∂pApBpC
α̃D = 0 ,

i.e. α̃A = ψBC
A pBpC + ϕB

ApB + αA ,

where ψBC
A = ψ

(BC)
A , ϕB

A and αA only depend on xA.
Now, applying Lemma 6.4 gives the following conditions:
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(a) if Lkṽ
a = 0, then ṽA = ψA and α̃A = ϕB

ApB = −φB
ApB + n−1

n+1ψpA where

φC
C = 0 and ψ = n+1

n(n−1)ϕ
C
C with factors chosen for later convenience;

(b) if Lkṽ
a = 2 ṽa, then ṽA = wABpB and α̃A = ψBC

A pBpC ;
(c) if Lkṽ

a = −2 ṽa, then ṽA = 0 and α̃A = αA(x);
In case (a), we immediately conclude that ṽa takes the form (77), while in (c) that
ṽa takes the form (79). For case (b), we return to the conformal Killing equation and
equation (87), and find

χa(AχbB)D̃aṽb = w(AB) = 0 , i.e. wAB = w[AB] ,

χa(AχbB)η̌cCD̃aD̃bṽc = ψAB
C = −2 δ

(A
C β̃aχ

aB) , i.e. ψAB
C = δ

(A
C νB) ,

for some νA, from which it follows that ṽa takes the form (78). At this stage, we do
not know that vA, wAB and αA satisfy (68), (72) and (76) respectively, nor that vA,
φB
A and ψ are related by (69), and wAB and νA by (73).

Next, we note that by Lemma 6.2, ṽa+ and ṽa− are tangent to the distributions U

and V annihilated of ηA and χA′
respectively. Since ka is tangent to both then ṽa±

could potentially be of the form f ka for some smooth function f . So suppose that
ṽa± = f ka. Then Lkṽ

a
± = ±2 ṽa± tells us that f must be non-constant. But since

ka is a conformal Killing field, f must necessarily be constant. Hence, ṽa± cannot be
proportional to ka.

Finally, suppose ṽa0 = c ka for some constant c. Then Lkṽ
a
0 = 0. But computing

μa
bD̃aṽ

b
0 − 1

nD̃dṽ
d
0 = −2 c (n + 1) leads to a contradiction. Hence, ṽa0 cannot be

proportional to ka.
To conclude the proof, we show that vA, φB

A and ψ are related by (69), and wAB

and νA by (73), and that vA, wAB and αA satisfy (68), (72) and (76) respectively.

(a) Suppose Lkṽ
a = 0 and μabD̃aṽb − 1

nD̃cṽ
c = 0 so that ṽa = ṽa0 given by (77).

Computing D̃aṽb gives (82) again. Taking the trace-free part of (82) yields
φB
A = DAv

B − 1
nδ

B
ADCv

C and (71). Now, substituting φB
A into (71) precisely

yields (68). Finally,

μabD̃aṽb − 1

n
D̃cṽ

c =
n− 1

n

(
DCv

C − nψ
)
.

Since, by assumption the left-hand side vanishes, we have ψ = 1
nDCv

C .

(b) Suppose Lkṽ
a = 2 ṽa so that ṽa = ṽa+ given by (78). Computing D̃aṽb gives

(83) again. The trace-free part of (83) vanishes, which is equivalent to

DAw
BC − 1

n
DDwBDδCA − δBAνC +

1

n
νBδCA = 0 , (88)(

D(Aν
(C + P(A|EwE(C

)
δ
D)
|B) − wE(CW

D)
E(A B) = 0 . (89)

The symmetric part of (88) yields νA = 1
n−1DCw

CA and the skew-symmetric

part reduces to (72). In particular, wAB satisfies (72). This in turn implies
(75), which, substituted into (89), yields(

1

2(n− 2)
wEFW

(C
EF (A

)
δ
D)
B) + wE(CW

D)
E(A B) = 0 .

Taking the trace shows that both terms vanish separately, as required.
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(c) Suppose Lkṽ
a = −2 ṽa so that ṽa = ṽa− given by (79). Computing D̃aṽb gives

(84) again, from which we immediately conclude that αA is Killing.

We end the section with a geometric interpretation of a light-like conformal Killing
field ṽa with Lkṽ

a = 0.

Proposition 6.6. Let ṽa be a conformal Killing field on M̃ such that Lkṽ
a = 0

with associated infinitesimal projective symmetry vA as in Proposition 6.5. Then ṽa

is light-like if and only if

vBDBv
A =

2

n+ 1
(DCv

C)vA , (90)

for any affine connection DA in the projective class on M . In particular, if ṽa is
light-like then vA is geodetic.

