Laboratorium Technik Obrazowania

Krzysztof Kacperski

Zakład Fizyki Medycznej, Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie

Plan zajęć

- 1. Wykład wstępny ($\sim 10 12 h$)
 - obrazowanie radioizotopowe, SPECT, PET
 - statystyczne metody rekonstrukcji tomograficznej
 - korekcje (osłabienia, odpowiedzi kolimatora, rozproszeń)
 - ocena jakości obrazów
- Zajęcia laboratoryjne z pakietem do symulacji tomografii SPECT
- 3. Pomiary na gamma kamerze ŚLCJ, COI
- 4. Analiza danych z symulacji oraz danych pomiarowych

Zaliczenie:

- Sprawozdania z zajęć laboratoryjnych
- Kolokwium
- Prezentacja wyników z zajęć laboratoryjnych

Obrazowanie (medyczne)

Strukturalne

Micropo

Funkcjonalne

	wielkość:	Metody radioizotopowe:	Mierzona	
Rentgenografia	ſ	Scyntygrafia	wielkość:	
СТ	Jµ	SPECT	Koncentracia	
	μ (r)	PET	znacznika	
MRI	$T_1, T_2,$	CT z kontrastem		
USG	Ζ, ν	fMRI		

Główne zalety metod radioizotopowych:

• Bezpośrednie obrazowanie funkcji, czynności życiowej

Wysoka czułość

Metody radioizotopowe

¹²³I-MIBG SPECT

CT

SPECT/CT

Obrazowanie (medyczne)

planarne

tomograficzne

Rentgenografia

Scyntygrafia planarna

Pojedyncza projekcja rozkładu 3D badanej wielkości na płaszczyznę

CT, SPECT, PET

Zestaw projekcji spróbkowany po szerokim zakresie kątowym;

Rekonstrukcja 3D rozkładu badanej wielkości za pomocą odpowiedniego algorytmu i komputera

Metody obrazowania - porównanie

Metoda	Mierzona wielkość	Przestrzenna zdolność rozdzielcza: kliniczna/ badawcza [mm]	Czas skano- wania [s]	Min. wykrywalna masa substancji czynnej [ng]	Min. wykrywalna koncentracja substancji czynnej [mol/L]	Kosz Badania [PLN]	Inne
CT (Rtg)	Wsp. osłabienia promieniowania γ μ	0.5 – 1 0.02 – 0.5	0.3 – 300	10 ⁵ – 10 ⁹ (kontrasty)	10 ⁻³ – 10 ⁻⁵ (kontrasty)	150 – 700	Duża dostępność; Promieniowanie jonizujące
MRI	Gęstość protonów, T ₁ , T ₂	0.2 – 0.5 0.02 – 0.1	0.05 – 3600	10 ³ – 10 ⁶	10 ⁻³ – 10 ⁻⁵	300 – 1000	Średnia dostępność; implanty metal. wykluczone
PET	Koncentracja aktywności	2 - 6 0.9 - 2	100 – 3000	1 - 100	10 ⁻¹¹ – 10 ⁻¹²	4000 – 8000	Słaba dostępność; Promieniowanie jonizujące
SPECT	Koncentracja aktywności	7 – 15 0.3 – 3	300 – 4000	1 - 100	10 ⁻¹⁰ – 10 ⁻¹¹	200 – 5000	Słaba dostępność; Promieniowanie jonizujące
USG	Wsp. załamania fali ultradzwiękowej	0.1 – 1 0.05 – 0.5	0.1 – 100	500 – 10 ⁶ (kontrasty)	10 ⁻² – 10 ⁻⁴ (kontrasty)	50 - 200	Duża dostępność;

Obrazowanie radioizotopowe – Genesis

Georg de Hevesey (1885 - 1966) Nagroda Nobla z chemii 1943 (1944) "za prace nad wykorzystaniem izotopów jako znaczników do badania procesów chemicznych"

Zasada znacznika (tracer principle, 1912): Izotopy promieniotwórcze pierwiastków mają własności chemiczne identyczne jak odpowiednie izotopy stabilne, stąd mogą być wykorzystywane do śledzenia m. in. procesów biochemicznych w organizmach żywych

Obrazowanie radioizotopowe – historia

- 1911 "Meat pie experiment" z ²¹²Pb (de Hevesey)
- 1923 Eksperyment: fasola w solach ołowiu z ²¹²Pb (de Hevesey)
- 1925 ²¹⁰Bi w królikach (de Hevesey)
- 1925 ²¹⁴Bi do pomiarów przepływu krwi u człowieka
- 1932 Cyklotron (E. O. Lawrence, M. S. Livingston)
- 1936 teraipa białaczki z użyciem ³²P (J. Lawrence, E. O. Lawrence)
- 1938 Odkrycie ¹³¹I (Livingood, Seaborg) i ^{99m}Tc (Segre, Seaborg)
- 1940 Pierwszy cyklotron do produkcji izotopów do celów biomedycznych (Washington University, St. Louis)
- 1942 "stos atomowy" reaktor jądrowy (E. Fermi)
- 1944 Licznik scyntylacyjny

