Experimental methods in semiconductor physics


Tuesdays       10.00 – 11.45 on-line

prof. dr hab. Adam Babiński, tel.  22-55-32-725, e-mail: babinski@fuw.edu.pl

Lecture 1   

Lecture 2   

Lecture 3   

Lecture 4   

Lecture 5   

Lecture 6   

Lecture 7   

Lecture 8   

Lecture 9   

Lecture 10   

Lecture 11   

Lecture 12   

Lecture 13   

Lecture 14   

Lecture 15   

Examination topics

1. Semiconductors - basic information on elemental semiconductors, binary compounds, oxides, layered semiconductors, organic semiconductors, semimagnetic semiconductors.

2. Semiconductor Nanostructures – the effect of dimension on their properties.

3. Growth of semiconductors: bulk techniques, epitaxial techniques.

4. X-ray difraction: X-ray sources, X-ray monochromatization, the Laue method, the powder (Debye-Scherrer) method.

5. Neutron diffraction and scattering: neutron sources, neutron diffraction, neutron spectroscopy. Experimental setups: triple-axis spectrometer, time-of-flight spectrometer, backscattering spectrometer.

6. Electron diffraction and scattering: the principle of operation, Low-Energy Electron Diffraction, Reflection High Electron Energy Diffraction, Transmission Electron Microscopy - imaging and diffraction modes; High-Resolution Transmission Electron Microscopy; Energy Dispersive X-ray Spectroscopy; Electron Energy-Loss Spectroscopy.

7. Surface characterization methods: Scanning Electron Microscopy Scanning Tunneling Microscopy, Atomic Force Microscopy – principles of operation.

8. Optical methods – experimental setups:

a) light sources: incandescence sources, arc lamps, glow discharge lamps, electroluminescence diodes, lasers (electrical discharge, electroluminescence, optical pumping) – principles of operation;

b) optical materials and components; c) spectrometers, detectors.

9. Optical methods – experimental techniques: absorption, photocurrent, reflectivity, modulation techniques.

10. Photoluminescence from semiconductor materials and nanostructures.

11. Raman scattering

12. Electrical methods – experimental techniques: capacitance (TSCAP, DLTS), resistivity measurements.

13. Effects of magnetic field on optical and electrical properties of nanostructures: Landau level quantization, Shubnikov de Haas oscillations, Hall effect.