Proof. We compute the norm of the lift ṽa = ṽa0 as defined in Lemma 6.1:

ṽaṽa = 2

(
n− 1

n+ 1
ψ vA − φA

Bv
B

)
pA ,

where we have used (49) as before. So, ṽaṽa = 0 if and only if φA
Bv

B = n−1
n+1ψv

A.

Since vA is an infinitesimal projective symmetry, we know that φB
A and ψ are given by

(69) so that ṽa is light-like if and only if vA satisfies (90). This condition in particular
implies that vA is geodetic with respect to DA, and thus with respect to the projective
structure.

6.4. Decomposition of Killing fields of Patterson–Walker metrics. We
now consider the Patterson–Walker metric g induced by a given affine connection D
on M . Let ṽa be an infinitesimal symmetry of g, i.e. Lṽg = 0, which is well-known to
be equivalent to the overdetermined equation

D̃(aṽb) = 0 . (91)

Such a field is also known as a Killing field. We want to understand how ṽ decomposes
in terms of objects on the affine structure (M,D) in analogy to Proposition 6.5 and
Theorem 3.

Before we proceed, we recall the definition of an infinitesimal affine symmetry as
a vector field vA that preserves the affine structure, i.e. it satisfies (67) with ΥA = 0.
Following [37, 15], one can check that such a vector field satisfies the overdetermined
second order equation

DADBv
C + vDR C

DA B = 0 . (92)

One can show that (92) is equivalent to the system

DAv
B − φB

A − δBAψ = 0 , DAφ
C
B + vDR C

DA B = 0 , DAψ = 0 , (93)

where we have set φB
A := DAv

B − 1
nDCv

CδBA and ψ := 1
nDCv

C .

Let us define the following vector fields on M̃ :

ṽa0 := vAη̌aA −
√
2φA

BηAχ
aB − 1

2
ψka , (94)

ṽa+ :=
√
2wABηAη̌

a
B , (95)

ṽa− := αAχ
aA , (96)



730 M. HAMMERL ET AL.

where vA, φB
A , ψ, w

AB and αA are tensor fields on M , with wAB = w[AB] and φC
C = 0.

One then easily checks that an infinitesimal affine symmetry vA, a parallel bivector
wAB and a Killing 1-form αA give rise to Killing fields via the lifts (94), (95) and (96)
respectively.

Remark 6.7. Had we lifted an infinitesimal affine symmetry vA by means of

(77), we would have discovered that ṽa0 is a homothety with D̃aṽ
a
0 = 2n2

n+1ψ. Since ka

is a homothety, we can modify (77) by adding the term − n
n+1k

a to it and thus obtain
the Killing field (94).

Proposition 6.8. A Killing field ṽa ∈ Ẽa can be uniquely decomposed as

ṽa = ṽa0 + ṽa− + ṽa+ , (97)

where Lkṽ
a
± = ±2 ṽa±, Lkṽ

a
0 = 0. Further, ṽa0 , ṽ

a
+ and ṽa− can be expressed as the lifts

(94), (95) and (96) respectively, where

(a) vA = 1
2χ

aAD̃a

(
kbṽ

b
0

)
is an infinitesimal affine symmetry, i.e. satisfies (92).

(b) wAB = 1
2χ

aAχB
b D̃aṽ

b
+ is parallel, i.e. DCw

AB = 0, and satisfies the integra-

bility condition wB(AR
D)

B(C E) = 0.

(c) αA = η̌aAṽ
a
− satisfies the Killing equation (76).

Proof. Since every Killing field of g is in particular a conformal Killing field with
respect to the conformal Patterson–Walker metric [g] = c, we can recycle the proof of
Proposition 6.5. In particular, we obtain the decomposition (97). Note that unlike in
decomposition (85), the homothety ka does not occur in (97) since ka is not a Killing
field. Next, following the same reasoning, we deduce that ṽa0 , ṽ

a
+ and ṽa− take the

forms (94), (95) and (96). The only difference here is the choice of factors in (94).

Finally, we compute D̃(aṽb) = 0. When ṽa = ṽa0 , we find

D̃(aṽb) =

(
DAv

B − 1

n
DCv

CδBA − φB
A

)
χA
(aη̌b)B +

1

2

(
1

n
DCv

C − ψ

)
gab

−
(
DAφ

C
B + vDR C

DA B + δCBDAψ
)
pCχ

A
(aχ

B
b) , (98)

which tells us that vA is an infinitesimal affine symmetry, as can be checked directly
from the defining equations (91) and (92). When ṽa = ṽa+, (83) with νA = 0 implies
that wAB is parallel. When ṽa = ṽa−, (84) gives us that αA is Killing.