Obrazowanie radioizotopowe – historia

- 1951 Pierwszy radiofarmaceutyk (Na¹³¹I) zatwierdzony przez FDA
- 1953 detektor pozytronów oparty na zasadzie koincydencji proto-PET (G.Brownell, H. Sweet)
- 1957 Generatory ¹³²I i ^{99m}Tc
- 1958 Gamma kamera scyntylacyjna (Hal Anger)
- 1962 Pierwsza komercyjna gamma kamera
- 1962 Proto-PET
- 1962 Koncepcja rekonstrukcji tomograficznej (D. Kuhl)
- 1966 PET za pomocą gamma kamery
- 1970 Tomografia emisyjna (SPECT)
- 1975 PET
- 1976 ¹⁸F-FDG w człowieku

1977-82 Iteracyjne algorytmy rekonstrukcji tomograficznej 2000 PET-CT

Terminologia

Dawki substancji czynnej

Przykład: Badanie perfuzji mięśnia sercowego za pomocą ²⁰¹TICI

Typowa dawka w badaniu perfuzji mięśnia sercowego: A₀=120 MBq

TICI – silna trucizna!

min. dawka śmiertelna dla człowieka (doustna): 8mg/kg masy ciała dla 75 kg: 0.6 g

Całkowita liczba cząsteczek TICI: $A_0 \cdot \tau_{1/2} \cdot \ln 2 = 45, 4 \cdot 10^{12}$

Masa TICI: $45,4 \cdot 10^{12} \cdot \frac{m_a}{N_A} = 1,78 \cdot 10^{-8} \text{ g}$

Dawki substancji czynnej

Przykład: Badanie perfuzji płuc za pomocą ^{99m}Tc MAA

MacroAggregated Albumin – cząstki $10 - 50 \ \mu m$

Typowa dawka w badaniu: 80 MBq, max ok. 200 000 cząstek $\approx 7 \cdot 10^{-4}$ g

< 0.1% zablokowanych naczyń włosowatych w płucach Margines bezpieczeństwa: ok. 1:500

Należy zachować ostrożność u pacjentów z nadciśnieniem płucnym!

Dawki substancji czynnej

Dla porównania:

Dawka kontrastu w

tomografii komputerowej: Iohexol, Iopromide (związki jodu) $1-4 ext{ g}$

rezonansie magnetycznym: Omniscan, Magnevist (związki Gd)

3 - 7 g

Idealny radioizotop:

- okres połowicznego rozpadu rzędu godzin
- emituje tylko promieniowanie gamma (wychwyt elektronu, przejście izomeryczne), monoenergetyczne (?)
- Energia γ : 100 300 keV (idealnie ok. 140 keV)
- pierwiastek wchodzący w związki z substancjami biologicznie czynnymi i nie zmieniający ich właściwości
- prosta radiochemia
- łatwo dostępny
- tani

izotop	$\tau_{1/2}$	Energie γ [keV] (Pr. Em. [%])	Energie _{max} β[keV] (Pr. Em. [%])	Roz- pad	otrzymy- wanie
^{99m} Tc	6 h	140 (89 %)	_	IT	generator
¹³¹ I	8 d	284 (6 %) 364 (82 %) 637 (7 %)	334 (7,3 %) 606 (90 %)	β-	reaktor
¹²³ I	16 h	159 (83 %) 346-523 (2,5 %)	127 (13 %) (kw)	EC	cyklotron
⁶⁷ Ga	3,25 d	93 (42 %) 185 (21 %) 300 (17 %)	84 (28 %) (kw)	EC	cyklotron
¹¹¹ In	2,8 d	171 (90 %) 245 (94 %)		EC	cyklotron

izotop	$\tau_{1/2}$	Energie γ [keV] (Pr. Em. [%])	Energie _{max} β[keV] Pr. Em. [%]	Rozp ad	otrzymy- wanie
^{113m} In	100 m	392 (64 %)	_	IT	generator
²⁰¹ Tl	3,06 d	70 (73 %) (X) 80 (21 %) (X) 135 (2,6 %) 167 (10 %)	315 (43,6 %) 451 (13 %) 481 (43 %)	EC	cyklotron
^{81m} Kr	13 s	190 (68 %)		IT	generator
¹³³ Xe	5,3 d	81 (38 %)	346 (99 %)	β-	reaktor

1

 ${ au}_{\it fiz}$

1

 au_{biol}

Radioizotopy: generator ⁹⁹Mo – ^{99m}Tc

${}^{99}\text{Mo} \rightarrow {}^{99\text{m}}\text{Tc} \rightarrow {}^{99}\text{Tc} \rightarrow {}^{99}\text{Ru}$ $\tau_{1/2}: \quad 67\text{h} \qquad 6 \text{ h} \qquad 10^5 \text{ lat} \quad \text{stabilny}$

Ok. 80 % wszystkich badań radioizotopowych Ok. 30 mln badań rocznie na świecie

Radioizotopy: generator ⁹⁹Mo – ^{99m}Tc

Główna metoda produkcji ⁹⁹Mo: 235 U + n \rightarrow 99 Mo + ...

Generator ⁹⁹Mo – ^{99m}Tc

Radioizotopy: generator ⁹⁹Mo – ^{99m}Tc

Gamma kamera

APEX SPX-4 Elscint

Discovery NM/CT 670 GE

Phillips Skylite

Gamma kamera

Gamma kamera

Rejestracja punktu oddziaływania:

$$X = \frac{x_-}{x_+ + x_-}L$$

Własna zdolność rozdzielcza detektora (intrinsic resolution): 3 -5 mm

Kolimator

Zadanie: Z pola promieniowania wybrać fotony o zadanym kierunku

Typowa czułość: 10⁻⁴

Kolimator

Kolimatory

Materiały: Ołów, wolfram złoto, bizmut, uran (pinhole) najnowszy: kompozyt żywica epoksydowa+proszek W

Kolimator

idealny

rzeczywiste

Wysoka rozdzielczość
Niska czułość

Wysoka czułość
Niska rozdzielczość

Relacja czułość – rozdzielczość

Wielkość otworów kolimatora

Który kolimator jest optymalny?

Kolimator - efekty niepożądane Penetracja ścian (septal penetration)

Zwykle < 1% zliczeń Dla kolimatorów wysokiej energii (> 300 keV) 2 – 3 %

Funkcja odpowiedzi na źródło punktowe

Funkcja odpowiedzi na źródło punktowe

Zdolność rozdzielcza: FWHM \approx 2,35 σ

 σ_0 – własna zdolność rozdzielcza detektora

Funkcja odpowiedzi na źródło punktowe

Czułość gamma kamery/kolimatora

Czułość kolimatora o otworach równoległych jest stała, niezależna od odległości i położenia źródła (chyba, że d >> rozmiar detektora)

Typowe wartości: 100 cps/MBq

Kolimatory - projektowanie

HR

GP

Optimal (Pb) collimator design for hexagonal holes						Optimal (Pb) collimator design for hexagonal holes							
B = 0.75	B = 0.75 cm For the 140-keV design:				B = 0.75 cm				For the 140-keV design:				
F = 15.0	F = 15.00 cm $F = 10.0 cm$					F = 10.00 cm				F = 15.0 cm			
$FWHM_{col} = 1.117 \text{ cm}$ $FWHM_{col} = 0.806 \text{ cm}$						$FWHM_{col} = 1.000 \text{ cm}$ $FWHM_{col} = 1.396 \text{ cm}$						m	
Energy (keV)	Thickness (cm)	F2F (cm)	HOLSEP (cm)	SPT (cm)	<i>D</i> (cm)	\$	Energy (keV)	Thickness (cm)	F2F (cm)	HOLSEP (cm)	SPT (cm)	D (cm)	\$
110.0	1.539	0.0947	0.1027	0.0081	0.099	2.21E-04	110.0	1.306	0.1031	0.1138	0.0106	0.108	3.53E-04
140.0	2.189	0.1298	0.1448	0.0150	0.136	1.95E-04	140.0	1.875	0.1414	0.1611	0.0196	0.149	3.02E-04
170.0 L	2.934	0.1671	0.1915	0.0244	0.175	1.70E-04	170.0	E 2.538	0.1819	0.2138	0.0319	0.191	2.56E-04
200.0	3.819	0.2076	0.2448	0.0372	0.218	1.46E-04	200.0	3.336	0.2255	0.2738	0.0482	0.237	2.14E-04
230.0	4.593	0.2402	0.2894	0.0492	0.252	1.30E-04	^{230.0} N	4.043	0.2603	0.3237	0.0634	0.273	1.85E-04
260.0 IV	TE 5.522	0.2761	0.3404	0.0642	0.290	1.13E-04	260.0	4.901	0.2982	0.3803	0.0821	0.313	1.57E-04
300.0	7.039	0.3286	0.4179	0.0893	0.345	9.28E-05	300.0	6.319	0.3525	0.4651	0.1125	0.370	1.23E-04
380.0 _H	F 9.736	0.4064	0.5397	0.1334	0.427	6.81E-05	380.0 H	F 8.878	0.4307	0.5945	0.1637	0.452	8.52E-05
511.0	14.188	0.5041	0.7036	0.1995	0.529	4.47E-05	511.0	13.173	0.5244	0.7601	0.2358	0.551	5.20E-05

Kolimatory HE b. ciężkie (> 100 kg)

Kolimator - projektowanie ⁶⁷Ga

LEGP

MEGP

Detektor scyntylacyjny

Kryształ: Nal(Tl)

3/8 cala (do 1 cala)

higroskopijny

 $\lambda_{em max} = 415 \text{ nm}$

wydajność: 38 fotonów/keV (11 %)

Energetyczna zdolność rozdzielcza: 9% dla 140 keV

Stała czasowa zaniku sygnału: 0,23 µs

Detektor scyntylacyjny NaI (Tl)