Taken together, we thus obtain Theorem 4.

Remark 6.9. The fact that ka does not occur in (97) allows us to dispense with

the additional requirement μa
bD̃aṽ

b
0 − 1

nD̃cṽ
c
0 = 0 given in Proposition 6.5. In fact, if

ṽa0 is given by (94), then μa
bD̃aṽ

b
0 − 1

nD̃cṽ
c
0 = 2n.

Remark 6.10. For a vector field vA ∈ EA, one may consider its Hamiltonian lift
to T ∗M , which is just the vector field corresponding to the 1-form d

(
vApA

)
via the

symplectic structure μ, see (14), i.e.,

vA
∂

∂xA
− pB

∂vB

∂xA

∂

∂pA
.
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The authors of [11] showed that if vA is an infinitesimal affine symmetry of (M,∇)

then its Hamiltonian lift is a Killing field of (M̃, g). As expected from Theorem 4,
this lift corresponds to the lift ṽa0 given by (94). This is confirmed by re-expressing
ṽa0 in coordinates using (9), (13),(49) and (93).

Finally, we give the analogue of Proposition 6.6.

Proposition 6.11. Let ṽa be a Killing field on M̃ such that Lkṽ
a = 0 with

associated infinitesimal affine symmetry vA as in Proposition 6.8. Then ṽa is light-
like if and only if vBDBv

A = 0, i.e. vA is tangent to affinely parametrised geodesics
on M .

Proof. The proof is completely analogous to that of Proposition 6.6: for a Killing
field ṽa given by (94), we find ṽaṽa = −2

(
ψ vA + φA

Bv
B
)
pA. The result follows from

the definitions of φB
A and ψ, see (93).

7. Special cases and further remarks.

7.1. Case n = 2. In the special case n = 2, the projective volume form εAB ∈
E[AB](3) on (M,p), with inverse εAB ∈ E [AB](−3), allows us to identify EA(−1)

with EA(2), and E [AB](−2) with E(1). In particular, it is straightforward to check
that ξA ∈ EA(−1) is a solution of the Euler-type equation (53) if and only if αA :=
ξBεBA ∈ EA(2) satisfies the Killing equation (76). Similarly, wAB ∈ E [AB](−2) is a
solution of (72) if and only if σ := 1

2w
ABεAB ∈ E(1) is a Ricci-flat scale, i.e. if it

satisfies (52).

This is also reflected at the level of (M̃, c): any conformal Killing vector field
ṽa± with Lkṽ

a
± = ±2 ṽa± gives rise to an almost Einstein scale σ̃∓ with Lkσ̃∓ = ∓σ̃∓.

Conversely, any such Einstein scale arises in this way.

Remark 7.1. Let us assume that M is a two-dimensional surface equipped with
Riemannian metric gAB and Levi-Civita covariant derivative DA, and endowed with
a Killing field αA. Then DAαB = λ εAB for some λ ∈ C∞(M). Then ξA := (∗α)A =
αBε

AB satisfies DAξ
B = λ δBA and therefore constitutes a (non-trivial) Euler-type

field on the projective surface M with projective class p spanned by D. Clearly, ξA

and αA are orthogonal to each other. This remark applies in particular to any surface
of revolution in R

3 in which case αA represents the infinitesimal generator of the
rotation.

7.2. Case n = 3. In the special case n = 3, the projective volume form
εABC ∈ E[ABC](4) on (M,p), with inverse εABC ∈ E [ABC](−4), allows us to identify

EAB(−2) with EA(2). One can then easily check that wAB ∈ E [AB](−2) is a solution
of (72) satisfying the integrability condition (81) if and only if αA := 1

2w
BCεBCA ∈

EA(2) satisfies the Killing equation (76), together with the integrability condition

αFε
FB(AW

D)
B(C E) = 0.

Correspondingly, any conformal Killing vector ṽa+ with Lkṽ
a
+ = 2 ṽa+ gives rise to

a conformal Killing vector ṽa− with Lkṽ
a
− = −2 ṽa−. The explicit form of this relation is

as follows. Assume ṽa+ is a conformal Killing field. Since DAεBCD = 0, for any affine
connection D ∈ p, then it is clear that the pullback ε̃abc := χA

a χ
B
b χ

C
c εABC satisfies

D̃aε̃bcd = 0 with respect to any Patterson–Walker metric. A short computation then
shows that ṽa− := 1

2 ε̃
a
bcD̃

bṽc+ is indeed a conformal Killing field.
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7.3. Contact projective structures in odd dimensions. There is a specific
class of (odd-dimensional) projective structures on M allowing a compatible contact
structure. According to [18], these are the projective structures subordinate to the
so-called contact projective structures. It follows that under a curvature condition
imposed on the contact projective structure (known as the vanishing of the contact
torsion) one obtains a projective structure p on M admitting a Killing 1-form αA. In
particular, every projective structure (M,p) determined by a contact projective struc-
ture with vanishing contact torsion gives rise to an infinitesimal conformal symmetry
of (M̃, c).

7.4. Relation to Cartan geometry and tractor calculus. The original ori-
ented projective structure (M,p) can be equivalently described as a Cartan geometry
of type (SL(n+ 1), P ) with P a parabolic subgroup of SL(n+ 1), and the conformal

spin structure (M̃, c) can be equivalently described as a Cartan geometry of type

(Spin(n + 1, n + 1), P̃ ), with P̃ a parabolic subgroup, see [8]. This viewpoint was
used in [23] to relate the respective geometries (see also [29, 28] for similar Cartan
geometric approaches). The formulation in [23] follows the so-called Fefferman-type
construction, which is based on a group inclusion SL(n+1) ↪→ Spin(n+1, n+1) of the
underlying (Cartan) structure groups. Note that the conformal structure constructed
in this way lives on the total space of the weighted cotangent bundle with the zero
section removed T ∗M(2) \ {0} rather than on T ∗M(2) as in the present article.

The decomposition of conformal Killing fields of (M̃, c) can also be understood

in this framework: Conformal Killing fields of (M̃, c) are equivalent to infinitesimal

symmetries of the equivalent Cartan geometry (G̃, ω̃) and according to [7] those in-
finitesimal symmetries can be described equivalently by sections of the conformal ad-
joint tractor bundle AM̃ associated to the adjoint representation of Spin(n+1, n+1)
on so(n + 1, n + 1), parallel with respect to a certain connection referred to as the
prolongation connection. Likewise, projective infinitesimal symmetries are described
as suitable parallel sections of the projective adjoint tractor bundle AM . Since (M̃, c)
is (locally) induced in a natural way from the projective structure (M,p), the adjoint
tractor bundle decomposes naturally according to the decomposition of so(n+1, n+1)
into its SL(n+ 1)-irreducible components

R⊕ sl(n+ 1)⊕ Λ2
R

n+1 ⊕ Λ2(Rn+1)∗.

Decomposing an infinitesimal symmetry into its constituents with respect to this de-
composition and reinterpreting the resulting sections on the original projective struc-
ture (M,p) gives an alternative (algebraic) approach to derive Theorem 3.

Let us illustrate this formalism within the general approach of the present
article. A choice of metric g in c splits the adjoint tractor bundle as AM̃ ∼=
Ẽa[2] ⊕ Ẽab[2] ⊕ Ẽ ⊕ Ẽa. Similarly, a choice of torsion-free affine connection D in
p splits the projective adjoint tractor bundle, which is associated to sl(n + 1) as
AM ∼= EA ⊕ (EA

B ⊕ E) ⊕ EB . A conformal Killing field ṽa can then be expressed as

a section Σ̃ = (ṽa, φ̃ab, ψ̃, β̃a), where φ̃ab, ψ̃ and β̃a were defined at the beginning
of section 6. The defining equation (63) together with its prolongation (64), (65)

and (66) then can be understood equivalently as Σ̃ being parallel with respect to the

prolongation connection on AM̃ . Similarly, an infinitesimal projective symmetry vA

can be expressed as a section Σ = (vA, φA
B , ψ, βA), where φA

B , ψ and βA were defined
at the beginning of section 6.1. The defining equation (68) together with its prolon-
gation (71) can be interpreted as Σ being parallel with respect to the prolongation



CONFORMAL PATTERSON–WALKER METRICS 733

connection on AM . The relation between Σ̃ and Σ is given in terms of the lift ṽa0
of Lemma 6.1. An analogous approach can be employed to describe almost Einstein
scales on (M̃, c) in terms of parallel sections of the standard tractor bundle and relate
them to projective data.

This Cartan geometric approach can be employed to relate a wider class of invari-
ant overdetermined equations on the respective projective and conformal structures.
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